
Discovering Useful Patterns In Relationships Between Bugs And

Vulnerabilities Using Mining Techniques

Maryam Javed

Discovering Useful Patterns In Relationships Between Bugs and Vulnerabilities Using

Mining Techniques

By

Maryam Javed

Supervised by

Dr. Onaiza Maqbool

Department of Computer Science

Quaid-i-Azam University

Islamabad, Pakistan

August, 2018

Discovering Useful Patterns In Relationships Between Bugs and Vulnerabilities Using

Mining Techniques

By

Maryam Javed

A Dissertation Submitted in Partial Fulfillment for the

Degree of

MASTER OF PHILOSOPHY

IN

COMPUTER SCIENCE

Department of Computer Science

Quaid-i-Azam University

Islamabad, Pakistan

August, 2018

Dedicated to

My loving parents

CERTIFICATE

“Discovering Useful Patterns In Relationships Between Bugs and
Vulnerabilities using Mining Techniques”

By

Maryam Javed

A DISSERTATION SUBMITTED IN THE PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF THE

MASTER OF PHILOSOPHY IN COMPUTER SCIENCE

We accept this dissertation as conforming to the required standards

1.
Dr. Onaiza Maqbool
Assistant Professor
Incharge
Computer Science Department

2.
Dr. Onaiza Maqbool
Assistant Professor
Supervisor
Computer Science Department

3.
Dr.
Assistant Professor
External Supervisor
Computer Science Department

Dated:

Department of Computer Science

Quaid-i-Azam University, Islamabad, Pakistan

Declaration
I hereby declare that this dissertation is the presentation of my original research work. Wherever

contributions of others are involved, every effort is made to indicate this clearly with due reference to

the literature and acknowledgment of collaborative research and discussions.

This work was done under the guidance of Dr. Onaiza Maqbool, Department of Computer Sciences,

Quaid-i-Azam University, Islamabad (Pakistan).

Date: August 31, 2018

Maryam Javed

Abstract

With every passing day, the world is becoming more and more dependent on software for everyday

tasks. Due to increase in usage, software quality and software security has always been a keen interest

of researchers. Engineering a system which is secure, best in design and that fulfills the customer’s

requirements completely has always been a dream of software engineers. To fulfill this dream, a lot of

research is conducted and new techniques are introduced everyday.

Despite the increased focus on making systems that have high quality, software is most likely to

have some bugs in it. More people depending on systems for their every day tasks means more data

being stored on software which is making software more vulnerable. Everyday millions of hackers try

to breach security of software, putting data of millions of customers at stake which can cause loss of

millions, can compromise company’s position in market and if real time systems are hacked, lives can

also be put in danger. Researchers are studying every aspect to make software secure and also to increase

software quality because once a software is dispatched, if any bug occurs or any flaw is found it puts the

company name at stake.

One recent interest of the researchers has been studying different attributes together to find correla-

tion between them. The findings of the research can be used for beneficial purposes. Software bugs are

error, fault or failures which can be caused by some misunderstood requirement, design issue or coding

mistake that effects software quality whereas software vulnerabilities can be defined as some weakness

or flaw left in the system that could be used to breach security of a system. Software bugs and software

vulnerabilities are conceptually different but in history, some bugs were seen to be the cause of major

vulnerabilities. In this dissertation,we have studied the relationship between software bugs and software

Vulnerabilities. We used Association Rule Mining to find co-occurrences of bugs and vulnerabilities in

the Google Chromium Project. We studied the two-sided relationship between bugs and vulnerabilities

Bug-> Vulnerabilities and Vulnerability-> Bug. We also analyzed the co-occurrences for the patterns

that could be used to improve software security. We analyzed the attributes of Bug and Vulnerabilities

Bug and Vulnerability Types, Bug and Vulnerability Scores and Bug and Vulnerability Summaries to

i

find some patterns in the co-occurrences. We attained 35% of the bugs were found to be co-occurring

with vulnerabilities whereas 46% of the vulnerabilities were found to be co-occurring with bugs. We

also found some patterns that could be used by google chromium team to improve quality and security

of the system.

ii

Acknowledgments

My journey in the University started with a dream coming true, dream that I had been seeing since

many years. I would say getting here was rather easy than staying here, it was tough for a mediocre like

me. Last three years had alot ups and downs for me, I am still thankful to many people for their never

ending support that led me finally complete my thesis.

I would first like to thank my parents for emotional and financial support they had been providing

me all my life. Many time, I had done wrong and many times I disappointed them but they never lost

their hope in me. I would also like to thank all my siblings for being a pillar of support throughout my

life and for being always unconditionally available for me. I can proudly say that I have the best family

anyone can have.

I had many emotional up and downs in University, I remember in 1st semester when I was going

through a rough phase in a subject, and was quite disheartened about it. I wanted to give up, who didnt

let me give up was Dr. Onaiza Maqbool. I still remember from the time I met her and till now , she has

always been my inspiration. She was the reason many times I wanted to leave University and I couldn’t.

I always wanted to make her proud but I always messed it up. I will try to make you proud one day and I

will try to adapt everything you used to ask me because I know you were always right. I would also like

to thank my professors Dr. Khalid Saleem, Dr. Mudassar Azam Sindu, Dr. Shoaib Karim, Dr Ghazanfar

and Dr Akmal Khattak for all the knowledge and guidance they provided me throughout degree. I would

like to thank Shabeer Uncle for keeping the environment in the lab calm and quite.

Staying in hostel was my first experience, I was badly disheartened when I came to hostel, I still

remember when mama left me in hostel, I had tears. I remember Mam Hina (My hostel Warden), she

gave me the much needed hug. In last three years, She made hostel home for me, every time I was sick,

or emotional or home sick, she was there. I remember when I used to come back from hostel, Anabia

used to hug me so tight calling me “Bajjo” and Aunty was like a mother I had in hostel, holding her hand

I could feel comfort of feeling Amma around. Thank you for staying , You people were another family

I had and the family who will always stay with me.

I would like to thank one of the best friends I had in my whole life time “Anjuman Ara” I cannot

thank you enough for always being there for me, for not judging me and for doing everything you could

for me. You are one big blessing that I cannot thank Allah enough for. Also, I would like to thank Aqsa

Akbar for helping me throughout the thesis with her inspirational talks and for being always available

whenever I needed her.

iii

Saba, Sana, Beenish,Madiha, and Warda, Thanks for making my hostel life memorable. I will

remember our adventures, late night talks and all the fun we had together. Thank you Aroosa for being

the best room mate anyone could have.

Last but not least I would like to thank Anum Zahra, Rabia Mazhar, Maryam Imtiaz , Shehroz Asmat

,Muhammad Aurangzaib, Jay Kumar, Farooq Zaman, Qamar Munir and Aqib Rehman for the time they

invested.

iv

Contents

1 Introduction 1

1.1 Bugs . 2

1.1.1 Types Of Bugs . 2

1.1.2 Bug Repositories . 4

1.2 Vulnerabilities . 4

1.2.1 Types of Vulnerabilities . 4

1.2.2 Vulnerability Repositories . 8

1.3 Commit Data for Bugs and Vulnerabilities . 9

1.4 Bug-vulnerability relationship . 9

1.5 Motivation . 9

1.6 Objective of Research . 10

1.7 Problem Statement . 11

1.8 Research Questions . 11

1.8.1 Are Commit Files fixed for Bugs or Vulnerabilities likely to be fixed for future

Bugs or Vulnerabilities? . 11

1.8.2 If a file has one vulnerability, then how likely is it to have another vulnerability

in it? Do files with more bugs have more vulnerability? 11

1.8.3 Does Security bugs only translate into the vulnerabilities? Are vulnerabilities

more likely to be found in high priority bugs? 12

1.8.4 Are associated bugs increasing the count of vulnerabilities in files? And are

associated vulnerabilities increasing the count of Bugs in Files? 12

1.9 Thesis Organization . 12

2 Related Work 13

2.1 Bugs . 13

v

CONTENTS CONTENTS

2.2 Vulnerabilities . 15

2.3 Bug-Vulnerability Relationship . 17

3 Proposed Approach 19

3.1 Bug and Vulnerability Repositories . 19

3.1.1 Bug Attributes . 20

3.1.2 Vulnerability Attributes . 22

3.2 Association Rule Mining . 23

3.3 Proposed Approach for Finding relationships between Bugs and Vulnerability 25

3.3.1 Attribute Selection . 25

3.3.2 Changed/ Commit Files Extraction . 27

3.3.3 Merging the Files with Bug IDs and CVE IDs/Converting Data into Basket Mode 28

3.3.4 Association Rule Mining . 28

3.3.5 List of Associated Bugs Vulnerabilities . 29

3.3.6 Scoring . 29

3.3.7 Post-Processing the Association Rules . 30

3.4 Analyzing the Association Rules for Patterns . 31

3.4.1 Bug Type and Vulnerability Type . 31

3.4.2 Inter-Dependability of Bug Priority and CVSS Score 33

3.4.3 Relationship between Bug and CVE Summary 33

3.5 Summary . 34

4 Experimental Setup 35

4.1 Subject System . 35

4.2 Data Collection . 36

4.2.1 Bugs. Chromium (Bug Repository) . 36

4.2.2 CVEDetails (Vulnerability Repository) . 36

4.2.3 Converting Data into Basket Mode . 37

4.2.4 Applying Association Rule Mining . 37

4.2.5 Post Processing Association Rules . 39

4.2.6 Extracting Selected Attributes Data for Bugs and Vulnerabilities in Rules 40

4.2.7 Analyzing Selected Attributes for Patterns . 40

4.2.7.1 Bug Type and CVE Type . 40

vi

CONTENTS CONTENTS

4.2.7.2 Bug Priority and CVSS Score . 40

4.2.7.3 Bug Summary and CVE Summary 40

4.3 Summary . 41

5 Experimental Results 42

5.1 Results and Discussions . 42

5.1.1 Research Question 1: Are Files fixed for Bugs or Vulnerabilities likely to be

fixed for future Bugs or Vulnerabilities? . 42

5.1.2 Research Question 2: If a file has one vulnerability, then how likely is it to have

another vulnerability in it? Do files with more bugs have higher vulnerability? . 46

5.1.3 Research Question 4:Do Security bugs only translate into the vulnerabilities?

Are vulnerabilities more likely to be found in High Priority Bugs? 51

5.1.4 Research Question 6: Are Associated Bugs increasing the count of Vulnerabili-

ties in Files? And are associated vulnerabilities increasing the count of Bugs in

Files? . 52

5.1.5 Patterns in Google Chromium Project . 54

6 Conclusion and Future Work 57

6.1 Conclusion . 57

6.2 Contribution . 58

6.3 Future Work . 58

6.3.1 Prediction Model for associated bugs and vulnerabilities 58

6.3.2 Studying Diffs for further exploration of relationship 59

6.3.3 Generalizing Relationship . 59

References 60

vii

List of Figures

3.1 Proposed Approach for Finding relationships between Bugs and Vulnerability 26

3.2 Analyzing Rule for Patterns . 32

5.1 Distributions of Results . 45

5.2 Overview of Vulnerability Count in Files . 47

5.3 Timeline Analysis for Bugs and Vulnerabilities File 1 48

5.4 Timeline Analysis for Bugs and Vulnerabilities File 2 49

5.5 Timeline Analysis for Bugs and Vulnerabilities File 3 49

5.6 Timeline Analysis for Bugs and Vulnerabilities File 4 50

5.7 Count of Vulnerabilities with no Bugs . 54

5.8 Count of Bugs with no Vulnerabilities . 54

viii

List of Tables

1.1 Software Bug Types . 4

1.2 Software Vulnerability Types . 6

1.2 Software Vulnerability Types . 7

1.2 Software Vulnerability Types . 8

3.1 Bug Attributes . 20

3.2 Vulnerability Attributes . 22

3.3 Transaction System with 5 Transactions and 3 Items . 24

3.4 Attribute Selection for producing an associated list of bugs and vulnerabilities 27

3.5 Sample of Changed files extracted against every Bug 27

3.6 Sample of Changed files extracted against every CVE ID 27

3.7 Sample of Files with their corresponding bugs and vulnerabilities 28

3.8 List of Bugs and Vulnerabilities . 29

3.9 Sample Association Rules . 29

3.10 Scoring of Association Rules . 30

3.11 Sample of Final Bug and Vulnerability Rules . 30

3.12 Attribute Selection for analyzing the associated list of bugs and vulnerabilities 31

3.13 Sample of Bug and Vulnerability Types . 33

3.14 Sample of Bug and Vulnerability Scores . 33

3.15 Summary of Bug and Vulnerability Summaries . 33

4.1 Subject System . 35

4.2 Post Processed Association Rules . 39

5.1 Sample of Discovered Bug and Vulnerability Rules . 43

5.2 Rules with High Support . 44

ix

LIST OF TABLES LIST OF TABLES

5.3 Rules with High Confidence . 44

5.4 File Rank List for Vulnerabilities . 46

5.5 Sample of File Rank List for Bugs . 50

5.6 Sample of File Rank List for Vulnerabilities . 51

5.8 Analysis of Bugs and Vulnerability Scores . 52

5.7 Bug and Vulnerability Types Matrix . 53

6.1 Top 100 Bug-vulnerability Rules . 63

6.1 Top 100 Bug-vulnerability Rules . 64

6.1 Top 100 Bug-vulnerability Rules . 65

6.1 Top 100 Bug-vulnerability Rules . 66

6.2 Top 100 Buggy Files Rank List . 66

6.2 Top 100 Buggy Files Rank List . 67

6.2 Top 100 Buggy Files Rank List . 68

6.2 Top 100 Buggy Files Rank List . 69

6.2 Top 100 Buggy Files Rank List . 70

6.3 Top 100 Vulnerable Files . 70

6.3 Top 100 Vulnerable Files . 71

6.3 Top 100 Vulnerable Files . 72

6.3 Top 100 Vulnerable Files . 73

x

Chapter 1

Introduction

In 2011 Marc Andreessen in an article said “Software is eating the world”, he might have not realized

that his words would come true soon (AVNER, 2017). Now-a-days use of software is essential to keep

up with this fast paced world. Software is being used perform simple to complex tasks whether they

are transactions, communication, medical facilities or helplines. Software Engineers have always taken

keen interest in improving software quality and software security. Providing customers a system that

suits their requirements and to make a secure and non- vulnerable system has been a dream of many

software engineers. To make this dream come true, software trends are changing rapidly. Different

methodologies and techniques are being introduced to support the idea of providing error free and non-

vulnerable software.

No matter how much time and effort is spent to improve the software quality, software is most likely

to have bugs. Tracing and removing bugs is a continual process throughout the lifespan of software. The

process of tracing and removing bugs (formally known as Testing and Debugging respectively) assures

that software has no (or minimum number of) bugs. Software quality is a major concern of software

developers these days. With increased complexity, it is difficult to ensure an error-free software.

Software Testing is the process of finding errors or bugs or failures in a system (Myers, 2004).

It is used to ensure that program/ software is performing how it is supposed to. Software testing is

performed to assure quality and reliability of the system. We don’t test a program only to check whether

that program is working, we test a program against requirements, also, we assume that there are some

errors/bugs in the system which we have to identify and remove. We also test the system to identify

loopholes, loopholes that a hacker can use to harm the system, or get access to it or to perform any

action that breaches system security.

Software Security is another major concern of the software industry today. The increased growth

CHAPTER 1. INTRODUCTION

of software industry has also caused the industry of cybercrimes to expand which resulted in industries

putting more focus on software security. Every year a lot of security updates are made to software

in response to some security breaches that are made or in response to the security sensitive parts of

the software found by the software management or security management team. Some companies like

Google hire an ethical hacker who continuously attacks their own system to find its weaknesses before

the attacker finds these weaknesses and exploits them. One of harsh realities that software engineers have

to face is that the pace in which software engineers create more and more secure systems, in the same

pace attackers make strategies to break those security walls. But for attacker to attack a system, there

has to be some weakness in the system which is exploitable. For example for a thief to enter a house,

there has to be some weakness in the security system of the house; either locks are easily breakable,

some door is left opened by mistake or some other weakness. Without these weaknesses neither can a

thief enter a house nor can an attacker can attack the system. These weaknesses that lead the attacker

to attack the system are known as vulnerabilities. Vulnerabilities are already present in the system in

the form of some flaw or error. Software Security is the ability of software to function correctly even if

it’s under a malicious attack or an idea implemented to protect the system against any hacking attacks

(Mcgraw, 2004).

Now we are going to explain a few terms that are going to be used repeatedly in thesis.

1.1 Bugs

A software bug is an error, fault or failure in the system (Myers, 2004). Systems can have bugs due to

misunderstood requirements, design issues or some coding mistake. Bugs are reported by the users or

developers after the system is released, every bug report is stored in a database called bug repository.

Every bug report defines some attributes of the bug e. g. Bug ID, Bug Priority, Bug Type, Bug Summary.

1.1.1 Types Of Bugs

There are different types of bugs, we are going discuss a few of which are found common by most of

the software vendors (Li et al., 2006).

2

CHAPTER 1. INTRODUCTION

Bug Type Cause Effect Example

Memory

bugs

These bugs occur when

corrupted memory locations are

used.

They can affect other memory

locations during program

execution and can corrupt them

which can also lead to whole

program or system failure.

Stack overflow

Semantic

Bugs

These are caused by

inconsistency in the design

requirements given by the

customer.

It can result in missing features,

missing cases, wrong control

flow and many other errors.

Use of a

non-initialized

variable:

int i; i++; // the

variable i is not

initialized

Security

Bugs

They are caused when developer

leaves some weakness or

loophole in the system.

The affects vary it can be as

simple as attacker reading all

the data to attacker destroying

the whole system.

HeartBleed Bug

allows stealing the

information

protected, under

normal conditions

GUI Bugs These bugs can be caused

because of Semantic Bugs,

when requirements are

misunderstood, graphical user

interface is also compromised.

Even if according to the

designer Graphical User

Interface is perfect, but if it

doesn’t meet requirements

provided by the customer, it’s a

total failure. In other cases,

system might not be having

some important modules or

some functionalities might be

missing.

Misalignment,

broken images,

wrong sized

graphic elements,

inconsistent colors

on a link, button or

menu

3

CHAPTER 1. INTRODUCTION

Table 1.1: Software Bug Types

Bug Type Cause Effect Example

Concurrency

Bugs

These bugs are caused when

multi-threading environment is

used, also they occur in case of

data race, deadlock and

synchronization.

It can result in system hangs and

system crashes.

Deadlocks,

livelocks,

starvation, and

thrashing

1.1.2 Bug Repositories

Every software receives a set of problems and issues, these problems or issues are stored in a database.

For bugs, this data base is normally known as Bug Repository. Every software has its own bug repository

which not only contains all the issues a software faces but also detailed information regarding these

issues. Bug repositories are used to collect and manage all the information provided by the user as well

as information provided by the debugger (Kanwal & Maqbool, 2012). Bug repositories are used to study

the patterns of the previous reported and resolved bugs and these patterns could later be used to resolve

the new reported bugs quickly. Since a lot of research is being carried out in the field of software quality,

these repositories play a vital role in the lives of researchers (Xuan, 2012).

1.2 Vulnerabilities

A software vulnerability can be defined as an error, weakness or a flaw that is most likely to be exploited

by an attacker to achieve his goal of breaching the security of the system (Jimenez, Mammar, & Cavalli,

2009). Vulnerability can also be defined as the consequence of an error. When we allow the system to

function beyond it’s requirements, it may result in increased chances of it being misused. An example

as simple as if we divide any number by 0, it results in crash, which can be exploited by the attacker if

he discovers it. It is also defined as a type of software bug which has security consequences. According

to research, vulnerabilities remain in the system for two years on average before they are identified and

fixed. In worst case, software Vulnerabilities can destroy the system completely.

1.2.1 Types of Vulnerabilities

There are different types of vulnerabilities which are common in software(Munaiah, Camilo, Wigham,

Meneely, & Nagappan, 2017a).

4

CHAPTER 1. INTRODUCTION

Vulnerability

Type

Cause Effect Example

DOS This type of vulnerability occurs

when there’s some bottleneck in

the software which triggers the

CPU usage, memory leaks, disk

i/o, database calls.

It can make the whole system

collapse and it causes strange

errors to make the user feel that

system performance is under

stress.

CVE-2018-0976:

an attacker

connects to the

target system using

Remote Desktop

Protocol and sends

specially crafted

requests.

Overflow It occurs when attackers send a

large amount of data of the

application and then adds some

malicious attack at the end of

data.

Information stored in the stack

can be overwritten.

CVE-2017-7269:

Buffer overflow

allows remote

attackers to

execute arbitrary

code via a long

header beginning

Code Execution Some website weak in security

provides the user with server

side files that they can modify,

code can also be injected in the

scripting language of software.

Attackers manipulate the web

application output or content by

executing some code on the

server side.

CVE-2018-5007:

Adobe Flash

Player 30.0.0.113

and earlier

versions have a

Type Confusion

vulnerability.

Successful

exploitation could

lead to arbitrary

code execution in

the context of the

current user.

5

CHAPTER 1. INTRODUCTION

Table 1.2: Software Vulnerability Types

Vulnerability

Type

Cause Effect Example

Memory

Corruption

It occurs when the memory is

changed without an explicit

assignment. Due to some

programming mistake content

of memory locations are

modified outside memory limit.

Content placed in memory can

be accessed and altered.

CVE-2018-9465:

In a function of a

file, there is a

possible memory

corruption due to a

use after free. This

could lead to local

escalation of

privilege with no

additional

execution

privileges needed.

User interaction is

not needed for

exploitation.

SQL Injections It occurs due to programmatic

fault, when programmer

neglects to escape strings

properly in SQL Queries.

Attacker can delete data from

database, he can also alter data

or simply copy data and use it

against organization.

CVE-2018-

5993: SQL

Injection exists in

the Aist through

2.0 component for

Joomla! via the id

parameter in a

view=showvacancy

request.

6

CHAPTER 1. INTRODUCTION

Table 1.2: Software Vulnerability Types

Vulnerability

Type

Cause Effect Example

XSS XSS vulnerabilities occur

normally on the web pages, user

is knowingly directed to some

web page that has XSS

vulnerability, once user lands

the page he is attacked by the

malicious user

In the worst case, one click on

the wrong page can delete all

the data of the user, give control

of the user’s system to the

attacker.

CVE-2015-3429:

This Cross-site

scripting (XSS)

vulnerability

allows remote

attackers to inject

arbitrary web script

or HTML via a

fragment identifier.

Directory

Traversal

It is caused by user supplied

unvalidated input

It can allow the attacker to

access restricted directories of

software and also lets the

attacker execute malicious

commands.

CVE-2007-2285:

Directory traversal

vulnerability

allows remote

attackers to read

arbitrary files via a

.. (dot dot) in the

feed parameter.

7

CHAPTER 1. INTRODUCTION

Table 1.2: Software Vulnerability Types

Vulnerability

Type

Cause Effect Example

Http Response

Splitting

It can occur if a malicious user

inject their own CRLF sequence

in HTTP stream, CRLF refers to

the Carriage Return and Line

Feed sequence of special

characters. Many internet

protocols including HTTP used

these character as the end of line

marker.

It can allow the attacker to gain

control over the content of

HTTP response.

CVE-2006-6699:

Multiple CRLF

injection

vulnerabilities

allow remote

attackers to inject

arbitrary HTTP

headers and

conduct HTTP

response splitting

attacks via CRLF

sequences.

Bypass It occurs when and if system

administrator makes some entry

point which enables the user to

access the system without going

through security clearance

procedures.

Attacker can get access to the

system, the effect is based on

what kind of access he got,

which external route attacker

has discovered and the route

leads to which door. Sometimes

it only allows the attacker to

read information whereas in

other cases it can allow data

manipulation and data

destruction as well.

CVE-2012-3365:

The SQLite

functionality in

PHP before 5.3.15

allows remote

attackers to bypass

the open basedir

protection

mechanism via

unspecified

vectors.

1.2.2 Vulnerability Repositories

Just like bugs, vulnerabilities are also stored in a database which is called vulnerability repository. Un-

like Bug repositories, every software doesn’t have separate vulnerability repositories. Every vulnera-

bility that occurs in any software is stored in common database of vulnerability for all the software.

8

CHAPTER 1. INTRODUCTION

Every vulnerability report comprises of some attributes relating that vulnerability some of them are

CVE ID(Common Vulnerability and Exposures), CVSS(Common Vulnerability Scoring System) Score,

CVE Summary. National Vulnerability Database(NVD) and Common Vulnerability and Exposure de-

tails(CVEDetails) are examples of such repositories (Özkan, 2012).

1.3 Commit Data for Bugs and Vulnerabilities

Commit Data record changes made to the system. When a bug or vulnerability or any kind of fault

occurs in the system, system is evolved through small changes in response. These changes are known as

commits. Commit data or commit files are the files that are changed while fixing a bug or vulnerability.

Every Bug and vulnerability report consists of these commit files as a feature (Alali, Kagdi, & Maletic,

2008).

1.4 Bug-vulnerability relationship

As mentioned earlier vulnerability is a special type of bug which has security consequences. Bugs

and vulnerabilities are conceptually different, a bug is an error that may have occurred due to coding

error or requirement misunderstanding whereas vulnerability is a security flaw or misuse or abuse of

a functionality. Vulnerabilities are hidden functionalities that let the attacker use system beyond the

expectations of the developer. It is possible that the hidden functionalities that are causing vulnerabilities

to occur are caused by some bug. We are not saying that every vulnerability can be caused by some

hidden functionality, it can also be the case that a vulnerability might have allowed the attacker to place

bugs in the system as well.

The empirical study of the relationship between bugs and vulnerabilities will not only tell us about

the relationship strength but also may reveal some hidden patterns that can be used to improve software

security or software security and software quality both. If there exists strong relationship between bugs

and vulnerabilities, we can further study whether bugs are causing vulnerabilities or vulnerabilities are

causing bugs to occur.

1.5 Motivation

In 2014, iPhone manufacturing company Apple discovered a vulnerability in their system, the vulner-

ability was registered as CVE-2014-1266 also informally introduced as “goto fail”. As suggested by

9

CHAPTER 1. INTRODUCTION

the name the vulnerability caused by a single ’goto’ statement which was misplaced in the code made

all the users vulnerable. The command was used in the code which included OSX and IOS encryption

module. The module was supposed to verify an iPhone when it connects to an encrypted site over SSL.

But instead of using one GOTO statement two GOTO statements were used. The first one belonged to

the code whereas the second one was a typing mistake which diverted the program execution and acted

like a bypass stent, it didn’t let the module apply encryption, the encryption code was made dead by this

additional GOTO statement which made communication of millions of the apple users go vulnerable.

Gotofail was a coding mistake, a bug that caused a vulnerability to occur (Greenberg, 2014). Another

vulnerability, CVE-2016-10087 was found in May 2016, null-pointer-dereference bug caused it. The

bug allowed a malicious user to execute DOS attack by exploiting the bug (AVNER, 2017). In 2017,

another vulnerability occurred in jquery in a module where input of a variable was low cased e.g. “A”

was converted into “a”. Whenever that attribute was given Boolean value it created an exception which

caused infinite recursion because Boolean values can not be low cased. This small bug caused a vulner-

ability known as WS-2017-0195 to occur. Due to infinite recursion, system’s functionality was broken

and it caused Denial of Service(DOS) vulnerability (Abbot, 2017). There are more such vulnerabilities

that were seen in history that were caused by some coding mistake that led the attacker to gain access to

the system.

Research on relationship between bugs and vulnerabilities is new, not a lot of research has been

conducted on this topic, we have found two research papers in which this topic was being explored. In the

first research paper by Fonseca, José and Vieira, vulnerabilities-bug relationship was exploited, achieved

results of the research was not enough to state that software faults or software bug were responsible for

software vulnerabilities (Fonseca & Vieira, 2008). In the second paper by Munaiah, Nuthan and Camil

(Munaiah et al., 2017a), we know that software quality can be translated into software security means

the issues that arise due to some coding mistake or due to some missed requirement can actually create

some loophole in the system that could be manipulated by the attacker. They exploited Bug-Vulnerability

relationship in detail and gave verdict that although there exists a relationship but the relationship is not

that strong that it can be further explored.

1.6 Objective of Research

The objective of this research is not only to study bug-vulnerability relationship but also discovering

useful and hidden patterns that can be further used to improve software security or software quality. In

10

CHAPTER 1. INTRODUCTION

previous researches, researchers have studied the one sided relationship between bug and vulnerability i.

e. bug-> vulnerability. They have exploited relationship in a way where bugs can cause vulnerabilities

to occur. We intend to study two sided relationship. We intend to study whether a vulnerability can

cause some bugs to occur as well. We also intend to study the relationship by analyzing corresponding

attributes of bugs and vulnerability to find any useful pattern that can lead us to improve software quality

or software security. We will analyze the relationship using mining techniques, the major technique that

we are going to find the co-occurrence of bugs and vulnerabilities is Association Rule Mining. Further, to

analyze these relationship, we will use different statistical and mining techniques like inter dependability

among attributes, Term Frequency.

1.7 Problem Statement

Relationship between Software Security and Software Quality needs to be exploited to understand the

nature of relationship. Studying that relationship can be benificial to find the hidden, useful hidden

patterns which can be used to improve Software Quality and Software Software Security.

1.8 Research Questions

1.8.1 Are Commit Files fixed for Bugs or Vulnerabilities likely to be fixed for future Bugs

or Vulnerabilities?

Commit Files are the base of the research, Our whole research relies on the ratio of relationship bugs

and vulnerabilities posses. For finding the ratio, we check how many bugs and vulnerabilities co-occur

in a file. It will become the base of our research, it will provide us data of the co-occurred bugs and

vulnerabilities which we will use to exploit the relationship among them.

1.8.2 If a file has one vulnerability, then how likely is it to have another vulnerability in

it? Do files with more bugs have more vulnerability?

Some research states that bugs and vulnerability behave in different ways, they say that if a file has the

most bugs in it, it’s more likely to have more bugs in the same file again. But if a vulnerability occurs

in a file, that file is not likely to have any more vulnerability. We want to verify the results. We are

trying to find some hidden patterns that could provide us some interesting facts about the relationship,

it’s possible that in a file a bug and vulnerability occurred and they both were having high priority and

11

CHAPTER 1. INTRODUCTION

high CVSS Score which could lead us into believing that a high priority bug will always cause a high

CVSS Score vulnerability.

1.8.3 Does Security bugs only translate into the vulnerabilities? Are vulnerabilities more

likely to be found in high priority bugs?

We are also going to exploit the relationship in terms of attributes of the bugs and vulnerabilities. One

aspect that is to be explored is bugs that are related to security will be the only ones that will become

vulnerability and will all the bugs relating to security becomes vulnerabilities or not. We exploited bug

and vulnerability attributes to find any kind of patterns. Here, we will study if software vulnerabilities

are likely to be found in the bugs with high priority.

1.8.4 Are associated bugs increasing the count of vulnerabilities in files? And are asso-

ciated vulnerabilities increasing the count of Bugs in Files?

We wish to analyze the count of vulnerability in the files with zero bugs to analyze if count of vulnera-

bilities is effected by the count of bugs in files. In the same way, we also wish to analyze the count of

bugs in the files with zero vulnerabilities if count of bugs is effected by the count of vulnerabilities in

files

1.9 Thesis Organization

In this chapter, we introduced our research topic and provided research question that we will be answer-

ing in our thesis. In Chapter 2, we will be discussing the work to provide base to our research, the work

that has been done in this field before. In the Chapter 3, we are going to discuss the methodology that we

used to study bugs and vulnerabilities, their relations and pattern that will unveil new facts about them.

Chapter 4 describes the experimental setup of the thesis, how we conducted our experiments. Chapter 5

will provide some results of the study, It will also discuss the contribution of the study. In Chapter 6, we

will conclude our study and will tell some future work that can be done in the same field.

12

Chapter 2

Related Work

Software has become a mandatory part of our lives, alot of research has been carried on to improve

software quality and software security over time. In this chapter, we are going to discuss previous

related literature on bug localization, vulnerability localization and on the the relationship between bugs

and vulnerability.

2.1 Bugs

Alot of effort has been put over the time to localize bugs and resolve them. We are going to discuss a few

techniques that were proposed for bug localization. In a paper of 1990 (Shahmehri, Kamkar, & Fritzson,

1990), authors presented a semi automated bug localization method which was generalized version of

algorithmic debugging. The technique was applicable to all the procedural languages. This debugger

provided interactive debugging facility where error could be localized semi-automatically.

In another paper, Liu, Yan and Fei in 2005 (C. Liu, Yan, Fei, Han, & Midkiff, 2005) proposed a

new statistical model-based approach known as SOBER which is used to localize software bugs without

any knowledge of semantics of program. SOBER models divergence of predicate evaluations between

correct and incorrect executions. Rao and Kak in their research have compared five generic text models

i.e. Unimodel(UM), The Vector Space Model(VSM), the Latent Semantic Analysis Model(LSA), the

Latent Dirichlet Allocation Model (LDA) and Cluster Based Document model(CBDM). They studied

these models to locate the files that were relevant to bug reports. They studied the models on iBugs

dataset and found that UM and VSM were performing better than others for finding the relevant files

that were used to fix bugs (Rao & Kak, 2011).

In (Shokripour, Anvik, Kasirun, & Zamani, 2015), authors aimed to improve automatic bug as-

CHAPTER 2. RELATED WORK

signment by using Time TF-IDF. They have considered the recency of the developer to determine the

expertise of the developer in resolving the bug. This technique showed immense improvement in the

field of bug assignment. Yan, Zhang and others (Yan, Zhang, Yang, Xu, & Kymer, 2016)have proposed

a component recommender by using the proposed Discriminative Probability Latent Semantic Analysis

Model which initializes the word distribution for different topics. It trains the model by using historic

data of the component assignment in Bug reports which helps software developers to recommend com-

ponents when a new bug occurs in the system.

In 2015 (Zhang, Wang, & Wang, 2016), Zhang and Wang proposed an approach called K-nearest-

neighbours search and heterogeneous proximity which was used to improve automatic bug report as-

signment. When a bug is reported, KSAP assigns the bug report to the developers using two phase

procedure. In the first phase, similar bugs that were resolved in history are found using K-nearest-

neighbours method. In the second phase, they created a rank list of the developers who have dealt with

similar kind of bugs. The technique helped bug localization by assigning the bug to the developer that

had already worked on similar kind of bug. Results of the technique was found better than the others

being used for this.

In another paper (Banerjee et al., 2017), authors have proposed an automated triager that can auto-

matically recognize whether the problem is original or duplicate, if the problem is duplicate it provides

the list of the duplicated bugs. They used 24 document similarity measures and associated summary

statistics to create this fully automated triager.

Le1 T., Lo D. proposed a new framework for fault localization, known as Savant that is a learning-to-

rank strategy using likely invariant diffs and suspiciousness scores as feature. It outputs a rank list of the

method according to their suspiciousness scores with the method having the most suspiciousness score

at the top. Savant is a four step procedure which starts with method clustering and test case selection,

invariant mining, feature extraction and method ranking. After these steps are performed, a short ranked

list of buggy methods is produced. They used 357 real life bugs from 5 different programs and evaluated

Savant on Defect4J benchmark. They claimed that Savant was able to successfully localize 63. 03, 101.

72, 122 bugs on average within the top 1, top 3 and top 5 listed methods. They validated the results of

their framework by comparing it with 10 SBFL techniques and have proved that the results of Savant

were far better than any of fault localization techniques (Le, Lo, Goues, & Grunske, 2016).

14

CHAPTER 2. RELATED WORK

2.2 Vulnerabilities

Software security vulnerabilities are one of the critical issues in the realm of computer security. Due to

their potential high severity impacts, many different approaches have been proposed in the past decades

to mitigate the damages of software vulnerabilities. Machine-learning and data-mining techniques are

also among the many approaches to address this issue. Here, we are going to discuss a few techniques

that were used to localize vulnerabilities and resolve them.

Neuhaus and Zimmermann explored the reason for occurrence of vulnerabilities in the system. They

have presented an empirical evidence that vulnerabilities correlated with features of the components.

They created a tool named as “vulture” which mined the existing databases of vulnerabilities and also the

version archives to map the past vulnerabilities to the components in which they occurred. This provided

them the data that could be studies to check which components were making software vulnerable. They

used Mozilla vulnerability history as the data set and also stated that they found that components that

had vulnerabilities in past were not likely to have more vulnerabilities in future. They also stated that

features of the components are good predictors of the vulnerabilities. They also created a predictor

using suitable set of features for vulnerabilities that could be applied before any component was fully

implemented and it could predict whether the component is likely to have any vulnerability or not. They

also claimed that their proposed tool was very fast and it could examine a complex project like Mozilla

in half an hour and it identifies the 50% of the vulnerable components (Neuhaus, Zimmermann, Holler,

& Zeller, 2007).

Authors studied the components that cause the vulnerabilities to occur in the system. They created a

predictive model that could idenitify which components of software have high security risks. They used

security related static tool warnings, code churn, size and faults identified by the manual inspections as

the input variables to the tool and were validated against the vulnerabilities found in past. These results

are obtained early while developing the system that allows the developer to know the threats early so

that he can have time to redesign or test the most vulnerable software components. They evaluated their

model on large cisco software system and claimed that 75. 6 % of the components that were found

vulnerable are on the top of list of predicted vulnerable components (Gegick, Rotella, & Williams,

2009).

Jimenez studied vulnerabilities in detail, they state that although vulnerabilities are not a new topic,

but still developers don’t have idea how to deal them. Vulnerability cause graphs can b used to teach

programmers how to avoid vulnerabilities. Also, source code should be inspected to guarantee zero

15

CHAPTER 2. RELATED WORK

vulnerabilities during construction phase. Number of tools are also available to detect vulnerabilities,

some are based on static techniques while others are based on dynamic. These tools can be used after

the software has been developed to ensure that no vulnerability exists (Jimenez et al., 2009).

Gegick studied component proneness for attacks by creating a rank list of the components who are

more likely to have vulnerabilities in them. Security Risk management efforts can be made better by

using the proposed approach of component rank list. They created a predictive model that identifies

the most risky component in software in terms of security. They implemented this model in the early

stages of software Development Life Cycle. They used non security factors like Code Churn, SLOC

and previous manual inspections of the components to evaluate the component security proneness. They

implemented the model on Cisco Software System and found that 75. 6% of the vulnerable components

are in top 18. 6% of the components that were predicted by the predictive model proposed by them

(Gegick et al., 2009).

Shin discussed the techniques that could be used to prevent and detect vulnerabilities before a new

release is made. They performed case studies on Mozilla Firefox Browser and Red Hat Enterprise Linux

Kernal, they studied that whether matrices obtained early in Software Development Life Cycle can find

vulnerable components and locations in the system. The matrices that they studied were complexity,

code churns and developer activity matrices. Results showed that 70. 8% vulnerabilities can be known

by selecting 10. 9% files of Mozilla Firefox. Whereas 68. 8% vulnerabilities can be known by selecting

13% files (Jimenez et al., 2009).

In another paper, Bozorgi and Saul state that software vulnerabilities have become big threat to the

software industry, so in order to address every vulnerability disclosure, enterprises ranked the vulner-

abilities and triaged the vulnerabilities with highest severity first. They stated that the current scoring

system available were not accurate because they were based on ad-hoc approaches and are unlikely to

produce a robust ranking model for vulnerability. They have created a complementary approach for vul-

nerability assessment using tools for data mining and machine learning. They have proposed a classifier

that predicted that whether a vulnerability is exploitable or not and if it is exploitable how soon it can be

exploited. Their classifier operated on the text fields, time stamps, cross-references, and other entries in

existing vulnerability disclosure reports which were used to extract dimensional feature vectors. They

claimed that their classifier predicted better than the currently used classifier CVSS in NVD (national

vulnerability and exposure database) because they have used the machine learning approaches to train

their classifier (Bozorgi, Saul, Savage, & Voelker, 2010).

Liu and Shi have studied the software vulnerability techniques including static analysis, fuzzing,

16

CHAPTER 2. RELATED WORK

penetration testing. They have discussed the technique, research status and related problems. They have

talked in detail about the advantages and disadvantages of each technique. According to the authors,

Static analysis can diagnose most the bugs in the development phase whereas fuzzing takes place after

the software has been developed but it discovers the most vulnerabilities. VDMs used already discov-

ered vulnerabilities and assesses what threats are faced by the target system, it provides three separate

techniques for design and implementation. Penetration testing can find no tool can expose, it used social

engineering factors into consideration. Not only they have discussed the current use of these techniques

but also future directions of each of the technique (B. Liu, Shi, Cai, & Li, 2012).

Meneely evaluated the effectiveness of the two techniques on vulnerability detection that were ef-

fective on bug detection i. e Code Reviews and Validity of Linus’ laws. They evaluated the statement

“many eyes make all the bug shallow” on vulnerabilities. Vulnerabilities are rare and they require some

special skills to recognize unlike bugs. They studied chromium project’s four additional releases, com-

mit logs, code reviews and vulnerability entries. They found that files are less likely to be vulnerable if

they have already been reviewed by developers who has been involved in vulnerability fixing. But also

their results indicate that we cannot use the same reviewers for bug and vulnerability both due to their

inexperience and non-familiarity of risk factors related to security (Meneely et al., 2014).

Another Study by Tantithamthavorn studied the reliability of the prediction model and stated that

the quality of training data is very important in creating a good prediction model. Mislabeling of data

can seriously compromise the quality of prediction model. They studied mislabeling in random and

their impacts on the performance and interpretation of the defect predictive models. They have used

Chromium Project as a data set to study the impact of mislabeling (Tantithamthavorn, McIntosh, Hassan,

Ihara, & Matsumoto, 2015).

2.3 Bug-Vulnerability Relationship

Not a lot of research has been carried on this topic, we have found three papers that addressed this topic.

Fonsecal and Vieira studied the software bugs that can lead security vulnerabilities, they studied 655

security fixed of 6 web applications. According to their results, generic software faults are responsible

for all the security problems relating XSS and SQL Injections. They also found that another fault Missing

function Call Fault Types is causing more than 76% faults relating to security. They analysis show

that vulnerabilities relating to web applications are caused by software bugs which affect the restricted

collection of statements. They have presented a detailed analysis of the code of fault models that cause

17

CHAPTER 2. RELATED WORK

vulnerabilities in web applications (Fonseca & Vieira, 2008).

Camilo and Meneelyet studied the relationship between bugs and vulnerabilities. Bugs occur due to

insufficient functionality whereas vulnerabilities are the abuse of functionality. They performed an in

depth analysis on chromium project over 5 releases of the software over the time span of 5 years. They

checked whether vulnerabilities are the consequences of the bugs. They states that before a vulnerability

is exploited, it is present in the system for two years, hence they have studied the relationship over the

interval of time period of two years. They mined the vulnerability data from the national vulnerability

database and Common Vulnerabilities and exposures database whereas, for bugs, they approached the

chromium bug repository. They used the logistic regression analysis, ranking analysis, developer ex-

perience, bug type classification and ranking analysis to check whether files which were changed for

bugs are same as were the files changed for vulnerabilities. They concluded from the obtained results

that there exists some correlation but the relation is weak. They also mentioned that security bugs had

stronger relation with vulnerabilities than non security ones (Camilo, Meneely, & Nagappan, 2015).

=Munaiah and Camilo extended the research of (Camilo et al., 2015), they investigated further on

the relationship between pre-release bugs and post release vulnerabilities, this time they checked the re-

lationship for specific bugs like stability related bugs. An in-depth analysis was performed on chromium

over the time span of six years with 5 major releases. The bug data set was divided according to the

categories to study every category in detail for its relationship with post release vulnerabilities other

than this, data set was pretty much the same. They evaluated the relationship using non-parametric null

hypothesis test. They again used regression analysis to find relationship for categories of bugs, so that

every category could be handled and analyzed individually. But, even after studying the relationship in

depth, they still concluded that the relationship was weak overall and gave comparatively better results

on the security related bugs. To generalize their results, they also performed the same analysis on a

different data set Apache httpd, results were same, no significant relationship was found (Munaiah et al.,

2017a).

18

Chapter 3

Proposed Approach

Since it’s difficult to create a non-vulnerable system, a lot of research is being conducted on how to fix

the vulnerabilities and how to prevent these vulnerabilities from being exploited. As software engineers,

we need to find the cause of the vulnerability or the circumstances in which that vulnerability occurred.

We also need to explore the hidden patterns of the vulnerability that which can provide us details about

vulnerability behaviors.

In this chapter, we are going to explain our proposed approach that we are going to use for studying

the relationship between bugs and vulnerabilities. We are going to discuss all the techniques that are

being used in out approach.

3.1 Bug and Vulnerability Repositories

Software Bugs are faults in the system which are caused due to some coding mistake or insufficient

requirement fulfillment. With the growth in scale, large software projects are likely to get more software

bugs. These bugs are stored in a database called bug repository. These repositories not only store the

information about bugs but also update the bug information whenever a change takes place in response to

that bug. These repositories are important to be present in a system because they let the software quality

researchers to investigate the root cause of these bugs and they also enable the researchers to create

methodologies and techniques to prevent these bugs from occurring (Banerjee et al., 2017; Bozorgi et

al., 2010; Dallmeier & Zimmermann, 2007; Jimenez et al., 2009; Kanwal & Maqbool, 2012). Today, big

software vendors like Google 12, Firefox 3, and eclipse4 are maintaining their respective bug repositories.

1https://bugs.chromium.org/p/chromium/issues/list
2https://developers.google.com/issue-tracker/
3https://bugzilla.mozilla.org/
4https://bugs.eclipse.org/bugs/

CHAPTER 3. PROPOSED APPROACH

Some of them allow their bug data to be available freely to researchers (Xuan, 2012).

Software Vulnerabilities are security consequence of a system which are caused when security pol-

icy of a system is violated. Common Vulnerability and Exposures (CVE) is a list of names that are

assigned to publicly known vulnerabilities. Every vulnerability that is published and accepted is given

a unique CVE ID which uniquely identifies them (Gopalakrishna, Spafford, Gopalakrishna, & Spafford,

2005). Software Vulnerabilities are also stored in repository database along with the detailed informa-

tion relating them. A software may or may not have it’s separate vulnerability repository. But there

are some online repositories which keep track of every information of every vulnerability that occurs in

any system. Some of these vulnerability databases that are available online are National Vulnerability

Database (NVD)5, Common Vulnerability and Exposures (CVE)6 7and Redhat 8. But the updated repos-

itory that enlists all the attributes of every vulnerability available in all the vulnerability database or in

other words, it assembles all the vulnerability attributes available in all repositories on one platform is

CVEDetails (Munaiah, Camilo, Wigham, Meneely, & Nagappan, 2017b).

3.1.1 Bug Attributes

Bug attributes are the features of bugs that are found in bug reports, these bug attributes define the bug.

They also reveal the reason how the system was broken, or why that bug occurred in the system. Bug

attributes are important because they are used by researchers to propose fault localization techniques that

can help analyze and predict the modules to be analyzed for new reported bugs. A list of useful attributes

that are used by researchers are explained in Table 3.1(Nagwani & Verma, 2011)(Sharma, Kumari, &

Singh, 2013)

Table 3.1: Bug Attributes

Attribute Explanation

Bug ID A unique number assigned to every bug to identify

that bug in a system.

Bug Priority It defines the importance of a bug as compared to

others. Bug Priority 0 is considered the highest

whereas 5 considered the lowest.

5https://nvd. nist. gov
6https://cve. mitre. org
7https://www. cvedetails. com
8https://www. redhat. com

20

CHAPTER 3. PROPOSED APPROACH

Attribute Explanation

Severity This indicates how severe the problem is. e. g.

trivial, critical, etc

Resolution The resolution field indicates what happened to this

bug. e. g. FIXED

Comments Bugs have comments added to them by users. it

represents Number of comments made to a bug

report.

Dependencies Does the bug depend on other bugs to be fixed first

or does it block fixing another bug ? The number of

dependencies are recorded here.

Date of Close The date when the bug was marked closed for any

further change.

Keywords The keywords that can be used to tag or categorize

a bug.

Version This defines the version of software in which the

bug was found.

CC List People who are informed about any change made in

the bug, these people are directly or indirectly

involve in fixing the bug.

Platform and OS The computing environment where the bug was

found is indicated here.

Bug Summary It provides the brief description of the bug.

Changed Files The files that were changed while fixing the bug in

the system.

Component This defines the component in which bug occurred

Bug Status This field tells about the status of the bug whether

bug is new, unresolved, or fixed.

Bug Publish/Create Date The date when bug was published

Bug Fix Date The date when bug was fixed and the stats of the

bug was marked “Fixed”

21

CHAPTER 3. PROPOSED APPROACH

Attribute Explanation

Owner Defines who identified and reported the bug.

Attachments Attachments can be anything which was attached

by the reporter while reporting bug or attached by

developer fixing the bug, it can be an image or

some document.

Bug Fix Time It indicates the amount of time that was taken to fix

the bug.

3.1.2 Vulnerability Attributes

Every vulnerability is defined by some attributes that tell details about it’s nature and the impact it

has on any system. Vulnerability attributes don’t vary from repository to repository, there are general

vulnerability attributes present in Vulnerability repositories like CVEdetails, NVD and redhat. Use of

these attributes by researchers may vary, they use the specific attributes which would help them achieve

their goal. As mentioned before, CVEDetails assemble all the attributes of vulnerabilities at one place,

so we are going to define it’s attributes9 (Özkan, 2012). Explanation is given in Table 3.2

Table 3.2: Vulnerability Attributes

Attribute Explanation

CVE ID CVE ID uniquely identifies a vulnerability that is

publicly known.

CVSS Score The Common Vulnerability Scoring System

(CVSS) reflects the severity of a vulnerability

which is captured using principle characteristic of

the vulnerability. Score lies between 0-10 , 0 being

the lowest and 10 being the greatest.

CVE Type It defines the type of vulnerability.

CVE Summary It provides a brief description about the

vulnerability.

9www. cvedetails. com

22

CHAPTER 3. PROPOSED APPROACH

Changed Files The files that were changed while fixing

vulnerability.

Gained Access Level Which level of access was attained by the attacker

when this vulnerability was exploited i. e. User,

Admin or None.

Access It defines the access type that attacker achieved

whether it was local, local network or remote

CVE Publish Date The date when vulnerability was officially

published, the vulnerability might have existed in

the system before that.

CVE Update Date The date when system was updated after fixing the

vulnerability.

Authentication This defines whether attacker has to be

authenticated to exploit this vulnerability or not.

Confidentiality How much was the confidentiality of the system

compromised? i. e. None, Partial or Full

Integration Was the attacker able to modify the system using

the specific vulnerability? If yes what is the level of

modification i. e. None, Partial or Full.

Availability Was the system availability compromised when this

vulnerability was exploited?

Complexity It defines the level of complexity a vulnerability

possess i. e. Low, Medium or High

3.2 Association Rule Mining

Due to continuous increase in the size of data, we cannot analyze all the rules that occur in the system.

To deal with this problem, an algorithm that could identify the associations between items in the form of

rules was proposed in 1994 (Agarwal, Srikant, & Ahmad, 1994). This algorithm was used to discover

the relationships between products in large transaction data in supermarkets. For Example The rule

{Item3, Item1} ⇒{Item2} found in the sales data indicates that if a customer bought Item3 and Item1,

he is likely to buy Item2 as well. Such information could be used for daily basis decision making like

23

CHAPTER 3. PROPOSED APPROACH

Promotional Discounts, Items could be placed together so that if customer buys Item3 and Item1 he also

sees Item2 nearby. Consider the data shown in Table 1, This is a small database of 5 transactions, The

set of Items is {Item1, Item2, Item3} whereas 0 represents absence of an item and 1 represents presence

of an item. {Item1, Item2}) {Item3} is an example of the rules in this small database, If A customer

will buy Item1 and Item2, he is likely to buy Item3 as well.

Table 3.3: Transaction System with 5 Transactions and 3 Items

Transaction ID Item1 Item2 Item3

1 1 1 0

2 0 0 1

3 0 0 0

4 1 1 1

5 0 0 0

{Item3, Item1} ⇒ {Item2}

Association Rule Mining is a technique used to uncover the nature of relationship among different

items. An association is a rule from Left Hand Side(LHS) to Right Hand Side(RHS). LHS and RHS

consists of the unique, non-repetitive items. A set of items is known as item-set. The basic goal of

association rule mining is to mine the associations between the set of items from a set of transactions

(Zheng, Kohavi, & Mason, 2001). Let us now move to the formal definition of Association Rule Mining.

Let I= {I1, I2, , In} be the set if items, D be the set of transactions where I is the subset of T. An

association rule is an implication of the form X->Y where X and Y are the item-sets (Agarwal et al.,

1994).

Support

Support of a rule is defined as the support of the item set containing both the antecedent and consequent

of a rule. The support of an item set is the probability of transaction in the database. An item set

containing higher support is known as frequent item set. Support of Item3 is 2/5. Support of {Item1,

Item2, Item3} is 1/5 (Zheng et al., 2001).

Confidence

Confidence is the minimum ratio of the support of the rule and support of the antecedent. The probability

to find item or item set Y in a transaction, knowing item or item set X is in the transaction. Confidence

24

CHAPTER 3. PROPOSED APPROACH

of {Item3} ⇒ {Item1} = 1/2

Association Rule Mining was initially developed for market basket Analysis but right now it’s being

used in many other application areas including Web Usage Mining, Intrusion Detection and software

engineering.

3.3 Proposed Approach for Finding relationships between Bugs and Vul-

nerability

The goal of the research is not to merely find relationship between bug and vulnerability but also to

exploit that relationship for any interesting patterns that we can use to improve software security or

software quality. While resolving a bug or vulnerability, all the information is stored into the bug or

vulnerability repositories, this information consists of a series of attributes explained in Table 3.1and 3.2.

According to the problem that researchers have to solve, they choose the attributes from repositories that

will help them resolve the problem. Our first task is to create a link between the bug and vulnerability,

we will select the attributes that will help us create a link. After establishing the link, we have to generate

the association rules between the said entities. Second task of our research is to analyze the association

rules for interesting patterns. In Figure 3.1, we have shown how our proposed approach is going to work.

The process that we are going to follow will be as follow

1. Attribute Selection

2. Changed/Commit Files Extraction

3. Converting Data into Basket Mode

4. Generating Rules using Association rule Mining

5. Post-Processing Association Rules

3.3.1 Attribute Selection

As discussed earlier in this chapter, we need to create a link between bug and vulnerabilities and for

that we will use some attributes from bug and vulnerability repositories. One constraint in our research

will be that we will only consider those attributes which will somehow be related in both repositories to

create a link. Attributes are given in Table 3.4

25

CHAPTER 3. PROPOSED APPROACH

Fi
gu

re
3.

1:
Pr

op
os

ed
A

pp
ro

ac
h

fo
rF

in
di

ng
re

la
tio

ns
hi

ps
be

tw
ee

n
B

ug
s

an
d

V
ul

ne
ra

bi
lit

y

26

CHAPTER 3. PROPOSED APPROACH

Table 3.4: Attribute Selection for producing an associated list of bugs and vulnerabilities

Attribute

Bug
Commit/Changed Files

Bug Publish Date

Vulnerability
Commit/Changed Files

Vulnerability Publish Date

3.3.2 Changed/ Commit Files Extraction

When a bug or vulnerability occur in a system, developers try to resolve that bug or vulnerability as

soon as possible. While fixing the fault, some files of system are changed, these files that change in

the process of bug or vulnerability resolution are known as changed or commit files. Commit Files are

recorded in bug and vulnerability reports and are available in the fault repositories of the software.

Example of the bug changed file is given in Table 3.5 whereas sample of vulnerability changed files

is given in Table 3.6

Table 3.5: Sample of Changed files extracted against every Bug

Bug ID Changed Files

Bug ID-001 file1 file2

Bug ID-002 file3 file4 file5

Bug ID-003 file 3 file 4

Bug ID-004 file 4 file 5 file 6

Table 3.5, represents the files that are recorded in the bug repository as changed files. These files

were changed while resolving bugs given in Bug ID.

Table 3.6: Sample of Changed files extracted against every CVE ID

CVE ID Changed Files

CVE-ID-1 file1 file2

CVE-ID-2 file2 file7 file8

27

CHAPTER 3. PROPOSED APPROACH

In Table 3.6, files which were changed in order to resolve vulnerabilities given in CVE ID.

3.3.3 Merging the Files with Bug IDs and CVE IDs/Converting Data into Basket Mode

To create a link between bugs and vulnerability data, we need to convert bug and vulnerability data into

a form which can further be used to extract association rules. We will use file names as the connecting

variable, we will integrate all the changed files we have extracted from bug and vulnerability repository.

We will place bug and vulnerability IDs against them to achieve the link. Now we will have files along

with the bugs and vulnerabilities that occurred in them. A sample is given in Table 3.7

Table 3.7: Sample of Files with their corresponding bugs and vulnerabilities

File Name Bug ID Vulnerability ID

file1 Bug-ID-1 CVE-ID-1

file2 Bug-ID-1 CVE-ID-1,CVE-ID-2

file3 Bug-ID-2,Bug-ID-3

file4 Bug-ID-2,Bug-ID-3,Bug-ID-4 CVE-ID-2

file5 Bug-ID-4, Bug-ID-2,Bug-ID-4

file6 Bug-ID-4,Bug-ID-4

file7 CVE-ID-2

Table 3.7 represents basket mode of the files, there are three types of commit files.

1. One which are fixed for bugs e.g. file 3 was only fixed for bugs Bug-ID-2 and Bug-ID-3

2. Second which are fixed for vulnerabilities only e.g. file 7 was just fixed for CVE-ID-2.

3. Third which are fixed for both bugs and vulnerabilities e.g. file 1 was fixed for Bug-ID-1 and

CVE-ID-1

3.3.4 Association Rule Mining

Now that we have arranged data in the basket mode, we can extract rules from data. We will use Apriori

algorithm for association rule mining. Here, we want rules from data set where bugs and vulnerabilities

co occur in a file, along with co occurrence, we will also learn which bugs occur with certain vulnerabil-

ities more than once. A rule has an antecedent and consequent in it, here we have bug ID as antecedent

28

CHAPTER 3. PROPOSED APPROACH

and CVE ID as consequent, we will ignore files name in the rules to avoid ambiguity. The reason of

using files was to get associated bugs and vulnerability, now that we have a list of bugs and vulnerability,

we can ignore files.

A sample of data set is given in Table 3.8 showing how data set will look now.

Table 3.8: List of Bugs and Vulnerabilities

Bug ID CVE ID

Bug-ID-1 CVE-ID-1

Bug-ID-1 CVE-ID-1,CVE-ID-2

Bug-ID-2,Bug-ID-3

Bug-ID-2,Bug-ID-3,Bug-ID-4 CVE-ID-2

Bug-ID-4, Bug-ID-2,Bug-ID-4

Bug-ID-4,Bug-ID-4

CVE-ID-2

3.3.5 List of Associated Bugs Vulnerabilities

A sample of Associated bugs and vulnerabilities is given below in Table 3.9

Table 3.9: Sample Association Rules

Rules

{Bug-ID-1==>{CVE-ID-1

{Bug-ID-1=>{CVE-ID-2

{Bug-ID-2=>{CVE-ID-2

{Bug-ID-3=>{CVE-ID-2

{Bug-ID-4=>{CVE-ID-2

3.3.6 Scoring

After we have extracted all the rules from data-set, rules are given a score that indicate their importance.

Every rule is given a confidence value, a support value and the count(occurrence) of that rule in the data

set. We will discuss a brief detail about these scoring. A sample Table of association rules with scores

is given below in Table 3.10

29

CHAPTER 3. PROPOSED APPROACH

Table 3.10: Scoring of Association Rules

Rules Support Confidence Count

{Bug-ID-1==>{CVE-ID-1 0. 5 0. 3 10

{Bug-ID-1=>{CVE-ID-2 0. 3 0. 7 06

{Bug-ID-2=>{CVE-ID-2 0.4 1 08

{Bug-ID-3=>{CVE-ID-2 0.2 0.5 04

Support

Support exhibits co occurrence of a bug and vulnerability in the complete data-set. A high support

may indicate that items have relationship between them while low value of support indicates that co

occurrence can be by chance.

Confidence

The Confidence exhibits the co occurrence of bug and vulnerability that occur with each other fre-

quently. A high confidence shows bug and vulnerability occur with each other all the time, whereas a

low confidence might indicate that bug and vulnerability occurred with each other in rare case.

Count

Count displays the number of times a rule had appeared, how many times the same bug has appeared

with the same vulnerability.

3.3.7 Post-Processing the Association Rules

We have another attribute that we selected to use to find association rules. One of the goal of our

research was not only to exploit relationship of bug with vulnerability, we wanted to study two-sided

relationship. We wanted to see if a vulnerability can cause any bug. The association rules we extracted

are all showing relationship between bug to vulnerability. Here, we are going to consider a fact that if

the bug has occurred before vulnerability, vulnerability is not the cause of bug, it can not be. Hence, to

find which might have caused which, publish dates are very important. We extracted publish dates of all

the bugs and vulnerabilities in all the rules, and then re arranged them in a way that if bug has occurred

before vulnerability, rule will be bug⇒vulnerability else vulnerability⇒bug.

We extracted the dates from the bug and vulnerability reports. a sample of the rules after considering

dates is given below in Table 3.11

Table 3.11: Sample of Final Bug and Vulnerability Rules

30

CHAPTER 3. PROPOSED APPROACH

Rules Support Confidence Count

{Bug-ID-1==>{CVE-ID-1 0. 5 0. 3 10

{CVE-ID-2=>{Bug-ID-1 0. 3 0. 7 06

{CVE-ID-2=>{Bug-ID-2 0.4 1 08

{Bug-ID-3=>{CVE-ID-2 0.2 0.5 04

3.4 Analyzing the Association Rules for Patterns

After extracting rules, we have selected a set of attributes that we are going to use to analyze and exploit

the relationship between bugs and vulnerabilities, which are given in the Table3.12

Table 3.12: Attribute Selection for analyzing the associated list of bugs and vulnerabilities

Attribute

Bug

Bug Type

Bug Priority

Bug Summary

Vulnerability

Vulnerability Type

CVSS Score

Vulnerability Summary

Figure 3.2 exhibits the attributes we selected for analyzing and the purpose we are going to use them

for.

Using these attributes, we will analyze our entries of associated lists. We will compare the attributes

of bugs and vulnerabilities to learn the hidden patterns. We chose these attributes because they are

present in both the repositories, to compare attributes in two repositories, we must have comparable

attributes in the repository. For Example we have first attribute Bug Type and Vulnerability Type, by

comparing these attributes, we can learn which bug types occur mostly with which vulnerability types.

3.4.1 Bug Type and Vulnerability Type

We have our association rules now, to fine grain these rules and to get insights of the data, we need to

analyze the attributes. The first attributes that we are going to analyze are Bug type and Vulnerability

Type. Goal of analyzing these two attributes is that it might be the case that a specific type of bug

31

CHAPTER 3. PROPOSED APPROACH

Fi
gu

re
3.

2:
A

na
ly

zi
ng

R
ul

e
fo

rP
at

te
rn

s

32

CHAPTER 3. PROPOSED APPROACH

always resulted in a specific type of vulnerability e. g. One may assume that security bugs will always

translate into DOS type of vulnerabilities. We also want to check which type of bugs have the most

vulnerabilities and also which type of vulnerabilities have which type of bugs in parallel. A sample of

the Bug and Vulnerability Types are given in the Table 3.13

We analyzed the attributes by making a inter-dependability Bug and Vulnerability type matrix to

analyze which bug type occurs most with which vulnerability

Table 3.13: Sample of Bug and Vulnerability Types

Bug id Bug Type CVE ID CVE Type

Bug-ID-1 Bug-Type1 CVE-ID-1 CVE-Type1

Bug-ID-2 Bug-Type2 CVE-ID-2 CVE-Type2

3.4.2 Inter-Dependability of Bug Priority and CVSS Score

Second attribute that we will study is Bug Priority and CVSS Score, goal of choosing these is finding

out that if a bug and vulnerability is associated and the bug has high priority, will the vulnerability also

be of high CVSS Score? We have made a Bug Priority and CVSS Score Inter dependability matrix to

check which Bug priority is associated with which CVSS score more.

A sample of data is given in Table 3.14

Table 3.14: Sample of Bug and Vulnerability Scores

Bug id Bug Priority CVE ID CVSS Score

Bug-ID-1 1 CVE-ID-1 5. 4

Bug-ID-2 3 CVE-ID-2 9. 3

3.4.3 Relationship between Bug and CVE Summary

Summaries provide a one liner description about the bug and vulnerability they are usually analyzed to

find frequent terms used. We will analyze summaries for similar terms that are present in both bugs and

vulnerability summaries given below in Table 3.15

Table 3.15: Summary of Bug and Vulnerability Summaries

Bug id CVE ID Bug Summary CVE Summary

004 CVE-2008-003 abc. . xyx. .

33

CHAPTER 3. PROPOSED APPROACH

007 CVE-2016-005 ghj. . rty. .

3.5 Summary

We have proposed an approach using which we can exploit the relationship between bugs and vulnera-

bility. We will Association rule mining to find the rules of associated bugs and vulnerabilities. We will

apply different techniques onto these rules to find any kind of pattern that could provide us some useful

pattern. We will generate attribute comparison matrices to learn insights of the relationship.

34

Chapter 4

Experimental Setup

In this chapter, we will explain how we have setup the environment to run experiments using our pro-

posed approach. We will discuss subject system, association rule mining approach and the analysis of

the rules extracted from data set.

4.1 Subject System

We perform our experiments on google chromium project1, we had two different repositories that we

used for these experiments. For bugs, we used google chromium’s own bug repository known as bug.

chromium whereas for vulnerabilities, we used online vulnerability repository known as CVEDetails.

Bug. chromium2 is a repository that records all the issues that occur in the chromium project, these

issues can be open, closed, new issues or issues to verify. We have taken all the bugs that have occurred

in google chromium project from 2008 to 2018. In the same way, we also studied all the vulnerabilities

that have occurred from 2008 to 2018 from CVEDetails 3. Table 4.1 exhibits the details about the subject

system.

Table 4.1: Subject System

Subject System Number of Bugs Number of Vulnerabilities

Google Chrome 4817 1576

1https://github. com/chromium/chromium
2www. bugs. chromium. com
3www. cvedetails. com

CHAPTER 4. EXPERIMENTAL SETUP

4.2 Data Collection

We collected data from two different repositories, One for bugs and one for vulnerabilities. Extracting

data from both these repositories was different due to their structure so we are going to discuss both

separately.

4.2.1 Bugs. Chromium (Bug Repository)

We had to extract two types of data from bugs. chromium. First, we had to crawl data of bugs along

with its attributes. Secondly, we need commit files which were located inside every bug.

Bug Attributes Data Crawling

To crawl general bug data with its attributes, we had to go to the website and the website offered to

download all the data in an ordered and systematic form. We selected the attributes we needed for our

research methodology. Data was provided in CSV format.

Bug Commit Files Data Crawling

For commit data, we designed a crawler in python, the crawler would open every bug ID. After opening

the bug ID in bugs. chromium, it searched for commit and opened the link straight after commit. It

crawled all the commit files from the page after opening the commit link. To write our crawler we

used ”scrapy” framework written in python 4. It is an open source framework for extracting data from

websites. By default it handles 16 concurrent requests. Instead of doing it all in single bunch of code,

we split our problem in two modules that can work independently. At any stage of the project, change in

one module will not effect the functionality of other module. First module reads Bug IDs of chromium

project from a CSV file. If that Bug ID contains any commit, the module stores its ID and URL into

another file named commitbugs. csv. Last module reads commit IDs from commit. csv and using

dynamic URLs iterate through each of the commit. From each commit, it gets the listed file and store in

our final version of document ”crawlbugs. csv”.

4.2.2 CVEDetails (Vulnerability Repository)

We had to extract two types of data from CVEDetails as well. We had to crawl all the data of vul-

nerability with all its attributes. Secondly, we needed commit files that were changed while fixing

4https://scrapy.org/

36

CHAPTER 4. EXPERIMENTAL SETUP

vulnerabilities.

Vulnerability Attributes Data Crawling

For Attribute data, we opened the Chromium product data from the website and downloaded it.

Vulnerability Commit Files Data Crawling

Due to confidentiality and privacy concerns, commit files data was not provided in any vulnerability

repository. We have discussed before, bugs. chromium didn’t only contain data of bugs but all the

issues that chromium project encounters over the time. We searched for all the vulnerability IDs in the

repository and then looked for the commits and crawled commit files.

To write vulnerability data crawler, we used ”scrapy” framework written in python as well 5. In the

first module of this crawler, it reads CVE IDs of chromium project from a CSV. Using dynamic URL, it

access the content of issue list filtered with given CVE ID. Our crawler then reads all the bug IDs and

URLs from that page and stores them into another file name bugs. csv. Second module reads the bug

IDs from bugs. csv. Using dynamic URLs get the content of individual bug. If that bug contains any

commit, the module stores its ID and URL along with CVE ID into another file commitvulnerability.

csv. Last module reads commit IDs from commit. csv and using dynamic URLs iterate through each of

the commit. From each commit get the listed file and store in our final version of document ”crawlvuln.

csv”.

4.2.3 Converting Data into Basket Mode

After extracting commit files for both bugs and vulnerabilities, we had two files i. e. bug IDs along with

commit files, vulnerability IDs along with commit files. To merge bugs and vulnerability files, we used

commit files as base attribute. We extracted all the commit files into another CSV and then added the

corresponding BUG ID or CVE ID. As a result, some files were fixed for bugs while some were fixed for

vulnerabilities. Some files were also fixed for both. These files are known as intersecting file between

bugs and vulnerabilities and represented co-occurrence of both bugs and vulnerabilities.

4.2.4 Applying Association Rule Mining

Association rule mining is used to find the frequent rules from data set. In our case, we wanted to extract

rules from data set which contain both bugs and vulnerabilities. In the last step, we converted out data

5https://scrapy.org/

37

CHAPTER 4. EXPERIMENTAL SETUP

into basket mode and saved the data into a CSV file. We removed file names from the file, because we

just wanted to create associations between bugs and vulnerabilities, File names are no use for us now.

We applied Association Rule Mining in R Studio 6and the commands we used to find rules are given as

follow

install. packages(“arules”);

Arules is a package in RStudio which provides the infrastructure for representing, manipulating and

analyzing transaction data and patterns. It is used to find frequent item sets and association rules from

data. We will use “Arules” package to find association rules from our data set 7

library(arules)

After installing the package, we are going to to add the library to use the functions from this library.

This command is used for adding Arules.

trans = read. transactions(”T:/IncreasedBugDataDataset/dataforrules. CSV”, format = ”basket”,

sep=”, ”);

Now that we have loaded arules, we can use its functions, we are going to load out data set from which

we need to find association rules. The data set is imported using this command.

inspect(trans)

This command is used to check the dataset we have loaded.

rules <- apriori(trans, parameter = list(minlen=2, maxlen=2, maxtime=5, confidence=0. 00001,

support=0. 00001))

This command is used to find association rules from dataset. Apriori algorithm is used here, parameters

are defined to get specific rules from the data. Rules we are going to extract should have exact length

of 2, confidence and support should be 0. 00001, the lesser the confidence and support will be the

maximum rules it will extract. The confidence and Support Value was set to the minimum value to make

sure that all the rules that exist in the system are unveiled.

6https://www.rstudio.com/
7https://cran. r-project. org/web/packages/arules/index. html

38

CHAPTER 4. EXPERIMENTAL SETUP

rules subset <- subset(rules, (lhs %pin% ”Bug ID=”));

This command will find the subset from rules which have LHS as “Bug ID” and will ignore all the rules

which have CVE ID as LHS. We are doing this to remove duplicates, at this stage bug1->CVE1 IS

SAME AS cve1-> bug1.

inspect(rules subset)

We will check our rules by using this command.

write(rules subset, file =”myRulesBUG. csv”, sep = ”, ” , quote= TRUE, row. names = FALSE)

We will write our rules using this command to a CSV file. Write is a method used to write output data

to a file, which will give the name of CSV File to store the rules and their attributes.

In above command, write is a method name which takes the rules as argument, name of csv file in

which we are needed to store the calculated rules, and some other specifications.

4.2.5 Post Processing Association Rules

Since, we are studying two sided relationships and analyzing which entity might foreshadow the other

one. We are not stating causal relationship but we are re-arranging our rules according to publish date to

check which entity might foreshadow the other one. To study this, we required the publish dates of bug

and vulnerability. We assumed that if bug publish date is less than vulnerability publish date, it means

bug might be triggering vulnerability to occur else vulnerability might be causing the bug. To do this,

we concatenated bug and vulnerability dates with bug IDs and CVE IDs and using a java program we

changed the the positions of bug and CVE IDs. Example is given in the Table 4.2

Table 4.2: Post Processed Association Rules

Current Rule Rule concatenated with Bug

and Vulnerability Publish

Date

Post Processed Rule

{Bug ID=003} => {CVE

ID=CVE-2016-001}

{Bug ID=691099@#Bug

Date=18-May-2017} => {CVE

ID=CVE-2016-5218@#CVE

Date=19-Jan-2017}

{CVE ID=CVE-2016-

001=>{Bug

ID=003

39

CHAPTER 4. EXPERIMENTAL SETUP

{Bug ID=004} => {CVE

ID=CVE-2017-002}

{Bug ID=767761@#Bug

Date=22-Sep-2017} => {CVE

ID=CVE-2017-5086@#CVE

Date=27-Oct-2017}

{Bug ID=004} => {CVE

ID=CVE-2017-002}

4.2.6 Extracting Selected Attributes Data for Bugs and Vulnerabilities in Rules

After post processing association rules, we had to analyze the patterns in those rules. To do that, we

needed the attributes of bugs and vulnerability. we extracted those attributes using a java program from

already crawled data of bugs and vulnerabilities along with their attributes in the first step.

4.2.7 Analyzing Selected Attributes for Patterns

4.2.7.1 Bug Type and CVE Type

To analyze Bug type and CVE type, we created a Bug/CVE Type matrix to study inter dependability

of Bug Type and CVE Type. We studied which bug type occurs most with which kind of vulnerability

using the matrix.

4.2.7.2 Bug Priority and CVSS Score

We studied this relationship by making Bug Priority and CVSS Score matrix and studied which bug

priority bugs contain more vulnerabilities and which vulnerabilities are more likely to appear with which

priority of the bugs. This could provide us insight of whether Bug Priority and CVSS Score are generally

related and also if not then are there some patterns that can be of interest for us.

4.2.7.3 Bug Summary and CVE Summary

We analyzed summaries for the common words in the associated bug and vulnerability. For that, we

compared both the summaries and the terms that were similar in both the summaries we highlighted

them and later extracted the highlighted terms out in another column.

40

CHAPTER 4. EXPERIMENTAL SETUP

4.3 Summary

We have stated the setup for all the experiments we will perform to explore relationship between bugs

and vulnerabilities. We not only have exploited the relationship but we have also analyzed the relation-

ship by the attributes as well to study all the possible aspects of the relationship as well.

41

Chapter 5

Experimental Results

We have conducted an in-depth exploratory analysis of the relationship between software bugs and

software vulnerabilities of Google Chromium project and we have identified some patterns that can help

to improve software security and software quality. In this section, we are going to present those results

and discuss the findings of the research

5.1 Results and Discussions

5.1.1 Research Question 1: Are Files fixed for Bugs or Vulnerabilities likely to be fixed

for future Bugs or Vulnerabilities?

Motivation:

We are studying Google Chromium project for exploring relationships between bugs and vulnerabilities.

This research question serves to measure the relationship between software bugs and software vulner-

abilities in general. Software Security is one of the major concerns of software vendors these days. A

lot of research is conducted for identifying and fixing the cause of software security breaches. Software

Vulnerabilities and software bugs are both defects of software, as we have discussed earlier. At many

points of time, software vendors found cause behind a major vulnerability to be a small coding error or

requirement bug which went uncaught by software development team. We analyzed whether in general

also, there is some relationship between software bugs and software vulnerabilities. We also analyze

whether just a bug can be the cause of vulnerability or can a vulnerability also cause bugs to occur?

CHAPTER 5. EXPERIMENTAL RESULTS

Analysis:

We used Association Rule Mining to investigate if some significant association exists between soft-

ware bugs and software vulnerabilities in Google Chromium Project. There were total 3, 862 bug and

vulnerability co-occurrence rules found in chromium project. Out of 3, 862 rules, 2998 rules stated vul-

nerabilities occurred before bugs while in remaining 866 rules bugs occurred first. A sample of results

is given in Table 5.1

Table 5.1: Sample of Discovered Bug and Vulnerability Rules

Rules Support Confidence Count

{CVE ID=CVE-2017-5086=>{Bug ID=784761 0. 001361934 0. 25 12

{Bug ID=770946=>{CVE ID=CVE-2017-15386 0. 001248439 0. 169230769 11

{CVE ID= CVE-2017-0663=>{Bug ID=801488 0. 001134945 0. 12987013 10

{Bug ID=706053=>{CVE ID=CVE-2017-5110 0. 000907956 0. 307692308 8

{CVE ID= CVE-2017-5061=>{Bug ID=815187 0. 000794461 0. 189189189 7

We have used 3 types of measures in these rules, we have Confidence, Support and Count. We

have set our Confidence and Support to the least value to obtain all the co-occurrences of software bugs

and Vulnerabilities in the system. For our data-set, Support values for all the rules are generally found

low. Highest support was found to be 0. 0040 for a rule that occurred 36 times in the system. If a bug

and vulnerability have occurred together for 36 times in a 10 year time span, it means relationship is

significant although . 004 support value seems low. On the other hand, the maximum confidence value

is 1, high confidence values denote that the entities are most likely to be found with each other only.

In google chromium project, {CVE ID= CVE-2017-15412=>{Bug ID=801488 rule occurred 36

times and has the highest support 0. 0040, CVE ID 2017-15412 is a reserved vulnerability, it has not

been defined on the vulnerability database due to being reserved by an organization or person 1whereas

the bug 801488 2 is a regression bug which occurs when text on bookmark page is seen chopped after

resizing browser window. The confidence value for this rule is 0. 46 means bug and vulnerability in

this rule also occur with other bugs and vulnerabilities as well. We can analyze the cause of this rule

for its multiple occurrence together if we know the description of the vulnerability as well, which is

confidential. The reason for making this vulnerability and its information reserved can be that it was

causing so many bugs to occur. Sample of high support values are given in Table 5.2

1https://cve. mitre. org/cgi-bin/cvename. cgi?name=CVE-2017-15412
2https://bugs. chromium. org/p/chromium/issues/detail?id=801488&can=2&q=801488&colspec=ID%20Pri%20M%20Stars%20ReleaseBlock%20Component%20Status%20Owner%20Summary%20OS%20Modified

43

CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.2: Rules with High Support

Rules Support Confidence

{CVE ID= CVE-2017-15412=>{Bug ID=801488 0. 004085802 0. 467532468

{CVE ID=CVE-2015-6780=>{Bug ID=675239 0. 00226989 0. 666666667

{CVE ID= CVE-2017-15420=>{Bug ID=777419 0. 001702417 0. 555555556

{CVE ID=CVE-2015-6780=>{Bug ID=700591 0. 001588923 1

{CVE ID= CVE-2017-15951=>{Bug ID=784761 0. 001361934 0. 25

Second and third rule in the Table 5.2 have relatively high support with high confidence, which

means the count of the rule is high as well as that the bug and vulnerabilities in this rule has also occurred

with some other bugs and vulnerabilities. Whereas count of 4th rule is high as well as the confidence,

which means bug and vulnerability in this rule has only occurred with each other multiple times. The

vulnerability CVE-2015-6780 is called User After Free Vulnerability, this vulnerability caused DOS

attacks and Bug ID 582720 can be the bug that attacker added in the system.

For 171 rules, highest Confidence value is 1 5.3sample is given in Table

Table 5.3: Rules with High Confidence

Rules Confidence Support

{CVE ID=CVE-2015-6780=>{Bug ID=700591 1 0. 001588923

{Bug ID=477970=>{CVE ID=CVE-2015-1274 1 0. 000113494

{CVE ID=CVE-2017-5078=>{Bug ID=809062 1 0. 000113494

{CVE ID=CVE-2015-1260=>{Bug ID=583720 1 0. 000113494

{CVE ID=CVE-2014-7936=>{Bug ID=475971 1 0. 000113494

In rule 1 in Table 5.3, CVE-2015-6780 has occurred 14 times with Bug ID 700591 and they have

occurred only with each other which makes it a very significant rule. The vulnerability CVE 2015-6780

is called User-after-free vulnerability. This vulnerability allowed remote attackers to cause DOS attack

whereas bug 700591 triggers some “git cl format” discrepancies which is a security bug. It is possible

that this vulnerability could have created discrepancies and some bugs and Bug 700591 is one of those

bugs. Other rules in the Table have high confidence value and low support value, in these rules the bug

and vulnerability has only occurred together once, which can be co-incidental.

In Figure 5.1, we have provided some important distributions of our research. In the chromium

44

CHAPTER 5. EXPERIMENTAL RESULTS

Fi
gu

re
5.

1:
D

is
tr

ib
ut

io
ns

of
R

es
ul

ts

45

CHAPTER 5. EXPERIMENTAL RESULTS

project, some bugs and vulnerabilities didn’t have commit files due to security issues, total 4817 bugs

were reported out of which 1687 bugs had commit files available. In the same way, out of 1576 vulner-

abilities commit files for 397 vulnerabilities were available in the google chrome repository. We placed

the files against bug and CVE IDs to find the files which were responsible for both the bug and vulnera-

bility occurrence. Figure (a) represents 269 intersecting files which contain both bugs and vulnerabilities

in them. In (b), 46% of the vulnerabilities were found co occurring with bugs whereas in (c), 35% of

the bugs were co occurring with vulnerabilities. Out of 3, 862 rules, 2998 rules stated vulnerabilities

occurred before bugs while in remaining 866 rules bugs occurred first depicted in (d) and (e). Hence,

we can say that vulnerability ->Bug association is strong. More Vulnerabilities foreshadow future bugs

for currently available file in the Chromium Project.

5.1.2 Research Question 2: If a file has one vulnerability, then how likely is it to have

another vulnerability in it? Do files with more bugs have higher vulnerability?

Motivation

In previous research (Neuhaus et al., 2007), it was stated that in Mozilla system when a component had

one vulnerability it was unlikely for that component to have any more vulnerabilities. We wanted to

check it is really unlikely for a file to have future vulnerability if it is already fixed for some previous

vulnerability. Second part of this research question aims to study how a good bug prediction can help at

finding vulnerabilities. We wanted to study whether “bugginess” of files could be used as indicator of

vulnerable files in a system as well.

Analysis

In the case of Google Chromium, there were many files which were fixed for more than one vulnerability.

There were total 561 commit files that were changed while fixing some vulnerabilities. Out of these

files, 82 files had more than one vulnerability in them, some of the files were fixed for around hundred

of vulnerabilities in google chrome. Files that were fixed for 10 or more vulnerabilities are exhibited in

Table 5.4

Table 5.4: File Rank List for Vulnerabilities

Files Vulnerabilities Count

render frame impl. cc 78

46

CHAPTER 5. EXPERIMENTAL RESULTS

manifest. json 36

enums. xml 22

payment request. cc 21

navigator impl. cc 21

md settings localized strings provider. cc 13

payment request browsertest base. cc 12

payment request browsertest base. h 12

PaymentRequestImpl. java 10

payment request. h 10

The files given in the above Table for bugs and vulnerabilities are changed multiple times, we analyze

these files for changes made in response to software bugs and vulnerabilities.

In Figure 5.2, we have displayed commit files along with the vulnerability count in them. Accord-

ing to a research, files that have one vulnerability are not likely to have another in it. We have file

“render frame impl.cc” that was fixed for 78 different vulnerabilities whereas minimum number of vul-

nerabilities found in a file are 1. Out of 559 vulnerability commit files, Only 82 commit files were fixed

for more than one vulnerabilities whereas rest 480 of them were fixed only once for one vulnerabil-

ity. These files can be used to create a good vulnerability prediction model. Maintainers should focus

more over the commit files in which vulnerabilities are occurring again and again to reach the cause of

vulnerabilities.

Figure 5.2: Overview of Vulnerability Count in Files

47

CHAPTER 5. EXPERIMENTAL RESULTS

In previous research it was stated that a bug takes 2 years to be translated into a vulnerability

(Munaiah et al., 2017b). We wanted to analyze if that hypothesis is true. Due to our inability to present

all the files here, we are going to represent four files which have both bugs and vulnerabilities in them.

We are analyzing file which has high number of bugs, one which has high number of vulnerabilities

other files are having moderate level of bugs and vulnerabilities.

Figure 5.3: Timeline Analysis for Bugs and Vulnerabilities File 1

In file enum. xml, most bugs occurred in 2010 while most vulnerabilities have occurred in 2013.

When count of bugs is high, count of vulnerabilities is low, whereas when count of vulnerabilities is

high, count of bugs is low. The file was fixed multiple times while resolving bug. If we analyze the file

on the span of two years, 2008 and 2009 had no bug there was 1 vulnerability in 2010 and 2 in 2011.

2010 had 36 bugs and 1 vulnerability in 2012. 2011 had 12 bugs and 0 vulnerability in 2012. and then

there were vulnerabilities found in 2017. Hence, we can state that vulnerabilities are not foreshadowed

by bugs after 2 years. With the world going so fast and the hackers technologies going even faster, they

won’t leave anything exploitable to get access to any system.

48

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.4: Timeline Analysis for Bugs and Vulnerabilities File 2

File render frame impl. cc has maximum vulnerabilities in 2018, the file has had maximum vulnera-

bilities from 2016-2018 and requires a lot of attention. First vulnerabilities were found in 2016 and there

was one bug found that year as well. In 2016, 53 vulnerabilities were found. The reason of increase in

the amount of vulnerabilities might be the vulnerabilities that occurred in 2016 or the bug that occurred

in 2016 as well. While studying this file for fix, maintainers of the system should study the bugs and

vulnerabilities that occurred in 2016 as well to fix the file for good.

Figure 5.5: Timeline Analysis for Bugs and Vulnerabilities File 3

The third file payment request. h is also displaying number of bugs and vulnerabilities are increasing

49

CHAPTER 5. EXPERIMENTAL RESULTS

here as well. Although this file is less vulnerable than others, vulnerabilities were found first in 2017

when the file also had 9 bugs in it. While in 2018, although number of vulnerabilities decreased but at

the same time number of bugs also increased.

Figure 5.6: Timeline Analysis for Bugs and Vulnerabilities File 4

First vulnerabilities occurred in 2016, in 2014 no bug was fixed in this file whereas in 2017, 3

vulnerabilities were found which could have been caused by the bug in 2016. In 2018, amount of bugs

and vulnerability increased. The number of bugs and vulnerabilities in this file are also increasing, this

file needs to be handled for bugs and vulneabilities.

To summarize the results, one might notice from the graphs that google chrome project is getting

more and more buggy and vulnerable with time. The system might have some major quality and security

issues if some proper measures were not taken to cope with security and quality issues.

In second part of question, we have studied the files that were fixed most for both bugs and vulnera-

bilities. To do so, we checked top 20 files of vulnerability rank list, and checked if they were also fixed

as the most buggy files for bugs as well. We achieved only 5% common files in bugs and vulnerability

rank lists. Hence, our verdict is that some of the buggiest files can be vulnerable but same prediction

models will not provide us optimal results. Rank lists for Bug and Vulnerability rank lists are given

below in Table 5.5

Table 5.5: Sample of File Rank List for Bugs

Files Count

50

CHAPTER 5. EXPERIMENTAL RESULTS

histograms. xml 61

about flags. cc 60

generated resources. grd 54

enums. xml 48

flag descriptions. cc 39

Table 5.6: Sample of File Rank List for Vulnerabilities

Files Count

render frame impl. cc 78

manifest. json 36

enums. xml 22

payment request. cc 21

navigator impl. cc 21

5.1.3 Research Question 4:Do Security bugs only translate into the vulnerabilities? Are

vulnerabilities more likely to be found in High Priority Bugs?

Motivation

Since Vulnerabilities are security consequences of bugs, one might assume that security bugs translate

into vulnerabilities. So we wanted to study whether any other bug types other than security bugs can

also translate into vulnerabilities or not.

Analysis

Out of 1576 vulnerabilities, only 36 of them co-occurred with security bugs. Most of the vulnerabilities

co-occurred with the general type “Bug”. Which means bugs other than security are more often trans-

lated into vulnerabilities. The reason can be that when some security bug occurs in a system, it is fixed

on priority due to its likelihood of being translated into vulnerabilities.

We created a Bug and Vulnerability Type matrix to find which bug and vulnerability type co-occur

most. The bug type “Bug” contains most vulnerabilities of type “DOS +Overflow” and “Bypass. “Bug

Regression” contains maximum DOS+Overflow vulnerabilities whereas “Bug Security” has the least

vulnerabilities in it with maximum Bypass vulnerabilities. Again DOS +Overflow are found most in

51

CHAPTER 5. EXPERIMENTAL RESULTS

Feature and Task bugs as well. The Bug and Vulnerability Type Matrix is given in Table 5.7

For second part of question, no strong connection was found between attributes Bug Priority and

CVSS Score. Relationship is represented in Table 5.8

Table 5.8: Analysis of Bugs and Vulnerability Scores

Bug Priority/CVSS Score 0-2. 5 2. 5-5 5. 0-7. 5 7. 5-10

0 0(0%) 22 (48%) 23(52%) 0(0%)

1 0(0%) 472(41. 65%) 636(56. 13%) 25(2%)

2 0(0%) 566(42. 8%) 731(55. 3%) 23(1. 7%)

3 0(0%) 496(37. 63%) 802(60. 8%) 20(1. 5%)

All the bugs having “0” and “1” “2” and “3” priority have most associated CVSS Score 5. 0-7. 5.

5.1.4 Research Question 6: Are Associated Bugs increasing the count of Vulnerabilities

in Files? And are associated vulnerabilities increasing the count of Bugs in Files?

Although in general, count of vulnerabilities is high in files. But when we check the vulnerability count

in in the files where bugs don’t exist, the highest count of vulnerabilities in a file remains as low as “4”

whereas the lowest count is 1. Commit files of source language C are the highest count files that were

changed for vulnerabilities having no associated bugs. The figure 5.7 represents the files having only

vulnerabilities with zero bugs. The count of vulnerabilities in files is low where bugs are not involved.

Hence, one might assume that increase in the amount of vulnerabilities might be due to associated bugs.

In the same way, when we just checked count of bugs in files having no vulnerabilities, count didn’t

change alot. The highest number of bugs in files were still 61 and apart from that too , the count was

pretty much same. The highest number of bug file is an XML file but alot of C files are also present in

this.

52

CHAPTER 5. EXPERIMENTAL RESULTS

Ta
bl

e
5.

7:
B

ug
an

d
V

ul
ne

ra
bi

lit
y

Ty
pe

s
M

at
ri

x

T y
pe

1a
T y

pe
2b

T y
pe

3c
T y

pe
4d

T y
pe

5e
T y

pe
6f

T y
pe

7g
T y

pe
8h

T y
pe

9i
T y

pe
10

j
T y

pe
11

k
T y

pe
12

l
T y

pe
13

m

B
ug

30
3

2
27

5
1

17
17

54
37

7
59

11
4

4
12

4
19

B
ug

-R
eg

re
ss

io
n

60
0

49
1

7
7

21
12

4
40

9
1

13
3

B
ug

-S
ec

ur
ity

20
0

2
0

0
0

2
2

3
2

1
2

2
Fe

at
ur

e
46

0
43

0
4

4
12

74
3

24
0

25
6

T a
sk

16
0

16
0

2
2

6
33

0
9

0
10

1

a Ty
pe

1=
B

yp
as

s
b Ty

pe
2=

D
ir

ec
to

ry
Tr

av
er

sa
l

c Ty
pe

3=
D

O
S

d Ty
pe

4=
D

O
S

E
xe

cu
tiv

e
C

od
e

e Ty
pe

5=
D

oS
E

xe
cu

tiv
e

C
od

e
O

ve
rfl

ow
f Ty

pe
6=

D
O

S+
In

fo
g Ty

pe
7=

M
em

or
y

C
or

ru
pt

io
n

h Ty
pe

8=
D

O
S

+O
ve

rfl
ow

i Ty
pe

9=
E

xe
cu

tiv
e

C
od

e
j Ty

pe
10

=E
xe

cu
tiv

e
C

od
e

O
ve

rfl
ow

k Ty
pe

11
=E

xe
cu

tiv
e

C
od

e
X

SS
l Ty

pe
12

=O
ve

rfl
ow

m
Ty

pe
1=

X
SS

53

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.7: Count of Vulnerabilities with no Bugs

Figure 5.8: Count of Bugs with no Vulnerabilities

5.1.5 Patterns in Google Chromium Project

We studied google chromium project in detail to explore any relationship between two kind of defects,

software bugs and software vulnerabilities. We studied if any bug could foreshadow any vulnerability

54

CHAPTER 5. EXPERIMENTAL RESULTS

or any vulnerability can cause some bugs to occur. Google Chromium has been of great interest for

researchers in recent times due to their “Chrome Reward Program” which gives rewards to researcher

who invest their time for making Chromium Projects secure.

We not only studied the relationship between software bugs and software vulnerabilities but also we

tried to find some patterns that could help chromium improve their security system. While studying sys-

tem we found that C, C++ Files are most buggy files in chromium according to their history. These files

were fixed again and again for bugs and vulnerabilities both, so these files should be tested adequately

to prevent any kind of future security or quality failure. DOS and Overflow Vulnerabilities mostly occur

with bugs. Most of the buggy and vulnerable files are from C and c++, because of the inability of C

and C++ to check for overflow which can be one reason whereas java and python are other source code

languages which do not have abundant bugs and vulnerabilities in them.

Buggy and Vulnerable Files have same behavior, if a file will have more bugs in past it will be called

more suspicious in future. In the same way, if a file has more vulnerabilities it should be be called

more vulnerable for future as well. But Same Bug Prediction Model can not be used to detect new

vulnerabilities, a good bug prediction model can not judge a file for vulnerability.

Bugs do not require a time span to convert into vulnerability, before it was stated that for bug to be

exploited to get some breach inside the system two year time span is required. No, with the advancement

in the field of security and in the field of hacking, every second many attacks are generated to get some

point of entry into the system.

In our research, we have explored every bug and vulnerability specifically, we have studied the

possible relationship between bug and vulnerability. We have used all the available commit files for this.

We have used association rule mining, that has not only given us the co-occurrence of software bugs

and vulnerability but also provided us details how significant is the rule. We have also explored other

attributes such as Bug and Vulnerability Types, Bug priority and CVSS Score and Bug and Vulnerability

Summaries for patterns that could support our hypothesis.

We have found a significant amount of relationship between bugs and vulnerabilities, we have ex-

plored the relationship in both directions, from Bug to Vulnerability and from Vulnerability to Bug.

35% Bugs were found related to Vulnerabilities whereas 46% of the vulnerabilities were found related

to bugs. We have also found some patterns that could be used in future research to improve software

quality and software security

This research can help maintainer of Google Chrome while making a vulnerability Prediction Sys-

tem, he can use these patterns to make the system more secure. He can put more focus on C and C++

55

CHAPTER 5. EXPERIMENTAL RESULTS

files. A we have discussed in the start, many vulnerabilities are reported to be caused by some bug in

the commercial market, so we can make a vulnerability prediction model for the vulnerabilities that are

specifically associated with some bugs. We can study if those bugs are causing the vulnerability and

can help the bug information fix vulnerability as well. When a vulnerabilities is reported, it should be

checked for associated bugs using the similarity matrices. If there exists any associated bug, the commit

files of both the bugs and vulnerabilities should be fixed to prevent any future vulnerability.

56

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this chapter, we are going to conclude our research, we are going to conclude our research and discuss

how our results were benificial for Google Chromium in terms of software security and software quality.

Due to increased usage of software, software quality and software security have become two great

concerns of software engineers. Efforts are made to improve software quality and software security, we

have made another effort by studying the relationship between two major attributes that effects software

quality and software security i.e. software bugs and software vulnerabilities. We have studied software

bugs and software vulnerabilities for any relationship that occurs between them.

We have studied this relationship on Google Chromium Project. Our results show that there exists

empirical association between software bugs and software vulnerabilities in Google Chromium but asso-

ciation is not very strong, 35% of bugs were related to vulnerabilities whereas 46% of the vulnerabilities

were found to be related to bugs. Vulnerabilities->Bug relationship was more than Bug->Vulnerability.

We also found some interesting patterns that could help software engineers of Google Chromium

Project to improve software quality and software security. Source File of C and C++ were found to be

more likely to be both buggy and vulnerable and files having no bugs fixes were having low vulnera-

bilities in count. Vulnerabilities types like DOS and Overflow were found to be more related to bugs.

Vulnerabilities which were found to be associated with software bugs had moderate-high severity. We

also provided rank lists of the files which were fixed repeatedly for bugs and vulnerabilities and which

needed attention of software engineers to find out the cause of the repeated faults in the files. Google

Chromium Project team can study these findings about their system and use them to take their steps to

improve software quality and software security.

CHAPTER 6. CONCLUSION AND FUTURE WORK

We found that common belief that states that security bugs are more likely to be translated into vul-

nerabilities is not true, in-fact security bugs were the least type of bug to be translated into vulnerabilities.

According to a research on Google Chromium Project, it took two years for a bug to be converted into

vulnerabilities, we found that belief was untrue, flaws can be exploited as soon as hacker or cracker finds

that.

6.2 Contribution

Exploring Bug-Vulnerability Relationship upto Each Bug and Vulnerability

In the previous research on the topic, they studied overall bugs and vulnerabilities of different releases

of Google Chromium Project. We studied every bug and every vulnerability seperately and explored the

relationship as well as patterns that could be used to improve software security or software quality.

Bug-Vulnerability Two Way relationship Study

In the previous research, they studied bug-vulnerability relationship in the manner that if bugs can fore-

shadow vulnerabilities. We studied the relationship in two ways and explored vulnerability-> bug rela-

tionship also. Also, in the last research, they didnt find any significant ratio to assume that there exists

relationship between Bug-Vulnerability. We found that 46% Vulnerabilities were related to bugs and

35% of the bugs were related to vulnerabilities.

Finding Patterns that can help improve Software Security and Software Quality

We found many patterns that could be used by Google Chromium Team to improve their Software

Quality and Software Security.

6.3 Future Work

6.3.1 Prediction Model for associated bugs and vulnerabilities

Once a bug or vulnerability is reported, to fix that bug or vulnerability, use of prediction models is

common approach. We can create a rank list of bugs and vulnerabilities which are associated with each

other. Once a vulnerability is reported, it should not only be checked for similar vulnerabilities in past

but it should also be checked for associated bugs which can provide us some additional files that could

be fixed to remove vulnerabilities and bugs for good.

58

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.3.2 Studying Diffs for further exploration of relationship

We studied co occurrences of the bugs and vulnerabilities in this research, we can further explore causal

relationship also. To do this, we can study the diffs in files to fix bugs and vulnerability.

6.3.3 Generalizing Relationship

We can study other software systems for bug-vulnerability relationship. If we find that same or near

to this ratio exists in other software systems as well. We can generalize the relationship and can give

verdict that software bugs and software vulnerabilities are related to this ratio in every software systems.

59

References

Abbot, C. (2017). Security Trends in 2016: Known Vulnerabilities Are Still Dangerous.

Agarwal, B. R., Srikant, R., & Ahmad, M. A. (1994). Fast Algorithms for Mining Association Rules.

Proceedings of the 20th VLDB Conference Santiago, Chile, 1215, 487–499.

Alali, A., Kagdi, H., & Maletic, J. I. (2008). What’s a typical commit? A characterization of open source

software repositories. IEEE International Conference on Program Comprehension, 182–191.

AVNER, G. (2017). Top 10 Security Vulnerabilities of 2017.

Banerjee, S., Syed, Z., Helmick, J., Culp, M., Ryan, K., & Cukic, B. (2017). Automated triaging of very

large bug repositories. Information and Software Technology, 89, 1–13.

Bozorgi, M., Saul, L. K., Savage, S., & Voelker, G. M. (2010). Beyond Heuristics : Learning to

Classify Vulnerabilities and Predict Exploits. KDD ’10 Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining, 105–113.

Camilo, F., Meneely, A., & Nagappan, M. (2015). Do bugs foreshadow vulnerabilities? a study of

the chromium project. In Ieee/acm 12th working conference on mining software repositories (pp.

269–279).

Dallmeier, V., & Zimmermann, T. (2007). Extraction of Bug Localization Benchmarks from History. ,

433–436.

Fonseca, J., & Vieira, M. (2008). Mapping software faults with web security vulnerabilities. Proceedings

of the International Conference on Dependable Systems and Networks, 257–266.

Gegick, M., Rotella, P., & Williams, L. (2009). Predicting attack-prone components. Proceedings - 2nd

International Conference on Software Testing, Verification, and Validation, ICST 2009, 181–190.

Gopalakrishna, R., Spafford, E. H., Gopalakrishna, R., & Spafford, E. H. (2005). A trend analysis of

vulnerabilities. West Lafayette: Purdue University, 1–12.

Greenberg, A. (2014). THE 5 MOST DANGEROUS SOFTWARE BUGS OF 2014.

Jimenez, W., Mammar, A., & Cavalli, A. (2009). Software Vulnerabilities, Prevention and Detection

Methods: A Review. Security in Model-Driven Architecture, 215995.

60

References

Kanwal, J., & Maqbool, O. (2012). Bug prioritization to facilitate bug report triage. Journal of Computer

Science and Technology, 27(2), 397–412.

Le, T.-d., Lo, D., Goues, C., & Grunske, L. (2016). A Learning-to-Rank Based Fault Localization

Approach using Likely Invariants. Proceedings of the 25th International Symposium on Software

Testing and Analysis. ACM, 177–188.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C. (2006). Have Things Changed Now ? â An

Empirical Study of Bug Characteristics in Modern Open Source Software. In Proceedings of the

1st workshop on Architectural and system support for improving software dependability, 25–33.

Liu, B., Shi, L., Cai, Z., & Li, M. (2012). Software vulnerability discovery techniques: A survey.

Proceedings - 2012 4th International Conference on Multimedia and Security, MINES 2012, 152–

156.

Liu, C., Yan, X., Fei, L., Han, J., & Midkiff, S. P. (2005). SOBER: statistical model-based bug localiza-

tion. SIGSOFT Softw. Eng. Notes, 30(5), 286–295.

Mcgraw, G. (2004). Software security. IEEE Security & Privacy Magazine, 2(2), 80–83.

Meneely, A., Tejeda, A. C. R., Spates, B., Trudeau, S., Neuberger, D., Whitlock, K., . . . Davis, K.

(2014). An empirical investigation of socio-technical code review metrics and security vulner-

abilities. Proceedings of the 6th International Workshop on Social Software Engineering - SSE

2014, 37–44.

Munaiah, N., Camilo, F., Wigham, W., Meneely, A., & Nagappan, M. (2017a). Do bugs foreshadow

vulnerabilities? An in-depth study of the chromium project. Empirical Software Engineering,

22(3), 1305–1347.

Munaiah, N., Camilo, F., Wigham, W., Meneely, A., & Nagappan, M. (2017b). Do bugs foreshadow

vulnerabilities? An in-depth study of the chromium project. In Msr ’15 proceedings of the 12th

working conference on mining software repositories (Vol. 22, pp. 1305–1347). Empirical Software

Engineering.

Myers, G. (2004). The Art of Software Testing, Second edition (Vol. 15).

Nagwani, N. K., & Verma, S. (2011). Predicting expert developers for newly reported bugs using

frequent terms similarities of bug attributes. International Conference on ICT and Knowledge

Engineering, 113–117.

Neuhaus, S., Zimmermann, T., Holler, C., & Zeller, A. (2007). Predicting vulnerable software compo-

nents. Proceedings of the 14th ACM conference on Computer and communications security - CCS

’07, 529.

61

References

Özkan, S. (2012). CVEdetails.com. Retrieved 16 (2017), 1–25.

Rao, S., & Kak, A. (2011). Retrieval from software libraries for bug localization. Proceeding of the 8th

working conference on Mining software repositories - MSR ’11, 43.

Shahmehri, N., Kamkar, M., & Fritzson, P. (1990). Semi-automatic bug localization in software main-

tenance. Proceedings. Conference on Software Maintenance 1990, 30–36.

Sharma, M., Kumari, M., & Singh, V. B. (2013). Understanding the meaning of bug attributes and pre-

diction models. Proceedings of the 5th IBM Collaborative Academia Research Exchange Work-

shop on - I-CARE ’13(October), 1–4.

Shokripour, R., Anvik, J., Kasirun, Z. M., & Zamani, S. (2015). A time-based approach to automatic

bug report assignment. Journal of Systems and Software, 102, 109–122.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., Ihara, A., & Matsumoto, K. (2015). The impact

of mislabelling on the performance and interpretation of defect prediction models. Proceedings -

International Conference on Software Engineering, 1, 812–823.

Xuan, J. (2012). Developer Prioritization in Bug Repositories. Software Engineering (ICSE), 2012 34th

International Conference on. IEEE, 25–35.

Yan, M., Zhang, X., Yang, D., Xu, L., & Kymer, J. D. (2016). A component recommender for bug

reports using Discriminative Probability Latent Semantic Analysis. Information and Software

Technology, 73, 37–51.

Zhang, W., Wang, S., & Wang, Q. (2016). KSAP: An approach to bug report assignment using KNN

search and heterogeneous proximity. Information and Software Technology, 70, 68–84.

Zheng, Z., Kohavi, R., & Mason, L. (2001). Real world performance of association rule algorithms.

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD ’01, 401–406.

62

Appendix

Bug-Vulnerability Rules

Table 6.1: Top 100 Bug-vulnerability Rules

Rules Support Confidence Count

{CVE ID= CVE-2017-15412=>{Bug ID=801488 0.004085802 0.467532468 36

{CVE ID=CVE-2015-6780=>{Bug ID=675239 0.00226989 0.666666667 20

{CVE ID= CVE-2017-15420=>{Bug ID=777419 0.001702417 0.555555556 15

{CVE ID=CVE-2015-6780=>{Bug ID=700591 0.001588923 1 14

{CVE ID= CVE-2017-15951=>{Bug ID=784761 0.001361934 0.25 12

{CVE ID=CVE-2017-5093=>{Bug ID=670135 0.001361934 0.3 12

{CVE ID=CVE-2017-5086=>{Bug ID=784761 0.001361934 0.25 12

{CVE ID=CVE-2017-5110=>{Bug ID=850078 0.001248439 0.35483871 11

{Bug ID=770946=>{CVE ID=CVE-2017-15386 0.001248439 0.169230769 11

{CVE ID= CVE-2017-0663=>{Bug ID=801488 0.001134945 0.12987013 10

{CVE ID=CVE-2014-7936=>{Bug ID=776145 0.001134945 0.357142857 10

{Bug ID=707240=>{CVE ID=CVE-2017-5110 0.001134945 0.357142857 10

{CVE ID=CVE-2015-6780=>{Bug ID=653171 0.001134945 0.333333333 10

{CVE ID=CVE-2014-7936=>{Bug ID=770946 0.001134945 0.153846154 10

{Bug ID=704675=>{CVE ID=CVE-2017-5110 0.00102145 1 9

{CVE ID=CVE-2017-5073=>{Bug ID=716474 0.00102145 0.45 9

{CVE ID= CVE-2017-5073=>{Bug ID=716474 0.00102145 0.45 9

{CVE ID=CVE-2016-5165=>{Bug ID=779156 0.00102145 0.310344828 9

{Bug ID=683731=>{CVE ID=CVE-2017-5110 0.00102145 0.333333333 9

{CVE ID= CVE-2018-6117=>{Bug ID=822465 0.000907956 1 8

References

Table 6.1: Top 100 Bug-vulnerability Rules

{CVE ID= CVE-2018-6032=>{Bug ID=755595 0.000907956 0.571428571 8

{CVE ID= CVE-2018-6032=>{Bug ID=700610 0.000907956 0.571428571 8

{CVE ID= CVE-2018-6032=>{Bug ID=566091 0.000907956 0.444444444 8

{Bug ID=706053=>{CVE ID=CVE-2017-5110 0.000907956 0.307692308 8

{CVE ID=CVE-2017-15386=>{Bug ID=803859 0.000907956 0.153846154 8

{CVE ID=CVE-2016-1701=>{Bug ID=838578 0.000794461 0.291666667 7

{CVE ID=CVE-2016-1690=>{Bug ID=838578 0.000794461 0.291666667 7

{CVE ID= CVE-2017-5067=>{Bug ID=815187 0.000794461 0.189189189 7

{CVE ID=CVE-2017-5061=>{Bug ID=815187 0.000794461 0.189189189 7

{CVE ID=CVE-2017-5067=>{Bug ID=815187 0.000794461 0.189189189 7

{CVE ID= CVE-2017-5061=>{Bug ID=815187 0.000794461 0.189189189 7

{Bug ID=731832=>{CVE ID=CVE-2017-5110 0.000680967 1 6

{CVE ID= CVE-2018-6117=>{Bug ID=620004 0.000680967 1 6

{CVE ID= CVE-2018-6117=>{Bug ID=620002 0.000680967 1 6

{CVE ID= CVE-2018-6117=>{Bug ID=828312 0.000680967 1 6

{CVE ID=CVE-2016-1625=>{Bug ID=718770 0.000680967 1 6

{CVE ID=CVE-2016-1671=>{Bug ID=831962 0.000680967 0.5 6

{CVE ID= CVE-2016-1671=>{Bug ID=831962 0.000680967 0.5 6

{CVE ID=CVE-2017-5110=>{Bug ID=828427 0.000680967 0.75 6

{CVE ID=CVE-2017-5104=>{Bug ID=825677 0.000680967 0.5 6

{CVE ID=CVE-2016-5132=>{Bug ID=755595 0.000680967 0.428571429 6

{CVE ID=CVE-2016-5132=>{Bug ID=700610 0.000680967 0.428571429 6

{CVE ID=CVE-2016-5132=>{Bug ID=566091 0.000680967 0.333333333 6

{Bug ID=696029=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

{Bug ID=710004=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

{Bug ID=772148=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

{Bug ID=709571=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

{Bug ID=709535=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

{Bug ID=708052=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

64

References

Table 6.1: Top 100 Bug-vulnerability Rules

{Bug ID=701345=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

{CVE ID=CVE-2017-15389=>{Bug ID=750239 0.000680967 0.166666667 6

{CVE ID= CVE-2017-15390=>{Bug ID=750239 0.000680967 0.166666667 6

{Bug ID=696733=>{CVE ID=CVE-2017-5110 0.000680967 0.25 6

{Bug ID=709776=>{CVE ID=CVE-2017-5110 0.000680967 0.230769231 6

{CVE ID=CVE-2017-5093=>{Bug ID=779878 0.000680967 0.2 6

{CVE ID=CVE-2014-7936=>{Bug ID=779878 0.000680967 0.2 6

{Bug ID=657896=>{CVE ID=CVE-2017-5059 0.000680967 0.176470588 6

{CVE ID=CVE-2011-2845=>{Bug ID=657896 0.000680967 0.176470588 6

{Bug ID=687572=>{CVE ID=CVE-2017-5093 0.000680967 0.176470588 6

{CVE ID=CVE-2014-7936=>{Bug ID=687572 0.000680967 0.176470588 6

{CVE ID=CVE-2014-7936=>{Bug ID=658980 0.000680967 0.166666667 6

{CVE ID=CVE-2017-15386=>{Bug ID=670135 0.000680967 0.15 6

{CVE ID=CVE-2014-7936=>{Bug ID=670135 0.000680967 0.15 6

{CVE ID= CVE-2017-15412=>{Bug ID=643804 0.000680967 0.109090909 6

{CVE ID=CVE-2017-5093=>{Bug ID=770946 0.000680967 0.092307692 6

{CVE ID=CVE-2017-5093=>{Bug ID=776418 0.000680967 0.049180328 6

{CVE ID=CVE-2017-5104=>{Bug ID=796538 0.000680967 0.056603774 6

{Bug ID=679835=>{CVE ID=CVE-2017-5110 0.000680967 0.078947368 6

{CVE ID=CVE-2014-7936=>{Bug ID=437116 0.000567472 0.357142857 5

{CVE ID=CVE-2014-7936=>{Bug ID=493257 0.000567472 0.333333333 5

{CVE ID= CVE-2017-5067=>{Bug ID=797855 0.000567472 0.25 5

{CVE ID=CVE-2017-5061=>{Bug ID=797855 0.000567472 0.25 5

{CVE ID=CVE-2017-5067=>{Bug ID=797855 0.000567472 0.25 5

{CVE ID= CVE-2017-5061=>{Bug ID=797855 0.000567472 0.25 5

{CVE ID=CVE-2016-5132=>{Bug ID=783529 0.000567472 0.119047619 5

{CVE ID=CVE-2017-5059=>{Bug ID=803859 0.000567472 0.096153846 5

{CVE ID=CVE-2016-1625=>{Bug ID=806251 0.000453978 1 4

{Bug ID=697595=>{CVE ID=CVE-2017-5110 0.000453978 1 4

65

References

Table 6.1: Top 100 Bug-vulnerability Rules

{CVE ID= CVE-2018-6117=>{Bug ID=771878 0.000453978 1 4

{CVE ID= CVE-2018-6117=>{Bug ID=617364 0.000453978 1 4

{Bug ID=766973=>{CVE ID=CVE-2017-5110 0.000453978 1 4

{Bug ID=770303=>{CVE ID=CVE-2017-5110 0.000453978 1 4

{CVE ID= CVE-2018-6117=>{Bug ID=751434 0.000453978 1 4

{CVE ID= CVE-2018-6117=>{Bug ID=827579 0.000453978 1 4

{CVE ID=CVE-2017-5110=>{Bug ID=742329 0.000453978 1 4

{CVE ID=CVE-2017-5080=>{Bug ID=736944 0.000453978 1 4

{CVE ID=CVE-2015-6780=>{Bug ID=640851 0.000453978 1 4

{CVE ID= CVE-2018-6032=>{Bug ID=777275 0.000453978 1 4

{CVE ID= CVE-2018-6117=>{Bug ID=798906 0.000453978 1 4

{CVE ID=CVE-2016-5190=>{Bug ID=623606 0.000453978 0.142857143 4

{CVE ID=CVE-2015-6785=>{Bug ID=625945 0.000453978 1 4

{CVE ID= CVE-2018-6117=>{Bug ID=808182 0.000453978 1 4

{CVE ID= CVE-2018-6117=>{Bug ID=649551 0.000453978 1 4

{CVE ID=CVE-2016-1625=>{Bug ID=625161 0.000453978 1 4

{CVE ID=CVE-2016-1616=>{Bug ID=575789 0.000453978 1 4

{CVE ID= CVE-2016-5133=>{Bug ID=716296 0.000453978 0.333333333 4

{CVE ID=CVE-2016-1616=>{Bug ID=590941 0.000453978 1 4

{CVE ID=CVE-2016-5133=>{Bug ID=716296 0.000453978 0.333333333 4

{CVE ID= CVE-2018-6117=>{Bug ID=812035 0.000453978 1 4

Rank list of Buggy Files

Table 6.2: Top 100 Buggy Files Rank List

Files Bug Count

histograms.xml 61

about flags.cc 60

generated resources.grd 54

enums.xml 48

flag descriptions.cc 39

66

References

Table 6.2: Top 100 Buggy Files Rank List

compiled resources2.gyp 37

flag descriptions.h 36

DEPS 31

payment request.cc 27

extensions ui.cc 26

detail view.html 23

manager.html 21

md extensions strings.grdp 21

payment sheet view controller.cc 21

location bar view.cc 20

tab.cc 20

tab strip.cc 20

toolbar.html 20

browser non client frame view ash.cc 19

shipping address editor view controller.cc 19

chrome content browser client.cc 18

chrome features.cc 18

local ntp.js 18

manage passwords bubble view.cc 18

manager.js 18

browser view.cc 17

credit card editor view controller.cc 17

credit card editor view controller browsertest.cc 17

item.html 16

local ntp.css 16

payment request.h 16

chrome features.h 15

item.js 15

payment request state.cc 15

67

References

Table 6.2: Top 100 Buggy Files Rank List

bookmark app navigation throttle browsertest.cc 14

chrome switches.cc 14

chrome switches.h 14

location bar view.h 14

md settings localized strings provider.cc 14

omnibox result view.cc 14

payment request browsertest base.cc 14

payment request views util.cc 14

shipping address editor view controller browsertest.cc 14

autofill experiments.cc 13

bookmark app navigation throttle.cc 13

bookmark bar view.cc 13

detail view.js 13

layout constants.cc 13

payment method view controller.cc 13

settings strings.grdp 13

app.html 12

autofill experiments.h 12

autofill manager.cc 12

credit card editor view controller.h 12

error page.html 12

passwords section.html 12

payment request browsertest base.h 12

render frame host impl.cc 12

theme resources.grd 12

autofill interactive uitest.cc 11

browser.cc 11

chrome tests unit.gypi 11

contact info editor view controller.cc 11

68

References

Table 6.2: Top 100 Buggy Files Rank List

cr extensions browsertest.js 11

error page.js 11

item list.html 11

local ntp browsertest.cc 11

security state.cc 11

shipping address editor view controller.h 11

toolbar.js 11

bookmark app helper.cc 10

browser non client frame view ash browsertest.cc 10

chrome browser.gypi 10

chrome tests.gypi 10

editor view controller.cc 10

hosted app browsertest.cc 10

keyboard shortcuts.html 10

local ntp source.cc 10

omnibox edit model.cc 10

omnibox view views.cc 10

page info.cc 10

page info bubble view.cc 10

password autofill agent.cc 10

tab.h 10

tab unittest.cc 10

actions.xml 9

autofill metrics unittest.cc 9

autofill strings.grdp 9

browser non client frame view ash.h 9

browser resources.grd 9

chrome browser ui.gypi 9

extension detail view test.js 9

69

References

Table 6.2: Top 100 Buggy Files Rank List

hosted app button container.cc 9

most visited single.js 9

navigation handle impl.cc 9

omnibox popup contents view.cc 9

payment request dialog view.cc 9

payment request spec.cc 9

Rank List of Vulnerable Files

Table 6.3: Top 100 Vulnerable Files

Files Vulnerability Count

render frame impl.cc 78

manifest.json 36

enums.xml 22

payment request.cc 21

navigator impl.cc 21

md settings localized strings provider.cc 13

payment request browsertest base.cc 12

payment request browsertest base.h 12

PaymentRequestImpl.java 10

payment request.h 10

LocalFrame.cpp 10

layer tree host.cc 8

layer tree host.h 8

layer tree host impl.cc 8

chrome tests unit.gypi 8

autofill agent.cc 6

test.js 6

chrome content browser client.h 6

site per process browsertest.cc 5

70

References

Table 6.3: Top 100 Vulnerable Files

actions.xml 5

chrome browser ui.gypi 5

passwords section.html 4

chrome tests.gypi 4

navigation handle impl browsertest.cc 4

save card bubble controller impl.cc 4

ffmpeg regression tests.cc 4

test chrome payment request delegate.cc 3

test chrome payment request delegate.h 3

ssl browsertest.cc 3

main.js 3

save card bubble controller impl unittest.cc 3

languages page.js 3

render view impl.cc 3

content switches.h 3

content browser client.cc 3

content browser client.h 3

crw web controller.mm 3

views.gyp 3

cursor impl.cc 3

indexed db cursor.cc 3

ContainerNode.cpp 3

HTMLFormControlElement.cpp 3

fieldtrial testing config.json 2

main.html 2

browser view.cc 2

ukm.xml 2

OWNERS 2

idn spoof checker.h 2

71

References

Table 6.3: Top 100 Vulnerable Files

alexa domains.list 2

alexa skeletons.gperf 2

make alexa top list.py 2

render frame host delegate.h 2

render view impl.h 2

journey logger unittest.cc 2

website settings popup view.h 2

pref names.h 2

gles2 cmd decoder.cc 2

zoom bubble view.cc 2

zoom bubble view.h 2

WebGL2RenderingContextBase.h 2

VisibleUnits.cpp 2

color-no-event-during-detach.html 2

input-color-choose-default-value-after-set-value.html 2

input-color-onchange-event-expected.txt 2

input-color-onchange-event.html 2

HTMLTextFormControlElement.cpp 2

HTMLTextFormControlElement.h 2

ColorInputType.cpp 2

elements.cc 2

webstore inline installer browsertest.cc 2

debugger api.cc 2

render thread impl.h 2

objects.h 2

objects.cc 2

script context.cc 2

extension bindings apitest.cc 2

UrlBar.java 2

72

References

Table 6.3: Top 100 Vulnerable Files

indexed db callbacks.cc 2

SkArenaAlloc.h 2

IDS SETTINGS CAN MAKE PAYMENT TOGGLE LABEL.png.sha1 1

cr dialog.html 1

autofill metrics.cc 1

autofill metrics unittest.cc 1

cr drawer.js 1

password form manager.cc 1

chrome features.h 1

autofill manager.h 1

cr action menu.html 1

autofill experiments.h 1

autofill experiments unittest.cc 1

answer when is.icon 1

md extensions strings.grdp 1

chrome web ui controller factory.cc 1

password autofill manager unittest.cc 1

password manager metrics util.h 1

security state unittest.cc 1

hosted app menu button.h 1

omnibox popup contents view browsertest.cc 1

md bookmarks focus test.js 1

73

