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          Abstract 
During the most recent decade, web activities have turned into an essential part of many individuals' 

life. As the quantity of these activities increases, so does the individual data about the clients, that is 

stored in electronic structure and is normally exchanged by utilizing open electronic means. This 

makes it practical, and frequently simple, to gather, exchange and process a vast quantity of 

information about a person. As a result, the requirement for instruments to secure such data is 

convincing. In this connection, Boolean functions and S-boxes (substitution boxes) are vital 

mechanisms of an information security system. These two important components are linked by 

function quantity. That is, an S-box is in general comprised of several distinct output Boolean 

functions, but if it is mapped to just a single bit, is identical to a Boolean function. Boolean 

functions are frequently used in the secret and public key block ciphers production as these 

functions are well appropriate for receiving bits of linear feedback shift registers as input in order to 

join them as strongly as possible to generate the single secret key stream. Furthermore, Boolean 

functions have also exhibited some significant properties, which are essential to oppose the classic 

kind of attacks, so these functions are an important component in almost all block ciphers. 

Cryptography, watermarking and steganography are widely used techniques for information hiding 

in securing communication across the internet and mobile transmission. Cryptography scrambles 

information so that it cannot be understood. Stenography attempts to prevent suspecting the existing 

of the data by an unintended recipient. Digital watermarking provides copyright protections by 

hiding rightful information for declaring ownership. The fundamentals of Boolean functions, 

cryptography, watermarking and steganography, which will be helpful for successive parts, are 

given in chapters 2 and 3 respectively.  Along with this discussion, it will be an injustice not to pay 

tribute to the pioneers of computer and information sciences. Therefore, chapter 1 sheds lights on a 

brief account of the fathers of computer and information sciences namely George Boole and Claude 

Shannon which is published in Nonlinear Engineering (DE GRUYTER, Germany).  

 

The objective of information security is to obscure the information present in the original data to 

secure the encrypted information. The integral part of creating confusion is the introduction of 

randomness in data at the output. The random behavior of chaotic systems exhibits desirable 

properties suitable for nonlinear dynamic systems, such as, substitution process in a cipher without 

independent round keys. The chaotic systems are highly sensitive to initial conditions and exhibit 

random behavior, which is deterministic if initial information is available, and in the absence of this 

initial information, the system appears to be random to an observer. These properties are desirable 

and attractive in the design of cryptographic systems. The application of chaotic sequences to the 

construction of substitution boxes (S-boxes) used in Advanced Encryption Standard (AES) capable 

of creating confusion and applying diffusion of the original data. To build a bridge between chaos 

and cryptography, we have combined chaotic systems with linear functional transformation in order 

to produce large numbers of substitution boxes with low computational complexity and high 

confusion and diffusion competences. These matters of chapter 4 are published in Nonlinear 

Dynamics (Springer-USA). 
 

We have endeavored to streamline the encryption prepare by diminishing the computational many-

sided quality while in the meantime expanding the encryption quality. The proposed encryption 

algorithm in chapter 5 is focused around chaotic binary Boolean function in which different 

trajectories are all the while utilized to get a successful and quick system for securing information. 

The chaotic structure gives extensive key space that can be used to encode information by utilizing 



 

chaotic maps. The system trajectory is exceptionally touchy to slight changes in the key; along 

these lines with the information of inexact estimations of the key, the cryptanalysis can't extricate 

helpful data. The main description of chapter 5 is available in Neural Computing & Applications 

(Springer Verlag-London). 
 

The study of algebraic structures which are compatible for real time applications is always an 

interesting area of research for investigators. As there is always a corner for improvement in any 

system, therefore we have proposed a new method to design a substitution box (S-box) for the 

cryptographic system. The S-box substitutes the original data in the plaintext and provides the 

diffusion properties while maintaining high entropy levels. This process resembles the nonlinear 

transformation and the design of S-box must render high randomness in the encrypted data. We 

have used the exponential map as a thresholding function which is embedded in Galois field of 

modulo classes and two dimensional Tinkerbell chaotic maps for image encryption applications in 

chapter 6. The major components of chapter 6 are published in Neural Computing & Applications 

(Springer Verlag-London). 

 

In the modern age, chaos-based protected communication has obtained considerable devotion since 

it suggests potential advantages over conventional methods due to its simplicity and high level of 

unpredictability. In the literature, many chaotic systems have been presented, but few have been 

used in cryptography. In the block cipher system, the plaintext is distributed into the blocks and the 

ciphering is carried out for the complete block. Two wide-ranging ideas of block ciphers which 

were proposed by Shanon are diffusion and confusion. Diffusion is scattering of the effect of 

plaintext bits to ciphertext bits with a target to obscure the statistical configuration of plaintext. 

Confusion is a transformation in which alterations dependency of information of ciphertext is on the 

information of plaintext. In most cipher structures, the diffusion and confusion are attained by 

means of round recurrence. Modern block encryptions comprise of four conversions: substitution, 

permutation, mixing and key adding. A number of famous block ciphers are of substitution-

permutation (SP) category. S-boxes are used in such cipher structures as the essential nonlinear 

element. A robust block cipher must be hardy to numerous attacks, such as linear and differential 

cryptanalysis. In SP systems, this is normally reached if the S-boxes used to satisfy a number of 

measures. The S-box functioning in encryption procedure could be selected under the control of 

key, as a substitute of being static. Several random keys-dependent and bijective S-boxes are 

generated for encryption applications, which satisfy selected standards. In chapter 7, we have 

suggested new chaos-based S-boxes that are simply a combination of Hénon chaotic map and 

symmetry group S₈, which enhanced the confusion and diffusion capability of proposed designed 

block cipher. We have used our designed chaos-based S-boxes in image encryption application and 

investigate the texture features of second order. This detailed segment of chapter 7 has got its place 

in Neural Computing & Applications (Springer Verlag-London). 

 

A CAPTCHA (an acronym for "Completely Automated Public Turing test to tell Computers and 

Humans Apart") is a kind of test reaction test utilized as a part of figuring to figure out if or not the 

client is human. The term emerged in 2000 by Luis von Ahn, Manuel Blum, Nicholas J. Hopper of 

Carnegie Mellon University and John Langford of IBM. The most well-known kind of CAPTCHA 

was initially designed by Mark D. Lillibridge, Martin Abadi, Krishna Bharat and Andrei Z. Broder. 

This type of CAPTCHA obliges that the client sort the letters of a twisted picture, in some cases 

with the expansion of a clouded arrangement of letters or digits that show up on the screen. Since 



 

the test is controlled by a machine, rather than the standard Turing test that is directed by a human, 

a CAPTCHA is once in a while portrayed as a reverse Turing test. This term is equivocal in light of 

the fact that it could likewise mean a Turing test in which the members are both endeavoring to 

demonstrate they are the machine. A novel construction and application of chaotic S-boxes for 

CAPTCHA are discussed in chapter 8 and published in Signal image and video processing 

(Springer-USA). 

 

The term digital watermarking was initially suggested in 1992, when Tirkel exhibited two 

watermarking systems to conceal the watermark information in the images. The achievements of 

the internet are multidimensional. It is financially savvy and has mainstream advanced recording 

and capacity gadgets. It guarantees higher data transmission and nature of administration for both 

wired and remote systems have made it conceivable to make, recreate and transmit content in an 

easy way. However, the assurance and implementation of protected innovation rights for 

computerized media have turned into a critical issue. Digital watermarking is that innovation that 

guarantees to provide security, information verification and copyright insurance to the 

computerized media. 

 

Advanced watermarking will be the installing of a sign and mystery data (i.e. Watermark) into the 

computerized media such as image and sound feature. Later the implanted data are discovered and 

concentrated out to uncover the genuine manager/personality of the computerized media. 

Watermarking is utilized for taking after reasons; proof of ownership (copyrights and IP assurance), 

copying prevention, broadcast monitoring, authentication, and data hiding. Chapter 9 dissects the 

key innovations of digital watermarking and investigates the application in the advanced image 

copyright insurance and finally got accepted in Neural Computing and Applications (Springer-

USA). 

 

In chapter 10, we have constructed new S-boxes which are based on class of finite rings which 

includes Galois rings instead of a traditional Galois field. These two structures are completely new 

and apply these S-boxes in image encryption and watermarking. The strength of proposed image 

encryption and watermarking based on finite chain rings is verified through statistical analysis. 

 

Because of copyright infringement, forging, falsification, and misrepresentation, transmitting the 

computerized information in open systems such as internet which is not reliably shielded. 

Consequently, for securing the mystery information numerous methodologies are forward for 

ensuring key advanced information. Cryptographic techniques are utilized for transmitting the 

mystery information scrambled by cryptosystems and utilized for mystery correspondence. The 

pointless manifestation of the scrambled information may draw the clue to hackers. This classified 

information can be secured by utilizing data, concealing methods, such as watermarking and 

steganography, which shrouds the secret data into a cover data and create a stago object. 

Watermarking is utilized for screen checking, copyright guard, following exchange and 

comparative exercises. Conversely, steganography is utilized basically for secret correspondences. 

This system undetectable modifies a cover media to veil an incognito message. Subsequently, it can 

cover up the extreme presence of disguised correspondences. For further security, a cryptographic 

system is utilized before implanting procedure. Steganography is broadly classified into spatial and 

frequency domain techniques. The spatial domain techniques involve encoding at the LSBs level. 

Least Significant Bit Substitution (LSB) is the most commonly used stenographic technique. The 



 

basic concept of Least Significant Bit Substitution includes the embedding of the secret data at the 

bits which having minimum weighting so that it will not affect the value of the original pixel. In 

frequency domain, we find a way to hide information in areas of the image which is scarcely visible 

to compression, cropping, and image processing. In chapter 11, we combined S-boxes which are the 

most important object of symmetric cryptography along with the information hiding scheme namely 

steganography to provide protection against digital security terrorizations. 

 

The design of public key cryptography (PKC) was presented by Diffie and Hellman in 1976, 

numerous PKC plans have been suggested and cracked. The trapdoor one-way capacities performed 

the key roles in the conception of PKC. Today, best PKC plans are focused around the apparent 

trouble of specific issues specifically large finite commutative rings. For instance, the trouble of 

solving the integer factoring problem (IFP) defined over the ring (where is the product of two large 

primes) structures the ground of the essential RSA cryptosystem and its variations, for example, 

Rabin-Williams design, LUC's strategy, Cao's concepts and elliptic curve variant of RSA like 

KMOV. The extended multi-measurement RSA cryptosystem, which can productively oppose low 

exponent assaults, is likewise characterized over the commutative ring. An alternate decent case is 

that ElGamal PKC family, including the fundamental ElGamal design, elliptic curve cryptosystem, 

discrete signature scheme (DSS) and Mccurley scheme, is focused on the difficulty of solving the 

discrete logarithm problem characterized over a finite field (where is a large prime), obviously a 

commutative ring. We have composed public key cryptosystems which are based on Abelian 

subgroup of general linear group over modulo classes, i.e., in chapter 12. The chief aspects of this 

chapter are published in 3D Research (Springer-USA).  
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Chapter 1

A Brief Description about the

Fathers of Computer and

Information Sciences

In this chapter, we are mainly presenting a tribute to the fathers of computer and information sciences,

George Boole and Claude Elwood Shannon with their hardships and achievements. This piece of writing

also elaborates the applications of George Boole�s and Claude Shannon�s works in di¤erent disciplines.

1.1 The Contributions of George Boole

The most reliable biography of Boole is �George Boole: His Life and Work�, by Desmond Machale

(Boole Press, 1985) [1]. We will utilize both this book [1] and the life story composed by O�connor

and Robertson for the Mactutor History of Mathematics document [2]. Also, we have taken some of

historical memories from the book of Thomas [3].

George Boole was born in November 1815 in Lincoln, England. His father was an ordinary tradesman.

He gave Boole his �rst mathematics lessons and planted in him the passion of learning. A family friend

,who was a local bookseller, helped him learn basic Latin. By the age of 12, Boole was beginning to

translate Latin poetry. By 14, the adolescent Boole was �uent in French, German, and Italian as well.

His love for poetry and novels was remarkable. His capabilities in higher mathematics did not indicate

until he was 17 years of age . He read his maiden progressed arithmetic book, in particular Lacroix�s

Di¤erential and Integral Calculus. Since his father�s business �zzled, he was compelled to earn his bread

to look after his family. At 16, he turned into an assistant master in a non-public school at Doncaster,

and before reaching 20 years of age, he opened his own school. In 1838, Boole was o¤ered to assume
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control over the Hall�s Academy in Waddington, after its organizer, Robert Hall, passed on.

Fig. 1.1: George Boole [16].

The members of his family also shifted to Waddington and assisted him to run the school. Utilizing

mathematical journals obtained from the nearby Mechanic�s Institute, Boole perused over the Principia

of Isaac Newton and the works of French mathematicians Pierre-Simon Laplace (1749�1827) and Joseph

Louis Lagrange (1736�1813). In the wake of realizing what these creators formerly composed, Boole, at

24, distributed his �rst paper (Studies on the notion of analytical transformations) in the Cambridge

Mathematical Journal (CMJ). It started a kinship between George Boole and the editor of CMJ, Duncan

F. Gregory, which sustained until the unexpected demise of Gregory in 1844. Gregory motivated Boole

to study algebra. In view of his family�s �nancial circumstance, Boole was not able to act upon Gregory�s

advice to attend courses at Cambridge. Truly, in the late spring of 1840, he opened a residential school

in Lincoln and again the entire family shifted with him.

When his father kicked the bucket, Boole assumed the charge of Mathematics Professorship at

Queen�s College in 1849 , where he stayed and educated for whatever is left of his life. It was there

he saw Mary Everest, a niece of Sir George Everest. She was 17 years more youthful than him, however,

they turned into companions quickly. George started giving Mary lessons on the di¤erential calculus,

and in 1855, after her father passed away, Mary wedded George Boole. They were very upbeat together

and �ve girls were conceived: Mary Ellen (b. 1856), Margaret (b. 1858), Alicia (later Alicia Stott) (b.

1860), Lucy Everest (b. 1862), and Ethel Lilian (b. 1864).

There are 50 articles that contain the work of Boole , besides a couple of di¤erent publications. A

rundown of Boole�s diaries and papers, on logical and mathematical topics, is found in the Catalog of

Scienti�c Memoirs distributed by the Royal Society, and in a volume on di¤erential equations (altered
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by I. Todhunter). Boole composed 22 articles in the Cambridge Mathematical Journal and its successor,

the Cambridge and Dublin Mathematical Journal. He further wrote 16 papers in the Philosophical

Magazine, six diaries in the Philosophical Transactions (The Royal Society), and a couple of others in

the Transactions of the Royal Society of Edinburgh and of the Royal Irish Academy, in the Bulletin de

l�Academie de St-Petersbourg (in 1862, under the alias. Boldt), and in Crelle�s Journal, and a paper

on the mathematical basis of logic published in the Mechanics Magazine (1848). In 1844, the Royal

Society bestowed him with a decoration for his commitments to analysis, as a result of his work on

utilizing algebra and calculus to analyze in�nitely small and large �gures. Analytics of thinking, which

Boole was engrossed with, thought that it was�route into his 1847 work, The Mathematical Analysis of

Logic, that developed the work of the German mathematician Gottfried Wilhelm Leibniz (1646�1716)

and pushed the thought that logic was a mathematical discipline, instead of philosophy. This paper won

him the profound respect of the recognized logician Augustus de Morgan, and a spot among the talent

of Ireland�s Queen�s.

The publication of Boole�s �An Investigation into the Laws of Thought�, on which the Mathematical

Theories of Logic and Probabilities are based, is considered to be his most critical work in 1854. Boole

advanced logic in an alternative way, lessening it to a straightforward algebra, fusing rationale into

science, and establishing the frameworks of the now acclaimed parallel methodology. Logical statements

are presently spoken to utilizing a scienti�c structure called as a part of his honor Boolean Algebra.

Boole�s virtuoso was immensely perceived and he got honorary degrees from the universities of Oxford

and Dublin. He was chosen a Fellow of the Royal Society in 1857. For his work in the long run guided

individuals to step on the Moon, it is just a compliment that Boole is the name of a lunar cavity.

It was an ominous day in 1864, Boole was strolling from his home to the college and was getting in

a downpour storm. Yet he taught in wet wears and caught a cold. It was a black day for mathematics

when he passed away, he was just 49 years of age.

1.2 The Role of Claude Elwood Shannon to Revive Boole�s

Works

Two great accounts of Shannon were composed by Sloane and Wyner, and by Liversidge in the altered

book by Sloane and Wyner containing Shannon�s gathered papers [6]. Boole�s work on mathematical

rationale was censured and/or disregarded by his counterparts, aside from an American rationalist,

Charles Sanders Peirce (1839�1914), who gave a discourse at the American Academy of Arts and Sciences,

portraying Boole�s thoughts. Peirce put in more than 20 years chipping away at these thoughts and their

applications in electronic hardware; at last, he composed a hypothetical electrical logic circuit. Sadly,

Boolean algebra and Peirce�s work remained generally obscure and unused for decades, until the 1940s,

when a youth called as Claude Elwood Shannon found Boole�s and Peirce�s works and perceived their
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importance to hardware design.

Fig. 1.2: Claude Elwood Shannon [16].

Claude E. Shannon opened his eyes in Petoskey, Michigan, on April 30, 1916. His father was a

representative and, for a period, Judge of Probate. His mother was a dialect instructor and for various

years Principal of Gaylord High School, in Gaylord, Michigan. Shannon stayed with Gaylord until he was

16 when he moved on from secondary school. He demonstrated a liking for science and mathematics and

kept himself occupied by building model planes, a radio-controlled model watercraft, and a broadcast

framework for a companion�s home a large portion of a mile away [6].

Taking after his sister, in 1932, he took admission in University of Michigan (UM), where he was

exposed to the work of George Boole. Shannon moved from UM in 1936 with double Bachelor�s Degrees of

Science in Electrical Engineering and Science in Mathematics. Immediately, tolerating an examination

associate position at Massachusetts Institute of Technology to help himself, he started his graduate

studies. In 1940, he completed his master degree in Electrical Engineering and a Phd in Mathematics.

His Master�s thesis �A Symbolic Analysis of Relay and Switching Circuits�is a venture to utilize Boole�s

algebra to investigate transfer exchanging circuits, while his doctoral thesis manages populace hereditary

qualities. A rendition of his Master�s proposal was distributed in Transactions of the American Institute

of Electrical Engineers in 1940, and earned him the Alfred Noble (American Institute of Engineers)

Award.

In the wake of putting in a year at the Institute for Advanced Study, in 1941 Shannon joined AT&

Bell Telephones in New Jersey as an exploration mathematician to take a shot at �re-control frameworks

and cryptography. He stayed a¢ liated with Bell Laboratories until 1972, yet took up di¤erent positions

(MIT; Center for the Study of the Behavioral Sciences in Palo Alto; Institute for Advanced Study in

Princeton, Visiting Fellow at All Souls College, Oxford; University of California; the IEEE; and the

Royal Society).

In 1949 Shannon entered into a wedlock with Mary Elizabeth Moore. They were blessed with three
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boys: Robert, James, Andrew Moore; and one little girl Margarita.

In one of his most critical works, A Mathematical Theory of Communication [4], Shannon established

the subject of data, hypothesis and he proposed a straight schematic model of an interchange framework.

This was a progressive thought as there was no more any requirement for electromagnetic waves to be

sent down a wire. One could convey rather, by sending groupings of 0 and 1 bits. In the following

year, he composed an alternate key paper, Communication Theory of Secrecy Systems [5], which is the

�rst investigation of cryptography. It was focused around classi�ed chip away at mystery frameworks

embraced by Shannon in the �nal year of World War II. Shannon kicked the bucket in 2001 after a long

battle with Alzheimer�s disease.

1.3 Conclusion

In this chapter, we have discussed two well-known scientists Boole and Shannon. Their contributions

still give new inspiration to computer science and modern information security which is a growing area of

research nowadays. Such geniuses could never be seen even after hundreds of years. Their work directly

in�uenced channel coding, information security, cryptography and cryptanalysis. This chapter is written

only to acknowledge these two highly intellect personalities of computer and information sciences.
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Chapter 2

Boolean Functions and

Cryptographic Properties of

Substitution Boxes

Nowadays, society is tightly surrounded by the sphere of the information era, which is classi�ed by

scholar assets and is utilizable inside data being considered exceptionally precious. Informative data

exists and is used in various forms as economic, o¢ cial (documents), martial, and political. The safety

of this data during transfer and saving, and in routine practice is very important because its compromise

might a¤ect in the disclosure of marketing, �nancial loss, or armed forces top secrets, and even the loss of

life. Cryptology is a signi�cant way used in the Survey of data protection. Three most important types

of security are presented by cryptology through the utilization of appropriate and healthy structured

cryptosystems.

These systems are known as con�dentiality, integrity, and authentication. Con�dentiality is o¤ered

by guaranteeing that secret data is kept personal from uno¢ cial disclosure. Integrity is o¤ered by

making sure the secret data has not been altered, even coincidentally, during production or storage.

Authentication is the procedure of assessment that the dispatcher of the data is properly recognized and

legitimate.

The encryption schemes are often classi�ed by some aspects such as the philosophy of their key

distribution and the dimension of their input stream. Symmetric encryption algorithms have a common

secret key allocated to senders and receivers, while asymmetric cryptosystems use dissimilar keys for

enciphering and deciphering. Symmetric cryptosystems have two main branches, block or stream ciphers,

where the input data to the cryptosystem catches the shape of either blocks or unbroken bit streams,

respectively. Another kind of encryption scheme is a hash function, which squeezes information in a
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digest form for the sake of integrity or authentication.

Cryptosystems are key marks for an attacker desiring to compromise the secret data being guarded

by a security algorithm. In procession with the three types of security requirements cited above, the

usual motivations of an attacker is to disclose secret information, to illegally and underhandedly alter

information, and to falsely adopt an identity. Furthermore, an attacker possibly will try to eliminate

evidence, or even add fake evidence that a result or transaction has taken place.

Compromising a cryptosystem which is responsible to protect the secret information can either di-

rectly permits these events to happen, or ultimately weaken a di¤erent ingredient of the scheme to allow

these actions to later take place. Prevailing accessible cryptanalytic attacks in opposition to cryptosys-

tems have conformed to be unbeaten under these conditions.

The general strength of an encryption algorithm is reliant on the strength of the individual compo-

nents, such as the authentication scheme, the secret key management scheme, the information saving

scheme, the cryptosystem, the policies and methods, etc. Likewise, the whole strength of a security

system is reliant on the potency of its individual mechanism. A �aw in any of the individual processes

may lead to a shattering breakdown in the entire security system.

S-boxes (substitution boxes) and Boolean functions are vital mechanisms of cryptosystems. These

two important components are linked by function quantity. That is, an S-box is in general comprised

of several distinct output Boolean functions, but if it is mapped to just a single bit, is identical to a

Boolean function.

Boolean functions are frequently used in the secret key stream production procedure of stream ciphers

as these functions are well appropriate for receiving bits of linear feedback shift registers as input in order

to join them as strongly as possible to generate the single secret key stream. Furthermore, Boolean

functions have also exhibited some signi�cant properties, which are essential to oppose the classic kind

of attacks, so these functions are an important component in almost all stream ciphers.

The substitution box (S-box) is the key component used in many block ciphers. It o¤ers a way of

substituting various blocks of bits for a totally dissimilar set of output bits. One thing which is very

important is the use of secure substitution boxes (those which hold excellent encryption properties) so

the substitution indicates a confused association between input and output bits of the substitution box.

One of the main functions of the substitution box, when used in iterative round function, is to enhance

the e¤ort required to explore any statistical structure in the secure data.

Substitution boxes are capable to provide the safety of an encryption algorithm by possessing excellent

encryption properties. Constructing secure S-boxes to use them in di¤erent cryptosystems for the sake

of increasing their security is a current research problem. This is mainly so because the cryptanalytic

system turns out to be more re�ned, and with the improvement of computer technology that contributes

equally supporting and against secure communication.

The strength of substitution boxes has a major bearing on secure communication. However, bigger
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functions usually need additional computational time and e¤ort in order to explore their �aws, so we

gain a good computational complexity enhancement when trying to �nd large functions with remarkably

excellent measures of attractive encryption properties. This includes an additional part of complexity

to the research problem.

2.1 Review of Substitution Box Theory

The research study reported in this dissertation needs understanding about Boolean function and pre-

viously constructed S-box theory. Such literature review is important not simply for connecting the

theoretical ideas to handy applications, but as well to recognize the importance of the research and

where this study is connected to the �eld of secure communication. Therefore, fundamental background

is presented in this paper by stating a number of important long established and well known de�nitions,

theorems and formulae.

First we presented some important concepts about Boolean function. This includes discussions

about cryptographic properties of Boolean functions, as well as the nature of the association among

di¤erent cryptographic properties. After that we present theory about S-boxes, including the de�nition

of various cryptographic properties of S-boxes. At the end, a concise review of some well known S-boxes

is presented.

2.1.1 Boolean Function Theory

The study of Boolean algebra is a widespread and generalized area in itself. This section presents a small

literature survey of Boolean function theory. To a certain extent, the survey provided in this section is

a complete organization of that which is required for the reader to completely be aware of the research

presented in this dissertation. Particularly, we have discussed some important cryptographic properties

which are applicable to this work.

2.1.2 Properties of Boolean Functions

The purpose of this section is to make some preliminary de�nitions on Boolean functions. Let GF (2)n

be the vector space of dimension n over the two-element Galois �eld GF (2) . GF (2)n consist of 2n

vectors written in a binary sequence of length n. The vector space is equipped with the scalar product

< :; : >: GF (2)n �GF (2)n ! GF (2)

< u; v >= �mj=1uj :vj ; (2.1)

where the multiplication and addition � are over GF (2). However, if additions are performed in the

real numbers, then it is clear from the context.
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De�nition 1 A Boolean function of n variables is a function g : GF (2)n ! GF (2)n (or simply a

function on GF (2)n). The (0; 1)-sequence is de�ned by (g(�0); g(�1); :::; g(�2n�1)); also called the truth

table of g, where �0 = (0; 0; :::; 0); �1 = (0; 0; :::; 1); :::; �2n�1 = (1; 1; :::; 1), ordered by lexicographical

order.

De�nition 2 A vector Boolean function is a function that maps a Boolean vector to another Boolean

vector:

� : GF (2)n ! GF (2)m: (2.2)

This vector Boolean function has n input bits and m output bits. A vector Boolean function can be

speci�ed by its de�nition table: an array containing the output value for each of the 2n possible input

values. Each bit of the output of a vector Boolean function is itself a Boolean function of the input

vector. These are the coordinate Boolean functions of the vector Boolean function.

De�nition 3 A vector Boolean transformation is a vector Boolean function with the identical number

of input bits as output bits.

De�nition 4 A vector Boolean permutation is an invertible vector Boolean transformation and maps

all input values to di¤erent output values. There are 2m2
n

; n bit to m bit vector Boolean functions.

A random n bit to m bit vector Boolean function is a function selected at random from the set of

2m2
n

di¤erent n bit to m bit vector Boolean functions, where each function has the same probability

of being chosen. A random vector Boolean function can be obtained by pulling its de�nition table with

2n random m bit values.

De�nition 5 The logical negation or complement of a Boolean function g is de�ned by g = g � 1:

De�nition 6 A linear Boolean function is denoted by

L�(x) = �1x1 � �2x2 � :::� �nxn; (2.3)

where �ixi denotes the bitwise AND of the i�th bits of �, x and � denotes bitwise XOR.

De�nition 7 The set of a¢ ne Boolean functions is the set of linear Boolean functions and their com-

plements

A�;c = L�(x)� c; (2.4)

where x 2 GF (2)n. The sequence of an a¢ ne (or linear) function is called an a¢ ne (or linear) sequence.

De�nition 8 The set of all single valued Boolean functions is denoted by

Gn = fg jg : GF (2)n ! GF (2)g: (2.5)
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The subset of all a¢ ne Boolean functions in the space Gn is denoted by

An = f� j� : is a¢ ne and � 2 Gng: (2.6)

We de�ne the subset of all linear Boolean functions in the space GF (2)n by

Ln = f�j� : is linear and � 2 Gng: (2.7)

Remark 9 The set of all a¢ ne functions consist of the linear functions and their negations.

Remark 10 The cardinalities of the above sets are easily observed as

jGnj = 2n; jAnj = 2n+1; jLnj = 2n: (2.8)

De�nition 11 To each Boolean function g : GF (2)n ! GF (2);we associate its sign function, or char-

acter form, denoted by bg : GF (2)n ! R� � C�;and de�ned by

bg(x) = (�1)g(x): (2.9)

The (1;�1)�sequence is de�ned by ((�1)g(�0); (�1)g(�1); :::; (�1)g(�2n�1)), where �j are de�ned in

de�nition 1:

Proposition 12 [54, Proposition 2.6]If g and h are Boolean functions on GF (2)n, the following state-

ments holds:

1: [g � h = bgbh;
2: cgh = 1 + bg + bh� bgbh :
Proof. 1. By de�nition, we have

[g � h = (�1)g�h = (�1)g(�1)h = bgbh: (2.10)

2. This claim can be prove with the help of the following observation , bg = 1� 2g i.e.,
1 + bg + bh� bgbh = 1 + (1� 2g) + (1� 2h) + (1� 2g)(1� 2h);

= 2� 4gh;

= 2 (1� 2gh) ;

= 2bgbh: (2.11)
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De�nition 13 The Hamming-weight of a Boolean function g : GF (2)n ! GF (2); is the number of

1�s in the truth table of g. Next, we introduce the notion of distance between two Boolean functions.

De�nition 14 For two Boolean functions g; h : GF (2)n ! GF (2); we de�ne the Hamming-distance as

the number of arguments where g and h di¤er, that is

d(g; h) = #fx 2 GF (2)n j g(x) 6= h(x)g: (2.12)

In other words, the Hamming-distance is the number of 10s in the truth table of g � h. We can also

express the Hamming-distance in terms of the Hamming-weight d(g; h) = wt(g � h) as It is simple to

show that the Hamming-distance d is the metric on GF (2)n. It follows by notion that d(g; h) equals to

the numbers of the entries that are needed to turn g to h. Thus d(g; h) is zero if and only if g = h:

De�nition 15 The support of a Boolean function g is de�ned as

supp(g) = fx 2 GF (2)n j g(x) = 1g : (2.13)

The Hamming-weight can also be expressed in the notions of the Hamming-distance and the support of

a Boolean function as:

wt(g)=d(g; 0)= supp(g). (2.14)

De�nition 16 A (0; 1)�sequence ((1;�1)�sequence) is called balanced if it contains an equal num-

ber of zeros and one (ones and minus ones). A function is balanced if its sequence is balanced that is

wt(g) =2n�1: De�nition3.1The

De�nition 17 The imbalance Imb(g) of a Boolean function g is the number of inputs that maps to 0

minus the number of inputs that maps to 1 divided by two. The imbalance can have any integer value

and ranges from �2n to 2n. We have

Imb(g) = 1=2(#fa jg(a) = 0g �#fa jg(a) = 1g): (2.15)

A Boolean function with imbalance 0 is called balanced.

De�nition 18 Two Boolean functions g; h on GF (2)n are called (a¢ nely) equivalent if g(x) = h(Ax�

b) where a; b 2 GF (2)n and A is n�n is nonsingular matrix. If no such transformation exists, then g and

h are called inequivalent.

De�nition 19 The autocorrelation function brbg(a) with a shift a 2 GF (2)n is de�ned as
brbg(a) = X

x2GF (2)n
bg(x):bg(x� a): (2.16)
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De�nition 20 Let g be a function de�ned on GF (2)n. Let a 2 GF (2)n is called a linear structure of

a 2 GF (2)n if brbg(a) = 2n; (2.17)

i.e., if bg(x):bg(x� a) is constant.
The set of all linear structures of a function g form a linear subspace of GF (2)n. The dimension

gives a measure of linearity. This measure is upper bounded by 2n. The bound is attainable by the

all zero vector in GF (2)n and follows from lemma 31. A nonzero linear structure is cryptographically

undesirable.

De�nition 21 The correlation value between two Boolean functions g and h is de�ned by

C(g; h) = 2Pr(g(x) = h(x))� 1;

= 2

�
2n � d(g; h)

2n

�
� 1;

=
2n+1 � 2d(g; h)

2n
� 1;

= 1� 2d(g; h)
2n�1

: (2.18)

Correlation is a rational number in the range [�1; 1]: From the de�nition, we see that the upper

bound of 1 is achieved when the Hamming distance between two functions is zero. Similarly, the lower

bound �1 is achieved when the Hamming distance between two functions is equal to 2n. Correlation is

an important tool in the analysis of pairs of functions, particularly in relation to the concept of imbalance

in a Boolean function.

De�nition 22 The number of variables in highest order monomial with zero coe¢ cients is called the

algebraic degree.

De�nition 23 The algebraic normal form (ANF) is an n-variables Boolean function which can be writ-

ten as follows:

g(x) = b0 � b0x0 � :::� b01x0x1 � b012:::n�1x0x1x2:::xn�1; (2.19)

where the coe¢ cients b 2 GF (2)n form the elements of the truth table of the ANF of g(x). Note that

each product term in the ANF is calculated by the multiplication of each of the components of that term.

De�nition 24 A Boolean function is said to be homogeneous if its algebraic normal form only contains

terms of the same degree.

De�nition 25 An n variable Boolean function g(x); which contains all n variables in its ANF is called

a nondegenerate function. Conversely, if g(x) does not contain every variable in its ANF representation

then the function is degenerate.
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De�nition 26 The algebraic degree of a Boolean function is a good indicator of the function�s algebraic

complexity. The higher the degree of a function, the greater is its algebraic complexity.

De�nition 27 The algebraic degree of a Boolean function g(x); denoted by deg(g); is de�ned to be the

number of variables in the largest product term of the function�s ANF having a non-zero coe¢ cient.

Remark 28 The algebraic normal form is not the only the representation to express a Boolean function.

Also the disjunction normal form (DNF) is a possibility. Carlet and Guillot introduced yet another

representation, the so called numerical normal form (NNF).

2.2 Nonlinearity of Boolean Function

Nonlinearity is one of the most important cryptographic properties. As before, we denote with the set of

all a¢ ne functions and the Hamming-distance is the number of arguments where the Boolean functions g

and h di¤er. In addition, Pieprzyk and Finkelstein [164] introduced the notion of nonlinearity as follows:

De�nition 29 The nonlinearity of a Boolean function is denoted by and is de�ned as follows

Ng = d(g;An) = min
�2An

d(g; �): (2.20)

It is obvious that the nonlinearity of an a¢ ne function is zero. If the Boolean function g is not a¢ ne,

then we have Ng > 0 by de�nition. High nonlinearity is essential designing a good cryptosystem. It

measures the ability of a cryptographic system using the functions to resist against being expressed as

a linear set of equations and it assures resistance against linear cryptanalysis introduced by [29].

2.3 The Walsh Transform

In this section, we introduce one of the most important tools in cryptography. Namely, the Walsh

transforms which is the characteristic 2 case of the discrete Fourier transform. As we shall see, the

use of the Walsh transform makes the computation of nonlinearity and the other properties an easy

task. Let us recall that we have the space Gn of all two-valued functions on GF (2)n. The domain

of Gn is an abelian group and its range elements 0 and 1 can be added and multiplied as com-

plex numbers. Now we analyze Gn by using tools from harmonic analysis, cf. Lechner [22]. This

means that we are able to construct an orthogonal basis of Fourier transform kernel functions, or also

known as group characters, on Gn. The kernel functions are de�ned in terms of a group homomor-

phism GF (2)n from to the direct product of n copies of the multiplicative subgroup f�1; 1g on the
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unit circle of the complex plane. We de�ne the Walsh transform of a Boolean function as follows

[54]:

De�nition 30 [54] The Walsh transform of a function g on GF (2)n is a map 
 : GF (2)n ! R de�ned

by


(g)(u) =
X

x2GF (2)n
g(x)(�1)<u;x>; (2.21)

where < u; x > is the canonical scalar product. The Walsh spectrum of g is the list of 2n Walsh

coe¢ cients given by Eq. (2:21) as varied.

Lemma 31 [54, Lemma 3.2]If u 2 GF (2)n; we have

X
x2GF (2)n

(�1)<u;x> =

8<: 2n; if u = 0

0; else:
(2.22)

Proof. If u = 0; then all exponents are zero and therefore all summands are equal to 1. There-

fore, we have 2n summands. Now we assume that u 6= 0 and consider the hyperplanes H = fx 2

GF (2)n j< u; x >= 0g and H = fx 2 GF (2)n j< u; x >= 1g . It is obvious that these hyperplanes gen-

erates a partition of GF (2)n. Furthermore, for any u 2 H , the summand is equal to one and for any

u 2 H, the summand is equal to -1. In addition, the number of elements in H and H are same that is

2n�1. Therefore, the sum equals zero and the given statement follows immediately.

Theorem 32 [54, Theorem 3.3] The Walsh transform 
 : GF (2)n ! R is bijective and the inversion

is given by:


�1 = 
=2n: (2.23)

Hence g, can be recovered by the inverse Walsh transform given by

g(x) =
X

u2GF (2)n

(g)(u):(�1)<u;x>: (2.24)

At that point we do a short insertion about Hadamard matrices and Sylvester-Hadamard matrices. This

leads us to express the Walsh transform in term of Sylvester-Hadamard matrices.

De�nition 33 The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2n, denoted by

Hn is generated by the recursive relation

Hn =

24 Hn�1 Hn�1

Hn�1 �Hn�1

35 = H1 
Hn�1; (2.25)

for n = 1; 2; :::and H0 = (1):
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With this de�nition, we are able to express the Walsh transform in terms of Sylvester-Hadamard

matrices, giving us 
(g) = g:Hn; since (�1)<u;x> is the entry on the position (u; v) 2 GF (2)n in the

matrix Hn. Additionally, we can easily express the inverse Walsh transform as g = 2�n 
(g):Hn:

Next we collect some properties of the Walsh transform. The following Lemma shows the connection

between the Walsh transform of two Boolean functions where one function is obtained by an a¢ ne

transformation of the input coordinates.

Lemma 34 [3] If the Boolean function can be obtained from h by an a¢ ne transformation of the input

that is h = g(Av � b), with A an invertible matrix and b 2 GF (2)n, then the Walsh transform of g and

h are related by


(h)(u) = �
(g)(uA�1): (2.26)

Proof. First, we have to use the following de�nition


(h)(u) =
X

v2GF (2)n

(h)(v):(�1)<u;v> =

X
v2GF (2)n

(�1)<u;v>g(Av � b): (2.27)

By setting v=A�1w �A�1b and u0 = uA�1; we get


(h)(u) =
X

w2GF (2)n
(�1)<u;A

�1w>(�1)<u;A
�1b>g(w);

= �
X

w2GF (2)n
(�1)<u

0;w>g(w);

= �
(g)(u0): (2.28)

Furthermore, we observe the relationship between the Walsh transform of a Boolean function and its

sign function which was introduced by Forre [20].

Lemma 35 Let bg(x) = (�1)g(x); then 
(bg)(u) = �2
(g)(u) + 2n�(u); which is equivalent to 
(g)(u) =
2n�1�(u)� 1

2
(g)(u); where

�(u) =

8<: 1; for u = 0;

0; else.
(2.29)

is the Dirac symbol.
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Proof. We start from the left-hand side of the �rst equation and obtained


(bg)(u) =
X

x2GF (2)n
(�1)g(x)�<u;x>;

=
X

x2GF (2)n
(1� 2g(x)):(�1)<u;x>;

=
X

x2GF (2)n
(�1)<u;x> � 2

X
x2GF (2)n

g(x):(�1)<u;x>;

= 2n�(u)� 2
(g)(u); (2.30)

by de�nition 30 and lemma 31.

The following lemmas provide us with some properties satis�ed by the Walsh transform.

Lemma 36 [54, Lemma 3.9]The following statements are true:

1. 
([g � 1)(u) = �
(bg)(u);
2. If h(x) = g(x)� �a(x); where �a(x) =

Pn
i=1 aixi =< a; x > is linear function,

then 
(h)(u) = 
(bg)(u� a):
3. If h(x)=�a(x)� c is the a¢ ne function then 
([g � h)(u) = (�1)c
(bg)(u� a):
Proof.

1: 
([g � 1)(u) =
X

x2GF (2)n
(�1)g(x)�1�<u;y>;

= �
X

x2GF (2)n
(�1)g(x)�<u;y>;

= �
(bg)(u): (2.31)

2: 
(h)(u) =
X

x2GF (2)n
(�1)g(x)��a(u)�<u;x>;

=
X

x2GF (2)n
(�1)g(x)�<<u�a>;x>;

= 
(bg)(u� a): (2.32)

3: 
([g � h)(u) =
X

x2GF (2)n
(�1)g(x)��a(u)�<u;x>;

= (�1)c
X

x2GF (2)n
(�1)g(x)�<<u�a>;x>;

= (�1)c
(bg)(u� a): (2.33)

The addition of an a¢ ne function causes, except for the sign, a permutation of the spectrum.

Corollary 37 [54, Corollary 3.10]In particular 
(bg)(u) is always even and we have
�2n � 
(bg)(u) � 2n: (2.34)
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A classic property of the Walsh transform is to be an isomorphism from the set of the sign functions

on GF (2)n, endowed with the so-called convolution product (denoted by �), into this same set, endowed

with the usual product. The notion of the convolution is given within the next de�nition.

De�nition 38 Let g and h be any Boolean functions on GF (2)n. The Convolution of g and h is de�ned

by

(g � h)(x) =
X

y2GF (2)n
g(y)h(x� y): (2.35)

Proposition 39 [54, Proposition 3.12]Let g and h be any Boolean function on GF (2)n. We have


(g � h) = 
(g) � 
(h): (2.36)

Consequently


(g) � 
(h) = 2n
(g:h): (2.37)

Proof. We have


(g � h) =
X

x2GF (2)n
(g � h)(x):(�1)<u;x>;

=
X

x2GF (2)n

X
y2GF (2)n

g(y)h(x� y):(�1)<u;x>;

=
X

x2GF (2)n

X
y2GF (2)n

g(y)h(x� y):(�1)<u;x>�<u;x�y>;

=

0@ X
y2GF (2)n

g(y)(�1)<u;y>
1A0@ X

x2GF (2)n
h(x� y)(�1)<u;x�y>

1A ;

=

0@ X
y2GF (2)n

g(y)(�1)<u;y>
1A0@ X

x2GF (2)n
h(x)(�1)<u;x>

1A ;

= 
(g):
(h): (2.38)

Thereby, the �rst equality is proven. We recall the property 
(
(g)) = 2ng. Therefore, we obtain


(
(g) � 
(h)) = 22ng:h. Again, using the property, we get 
(g) � 
(h) = 2n
(g:h): Using Eq. (2.36)

applied at x = 0 gives


(g) � 
(h)(0) = 2n
(g:h)(0) = 2n
X

x2GF (2)n
g(x)h(x) = 2ng � h(0): (2.39)

Taking g = h in Eq. (2.38) , we obtain Parseval�s equation. Parseval�s equation will be a useful tool to

prove some of following results.
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Corollary 40 (Parseval�s equation) For any Boolean function g in n variables, the following equations

holds X
u2GF (2)n

(
(bg)) (u)2 = 22n: (2.40)

Proof.

X
u2GF (2)n

(
(bg)) (u)2 =
X

u2GF (2)n

X
x2GF (2)n

X
y2GF (2)n

(�1)g(x)�g(y)<u;x�y>;

=
X

u2GF (2)n

X
x2GF (2)n

(�1)g(x)�g(y)
X

y2GF (2)n
(�1)<u;x�y>

| {z }
2n�x(y)

;

= 2n
X

x2GF (2)n
(�1)2f(x) = 22n; (2.41)

where

�x(y) =

8<: 1 if y = x;

0 if y 6= x:
(2.42)

The following lemma is a similar result to Parseval�s equation.

Lemma 41
P

u2GF (2)n 
(bg)(u)
(bg)(u� v) =
8<: 22n if v = 0;

0 if v 6= 0:
Proof. The proof is straightforward and follows by lemma 31 and the fact bg(w)2 = 1;

X
u2GF (2)n


(bg)(u)
(bg)(u� v) =
X

u;w2GF (2)n
(�1)<u;w>bg(w) X

u;w2GF (2)n
(�1)<u�v;x>bg(x);

=
X

u;w2GF (2)n
(�1)<v;x>bg(w)bg(x) X

u2GF (2)n
(�1)<u;(w�x)>;

= 2n
X

u;w2GF (2)n
(�1)<v;x> (bg(w))2 = 2n X

w2GF (2)n
(�1)<v;w>:(2.43)

The case v=0, gives us a Parseval�s equation. As mentioned earlier, we can start a relation between

Walsh transform of the autocorrelation function and the square of the Walsh transform of the real-valued

function. This fact is stated by the Wiener-Khintchine Theorem.

Theorem 42 A Boolean function on GF (2)n satis�es


(br)(t) = 
(bg)2(t); (2.44)

for all t 2 GF (2)n.
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Proof. According to the de�nition of autocorrelation function, we obtain


(br)(t) =
X

s2GF (2)n
(�1)<t;s>br(s) = X

s2GF (2)n

0@ X
x2GF (2)n

(�1)g(x)�g(x�s)�<t;s>
1A ;

=
X

x2GF (2)n

0@ X
s2GF (2)n

(�1)g(x)�g(x�s)�<t;s>
1A : (2.45)

Since GF (2)n is invariant under any transformation, we may replace s by x � s in the second sum.

Hence, we obtain


(br)(t) =
X

s2GF (2)n
(�1)<t;s>br(s) = X

x2GF (2)n

0@ X
s2GF (2)n

(�1)g(x)�g(s)�<t;x�s>
1A ;

=

0@ X
x2GF (2)n

(�1)g(x)�<t;x>
1A0@ X

s2GF (2)n
(�1)g(s)�<t;s>

1A ;

=

0@ X
x2GF (2)n

(�1)g(x)�<t;x>
1A2

= 
(bg)2(t): (2.46)

De�nition 43 The spectral radius of a Boolean function g : GF (2)n ! GF (2) is de�ned by

Rg = maxfj
(bg)(u)j : u 2 GF (2)ng (2.47)

This de�nition provides a measure for linearity. Obviously, the linearity is upper bounded by 2n �

Rg by corollary 37. The upper bound is only attainable if g is a¢ ne.

Theorem 44 For a Boolean function g : GF (2)n ! GF (2) the spectral radius is

Rg � 2
n
2 ; (2.48)

and the equality is holds if and only if 
(bg)2 = 2n is constant.
Theorem 45 The nonlinearity of is determined by the Walsh transform of , that is,

Ng = 2
n�1 � 1

2
max

u2GF (2)n
j
(bg)(u)j : (2.49)

Thus, it is possible to achieve high nonlinearity if the maximal Walsh-coe¢ cient is of small value.
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2.4 Correlation Immune Boolean Functions

Correlation immune functions were introduced by Siegenthaler [44] in order to protect some shift register

based on stream ciphers against correlation attacks.

De�nition 46 [44] A Boolean function g in n variables is said to be correlation immune of order k,

1 � k � n; if any �xed subset of k variables the probability that, given the value of g(x); the k variables

have any �xed set of values, is always 2�k; no matter what the choice of the �xed set of k values is. In

other words, g is correlation immune of order k if its values are statistically independent of any subset

of input variables.

We can formulate the de�nition of correlation immunity to an equivalent information theory condi-

tion. If the chosen subset of variables is (x(i1); x(i2); :::; x(ik)) then the above de�nition of correlation

immunity of order k is equivalent to the information theory condition that the information obtained

about the values of (x(i1); x(i2); :::; x(ik)) given is zero. Now we collect some useful equivalent condi-

tions to correlation immunity of order 1 given by [3].

Lemma 47 [54, Lemma 4.2]A function g in n variables is correlation immune of order 1 if and only if

any of the following conditions holds.

i. If supp(g) = fx 2 GF (2)n j g(x) = 1g ; then for each 1 � i � n; we have

fx 2 supp(g)xi = 1g = supp(g)
2 :

ii. For each 1 � i � n; g(x)� xi is a balanced function.

iii. For each 1 � i � n; Prob(xi = 1 jg(x) = 1) = 1
2 =Prob(xi = 0 jg(x) = 1) :

iv. Let g0i and g1i denote the functions in n� 1 variables obtained from g by setting

xi = 0; 1 respectively. Then for each , i=1,2,...,n, the functions g0i and g1i have the

same Hamming weight.

v. All the Walsh transforms


(bg)(u) = X
x2GF (2)n

(�1)g(x)�<u;x>; wt(u) = 1; (2.50)

are equal to zero.

vi. For each i=1,2,...,n, Prob(xi = 1 jg(x) = 1) = 1
2 =Prob(xi = 0 jg(x) = 1) =

wt(g)
2n :

Lemma 48 A function g in n variables is correlation immune of order k, 1 � k � n; if and only if all

of the Walsh transforms


(bg)(u) = X
x2GF (2)n

(�1)g(x)�<u;x>; 0 � wt(u) � k; (2.51)
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are equal to zero.

Proof. The proof is based on the fact that the Walsh transforms is the cross correlation between

and the linear functions . Let the k�vector y be de�ned by

y = (x(i1); x(i2); :::; x(ik)) ; (2.52)

where (x(i1); x(i2); :::; x(ik)) are variables in �u. Then we focus on Walsh transforms in k variables of the

conditional probability Prob(yjx); where z is a possible value of g. By the de�nition of the expectation

follows:

X
y

Prob(yjz)(�1)<u;x> = E
�
(�1)<u;x>jg(x) = z

�
= E[(�1)<u;x>] =

X
y

Prob(y)(�1)<u;x>: (2.53)

The equality follows by our correlation immunity hypothesis. Thus, Prob(yjz) and Prob(y) are

identical since their Walsh transforms are identical. Consequently, the cross correlation between g(x)

and �u is zero, which gives the statement. It follows from lemma 48 that the functions g(x) and �u are

statistically independent if and only if the Walsh transforms if and only if 
(bg)(u) = 0.
We note that the original proof was given by Xiao and Massey [50]. Sarkar [42] gave another

noteworthy proof which is based on linear algebra and combinatorics. Now, we obtain correlation value

Now, we obtain the correlation value c(g;�u): Therefore, we recall that the Hamming-distance between

two Boolean functions g; h : GF (2n) ! f1;�1g is tied up with the cross correlation between g and h

which is de�ned as

c(g; h) =
#fx 2 GF (2)njg(x) = h(x)g �#fx 2 GF (2)njg(x) 6= h(x)g

2n
: (2.54)

Now we use an arbitrary linear function �u. Hence, we get

c(g; �u) = 
 (bg) (u)=2n: (2.55)

Thus, lemma 48 states that achieving correlation immunity for g is the same as getting zero correlation of

with certain linear functions �u. It is impossible to guarantee that g will not have a nonzero correlation

with any linear function. This means we cannot achieve c(g;�u) = 0;for every u. This follows from the

following lemma, which was �rst proven by Meier and Sta¤elbach [55].

Lemma 49 For Boolean function g the total square correlation of g with the set of all linear functions

is equal to one, that is X
u2GF (2)n

c(g;�u)
2 = 1: (2.56)
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Proof. Proof. By equation (2.54), we have

X
u2GF (2)n

c(g;�u)
2 =

X
u2GF (2)n


 (bg) (u)2=22n; (2.57)

then using result of the Parseval�s corollary (2.39) and the statement follows immediately. As a result of

lemma 49 and equation (2.54), we shift our focus to seeking those Boolean functions of which the largest

possible value j
 (bg) (u)j of is as small as possible. These functions are the so-called perfect nonlinear
functions which were introduced by Meier and Sta¤elbach [55].

De�nition 50 A Boolean function in variables which is balanced and correlation immune of order k is

said to be k�resilient function.

Theorem 51 Any Boolean function in n variables is k-resilient if and only if 
 (bg) (u) = 0; for all u 2
GF (2n) such that wt(u) � k: Equivalently, g is k-resilient if and only if 
 (g) (u) for all u 2 GF (2n) such

that 0 < wt(u) � k:

Proof. See [8].

Before we start to construct correlation immune functions we recall that a Boolean function cannot

simultaneously have too many cryptographically desirable properties. In [44] Siegenthaler introduced a

useful theorem which describes the relation between high order correlation immunity and high algebraic

degree for a Boolean function, and we follow the more simple proof of Sarkar [42].

Theorem 52 [54, Theorem 4.7]If g is a Boolean function in n variables, which is correlation immune

of order k, then the degree of g is at most n-k. If g is also balanced and k<n-1, then the degree is at most

n-k-1.

Proof. See [54].

2.5 Avalanche and Propagation Criterion

The avalanche e¤ect states an appropriate property of cryptography. The avalanche consequence is

obvious, when an input is altered to some extent the output changes meaningfully (e.g., half the output

bits �ip). The idea of avalanche was introduced by Horst Feistel which is based on the concept of

Shannon�s di¤usion. The Strict Avalanche Criterion (SAC for short) was introduced by Webster and

Tavares [102]. They write [102] �If a function is to satisfy the strict avalanche criterion, then each of its

output bits should change with a probability of one half whenever a single input bit x is complemented

to x0". The SAC is a useful property for Boolean functions in cryptographic applications. This means

that if a Boolean function is satisfying the SAC, a small change in the input leads to a large change in

the output (an avalanche e¤ect). This property is essential in a cryptographic context due to the fact
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that we cannot infer its input from its output. In addition to SAC we study the Propagation Criterion

(PC for short) which was introduced by Preneel et al. [39]. The mathematical expression for avalanche

and SAC is de�ned as follows:

De�nition 53 A function g : GF (2)n ! GF (2)m has the avalanche e¤ect, if an average of 1=2 of the

output bits change whenever a single input bit is complemented i.e.

1

2n

X
u2GF (2)n

wt(g(xi)� g(x)) = m

2
; for all i = 1; 2; :::; n: (2.58)

De�nition 54 A function g : GF (2)n ! GF (2)m of n input bits into m output bits is said to be

complete, if each output bit depends on each input bits, i.e. change whenever a single input bit is

complemented i.e.

8 i = 1; 2; :::; n; j = 1; 2; :::;m; 9 x 2 GF (2)n with (g(xi))j 6= (g(x))j : (2.59)

If a cryptographic transformation is complete, then each ciphertext bit must depend on all of the

output bits. Thus, if it were possible to �nd the simplest Boolean expression for each ciphertext bit in

terms of the plaintext bits, each of those expressions would have to contain all of the plaintext bits if the

function was complete. Alternatively, if there is at least one pair of n-bit plaintext vectors X and Xi that

di¤er only in bit i, g(X) and g(Xi) di¤er at least in bit j for all f(i; j)j1 � i; j � ng then the function g

must be complete.

De�nition 55 A function g : GF (2)n ! GF (2)m satis�es the strict avalanche criterion, if each output

bit changes with a probability 1=2 whenever a single input bit is complemented i.e.

8 i = 1; 2; :::; n; j = 1; 2; :::;m; Prob(g(xi))j 6= Prob(g(x))j =
1

2
: (2.60)

In the process of building these S-boxes, it was discovered that if an S-box is complete, or even perfect,

its inverse function may not be complete. This could become important if these inverse functions are

used in the decryption process, for it would be desirable for any changes in the ciphertext to a¤ect all

bits in the plaintext in a random fashion, especially if there is not much redundancy in the original

plaintext. Complete cryptographic transformations with inverses which are complete are described as

being two-way complete, and if the inverse is not complete the transformation is said to be only one-way

complete.

De�nition 56 The dependence matrix of a function g : GF (2)n ! GF (2)m is an n�m matrix A whose

(i; j)th element aij denotes the number of inputs for which complementing the ith input bit results in a
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change of the jth output bit,

aij = #fx 2 GF (2)nj wt((g(xi))j � (g(x))jg; for i = 1; 2; :::; n; and j = 1; 2; :::;m: (2.61)

De�nition 57 The distance matrix of a function g : GF (2)n ! GF (2)m is an n � (m + 1) matrix B

whose (i; j)th element bij denotes the number of inputs for which complementing ith input bit results in

a change of the jth output bit, i.e.

bij = #fx 2 GF (2)njg(g(xi)� g(x)) = jg; for i = 1; 2; :::; n; and j = 1; 2; :::;m: (2.62)

De�nition 58 For g : GF (2)n ! GF (2) and a 2 GF (2)n, a 6= 0; we de�ned the function by

ga(x) = g(x)� g(x� a); (2.63)

where ga is called the directional derivative of g in the direction of a:

Now we are able to express the SAC in connection with the directional derivative.

Lemma 59 [54, Lemma 5.3]A Boolean function g : GF (2)n ! GF (2) satis�es SAC if and only if the

function g(x)� g(x� a) is balanced for every a 2 GF (2)n with a 6= 0; Hamming-weight 1.

Proof. We suppose that g ful�lls the SAC, then exactly half of a 2 GF (2)n with a 6= 0; satisfy

g(x) 6= g(x� a) for every a 2 GF (2)n with wt(a) = 1: This means that

g(x)� g(x� a) = 1; for half the a 2 GF (2)n; (2.64)

g(x)� g(x� a) = 0; for half the a 2 GF (2)n: (2.65)

Summing up over a 2 GF (2)n leads us to
P

a2GF (2)n g(x) � g(x � a) = 2n�1: So, g(x) � g(x � a) is

balanced. Lemma 59 provides a straightforward way to verify the SAC by computation of output values

of g:

De�nition 60 The autocorrelation function of a Boolean function in n variables is de�ned as

rg(a) =

2n�1X
i=0

g(xi)� g(xi � a); (2.66)

for all every a 2 GF (2)n:

The autocorrelation function is a simply the sum over all the values of the directional derivatives

every g(x)� g(x� a) as x runs through GF (2)n: Now we are able to restate the Lemma 59 in terms of

the autocorrelation function.
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Lemma 61 [54, Lemma 5.5]A Boolean function g in n variables is SAC if and only if the autocorrelation

function rg(a) is equal to 2n�1 for all a 2 GF (2)n with the Hamming-weight 1.

2.6 The Strict Avalanche Criterion of Higher Order

In this section we study a generalization of the SAC de�ned by Forre [20], which she named the SAC of

higher order.

De�nition 62 A Boolean function g in n variables is said to satisfy the SAC of order k (SAC(k)) if

�xing any k in n bits in the input x results in a Boolean function in the remaining n� k variables which

satisfy the SAC, where 0 � k � n� 2 .

Lemma 63 Suppose g is a Boolean function in n > 2 variables which satis�es the SAC of order k;

1 � k � n� 2. Then g also satis�es the SAC of order j for any j=0,1.

Proof. See [50].

2.7 The Propagation Criterion

This section generalizes the notion of the strict avalanche criterion to the propagation criterion.

De�nition 64 A Boolean function g in n variables is said to satisfy the propagation criterion of degree

k ( PC(k) for short) if changing any i (1 � i � k) of the n bits in the x input results in the output of

the function being changed for exactly half of the 2n vectors x.

By the de�nition, we conclude that SAC is identical to PC(1). The propagation criterion is strongly

connected to properties of the autocorrelation function rg(a) as de�ned in de�nition 60.

Lemma 65 A Boolean function in n variables satis�es PC(1) if and only if all of the given values

rg(a) =
X

x2GF (2)n
g(x)� g(x� a); 1 � wt(a) � k;

of the autocorrelation function are equal to 2n�1:

Proof. From the de�nition of autocorrelation function rg(a);we have

Prob(g(x) 6= g(x� a)) = rg(a)

2n
=
1

2
: (2.67)

So the statement follows from the de�nition of the PC(k).

The next lemma restates lemma 65 in terms of these directional derivatives 58.
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Lemma 66 A Boolean function g in n variables satis�es PC(k) if and only if all directional derivative

ga(x) = g(x)� g(x� a); 1 � wt(a) � k; are balanced functions.

Proof. With lemma 65 and the de�nition of PC(k) the statement follows immediately.

2.8 Properties of Nonlinearity

Nonlinearity is an important cryptographic criterion. It measures the ability of a cryptographic system

using the functions to resist against being expressed as a linear set of equations.

The purpose of this section is to examine properties of nonlinearity and introduce some results

concerning the upper and lower bound of nonlinearity. Furthermore, we observe ways to construct

highly (balanced) nonlinear functions. A vast body of work has focused on nonlinearity. Thus, this

section is mainly based on results from Seberry, Zhang and Zheng [58].

2.8.1 Bounds of Nonlinearity

In this section, we observe the upper bound of nonlinearity which is only attainable by bent functions.

Moreover, we present some results about the lower bound of nonlinearity of a function obtained by con-

catenating sequences of functions. First, we phrase a lemma that is very useful in calculating nonlinearity

of a function.

Lemma 67 Let g and h be function on whose (1,-1)-sequences are �g and �h. Then the distance between

g and h can be calculated by

d(g; h) = 2n�1 � 1
2



�g; �h

�
: (2.68)

Proof.



�g; �h

�
=

X
g(x)=h(x)

1�
X

g(x) 6=h(x)

1;

= 2n � 2
X

g(x) 6=h(x)

;

= 2n � 2d(g; h);

d(g; h) = 2n�1 � 1
2



�g; �h

�
: (2.69)

The valid question is whether we �nd an upper bound of nonlinearity.

Theorem 68 For any function on GF (2)n the nonlinearity Ng of g satis�es Ng � 2n�1 � 2
n
2�1:
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2.9 Relation Between Cryptographic Properties

In this section, we will give some relation between cryptographic properties of Boolean functions. These

relations are important while designing a new cryptographic Boolean function.

2.9.1 Relation Between Nonlinearity and Correlation Immunity

In this subsection, we obtain the relationship between nonlinearity and correlation immunity. First of

all, we show two results given by Chee et al. [61] for arbitrary Boolean functions. Afterwards, we give

a much stronger result using balanced functions.

Lemma 69 Let g be a Boolean function in n variables and we de�ne

�(g) = jfw 2 GF (2)n : 
(bg)(w) 6= 0gj: (2.70)

Then Ng � 2n�1 � 2n�1�(g)�
1
2 :

Proof. By Parseval�s equation ( see Corollary 40) we have

22n =
X

w2GF (2)n

(bg)(w)2 � �(g) max

w2GF (2)n
j
(bg)j2: (2.71)

So it follows that maxw2GF (2)n j
(bg)j2 � 2n�(g)� 1
2 : Using theorem 45, we have

Ng = 2
n�1 � 1

2
max

w2GF (2)n
j
(bg)j � 2n�1 � 2n�1�(g)� 1

2 : (2.72)

Lemma 70 If g is any Boolean function in n variables which is correlation immune of order k and

�(n; k) = 2n �
kX
i=0

0@ n

i

1A ; (2.73)

then Ng � 2n�1 � 2n�1�(n; k)�
1
2 :

Proof. Since is correlation immune of order , Lemma 48 implies that

�(g) = 2n � jfw 2 GF (2)n : 
(bg)(w) = 0gj;
� 2n � jfw 2 GF (2)n : 1 � wt(a) � kgj = �(n; k): (2.74)

Thus, Ng � 2n�1 � 2n�1�(n; k)�
1
2 ;follows from Lemma 69.
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Lemma 71 For every Boolean function g on GF(2)n, we have

(rg(a0); rg(a1); rg(a2); :::; rg(a2n�1)) :Hn =
�

�g; h0

�2
;


�g; h1

�2
;


�g; h2

�2
; :::;



�g; h2n�1

�2�
; (2.75)

where � denotes the (1,�1)- sequence of g and hi is the ith row of Hn, and ai is de�ned in de�nition 1,

i = 0; 1; 2; :::; 2n � 1:

In the next theorem, we use the property of balancedness to obtain a kind of trade-o¤ between

nonlinearity and correlation immunity. This theorem is given by Tarannikov [46] and we follow his

proof.

Theorem 72 Let g be a balanced and correlation immune function of order k, k � n � 2; then Ng �

2n�1 � 2k+1:

Theorem 73 Let g be a balanced Boolean function in n variables which is correlation immune of order

k � n� 2: Then equality is possible in theorem 72 only if has its maximum possible degree n� k � 1: If

deg(g) < n� k � 1; then Ng � 2n�1 � 2k+2:

Proof. We use the same subfunction h as in proof of theorem 72. So g(xjxi(1) = a1; :::; xi(k+1) =

ak+1) = h which haswt(h) = w < 2n�k�2: By theorem, we know that deg(h) � deg(g) � n�k�1: Thus,

equality is possible in theorem 72. If deg(g) � n�k�1 then the subfunction h must have even Hamming-

weight because h is a function in n� k � 1 variables. Therefore, we have w � 2n�k�2 � 2: By the same

proof of theorem 72, it follows that Ng � 2n�1 � 2k+2:

2.9.2 Relationship Between Nonlinearity and the Propagation Criterion

In this subsection, we observe the relationship between nonlinearity and the propagation criterion. Fi-

nally, we have presented a relationship between nonlinearity and the propagation criterion given by

Zhang and Zheng [62]. The following theorem presents the main result about the relationship between

non-linearity and the propagation criterion.

Theorem 74 Let g be a Boolean function on GF(2)n. Further g satis�es the propagation criterion of

degree k . Then

(i). The nonlinearity Ng of g is Ng � 2n�1 � 2n�1�
k
2 :

(ii). The equality in (i) holds if and only if one of the following two conditions holds:

(a). k = n� 1; n is odd.

(b). k = n, g is bent and n is even.
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2.10 Some Special Boolean Functions

We now discuss three special types of Boolean functions, and the identifying properties which enable

them to be classi�ed as such.

2.10.1 Bent Functions

A particular class of Boolean functions exhibiting unique characteristics was �rst reported by Rothaus

in [41]. These functions were referred to in that paper as bent functions. Bent functions were later called

perfect nonlinear [31] in light of their optimal distance to linear structures.

Bent functions exist only in the space of even dimensional Boolean functions. It is not possible for a

Boolean function to exist that satis�es all the necessary characteristics to be considered bent when the

space is odd dimensional.

The Walsh Hadamard spectrum of a Boolean function is a two-valued spectrum and consists entirely

of�2n=2 values. Thus, theWalsh Hadamard spectrum is �at. It follows by de�nition that the nonlinearity

of a bent function will be (2n � 2n=2)=2: As Parseval�s Theorem must hold, clearly this is the maximum

achievable nonlinearity for n-dimensional Boolean functions (n even). This indicates that a bent function

is at maximum distance to linear structures. Further, as there can be no zero-valued entries in the Walsh

Hadamard spectrum, bent functions do not exhibit any order of correlation immunity.

The autocorrelation vector of an n-variable bent Boolean function (n even) takes the form br(�) =
f2n; 0; 0; :::; 0g: The �rst entry always has the value 2n and all other entries are 0. Thus, bent functions

satisfy propagation criteria of degree n, PC(n), and exhibit perfect di¤usion with respect to output

uniformity given shifts in the input of a bent function.

Although bent functions exhibit cryptographically optimal properties in terms of maximal non-

linearity and perfect (minimal) autocorrelation, n-variable bent functions have a Hamming weight of

2n�1 � 2n=2�1: This indicates a bias from balance of constant magnitude 2n=2�1; bent functions are

never balanced. Furthermore, all n-variable bent functions have algebraic degree are cryptographically

undesirable for bent functions to be of direct practical use. Various techniques for the construction of

bent functions have been proposed in the literature. Some examples include [30], [57], [58], [59] and [60].

2.10.2 Semi-Bent Functions

The cryptographic limitations of bent functions discussed above (unbalanced, low algebraic degree)

prevent bent functions from being useful cryptographically. Semi-bent functions were introduced by

Chee et al. in [33] [61]. These semi-bent functions attempt to retain the desirable characteristics of bent

functions, namely high nonlinearity and zero autocorrelation, whilst ensuring balance.

A semi-bent function, g(x), is an odd-demensional Boolean function constructed by concatenating a

bent function, h(x), to the same bent function, h(x); that has had an a¢ ne transformation applied to
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its input and its output complemented.

De�nition 75 (From [61]) Let g(x) be an n-variable semi-bent Boolean function (n odd) and h(x) be

and (n� 1)-variable bent function. Then g(x) is of the form

g(x) = h(x) k (h(Ax� b)� 1): (2.76)

A semi-bent function, g(x), constructed in this manner is always balanced. The nonlinearity of an

n-variable semi-bent function is 2n�1 � 2n�12 :

The correlation coe¢ cients between an n-variable semi-bent function (n odd) and the set of all n-

variable linear functions always take one of the values in the set f0;�2 1�n2 g. For an n-variable semi-bent

function, g(x); #(C(g; l) = 0) = 2n�1 and #(C(g; l) = �2 1�n2 ) = 2n�1 for all l in the set of n-variable

linear Boolean functions. The former represents no correlation between g(x) and half of all n-variable

linear functions. The latter indicates uniform correlation to the other half of the set of all linear functions.

An n-variable semi-bent function (n odd) of degree (n�1) also satis�es propagation criteria of degree

n; PC(n): The Strict uncorrelated Criterion as introduced and de�ned by Chee et. al. in [61] may also

be satis�ed by pairs of semi-bent functions under certain conditions. Thus, semi-bent functions represent

a useful grouping of odd-dimensional Boolean functions with a number of good combined cryptographic

properties.

2.10.3 Plateaued Functions

A class of n-variable Boolean functions (n both odd and even) were introduced in [62] and termed

"plateaued" functions. Before we outline the main characteristics of plateaued functions, we present the

de�nition form [62].

De�nition 76 (From [62]) Let g(x) be an n-variable Boolean function with Walsh Hadamard transform

vector, b
(!): Let k = f#! j b
(!) 6= 0g: Then g(x) is a plateaued function if for all ! 2 GF (2)n; the

square of the elements of b
(!); �b
(!)�2 2 f0; 22n�1g for some even t such that k = 2t (0 � t � n): g(x)

may also be known as a plateaued function of order t:

Thus, a plateaued function of order t (if t 6= n) has a three-valued Walsh Hadamard spectrum. The

nonlinearity of n-variable plateaued functions is 2n�1 � 2n� t
2�1: The higher the order t of a plateaued

function, the greater the nonlinearity of the function. For n even, plateaued functions of order n are the

bent functions. The plateaued functions of order 0 correspond to the a¢ ne functions. From De�nition

76, the number of zeros in the Walsh Hadamard spectrum of a tth-order plateaued function is 2n � 2t:

Therefore, there exist balanced and correlation immune n-variable plateaued functions.

It is proposed in [62] that the algebraic degree of a plateaued function g(x) of order t is such that

deg(g) � t=2+ 1: Consequently, this would mean that plateaued functions do not exhibit high algebraic
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degree. The sum-of-square indicator of an n-variable plateaued function is equal to 23n=k = 23n�t: As

expected from the previous paragraph and the discussion of section, the sum-of-square indicator will be

low for large t.

A subset of plateaued functions is the set of partially-bent functions introduced in [10]. Unlike

partially-bent functions, which always possess non-zero linear structures, plateaued functions with no

non-zero linear structures exist. The reader is referred to [10] for a description of partially-bent functions.

Example constructions for plateaued functions can be found in [62] and [63].

We have seen that plateaued functions may possess desirable properties such as balance, correlation

immunity, high nonlinearity and low sum-of-square indicator. As with all Boolean functions, the extent to

which combinations of certain properties will be exhibited together are determined by the complementary

or opposing nature of their relationships. Unlike bent and semi-bent Boolean functions, plateaued

functions may have an even or odd number of input variables. We have discussed three special types

of Boolean functions of interest in this thesis. The reader should be aware that there are other special

Boolean functions which are not discussed, such as partially-bent functions [10].

2.11 S-Box Theory

In this section we now turn our discussions to the area of substitution boxes (S-boxes). The basic

de�nitions of S-box theory are provided to support the research work performed in this thesis. Also in

this section, a review of relevant cryptographic properties as applied to S-boxes, is provided.

2.11.1 S-Box De�nitions and Types

A natural progression from the theory of single output Boolean functions is the extension of that theory

to multiple output Boolean functions, collectively referred to as an S-box. The relationship between the

input and output bits in terms of dimension and uniqueness gives rise to various types of S-boxes. We

list below several necessary S-box de�nitions, together with a brief description of some S-box types of

interest to this research.

An n�m substitution box (S-box) is a mapping from n input bits to m output bits, S : GF (2)n !

GF (2)m: The output vector S(x) = (s1; s2; :::; sm) can be decomposed into m component functions Si :

GF (2)n ! GF (2); i = 1; 2; :::;m: There are 2n inputs and 2m possible outputs for an n � m S-box.

Often considered as a look-up table, an n � m S-box, S; is normally symbolized as a matrix of size

2n�m; indexed as S[i] (0 � i � 2n�1) each an m�bit entry. There are, generally speaking, three types

of S-boxes: Straight, compressed and expansion S-boxes.

A straight n�m S-box with n = m (takes in a given number of bits and puts out the same number

of bits) may either contain distinct entries where each input is mapped to a distinct output OR repeat

S-box entries where multiple inputs may be mapped to the same output and all possible outputs are
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not represented in the S-box. An n � m S-box which is both injective and surjective is known as a

bijective S-box. That is, each input maps to a distinct output entry and all possible outputs are present

in the S-box. Bijective S-boxes may only exist when n = m and are also called reversible since there

must also exist a mapping from each distinct output entry to its corresponding input. This is the design

approached used with the Rijndael cipher.

A compression n �m S-box n > m with puts out fewer bits than it takes in. A good example of

this is the S-box used in DES. In the case of DES, each S-box takes in 6 bits but only outputs 4 bits.

A expansion n �m S-box with n < m puts out more bits than it takes in. A regular n �m S-box is

one which has each of its possible 2m output appearing an equal number of times in the S-box. Thus,

each of the possible output entries appears a total number of 2n�m times in the S-box. All single

output Boolean functions comprising a regular S-box are balanced, as are all linear combinations of

these functions. Regular n � m S-boxes are balanced S-boxes and may only exist when n � m. An

n �m S-box ( n � 2m and n is even) is said to be bent if every linear combination of its component

Boolean functions is a bent function.

There are issues associated with both compression and expansion S-boxes. The �rst issue is re-

versibility, or decryption. Since either type of S-box alters the total number of bits, reversing the process

is di¢ cult. The second issue is a loss of information, particularly with compression S-boxes. In the

case of DES, prior to the S-box, certain bits are replicated. Thus what is lost in the compression step

are duplicate bits and no information is lost. In general working with either compression or expansion

S-boxes will introduce signi�cant complexities in your S-box design. Therefore straight S-boxes are far

more common.

2.11.2 Cryptographic Properties of S-Boxes

While many of the Boolean function properties discussed in previous sections have conceptual equiva-

lences when applied to S-boxes, there are fundamental di¤erences in the manner by which these properties

are derived. As an S-box is comprised of a number of component Boolean functions, it is important to

observe that when considering the cryptographic properties of an S-box, it is not su¢ cient to consider the

cryptographic properties of the component Boolean functions individually. Rather, it is also necessary

to consider the cryptographic properties of all the linear combinations of the component functions. This

is illustrated in the following selection of relevant S-box properties.

An n � m S-box which is balanced is one whose component Boolean functions and their linear

combinations are all balanced. Because of this balance, there does not exist an exploitable bias in that

the equally likely number of output bits over all output vector combinations ensures that an attacker is

unable to trivially approximate the functions or the output.

The well-known concept of confusion due to Shannon [5] is described as a method for ensuring

that in a cipher system a complex relationship exists between the ciphertext and the key material.
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This notion has been extrapolated to mean that a signi�cant reliance on some form of substitution is

required as a source of this confusion. The confusion in a cipher system is achieved through the use of

nonlinear components. As expected, substitution boxes tend to provide the main source of nonlinearity

to cryptographic cipher systems. We now de�ne the measure of nonlinearity for an n�m S-box.

De�nition 77 The nonlinearity of an n � m S-box S; denoted by NSn;m is de�ned as the minimum

nonlinearity of each of its component output Boolean functions and their linear combinations. Let S =

(s1; s2; :::; sm) where si (i = 1; :::;m) are n-variable Boolean functions. Let hi be the set of linear

combinations of si (i = 1; :::;m) (which includes the functions si). Then the nonlinearity of S can be

expressed as follows:

NSn;m = min
h
fNSn;m(hj)g (j = 1; :::; 2m � 1): (2.77)

Clearly, as n and m increase, the task of merely computing the nonlinearity value of an n�m S-box

quickly becomes computationally infeasible. The importance of this property for the security of cipher

systems becomes evident in the next section when we discuss some of the e¤ective cryptanalytic attacks

which exist.

The algebraic degree of an S-box (and similarly a Boolean function) is desired to be as high as possible

in order to resist a cryptanalytic attack known as low order approximation [29]. The measure of S-box

degree is de�ned below:

De�nition 78 Let S = (s1; s2; :::; sm) be an n�m S-box where si (i = 1; :::;m) are n-variable Boolean

functions. Let hj be the set of linear combinations of si (i = 1; :::;m) (which includes the functions hi).

Then the algebraic degree of S; denoted by deg(Sn;m); is de�ned as

deg(Sn;m) = min
h
fdeg(hj)g (j = 1; :::; 2m � 1): (2.78)

A companion concept to confusion, called di¤usion, was also proposed by Shannon in [5]. Therein

it is described as the method by which the data redundancy in a cipher is spread throughout the entire

(or large portion of the) data in an e¤ort to reduce the probability of discovering part or all of its

statistical structure. Di¤usion has long been lined to the avalanche characteristics of a cipher system

and, in particular, is achieved by using cipher components which exhibit good avalanche characteristics.

In order to measure these characteristics for n�m S-boxes we require the following de�nitions:

De�nition 79 Let S = (s1; s2; :::; sm) be an n�m S-box where si (i = 1; :::;m) are n-variable Boolean

functions. Let hj be the set of linear combinations of si (i = 1; :::;m) (which includes the functions si),

each with autocorrelation function, brhj (a). Then the maximum absolute autocorrelation value of S is

de�ned as: ��ACSn;m ��max = maxh ��brhj (a)�� ; (2.79)

with a 2 f1; :::; 2n � 1g and (j = 1; :::; 2m � 1).

40



De�nition 80 Let S = (s1; s2; :::; sm) be an n�m S-box where si (i = 1; :::;m) and n-variable Boolean

functions. Let hj be the set of linear combinations of si (i = 1; :::;m) (which includes the function si).

Then S is said to satisfy strict avalanche criterion (SAC) if every hj (j = 1; :::; 2m � 1) satis�es SAC.

De�nition 81 Let S = (s1; s2; :::; sm) be an n�m S-box where si (i = 1; :::;m) are n-variable Boolean

functions. Let hj be the set of linear combinations of si (i = 1; :::;m) (which includes the functions si).

Then S is said to satisfy propagation criteria of order k; PC(k); if every hj (j = 1; :::; 2m � 1) satis�es

PC(k):

The next two de�nitions outline the way in which, respectively, the correlation immunity and re-

silience of an S-box are determined.

De�nition 82 Let S = (s1; s2; :::; sm) be an n�m S-box where si (i = 1; :::;m) are n-variable Boolean

functions. Let hj be the set of linear combinations of si (i = 1; :::;m) (which includes the functions si).

Then S is a CI(t) S-box if all hj (j = 1; :::; 2m � 1) are CI(t) Boolean functions.

De�nition 83 Let S = (s1; s2; :::; sm) be an n�m S-box where si (i = 1; :::;m) are n-variable Boolean

functions. Let hj be the set of linear combinations of si (i = 1; :::;m) (which includes the functions si).

Then S is a t-resilient S-box if all hj (j = 1; :::; 2m � 1) are t-resilient Boolean functions.

2.12 Bit Independent Criterion

Webster and Tavares in 1985, introduced another criterion, called bit independent criterion (BIC) for

S-Boxes [48]. This property states that the output bits j and k should alter independently, when any

single input bit i is reversed, for all i; j and k 2 (1; 2; :::; n). This criterion appears to strengthen

the e¤ectiveness of the confusion function. To illustrate the bit independent concept, one requires

the correlation coe¢ cient between jth and kth components of the output di¤erence string. The bit

independence corresponding to the e¤ect of the ith input bit change on the jth and kth bits of is Bei :

BIC(bj ; bk) = max
1�i�n

jcorr(beij ; b
ei
k )j: (2.80)

The bit independent criterion (BIC) parameter for the S-box function h : GF (2)n ! GF (2)n , is

then de�ned as follows:

BIC(h) = max
1�j;k�n
j 6=k

BIC(bj ; bk); (2.81)

which shows how close is satisfying the BIC [48].
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2.13 Linear and Di¤erential Cryptanalysis of S-boxes

Linear cryptanalysis was introduced at Eurocrypt conference in 1993 by M. Matsui as a theoretical

attack on the Data Encryption Standard (DES) [65], [15] and later successfully used in the practical

cryptanalysis of DES [29]. Linear cryptanalysis works on the principle of �nding �high probability

occurrences of linear expressions involving plaintext bits, ciphertext bits (actually we shall use bits from

the 2nd last round output), and subkey bits�[66]. It is a known plaintext attack in which a large number

of plaintext-ciphertext pairs are used to determine the value of key bits [66].

Di¤erential cryptanalysis was �rst presented at Crypto conference in 1990 by E. Biham and A.

Shamir as an attack on DES [67]. Heys [66] describes the main principle: �Di¤erential cryptanalysis

exploits the high probability of certain occurrences of plaintext di¤erences and di¤erences into the last

round of the cipher�. It is a chosen plaintext attack, that means plaintext can be selected and output

subsequently calculated in order to derive the key [68]. In this section XOR distribution, linear and

di¤erential probability are de�ned.

De�nition 84 For an vector Boolean function (S-boxes) g : GF (2)n ! GF (2)n, the XOR table has a

size of 2n � 2n, with its rows and columns indexed by 0; 1; 2; :::; 2n � 1: Position (i; j) in the XOR table

contains the number of input vectors:

jfP 2 GF (2)n : g(P )� g(P � � i) = � jgj; (2.82)

such that 0 � i; j � 2n � 1; � i and � j are n-bit binary representations of indices i and j. P is the

input vector, g corresponds to the cryptographic function of the S-box, and the pair (i; j) is called an

input/output XOR pair. Di¤erential cryptanalysis exploits such XOR pairs with large XOR table entries.

A cipher can be secured against di¤erential cryptanalysis by selecting S-boxes with low XOR table entries,

ideally 0 or 2 (the only exception is the entry (0; 0) which has the value of 2n). The sum of the XOR

table entries on each row is equal to 2n, which is the total number of input vector pairs (P; P � � i ) [69].

De�nition 85 For a given vector Boolean function g : GF (2)n ! GF (2)m it is de�ned the linear

approximation table which elements are

LATg(a; b) = #fx 2 GF (2)nja:x = b:g(x)g � 2n�1; (2.83)

where a 2 GF (2)n; b 2 GF (2)mnf0g:

Lemma 86 For a given vector Boolean function g : GF (2)n ! GF (2)m it is de�ned the linear approx-

imation table which elements are

LATg(a; b) = 2
n�1 � d(a:x; b:g); (2.84)
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where a 2 GF (2)n; b 2 GF (2)mnf0g:

Proof. By the de�nition of LAT, we have

LATg(a; b) = #fx 2 GF (2)nja:x = b:g(x)g � 2n�1;

= 2n �#fx 2 GF (2)nja:x 6= b:g(x)g � 2n�1;

= 2n�1 � d(a:x; b:g): (2.85)

Lemma 87 For a given vector Boolean function g : GF (2)n ! GF (2)m one has

Ng = 2
n�1 �max

a;b
jLATg(a; b)j; (2.86)

where a 2 GF (2)n; b 2 GF (2)mnf0g:

De�nition 88 For any given �x, �y , �x, �y 2 GF (2)n ;the linear and di¤erential approximation

probabilities for each vector Boolean function (S-box) are de�ned as:

LPSi(�y ! �x) =

�
2� #fx 2 GF (2)

njx�x = Si(x)�yg
2n

� 1
�
; (2.87)

DPSi(�x ! �y) =

�
#fx 2 GF (2)njSi(x)� Si(x��x) = �yg

2n

�
; (2.88)

where x�x, denotes the parity (0 or 1) of the bitwise product of x and �x.

De�nition 89 The maximum linear and di¤erential approximation probabilities of vector Boolean func-

tion (S-boxes) are de�ned as:

p = max
i
max
�x;�y

LPSi(�y ! �x); (2.89)

q = max
i

max
�x;�y

DPSi(�x ! �y): (2.90)

2.14 Conclusion

In this chapter, we have de�ned the relevant supporting theory of both Boolean functions and substitution

boxes. In particular, we have provided numerous long established de�nitions and theorems for various

aspects of the theory. The necessary cryptographic properties which are used to analyze the strength

of single and multiple output functions have also been de�ned and discussed, as have the inter-relations

between pairs of selected properties.
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Chapter 3

Introduction to Information Security

Systems Primitives

This chapter is devoted to introducing the preliminaries related to information security systems to

be discussed in this thesis. We explicitly de�ne the basics of the cryptographic, watermarking and

steganographic primitives which will be helpful in subsequent chapters.

Information hiding techniques

Cryptography StegnographyWatermarking

IntegrityAuthenticationConfidentiality Non­Repudiation Access control

Copyright protection

or control

Multimedia

authentication

Multimedia

fingerprinting
Fraud and tamper

detection
ID card security

Covert

communication

Confidential

information storage

Security system

Fig. 3.1: Classi�cation of information security techniques and its applications.

3.1 Cryptology

Cryptology is the science of information security. The word is derived from the Greek kryptos, meaning

hidden. Cryptology is the study of �secret writing.�Modern cryptology combines the studies of computer
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science and mathematics for the purpose of encoding information to ensure that data is secure.

3.1.1 Classi�cation of Cryptology

The cryptology is further classi�ed into two branches cryptography and cryptanalysis. The term cryptog-

raphy refers to the art or science of designing cryptosystems (to be de�ned shortly), while cryptanalysis

refers to the science or art of breaking them. Although cryptology is the name given to the �eld that

includes both of these, we will generally follow the common practice (even among many professionals

and researchers in the �eld) of using the term cryptography" interchangeably with ncryptology" to refer

to the making and breaking of cryptosystems. Modern cryptography intersects the disciplines of mathe-

matics, computer science, and electrical engineering. Applications of cryptography include ATM cards,

computer passwords, and electronic commerce.

3.1.2 Basics Terminology of Cryptography

Plain Text

The original message that the person wishes to communicate with the other is de�ned as Plain Text. In

cryptography the actual message that has to be send to the other end is given a special name as Plain

Text.

Cipher Text

The message that cannot be understood by anyone or meaningless message is what we call as Cipher Text.

In Cryptography the original message is transformed into non-readable message before the transmission

of actual message.

Ciphers

A cipher encrypts a single letter or group of letter as a unit, regardless of meaning.

Codes

A code encodes a word or phrase at a time usually in a �xed way (no keys).

Encryption

A process of converting plain-text into cipher-text is called as encryption. Cryptography uses the en-

cryption technique to send con�dential messages through an insecure channel. The process of encryption

requires two things- an encryption algorithm and a key. An encryption algorithm means the technique

that has been used in encryption. Encryption takes place at the sender side.
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Decryption

A reverse process of encryption is called as decryption. It is a process of converting cipher-text into plain-

text. Cryptography uses the decryption technique at the receiver side to obtain the original message

from non-readable message (Cipher Text). The process of decryption requires two things- a decryption

algorithm and a key. A decryption algorithm means the technique that has been used in decryption.

Generally the encryption and decryption algorithm are same.

Key

A Key is a numeric or alpha numeric text or may be a special symbol. The key is used at the time of

encryption takes place on the plain-text and at the time of decryption take place on the cipher-text. The

selection of key in cryptography is very important since the security of encryption algorithm depends

directly on it.

Plain Text

Encryption

Algorithm

Cipher Text

Decryption
Algorithm

Key

Fig. 3.2: Block diagram for encryption and decryption.

3.2 Purpose of Cryptography

Cryptography provides a number of security goals to ensure the privacy of data, non- alteration of data

and so on. Due to the great security advantages of cryptography it is widely used today. Following are

the various goals of cryptography.

3.2.1 Con�dentiality

Information in computer is transmitted and has to be accessed only by the authorized party and not by

anyone else.
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3.2.2 Authentication

The information received by any system has to check the identity of the sender that whether the infor-

mation is arriving from an authorized person or a false identity.

3.2.3 Integrity

Only the authorized party is allowed to modify the transmitted information. No one in between the

sender and receiver are allowed to alter the given message.

3.2.4 Non Repudiation

Ensures that neither the sender, nor the receiver of message should be able to deny the transmission.

3.2.5 Access Control

Only the authorized parties are able to access the given information.

3.3 Classi�cation of Cryptography

Encryption algorithms can be classi�ed into two broad categories- Symmetric and Asymmetric key

encryption.

3.3.1 Symmetric Encryption

In symmetric cryptography the key used for encryption is similar to the key used in decryption. Thus

the key distribution has to be made prior to the transmission of information. The key plays a very

important role in symmetric cryptography since their security directly depends on the nature of key

i.e. the key length etc. There are various symmetric key algorithms such as DES, TRIPLE DES, AES,

RC4, RC6,BLOWFISH [2]. The symmetric algorithms are of two types namely block ciphers and stream

ciphers which are de�ned as follows [71].

Block Ciphers

A block cipher is a function which maps n bit plaintext blocks to n bit cipher-text blocks; n is called the

block length. It may be viewed as a simple substitution cipher with large character size. The function

is parameterized by a k-bit key K, taking values from a subset K (the key space) of these to fall k-bit

vectors Vk. It is generally assumed that the key is chosen at random. Use of plaintext and ciphertext

blocks of equal size avoids data expansion.
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De�nition 90 An n bit block cipher is a function E:Vn�K ! Vn such that for each key k 2 K, E(P ; k)

is an invertible mapping (the encryption function for k) from Vn to Vn, can be written as Ek(P ). The

inverse mapping is the decryption function, denoted by Dk(C). C = Ek(P ) denote that cipher text C

results from encrypting plaintext P under k[71].

Stream Ciphers

Stream ciphers are an important class of encryption algorithms. They encrypt individual characters

(usually binary digits) of a plaintext message one at a time, using an encryption transformation which

varies with time. Stream ciphers are generally faster than block ciphers in hardware, and have less

complex hardware circuitry. They are also more appropriate, and in some cases mandatory (e.g., in

some telecommunications applications), when bu¤ering is limited or when characters must be individually

processed as they are received. Because they have limited or no error propagation, stream ciphers may

also be advantageous in situations where transmission errors are highly probable. Stream ciphers are

commonly classi�ed as being synchronous or self-synchronizing.

Synchronous Stream Ciphers A synchronous stream cipher is one in which the key stream is

generated independently of the plaintext message and of the cipher text. The encryption process of a

synchronous stream cipher can be described by the equations [71]:

�i+1 = f(�i;K); (3.1)

�i = g(�i;K); (3.2)

ci = h(ai;mi); (3.3)

where �0 is the initial state and may be determined from the key K, f is the next-state function, g is

the function which produces the key stream �, and h is the output function which combines the key

stream and plaintext m to produce cipher-text c.

Self-synchronizing Stream Ciphers A self-synchronizing or asynchronous stream cipher is one in

which the key-stream is generated as a function of the key and a �xed number of previous cipher text

digits. The encryption function of a self-synchronizing stream cipher can be described by the equations

[71]:

�i+1 = (ci�t; ci�t+1; :::; ci�1); (3.4)

�i = f(�i;K); (3.5)

ci = g(ai;mi); (3.6)
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where �0 = (c�t; c�t+1; :::; c�1) is the (non-secret) initial state, K is the key, f is the function which

produces the key stream �, and g is the output function which combines the key stream and plaintext

m to produce cipher-text c.

3.3.2 Asymmetric Encryption

Asymmetric cryptography or public-key cryptography is cryptography in which a pair of keys is used to

encrypt and decrypt a message so that it arrives securely. Initially, a network user receives a public and

private key pair from a certi�cate authority. Any other user who wants to send an encrypted message

can get the intended recipient�s public key from a public directory. They use this key to encrypt the

message, and they send it to the recipient. When the recipient gets the message, they decrypt it with

their private key, which no one else should have access to.

Ciphers

Classical Ciphers Modern Ciphers

Substitution
ciphers

Transpositional
ciphers

Monoalphabetical
ciphers

Polyalphabetical
ciphers

Casear cipher Vigenere cipher

Keyless  ciphers Keyed ciphers

Symmetric ciphers Asymmetric
ciphers

Block ciphers Stream ciphers

RSA DSA Diffie­Hellman

AES DES IDEA3DES Blowfish SealRC4FishQuadISAAC

Fig. 3.3: Classi�cations of cryptographic algorithms.

3.3.3 Kercho¤�s Principle

The security of the system has to be based on the assumption that the enemy has full knowledge of

the design and implementation details of the steganographic system. The only missing information for

the enemy is a short, easily exchangeable random number sequence, the secret key. Without this secret

key, the enemy should not have the chance to even suspect that on an observed communication channel,

hidden communication is taking place.
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3.3.4 Di¤usion and Confusion

Claude Shannon, in one of the fundamental papers on the theoretical foundations of cryptography [4, 5],

gave two properties that a good cryptosystem should have to hinder statistical analysis: di¤usion and

confusion. Di¤usion means that if we change a character of the plaintext, then several characters of

the ciphertext should change, and similarly, if we change a character of the ciphertext, then several

characters of the plaintext should change. This means that frequency statistics of letters in the plaintext

are di¤used over several characters in the ciphertext, which means that much more ciphertext is needed

to do a meaningful statistical attack. Confusion means that the key does not relate in a simple way to

the ciphertext. In particular, each character of the ciphertext should depend on several parts of the key.

3.3.5 Spatial and Frequency domain

Spatial Domain

In the spatial domain method, the pixel composing of image details are considered and the various

procedures are directly applied on these pixels. The image processing functions in the spatial domain

may be expressed as

g(x; y) = T [f(x; y)]; (3.7)

where f(x; y) is the input image, g(x; y) is the processed output image and T represents an operation on

f de�ned over some neighborhood of (x; y). Sometimes T can also be used to operate on a set of input

images. The spatial domain is the normal image space, in which a change in position in image I directly

projects to a change in position in scene S. Distances in I (in pixels) correspond to real distances (e.g.

in meters) in S. We can also discuss the frequency with which image values change, that is, over how

many pixels does a cycle of periodically repeating intensity variations occur. One would refer to the

number of pixels over which a pattern repeats (its periodicity) in the spatial domain.

Frequency Domain

The frequency domain is a space in which each image value at image position F represents the amount

that the intensity values in image I vary over a speci�c distance related to F. In the frequency domain,

changes in image position correspond to changes in the spatial frequency, (or the rate at which image

intensity values) are changing in the spatial domain image I. In simple spatial domain, we directly deal

with the image matrix, whereas in frequency domain, we deal an image like this.

Frequency Components Any image in spatial domain can be represented in a frequency domain.

But what do these frequencies actually mean. We will divide frequency components into two major

components.
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High Frequency Components High frequency components correspond to edges in an image.

Low frequency Components Low frequency components in an image correspond to smooth regions.

Di¤erence Between Spatial Domain and Frequency Domain In spatial domain, we deal with

images as it is. The values of the pixels of image change with respect to scene, whereas in frequency

domain, we deal with the rate at which the pixel values are changing in spatial domain.

3.3.6 Chaos and Cryptography

In a nonlinear de�nable systems the phenomena of chaos is seen that exhibit pseudo-random behavior

and is highly sensitive to the initial conditions applied to the system. The stability of the system is an

important parameter for user in applications with the de�nition of Lyapunov exponents. An important

aspect of these systems is the understanding of the system output for an observer who is aware of the

initial conditions governing the characteristics, and on the other hand, the system appears to be highly

random if the preliminary inputs to the system are unknown. If the pseudo-random behavior is known

to the legitimate owner of data, this characteristic can be used to substitute and di¤use plaintext in

order to achieve resistance and protection against unauthorized entities. In addition to encryption of

text, numerous formats of data are used in communication systems that need to be protected.

Fundamental Properties of Chaotic Systems

Chaos has been witnessed in many natural structures covering a signi�cant amount of technical and

industrial areas. These occurrences display de�nite possessions that mark them di¢ cult and volatile.

Chaos theory deals with constructions that progress in time to a speci�c kind of dynamical actions.

Several authors have addressed the mathematical theory of chaos due to its vast and most applicable

e¤ects in various �elds of science. In broad spectrum, these schemes follow a de�nite set of procedures of

improvement. Generally, chaos happens simply in certain deterministic nonlinear systems. Clearly, chaos

seems when there is a continuous and disorganized looking long term progression that ful�lls de�nite

mathematical benchmarks. There are certain set of properties that sum up the features witnessed in

chaotic systems. These measured the mathematical principles that describe chaos. The most appropriate

are [111]:

1. Nonlinearity: If a system is linear, it cannot be chaotic.

2. Determinism: It has deterministic fundamental rules that every future state of the system

must follow.

3. Sensitivity to initial conditions: Slight deviations in its early state can lead to completely

dissimilar performance in its last state.
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4. Continued irregularity in the actions of the system: Secret order together with a

large or in�nite amount of unstable periodic designs. This unseen direction forms the structure

of irregular chaotic systems.

5. Long-term prediction: It is commonly di¢ cult due to sensitivity to initial conditions, which

can be recognized only to a limited amount of accuracy.

Table 3.1: Comparison of chaotic and cryptographic properties.

Chaos theory Cryptography

Chaotic system Pseudo-chaotic system

Nonlinear transform Nonlinear transform

In�nite number of states Finite states

Initial state Plaintext

Final state Ciphertext

Initial conditions and/or parameter Key

Asymptotic independence of initial and �nal states Confusion

Sensitivity to initial conditions and parameters mixing Di¤usion

3.4 Fundamentals of Watermarking

In recent years, digital data is obtained and transmitted easily. This ease has instigated the wide

appearance, transmission, and storage of digital data. The technologies that have supported this �ooding

of digital data are internet, World Wide Web (www), CD-ROM, and DVD. Although the widespread

use of digital data has brought a lot of ease in di¤erent aspects, nonetheless, it is not without its side

e¤ects. These side e¤ects are best presented by asking a question: with the digital data being so widely

used, how are we going to address the issues like privacy, copyright infringement, authentication, and

security? Three di¤erent technologies; information hiding, steganography and watermarking, are mostly

used to address issues like these. These three technologies often use similar technical approaches and

are closely related [72]. However, they do have some philosophical di¤erences that a¤ect their design

towards a problem. Watermarking is de�ned as the practice of imperceptibly altering a work to embed

a message about that work, whereas steganography represents the art of concealed communication.

Here, the very existence of a message being kept secret. On the other hand, data hiding is a more

general term and encompasses a wide range of problems that are either related to making information

imperceptible or secret. A detailed discussion about the di¤erences in these concepts can be found in

[73].
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3.5 Digital Watermarking

Digital watermarking is a process of embedding unobtrusive marks or labels into digital content. These

embedded marks are typically imperceptible (invisible) that can later be detected or extracted (Yeung,

Yeo, & Holliman, 1998). The basic principle of the current watermarking systems are comparable to

symmetric encryption as to the use of the same key for encoding and decoding of the watermark. Each

watermarking system consists of two subsystems: a watermarking encoder and decoder (see Fig. 3.4).

The formal de�nition of watermarking is given as follows:

De�nition 91 A watermarking system can be described by a pentraple (C;W;K;EK ; DK); where C is

the set of all original data, W the set of all watermarks, K is the set of all keys, C 0 is the set of all

original data with watermark. The two functions EK : C �W �K ! C
0
; DK : C 0 �K ! W; describe

the embedding and detecting process.

Fig. 3.4: A general procedure for watermarking scheme.

3.5.1 Basic Terminologies of Watermarking

The general de�nitions of some common terms used in the area of watermarking are listed below:

Watermark The information to be hidden. The term watermark also contains a hint that the hidden

information is transparent like water.

Cover Media/Data The media used for carrying the watermark. Sometimes the terms original media,

cover media and host media are also used to express it.

Watermark Data The digital medium which contains the watermark.

Extraction The procedure used for extracting the embedded watermark from the watermark object.

Detection The procedure used for detecting whether the given media containing a particular water-

mark.
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3.5.2 Properties of Digital Watermarking

E¤ectiveness This is the probability that the message in a watermarked image will be correctly

detected.

Fidelity Watermarking is a process that alters an original image to add a message to it, therefore it

inevitably a¤ects the image�s quality.

Payload Size Every watermarked work is used to carry a message. The size of this message is often

important as many systems require a relatively big payload to be embedded in a cover work.

Robustness There are many cases in which a watermarked work is altered during its lifetime, either

by transmission over a lossy channel or several malicious attacks that try to remove the watermark or

make it undetectable.
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3.6 Classi�cation of Watermarking

In this section, we discussed the classi�cations of watermarking with respect to di¤erent characteristics

that are currently available for real time applications (see Fig. 3.5).
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Fig. 3.5: Classi�cations of watermarking with respect to di¤erent aspects.

3.6.1 Classi�cation Established on Human Perception

This is subdivided into visible watermarks and invisible watermarks.

Visible Watermarks

These watermarks can be seen clearly by the viewer and can also identify the logo or the owner. Visible

watermarking technique changes the original signal. The watermarked signal is di¤erent from the original

signal. Visible watermark embedding algorithms are less computationally complex. The watermarked

image cannot with stand the signal processing attacks, like the watermark can be cropped from the

watermarked image. Spreading the watermark throughout the image is a best option, but the quality of

the image is degraded which prevents the image from being used in medical applications.
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Invisible Watermarks

These watermarks cannot be perceived by the observer. The output signal does not change much when

compared to the original signal. The watermarked signal is almost similar to the original signal. As the

watermark is invisible, the imposter cannot crop the watermark as in visible watermarking. Invisible

watermarking is more robust to signal processing attacks when compared to visible watermarking. As

the quality of the image does not su¤er much, it can be used in almost all the applications [74]. The

invisible watermarking is further classi�ed into fragile, semi-fragile and robust watermarks.

Fragile Watermarks These watermarks are very sensitive. They can be destroyed easily with slight

modi�cations in the watermarked signal.

Semi-Fragile Watermarks These watermarks are broken if the modi�cations to the watermarked

signal exceed a pre-de�ned user threshold. If the threshold is set to zero, then it operates as a fragile

watermark. This method can be used to ensure data integrity and also data authentication [75].

Robust Watermarks These watermarks cannot be broken easily as they withstand many signal

processing attacks. Robust watermark should remain intact permanently in the embedded signal such

that attempts to remove or destroy the robust watermark will degrade or even may destroy the quality

of the image. This method can be used to ensure copyright protection of the signal [75]. The robust

watermarking is majorly sub-divided into public watermarks and private watermarks.

Public Watermarks In this watermarking, the user is authorized to detect the watermark em-

bedded in the original signal.

Private Watermarks In this watermarking, the user is not authorized to detect the watermark

embedded in the original signal.

3.6.2 Classi�cation Established on Detection Process

To detect the embedded data [76] Based on the level of required information all watermarks are sub-

divided into blind watermarks, semi-blind watermarks and non-blind watermarks.

Blind Watermarks

These watermarks detect the embedded information without the use of original signal. They are less

robust to any attacks on the signal.
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Semi-Blind Watermarks

These watermarks require some special information to detect the embedded data in the watermarked

signal.

Non-Blind Watermarks

These watermarks require the original signal to detect the embedded information in the watermarked

signal. They are more robust to any attacks on the signal when compared to blind watermarks.

3.6.3 Classi�cation Established on Information of Existence of the Water-

mark

The classi�cation established on information of existence of the watermark is sub-divided into stegano-

graphic watermarking and non-steganographic watermarking.

Steganographic Watermarking

The user is not aware of the presence of the watermark.

Non-Steganographic Watermarking

The user is aware of the presence of the watermark.

3.6.4 Classi�cation of Watermarking Techniques on the Basis of Working

Domains

There are two major techniques for watermarking based on working domains:

Spatial Domain

This domain focuses on modifying the pixels of one or two randomly selected subsets of images. It

directly loads the raw data into the image pixels. Some of its main algorithms are:

Least Signi�cant Bit Old popular technique embeds the watermark in the LSB of pixels. This

method is easy to implement and does not generate serious distortion to the image; however, it is not

very robust against attacks. The embedding of the watermark is performed choosing a subset of image

pixels and substituting the least signi�cant bit of each of the chosen pixels with watermark bits. The

watermark may be spread throughout the image or may be in the select locations of the image. But

these primitive techniques are vulnerable to attacks and the watermark can be easily destroyed. Such

an approach is very sensitive to noise and common signal processing and cannot be used in practical

applications.
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SSM Modulation Based Technique Spread-spectrum techniques are methods in which energy

generated at one or more discrete frequencies is deliberately spread or distributed in time. SSM based

watermarking algorithms embed information by linearly combining the host image with a small pseudo

noise signal that is modulated by the embedded watermark.

Texture Mapping Coding Technique This method is useful in only those images which have

some texture part in it. This method hides the watermark in the texture part of the image. This

algorithm is only suitable for those areas with large number of arbitrary texture images (disadvantage)

[77], and cannot be done automatically. This method hides data within the continuous random texture

patterns of a picture.

Patchwork Algorithm Patchwork is a data hiding technique developed by Bender et. al. and

published on IBM Systems Journal [75]. It is based on a pseudorandom, statistical model. Patchwork

imperceptibly inserts a watermark with a particular statistic using a Gaussian distribution. A pseudo

randomly selection of two patches is carried out where the �rst one is A and the second is B. Patch A

image data is brightened where as that of patch B is darkened (for purposes of this illustration this is

magni�ed).

Frequency Domain

This technique is also called transform domain. Values of certain frequencies are altered from their

original. There are several common used transform domain methods, such as

Discrete Cosine Transforms (DCT) DCT based watermarking techniques are more robust

compared to simple spatial domain watermarking techniques. Such algorithms are robust against simple

image processing operations like low pass �ltering, brightness and contrast adjustment, blurring etc.

However, they are di¢ cult to implement and are computationally more expensive. At the same time

they are weak against geometric attacks like rotation, scaling, cropping etc.

Steps in DCT Block Based Watermarking Algorithm

i. Segment the image into non-overlapping blocks of 8� 8;

ii. Apply forward DCT to each of these blocks,

iii. Apply some block selection criteria (e.g. HVS),

iv. Apply coe¢ cient selection criteria (e.g. highest),

v. Embed watermark by modifying the selected coe¢ cients,

vi. Apply inverse DCT transform on each block
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Discrete Wavelet Transforms (DWT) Wavelet Transform is a modern technique frequently

used in digital image processing, compression, watermarking etc. The transforms are based on small

waves, called wavelet, of varying frequency and limited duration. The wavelet transform decomposes

the image into three spatial directions, i.e. horizontal, vertical and diagonal. Hence wavelets re�ect the

anisotropic properties of HVS more precisely. Magnitude of DWT coe¢ cients is larger in the lowest

bands (LL) at each level of decomposition and is smaller for other bands (HH, LH, and HL).

Advantages of DWT over DCT Wavelet transform understands the HVS more closely than the

DCT. Wavelet coded image is a multi-resolution description of image. Hence an image can be shown at

di¤erent levels of resolution and can be sequentially processed from low resolution to high resolution.

Disadvantages of DWT over DCT Computational complexity of DWT is more compared to

DCT. As Feig [78] pointed out it only takes 54 multiplications to compute DCT for a block of 8x8,

unlike wavelet calculation depends upon the length of the �lter used, which is at least 1 multiplication

per coe¢ cient.

Discrete Fourier Transform (DFT)

Transforms a continuous function into its frequency components. It has robustness against geometric

attacks like rotation, scaling, cropping, translation etc. DFT shows translation invariance. Spatial shifts

in the image a¤ects the phase representation of the image but not the magnitude representation, or

circular shifts in the spatial domain don�t a¤ect the magnitude of the Fourier transform.

Advantages of DFT over DWT and DCT DFT is rotation, scaling and translation (RST)

invariant. Hence it can be used to recover from geometric distortions, whereas the spatial domain, DCT

and the DWT are not RST invariant and hence it is di¢ cult to overcome from geometric distortions.

3.7 Digital Watermarking Applications

3.7.1 Copyright Protection

Designed to prevent there production of software, �lms, music, and other media,usually for copyright

reasons.

3.7.2 Broadcast Monitoring

With the global television and radio landscape changing more quickly than ever before, how can content

owners e¤ectively manage their media assets and ensure fair compensation?

59



3.7.3 Locating Content Online

It has also become a primary sales tool and selling environment, providing an opportunity to showcase

our products or services and attract buyers from around the world.

3.7.4 Communication of Ownership and Copyright

In our cyber culture, digital has become a primary means of communication and expression. The

combination of access and new tools enables digital content to travel faster and further than ever before

as it is uploaded, dispersed, viewed, downloaded, modi�ed and reproposed at breathtaking speed.

3.7.5 Content Archiving

Watermarking can be used to insert digital object identi�er or serial number to help archive digital

contents like images, audio or video.

3.7.6 Meta Data Insertion

Meta-data refers to the data that describes data. Images can be labeled with its content and can be

used in search engines. Medical X-rays could store patient records.

3.7.7 Tamper Detection

Digital content can be detected for tampering by embedding fragile watermarks. If the fragile watermark

is destroyed or degraded, it indicated the presence of tampering and hence the digital content cannot be

trusted.

3.7.8 Digital Fingerprinting

Digital Fingerprinting is a technique used to detect the owner of the digital content. Fingerprints are

unique to the owner of the digital content. Hence a single digital object can have di¤erent �ngerprints

because they belong to di¤erent users.

3.8 Steganography Fundamentals and Techniques

Steganography word is originated from Greek words Steganós (Covered), and Graptos (Writing) which

literally means �cover writing� [79]. Generally steganography is known as �invisible� communication.

Steganography means to conceal messages existence in another medium (audio, video, image, commu-

nication). Today�s steganography systems use multimedia objects like image, audio and video etc. as

cover media because people often transmit digital images over email or share them through other in-

ternet communication application. It is di¤erent from protecting the actual content of a message. In
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simple words it would be like that, hiding information into other information. Steganography means

is not to alter the structure of the secret message, but hides it inside a cover-object (carrier object).

After hiding process cover object and stego-object (carrying hidden information object) are similar. So,

steganography (hiding information) and cryptography (protecting information) are totally di¤erent from

one another. Due to invisibility or hidden factor it is di¢ cult to recover information without known

procedure in steganography. Detecting procedure of steganography known as Steganalysis.

3.8.1 Steganography versus Cryptography

It is often thought that communications may be secured by encrypting the tra¢ c, but this has rarely been

adequate in practice [81]. Cryptography deals with the encryption of text to form cipher (encrypted)

text using a secret key. However, the transmission of cipher text may easily arouse attackers suspicion,

and the cipher text may thus be intercepted, attacked or decrypted violently. In order to overcome

the shortcomings of cryptographic techniques, an important sub-discipline of information hiding i.e.

Steganography has been developed as a new covert communication means in recent years. It transfers

message secretly by embedding it into a cover medium with the use of information hiding techniques

[82].

Steganography, hides the existence of message such that intruder can�t even guess that communi-

cation is going on and thus provides a higher level of security than cryptography. Both cryptographic

and steganographic systems provide secret communications, but they are di¤erent in terms of system

breaking. If the intruder can read the secret message, then a cryptographic system is broken.

However, a steganographic system is considered broken if the intruder can detect the existence or

read the contents of the hidden message. If the intruder suspects a speci�c �le or steganography method

even without decoding the message, a steganographic system will be considered to have failed. Thus,

steganographic systems are more fragile than cryptography systems in terms of system failure [83].

3.8.2 Steganography versus Watermarking

Di¤erences between steganography and watermarking are both subtle and essential.

The main goal of steganography is to hide a message m in some audio or video (cover) data d, to

obtain new data d0, practically indistinguishable from d; by people, in such a way that an eavesdropper

cannot detect the presence of m in d0.

The main goal of watermarking is to hide a message m in some audio or video (cover) data d, to

obtain new data d0, practically indistinguishable from d, by people, in such a way that an eavesdropper

cannot remove or replace m in d0. It is also often said that the goal of steganography is to hide a

message in one-to-one communications and the goal of watermarking is to hide message in one-to-many

communications.
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Shortly, one can say that cryptography is about protecting the content of messages, steganography

is about concealing its very existence. Steganography methods usually do not need to provide strong

security against removing or modi�cation of the hidden message. Watermarking methods need to be

very robust to attempts to remove or modify a hidden message.

3.8.3 Basic Terminologies of Stegosystems

� Covertext / Cover Media: (cover-data - cover-object): The covertext is an original unaltered

message. In other words, cover media is the medium in which message is embedded to hide the

presence of secret data or used as the carrier to embed message into.

� Stego / Stegotext (stego-data - stego-object): The media through which the data is hidden

Or generated data which is carrying a hidden message.

� Secret data: The data to be hidden or extract.

� Embedding process: A process in which the sender tries to hide a message by embedding it into

a (randomly chosen) cover-text, usually using a key, to obtain a stego-text (stego-data or stego-

object). The embedding process can be described by the mapping E : C �K �M ! C; where C

is the set of possible cover- and stego-texts, K is the set of keys and M is the set of messages.

� Recovering process (extraction process): A process in which the receiver tries to get using

the key only, not the covertext, the hidden message in the stegotext. The recovery process can be

seen as mapping D : C �K ! C.

� Security requirement: is that a third person watching such a communication should not be able

to �nd out whether the sender has been active, and when, in the sense that he really embedded a

message in the cover -text. In other words, stegotexts should be indistinguishable from covertexts.

� Steganalysis: The process by which secret data is to be extracted.

De�nition 92 (Stegosystem) Let C be a distribution on a set C of covertexts. A stegosystem

is a triple of probabilistic polynomial-time algorithms (SK ; SE ; SD) with the following properties:

�The key generation algorithm SK takes as input the security parameter n and outputs a bit

string sk, called the stego-key.

�The steganographic encoding algorithm SE takes as inputs the security parameter n, the stego

key sk and a message m 2 f0; 1gl to be embedded and outputs an element c of the covertext

space C; which is called stegotext. The algorithm may access the covertext distribution C.

�The steganographic decoding algorithm SD takes as inputs the security parameter n; the stego

key sk; and an element c of the covertext space C and outputs either a message m 2 f0; 1gl
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or a special symbol ?. An output value of ? indicates a decoding error, for example, when

SD has determined that no message is embedded in c. For all sk output by SK(1n) and for

all m 2 f0; 1gl; the probability that SD(1n; sk; SE(1n; sk;m)) = m must be negligible in n:

3.9 Types of Steganography

In the literature there are basically three types of steganographic protocols: pure steganography, se-

cret key steganography, and public key steganography; the latter is based on principles of public key

cryptography. In the following subsections, all three types will be discussed.

3.9.1 Pure Steganography

We call a steganographic system which does not require the prior exchange of some secret information

(like a stego-key) pure steganography. Formally, the embedding process can be described as a mapping

E : C �M ! C; where C is the set of possible covers and M the set of possible messages.

The extraction process consists of a mapping D : C ! M; extracting the secret message out of

a cover. Clearly, it is necessary that jCj � jM j: Both sender and receiver must have access to the

embedding and extraction algorithm, but the algorithms should not be public.

De�nition 93 The quadruple < C;M;D;E >; where C is the set of possible covers, M the set of

secret messages with jCj � jM j, E : C �M ! Cthe embedding function and D : C !M; the extraction

function, with the property that D(E(c;m)) = m for all m 2M and c 2 C is called a pure steganographic

system.

In most practical steganographic systems the set C is chosen to consist of meaningful, and apparently

harmless messages (like the set of all meaningful digital images), two communication partners would be

able to exchange without raising suspicion. The embedding process is de�ned in a way that a cover and

the corresponding stego-object are perceptually similar. Formally, perceptual similarity can be de�ned

via a similarity function:

3.9.2 Secret Key Steganography

With pure steganography, no information (apart from the functions Eand D) is required to start the

communication process; the security of the system thus depends entirely on its secrecy. This is not very

secure in practice because this violates Kerckho¤s�principle (see ). So we must assume that Wendy knows

the algorithm Alice and Bob use for information transfer. In theory, she is able to extract information

out of every cover sent between Alice and Bob. The security of a steganographic system should thus

rely on some secret information traded by Alice and Bob, the stego-key. Without knowledge of this key,

nobody should be able to extract secret information out of the cover.
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A secret key steganography system is similar to a symmetric cipher: the sender chooses a cover c

and embeds the secret message into c using a secret key k. If the key used in the embedding process is

known to the receiver, he can reverse the process and extract the secret message. Anyone who does not

know the secret key should not be able to obtain evidence of the encoded information. Again, the cover

c and the stego-object can be perceptually similar.

De�nition 94 The quintuple < C;M;K;DK ; EK >; where C is the set of possible covers, M the set of

secret messages with jCj � jM j; K the set of secret keys, EK : C �M �K ! C and DK : C �K !M

with the property that DK(EK(c;m; k); k) = m for all m 2 M , c 2 C and k 2 K, is called a secret key

steganographic system.

Secret key steganography requires the exchange of some key, although the transmission of additional

secret information subverts the original intention of invisible communication. So as in cryptography, we

assume that all communication parties are able to trade secret keys through a secure channel. Alice and

Bob could agree on a stego-key before imprisonment. However, by using some characteristic features of

the cover and a secure hash function H it is possible to calculate a key used for secret communication

directly out of the cover: k = H (feature). If the embedding process does not change the "feature," the

receiver is able to recalculate the key. Obviously such a feature has to be highly "cover dependent" to

reach an adequate level of security (however, the security depends on the secrecy of H, thus violating

Kerckho¤s�principle again). If the cover is a digital image, one could take all most signi�cant bits of

the cover�s color values as a "feature.�This method could be also used to calculate a secret session key

out of a general key k�valid for a longer period of time, if the hash function depends on k�.

Some algorithms additionally require the knowledge of the original cover (or some other information

not derivable from the stego-object) in the decoding phase. Such systems are of limited interest, because

their use requires the transmission of the original cover, a problem strongly related to key-exchange in

traditional cryptography. These algorithms can be seen as a special case of secret key steganographic

systems in which K = C or K = C �K 0 where K 0 denotes an additional set of secret keys.

3.9.3 Public Key Steganography

As in public key cryptography, public key steganography does not rely on the exchange of a secret key.

Public key steganography systems require the use of two keys, one private and one public key; the public

key is stored in a public database. Whereas the public key is used in the embedding process, the secret

key is used to reconstruct the secret message.

One way to build a public key steganography system is the use of a public key cryptosystem. We will

assume that Alice and Bob can exchange public keys of some public key cryptography algorithm before

imprisonment (this is, however, a more reasonable assumption). Public key steganography utilizes the

fact that the decoding function D in a steganography system can be applied to any cover c, whether or
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not it already contains a secret message (recall that D is a function on the entire set C). In the latter

case, a random element of M will be the result; we will call it "natural randomness" of the cover. If

one assumes that this natural randomness is statistically indistinguishable from ciphertext produced by

some public key cryptosystem, a secure steganography system can be built by embedding ciphertext

rather than unencrypted secret messages.

A protocol which allows public key steganography has been proposed by Anderson in [4, 5]; it relies

on the fact that encrypted information is random enough to "hide in plain sight": Alice encrypts the

information with Bob�s public key to obtain a random-looking message and embeds it in a channel known

to Bob (and hence also to Wendy), thereby replacing some of the "natural randomness" with which every

communication process is accompanied. We will assume that both the cryptographic algorithms and

the embedding functions are publicly known. Bob, who cannot decide a priori if secret information is

transmitted in a speci�c cover, will suspect the arrival of a message and will simply try to extract and

decrypt it using his private key. If the cover actually contained information, the decrypted information

is Alice�s message.

Since we assumed that Wendy knows the embedding method used, she can try to extract the secret

message sent from Alice to Bob. However, if the encryption method produces random-looking ciphertext,

Wendy will have no evidence that the extracted information is more than some random bits. She thus

cannot decide if the extracted information is meaningful or just part of the natural randomness, unless

she is able to break the cryptosystem.

3.10 Steganography in Digital Mediums

Depending on the type of the cover object there are many suitable steganographic techniques which are

followed in order to obtain security.

3.10.1 Image Steganography

Taking the cover object as image in steganography is known as image steganography. Generally, in this

technique pixel intensities are used to hide the information.

3.10.2 Network Steganography

When taking cover object as network protocol, such as TCP, UDP, ICMP, IP etc., where protocol is

used as carrier, is known as network protocol steganography. In the OSI network layer model there exist

covert channels where steganography can be achieved in unused header bits of TCP/IP �elds [84].
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3.10.3 Video Steganography

Video Steganography is a technique to hide any kind of �les or information into digital video format.

Video (combination of pictures) is used as carrier for hidden information. Generally discrete cosine

transform (DCT) alter values (e.g., 8.667 to 9) which is used to hide the information in each of the

images in the video, which is not noticeable by the human eye. Video steganography uses such as H.264,

Mp4, MPEG, AVI or other video formats.

3.10.4 Audio Steganography

When taking audio as a carrier for information hiding it is called audio steganography. It has become

very signi�cant medium due to voice over IP (VOIP) popularity. Audio steganography uses digital audio

formats such as WAVE, MIDI, AVI MPEG or etc. for steganography.

3.10.5 Text Steganography

General technique in text steganography, such as number of tabs, white spaces, capital letters, just like

Morse code and etc. is used to achieve information hiding [84].

3.11 Image Steganography Terminologies

Image steganography terminologies are as follows:

� Cover-Image: Original image which is used as a carrier for hidden information.

� Message: Actual information which is used to hide into images. Message could be a plain text or

some other image.

� Stego-Image: After embedding message into cover image is known as stego-image.

� Stego-Key: A key is used for embedding or extracting the messages from cover-images and stego-

images.

Generally image steganography is method of information hiding into cover-image and generates a

stego-image. This stego-image then sent to the other party by known medium, where the third party

does not know that this stego-image has hidden message. After receiving stego-image hidden message

can simply be extracted with or without stego-key (depending on embedding algorithm) by the receiving

end [84]. Basic diagram of image steganography is shown in Figure 2 without stego-key, where embedding

algorithm required a cover image with message for embedding procedure. Output of embedding algorithm

is a stego-image which simply sent to extracting algorithm, where extracted algorithm unhidden the

message from stego-image.
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3.12 Image Steganography Classi�cations

Generally image steganography is categorized in following aspects [85]:

� High Capacity: Maximum size of information can be embedded into image.

� Perceptual Transparency: After hiding process into cover image, perceptual quality will be

degraded into stego-image as compare to cover-image.

� Robustness: After embedding, data should stay intact if stego-image goes into some transforma-

tion such as cropping, scaling, �ltering and addition of noise.

� Temper Resistance: It should be di¢ cult to alter the message once it has been embedded into

stego-image.

� Computation Complexity: How much expensive it is computationally for embedding and ex-

tracting a hidden message?

3.13 Image Steganographic Techniques

Image steganography techniques can be divided into following domains.

3.13.1 Spatial Domain Methods

There are many versions of spatial steganography, all directly change some bits in the image pixel values

in hiding data. Least signi�cant bit (LSB)-based steganography is one of the simplest techniques that

hides a secret message in the LSBs of pixel values without introducing many perceptible distortions.

Changes in the value of the LSB are imperceptible for human eyes. Spatial domain techniques are

broadly classi�ed into:

i. Least signi�cant bit (LSB),

ii. Pixel value di¤erencing (PVD),

iii. Edges based data embedding method (EBE),

iv. Random pixel embedding method (RPE),

v. Mapping pixel to hidden data method,

vi. Labeling or connectivity method,

vii. Pixel intensity based method,

viii. Texture based method,
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ix. Histogram shifting methods,

General merits of spatial domain LSB technique are:

i. There is less chance for degradation of the original image,

ii. More information can be stored in an image,

Disadvantages of LSB technique are:

i. Less robust, the hidden data can be lost with image manipulation,

ii. Hidden data can be easily destroyed by simple attacks.

3.13.2 Transform Domain Technique

This is a more complex way of hiding information in an image. Various algorithms and transformations

are used on the image to hide information in it. Transform domain embedding can be termed as a domain

of embedding techniques for which a number of algorithms have been suggested [86]. The process of

embedding data in the frequency domain of a signal is much stronger than embedding principles that

operate in the time domain. Most of the strong steganographic systems today operate within the

transform domain Transform domain techniques have an advantage over spatial domain techniques as

they hide information in areas of the image that are less exposed to compression, cropping, and image

processing. Some transform domain techniques do not seem dependent on the image format and they

may outrun lossless and lossy format conversions. Transform domain techniques are broadly classi�ed

into:

i. Discrete Fourier transformation technique (DFT),

ii. Discrete cosine transformation technique (DCT),

iii. Discrete Wavelet transformation technique (DWT),

iv. Lossless or reversible method (DCT),

v. Embedding in coe¢ cient bits.

3.13.3 Distortion Techniques

Distortion techniques need knowledge of the original cover image during the decoding process where the

decoder functions to check for di¤erences between the original cover image and the distorted cover image

in order to restore the secret message. The encoder adds a sequence of changes to the cover image. So,

information is described as being stored by signal distortion [87]. Using this technique, a stego object

is created by applying a sequence of modi�cations to the cover image. This sequence of modi�cations is
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use to match the secret message required to transmit [88]. The message is encoded at pseudo-randomly

chosen pixels. If the stego-image is di¤erent from the cover image at the given message pixel, the message

bit is a �1.�otherwise, the message bit is a �0.�

The encoder can modify the �1� value pixels in such a manner that the statistical properties of

the image are not a¤ected. However, the need for sending the cover image limits the bene�ts of this

technique. In any steganographic technique, the cover image should never be used more than once. If

an attacker tampers with the stego-image by cropping, scaling or rotating, the receiver can easily detect

it. In some cases, if the message is encoded with error correcting information, the change can even be

reversed and the original message can be recovered [89].

3.13.4 Masking and Filtering

These techniques hide information by marking an image, in the same way as to paper watermarks.

These techniques embed the information in the more signi�cant areas than just hiding it into the noise

level. The hidden message is more integral to the cover image. Watermarking techniques can be applied

without the fear of image destruction due to lossy compression as they are more integrated into the

image.

Advantages of Masking and �ltering Techniques:

i. This method is much more robust than LSB replacement with respect to compression since the

information is hidden in the visible parts of the image.

Disadvantages of Masking and �ltering Techniques:

ii. Techniques can be applied only to gray scale images and restricted to 24 bits.

3.14 Conclusion

The chief aim of this part of the thesis is to give a survey of existing information concealing methods,

their focal points and hindrances. A few strategies for concealing information in text, image, and

audio are portrayed, with appropriate introductions to the environment of each medium, as well as

the qualities and shortcomings of each technique. Most information concealing frameworks exploit

human perceptual shortcomings, yet have shortcomings they could call their own. In zones where

cryptography and encryption are being prohibited, natives are taking a gander at steganography to go

around such approaches and pass messages secretly. Business uses of steganography as computerized

watermarks are at present being utilized to track the copyright and ownership of electronic media.

This chapter additionally tells why information covering up is picking up signi�cance nowadays and

the objectives that must be accomplished by any information concealing procedure. The basics of
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cryptography, watermarking and steganography introduced in this chapter will help us equally in other

parts of this dissertation .
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Chapter 4

A Novel Technique for the

Construction of Strong S-boxes

Based on Chaotic Lorenz Systems

In cryptographic systems the encryption process relies on the nonlinear mapping of original data or

plaintext to the secure data. The mapping of data is facilitated by the application of substitution

process embedded in the cipher. It is desirable to have resistance against di¤erential cryptanalysis,

which assists in providing clues about the composition of keys, and linear cryptanalysis, where a simple

approximation is created to emulate the original cipher characteristics. In this work, we propose the use

of nonlinear chaos-based substitution boxes which employs continuous time Lorenz system and linear

fractional transformation. The proposed substitution system eliminates the need of independent round

keys in a substitution-permutation network. The performance of the new substitution box is evaluated

by nonlinearity analysis, strict avalanche criterion, bit independence criterion, linear approximation

probability and di¤erential approximation probability.

4.1 Chaotic Lorenz System

The Lorenz system is inspired by the model or air �ow in atmosphere in 1950 [96] and is the �rst

numerical study on chaos. The system dynamics are represented by the following equation:
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dx

dt
= �(y � x);

dy

dt
= �x� y � xz; (4.1)

dz

dt
= xy � 
z:

The space plots resulting from Eq. 4.1 are shown in Figs. 4:1�4:4: The values of the parameters are

� = 10; � = 28 and 
 = 8=3: The intervals used for the states of the system are �40 � x � 40; �40 �

y � 40; and �40 � z � 40: The system exhibits chaotic behavior for the selected parameters and

intervals.

Fig. 4.1: The plot of Lorenz system along Fig. 4.2: The plot of Lorenz systems for x along

xy-axes for � = 10; � = 28; 
 = 8=3: t-axis for � = 10; � = 28; 
 = 8=3:

Fig. 4.3: The plot of Lorenz systems for y along Fig. 4.4: The plot of Lorenz systems for z along

t-axis for � = 10; � = 28; 
 = 8=3: t-axis for � = 10; � = 28; 
 = 8=3:
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4.1.1 Chaos Based Algorithm for S-Box Design

The algorithm of the chaos based S-box design is presented in Fig. 4.5. The algorithm is divided into two

parts: di¤usion and substitution. In the proposed algorithm, the �rst two steps describe the di¤usion

process, whereas, the remaining portion depicts the realization of S-box.

Algorithm

A. 1: System trajectories are obtained by solving the Lorenz system with selected initial conditions and

chaotic parameter values employing four-step Runge�Kutta method.

A. 2: Selected trajectory is sampled at every (number of data/256) step.

A. 3: Use the linear fractional transformation [106], outputs corresponding to each sample is coded start-

ing from 0 to 255.

A. 4: S-Box is generated using the codes corresponding to outputs with the code corresponding to the

smallest output being the �rst cell of the S-Box.

A. 5: After the S-Box is generated, the rows are shifted to the left except for the �rst row. Cells of the

remaining rows are shifted to the left such that at each row number of cells being shifted to the left

incremented by one compared to the previous row.

A. 6: Once the rows are shifted, column wise rotation is performed starting from the last column leaving

it un-rotated. Cells of the remaining columns are rotated such that at each column the number of

cells being rotated is incremented by one compared to the previous column.
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Fig. 4.5: Flow chart of proposed chaotic S-box.

In the di¤usion process, the system trajectories are evaluated by the solution of Lorenz chaotic system.

The number of orbits obtained depends on the dimension of the system, and is selected as a design

parameter. The initial conditions of the system are selected at this stage. The Runge-Kutta method

is applied to generate the chaotic parameters. A trajectory is selected and sampled at 8 bit resolution.

The objective is to construct an S-box capable of substituting 8 bits of data, as a result, 256 samples

are generated. Thus, coded samples, used in the S-box, range from 0 to 255. The entries of the S-box

are populated by using the codes generated the samples generated by the selected system trajectory. A

coding table is used to assign the corresponding entry into the S-box by selecting minimum output value

in comparison to the samples utilized in the �rst cell. For example, in order to construct an S-box of

dimension 4� 4, sixteen samples are generated from a selected orbit. The data from the selected orbit

is shown in Figs. 4:1 � 4:3. A coding table is used to map the sampled values from the output of the

Lorenz system to an entry in S-box (see Table 4.1).

In this work, the system trajectory is generated for 1000 data samples while keeping the values of

initial conditions as x = 1; y = 0; and z = 0: In order to ignore the transients of the chaotic system,
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�rst 1000 samples are ignored. The resulting S-box based on chaotic system is presented in Table 4.1.

Table 4.1: Algebraic structure of S-box in the form of 16� 16 matrix.

3 167 29 139 249 80 34 165 250 251 238 110 33 38 140 17

0 41 135 164 236 71 16 209 99 143 151 70 188 184 252 242

60 120 231 105 49 66 128 121 125 218 178 196 89 154 244 192

155 82 162 185 138 97 213 50 10 113 54 237 183 22 202 194

208 191 129 136 197 137 26 152 168 103 13 65 132 39 79 61

119 160 44 207 102 175 95 72 74 235 55 63 247 144 203 20

8 177 223 92 254 90 228 118 224 219 117 240 7 6 19 147

21 186 241 48 1 216 122 93 69 73 5 15 158 114 106 187

88 130 87 68 78 98 245 47 84 234 176 141 255 51 149 53

225 214 123 35 28 166 233 220 248 211 101 45 198 115 77 52

94 193 86 133 76 85 67 200 226 14 62 4 40 146 239 126

36 230 148 150 11 75 56 153 96 215 30 145 25 100 58 174

181 172 190 57 163 64 171 124 217 111 18 131 31 243 195 253

246 182 201 104 221 27 109 107 232 157 199 83 161 42 227 112

179 159 12 210 169 127 170 189 2 206 108 204 173 23 81 116

229 91 24 37 32 43 134 222 59 142 180 205 9 46 156 212

4.2 Performance Analysis of Chaotic S-Box

It is vital to assess the performance of the proposed S-box in an e¤ort to establish its usefulness in

encryption. Several properties are listed in literature, which indicate the strength of any S-box [101].

Among some of the prevailing methods used by cryptanalysis include di¤erential analysis used for the

analysis of DES [67] and information theoretic analysis with excerpts from the original concepts presented

by Shannon [4]. In this work, we analyze the proposed S-box for �ve di¤erent properties, which includes

nonlinearity, strict avalanche criterion (SAC), bit independence criterion (BIC), linear approximation

probability and di¤erential approximation probability. In order to determine the strength of the proposed

S-box, the results of these analyses are prudently analyzed. In the following subsections, we present the

details of these analyses and discuss the results pertaining to the strength the S-box under analysis.

4.2.1 Nonlinearity

In the nonlinearity analysis, the constituent Boolean functions are assessed with reference to the behavior

of the input/output bit patterns. The set of all a¢ ne functions is used to compare the distance from

the given Boolean function. Once the initial distance is determined, the bits in the truth table of the

Boolean function are modi�ed to approximate to the closest a¢ ne function. Number of modi�cations
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required to reach the closest a¢ ne functions bears useful characteristics in determining the nonlinearity

of the transformation used in encryption process. The measure of nonlinearity is bounded by [113],

Ng = 2
m�1 (1� 2mmax jSg(w)j) : (4.2)

The Walsh spectrum Sg(w) is de�ned as

Sg(w) =
X

w2F2m
(�1)g(x)
�:w: (4.3)

The S-boxes are de�ned in Galois �led F2m and the most favorable value that N has is 120.

Table 4.2: The results of nonlinearity analysis of S-boxes.

S-boxes Nonlinearities

Proposed S-box 105.25

Wang[97] 104

Chen[95] 100

Tang[99] 100

Jakimoski[100] 98

4.2.2 Strict Avalanche Criterion Analytically

In Strict Avalanche Criterion (SAC), the behavior of the output bits is analyzed that results from a

change at the input bit applied to the nonlinear S-box transformation. It is desired that almost half

of the output bits change their value or simply toggle their state in response to a single change at the

input. The change in the output bit patterns cause a series of variations in the entire substitution-

permutation network (S-P network) and thus causes an avalanche e¤ect. The extent of these changes

assists in determining the resistance to cryptanalysis and the strength of the cipher.

Table 4.3: The results of Strict avalanche criterion for proposed S-box.

0.5156 0.4687 0.4843 0.4375 0.5468 0.5000 0.4531 0.4375

0.5468 0.5625 0.4843 0.4687 0.5156 0.5625 0.4687 0.5312

0.5156 0.4687 0.4687 0.5625 0.4062 0.5156 0.5000 0.4687

0.5156 0.5312 0.4843 0.4531 0.5156 0.5937 0.5000 0.5625

0.5781 0.5000 0.4687 0.4843 0.4375 0.4531 0.3806 0.5781

0.5156 0.5312 0.6093 0.5625 0.5312 0.4375 0.5312 0.5000

0.5468 0.5312 0.5468 0.5312 0.5312 0.6250 0.4375 0.4218

0.4531 0.4062 0.4843 0.5312 0.5156 0.5468 0.4843 0.5000
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Table 4.4: Comparison of SAC analysis of proposed chaotic S-boxes with other S-Boxes.

S-boxes SAC

Proposed S-box 0.4930

Wang[97] 0.4850

Chen[95] 0.4999

Tang[99] 0.4993

Jakimoski[100] 0.4972

4.2.3 Bit Independent Criterion

The Bit Independence Criterion (BIC) also relies on the changes at the input bits and the properties

exhibited by the independence behavior of pair-wise input/output variables of avalanche vectors [120].

This criterion is analyzed by modifying single input bit from the plaintext.

Table 4.5: The Nonlinearity of BIC of proposed S-box.

.... 102 106 102 94 92 96 96

102 .... 106 106 104 102 96 100

106 106 .... 102 104 106 106 104

102 106 102 .... 102 102 102 100

94 104 104 102 .... 96 100 94

92 102 106 102 96 .... 98 96

96 96 106 102 100 98 .... 96

96 100 104 100 94 96 96 ....

Table 4.6: The dependent matrix in BIC of the proposed S-box.

.... 0.4765 0.5273 0.5175 0.4843 0.5117 0.5097 0.4882

0.4765 .... 0.5039 0.4785 0.5078 0.4960 0.5078 0.5312

0.5273 0.5039 .... 0.4960 0.4912 0.4824 0.5097 0.4862

0.5175 0.4785 0.4960 .... 0.4902 0.4862 0.5078 0.5097

0.4843 0.5078 0.4921 0.4902 .... 0.5117 0.4960 0.5253

0.5117 0.4960 0.4824 0.4863 0.5117 .... 0.5136 0.5000

0.5097 0.5078 0.5097 0.5078 0.4960 0.5136 .... 0.4804

0.4882 0.5312 0.4863 0.5097 0.5253 0.5000 0.4804 ....
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Table 4.7. BIC of SAC analysis of S-boxes.

S-boxes Average Values

Proposed S-boxes 0.476

AES 0.504

APA 0.499

Gray 0.502

Prime 0.502

4.2.4 Linear Approximation Probability

The imbalance of an event between input and output bits is quanti�ed by the Linear approximation

probability test [120]. In this method, the parity of the input bits given by a certain mask �x and the

parity of the output bits �y are used to determine the probability of bias, and is given as,

Lp = max
�x;�y 6=0

����#fx=x � �x = S(x) � �yg
2n

� 1
2

���� ; (4.4)

where �x and �y are the input/output masks used in determining the linear approximation probability.

The total number of elements is given by 2n and X is the set of all possible input.

Table 4.8: Linear approximation analysis of S-boxes.

LPA S-boxes

Proposed AES APA S8 AES Skipjack

Max Lp 0.140 0.062 0.062 0.062 0.109

Max Value 160 144 144 144 156

4.2.5 Di¤erential Approximation Probability

It is desirable that the nonlinear transformation exhibit di¤erential uniformity. In order to ensure the

uniform mapping, a di¤erential at the input, given as , uniquely maps to an output di¤erential for all i.

The di¤erential approximation probability is mathematically de�ned as,

Dp(�x!�y) =

�
#fx 2 X= S(x)� S(x��x) = �yg

2n

�
: (4.5)

The proposed chaotic S-box is evaluated with di¤erential approximation probability test. The results

show that the performance of the new chaotic S-box is comparable to some of the commonly used
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S-boxes.

Table 4.9: The di¤erential approximation probability of proposed

chaotic S-box (D1 �D4):

0 1 2 3 4 5 6 7

0 0.031 0.031 0.031 0.023 0.031 0.023 0.031 0.046

1 0.031 0.031 0.031 0.031 0.031 0.039 0.031 0.023

2 0.023 0.031 0.031 0.031 0.031 0.031 0.031 0.023

3 0.031 0.039 0.031 0.039 0.031 0.039 0.031 0.031

4 0.031 0.031 0.031 0.031 0.039 0.500 0.031 0.046

5 0.031 0.031 0.031 0.031 0.023 0.031 0.031 0.031

6 0.031 0.031 0.031 0.031 0.031 0.023 0.031 0.031

7 0.031 0.031 0.031 0.039 0.031 0.031 0.031 0.031

D1

8 9 10 11 12 13 14 15

0 0.046 0.031 0.031 0.031 0.031 0.046 0.031 0.031

1 0.046 0.023 0.031 0.031 0.031 0.031 0.031 0.039

2 0.031 0.031 0.023 0.031 0.031 0.031 0.031 0.023

3 0.031 0.031 0.023 0.039 0.031 0.031 0.039 0.031

4 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031

5 0.031 0.031 0.031 0.031 0.039 0.023 0.031 0.023

6 0.031 0.023 0.031 0.031 0.023 0.023 0.039 0.031

7 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.039

D2
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0 1 2 3 4 5 6 7

8 0.031 0.031 0.031 0.023 0.031 0.031 0.031 0.031

9 0.031 0.031 0.031 0.031 0.031 0.023 0.015 0.023

10 0.031 0.031 0.031 0.023 0.031 0.031 0.023 0.039

11 0.031 0.039 0.031 0.031 0.039 0.023 0.031 0.031

12 0.023 0.023 0.031 0.031 0.031 0.031 0.031 0.031

13 0.023 0.023 0.031 0.031 0.031 0.023 0.031 0.015

14 0.023 0.031 0.031 0.031 0.023 0.015 0.031 0.031

15 0.046 0.031 0.031 0.031 0.023 0.039 0.031 0.031

D3

8 9 10 11 12 13 14 15

8 0.031 0.023 0.023 0.031 0.031 0.046 0.031 0.031

9 0.031 0.023 0.023 0.031 0.031 0.046 0.031 0.031

10 0.031 0.023 0.031 0.031 0.023 0.031 0.023 0.039

11 0.031 0.039 0.031 0.023 0.023 0.031 0.031 0.023

12 0.046 0.039 0.031 0.031 0.031 0.031 0.031 0.031

13 0.031 0.023 0.031 0.023 0.023 0.023 0.023 0.023

14 0.031 0.023 0.031 0.023 0.031 0.023 0.023 0.031

15 0.023 0.023 0.031 0.039 0.031 0.031 0.031 .......

D4

Table 4.10: Comparison of di¤erential approximation probability

of proposed chaotic S-box with existing S-boxes.

S-boxes

Proposed AES Gray Skipjack Xyi

Max. Dp 0.03 0.0156 0.0156 0.0468 0.0468

4.3 Results and Discussions

The comparison of the strong encryption capabilities show that the performance of the proposed S-box

is comparable or superior to some prevailing S-boxes used in the area of cryptography. The nonlinearity

analysis depicts that the properties are comparable to the S-boxes use as a benchmark in this work.

The Table 4.2 presents a list of results of nonlinearity analysis. The result of SAC is very close 0.5,

which assures the acceptability of this S-box to encryption applications. The results are shown in Table

4.4. In Table 4.7, a comparison of BIC is presented between the proposed S-box and AES, APA, Gray,
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Prime S-boxes. The results are in agreement with the desired range. In further analysis, the linear

approximation analysis show that the new S-box conforms to the range of values speci�ed for the good

nonlinear components used for encryption applications. The results are shown in Table 4.8. Finally, the

di¤erential approximation probability analysis is presented in Table 4.9 and comparison with already

existing S-boxes are in Table 4.10. In these tests, it is observed that the performance of the chaotic

S-box is comparable to the existing well known S-boxes used as benchmarks in this chapter.

4.4 Conclusion

In this chapter, we present a method to construct new S-boxes with the application of Lorenz system

along with linear fractional transformation. In order to evaluate the performance of the proposed S-box, a

comparison is presented by the application of strict avalanche criterion, linear approximation probability,

di¤erential approximation probability, bit independent criterion and nonlinearity analysis. The existing

S-boxes, which are used for the purpose of benchmarking, include AES, APA, Gray, Prime S-boxes. The

results yield that the new S-box has desirable properties suitable for secure communications.
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Chapter 5

Construction of S-box Based on

Chaotic Boolean Function and its

Application in Image Encryption

In numerous encryption frameworks, the �rst information is changed into encoded form by applying

nonlinear substitutions and a¤ecting di¤usion. The goal of the nonlinear change is to accomplish high

level of randomness in the image content. The choice of the source of randomness is critical because

the success in cryptanalysis is demarked by the characteristics identi�ed in the encrypted data. The

chaotic frameworks show random conduct that is suitable for encryption applications where nonlinear

transformations are needed in the middle of plaintext and the scrambled information. The application

of nonlinear functional chaos based system with embedded chaotic systems and binary chaotic sequences

can prompt randomness and di¤usion in the information. In addition to the high state of randomness,

the requirement for various round keys are needed in a run of the mill substitution-permutation process.

The proposed strategy kills the requirement for di¤erent round keys, which is suitable for high speed com-

munication frameworks. The measurable analyses performed on the proposed nonlinear algorithm which

show improvement in encryption quality and safety against numerous brute-force and statistical attacks.

Also, the proposed framework demonstrates high safety against di¤erential and linear cryptanalysis.

5.1 Proposed Algorithm for Generating Chaotic S-boxes

The system proposed is as takes after. An 8-bit sequence of binary random variables is produced and

is transformed into a decimal number; if the number exists then we will repeat the chaotic grouping

progressively. Along these lines, a integer table in the range of 0 � 28 can be obtained (see table 5:1).

The algebraic expression of the proposed design is in the accompanying. Boolean function is a function
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that returns values 0 or 1. By and large, one takes a grouping of bits as information and produces 1

bit as a yield. The methodology is as takes after. The simplest mathematical objects that can display

chaotic behavior are a class of one-dimensional maps:

!k+1 = �(!k); (5.1)

where !k = �k(!0) 2 I; k = 0; 1; 2; :::and �k : I ! I is nonlinear map. One parameter families of chaotic

maps of the interval [0; 1] with an invariant measure can be de�ned as the ratio of polynomials of degree

N

!N (x; �) =
�2F

1 + (�2 � 1)F ; (5.2)

where � is the control parameter, F substitutes with the Chebyshev polynomial of the �rst kind and is

the degree of Chebyshev polynomials. Hence,

!N (x; �) =
�2(TN (

p
x))2

1 + (�2 � 1)(TN (
p
x))2

: (5.3)

We used its conjugate or isomorphic map. Conjugacy means that the invertible map h(x) = (x �

1)=x maps I = [0; 1] into [0;1). Using the hierarchy of families of one-parameter chaotic maps, we can

generate new hierarchy of tripled maps with an invariant measure. In this chapter, one of the hierarchies

of the chaotic map in the interval [0;1) is adapted for constructing chaos-based hash function. Hence,

this chaotic map can be de�ned as [119] :

!N (x; �1) =
1

�21
tan

�
N arctan

p
xk�1

�
; (5.4)

where �1 is control parameter of the chaotic maps and N is the degrees of the Chebyshev polynomials.

The mapping equation is

! = 0:b1(!):b2(!):b3(!):::bi(!):::; (5.5)

where ! 2 [0; 1]; bi(!) 2 [0; 1]: The ith bit bi(!) can be expressed as follows:

bi(!) =
2i�1X
j=1

(�1)j�1�� (!); (5.6)

where �� (!) is a thresholding function can be de�ned as

�� (!) =

8<: 1; ! < �

0; ! � �
; (5.7)
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and its complementary function can be written as follows:

�� (!) = 1� �� (!): (5.8)

Thus we can obtain a binary sequence

Bki = l(!) =

�
bi

�
!N (x; �) =

�2F

1 + (�2 � 1)F

��
; (5.9)

=

�
bi

�
!N (x; �) =

�2(TN (
p
x))2

1 + (�2 � 1)(TN (
p
x))2

��
; (5.10)

=

�
bi

�
!N (xk; �1) =

1

�21
tan

�
N arctan

p
xk�1

�
;

��1
k=0

; (5.11)

where

xk 2 (0; 1); k = 0; 1; 2; ::: (5.12)

Thus we can obtain a binary sequence which we call a chaotic bit sequence.

Table 5.1: The proposed chaotic S-box.

116 3 147 22 55 139 91 225 162 148 242 20 119 42 43 249

125 12 156 28 50 124 37 194 168 159 212 26 127 11 247 82

133 21 165 34 45 110 19 185 174 170 210 52 143 6 114 102

142 30 173 44 32 95 1 176 180 175 208 58 144 35 105 220

151 39 182 49 25 79 239 167 193 189 201 72 137 51 88 157

160 48 190 53 17 63 221 140 207 202 192 86 135 100 80 126

169 57 198 61 0 47 204 134 228 209 183 93 98 150 15 69

178 67 206 65 246 31 186 129 243 213 181 101 92 251 81 38

187 76 222 68 236 14 136 118 24 216 177 145 78 13 107 122

196 85 230 70 226 253 120 115 46 219 172 184 71 23 149 255

205 94 237 73 215 235 104 113 54 227 171 4 254 41 245 99

214 103 244 74 203 218 89 111 83 229 163 33 211 154 155 131

223 112 252 77 191 200 59 109 90 231 161 40 188 87 217 36

232 121 2 75 179 164 18 108 97 233 195 66 152 56 234 29

241 130 9 64 166 146 5 132 117 238 199 84 27 10 224 158

250 138 16 60 153 128 248 141 123 240 8 106 62 96 197 7
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5.2 Some Cryptographic Properties of Boolean Functions

The aim of this section is to present a detailed and compact overview on the most essential aspects of

Boolean functions and S-boxes related to cryptography [121; 122; 123].

De�nition 95 Let V n2 = GF (2)n be the n-dimesional vector space over the binary �eld GF (2). We call

any function g(x) from GF (2)n to GF (2) to be the n variable Boolean function, where x 2 GF (2)n; g(x) 2

[0; 1]. An (n;m) function is a mapping g = (g0; g1; g2; :::; gm) from GF (2)n to GF (2)m and every

coordinates function gi of an n variable boolean function. An (n;m) function is used in cryptosystem is

often called an (n;m) S-box. In other words, an n�m S-box S is a mapping from f0; 1gn to f0; 1gm and

can be represented by 2n m bits number.

5.2.1 Hamming Weight

Let g be n variables Boolean function. We call the numbers of 10s in a binary sequence, its Hamming

weight that is denoted by wt(g) and de�ned by the following formula:

wt(g) =

2n�1X
x=0

g(x): (5.13)

5.2.2 Hamming Distance

Let g and h are n�variables Boolean functions. Then the Hamming distance between these functions

can be calculated as follows:

d(g; h) =
2n�1X
x=0

g(x)� h(x): (5.14)

5.2.3 Algebraic Normal Form

The algebraic normal form (ANF) is an n-variables Boolean function g(x) which can be written as

follows:

g(x) = b� b0x0 � b01x0x1 � :::� b012:::n�1x0x1x2:::xn�1: (5.15)

5.2.4 Algebraic Degree

The algebraic degree of a Boolean function g(x), denoted by deg(g(x)), is de�ned to be the number of

variables in the largest product term of the function�s ANF having a non-zero coe¢ cient.
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5.2.5 Walsh Hadamard Transform

The Walsh Hadamard transform (WHT) of the truth table of a Boolean function g(x), denoted by 
(x),

is a measure of the correlation between a function and the set of all linear functions. It is de�ned by


(x) =
2n�1X
x=0

(�1)g(x)�l!(x); (5.16)

where Boolean function of the form l!(x) = !:x = !0x0 � !1x1 � :::� !n�1xn�1 is a linear function of

n variables.

5.2.6 Balanced Boolean Function

A sequence (0; 1) is called balanced if it contains an equal number of zeros and ones (one and minus

one). A function is balanced if their sequence is balanced i.e. wt(g) = 2n�1: In other words, a Boolean

function is balanced if its output is equally distributed, i.e., its weight is equal to 2n�1. This translates

in 
g(0) = 0 for the Walsh spectrum.

5.2.7 Propagation Criteria

Let g(x) be a Boolean function on GF (2)n. If for � 2 GF (2)n function g(x) � g(x � �) is balanced,

then the function g(x) is said to have a propagation criteria with respect to the vector �. If g(x) have

a propagation criteria with respect to the all vectors with 0 < wt(�) � k; then g(x) has propagation

criteria of degree k denoted by PC(k). If g(x) = 1; the function is said to satisfy the strict avalanche

criteria (SAC).

5.2.8 Correlation Immune Boolean Functions

Let 0 � k � n: The function g(x) on GF (2)n is kth order correlation immune if the following equation

X
x2GF (2)n

(�1)g(x)��:x = 0; 1 � wt(�) � k; (5.17)

is satis�ed, where wt(�) is the Hamming weight for a vector � 2 GF (2)n: In term of Walsh spectrum, a

function g is said to be correlation immune of order t, denoted by CI(t), if the output of the function is

statistically independent of the combination of any of its inputs. For the Walsh spectrum, it holds that

Wg(!) = 0; 0 � wt(!) � k:

5.2.9 Algebraic Immunity

The Boolean function obtained by the product of the truth table of two Boolean functions h and g by

h:g: The algebraic immunity (AI ) of a Boolean functions h on GF (2)n is de�ned as the lowest degree
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of the functions g from GF (2)n to GF (2) for which h:g = 0 or (h+ 1):g = 0: The function g for which

h:g = 0, is called an annihilator of h. It has been shown by Courtois in [121] that AI(h) �
�
n
2

�
. The

algebraic immunity of an S-box, denoted by AI , is de�ned as

� = ((t� r)=n)[(t�r)=n]; (5.18)

where is the number of equations it satis�es and is the number of monomials in these equations

[[122; 123]]: The algebraic immunity of an S-box depends on the number and type of linearly inde-

pendent multivariate equations it satis�es.

5.2.10 Transparency Order of S-Boxes

Since Kocher �rstly introduced the side-channel attack in 1996 [124], a lot of such attacks have been

reported on a wide variety of cryptographic implementations. Among these attacks, the DPA is one

of the most powerful attacks on iterated block ciphers. In [125], Prou¤ revised DPA attacks in terms

of correlation coe¢ cients between two Boolean functions for the hamming weight power consumption

model and introduced a new characteristic called transparency order (TO) for S-Boxes in block ciphers.

This metric is to quantify the resistance of S-Boxes against DPA attack. The TO of an n�m S-Box is

de�ned as follows:

Ts = max
�2GF (2)n

0@jm� 2wt(�)j � 1

22n � 2n
X

a2GF (2)n

������
X

v2GF (2)n;wt(v)=1

(�1)v:�DaS
W (0; v)

������
1A : (5.19)

Some properties of TO are studied in [125]. It has been proved that the smaller the TO of an S-Box,

the higher its resistance would be against the DPA attacks. The trivial but tight upper bound and the

lower bound on the TO of an (n;m) function are 0 � Ts � m:

Table 5.2: Comparative analyses of proposed chaotic S-boxes with existing block ciphers.

Algebraic Properties Proposed AES APA Gray Prime S8�AES Skipjk Xyi

Balancedness Yes Yes Yes Yes Yes Yes Yes Yes

Algebraic degree 7 7 7 7 7 7 7 7

Algebraic immunity 3 4 4 4 4 4 4 4

Correlation immunity 0 0 0 0 0 0 0 0

Transparency order 7.766 7.860 7.859 7.860 7.756 7.857 7.821 7.822

We have analyzed the strength of our proposed chaotic S-box by placing comparative study among

the existing S-boxes. The balancedness of the proposed chaotic block cipher suggest that information is

normally distributed which is an important characteristics for a block cipher to be secure against di¤erent

attacks. The algebraic degrees and correlation immunity for each S-box (see table 5.2) are same which
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shows that proposed chaotic S-box quality resistance against algebraic and correlation attacks. The

algebraic immunity and transparency order of the projected and existing S-boxes are closely rated.

These analyses are another way to study the strength of block ciphers for image and video encryption

applications.

5.3 Security Analysis

In order to test the performance of the proposed nonlinear component and its application to image

encryption, we analyze the S-box transformation process with the application of statistical tests. The

tests determine resistance to cryptanalysis by statistically analyzing the inputs and outputs. A detailed

description of these tests is presented as follows.

5.3.1 Statistical Analysis

The statistical analyses are good source of determining resistance against brute force attacks, approx-

imation attacks and di¤erential attacks. The histogram analysis provides basic information about the

distribution of pixel values after the nonlinear transformation. The e¤ects of substitution and permuta-

tion can be observed with this analysis.

Histogram Analysis

In order to measure the similarities pertaining to statistical data, the histogram analysis provides insight

into the changes caused by the substitution process. The distribution of pixel values or intensity levels

after encryption is analyzed to estimate the amount of uniformity in all the region of the image. The

original picture of sample image of Lena of size 256 � 256 is shown in Fig. 5:1(a). The encrypted

version of this picture is seen in Fig. 5:1(b) and it is observed that the texture of the image is highly

di¤used. The analysis of the histogram also yields a �at response of the distribution as seen in Fig.

5:1(c) and Fig. 5:1(d). The distribution depicted in Fig. 5:1(d) is close to uniform distribution, which

shows good di¤usion after the nonlinear transformation. While the histogram is a basic test to measure

the distribution of samples in the encrypted image, the entropy test provides deeper insight into the
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randomness of pixel values after the transformation.

5.1. (a): Plain Lena image 5.1. (b): Encrypted Lena image.

5.1. (c): Histogram of Plain Lena image. 5.1. (d): Histogram of encrypted Lena image.

Information Entropy

The degree of uncertainty is measured by the information entropy test. Higher entropy values in an

image yields more randomness that makes the perception of artifacts more di¢ cult [119]. The entropy

in an image is determined as,

H(m) = �
2m�1X
i=0

p(mi) log2(p(mi)); (5.20)

where p(mi) represents the probability of the occurrence of a pixel value mi. The entropy of an image

is represented in bits.

Table 5.3: The information entropy between plaintext and ciphertext.

Di¤erent images Entropy Ref. [109]

Plain image 7.2713 7.2713

Ciphered image 7.9972 7.9854
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A good random image data has entropy of 8. In various images, the entropy never reaches the maximum

value. After encryption, if the image encrypted data is highly random, the entropy must approach the

maximum limit of 8. If the entropy of image samples drops below 8, there is a possibility to perceive

image and the results of cryptanalysis may yield some information. In Fig. 5.1, the distribution is

estimated statistically and entropy is measured. It is seen that the experimental values are very close

to the ideal value of 8, which shown the security strength of the proposed nonlinear transformation

algorithm.

Correlation Coe¢ cient Analysis

The histogram analysis and entropy analysis show the global characteristics of randomness of an image.

The adjacent pixels must be processed to determine locally the properties exhibited by the texture before

and after encryption [126]. The correlation between two pixels in di¤erent directions is calculated by Eq.

5:21. A low correlation between adjacent pixels yields good encryption image with desirable resistance

properties. The correlation coe¢ cient is calculated as,

r =
Cov(X;Y )

S:D(X)� S:D(Y ) ; (5.21)

where

Cov(X;Y ) = �XY = E[XY ]� E[X]E[Y ]; S:D(X) =
p
E[X2]� (E[X])2; (5.22)

S:D(Y ) =
p
E[Y 2]� (E[Y ])2; E[X] =

NX
i=1

xip(xi) ; E[Y ] =
NX
j=1

yjp(yj): (5.23)

where Cov(X;Y ) is covariance of random variables X and Y; E(X); E(Y ) are expected value of and X;Y;

S:D(X); S:D(Y ) are standard deviation of random variables and respectively. The intensity values of

adjacent pixels are represented by X and Y and the number of selected adjacent pixels are given as N .

In the experiments, 1000 pairs of neighboring pixels are randomly chosen to calculate the correlation.

The results of the correlation analysis are shown in Table 5:4:

Table 5.4: The related coe¢ cient between plaintext and ciphertext.

Di¤erent images Vertical direction Horizontal direction Diagonal direction

Plain image 0.9674 0.9119 0.8753

Ciphered image 0.0107 0.0141 0.0097

Ciphered image [110] 0.0383 0.0430 0.0117
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5.3.2 Di¤erential Analysis

The encryption process must be highly sensitive to small changes at the input. A minute change at the

input must cause substantial shift in the output texture. For example, a slight modi�cation in the value

of one pixel must result in large number of changes in the encrypted image pixels. The e¤ectiveness of

di¤erential cryptanalysis diminishes while the di¢ culty level increases in determining the relationship

between input and output image. In this paper, we apply some prevailing di¤erential analysis, which

include: mean of absolute error (MAE), number of pixels change rate (NPCR) and uni�ed average

changing UACI [127, 128]. These tests are discussed as follows:

Mean Absolute Error

The grey levels in the images are quantized and represented as C(i; j). In addition, P (i; j) be represents

the gray levels acquired by individual pixels at a particular location. The dimensions of the cipher are

W �H. The two images are compared and the resulting MAE is de�ned as,

MAE =
1

W �H

WX
j=1

HX
i=1

jC(i; j)� P (i; j)j : (5.24)

NPCR Analysis

In this analysis, we consider two encrypted images whose source images only di¤er by one pixel. If the

�rst image is represented by C1(i; j) and the second as C2(i; j) , the NPCR is evaluated as,

NPCR =

P
i;j D(i; j)

W �H � 100 %; (5.25)

where D(i; j) is de�ned as

D(i; j) =

8<: 0; if C1(i; j) = C2(i; j);

1; if C1(i; j) 6= C2(i; j):
(5.26)

UACI Analysis

The UACI analysis is mathematically represented as,

UACI =
1

W �H

WX
j=1

HX
i=1

�
jC(i; j)� P (i; j)j

255

�
� 100 % (5.27)

In this work, we perform tests on a sample image of dimension 256�256 with 256 levels of gray. The

results of MAE are shown in Table 5:5 where the performance is seen with �uctuation between rows and

columns. The encryption performance increase with larger values of MAE results. The outcome of other

two tests, NPCR and UACI are shown in Table 5:5. The NPCR analysis shows response to changes of
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0.01% in the input images. In addition, the UACI show the response to a change in one pixel, which

is very low. A rapid change in the original image show little changes in the resulting encrypted image.

The results of these three tests are shown in Table 5:5.

Table 5.5: Sensitivity to plaintext and MAE.

Images NPCR Ref. [129] UACI Ref. [129] MAE

Max. Min. Average Max. Min. Average

Lena 99.68 99.54 99.6124 99.5860 33.71 33.28 33.4591 33.4190 77.35

Baboon 99.66 99.56 99.6124 - 33.66 33.32 33.4891 73.91

Peppers 99.66 99.55 99.6124 - 33.68 33.27 33.5057 74.71

5.4 Conclusion

In this work, we have proposed an algorithm to construct nonlinear components used in image encryption

applications. The chaotic Boolean bit function is employed in the construction of nonlinear substitution

components that are applied to the encryption of images. The random nature of chaotic system is fully

exploited in embedding their properties in the cryptographic system. The simulation results show high

resistance to brute force attacks, linear and di¤erential cryptanalysis. The proposed system is suitable

for high speed communication channels that carry extensive image and video data.
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Chapter 6

An E¢ cient Chaotic Image

Encryption Scheme

In this communication, we have presented a technique to synthesize resilient nonlinear mechanisms for

the construction of substitution box for image encryption that utilize a multiplicative group of nonzero

elements of Galois �eld of order 256. The proposed nonlinear component assists in transforming the

intelligible message or plaintext into an enciphered format by the use of exponential and Tinkerbell

chaotic maps. The proposed substitution box is sensitive to the initial conditions provided to the chaotic

system, which are subsequently used as parameters in creating an instance. The simulation results show

that the use of the proposed substitution box to image encryption scheme provides an e¢ cient and secure

way for real-time communications.

6.1 Exponential Chaotic Map

When we design S-box, it is very important to �nd a proper permutation which has good properties in

cryptology. We choose the following function . Let g : N ! N de�ned as:

x 7!

8<: gx mod 257; if x < 256

0; if x = 256
(6.1)

where x = gx (mod 257) and x 2 N = f0; 1; 2; :::; 255g. We select g as a primitive element which

generates the multiplicative group of nonzero elements of Galois �eld of order 256. There are 128 di¤erent

values of g. In this case the mapping x 7! gx (mod 257) is bijective. The Z�257 is a multiplicative group

of order '(257) = 256; where 257 is a prime number, ' is the Euler Totient function and '(m) is equal

to the number of integers in the interval [1;m] which are relative prime to m. The order of an element

a 2 Z�p is the least positive integer t such that at = 1(mod p). By Fermat�s Little Theorem, we know
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that, if gcd(a; p) = 1; and p is a prime number, then ap�1 = 1(mod p): Thus by Lagrange�s theorem, we

also know that the order of 45 divides the group order i.e., 256 and thus the order of 45 must be a power

of 2. We observe that so that the smallest integer (being a power of 2) such that is 256. Therefore, the

order of 45 is equal to the group order, which proves that g is the generator of the group. Thus, the

function x 7! 45x(mod 257); is a bijection from f0; 1; 2; :::; 255g to f1; 2; 3; :::; 256g.

6.2 Algebraic Expression of the Proposed S-box

In this section, we are mainly discussed the algebra of proposed S-box. The following are main steps in

constructing proposed S-boxes [136]-[137]:

� Take the multiplicative inverse in the �nite �eld Z�257; the element 256 is mapped to 0.

� The multiplicative inversion operation in the construction of S-box is the inversion Z�257 in with the

extension 256 7! 0. We de�ne the following function F (x) in Z�257 corresponding to this multiplicative

inversion step:

F (x) =

8<: x�1; if x < 256

0; if x = 256:
(6.2)

Since we can rewrite x�1 = x2
s�1 = x255 for x 6= 0 2 Z�257; we can rewrite as follows:

F (x) = x255: (6.3)

We decompose the a¢ ne transformation step in proposed S- box construction into two consecutive

functions. Let LA(x) be a linear transformation in GF (28) which can be expressed as follows:

y = LA(x); (6.4)

where 26666666666666666664

y0

y1

y2

y3

y4

y5

y6

y7

37777777777777777775

=

26666666666666666664

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

37777777777777777775

26666666666666666664

x0

x1

x2

x3

x4

x5

x6

x7

37777777777777777775

; (6.5)

with xi is the ith bit of the byte ( is the LSB) and yi is the ith bit of the byte y. As the permutation
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LA(x) is a linear map Z2, it can be expressed as a linearized polynomial [23] with 8 terms:

L(x) =
7X
i=0

�ix
2i : (6.6)

The �nal sub-step in AES S-box construction is the addition with the constant values f63g. We de�ne

the a¢ ne transformation function H(x) in GF (28):

H(x) = x� d:

The proposed S-box is the combination of the power function F (x), the linear transformation , LA(x) and

the a¢ ne transformation H(x):

S � box = H � LA � F = H(LA(F )) = LA(x
�1)� d; (6.7)

where

LA =

26666666666666666664

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

37777777777777777775

; d =

26666666666666666664

0

1

1

0

0

0

1

1

37777777777777777775

: (6.8)

The linearized polynomial of any linear permutation LA(x) over GF (28) has at most eight terms. There-

fore, if we substitute LA(x) by another linear permutation over GF (28) and/or change the constant f63g
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in H(x) by another value in GF (28). The proposed S-box is presented in Table 6.1.

Table 6.1: The proposed chaotic S-box.

2 242 113 1 64 88 185 190 17 220 236 47 240 49 9 14

55 104 43 155 102 50 83 10 135 223 56 181 72 28 227 186

189 152 60 168 172 39 109 107 13 5 18 134 197 151 221 120

199 215 213 149 157 211 243 184 119 103 251 187 45 99 67 171

91 68 167 148 84 165 212 92 117 244 23 36 228 182 100 114

226 115 65 235 207 153 245 222 139 195 111 248 225 41 219 110

75 70 231 69 23 133 159 147 214 104 87 44 170 241 140 35

128 112 200 54 127 93 188 130 48 192 230 37 22 237 146 145

137 247 158 90 141 79 179 176 57 71 46 234 61 97 3 0

62 232 125 105 77 32 194 166 142 198 205 217 253 144 209 136

76 233 180 129 106 196 94 53 95 89 4 175 218 116 238 27

101 30 163 178 121 150 96 202 118 174 19 156 201 255 208 122

126 224 51 73 6 239 210 58 206 80 131 249 40 193 252 138

143 15 98 254 25 12 66 250 161 33 11 78 169 31 81 74

7 38 164 29 42 82 16 21 183 8 20 173 154 124 160 59

162 123 24 177 132 86 229 203 63 85 191 216 52 34 246 108

6.3 Chaotic Sequence for Image Encryption

For generating the initial condition method described in [130] is used. Calculate two parameters c1 and

c2 as in Eqs. (6:9)� (6:10) :

c1 =
1

28
mod

0@m=2X
i=1

nX
j=1

Pij ; 2
8

1A ; (6.9)

c2 =
1

28
mod

0@ mX
i=m=2

nX
j=1

Pij ; 2
8

1A ; (6.10)

where Pij is the value of the image pixel at location (i; j) in the image. Additional let x00 = 0:59 and

y00 = 0:15. Compute initial conditions as in Eqs. (6:11)� (6:12)

x0 = mod [(x00 + c1); 1] ; (6.11)

y0 = mod [(y00 + c2); 1] : (6.12)
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The proposed algorithm uses Tinkerbell map based on chaotic sequence is de�ned as in Eqs. (6:13) �

(6:14) :

xn+1 = x2n � y2n + axn + byn; (6.13)

yn+1 = 2xnyn + cxn + dyn; (6.14)

where a; b; c and d are non-zero parameters which are the part of secret key. For parameter values

a = 0:90; b = �0:6013; c = 2:0 and d = 0:50, we get the chaotic attractor of this map. Such a chaotic

motion gets controlled and display regular behavior for a = 0:90; b = �0:6; c = 2:0 and d = 0:27 and

keeping other parameters same. Use x0 and y0 as the initial approximation for Eqs. (6:11)� (6:12) and

obtain two matrices of size 1� 256 as in Eqs. (6:13)� (6:14):

fXi = (x1; x2; x3; :::; xi); Yi = (y1; y2; y3; :::; yi)g : (6.15)

Now for permuting the rows and columns, we will use the following relation given below:

R(i) = R((Xi �m) mod i); (6.16)

C(j) = C((Yi �m) mod j): (6.17)
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Fig. 6.1: Flow diagram for proposed chaotic image encryption.

6.4 Statistical analyses

The statistical analyses provide insight into the working of any cryptographic system. In order to

evaluate the performance of the proposed S-box, we conduct histogram analysis, correlation analysis,

mean square error, peak signal to noise ratio, encryption quality, entropy and sensitivity analyses which

includes, mean absolute error (MAE), number of pixel changing rate (NPCR) and uni�ed average changed

intensity (UACI). The results of correlation analysis show the extent of similarity between the original

and encrypted data. If there are any traces of correlation, there is a possibility that cryptanalysis my

decipher the original data or may be able to partially interpret information. The mean squared error

(MSE) allow us to compare the pixel values of original image to encrypted image. The MSE represents

the average of the squares of the errors between actual image and ciphered image. The error is the

amount by which the values of the original image di¤er from the encrypted image. The PSNR computes

the peak signal-to-noise ratio, in decibels, between two images. This ratio is often used as a quality

measurement between the original and an encrypted image. The higher value of PSNR indicates better

quality of the image encryption. With the application of encryption to a picture change happens in pixels

values as contrasted with those qualities before encryption. Such change may be unpredictable. This

implies that the higher the change in pixels values, the more successful will be the picture encryption
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and subsequently the encryption quality. So the encryption quality may be communicated as far as

the aggregate changes in pixels values between the �rst picture and the scrambled one. A measure for

encryption quality may be communicated as the deviation between the plain image and encoded image.

In the entropy analysis, we determine the amount of randomness introduced in the plaintext. This

measure is also useful in image encryption application were visual form of data may provide additional

information about the original data. As a rule, an alluring trademark for a scrambled image is con-

tinuously touchy to the little changes in plain-image (e.g. changing only one pixel). Enemy can make

a little change in the information picture to watch changes in the result. By this system, the serious

relationship between original image and cipher image can be found. In the event that one little change

in the plain-image can result in a signi�cant change in the cipher-image, with respect to di¤usion and

confusion, then the di¤erential attack really loses its productivity and gets to be useless. There are three

basic measures were utilized for di¤erential analysis: MAE, NPCR and UACI. The greater the MAE

value, the better the encryption security. NPCR implies the number of pixels change rate of encoded

picture while one pixel of plain-image is changed. UACI which is the uni�ed average changing intensity,

measures the normal power of the contrasts between the plain-image and encrypted image. We discuss in

detail the implementation and analysis of the tests used to benchmark the performance of the proposed

S-box.

6.4.1 Histogram

One of the best outstanding features for measuring the security of image encryption systems is uniformity

of the image�s histogram of encrypted images [138]. We took six color images with size of 256� 256 that

have di¤erent contents and their histograms are calculated. The histogram of plain-images comprises

huge sharp rises followed by sharp declines and the histogram of all cipher-images under the suggested

procedure is equally identical and meaningfully diverse from that of the plain-images, which makes

statistical assaults tough (see Figs. 6:2� 6:13). Hence it does not provide any clue to be employed in a

statistical analysis attack on the encrypted image. The equation used to calculate the uniformity of a

histogram caused by the proposed encryption scheme is justi�ed by the chi-square test as follows:

�2 =
256X
j=1

(f0 � fe)2
fe

; (6.18)

where j is the number of gray levels (256), f0 is the observed occurrence frequencies of each gray level

(0 � 255); and fe is the expected occurrence frequency of each gray level while fe = M � N=256, M

and N are the height and width of the plain/cipher image, respectively. Hence, fe is equal to 256 for an

image size of 256� 256. The lower value of the chi-square test indicates a better uniformity. Assuming

a signi�cant level of 0:05; �2(255;0:05) = 293:2478: Chi-square value for the �nal encrypted Lena image of

the proposed system is 195:32 i-e., �2(test) = 195:32: This implies that the null hypothesis is not rejected
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and the distribution of the encrypted histogram is uniform �2(test) < �2(255;0:05). The chi-square values of

plain-images and cipher-images are shown in Table 6.2.

(a) (b) (c) (d)

Fig. 6.2: (a) Lena Image; (b) Histogram of Lena image for red component of Lena image (c) Histo-

gram of Lena image for green component of Lena image (d) Histogram of Lena image for blue com-

ponent of Lena image.

(a) (b) (c) (d)

Fig. 6.3: (a) Lena encrypted image; (b) Histogram of Lena encrypted image for red component of

Lena image (c) Histogram of Lena encrypted image for green component of Lena image (d) Histo-

gram of Lena encrypted image for blue component of Lena image.
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(a) (b) (c) (d)

Fig. 6.4: (a) Ti¤any Image; (b) Histogram of Ti¤any image for red component of Ti¤any image (c)

Histogram of Ti¤any image for green component of Ti¤any image (d) Histogram of Ti¤any image

for blue component of Ti¤any image.

(a) (b) (c) (d)

Fig. 6.5: (a) Ti¤any encrypted Image; (b) Histogram of Ti¤any encrypted image for red component

of Ti¤any image (c) Histogram of Ti¤any encrypted image for green component of Ti¤any image (d)

Histogram of Ti¤any encrypted image for blue component of Ti¤any image.

(a) (b) (c) (d)

Fig. 6.6: (a) Baboon Image; (b) Histogram of Baboon image for red component of Baboon image

(c) Histogram of Baboon image for green component of Baboon image (d) Histogram of Baboon

image for blue component of Baboon image.
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(a) (b) (c) (d)

Fig. 6.7: (a) Baboon encrypted Image; (b) Histogram of Baboon encrypted image for red component

of Baboon image (c) Histogram of Baboon encrypted image for green component of Baboon image

(d) Histogram of Baboon encrypted image for blue component of Baboon image.

(a) (b) (c) (d)

Fig. 6.8: (a) Pepper Image; (b) Histogram of Pepper image for red component of Pepper image (c)

Histogram of Pepper image for green component of Pepper image (d) Histogram of Pepper image for

blue component of Pepper image.

(a) (b) (c) (d)

Fig. 6.9: (a) Pepper encrypted Image; (b) Histogram of Pepper encrypted image for red component

of Pepper image (c) Histogram of Pepper encrypted image for green component of Pepper image (d)

Histogram of Pepper encrypted image for blue component of Pepper image.
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(a) (b) (c) (d)

Fig. 6.10: (a) House Image; (b) Histogram of House image for red component of House image (c)

Histogram of House image for green component of House image (d) Histogram of House image for

blue component of House image.

(a) (b) (c) (d)

Fig. 6.11: (a) House encrypted Image; (b) Histogram of House encrypted image for red component

of House image (c) Histogram of House encrypted image for green component of House image (d)

Histogram of House encrypted image for blue component of House image.

(a) (b) (c) (d)

Fig. 6.12: (a) Airplane Image; (b) Histogram of Airplane image for red component of Airplane image (c)

Histogram of Airplane image for green component of Airplane image (d) Histogram of Airplane image

for blue component of Airplane image.
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(a) (b) (c) (d)

Fig. 6.13: (a) Airplane encrypted Image; (b) Histogram of Airplane encrypted image for red compon-

ent of Airplane image (c) Histogram of Airplane encrypted image for green component of Airplane

image (d) Histogram of Airplane encrypted image for blue component of Airplane image.

6.4.2 Correlation

It is important to determine the similarity between the original image and the encrypted image. This

measure is useful for image encryption applications where the cryptanalysis has an additional advantage

of visually perceiving the encrypted image and extracting unauthorized information. This analysis is

performed in three di¤erent steps, in which the correlation between adjacent pixels in horizontal diagonal

and vertical directions is evaluated. The selected pairs of pixels in horizontal, diagonal and vertical

directions are processed for correlation in random locations in the data. Finally, the all the pixels are

processed together to see the global perspective. These three cases are presented as:

Case 1: In this step, we select adjacent pixels (typically two) in horizontal and vertical directions

from original and encrypted image and evaluate the coe¢ cients. The Table 6.2, shows the results from

this test that show considerable reduction in correlations between the two images.

Case 2: The pixels located diagonally in an image are processed to see the correlation between

closely located pixels. A random selection of approximately 1000 pair of pixels, located in diagonal

directions, is processed to determine the correlation.

Case 3: All the pixels are represented by two variables X and Y , which is the global representation

of the entire image. The correlation for this entire set of pixels is calculated as [119]:

rx;y =
�x;yq
�2x�

2
y

; (6.19)

where �x;y is covariance of random variables X and Y , �X , �Y are expected value of X and Y ; and

�2x; �
2
y are variances of random variables X and Y respectively. Each term is de�ned as follows:

�x;y =
NX
j=1

(Xj � �X)(Yj � �Y )=N; �2x =
NX
j=1

(Xj � �X)2=N; (6.20)
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�2y =
NX
j=1

(Yj � �Y )2=N; �x =
NX
j=1

Xj=N; �y =
NX
j=1

Yj=N: (6.21)

Finally Fig. 6:14, shows the correlation distribution of two horizontally adjacent pixels in the plain-image

and that in the ciphered image. It is quite evident from the analyses of these correlation images that

the proposed algorithm is capable of breaking the correlation among the pixels in neighboring which is

astonishing achievement of anticipated scheme.

(a) (b) (c) (d)

(e) (f) (g) (e)

Fig. 6.14: Correlation of two adjacent pixels: (a) Plain-Lena image, (b) Distribution of two horizont-

ally adjacent pixels in the plain-Lena image, (c) Distribution of two vertically adjacent pixels in the

plain-Lena image, (d) Distribution of two diagonally adjacent pixels in the plain-Lena image, (e) Encr-

ypted-Lena image, (f) Distribution of two horizontally adjacent pixels in the encrypted-Lena image,

(g) Distribution of two vertically adjacent pixels in the encrypted-Lena image, and (h) Distribution of

two diagonally adjacent pixels in the encrypted- Lena image.
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Table 6.2: Chi-square test and correlation coe¢ cient and of di¤erent plain-image and cipher-image.

Plain image Encrypted image

Images Chi-square Correlation coe¢ cient Chi-square Correlation coe¢ cient

values Horizontal Diagonal Vertical values Horizontal Diagonal Vertical

Lena 28588 0.9268 0.9068 0.9604 195.32 0.00091 0.0021 -0.0007

Ti¤any 133363 0.8889 0.8476 0.9266 257.23 -0.0079 0.0008 0.0005

Baboon 44395 0.6935 0.6086 0.5963 235.79 -0.0001 0.0003 0.0009

Peppers 36778 0.9455 0.8951 0.9407 240.57 0.00076 -0.0012 0.0001

House 42952 0.9328 0.8898 0.9288 249.67 0.00091 0.0051 0.0001

Airplane 163822 0.9048 0.8309 0.8940 241.52 0.00071 0.0003 -0.0005

6.4.3 Mean Square Error

To evaluate the reliability of the proposed algorithm, mean square error (MSE) between encrypted image

and original image is measured. MSE is calculated using the following equation [118]:

MSE =
1

M �N

MX
i=1

NX
j=1

(P (i; j)� C(i; j))2; (6.22)

where M � N is the size of the image. The parameters P (i; j) and C(i; j) refer to the pixels located

at the ith row and the jth column of original image and encrypted image, respectively. The larger the

MSE value, the better the encryption security (see Table 6.3).

6.4.4 Peak Signal to Noise Ratio

The encrypted image quality is evaluated using peak signal to noise ratio (PSNR) [118] which is described

by the following expressions:

PSNR = 10 log2

�
I2maxp
MSE

�
; (6.23)

where Imax is the maximum of pixel value of the image. The PSNR should be a low value which

corresponds to a great di¤erence between the original image and the encrypted image. The e¤ectiveness

of the proposed method, evaluated in terms of MSE and PSNR are tabulated in Table 6.3.

6.4.5 Encryption Quality

Plain-image pixels�gray levels change after image encryption as compared to their original values before

encryption. This means that the higher the change in pixels� values, the more e¤ective will be the

image encryption and hence the encryption quality (EQ). The quality of image encryption may be

determined as follows: let C(i; j) and P (i; j) be the gray value of the pixels in cipher and plain-image,

each of size M � N pixels with L gray levels and C(i; j); P (i; j) 2 f0; 1; 2; :::; L � 1g . We will de�ne
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HL(P ) and HL(C) as the number of occurrences for each gray level L in the plain-image and cipher-

image, respectively. The EQ represents the average number of changes to each gray level L. The larger

the EQ value, the better the encryption security (see Table 6.3). The EQ is calculated as:

EQ =
28�1X
L=0

(HL(C)�HL(P ))
2
=28: (6.24)

6.4.6 Entropy

The texture of an image can be characterized by the measurement of entropy. This quantity is de�ned

as:

H = �
N�1X
j=0

p(xj) logb p(xj); (6.25)

where a random variableX take n outcomes i-e.,fx0; x1; x2; :::; xng , p(xj) is the probability mass function

of xj outcome and b is the base of the logarithm used. A benchmark for the entropy analysis is presented

in Table 6.3. The results show that the performance of the proposed S-box better than some of the

prevailing S-boxes used in image encryption applications [118].

Table 6.3: Statistical encryption quality parameters of proposed algorithm and its comparison.

Images Projected technique Ref. [131] Ref. [132]

MSE PSNR Entropy EQ MSE PSNR Entropy

Lena 10351 9.5513 7.9979 150.12 7510 9.2322 7.9977

Ti¤any 14160 8.5132 7.9977 293.43 - - -

Baboon 8053 9.3214 7.9974 195.96 6583 9.5466 7.9970

Peppers 9050 8.9455 7.9974 175.11 8298 8.9914 7.9973

House 10259 8.9931 7.9973 149.13 - - -

Airplane 11105 8.9192 7.9972 251.95 - - -

6.4.7 Sensitivity Analyses

Attackers often make a small change to the plain-image and use the proposed algorithm to encrypt the

plain-image before and after this change. By comparing these two encrypted images they �nd out the

relationship between the plain-image and the cipher-image. This kind of attack is called di¤erential

attack. In order to resist di¤erential attack, a minor alternation in the plain-image should cause a

substantial change in the cipher-image [133, 134]. To test the in�uence of one-pixel change on the whole

image encrypted by the proposed algorithm, three common measures can be used: mean absolute error

(MAE), number of pixels�change rate (NPCR) and uni�ed average changing intensity (UACI).

107



Mean Absolute Error

The mean absolute error (MAE) is a criterion to examine the performance of resisting di¤erential attack.

Let C(i; j) and P (i; j) be the gray level of the pixels at the ith row and the jth column of anM�N cipher

and plain-image, respectively. The MAE between these two images is de�ned as [118]:

MAE =
1

M �N

M�1X
i=0

N�1X
j=0

jC(i; j)� P (i; j)j : (6.26)

The larger the MAE value, the better the encryption security. The mean absolute error (MAE) is �gured

to measure how the cipher image C(i; j) is not the same as the plain image P (i; j).

Number of Pixel Changing Rate (NPCR)

In this analysis, we consider two encrypted images whose source images only di¤er by one pixel. If the

�rst image is represented by C1(i; j) and the second as C2(i; j), the NPCR is evaluated as [135]:

NPCR =

P
i;j D(i; j)

W �H � 100%; (6.27)

where D(i; j) is de�ned as:

D(i; j) =

8<: 0; if C1(i; j) = C2(i; j);

1; if C1(i; j) 6= C2(i; j):
(6.28)

Uni�ed Average Changed Intensity (UACI)

The UACI analysis is mathematically represented as,

UACI =
1

W �H

M�1X
i=0

N�1X
j=0

����C1(i; j)� C2(i; j)255

����� 100%: (6.29)

In this work, we perform tests on a sample image of dimension 256 � 256 with 256 levels of gray. The

results of MAE are shown in Table 6.4 where the performance is seen with �uctuation between rows and

columns. The encryption performance increase with larger values of MAE results. The outcome of other

two tests, NPCR and UACI are also shown in Table 6.4. The NPCR analysis shows response to changes

of 0:01% in the input images. In addition, the UACI show the response to a change in one pixel, which

is very low. A rapid change in the original image show little changes in the resulting encrypted image.
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The results of these three tests are shown in Tables 6.4 and 6.5 respectively.

Table 6.4: Comparison of NPCR and UACI criteria

of proposed method and the others.

Images Projected technique Ref. [135]

NPCR UACI NPCR

Lena 99.6692 33.5051 99.60244

Baboon 99.6562 33.5571 -

Peppers 99.6626 33.4733 99.60352

Airplane 99.6492 33.4895 -

Table 6.5: Sensitivity to plaintext and MAE.

Images NPCR UACI MAE

Max Min Average Max Min Average

Lena 99.68 99.54 99.6124 33.71 33.28 33.4591 77.35

Ti¤any 99.67 99.57 99.6124 33.72 33.29 33.5173 76.23

Baboon 99.66 99.56 99.6124 33.66 33.32 33.4891 73.91

Peppers 99.66 99.55 99.6124 33.68 33.27 33.5057 74.71

House 99.65 99.53 99.6124 33.67 33.31 33.5251 75.65

Airplane 99.66 99.54 99.6124 33.66 33.30 33.4931 74.31

6.5 Conclusion

In this chapter, an updated version of image encryption algorithm has been o¤ered which is based

on multiplicative group of nonzero elements of Galois �eld Z�257, exponential and Tinkerbell chaotic

maps. The experimental analysis and results demonstrate that the anticipated algorithm has desirable

properties such as high sensitivity to a small change in plain-image, low correlation coe¢ cients, low

chi-square scores, high mean square values, low peak signal to noise ratio, high encryption quality and

large information entropy. All these features verify that the proposed algorithm is robust and e¤ective

for image encryption. The NPCR and UACI scores show that proposed version is extremely subtle

to a slight modi�cation in the plain-image. Several other simulation analyses and comparative studies

authenticate the enriched security performance of the suggested version.
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Chapter 7

A Novel Image Encryption

Technique Based on Hénon Chaotic

Map and S8 Symmetric Group

The structure of cryptographically resilient substitution boxes (S-boxes) plays a central role in devising

safe cryptosystems. The design of chaos-based S-boxes by means of chaotic maps obtained more devotion

in current ages. We have suggested novel S-boxes based on the chaotic maps and S8 symmetric group.

We have experimented our chaos-based S-box for image encryption applications and analyze its strength

with statistical analyses.

7.1 Fundamental Properties of Chaotic Systems

Chaos has been witnessed in many natural structures covering a signi�cant amount of technical and

industrial areas. These occurrences display de�nite possessions that mark them di¢ cult and volatile.

Chaos theory deals with constructions that progress in time to a speci�c kind of dynamical actions.

Several authors have addressed the mathematical theory of chaos due to its vast and most applicable

e¤ects in various �elds of science. In broad spectrum, these schemes follow a de�nite set of procedures of

improvement. Generally, chaos happens simply in certain deterministic nonlinear systems. Clearly, chaos

seems when there is a continuous and disorganized looking long-term progression that ful�lls de�nite

mathematical benchmarks. There are certain set of properties that sum up the features witnessed in

chaotic systems. These measured the mathematical principles that describe chaos (see Table 3.1).
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7.1.1 Chaotic Hénon Maps

The Hénon map is proposed by the French astronomer and mathematician Michel Hénon [140]. The

Hénon map has yielded a great deal of interesting characteristics as it was studied. At their core, the

Hénon map is basically a family of functions de�ned from f�� : R2 ! R2 and denoted by:

f��

0@ x

y

1A =

0@ y + 1� �x2

�x

1A ; (7.1)

where � and � are (positive) bifurcation parameters (see Figs. 7:1� 7:2 and 7.3):

Fig. 7.1: The Hénon attractor.
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Fig. 7.2: Unpredictability of Hénon map Fig. 7.3: Unpredictability of Hénon map

along x-axis. along y-axis.

7.1.2 Mathematical Properties of Hénon Map

1. The Hénon map is composition of three di¤erent transformations [141], usually denoted f1; f2 and

f3. These conversions are de�ned below:

f1

0@ x

y

1A =

0@ x

y + 1� �x2

1A ; f2

0@ x

y

1A =

0@ �x

y

1A and f3

0@ x

y

1A =

0@ y

x

1A : (7.2)

From the above de�nitions, we have f�� = f3 � f2 � f1:

2. The Hénon map is one-to-one.

3. The Hénon map is invertible. It is not obvious just from inspection, but it is possible to derive an

exact expression for f�� .

4. For � 6= 0; the inverse of f�� is f�1��

0@ x

y

1A =

0@ y
�

�1 + �
�2
y2 + x

1A :

The Hénon map has some geometrical properties which inherent stretching and folding in phase

space, which o¤ers growth to chaotic actions. The Hénon map is divided into three stages to recognize

its correspondence to the stretch and fold action [142]. The following are three phases of Hénon map:

a. Bend up: This property mainly expresses the nonlinear bending in y coordinate given by

f1(x; y) = (x; 1 + y � �x2): (7.3)

Along line parallel to x�axis (y = constant), we have a parabola with the vertex at (0; 1 + y):
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b. Contraction in x: The second geometrical characteristic is contraction in x�direction, which

is represented by the following mathematical transformation:

f2(x; y) = (�x; 1 + y � �x2): (7.4)

The contraction factor is given by the parameter �, which is 0:3 for the Hénon attractor.

c. Re�ection: The re�ection along the diagonal is represented by

f3(x; y) = (y; x): (7.5)

The e¤ect of the compression is same as apply the unique transformation one time, i.e.,

f(x; y) = f3(f2(f1(x; y))): (7.6)

A detailed relation of chaos and cryptography are given in Table 3.1.

7.2 Chaos Based Algorithm for S-box Design and Encryption

Algorithm

In this section, we have presented the algorithm to synthesize S-boxes that are based on Hénon chaotic

map. The algorithm mainly consists of �ve steps starting from de�ning initial seed from Hénon chaotic

maps to apply permutation of symmetry group to generate S-boxes. This algorithm also demonstrates

the application to image encryption systems (see Table 7.1). An instance of the proposed S-box is shown

in Table 7.2. This S-box has 16� 16 entries obtained from the Hénon chaotic map used in the proposed

algorithm.

Table 7.1: Proposed chaos-based algorithm for chaotic S-boxes and image encryption.

S.1: We have taken initial seed of 16� 16 distinct values from �rst component of Hénon chaotic

map with properly selected chaotic parameters and initial conditions.

S.2: Convert each of the values in eight bits binary.

S.3: Apply the permutation of symmetry group of S8 to each element in step 2.

S.4: Generate the sequence Sn+1 = byn+1 � 40320c, we can get the integer sequences that ranges

from 0 to 40320:

S.5: The numbers in the sequence produced by in step 4; we select the numbers as the index of the

S-boxes order to accomplish the substitution encryption of an image.
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Table 7.2: The proposed chaos and permutation symmetry group S8 S-box.

33 152 0 248 1 174 231 83 43 73 230 185 70 113 58 222

86 17 34 211 21 179 177 187 66 188 254 122 165 197 191 170

146 145 129 30 64 198 6 157 252 173 82 219 132 88 101 162

100 45 19 65 77 208 194 81 192 130 171 32 53 245 37 68

4 62 41 186 212 184 150 79 183 253 94 46 131 16 60 31

36 102 169 205 237 246 144 149 90 154 14 10 24 50 240 72

223 142 117 119 148 23 22 98 178 18 96 118 105 232 155 202

249 103 161 108 199 109 203 128 106 20 47 196 176 244 42 195

49 251 54 163 29 209 48 213 216 110 137 51 217 115 168 236

38 40 15 189 59 135 134 9 39 61 139 234 210 2 180 52

207 243 55 121 8 13 166 175 147 143 3 67 85 172 107 133

226 116 95 153 78 7 228 200 111 63 159 229 126 97 141 26

92 138 112 57 76 218 204 80 125 241 27 220 89 120 167 104

127 28 12 11 255 151 214 93 193 75 239 160 250 56 69 25

201 123 140 71 225 235 233 136 35 158 224 91 242 221 215 247

164 206 5 124 74 181 238 156 227 182 84 114 190 99 44 87

(a) (b)

Fig. 7:4 : Plain (a) and encrypted (b) images of size 256�256.
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7.3 Statistical Analyses of Proposed Algorithm

In this section, we mainly discussed the statistical features of an image, which are mainly texture qualities

of an image. An image texture is a set of measures considered in image handling designed to measure

the observed quality of an image. Image quality o¤ers us evidence about the spatial organization of

color or strengths in an image or designated region of an image. The texture features are characteristics,

which are used to capture the graphical assets of an image either comprehensively for the complete image

or in the neighborhood for sections or stu¤s. The graphical appearances of similar areas of real-world

images are frequently identi�ed as quality. As an image is made of pixels, texture can be de�ned as

a unit containing jointly connected pixels or cluster of pixels and thus leading to graphical feature of

images. An image can be designated with the help of measurements of �rst order for gray intensities of

the pixels inside a locality. The instances of such qualities taken from the image histogram are mean

and standard deviation (SD). The characteristics of second order are based on gray level co-occurrence

matrix (GLCM) [143]-[147] and it is the best widespread approaches for pixel deviation information.

The features of second order are entropy, contrast, homogeneity, energy and correlation of the gray level

pixels de�ned as follows:

H = �
P

i

P
j p(xi; xj) log p(xi; xj); (7.7)

C =
P

i

P
j ji� jj

2
p(i; j); (7.8)

Hhom =
P

i

P
j p(i;j)

1+ji�jj ; (7.9)

E =
P

i

P
j p(i; j)

2; (7.10)

r =
P

i

P
j(i��i)(j��j)
�i�j

p(i; j); (7.11)

where i and j are two dissimilar gray levels of the image, p is the number of the co-occurrence of gray

levels i and j, �i, �j are mean of i and j levels of image, �i and �j are the standard deviations at i and

j levels of an image. Entropy is used to measure the content of an image with higher value indicating

an image with richer details. Contrast is used to measure the intensity change between a pixel and its

neighbor over the entire image and is 0 for a constant image. Homogeneity processes the resemblance of

gray-scale levels across the image and ranging from zero to unity inclusive. Thus, higher the variations in

the grayscale, the higher the GLCM di¤erence and lower the homogeneity. GLCM energy deals with total

probability of distinctive grayscale con�gurations in image, and its value is unity for a constant image.

Correlation returns an amount of how interrelated a pixel is to its locality over the entire image, and it

is used to measure the joint probability of occurrence of particular pixel sets. The range of correlation

coe¢ cient lies between [�1; 1]. The encryption through the proposed algorithm is given in Fig. 7.4.

Tables 7.3 and 7.4 give comparison of the texture features of original and encrypted images. From the

calculated values of entropy (see Table 7:3), we have observed that the entropy values of original images
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are far from ideal value of entropy, which is eight bits, since data sources are extremely redundant and

thus hardly produce evenly scattered random messages, whereas the entropy values of the encrypted

images are near to the best value, which means that the suggested encryption procedure is decidedly

strong against entropy attacks. The value of contrast for original image is 0:298752; whereas for an

encrypted image 7:810361; which clearly re�ects that, intensity change between a pixel and its neighbor

over the entire encrypted image is high (see Table 7:3). The low value of homogeneity for encrypted

image shows the higher GLCM di¤erence and higher di¤erences in the grayscale. Energy analyses of

both original and encrypted images reveal that quantity of recurring pairs is low for encrypted image,

which is a signi�cance of the proposed algorithm. Finally, we have broken the correlation among the

adjacent pixels values as seen from the numerical values of correlation of an encrypted image (see Table

7:4). The values of entropy and contrast of the suggested S-box is greater than Skipjack, Gray and Xyi

S-boxes, whereas homogeneity, energy and correlation are smaller than Skipjack, Gray and Xyi S-boxes

which clearly re�ect the advantage of our proposed chaotic S-boxes (see Table 7.3).

Table 7.3: Comparison of texture features of plain and ciphered images.

Texture features Plain image Cipher image

Proposed Skipjack [107] Gray [107] Xyi [107]

Entropy 7.431821 7.997300 7.8939 7.9299 7.9127

Contrast 0.298752 7.810361 5.4255 7.7961 7.8942

Homogeneity 0.896043 0.464131 0.5004 0.4567 0.4605

Energy 0.095504 0.028240 0.0232 0.0198 0.0188

Correlation 0.963788 0.009761 0.3123 0.1014 0.1413

Table 7.4: Texture features of plain and ciphered images for color components.

Texture features Plain image Cipher image

Red Green Blue Red Green Blue

Contrast 0.301416 0.29136 0.296596 5.230890 5.423430 5.152970

Homogeneity 0.894101 0.899973 0.897468 0.463997 0.459866 0.465617

Energy 0.112931 0.096232 0.109009 0.026159 0.024618 0.026601

Correlation 0.969755 0.964698 0.956038 0.075238 0.081073 0.075988
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7.4 Conclusion

In this work, we have proposed a new procedure for designing chaotic S-boxes and its application in

image encryption. This procedure is based on Hénon chaotic map and S8 permutation. Experimental

assessments have been carried out with complete statistical scrutiny, which reveals the strength of the

projected procedure against numerous kinds of attacks. Additionally, performance along with valuation

and investigations determine that the suggested image encryption algorithm is vastly protected. The

proposed encryption scheme is capable of high-speed encryption and decryption, which is appropriate

for encryption and broadcast applications.
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Chapter 8

A New Implementation of Chaotic

S-boxes in CAPTCHA

A Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a

program that can generate and grade tests that humans can pass but current computer programs cannot.

The humans can read distorted text as the one shown below, but current computer programs can�t. We

have proposed a novel chaos based CAPTCHA. We have utilized our proposed S-box and used chaotic

iterative relation to select a completely random CAPTCHA for the security of web portal and other user

interface multimedia where human interaction with the machine is veri�ed.

8.1 Introduction

A CAPTCHA (an acronym for "Completely Automated Public Turing test to tell Computers and Hu-

mans Apart") is a kind of test reaction test utilized as a part of �guring to �gure out if or not the client

is human. The term emerged in 2000 by Luis von Ahn, Manuel Blum, Nicholas J. Hopper of Carnegie

Mellon University and John Langford of IBM. The most well-known kind of CAPTCHA was initially

designed by Mark D. Lillibridge, Martin Abadi, Krishna Bharat and Andrei Z. Broder. This type of

CAPTCHA obliges that the client sort the letters of a twisted picture, in some cases with the expansion

of a clouded arrangement of letters or digits that show up on the screen. Since the test is controlled by

a machine, rather than the standard Turing test that is directed by a human, a CAPTCHA is once in a

while portrayed as a reverse Turing test. This term is equivocal in light of the fact that it could likewise

mean a Turing test in which the members are both endeavoring to demonstrate they are the machine

[150]-[155].

The CAPTCHA has a few applications for reasonable security. Most bloggers are acquainted with

projects that submit fake remarks, normally with the end goal of raising web search tool positions of
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some site for instance purchasing penny stocks. This is called remark spam. By utilizing a CAPTCHA,

no one but people can enter remarks on an online blog. There is no compelling reason to make clients

sign up before they enter a remark, and no true blue remarks are ever lost. A few organizations o¤er free

email administrations. Up until a couple of years prior, the majority of these administrations experienced

a particular kind of assault: "bots" that would sign up for a great many email accounts consistently.

The answer to this issue was to utilize CAPTCHAS to guarantee that just people have acquired free

records. In general, free administrations ought to be ensured with a CAPTCHA so as to forestall misuse

via mechanized projects. The thought is straightforward: keep a machine from having the capacity to

emphasize through the whole space of passwords by obliging it to unravel a CAPTCHA after a speci�c

number of unsuccessful logins.

It is o¤ and on again enthralling to keep webpages unlisted to keep others from discovering them

e¤ectively. There is a html tag to keep web search tool bots from perusing site pages. The label, on

the other hand, doesn�t promise that bots won�t read a page; it just serves to say "no bots, please."

Search motor bots, since they generally have a place with huge organizations, admiration website pages

that would prefer not to permit them in. Nonetheless, so as to positively ensure that bots won�t enter a

site, CAPTCHAs are required. CAPTCHAs additionally o¤er a conceivable arrangement against email

worms and spam. CAPTCHAs must be available. CAPTCHAs built exclusively in light of perusing

content, other visual-recognition undertakings, keeps outwardly weakened clients from getting to the

secured asset. Any execution of a CAPTCHA ought to permit blind clients to get around the boundary,

for instance, by allowing clients to select a sound CAPTCHA. Pictures of content ought to be contorted

haphazardly before being displayed to the client. Numerous executions of Captchas use undistorted

content, or content with just minor contortions. These usage are defenseless against straightforward

computerized assaults. Our main goal in this chapter is to propose an innovative CAPTCHA scheme

that is based on chaotic iterative map and S-boxes [156]-[163].

8.2 Logistic Map

The Logistic map is a polynomial mapping (proportionally, repeat connection) of degree 2, regularly

referred to as a prototype illustration of how perplexing, chaotic behavior can emerge from extremely

basic non-linear dynamical equations. The map was promoted in a seminal 1976 paper by the scientist

Robert May [148], to some extent as a discrete-time demographic model closely resembling the Logistic

equation initially made by Pierre François Verhulst [149]. Mathematically, the Logistic map is a non-

linear repeated connection with a solitary control parameter r

xn+1 = rxn(1� xn): (8.1)

The recurrence relation is started with x0 between 0 and 1. For r < 3; the recurrence relation quickly
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meets to a limit, i.e. after convergence, each iteration o¤ers the identical value for x. For 3 < r � 3:5; the

limiting behavior is an oscillation between two values. Hence two iterations are required before the same

x value is obtained. Hence at r = 3, a period doubling has occurred. A second period doubling occurs

near r = 3:45 and another near r = 3:545: A careful inspection of the �gure below (called a bifurcation

diagram) shows that there are more period doublings and that the values r of at which the period

doublings occur get closer together (see Fig. 8.1).

(a) (b)

Fig. 8.1: The The chaotic bifurcation diagram of Logistic map.

Near r = 3:59 , the system becomes chaotic. There is no periodicity in the limiting behavior. Further-

more, for those values of r for which the system is chaotic, the sequence of xn generated by the logistic

map depends sensitively on the beginning value x0.

8.2.1 De�nition

Let g : I ! I; has an sensitive dependence on initial conditions at x 2 I if 9 � > 0 such that 8 � > 0,

9 y and m with jy � xj < � but jgm(y)� gm(x)j > �.

8.2.2 Lyapunov Exponents

The quantitative measures of sensitive dependence on initial condition are calculated through Lyapunov

exponents. Let X � R and g : I ! I be the function of class C1 .

8.2.3 De�nition

The Lyapunov exponent of g at x0 2 X is:

�g(x0) = lim
m!1

1

m
ln j(gm)0(x0)j = lim

m!1

1

m

m�1X
j=0

ln jg0(xj)j ; (8.2)
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where xi = gi(x0). The Lyapunov exponents measure the average values of ln jg0j along the orbit. The

map has sensitive dependence on initial condition at x0 if �g(x0) > 0 and doesn�t at x0 if �g(x0) < 0:

8.3 Chaotic Hyperchaotic Lorenz system

The Lorenz system is inspired by the model or air �ow in atmosphere in 1950�s and is the �rst numerical

study on chaos. The system dynamics are represented by the following equation:

dx

dt
= a(y � x); (8.3)

dy

dt
= x(b� z)� y + w; (8.4)

dz

dt
= xy � cz; (8.5)

dw

dt
= �dx: (8.6)

The system is hyperchaotic for the parameters are a = 10; b = 28; c = 8=3 and d = �5 with the initial

conditions x0 = y0 = z0 = w0 = 0 and �40 � x � 40; �40 � y � 40; �40 � z � 40; �40 � w � 40; The

system exhibits chaotic behavior for the selected parameters and intervals [113]-[116].

8.3.1 Linear Fractional Transformation S-boxes

In linear fractional transformation (LFT) substitution boxes are constructed by the action PGL(2; GF (28))

on �nite �eld of order 28. The algebraic structure of LFT S-boxes depends on the linear fractional trans-

formations f(x) = ex + h=kx + l where e; h; k and l 2 GF (28). With this method, one can construct

millions of secure S-boxes, particularly the boxes corresponding to a¢ ne transformation satis�ed the

security analysis with optimal value. The construction of LFT S-boxes is as follows :

f : PGL(2; GF (28))�GF (28)! GF (28); (8.7)

f(x) =
ex+ h

kx+ l
: (8.8)

The process starts with the action of Galois �eld on the projective general linear group. The function

f(x) depends on the values of e; h; k and l 2 GF (28), corresponding to every di¤erent combination of
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e; h; k and l from GF (28) one can construct a new 8� 8 S-box (see Fig. 8.2).

Fig. 8.2: Flow chart for chaotic S-box.
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Table 8.1: Proposed chaotic S-box.

243 195 197 44 75 107 12 32 215 234 24 150 6 194 21 83

146 250 58 209 217 206 117 94 161 142 222 2 178 151 96 52

78 55 92 131 81 241 238 47 82 116 86 111 162 158 118 174

232 124 164 64 176 143 122 144 219 184 25 53 130 8 208 31

102 203 225 7 242 60 40 128 72 253 236 216 134 90 120 218

204 182 231 214 153 180 54 85 23 66 1 41 188 156 20 187

9 76 159 171 114 65 106 18 227 179 33 149 223 210 38 69

63 251 113 132 93 154 136 211 104 14 230 228 105 133 88 233

110 244 70 98 108 42 181 167 138 43 221 183 191 50 165 145

152 30 39 68 193 101 5 140 147 246 125 62 84 247 235 67

190 119 89 239 79 201 252 127 207 245 137 0 26 255 73 185

226 249 141 205 155 196 172 91 45 212 202 29 51 17 135 87

4 10 213 170 46 248 199 19 115 77 49 27 103 15 95 198

36 28 254 35 3 48 139 240 186 148 100 168 22 189 166 123

74 34 71 229 13 109 97 200 57 169 192 99 237 175 129 121

112 11 173 157 61 177 59 56 37 160 163 80 126 220 224 16

8.4 Types of CAPTCHA

In this section, we are giving some basic types of CAPTCHA which are used in current email servers

(see Fig. 8.3).

Fig. 8.3: CAPTCHA for Yahoo, Google and MSN.

8.4.1 Types of CAPTCHAs

There are fundamentally three types of CAPTCHAs which are used commonly:
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� 1. Visual-based CAPTCHAs

2. Sound based CAPTCHAs

3. Graphics based CAPTCHAs

8.4.2 Visual Based CAPTCHAs

Visual based CAPTCHAs come in a few assortments, where the most well-known ones being utilized

are contorted content installed as a part of images and shape distinguishment.

Text CAPTCHAs

These are easy to execute. The least complex yet novel methodology is to present the client with a few

inquiries which just a human client can comprehend. Samples of such inquiries are:

1. What is thirty minus four?

2. What is the third letter in Mathematics?

3. Which of Green, Friday and Qasim is a color?

4. If yesterday was a Monday, what is the day after tomorrow?

Such inquiries are simple for a human client to illuminate, however, its exceptionally hard to program

a machine to tackle them. These are likewise agreeable to individuals with visual incapacity, for example,

those with color blindness. Other content Captchas includes content mutilations and the client is asked

to distinguish the content covered up. The di¤erent executions are Gimpy, EZ-Gimpy (a variation of

Gimpy), Pessimal Print, and Ba­ etext. Gimpy was initially created by Luis von Ahn from Carnegie

Mellon University and in addition outlining a rearranged adaptation of Gimpy, called EZ-Gimpy ("At-

tack," 2002). EZ-Gimpy is right now being utilized by Yahoo! also a comparative form is utilized via

Hotmail (Bruno, 2003). The primary distinction in the middle of Gimpy and EZ-Gimpy is that Gimpy

has three or more words twisted inside a picture, while EZ-Gimpy generally just has one contorted word

in the picture. Likewise, in Gimpy, three or more words must be speculated accurately keeping in mind

the end goal to breeze through the test. Both are apparently equivalent in that they both utilize a

lexicon that has a sum of 850 words to pick the words that are masked inside the bended picture (Bruno,

2003; Vijayan, 2003). Figs. 8.4 and 8.5, demonstrates a case of Gimpy.
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Fig. 8.4: Gimpy CAPTCHA. Fig. 8.5: Yahoo�s Ez �Gimpy CAPTCHA.

Pessimal Print (see Fig. 8.6) was composed in 2000 via Baird from UC Berkeley/Palo Alto Research

Center (PARC) and was one of the �rst visual based Captchas (Bruno, 2003; Chew & Baird, 2003).

The test includes perusing a statement that was corrupted and the test is passed if the saying in the

picture was speculated accurately. Notwithstanding, the word reference of the conceivable words that

can be picked is just 70 words, which makes it extremely vulnerable to assaults, since it would be not

di¢ cult to have a brute-force attack break this CAPTCHA program. Ba­ etext is the latest visual based

CAPTCHA which was produced in 2003 by Monica Chew and Henry Baird from UC Berkeley. It is

more e¤ective than the formerly said visual Captchas in that it doesn�t utilize words that are found as

a part of an English word reference, utilizes numerous distinctive text styles, and does not debase the

picture utilizing physical science based corruptions in which other visual Captchas utilization (Chew &

Baird, 2003). This is an extraordinary change over EZ-Gimpy and Pessimal Print in that it anticipates

brute-force attack and attack from Optical Character Recognition (OCR) programs in that Ba­ etext

gives a complex covering strategy that totally dis�gures the picture by embedding squares, rings, and

ovals, di¤ering the length and width of the shape, and coloring the state of diverse shades of dark (Chew

& Baird, 2003).

Fig. 8.6: Ba­ e Text examples.
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An illustration of shape distinguishment CAPTCHA is Bongo (see Fig. 8.7). This test exhibits two

groups of shapes in which the shapes in each one gathering are identi�ed with one another somehow.

An alternate shape is found beneath the two gatherings and the object of this test is to �gure out which

group the shape �ts in with (Ahn, Blum, & Langford, 2004). The test is passed when the group that the

shape has a place with is e¤ectively picked. A comparative system which does this is PIX, which uses

pictures other than simple shapes. The principle contrast is that it asks what does picture portrayed.

Notwithstanding, PIX is not viewed as a CAPTCHA since it can be e¤ortlessly assaulted by an alternate

system which can look in its database and discover the picture and the name that is connected with it

(Ahn, Blum, & Langford, 2004). This project can be made into a CAPTCHA by distorting the images

for the test.

Fig. 8.7: Bongo CAPTCHA.

8.4.3 Sound based

A sound-based CAPTCHA is utilized for the most part to aid the individuals who are hard of hearing

or have listened to issues. A sample of a sound-based CAPTCHA is called sounds. This CAPTCHA is

utilized as a part of Hotmail, Yahoo!, and Altavista notwithstanding the visual-based Captchas when

enlisting for a record for each of these email administrations. The test plays an audio clip which contains

the recording of a distorted word or grouping of numbers and it is passed if the saying or numbers are

speculated e¤ectively (Robinson, 2002).

8.4.4 Graphic CAPTCHAs

Graphic Captchas are di¢ culties that include pictures or substances that have a comparability that the

clients need to �gure. They are visual riddles, like Mensa tests. The machine creates the riddles and

grades the answers, yet is itself not able to solve it. CAPTCHA that obliges two steps to be passed.

To begin with step guest clicks somewhere else on the picture that made out of a couple of pictures

and chooses thusly a solitary picture. Second step the chose picture is stacked. It is developed, however

abundantly contorted. Likewise variations of the answer are stacked on the customer side. The guest

ought to choose a right reply from the set of the proposed words.
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8.5 Proposed Chaotic CAPTCHA Based on S-box

In the present section, we have presented a proposed CAPTCHA technique that is based on chaotic

Logistic map and projective S-box. The algorithm of proposed CAPTCHA technique is given as follows:

Algorithm

1. Firstly, we have constructed a chaotic projective S-box that is based on linear fractional transform-

ation and hyperchaotic Lorenz system.

2. Secondly, we have taken logistic map for the selection of random numbers from our proposed chao-

tic S-box.

3. Thirdly, we have generated a random string of standard implementation-independent characters (AS-

CII codes : 32-127) from our projected S-box with the help of Logistic map.

4. Fourthly, we have limited all these standard characters within the limit of keyboard characters in order

to use our CAPTCHA e¤ectively.

5. Fifthly, We have generated M CAPTCHA questions in a pool related to the string generated in step 4.

What is a color of a speci�c character in a string of length N?).

6. Lastly, after answering successfully, the user will be able to connect to the server being a human.
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Fig. 8.8: Flow chart for proposed chaotic CAPTCHA.
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Table 8.2: Output of proposed chaos based string.

The outputs produced with the help of anticipated technique clearly elucidate sensitivity to initial

conditions. We are then select some questions from our generated pool about the chaotic string. Finally,

we have answered selected questions in constructed pool and login to web portal as a human not as

a machine. Our proposed schemes of CAPTCHA generation, qualify for good candidates of secure

CAPTCHA. Moreover, CAPTCHA generated through suggested chaotic technique is highly sensitive to

chaotic parameters and initial conditions which create confusion and di¤usion capability in a single step

which is necessary for any secure communication mechanism.

8.6 Conclusion

To conclude, we have presented an approach that relates to the �elds of chaos and pattern recognition

to cryptography. We have not only constructed chaotic S-box, but also used it in a CAPTCHA im-

plementation. This methodology permits us to practice the evolution of a chaotic system near a phase

transition to embed and protect a secret token that can subsequently be used for cryptographic purposes.

Our method can be enthusiastic and candidly executed on a widespread diversity of prevailing computer

structures and devices and, in our opinion, o¤ers a momentous stage advancing in the security of con�-

dential data as compared to the presently existing techniques. We are con�dent that our outcomes can

open a region for future research. The proposed idea is tested for selecting di¤erent initial conditions

and chaotic parameters to generate substantial structures in varieties potentially acceptable to human

users. Potential future directions include sound and graphics CAPTCHAs applications.
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Chapter 9

A Copyright Protection Using

Watermarking Scheme Based on

Nonlinear Permutation and its

Quality Metrics

The advancement of the Internet stretched as frequently as it can in the openness of modernized data,

for instance, image, audio and video for public usage. Digital watermarking is a building that deliv-

ers surety and support to data check, security and copyright protection of cutting edge media. This

chapter combines the purpose of investment study watermarking de�nition, thought and the guideline

responsibilities in this �eld, for instance, orders of watermarking process that advice which watermarking

procedure should be used. It starts with de�ning some basics and proposing scheme which is based on

nonlinear permutation, Least Signi�cant Bits (LSB), chaotic Logistic and Gauss maps. Finally distance

metrics for proposed scheme discussed to assure the watermark in test image.

9.1 Digital Watermarking Technology

As a rising engineering, digital watermarking includes the plans and hypotheses of diverse subject scope

such as indicator transforming, cryptography, likelihood hypothesis and stochastic hypothesis, system

innovation, algorithms con�guration and di¤erent methods [165]. Advanced watermarking shrouds the

copyright data into the computerized information through certain algorithm. The secret data is to be

implanted might be some content, serial number, organization logo and pictures with some exceptional

essentialness. This secret data is connected to the advanced information (images, audio and videos) to
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guarantee the security, information con�rmation, distinguishing proof of holder and copyright insurance.

The watermark could be covered up in the advanced information either noticeably or imperceptibly. For

a solid watermark installing, a great watermarking strategy is required to be connected. Watermark

could be inserted either in spatial or frequency domain. Both the domains are distinctive and have their

own particular advantages and disadvantages and are utilized as a part of diverse situation.

9.2 Preliminaries

In this section, we de�ned some basic de�nitions that will be used in subsequent sections.

9.2.1 Distance Function

A distance function on a given set M is a function d : M �M ! R; where R denotes the set of real

numbers, that satis�es the following conditions:

1. d(x; y) � 0; and d(x; y) = 0 if and only if x = y: (Distance is positive between two di¤erent points,

and is zero precisely from a point to itself.)

2. It is symmetric: d(x; y) = d(y; x): (The distance between x and y is the same in either direction.)

3. It satis�es the triangle inequality: d(x; z) � d(x; y) + d(y; z): (The distance between two points is

the shortest distance along any path).

Such a distance function is known as a metric. Together with the set, it makes a metric space.

9.2.2 Euclidean Distance of Images

Among all the image metrics, Euclidean distance is the most commonly used due to its simplicity. Let

x and y be twoM�N images, x =
�
x1; x2; x3; :::; xMN

�
, y =

�
y1; y2; y3; :::; yMN

�
, where xkM+l ; ykN+l are

the gray level at location (k; l). The Euclidean distance is given by:

dE(x; y) =

vuutMNX
k=1

(xk � yk)2: (9.1)

All theM�N images are easily discussed inM�N dimensional Euclidean space, called image space.

It is natural to adopt the bases � = (�1; �2; �3; :::; �MN ) to form a coordinate system of the image space

where �kN+l corresponds to an ideal point source with unit intensity at the location (k; l). Thus an

image x =
�
x1; x2; x3; :::; xMN

�
, where xkN+l, is the gray level at the (k; l)th pixel, is represented as a

point in the image space, and xkN+l is the coordinate with respect to �kN+l. The origin of the image

space is an image whose gray levels are zero everywhere [171].
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9.2.3 Squared Euclidean Distance

The standard Euclidean distance can be squared in order to place progressively greater weight on objects

that are farther apart. In this case, the equation becomes

d2SE(x; y) =
MNX
k=1

(xk � yk)2; (9.2)

The squared Euclidean distance is not a metric as it does not satisfy the triangle inequality, however

it is frequently used in optimization problems in which distances only have to be compared. It is also

referred to as quadrance within the �eld of rational trigonometry.

9.2.4 Mahalanobis Distance

To account for di¤erences in variance between the variables, and to account for correlations between

variables, we use the Mahalanobis distance:

d2MD(x; y) = (xi � yi)cov�1(xi � yi)T ; (9.3)

where cov�1 is covariance of random variables x and y respectively.

9.2.5 Normalized Euclidean Distance

If the covariance matrix is the identity matrix, the Mahalanob is distance reduces to the Euclidean

distance. If the covariance matrix is diagonal, then the resulting distance measure is called a normalized

Euclidean distance [28]:

d(�!x ;�!y ) =

vuut NX
i=0

(xi � yi)2
s2i

; (9.4)

where si is the standard deviation of the xi and yi over the sample set.

9.2.6 Manhattan Distance

The distance between two points in a grid based on a strictly horizontal and/or vertical path (that is,

along the grid lines), as opposed to the diagonal or "as the crow �ies" distance. The Manhattan distance

or city block distance is the simple sum of the horizontal and vertical components, whereas the diagonal

distance might be computed by applying the Pythagorean theorem. The mathematical expression for

the city block distance is:

dM (x; y) =
MNX
k=1

��xk � yk�� : (9.5)

132



The Manhattan distance function computes the distance that would be traveled to get from one data

point to the other if a grid-like path is followed. The Manhattan distance between two items is the sum

of the di¤erences of their corresponding components. The City block distance is always greater than or

equal to zero. The measurement would be zero for identical points and high for points that show little

similarity. The following �gure illustrates the di¤erence between Manhattan and Euclidean distances:

(a) (b)

Fig. 9.1: Di¤erence between Manhattan and Euclidean distances.

9.2.7 Cosine Distance Measure

Hearst (1997) used the ad hoc Cosine-distance measure for scoring the text blocks in the TextTiling

algorithm. The concept of the Cosine-distance measure is explained in [173]. Given two N dimensional

vectors x and y then the cosine similarities between them are calculated as follows [173]:

dCS(x; y) =

PN
i=0 xi:yir�PN

i=0 x
2
i

��PN
i=0 y

2
i

� : (9.6)

The cosine distance is de�ned as follows:

dCD(x; y) = 1�
PN

i=0 xi:yir�PN
i=0 x

2
i

��PN
i=0 y

2
i

� : (9.7)

This measure also yields a score ranging from 0 to 1; unlike the original Cosine-distance measure, higher

scores indicate higher possibility of topic shift [172].

9.2.8 Distance Correlation

In statistics and in probability theory, distance correlation is a measure of statistical dependence between

two random variables or two random vectors of arbitrary, not necessarily equal dimension. An important

property is that this measure of dependence is zero if and only if the random variables are statistically
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independent. This measure is derived from a number of other quantities that are used in its speci�cation,

speci�cally: distance variance, distance standard deviation and distance covariance. The correlation

between two data points x =
�
x1; x2; x3; :::; xMN

�
and y =

�
y1; y2; y3; :::; yMN

�
in RN and is given by

[172]:

Corr(x; y) =

PN
i=1(xi � x)(yi � y)qPN

i=1(xi � x)2
qPN

i=1(yi � y)2
; (9.8)

which can also be represented by:

Corr(x; y) =
(xi � x)(yi � y)

jj(xi � x)jj jj(yi � y)jj
; (9.9)

where x:y is the scalar product of x and y. The correlation based distance is given as follows:

dDC(x; y) =
p
1� Corr(x; y); (9.10)

where x; y 2 RN . Note that the bound for the distance correlation is 0 � dDC(x; y) � 1. The following

are metric properties of correlation distance:

1: dDC(x; x) = 0; (9.11)

2: dDC(x; y) = dDC(y; x); (9.12)

3: dDC(x; z) � dDC(x; y) + dDC(y; z); (9.13)

Some statistical properties of distance correlations are:

1. dDC(x; y) = 0, x and y are independent:

2. dDC(x; y) = 1; implies that the dimensions of the linear spaces spanned by x and y samples,

respectively, are almost surely equal and if we assume that these subspaces are equal, then in this

subspace y = A1 + a2A2x; for some vector A1, scalars a2 y and orthonormal matrix A3.

9.2.9 Mutual Information

The �rst goal of a prediction model is to minimize the uncertainty on the dependent variable. A good

formalization of the uncertainty of a random variable is given by Shannon and Weaver�s [174]. While

�rst developed for binary variables, it has been extended to continuous variables. Let X and Y be two

random variables (they can have real or vector values). We denote �X;Y the joint probability density

function (pdf) of X and Y . We recall that the marginal density functions are given by

�X(x) =
X
y

�X;Y (x; y); (9.14)
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and

�Y (y) =
X
x

�X;Y (x; y): (9.15)

Let us now recall some elements of information theory. The uncertainty on Y is given by its entropy

de�ned as

H(Y ) = �
X
y

�Y (y) log�Y (y): (9.16)

If we get knowledge on Y indirectly by knowing X, the resulting uncertainty on Y knowing X is given

by its conditional entropy, that is

H (Y jX) = �
X
x;y

�X;Y (x; y) log�X;Y (yjx): (9.17)

The joint uncertainty of the (X;Y ) pair is given by the joint entropy, de�ned as

H(X;Y ) = �
X
x

X
y

�X;Y (x; y) log�X;Y (x; y): (9.18)

The mutual information between X and Y can be considered as a measure of the amount of knowledge

on Y provided by X (or conversely on the amount of knowledge on X provided by Y ). Therefore, it can

be de�ned as [175]:

I(X;Y ) = H(Y )�H(Y jX); (9.19)

which is exactly the reduction of the uncertainty of Y when X is known. If Y is the dependent variable

in a prediction context, the mutual information is thus particularly suited to measure the pertinence of

X in a model for Y [175]. Using the properties of the entropy, the mutual information can be rewritten

into

I(X;Y ) = H(X) +H(Y )�H(X;Y ); (9.20)

that is, according to the previously recalled de�nitions, into [175]:

I(X;Y ) =
X
x;y

�X;Y (x; y) log
�X;Y (x; y)

�X(x)�Y (y)
: (9.21)

Therefore we only need to estimate in order to estimate the mutual information between X and Y by

Eqs. (9:19)� (9:21).

9.2.10 Mutual Information Variation

The joint entropy minus mutual information

d(X;Y ) = H(X;Y )� I(X;Y ); (9.22)
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where H(X;Y ) is joint entropy of random variables X and Y and I(X;Y ) is the joint mutual information

of random variables X and Y respectively [175].

9.2.11 Normalized Mutual Information Variation

The mutual information variation divided by joint entropy. The mathematical expression for normalized

mutual information variation is given as follows [175]:

dN (X;Y ) =
I(X;Y )

H(X;Y )
: (9.23)

9.3 Some Basic Properties of Boolean Functions

9.3.1 Boolean Functions

A boolean function with m inputs is a mapping g : GF (2)m ! GF (2), where m 2 N. The Boolean

function g : GF (2)m ! GF (2) is a a¢ ne one when it can be represented as g(x) = amxm�am�1xm�1�

:::�a1x1�a0 where x = [xm; xm�1; :::; x1] and ai 2 GF (2), i = 0; 1; 2; ::;m. The a¢ ne function g is linear

when a0 = 0: Let �i be n dimensional binary vector being the binary representation of an integer which

can be written in decimal form, i.e., �0 = [0; 0; 0; :::; 0]; �1 = [0; 0; 0; :::; 1]; :::; �2m�1 = [1; 1; 1; :::; 1]:

Then the binary vector [g(�0); g(�1); :::; g(�2m�1)] is called the truth table of the Boolean function

g : GF (2)m ! GF (2). The truth table uniquely describes the Boolean function, hence writing we mean

usually the binary vector representing its truth table. For a given Boolean function we de�ne the polar

function bg(x) = (�1)g(x) which takes the values from the set f�1; 1g. We denote wt(a) the Hamming

weight of the binary vector a = [am; am�1; :::; a1] 2 GF (2)m, which is the number of ones in a, i.e.

wt(a) =
P2m�1

i=1 ai. For two vectors a; b 2 GF (2)m their Hamming distance is de�ned as the number

of places where the coordinates of these vectors are di¤erent, i.e., d(a; b) = wt(a � b). For given two

Boolean functions g; h : GF (2)m ! GF (2) , their Hamming distance is de�ned as the number of places

at which are di¤erent their truth tables, i.e., d(g; h) = # fx 2 GF (2)mjg(x) 6= h(x)g = wt(g � h) =P
x2GF (2)m g(x)� h(x); where wt(g � h) is the Hamming weight of the function g � h [167].

De�nition 96 For a Boolean function f, the Walsh Hadamard transform is de�ned by

b
g(�) = X
x2Bn

bg(x)bL�(x); (9.24)

where bg(x) = (�1)g(x) and Bn is the set of Boolean function. We denote the maximum absolute value

taken by the Walsh Hadamard transform by

WHTmax(g) = max
�2Bn

jb
g(�)j: (9.25)
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De�nition 97 The nonlinearity Ng of a Boolean function f is its minimum distance to any a¢ ne func-

tion. It is given by

Ng =
1

2
(2n �WHTmax(g)): (9.26)

It is known that for n even, the maximum non-linearity attainable is [164]:

Nmax(g) = 2
n�1 � 2n2�1; (9.27)

but such functions (bent functions) are not balanced. For a given permutation g 2 Pn is the set of all

permutations over GF (2n) we de�ne its nonlinearity as

Ng = min
i

�
Ngi ; Ng�1i

�
;

where gi = (g1; g2; :::; gn) and g
�1
i = (g�11 ; g�12 ; :::; g�1n ) are coordinates of the original and the inverse

permutations respectively.

9.3.2 Permutation Polynomials

Let p be a prime and q is a power of p. Let Fq be a �nite �eld with elements q. A polynomial g 2 Fq[x] is

called a permutation polynomial of Fq if the mapping x 7! g(x) is a permutations of Fq. Every function

from Fq to Fq can be represented by a polynomial in Fq[x]. In fact, if  : Fq ! Fq is an arbitrary

function from Fq to Fq, then there exist a unique polynomial g 2 Fq[x] with deg(g) � q�1 representing  ,

that is g(d) =  (d) for all d 2 Fq. The polynomial g can be found by Lagrange�s interpolation technique

for the function  . If  is already given as a polynomial function, say c 7! f(c) where f 2 Fq[x] ,

then g can be obtained from by reduction modulo xq � x. We call permutations of Fq PPs over Fq.

These permutation polynomials play a central role in both arithmetic and combinatorial aspects of �nite

�elds. The permutation polynomials have important applications in Coding theory, Cryptography, Finite

Geometry, Combinatorics and Computer science among other �elds [168]-[170].

Theorem 98 Given a permutation f, its nonlinearity can be calculated as

Ng = min
�2Lnn

min
i=1;2;:::;n

(N(g��)i) = min
�2Lnn

min
i=1;2;:::;n

(N(fg�1��)i); (9.28)

where Lnn is the set of all linear permutations and (g � �)i represents the ith coordinates of a composite

permutations g � �:
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9.3.3 Exponent Permutations

The exponent permutations is of the form

f(x) = (h(x))e mod p(x); (9.29)

where p(x) is irreducible polynomial of degree n which generates a Galois �eld GF (2n), e is any

positive integer and h(x) 2 GF (2n) [164].

9.3.4 Example

Let us consider GF (23) generated by p(x) = x3 + x2 + 1 and two permutations given as follows:

f1(x) = (h(x))
2 mod p(x); f2(x) = (h(x))

3 mod p(x): (9.30)

The permutations along the Walsh transforms are given below (see Tables 9:1� 9:2):

Table 9.1: Permutation and Walsh transform for f1.

GF (23) f1 F1 F2 F3 F

0 0 4 4 4 28

1 1 �4 0 0 �4

2 4 0 0 0 0

3 5 0 0 0 0

4 7 0 �4 0 �8

5 6 0 0 0 0

6 3 0 0 �4 �16

7 2 0 0 0 0

Table 9.2: Permutation and Walsh transform for f2.

GF (23) f 2 F1 F2 F3 F

0 0 4 4 4 28

1 1 2 0 0 2

2 5 0 �2 0 �4

3 2 �2 �2 0 �6

4 6 0 �2 �2 �12

5 4 �2 2 �2 �6

6 7 0 0 �2 �8

7 3 �2 0 2 6
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In space GF (24), we have seen that the set of linear exponents f1; 2; 3; 4; 8g and the set of nonlinear

ones f7; 11; 13; 14g. The rest of exponents do not give permutations they are factor of 24 � 1 = 15 and

they do not have inverses. Nonlinear exponent permutations have the same maximum nonlinearity equal

to 4 [164].

Corollary 99 Any permutation

(h(x))e mod p(x); (9.31)

where p(x) is a generator of GF(2n); is a linear permutation for e=1,2,4,...,2n�1:

Corollary 100 (h(x))e permutes GF (q) if and only if (e,q-1)=1.

9.4 Algebraic Preliminaries and S-box Construction

For the study of algebraic construction of the S-box a theorem is stated here without proof [166].

Theorem 101 Let p be a non-zero element of a principle ideal domain R then R/(p) will be a �eld if

and only if p is irreducible. According to this theorem, for a prime p ,Galois �eld GF(pn) is constructed

by using a generating polynomial q(x) of degree n taking

GF (pn) =
GF (2)[x]

< q(x) >
: (9.32)

In AES algorithm, the irreducible polynomial x8+x4+x3+x+1 is used to generate underlying �eld

GF (28). All bytes b in Rijndeal are interpreted as elements of this �eld represented by a polynomial

c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 + c7x

7, where each bit ci 2 GF (2) and b 2 GF (28). In this

�eld, addition � and multiplication 
 are de�ned by the XOR operation and polynomial multiplication

modulo the generating polynomial respectively. A S-box is a transformation S : GF (pn)! GF (pn): In

AES the S-box S : GF (28) ! GF (28) is constructed by substitution each element with its inverse and

applying a suitable a¢ ne transformation S : x ! Ax�1 � b; where A is belonging from general linear

groups of degree 8 over GF (2) and b 2 GF (28).

A =

26666666666666666664

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

37777777777777777775

; b =

26666666666666666664

1

1

0

0

0

1

1

0

37777777777777777775

(9.33)
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The motivation for this S-box design is to be resistant to di¤erential, linear cryptanalysis and in-

terpolation attacks. The core design is a simple transformation this mapping has a simple algebraic

expression. However, the simplicity itself makes it vulnerable to attacks like the interpolation attack.

The purpose of the constant translation vector b is to ensure that there exists no �xed and conjugate

�xed points (i.e. @ x 2 GF (28) such that S(x) = x and S(x) = x) in the S-box.

9.4.1 Design of Copyright Protection Technique

The proposed watermark technique is based on small �eld of sixteen elements GF (24) i-e; whose elements

have of the form:

GF (24) =
Z2[X]

< p(x) >
=
�
b0 + b1x+ b2x

2 + b3x
3 : bi 2 Z2

	
; (9.34)

where p(x) = x4 + x + 1 is an irreducible polynomial. The following tables shows the elements of

GF (24) and nonlinear permutations based on GF (24) (see Table 9.3-9.5):

Table 9.3: Representations of Galois �eld GF (24).

Exp. Polynomials Binary Decimal

�1 0 0000 0

�0 1 0001 1

�1 � 0010 2

�2 �2 0100 4

�3 �3 1000 8

�4 �+ 1 0011 3

�5 �2 + � 0110 6

�6 �3 + �2 1100 12

�7 �3 + �+ 1 1011 11

�8 �2 + 1 0101 5

�9 �3 + � 1010 10

�10 �2 + �+ 1 0111 7

�11 �3 + �2 + � 1110 14

�12 �3 + �2 + �+ 1 1111 15

�13 �3 + �2 + 1 1101 13

�14 �3 + 1 1001 9
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Table 9.4: Nonlinear permutation generated with Galois �eld GF (24):

h(x) Nonlinear permutations of GF (24):

f(x) = (h(x))7mod p(x) f(x) = (h(x))11mod p(x)

Polynomials Decimals Polynomials Decimals

0 0 0 0 0

1 1 1 1 1

x x3 + x+ 1 11 x3 + x2 + x 14

x2 x3 + 1 9 x3 + x+ 1 11

x3 x3 + x2 12 x3 8

x+ 1 x3 + x2 + 1 13 x3 + 1 9

x2 + x x2 + x 6 x2 + x+ 1 7

x3 + x2 x3 + x2 + x+ 1 15 x3 + x2 12

x3 + x+ 1 x+ 1 3 x2 4

x2 + 1 x3 + x2 + x 14 x3 + x2 + 1 13

x3 + x x3 8 x3 + x 10

x2 + x+ 1 x2 + x+ 1 7 x2 + x 6

x3 + x2 + x x2 4 x 2

x3 + x2 + x+ 1 x3 + x 10 x3 + x2 + x+ 1 15

x3 + x2 + 1 x 2 x2 + 1 5

x3 + 1 x2 + 1 5 x+ 1 3
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Table 9.5: Nonlinear permutation generated with Galois �eld GF (24):

h(x) Nonlinear permutations of GF (24):

f(x) = (h(x))13mod p(x) f(x) = (h(x))14mod p(x)

Polynomials Decimals Polynomials Decimals

0 0 0 0 0

1 1 1 1 1

x x3 + x2 + 1 13 x3 + 1 9

x2 x3 + x2 + x 14 x3 + x2 + 1 13

x3 x3 + x 10 x3 + x2 + x+ 1 15

x+ 1 x3 + x+ 1 11 x3 + x2 + x 14

x2 + x x2 + x 6 x2 + x+ 1 7

x3 + x2 x3 8 x3 + x 10

x3 + x+ 1 x 2 x2 + 1 5

x2 + 1 x3 + 1 9 x3 + x+ 1 11

x3 + x x3 + x2 + x+ 1 15 x3 + x2 12

x2 + x+ 1 x2 + x+ 1 7 x2 + x 6

x3 + x2 + x x2 + 1 5 x+ 1 3

x3 + x2 + x+ 1 x3 + x2 12 x3 8

x3 + x2 + 1 x+ 1 3 x2 4

x3 + 1 x2 4 x 2

The S-box is generated by determining the multiplicative inverse for a given nonlinear permutations (see

Table 9.4) generated by

GF (24) =
Z2[X]

< x4 + x+ 1 >
=
�
d0 + d1x+ d2x

2 + d3x
3 : di 2 Z2

	
: (9.35)

The multiplicative inverse is then transformed using the following a¢ ne transformation:

S � box
AES

= G � L � I; (9.36)

where L(x) is the linear mapping, I(x) is inverse functions that gives inverse of nonzero elements of

Galois �eld and zero is mapped to itself and G is translational function that is G(x) = x � b. The

circulant matrix over GF (2) is of the form

26666664
0 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

37777775 : (9.37)
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Finally, we have obtained four di¤erent S-boxes which are given as follows:

Table 9.5: Proposed S-boxes based on nonlinear permutations.

j
. . . i 0 1 2 3

0 11 0 10 7

1 2 9 8 4

2 13 15 12 3

3 5 1 6 14

j
. . . i 0 1 2 3

0 11 0 15 10

1 12 7 3 2

2 5 9 1 8

3 6 4 14 13

S-box-1 S-box-2

j
. . . i 0 1 2 3

0 11 0 9 15

1 1 10 8 12

2 6 7 4 3

3 14 2 13 5

j
. . . i 0 1 2 3

0 11 0 7 9

1 4 15 3 1

2 14 10 2 8

3 13 12 5 6

S-box-3 S-box-4

9.4.2 Least Signi�cant Bits

In computing, the least signi�cant bit (lsb or LSB) is the bit position in a balancing whole number giving

the units esteem, that is, �guring out if the number is even or odd. The lsb is at times alluded to as the

right-most bit, because of the meeting in positional documentation of composing less signi�cant digit

further to the right. It is similar to the least signi�cant digit of a decimal number, which is the digit in

the ones (right-most) position [165].

9.4.3 Most Signi�cant Bits

The most signi�cant bit (msb or MSB, likewise called the high-order bit) is the bit position in a parallel

number having the highest value. The msb is in some cases suggested to as the left-most bit because of

the assembly in positional documentation of composing more signi�cant digits further to the left [165].

9.4.4 Chaotic Gauss Map

The Gauss map (also known as Gaussian map or mouse map), is a nonlinear iterated map of the real

into a real interval given by the Gaussian function:

xn+1 = e�
x
2
n + �; (9.38)

where 
 and � are real parameters. Named after Johann Carl Friedrich Gauss, the function maps the

bell shaped Gaussian function similar to the logistic map. In the parameter real space xn can be chaotic.
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For 
 = 0:62 and � 2 [�1; 1] with initial approximation x0 = 0:1, this maps exhibits chaotic behavior

[176].

9.4.5 Chaotic Logistic Map

A simple system that is useful to illustrate some properties of chaotic systems is the logistic map. This

is a non-linear recurrence relation with a single control parameter r,

xn+1 = r(1� xn): (9.39)

Near r = 3:59; the system becomes chaotic. There is no periodicity in the limiting behavior. Furthermore

for those values of r for which the system is chaotic, the sequence of xn generated by the logistic map

depends sensitively on the beginning value x0 [176].

9.4.6 Proposed Watermarking Scheme

In this section, we have implemented the proposed algebraic structure to watermarking. Our main

purpose here is to hide an invisible watermarked with the help of proposed S-boxes and least signi�cant

digits. The algorithm and �ow chart of the proposed watermarking scheme is given as follows:

Algorithm

1. Take an image in which watermarked is to be embedded.

2. Transform values of each pixel into an array of eight bits.

3. Separate MSBs and LSBs for each pixel of test image.

4. Using chaotic Gauss map to locate position of LSB where mark is to be placed.

5. Apply chaotic Logistic map that decide which proposed S-box is used for watermark.

6. Apply S-box transformation on LSBs that signify the position of values in selected S-box

that has to be replacing with binaries of LSBs.

7. Repeat steps 4-6, until the whole image is replaced.

8. Lastly, rebuild MSBs and transform LSBs.
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Fig. 9.1: Flow chart of proposed copyright protection algorithm.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Fig. 9.2: (a) Original Lena image of size,(b)Watermarked image of size,(b-e-g) Red,

Green and Blue components of original image,(c-f-g) Red, Green and Blue components

of watermarked image.

9.4.7 Performance Evaluation Metric

In this section, we have utilized proposed performance analysis for watermarked images. This sec-

tion mainly described computational results which authenticate the insertion of watermarked inside the

original image. The �rst distance metric which is Euclidean distance clearly shows that there is a wa-

termarked inside the image after applying the proposed algorithm. As the distance value is 11.68380000

which is only possible when some of the pixels intensities di¤er from original one. In a similar fashion,

SED, NSED, MD, CD and DC clearly reveal the di¤erence between original and watermarked images.

In term of probability distribution, MIV and NMIV values for original and watermarked images au-

thenticate the embedding of watermark. With the help of these proposed quality metrics, we can easily

draw signi�cant di¤erence between host image (original data) and watermarked image without plotting
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histogram analysis.

Table 9.6: Metric distances for original and watermarked images with proposed scheme.

Proposed features Numerical results for proposed features

ED 11.68380000

SED 136.5120000

NSED 0.000576846

MD 7643.130000

CD 0.000293304

DC 0.001149590

MIV(original image) 0.868448000

MIV(watermarked image) 0.449630000

NMIV(original image) 0.614551000

NMIV(watermarked image) 0.376516000

9.5 Conclusion

There are di¤erent techniques used in watermarking for security of images which based on frequency

domain, spatial domain and spread spectrum algorithm. In this chapter, we have used spatial domain

method that based on LSB for security of images, which is easy, simple and more e¤ective method.

The proposed scheme is robust due to its algebraic properties where, we have used small Galois �eld to

construct S-boxes which are hold onto any secure communication. The main purpose here to reduce the

computational complexity that is involved in large size S-boxes. Moreover, we have presented a novel

statistical procedure for testing watermarked images which is yet not been presented in literature.
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Chapter 10

Construction of Substitution Boxes

over the Classes of Chain Rings

The meanings of passing information from one side to other side by a conventional way is been changed

because of Internet and Communication Technology. The issues of the security and the uprightness

of information increase due to fast developments in digital world. Presently digital communication has

become an important part of transmission of information securely. There are various Internet applications

which are utilized to convey covertly. As an outcome, the security of data against unapproved access

has turned into a prime target. This leads to parts of advancement of di¤erent systems for information

hiding. Cryptography and Watermarking are famous techniques for hiding information accessible to

conceal information safely. Our main goal here is to develop innovative algorithms for information

hiding which includes cryptography, watermarking and steganography but we will concentrate on �rst

two in this chapter. Moreover, we construct novel S-boxes which is based on �nite chain rings and

apply statistical analyses to examine the strength of proposed algorithms of image encryption and

watermarking.

10.1 Galois Rings and their Groups of Unit Elements

In this section, we discuss some elementary concepts, for instance; Local commutative ring with identity,

Galois extension ring, unit elements, and maximal cyclic subgroup of group of invertible elements of a

Galois ring.

10.1.1 Galois Rings

We begin with some basic de�nitions of unitary (local) commutative rings.
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De�nition 102 Let R be a commutative ring with unity. An element u is unit in R if there exists an

element v in R such that u:v = 1, where 1 is the identity of R.

De�nition 103 A commutative ring R with unity is said to be local if and only if its all non-unit

elements form an additive Abelian group. For instance Zpk , p is a prime integer and k is any positive

integer, is a local ring.

De�nition 104 Let R be a commutative ring with unity. A non-zero element a is a zero divisor in R

if there exists a non-zero element b in R such that a:b = 0.

De�nition 105 Let (R;M) be a local commutative ring with unity. An irreducible polynomial f(x) 2

R[x] over R is said to be a basic irreducible polynomial if it is irreducible over the corresponding residue

�eld K; where (K = R=M).

Consider the �nite local ring Zpk , where p is prime and k is a positive integer with corresponding

residue �eld Zp. Now Zpk [x] = fa0 + a1x + a2x
2 + ::: + anx

n : ai 2 Zpk ; n 2 Z+g is the polynomial

extension of Zpk in the variable x and Zp[x] = fa0 + a1x + a2x
2 + ::: + anx

n : ai 2 Zp; n 2 Z+g is

the polynomial extension of Zp in the variable x: Let f(x) 2 Zpk [x] be a basic irreducible polynomial

with degree h: Ideal generated by f(x) is denoted as hf(x)i and de�ned as hf(x)i = fa(x):f(x) : a(x) 2

Zpk [x]g: Let R =
Z
pk
[x]

hf(x)i = fa0 + a1x + a2x
2 + ::: + ah�1x

h�1 : ai 2 Zpkg denote the set of residue

classes of polynomial in x over Zpk ; modulo the polynomial f(x). This ring, denoted by GR(pk; h); is a

commutative ring with identity and is called the Galois extension of Zpk : Also GR(pk; 1) is isomorphic

to Zpk ; and GR(p; h) =
Z
pk
[x]

hf(x)i = K is isomorphic to GF (ph); a Galois �eld extension of Zp having ph

elements, where f = rp(f) polynomial f which has coe¢ cient modulo p [196]-[198].

10.1.2 Maximal Cyclic Subgroup of Group of Units of Galois Rings

Let K� and R� be the multiplicative group of units of �eld and the ring K and R; respectively. Then

R� is an Abelian group and can be written in the direct product of cyclic subgroups. By the following

Theorem from [1, Theorem 2], between these cyclic subgroups, there is only one cyclic subgroup of order

ph � 1:

Theorem 106 R� has one and only one cyclic subgroup of order relatively prime to p: This cyclic

subgroup has order ph � 1:

The cyclic subgroup of order ph � 1 can be generated by the generator of the corresponding �nite

�eld. This cyclic subgroup is denoted by Gn; where n = ph � 1. Since the order of K� and Gn is the

same, i.e., ph � 1 and both will be cyclic. Therefore Gn is isomorphic to K�:
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10.2 Construction of S-boxes based on Maximal Cyclic Sub-

groups

In order to create confusion in a data many techniques can be used to do so. One of these technique is

using an S-box. The strongest S-boxes are constructed through mathematical formulas and systematic

calculations. In order to improve the quality many have worked in the Galois �elds GF (2n); 1 � n � 8

and created numerous S-boxes. In [199], a 4� 4 S-box over maximal cyclic subgroup of group of units of

Galois ring GR(4; 4) is constructed with its application in watermarking. However, as an extension to

[199], in this section a novel construction technique of 4 � 4 S-boxes with the utility of maximal cyclic

subgroups of groups of units of the Galois rings GR(4; 4), GR(8; 4) and GR(32; 4) is given. While, in

each three cases the maximal cyclic subgroups G15 of orders 15 are, respectively, isomorphic to the cyclic

Galois group GF (2; 4)�. The association of maximal cyclic subgroups with admiring cyclic Galois group

GF (2; 4)�, which are caused by the mod-2 reduction maps from local commutative rings Z4, Z8 and

Z32 to their common residue �eld Z2, supports in construction of the 4� 4 S-boxes over maximal cyclic

subgroups. Of course these newly designed S-boxes are increasing complexity during encryption and

decryption.

10.2.1 S-box Construction Algorithm on Galois Ring GR(2m; 4)

Given below is the procedure, de�ning the S-box in 4 steps:

Step.1: Inversion function I : Gn [ f0g ! Gn [ f0g:

Step.2: Linear scalar multiple function f : Gn [ f0g ! Gn [ f0g:

Step.3: Take composition of I � f to get (n+ 1)� (n+ 1) S-box.

Step.4: Apply permutations Sn to each element of S-box obtained in step 3, which gives us n! S-boxes.

The map described above is nothing more than a substitution within the set Gn[f0g. An element of

the set is substituted with the element next to its respective inverse. (In this case we de�ne this direction

with increasing power of the generator) or in other words the scalar multiplied with the inverse. In the

examples below we discuss and analyze this construction method for S-boxes of size 4� 4.

Let us consider the local rings Z4 = f0; 1; 2; 3g;Z8 = f0; 1; 2; : : : ; 7g and Z16 = f0; 1; 2; : : : ; 15g;

and Z32 = f0; 1; 2; : : : ; 31g; whereas Z2 = f0; 1g; is their common residue �eld. The monic polynomial

f(x) = x4 + x + 1 is basic irreducible over the local rings Z4; Z8; Z16 and Z32 such that f(x) =

f(x) mod 2 = x4 + x+ 1 is irreducible polynomial over Z2.
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10.2.2 S-box on GF (24)

Take the polynomial ring Z2[x] = fa0+a1x+a2x2+ � � �+anxn : ai 2 Z2; n 2 Z+g in one indeterminate x

over binary �eld Z2. Let < f(x) >= fa(x):f(x) : a(x) 2 Z2[x]g be the principal ideal in Z2[x]; generated

by f(x). Then elements of Galois extension �eld K = Z2[x])=(< f(x) >); of order 16 are given in Table.

10.1.

Table 10.1: Elements of Galois �eld GF (24):

Exp. Polynomial Binaries Representation Exp. Polynomial Binaries Representation

�1 0 0000 7 1 + x2 + x3 1011

0 1 1000 8 x2 0010

1 1 + x 1100 9 x2 + x3 0011

2 1 + x2 1010 10 1 + x+ x2 1110

3 1 + x+ x2 + x3 1111 11 1 + x3 1001

4 x 0100 12 x3 0001

5 x+ x2 0110 13 1 + x+ x3 1101

6 x+ x3 0101 14 x+ x2 + x3 0111

Now, let us construct the S-box on the Galois �eld extension GF (24) ( see Table. 10.1). It can be seen in

Table 10.2 that it is the most basic S-box and it satis�es all the fundamental properties being an S-box.

Table 10.2: S-box on GF (24):

0 11 12 6

3 8 4 2

1 9 13 15

14 7 10 5

10.2.3 S-box on GR(4; 4)

Let Z4[x] = fa0 + a1x + a2x
2 + � � � + anx

n : ai 2 Z4; n 2 Z+g is the polynomial ring with one

indeterminate x and < f(x) >= fa(x):f(x) : a(x) 2 Z4[x]g is a principal ideal generated by f(x). Thus

R = (Z4[x])=(< f(x) >) = fa0 + a1x+ a2x
2 + � � � a(4�1)x(4�1) : ai 2 Z4g is the Galois ring extension of

order 256 with corresponding Galois �eld extension K = (Z2[x])=(< f(x) >) of order 16; whose elements

are given in Table 1. K� = Knf0g becomes the multiplicative group of units of the �eld K. Now, let

R� be the multiplicative group of units of the Galois ring R. Then the maximal cyclic subgroup of R�,
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isomorphic to the cyclic Galois group K�, of order 15 is denoted by G15 and it is given in Table 10.3.

Table 10. 3: Elements of G15 [ f0g in GR(4; 4):

Exp. Polynomial Exp. Polynomial

�1 0 0000 14 x+ 3x2 + x3 0131

0 1 1000 16 3 + 3x 3300

2 1 + 2x+ x2 1210 18 3 + x+ x2 + 3x3 3113

4 3x+ 2x2 0320 20 x+ 3x2 + 2x3 0132

6 2 + x+ 3x3 2103 22 1 + 3x2 + x3 1031

8 x2 0010 24 3x2 + 3x3 0033

10 3 + 3x+ x2 + 2x3 3312 26 3 + x3 3001

12 2 + 2x+ 3x3 2203 28 1 + 3x+ 2x2 + x3 1321

Followed by the construction algorithm and using maximal cyclic subgroup of Table 10.3. We obtain

S-box given in the Table 10.4.

Table 10.4: S-Box on GR(4; 4):

0 67 215 159

25 240 15 16

1 113 116 198

109 45 202 44

10.2.4 S-box on GR(8; 4)

Z8[x] = fa0+a1x+a2x2+ � � �+anxn : ai 2 Z8; n 2 Z+g is the polynomial ring with one indeterminate x

and < f(x) >= fa(x):f(x) : a(x) 2 Z8[x]g is principal ideal generated by f(x). Thus R = (Z8[x])=(<

f(x) >) = fa0 + a1x+ a2x2 + � � � a(4�1)x(4�1) : ai 2 Z8g is the Galois ring extension of order 4096 with

corresponding Galois �eld extension K = (Z2[x])=(< f(x) >) of order 16, whose elements are given in

Table 10.4. K� = Knf0g becomes the multiplicative group the �eld K. Now, let R� be the multiplicative

group of units of R. Then the cyclic subgroup of R�, isomorphic to K�, of order 15 is denoted by G15
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and is given in Table 10.5.

Table 10.5: Elements of G15 [ f0g in GR(8; 4):

Exp. Polynomial Exp. Polynomial

�1 0 0000 14 x+ 7x2 + x3 0171

0 1 1000 16 7 + 7x 7700

2 1 + 2x+ x2 1210 18 7 + 5x+ 5x2 + 7x3 7557

4 3x+ 6x2 + 4x3 0364 20 4 + x+ 7x2 + 6x3 4176

6 2 + x+ 3x3 2103 22 1 + 7x2 + 5x3 1075

8 4 + 4x+ x2 + 4x3 4414 24 4x+ 3x2 + 3x3 0433

10 3 + 7x+ x2 + 2x3 3712 26 7 + 5x3 7005

12 6 + 6x+ 3x3 6603 28 5 + 7x+ 2x2 + 5x3 5725

By using proposed S-box construction algorithm and using maximal cyclic subgroup of Table 10.5, we

obtain S-box given in the Table 10.6.

Table 10.6: S-Box on GR(8; 4):

0 3 111 123

81 224 63 100

1 193 200 10

189 195 60 152

10.2.5 Nonexistence of S-box on GR(16; 4)

Z16[x] = fa0+a1x+a2x2+� � �+anxn : ai 2 Z16; n 2 Z+g is the polynomial ring with one indeterminate x

and < f(x) >= fa(x):f(x) : a(x) 2 Z16[x]g is principal ideal generated by f(x). Thus R = (Z16[x])=(<

f(x) >) = fa0+a1x+a2x2+ � � � a(4�1)x(4�1) : ai 2 Z16g is the Galois ring extension of order 65535 with

corresponding Galois �eld extension K = (Z2[x])=(< f(x) >) of order 16, whose elements are given in

Table 10.7. K� = Knf0g becomes the multiplicative group the �eld K. Now, let R� be the multiplicative

group of units of R. Then the cyclic subgroup of R�, isomorphic to K�, of order 15 is denoted by G15
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and is given in Table 10.7.

Table 10.7: Elements of G15 [ f0g in GR(16; 4):

Exp. Polynomial Exp. Polynomial

�1 0 0000 14 9x+ 15x2 + x3 09F1

0 1 1000 16 15 + 7x+ 8x3 F708

2 1 + 2x+ x2 1210 18 15 + 13x+ 5x2 + 15x3 FD5D

4 3x+ 6x2 + 4x3 0364 20 12 + 9x+ 15x2 + 6x3 C9F6

6 2 + x+ 8x2 + 3x3 2183 22 1 + 7x2 + 13x3 107D

8 4 + 4x+ 9x2 + 4x3 4494 24 4x+ 11x2 + 11x3 04BB

10 3 + 7x+ x2 + 10x3 371A 26 15 + 8x+ 8x2 + 5x3 F885

12 14 + 14x+ 8x2 + 3x3 EE83 28 13 + 15x+ 2x2 + 13x3 DF2D

Followed by the construction algorithm and using maximal cyclic subgroup of Table 10.7, we obtain

S-box given in the Table 10.8.

Table 10.8: S-Box on GR(16; 4):

0 143 223 115

33 64 127 68

1 1 144 18

253 156 238 48

The structure Table 10.8 is not an S-Box as repetition of 1 on two positions. So, this gives us a counter

example that, not every maximal cyclic subgroup of the group of units of Galois ring extension generates

an S-box.

10.2.6 S-box on GR(32; 4)

Z32[x] = fa0+a1x+a2x2+� � �+anxn : ai 2 Z32; n 2 Z+g is the polynomial ring with one indeterminate x

and < f(x) >= fa(x):f(x) : a(x) 2 Z32[x]g is principal ideal generated by f(x). Thus R = (Z32[x])=(<

f(x) >) = fa0 + a1x+ a2x
2 + � � � a(h�1)x(h�1) : ai 2 Z32g is the Galois ring extension of order 1048576

with corresponding Galois �eld extension K = (Z2[x])=(< f(x) >) of order 16, whose elements are

given in Table 10.9. K� = Knf0g becomes the multiplicative group the �eld K. Now, let R� be the

multiplicative group of units of R. Then the cyclic subgroup of R�, isomorphic to K�, of order 15 is

denoted by G15 and is given in Table 10.9.
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Table 10.9: Elements of G15 [ f0g in GR(32; 4):

Exp. Polynomial Exp. Polynomial

�1 0 0000 28 13 + 15x+ 18x2 + 13x3 DFID

0 1 1000 32 17 + 2x+ 17x2 + 16x3 H2HG

4 3x+ 6x2 + 4x3 0364 36 2 + 17x+ 8x2 + 3x3 2H83

8 4 + 20x+ 9x2 + 20x3 4K9K 40 3 + 23x+ x2 + 26x3 2N1Q

12 30 + 14x+ 8x2 + 19x3 UE8J 44 16 + 25x+ 15x2 + 17x3 GPFH

16 31 + 7x+ 24x3 V 700 48 15 + 29x+ 5x2 + 31x3 FT5V

20 28 + 9x+ 31x2 + 6x3 S9V 6 52 17 + 16x+ 7x2 + 29x3 HG7T

24 16 + 4x+ 11x2 + 11x3 G4BB 56 31 + 8x+ 24x2 + 5x3 V 8O5

Followed by the construction algorithm and using maximal cyclic subgroup of Table 10.9, we obtain

S-box given in the Table 10.10.

Table 10.10: S-Box on GR(32; 4):

0 17 34 60

96 175 81 255

1 48 237 222

31 227 144 132

So, we are not certain if Gs of every Galois ring will generate an S-box for us. This implies that

with a certain polynomial and Galois ring structure we are not sure if we will get an S-box over it

or not. It shows that, the method discussed in [11] is not an e¢ cient technique to get S-boxes for

use in di¤erent applications. Even though these newly designed S-boxes are increasing encryption and

decryption di¢ culty as compare to the S-boxes constructed over Galois �eld GF (2; 4).

10.3 Basic Preliminaries of Finite Chain Ring of the Type F2[u]
<uk>

=

F2 + uF2 + � � �+ uk�1F2

Let R be a ring. An element v is unit in R if there exists an element w in R such that vw = 1, where 1

is the identity of R. Unit elements of a ring form a multiplicative group. A non-zero element a is a zero

divisor in R if there exists a non-zero element b in R such that ab = 0. A nonzero element a is said to

be nilpotent element in R if there exists a positive integer k such that ak = 0. The least positive integer

k with this property is known as the nilpotency index a.

A ring R is local if and only if its all non-unit elements form an additive Abelian group. More
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unambiguously a local ring R has a unique maximal idealM and the factor ring R
M is its residue �eld.

A local �nite ring R is a chain ring if and only if the radical M of R is a principal ideal (consists

of all multiples of a �xed element of R; and this �xed element is called the generator of the ideal), and

therefore the factor ring R
M is a �eld. Thus ideals of a chain ring form a chain. The famous examples of

such rings are; Zpn , the ring of integers modulo pn where p is prime, and the Galois �eld GF (pn) = Fq
with q = pn elements. Another large class of �nite chain rings is the Galois rings GR(pn; r) = Zpn [x]

<f(x)> ,

where f(x) 2 Zpn [x] is monic irreducible polynomial of degree r generates the principal ideal < f(x) >;

however f(x) is also irreducible modulo the prime p; i.e. f(x) is the basic irreducible polynomial.

Whereas the Galois ring R =GR(pn; r) has pnr number of elements and an element a(x) in GR(pn; r)

has the representation a0 + a1x + ::: + ar�1x
r�1; a0; a1; :::; ar�1 2 Zpn : The radical M is the set of

nilpotent elements of R and the residue �eld R
M of R is the Galois extension �eld GF (pr). One of the

typical class of chain rings is the factor ring GF (pr)[x]
<xk>

of Euclidean domain GF (pr)[x]: The �nite chain

ring GF (pr)[x]
<xk>

(=
Fpr [x]
<xk>

) has the representation Fpr + xFpr + � � �+ xk�1Fpr :

Let Rk be the representation of �nite chain ring
F2[u]
<uk>

= F2 + uF2 + u2F2 + � � �+ uk�1F2: The ring

Rk has 2k number of elements. The element u is the nilpotent element with nilpotency index k (i.e.,

uk = 0). Thus it follows that < 0 >= ukRk � uk�1Rk � � � � � u2Rk � uRk � Rk is the ascending chain

of ideals in Rk and therefore Rk is a local ring with only maximal ideal uRk, whereas, Rk

uRk
' F2 is the

residue �eld of the chain ring Rk: The ideals uiRk and ui+1Rk; where i = 0; 1; 2; � � � ; k� 1; respectively

have the cardinality 2k�i and 2k�i+1. Thus the cardinality of uiRk is 2 times the cardinality of ui+1Rk:

Amongst the rings of four elements, earlier the Galois �eld F4, and later the integers modulo 4

ring Z4, are frequently used in algebraic coding theory. Recently, Abualrub and Siap [200] studied

cyclic codes of an arbitrary length n over the rings F2 + uF2 = f0; 1; u; u = 1 + ug, with u2 = 0; and

F2 + uF2 + u2F2 = f0; 1; u; u2; 1 + u; 1 + u2; u + u2; 1 + u + u2g, with u3 = 0. However, Al-Ashker and

Hamoudeh [203] extend these results to more general rings of the form Rk = F2 + uF2 + � � � + uk�12 F2,

with uk = 0. The ring F2+uF2 share some good properties of both Z4 and F4: The alphabet in the ring

F2 + uF2 is given to all binary polynomials in indeterminate u of degree at most 1, and is closed under

binary polynomial addition and multiplication modulo u2. The multiplication and addition tables for

the ring F2 + uF2 are given in Tables 10.11. The multiplication table of the ring F2 + uF2coincides with

that of Z4, when u and u are replaced by 2 and 3 respectively. In this sense F2 + uF2 is analogous to

Z4 and here u plays the role of 2. Whereas the addition table is di¤erent and is similar to that of the

Galois �eld F4 = f0; 1; �; �2 = 1 + �g, where u and u are replaced by � and �2, respectively.
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Table 10.11: � and + Tables for F2 + uF2:

� 0 1 u u

0 0 0 0 0

1 0 1 u u

u 0 u 0 u

u 0 u u 1

+ 0 1 u u

0 0 1 u u

1 1 0 u u

u u u 0 1

u u u 1 0

10.4 Construction of S-box Using Finite Chain Rings F2+uF2+

� � �+ uk�1F2

The chain ring Rk =
F2[u]
<uk>

= F2+uF2+ :::+uk�1F2 has cardinality 2k. As u is a nilpotent element with

nilpotency index k, it follows that < 0 >= ukRk � uk�1Rk � ::: � uRk � Rk: Accordingly the residue

�eld of Rk is Rk

uRk
' F2. The ring Rk shares some properties of the local ring Z2k and the Galois �eld F2k .

More explicitly the multiplication binary operation of Rk coincides with of Z2k , whereas the addition

binary operation is similar to that of F2k . A signi�cant S-box with wide-ranging cryptographic features is

of ultimate worth for the development of resilient cryptographic system. Constructing cryptographically

strong S-boxes is a basic challenge. In this study we propose a method to amalgam an e¢ cient 4 � 4

S-box based on unit elements of the chain rings F2 + uF2 + � � � + uk�1F2. For the purpose we �x k to

2; 3; 4; 5; 6; 7 and 8. The 4� 4 S-box construction steps are given bellow:

Step.1: Take the multiplicative group of unit elements of the ring Rk which is given in table MGk
;

Step.2: If the cardinality of MGk
is a perfect square and less than or equal to 16; de�ne an inversion map

f : MGk
! MGk

and a linear scalar multiple function g : MGk
! MGk

. Otherwise choose a

subgroup HGk
of MGk

of desired size 16 and then de�ne these two bijective maps f and g from

HGk
to HGk

. The selection of subgroups and de�ned maps for each ring are explicitly explained

in subsections.

Step.3: Take the composition of the maps f and g.

Step.4: Generate 4� 4 S-box by arranging them row wise.

Step.5: Apply permutations Sn to each elements of S-box obtained in step 4 which result in n! S-boxes.

10.4.1 Construction of S-box through Multiplicative Group of R3

The chain ring R3 =
F2[u]
<u3> = F2 + uF2 + u2F2 has 8 number of elements. The chain of ideals of this

ring is < 0 >= u3R3 � u2R3 � uR3 � R3 and R3

uR3
' F2 is its residue �eld. The multiplication binary
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operation of R3 coincides with of Z8, whereas the addition binary operation is similar to that of F8.

Table 10.12: Elements in chain ring R3:

S. No. Polynomial Binary string Sr. No. Polynomial Binary string

1 0 000 5 1 + u 110

2 1 100 6 1 + u2 101

3 u 010 7 u+ u2 011

4 u2 001 8 1 + u+ u2 111

The multiplicative group of unit elements of the ring R3 is

MG3
= f1; 1 + u; 1 + u2; 1 + u+ u2g:

De�ne f : MG3
! MG3

by f(a) = a�1 and g : MG3
! MG3

by g(a) = a
0
a; where a

0
= 1 + u: Thus

f � g(a) =
�
a
0
a
��1

:

Table 10.13: Elements in f � g(MG3):

S. No. Polynomial

f � g(2) 111

f � g(5) 101

f � g(6) 110

f � g(8) 100

Table 10.14: S-box over R3 = F2 + uF2 + u2F2:

7 5 6 4

10.4.2 Construction of S-box through Multiplicative Group of R4

The chain ring R4 =
F2[u]
<u4> = F2 + uF2 + u2F2 + u3F2 has 16 elements. Its chain of ideals is < 0 >=

u4R4 � u3R4 � u2R4 � uR4 � R4;whereas the residue �eld of this ring is R4

uR4
' F2:The ring R4 shares

some properties of the local ring Z16 and the Galois �eld F16. The multiplication and addition binary

operations of R4 coincides with Z16 and F16 respectively.
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Table 10.15: Elements in chain ring R4:

S. No. Polynomial Binary string S. No Polynomial Binary string

1 0 0000 9 u+ u2 0110

2 1 1000 10 u+ u3 0101

3 u 0100 11 u2 + u3 0011

4 u2 0010 12 1 + u+ u2 1110

5 u3 0001 13 1 + u+ u3 1101

6 1 + u 1100 14 1 + u2 + u3 1011

7 1 + u2 1010 15 u+ u2 + u3 0111

8 1 + u3 1001 16 1 + u+ u2 + u3 1111

Multiplicative group of unit elements of the ring R4 is

MG4
= f1; 1 + u; 1 + u2; 1 + u3; 1 + u+ u2; 1 + u+ u3; 1 + u2 + u3; 1 + u+ u2 + u3g:

Take a subgroup HG4 = f1; 1 + u; 1 + u2; 1 + u + u2 + u3g of index 2 of the group MG4 and apply

given procedure on subgroup rather than group MG4 . De�ne f : HG4 ! HG4 by f(a) = a�1 and

g : HG4
! HG4

by g(a) = a
0
a; where a

0
= 1 + u; f � g(a) =

�
a
0
a
��1

: The following Table 10.16 is

of f � g(HG4
) in binary and decimal form, which is in fact the S-box constructed over the chain ring

R4 = F2 + uF2 + u2F2 + u3F2.
Table 10.16: S-box over R4:

15 10 12 8

10.4.3 Construction of S-box through Multiplicative Group of R5

The chain ring R5 =
F2[u]
<u5> = F2 + uF2 + +u2F2 + u3F2 + u4F2 has 32 number of elements. The chain

of ideals is, < 0 >= u5R5 � u4R5 � u3R5 � u2R5 � uR5 � R5 and its residue �eld is R5

uR5
' F2:The

multiplication binary operation of R5 coincides with of Z25 , whereas the addition binary operation is

similar to that of F25 . Multiplicative group of unit elements of the ring R5 is

MG5 = f1; 1 + u; 1 + u2; 1 + u3; 1 + u4; 1 + u+ u2; 1 + u+ u3; 1 + u+ u4; 1 + u2 + u3;

1 + u2 + u4; 1 + u3 + u4; 1 + u+ u2 + u3; 1 + u+ u2 + u4; 1 + u+ u3 + u4;

1 + u2 + u3 + u4; 1 + u+ u2 + u3 + u4g:

De�ne f : MG5
! MG5

by f(a) = a�1 and g : MG5
! MG5

by g(a) = a0a, where a0 = 1 + u. Thus

(f � g)(a) = (a0a)�1. The following Table 10.17 is of f � g(HG5
) in binary and decimal form, which is in
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fact the S-box constructed over the chain ring R5 = F2 + uF2 ++u2F2 + u3F2 + u4F2.

Table 10.17: S-box over R5:

31 30 26 19

21 18 24 23

25 22 29 27

28 20 17 16

10.4.4 Construction of S-box through Multiplicative Group of R6

The chain ring R6 = F2[u]= < u6 >= F2 + uF2 ++u2F2 + u3F2 + u4F2 + u5F2 has cardinality 64. As u

is a nilpotent element with nilpotency index 6, it follows that < 0 >= u6R6 � u5R6 � u4R6 � u3R6 �

u2R6 � uR6 � R6 and the residue �eld of R6 is R6

uR6
' F2. The addition and multiplication binary

operation of R6 coincides with F26 and Z26 respectively. Multiplicative group of the ring R6 is

MG6
= f1; 1 + u; 1 + u2; 1 + u3; 1 + u4; 1 + u5; 1 + u+ u2; 1 + u+ u3; 1 + u+ u4; 1 + u+ u5;

1 + u2 + u3; 1 + u2 + u4; 1 + u2 + u5; 1 + u3 + u4; 1 + u3 + u5; 1 + u4 + u5; 1 + u+ u2 + u3;

1 + u+ u2 + u4; 1 + u+ u2 + u5; 1 + u+ u3 + u4; 1 + u+ u3 + u5; 1 + u+ u4 + u5;

1 + u2 + u3 + u4; 1 + u2 + u3 + u5; 1 + u+ u2 + u3 + u4; 1 + u+ u2 + u3 + u5; 1 + u+ u2 + u4 + u5;

1 + u+ u3 + u4 + u5; 1 + u2 + u3 + u4 + u5; 1 + u+ u2 + u3 + u4 + u5g:

The multiplicative subgroup MG6
contains 32 elements, sixteen elements of order 8, 8 elements of order

4, 7 elements of order 2, and one element of order 1. Since our interest is in the subgroups of cardinality

16, so we combine these cyclic subgroups in such a way that they generate subgroups of order 16. The

availability of subgroups of cardinality 16 is as follows:

Remark 107 (i) Product of 2 elements of order 4.

(ii) Product of 2 elements of order 2 and 1 element of order 4.

(iii) Product of 1 element of order 2 and 1 element of order 2.

In all of the above mentioned products, intersection of each joining pair or triplet should be just the

identity element. We take one of these subgroups, HG6 = h1+u2; 1+u3+u4; 1+u3+u5i of cardinality

16 of the multiplicative groupMG6
. De�ne the maps f : HG6

! HG6
by f(a) = a�1 and g : HG6

! HG6

by g(a) = a0a, where a0 = 1+ u4. Thus, (g � f)(a) = (a0a)�1. The following Table 11.18 is of f � g(HG6
)
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in binary and decimal form, which is in fact the S-box designed over the chain ring R6.

Table 10.18: S-box over R6:

34 40 42 36

39 33 47 44

43 38 37 35

45 46 41 32

10.4.5 Construction of S-box through Multiplicative Group of R7

The size of chain ring R7 =
F2[u]=
<u7> = F2 + uF2 ++u

2F2 + u3F2 + u4F2 + u5F2 + u6F2 is 128. The chain

of ideals is < 0 >= u7R7 � u6R7 � u5R7 � u4R7 � u3R7 � u2R7 � uR7 � R7: Accordingly the residue

�eld of R7 is R7

uR7
' F2. The ring R7 shares some properties of the local ring Z27 and the Galois �eld

F27 . Its multiplicative part is given as follows:

MG7
= f1; 1 + u; 1 + u2; 1 + u3; 1 + u4; 1 + u5; 1 + u6; 1 + u+ u2; 1 + u+ u3; 1 + u+ u4;

1 + u+ u5; 1 + u+ u6; 1 + u2 + u3; 1 + u2 + u4; 1 + u2 + u5; 1 + u2 + u6; 1 + u3 + u4;

1 + u3 + u5; 1 + u3 + u6; 1 + u4 + u5; 1 + u4 + u6; 1 + u5 + u6; 1 + u+ u2 + u3;

1 + u+ u2 + u4; 1 + u+ u2 + u5; 1 + u+ u2 + u6; 1 + u2 + u3 + u4; 1 + u+ u3 + u4;

1 + u+ u3 + u5; 1 + u+ u3 + u6; 1 + u+ u4 + u5; 1 + u+ u4 + u6; 1 + u+ u5 + u6;

1 + u2 + u3 + u5; 1 + u2 + u3 + u6; 1 + u2 + u4 + u5; 1 + u2 + u4 + u6;

1 + u2 + u5 + u6; 1 + u3 + u4 + u5; 1 + u3 + u4 + u6; 1 + u3 + u5 + u6;

1 + u4 + u5 + u6; 1 + u+ u2 + u3 + u4; 1 + u+ u2 + u3 + u5; 1 + u+ u2 + u3 + u6;

1 + u+ u2 + u4 + u5; 1 + u+ u2 + u4 + u6; 1 + u+ u2 + u5 + u6; 1 + u+ u3 + u4 + u5;

1 + u+ u3 + u4 + u6; 1 + u+ u3 + u5 + u6; 1 + u+ u4 + u5 + u6; 1 + u2 + u3 + u4 + u5;

1 + u2 + u3 + u4 + u6; 1 + u2 + u3 + u5 + u6; 1 + u2 + u4 + u5 + u6; 1 + u3 + u4 + u5 + u6;

1 + u+ u2 + u3 + u4 + u5; 1 + u+ u2 + u3 + u4 + u6; 1 + u+ u2 + u3 + u5 + u6;

1 + u+ u2 + u3 + u4 + u5 + u6; 1 + u+ u3 + u4 + u5 + u6; 1 + u2 + u3 + u4 + u5 + u6;

1 + u+ u2 + u3 + u4 + u5 + u6g:

The multiplicative subgroup MG7
contains 64 elements, with 32 elements of order 8, 24 elements of

order 4, 7 elements of order 2 and 1 element of order 1. Since we require the subgroups of size 16, it

follows that we can ful�ll our requirement by above explained availability for MG7 . For this purpose we

choose a subgroup HG7
= h1+u3; 1+u2+u3i of cardinality 16 of the multiplicative group MG7

. De�ne

the maps f : HG7
! HG7

by f(a) = a�1 and g : HG7
! HG7

by g(a) = a0a, where a0 = 1 + u3. Thus,
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(g � f)(a) = (a0a)�1. The following Table 10.19 is of f � g(HG7) in decimal form, which is in fact the

S-box constructed over the chain ring R7 = F2 + uF2 ++u2F2 + u3F2 + u4F2 + u5F2 + u6F2:

Table. 10.19: S-box over R7:

73 65 64 72

86 77 82 69

93 89 87 76

83 92 76 88

10.4.6 Construction of S-box through multiplicative group of R8

The ring R8 =
F2[u]
<u8> = F2 + uF2 ++u

2F2 + u3F2 + u4F2 + u5F2 + u6F2 + u7F2 is a commutative chain

ring of 28 elements. Since u is nilpotent with nilpotency index 8, it follows that < 0 >= u8R8 � u7R8 �

u6R8 � u5R8 � u4R8 � u3R8 � u2R8 � uR8 � R8 and R8

uR8
' F2 is the residue �eld of R8. The

ring R8 shares some properties of the local ring Z28 and the Galois �eld F28 . The multiplication binary

operation of R8 coincides with of Z28 , whereas the addition binary operation is similar to that of F28 .

Multiplicative group of the ring R8 is:

MG8
= f1; 1 + u; 1 + u2; 1 + u3; 1 + u4; 1 + u5; 1 + u6; 1 + u7; 1 + u+ u2; 1 + u+ u3;

1 + u+ u4; 1 + u+ u5; 1 + u+ u6; 1 + u+ u7; 1 + u2 + u3; 1 + u2 + u4; 1 + u2 + u5;

1 + u2 + u6; 1 + u2 + u7; 1 + u3 + u4; 1 + u3 + u5; 1 + u3 + u6; 1 + u3 + u7; 1 + u4 + u5;

1 + u4 + u6; 1 + u4 + u7; 1 + u5 + u6; 1 + u5 + u7; 1 + u6 + u7; 1 + u+ u2 + u3;

1 + u+ u2 + u4; 1 + u+ u2 + u5; 1 + u+ u2 + u6; 1 + u+ u2 + u7; 1 + u+ u3 + u4;

1 + u+ u3 + u5; 1 + u+ u3 + u6; 1 + u+ u3 + u7; 1 + u+ u4 + u5; 1 + u+ u4 + u6;

1 + u+ u4 + u7; 1 + u+ u5 + u6; 1 + u+ u5 + u7; 1 + u+ u6 + u7; 1 + u2 + u3 + u4;

1 + u2 + u3 + u5; 1 + u2 + u3 + u6; 1 + u2 + u3 + u7; 1 + u2 + u4 + u5; 1 + u2 + u4 + u6;

1 + u2 + u4 + u7; 1 + u2 + u5 + u6; 1 + u2 + u5 + u7; 1 + u2 + u6 + u7; 1 + u3 + u4 + u5;

1 + u3 + u4 + u6; 1 + u3 + u4 + u7; 1 + u3 + u5 + u6; 1 + u3 + u5 + u7; 1 + u3 + u6 + u7;

1 + u4 + u5 + u6; 1 + u4 + u5 + u7; 1 + u4 + u6 + u7; 1 + u5 + u6 + u7; 1 + u+ u2 + u3 + u4;

1 + u+ u2 + u3 + u5; 1 + u+ u2 + u3 + u6; 1 + u+ u2 + u3 + u7; 1 + u+ u2 + u4 + u5;

1 + u+ u2 + u4 + u6; 1 + u+ u2 + u4 + u7; 1 + u+ u2 + u5 + u6; 1 + u+ u2 + u5 + u7;

1 + u+ u2 + u6 + u7; 1 + u+ u3 + u4 + u5; 1 + u+ u3 + u4 + u6; 1 + u+ u3 + u4 + u7;

1 + u+ u3 + u5 + u6; 1 + u+ u3 + u5 + u7; 1 + u+ u3 + u6 + u7; 1 + u+ u4 + u5 + u6;

1 + u+ u4 + u5 + u7; 1 + u+ u4 + u6 + u7; 1 + u+ u5 + u6 + u7; 1 + u2 + u3 + u4 + u5;

1 + u2 + u3 + u4 + u6; 1 + u2 + u3 + u4 + u7; 1 + u2 + u3 + u5 + u6; 1 + u2 + u3 + u5 + u7;
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1 + u2 + u3 + u6 + u7; 1 + u2 + u4 + u5 + u6; 1 + u2 + u4 + u5 + u7; 1 + u2 + u4 + u6 + u7;

1 + u2 + u5 + u6 + u7; 1 + u3 + u4 + u5 + u6; 1 + u3 + u4 + u5 + u7; 1 + u3 + u4 + u6 + u7;

1 + u3 + u5 + u6 + u7; 1 + u4 + u5 + u6 + u7; 1 + u+ u2 + u3 + u4 + u5; 1 + u+ u2 + u3 + u4

+u6; 1 + u+ u2 + u3 + u5 + u6; 1 + u+ u2 + u4 + u5 + u6; 1 + u+ u3 + u4 + u5 + u6;

1 + u2 + u3 + u4 + u5 + u6; 1 + u+ u2 + u3 + u4 + u7; 1 + u+ u2 + u3 + u5 + u7;

1 + u+ u2 + u4 + u5 + u7; 1 + u+ u3 + u4 + u5 + u7; 1 + u2 + u3 + u4 + u5 + u7;

1 + u+ u2 + u3 + u6 + u7; 1 + u+ u2 + u4 + u6 + u7; 1 + u+ u3 + u4 + u6 + u7;

1 + u2 + u3 + u4 + u6 + u7; 1 + u+ u2 + u5 + u6 + u7; 1 + u+ u3 + u5 + u6 + u7;

1 + u2 + u3 + u5 + u6 + u7; 1 + u+ u4 + u5 + u6 + u7; 1 + u2 + u4 + u5 + u6 + u7;

1 + u3 + u4 + u5 + u6 + u71 + u+ u2 + u3 + u4 + u5 + u6; 1 + u+ u2 + u3 + u4 + u5 + u7;

1 + u+ u2 + u3 + u4 + u6 + u7; 1 + u+ u2 + u3 + u5 + u6 + u7; 1 + u+ u2 + u4 + u5 + u6 + u7;

1 + u+ u3 + u4 + u5 + u6 + u7; 1 + u2 + u3 + u4 + u5 + u6 + u7;

1 + u+ u2 + u3 + u4 + u5 + u6 + u7g:

The multiplicative group MG8
contains 128 elements, 64 elements of order 8, 48 elements of order 4,

15 elements of order 2 and 1 element of order 1. Ever since we require the subgroups of cardinality 16,

therefore we accomplish our constraint by above explained availability forMG6 , and set of all elements of

order 2 also generate a subgroup of order 16. We choose a subgroupHG8
= h1+u3+u6; 1+u2+u4+u5+u7i

of the group MG8
having cardinality 16. De�ne the maps f : HG8

! HG8
by f(a) = a�1 and g : HG8

!

HG8 by g(a) = a0a, where we take a0 = 1 + u4 + u6. Thus, (g � f)(a) = (a0a)�1. The following

Table 10.20 is of f � g(HG8) in decimal form, which is in fact the S-box designed over the chain ring

R8 = F2 + uF2 ++u2F2 + u3F2 + u4F2 + u5F2 + u6F2 + u7F2.

Table 10.20: S-box over R8:

138 153 130 136

155 175 165 186

146 177 128 173

167 184 143 179
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10.5 Applications of Proposed Substitution Box in Image En-

cryption and Watermarking

As digital image plays an important role in multimedia technology, it becomes more important for

the user�s to maintain privacy. And to provide such security and privacy to the user, encryption and

watermarking is very important to protect from any unauthorized user access. The encryption and

watermarking have applications in various �elds, including internet communication, multimedia systems,

medical imaging, Telemedicine and military communication. Nowadays, the prominent share of the

multimedia fabrication and dissemination is carried out digitally. The rapid growth of digital media like

Internet and Compact Discs has ushered in a wonderful era where the �ow, duplication and modi�cation

of digital images have become all the more easier and simpler. Mega distribution of �awless replicas

of multimedia data at an accelerated degree has become the order of the day. And this phenomenon

has unfortunately resulted in tremendous threats to multimedia safety and copyright security. This has

the e¤ect of ringing an alarm bell for authors, when the stark reality dawned upon them, convincing

that conservative safety systems, like encryption were incapable of a¤ording the much-needed shelter.

This has motivated many investigators to devise alternate methods, one of which is known by the term

�digital watermarking�which is nothing but the art of concealing data in a healthy way and without

being noticed by pirates or others of the sort. The classi�cations of information hiding techniques are

cryptography, watermarking and steganography. Here we will only focus on encryption that belongs to

cryptography and watermarking. Encryption protects content during the transmission of the data from

the sender to receiver. However, after receipt and subsequent decoding, the data is no longer protected

and is in the clear. Watermarking compliments encryption by embedding a signal directly into the data.

Thus, the goal of a watermarking is to always remain present in the data. The algorithms for image
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encryption and watermarking schemes are presented in Figs. 10.1-10.2.

Fig. 10.1: Proposed image encryption algorithm based on Galois ring.
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Fig. 10.2: Algorithm for image watermarking based on Galois ring.

The results after applying the proposed image encryption and watermarking schemes are given in

Figs. 10.3-10.6 respectively.

(a) (b) (c) (d)

Fig. 10.3: (a) Plain Lena image, (b) Encrypted image using GR(4,4), (c) Encrypted image using GR(8,4),

(d) Encrypted image using GR(32,4).
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(a) (b) (c) (d) (e)

Fig. 10.4: (a) Plain Lena image, (b) Encrypted image using R5, (c) Encrypted image using R6,

(d) Encrypted image using R7, (e) Encrypted image using R8.

(a) (b) (c) (d)

Fig. 10.5: (a) Cover Lena image, (b) Watermarked image using GR(4; 4), (c) Watermarked

image using GR(8; 4), (d) Watermarked image using GR(32; 4).

(a) (b) (c) (d) (e)

Fig. 10.6: (a) Cover Lena image, (b) Watermarked image using R5, (c) Watermarked image using R6,

(d) Watermarked image using R7, (e) Watermarked image using R8.

The statistical analyses plays an important role in estimating good quality information hiding. We

have applies �rst order texture image analysis that deals with the histograms of an image which includes

mean, standard deviation (Std.), skewness and kurtosis. The GLCM analyses of an image consists of

entropy, contrast, homogeneity, energy and correlation. The correlation based statistical anlyses consists

of structure content, normalized cross correlation. The human visual system (HVS) fundamentally deals

with the human perceptions. These analyses includes universal image quality index, structure content
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and structure similarity index metric.

Table 10.21: First order texture analysis of proposed encryption scheme based on S-box of GR(4; 4):

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.300781 0.355469 0.292969

Std. 0.496541 0.459496 0.38138 0.459496 0.479593 0.456016

Skewness -0.267999 0.868817 1.703557 0.868817 0.603906 0.909779

Kurtosis 1.07182 1.75484 3.90216 1.754840 1.364700 1.827700

Table 10.22: First order texture analysis of proposed encryption scheme based on S-box of GR(8; 4):

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.261719 0.210938 0.183594

Std. 0.496541 0.459496 0.38138 0.440431 0.408773 0.387911

Skewness -0.267999 0.868817 1.703557 1.084160 1.417060 1.634530

Kurtosis 1.07182 1.75484 3.90216 2.173900 3.008070 3.671690

Table 10.23: First order texture analysis of proposed encryption scheme based on S-box of GR(32; 4):

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.101563 0.136719 0.078125

Std. 0.496541 0.459496 0.38138 0.302664 0.344223 0.268894

Skewness -0.267999 0.868817 1.703557 2.638030 2.114870 3.144000

Kurtosis 1.07182 1.75484 3.90216 7.959200 5.472660 10.884700

Table 10.24: First order texture analysis of proposed encryption scheme based on S-box of R5:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.578125 0.5156250 0.382813

Std. 0.496541 0.459496 0.381380 0.494826 0.5007350 0.487025

Skewness -0.267999 0.8688817 1.70357 -0.316386 -0.0625305 0.482181

Kurtosis 1.071820 1.754840 3.90216 1.100100 1.0039100 1.232500
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Table 10.25: First order texture analysis of proposed encryption scheme based on S-box of R6:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.628906 0.636719 0.597656

Std. 0.496541 0.459496 0.381380 0.484044 0.481887 0.491331

Skewness -0.267999 0.8688817 1.70357 -0.533666 -0.568542 -0.398296

Kurtosis 1.071820 1.754840 3.90216 1.284800 1.323240 1.15864

Table. 10.26: First order texture analysis of proposed encryption scheme based on S-box of R7:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.421875 0.613281 0.558594

Std. 0.496541 0.459496 0.38138 0.496541 0.487952 0.497528

Skewness -0.267999 0.868817 1.703557 0.316386 -0.465222 -0.236001

Kurtosis 1.07182 1.75484 3.90216 1.100100 1.216430 1.055700

Table 10.27: First order texture analysis of proposed encryption scheme based on S-box of R8:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.5090600 0.4648440 0.4960940

Std. 0.496541 0.459496 0.38138 0.5009640 0.4997400 0.5009640

Skewness -0.267999 0.868817 1.703557 -0.0156255 0.1400974 0.0156255

Kurtosis 1.07182 1.75484 3.90216 1.0002400 1.0198700 1.0002400

Table 10.28: Second order texture analysis of proposed encryption scheme based on S-box of GR(4; 4):

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average AES [108]

Contrast 0.372687 0.392816 0.365273 5.716670 5.930760 5.653100 5.766843 7.2240

Homogeneity 0.872453 0.871262 0.874949 0.463198 0.460000 0.463737 0.462311 0.4701

Entropy 7.2911 7.58133 7.07945 7.724020 7.743380 7.694770 7.720723 7.9325

Correlation 0.923453 0.929416 0.853838 0.0796321 0.0854177 0.0696044 0.078218 0.0815

Energy 0.138624 0.0999494 0.169877 0.0247005 0.0242131 0.0250313 0.024648 0.0211
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Table 10.29: Second order texture analysis of proposed encryption scheme based on S-box of GR(8; 4):

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average AES [108]

Contrast 0.372687 0.392816 0.365273 7.344910 7.551030 7.294580 7.396840 7.2240

Homogeneity 0.872453 0.871262 0.874949 0.523815 0.524585 0.521437 0.523279 0.4701

Entropy 7.29110 7.581330 7.079450 7.513200 7.738900 7.099640 7.450580 7.9325

Correlation 0.923453 0.929416 0.853838 0.0394828 0.0450918 0.0250336 0.036536 0.0815

Energy 0.138624 0.0999494 0.169877 0.0536281 0.0600180 0.0509045 0.054848 0.0211

Table 10.30: Second order texture analysis of proposed encryption scheme based on S-box of GR(32; 4):

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average AES [108]

Contrast 0.372687 0.392816 0.365273 7.091800 7.103510 7.079500 7.09160 7.2240

Homogeneity 0.872453 0.871262 0.874949 0.742998 0.754889 0.741075 0.74321 0.4701

Entropy 7.29110 7.581330 7.079450 7.416100 7.513900 7.10156 7.34385 7.9325

Correlation 0.923453 0.929416 0.853838 0.026632 0.025921 0.016139 0.02289 0.0815

Energy 0.138624 0.0999494 0.169877 0.283568 0.320313 0.278132 0.29400 0.0211

Table 10.31: Second order texture analysis of proposed encryption scheme based on S-box of R5:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average AES [108]

Contrast 0.372687 0.392816 0.365273 7.002053 7.0009038 7.002497 7.001818 7.2240

Homogeneity 0.872453 0.871262 0.874949 0.468974 0.469548 0.468752 0.469095 0.4701

Entropy 7.29110 7.581330 7.079450 7.354130 7.709100 7.099640 7.386680 7.9325

Correlation 0.923453 0.929416 0.853838 0.191800 0.0323392 0.27433 0.166156 0.0815

Energy 0.138624 0.0999494 0.169877 0.025412 0.028163 0.024069 0.025881 0.0211
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Table 10.32: Second order texture analysis of proposed encryption scheme based on S-box of R6:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average AES[108]

Contrast 0.372687 0.392816 0.365273 7.0006433 7.000567 7.000781 7.000663 7.2240

Homogeneity 0.872453 0.871262 0.874949 0.4696778 0.479717 0.459609 0.469668 0.4701

Entropy 7.29110 7.581330 7.079450 7.4561870 7.7813561 7.351237 7.529593 7.9325

Correlation 0.923453 0.929416 0.853838 -0.000321795 0.0510155 0.037352 0.029348 0.0815

Energy 0.138624 0.0999494 0.169877 0.0198714 0.018836 0.021408 0.020038 0.0211

Table 10.33: Second order texture analysis of proposed encryption scheme based on S-box of R7:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average AES[108]

Contrast 0.372687 0.392816 0.365273 7.010233 7.008762 7.010815 7.00993 7.2240

Homogeneity 0.872453 0.871262 0.874949 0.484924 0.485660 0.484654 0.48508 0.4701

Entropy 7.29110 7.581330 7.079450 7.513200 7.738900 7.099640 7.45058 7.9325

Correlation 0.923453 0.929416 0.853838 0.022019 0.009103 0.0337697 0.02163 0.0815

Energy 0.138624 0.0999494 0.169877 0.02550 0.023261 0.0208312 0.02400 0.0211

Table 10.34: Second order texture analysis of proposed encryption scheme based on S-box of R8:

Plain image color components Encrypted image color components

Red Green Blue Red Green Blue Average AES [108]

Contrast 0.372687 0.392816 0.365273 7.620619 7.602711 7.619807 7.614379 7.2240

Homogeneity 0.872453 0.871262 0.874949 0.439325 0.452688 0.478967 0.456993 0.4701

Entropy 7.29110 7.581330 7.079450 7.04684 7.02036 7.04413 7.037110 7.9325

Correlation 0.923453 0.929416 0.853838 0.0572997 0.0437702 0.0580387 0.053036 0.0815

Energy 0.138624 0.0999494 0.169877 0.020234 0.025695 0.020018 0.021982 0.0211

Table 10.35: Image error measurements of proposed encryption scheme based on S-box of GR(4; 4):

Image color components

Red Green Blue Average Gray [108] APA [108] Lui [108]

Mean Square Error 12134.3 6068.13 4437.92

Peak Signal to Noise Ratio 7.29067 10.3003 11.6590 9.74999 8.1421 9.0014 9.2541

Mean Absolute Error 93.3373 63.2998 54.0589
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Table 10.36: Image error measurements of proposed encryption scheme based on S-box of GR(8; 4):

Image color components

Red Green Blue Average Gray [108] APA [108] Lui [108]

Mean Square Error 19007.1 6839.19 5523.35 -

Peak Signal to Noise Ratio 5.37564 9.81475 10.7428 8.64439 8.1421 9.0014 9.2541

Mean Absolute Error 122.514 67.7453 61.6997

Table 10.37: Image error measurements of proposed encryption scheme based on S-box of GR(32; 4):

Image color components

Red Green Blue Average Gray [108] APA [108] Lui [108]

Mean Square Error 26869.2 8949.01 8245.61 -

Peak Signal to Noise Ratio 8.83825 8.61305 8.96858 7.13996 8.1421 9.0014 9.2541

Mean Absolute Error 154.441 79.2899 80.9500

Table 10.38: Image error measurements of proposed encryption scheme based on S-box of R5:

Image color components

Red Green Blue Average Gray [108] APA [108] Lui [108]

Mean Square Error 26938.7 8395.85 7914.18 -

Peak Signal to Noise Ratio 8.62704 8.89119 9.14675 8.80662 8.1421 9.0014 9.2541

Mean Absolute Error 156.614 76.4777 81.7981

Table 10.39: Image error measurements of proposed encryption scheme based on S-box of R6:

Image color components

Red Green Blue Average Gray [108] APA [108] Lui [108]

Mean Square Error 22211.3 6234.6 5573.56 -

Peak Signal to Noise Ratio 4.66506 10.1827 10.6695 8.50575 8.1421 9.0014 9.2541

Mean Absolute Error 140.6860 64.5333 66.0316

Table 10.40: Image error measurments of proposed encryption scheme based on S-box of R7:

Image color components

Red Green Blue Average Gray [108] APA [108] Lui [108]

Mean Square Error 12225.6 3037.64 1838.02 -

Peak Signal to Noise Ratio 7.2581 13.3054 15.4873 12.0169 8.1421 9.0014 9.2541

Mean Absolute Error 99.2633 45.0841 32.8454
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Table 10.41: Image error measurments of proposed encryption scheme based on S-box of R8:

Image color components

Red Green Blue Average Gray [108] APA [108] Lui [108]

Mean Square Error 3269.08 6173.97 4007.07 -

Peak Signal to Noise Ratio 12.9866 10.2252 12.1025 11.7814 8.1421 9.0014 9.2541

Mean Absolute Error 50.4345 66.0888 55.0974

Table 10.42: Image similarity measurments of proposed encryption scheme based

on S-box of GR(4; 4):

Image color components

Red Green Blue

Structure Content 2.67522000 0.959737000 0.9467440

Universal Image Quality Index -0.00329472 0.000386892 -0.0000435

Structure Similarity Index Metric 0.013055400 0.016328500 0.0184890

Table 10.43: Image similarity measurments of proposed encryption scheme based

on S-box of GR(8; 4):

Image color components

Red Green Blue

Structure Content 5.5605800 2.01720000 1.96540000

Universal Image Quality Index -0.0016198 -0.00399473 -0.00170602

Structure Similarity Index Metric 0.0130455 0.01506070 0.019223800

Table 10.44: Image similarity measurments of proposed encryption scheme based

on S-box of GR(32; 4):

Image color components

Red Green Blue

Structure Content 25.7971000 9.660140000 9.28556

Universal Image Quality Index 0.000360266 0.000617253 -0.000210373

Structure Similarity Index Metric 0.021377500 0.037992700 0.036532900
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Table 10.45: Image similarity measurments of proposed encryption scheme based

on S-box of R5:

Image color components

Red Green Blue

Structure Content 62.221 22.4185 21.9321

Universal Image Quality Index -0.00113042 -0.0000975 -0.00306773

Structure Similarity Index Metric 0.119023 0.219966 0.212875

Table 10.46: Image similarity measurments of proposed encryption scheme based

on S-box of R6:

Image color components

Red Green Blue

Structure Content 5.5605800 2.01720000 1.96540000

Universal Image Quality Index -0.0016198 -0.00399473 -0.00170602

Structure Similarity Index Metric 0.0130455 0.01506070 0.019223800

Table 10.47: Image similarity measurments of proposed encryption scheme based

on S-box of R7:

Image color components

Red Green Blue

Structure Content 22.3112000 7.980790000 7.90325000

Universal Image Quality Index 0.00290522 0.000516327 0.00219534

Structure Similarity Index Metric 0.19237900 0.301132000 0.3223110

Table 10.48: Image similarity measurments of proposed encryption scheme based

on S-box of R8:

Image color components

Red Green Blue

Structure Content 5.2635300 1.8889400 1.86378000

Universal Image Quality Index 0.0023029 -0.0020651 -0.0029209

Structure Similarity Index Metric 0.2721280 0.3122190 0.36223600
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Table 10.49: First order texture analysis of proposed watermarking scheme based on S-box of GR(4; 4):

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.574219 0.296875 0.195313

Std. 0.496541 0.459496 0.38138 0.495429 0.457776 0.397218

Skewness -0.267999 0.868817 1.70357 -0.300201 0.889181 1.53711

Kurtosis 1.07182 1.75484 3.90216 1.09012 1.79064 3.36272

Table 10.50: First order texture analysis of proposed watermarking scheme based on S-box of GR(8; 4):

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.589844 0.31250 0.160156

Std. 0.496541 0.459496 0.38138 0.492825 0.46442 0.367469

Skewness -0.267999 0.868817 1.70357 -0.365321 0.80904 1.853270

Kurtosis 1.07182 1.75484 3.90216 1.13346 1.65455 4.434600

Table 10.51: First order texture analysis of proposed watermarking scheme based on S-box of GR(32; 4):

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.589844 0.3125 0.160156

Std. 0.496541 0.459496 0.38138 0.492825 0.46442 0.367469

Skewness -0.267999 0.868817 1.70357 -0.365321 0.80904 1.85327

Kurtosis 1.07182 1.75484 3.90216 1.13346 1.65455 4.4346

Table 10.52: First order texture analysis of proposed watermarking scheme based on S-box of R5:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.574219 0.28125 0.175781

Std. 0.496541 0.459496 0.38138 0.495429 0.45049 0.38138

Skewness -0.267999 0.868817 1.703557 -0.300201 0.973067 1.70357

Kurtosis 1.07182 1.75484 3.90216 1.09012 1.94686 3.90216
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Table 10.53: First order texture analysis of proposed watermarking scheme based on S-box of R6:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.574219 0.28125 0.175781

Std. 0.496541 0.459496 0.38138 0.495429 0.45049 0.38138

Skewness -0.267999 0.868817 1.703557 -0.300201 0.973067 1.70357

Kurtosis 1.07182 1.75484 3.90216 1.09012 1.94686 3.90216

Table 10.54: First order texture analysis of proposed watermarking scheme based on S-box of R7:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.578125 0.289063 0.183594

Std. 0.496541 0.459496 0.38138 0.494826 0.454215 0.387911

Skewness -0.267999 0.868817 1.703557 -0.316386 0.930620 1.634530

Kurtosis 1.07182 1.75484 3.90216 1.100100 1.866050 3.671690

Table 10.55: First order texture analysis of proposed watermarking scheme based on S-box of R8:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.570313 0.296875 0.171875

Std. 0.496541 0.459496 0.38138 0.496001 0.457776 0.378011

Skewness -0.267999 0.868817 1.703557 -0.284073 0.889181 1.739460

Kurtosis 1.07182 1.75484 3.90216 1.080700 1.790640 4.025730

Table 10.56: Second order texture analysis of proposed watermarking scheme based on S-box of GR(4; 4):

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.39375 0.406985 0.389338

Homogeneity 0.872453 0.871262 0.874949 0.864794 0.866005 0.865558

Entropy 7.29110 7.581330 7.079450 7.32279 7.56524 7.09129

Correlation 0.923453 0.929416 0.853838 0.920109 0.926875 0.847282

Energy 0.138624 0.0999494 0.169877 0.135096 0.0973498 0.159161
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Table 10.57: Second order texture analysis of proposed watermarking scheme based on S-box of GR(8; 4):

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.391866 0.406127 00387469

Homogeneity 0.872453 0.871262 0.874949 0.865176 0.866715 0.868536

Entropy 7.29110 7.581330 7.079450 7.3227 7.5607 7.08971

Correlation 0.923453 0.929416 0.853838 0.920656 0.927186 0.846354

Energy 0.138624 0.0999494 0.169877 0.134363 0.0978212 0.161773

Table 10.58: Second order texture analysis of proposed watermarking scheme based on S-box of GR(32; 4):

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.391866 0.406127 0.387469

Homogeneity 0.872453 0.871262 0.874949 0.865176 0.866715 0.868536

Entropy 7.29110 7.581330 7.079450 7.3227 7.5607 7.08971

Correlation 0.923453 0.929416 0.853838 0.920656 0.927186 0.846354

Energy 0.138624 0.0999494 0.169877 0.134363 0.0978212 0.161773

Table 10.59: Second order texture analysis of proposed watermarking scheme based on S-box of R5:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.397702 0.403278 0.376716

Homogeneity 0.872453 0.871262 0.874949 0.863205 0.863345 0.870555

Entropy 7.2911 7.58133 7.07945 7.30967 7.48019 7.0773

Correlation 0.923453 0.929416 0.853838 0.92072 0.926736 0.854595

Energy 0.138624 0.0999494 0.169877 0.133659 0.0969861 0.155589

Table 10.60: Second order texture analysis of proposed watermarking scheme based on S-box of R6:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.394225 0.395787 0.374494

Homogeneity 0.872453 0.871262 0.874949 0.864685 0.867443 0.870939

Entropy 7.29110 7.581330 7.079450 7.30751 7.48453 7.07733

Correlation 0.923453 0.929416 0.853838 0.921642 0.928676 0.854764

Energy 0.138624 0.0999494 0.169877 0.135017 0.098445 0.157312
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Table 10.61: Second order texture analysis of proposed watermarking scheme based on S-box of R7:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.382154 0.383824 0.373851

Homogeneity 0.872453 0.871262 0.874949 0.869645 0.874147 0.872720

Entropy 7.29110 7.581330 7.079450 7.29890 7.499040 7.077940

Correlation 0.923453 0.929416 0.853838 0.923301 0.931268 0.853531

Energy 0.138624 0.0999494 0.169877 0.137470 0.100933 0.161723

Table 10.62: Second order texture analysis of proposed watermarking scheme based on S-box of R8:

Original image color components Watermarked image color components

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.376532 0.399203 0.374295

Homogeneity 0.872453 0.871262 0.874949 0.871378 0.868688 0.871490

Entropy 7.29110 7.581330 7.079450 7.282660 7.512610 7.076750

Correlation 0.923453 0.929416 0.853838 0.921681 0.928119 0.850357

Energy 0.138624 0.0999494 0.169877 0.140061 0.098777 0.168454

Table 10.63: Image error measurements of proposed watermarking

scheme based on S-box of GR(4; 4):

Image color components

Red Green Blue

Mean Square Error 35.072 30.841 37.9247

Peak Signal to Noise Ratio 32.6812 33.2395 32.3416

Mean Absolute Error 4.62018 4.33269 4.80144

Table 10.64: Image error measurements of proposed watermarking

scheme based on S-box of GR(8; 4):

Image color components

Red Green Blue

Mean Square Error 29.9243 26.5959 32.3507

Peak Signal to Noise Ratio 33.3706 33.8827 33.0320

Mean Absolute Error 4.22232 3.98900 4.40581
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Table 10.65: Image error measurements of proposed watermarking

scheme based on S-box of GR(32; 4):

Image color components

Red Green Blue

Mean Square Error 29.9243 26.5959 32.3507

Peak Signal to Noise Ratio 33.3706 33.8827 33.0320

Mean Absolute Error 4.22232 3.98900 4.40581

Table 10.66: Image error measurments of proposed watermarking

scheme based on S-box of R5:

Image color components

Red Green Blue

Mean Square Error 67.7634 60.3825 67.1817

Peak Signal to Noise Ratio 29.8206 30.3217 29.8583

Mean Absolute Error 7.09592 6.75697 6.99326

Table 10.67: Image error measurments of proposed watermarking

scheme based on S-box of R6:

Image color components

Red Green Blue

Mean Square Error 55.2887 48.5003 55.1235

Peak Signal to Noise Ratio 30.7044 31.2734 30.7174

Mean Absolute Error 6.26427 5.9082 6.19368

Table 10.68: Image error measurments of proposed watermarking

scheme based on S-box of R7:

Image color components

Red Green Blue

Mean Square Error 31.9533 26.3285 32.6609

Peak Signal to Noise Ratio 33.0856 33.9265 32.9905

Mean Absolute Error 5.65273 5.13113 5.71497
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Table 10.69: Image error measurments of proposed watermarking

scheme based on S-box of R8:

Image color components

Red Green Blue

Mean Square Error 22.435 20.2259 24.6088

Peak Signal to Noise Ratio 34.6215 35.0717 34.2199

Mean Absolute Error 3.65494 3.48647 3.83476

Table 10.70: Image similarity measurments of proposed watermarking

scheme based on S-box of GR(4; 4):

Image color components

Red Green Blue

Structure Content 1.02006 1.02876 1.03460

Universal Image Quality Index 0.767415 0.80177 0.756734

Structure Similarity Index Metric 0.895856 0.906332 0.885709

Table 10.71: Image similarity measurments of proposed watermarking

scheme based on S-box of GR(8; 4):

Image color components

Red Green Blue

Structure Content 1.01492 1.02385 1.02670

Universal Image Quality Index 0.78181 0.812344 0.767011

Structure Similarity Index Metric 0.906944 0.917087 0.896842

Table 10.72: Image similarity measurments of proposed watermarking

scheme based on S-box of GR(32; 4):

Image color components

Red Green Blue

Structure Content 1.01492 1.023850 1.02670

Universal Image Quality Index 0.78181 0.812344 0.767011

Structure Similarity Index Metric 0.906944 0.917087 0.896842
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Table 10.73: Image similarity measurments of proposed watermarking

scheme based on S-box of R5:

Image color components

Red Green Blue

Structure Content 1.0733 1.11063 1.12045

Universal Image Quality Index 0.80846 0.837688 0.792751

Structure Similarity Index Metric 0.927252 0.932159 0.916876

Table 10.74: Image similarity measurments of proposed watermarking

scheme based on S-box of R6:

Image color components

Red Green Blue

Structure Content 1.06197 1.09256 1.10057

Universal Image Quality Index 0.808703 0.839345 0.79333

Structure Similarity Index Metric 0.927525 0.934201 0.917581

Table 10.75: Image similarity measurments of proposed watermarking

scheme based on S-box of R7:

Image color components

Red Green Blue

Structure Content 1.03484 1.04849 1.05593

Universal Image Quality Index 0.81822 0.85175 0.80365

Structure Similarity Index Metric 0.93213 0.94117 0.92368

Table 10.76: Image similarity measurments of proposed watermarking

scheme based on S-box of R8:

Image color components

Red Green Blue

Structure Content 0.983519 0.969268 0.970146

Universal Image Quality Index 0.825920 0.858906 0.812379

Structure Similarity Index Metric 0.936415 0.945399 0.927879

First-order statistics are quite straightforward. They are computed from a function that measures

the probability of a certain pixel occurring in an image. The interpretations of �rst order texture analysis

of an image are quite straightforward. They are computed from the mechanism which measures the pixel
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probabilities in an image. The analysis of �rst order textures like mean, standard deviation, skewness

and kurtosis re�ects that there are signi�cant changes in these features for plain and encrypted images

in case of Galois rings and �nite chain rings (see Tables 10.21-10.27) whereas in the case of watermarking

these parameter values will remain constant with some minute changes for original and watermarked

images (see Tables 10.49-10.55).

The second order texture analysis generally deals with contrast, homogeneity, entropy, correlation

and energy. The contrast measures the amount of local variations present in the image. Contrast is

zero when the neighboring pixels have constant values. The values of second order characteristics for

plain and encrypted images are di¤erent from each other and for watermarking through Galois rings

and �nite chain rings are remain same or tend to cover image second order texture features (see Tables

10.28-10.34, 10.56-10.66).

The image error measurements and image similarity analysis in case of image encryption and water-

marking are quite di¤erent. The values of the means square error and mean absolute error increases,

whereas peak signal to noise ratio decreases for image encryption. As far as watermarking is concerned,

these analyses are entirely changed. The value of mean square error and mean absolute error decreases,

and peak signal to noise ratio decreases (see Tables 10.35-10.41,10.63-10.69).

The structural similarity image quality standard is grounded on the notion that the human visual

system is extremely modi�ed for extracting structural information from the scene, and therefore a

measure of structural similarity can provide a good approximation to perceived image quality. The

standard similarity measurement tests which include structure content, universal image quality index

and structure similarity index metric (SSIM). The similarity coe¢ cients values for image encryption and

watermarking are computed (see Tables 10.42-10.48,10.70-10.76). The readings of similarity measures

discloses the quality of encryption using proposed algorithms for image encryption, which is based on

chain rings. The structure content values in case of image encryption are higher than unity which

reveals that two images are completely di¤erent. Similarly, structure similarity index and universal

image quality index measure far away from unity backwardly which guarantee the authentication of the

proposed image encryption algorithm. In case of watermarking similarity coe¢ cients are closed to one

which elucidates the robustness of suggested watermarking algorithm constructed on the classes of chain

rings.

10.6 Conclusion

In this chapter, we developed new schemes for image encryption and watermarking independently that

soundly depends on classes of �nite chain rings. The readings of test images in case of encryption and

watermarking are closed to optimal values that re�ect the endorsement of our suggested data hiding

technique. In future, we will combine encryption and watermarking due to the fact that cryptography
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provides no protection once the content is decrypted, which is required for human perception, whereas

watermarking complements cryptography by embedding a message within the content.
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Chapter 11

Utilizing Small S-boxes in

Steganography

Digital Steganography exploits the use of a cover data to hide secret information in such a way that it is

imperceptible to a human observer. The secret information can be concealed in content such as image,

audio, or video. This part of thesis provides a novel image steganographic technique to hide color secret

image in color cover image using small S-boxes based on multiplicative group of nonzero elements of

Galois �eld of order 16 i-e., Z�17; symmetry group S4 and least signi�cant bits (LSBs). The combination

of these three methods will enhance the security of the data embedded. This combined technique will

ful�ll the necessities such as capacity, security and robustness for secure information transmission over

an open channel. A comparative scrutiny is made to show the viability of the proposed technique by �rst

and second order texture analysis, mean square error (MSE), root mean square error (RMSE), mean

absolute error (MAE), average di¤erence (AD), normalized absolute error (NAE), maximum di¤erence

(MD), enhancement error (EME), peak signal to noise ratio (PSNR), structure contents (SC), normalized

cross-correlation, universal image quality index (UIQI) and structural similarity index metric (SSIM).

We investigated the information concealing strategy utilizing the picture execution parameters like �rst

order and second order texture characteristics. The stego pictures are tried by transmitting them and

the implanted information are e¤ectively extricated by the collector. There is no visual modi�cation

between the stego image and the cover image. The investigations exhibited the high hiddenness of the

suggested model even with large size secret image.
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11.1 Exponential transformation

Let us consider the following function f :M !M de�ned as:

x 7!

8<: am mod 17; if x < 16;

0; if x = 16;
(11.1)

where x = am (mod 17) and m 2 M = f0; 1; 2; :::; 15g. We select a as a primitive element which

generates the multiplicative group of nonzero elements of Galois �eld of order 16.

11.2 Proposed Small S-boxes

In this section, we are mainly discussed the algebra of proposed small S-boxes. The following are main

steps in constructing proposed S-boxes:

i. We take all invertible elements produced in Eq. (11:1) and element 16 is mapped to 0.

ii. The multiplicative inversion operation in the construction of S-box is the inversion Z�17 in with the

extension 16 7! 0. We de�ne the following function I(x) in Z�17 corresponding to this multiplicative

inversion step:

I(x) =

8<: x�1; if x < 16

0; if x = 16:
(11.2)

We decompose the a¢ ne transformation step in proposed S-box construction into two linear trans-

formations Li (i = 1; 2), two a¢ ne transformationsKi (i = 1; 2) and one inversion function function

I(x) given as follows:

S(x) = K2 � L2 � I �K1 � L1; (11.3)

where matrices used in linear and a¢ ne transformations are given below:

L1 =

26666664
1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 0

37777775 ; L2 =
26666664
0 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

37777775 ; (11.4)

K1 =
h
1 1 0 1

iT
;K2 =

h
1 0 1 1

iT
: (11.5)

Now applying permutations of S4 on Eq. (11:3); we have

S � box = S4(S(x)) = S4(K2 � L2 � I �K1 � L1): (11.6)

186



There are total 72 S-boxes in total due to three distinct S-boxes were obtained from Z�17 by using

Eq. (11:3) and then we apply S4 permutations on each S-box. We take only three from 72 S-boxes

for our projected applications. The proposed S-boxes are presented in Tables (11:1)� (11:3):

Table 11.1: The proposed S-box-I.

7 0 3 13

1 6 2 8

14 15 10 5

12 4 9 11

Table 11.2: The proposed S-box-II.

14 0 15 6

5 11 10 2

9 12 8 4

3 1 7 13

Table 11.3: The proposed S-box-III.

13 0 12 15

8 5 4 6

3 11 2 9

7 1 14 10

11.3 Proposed Algorithm for Steganography Based on Small

S-boxes

In this section, we will discussed three di¤erent cases of information hiding technique namely steganog-

raphy based on our three proposed S-boxes.

11.3.1 Steganography Based on S-box-I

We take two color images for secret media and cover media. The color secret image is converted to

binary value where each pixel has 8-bit value. We divide our S-box-I into four small blocks with four

distinct values and used these small blocks to allocate encoded values for pixels in secret image using
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corresponding blocks. The small blocks of S-box-I are given as follows:

Table 11.4: Division of S-box-I into four blocks of size 2� 2:

0 1

7 0 0

1 6 1

0 1

3 13 0

2 8 1

Block-I. Block-II.

0 1

14 15 0

12 4 1

0 1

10 5 0

9 11 1

Block-III. Block-IV.

Secondly, we need to select the color component where to embed the secret than take a pixel with 8-bits

value which is further distributed into four blocks of two bits (see Fig. 11.1). Each of these two bits

block take values from respective blocks (Blocks-I,II,III, IV) in the order of initial part from Block-I,

second part from Block-II, third part from Block-III and fourth part from Block-IV respectively (see

Fig. 11.2):

10|{z}
b0

01|{z}
b1

01|{z}
b2

10|{z}
b3

Fig. 11.1: Bit division of secret image pixel.
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Fig. 11. 2: Flow chart for insertion of secret image into cover image.

Embedding Bit into Cover Image

In this phase, we have inserted values obtained from each blocks by bit division into cover image. We

converted values of blocks into four bits binaries and placed these four binaries in LSBs of cover image

consecutively. First we take the pixels one by one from the cover media and then place 4 bits binaries
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of LSBs obtained from respective blocks into cover image (see Fig. 11.3-Fig. 11.5).

Fig. 11.3: Secret image in 3-D view of size 128� 128:

Fig. 11.4: Cover image in 3-D view of size 256� 256.
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1001
z}|{
1011| {z }

155

Replace by 1 binaries

=)

1001
z}|{
0001| {z }

145

1101
z}|{
1100| {z }

220

Replace by 3 binaries

=)

1101
z}|{
0011| {z }

211

0110
z}|{
0111| {z }

103

Replace by 15 binaries

=)

0110
z}|{
1111| {z }

111

1111
z}|{
1111| {z }

255

Replace by 9 binaries

=)

1111
z}|{
1001| {z }

249

Fig. 11.5: Bit insertion into cover image (for red layered).

After getting the new pixel values, we form the stego image. The pixel values for red component 145,

211, 111, 249 are place into the position of the previous values. Similarly we performed these operations

for green and blue component of cover image. The resultant stego image in components form is given in

Fig. 11.6.

Fig. 11. 6: Stego image in 3-D view of size 256� 256.

The stego image contents the secret image but we cannot identify the secret image. The changes of

the pixel values will be varied from 0 to 15 which is a negligible amount of pixel value due to information

carries means LSBs of pixels. The pixels or colors will not be change in large amount with these proposed

insertions (see Fig. 11.7). Notice, the di¤erence between the stego-image is barely distinguishable by

191



the human eye.

(a) (b) (c)

Fig. 11.7: (a) Cover (Lena image) of size 256� 256, (b) Baboon (Secret image) of size

128� 128, (c) Stego (Lena image) of size 256� 256.

11.3.2 Steganography Based on S-box-II

In this case, we divide our anticipated S-box-II into two horizontal blocks and each block consists of

eight di¤erent values belonging from S-box-II (see Table 11.5) and used these small blocks to allocate

encoded values for pixels in secret image using corresponding blocks. In next stage, we have performed

our experimentation on steganographic media which consists of secret and cover media. The color secret

is converted to binary value where each pixel has 8-bits values.

Table 11. 5: Division of S-box-II into two equal parts.

00 01 10 11

14 0 15 6 0

5 11 10 2 1

Block-I.

00 01 10 11

9 12 8 4 0

3 1 7 13 1

Block-II.

Also, we have to choose the shading part where to insert the mystery than bring a pixel with 8-bits

esteem which is further dispersed into two pieces of four bits (see Fig. 11.8). Each of these four bits

piece is XOR to three bits so as to take values from segment (Blocks-I,II) in the sequence of starting
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part from Block-I, second part from Block-II individually (see Fig. 11.9):

1001|{z}
b0

0110|{z}
b1

101|{z}
c0

101|{z}
c1

Fig. 11.8: Bit division of secret image pixel into two four bits

blocks and XOR operations to each 4 bits blocks.

For instance, we have 101 and 101 binary bits after applying XOR operations on each 4 bits. In �rst

three bits binaries i-e., 101, �rst two bits 10 represents column and 1 represent row of the blocks. For

example 101 represent 2 and in second block we mapped 101 to 13 respectively.

Fig. 11.9: Flow chart for insertion of secret image into cover image.

Embedding Bit into Cover Image

In this phase, we have inserted values obtained from each blocks by bit division into cover image. We

convert values of blocks into four bits binaries and placed these four binaries in LSBs of cover image
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consecutively. First we take the pixels one by one from the cover media and then place 4 LSBs from

each of the two horizontal blocks serially (see Figs. 11.11-11.12).

Fig. 11.10: Secret image in 3-D view of size 128� 128.

Fig. 11.11: Cover image in 3-D view of size 256� 256.
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1100
z}|{
0011| {z }

194

Replace by 5 binaries

=)

1100
z}|{
0101| {z }

197

1101
z}|{
1100| {z }

166

Replace by 8 binaries

=)

1010
z}|{
1000| {z }

168

0110
z}|{
0111| {z }
59

Replace by 5 binaries

=)

0001
z}|{
0101| {z }
21

1111
z}|{
1111| {z }

219

Replace by 8 binaries

=)

1101
z}|{
1000| {z }

104

Fig. 11.12: Bit insertion into cover image (for green layer).

After getting the new pixel values, we form the stego image. The pixel values for green component

197, 168, 21 and 104 are place into the position of the previous values. Similarly we performed these

operations for green and blue component of cover image. The resultant stego image is given in Fig.

11.13.

Fig. 11.13: Stego image in 3-D view of size 256� 256.

The stego image hides the secret image yet we can�t distinguish the secret image. The progressions of

the pixel qualities will be �uctuated in four bits binaries which is an insigni�cant portion of pixel esteem
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because of data conveys implies LSBs of pixels (see Fig. 11.14).

(a) (b) (c)

Fig. 11.14: (a) Cover (Lena image) of size 256� 256, (b) Baboon (Secret image) of size

128� 128, (c) Stego (Lena image) size 256� 256.

11.3.3 Steganography Based on S-box-III

The method projected on S-box-III is fundamentally based on division of S-box-III into two vertical

small blocks with eight distinct values and used these small blocks to allocate encoded values for pixels

in secret image using corresponding blocks. The vertical blocks of S-box-III are given as follows:

Table 11.6: Division of S-box-III into two equal parts.

0 1

13 0 00

8 5 01

3 11 10

7 1 11

0 1

12 15 00

4 6 01

2 9 10

14 10 11

Block-I Block-II

Secondly, we need to select the color component where to embed the secret than take a pixel with 8-bits

value which is further distributed into two blocks of four bits (see Fig. 11.15). Each of these four bits

block is XOR to three bits in order to take values from respective blocks (Blocks-I,II) in the order of
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initial part from Block-I, second part from Block-II respectively (see Fig. 11.15):

1001|{z}
b0

0110|{z}
b1

101|{z}
c0

101|{z}
c1

Fig. 11.15: Bit division of secret image pixel into two four bits blocks and

XOR operations to each 4 bits block.

For instance, we have 101 and 101 binary bits after applying XOR operations on each 4 bits. In �rst

three bits binaries i-e., 101, �rst two bits 10 represents row and 1 represent column of the blocks. For

example 101 represent 5 and in second block we mapped 101 to 9 respectively.

Fig. 11.16: Flow chart for insertion of secret image into cover image.
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Embedding Bit into Cover image

In this stage, we have embedded qualities gotten from every blocks by bit division into cover image as

in previous two cases. We transformed decimal values of blocks into four bits pairs and set these four

bits in LSBs of cover image successively. In the �rst place, we take the pixels one by one from the cover

media and after that place 4 LSBs from each of the two vertical blocks serially (see Figs. 11.11-11.12).

Fig. 11.17: Secret image in 3-D view of size 128� 128.

Fig. 11.18: Cover image in 3-D view of size 256� 256.
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0110
z}|{
1101| {z }

109
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z}|{
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97

Fig. 11.19: Bit insertion into cover image (for blue layer).

After getting the new pixel values, we form the stego image. The pixel values for red component 145,

211, 111, 249 are place into the position of the previous values. Similarly we performed these operations

for green and blue component of cover image. The resultant stego image is given in Figs. 11:20� 11:21.

Fig. 11.20: Stego image in 3-D view of size 256� 256.

The stego image contents the secret image but we cannot identify the secret image. The changes of the

pixel values will be varied from 0 to 15 which is a negligible amount of pixel value due to information

carries means LSBs of pixels. So the pixels or colors will not be change in large amount.
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(a) (b) (c)

Fig. 11.21: (a) Cover (Lena image) of size 256� 256, (b) Baboon (Secret image) of size

128� 128, (c) Stego (Lena image) of size 256� 256.

11.4 Statistical Analyses

11.4.1 First Order Texture Features

First-order texture measures are determined from the original image values. They do not consider the

connections with neighborhood pixel. Histogram-based approach to composition analysis is in light of

the intensity esteem focuses on all or part of an image spoke to as a histogram. Characteristics got from

this approach incorporate moments such as mean, standard deviation, skewness and kurtosis [182]. The

histogram of intensity levels will be a straightforward outline of the measurable data of the image and

individual pixels will be utilized to compute the gray-level histogram. Along these lines, the histogram

contains the �rst-order measurable data about the picture (or sub picture). These measurements are

de�ned as follows:

Mean = �k =

PM�1
i=0

PN�1
i=0 Ik(i; j)

M �N ; (11.7)

Standard Deviation = �k =

sPM�1
i=0

PN�1
i=0 (Ik(i; j)� �)

2

M �N ; (11.8)

Skewness = 
1 =

PM�1
i=0

PN�1
i=0 (Ik(i; j)� �)

3

M �N � �2 ; (11.9)

Kurtosis = 
2 =

PM�1
i=0

PN�1
i=0 (Ik(i; j)� �)

4

M �N � �4 � 3: (11.10)

The proposed system will be likewise assessed built with respect to �rst order texture features like mean,

standard deviation, skewness and kurtosis to authenticate the e¤ect on image in case of replacement of

bits [181]. Here, we lead an investigation between cover image and the stego-image in light of statistical
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alteration. The aftere¤ect of the execution parameters prior and then afterward the implanting procedure

are ascertained and precise in (see Tables 11.7-11.9). The image parameters are estimation of the safety

for the stego-system. Minimizing parameters distinction is one of the fundamental targets in order to

get rid of statistical attacks.

Table 11.7: First order texture analysis for steganographic system based on S-box-I.

Cover image Stego image

Red Green Blue Red Green Blue

Mean 0.574219 0.304688 0.171875 0.578125 0.300781 0.175781

Standard Deviation 0.495429 0.461177 0.378011 0.494826 0.459496 0.38138

Skewness -0.300201 0.848678 1.73946 -0.316386 0.868817 1.70357

Kurtosis 1.09012 1.72025 4.02573 1.1001 1.75484 3.90216

Table 11.8: First order texture analysis for steganographic system based on S-box-II.

Cover image Stego image

Red Green Blue Red Green Blue

Mean 0.566406 0.300781 0.175781 0.566406 0.304688 0.199219

Standard Deviation 0.496541 0.459496 0.38138 0.496541 0.461177 0.400195

Skewness -0.267999 0.868817 1.70357 -0.267999 0.848678 1.50612

Kurtosis 1.07182 1.75484 3.90216 1.07182 1.72025 3.26839

Table 11.9: First order texture analysis for steganographic system based on S-box-III.

Cover image Stego image

Red Green Blue Red Green Blue

Mean 0.589844 0.3164406 0.179688 0.59375 0.304688 0.1875

Standard Deviation 0.492825 0.465984 0.384679 0.492094 0.461177 0.391077

Skewness -0.365321 0.789526 1.66861 -0.381771 0.848678 1.66128

Kurtosis 1.13346 1.62335 3.78427 1.14575 1.72025 3.5641

From the Tables 11.7-11.9, it is seen that there is no signi�cant di¤erence between the mean, standard

deviation, skewness and kurtosis between the cover-image and the stego-image. This study shows that

the magnitude of change in stego-image based on image parameters is small from a cover image. These

analysis con�rmed the reliability of proposed information hiding scheme.
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11.4.2 Second Order Texture Features

The second order features are based on gray level co-occurrence matrix (GLCM) [143] and it is one of

the most popular methods for pixel variation statistics. Some of the second order statistical features are

entropy, contrast, homogeneity, energy and correlation of the gray level pixels, de�ned as [147].

Entropy

This statistic measures the disorder or complexity of an image. The entropy is large when the image

is not texturally uniform and many GLCM elements have very small values. Complex textures tend to

have high entropy. Entropy is strongly, but inversely correlated to energy.

Angular Second Moment

This statistic is also called uniformity or angular second moment or energy. It measures the textural

uniformity that is pixel pair repetitions. It detects disorders in textures. Energy reaches a maximum

value equal to one. High energy values occur when the gray level distribution has a constant or periodic

form. Energy has a normalized range. The GLCM of less homogeneous image will have large number of

small entries.

Inertia

This statistic measures the spatial frequency of an image and is di¤erence moment of GLCM. This

measure is also called contrast. It is the di¤erence between the highest and the lowest values of a

contiguous set of pixels. It measures the amount of local variations present in the image. A low

contrast image presents GLCM concentration term around the principal diagonal and features low spatial

frequencies.

Inverse Di¤erence Moment

Inverse di¤erence moment is the local homogeneity. It is high when local gray level is uniform and inverse

GLCM is high. Inverse di¤erence moment weight value is the inverse of the Contrast weight. It measures

image homogeneity as it assumes larger values for smaller gray tone di¤erences in pair elements. It is

more sensitive to the presence of near diagonal elements in the GLCM. It has maximum value when all

elements in the image are same. GLCM contrast and homogeneity are strongly, but inversely, correlated

in terms of equivalent distribution in the pixel pairs population. It means homogeneity decreases if

contrast increases while energy is kept constant.
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Correlation

Correlation is a measure of gray tone linear dependencies in the image, in particular, the direction under

investigation is the same as vector displacement. High correlation values imply a linear relationship

between the gray levels of pixel pairs. Thus, GLCM correlation is uncorrelated with GLCM energy

and entropy, i.e., to pixel pairs repetitions. Correlation reaches it maximum regardless of pixel pair

occurrence, as high correlation can be measured either in low or in high energy situations. The �ve

common textures features are given as follows:

Entropy = �
PNg�1

i=0

PNg�1
i=0 Pi;j logPi;j ; (11.11)

Angular second moment =
PNg�1

i=0

PNg�1
i=0 P 2i;j ; (11.12)

Inertia =
PNg�1

i=0

PNg�1
i=0 (i� j)2Pi;j ; (11.13)

Inverse difference moment =
PNg�1

i=0

PNg�1
i=0

Pi;j
1+(i�j)2 ; (11.14)

Correlation =
PNg�1

i=0

PNg�1
i=0 ijPi;j��x�y
�x�y

; (11.15)

where Pi;j is the (i; j) th entry of the normalized co-occurrence matrix, Ng is the number of gray levels

of an image, �x, �y, �x and �y are the means and standard deviations of the marginal probabilities Px(i)

and Py(j) obtained by summing up the rows or the columns of matrix Pi;j respectively. A complete

second order texture analyses of proposed steganographic techniques are presented in Tables 11:10�11:12:

Table 11.10: Second order texture analysis for steganographic system -I.

Cover image Stego image

Red Green Blue Red Green Blue

Contrast 0.357274 0.374341 0.341988 0.363067 0.377068 0.359574

Homogeneity 0.87546 0.873758 0.879416 0.871784 0.872185 0.870501

Entropy 7.27854 7.57291 7.05544 7.28795 7.4984 7.07227

Correlation 0.926586 0.932406 0.861158 0.924661 0.931912 0.855571

Energy 0.141417 0.100946 0.17250 0.139518 0.100174 0.163683
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Table 11.11: Second order texture analysis for steganographic system -II.

Cover image Stego image

Red Green Blue Red Green Blue

Contrast 0.372687 0.392816 0.365273 0.384053 0.399004 0.3799381

Homogeneity 0.872453 0.871262 0.874949 0.868679 0.869308 0.869657

Entropy 7.2911 7.58133 7.07945 7.29576 7.5216 7.08361

Correlation 0.923453 0.929416 0.853858 0.920758 0.928464 0.848844

Energy 0.138624 0.0999494 0.169877 0.138927 0.0990417 0.165287

Table 11.12: Second order texture analysis for steganographic system -III.

Cover image Stego image

Red Green Blue Red Green Blue

Contrast 0.776379 0.752543 0.761933 0.822595 0.79784 0.807721

Homogeneity 0.827889 0.836525 0.834285 0.816972 0.827534 0.822203

Entropy 7.76992 7.86391 7.72703 7.77383 7.84679 7.74232

Correlation 0.92185 0.90929 0.888301 0.91677 0.903984 0.882108

Energy 0.0892355 0.0758187 0.0851768 0.085572 0.073779 0.0804689

11.4.3 Image Quality Measures

Image quality measures are key for most picture handling applications. Any picture and feature pro-

curement framework can utilize the quality metric to modify itself consequently for getting enhanced

quality pictures. It can be utilized to pose as a viable rival and assess picture handling systems and

algorithms.

Image quality measures are prevailing to convey quantitative information on the dependability of

extracted images. Commonly the nature of an image combination system will be assessed utilizing

numerical procedures which endeavor to measure loyalty utilizing image to image examinations, a few

image quality measurements have been created to foresee the unmistakable contrasts between cover and

stego images. This work is taking into account the way that concealing data in computerized media

obliges changes of the sign properties that present some type of debasement, regardless of how little;

these degradations can go about as marks that could be utilized to uncover the presence of a hidden

message (see Tables 11:13 � 11:21). Image quality measurements are sorted into six groups as per the

kind of data they are utilizing. The classi�cations utilized are:

i. Pixel Di¤erence-based measures,

ii. Correlation-based measures,

iii. Edge-based measures,
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iv. Spectral Distance-based measures,

v. Context-based measures,

vi. Human Visual System based measures.

The pixel di¤erence-based measures were derived based on pixel to pixel error such as mean square

error(MSE), root mean square error (RMSE), average di¤erence (AD), maximum di¤erence (MD), mean

absolute error (MAE), peak signal to noise ratio(PSNR), signal to noise ratio, enhancement error

(EME) and mutual information (MI). The correlation based measures includes normalized cross cor-

relation (NCC), structure content (SC) and universal image quality index (UIQI), structural similarity

index metric (SSIM) are included in human visual system-based measures. The pixel di¤erence-based,

correlation-based and human visual system-based measures de�ned as follows :

Mean Squared-Error (MSE)

The mean-squared-error (MSE) is the simplest, and the most widely used, full -reference image quality

measurement. Similarity is determined by computing the error between the stego image and the reference

cover image.

MSE =
1

M �N

MX
i=1

NX
j=1

(C(i; j)� S(i; j))2; (11.16)

where M �N is the size of the image. The parameters C(i; j) and S(i; j) refer to the pixels located at

the ith row and the jth column of original image and stego image due to the imbedding of the secret

information. The mean square error (MSE) represents the cumulative squared error between the stego

image and cover image. A lower �gure of MSE conveys lower error/distortion between the cover and

stego image.

Root Mean Square Error (RMSE)

To evaluate the proposed stegosystem, this method is tested on the color Lena image of 256�256 pixels.

To �nd the accuracy of the results and the robustness of the steganographic system, a root mean square

of error is calculated. These criteria provide the error between cover image and stego image. The rms

value can be described by the following relation:

RMSE =

vuut 1

M �N

MX
i=1

NX
j=1

(C(i; j)� S(i; j))2; (11.17)

where the C(i; j) is the pixel intensity of the cover image, S(i; j) is the pixel intensity of the stego image.

The row and column numbers of these two images are de�ned by M �N .
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Mean Absolute Error (MAE)

MAE is average of absolute di¤erence between the reference signal and test image. It is given by the

equation

MAE =
1

M �N

MX
i=1

NX
j=1

jC(i; j)� S(i; j))j : (11.18)

Average Di¤erence (AD)

AD is simply the average of di¤erence between the reference signal and the test image and it is

given by the equation

AD =
1

M �N

MX
i=1

NX
j=1

(C(i; j)� S(i; j)): (11.19)

Maximum Di¤erence (MD)

MD is the maximum of the error signal (di¤erence between the stego and cover image)

MD =Max jC(i; j)� S(i; j))j : (11.20)

Peak Signal to Noise Ratio (PSNR)

The PSNR is evaluated in decibels and is inversely proportional the Mean Squared Error. It is given by

the equation

PSNR = 10 log10
2552p
MSE

: (11.21)

Enhancement Error (EME)

A number of blind reference metrics have been proposed during the last decade. EME (enhancement

error) has been developed by [183] give an absolute score to each image on the basis of image con-

trast processed with Fechner�s Law relating contrast to perceived brightness or the well-known entropy

concept. The following equation give us the EME formula

EME =
1

M �N

MX
i=1

NX
j=1

20 log2
max(I(i; j)

min(I(i; j)
; (11.22)

where the image is divided into M �N blocks, max(I(i; j);min(I(i; j) are the maximum and minimum

values of the pixels in each block of the enhanced image.

Structure Content (SC)

It is one of the correlation based measures. It means the closeness between two digital images which can

be quanti�ed in terms of correlation function. This metrics measures the similarity between two images.
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The structural content metric is based on the following equations

SC =

PM
i=1

PN
j=1(C(i; j))

2PM
i=1

PN
j=1(S(i; j))

2
; (11.23)

where C(i; j) is the (i; j)th pixel value of cover image, S(i; j) is the pixel value of stego image.

Normalized Cross-Correlation (NCC)

The normalized cross-correlation (NCC) metric is the metric that is used to show the amount of de�ection

in the stego image with respect to the cover image after insertion of the message. The normalized cross-

correlation (NCC) is applied to evaluate the performance of various existing methods which is given by

the following equation

NCC =

PM
i=1

PN
j=1 C(i; j)� S(i; j)PM

i=1

PN
j=1(C(i; j))

2
: (11.24)

This measure measures the similarity between two images, hence in this sense it�s complementary to the

di¤erence-based measures.

Human Visual Systems (HVS) Based Measures

A major emphasis in recent research has been given to a deeper analysis of the human visual system

(HVS) features. Researchers assume that incorporating knowledge of the human visual system (HVS) and

human perception into objective quality assessment algorithms could increase their accuracy. This HVS-

based framework has been the dominant paradigm for the last three decades. The underlying premise is

that humans do not perceive images as signals in a high-dimensional space, but are interested in various

attributes of those images, such as brightness, contrast, shape and texture of objects, orientations,

smoothness, etc. Since the sensitivity of the HVS is di¤erent for di¤erent aspects of images, it makes

sense to account for these sensitivities while making a comparison between the test and the reference

signal.

There are a lot of HVS characteristics that may in�uence the human visual perception on image

quality. Although HVS is too complex to fully understand with present psychophysical means, the

incorporation of even a simpli�ed model into objective measures reportedly leads to a better correlation

with the response of the human observers. Human visual system (HVS) has been extensively exposed to

the natural visual environment, and a variety of evidence has shown that the HVS is highly adapted to

extract useful information from natural scenes. Two human visual systems (HVS) based image quality

measures are given below:

Universal Image Quality Index (UIQI) Let x = fxi; i = 1; 2; : : : : : : ::; Ng and y = fyi; i =

1; 2; : : : : : : : : : ::; Ng be the cover and stego images. The proposed quality index is de�ned as:
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Q =
4�xyxy

(�2x + �
2
y)(x

2 + y2)
; (11.25)

where

x =
1

N

NX
i=1

xi; y =
1

N

NX
i=1

yi; �2x =
1

N � 1

NX
i=1

(xi � x)2; (11.26)

�2y =
1

N � 1

NX
i=1

(yi � y)2; �xy =
1

N � 1

NX
i=1

(xi � x)(yi � y): (11.27)

The dynamic range of Q is [0; 1]. The best value Q = 1, is achieved when xi = yi; i = 1; 2; :::; n: The

universal image quality index can also be de�ned as the product of three components:

Q = Q1 �Q2 �Q3; (11.28)

where

Q1 =
�xy
�x�y

; (11.29)

Q2 =
2xy

x2 + y2
; (11.30)

Q3 =
2�x�y
�2x + �

2
y

; (11.31)

where �rst term de�nes the degree of correlation between x and y with dynamic range between [�1; 1],

second term measures how close the luminance is between x and y range is [0; 1] and third term measures

how similar the contrasts of the image x and y are.

Structural Similarity Index Metric (SSIM) The structural similarity (SSIM) index is a technique

for measuring the similarity between two pictures. The SSIM record is a full reference metric; as such, the

measuring of picture quality focused around an introductory uncompressed or without distortion picture

as reference. SSIM is intended to enhance conventional strategies like peak signal to noise ratio (PSNR)

and mean squared error (MSE), which have turned out to be con�icting with human eye recognition.

The contrast as for di¤erent strategies speci�ed at one time, for example, MSE or PSNR is that these

methodologies appraisal perceived errors; then again, SSIM considers image corruption as perceived

change in structural data. Structural data is the way to go that the pixels have solid between conditions

particularly when they are spatially close. These conditions convey essential data about the structure

of the objects in the visual scene. The SSIM metric is �gured on di¤erent windows of a picture. The

measure between original and marked images of size is [165]:

SSIM(X;Y ) =
(2�x�y + c1)(�xy + c2)

(�2x + �
2
y + c1)(�

2
x + �

2
y + c2)

; (11.32)
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where �x is the average of X, �y is the average of Y , �
2
x is the variance of , �

2
y is the variance of and

�xy is covariance of X and Y , c1 = (k1L)
2 ; c2 = (k2L)

2 two variables which is to stabilize the weak

denominator, L is the dynamics range of the pixels-values.

Table 11.13: Simple statistics errors for cover and stego images

for steganopgraphic system-I.

Image color components

Red Green Blue

MSE 14.6721 13.0356 13.6659

RMSE 3.83042 3.61049 3.69674

PSNR 36.4659 36.9795 36.7744

MAE 3.00061 2.84267 2.87642

AD 0.554657 0.561356 0.409073

MD 19 15 20

NAE 0.0166466 0.028655 0.0272485

EME (Cover image) 7.87436 19.4497 11.7173

EME (Stego image) 8.34606 20.9805 12.7009

Table 11.14: Simple statistics errors for cover and stego images

for steganographic system-II.

Image color components

Red Green Blue

MSE 25.8806 21.7254 27.3693

RMSE 5.0873 4.66105 5.23156

PSNR 34.0011 34.7611 33.7552

MAE 3.93118 3.57509 4.0278

AD -0.537994 -0.58934 -0.755493

MD 28 28 29

NAE 0.0218192 0.0361022 0.0382225

EME (Cover image) 8.15026 18.8942 12.4686

EME (Stego image) 8.47044 19.8622 12.9848
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Table 11.15: Simple statistics errors for cover and stego images

for steganographic system-III.

Image color components

Red Green Blue

MSE 26.6135 25.9582 27.5116

RMSE 6.29393 6.07933 6.44295

PSNR 32.1524 32.4537 31.9491

MAE 4.67821 4.49437 4.81732

AD -0.664719 -0.69764 -1.10873

MD 40 36 37

NAE 0.0303843 0.0403222 0.0515037

EME (Cover image) 16.1939 14.9457 18.2867

EME (Stego image) 17.5367 16.6970 19.2368

The error comparison between cover image and stego image are shown in the tables 11.13-11.15. These

results indicate the presence of secret information in stego image. These tables additionally concludes

that the stego image is of better quality if MAE, MSE, RMSE, AD, NAE and EME values are less while

the high value of PSNR means that the stego image is most similar to original image. It is hard for the

human eyes to distinguish between cover image and stego image when the PSNR ratio is larger than

30dB. The values of MD for image color components simply indicates the presence of hidden data in

stego image pixels. The values of MD equals to zero for no secret information in stego image or in other

words stego image is not generated from cover image by apply the proposed steganographic technique.

Table 11.16: Correlation based image quality measures for steganographic system-I.

Image color components

Red Green Blue

SC 1.00593 1.00926 1.00561

NCC 0.996841 0.994891 0.996658

Table 11.17: Correlation based image quality measures for steganographic system-II.

Image color components

Red Green Blue

SC 0.994433 0.990126 0.93674

NCC 1.00243 1.00412 1.00561
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Table 11.18: Correlation based image quality measures for steganographic system-III.

Image color components

Red Green Blue

SC 0.993695 0.918738 0.912193

NCC 1.00249 1.00322 1.00718

The value of normalized cross correlation is equal to one for same images i-e., the outcome of proposed

technique on cover image with itself and the hidden data length equals to zero. That means the minimum

value of normalized cross correlation value equals to zero, in other words when the normalized cross

correlation value equals to (zero) that means there is no hidden data in the image. When the value of

normalized cross correlation is greater than one that means the two images (cover image, stego image)

are not identical , in other words the stego image is carrying hidden data (secret message), and the hidden

data length is greater than (zero) (see tables 11:16 � 11:18). As it can be seen from Figs. 11:7; 11:14

and 11:21, while the two images seem similar to each other, in fact they are di¤erent in the structure.

The analyses of cover and stego images with respect to structure content reveals that two images under

study seem to be same for human eyes but in fact they are not, and these values represents the similarity

factor between cover and stego images (see tables 11:16� 11:18).

Table 11.19: Human visual system based image quality measures for steganographic system-I.

Image color components

Red Green Blue

UIQI 0.833114 0.848125 0.841500

SSIM 0.937995 0.944472 0.937726

Table 11.20: Human visual system based image quality measures for steganographic system-II.

Image color components

Red Green Blue

UIQI 0.80084 0.833829 0.78798

SSIM 0.919597 0.930689 0.911057

Table 11.21: Human visual system based image quality measures for steganographic system-III.

Image color components

Red Green Blue

UIQI 0.846898 0.863393 0.859568

SSIM 0.912866 0.918783 0.912193
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The universal image quality index split the judgment of similarity between cover image (C) and stego

image (S) into three comparisons: Luminance, Contrast and Structural Information. SSIM estimates

�Perceived change in structural information�. It computes the similarity between two images of common

size. The value of UIQI and SSIM varies between 1 and �1. Closer the highest positive value denotes

too much less change in two images and �1 shows totally mismatch. The UIQI and SSIM are considered

as more consistent and accurate than MSE and PSNR. As MSE and PSNR are adequate for image

closeness measure just when the image vary by essentially expanding contortion of a certain sort. In

any case they neglect to catch image quality when they are utilized to gauge across contortion sorts.

SSIM is broadly utilized technique for estimation of image quality. It meets expectations precisely can

quantify better across distortion types when di¤erentiated with MSE and PSNR. The numerical values

of UIQI and SSIM are close to one which clearly indicates that the suggested technique is highly secure

for transferring secret information in information carrier and two images seem similar to each other but

actually they are di¤erent in the structure.

11.5 Conclusion

We have utilized the small S-boxes that take into account Galois �eld Z�17 , symmetry group S4 and LSB

to get a protected stage-image. The proposed system has been utilized for applications that oblige high-

volume inserting with strength against certain statistical attacks. The present system is an endeavor

to recognize the prerequisites of a decent information concealing algorithm. Our results display that

the LSB insertion utilizing small S-boxes are superior to straightforward LSB insertion. The image

resolution doesn�t change much and is unimportant when we embed the message into the image and

the image is secured. In this manner, it is unrealistic to harm the data by unapproved personnel. This

paper concentrates on the methodology like increasing the security of the secret embedded information

and reducing the distortion rate.
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Chapter 12

A Novel Cryptosystem Based on

General Linear Group

We have developed a novel public-key cryptosystem that uses large abelian subgroup of general linear

group over residue ring. The merit of this proposed public key cryptosystem is that we can select session

key in abelian subgroup of general linear group which reduces exponentiations and performed encryption

e¤ectively in a simple way. Our algorithm doesn�t use matrix modular exponentiation which leads us

to problem in implementing. The aim here is to decrease the number of these exponentiations and

consequently to accelerate the execution of encryption algorithm. A discussion about the security of

built modi�cations made in the article shows that the level of security is high enough for an appropriate

choice of parameters of the cryptosystems.

12.1 Subgroup of General Linear Group

Let H be the subgroup of the of general linear group of degree 2 i.e., GL(2;Zn) which is given as follows:

H =

8<:
0@ a1 b1

b1 a1

1A������ a1; b1 2 Zn and a21 � b21 6= 0

9=; ; (12.1)

which shows that elements of subgroup H are belong to unit group of residue ring Zn that is Z�n. The

subgroup H is an abelian subgroup of the group GL(2;Zn) which be veri�ed easily:

1. Let H1 =

0@ a1 b1

b1 a1

1A , H2 =

0@ c1 d1

d1 c1

1A 2 H; we have to show that H1H2 = H2H1: Now we

have to multiply both matrices, i.e.,

M = H1H2 =

0@ a1c1 + b1d1 a1d1 + b1c1

a1d1 + b1c1 a1c1 + b1d1

1A ; and det(H1H2) = det(H1) det(H2) 2 Z�n:
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2. Let H1 =

0@ a1 b1

b1 a1

1A 2 H; det(H1) = � 2 Z�n; we have H�1
1 2 H; because

H�1
1 =

0@ ��1a ��1b

��1b ��1a

1A ; det(H�1
1 ) = ��1 2 Z�n;

3. Let H1 =

0@ a1 b1

b1 a1

1A , H2 =

0@ c1 d1

d1 c1

1A 2 H; we have H1H2 = H2H1;

H1H2 =

0@ a1c1 + b1d1 a1d1 + b1c1

a1d1 + b1c1 a1c1 + b1d1

1A ;

=

0@ c1d1 + d1b1 c1b1 + d1a1

c1b1 + d1a1 c1a1 + d1b1

1A ;

= H2H1:

Let a and b be the random elements of the ring Zn: Let M be the corresponding element in the ring

M2(Zn):What is the probability of the case that M is not in the group H?We will answer this question

with respect to two cases of n: Let us consider each case separately:

Case I

n = rs;where r and s are di¤erent primes. (12.2)

The cardinality of the residue ring and its unit group is given as follows:

jZnj = rs; jZ�nj = '(n) = (r � 1)(s� 1); where '(n) is an Euler function. (12.3)

Then the probability P the case that matrix M is not in the group H is given below:

Prob = 1� '(n)

n
= 1� (r � 1)(s� 1)

rs
=
1

r
+
1

s
� 1

rs
: (12.4)

If bit length of primes p and q will be greater than or equal to 90 then we have

Prob � 2�89: (12.5)

Case II

n = rl;where r is primes and l � 2. (12.6)

The cardinality of the residue ring and its unit group is given as follows:

jZnj = rl; jZ�nj = '(n) = rl�1(r � 1); where '(n) is an Euler function. (12.7)
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Then the probability P in the case that matric M is not in the group H is given below:

Prob = 1� '(n)

n
= 1� rl�1(r � 1)

rl
=
1

r
: (12.8)

If bit length of primes p and q will be greater than or equal to 90 then we have

Prob � 2�90: (12.9)

In both cases probability is negligible small and therefore one may suppose that in both cases the random

matrix M over Zn with overwhelming probability is in the subgroup H:

12.2 Proposed Cryptosystem Based on Units of Residue Ring

and General Linear Group of Degree 2

In this section, we are mainly discussed two cryptosystems which are based on two cases de�ned in

previous section. We will discussed two cryptosystem in detailed about their key generation, encryption

and decryption algorithm.

12.2.1 Cryptosystem-I

Key Generation

User A, doing the following:

1. Select random prime numbers r and s such that r 6= s and computes n = rs or n = rl for l � 2:

2. Select four random integers a; b; c and d 2 Zn:

3. Make two matrices from four integers selected in step 2;

A =

0@ a b

b a

1A ; B =

0@ c d

d c

1A :

4. Verify the membership of randomly selected in group H: If at least one of the matrix is not belongs

to H then return to step 2:

5. User A de�nes two commutative inner product automorphisms of the ring M2(Zn) :

� : V ! A�1V A; � : V ! B�1V B; (12.10)
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for every matric A 2 M2(Zn):Since matrices A and B 2 H and therefore automorphism � and �

commute.

6. User A computes the following automorphisms of the ring M2(Zn) :

� = �2�; � = ��2; (12.11)

� : V ! (A2B)�1V (A2B); � : V ! (AB2)�1V (AB2): (12.12)

Automorphisms � and � commute and � = ���1�; � = ��1��:

7. User A select a random invertible matrix N 2 GL(2;Zn); such that N does not belong to group

H:

8. Computes the matrices:

N�1 ; �(N); �(N�1) : (12.13)

9. User A public key is �
n; �(N); �(N�1)

�
; (12.14)

and private key

(A;B): (12.15)

Encryption

User B will performed the following tasks:

1. Represents the plaintext m as a sequence of 2� 2 matrices over residue ring Zn :

m(1);m(2);m(3); :::;m(k):

2. For every m(i) (i = 1; 2; :::; k); choose a random matrix X(i) 2 H:

3. De�ne for every i = 1; 2; :::; k; the automorphisms

#(i) : V ! (X(i))�1V (X(i)); (12.16)

for every V 2M2(Zn):

4. Computes for every i = 1; 2; :::; k matrices #(i)(�(N)); #(i)(�(N�1)) and m(i)#(i)(�(N)):
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5. Selects for every i = 1; 2; :::; k random unit � 2 Zn and computes the ciphertext:

C =
�
C(1); C(2); :::; C(k)

�
; C(i) = (C

(i)
1 ; C

(i)
2 ); (12.17)

C
(i)
1 = ��1i #(i)(�(N�1)); C

(i)
2 = �im

(i)#(i)(�(N)); i = 1; 2; :::; k: (12.18)

Decryption

User A will follow the steps given below for deciphering enciphered message:

1. Computes for every i = 1; 2; :::; k using the private key:

d(i) = ��1�(C
(i)
1 ) = ��1�(��1i #(i)(�(N�1))): (12.19)

2. Computes for every i = 1; 2; :::; k matrices:

m(i) = C
(i)
2 d(i) = (�im

(i)#(i)(�(N)))d(i): (12.20)

3. Finally, User A can easily recovers the original message i.e., plaintextm from the matrix sequences

m(1);m(2);m(3); :::;m(i):

12.2.2 Cryptosystem-II

Key Generation

User A, doing the following:

1. Select a random prime numbers p and q such that p 6= q and computes n = pq or n = pr for r � 2:

2. Select random matrix D 2 GL(2;Zn):

3. Computes the following matrices

I = D2; J = D3; I2J and IJ2: (12.21)

4. Select a random matrix N 2 GL(2;Zn):

5. De�ne the automorphism

� = �2�; � = ��2; (12.22)

� : V ! (I2J)�1V (I2J); � : V ! (IJ2)�1V (IJ2): (12.23)
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for every matric V 2M2(Zn):The automorphisms �; �; � and � commute with each other because

the corresponding matrices I; J; I2J and IJ2 are some integral exponents of matrix D:

6. Computes the matrices:

IJ ; �(N); �(N�1) : (12.24)

7. User A public key is �
n; IJ; �(N); �(N�1)

�
; (12.25)

and private key

(I; J): (12.26)

Encryption

User B will performed the following tasks:

1. Represents the plaintext m as a sequence of 2� 2 matrices over residue ring Zn :

m(1);m(2);m(3); :::;m(k): (12.27)

2. For every m(i) (i = 1; 2; :::; k); select a random integer ki computes matrix

X(i) = (IJ)ki : (12.28)

3. De�ne for every i = 1; 2; :::; k; the automorphisms

#(i) : V ! (X(i))�1V (X(i)); (12.29)

for every V 2M2(Zn):

4. Computes for every i = 1; 2; :::; k matrices #(i)(�(N)); #(i)(�(N�1)) and m(i)#(i)(�(N)):

5. Selects for every i = 1; 2; :::; k random units � 2 Z�n and computes the ciphertext:

C =
�
C(1); C(2); :::; C(k)

�
; C(i) = (C

(i)
1 ; C

(i)
2 ); (12.30)

C
(i)
1 = ��1i #(i)(�(N�1)); C

(i)
2 = �im

(i)#(i)(�(N)); i = 1; 2; :::; k: (12.31)

Decryption

User A will follow the steps given below for deciphering enciphered message:
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1. Computes for every i = 1; 2; :::; k using the private key:

d(i) = ��1�(C
(i)
1 ) = ��1�(��1i #(i)(�(N�1))): (12.32)

2. Computes for every i = 1; 2; :::; k matrices:

m(i) = C
(i)
2 d(i) = (�im

(i)#(i)(�(N)))d(i): (12.33)

3. Finally, User A can easily recovers the original message i.e., plaintextm from the matrix sequences

m(1);m(2);m(3); :::;m(i):

12.3 Implementations of Proposed Cryptosystem-I and Cryptosystem-

II

In this section, we have constructed examples to the mentioned cryptosystem-I and cryptosystem-II

respectively.

12.3.1 Example

Key Generation

User A will do the following steps:

1. Select two prime numbers say p = 2 and q = 13 and compute n = pq = 26:

2. Select four random integers in the modular ring Z26; i.e., 5; 4; 6; 1:

3. Make matrices from the integers selected in step 2, i.e.,

A =

0@ 5 4

4 5

1A ; B =

0@ 6 1

1 6

1A : (12.34)

4. Computes detA = 9, detB = 9 and then computes (detA)�1 = 3 and (detB)�1 = 3; therefore A

and B are units in the matrix ring M2(Z26):

5. De�nes two automorphisms of the ring M2(Z26) :

� : V ! A�1V A; � : V ! B�1V B; (12.35)

for every matrix V 2M2(Z26):
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6. De�ne two automorphisms of the ring M2(Z26) :

� = �2�; � = ��2; (12.36)

� : V ! (AB2)�1V (AB2); � : V ! (A2B)�1V (A2B): (12.37)

7. User A select a random invertible matrix N 2 GL(2;Z26); such that N does not belong to group

H:

N =

0@ 7 2

1 3

1A ; N�1 =

0@ 7 4

15 25

1A : (12.38)

8. Computes the matrices:

�(N) = (AB2)�1N(AB2) =

0@ 7 2

1 3

1A ; (12.39)

�(N�1) = (A2B)�1N�1(A2B) =

0@ 25 15

4 7

1A : (12.40)

9. User A public key is0@n = 26; �(N) =
0@ 7 2

1 3

1A ; �(N�1) =

0@ 25 15

4 7

1A1A ; (12.41)

and private key 0@A =
0@ 5 4

4 5

1A ; B =

0@ 6 1

1 6

1A1A : (12.42)

Encryption

User B will performed the following steps:

1. Presents the plaintext as a matrix m 2M2(Z26) :

m =

0@ 11 3

9 3

1A ; (12.43)

2. Select the random matrix X =

0@ 4 1

1 4

1A and its inverse is X�1 =

0@ 2 19

19 2

1A :
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3. De�ne automorphism # of the ring M2(Z26) :

# : V ! X�1V X; (12.44)

for every V 2M2(Z26):

4. Compute the matrices:

#(�(N)) = X�1�(N)X =

0@ 11 17

12 25

1A ; (12.45)

#(�(N�1)) = X�1�(N�1)X =

0@ 17 24

21 15

1A ; (12.46)

5. Now select a unit element of Z26 randomly:

� = 9; ��1 = 3: (12.47)

6. Computes the ciphertext

C = (C1; C2): (12.48)

C1 = ��1#(�(N�1)) =

0@ 25 20

11 19

1A ; (12.49)

C2 = �m#(�(N)) =

0@ 9 18

19 24

1A : (12.50)

Decryption

User A will performed the following steps in order to recover the plaintext:

1. Computes the matrix d; using the private key:

d = ��1�(C1) = (A
�1B)�1C1(A

�1B) =

0@ 19 11

20 25

1A : (12.51)

2. Computes the following matric manipulations to get the �nal plaintext:

m = C2d =

0@ 11 3

9 3

1A : (12.52)
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12.3.2 Example

Key generation

User A will do the following steps:

1. Select a prime number say p = 7 and compute n = p2 = 49:

2. Select a random matrix

D =

0@ 7 3

5 2

1A 2 GL(2;Z49): (12.53)

3. Computes matrices

I = D2 =

0@ 15 27

45 19

1A ; J = D3 =

0@ 14 18

18 26

1A ; I2J =

0@ 14 24

40 23

1A ; IJ2 =

0@ 22 41

3 19

1A
(12.54)

4. User A select a random invertible matrix N 2 GL(2;Z49) :

N =

0@ 9 2

7 3

1A ; N�1 =

0@ 4 30

7 12

1A :

5. De�nes automorphisms of the ring M2(Z49) :

� : V ! I�1V I; � : V ! J�1V J; (12.55)

for every matric V 2M2(Z49): Now computes the automorphisms

� = �2�; � = ��2; (12.56)

� : V ! (I2J)�1V (I2J); � : V ! (IJ2)�1V (IJ2): (12.57)

6. Calculating the following matrices:

IJ =

0@ 19 31

19 0

1A ; �(N) =

0@ 4 5

43 8

1A ; �(N�1) =

0@ 2 34

20 14

1A : (12.58)

7. User A public key is0@n = 49; �(N) =
0@ 4 5

43 8

1A ; �(N�1) =

0@ 2 34

20 14

1A ; IJ =

0@ 19 31

19 0

1A1A ; (12.59)
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and private key 0@I =
0@ 15 27

45 19

1A ; J =

0@ 44 1

18 26

1A1A : (12.60)

Encryption

User B will performed the following steps:

1. Presents the plaintext as a matrix m 2M2(Z49) :

m =

0@ 10 1

3 1

1A 2M2(Z49); (12.61)

2. Select the random integer k for instance k = 3; and computes the matrix:

X = (IJ)3 =

0@ 37 1

18 19

1A : (12.62)

3. De�ne automorphism # of the ring M2(Z49) :

# : V ! X�1V X; (12.63)

for every V 2M2(Z49):

4. Compute the matrices:

#(�(N)) = X�1�(N)X =

0@ 4 5

43 8

1A ; (12.64)

#(�(N�1)) = X�1�(N�1)X =

0@ 2 34

20 14

1A : (12.65)

5. Now select a unit element of Z49 randomly:

� = 11; ��1 = 9: (12.66)
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6. Computes the ciphertext

C = (C1; C2): (12.67)

C1 = ��1#(�(N�1)) =

0@ 10 7

22 36

1A ; (12.68)

C2 = �m#(�(N)) =

0@ 3 22

31 43

1A : (12.69)

Decryption

User A will performed the following steps in order to recover the plaintext:

1. Computes the matrix d; using the private key:

d = ���1(C1) = (IJ
�1)�1C1(IJ

�1) =

0@ 23 44

4 23

1A :

2. Computes the following matric manipulations to get the �nal plaintext:

m = C2d =

0@ 10 1

3 1

1A : (12.70)

Theorem 108 The decryption in Cryptosystem-1 and Cryptosystem-2 are correct.

Proof. Automorphisms #(i); i = 1; :::; k commute with the automorphisms � and � in both cryptosys-

tems. The automorphisms de�ned in both cryptosystems are di¤erent. Let us start with the following

computations:

(�im
(i)#(i)(�(N)))d(i) = ((�im

(i)#(i)(�(N))))(���1(��1i #(i)(�(N�1))));

= (�i�
�1
i m(i)#(i)(�(N))))(#(i)(���1(�(N�1))));

= m(i)(#(i)(�(N)))(#(i)((�(N�1)));

= m(i)#(i)(�(N)�(N�1));

= m(i)#(i)(�(I));

= m(i)I;

= m(i): (12.71)
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12.4 Some attacks on proposed cryptosystems

12.4.1 A ciphertext only attack

Let C = (C1; C2) be a ciphertext for the plaintext m(i); then

C1 = ��1i #(i)(�(N�1)); C2 = �m#(�(N)); (12.72)

and therefore we come to the equation system with unknowns matrices m, X and unknown unit element

� 2 Z� : 8<: C1 = ��1i X�1(�(N�1))X;

C2 = �mX�1(�(N))X:
(12.73)

For random unit � cryptanalyst has not another way to solve this equation system as to suppose concrete

value �0 = � and to solve the conjugation problem: to �nd unknown matrix X from the equation:

�0C1 = X�1(�(N�1))X: (12.74)

Rewriting this matrix equation as system of four linear equations with four unknowns cryptanalyst �nds

the set of solutions, depending on one or more parameters, each of which runs Zn .Then he inserts each

solution X = X0 in the second equation of system :

C2 = �0mX
�1
0 (�(N))X0: (12.75)

and �nds corresponding solution m = m0 . Thus, for each �xed �0 cryptanalyst receives at least n

pairs of the form (X0;m0). Because �0 accepts �(n) values, the cryptanalyst gets n�(n) triples of the

form (�0; X0;m0): Consequently, if n is not less than 64 bit integer, then check which of these non less

approximately 2125 triplets is a true solution becomes infeasible.

12.4.2 A known-plaintext attack

Let ((m(i); C(i)); i = 1; 2; 3; :::; k) be the pairs of the form plaintext-ciphertext. Cryptanalyst needs to �nd

unknown plaintext m(k+1) from the corresponding ciphertext C(k+1). In our case for the cryptosystems

1 and 2 encryption uses the new random one-time key X for the new plaintext. Therefore knowledge of

previous pairs of the form plaintext-ciphertext gives no information to �nd the unknown plaintext from

the corresponding ciphertext for a new pair.
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12.4.3 A chosen-ciphertext attack

Let m� be a random matrix in the group GL(2;Zn) and C = (C1; C2) be a ciphertext for unknown

plaintext m. Cryptanalyst Connor computes m�C and o¤ers User A to decrypt the ciphertext C� =

(C1;m
�C2): Then User A �nds corresponding plaintext m�m and sends it to Connor. Finally Connor

computes the initial plaintext as the following:

(m�)�1(m�m) = m: (12.76)

12.4.4 Protection from a chosen ciphertext attack

To prevent this attack one has to replace one-sided ciphertext with two-sided ciphertext. Namely, one-

sided ciphertext:

C = (C1; C2); C1 = ��1X�1(�(N�1))X; C2 = �mX�1(�(N))X; (12.77)

is replaced with two-sided ciphertext

C = (C1; C2); C1 = ��1X�1(�(N�1))X; C2 = �2(X�1(�(N))X)mX�1(�(N))X: (12.78)

In this case decryption becomes the following:

a) User A computes

d = ���1(C1);

b) then computes

dC2d = m: (12.79)

The chosen ciphertext assault for this situation won�t be fruitful, since the matrices X and m in general

do not commute. An assault with a chosen ciphertext breaks cryptosystems RSA, Elgamal and Rabin,

yet endeavors to assemble their alterations impervious to this assault, still brought about an extremely

wasteful cryptosystems. As should be obvious, for the matrix modular cryptosystems circumstance

is distinctive, since the closed variation varies from the normal just a couple of number of matrix

multiplications [184]-[195].

12.5 Conclusion

In this chapter, we have proposed some new public-key cryptosystem with less computations and good

security scheme. We have presented two di¤erent public key cryptosystems and tested both of these

techniques with the help of numerical examples. Both cryptosystems are faster and balanced with
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respect to a pair of security-e¢ ciency. In the most important case for the use of public-key cryptosystems,

namely, key exchange protocols for symmetric ciphers. This modi�cation can easily be used in di¤erent

application due to its simplicity and e¢ ciency with respect to security point of view.
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Chapter 13

Conclusions

In literature and in life we ultimately pursue, not conclusions, but beginnings. Therefore, to conclude

this thesis, a summary of the research performed is presented in the �rst section of this chapter which

is followed by the discussion of possible future directions that could extend this research as mentioned

in the �nal section of this chapter.

13.1 Summary of Thesis

The primary goal of the research work reported here in this thesis was to construct new techniques

for creating S-boxes which optimized the properties of information security schemes that include cryp-

tography, watermarking and steganography. The necessary background theory pertaining to Boolean

functions, S-boxes, information security systems, and relevant prior research work performed by other

researchers, has been outlined in the preceding chapters.

In this thesis, we have proposed four new techniques to be used for the improvement of cryptograph-

ically secure S-boxes. Each of the four techniques has been developed not only to focus on di¤erent

signi�cant strengthen properties, but also designed to optimize a combination of properties. These

methods are novel, �exible and elegant, and were all successful in achieving their respective intended

outcomes e¤ectively.

The �rst technique for the construction of S-boxes is based on linear fractional transformation along

with chaotic Lorenz systems. The output from chaotic systems is combining with constants of linear

fractional transformation in order to produce numbers of S-boxes. These S-boxes satis�ed signi�cant

cryptographic properties which include nonlinearity, Strict avalanche criteria, Bit independent crite-

ria, Linear approximation probability, Di¤erential approximation probability and compared the results

with already existing well-known S-boxes. Also the extensions of these types of S-boxes along with

Hyperchaotic Lorenz systems were seen in chapter 8 along with application to CAPTCHA.

The second technique of this thesis is based on chaotic Boolean functions. We have not only designed
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new S-box but also used it in image encryption applications. To verify the certi�cations of proposed

chaotic S-box, we have performed standard analyses which include histogram, information entropy,

correlation and, di¤erential analyses which comprises of mean absolute (MAE), number of pixels change

rate (NPCR) and uni�ed average changing intensity (UACI). The values of all these coe¢ cients are

within the optimal ranges which is the con�rmation of utility of suggested schemes.

The third scheme of the present thesis fundamentally consists of prime �eld of characteristic p, and

is denoted Zp where p is prime number. We have designed a new mechanism of S-boxes based on Z257
and Z17 along with S4 permutations. The �rst mechanism is for image encryption which is described in

chapter 6 and second one for steganography discussed in chapter 11.

The fourth designed technique is based on �nite Galois rings of two types discussed in chapter 10.

This chapter is specially designed in order to replace Galois �eld which is extensively used due to its

vast applicability with the utility of invertibility. We have used maximal cyclic subgroup of Galois rings

along with symmetry group Sn to generate large number of S-boxes. For the selection of particular

S-box, we have applied chaotic iterative maps. Additionally, we have added very healthy applications

of constructed S-boxes in watermarking and image encryption. The statistical analyses conducted for

image encryption and watermarking clearly re�ect the validity of suggested schemes.

Lastly, we have constructed a simple and e¤ective public key algorithm which is based on the small

Abelian subgroup of general linear group. Our scheme is fundamentally based on units of residue classes.

13.2 Future Directions

During and subsequent to the research performed for this thesis, a number of areas of future work have

been identi�ed. We now discuss directions for future research which involve both an extension of some

of the work contained in this thesis, as well as topics of related work which could be investigated.

The basic idea of chapter 4 can be stretched for two dimensional linear fractional transformation

along with six constants values which increases the number of S-boxes. As there is always a corner of

improvement, so some new set of algebraic analyses can also be added to testify the strength of proposed

S-boxes. Moreover, we can apply di¤erent chaotic relations to add randomness in our proposed chaos

based S-boxes as discussed in chapter 7.

The constructions which are based on �nite �eld of prime order and �nite Galois rings (given in

chapters 5,6,10,11) can be extended for audio and video encryption, watermarking and steganography.

These construction techniques are completely di¤erent and novel. In chapter 12, we have considered

public key encryption, which is based on units of modulo classes. The projected techniques can be

extended to text and image encryption applications, which is another strength of this thesis.
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