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Preface 

The boundary layer flows over a moving surface have vital importance due to their ever increasing usage in the 

industries. In such industrial processes, the kinematics of stretching and heat transfer through rate of cooling have 

substantial impact in the improvement of final product of better quality. No doubt, the thermal buoyancy force arising 

due to cooling or heating of a moving surface may alter significantly the flow and thermal fields and thereby the heat 

transfer behavior in the manufacturing process. In several practical applications, the order of magnitudes of buoyancy 

and viscous forces are comparable for moderate flow velocities and large surface temperature differences and 

convective heat transfer process is thus called as mixed convection. The buoyancy forces due to temperature and 

concentration differences are significant in mixed convection thermal and concentration diffusions. In fact the 

buoyancy forces causing a pressure gradient in the boundary layer modify the velocity, temperature and concentration 

distributions and consequently the rate of heat and mass transfer between the surface and fluid. Specifically the mixed 

convection flows are encountered in industrial processes like solar central receivers exposed to the wind currents, 

nuclear reactors called during emergency shutdown, electronic devices cooled by fans and heat exchangers etc. The 

mixed convection flows with heat and mass transfer are relevant to energy related engineering problems that include 

both metal and polymer sheets. Mostly, the fluids in industrial processes are non-Newtonian. Certain oils, paints, blood 

at low shear rate, shampoos, cosmetic products body fluids, pasta, ice cream, ice, mud etc are few examples of non-

Newtonian fluids. Keeping all the aforementioned facts in mind, the present thesis is structured as follows. 

 

Chapter one covers literature survey and laws of conservation of mass, linear momentum and energy. Boundary layer 

equations of second grade, Maxwell, Oldroyd-B and thixotropic fluids are presented. Basic idea of homotopy analysis 

method is also given.  

Chapter two deliberates the mixed convection boundary layer flow of thixotropic fluid with thermophoresis over a 

stretched sheet. Fluid is electrically conducting in the presence of constant applied magnetic field. Heat and mass 

transfer effects are considered in the presence of Joule heating and thermal radiation. Series solutions are obtained 

to analyze the velocity, temperature and concentration fields. Numerical values of local Nusselt and Sherwood numbers 

for different values of emerging parameters are computed and analyzed. A comparative study with the previous 

solutions in a limiting sense is made. The leading results of this problem are published in “Journal of Thermophysics 

and Heat Transfer 27 (2013) 733-740”.  

Three-dimensional mixed convection flow of second grade fluid over an exponentially stretching surface are studied in 

chapter three. Convective boundary conditions are utilized for the heat transfer analysis. Analysis is carried out in the 

presence of thermal radiation. The series solutions are established through a newly developed method recognized as 
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the homotopy analysis method. The convergent analysis of velocity components and temperature are derived. Graphs 

are plotted and analyzed for interesting physical parameters. A systematic study is performed to analyze the impacts 

of the significant parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt 

number. The contents of this chapter are published in “Plos One 9 (2014) e90038”. 

Chapter four reports the heat and mass transfer effects in three-dimensional mixed convection flow of viscoelastic 

fluid with internal heat source/sink and chemical reaction. An exponential stretching surface is employed for flow 

generation. Magnetic field normal to the direction of flow is taken under consideration. Convective conditions at 

boundary surface are also encountered. An analytical approach homotopy analysis method is used to develop the 

solution expressions of the problem. Impacts of different controlling parameters such as stretching ratio parameter, 

Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter 

and Biot numbers on the velocity, temperature and concentration profiles are analyzed graphically. The local Nusselt 

number and Sherwood numbers are sketched and examined. The results of present chapter are accepted for 

publication in “Computational Mathematics and Mathematical Physics”. 

Chapter 5 provides the three-dimensional mixed convection flow of viscoelastic fluid over a stretching surface in 

presence of thermophoresis. Soret and Dufour effects are also taken  into account. Series solutions are constructed. 

Dimensionless velocity, temperature and concentration distributions are shown graphically for different values of 

involved parameters. Numerical values of local Nusselt and Sherwood numbers are computed and analyzed. The 

contents of this chapter are submitted for possible publication in “International Journal of Nonlinear Sciences and 

Numerical Simulation”. 

Three-dimensional flow of Maxwell fluid over a stretching surface is addressed in chapter six. Analysis is prepared in 

presence of concentration and thermal buoyancy effects. Convective boundary conditions for heat and mass transfer 

are explored. Series solutions of the resulting problem are established. Results are displayed to examine the influence 

of physical parameters on the velocity, temperature and concentration fields. Main observations of this chapter are 

published in “Journal of Central South University 22 (2015) 717−726”. 

Chapter seven is prepared to examine the heat and mass transfer effects in three-dimensional flow of Maxwell fluid 

over a stretching surface with convective boundary conditions. Mass transfer is considered in the presence of first 

order chemical reaction. Conservation laws of energy and concentration are based upon the Soret and Dufour effects. 

Convergent series solutions to the resulting nonlinear problems are developed. The relevant results are published in 

“International Journal of Numerical Method for Heat and Fluid Flow 25 (2015) 98 - 120”. 

Mixed convection flow by an inclined stretching surface with thermal radiation is investigated in chapter eight. The 

boundary layer equations of an Oldroyd-B fluid in the presence of heat transfer are used. Suitable transformations 

reduce the partial differential equations into the ordinary differential equations. Computational analysis is implemented 
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for the convergent series solutions. The values of local Nusselt number are numerically analyzed. Effects of various 

parameters involved in the velocity and temperature are discussed. The contents of this chapter are accepted for 

publication in “Journal of Applied Mechanics and Technical Physics”. 

Chapter nine provides the mixed convection flow of an Oldroyd-B fluid bounded by a stretching surface with 

suction/injection. Mathematical formulation is developed in the presence of heat source and power law heat flux. 

Velocity and temperature are computed. Numerical values of local Nusselt number are examined. Results are 

computed in a limiting sense with existing literature. The contents of this chapter are published in “Journal of the 

Brazilian Society of Mechanical Sciences and Engineering 37 (2015)  pp 423-430”. 

Chapter ten investigates the effects of heat and mass transfer in the mixed convection flow of an Oldroyd-B fluid over 

a stretching surface with convective boundary conditions. Stress is given to the analysis of Soret and Dufour effects. 

Related problems are first modeled and then computed by homotopy analysis method (HAM). Velocity, temperature and 

concentration fields are given. In addition, the local Nusselt and Sherwood numbers are examined through numerical 

values. These observations are submitted for publication in “Thermophysics and Aeromechanics”. 

Falkner-Skan flow of rate type non-Newtonian fluid is analyzed in chapter eleven. Expressions of an Oldroyd-B fluid are 

used in the development of relevant equations. Analysis has been carried out in presence of mixed convection and 

thermal radiation. Expressions of flow and heat transfer are assembled. Convergence of derived nonsimilar series 

solutions is provided. This research is submitted for publication in “Journal of Aerospace Engineering”.  

. 
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Chapter 1

Literature survey and methodology

1.1 Introduction

This chapter contains the literature review related to the considered flow problems. Boundary

layer equations of thixotropic, second grade, Maxwell and Oldroyd-B fluids are presented. Brief

idea of homotopy analysis method (HAM) are also provided.

1.2 Background

External flows around streamlined bodies have viscous (shear and no-slip) effects confined close

to the body surfaces and its wake but are nearly inviscid far from the body are termed as bound-

ary layer flows [1] which occur in aerodynamics (airplanes, rockets, projectiles), hydrodynamics

(ships, submarines, torpedoes), transportation (automobiles, trucks, cycles), wind engineering

(buildings, bridges, water towers) and ocean engineering (buoys, breakwaters, cables). The

boundary layer flow problem over stretching sheet have many industrial applications such as

polymer sheet or filament extrusion from a dye or long thread between feed roll or wind-up

roll, glass fiber and paper production, drawing of plastic films and liquid films in condensation

process. Due to the high applicability of this problem in such industrial phenomena, Sakiadis [2]

initiated the work for flow by moving surface. After the pioneering work of Sakiadis, researchers

have studied the flow over stretching surfaces under various aspects for viscous and nonlinear

fluids. A similarity solution of viscous fluid over a stretching surface which is stretched with
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the velocity proportional to the distance from origin was presented by Crane [3]. Chakrabarti

and Gupta [4] analyzed the hydromagnetic flow over a stretching surface. Heat transfer over a

continuous stretching surface with suction and injection was analyzed by Chen and Char [5].

Vajravelu and Hadjinicolaou [6] reported the heat transfer features in the laminar boundary

layer flow of viscous fluid over a linearly stretching surface with variable wall temperature. Ef-

fects of suction and injection are present. They attained the solutions of the problem in Kumar

functions. Andersson et al. [7] found the solutions over a stretching surface in presence of first

order chemical reactions. Similarity solutions of the boundary layer equations over stretch-

ing wall was obtained by Banks [8]. Closed form solution of magnetohydrodynamic (MHD)

flow under slip condition over a permeable stretching surface was obtained by Fang et al. [9].

Mukhphadhyay et al. [10] obtained the solution of MHD boundary layer flow over a heated

stretching sheet with variable viscosity. Wang [11] extended the boundary layer flow of Crane

[3] for three-dimensional stretching surface. Devi et al. [12] extended the flow of ref. [11]

for unsteady stretching surface in presence of heat and mass transfer effects. An approximate

analytical solutions of the steady, laminar three-dimensional flow for an incompressible viscous

fluid past a stretching sheet were proposed by Ariel [13,14]. Hayat and Javed [15] analyzed

the three-dimensional flow of an incompressible viscous fluid over a porous stretching surface

in presence of magnetic field by employing homotopy analysis method. Kumari and Nath [16]

discussed the unsteady magnetohydrodynamic viscous fluid with heat transfer induced by a

bilateral stretching surface. An analysis for heat transfer over a non-linearly stretching surface

for a viscous fluid was provided by Vajravelu [17]. Cortell [18] extended the work of ref. [17]

in presence of thermal radiation and viscous dissipation over a non-linearly stretching surface.

Two-dimensional magnetohydrodynamic stagnation point flow of an incompressible micropolar

fluid over a non-linearly stretching surface was explored by Hayat et al. [19]. The laminar

boundary layer flow over an axisymmetric plane was provided by Afzal [20]. It has been noted

by Gupta and Gupta [21] that stretching mechanism in all realistic situation is not linear. For

instance the stretching is not linear in plastic and paper production industries. Besides these

the flow and heat transfer by an exponentially stretching surface has been studied by Magyari

and Keller [22]. In this attempt the two-dimensional flow of an incompressible viscous fluid is

considered. The solutions of laminar boundary layer equations describing heat and flow in a
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quiescent fluid driven by an exponentially permeable stretching surface were numerically ana-

lyzed by Elbashbashy [23]. Al- Odat et al. [24] numerically discussed the thermal boundary

layer flow with an exponential temperature distribution. Here magnetohydrodynamic flow was

addressed. Liu et al. [25] studied the three-dimensional boundary layer flow of a viscous fluid

over an exponentially stretching surface by using the Ackroyd and Runge-Kutta methods.

Analysis of non-linear fluids is an active area of research for the last few years. In many

fields such as food industry, drilling operations and bioengineering, the fluids, either synthetic or

natural, are mixtures of different stuffs such as water, particle, oils, red cells and other long chain

molecules. Such combination imparts strong rheological properties to the resulting liquids. The

dynamic viscosity in non-linear materials varies non-linearly with the shear rate. These fluids

in terms of their different rheological features cannot be described by a single constitutive

relationship. Hence several relationships for the non-linear fluids are proposed. In fact the

additional parameters in such non-linear fluids are the main culprit which makes the resulting

systems more nonlinear, higher order and complex than the Navier-Stokes equations. The

rheological fluids in general have been classified into three categories known as the differential,

integral and rate types. Second grade fluid is a subclass of differential type fluids which exhibits

the normal stress effects. To predict these effects many researchers studied second grade fluid

under various aspects. Dandapat and Gupta [26] discussed the flow of an incompressible second-

order fluid due to stretching surface under boundary layer assumptions. Chen et al. [27]

delivered the temperature distribution in viscoelastic fluid of Walters’ B Model over a horizontal

stretching plate. The velocity of the plate is proportional to the distance from the slit. Vajravelu

and Rollins [28] carried out the heat transfer effects in viscoelastic fluid over a stretching surface

with frictional heating and internal heat generation or absorption. Hayat et al. [29] studied

the three-dimensional flow over stretching surface in a viscoelastic fluid by applying homotopy

analysis method. Liu [30] presented analytical solutions for the flow and heat transfer in steady

laminar boundary flow of an electrically conducting fluid of second grade subject to transverse

uniform magnetic field past a semi-infinite stretching sheet with power-law surface temperature

or power-law surface heat flux. The effects of viscous dissipation, internal heat generation or

absorption, work done due to deformation and Joule heating were also considered in the energy

equation. Flow and heat transfer characteristics of viscoelastic fluid with porous medium over
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a stretching surface with viscous dissipation was governed by Nandeppanavar et al. [31] .

Differential type models do not predict the relaxation and retardation time effects while these

effects can be anticipated by rate type fluids. Maxwell fluid is a simplest subclass of rate

type fluids. Channel flow of an upper convected Maxwell fluid (UCM) induced by suction was

presented by Choi et al. [32]. Sadeghy [33] discussed the flow of an upper-convected Maxwell

(UCM) fluid above a rigid plate moving steadily. Pahlavan et al. [34] studied the MHD flows

of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis

method. Maxwellian MHD flow induced by a linearly stretched with thermal radiations was

investigated by Aliakbar et al. [35]. Unsteady flow of generalized Maxwell fluid with fractional

derivative induced by an accelerating plate was provided by Fetecau et al. [36]. Kumari and

Nath [37] analyzed the Maxwell fluid over stretching sheet in presence of mixed convection. Abel

et al. [38] proposed the MHD flow and heat transfer for the upper-convected Maxwell fluid over a

stretching sheet. Hayat et al. [39] presented the three-dimensional Maxwell fluid over stretching

surface with convective boundary conditions. Bhatanagar et al. [40] initiated to analyze the

boundary layer flow of rate type fluids. They obtained the solutions of two-dimensional flow

over a stretching surface with variable free stream velocity. Exact solutions of unidirectional

flow of an Oldroyd-B fluid between two parallel plates was presented by Rajagopal [41]. Exact

solutions for flows of an electrically conducting Oldroyd-B fluid over an infinite oscillatory plate

in the presence of a transverse magnetic field when the entire system rotates about an axis

normal to the plate was obtained by Hayat et al. [42]. The linear stability of the flow of

an Oldroyd-B fluid through a linear array of cylinders confined in a channel was analyzed by

Smith et al. [43]. They computed solutions for both the steady state and linear stability of

these states by employing finite element analysis. Exact solutions for the influence of Hall

current and rotation in the oscillatory flows by an infinite plate were obtained by Asghar et al.

[44]. Fetecau and Fetecau [45] analyzed the unsteady flows of Oldroyd-B fluids in a channel

of rectangular cross-section. A linear stability analysis determining the onset of oscillatory

convection of an Oldroyd-B fluid in a two-dimensional rectangular porous medium generated

by Newtonian heating was presented by Niu et al. [46].

In nonlinear fluids sometimes nonlinearity introduced by their shear-dependent viscosity

and/or elasticity often gives rise to a formidable mathematical task which cannot be solved.
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Obviously, the situation becomes much more complicated when the viscosity of the fluid is time-

dependent. Time-dependent fluid systems are quite frequent in industrial applications with the

common effect being a drop in viscosity by the progress of time. Complex fluid systems such

as drilling muds, foodstuff, paints, cosmetics, pharmaceuticals, suspensions, grease, and the

like belong to this class of fluids-the so-called thixotropic fluids. Physiological fluids such as

blood, synovial fluid, and mucus may also exhibit thixotropic behavior depending on the time

scale of the observation. A common effect among thixotropic fluids is that their viscosity is

decreased even when the shear rate is constant [47,48]. Harris [49,50] tried to address boundary

layer flows of thixotropic fluids. Haris presented a simple thixotropic fluid model (the so called

Harris model) to investigate the effects of a fluid’s thixotropic behavior on the characteristics

of the momentum boundary layer formed above a fixed plate [50]. Two-dimensional flow of

an incompressible thixotropic fluid obeying Harris rheological model over a fixed semi-infinite

plate was investigated by Sadeqi et al. [51].

Mixed convection flows or combined free and forced convection flows occur in many techno-

logical and industrial applications and in nature for example, in solar receivers exposed to wind

currents, electronic devices cooled by fans, nuclear reactors cooled during emergency shutdown,

heat exchanges placed in a low-velocity environment, flows in the ocean and in the atmosphere,

and many more. Finite element method was utilized for detailed analysis of mixed-convection

flow in a horizontal channel heated from the side walls were computed by Sillekens [52]. Heat

transfer enhancement by air injection in upward heated mixed-convection flow of water was

studied by Celata et al. [53]. Barletta [54] provided the analysis of the laminar and fully

developed mixed convection flow in a vertical rectangular duct with one or more isothermal

walls. Magyari et al. [55] analyzed the boundary layer mixed convection flow over a perme-

able horizontal plate. The unsteady mixed convection boundary layer flow near the region of

a stagnation point on a vertical surface embedded in a Darcian fluid-saturated porous medium

was investigated by Nazar et al. [56]. They employed Keller—Box method to obtain the so-

lutions. Laminar two-dimensional unsteady mixed convection boundary-layer flow of viscous

incompressible fluid past a sharp wedge was developed by Hussain et al. [57]. Perturbation

solutions were obtained for small and large dimensionless time. Experimental investigation was

presented on mixed (free and forced) convection to study the local and average heat transfer
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for hydrodynamically and thermally developed laminar air flow in a horizontal circular cylinder

was analyzed by Mohammed and Salman [58]. Laminar mixed convection heat transfer for as-

sisted and opposed air flows in the entrance region of a vertical circular tube with wall heat flux

boundary condition had been experimentally investigated by Mohammed [59]. Kotouc et al.

[60] also provided the loss of axisymmetry in the mixed convection assisting flow past a heated

sphere. A transient laminar mixed convection flow of viscous incompressible fluid generated

by thermal buoyancy force over a horizontal porous sensor surface placed inside a squeezing

channel was discussed by Mahmood et al. [61]. The implicit finite difference approximation

together with Keller box method was employed for the solution of small and large time regimes.

Heat and mass transfer characteristics in mixed convection boundary layer flow past a linearly

stretching vertical surface in a porous medium filled with a viscoelastic fluid with Dufour and

Soret effects was governed by Hayat et al. [62].

Radiative mixed convection has gained much importance amongst the recent researchers due

to number of applications in geophysical and energy storage problems such as in furnaces, ovens

and boilers and the interest in our environment and in no conventional energy sources, such

as the use of salt gradient solar ponds for energy collection and storage. Similarity equations

governing steady hydromagnetic boundary-layer flow over an accelerating permeable surface in

the presence of thermal radiation, thermal buoyancy and heat generation or absorption effects

were obtained by Chamka [63]. Buoyancy force and thermal radiation effects in MHD boundary

layer viscoelastic fluid flow over continuously moving stretching surface was investigated by Abel

et al. [64]. Mukhopadhyay and Layek [65] presented the free convective boundary layer flow and

heat transfer of a fluid with variable viscosity over a porous stretching vertical surface in presence

of thermal radiation. Results were obtained by Lie group transformations. Also Mukhopadhyay

[66] analyzed the effects of thermal radiation on unsteady boundary layer mixed convection

heat transfer problem from a vertical porous stretching surface embedded in porous medium.

Magnetohydrodynamic mixed convective flow and heat transfer of an electrically conducting

power-law fluid past a stretching surface in the presence of heat generation/absorption and

thermal radiation was studied by Chen [67]. Numerical solutions were generated by an implicit

finite-difference technique for the non-similar coupled flow.

A study of utilizing heat source or sink in moving fluids has been a subject of interest of many
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researchers. This is because of its possible application to geophysical sciences, astrophysical sci-

ences, and in cosmic studies. Such flows arise either due to unsteady motion of the boundary

or the boundary temperature. The study of fluctuating flow is important in the paper industry

and many other technological fields. Many investigators stressed on the magnetohydrodynamic

flow of an electrically conducting fluid because of numerous applications in metallurgical in-

dustry such as in drawing, annealing, in the purification of molten metals from non-metallic

inclusions, electromagnetic pumps, MHD generators etc. Several studies have been presented

by the authors in presence of transverse magnetic field and heat source/sink over a stretching

surface. Heat transfer characteristics in an electrically conducting fluid over a stretching sheet

with variable wall temperature and heat source/sink was investigated by Vajravelu and Rollins

[68]. Abel et al. [69] presented the study of momentum and heat transfer characteristics in

hydromagnetic flow of viscoelastic liquid over a stretching sheet with non-uniform heat source,

where the flow was generated due to a linear stretching of the sheet and influenced by uni-

form magnetic field applied vertically. Beg et al. [70] examined the magnetohydrodynamic free

convection from a sphere embedded in an electrically-conducting fluid-saturated porous regime

with heat generation.

The present trend in the field of chemical reaction analysis is to give a mathematical model

for the system to predict the reactor performance. A large amount of research work has been

reported in this field. In particular, the study of heat and mass transfer with chemical reac-

tion is of considerable importance in chemical and hydrometallurgical industries. MHD flow

with heat and mass transfer characteristics of an incompressible viscous electrically conducting

and Boussinesq fluid due to a vertical stretching surface with chemical reaction and thermal

stratification effects was presented by Kandasamy et al. [71]. Mansour et al. [72] studied the

effects of chemical reaction, thermal stratification, Soret and Dufour numbers on MHD free

convective heat and mass transfer of a viscous incompressible and electrically conducting fluid

over a vertical stretching surface embedded in a saturated porous medium. The combined effect

of mixed convection with thermal radiation and chemical reaction on MHD flow of viscous and

electrically conducting fluid past a vertical permeable surface in presence of porous medium

was analyzed by Pal and Talukdar [73]. Mass transfer with chemical reaction in MHD mixed

convective flow along a vertical stretching sheet was investigated by Singh et al. [74].

11



1.3 Fundamental laws

1.3.1 Law of conservation of mass

The equation of continuity (law of conservation of mass) can be represented by




+∇ · (V) = 0 (1.1)

where  is the density of fluid and V is the fluid velocity.

For an incompressible fluid Eq. (1.1) can be expressed as follows:

∇ ·V = 0 (1.2)

1.3.2 Law of conservation of linear momentum

Generalized equation of motion can be expressed as


V


=∇ · τ+b (1.3)

For an incompressible flow

τ = −pI+ S (1.4)

in which τ is the Cauchy stress tensor,  is the pressure, I is the identity tensor, S is the extra

stress tensor, b is the body force and  is the material time derivative. The Cauchy stress

tensor and the velocity field for three-dimensional flow can be described in the forms

τ =

⎡⎢⎢⎢⎣
  

  

    

⎤⎥⎥⎥⎦  (1.5)

V = [(  ) (  ) (  )] (1.6)

where   and  represent the normal stresses,       and   show

the shear stresses and    are the velocity components along the   and −directions
respectively.
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Equation (1.3) in component form can be written as follows:



µ



+ 




+ 




+ 





¶
=

 ()


+

 ()


+

 ()


+  (1.7)



µ



+ 




+ 




+ 





¶
=

 ()


+

 ()


+

 ()


+  (1.8)



µ



+ 




+ 




+ 





¶
=

 ( )


+

 ( )


+

 ()


+  (1.9)

where ,  and  show the components of body force along the   and −axes, respectively.
The above equations for two-dimensional flow become



µ



+ 




+ 





¶
=

 ()


+

 ()


+  (1.10)



µ



+ 




+ 





¶
=

 ()


+

 ()


+  (1.11)

1.3.3 Equation of heat transfer

According to first law of thermodynamics the heat transfer equation can be written as





= τ L−∇ · q1 +  (1.12)

where  =  is the internal energy,  the specific heat,  the temperature, L =∇V the

velocity gradient, q1 = −∇ the heat flux,  the thermal conductivity and  the radiative

heating. The above equation in absence of radiative heating is given below





= τ ∇V+∇2 (1.13)

1.3.4 Diffusion equation

Mass transfer occurs whenever fluid flows that is some mass is transferred from one place to

another. According to Fick’s law




= ∇2 −  (1.14)
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where C is the concentration, D is the coefficient of mass diffusivity and  is the reaction rate

diffusing species.

1.4 Boundary layer equations of nonlinear fluids

1.4.1 Second grade fluid

Extra stress tensor S for a second grade fluid can be expressed as

S = A1 + 1A2 + 2A
2
1 (1.15)

where A1 is the first Rivilin-Erickson tensor can be defined by

A1 = gradV+ (gradV)
  (1.16)

For three-dimensional flow one obtains

A1 =

⎡⎢⎢⎢⎣
2




+ 




+ 





+ 


2




+ 





+ 




+ 


2


⎤⎥⎥⎥⎦ (1.17)

and the second Rivilin-Erickson tensor A2 can be computed through

A =
A−1


+A−1L+ L


A−1 (1.18)

For thermodynamic stability the second grade model should obey the ineqaulity given below:

 ≥ 0 1 ≥ 0 1 + 2 = 0 (1.19)

From the boundary layer theory [1], the order of    and  are 1 while the order of  and 

are  Three-dimensional boundary layer equations for second grade fluid can be written as





+ 




+




= 

2

2
+

1



⎛⎝  3
2

+  3
3
−³




2
2

+ 


2
2

+ 2


2


+ 2


2
2

´
⎞⎠  (1.20)
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



+ 




+ 




= 

2

2
+

1



⎛⎝  3
2

+  3
3
−³




2
2

+ 


2
2

+ 2


2


+ 2


2
2

´
⎞⎠  (1.21)

1.4.2 Maxwell fluid

The extra stress tensor S for Maxwell fluid can be expressed by the following relation

µ
1 + 1





¶
S = S+ 1

S


= A1 (1.22)

in which 1 is the relaxation time,  the covariant differentiation,  denotes the kinematic

viscosity and A1 the first Rivlin-Erickson tensor. For a tensor S of rank two, a vector b1 and

a scalar  we get

S


=

S


+ (V∇)S− S(gradV)



− (gradV)S (1.23)

b1


=

b1


+ (V∇)b1 − (gradV)b1 (1.24)




=




+ (V∇) (1.25)

Implementation of
¡
1 + 1




¢
on Eq. (1.3), we have the following relations in the absence of

body force



µ
1 + 1





¶
V


= −

µ
1 + 1





¶
∇+

µ
1 + 1





¶
(∇S) (1.26)

By adopting the procedure




(∇) = ∇

µ




¶
 (1.27)

Hence the above relations in absence of pressure gradient is



µ
1 + 1





¶
V


=  (∇A1)  (1.28)

By using the boundary layer theory [1], the order of    and  is 1 and order of  and  is

 The −momentum equation vanishes identically because it has order  Hence the boundary
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layer equations for three-dimensional flow of Maxwell fluid are





+ 




+ 




+ 1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2
2

+2 2


+ 2 2


+ 2 2


⎞⎠ = 
2

2
 (1.29)





+ 




+ 




+ 1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2

2

+2 2


+ 2 2


+ 2 2


⎞⎠ = 
2

2
 (1.30)

The boundary layer equation for two-dimensional flow of Maxwell fluid are given below





+ 




+ 1

µ
2

2

2
+ 2

2

2
+ 2

2



¶
= 

2

2
 (1.31)

1.4.3 Oldroyd-B fluid

The extra stress tensor for an Oldroyd-B fluid model can be expressed as

µ
1 + 1





¶
S = S+ 1

S


= 

µ
1 + 2





¶
A1 (1.32)

where 2 denotes the retardation time and law of conservation of momentum in absence of

pressure gradient and body force can be written as follows:



µ
1 + 1





¶
V


= 

µ
1 + 2





¶
(∇A1) (1.33)

The scalar forms of boundary layer equations in this case are





+ 




+




+ 1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2
2

+2 2


+ 2 2


+ 2 2


⎞⎠
= 

⎛⎝2

2
+ 2

⎛⎝  3
2

+  3
2

+  3
3

−


2
2
− 


2
2
− 


2
2

⎞⎠⎞⎠  (1.34)
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



+ 




+ 




+ 1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2

2

+2 2


+ 2 2


+ 2 2


⎞⎠
= 

⎛⎝2

2
+ 2

⎛⎝  3
2

+  3
2

+  3
3

−


2
2
− 


2
2
− 


2
2

⎞⎠⎞⎠  (1.35)

and the governing boundary layer equation for two-dimensional flow is





+ 




+ 1

µ
2

2

2
+ 2

2

2
+ 2

2



¶
= 

⎛⎝2

2
+ 2

⎛⎝  3
2

+  
3

3

−


2
2
− 


2
2

⎞⎠⎞⎠ 

(1.36)

1.4.4 Thixotropic fluid

Stress tensor τ for thixotropic fluid model

  = 2(2()) 

where the viscosity is allowed to be time-dependent through allowing the second invariant of the

deformation-rate tensor to be time-dependent, 2 is the second invariant of the deformation-

rate tensor and

2 = ( + ) (1.37)

In the simple Harris model, a quadratic form is used for the 2 so that we have,

2 = (2)
2 = 4

Ãµ




¶2
+
1

2

µ



+





¶2
+

µ




¶2!
 0 (1.38)

For the viscosity function, in the SH model we have [49,50]

 = 0 −12 +2
2


 (1.39)

where 

is the material derivative defined as




=




+ (∇)  (1.40)
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In equation (1.39) 1 and 2 are the material constants.

For boundary layer analysis the viscosity function becomes

 = 0 − 21
µ




¶2
+ 42

µ





2


+ 





2

2

¶
 (1.41)

By using boundary layer analysis the -momentum equation is completely dropped for two-

dimensional flow. On the other hand, the -momentum equation is reduced to





+ 




= 

2

2
− 61



µ




¶2µ
2

2

¶
+
42



⎛⎜⎜⎜⎝
2
³

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+  
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+

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

+ 


2
2

⎞⎠
⎞⎟⎟⎟⎠ 

(1.42)

1.5 Homotopy analysis method (HAM)

In the absence of analytical solutions before the advent of computers, the researchers mainly

directed their efforts at obtaining some forms of approximate solutions. One of the key issues

of approximate solutions has always been the accuracy of the solutions. The accuracy, gen-

erally speaking, is measured in terms of the norm of the error in Banach space. The error

being the difference of the approximate solution from the exact solution. In the absence of

an exact solution (analytical or numerical) a heuristic approach consisting of the convergence

of successive approximations has been chosen to judge the merit of an approximate solution.

With the advent of computers the approximate solutions in fluid dynamics have lost some of

their importance as more and better numerical algorithms have been developed to solve the

increasingly realistic, but more complicated problems numerically. Nevertheless, approximate

analytical solutions still have their relevance for the following reasons: Firstly, they give the

solutions for each point within the domain of interest unlike the numerical solutions which

are available for a particular run only for a set of discrete points in the domain. Secondly,

compared to a numerical solution a nicely produced approximate solution, requiring a minimal

effort and having a reasonable amount of accuracy is always handy for an engineer, scientist

or an applied mathematician, who can obtain a solution completely, thereby gaining a valuable
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insight into the essentials of the problem. Thirdly, even with most of the scientific packages,

some initial guess is required for the solution, as the algorithms, in general are not globally

convergent. In such situations, approximate solutions can provide an excellent starting guess,

which can be rapidly refined to the exact numerical solution in a few iterations. Homotopy

analysis method is proposed by Liao [75 76] and is very useful to obtain the series solutions

of the nonlinear ordinary and partial differential equations [77-85]. According to Liao [75 76],

this method distinguishes itself from other analytical methods in the following five aspects

1. HAM is not dependent on physical parameters. Therefore the technique can be used for

both strong/weak nonlinear problems.

2. It is valid for strongly nonlinear problems even if a given nonlinear problem does not

contain any small/large parameter.

3. It provides us with a convenient way to adjust the convergence region and rate of approx-

imation of the series solution.

4. HAM provides freedom to chose base functions to approximate the solution of nonlinear

problem.

5. This method can be coupled with many other mathematical methods such as integral

transform methods, series expansion methods, numerical methods and so on.

This technique is applicable in the development of results to numerous problems [78−88]
Idea behind the HAM is as follows.

Nonlinear differential equation can be written as follows:

() + () = 0 (1.43)

where  is a nonlinear operator, () is an unknown function to be determined and () is a

known function. The homotopic equation is

(1− )L [̄( )− 0()] = ~ { [̄( )− ()]}  (1.44)
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where 0() is initial guess, L is auxiliary linear operator, ~ is auxiliary parameter or con-
vergence control parameter,  ∈ [0 1] is an embedding parameter and ̄( ) is an unknown

function. By expanding Taylor’s series about  one obtains

̄( ) = 0() +

∞X
=1

()
 () =

1

!

̄( )



¯̄̄̄
=0

 (1.45)

The convergence of above series firmly depends upon ~ The value of ~ is chosen in such a

way that series solution is convergent at  = 1. Substituting  = 1 one obtains

() = 0() +

∞X
=1

() (1.46)

The -th order deformation problems are

L [()− −1()] = ~R() (1.47)

where

 =

⎧⎨⎩ 0  ≤ 1
1   1

(1.48)

R() =
1

( − 1)! ×
(

−1

−1


"
0() +

∞X
=1

()


#)
=0

 (1.49)
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Chapter 2

MHD mixed convection flow of

thixotropic fluid with

thermophoresis, Joule heating and

thermal radiation

This chapter deals with the magnetohydrodynamic (MHD) mixed convection flow of thixotropic

fluid over a moving surface. Heat transfer is considered in the presence of thermophoresis, Joule

heating and radiative effects. Dimensionless nonlinear problem is computed by homotopy analy-

sis method (HAM). The convergent solutions are plotted and examined for various parameters

of interest. Numerical values of wall shear stress and heat transfer rate are computed and

discussed.

2.1 Mathematical formulation

We consider Cartesian coordinate system in such a way that −axis is along the stretching
surface and −axis is perpendicular to it. The magnetohydrodynamic boundary layer flow of
thixotropic fluid is taken into account. Heat and mass transfer characteristics are accounted

in the presence of thermal radiation and thermophoresis effects. Uniform temperature of the
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surface  is higher than the ambient fluid temperature ∞ Further the species concentration

at the surface is taken uniform  = 0 while the ambient concentration is ∞ A constant

magnetic field of strength B0 is applied in the -direction. The flow is steady and the magnetic

Reynolds number is taken small so that an induced magnetic field is negligible in comparison

to applied magnetic field. Taking into account the Rosseland approximation for radiative heat

flux, the mass, linear momentum, energy and concentration equations are simplified to the

following expressions:




+




= 0 (2.1)
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 2
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´2 ³
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2

+  
3

3
+ 


2

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
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2

´
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+[ ( − ∞) + ( − ∞)] (2.2)
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∗20
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2 (2.3)





+ 




= 

2

2
− 


( ( − ∞)) (2.4)

where ( ) are the velocity components parallel to the − and −axes, 1 and 2 are the

constants,  the dynamic viscosity of fluid,  the density of fluid, ∗ the electrical conductivity,

 the gravitational acceleration,  and  the thermal and concentration expansion coefficients

respectively,  the temperature,  the specific heat,  the Stefan-Boltzmann constant,  the
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mean absorption coefficient,  the diffusion coefficient and  the thermophoretic velocity.

Fig. 2. 1: Physical model

Equations (2.1)-(2.4) are solved subject to the boundary conditions

 =  =   = 0  = ()  = () at  = 0

 → 0



→ 0  → ∞  → ∞ as  →∞ (2.5)

The thermophoretic term  in Eq. (2.4) can be defined as

 = −2 





 (2.6)

Here 2 is the thermophoretic coefficient and  is the reference temperature. A thermophoretic

parameter  is defined by the following relation

 = −2( − ∞)


 (2.7)

The wall temperature and concentration fields are

 = ∞ +   = ∞ +  (2.8)
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where   and  are the positive constants. Introducing

 =  0()  = −√()  = 

r



 () =

 − ∞
 − ∞

 (2.9)

incompressibility condition (2.1) is automatically satisfied and the Eqs. (2.2)-(2.5) become

 000+ 00− 02+1()
002 000+2()

⎛⎝ 2 0 002 000 +  004

−2 00 0002 −  00
2
 

⎞⎠−2 0+(+) = 0 (2.10)

µ
1 +

4

3


¶
00 + (0 −  0) +  002 +

1

3
1

004

+2(
0 004 −  003 000) +2 02 = 0 (2.11)

00 + (0 −  0)− (00 − 00) = 0 (2.12)

 = 0  0 = 1  = 1  = 1 at  = 0

 0 → 0  00 → 0  → 0 → 0 as  →∞ (2.13)

where the non-Newtonian parameters are 1() = −61322
and 2() =

42
42

2
  =

∗20 the Hartman number,  = 
2
 the local buoyancy parameter,  =

 (−∞)32
2

22

the local Grashof number,  = ( − ∞) ( − ∞) the constant dimensionless con-

centration buoyancy parameter,  =


the Prandtl number,  = 4

3∞ the radiation

parameter,  = 2( − ∞) the Eckert number and  = 

the Schmidt number. It is

further seen that both 1 and 2 are functions of  Hence the fluid flow in present situation

lacks a self-similar solution. This is striking difference when compared present case with that of

Blasius flow of viscous fluid i.e. in Blasius flow there is self-similar solution. Here 2 especially

indicates the fluids’ thixotropic behavior.

The skin friction coefficient, local Nusselt number and local Sherwood number in non-

dimensional form can be written as follows:

12  =  00(0)−16[
00(0)]3 

−12
 = −0(0) and −12 = −0(0) (2.14)
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Here we noticed that the wall shear stress at given −location is only affected by 1 but only

indirectly by 2 (i.e. through  00(0)) [51]. We have serious limitation in a simplified Harris

model for representing true thixotropic fluid.

2.2 Series solutions

The homotopic solutions for  and  in a set of base functions

{ exp(−)  ≥ 0  ≥ 0} (2.15)

are given by

() =

∞X
=0

∞X
=0


 exp(−) (2.16)

() =

∞X
=0

∞X
=0


 exp(−) (2.17)

() =

∞X
=0

∞X
=0


 exp(−) (2.18)

where , 

 and are  are the coefficients. The appropriate initial approximations and

auxiliary linear operators are

0() = 1− exp(−) 0() = exp(−) 0() = exp(−) (2.19)

L =  000 −  0 L =  00 −  L =  00 −  (2.20)

with

L (1 +2
 + 3

−) = 0, L(4 + 5
−) = 0 L(6 + 7

−) (2.21)

in which  ( = 1−7) denote the arbitrary constants and the zeroth order deformation problems
are

(1− )L
³
̂(; )− 0()

´
= ~N

³
̂(; ) ̂(; ) ̂(; )

´
 (2.22)

(1− )L
³
̂(; )− 0()

´
= ~N

³
̂(; ) ̂(; ) ̂(; )

´
 (2.23)
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(1− )L
³
̂(; )− 0()

´
= ~N

³
̂(; ) ̂(; ) ̂(; )

´
 (2.24)

̂(0; ) = 0 ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0 ̂ 00(∞; ) = 0

̂(0; ) = 1, ̂(∞; ) = 0 ̂(0; ) = 1 and ̂(∞; ) = 0 (2.25)

where  shows embedding parameter, ~  ~ and ~ the non-zero auxiliary parameters and the

nonlinear operators N , N and N are
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 (2.26)
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N[̂( ) ̂(; ) ̂(; )] =
2̂( )

2
+ 

Ã
̂( )

̂( )


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!

−
Ã
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2̂( )
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!
 (2.28)
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When  = 0 and  = 1 then

̂(; 0) = 0() and ̂(; 1) = () (2.29)

̂(; 0) = 0() and ̂(; 1) = () (2.30)

̂(; 0) = 0() and ̂(; 1) = () (2.31)

and when  increases from 0 to 1 then ( ), ( ) and ( ) vary from 0() to (), 0()

to () and 0() to () Employing the Taylor’s series expansion we have

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (2.32)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (2.33)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (2.34)

Convergence of series (2.32-2.34) is closely associated with ~  ~ and ~ The values of ~ , ~

and ~ are chosen such that the series (2.32-2.34) converge at  = 1. Hence

() = 0() +
∞P

=1

() (2.35)

() = 0() +
∞P

=1

() (2.36)

() = 0() +
∞P

=1

() (2.37)

If we denote the special solutions ∗ (), 
∗
 () and ∗ () then the general solutions  (),

 () and  () are

() = ∗() + 1 + 2
 + 3

− (2.38)

() = ∗() +4
 + 5

− (2.39)

() = ∗() +6
 + 7

− (2.40)
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2.3 Convergence analysis and discussion

We recall that the auxiliary parameters ~  ~ and ~ are useful in controlling and adjusting

the convergence of the series solutions. We draw the ~−curves at 14 order of approximation
in obtaining the ranges for ~  ~ and ~ It is noticed from Fig. 2.2 that the admissible

values of ~  ~ and ~ are −07 ≤ ~ ≤ −025 −095 ≤ ~ ≤ −05 and −095 ≤ ~ ≤ −05
Further the series solutions converge in the whole region of  when ~ = ~ = ~ = −06
Table 2.1 is presented to see the convergent values for different order of approximations at

~ = ~ = ~ = −06 This Table indicates that the series solutions for velocity converge
from 20th order of deformations and temperature and concentration converge from 25th order

of deformations. Hence 25th order deformations are computed to find a convergent series

solutions.
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f''0

Fig. 2. 2: ~−curves for the functions   and 

Table 2.1: Convergence of series solutions for different order of approximations when

1 = 01 2 = 02  = 04  = 03  = 06  = 07  = 05  = 10  = 03  = 04
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and ~ = ~ = ~ = −06

Order of approximations − 00(0) −0(0) −0(0)
1 0.86800 0.63500 0.85000

5 0.82753 0.60365 0.71921

10 0.82461 0.60732 0.69473

20 0.82425 0.60872 0.68636

25 0.82425 0.60886 0.68578

30 0.82425 0.60886 0.68578

35 0.82425 0.60886 0.68578

Figs. 2.3- 2.7 are sketched to analyze the variations of thixotropic parameters 1 and 2

local buoyancy parameter  Hartman number and concentration buoyancy parameter  on

the fluid velocity  0() Figs. 2.3 and 2.4 depict that the fluid velocity and momentum boundary

layer thickness are increasing functions of thixotropic parameters. By increasing thixotropic

parameters, the values of material parameters 1 and 2 increase. An increase in the material

parameters give rise to the fluid velocity and momentum boundary layer thickness. Fig. 2.5

shows that an increase in local buoyancy parameter gives rise to the fluid velocity and its

associated boundary layer thickness. Increase in buoyancy parameter corresponds to stronger

buoyancy force. Buoyancy force is an agent that causes an increase in the fluid flow and its

related boundary layer thickness. An increase in Hartman number reduces the fluid velocity.

Hartman number involves the Lorentz force and an increase in Lorentz force reduces the fluid

velocity and boundary layer thickness (see Fig. 2.6). The Lorentz force provides a resistance

to flow. From Fig. 2.7 it is observed that concentration buoyancy parameter enhances the

velocity.

To see the impacts of different parameters on the temperature () Figs. 2.8-2.15 are

potrayed. From Figs. 2.8 and 2.9, we have seen that the thixotropic parameters 1 and 2

are decreasing functions of temperature and thermal boundary layer thicknesses. Larger values

of 1 and 2 correspond to stronger 1 and 2 showing a reduction in the temperature. We

also noted that the thixotropic parameters have quite opposite effects on the fluid velocity

and temperature. Figs. 2.10 and 2.11 present the effects of local buoyancy parameter and
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concentration buoyancy parameter on the temperature. It is found that the temperature and

thermal boundary layer thickness become smaller for larger values of local buoyancy parameter

and concentration buoyancy parameter. Physically, both  and  depend on the buoyancy

force. Larger values of  and  lead to the stronger buoyancy force. Such stronger buoyancy

force reduced the temperature and thermal boundary layer thickness. Fig. 2.12 is plotted

to analyze the influence of Eckert number on the temperature. Here it is revealed that the

temperature and thermal boundary layer thickness are increased for larger Eckert number.

This is because of the reason that heat energy is always stored in the liquid due to the frictional

heating. Such increase in Eckert number enhances the temperature at any point in the thermal

boundary layer region. From Fig. 2.13, one can see that temperature is an increasing function

of Hartman number. Larger values of Hartman number posses stronger Lorentz force. This

stronger Lorentz force enhances the temperature and thermal boundary layer thickness. Impact

of Prandtl number  on the temperature () is analyzed in Fig. 2.14. Thermal boundary

layer thickness and temperature () are decreasing functions of  This is due to the fact

that with an enhancement in Prandtl number , thermal diffusivity decreases which leads to a

reduction in temperature () Fig. 2.15 shows that temperature () increases with an increase

in radiation parameter . Also thermal boundary layer thickness enhances with  which is

due to the fact that as thermal radiation parameter increases, the mean absorption coefficient

 decreases which in results give rise to the divergence of radiative heat flux. Hence the rate

of radiative heat transferred to the fluid shoot up so that the fluid temperature increases.

Figs. 2.16-2.22 are plotted to see the variations of 1 2   ,  and  on the

concentration () Figs. 2.16 and 2.17 show the influence of thixotropic parameters on the

concentration. From these Figs. we observed that increase in thixotropic parameters reduced

the concentration and its related boundary layer thickness. We also analyzed that the effects

of thixotropic parameters on the temperature and concentration are similar in a qualitative

sense. A comparison of Figs. 2.8, 2.9, 2.16 and 2.17 show that the variation in temperature

are dominant in comparison to variation in concentration due to thixotropic parameters. Local

buoyancy parameter and concentration buoyancy parameter are decreasing functions of con-

centration (see Figs. 2.18 and 2.19). Fig. 2.20 shows that an increase in Eckert number leads

to a decrease in the concentration and its related boundary layer thickness. For higher Eckert
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number, concentration specie diffuses due to which the concentration field decreases. Fig. 2.21

illustrates the variations of Hartman number on the fluid concentration. It is revealed that

concentration is a decreasing function of Hartman number. We conclude that the variations

in temperature are more dominant when compared with the variations in the concentration.

From Fig. 2.22 it is observed that the associated boundary layer thickness and concentration

profile decrease when thermophoretic parameter  increases.
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Table 2.2 is made to find the numerical values of skin-friction coefficient for various values

of 1 2   and  when the other parameters are fixed. We noted that the values of

skin-friction coefficient are decreased by increasing 1 2 and  However reverse situation is

noted for  and   Table 2. 3 analyzes the numerical values of local Nusselt number and local

Sherwood number for different values of emerging parameters in viscous and non-Newtonian

cases. We observed that the values of local Nusselt number and local Sherwood number is large

in the case of non-Newtonian fluid when compared with the case of viscous fluid. Table 2.4 is

computed for the comparison of  00(0) and 0(0) through different values of Prandtl number and

local buoyancy parameter when all other parameters are zero. From this Table, it is analyzed

that our series solutions have a good agreement with the numerical solutions in a limiting case.

Table 2.2: Numerical values of skin-friction coefficient for different values of 1 2 

 and  when  = 03,  = 04,  = 10,  = 05 and  = 07

1 2    −12 

0.0 0.2 0.6 0.4 0.4 0.84799

0.3 0.79227

0.5 0.76088

0.2 0.0 0.6 0.4 0.4 0.84923

0.3 0.79373

0.5 0.76247

0.2 0.2 0.0 0.4 0.4 0.71906

0.5 0.80959

1.0 1.01672

0.2 0.2 0.5 0.0 0.4 0.95561

0.4 0.76145

0.8 0.56391

0.2 0.2 0.5 0.3 0.0 0.80923

1.0 0.81003

2.0 0.81106

Table 2.3: Numerical values of local Nusselt number and local Sherwood number for different
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values of     and  when  = 03 and  = 04

      −0(0) −0(0) −0(0) −0(0)
1 = 2 = 00 1 = 2 = 02

0.0 0.7 0.5 1.0 0.3 0.4 0.67883 0.87335 0.69254 0.88088

0.5 0.58160 0.86284 0.60339 0.86671

1.0 0.29936 0.83862 0.36075 0.84058

0.5 0.5 0.5 1.0 0.3 0.4 0.58763 0.62245 0.60862 0.68707

1.0 0.57572 1.10358 0.59829 1.10750

1.5 0.57065 1.45081 0.59387 1.45463

0.5 0.7 0.3 1.0 0.3 0.4 0.66211 0.84754 0.67841 0.85318

0.6 0.54179 0.87021 0.56632 0.87341

0.8 0.46338 0.88469 0.49302 0.88618

0.5 0.7 0.5 0.5 0.3 0.4 0.41490 0.88107 0.42578 0.88426

0.8 0.52313 0.86855 0.54006 0.87243

1.3 0.65577 0.85452 0.68482 0.85721

0.5 0.7 0.5 1.0 0.0 0.4 0.55688 0.85559 0.58355 0.85988

0.5 0.59650 0.86737 0.61561 0.87109

1.0 0.62949 0.87800 0.64317 0.88142

0.5 0.7 0.5 1.0 0.3 0.0 0.70547 0.84788 0.73986 0.85133

0.5 0.55912 0.86538 0.57908 0.86942

1.0 0.47505 0.87469 0.48877 0.87958

Table 2.4: Comparison of  00(0) and 0(0) with Singh et al. [76] for different values of  and
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

Singh et al. [76] Present solutions

 00(0) 0(0)  00(0) 0(0)

 = 07

 = 00
-1.00 -0.79366 -1.00000 -0.79373

 = 07

 = 10
-0.50751 -0.89613 -0.50767 -0.89614

 = 07

 = 100
2.57771 -1.17244 2.57789 -1.17287

 = 100

 = 00
-1.00 -3.72067 -1.00000 -3.72033

 = 100

 = 10
-0.82568 -3.74856 -0.82529 -3.74718

 = 100

 = 100
0.61966 -3.95235 0.61940 -3.95266

2.4 Closing remarks

Effects of Joule heating, thermophoresis and thermal radiation in MHD flow of thixotropic fluid

are analyzed. The main observations are listed below.

• The non-Newtonian parameters 1 and 2 have similar effects on the velocity in a qual-

itative sense.

• The effects of  and  on the velocity field are quite opposite.

• The variations of1 and2 on temperature and concentration are opposite in comparison

to velocity.

• An increase in Schmidt number corresponds to a smaller variation in concentration field.
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Chapter 3

Three-dimensional mixed convection

flow of viscoelastic fluid with

thermal radiation and convective

conditions

The objective of this chapter is to examine the thermal radiation effect in three-dimensional

mixed convection flow of viscoelastic fluid. The resulting partial differential equations are re-

duced into a system of nonlinear ordinary differential equations using appropriate transforma-

tions. The series solutions are developed through a modern technique known as the homotopy

analysis method. The convergent expressions of the velocity components and temperature

are derived. The solutions obtained are dependent on seven sundry parameters including the

viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent,

Prandtl number, Biot number and radiation parameter. Discussion to these parameters is made

via plots.
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3.1 Mathematical analysis

Let us consider three-dimensional mixed convection flow of second grade fluid due to an expo-

nentially stretching surface. The surface coincides with the plane  = 0 and the flow is confined

in the region   0 The surface also possess the convective boundary condition. Influence of

thermal radiation through Rosseland’s approximation is taken into account. Flow configuration

is given below.

Fig. 3.1: Geometry of problem

The governing boundary layer equations for steady three-dimensional flow of viscoelastic fluid

can be put into the forms:




+




+




= 0 (3.1)





+ 




+ 




= 

2

2
+

1



⎛⎝
3

2
+ 

3

3
−
⎛⎝ 


2
2

+ 


2
2

+2


2


+ 2


2
2

⎞⎠⎞⎠
+ ( − ∞) (3.2)





+ 




+ 




= 

2

2
+

1



⎛⎝
3

2
+ 

3

3
−
⎛⎝ 


2
2

+ 


2
2

+2


2


+ 2


2
2

⎞⎠⎞⎠  (3.3)





+ 




+




=





2

2
− 1






 (3.4)
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where   and  are the velocity components in the − − and −directions respectively, 1 is
the material fluid parameter,  = () is the kinematic viscosity,  is the dynamic viscosity, 

is the fluid density,  is the fluid temperature,  is the gravitational acceleration,  is thermal

expansion coefficient of temperature,  is the specific heat,  is the thermal conductivity and

 the radiative heat flux. By using the Rosseland approximation, the radiative heat flux  is

given by

 = −4
3

 4


(3.5)

where  is the Stefan-Boltzmann constant and  the mean absorption coefficient. By using

the Rosseland approximation, the present analysis is limited to optically thick fluids. If the

temperature differences are sufficiently small then Eq. (3.5) can be linearized by expanding  4

into the Taylor series about ∞, which after neglecting higher order terms takes the form:

 4 = 4 3∞ − 3 4∞ (3.6)

By using Eqs. (3.5) and (3.6), Eq. (3.4) reduces to





+ 




+ 




=





2

2
− 16

3∞
3

2

2


The boundary conditions can be expressed as follows:

 =   =   = 0 − 



= ( −  ), at  = 0 (3.7)

→ 0  → 0  → ∞ as  →∞ (3.8)

where subscript  corresponds to the wall condition,  is the thermal conductivity,  is the

hot fluid temperature,  is the heat transfer coefficient and ∞ is the free stream temperature.

The velocities and temperature are taken in the following forms:

 = 0
+
   = 0

+
   =  = ∞ + 0

(+)

2 (3.9)

in which 0 0 are the constants,  is the reference length and  is the temperature exponent.
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The mathematical analysis of the problem is simplified by using the transformations [25]:

 = 0
+
  0()  = 0

+
 0()  = −

µ
0

2

¶12

+
2 ( + 

0
+  + 0)

 = ∞ + 0
(+)

2 ()  =

µ
0

2

¶12

+
2  (3.10)

Incompressibility condition is now clearly satisfied whereas Eqs. (32)− (38) give

 000+( + ) 00− 2( 0+ 0) 0+

⎛⎝ 6 000 0 + (300 − 3 00 + 000) 00

+(40 + 200) 000 − ( +  + 0) 0000

⎞⎠+2 = 0 (3.11)

000 + ( + )00 − 2( 0 + 0)0 +

⎛⎝ 60000 + (3 00 − 300 +  000)00

+(4 0 + 2 00)000 − ( +  +  0)0000

⎞⎠ = 0 (3.12)

(1 +
4

3
)00 + ( + )0 − Pr( 0 + 0) = 0 (3.13)

 = 0  = 0  0 = 1 0 = , 0 = −1(1− (0)) at  = 0 (3.14)

 0 → 0 0 → 0  → 0 as  →∞ (3.15)

in which  is the viscoelastic parameter  is the ratio parameter, Pr is the Prandtl number,

 is the local Grashof number,  is the radiation parameter,  is the temperature exponent,

1 is the Biot number,  is the local Reynold number,  is the mixed convection parameter

and prime denotes the differentiation with respect to . These can be defined as

 =
1

2
  =

0

0
Pr =




 =

µ
4∗ 3∞


¶
 1 =





r
2




 =
0



+
   =



Re2
  =

 ( − ∞)3

2
 (3.16)

The skin-friction coefficients in the  and  directions are given by

44



 =


122
 (3.17)

 =


122
 (3.18)

where

|=0 =

⎛⎝



+ 0

⎡⎣  2


+  2


+  2
2

+ 





+




+ 2




− 





⎤⎦⎞⎠
=0



|=0 =

⎛⎝



+ 0

⎡⎣  2


+  2


+  2
2

+ 





+




+ 2




− 





⎤⎦⎞⎠
=0

. (3.19)

By using Eq. (3.19) in Eqs. (3.17) and (3.18), the non-dimensional forms of skin friction

coefficients are as follows:

 =

µ
Re

2

¶−12 £
 00 +

¡−( + ) 000 + 5( 0 + 0) 00 + 2 0 00 + 2000
¢¤

=0
 (3.20)

 =

µ
Re

2

¶−12 £
00 +

¡−( + )000 + 5( 0 + 0)00 + 2 0 00 + 2000
¢¤

=0
 (3.21)

Further the local Nusselt number has the form

 =
−
³
16

3∞
3

+ 
´




( − ∞)
= −



µ
Re

2

¶12
(1 +

4

3
)0(0) (3.22)

3.2 Solutions development

The initial guesses and auxiliary linear operators in the desired HAM solutions are

0() =
¡
1− −

¢
 0() = 

¡
1− −

¢
 0() =

1 exp(−)
1 + 1

 (3.23)

L =  000 −  0 L = 000 − 0 L = 00 −  (3.24)
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subject to the properties

L (1 + 2
 +3

−) = 0 L(4 +5
 + 6

−) = 0

L(7 +8
−) = 0 (3.25)

in which  ( = 1− 8) are the arbitrary constants, L L and L are the linear operators and
0() 0() and 0() are the initial guesses.

Following the idea in ref. [78] the zeroth order deformation problems are

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; )

i
 (3.26)

(1− )L [̂(; )− 0()] = ~N

h
̂(; ) ̂(; )

i
 (3.27)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( )

i
 (3.28)

̂(0; ) = 0 ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0 ̂(0; ) = 0 (3.29)

̂0(0; ) =  ̂0(∞; ) = 0 ̂0(0 ) = −1[1− (0 )] ̂(∞ ) = 0 (3.30)

For  = 0 and  = 1 one has

̂(; 0) = 0() ̂(; 0) = 0() ̂( 0) = 0() and ̂(; 1) = ()

̂(; 1) = () ̂( 1) = () (3.31)

Note that when  increases from 0 to 1 then ( ) ( ) and ( ) vary from 0() 0() and

0() to () () and () So as the embedding parameter  ∈ [0 1] increases from 0 to 1, the
solutions ̂(; ) ̂(; ) and ̂(; ) of the zeroth order deformation equations deform from the

initial guesses 0() 0() and 0() to the exact solutions () () and () of the original

nonlinear differential equations. Such kind of continuous variation is called deformation in

topology and that is why the Eqs. (3.26-3.28) are called the zeroth order deformation equations.
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The values of the nonlinear operators are given below:

N [̂( ) ̂( )] =
3̂( )

3
− 2

Ã
̂( )


+

̂( )



!
̂( )


+
³
̂( ) + ̂( )

´ 2̂( )

2

+

⎛⎜⎜⎜⎜⎝
6
̂()


3̂()

3
+
³
3
2̂()

2
− 32̂()

2
+ 

3̂()

3

´
2̂()

2
+
³
4
̂()


+ 2
2̂()

2

´
3̂()

3

−
³
̂( ) + ̂( ) + 

̂()


´
4̂()

4

⎞⎟⎟⎟⎟⎠
+2̂( ) (3.32)

N[̂( ) ̂( )] =
3̂( )

3
− 2

⎛⎝ ̂()


+
̂()


⎞⎠ ̂( )


+

⎛⎝ ̂( )

+̂( )

⎞⎠ 2̂( )

2

+

⎛⎜⎜⎜⎜⎝
6
̂()


3̂()

3
+
³
3
2̂()

2
− 32̂()

2
+ 

3̂()

3

´
2̂()

2
+
³
4
̂()


+ 2
2̂()

2

´
3̂()

3

−
³
̂( ) + ̂( ) + 

̂()


´
4̂()

4

⎞⎟⎟⎟⎟⎠ (3.33)

N[̂( ) ̂( ) ̂( )] = (1 +
4

3
)

2̂( )

2
+Pr(̂( ) + ̂( ))

̂( )



−Pr
Ã
̂( )


+

̂( )



!
̂( ) (3.34)

Here ~  ~ and ~ are the non-zero auxiliary parameters and N  N and N the nonlinear

operators. Taylor series expansion gives

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (3.35)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (3.36)

( ) = 0()
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (3.37)

where the convergence of above series strongly depends upon ~  ~ and ~ Considering that
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~  ~ and ~ are chosen in such a manner that Eqs. (335)− (337) converge at  = 1 then

() = 0() +
∞P

=1

() (3.38)

() = 0() +
∞P

=1

() (3.39)

() = 0() +
∞P

=1

() (3.40)

The corresponding problems at mth order deformations satisfy

L [()− −1()] = ~R
 () (3.41)

L[()− −1()] = ~R
 () (3.42)

L[()− −1()] = ~R
 () (3.43)

(0) =  0(0) =  0(∞) = 0 (0) = 0(0) = 0(∞) = 0

0(0)− 1(0) = (∞) = 0 (3.44)

R
 () =  000−1()− 2

−1P
=0

 0−1−
0
 − 2

−1P
=0

0−1−
0
 +

−1P
=0

(−1− 00 + −1− 00 )

+

⎛⎜⎜⎜⎜⎜⎜⎝
6
−1P
=0

 0−1−
000
 + 3

−1P
=0

00−1−
00
 − 3

−1P
=0

 00−1−
00


+
−1P
=0

000−1−
00
 + 4

−1P
=0

0−1−
000
 + 2

−1P
=0

00−1−
000


−
−1P
=0

−1− 0000 −
−1P
=0

−1− 0000 −
−1P
=0

0−1−
0000


⎞⎟⎟⎟⎟⎟⎟⎠
+2 (3.45)
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R
 () = 000−1()− 2

−1P
=0

0−1−
0
 − 2

−1P
=0

0−1−
0
 +

−1P
=0

(−1−00 + −1−00)

+

⎛⎜⎜⎜⎜⎜⎜⎝
6
−1P
=0

0−1−
000
 + 3

−1P
=0

 00−1−
00
 − 3

−1P
=0

00−1−
00


+
−1P
=0

 000−1−
00
 + 4

−1P
=0

 0−1−
000
 + 2

−1P
=0

 00−1−
000


−
−1P
=0

−1−0000 −
−1P
=0

−1−0000 −
−1P
=0

 0−1−
0000


⎞⎟⎟⎟⎟⎟⎟⎠  (3.46)

R
 () = (1 +

4

3
)00−1 +Pr

−1P
=0

(0−1− + 0−1−)

−Pr
−1P
=0

( 0−1− + 0−1−) (3.47)

 =

⎡⎣ 0  ≤ 1
1   1

(3.48)

The mth order deformation problems have the solutions

() = ∗() + 1 + 2
 + 3

− (3.49)

() = ∗() + 4 + 5
 + 6

− (3.50)

() = ∗() +7
 + 8

− (3.51)

where the special solutions are ∗ ∗ and ∗.

3.3 Convergence analysis

We recall that the series (338)− (340) contain the auxiliary parameters ~  ~ and ~. These
parameters are useful to adjust and control the convergence of homotopic solutions. Hence the

~−curves are sketched at 15 order of approximations in order to determine the suitable ranges
for ~  ~ and ~. Fig. 3.2 denotes that the ranges of admissible values of ~  ~ and ~ are

−07 ≤ ~ ≤ −02 −07 ≤ ~ ≤ −01 and −08 ≤ ~ ≤ −02 Table 3.1 presents the numerical
values of − 00(0) −00(0) and −0(0) for different order of approximations when ~ = −05 ~ =
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−06 and ~ = −07 It is seen that the values of − 00(0) and −00(0) converge from 20th order of
deformations whereas the values of −0(0) converge from 25th order approximations. Further,

it is observed that we have to compute less deformations for the velocities in comparison to

temperature for convergent series solutions.

f''(0)

g''(0)

q'(0)

b = l = g1 = 0.5, Pr = 1.2, R = 0.3, K = A = 0.2

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 hf , hg, hq

-1.5

-1.0

-0.5

0.5

f ''0, g''0,q'0

Fig. 3.2: ~−curves for the functions   and 

Table 3.1: Convergence of series solutions for different order of approximations when

 = 01  = 02 Pr = 12 1 = 06  = 02 ~ = −05~ = −06 and ~ = −07

order of approximations 1 5 10 15 20 25

− 00(0) 1.06111 1.02482 1.02609 1.02623 1.02618 1.02618

−00(0) 0.544444 0.548057 0.548092 0.548043 0.548053 0.548053

−0(0) 0.317778 0.305581 0.305729 0.305744 0.305738 0.305738

3.4 Discussion of results

The effects of ratio parameter  viscoelastic parameter  mixed convection parameter  Biot

number 1 and radiation parameter  on the velocity component  0() are shown in the Figs.

3.3-3.5. It is observed from Fig. 3.3 that velocity component  0() and thermal boundary layer

thickness are decreasing functions of ratio parameter  This is due to the fact that with the

increase of ratio parameter  the -component of velocity coefficient decreases which leads

to a decrease in both the momentum boundary layer and velocity component  0() Fig. 3.4
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illustrates the influence of viscoelastic parameter  on the velocity component  0() It is

clear that both the boundary layer and velocity component  0() increase when the viscoelastic

parameter increases. Influence of mixed convection parameter  on the velocity component

 0() is analyzed in Fig. 3.5. Increase in mixed convection parameter  shows an increase in

velocity component  0(). This is due to the fact that the buoyancy forces are much more

effective rather than the viscous forces. Figs. 3.6 and 3.7 illustrate the variations of ratio

parameter  and viscoelastic parameter  on the velocity component 0() Variation of ratio

parameter  is analyzed in Fig. 3.6. Through comparative study with Fig. 3.3 it is noted

that  0() decreases while 0() increases when  increases. Physically, when  increases from

zero, the lateral surface starts moving in −direction and thus the velocity component 0()
increases and the velocity component  0() decreases. Fig. 3.7 is plotted to see the variation

of viscoelastic parameter  on the velocity component 0() It is found that both the velocity

component 0() and momentum boundary layer thicknesses are increasing functions of  . It

is revealed from Figs. 3.4 and 3.7 that the effect of  on both the velocities are qualitatively

similar.

Figs. 3.8-3.14 are sketched to see the effects of ratio parameter  viscoelastic parameter ,

the temperature exponent  Biot number 1 mixed convection parameter  Radiation para-

meter  and Prandtl number Pr on the temperature () Fig. 3.8 is drawn to see the impact

of ratio parameter  on the temperature (). It is noted that the temperature () and also

the thermal boundary layer thickness decrease with increasing . Variation of the viscoelastic

parameter  on the temperature () is shown in Fig. 39. Here both the temperature and

thermal boundary layer thickness are decreasing functions of . Variation of mixed convection

parameter  is analyzed in Fig. 310. It is seen that both the temperature () and thermal

boundary layer thickness are decreasing functions of mixed convection parameter  Fig. 311

presents the plots for the variation of Biot number 1 Note that () increases when 1 in-

creases. The thermal boundary layer thickness is also increasing function of 1. It is also noted

that the fluid temperature is zero when the Biot number vanishes. Influence of temperature

exponent  is displayed in Fig. 3.12. It is found that both the temperature () and thermal

boundary layer thickness decrease when A is increased. Also both the temperature () and

thermal boundary layer thickness are increasing functions of thermal radiation parameter 
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( see Fig. 3.13). It is observed that an increase in  has the ability to increase the thermal

boundary layer. It is due to the fact that when the thermal radiation parameter increases,

the mean absorption coefficient  will be decreased which in turn increases the divergence of

the radiative heat flux. Hence the rate of radiative heat transfer to the fluid is increased and

consequently the fluid temperature increases. Fig. 314 is plotted to see the effects of Pr on

(). It is noticed that both the temperature profile and thermal boundary layer thickness are

decreasing functions of Pr. In fact when Pr increases then thermal diffusivity decreases. This

indicates reduction in energy transfer ability and ultimate it results in the decrease of thermal

boundary layer.

b = 0.0, 0.3, 0.6, 1.0

K = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7

0 1 2 3 4 5 6
h

0.2

0.4

0.6

0.8

1.0

f 'h

Fig. 3.3: Influence of  on the velocity  0().

K = 0.0, 0.2, 0.4, 0.6

b = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7
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0.4

0.6

0.8

1.0

f 'h

Fig. 3.4: Influence of  on the velocity  0().
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l = 0.0, 0.3, 0.6, 0.9

b = 0.2, g1 = A = 0.4, K = R = 0.3, Pr = 0.7
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Fig. 3.5: Influence of  on the velocity  0().
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Fig. 3.6: Influence of  on the velocity 0().
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Fig. 3.7: Influence of  on the velocity 0().
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b = 0.0, 0.5, 1.0, 1.5 

K = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7
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Fig. 3.8: Influence of  on the temperature ().
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Fig. 3.9: Influence of  on the temperature ().
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Fig. 3.10: Influence of  on the tenperature ().
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K = R = 0.3, b = A = 0.4, l = 0.5, Pr = 0.7
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Fig. 3.11: Influence of 1 on the temperature ().
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Fig. 3.12: Influence of  on the temperature ().
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Fig. 3.13: Influence of  on the temperature ().
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K = R = 0.3, b = 0.2, A=g1= 0.4, l = 0.5

Pr = 0.1, 0.5, 1.0, 1.5
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Fig. 3.14: Influence of Pr on the temperature ().

Table 3.2 includes the values for comparison of existing solutions with the previous available

solutions in a limiting case when  =  = 1 =  = 0 and  varies. This Table presents an

excellent agreement with the previous available solutions. Table 3.3 is computed to see the

influences of viscoelastic parameter  and ratio parameter  on skin friction coefficients in the

 and  directions. It is noted that  has quite opposite effect on skin friction coefficients

while quite similar effect is seen within the increase of ratio parameter . Table 3.4 examines

the impact of viscoelastic parameter , mixed convection parameter , ratio parameter , Biot

number 1, radiation parameter , Prandtl number Pr and temperature exponent  on the

local Nusselt number (rate of heat transfer at the wall). It is noted that the value of rate

of heat transfer increases for larger viscoelastic parameter , mixed convection parameter ,

ratio parameter , Biot number 1, Prandtl number Pr and temperature exponent  while it

decreases through an increase in radiation parameter R.

Table 3.2: Comparative values of − 00(0) −00(0) and (∞) + (∞) for different values 
when  =  = 1 =  = 0

Liu et al. [25] Present results

 − 00(0) −00(0) (∞) + (∞) − 00(0) −00(0) (∞) + (∞)
0.0 1.28180856 0 0.90564383 1.28181 0 0.90564

0.50 1.56988846 0.78494423 1.10918263 1.56989 0.78494 1.10918

1.00 1.81275105 1.81275105 1.28077378 1.81275 1.81275 1.28077
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Table 3.3: Values of skin friction coefficients for different values of  and  when  =

1 = 05  = 03 Pr = 12 and  = 02.

  − ¡Re
2

¢12
 − ¡Re

2

¢12


0.0 0.5 4.95289 4.37363

0.2 5.16586 3.97055

0.3 5.42622 3.96130

0.3 0.0 3.72170 1.65409

0.2 4.30247 2.34617

0.5 5.42622 3.96130

Table 3.4: Values of local Nusselt number −(1 + 4
3
)0(0) for different values of the

parameters ,     Pr and 1.
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   1  Pr  −(1 + 4
3
)0(0)

0.0 0.5 0.5 0.5 0.3 1.2 0.2 0.297492

0.3 0.308234

0.5 0.311853

0.2 0.0 0.303062

0.3 0.304775

0.5 0.305738

0.2 0.5 0.0 0.282007

0.3 0.297135

0.5 0.305738

0.1 0.0885730

0.3 0.216850

0.5 0.305738

0.2 0.5 0.5 0.5 0.0 0.329701

0.3 0.305738

0.5 0.292750

0.2 0.5 0.5 0.5 0.3 1.0 0.292152

1.2 0.305738

1.5 0.321826

0.2 0.5 0.5 0.5 0.3 1.2 0.0 0.288530

0.2 0.305738

0.5 0.325492

3.5 Conclusions

Three-dimensional mixed convection flow of viscoelastic fluid over an exponentially stretch-

ing surface is analyzed. The analysis is carried out in the presence of thermal radiation and

convective boundary conditions. The main observations can be summarized as follows.

• Influence of ratio parameter  on the velocities  0() and 0() is quite opposite. However
the effect of viscoelastic parameter  on the velocities  0() and 0() is qualitatively
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similar.

• Momentum boundary layer thickness increases for 0() when ratio parameter  is large.

Effect of  on  0() is opposite to that of 0()

• Velocity component  0() is increasing function of mixed convection parameter  However
() decreases with an increase of mixed convection parameter . The impacts of Biot

number 1 and radiation parameter  on  0() and () are qualitatively similar.

• Momentum boundary layer is an increasing function of mixed convection parameter 

while thermal boundary layer is decreasing function of mixed convection parameter 

• Increase in Prandtl number decreases the temperature ().

• Thermal boundary layer thickness decreases when ratio parameter  viscoelastic para-
meter , mixed convection parameter  Prandtl number Pr and temperature exponent

 are increased.

• Influence of viscoelastic parameter  on the  and  directions of skin friction coefficients

is opposite.

• Both components of skin friction coefficient increase through an increase in ratio parame-
ter 

• Local Nusselt number is an increasing function of Prandtl number Pr ratio parameter 
viscoelastic parameter, mixed convection parameter  Biot number 1 and temperature

exponent  while it decreases for radiation parameter .
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Chapter 4

Convective heat and mass transfer

in three-dimensional mixed

convection flow of viscoelastic fluid

with chemical reaction and heat

source/sink

This chapter investigates the heat and mass transfer effects in three-dimensional mixed con-

vection flow of viscoelastic fluid with internal heat source/sink and chemical reaction. An

exponential stretching surface induces the flow. Magnetic field normal to the direction of flow

is applied. Convective conditions at boundary surface are also encountered. Appropriate sim-

ilarity transformations are utilized to reduce the boundary layer partial differential equations

into ordinary differential equations. Analytical solutions of the resulting systems are obtained.

Convergence of the obtained solutions is discussed explicitly. The local Nusselt and Sherwood

numbers are sketched and examined.
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4.1 Mathematical modeling

We consider the three-dimensional mixed convection boundary layer flow of viscoelastic fluid

past an exponentially stretching surface. Mathematical analysis has been carried out in presence

of internal heat source/sink and generative/destructive chemical reaction. Magnetic field is

applied to the normal direction of flow. The surface coincides with the plane at  = 0 and the

flow is confined in the region   0 Convective boundary conditions for both heat and mass

transfer on the sheet are taken into account. The governing equations for three-dimensional

flow are expressed as follows:




+




+




= 0 (4.1)





+ 




+ 




= 

2

2
+

1



⎛⎝
3

2
+ 

3

3
−
⎛⎝ 


2
2

+ 


2
2

+2


2


+ 2


2
2

⎞⎠⎞⎠
+ ( − ∞) + ( − ∞)− ∗20


 (4.2)





+ 




+




= 

2

2
+

1



⎛⎝
3

2
+ 

3

3
−
⎛⎝ 


2
2

+ 


2
2

+2


2


+ 2


2
2

⎞⎠⎞⎠
−

∗20


 (4.3)





+ 




+ 




= 

2

2
+




( − ∞)  (4.4)





+ 




+




= 

2

2
− 1( − ∞) (4.5)

In the above equations,   and  are the velocity components in the − − and −directions
respectively, 1 the material fluid parameter,  the thermal expansion coefficient,  the

concentration expansion coefficient, ∗ the electrical conductivity, 0 the magnitude of applied

magnetic field,  the density of fluid,  the gravitational acceleration,  = () the kinematic

viscosity,  the dynamic viscosity,  the thermal diffusivity,  the fluid temperature,  the

specific heat of the fluid,  the uniform volumetric heat generation/absorption,  the con-
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centration field,  the mass diffusivity and prime denotes the differentiation with respect to

.

The boundary conditions are given by

 =   =   = 0 − 



= ( −  ), −




= ∗( −) at  = 0 (4.6)

→ 0  → 0  → ∞  → ∞ as  →∞ (4.7)

where subscript  corresponds to the wall condition,  is the heat transfer coefficient, ∗ is the

concentration transfer coefficient,  is the ambient fluid temperature and  is the ambient

fluid concentration.

At wall the velocities, temperature and concentration distributions are defined as:

 = 0
+
   = 0

+
   = ∞ + 0

(+)

2   = ∞ + 0
(+)

2  (4.8)

where 0 0 0 are the constants,  is the reference length, ∞ is the ambient temperature,

∞ is the ambient concentration,  is the temperature exponent and  is the concentration

exponent. By using similarity transformations [25]:

 = 0
+
  0()  = 0

+
 0()  = −

µ
0

2

¶12

+
2 ( + 

0
+  + 0)

 = ∞ + 0
(+)

2 ()  = ∞ + 0
(+)

2 ()  =

µ
0

2

¶12

+
2  (4.9)

equation (4.1) is identically satisfied and Eqs. (42)− (49) give:

 000+(+) 00−2( 0+0) 0+
⎛⎝ 6 000 0 + (300 − 3 00 + 000) 00

+((40 + 200) 000 − ( +  + 0) 0000

⎞⎠+2(+)− 0 = 0

(4.10)

000+( + )00−2( 0+ 0)0+

⎛⎝ 60000 + (3 00 − 300 +  000)00

+(4 0 + 2 00)000 − ( +  +  0)0000

⎞⎠−0 = 0 (4.11)

00 + ( + )0 − Pr( 0 + 0) +Pr∗ = 0 (4.12)

00 + ( + )0 − ( 0 + 0)− ∗ = 0 (4.13)
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 = 0  = 0  0 = 1 0 = , 0 = −1(1− (0)) 0 = −2(1− (0)) at  = 0 (4.14)

 0 → 0 0 → 0  → 0 → 0 as  →∞ (4.15)

where  is the viscoelastic parameter  is the mixed convection parameter,  is the local

Grashof number,  is the concentration buoyancy parameter,  is the Hartman number,

 is the Prandtl number, ∗ is the heat source/sink parameter, ∗ is the chemical reaction

parameter,  is the Schmidt number,  is the ratio parameter, 1 is the heat transfer Biot

number and 2 is the mass transfer Biot number. The definitions of these variables are

 =
1

2
  =



Re2
  =

 ( − ∞)3

2
  =

( − ∞)
 ( − ∞)

 =
∗20




 =



 ∗ =




 ∗ =

1

0
  =




  =

0

0
 1 =





r



 2 =

∗



r



 (4.16)

The local Nusselt and Sherwood numbers in dimensionless forms are

12 = − 

2
0(0) (4.17)

12 = − 

2
0(0) (4.18)

in which  =
0


+
 is the local Reynolds number.

4.2 Series solutions

For homotopic solutions, the initial guesses and auxiliary linear operators are chosen as follows:

0() =
¡
1− −

¢
 0() = 

¡
1− −

¢
 0() =

1 exp(−)
1 + 1

 0() =
2 exp(−)
1 + 2

 (4.19)

L =  000 −  0 L = 000 − 0 L = 00 −  L = 00 −  (4.20)
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The above operators satisfy the following properties

L (1 + 2
 +3

−) = 0 L(4 +5
 + 6

−) = 0

L(7 +8
−) = 0 L(9 + 10

−) = 0 (4.21)

where  ( = 1− 10) are the arbitrary constants.
The problems corresponding to zeroth order are

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂(; ) ̂(; )

i
 (4.22)

(1− )L [̂(; )− 0()] = ~N

h
̂(; ) ̂(; )

i
 (4.23)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂(; ) ̂(; )

i
 (4.24)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂(; ) ̂(; )

i
 (4.25)

̂(0; ) = 0 ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0 ̂(0; ) = 0 (4.26)

̂0(0; ) =  ̂0(∞; ) = 0 ̂0(0 ) = −1[1− (0 )] (4.27)

̂(∞ ) = 0 ̂
0
(0 ) = −2[1− ̂(0 )] ̂(∞ ) = 0 (4.28)

N [̂(; ) ̂(; ) ̂(; ) ̂(; )] =
3̂( )

3
− 2

Ã
̂( )


+

̂( )



!
̂( )



+

⎛⎝ ̂( )

+̂( )

⎞⎠ 2̂( )

2
+ 2

⎛⎝ ̂( )

+̂(; )

⎞⎠−
̂( )



+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6
̂()


3̂()

3
+

⎛⎝ 3
2̂()

2

−32̂()
2

+ 
3̂()

3

⎞⎠
2̂()

2
+

⎛⎝ 4
̂()


+2
2̂()

2

⎞⎠ 3̂()

3

−
⎛⎝ ̂( ) + ̂( )

+
̂()


⎞⎠ 4̂()

4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.29)
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N[̂(; ) ̂(; ) ̂(; ) ̂(; )] =
3̂( )

3
− 2

⎛⎝ ̂()


+
̂()


⎞⎠ ̂( )


+

⎛⎝ ̂( )

+̂( )

⎞⎠ 2̂( )

2

+

⎛⎜⎜⎜⎝
6
̂()


3̂()

3

+

⎛⎝ 3
2̂()

2
−

3
2̂()

2
+ 

3̂()

3

⎞⎠
⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝
2̂()

2
+

⎛⎝ 4
̂()


+2
2̂()

2

⎞⎠ 3̂()

3

−
⎛⎝ ̂( ) + ̂( )

+
̂()


⎞⎠ 4̂()

4

⎞⎟⎟⎟⎟⎟⎟⎠
−̂( )


 (4.30)

N[̂(; ) ̂(; ) ̂(; ) ̂(; )] =
2̂( )

2
+Pr

⎛⎝ (̂( )

+̂( )

⎞⎠ ̂( )


+Pr∗̂( )

−Pr
Ã
̂( )


+

̂( )



!
̂( ) (4.31)

N[̂(; ) ̂(; ) ̂(; ) ̂(; )] =
2̂(; )

2
+ 

⎛⎝ ̂( )

+̂( )

⎞⎠ ̂(; )


− ∗̂(; )

−
Ã
̂( )


+

̂( )



!
̂(; ) (4.32)

Here  is an embedding parameter, the non-zero auxiliary parameters are ~  ~ ~ and ~ and

the nonlinear operators are N  N, N and N. Taking  = 0 and  = 1 we get

̂(; 0) = 0() ̂(; 0) = 0() ̂( 0) = 0() ̂(; 0) = 0() and ̂(; 1) = ()

̂(; 1) = () ̂( 1) = () ̂(; 1) = () (4.33)

As  enhances from 0 to 1 then ( ) ( ), ( ) and ( ) differ from 0() 0() 0()
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and 0() to () (), () and () Applying Taylor’s expansion we have

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (4.34)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (4.35)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (4.36)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (4.37)

The convergence of above series strongly depends upon ~ , ~, ~ and ~ Considering that ~ ,

~, ~ and ~ are selected properly so that Eqs. (434)− (437) converge at  = 1 Therefore

() = 0() +
∞P

=1

() (4.38)

() = 0() +
∞P

=1

() (4.39)

() = 0() +
∞P

=1

() (4.40)

() = 0() +
∞P

=1

() (4.41)

The general solution expressions can be written as

() = ∗() + 1 + 2
 + 3

− (4.42)

() = ∗() + 4 + 5
 + 6

− (4.43)

() = ∗() +7
 + 8

− (4.44)

() = ∗() + 9
 + 10

− (4.45)

where the special solutions are ∗ ∗, 
∗
 and ∗.
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4.3 Convergence analysis and discussion

Homotopic solutions (438) − (441) obviously depend on the auxiliary parameters ~  ~, ~
and ~. In order to control the convergence of series solutions’ these auxiliary parameters

play a central role. To obtain the convergence region, the ~−curves have been plotted at
14 order of approximations in Fig. 4.1. This Fig. clearly shows that the acceptable values

of ~  ~, ~ and ~ are −10 ≤ ~ ≤ −04 −10 ≤ ~ ≤ −02, −12 ≤ ~ ≤ −01 and
−12 ≤ ~ ≤ −01 Table 4.1 ensures that the series solutions converge in the whole region of 
when ~ = ~ = ~ = ~ = −05

Fig. 4.1: ~−curves for the functions  ,  and 

Table 4.1: Convergence of series solutions for different order of approximations when

 =  = 01  =  = ∗ =  = 02  =  = ∗ = 03 1 = 2 = 05Pr = 07  = 08

and ~ = ~ = ~ = ~ − 06

order of approximations 1 5 10 15 20 25 30 35

− 00(0) 1.155 1.104 1.078 1.068 1.065 1.064 1.064 1.064

−00(0) 0.2359 0.2395 0.2414 0.2420 0.2422 0.2422 0.2422 0.2422

−0(0) 0.3084 0.2620 0.2437 0.2373 0.2349 0.2341 0.2340 0.2340

−0(0) 0.3300 0.3318 0.3336 0.3340 0.3341 0.3341 0.3341 0.3341
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Figs. 4.2 and 4.3 are plotted to see the effects of Hartman number  on the velocity profile

 0() and 0(). The velocity profiles  0() and 0() are decreased when we increase the values

of  . Also the momentum boundary layer thicknesses are decreasing functions of  . Fig.

4.4 is drawn to see the influence of internal heat source/ sink parameter ∗ on the velocity

profile  0() Clearly in case of heat sink parameter ∗  0 both momentum boundary layer

thickness and  0() decrease while in case of heat source parameter ∗  0 kinetic energy of

the fluid particles increases due to which the velocity profile  0() increases. Outcome of mixed

convection parameter  on the velocity profile  0() in both assisting and opposing flows is seen

in Fig. 4.5. In case of assisting flow   0 both  0() and momentum boundary layer thickness

are enhanced while reverse effect is observed for opposing flow   0 Fig. 4.6 exhibits the

variation of concentration buoyancy parameter  on the velocity profile  0() It is examined

that an enhancement in  gives rise to the velocity profile  0().

Fig. 4.7 depicts the influence of internal heat source/sink parameter ∗ on the temperature

()With an increase in internal heat source ∗  0 both the thermal boundary layer thickness

and () increase while in case of heat sink parameter ∗  0 both the thermal boundary layer

thickness and () decrease.

Figs. 4.8-4.10 are sketched to see the variations of chemical reaction parameter ∗, concen-

tration exponent B and mass transfer Biot number 2 on the concentration profile () Fig.

4.8 is presented to analyze the variation of chemical reaction parameter ∗ on the concentra-

tion profile () It is noted that the associated boundary layer thickness and concentration

profile () decrease for generative chemical reaction ∗  0 while reverse phenomena is noted

for destructive chemical reaction ∗  0. With an enhancement in concentration exponent 

both the concentration profile () and the boundary layer thickness decrease (see Fig. 4.9).

Variation of mass transfer Biot number 2 on the concentration profile () is displayed in Fig.

4.10. Here we examined that the effect of 2 on the concentration profile () and associated

boundary layer thickness are increasing

Figs. 4.11-4.13 are displayed to see the impacts of mixed convection parameter  concentra-

tion buoyancy parameter  , ratio parameter  Hartman number , internal heat source/sink

∗ and heat transfer Biot number 1 on the local Nusselt number −0(0) Fig. 4.11 shows that
the heat transfer rate at the wall increases for assisting flow   0 while it decreases for op-
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posing flow   0 It is also examined that the heat transfer rate at wall is increasing function

of concentration buoyancy parameter  . Fig. 4.12 exhibited that the larger values of ratio

parameter  corresponds to a higher heat transfer rate −0(0). Also it is to be noted that with
an increase in Hartman number heat transfer rate decreases. Fig. 4.13 depicts that the heat

transfer rate at the wall −0(0) decreases with internal heat source ∗  0 while increases with
internal heat sink ∗  0

Variations of mixed convection parameter  concentration buoyancy parameter  , ratio

parameter  Hartman number  , chemical reaction ∗ and mass transfer Biot number 2 on

Sherwood number −0(0) are plotted in the Figs. 4.14-4.16. Fig. 4.14 is drawn to see the
influences of mixed convection parameter  and concentration buoyancy parameter  on the

Sherwood number −0(0) It is seen that the Sherwood number −0(0) is increasing function of
 and  in case of assisting flow   0 while decreasing function for opposing flow case. Fig.

4.15 depicts that the Sherwood number −0(0) decreases with an enhancement in Hartman
number  while it increases with an increase in ratio parameter  Fig. 4.16 exhibits that the

mass transfer at the wall −0(0) enhances with generative chemical reaction ∗  0 while it

reduces with destructive chemical reaction ∗  0. It is also observed that the mass transfer at

the wall −0(0) is an increasing function of mass transfer Biot number 2Table 4.2 ensures the
validity of present results with Liu et al. [25] in the limiting sense.
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Fig. 4.2: Influence of  on velocity  0().

69



b = k* = A = B = 0.2, g1 = g2 = 0.3,
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Fig. 4.3: Influence of  on velocity 0().
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Fig. 4.4: Influence of ∗ on velocity  0().
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Fig. 4.5: Influence of  on velocity  0().
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Fig. 4.6: Influence of  on velocity  0().

Fig. 4.7: Influence of ∗ on temperature ().
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Fig. 4.8: Influence of ∗ on ().
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Fig. 4.9: Influence of  on concentration ().
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Fig. 4.10: Influence of 2 on ().
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Fig. 4.11: Influence of  and  on −0(0).
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Fig. 4.11: Influence of  and  on −0(0).
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Fig. 4.13: Influence of ∗ and 1 on −0(0).
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Fig. 4.14: Influence of  and  on −0(0).
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Fig. 4.15: Influence of  and  on −0(0).
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Fig. 4.16: Influence of ∗ and 2 on −0(0).
Table 4.2: Comparative values of − 00(0) −00(0) and (∞) + (∞) for different values of

 when  =  =  = 1 = 2 = ∗ = ∗ = 0

Liu et al. [25] Present results

 − 00(0) −00(0) (∞) + (∞) − 00(0) −00(0) (∞) + (∞)
0.0 1.28180856 0 0.90564383 1.28181 0 0.90564

0.50 1.56988846 0.78494423 1.10918263 1.56989 0.78494 1.10918

1.00 1.81275105 1.81275105 1.28077378 1.81275 1.81275 1.28077
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4.4 Closing remarks

The present chapter deals with the three-dimensional mixed convection flow of MHD viscoelas-

tic fluid over an exponentially stretching surface in presence of heat source/sink and genera-

tive/destructive chemical reaction. The main outcomes are as follows.

• Velocity profiles  0() and 0() reduce with an increase in Hartman number  .

• Momentum boundary layer thickness decreases with an increase in ratio parameter 

• Both the velocity profile  0() and momentum boundary layer thicknesses are increasing

functions of internal heat source parameter ∗  0 assisting flow case   0 and concen-

tration buoyancy parameter  while decreasing functions of internal heat sink parameter

∗  0 and opposing flow case   0

• Thermal boundary layer thickness and temperature () decrease with an increase in

internal heat sink ∗  0 while thermal boundary layer thickness and temperature ()

increase with an increase in internal heat source ∗  0.

• With an enhancement in generative chemical reaction ∗  0, concentration exponent

 and Schmidt number  decreases the concentration profile () The concentration

boundary layer thickness increases for larger mass transfer Biot number 2 and destructive

chemical reaction ∗  0

• Heat transfer rate −0(0) boosts up in case of assisting flow   0 concentration buoyancy

parameter  , ratio parameter  heat transfer Biot number 1 and internal heat sink

parameter ∗  0 while heat transfer rate −0(0) reduces with opposing flow   0

Hartman number  and internal heat source ∗  0

• With an increase in assisting flow   0 concentration buoyancy parameter  , ratio

parameter  mass transfer Biot number 2 and generative chemical reaction parameter

∗  0 the Sherwood number −0(0) enhances while reverse behavior is noted in case of
opposing flow   0 Hartman number  and destructive chemical reaction parameter

∗  0
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Chapter 5

Thermophoresis and MHD mixed

convection flow with Soret and

Dufour effects

This chapter investigates the heat and mass transfer effects in three-dimensional mixed convec-

tion flow of viscoelastic fluid over a stretching surface with convective boundary conditions. The

fluid is electrically conducting in the presence of constant applied magnetic field. Conservation

laws of energy and concentration are based upon the Soret and Dufour effects. First order

chemical reaction effects are also taken into account. Dimensionless velocity, temperature and

concentration distributions are shown graphically for different values of involved parameters.

Numerical values of local Nusselt and Sherwood numbers are computed and analyzed.

5.1 Mathematical analysis

We consider the steady three-dimensional magnetohydrodynamic mixed convection flow of an

incompressible viscoelastic fluid over a stretching surface at  = 0 The flow takes place in the

domain   0 Heat and mass transfer characteristics are taken into account in the presence

of Soret and Dufour and thermophoresis effects. The ambient fluid temperature is taken as

∞ while the surface temperature is maintained by convective heat transfer at a certain value

 . A constant magnetic field 0 is applied in the -direction. Induced magnetic field is not
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considered due to small Reynolds number. In addition the effects of first order chemical reaction

in mass transfer are taken into account. The governing boundary layer equations for the flow

under consideration are




+




+




= 0 (5.1)


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+ 


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+ 


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2

2
+

1



⎛⎝
3
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+ 

3

3
−
⎛⎝ 
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2
2
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

2
2

+2


2


+ 2


2
2

⎞⎠⎞⎠
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 (5.2)
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



+ 




+ 




= 

2

2
+





2

2
− 1( − ∞)− 


( ( − ∞)) (5.5)

In Eqs. (51) − (55) the respective velocity components in the − − and −directions
are denoted by   and , 1 the viscoelastic parameter, 

∗ the electrical conductivity, 0 is

the magnitude of applied magnetic field,  the density of fluid,  the gravitational acceleration,

 the thermal expansion coefficient,  the concentration expansion coefficient,  the fluid

temperature,  the thermal diffusivity of fluid,  the kinematic viscosity,  the dynamic viscosity

of fluid,  the concentration field,  the mass diffusivity,  the thermal diffusion ratio, 

the specific heat, C the concentration susceptibility and  the thermophoretic velocity.

In Eq. (5.5) the thermophoretic term  can be defined as

 = −2 





(5.6)

where 2 is the thermophoretic coefficient and  is the reference temperature. A thermophoretic
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parameter  is defined as

 = −2( − ∞)


(5.7)

The boundary conditions appropriate to the flow under consideration are given by

 =  =   =   = 0 − 



= ( −  ),  =  at  = 0

→ 0  → 0  → ∞  → ∞ as  →∞ (5.8)

where  indicates the thermal conductivity of fluid,  is the hot fluid temperature, ∞ the

ambient concentration and  and  have dimension inverse of time.

We now define

 =  0()  = 0()  = −√(() + ())

() =
 − ∞
 − ∞

  = 

r



 () =

 −∞
 − ∞

 (5.9)

Now the use of above variables satisfy Eq. (5.1) automatically while Eqs. (5.2)-(5.8) are reduced

as follows:

 000 + ( + ) 00 −  02 −
¡
( + ) 0000 + ( 00 − 00) 00 − 2( 0 + 0) 000

¢
−2 0 + ( +) = 0 (5.10)

000 + ( + )00 − 02 −
¡
( + )0000 + ( 00 − 00)00 − 2( 0 + 0)000

¢−20 = 0 (5.11)

00 + ( + )0 +Pr
00 = 0 (5.12)

00 + ( + )0 − ∗+ 00 − (00 − 00) = 0

 = 0  = 0  0 = 1 0 = , 0 = −1(1− (0))  = 1 at  = 0 (5.13)

 0 → 0 0 → 0  → 0 → 0 as  →∞ (5.14)

where  is the dimensionless viscoelastic parameter  is the Hartman number,  is the

local buoyancy parameter, Gr is the local Grashof number,  is the constant dimensionless
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concentration buoyancy parameter,  is the Prandtl number,  is the Dufour number, 

is the Schmidt number,  is the Soret number, ∗ is the chemical reaction parameter,  is

the thermophoretic parameter,  is ratio of rates parameters, 1 is the Biot number and prime

shows the differentiation with respect to . These are given by

 =
1


  =

∗20


  =


Re2
  =

 ( − ∞)3

2
  =

( − ∞)
 ( − ∞)

 =



  =





( − ∞)
( − ∞)

  =



  =





( − ∞)
( − ∞)

 ∗ =
1


  = −2( − ∞)




 =



 1 =





r





Local Nusselt and Sherwood numbers in dimensionless forms are given by

12 = −0(0) (5.15)

12 = −0(0) (5.16)

in which  =  is the local Reynolds number.

5.2 Construction of solutions

The initial approximations and auxiliary linear operators required for homotopy analysis solu-

tions are presented below i.e.

0() =
¡
1− −

¢
 0() = 

¡
1− −

¢
 0() =

1 exp(−)
1 + 1

 0() = exp(−) (5.17)

L =  000 −  0 L = 000 − 0 L = 00 −  L = 00 −  (5.18)

with the following properties of the defined operators in Eq. (5.18) i.e.

L (1 + 2
 +3

−) = 0 L(4 +5
 + 6

−) = 0

L(7 +8
−) = 0 L(9 + 10

−) = 0 (5.19)

where  ( = 1− 10) indicate the arbitrary constants.
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The corresponding problems at the zeroth order are given in the following forms:

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; )

i
 (5.20)

(1− )L [̂(; )− 0()] = ~N

h
̂(; ) ̂(; )

i
 (5.21)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (5.22)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (5.23)

̂(0; ) = 0 ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0 ̂(0; ) = 0 ̂0(0; ) =  ̂0(∞; ) = 0

̂
0
(0 ) = −1[1− (0 )] ̂(∞ ) = 0 ̂(0 ) = 1 ̂(∞ ) = 0 (5.24)

N [̂( ) ̂( ) ̂( ) ̂( )] =
3̂( )

3
−
Ã
̂( )



!2
+ (̂( ) + ̂( ))

2̂( )

2

−

⎛⎜⎜⎜⎝
(̂( ) + ̂( ))

4̂()

4

+(
2̂()

2
− 2̂()

2
)
2̂()

2

−2(̂()


+
̂()


)
3̂()

3

⎞⎟⎟⎟⎠
−2̂( )


+ ̂( ) + ̂( ) (5.25)

N[̂( ) ̂( ) ̂( ) ̂( )] =
3̂( )

3
−
µ
̂( )



¶2
+ (̂( ) + ̂( ))

2̂( )

2

+

⎛⎜⎜⎜⎝
(̂( ) + ̂( ))

4̂()

4

+(
2̂()

2
− 2̂()

2
)
2̂()

2

−2(̂()


+
̂()


)
3̂()

3

⎞⎟⎟⎟⎠
−2̂( )


 (5.26)
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N[̂( ) ̂( ) ̂( ) ̂( )] =
2̂( )

2
+Pr(̂( ) + ̂( ))

̂( )



+Pr
2̂( )

2
 (5.27)

N[̂( ) ̂( ) ̂( ) ̂( )] =
2̂( )

2
+ (̂( ) + ̂( ))

̂( )



−∗̂( ) + 
2̂( )

2
− (

̂( )



̂( )



−̂( )
2̂( )

2
) (5.28)

Here  is an embedding parameter, ~  ~, ~ and ~ are the non-zero auxiliary parameters and

N  N, N and N indicate the nonlinear operators. When  = 0 and  = 1 one has

̂(; 0) = 0() ̂( 0) = 0() ̂( 0) = 0()

̂(; 1) = () ̂( 1) = () ̂( 1) = 0()  (5.29)

Clearly when  is increased from 0 to 1 then ( ) ( ), ( ) and ( ) vary from 0()

0() 0() and 0() to () () ()and () By Taylor’s expansion we have

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (5.30)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (5.31)

( ) = 0()
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (5.32)

( ) = 0()
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (5.33)

where the convergence of above series strongly depends upon ~  ~ ~ and ~ Considering

that ~  ~ ~ and ~ are selected properly so that Eqs. (530)− (533) converge at  = 1 then
we can write

() = 0() +
∞P

=1

() (5.34)
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() = 0() +
∞P

=1

() (5.35)

() = 0() +
∞P

=1

() (5.36)

() = 0() +
∞P

=1

() (5.37)

The resulting problems at mth order deformation can be constructed as follows:

L [()− −1()] = ~R
 () (5.38)

L[()− −1()] = ~R
 () (5.39)

L[()− −1()] = ~R
 () (5.40)

L[()− −1()] = ~R
 () (5.41)

(0) =  0(0) =  0(∞) = 0 (5.42)

(0) = 0(0) = 0(∞) = 0 (5.43)

0(0)− 1(0) = (∞) = 0 (0) = (∞) = 0 (5.44)

R
 () =  000−1()−

−1P
=0

 0−1−
0
 +

−1P
=0

(−1− 00 + −1− 00 )

−

⎛⎜⎜⎜⎜⎜⎜⎝

−1P
=0

−1− 0000 +
−1P
=0

−1− 0000

+
−1P
=0

 00−1−
00
 −

−1P
=0

00−1−
00


−2
−1P
=0

 0−1−
000
 − 2

−1P
=0

0−1−
000


⎞⎟⎟⎟⎟⎟⎟⎠
−2 0−1 +  +  (5.45)
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R
 () = 000−1()−

−1P
=0

0−1−
0
 +

−1P
=0

(−1−00 + −1−00)

−

⎛⎜⎜⎜⎜⎜⎜⎝

−1P
=0

−1−0000 +
−1P
=0

−1−0000

+
−1P
=0

 00−1−
00
 −

−1P
=0

00−1−
00


−2
−1P
=0

 0−1−
000
 − 2

−1P
=0

0−1−
000


⎞⎟⎟⎟⎟⎟⎟⎠−20−1 (5.46)

R
 () = 00−1 + 

−1P
=0

(0−1− + 0−1−) + Pr
00
−1 (5.47)

R
 () = 00−1 + 

−1P
=0

(0−1− + 0−1−)− ∗+ 
00
−1

−
−1P
=0

(0−1−
0
 − −1−

00
) (5.48)

 =

⎡⎣ 0  ≤ 1
1   1

(5.49)

Solving the above mth order deformation problems we have

() = ∗() + 1 + 2
 + 3

− (5.50)

() = ∗() + 4 + 5
 + 6

− (5.51)

() = ∗() +7
 + 8

− (5.52)

() = ∗() + 9
 + 10

− (5.53)

in which the ∗ ∗, 
∗
 and ∗ indicate the special solutions.

5.3 Analysis

Obviously the series solutions (534)− (537) contain the auxiliary parameters ~  ~ ~ and ~.
These parameters are very important in adjusting and controlling the convergence of homotopic

solutions. Hence the ~−curves are plotted at 10 order of approximations in order to find the
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suitable ranges of ~  ~ ~ and ~. Fig. 5.1 indicate that the admissible values of ~  ~

~ and ~ here are −15 ≤ ~ ≤ −040 −14 ≤ ~ ≤ −030, −140 ≤ ~ ≤ −025 and
−140 ≤ ~ ≤ −020 Table 5.1 presents the convergence of homotopic solutions. It is noted
that computations are sufficient for 45 order iterations of velocity and 35 order iterations of

the temperature and concentration profiles for the convergent series solutions.

-1.5 -1 -0.5 0
hf , hg, hq, h«

-1.5

-1

-0.5

0

0.5

1

f
''0

,g
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,q
'0

,f
'0



K = t = 0.2, l = N = k * = 0.3, b = Sc = Df = 0.5, M = 0.7, g1 = 0.6, Df = 0.3, Sr = 0.4, Pr = 1.0

f'0
q'0
g''0
f '' 0

Fig. 5.1: ~−curves for the functions  ,  and 

Table 5.1: Convergence of series solutions for different order of approximations when

 =  = 02  =  =  = 05  = 10  = 04  = 07  =  = ∗ = 03 1 = 06

and ~ = ~ = ~ = ~ = −07

order of approximations − 00(0) −00(0) −0(0) −0(0)
1 1.31063 0.632417 0.284766 0.763750

5 1.47588 0.746614 0.230340 0.599613

10 1.49331 0.762859 0.221636 0.578386

15 1.49592 0.764867 0.220665 0.575416

20 1.49650 0.765053 0.220797 0.574753

25 1.49664 0.765041 0.220916 0.574545

30 1.49667 0.765030 0.220950 0.574483

35 1.49667 0.765027 0.220953 0.574471

40 1.49667 0.765027 0.220953 0.574471

Figs. 5.2 − 55 depict the behaviors of mixed convection parameter  and concentration
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buoyancy parameter  on  0() and 0() Figs. 5.2 and 5.3 are drawn to analyze the effects

of mixed convection parameter  on the velocity components  0() and 0() It is shown that

 0() and 0() increase with an increase in . Effect of concentration buoyancy parameter  on

the velocity components  0() and 0() are shown in the Figs. 54 and 55 It is examined that

the concentration buoyancy parameter  shows the similar effects on momentum boundary

layer thicknesses and velocity components  0() and 0() as we observed for mixed convection

parameter 

Figs. 56 − 59 examine the variation of Dufour number  and Soret number  on the

temperature () and concentration () Variations of  on temperature () and concentra-

tion () are analyzed in the Figs. 5.6 and 5.7. It is noted from these Figs. that  has reverse

effects on temperature () and concentration (). Figs. 5.8 and 5.9 are displayed to see the

variation of  on the temperature () and concentration profiles () We noticed that the

temperature () and thermal boundary layer are reduced for an increase in  The concen-

tration profile () increases when  is increased. To analyze the effect of thermophoretic

parameter  on the concentration () profile we have sketched Fig. 5.10. It is found that an

increase in thermophoretic parameter  leads to a decrease in both concentration profile ()

and concentration boundary layer thickness.
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Table 5.2 is prepared to analyze numerical values of local Nusselt and Sherwood numbers.

The values of −0(0) and −0(0) decrease by increasing Deborah number. Here −0(0) increases
by increasing Prandtl and Biot numbers while reverse is the case of −0(0). Table 5.3 shows
that local Nusselt −0(0) and Sherwood numbers −0(0) decrease with the increase in Hartman
and Soret numbers. Values of local Nusselt −0(0) and Sherwood numbers −0(0) are opposite
for Schmidt, Dufour, thermophoretic and chemical reaction parameters.

Table 5.2: Values of local Nusselt −0(0) and Sherwood numbers −0(0) for different values
of the parameters      and 1 when  =  = 05  = 04  = 02 ∗ = 03
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and  = 05.

     1 −0(0) −0(0)
0.0 0.5 0.5 0.3 1.0 0.6 0.24700 0.61363

0.2 0.23486 0.59297

0.4 0.18422 0.51482

0.2 0.0 0.21393 0.55535

0.2 0.22444 0.57294

0.4 0.23200 0.58714

0.2 0.2 0.0 0.19606 0.54490

0.3 0.21647 0.56327

0.5 0.22444 0.57295

0.2 0.2 0.5 0.0 0.21880 0.56592

0.3 0.22446 0.57285

0.5 0.22772 0.57750

0.2 0.2 0.5 0.3 1.0 0.22443 0.57291

1.5 0.24490 0.56585

2.0 0.25725 0.56080

0.2 0.2 0.5 0.3 1.0 0.2 0.10779 0.58240

0.5 0.20254 0.57481

0.7 0.24341 0.57118

Table 5.3: Values of local Nusselt −0(0) and Sherwood numbers −0(0) for different values
of the parameters       

∗ and  when  =  = 02  = 05 1 = 03  = 1 and

 = 06
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    ∗  −0(0) −0(0)
0.2 0.4 0.5 0.2 0.3 0.5 0.26950 0.32824

0.5 0.22446 0.57285

0.7 0.19729 0.71482

0.5 0.2 0.22285 0.58265

0.5 0.22530 0.56786

0.7 0.22690 0.55779

0.5 0.4 0.2 0.27834 0.52746

0.5 0.22695 0.55765

0.7 0.18905 0.57984

0.5 0.4 0.5 0.4 0.22160 0.58610

0.7 0.21705 0.60820

1.0 0.21164 0.63434

0.5 0.4 0.5 0.2 0.5 0.20529 0.67118

0.7 0.18854 0.75605

1.0 0.16638 0.86737

0.5 0.4 0.5 0.2 0.3 0.6 0.22122 0.56859

0.8 0.21345 0.55880

1.0 0.20402 0.54895

5.4 Conclusions

MHD three-dimensional flow of viscoelastic fluid over a stretching surface is analyzed in the

presence of thermophoresis and convective condition. Effects of chemical reaction and Soret

and Dufour are analyzed. The main observations are listed below.

• Effects of mixed convection parameter  and buoyancy concentration parameter  on the

velocity profiles and momentum boundary layer thickness are similar.

• Effects of  and  on () and () are opposite.

• Thermal boundary layer thickness and temperature field increase when  increases.
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• Concentration () and associated boundary layer thickness are decreasing functions of

thermophoretic parameter  

• There are opposite effects of local Nusselt number and local Sherwood number when 1

, ,  ∗  and  increase.

• Qualitative effects of local Nusselt number and local Sherwood number are similar when
,   and  increase.

91



Chapter 6

Three-dimensional flow of Maxwell

fluid over a stretching surface with

heat source and convective

conditions

Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching sur-

face are addressed in this chapter. Analysis has been performed in presence of internal heat

generation/absorption. Concentration and thermal buoyancy effects are accounted. Convec-

tive boundary conditions for heat and mass transfer analysis are explored. Series solutions

of the resulting problems are developed. Effects of mixed convection, internal heat genera-

tion/ absorption parameter and Biot numbers on the dimensionless velocity, temperature and

concentration distributions are illustrated graphically. Numerical values of local Nusselt and

Sherwood numbers are obtained and analyzed for all the physical parameters.

6.1 Governing problems

Here we consider the steady three-dimensional flow of an incompressible Maxwell fluid over a

stretching surface at  = 0 The flow takes place in the domain   0 Heat and mass transfer
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characteristics are taken into account in the presence of internal heat generation/absorption and

mixed convection. Convective heat and mass boundary conditions are considered. The ambient

fluid temperature and concentration are taken as ∞ and ∞ while the surface temperature

and concentration are maintained by convective heat and mass transfer at certain value  and

  The governing partial differential equations subject to boundary layer flow are




+




+




= 0 (6.1)





+ 




+ 




= 

2

2
− 1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2
2

+ 2 2


+2 2


+ 2 2


⎞⎠
+ ( ( − ∞) + ( − ∞))  (6.2)





+ 




+ 




= 

2

2
− 1

⎛⎝ 2 
2

2
+ 2 

2
2

+ 2 
2

2
+ 2 2


+

2 2


+ 2 2


⎞⎠  (6.3)

(



+ 




+ 




) = 

2

2
+( − ∞) (6.4)





+ 




+




= 

2

2
 (6.5)

In Eqs. (61) − (65) the respective velocity components in the − − and −directions
are denoted by   and , 1 shows the relaxation time, 

∗ is the electrical conductivity,

 is the density of fluid,  is the gravitational acceleration,  and  are the thermal and

concentration expansion coefficients respectively,  is the fluid temperature,  = () is the

kinematic viscosity,  is the dynamic viscosity of fluid,  is the specific heat,  is the thermal

conductivity,  is the uniform volumetric heat generation/absorption,  is the concentration

field and  is the mass diffusivity.

The subjected boundary conditions are given by

 =  =   =   = 0 − 



= ( −  ), −




= ∗( − ) at  = 0 (6.6)

→ 0  → 0  → ∞  → ∞ as  →∞ (6.7)
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where  is the heat transfer coefficient, ∗ is the concentration transfer coefficient and  and 

are constants and have dimension ()−1

We now define

 =  0()  = 0()  = −√(() + ())

() =
 − ∞
 − ∞

  = 

r



 () =

 −∞
 − ∞

 (6.8)

The above variables satisfy Eq. (6.1) automatically while Eqs. (6.2)-(6.7) are converted to the

following forms:

 000 + ( + ) 00 −  02 + 1[2( + ) 0 00 − ( + )2 000] + ( +) = 0 (6.9)

000 + ( + )00 − 02 + 1[2( + )000 − ( + )2000] = 0 (6.10)

00 + ( + )0 + ∗ = 0 (6.11)

00 + ( + )0 = 0 (6.12)

 = 0  = 0  0 = 1 0 = , 0 = −1(1− (0)) 0 = −2(1− (0)) at  = 0 (6.13)

 0 → 0 0 → 0  → 0 → 0 as  →∞ (6.14)

where 1 is the dimensionless Deborah number  is the local buoyancy parameter,  is the

local Grashof number,  is the concentration buoyancy parameter, Pr is the Prandtl number,

∗ is the heat generation/absorption parameter,  is the Schmidt number,  is ratio of rates

parameters, 1 and 2 are the Biot numbers and prime shows the differentiation with respect

to . These are given by

1 = 1  =


Re2
  =

 ( − ∞)3

2
  =

( − ∞)
 ( − ∞)

(6.15)

 =



 ∗ =




  =




  =




 1 =





r



 2 =

∗



r





In dimensionless form the local Nusselt and local Sherwood numbers are given by
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12 = −0(0) (6.16)

12 = −0(0) (6.17)

where  =  is the local Reynolds number.

6.2 Series solutions

The initial approximations and auxiliary linear operators are required to develop homotopic

solutions. We select the following initial guesses and linear operators for the present flow

analysis:

0() =
¡
1− −

¢
 0() = 

¡
1− −

¢
 0() =

1 exp(−)
1 + 1

 0() =
2 exp(−)
1 + 2

 (6.18)

L =  000 −  0 L = 000 − 0 L = 00 −  L = 00 −  (6.19)

with the following properties of the defined operators in Eq. (6.19) i.e.

L (1 + 2
 +3

−) = 0 L(4 +5
 + 6

−) = 0

L(7 +8
−) = 0 L(9 + 10

−) = 0 (6.20)

where  ( = 1− 10) are the arbitrary constants.
The corresponding problems at the zeroth order deformations are given in the following

forms:

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (6.21)

(1− )L [̂(; )− 0()] = ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (6.22)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (6.23)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (6.24)
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̂(0; ) = 0 ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0

̂(0; ) = 0 ̂0(0; ) =  ̂0(∞; ) = 0 ̂0(0 ) = −1[1− (0 )]

̂(∞ ) = 0 ̂
0
(0 ) = −2[1− ̂(0 )] ̂(∞ ) = 0 (6.25)

N [̂( ) ̂( ) ̂( ) ̂( )] =
3̂( )

3
−
Ã
̂( )



!2
+ (̂( ) + ̂( ))

2̂( )

2

+1

⎡⎢⎢⎢⎣
2(̂( ) + ̂( ))

̂()


2̂()

2

−(̂( ) + ̂( ))2
3̂()

2

⎤⎥⎥⎥⎦
+[̂( ) +1̂( )] (6.26)

N[̂( ) ̂( ) ̂( ) ̂( )] =
3̂( )

3
−
µ
̂( )



¶2
+ (̂( ) + ̂( ))

2̂( )

2

+1

⎡⎢⎢⎢⎣
2(̂( ) + ̂( ))

̂()


2̂()

2

−(̂( ) + ̂( ))2
3̂()

2

⎤⎥⎥⎥⎦  (6.27)

N[̂( ) ̂( ) ̂( ) ̂( )] =
2̂( )

2
+Pr(̂( )+ ̂( ))

̂( )


+∗̂( ) (6.28)

N[̂( ) ̂( ) ̂( ) ̂( )] =
2̂( )

2
+ (̂( ) + ̂( ))

̂( )


 (6.29)

Here  is an embedding parameter, the non-zero auxiliary parameters are ~  ~, ~ and ~ and

the nonlinear operators are N  N, N and N. When  = 0 and  = 1 one has

̂(; 0) = 0() ̂( 0) = 0() ̂( 0) = 0() ̂( 0) = 0()

̂(; 1) = () ̂( 1) = () ̂( 1) = () ̂( 1) = 0() (6.30)

Clearly when  is increased from 0 to 1 then ( ) ( ), ( ) and ( ) vary from 0()
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0() 0() and 0() to () () ()and () By Taylor’s expansion we have

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (6.31)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (6.32)

( ) = 0()
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (6.33)

( ) = 0()
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (6.34)

where the convergence of above series strongly depends upon ~  ~ ~ and ~ Considering

that ~  ~ ~ and ~ are selected properly so that Eqs. (631)− (634) converge at  = 1 then
we have

() = 0() +
∞P

=1

() (6.35)

() = 0() +
∞P

=1

() (6.36)

() = 0() +
∞P

=1

() (6.37)

() = 0() +
∞P

=1

() (6.38)

The general solutions can be expressed below:

() = ∗() + 1 + 2
 + 3

− (6.39)

() = ∗() + 4 + 5
 + 6

− (6.40)

() = ∗() +7
 + 8

− (6.41)

() = ∗() + 9
 + 10

− (6.42)

in which the ∗ ∗, 
∗
 and ∗ indicate the special solutions.
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6.3 Convergence analysis and discussion

Clearly the homotopic series solutions (635) − (638) depend on the auxiliary parameters ~ 
~ ~ and ~ These parameters have important role in the convergence of series solutions. For

this purpose, the ~−curves are drawn at 15 order of approximations to determine the suitable
ranges of these auxiliary parameters. Fig. 6.1 shows that the acceptable values of ~  ~ ~

and ~ are −14 ≤ ~ ≤ −020 −16 ≤ ~ ≤ −040 and −150 ≤ ~ ~ ≤ −030. Table 6.1
ensures the convergence of homotopic series solutions in the whole region of  when ~ = ~ =

~ = ~ = −05

f''(0)

g''(0)

q'(0)

f'(0)

b1 = b = b* = g1 = g2 = 0.2, l = N = 0.5, Pr = Sc = 0.7

-1.5 -1.0 -0.5 0.0 h f , hg , hq, hf

-1.0

-0.5

0.0

0.5

f ''0, g''0,q'0,f'0

Fig. 6.1: ~−curves for the functions  ,  and 

Table 6.1: Convergence of series solutions for different order of approximations when

 = 1 = ∗ = 02 2 =  =  = 03 1 = 05  = 10  = 12 and ~ = ~ =

~ = ~ = −05

order of approximations − 00(0) −00(0) −0(0) −0(0)
1 1.018 0.1497 0.3133 0.2228

5 1.029 0.06217 0.2782 0.2095

10 1.028 0.03940 0.2703 0.2067

15 1.029 0.03866 0.2702 0.2066

20 1.029 0.03982 0.2705 0.2066

25 1.029 0.03993 0.2705 0.2066

30 1.029 0.03993 0.2705 0.2066

Figs. 6.2-6.7 show the effects of Deborah number 1 mixed convection parameter  con-
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centration buoyancy parameter  and internal heat source/sink parameter ∗ on the velocity

profiles  0() and 0() Figs. 6.2 and 6.3 are drawn to see the behavior of Deborah number

1 on the velocity profiles  0() and 0() It is found that both the velocity profiles  0() and
0() decrease with an enhancement in 1 It is also examined from these Figs. that associ-

ated boundary layer thicknesses are decreasing functions of 1 This is due to the fact that 1

depends on relaxation time. Larger relaxation time offers more resistance to the flow due to

which the velocities are decreased. Figs. 6.4 and 6.5 are displayed to see the impact of mixed

convection parameter  on the velocity profiles  0() and 0() It is seen that both the velocity

profiles  0() and 0() increase with an enhancement in  Also momentum boundary layer

thicknesses are increased with an increase in  In fact an increase in  enhances the buoyancy

forces which are more dominant to viscous forces. Variations of concentration buoyancy para-

meter  on the velocity profiles  0() and 0() are displayed in the Figs. 6.6 and 6.7. Similar

behavior of  is noted on the velocity profiles  0() and 0()

Figs. 6.8 and 6.9 are plotted to see the variations of internal heat source/sink parameter ∗

and heat transfer Biot number 1 on the temperature () Fig. 6.8 depicts that the thermal

boundary layer thickness and temperature () are increasing functions of internal heat source

parameter ∗  0 and decreasing functions of internal heat sink ∗  0 With an increase in

heat transfer Biot number 1 both the thermal boundary layer thickness and temperature ()

are enhanced (see Fig. 6.9). The reason is that as 1 depends on heat transfer coefficient 

which leads to an increase in temperature ()

Figs. 6.10 is displayed to analyze the behavior of concentration () for different values of

mass transfer Biot number 2. It is observed that as 2 increases the associated boundary layer

thickness and concentration profile () grow. As mass transfer Biot number 2 depends on

mass transfer coefficient ∗ so with an enhancement in 2 the mass transfer coefficient increases

which leads to an increase in concentration profile ()

Impacts of mixed convection parameter  concentration buoyancy parameter  Deborah

number 1 and internal heat source/sink parameter 
∗ on the local Nusselt number (−0(0)) are

displayed in the Figs. 6.11 and 6.12. It is found that local Nusselt number (−0(0)) enhances
with an increase in  and  (see Fig.6.11). Local Nusselt number (−0(0)) reduces with internal
heat source parameter ∗  0 while it increases with internal heat sink parameter ∗  0 (see
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Fig. 6.12). It is also noticed from Fig. 6.12 that local Nusselt number (−0(0)) decreases with
an increase in 1

Figs. 6.13 and 6.14 are sketched to see the variations of mixed convection parameter 

concentration buoyancy parameter  Deborah number 1 and internal heat source/sink pa-

rameter ∗ on the Sherwood number (−0(0)). Fig. 6.13 shows that the Sherwood number
(−0(0)) increases with an increase in  and  . Fig. 6.14 indicates that the Sherwood number

(−0(0)) increases by increasing internal heat source ∗  0 while reverse effect is examined

with an increase in Deborah number 1

b = b* = g1 = g2 = 0.2, l = N = 0.5,
Pr = Sc = 0.7

b1 = 0.0, 0.3, 0.6, 1.0

0 1 2 3 4 5 6
h

0.2

0.4

0.6

0.8

1.0

f 'h

Fig. 6.2: Variation of 1 on  0()

b = b* = g1 = g2 = 0.2, l = N = 0.5,

Pr = Sc = 0.7

b1 = 0.0, 0.3, 0.6, 1.0

1 2 3 4 5 6
h

0.05

0.10

0.15

0.20

g'h

Fig. 6.3: Variation of 1 on 0()
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b1 = b = b* = g1 = g2 = 0.2, N = 0.5,
Pr = Sc = 0.7

l = 0.0, 0.5, 1.0, 1.5

0 1 2 3 4 5 6
h
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0.4

0.6

0.8

1.0

f 'h

Fig. 6.4: Variation of  on  0()

b1 = b = b* = g1 = g2 = 0.2, N = 0.5,
Pr = Sc = 0.7
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Fig. 6.5: Variation of  on 0()

b1= b = b* = g1 = g2 = 0.2,
l = 0.5, Pr = Sc = 0.7

N = 0.0, 1.5, 3.0, 4.5
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Fig. 6.6: Variation of  on  0()
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b1= b = b* = g1 = g2 = 0.2,
l = 0.5, Pr = Sc = 0.7

N = 0.0, 1.5, 3.0, 4.5
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Fig. 6.7: Variation of  on 0()

b= b1=g1 = g2 = 0.2, l = N = 0.5,
Pr = Sc = 0.7
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Fig. 6.8: Variation of ∗ on ()

b = b1 = b* = g2 = 0.2, l = N = 0.5,
Pr = Sc = 0.7
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Fig. 6.9: Variation of 1 on ()
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b = b1 = b* = g1 = 0.2, l = N = 0.5,
Pr = Sc = 0.7

g2 = 0.1, 0.2, 0.3, 0.4
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Fig. 6.10: Variation of 2 on ()

b1 = b* = g1 = 0.2, g2 = 0.3, Pr = Sc = 0.7
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Fig. 6.11: Variations of  and  on −0(0)

103



l = N = 0.5, g1 = 0.2, g2 = 0.3,
Pr = Sc = 0.7

b* = 0.2, 0.1, 0.0, -0.1, -0.2
1 2 3 4

b1

0.28

0.29

0.30

0.31

0.32
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Fig. 6.12: Variations of ∗ and 1 on −0(0)
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Fig. 6.13: Variations of  and  on −0(0)
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b1 = 0.1, 0.2, 0.3, 0.4

l = N = 0.5, g1 = 0.2, g2 = 0.3,
Pr = Sc = 0.7

1 2 3 4
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Fig. 6.14: Variations of 1 and ∗ on −0(0)

6.3.1 Conclusions

Three-dimensional mixed convection flow of Maxwell fluid over a stretching sheet with internal

heat generation/absorption is analyzed. Convective boundary conditions for both heat and

mass transfer are considered. The main observations are mentioned below.

• Variations of mixed convection parameter  and concentration buoyancy parameter 
enhance the velocity profiles and associated boundary layer thicknesses.

• Velocity profiles and temperature increase in case of internal heat source ∗  0 while

these reduce for heat sink ∗  0

• Heat transfer Biot number 1 increases the thermal boundary layer thickness and tem-
perature. Also concentration and its associated boundary layer are enhanced with an

increase in mass transfer Biot number 2

• The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values
of mixed convection parameter  concentration buoyancy parameter  and Deborah

number 1.

• Larger values of heat sink parameter ∗  0 give rise to the local Nusselt number (−0(0))
However Sherwood number (−0(0)) enhances with an increase in heat source ∗  0
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Chapter 7

Soret and Dufour effects in

three-dimensional flow of Maxwell

fluid with chemical reaction and

convective condition

This chapter addresses the heat and mass transfer effects in three-dimensional flow of Maxwell

fluid over a stretching surface with convective boundary conditions. Mass transfer is considered

in the presence of first order chemical reaction. Soret and Dufour effects in the conservation

law of energy and concentration are considered. Convergent series solutions to the resulting

nonlinear problems are developed. Plots of physical quantities of interest are analyzed.

7.1 Problems formulation

We consider the steady three-dimensional flow of an incompressible Maxwell fluid induced

by a stretching surface at  = 0 The flow takes place in the domain   0 The ambient

fluid temperature is taken as ∞ while the surface temperature is maintained by convective

heat transfer. Soret and Dufour effects in presence of mixed convection flow are taken into

account. In addition the effect of first order chemical reaction in mass transfer is taken under
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consideration. Flow diagram is as follows:

Fig. 7.1: Geometry of the problem

The governing boundary layer equations for three-dimensional flow of Maxwell fluid can be

written as




+




+




= 0 (7.1)
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

¶2
+

µ




¶2!
 (7.4)





+ 




+ 




= 

2

2
+





2

2
− 1( − ∞) (7.5)

In Eqs. (71)− (75) the respective velocity components in the − − and −directions are
denoted by   and , 1 shows the relaxation time,  the fluid temperature,  the thermal

diffusivity of fluid,  = () the kinematic viscosity,  the dynamic viscosity of fluid,  the
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concentration field,  the mass diffusivity,  the thermal diffusion ratio, C the specific heat,

C the concentration susceptibility and  the density of fluid.

The boundary conditions appropriate to flow under consideration are given by

 =  =   =   = 0 − 



= ( −  ),  =  at  = 0 (7.6)

→ 0  → 0  → ∞  → ∞ as  →∞ (7.7)

where ∗ indicates the thermal conductivity of fluid,  is the hot fluid temperature, ∞ the

ambient concentration and  and  have dimension inverse of time.

We now define

 =  0()  = 0()  = −√(() + ())

() =
 − ∞
 − ∞

  = 

r



 () =

 −∞
 − ∞

 (7.8)

Now the use of above variables satisfy Eq. (7.1) automatically while Eqs. (7.2)-(7.7) are reduced

as follows:

 000 + ( + ) 00 −  02 + 1[2( + ) 0 00 − ( + )2 000] + ( +) = 0 (7.9)

000 + ( + )00 − 02 + 1[2( + )000 − ( + )2000] = 0 (7.10)

00 + ( + )0 +Pr
00 +Pr(1 002 +2

002) = 0 (7.11)

00 + ( + )0 − ∗+ 00 = 0 (7.12)

 = 0  = 0  0 = 1 0 = , 0 = −1(1− (0))  = 1 at  = 0 (7.13)

 0 → 0 0 → 0  → 0 → 0 as  →∞ (7.14)
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1 = 1  =


Re2
  =

 ( − ∞)3

2
  =

( − ∞)
 ( − ∞)

  =





 =




( − ∞)
( − ∞)

  =




( − ∞)
( − ∞)

 1 =
22

( − ∞)
 2 =

22

( − ∞)


 =



 ∗ =

1


  =




 1 =



∗

r



 (7.15)

Here 1 is the Deborah number,  the mixed convection parameter,  the local Grashof

number,  the concentration buoyancy parameter,  the Prandtl number,  the Dufour

number,  the Soret number, 1 and 2 the Eckert numbers along the  and  directions

respectively,  the Schmidt number, ∗ the chemical reaction parameter,  the ratio of rates

parameters and 1 the Biot number. All parameters are defined in a sequence in which they

are written and prime shows the differentiation with respect to .

Local Nusselt (dimensionless temperature gradient at the surface) and local Sherwood (di-

mensionless concentration gradient at the surface) numbers in dimensionless forms are given

by

12 = −0(0) (7.16)

12 = −0(0) (7.17)

in which  =  is the local Reynolds number.

7.2 Homotopy analysis solutions

The initial approximations and auxiliary linear operators required for homotopy analysis solu-

tions are presented below i.e.

0() =
¡
1− −

¢
 0() = 

¡
1− −

¢
 0() =

1 exp(−)
1 + 1

 0() = exp(−) (7.18)

L =  000 −  0 L = 000 − 0 L = 00 −  L = 00 −  (7.19)
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with the following properties of the defined operators in Eq. (7.18) i.e.

L (1 + 2
 +3

−) = 0 L(4 +5
 + 6

−) = 0

L(7 +8
−) = 0 L(9 + 10

−) = 0 (7.20)

where  ( = 1− 10) indicate the arbitrary constants.
The corresponding problems at the zeroth order are given in the following forms:

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; )

i
 (7.21)

(1− )L [̂(; )− 0()] = ~N

h
̂(; ) ̂(; )

i
 (7.22)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (7.23)

(1− )L
h
̂(; )− 0()

i
= ~N

h
̂(; ) ̂(; ) ̂( ) ̂( )

i
 (7.24)

̂(0; ) = 0 ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0 ̂(0; ) = 0 ̂0(0; ) =  ̂0(∞; ) = 0

̂
0
(0 ) = −1[1− (0 )] ̂(∞ ) = 0 ̂(0 ) = 1 ̂(∞ ) = 0 (7.25)

N [̂( ) ̂( )] =
3̂( )

3
−
Ã
̂( )



!2
+ (̂( ) + ̂( ))

2̂( )

2

+1

⎡⎣ 2(̂( ) + ̂( ))
̂()


2̂()

2

−(̂( ) + ̂( ))2
3̂()

2

⎤⎦
+

³
̂( ) +̂( )

´
 (7.26)

N[̂( ) ̂( )] =
3̂( )

3
−
µ
̂( )



¶2
+ (̂( ) + ̂( ))

2̂( )

2

+1

⎡⎣ 2(̂( ) + ̂( ))
̂()


2̂()

2

−(̂( ) + ̂( ))2
3̂()

2

⎤⎦  (7.27)
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N[̂( ) ̂( ) ̂( ) ̂( )] =
2̂( )

2
+Pr(̂( ) + ̂( ))

̂( )



+Pr
2̂( )

2

+Pr

⎛⎜⎝ 1

³
2̂()

2

´2
+2

³
2̂()

2

´2
⎞⎟⎠  (7.28)

N[̂( ) ̂( ) ̂( ) ̂( )] =
2̂( )

2
+ (̂( ) + ̂( ))

̂( )



−∗̂( ) + 
2̂( )

2
 (7.29)

Here  is an embedding parameter, ~  ~, ~ and ~ are the non-zero auxiliary parameters and

N  N, N and N indicate the nonlinear operators. When  = 0 and  = 1 one has

̂(; 0) = 0() ̂( 0) = 0() ̂( 0) = 0()

̂(; 1) = () ̂( 1) = () ̂( 1) = 0()  (7.30)

Clearly when  is increased from 0 to 1 then ( ) ( ), ( ) and ( ) vary from 0()

0() 0() and 0() to () () ()and () By Taylor’s expansion we have

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (7.31)

( ) = 0() +
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (7.32)

( ) = 0()
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (7.33)

( ) = 0()
∞P

=1

()
 () =

1

!

(; )



¯̄̄̄
=0

 (7.34)

where the convergence of above series strongly depends upon ~  ~ ~ and ~ Considering

that ~  ~ ~ and ~ are selected properly so that Eqs. (731)− (734) converge at  = 1 then
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we can write

() = 0() +
∞P

=1

() (7.35)

() = 0() +
∞P

=1

() (7.36)

() = 0() +
∞P

=1

() (7.37)

() = 0() +
∞P

=1

() (7.38)

The resulting problems at mth order deformation can be constructed as follows:

L [()− −1()] = ~R
 () (7.39)

L[()− −1()] = ~R
 () (7.40)

L[()− −1()] = ~R
 () (7.41)

L[()− −1()] = ~R
 () (7.42)

(0) =  0(0) =  0(∞) = 0 (0) = 0(0) = 0(∞) = 0 0(0)− 1(0) = (∞) = 0

(0) = (∞) = 0 (7.43)

R
 () =  000−1()−

−1P
=0

 0−1−
0
 +

−1P
=0

(−1− 00 + −1− 00 )

+1

−1P
=0

P
=0

¡
2(−1− + −1−) 0−

00
 − (−1−− + −1−− + 2−1−−) 000

¢
+

¡
−1 +−1

¢
 (7.44)

R
 () = 000−1()−

−1P
=0

0−1−
0
 +

−1P
=0

(−1−00 + −1−00)

+1

−1P
=0

P
=0

[2(−1− + −1−)0−
00


−(−1−− + −1−− + 2−1−−)000 ] (7.45)
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R
 () = 00−1 + 

−1P
=0

(0−1− + 0−1−) + Pr
00
−1

+Pr

µ
1

−1P
=0

 00−1−
00
 +2

−1P
=0

00−1−
00


¶
 (7.46)

R
 () = 00−1 + 

−1P
=0

(0−1− + 0−1−)− ∗+ 
00
−1 (7.47)

 =

⎡⎣ 0  ≤ 1
1   1

(7.48)

Solving the above mth order deformation problems we have

() = ∗() + 1 + 2
 + 3

− (7.49)

() = ∗() + 4 + 5
 + 6

− (7.50)

() = ∗() +7
 + 8

− (7.51)

() = ∗() + 9
 + 10

− (7.52)

in which the ∗ ∗, 
∗
 and ∗ indicate the special solutions.

7.3 Analysis and discussion

Obviously the homotopic solutions (735) − (738) involve the auxiliary parameters ~  ~ ~
and ~. These parameters have pivotal role in adjusting and controlling the convergence of

homotopic solutions. Hence the ~−curves are displayed at 18 order of approximations in order
to determine the suitable ranges of ~  ~ ~ and ~. Fig. 7.2 witness that the admissible values

of ~  ~ ~ and ~ here are −125 ≤ ~ ≤ −050 −125 ≤ ~ ≤ −050, −140 ≤ ~ ≤ −025
and −120 ≤ ~ ≤ −075 Table 7.1 ensures that the developed series solutions converge in the
whole region of  when ~ = ~ = ~ = ~ = −1

Table 7.1: Convergence of series solutions for different order of approximations when

1 = 02  = 03  = 10  = 04  = 05  = 05 
∗ = 03 1 = 06 and ~ = ~ =
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~ = ~ = −10

order of approximations 1 5 10 15 20 25 30 35

− 00(0) 1.1215 1.1323 1.1323 1.1323 1.1323 1.1323 1.1323 1.1323

−00(0) 0.25735 0.25958 0.25951 0.25951 0.25951 0.25951 0.25951 0.25951

−0(0) 0.24141 0.22468 0.22127 0.22061 0.22045 0.22041 0.22040 0.22040

−0(0) 0.64583 0.56841 0.55948 0.55838 0.55820 0.55817 0.55816 0.55816
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f ''0

Fig.7.2: ~−curves for the function    and 

Figs. 73 and 7.4 depict the behaviors of mixed convection parameter  and concentration

buoyancy parameter  on the velocity profile  0() Fig. 73 is drawn to see the effect of mixed

convection parameter  on velocity profile  0() It is noticed that momentum boundary layer

thickness and velocity profile  0() increase with an increase in mixed convection parameter in

case of assisting flow (  0) while reverse effect is noted in case of opposing flow (  0) This

is due to the fact that buoyancy forces are more dominant to viscous forces in case of assisting

flow (  0) while buoyancy forces reduce for opposing flow (  0). Effect of concentration

buoyancy parameter  on the velocity profile  0() is analyzed in Fig. 74 It is seen that both

the momentum boundary layer thickness and velocity profile  0() are increasing functions of
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concentration buoyancy parameter  .
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Fig. 7.3: Influence of  on  0() when  = 1 = 2 = 03 and 1 = 05
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Fig. 7.4: Influence of  on  0() when  =  = 1 = 2 = 03 and 1 = 05

Figs. 7.5−79 examine the variation of Dufour number  , Eckert numbers E1 and E2

mixed convection parameter  and concentration buoyancy parameter  on the temperature

() Effect of Dufour number  on temperature profile () is presented in Fig. 7.5. As

Dufour effect pointed out the generation of energy flux by composition gradient, then the

thermal boundary layer thickness and temperature () increase with an increase in  . Figs.

7.6 and 7.7 illustrate the effect of Eckert numbers 1 and 2 on the temperature () along the

 and  directions respectively As the Eckert number expresses the relationship between the
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kinetic energy in the flow and the enthalpy. It embodies the conversion of kinetic energy into

internal energy by work done against the viscous fluid stresses. Greater viscous dissipative heat

causes a rise in the temperature and thermal boundary layer thickness. Fig. 7.8 is drawn to see

the influence of mixed convection parameter  on the temperature () Thermal boundary layer

thickness and temperature () decrease in case of assisting flow (  0) while increase in case of

opposing flow (  0) This is due to the fact that in case of assisting flow (  0) the buoyancy

forces are more dominant to viscous forces which causes a reduction in the temperature ()

while in case of opposing flow (  0) the viscous forces are more dominant than buoyancy forces

which in results enhances the temperature () Influence of concentration buoyancy parameter

 on the temperature () is seen in Fig. 7.9. It is found that the associated boundary layer

and temperature () is decreasing function of  .
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Fig. 7.5: Influence of  on () when 1 = ∗ = 05  =  = 05

 = 1 = 2 =  =  =  = 03 and 1 = 04
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Fig. 7.6: Influence of 1 on () when 1 = ∗ = 05  =  = 05,

 =  = 2 =  =  =  = 03 and 1 = 04
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Fig. 7.7: Influence of 2 on () when 1 = ∗ = 05  =  = 05

 =  = 1 =  =  =  = 03 and 1 = 04
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Fig. 7.8: Influence of  on () when 1 = ∗ = 05  =  = 05

 = 1 = 2 =  =  =  = 03 and 1 = 04
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Fig.7.9: Influence of  on () when 1 = ∗ = 05  =  = 05

 = 1 = 2 =  =  =  = 03 and 1 = 04

Figs. 7.10-7.13 are sketched to see the effects of Soret number  generative/destructive

chemical reaction ∗ mixed convection parameter  and concentration buoyancy parameter 

on concentration profile () Fig. 7.10 depicts the influence of Soret number  on concen-

tration profile () As in Soret effect the temperature gradient causes the mass flux which in

turn enhances the concentration profile () and associated boundary layer thickness. Effect

of destructive/generative chemical reaction ∗ on the concentration profile () is analyzed in
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Fig. 11. It is found that in case of generative chemical reaction (∗  0) the reduction in ()

is noted while reverse is in case of destructive chemical reaction (∗  0). Figs. 7.12 and 7.13

are presented to see the effects of mixed convection parameter  and concentration buoyancy

parameter  on the concentration profile () These Figs. show that () reduces with the

increase in  and  . Also the associated boundary layer thickness are decreasing functions of

 and  .
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Fig. 7.10: Influence of  on () when 1 = ∗ = 05Pr = 05 1 = 04

 = 1 = 2 =  =  =  =  = 03
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Fig. 7.11: Influence of ∗ on () when 1 = 05  =  = 05

 = 1 = 2 =  =  =  =  = 03 and 1 = 04
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Fig. 7.12: Influence of  on () when 1 = ∗ = 05  =  = 05

 = 1 = 2 =  =  =  = 03and 1 = 04
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Fig. 7.13: Influence of  on () when 1 = ∗ = 05  =  = 05

 = 1 = 2 =  =  =  = 03 and 1 = 04

Table 7.1 presents the convergence of homotpic solutions. It is noted that computations

are sufficient for 15 order iterations of velocity and 35 order iterations of the temperature

and concentration profiles for convergent series solutions. Tables 7.2 and 7.3 are prepared to

analyze numerical values of local Nusselt and Sherwood numbers. The values of −0(0) and
−0(0) decrease by increasing Deborah number, mixed convection parameter and concentration
buoyancy parameter. Here −0(0) increases by increasing Prandtl number and Biot number
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while reverse is the case of −0(0) It is also found that −0(0) decreases by increasing Eckert
numbers while opposite behavior of −0(0) Table 7.4 presents the comparison of − 00(0) and
−00(0) for various values of  in the limiting sense with ref. [13]. Table 7.5 ensures the values
of local Nusselt number −0(0) are in good agreement with ref. [39] in a limiting sense.

Table 7.2: Values of local Nusselt −0(0) and Sherwood numbers −0(0) for the different
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values of the parameters 1      
∗  and 1 when  =  = 1 = 2 = 03.

1   1    ∗ −0(0) −0(0)
0.0 0.2 0.7 0.4 0.5 0.4 0.5 0.3 0.16023 0.56411

0.2 0.15399 0.55548

0.4 0.14858 0.54795

0.2 0.0 0.14266 0.53103

0.2 0.15399 0.55548

0.4 0.16269 0.57666

0.2 0.2 0.4 0.13249 0.55814

0.8 0.16009 0.55462

1.2 0.17597 0.55212

0.2 0.2 0.7 0.2 0.098922 0.56163

0.4 0.15319 0.55548

0.6 0.18962 0.55150

0.2 0.2 0.7 0.4 0.0 0.20797 0.11228

0.5 0.15399 0.55548

1.0 0.11405 0.85681

0.2 0.2 0.7 0.4 0.5 0.0 0.15406 0.56553

0.5 0.15457 0.55288

1.0 0.15565 0.53984

0.2 0.2 0.7 0.4 0.5 0.5 0.2 0.19480 0.54212

0.5 0.15469 0.55287

1.0 0.084902 0.57214

0.2 0.2 0.7 0.4 0.5 0.5 0.5 0.0 0.18113 0.35157

0.3 0.15469 0.55212

0.5 0.14153 0.65090

Table 7.3: Values of local Nusselt −0(0) and Sherwood numbers −0(0) for the different
values of the parameters 1 and 2 when 1 =  = 02  =  = 05,  = 1 = 04
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 = 07 and ∗ = 03.

  1 2 −0(0) −0(0)
-0.3 0.3 0.3 0.3 0.0091701 0.71369

0.0 0.091253 0.73788

0.3 0.12419 0.75068

0.3 0.0 0.11837 0.74820

0.3 0.12444 0.75042

0.6 0.12978 0.75260

0.3 0.3 0.0 0.18952 0.73121

0.1 0.16745 0.73772

0.2 0.14557 0.74431

0.3 0.3 0.3 0.0 0.14414 0.74474

0.1 0.13777 0.74657

0.2 0.13110 0.74854

Table 7.4: Values of − 00(0) and −00(0) with  when 1 =  =  = 0 with HPM (Ariel [13])
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and exact solution (Ariel [13]).

 − 00(0) −00(0)
HAM HPM[13] Exact[13] HAM HPM[13] Exact[13]

0.0 1 1 1 0 0 0

0.1 1.020260 1.017027 1.020260 0.066847 0.073099 0.066847

0.2 1.039495 1.034587 1.039495 0.148737 0.158231 0.148737

0.3 1.057955 1.052470 1.057955 0.243360 0.254347 0.243360

0.4 1.075788 1.070529 1.075788 0.349208 0.360599 0.349209

0.5 1.093095 1.088662 1.093095 0.465205 0.476290 0.465205

0.6 1.109946 1.106797 1.109947 0.590528 0.600833 0.590529

0.7 1.126397 1.124882 1.126398 0.724532 0.733730 0.724532

0.8 1.142488 1.142879 1.142489 0.866682 0.874551 0.866683

0.9 1.158254 1.160762 1.158254 1.016539 1.022922 1.016539

1.0 1.173720 1.178511 1.173721 1.173720 1.178511 1.173721

Table 7.5: Values of local Nusselt number −0(0) for different values of ∗  and Pr in a
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limiting sense when  =  = 1 = 2 =  =  = ∗ = 00 and 1 = 06

1  Pr Present Results Hayat et al [39]

−0(0) −0(0)
0.0 0.5 1.0 0.330404 0.33040

0.3 0.321661 0.32160

0.8 0.308651 0.30799

1.2 0.299526 0.29873

0.4 0.0 0.287813 0.28908

0.4 0.316638 0.31664

0.7 0.330168 0.33017

1.0 0.340702 0.34070

0.4 0.5 0.7 0.282787 0.28279

1.2 0.340424 0.34042

1.6 0.368405 0.36840

2.0 0.388869 0.38887

7.4 Conclusions

Three dimensional mixed convection flow of Maxwell fluid over a stretching surface with convec-

tive condition is investigated. Effects of chemical reaction and Soret and Dufour are analyzed.

The main observations are listed below.

• Momentum boundary layer thickness and velocity profile  0() increase with the increase
in  and  .

• Concentration profile () is decreasing function of generative chemical reaction parame-
ter (∗  0) while increasing function of destructive chemical reaction (∗  0) and Soret

number .

• Influences of  and  on () and () are qualitatively similar.

• Thermal boundary layer thickness and temperature field increase when  increases.
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• There are opposite effects of local Nusselt number and local Sherwood number when  ,

 E1 and E2 increase.

• Local Nusselt and Sherwood numbers increase when ∗,  and  are enhanced.

• Effects of local Nusselt number and local Sherwood number for Pr,   and  are

similar.
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Chapter 8

Radiative mixed convection flow of

an Oldroyd-B fluid by an inclined

stretching surface

Mixed convection flow of an Oldroyd-B fluid in the presence of thermal radiation is investigated

in this chapter. Flow is induced by an inclined stretching surface. The boundary layer equations

of an Oldroyd-B fluid in the presence of heat transfer are used. Appropriate transformations

reduce the partial differential equations into the ordinary differential equations. Computational

analysis is performed for the convergent series solutions. The values of local Nusselt number are

numerically analyzed. Effects of various parameters involved in the velocity and temperature

are discussed.

8.1 Mathematical analysis

Consider the steady two-dimensional mixed convection flow of an incompressible Oldroyd-B

fluid by an inclined stretching surface. The heat transfer is considered in the presence of

thermal radiation using Rosseland approximation. Here −axis is taken along the stretching
surface and −axis normal to the −axis. Conservation laws of mass, linear momentum and

energy in absence of viscous dissipation give
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where  and  are the velocity components in the − and −directions, 1 and 2 are the

relaxation and retardation times, respectively,  = () is the kinematic viscosity,  is the

Stefan-Boltzmann constant,  is the fluid temperature,  is the fluid density,  is the gravita-

tional acceleration,  is thermal expansion coefficient of temperature,  is the specific heat,

 is the mean absorption coefficient and  is the thermal conductivity.

The appropriate boundary conditions are taken as follows:

 =   = 0  =  at  = 0 (8.4)

→ 0  → ∞ as  →∞ (8.5)

with the surface temperature  by

( ) = ∞ +  (8.6)

where  and  are the positive constants. If  is the stream function then defining

 =

r



  =

√
() () =

 − ∞
 − ∞

 (8.7)

 =



,  = −


 (8.8)

the incompressibility condition is clearly satisfied and the resulting problems for  and  satisfy

the following equations

128



 000 +  00 −  02 + 1(2
0 00 − 2 000)− 2(

002 −  0000) +  cos = 0 (8.9)µ
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= 0 (8.10)

(0) = 0  0(0) = 1  0(∞)→ 0 (0) = 1 (∞)→ 0 (8.11)

In the above expressions 1 and 2 are the Deborah numbers,  is mixed convection parameter,

 is the local Grashof number,  is the Reynold number, Pr is the Prandtl number  is

the radiation parameter and primes indicate the differentiation with respect to  i.e.

1 = 1 2 = 2  =
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Local Nusselt number  in terms of heat transfer  is
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Above equation in dimensionless variables becomes

12 = −(1 + 4
3
) 0(0) (8.14)

Considering the set of base functions

n
 exp(−)| ≥ 0  ≥ 0

o
(8.15)

one can express that

() =

∞X
=0

∞X
=0


 exp(−) (8.16)

() =

∞X
=0

∞X
=0


 exp(−) (8.17)

where  and  are the coefficients.
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Initial guesses 0 and 0 and auxiliary linear operators ~ and ~ are chosen as follows:

0() = 1− exp(−) 0() = exp(−) (8.18)

L = 3

3
− 


 L = 2

2
−  (8.19)

where

L [1 + 2 exp() + 3 exp(−)] = 0 L [4 exp() + 5 exp(−)] = 0 (8.20)

in which  ( = 1 − 5) are the arbitrary constants. Introducing  ∈ [0 1] as the embedding
parameter and ~ and ~ the non-zero auxiliary parameters, the deformation problems at the

zeroth order are

(1− )L [̂( )− 0()] = ~N

h
̂( ) ̂( )

i
 (8.21)

(1− )L[̂( )− 0()] = ~N

h
̂( ) ̂( )

i
 (8.22)

̂(; )
¯̄̄
=0

= 0
̂(; )



¯̄̄̄
¯
=0

= 1
̂(; )



¯̄̄̄
¯
=∞

= 0 (8.23)

̂(; )
¯̄̄
=0

= 1 ̂(; )
¯̄̄
=∞

= 0 (8.24)

N [̂( ) ̂( )] =
3̂( )

3
− ̂( )

2̂( )

2
−
Ã
̂( )



!2

+1

"
2̂( )

̂( )



2̂( )

2
− (̂( ))2

3̂( )

3

#

+2

⎡⎣Ã2̂( )

2

!2
− ̂( )

4̂( )

4

⎤⎦
+̂( ) cos (8.25)

N

h
̂(; ) ̂(; )

i
=

µ
1 +

4

3


¶
2̂( )

2
+Pr

Ãb (; ) b (; )


− b (; )  b (; )


!
 (8.26)
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For  = 0 and  = 1, we have

b (; 0) = 0 ()  b (; 1) =  ()  (8.27)

b (; 0) = 0 ()  b (; 1) =  () (8.28)

and when  increases from 0 to 1 then b (; ) and b (; ) deform from 0 () and 0 () to  ()

and  () respectively. Further Taylor series expansion yields

b (; ) = 0 () +

∞X
=1

 () 
 (8.29)

b (; ) = 0 () +

∞X
=1

 () 
 (8.30)

 () =
1

!

 b (; )


¯̄̄̄
¯
=0

  () =
1

!

b (; )


¯̄̄̄
¯
=0

 (8.31)

The auxiliary parameters ~ and ~ are selected such that the series (829) and (830) converge

at  = 1. Hence

() = 0() +

∞X
=1

() () = 0() +

∞X
=1

() (8.32)

The corresponding problems at  order are given by

L [ ()− −1 ()] = ~R
 ()  L [ ()− −1 ()] = ~R

 ()  (8.33)

(0) = 0  0(0) = 0 
0
(∞) = 0

(0) = 0 (∞) = 0 (0) = 0 (∞) = 0 (8.34)
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R
 () =  000−1() +

−1P
=0

h
−1− 00 −  0−1−

000


i
+1

−1X
=0

−1−
X
=0

{2 0− 00 − − 000 −  0−1()

+2{
0
−1−

−1X
=0


0
 − −1−

−1X
=0

  ) +  cos (8.35)

R
 () =

µ
1 +

4

3


¶
00−1 +Pr

−1X
=0

¡
−1−0 −  0−1−

¢
(8.36)

 =

¯̄̄̄
¯̄ 0  ≤ 1
1   1

 (8.37)

The general solutions of Eq. (8.32) can be written as follows:

() = ∗() + 1 + 2 exp() +3 exp(−) (8.38)

() = ∗() + 4 exp() + 5 exp(−) (8.39)

where the special solutions are ∗() and ∗() and

2 = 4 = 0

1 = −3 − ∗(0) 3 =
∗()


¯̄̄̄
=0



5 = −∗(0) (8.40)

8.2 Convergence of the series solutions

Clearly the series solutions contain the non-zero auxiliary parameters ~ and ~. Hence the

~ and ~ curves are plotted for 20th−order of approximation in order to find the admissible
values of ~ and ~. It is found that the admissible values of ~ and ~ are −14 ≤ ~ 

~ ≤ −025 (Fig. 8.1)  The series given by Eq. (836) converges in the whole region of  when
~ = ~ = −06
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Fig.8.1: ~−curves for the function  and 

8.3 Discussion

This section examines the influence of physical parameters on the velocity  0() and temperature
() Figs. 8.2− 89 depict the graphical effects of inclination  Deborah numbers 1 and 2

and mixed convection parameter . Figs. 8.2 and 8.3 depict that fluid velocity decreases while

the fluid temperature increases with the increase of inclination parameter  It is also observed

that momentum boundary layer thickness is a decreasing function of  while thermal boundary

layer thickness is an increasing function of  Figs. 8.4 and 8.5 are sketched to analyze the

effect of relaxation time parameter 1 on the velocity and temperature. As the relaxation time

parameter increases the velocity profile decreases while the temperature profile is quite opposite

to that of the velocity profile. Figs. 8.6 and 8.7 examine the influence of mixed convection

parameter  on the velocity and temperature. The fluid velocity and associated momentum

boundary layer thickness increase by increasing  It is clear that the temperature has opposite

effect when compared with velocity. We also noticed that the fluid velocity increases rapidly

in comparison to the temperature with the increasing values of  Figs. 8.8 and 8.9 depict the

effect of retardation time 2 on the temperature and velocity fields. Here we observed that 2

has quite opposite effect on the velocity and temperature. The fluid velocity increases with an
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increase in 2
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Fig. 8.2: Influence of sheet inclination  on  0()
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Fig. 8.3: Influence of sheet inclination  on ()
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Fig.8.4: Influence of Deborah number 1 on  0()
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Fig. 8.5: Influence of Deborah number 1 on ()
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Fig. 8.6: Influence of mixed convection  on  0()
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Fig. 8.7: Influence of mixed convection  on ()
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Fig. 8.8:Influence of Deborah number 2 on  0()
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Fig. 8.9: Influence of Deborah number 2 on ()

Table 8.1 also shows that the series solutions converge for 20th-order of deformations for

both the velocity and temperature. Table 8.2 analyzes the numerical values of local Nusselt

number for different values of 1, 2  Pr and  We note that the numerical values of local

Nusselt number increase with the increase of 1 2  and such values decrease for  and .

Table 8.1: Convergence of homotopy solutions for different order of approximations when
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 = 4 1 = 02  = 05 2 = 03 Pr = 07 and  = 03

Order of approximation − 00(0) −0(0)
1 0.69555 0.73000

05 0.75163 0.72503

10 0.75241 0.72457

15 0.75240 0.72457

20 0.75239 0.72456

25 0.75239 0.72456

30 0.75239 0.72456

Table 8.2: Local Nusselt number and skin friction coefficient 
−12
  for some values

of 1  Pr 2 and  when  = 4

1 2    −(1 + 4
3
) 0(0)

0.1 0.2 0.5 0.7 0.3 0.73887

0.2 0.71284

0.3 0.70528

0.5 0.0 0.70729

0.2 0.71925

0.4 0.72951

0.2 0.0 0.66787

0.3 0.70324

0.5 0.71924

0.5 0.3 0.43757

0.5 0.58961

0.7 0.0 0.84020

0.2 0.75419

0.5 0.66085
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8.4 Concluding remarks

This chapter examines the effect of thermal radiation on the mixed convection flow of an

Oldroyd-B fluid over an inclined stretching sheet. The main observations of this study are as

follows.

• Effect of mixed convection parameter  on the velocity and temperature are quite opposite.

• Momentum and thermal boundary layers for  have opposite effects.

• Decrease in temperature is more significant in comparison to velocity when Prandtl num-
ber  increases

• Thermal boundary layer thickness is decreasing function of Prandtl number.

• Deborah numbers 1 and 2 have quite opposite effects for the velocity and temperature.
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Chapter 9

Mixed convection flow of an

Oldroyd-B fluid with power law heat

flux and heat source

This chapter looks at the mixed convection flow of an Oldroyd-B fluid bounded by a porous

stretching surface. Mathematical formulation is developed in the presence of heat source and

power law heat flux. Velocity and temperature are computed. Plots for different parameters

are analyzed. Numerical values of local Nusselt number are examined.

9.1 Development of problems

We consider the two-dimensional flow of an incompressible Oldroyd-B fluid over a porous sur-

face. A Cartesian coordinate system is chosen in such a way that −axis is taken along the
flow direction and the −axis perpendicular to the −axis. The fluid fills the half space   0.
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Heat source is present and power law heat flux is imposed. Flow geometry is shown in Fig. 9.1.

Fig. 9.1: Physical model of the problem

The present boundary layer flow is governed by the following expressions




+




= 0 (9.1)





+ 




= 

2

2
− 1

∙
2

2

2
+ 2

2

2
+ 2

2



¸
+2

∙


3

2
+ 

3

3
− 



2

2
− 



2

2

¸
+  ( − ∞) (9.2)





+ 




=





2

2
+




( − ∞) (9.3)

In above equations  and  are the velocity components in the − and −directions, 1 and
2 are the relaxation and retardation times respectively,  the gravitational acceleration, 

the thermal expansion coefficient,  = () the kinematic viscosity,  the fluid temperature, 

the density of fluid,  the thermal conductivity of fluid,  the specific heat at constant pressure

and  the heat source coefficient.
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The subjected boundary conditions are

 =   = −0 


= 2 at  = 0 (9.4)

 = 0  = ∞ as  →∞ (9.5)

where  is the temperature coefficient and ∞ is the ambient temperature.

The similarity transformations are given by

 =  0()  = −√()  = ∞ +

r



2()  =

r



 (9.6)

in which  is a constant and prime denotes differentiation with respect to . Eq. (91) is

automatically satisfied and the Eqs. (9.2-9.5) are reduced as follows

 000 +  00 −  02 + 1(2
0 00 − 2 000)− 2(

002 −  0000) +  = 0 (9.7)

00 + 0 − 2 0 + ∗ = 0 (9.8)

 =   0 = 1 0 = 1 at  = 0 (9.9)

 0 = 0  = 0 as  →∞ (9.10)

in which 1 = 1 and 2 = 2 are the Deborah numbers  =

Re2

the mixed convection

parameter with  =
 (−∞)3

2
the local Grashof number and  =



the local Reynolds

number,  = 0√

the suction/injection parameter,  =



the Prandtl number and ∗ = 



a heat generation/absorption parameter.

Expression of local Nusselt number  is

 =


( − ∞)
  = −

µ




¶
=0

 (9.11)

Dimensionless form of Eq. (9.11) is

12 = − 1

(0)
 (9.12)
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9.2 Homotopy analysis solutions

Choosing the following set of base functions

{ exp(−) ≥ 0  ≥ 0} (9.13)

we express  and  as follows

() = 000 +

∞X
=0

∞X
=0


 exp(−) (9.14)

() =

∞X
=0

∞X
=0


 exp(−) (9.15)

where  and  are the coefficients. Initial approximations and auxiliary linear operators

are taken in the following forms

0() =  + 1− exp(−) 0() = − exp(−) (9.16)

L =  000 −  0 L = 00 + 0 (9.17)

L (1 + 2
 + 3

−) = 0 L(4 + 5
−) = 0 (9.18)

where  ( = 1− 5) are the arbitrary constants.
The corresponding zeroth order deformation problems are developed in the following fash-

ions.

(1− )L
h
̂(; )− 0()

i
= N

h
̂(; ) ̂( )

i
 (9.19)

(1− )L
h
̂(; )− 0()

i
= N

h
̂(; ) ̂( )

i
 (9.20)

̂(0; ) =  ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0 ̂0(0 ) = 1 ̂(∞ ) = 0 (9.21)
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N [̂( )] =
3̂( )

3
− ̂( )

2̂( )

2
−
Ã
̂( )



!2

+1

"
2̂( )

̂( )



2̂( )

2
− (̂( ))2

3̂( )

3

#
+ (9.22)

2

⎡⎣Ã2̂( )

2

!2
− ̂( )

4̂( )

4

⎤⎦+ 
̂( )


 (9.23)

N[̂( ) ̂( )] =
2̂( )

2
+ ̂( )

̂( )


− 2̂( )


̂( ) + ∗̂( ) (9.24)

in which  is an embedding parameter,  and  the non-zero auxiliary parameters and N

and N the nonlinear operators. For  = 0 and  = 1 we have

̂(; 0) = 0() ̂( 0) = 0() and ̂(; 1) = () ̂( 1) = () (9.25)

and when  increases from 0 to 1 then ( ) and ( ) vary from 0() 0() to () and

() Taylor’s series yields

( ) = 0() +
∞P

=1

()
 (9.26)

( ) = 0() +
∞P

=1

()
 (9.27)

() =
1

!

(; )



¯̄̄̄
=0

 () =
1

!

(; )



¯̄̄̄
=0

 (9.28)

where the convergence of above series strongly depends upon  and  The auxiliary para-

meters  and  are selected in such a way that (926) and (927) converge at  = 1 and

hence

() = 0() +
∞P

=1

() (9.29)

() = 0() +
∞P

=1

() (9.30)

The th-order deformation problems are constructed by the following expressions

L [()− −1()] = R
 () (9.31)
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L[()− −1()] = R
 () (9.32)

(0) =  0(0) =  0(∞) = 0 0(0)− (0) = (∞) = 0 (9.33)

R
 () =  000−1() +

−1P
=0

h
−1− 00 −  0−1−

000


i
+1

−1X
=0

−1−
X
=0

{2 0− 00 − − 000 −  0−1()

+2{
0
−1−

−1X
=0


0
 − −1−

−1X
=0

  ) + −1 (9.34)

R
 () = 00−1() + 

−1P
=0

0−1− − 2
−1P
=0

−1− 0 + ∗−1() (9.35)

 =

⎡⎣ 0  ≤ 1
1   1

(9.36)

If ∗ and ∗ are the special solutions then the general solutions are

() = ∗() + 1 + 2
 + 3

− (9.37)

() = ∗() + 4 + 5
− (9.38)

9.3 Convergence of the homotopy solutions

The auxiliary parameters } and } have significant role in the convergence of developed series

solutions. Here the }−curves are portrayed for 18 order of approximations in order to find
the values of } and } ensuring convergence. Figs. 9.2 depict that the range of admissible

values of } and } are −08 ≤ } ≤ −02 and −075 ≤ } ≤ −02 The series solution converge
in the whole region of  when } = −04 and } = −04 Table 9.1 depicts that 25 order
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deformations are sufficient for both the velocity and temperature expressions.

-1 -0.8 -0.6 -0.4 -0.2 0
hf , hq
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-1

f
''0

,q
'0



l = 0.1, S = 0.5, b1 = 0.2, b2 = 0.3, b* = 0.3, Pr = 0.5

q'0
f '' 0

Fig.9.2: ~−curves for the function  and 

Table 9.1. Convergence of homotopy solutions for different order of approximations when

1 = 02 2 = ∗ = 03  =  = 05  = 01, } = −04 and } = −04

Order of approximation − 00(0) −00(0)
1 1.10000 1.22000

5 1.19801 1.34636

10 1.20255 1.35611

15 1.20268 1.35640

20 1.20271 1.35642

25 1.20272 1.35643

30 1.20272 1.35643

9.4 Graphical results and discussion

The purpose of this section is to highlight the variations of interesting parameters through Figs.

9.3−97 for velocity and temperature. Figs. 9.3 and 94 show the behaviors of suction/injection
parameter  Deborah number 1 and mixed convection parameter  on the velocity 

0
(). Fig.

9.3 shows the effects of suction/injection parameter  on the velocity profile 
0
() Here   0

corresponds to suction and   0 for injection case. We observed that the velocity 
0
() is
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lower for suction case in comparison to injection phenomenon. From physical point of view

suction is an agent that resists the fluid flow. Such resistance in fluid flow creates a reduction

in the velocity field and associated boundary layer thickness. Fig. 94 illustrates that both

the fluid velocity and boundary layer thickness decrease when mixed convection parameter is

increased. Note that the mixed convection parameter involves the buoyancy force. Buoyancy

force is stronger for the larger mixed convection parameter and weaker for the smaller mixed

convection parameter. This stronger buoyancy acts as an agent to creates a reduction in the

velocity profile and momentum boundary layer thickness.

Fig. 9.3: Variation of  on  0()

Fig. 9.4: Variation of  on  0()
Figs. 95−97 are displayed to examine the influence of arising parameters on dimensionless

146



temperature profile () Fig. 9.5 presents the variations in temperature () for different values

of suction/injection parameter . From this Fig. it is analyzed that the temperature is higher

for injection case when we compared it with suction case. The effects of suction parameter

 on () is qualitatively similar to that of the velocity. Both the temperature () and

thermal boundary layer thickness increase when mixed convection parameter  increases (see

Fig 96). Here buoyancy force is an agent that creates an enhancement in the temperature and

thermal boundary layer thickness. Influence of heat source ∗ on () is presented in Fig. 97.

Physically ∗  0 means that   ∞ and in this case heat is supplied to the flow region

from the wall. The temperature boosts with heat source parameter ∗  0 while reduction in

thermal boundary layer thickness and temperature is seen with heat sink parameter ∗  0.

Fig. 9.5: Variation of  on ()
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Fig. 9.6: Variation of  on ()

Fig. 9.7: Variation of ∗ on ()

Table 9.2 shows that the local Nusselt number has quite opposite behavior for 1 and 2

The values of Nusselt number increases by increasing ∗  and  However it decreases by

increasing  Table. 9.3 ensures the validity of present results for  00(0) in a limiting sense.

Table 9.2: Values of local Nusselt number 
12
 for the parameters 1 2 

∗  
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when  = 01

1 2 ∗ Pr   −
12


0.0 0.3 0.3 0.5 0.5 0.1 1.20133

0.2 1.17496

0.4 1.14936

04 118647

05 119622

06 120463

−01 102500

−02 109798

−03 116099

06 127668

09 160523

12 191014

08 123081

10 130323

15 145103

02 115381

04 113613

06 111294

Table 9.3: Comparison of  00(0) for different values of Maxwell parameter 1 when 2 =  =
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 = 0

Abel et al. [38] Present results

1 − 00(0) − 00(0)
0.0 1.00000 1.00000

0.2 1.051948 1.051889

0.4 1.101850 1.101903

0.6 1.150163 1.150137

0.8 1.196692 1.196711

1.2 1.285257 1.285363

1.6 1.368641 1.368758

2.0 1.447617 1.447651

9.5 Final remarks

This chapter deals with the mixed convection flow of Oldroyd-B fluid over a stretching sheet

with suction/injection, heat source/sink and power law heat flux. Effects of different involved

parameters such as mixed convection parameter  and heat source/sink ∗ on the flow field

and temperature are analyzed. The main observations are summarized as follows:

• Velocity profile and momentum boundary layer thickness reduce in case of suction   0

while these enhance in case of injection   0

• Thermal boundary layer thickness is increasing function of heat source parameter ∗  0
while it reduces with heat absorption parameter ∗  0

• Increase in mixed convection parameter  yields an enhancement in the temperature and
thermal boundary layer thickness while reduction in heat transfer rate at wall is noted.

• Behaviors of Deborah numbers 1 and 2 on the heat transfer rate at the wall are opposite
Heat transfer rate at wall increases with the heat absorption ∗  0 and suction parame-

ters   0
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Chapter 10

Soret and Dufour effects in mixed

convection flow of an Oldroyd-B

fluid with convective boundary

conditions

This chapter investigates the effects of heat and mass transfer in the mixed convection flow of

an Oldroyd-B fluid over a stretching surface with convective boundary conditions. Emphasis

is given to the analysis of Soret and Dufour effects. Relevant problems are first formulated

and then computed by the homotopy analysis method (HAM). Velocity, temperature and con-

centration fields are computed and analyzed through plots. In addition, the local Nusselt and

Sherwood numbers are examined through the numerical values.

10.1 Mathematical model

We choose −axis along the stretching surface in the flow direction and y-axis is taken perpen-
dicular to the surface. An incompressible Oldroyd-B fluid is considered. The surface satisfies the

convective boundary conditions. Further, the Soret and Dufour effects are taken into account.
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The resulting boundary layer equations for flow of an Oldroyd-B fluid are




+




= 0 (10.1)





+ 




= 

2

2
− 1

∙
2

2

2
+ 2

2

2
+ 2

2



¸
+2

∙


3

2
+ 

3

3
− 



2

2
− 



2

2

¸
+[ ( − ∞) + ( − ∞)] (10.2)





+ 




= 

2

2
+





2

2
 (10.3)





+ 




= 

2

2
+





2

2
 (10.4)

where  and  denote the velocity components in the − and −directions respectively, 1
and 2 the relaxation and retardation times respectively,  the fluid temperature,  the con-

centration field,  the kinematic viscosity,  the fluid density,  the mass diffusivity,  the

thermal conductivity,  the thermal-diffusion ratio,  the specific heat,  the concentration

susceptibility,  the fluid mean temperature and  the fluid electrical conductivity.

The boundary conditions are expressed in the following forms

 = () =   = 0 − 



= ( −  )  =  at  = 0 (10.5)

→ 0  → ∞  → ∞ as  →∞ (10.6)

in which  denotes the convective fluid temperature, ∞ the ambient temperature and  the

thermal conductivity.

Setting the following transformations

 = 

r



  =  0()  = −√() () =  − ∞

 − ∞
 () =

 − ∞
 − ∞

 (10.7)
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incompressibility condition (101) is automatically satisfied and the other equations give

 000 +  00 −  02 + 1(2
0 00 − 2 000)− 2(

002 −  0000) +  +  = 0 (10.8)

1


00 + 0 +

00 = 0 (10.9)

00 + 0 + 00 = 0 (10.10)

(0) = 0  0(0) = 1  0(∞) = 0 (10.11)

0(0) = −1(1− (0)) (∞) = 0 (10.12)

(0) = 1 (∞) = 0 (10.13)

In above expressions the prime indicates the differentiation with respect to  1 = 1 and

2 = 2 are the Deborah numbers  =

Re2

the mixed convection parameter with  =

 (−∞)3
2

as the Grashof number,  =


the local Reynold number,  =  the

Prandtl number, 1 = ()
p
 the Biot number,  =  the Schmidt number,  the

Dufour number and  the Soret number. The definition of and  are

 =




( − ∞)
( − ∞)

  =




( − ∞)
( − ∞)

 (10.14)

Local Nusselt and local Sherwood numbers in dimensionless coordinates are expressed as follows:

()
−12 = −0(0) (10.15)

()
−12 = −0(0) (10.16)

In the next section we will develop the homotopy solutions for the resulting problems.

10.2 Series solutions

The initial guesses and auxiliary linear operators are taken as

0() = (1− (−)) 0() = 1 exp(−)
1 + 1

 0() = exp(−) +


2
exp(−) (10.17)
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L = 3

3
− 


 L = 2

2
−  L = 2

2
−  (10.18)

L [1 + 2 exp() + 3 exp(−)] = 0 (10.19)

L [4 exp() + 5 exp(−)] = 0 L [6 exp() +7 exp(−)] = 0 (10.20)

in which  ( = 1− 7) denote the arbitrary constants.

10.2.1 Zeroth and mth order deformation problems

Having the non-linear operators N  N and N in the forms

N [̂( ) ̂( )] =
3̂( )

3
− ̂( )

2̂( )

2
−
Ã
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!2

+1

"
2̂( )

̂( )



2̂( )

2
− (̂( ))2

3̂( )

3

#

+2

⎡⎣Ã2̂( )

2

!2
− ̂( )

4̂( )

4

⎤⎦
+̂( ) + ̂( ) (10.21)

N[̂( ) ̂( ) ̂( )] =
1



2̂( )

2
+ ̂( )

̂( )


+

2̂( )

2
 (10.22)

N[̂( ) ̂( ) ̂( )] =
2̂( )

2
+ ̂( )

̂( )


+ 

2̂( )

2
 (10.23)

the corresponding problems at the zeroth and th orders can be expressed as follows:

(1− )L [̂( )− 0()] = }N [̂( ) ̂( ) ̂( )] (10.24)

(1− )L[̂( )− 0()] = }N[̂( ) ̂( ) ̂( )] (10.25)

(1− )L[̂( )− 0()] = }N[̂( ) ̂( ) ̂( )] (10.26)

̂(; )
¯̄̄
=0

= 0
̂(; )



¯̄̄̄
¯
=0

= 1
̂(; )



¯̄̄̄
¯
=∞

= 0 (10.27)

̂
0
(; )

¯̄̄
=0

= −[1− ̂(; )
¯̄̄
=0
] ̂(; )

¯̄̄
=∞

= 0 (10.28)
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̂(; )
¯̄̄
=0

= 1 ̂(; )
¯̄̄
=∞

= 0 (10.29)

L [()− −1()] = }R
() (10.30)

L[()− −1()] = }R
() (10.31)

L[()− −1()] = }R
() (10.32)

(0) = 0  0(0) = 0 
0
(∞) = 0 0(0)− (0) = 0

(∞) = 0 (0) = 0 (∞) = 0 (10.33)

R
 () =  000−1() +

−1P
=0

h
−1− 00 −  0−1−

000


i
+1

−1X
=0

−1−
X
=0

{2 0− 00 − − 000 −  0−1()

+2{
0
−1−

−1X
=0


0
 − −1−

−1X
=0

  ) + 0−1() + 10−1() (10.34)

R
() =

1


00−1() +

−1X
=0

−1−0 +
00
−1() (10.35)

R
() = 00−1() + 

−1X
=0

−1−0 + 00−1() (10.36)

 =

¯̄̄̄
¯̄ 0  ≤ 1
1   1

(10.37)

where  ∈ [0 1] is an embedding parameter and }  } and } are the nonzero auxiliary para-
meters. Taylor’s series gives

̂(; ) = 0() +

∞X
=1

()
 () =

1

!

̂(; )



¯̄̄̄
¯
=0

 (10.38)

̂(; ) = 0() +

∞X
=1

()
 () =

1

!

̂(; )



¯̄̄̄
¯
=0

 (10.39)
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̂(; ) = 0() +

∞X
=1

()
 () =

1

!

̂(; )



¯̄̄̄
¯
=0

 (10.40)

and when  = 0 and  = 1 then

̂(; 0) = 0() ̂(; 1) = () (10.41)

̂(; 0) = 0() ̂(; 1) = () (10.42)

̂(; 0) = 0() ̂(; 1) = () (10.43)

We choose the auxiliary parameters in such a way that the series solutions converge for  = 1

and so

() = 0() +

∞X
=1

() (10.44)

() = 0() +

∞X
=1

() (10.45)

() = 0() +

∞X
=1

() (10.46)

The general solutions (  ) in terms of special solutions (
∗
 

∗
 

∗
) can be written as

follows

() = ∗() + 1 + 2 exp() +3 exp(−) (10.47)

() = ∗() + 4 exp() + 5 exp(−) (10.48)

() = ∗() + 6 exp() + 7 exp(−) (10.49)

10.3 Convergence of the homotopy solutions

The convergence analysis of the series solutions depends upon the auxiliary parameters ~ ,

~ and ~ Hence the ~−curves for the 17 order of approximations are plotted. It is found
that the admissible ranges of ~ , ~ and ~ are −17 ≤ ~ ≤ −020, −15 ≤ ~ ≤ −025
and −15 ≤ ~ ≤ −040. The series (1044 − 1046) converge in the whole region of  when
~ = ~ = ~ = −10 (see Fig. 10.1) Table 10.1 indicates that how much terms for each
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physical quantity are required for the convergent solution. It is noticed that less number of

terms are required in the convergent expression of velocity.
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Fig101 : ~−curves for the function  ,  and 

Table 10.1: Convergence of homotopy solutions for different order of approximations when

1 = 02 2 = 01  =  = 07 1 = 10  = 03  = 02,  = 10 ~ = ~ =

~ = −10
Order of approximations − 00(0) −0(0) −0(0)
1 0.82500 0.39104 0.43194

5 0.79502 0.30304 0.45255

10 0.79137 0.29030 0.46033

15 0.79129 0.28971 0.46071

20 0.79132 0.28991 0.46044

25 0.79133 0.28993 0.46042

30 0.79133 0.28993 0.46043

10.4 Discussion

Interest in this section is to analyze the variations of different emerging parameters on the phys-

ical quantities like temperature, concentration field, local Nusselt and Sherwood numbers. Figs.

102− 109 are displayed to see the variations of mixed convection parameter  concentration
buoyancy parameter  , Dufour number  and Soret number  on the temperature of fluid
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() Fig. 102 shows that the mixed convection parameter  decreases the temperature ()

Also thermal boundary layer thickness reduces with an increase in mixed convection parameter

 Fig. 103 illustrated that temperature and associated thermal boundary layer thickness are

decreasing functions of  .Fig. 104 shows that temperature () and thermal boundary layer

thickness increase with an increase in Dufour number   With an increase in Soret number

 temperature () and thermal boundary layer thickness decrease as seen in Fig. 10.5.
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Figs. 106− 109 plot the effects of    and  on the concentration field () From

Fig. 10.6 it is found that the concentration field and associated boundary layer thickness show

a decrease when mixed convection parameter  increases Effects of concentration buoyancy

parameter parameter  on the concentration are qualitatively similar to that of temperature

(see Figs. 103 and 107). Figs. 104 and 108 show that the behaviors of the temperature and

concentration profiles are quite opposite in case of Dufour number. This shows that the Dufour

number corresponds to weaker concentration and stronger temperature. Fig. 109 pointed out
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that the larger Soret number has a strong concentration.
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Fig. 10.9: Influence of  on ()

Table 10.2: Values of local Nusselt number and Sherwood number for the parameters 1
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2    1 and  when  = 01

1 2      1  −0(0) −0(0)
0.0 0.2 0.1 0.7 0.5 0.8 1 1 1 0.29514 0.47225

0.2 0.28993 0.46033

0.4 0.28525 0.44998

0.2 0.0 0.28797 0.45592

0.2 0.29176 0.46462

0.4 0.29508 0.47226

0.2 0.2 0.0 0.27062 0.41866

0.2 0.29176 0.46463

0.4 0.30305 0.49095

0.2 0.2 0.2 0.8 0.30136 0.50625

0.9 0.30891 0.54602

1.0 0.31480 0.58434

0.7 0.0 0.28679 0.49981

0.2 0.29176 0.46462

0.4 0.29679 0.42800

0.2 0.0 0.33235 0.45353

0.2 0.30546 0.46096

0.4 0.27788 0.46830

0.2 1.0 0.30546 0.46094

1.2 0.30001 0.51681

1.4 0.29513 0.56908

1.0 1.0 0.30546 0.46094

1.2 0.32396 0.45920

1.4 0.33863 0.45781

1.0 1.0 0.30546 0.46094

1.2 0.30700 0.46444

1.4 0.30846 0.46779
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10.5 Conclusions

Mixed convection flow of an Oldroyd-B fluid is investigated in the presence of convective bound-

ary condition and Soret and Dufour effects. The main observations are pointed out below.

• Effects of  and  on temperature and concentration fields are similar.

• Effects of Soret number  on () and () are reverse.

• Thermal boundary layer thickness and temperature field increase when  increases.

• There are opposite effects of local Nusselt number and Sherwood number when  , 

and 1 increase.

• local Nusselt and Sherwood numbers decrease when 1 increases.

• With an increase in  and  both local Nusselt and Sherwood numbers are enhanced.
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Chapter 11

Mixed convection Falkner-Skan

wedge flow of an Oldroyd-B fluid in

presence of thermal radiation

The present chapter examines the Falkner-Skan flow of rate type non-Newtonian fluid. Ex-

pressions of an Oldroyd-B fluid in the presence of mixed convection and thermal radiation are

used in the development of relevant equations. The resulting partial differential equations are

reduced into the ordinary differential equations employing appropriate transformations. Ex-

pressions of flow and heat transfer are constructed. Convergence of derived nonsimilar series

solutions is guaranteed. Impact of various parameters involved in the flow and heat transfer is

plotted and examined.

11.1 Problems development

Let us consider the two-dimensional Falkner-Skan flow of an Oldroyd-B fluid. We further

consider the heat transfer. Cartesian coordinates ( ) are used in such a way that -axis is

parallel to the wall and -axis normal to it. An incompressible fluid occupies the region  ≥ 0
The equations governing the present flow situation are based on the conservation laws of mass,
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linear momentum and energy. Flow diagram of the problem is as follows:

Fig. 11.1: Physical Model

Taking into account the aforementioned assumptions, the resulting boundary layer equations

can be written as follows:
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µ
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 (11.3)

The appropriate boundary conditions are

 =   = 0  =  = ∞ + at  = 0

 → 0  → ∞ as  →∞ (11.4)

where  (= ) is the free stream velocity,  is the dynamic viscosity, 1 is the relaxation
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time, 2 is the retardation time,  is the wedge angle,  is the thermal conductivity,  is

the surface temperature exponent,  and ∞ are the temperatures of the fluid and ambient

respectively and  is the wall temperature. We utilize

 =  ()  0,  =

r
+ 1

2

r



  =

r
2

+ 1

√
 () 

 = −
r

+ 1

2

r




∙
 () +

− 1
+ 1

 0 ()
¸
  () =

 − ∞
 − ∞

 (11.5)

where  is the similarity variable,  is the stream function,  is the dimensionless stream

function and  is the dimensionless temperature. Now the continuity equation (111) is identi-

cally satisfied and Eqs. (112)− (114) lead to the following expressions

 000 +  00 + 1

µ
−2

µ
− 1
+ 1
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+ 1

2
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2 000 +

µ
− 1
2

¶
 02 00
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+2

µµ
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2

¶¡
 00
¢2 −µ+ 1

2

¶


0000
+ (− 1)  0 000

¶
− 2

+ 1
 02 +

2

+ 1
 sin



2
= 0

(11.6)µ
1 +

4

3


¶
00 +Pr(0 − 2

+ 1
 0) = 0 (11.7)

 (0) = 0  0 (0) = 1  (0) = 1  0 (∞) = 0  (∞) = 0 (11.8)

Here prime denotes the differentiation with respect to , 1 and 2 are the dimensionless

material parameters,  is mixed convection parameter,  is the local Grashof number, Pr is

the Prandtl number and  is the radiation parameter. The definitions of these parameters are

1 =
1


 2 =

2


  =



Re2
 Pr =






 = (
4

3∞


)  =
( − ∞)3

2
 (11.9)

Local Nusselt number () along with heat transfer rate () are

 =


 ( − ∞)
  = −

µ




¶
=0

(11.10)
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which in dimensionless form gives

(Re)
−12 = −0 (0)  (11.11)

11.2 Series solutions

The initial guesses (0 0) and auxiliary linear operators (  ) are taken as follows

0 () = 1− − 0() = − (11.12)

L () = 3

3
− 


 L () = 2

2
−  (11.13)

with

L [1 + 2 exp() + 3 exp(−)] = 0 (11.14)

L [4 exp() +5 exp(−)] = 0 (11.15)

where  ( = 1− 5) are the arbitrary constants. If  ∈ [0 1] is the embedding parameter and ~
and ~ are the non-zero auxiliary parameters then the zeroth-order and th order deformation

problems are stated as follows.

11.2.1 Zeroth order problem

(1− )L
h b (; )− 0 ()

i
= ~N

h b (; ) b (; )i  (11.16)

(1− )L
hb (; )− 0 ()

i
= ~N

hb (; )  b (; )i  (11.17)

b (0; ) = 0 b 0 (0; ) = 0 b 0 (∞; ) = 1b (0; ) = 1b (∞; ) = 0 (11.18)
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 (11.19)

N

hb (; )  b (; )i =

µ
1 +

4

3


¶
2̂( )

2
+Pr b (; ) b (; )



−Pr 2

+ 1
b (; )  b (; )


 (11.20)

11.2.2 th-order deformation problems

L [ ()− −1 ()] = ~R
 ()  (11.21)

L [ ()− −1 ()] = ~R
 ()  (11.22)

 (0) =  0 (0) =  0 (∞) =  00(∞) = 0

(0) =  (∞) = 0 (11.23)
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R
 () = 00−1 +Pr

−1X
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¶
 (11.25)

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (11.26)

For  = 0 and  = 1, we have

b (; 0) = 0 ()  b (; 1) =  ()  (11.27)

b (; 0) = 0 ()  b (; 1) =  ()  (11.28)

and when  increases from 0 to 1 then b (; ) and b (; ) vary from the initial solutions 0 ()

and 0() to final solutions  () and () respectively. By Taylor’s expansion one has

b (; ) = 0 () +

∞X
=1

 () 
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¯̄̄̄
¯
=0

 (11.29)

b (; ) = 0 () +

∞X
=1

 () 
  () =

1

!

b (; )


¯̄̄̄
¯
=0

 (11.30)

where the auxiliary parameters are so properly chosen that the series (1129) and (1131) con-

verge at  = 1 i.e.

 () = 0 () +

∞X
=1

 ()  (11.31)

 () = 0 () +

∞X
=1

 ()  (11.32)

The general solutions of Eqs. (1132) and (1133) are

 () =  () + 1 + 2
 +3

− (11.33)

 () =  () + 4
 +5

− (11.34)

in which  and  are the special solutions.
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11.3 Convergence

Note that the series solutions in Eqs. (1132) and (1133) contain two auxiliary parameters ~

and ~. The convergence of series solutions depend upon these auxiliary parameters. For range

of values of these parameters, the ~−curves at 15th-order of approximations have been plotted
in Fig. 11.2. It is found that the admissible values of ~ and ~ are −13 ≤ ~ ≤ −025 and
−12 ≤ ~ ≤ −05. Table 11.1 further guarantees that the series solutions are convergent up to
five decimal places when ~ = ~ = −05.
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Fig112 : ~−curves for the function  and 

11.4 Discussion

The aim of this subsection is to present the effects of pertinent parameters on the velocity, tem-

perature and surface heat transfer. Variation of parameter  on the velocity and temperature

are sketched in the Figs. 113 and 114. Clearly the effects of  on the velocity and temperature

profiles are quite reverse. Influence of mixed convection parameter  on both the velocity and

temperature profiles are given in the Figs. 11.5 and 11.6. It is observed that the velocity and

momentum boundary layer thickness increase with the increase of mixed convection parameter

 while the temperature and thermal boundary layer thickness decrease. Figs. 117 and 118

are drawn to see the variation of  on the velocity and temperature profiles. It is noticed that

the velocity and momentum boundary layer thickness increase when  increases It is found

that the temperature and thermal boundary layer thickness are decreasing functions of  Figs.
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11.9 and 11.10 are sketched to see the variation of surface temperature parameter  on the

velocity  0() and the temperature (). Both  0() and () decrease with the increase in .

It is also observed that both the momentum and thermal boundary layer thicknesses decrease

when  increases
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Fig. 11.3: Impact of  on  0()
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Fig. 11.4: Impact of  on ()
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Fig. 11.9: Impact of  on  0()
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Figs. 1111 and 11.12 are drawn to see the influence of mixed convection parameter  wedge

angle  surface temperature parameter  and velocity index  on the local Nusselt number

−0(0) Fig. 1111 depicts the effects of  and  on −0(0). It is noticed that −0(0) increases
through increase of mixed convection parameter  and wedge angle . Fig. 1112 depicts that

variations of  and  have opposite effects on −0(0) A close look at Table 11.1 indicates that
25th-order approximation gives convergent series solutions.
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Fig. 11.11: Impacts of  and  on −0(0)
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Fig. 11.12: Impacts of  and  on −0(0)
Table 11.1 : Convergence of the homotopy solutions for different order of approximation

when Pr = 10,  = 03,  = 15,  = 05  = 03,  = 4 1 = 02 2 = 03 and
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~ = ~ = −05.
Order of approximation − 000(0) −0(0)
1 0.90330 0.78889

5 0.86304 0.64042

10 0.86077 0.62757

15 0.86047 0.62627

20 0.86045 0.62616

25 0.86044 0.62616

30 0.86044 0.62616

11.5 Conclusions

Mixed convection and thermal radiation effects in the Falkner-Skan wedge flow of an Oldroyd-B

fluid are investigated. The following points are worth mentioning:

• Table 11.1 shows that convergence of the functions  and  are obtained at 25th-order

approximations up to five decimal places when ~ = ~ = −05

• Influence of mixed convection parameter  increases the velocity and momentum boundary
layer thickness while it decreases the temperature and thermal boundary layer thickness.

• Influence of wedge angle  and radiation parameter  on both the temperature and

velocity profiles are quite similar.

• Thermal boundary layer and momentum boundary layer thicknesses are decreasing func-

tions of surface temperature exponent .

• Surface heat transfer −0(0) increases with an increase of wedge angle  mixed convection
parameter  and surface temperature exponent  .
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Preface

14The boundary layer flows over a moving surface have

vital importance due to their ever increasing usage in the industries. In such industrial processes, the

kinematics of stretching and heat transfer through rate of cooling have substantial impact in the

improvement of final product of better quality. No doubt, the thermal buoyancy force arising due to cooling

or heating of a moving surface may alter significantly the flow and thermal fields and thereby the heat

transfer behavior in the manufacturing process. In several practical applications, the order of magnitudes

of buoyancy and viscous forces are comparable for moderate flow velocities and large surface

temperature differences and convective heat transfer process is thus called as mixed convection. The

buoyancy forces due to temperature and concentration differences are significant in mixed convection

thermal and concentration diffusions. In fact the buoyancy forces causing a pressure gradient in the

boundary layer modify
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8the velocity, temperature and concentration distributions and consequently the

rate of

heat and mass transfer between the surface and fluid. Specifically the mixed convection flows are

encountered in industrial processes like solar central receivers exposed to the wind currents, nuclear

reactors called during emergency shutdown, electronic devices cooled by fans and heat exchangers etc.

The mixed convection flows with heat and mass transfer are relevant to energy related engineering

problems that include both metal and polymer sheets. Mostly, the fluids in industrial processes are non-

Newtonian. Certain oils, paints, blood at low shear rate, shampoos, cosmetic products body fluids, pasta,

ice cream, ice, mud etc are few examples of non-Newtonian fluids. Keeping all the aforementioned facts in

mind, the present thesis is structured as follows. Chapter one covers literature survey and laws of

conservation of mass, linear momentum and energy. Boundary layer equations of second grade, Maxwell,

Oldroyd-B and thixotropic fluids are presented. Basic idea of homotopy analysis method is also given.

Chapter two deliberates the mixed convection

4boundary layer flow of thixotropic fluid with thermophoresis over a stretched

sheet. Fluid is electrically conducting in the

presence of constant applied

6magnetic field. Heat and mass transfer

effects are considered

8in the presence of Joule heating and thermal radiation.

Series solutions are obtained to analyze the velocity, temperature and concentration fields.

1Numerical values of local Nusselt and Sherwood numbers for different

values of emerging parameters

are computed and analyzed. A i comparative study

7with the previous solutions in a limiting sense is made. The leading results of

this problem are published in “Journal of Thermophysics and Heat Transfer 27 (2013) 733-740”. Three-

dimensional

2mixed convection flow of second grade fluid over an exponentially stretching
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surface

are studied in chapter three. Convective boundary conditions are utilized for the heat transfer analysis.

Analysis is carried out in the presence of thermal radiation. The series solutions are established through a

newly developed method recognized as the homotopy analysis method. The convergent analysis of

velocity components and temperature are derived. Graphs are plotted and analyzed for interesting

physical parameters. A systematic study is performed to analyze the impacts of the significant

13parameters on the velocity and temperature, the skin friction coefficients and

the local Nusselt number.

The contents of this chapter are published in “Plos One 9 (2014) e90038”. Chapter four reports the

6heat and mass transfer effects in three-dimensional mixed convection flow

of viscoelastic fluid with internal heat source/sink and chemical reaction. An exponential stretching surface

is employed for flow generation. Magnetic field normal to the direction of flow is taken under consideration.

Convective conditions at boundary surface are also encountered. An analytical approach

7homotopy analysis method is used to develop the solution expressions of the

problem.

Impacts of different controlling parameters such as stretching ratio parameter, Hartman number, internal

heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot

numbers

19on the velocity, temperature and concentration profiles are analyzed

graphically. The local Nusselt number and Sherwood numbers

are sketched and examined. The results of present chapter are submitted for possible publication in

“Applied Mathematics and Computation”. Chapter 5 provides the three-dimensional mixed convection

3flow of viscoelastic fluid over a stretching surface in presence of

thermophoresis.

7Soret and Dufour effects are also
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taken into account. Series solutions are constructed.

15Dimensionless velocity, temperature and concentration distributions are

shown graphically

for different values of involved parameters.

26Numerical values of local Nusselt and Sherwood numbers are computed and

analyzed. The

contents of this chapter are submitted for possible publication in “Engineering Applications of

Computational Fluid Mechanics”.

2Three-dimensional flow of Maxwell fluid over a stretching surface is

addressed in chapter six. Analysis is prepared in presence of concentration and thermal buoyancy effects.

Convective boundary conditions for heat and mass transfer are explored. Series solutions of ii the resulting

problem are established. Results are displayed to examine the influence of physical

1parameters on the velocity, temperature and concentration fields. Main

observations of

this chapter are accepted for publication in “Journal of Central South University”. Chapter seven is

prepared to examine the

11heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a

stretching

2surface with convective boundary conditions. Mass transfer is considered in

the

presence of first order chemical reaction. Conservation laws of energy and concentration are based upon

the Soret and Dufour effects. Convergent series solutions to the resulting nonlinear problems are

developed. The relevant results are accepted for publication in “International Journal of Numerical Method

for Heat and Fluid Flow”. Mixed convection

2flow by an inclined stretching surface with
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thermal radiation is investigated in chapter eight. The

2boundary layer equations of an Oldroyd-B fluid

1in the presence of heat transfer are

used. Suitable transformations reduce the

2partial differential equations into the ordinary differential equations.

Computational analysis is implemented for the convergent series solutions.

4The values of local Nusselt number are

numerically analyzed. Effects of various parameters involved in the velocity and temperature are

discussed. The contents of this chapter are accepted for publication in “Journal of Applied Mechanics and

Technical Physics”. Chapter nine provides

23the mixed convection flow of an Oldroyd-B fluid bounded by a stretching

surface with suction/injection. Mathematical formulation is developed

3in the presence of heat source and power law heat flux. Velocity and

temperature are computed. Numerical

4values of local Nusselt number are

examined. Results are computed in a limiting sense with existing literature. The contents of this chapter are

published in “Journal of the Brazilian Society of Mechanical Sciences and Engineering DOI

10.1007/s40430-014- 0165-8”. Chapter ten investigates the effects of

6heat and mass transfer in the mixed convection

1flow of an Oldroyd-B fluid over a stretching surface with convective boundary

conditions.
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Stress is given to the analysis of Soret and Dufour effects. Related problems are first modeled and then

computed by homotopy analysis method (HAM).

1Velocity, temperature and concentration fields are given. In addition, the

1local Nusselt and Sherwood numbers are

examined through numerical values. These observations are submitted for publication in “Thermophysics

and Aeromechanics”. iii Falkner-Skan flow of rate type non-Newtonian fluid is analyzed in chapter eleven.

Expressions of an Oldroyd-B fluid are used in the development of relevant equations. Analysis has been

carried out in presence of mixed convection and thermal radiation. Expressions of flow and heat transfer

are assembled.

7Convergence of derived nonsimilar series solutions is

provided. This research is submitted for publication in “Journal of Aerospace Engineering”. . iv Contents 1
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. . . . . 177 Chapter 1 Literature survey and methodology 1.1 Introduction This chapter contains the

literature review related to the considered flow problems. Boundary layer equations of thixotropic, second

grade, Maxwell and Oldroyd-B fluids are presented. Brief idea of homotopy analysis method (HAM) are

also provided. 1.2 Background External flows around streamlined bodies have viscous (shear and no-slip)

effects confined close to the body surfaces and its wake but are nearly inviscid far from the body are

termed as bound- ary layer flows [1] which occur in aerodynamics (airplanes, rockets, projectiles),

hydrodynamics (ships, submarines, torpedoes), transportation (automobiles, trucks, cycles), wind

engineering (buildings, bridges, water towers) and ocean engineering (buoys, breakwaters, cables). The

boundary layer flow problem over stretching sheet have many industrial applications such as polymer

sheet or filament extrusion from a dye or long thread between feed roll or wind-up roll, glass fiber and

paper production, drawing of plastic films and liquid films in condensation process. Due to the high

applicability of this problem in such industrial phenomena, Sakiadis [2] initiated the work for flow by moving

surface. After the pioneering work of Sakiadis, researchers have studied the flow over stretching surfaces

under various aspects for viscous and nonlinear fluids. A similarity solution of viscous fluid

14over a stretching surface which is stretched with the velocity

proportional to the distance from origin was presented by Crane [3]. Chakrabarti and Gupta [4] analyzed

the hydromagnetic

23flow over a stretching surface. Heat

13transfer over a continuous stretching surface with suction and injection

was analyzed by Chen and Char [5]. Vajravelu and Hadjinicolaou [6] reported the heat transfer features

8in the laminar boundary layer flow of viscous fluid over a linearly stretching

surface with

variable wall temperature. Ef- fects of suction and injection are present. They attained the solutions of the

problem in Kumar functions. Andersson et al. [7] found the solutions

javascript:openDSC(47692527, 37, '11195');
javascript:openDSC(1020967879, 1393, '30709');
javascript:openDSC(54710017, 4, '19925');
javascript:openDSC(260611084, 1392, '46933');
javascript:openDSC(44366062, 487, '17687');


7/3/2014 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=437813038&sid=0&n=0&m=0&svr=9&r=97.82056855037808&lang=en_us 12/97

13over a stretching surface in presence of first order chemical

reactions. Similarity solutions of the boundary layer equations over stretch- ing wall was obtained by Banks

[8]. Closed form solution of magnetohydrodynamic (MHD) flow under slip condition

7over a permeable stretching surface was obtained by Fang et al. [9].

Mukhphadhyay et al. [10] obtained the solution of

MHD

16boundary layer flow over a heated stretching sheet with

variable viscosity. Wang [11] extended the boundary layer flow of Crane [3] for three-dimensional

stretching surface. Devi et al. [12] extended the flow of ref. [11] for

16unsteady stretching surface in presence of heat and mass transfer

effects. An approximate analytical solutions of the steady, laminar three

20-dimensional flow for an incompressible viscous fluid past a stretching sheet

were proposed by Ariel [13,14]. Hayat and Javed [15] analyzed the three

3-dimensional flow of an incompressible viscous fluid over a porous stretching

surface in presence of

magnetic field by employing homotopy analysis method. Kumari and Nath [16] discussed the unsteady

magnetohydrodynamic viscous fluid with heat transfer induced by a bilateral stretching surface. An

analysis for

14heat transfer over a non-linearly stretching surface for a viscous fluid

was provided by Vajravelu [17]. Cortell [18] extended the work of ref. [17] in presence of thermal radiation

and viscous dissipation over a non-linearly stretching surface. Two-dimensional magnetohydrodynamic

3stagnation point flow of an incompressible micropolar fluid over a non-linearly

stretching surface was explored by
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Hayat et al. [19]. The laminar boundary layer flow over an axisymmetric plane was provided by Afzal [20]. It

has been noted by Gupta and Gupta [21] that stretching mechanism in all realistic situation is not linear.

For instance the stretching is not linear in plastic and paper production industries. Besides these the

20flow and heat transfer by an exponentially stretching

surface has been studied by Magyari and Keller [22].

20In this attempt the two-dimensional flow of an incompressible viscous fluid

is considered. The solutions of laminar boundary layer equations describing heat and flow in a quiescent

fluid driven by an exponentially permeable stretching surface were numerically ana- lyzed by Elbashbashy

[23]. Al- Odat et al. [24] numerically discussed the thermal boundary layer flow with an exponential

temperature distribution. Here magnetohydrodynamic flow was addressed. Liu et al. [25] studied the three-

dimensional

13boundary layer flow of a viscous fluid over an exponentially stretching

surface by using the

Ackroyd and Runge-Kutta methods. Analysis of non-linear fluids

1is an active area of research

for the last few years. In many fields such as food industry, drilling operations and bioengineering, the

fluids, either synthetic or natural, are mixtures of different stuffs such as water, particle, oils, red cells and

other long chain molecules. Such combination imparts strong rheological properties to the resulting liquids.

The dynamic viscosity in non-linear materials varies non-linearly with the shear rate. These fluids in terms

of their different rheological features cannot be described by a single constitutive relationship. Hence

several relationships for the non-linear fluids are proposed. In fact the additional parameters in such non-

linear fluids are the main culprit which makes the resulting systems more nonlinear, higher order and

complex than the Navier-Stokes equations. The rheological fluids in general have been classified into three

categories known as the differential, integral and rate types. Second grade fluid is a subclass of differential

type fluids which exhibits the normal stress effects. To predict these effects many researchers studied

second grade fluid under various aspects. Dandapat and Gupta [26] discussed the flow

23of an incompressible second- order fluid due to stretching

surface under boundary layer assumptions. Chen et al. [27] delivered the temperature distribution in
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11viscoelastic fluid of Walters’ B Model over a horizontal stretching plate. The

velocity of the plate is proportional to the distance from the slit. Vajravelu and Rollins [28] carried out the

heat transfer effects in viscoelastic

8fluid over a stretching surface with frictional heating and internal heat

generation

or absorption.

2Hayat et al. [29] studied the three -dimensional flow

over stretching surface in a viscoelastic fluid by applying homotopy analysis method. Liu [30] presented

11analytical solutions for the flow and heat transfer in steady laminar

boundary flow of an electrically conducting fluid of second grade subject to

transverse uniform magnetic field past a semi-infinite stretching sheet with

power-law surface temperature or power-law surface heat flux. The effects of

viscous dissipation, internal heat generation or absorption, work done due to

deformation and Joule heating were also considered in the energy equation.

1Flow and heat transfer characteristics of viscoelastic fluid with porous medium

over a stretching surface with

viscous dissipation was governed by Nandeppanavar et al. [31] . Differential type models do not predict the

relaxation and retardation time effects while these effects can be anticipated by rate type fluids. Maxwell

fluid is a

7simplest subclass of rate type fluids.

Channel

1flow of an upper convected Maxwell fluid (UCM)

induced by suction was presented by Choi et al. [32]. Sadeghy [33] discussed the
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22flow of an upper-convected Maxwell (UCM) fluid above a rigid plate moving

steadily.

Pahlavan et al. [34] studied the

7MHD flows of UCM fluids above porous stretching sheets

using two-auxiliary-parameter homotopy analysis method. Maxwellian MHD flow induced by a linearly

stretched with thermal radiations was investigated by Aliakbar et al. [35].

3Unsteady flow of generalized Maxwell fluid with fractional derivative induced

by

an accelerating plate was provided by Fetecau et al. [36]. Kumari and Nath [37] analyzed the

22Maxwell fluid over stretching sheet in presence of mixed convection. Abel et

al. [38] proposed the

MHD

22flow and heat transfer for the upper-convected Maxwell fluid over a

stretching sheet. Hayat et al. [39] presented the three -dimensional

Maxwell fluid over stretching

2surface with convective boundary conditions. Bhatanagar et al.

[40] initiated to analyze the boundary layer flow of rate type fluids. They obtained the solutions of two-

dimensional flow over

8a stretching surface with variable free stream velocity. Exact solutions of

unidirectional

2flow of an Oldroyd-B fluid
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between two parallel plates was presented by Rajagopal [41]. Exact solutions for flows

8of an electrically conducting Oldroyd-B fluid over an infinite oscillatory plate in

the presence of a transverse magnetic field when the entire system rotates about an axis normal to the

plate was obtained by Hayat et al. [42]. The linear stability of the

2flow of an Oldroyd-B fluid through a

linear array of cylinders confined in a channel was analyzed by Smith et al. [43]. They computed solutions

for both the steady state and linear stability of these states by employing finite element analysis. Exact

solutions for the influence of Hall current and rotation in the oscillatory flows by an infinite plate were

obtained by Asghar et al. [44]. Fetecau and Fetecau [45] analyzed the unsteady flows of Oldroyd-B fluids

in a channel of rectangular cross-section. A linear stability analysis determining the onset of oscillatory

convection of an Oldroyd-B fluid in a two-dimensional rectangular porous medium generated by Newtonian

heating was presented by Niu et al. [46]. In nonlinear fluids sometimes

5nonlinearity introduced by their shear-dependent viscosity and/or elasticity

often gives rise to a formidable mathematical task which cannot be solved.

5Obviously, the situation becomes much more complicated when the viscosity

of the fluid is time- dependent. Time-dependent fluid systems are quite

frequent in industrial applications with the common effect being a drop in

viscosity by the progress of time. Complex fluid systems such as drilling

muds, foodstuff, paints, cosmetics, pharmaceuticals, suspensions, grease,

and the like belong to this class of fluids-the so-called thixotropic fluids.

Physiological fluids such as blood, synovial fluid, and mucus may also exhibit

thixotropic behavior depending on the time scale of the observation.

5A common effect among thixotropic fluids is that their viscosity is decreased

even when the shear rate is constant

[47,48]. Harris [49,50]

5tried to address boundary layer flows of thixotropic fluids.

Haris presented

javascript:openDSC(44366062, 487, '17601');
javascript:openDSC(47692527, 37, '10698');
javascript:openDSC(30332117, 37, '12290');
javascript:openDSC(30332117, 37, '12291');
javascript:openDSC(30332117, 37, '12292');
javascript:openDSC(30332117, 37, '12293');


7/3/2014 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=437813038&sid=0&n=0&m=0&svr=9&r=97.82056855037808&lang=en_us 17/97

5a simple thixotropic fluid model (the so called Harris model) to investigate

the effects of a fluid’s thixotropic behavior on the characteristics of the

momentum boundary layer formed above a fixed plate

[50].

5Two-dimensional flow of an incompressible thixotropic fluid obeying Harris

rheological model over a fixed semi-infinite plate

was investigated by Sadeqi et al. [51]. Mixed convection flows or combined free and forced convection

flows occur in many techno- logical and industrial applications and in nature for example, in solar receivers

exposed to wind currents, electronic devices cooled by fans, nuclear reactors cooled during emergency

shutdown, heat exchanges placed in a low-velocity environment, flows in the ocean and in the atmosphere,

and many more. Finite element method was utilized for detailed analysis of mixed-convection flow in a

horizontal channel heated from the side walls were computed by Sillekens [52]. Heat transfer enhancement

by air injection in upward heated mixed-convection flow of water was studied by Celata et al. [53]. Barletta

[54] provided the analysis of the laminar and fully developed mixed convection flow in a vertical rectangular

duct with one or more isothermal walls. Magyari et al. [55] analyzed the

6boundary layer mixed convection flow over a

perme- able horizontal plate. The unsteady

20mixed convection boundary layer flow near the region of a stagnation point

on a vertical surface embedded in a Darcian fluid-saturated porous medium

was investigated by Nazar et al. [56]. They employed Keller—Box method to obtain the so- lutions. Laminar

two-dimensional unsteady mixed convection

20boundary-layer flow of viscous incompressible fluid past a sharp wedge

was developed by Hussain et al. [57]. Perturbation solutions were obtained for small and large

dimensionless time. Experimental investigation was presented on mixed (free and forced) convection to

study the local and average heat transfer for hydrodynamically and thermally developed laminar air flow in

a horizontal circular cylinder was analyzed by Mohammed and Salman [58]. Laminar mixed convection heat

transfer for as- sisted and opposed air flows in the entrance region of a vertical circular tube with wall heat

flux boundary condition had been experimentally investigated by Mohammed [59]. Kotouc et al. [60] also

provided the loss of axisymmetry in the mixed convection assisting flow past a heated sphere. A transient

laminar mixed convection flow of viscous incompressible fluid generated by thermal buoyancy force over a

horizontal porous sensor surface placed inside a squeezing channel was discussed by Mahmood et al.
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[61]. The implicit finite difference approximation together with Keller box method was employed for the

solution of small and large time regimes.

6Heat and mass transfer characteristics in mixed convection boundary layer

flow past a linearly stretching vertical surface in a porous medium filled with a

viscoelastic fluid

with Dufour and Soret effects was governed by Hayat et al. [62]. Radiative mixed convection has gained

much importance amongst the recent researchers due to number of applications in geophysical and

energy storage problems such as in furnaces, ovens and boilers and the interest in our environment and

in no conventional energy sources, such as the use of salt gradient solar ponds for energy collection and

storage. Similarity equations governing steady hydromagnetic boundary-layer flow over an accelerating

permeable surface

6in the presence of thermal radiation, thermal buoyancy and

heat generation or absorption effects were obtained by Chamka [63]. Buoyancy force and thermal

radiation effects in MHD boundary layer viscoelastic fluid flow over continuously moving

4stretching surface was investigated by Abel et al.

[64]. Mukhopadhyay and Layek [65] presented the free convective boundary layer

21flow and heat transfer of a fluid with variable viscosity over a porous stretching

vertical surface in presence of

thermal radiation. Results were obtained by Lie group transformations. Also Mukhopadhyay [66] analyzed

the

6effects of thermal radiation on unsteady boundary layer mixed convection

heat transfer problem from a vertical porous stretching surface embedded in

porous medium.

Magnetohydrodynamic mixed convective flow and heat

6transfer of an electrically conducting power-law fluid past a stretching surface

in the presence of heat generation/absorption and thermal
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radiation was studied by Chen [67]. Numerical solutions were generated by an implicit finite-difference

technique for the non-similar coupled flow. A

8study of utilizing heat source or sink in moving fluids

has been a subject of interest of many researchers. This is because of its possible application to

geophysical sciences, astrophysical sci- ences, and in cosmic studies. Such flows arise either due to

unsteady motion of the boundary or the boundary temperature. The study of fluctuating flow is important in

the paper industry and many other technological fields. Many investigators stressed

6on the magnetohydrodynamic flow of an electrically conducting fluid

because of numerous applications in metallurgical in- dustry such as in drawing, annealing,

2in the purification of molten metals from non-metallic inclusions,

electromagnetic pumps, MHD generators etc. Several studies have been presented by the authors in

22presence of transverse magnetic field and heat

source/sink over a stretching surface.

8Heat transfer characteristics in an electrically conducting fluid over a

stretching sheet with

variable wall temperature and heat source/sink was investigated by Vajravelu and Rollins [68]. Abel et al.

[69] presented

4the study of momentum and heat transfer characteristics in hydromagnetic flow

of viscoelastic liquid

16over a stretching sheet with non-uniform heat source,

where the flow was generated due to a linear stretching of the sheet and influenced by uni- form magnetic

field applied vertically. Beg et al. [70] examined the magnetohydrodynamic free

6convection from a sphere embedded in an electrically-conducting fluid-
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saturated porous

regime with heat generation. The present trend in the field of chemical reaction analysis is to give a

mathematical model for the system to predict the reactor performance. A large amount of research work

has been reported in this field. In particular, the

6study of heat and mass transfer

with chemical reac- tion is of considerable importance in chemical and hydrometallurgical industries. MHD

flow with

6heat and mass transfer characteristics of an incompressible viscous electrically

conducting and Boussinesq fluid due to a vertical stretching

surface with chemical reaction and thermal stratification effects was presented by Kandasamy et al. [71].

6Mansour et al. [72] studied the effects of chemical reaction, thermal

stratification, Soret and Dufour numbers on MHD free convective heat and

mass transfer of a viscous incompressible and electrically conducting fluid

over a vertical stretching surface embedded in a saturated porous medium.

The

6combined effect of mixed convection with thermal radiation and chemical

reaction on MHD flow of viscous and electrically conducting fluid past a

vertical permeable surface in presence of porous medium was analyzed

by Pal and Talukdar [73]. Mass transfer with

8chemical reaction in MHD mixed convective flow along a vertical

stretching sheet was investigated by Singh et al. [74]. 1.3 Fundamental laws 1.3.1 Law of conservation of

mass The equation of continuity (law of conservation of mass) can be represented by ?? ?? + ∇ · (?V) =

0? (1.1) where ?

3is the density of fluid and V is the fluid

velocity. For an incompressible fluid Eq. (1.1) can be expressed as follows: ∇ · V = 0? (1.2) 1.3.2 Law of
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conservation of linear momentum Generalized equation of motion can be expressed as ? ?V ?? = ∇ · τ +?

b? (1.3) For an incompressible flow τ = −pI + S (1.4) in which

11τ is the Cauchy stress tensor, ? is the pressure, I is the identity tensor, S is

the

extra stress tensor, b is the body force and ???? is the material time derivative. The Cauchy stress tensor

and the velocity field for three-dimensional flow can be described in the forms ??? T=� ? ?? ? ?? ??? ? ??

? ?? �? ? ?? ? ?? ??? � � � � V = [?(?? ?? ?)? ?(?? ?? ?)? ?(?? ?? ?)]? (1.5) (1.6) where ???? ??? and

??? represent the normal stresses, ???? ???? ???? ???? ??? and ??? show the shear stresses and ??

?? ?

19are the velocity components along the ?? ? and ?−directions respectively.

Equation (1.3) in component form can be written as follows: ? ?? ?? ?? ?? + µ ?? + ??? + ? ?? + ? ?? = ?

(???) ? (???) ? (???) ?? ?? + ?? + ???? (1.7) ? ?? ?? ?? ?? ¶ ?? + ??? + ? ?? + ? ?? = ? (?????) ?

(?????) ? (?????) + ???? + + (1.8) µ ?? ?? ?? ?? ¶ ? = ? (???) ? (???) ? (???) ?? + + ???? (1.9) µ ?? + ?

?? + ? ?? + ? ?? ¶ ?? + ?? where ??, ?? and ?? show the components of body force along the ?? ? and ?

−axes, respectively. The above equations for two-dimensional flow become ? ?? ?? ?? µ ?? +??? +??? ??

?? ?? ¶ ? µ ?? +??? +??? ¶ 1.3.3 Equation of heat transfer = = ? (???) ? (???) ?? + + ???? (1.10) ?? ?

(???) ? (???) ?? + + ???? (1.11) ?? According to first law of thermodynamics the heat transfer equation

can be written as ? ?? ?? =??L−∇·q1+???? (1.12) where ? = ??? is the internal energy, ?? the specific

heat, ? the temperature, L = ∇V the velocity gradient, q1 = −?∇? the heat flux, ? the thermal conductivity

and ?? the radiative heating. The above equation in absence of radiative heating is given below ???????

=??∇V+?∇2?? (1.13) 1.3.4 Diffusion equation Mass transfer occurs whenever fluid flows that is some

mass is transferred from one place to another. According to Fick’s law ?? = ??∇2? − ???? (1.14) ?? where

1C is the concentration, D? is the coefficient of mass diffusivity and ?? is the

reaction rate diffusing species. 1.4 Boundary layer equations of nonlinear fluids 1.4.1 Second grade fluid

Extra stress tensor S for a second grade fluid can be expressed as S = ?A1 + ?1A2 + ?2A21? where A1 is

the first Rivilin-Erickson tensor can be defined by A1 = grad V + (grad V)????????? ? For three-

dimensional flow one obtains 2???? ???? + ???? ???? + ???? A1 = � ???? + ?? ?? ?? 2???? ?? + ?? �

?? � ???? + ???? ???? + ???? 2???? � � � and the second Rivilin-Erickson tensor A2 can be computed

through A? = ?A???−1 + A?−1L + L????????? A?−1? (1.15) (1.16) (1.17) (1.18) For thermodynamic

stability the second grade model should obey the ineqaulity given below: ? ≥ 0? ?1 ≥ 0? ?1 + ?2 = 0?

(1.19) From the boundary layer theory [1], the order of ?? ?? ? and ? are 1 while the order of ? and ? are

?? Three-dimensional boundary layer equations for second grade fluid can be written as ? ???? + ? ????

+ ? ???? = ? ??2??2 + ??1 � ???? ??2??2 ???? ?????2?3??2??2++2 ????????3????32??−? + 2 ????

??2??2 ? ? (1.20) + � �³ ´� ? ???? + ? ???? + ? ???? = ? ??2??2 + ??1 � ?? ?2? ? (1.21) ?? ??2 + ?

???3???2 +???3??3 − ??????2??2 +2???????2??? +2??????2??2 � �³ ´� 1.4.2 Maxwell fluid The

extra stress tensor S for Maxwell fluid can be expressed by the following relation ? ?S (1.22) µ 1 + ?1 ?? S

= S + ?1 ?? = ?A1? ¶ in which ?1 is the relaxation time, ???? the covariant differentiation, ? denotes the
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kinematic viscosity and A1 the first Rivlin-Erickson tensor. For a tensor S of rank two, a vector b1 and a

scalar ?? we get ?S ?S ????????? ?? ?? + (V?∇)S − S(grad V) = − (grad V)S? (1.23) ??b?1 ??b?1 + (V?

∇)b1 − (grad V)b1? = (1.24) ?? ?? ?? ?? + (V?∇)?? = (1.25) Implementation of 1 + ?1 ??? on Eq. (1.3),

we have the following relations in the absence of body force ¡ ¢ ? 1 + ?1 ? ?V ?? = − 1 + ?1 ?? ∇? + 1 + ?

1 ?? (∇?S)? ? ? (1.26) µ ?? ¶ µ ¶ µ ¶ By adopting the procedure ? (∇?) = ∇? ? ? (1.27) ?? µ ?? ¶ Hence

the above relations in absence of pressure gradient is ? 1 + ?1 ?? ??V? = ? (∇?A1) ? ? (1.28) µ ¶ By

using the boundary layer theory [1], the order of ?? ?? ? and ? is 1 and order of ? and ? is ?? The ?

−momentum equation vanishes identically because it has order ?? Hence the boundary layer equations for

three-dimensional flow of Maxwell fluid are ? ?? ?? ?? ?2 ??2??2 + ?2 ??2??2 + ?2 ?2? ??2 ?2? ?? + ? ??

+ ? ?? + ?1 +2?? ???2??? + 2?? ???2??? + 2?? ???2??? � � =? ??2 ? (1.29) � � ? ?? + ? ?? + ? ?? +

?1 +2?? ???2??? + 2?? ???2??? + 2?? ???2??? ?? ?? ?? ?2 ??2??2 + ?2 ??2??2 + ?2 ??2??2 = ? ?2?

� � ? (1.30) ??2 The boundary layer equation for

2two-dimensional flow of Maxwell fluid

are given below � � ? ???? + ? ???? + ?1 ?2 ??2??2 + ?2 ??2??2 + 2?? ???2??? = ? ??2??2 ? (1.31) µ

¶ 1.4.3 Oldroyd-B fluid The extra stress tensor for an Oldroyd-B fluid model can be expressed as 1 + ?1 ??

S = S + ?1 ?? = ? 1 + ?2 ?? A1? ? ?S ? (1.32) µ ¶ µ ¶ where ?2 denotes the retardation time and law of

conservation of momentum in absence of pressure gradient and body force can be written as follows: ? 1 +

?1 ?? ?? = ? 1 + ?2 ?? (∇?A1)? ? ?V ? µ ¶ µ ¶ The scalar forms of boundary layer equations in this case

are ?? ?? ?? ?2? ? ?? + ? ?? + ? ?? + ?1 +2?? ???2??? + 2?? ???2??? + 2?? ???2??? ?2 ??2??2 + ?2

??2??2 + ?2 ??2 � � ?2? ? +?2 ???3???2 +????3???2 +???3??3 � � =? �??2 � −??????2??2 −

??????2??2 − ??????2??2 �� ? � � �� (1.33) (1.34) ? ?? ?? ?? ?2 ???2?2 + ?2 ??2??2 + ?2 ??2??2

?? + ? ?? + ? ?? + ?1 +2?? ???2??? + 2?? ???2??? + 2?? ???2??? � � ? ???3???2 + ? ???3???2 + ?

??3??3 � � =? ?2? � ??2 + ?2 � − ???? ??2??2 − ???? ??2??2 − ???? ??2??2 �� ? (1.35) � � ��

and the governing boundary layer equation for two-dimensional flow is ? ???? + ? ???? + ?1 ?2 ??2??2 +

?2 ??2??2 + 2?? ???2??? =? + ?2 µ ?2? ? ???3???2 +???3??3 ? ¶ � ??2 � −??????2??2 − ??????2??

2 �� � � �(�1.36) 1.4.4 Thixotropic fluid Stress tensor τ for thixotropic fluid model ??? = 2?(??2?

(?))???? where the

5viscosity is allowed to be time-dependent through allowing the second

invariant of the deformation-rate tensor to be time-dependent, ??2? is

5the second invariant of the deformation- rate tensor

and 2??? = (??????? + ???????)? (1.37) In the simple Harris

5model, a quadratic form is used for the ??2? so that we have,

??2? = (2???)2 = 4 ???? 2 1 ?? ?? 2 ?? 2 Ã + µ ¶ 2 ?? ?? + + ?? ? 0? (1.38) µ ¶ µ ¶ ! For the
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5viscosity function, in the SH model we have

[49,50] ? = ?0 − ?1??2? + ?2 ?????2? ? (1.39) where ??? is the material derivative defined as ? = ? + (??

∇) ? (1.40) ?? ?? In equation (1.39) ?1 and ?2 are the material constants. For boundary layer analysis the

viscosity function becomes ? = ?0 − 2?1 ?? ?? 2 ?? ?2? ?? ?2? + 4?2 ? µ ¶ ?? ???? + ? ?? ??2 ? (1.41) µ

¶ By using boundary layer analysis the ?-momentum equation is completely dropped for two- dimensional

flow.

5On the other hand, the ?-momentum equation is reduced to

?? ?? ??2??2 ? ???2??? + ? ??2??2 ? ?? + ? ?? = ? ??2 ?? ?? ?2? 6?1 ?? 2 − ? ?? ?2? 4?2 � ??2 + ? ³

µ + � ? ?? ´2³ ´?³???3???2 + ? ??3??3 ´ ¶ µ ¶ ?? ´ � � + ???? ???2??? ???? ??2??2 + � � ³ � �

(�1.42) � 1.5 Homotopy analysis method (HAM) In the absence of analytical solutions before the advent of

computers, the researchers mainly directed their efforts at obtaining some forms of approximate solutions.

One of the key issues of approximate solutions has always been the accuracy of the solutions. The

accuracy, gen- erally speaking, is measured in terms of the norm of the error in Banach space. The error

being the difference of the approximate solution from the exact solution. In the absence of an exact

solution (analytical or numerical) a heuristic approach consisting of the convergence of successive

approximations has been chosen to judge the merit of an approximate solution. With the advent of

computers the approximate solutions in fluid dynamics have lost some of their importance as more and

better numerical algorithms have been developed to solve the increasingly realistic, but more complicated

problems numerically. Nevertheless, approximate analytical solutions still have their relevance for the

following reasons: Firstly, they give the solutions for each point within the domain of interest unlike the

numerical solutions which are available for a particular run only for a set of discrete points in the domain.

Secondly, compared to a numerical solution a nicely produced approximate solution, requiring a minimal

effort and having a reasonable amount of accuracy is always handy for an engineer, scientist or an applied

mathematician, who can obtain a solution completely, thereby gaining a valuable insight into the essentials

of the problem. Thirdly, even with most of the scientific packages, some initial guess is required for the

solution, as the algorithms, in general are not globally convergent. In such situations, approximate

solutions can provide an excellent starting guess, which can be rapidly refined to the exact numerical

solution in a few iterations. Homotopy analysis method is proposed by Liao [75? 76] and is very useful to

obtain the series solutions of the nonlinear ordinary and partial differential equations [77-85]. According to

Liao [75? 76], this method distinguishes itself from other analytical methods in the following five aspects 1.

HAM is not dependent on physical parameters. Therefore the technique can be used for both strong/weak

nonlinear problems. 2. It is valid for strongly nonlinear problems even if a given nonlinear problem does not

contain any small/large parameter. 3. It provides us with a convenient way to adjust

3the convergence region and rate of approx- imation of the series

solution. 4. HAM provides freedom to chose base functions to approximate the solution of nonlinear

problem. 5. This method can be coupled with many other mathematical methods such as integral transform

methods, series expansion methods, numerical methods and so on. This technique is applicable in the

development of results to numerous problems [78 − 88]? Idea behind the HAM is as follows. Nonlinear
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differential equation can be written as follows: ?(?) + ?(?) = 0? (1.43) where ? is a nonlinear operator, ?(?)

is an unknown function to be determined and ?(?) is a known function. The homotopic equation is (1 − ?)L

[?¯(?? ?) − ?0(?)] = ?~ {? [?¯(?? ?) − ?(?)]} ? (1.44) where ?0(?) is initial guess, L is auxiliary linear

operator, ~ is auxiliary parameter or con- vergence control parameter, ? ∈ [0? 1] is an embedding

parameter and ?¯(?? ?) is an unknown function. By expanding Taylor’s series about ? one obtains ?¯(??

?) = ?0(?) + ??(?)??? ??(?) = ?1! ????¯(???? ?) ∞ ? (1.45) X?=1 ¯?=0 ¯ The convergence of above

series firmly depends upon ~? The value ¯of ~ is chosen in such a ¯ way that series solution is convergent

at ? = 1. Substituting ? = 1 one obtains The ?-th order deformation problems are ∞ ?(?) = ?0(?) + ??(?)?

X?=1 (1.46) L [??(?) − ????−1(?)] = ~R?(?)? (1.47) where 0? ? ≤ 1? ?? = � (1.48) � 1? ? ? 1? 1 ??−�1 ∞

R?(?) = − 1)! ( ???−1 ? ?0(?) + X?=1 × " ?? (?)?? ? (1.49) (? #)?=0 Chapter 2

21MHD mixed convection flow of thixotropic fluid

with thermophoresis, Joule heating and thermal radiation This chapter deals with the

magnetohydrodynamic (MHD) mixed convection

4flow of thixotropic fluid over a moving surface. Heat transfer is considered in the

presence of thermophoresis, Joule heating and radiative effects. Dimensionless nonlinear problem is

computed by homotopy analy- sis method (HAM). The convergent solutions are plotted and examined for

various parameters of interest. Numerical values of wall shear stress and heat transfer rate are computed

and discussed. 2.1 Mathematical formulation We consider

3Cartesian coordinate system in such a way that ?−axis is along the stretching

surface and ?−axis is perpendicular to it. The

magnetohydrodynamic

3boundary layer flow of thixotropic fluid is

1taken into account. Heat and mass transfer characteristics are

accounted

8in the presence of thermal radiation and thermophoresis effects.

Uniform temperature of the surface ?? is

8higher than the ambient fluid temperature ?∞? Further the species
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concentration

at the surface is taken uniform ?? = 0 while the ambient concentration is ?∞? A constant magnetic field of

strength B0

8is applied in the ?-direction. The flow is steady and the

magnetic Reynolds number is taken small so that an

8induced magnetic field is negligible in comparison to applied magnetic field.

Taking into account the

Rosseland approximation for radiative heat flux, the mass, linear momentum, energy and concentration

equations are simplified to the following expressions: ?? ?? ?? ?? = 0? + (2.1) ? ?? + ? ?? ?? ?? = ? ??2 ?

2? − 6?1 ?? 2 ?2? ?∗?02 ? ? ?? 2 − µ ? ¶ µ ¶ 4?2 ?? + ?? ??2??2 ? ???2??? + ? ??2??2 ? � + ???? 2³

? ?´???³3??2 +´?³??3??3 + ???? ???2??? +´ ???? ??2??2 � +?[?? (�? − ?³∞)´+ ³??(? − ?∞)]? ´� (2.2) ?

?? ?? ?? + ? ?? = ? ?2? 16???∞3 ?2? 2??1 ?? 4 4??2 ?? ?2? ?? 2 ??? ??2 + 3?? ??2 ??? ?? − + ? ? µ ¶

??? ?? ???? ?? µ ¶ + 4??2 ?? ?2? ?? 2 ??? ?? ??2 ?? ? + ?? 2 ?∗?02 ?2? + (2.3) µ ¶ ??? ?? µ ¶ ??? ?

?? ?? ?? + ? ?? = ? ??2 ?? (?? (? − ?∞))?

16?2? − ? (2.4) where (?? ?) are the velocity components parallel to the ?− and

?−axes,

?1 and ?2 are the constants, ? the dynamic viscosity of fluid, ? the density of fluid, ?∗ the electrical

conductivity, ? the gravitational acceleration, ?? and ?? the thermal and concentration expansion

coefficients respectively, ? the temperature, ?? the specific heat, ?? the Stefan-Boltzmann constant, ?? the

mean absorption coefficient, ? the diffusion coefficient and ?? the thermophoretic velocity. Fig. 2. 1:

Physical model Equations (2.1)-(2.4) are solved subject to the boundary conditions ? = ?? = ??? ? = 0? ?

= ??(?)? ? = ??(?) at ? = 0? ? → 0? ?? → 0? ? → ?∞? ? → ?∞ as ? → ∞? ?? The thermophoretic term ??

in Eq. (2.4) can be defined as ?? = −?2 ?? ?? ? ?? ? (2.5) (2.6) Here ?2 is the thermophoretic coefficient

and ?? is the reference temperature. A thermophoretic parameter ? is defined by the following relation ? =

−?2(?? − ?∞)? ?? The wall temperature and concentration fields are ?? = ?∞ + ??? ?? = ?∞ + ??? (2.7)

(2.8) where ?? ? and ? are the positive constants. Introducing ? = ???0(?)? ? = − ???(?)? ? = ? ? ?(?) = ?

− ?∞ ? √ ? r ? ?? − ?∞ (2.9) incompressibility condition (2.1) is automatically satisfied and the Eqs. (2.2)-

(2.5) become ? 000 +? ? 00 −? 02 +?1(?)? 002? 000 +?2(?) � −?2?0+?(?+??) = 0? (2.10) ?0?002?000 +

?004 −??00?0002 − ??002??? � � � 1 + 4 ? ?00 + ? ?(? ?0 − ?? 0) + ? ???? 002 + 1 ?1? ???? 004 µ 3

¶ 3 +?2? ???(? 0? 004 − ? ? 003? 000) + ? 2? ???? 02 = 0? (2.11) ?00 + ??(??0 − ??0) − ???(?0?0 − ??

00) = 0? (2.12) ? = 0? ? 0 = 1? ? = 1? ? = 1 at ? = 0? ? 0 → 0? ? 00 → 0? ? → 0? ? → 0 as ? → ∞? (2.13)

where the non-Newtonian parameters are ?1(?) = −6??1??23?2 and ?2(?) = 4??2??24?2? ? = ?∗?02???

the Hartman number, ? = ?????2? the local buoyancy parameter, ??? = ???(???2?−??2?∞?)2?3??2 the

local Grashof number, ? = ????((????−−??∞∞)) the constant dimensionless concentration buoyancy

parameter, ?? = ???? the Prandtl number, ? = 4??????∞3 the radiation parameter, ?? = ??2 ??(??−?∞)
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the Eckert number and ?? = ?? the Schmidt number. It is further seen that both ?1 and ?2 are functions of

?? Hence the fluid flow in present situation lacks a self-similar solution. This is striking difference when

compared present case with that of Blasius flow of viscous fluid i.e. in Blasius flow there is self-similar

solution. Here ?2 especially indicates the fluids’ thixotropic behavior. The

1skin friction coefficient, local Nusselt number and local Sherwood number

in non- dimensional form can be written as follows: ??1??2?? = ?00(0) − ?1?6[?00(0)]3? ?????−?1?2 = −?

0(0) and ????−?1?2 = −?0(0)? (2.14) Here we noticed

5that the wall shear stress at given ?−location is only affected by

?1 but only indirectly by ?2 (i.e. through ?00(0)) [51]. We have serious limitation in a simplified Harris

model for representing true thixotropic fluid. 2.2 Series solutions The homotopic solutions for ? and ? in a

set of base functions {?? exp(−??)? ? ≥ 0? ? ≥ 0} (2.15) are given by ∞ ∞ ??(?) = ??????? exp(−??)? X?

=0 X?=0 (2.16) ∞ ∞ ??(?) = ??????? exp(−??) (2.17)

28X?=0 X?=0∞ ∞ ??(?) = ??????? exp(−??) (2.18) X?=0 X?=0

where ?????, ????? and are ?????

4are the coefficients. The appropriate initial approximations and auxiliary linear

operators are

?0(?) = 1 − exp(−?)? ?0(?) = exp(−?)? ?0(?) = exp(−?)? L? = ?000 − ?0? L? = ?00 − ?? L? = ?00 − ?

(2.19) (2.20) with L?(?1 + ?2?? + ?3?−?) = 0, L?(?4?? + ?5?−?) = 0? L?(?6?? + ?7?−?)? (2.21) in which

?? (? = 1−7) denote

4the arbitrary constants and the zeroth order deformation problems

are (1 − ?) L? ?ˆ(?; ?) − ?0(?) = ?~? N?

37?ˆ(?; ?)? ˆ?(?; ?)? ?ˆ(?; ?) ? (2. 22) (1 − ?) L? ˆ?(?; ?) − ?0(?)

= ?~?N?

10ˆ?(?; ?)? ?ˆ(?; ?)? ˆ?(?; ?) ? ³ ´ ³ ´ (2.23) ³ ´ ³ ´ (1− ?) L? ?ˆ(?; ?) − ?0(?) = ?~?N?

ˆ?(?; ?)? ?ˆ(?; ?)? ?ˆ(?;
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?) ? ³ ´ ³ ´ (2.24)

12?ˆ(0; ?) = 0? ?ˆ0(0; ?) = 1? ?ˆ0(∞; ?) = 0? ?ˆ00(∞; ?) = 0? ?ˆ(0; ?) = 1, ˆ?(∞; ?) =

0? ?ˆ(0; ?) = 1 and ?ˆ(∞; ?) = 0?

(2.25) where ? shows

3embedding parameter, ~? ? ~? and ~? the non-zero auxiliary parameters and

the nonlinear operators N? , N? and

N? are ?3

24?ˆ(?? ?) + ?ˆ(?? ?) ?2?ˆ(?? ?) ??ˆ(?? ?) 2 N? [?ˆ(?? ?)? ˆ?(?; ?)? ?ˆ(?; ?)] = −

??3 ??2 Ã ?? ! 2 +?1(?) Ã ?2?ˆ(??

?) ?3

17?ˆ(?? ?) ??2 ! ??3 ??ˆ(???) ?2?ˆ(???) ?3 ?ˆ(???) 2 +?2(?) � ?2 ???ˆ(???³) ??2

??3 + ?2 ??ˆ(??2??) − ?ˆ(?? ?) 4 ?3 ?ˆ(???´) � ??2 ??3 2 − ?ˆ(?? ?)³ ?2??

17ˆ(??2??)´ 2 ?4 ??ˆ?(? 4??) � +?(ˆ?(?? ?) + ??ˆ(?; ?) − ?2 � ³ ´??ˆ(?? ?) ³ ´ � �

?? ? (2. 26) N ?[?ˆ(?? ?)? ?ˆ(?; ?)? ?ˆ(?;

?)] = 4 ?2ˆ?(?? ?) ?2?ˆ(?? ?) 2 1 + ? µ 3 ¶ ??2 + ? ??? Ã ??2 ! +? 2 Pr ?? ??ˆ(?? ?) 2 1 ?2?ˆ(?? ?) 4 Ã ??

! + ?1? ??? 3 Ã

9??2 ! −? ?ˆ?(?? ?) ??ˆ(?? ?) + ? ??ˆ(?? ?) ?ˆ?(?? ?) ?? ?? ??ˆ(???) ?2 ?ˆ(???)

4 +?2? ??? � � −?ˆ(?? ??)??3 ??ˆ³(??3??)?? 2?2 ??ˆ´(?? 2??) 3� ? (2.27) � ³ ´�

� N ?[?ˆ(?? ?)? ?ˆ(?; ?)? ?ˆ(?; ?)] = ?2ˆ?(???) +?? ?ˆ(???)??ˆ(???) ??ˆ(???)?

ˆ(???) ??2Ã ?? − ?? ! −? ?? Ã ??ˆ(?? ?) ??ˆ(?? ?) − ?ˆ(??

?)?2ˆ?(?? ?) ! ? (2.28) ?? ?? ??2 When ? = 0 and ? = 1 then ?ˆ(?;0) = ?0(?) and ?ˆ(?;1) = ?(?)? ?ˆ(?;0) =

?0(?) and ˆ?(?;1) = ?(?)? ?ˆ(?;0) = ?0(?) and ?ˆ(?;1) = ?(?)? (2.29) (2.30) (2.31) and when ? increases

from 0 to 1 then ?(???), ?(???) and ?(???) vary from ?0(?) to ?(?), ?0(?) to ?(?) and ?0(?) to ?(?)?

Employing the Taylor’s series expansion we have ?(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????(??;?)¯?=0

∞ ? (2.32) ?(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????(??;?)¯¯?=0 ¯ ∞ ? (2.33) P ¯ ?(?? ?) = ?0(?) + ?

P=1 ??(?)??? ??(?) = ?1! ?????(??; ?)¯¯¯?=0 ∞ ¯ (2.34) ? Convergence of series (2.32-2.34) is Pclosely

associated with ~? ? ~? and ~?¯¯? The values of ~? , ~? ¯ and ~? are chosen such that the series (2.32-
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2.34) converge at ? = 1. Hence ?(?) = ?0(?) + ??(?)? ∞ (2.35) ?=1 P ?(?) = ?0(?) + ??(?)? ∞ (2.36) ?=1

P∞ ?(?) = ?0(?) + ??(?)? (2.37) ?=1 If we denote the special solutions ??∗ (?), ?∗? (?) and ?∗? (?) then

the general solutions ?? (?), P ?? (?) and ?? (?) are ??(?) = ??∗(?) + ?1 + ?2?? + ?3?−?? ??(?) = ?∗?(?)

+ ?4?? + ?5?−?? ??(?) = ?∗?(?) + ?6?? + ?7?−?? (2.38) (2.39) (2.40) 2.3 Convergence analysis and

discussion We recall that the auxiliary parameters ~?? ~? and ~? are useful in controlling and adjusting the

convergence of the series solutions. We draw the ~−curves at 14?? order of approximation in obtaining the

ranges for ~?? ~? and ~?? It is noticed from Fig. 2.2 that the admissible values of ~?? ~? and ~? are −0?7

≤ ~? ≤ −0?25? −0?95 ≤ ~? ≤ −0?5 and −0?95 ≤ ~? ≤ −0?5? Further

3the series solutions converge in the whole region of ? when ~? = ~? = ~? = −0?

6? Table 2.1

is presented to see the convergent values

1for different order of approximations at ~? = ~? = ~? = −0?

6? This Table indicates

4that the series solutions for velocity converge from 20th order of deformations

and

temperature and concentration converge from 25th order of deformations. Hence 25th order deformations

are computed to find a convergent series solutions.

K1=0.1,K2=0.2,l=0.4,t=0.3,M=0.6,Sc=0.7,Ec=0.5,Pr=1.0,N=0.3,R=0.4 -0

1.5 -1 f''?0? , q'?0?, f'?0? -1 .5

-2 f''?0? -2.5 g'?0? q'?0? -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 Ñf, Ñq,Ñf Fig. 2. 2: ~−curves for the functions ??

? and ? Table 2.1:

1Convergence of series solutions for different order of approximations when

?1 = 0?1? ?2 = 0?2? ? = 0?4? ? = 0?3? ? = 0?6? ?? = 0?7? ?? = 0?5? ? ? = 1?0? ? = 0?3? ? = 0?4 and

~? = ~? = ~? = −0?6? Order of approximations −? 00(0) −?0(0) −?0(0) 1 0.86800 0.63500 0.85000 5

0.82753 0.60365 0.71921 10 0.82461 0.60732 0.69473 20 0.82425 0.60872 0.68636 25 0.82425 0.60886

0.68578 30 0.82425 0.60886 0.68578 35 0.82425 0.60886 0.68578 Figs. 2.3- 2.7 are sketched to analyze

the variations of thixotropic parameters ?1 and ?2? local buoyancy parameter ?? Hartman number ? and

concentration buoyancy parameter ? on the fluid velocity ?0(?)? Figs. 2.3 and 2.4 depict

1that the fluid velocity and momentum boundary layer thickness are increasing
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functions of

thixotropic parameters. By increasing thixotropic parameters, the values of material parameters ?1 and ?2

increase. An increase in the material parameters give rise to the fluid velocity and momentum boundary

layer thickness. Fig. 2.5 shows that an increase in local buoyancy parameter gives rise to the fluid velocity

and its associated boundary layer thickness. Increase in buoyancy parameter corresponds to stronger

buoyancy force. Buoyancy force is an agent that causes

13an increase in the fluid flow and its related boundary layer thickness.

2An increase in Hartman number reduces the fluid velocity.

Hartman number involves the Lorentz force and

2an increase in Lorentz force reduces the fluid velocity and boundary layer

thickness

(see Fig. 2.6). The Lorentz force provides a resistance to flow. From Fig. 2.7 it is observed that

concentration buoyancy parameter enhances the velocity. To see the impacts of different parameters on

the temperature ?(?)? Figs. 2.8-2.15 are potrayed. From Figs. 2.8 and 2.9, we have seen that the

thixotropic parameters ?1 and ?2 are decreasing functions of

2temperature and thermal boundary layer thicknesses. Larger values of

?1 and ?2 correspond to stronger ?1 and ?2 showing a reduction in the temperature. We also noted that

the thixotropic parameters have quite opposite effects on the fluid velocity and temperature. Figs. 2.10 and

2.11 present the effects of local buoyancy parameter and concentration buoyancy parameter

4on the temperature. It is found that the temperature and thermal boundary

layer thickness

become smaller for larger values of local buoyancy parameter and concentration buoyancy parameter.

Physically, both ? and ? depend on the buoyancy force. Larger values of ? and ? lead to the stronger

buoyancy force. Such stronger buoyancy force reduced

13the temperature and thermal boundary layer thickness. Fig. 2.12 is

plotted to analyze the influence of Eckert number
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4on the temperature. Here it is revealed that the temperature and thermal

boundary layer thickness

are increased for larger Eckert number. This is because of the reason that

27heat energy is always stored in the liquid due to the frictional heating.

Such increase in Eckert number enhances the temperature at any point in the thermal boundary layer

region. From Fig. 2.13, one can see that temperature is an increasing function of Hartman number. Larger

values of Hartman number posses stronger Lorentz force. This stronger Lorentz force

13enhances the temperature and thermal boundary layer thickness.

Impact

2of Prandtl number ? ? on the temperature ?(?) is analyzed in Fig.

2.14.

2Thermal boundary layer thickness and temperature ?(?) are decreasing

functions of

? ?? This is due to the fact that with an enhancement in Prandtl number ? ?, thermal diffusivity decreases

2which leads to a reduction in temperature ?(?)? Fig.

2.15 shows that temperature ?(?) increases with an increase in radiation parameter ?. Also thermal

boundary layer thickness enhances with ? which is due to the fact that as thermal radiation parameter

increases, the mean absorption coefficient ?? decreases which in results give rise to the divergence of

radiative heat flux. Hence

16the rate of radiative heat transferred to the fluid

shoot up so that the fluid temperature increases. Figs. 2.16-2.22 are plotted to see the variations of ?1? ?

2? ?? ?? ??, ? and ? on the concentration ?(?)? Figs. 2.16 and 2.17 show the influence of thixotropic

parameters on the concentration. From these Figs. we observed that increase in thixotropic parameters

reduced the concentration and its related boundary layer thickness. We also analyzed that the effects of

thixotropic parameters
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26on the temperature and concentration are similar in a qualitative sense.

A comparison of Figs. 2.8, 2.9, 2.16 and 2.17 show that the variation in temperature are dominant in

comparison to variation in concentration due to thixotropic parameters. Local buoyancy parameter and

concentration buoyancy parameter are decreasing functions of con- centration (see Figs. 2.18 and 2.19).

Fig. 2.20 shows

4that an increase in Eckert number leads to a decrease in the concentration and

its related boundary layer thickness.

For higher Eckert number, concentration specie diffuses due to which the concentration field decreases.

Fig. 2.21 illustrates the variations of Hartman number on the fluid concentration. It is revealed that

concentration is a decreasing function of Hartman number. We conclude that the variations in temperature

are more dominant when compared with the variations in the concentration.

27From Fig. 2. 22 it is observed that the associated boundary layer thickness

and concentration profile decrease when thermophoretic parameter ? increases. K2 = 0.2, l = 0.4, t = 0.3,

M = 0.6, Sc = 0.7, Ec = 0.5, Pr = 1.0, N = 0.3, R = 0.4 1 0.8 K1 = 0.0 K1 = 1.0 0.6 K1 = 2.0 K1 = 3.0 f'?h?

0.4 0.2 0 0 1 2 3 4 5 h Fig. 2.3: Influence of ?1 on ?0(?)

K1=0.1,l=0.4,t=0.3,M=0.6,Sc=0.7,Ec=0.5,Pr=1.0,N=0.3,R=0.4 1 K2 = 0.0 K2 = 0.7 0.8 K2 = 1.4 K2 = 2.0

4f'?h? 0.6 0.4 0.2 0 0 1 2 3 4 5 h

Fig. 2.4: Influence of ?2 on ?0(?) 1 l = -0.5 0.8

3l = 0.0 l = 0.5 0.6 l = 1.0

f'?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 2.5: Influence of ? on ?0(?)

K1=0.1,K2=0.2,l=0.4,t=0.3,Sc=0.7,Ec=0.5,Pr=1.0,N=0.3,R=0.4

41 M=0.0 0.8 M = 0.5 M = 1.0 0.6 M = 1.5 f '?h? 0. 4 0. 2 0

0 2 4 6 8 h Fig. 2.6: Influence of ? on ?0(?) K1=0.1,K2=0.2,l=0.4,t=0.3,M=0.6,Sc=0.7,Ec=0.5,Pr=1.0,R=0.4

1 0.8

14N = 0. 0 N = 0.5 0.6 N = 1.0 N = 1 .5
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f'?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 2.7: Influence of ? on ?0(?) 1 0.8 K1 = 0.0 K1 = 1.0 0.6 K1 = 2.0 K1 = 3.0

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 2.8: Influence of ?1 on ?(?) K1 = 0.1, l = 0.4, t = 0.3, M = 0.6, Sc = 0.7, Ec = 0.5, Pr = 1.0, N = 0.3, R =

0.4 1 0.8 K2 = 0.0 K2 = 0.7 0.6 K2 = 1.4 K2 = 2.0

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 2.9: Influence of ?2 on ?(?) K1=0.1,K2=0.2,t=0.3,M=0.6,Sc=0.7,Ec=0.5,Pr=1.0,N=0.3,R=0.4 1 0.8 l =

-0.5

3l = 0.0 0.6 l = 0.5 l = 1.0

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 2.10: Influence of ? on ?(?) 1 0.8 N = 0.0 N = 1.5 0.6 N = 3.0 N = 4.5

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 2.11: Influence of ? on ?(?) K1=0.1,K2=0.2,l=0.4,t=0.3,M=0.6,Sc=0.7,Pr=1.0,N=0.3,R=0.4 1 Ec=0.0 0.8

11Ec = 0. 5 Ec = 1.0 0.6 Ec = 1.5

1q?h? 0.4 0.2 0 0 2 4 h 6 8

Fig. 2.12: Influence of ?? on ?(?) K1=0.1,K2=0.2,l=0.4,t=0.3,Sc=0.7,Ec=0.5,Pr=1.0,N=0.3,R=0.4 1 0.8

4M=0.0 M=0.5 0.6 M=1.0 M=1.5 q ?h? 0. 4 0. 2 0

0 2 4 6 8 h Fig. 2.13: Influence of ? on ?(?) 1 0.8 Pr = 0.5 Pr = 1.0 0.6 Pr = 1.5 Pr = 2.0

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 2.14: Influence of Pr on ?(?) K1 = 0.1, K2 = 0.2, l = 0.4, t = 0.3, M = 0.6, Sc = 0.7, Ec = 0.5, Pr = 1.0, N

= 0.3 1 0.8 R = 0.0 R = 0.4 0.6 R = 0.8 R = 1.2
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1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 2.15: Influence of ? on ?(?) K2 = 0.2, l = 0.4, t = 0.3, M = 0.6, Sc = 0.7, Ec = 0.5, Pr = 1.0, N = 0.3, R =

0.4 1 0.8 K1 = 0.0 K1 = 1.0 0.6 K1 = 2.0 K1 = 3.0 f?h? 0.4 0.2 0 0 1 2 3 4 5 6 7 h Fig. 2.16: Influence of ?1

on ?(?) 1 0.8 K2 = 0.0 K2 = 0.7 0.6 K2 = 1.4 K2 = 2.0 f?h? 0.4 0.2 0 0 1 2 3 4 5 6 7 h Fig. 2.17: Influence

of ?2 on ?(?) K1=0.1,K2=0.2,t=0.3,M=0.6,Sc=0.7,Ec=0.5,Pr=1.0,N=0.3,R=0.4 1 0.8 l = -0.5

3l = 0.0 0.6 l = 0.5 l = 1.0

f?h? 0.4 0.2 0 0 1 2 3 4 5 6 7 h Fig. 2.18: Influence of ? on ?(?)

K1=0.1,K2=0.2,l=0.4,t=0.3,M=0.6,Sc=0.7,Ec=0.5,Pr=1.0,R=0.4 1 0.8

14N = 0. 0 N = 0.5 0.6 N = 1.0 N = 1 .5

f?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 2.19: Influence of ? on ?(?) 1 Ec = 0.0 0.8

11Ec = 0. 5 Ec = 1.0 0.6 Ec = 1.5 f?h? 0.

4 0.2 0 0 2 4 6 8 h Fig. 2.20: Influence of ?? on ?(?) K1 = 0.1, K2 = 0.2, l = 0.4, t = 0.3, Sc = 0.7, Ec = 0.5,

Pr = 1.0, N = 0.3, R = 0.4

41 M = 0.0 0.8 M = 0.5 M = 1.0 0.6 M = 1.5 f?h? 0. 4 0. 2 0

0 2 4 6 8 h Fig. 2.21: Influence of ? on ?(?) K1 = 0.1, K2 = 0.2, l = 0.4, M = 0.6, Sc = 0.7, Ec = 0.5, Pr =

1.0, N = 0.3, R = 0.4 1 t = 0.0 0.8 t = 0.7 t = 1.4 0.6 t = 2.0 f?h? 0.4 0.2 0 0 1 2 3 4 5 6 7 h Fig. 2.22:

Influence of ? on ?(?) Table 2.2 is made to find

4the numerical values of skin-friction coefficient for various values of

?1? ?2? ?? ? and ? when the other parameters are fixed. We noted that the values of skin-friction

coefficient are decreased by increasing ?1? ?2 and ?? However reverse situation is noted for ? and ??

Table 2. 3 analyzes the

1numerical values of local Nusselt number and local Sherwood number for

different values of emerging parameters

in viscous and non-Newtonian cases. We observed that the
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7values of local Nusselt number and local Sherwood number is large in

the case of non-Newtonian fluid when compared with the case of viscous fluid. Table 2.4 is computed for

the comparison of ?00(0) and ?0(0) through different values of Prandtl number and local buoyancy

parameter when all other parameters are zero. From this Table, it is analyzed that our series solutions

have a good agreement with the numerical solutions in a limiting case. Table 2.2:

4Numerical values of skin-friction coefficient for different values of

?1? ?2? ?? ? and ? when ? = 0?3, ? = 0?4, ?? = 1?0, ?? = 0?5 and ?? = 0?7? ?1 ?2 ? ? ? −??1??2?? 0.0

0.2 0.6 0.4 0.4 0.84799 0.3 0.79227 0.5 0.76088 0.2 0.0 0.6 0.4 0.4 0.84923 0.3 0.79373 0.5 0.76247 0.2

0.2 0.0 0.4 0.4 0.71906 0.5 0.80959 1.0 1.01672 0.2 0.2 0.5 0.0 0.4 0.95561 0.4 0.76145 0.8 0.56391 0.2

0.2 0.5 0.3 0.0 0.80923 1.0 0.81003 2.0 0.81106 Table 2.3:

1Numerical values of local Nusselt number and local Sherwood number for

different values of

?? ??? ? ?? ? and ? when ? = 0?3 and ? = 0?4? ? ?? ?? ? ? ? ? −?0(0) −?0(0) ?1 = ?2 = 0?0 −?0(0) −?

0(0) ?1 = ?2 = 0?2 0.0 0.5 1.0 0.5 0.7 0.5 1.0 1.5 0.5 0.5 1.0 1.0 0.3 0.3 0.4 0.4 0.67883 0.58160 0.29936

0.58763 0.57572 0.57065 0.87335 0.86284 0.83862 0.62245 1.10358 1.45081 0.69254 0.60339 0.36075

0.60862 0.59829 0.59387 0.88088 0.86671 0.84058 0.68707 1.10750 1.45463 0.5 0.7 0.3 0.6 0.8 1.0 0.3

0.4 0.66211 0.54179 0.46338 0.84754 0.87021 0.88469 0.67841 0.56632 0.49302 0.85318 0.87341

0.88618 0.5 0.7 0.5 0.5 0.8 1.3 0.3 0.4 0.41490 0.52313 0.65577 0.88107 0.86855 0.85452 0.42578

0.54006 0.68482 0.88426 0.87243 0.85721 0.5 0.7 0.5 1.0 0.0 0.5 1.0 0.4 0.55688 0.59650 0.62949

0.85559 0.86737 0.87800 0.58355 0.61561 0.64317 0.85988 0.87109 0.88142 0.5 0.7 0.5 1.0 0.3 0.0 0.5

1.0 0.70547 0.55912 0.47505 0.84788 0.86538 0.87469 0.73986 0.57908 0.48877 0.85133 0.86942

0.87958 Table 2.4: Comparison of ? 00(0) and ?0(0) with Singh et al. [76] for different values of ? ? and

?? Singh et al. [76] Present solutions ?00(0) ?0(0) ?00(0) ?0(0) ? ? = 0?7 -1.00 -0.79366 -1.00000

-0.79373 ? = 0?0 ? ? = 0?7 -0.50751 -0.89613 -0.50767 -0.89614 ? = 1?0 ? ? = 0?7 2.57771 -1.17244

2.57789 -1.17287 ? = 10?0 ? ? = 10?0 -1.00 -3.72067 -1.00000 -3.72033 ? = 0?0 ? ? = 10?0 -0.82568

-3.74856 -0.82529 -3.74718 ? = 1?0 ? ? = 10?0 0.61966 -3.95235 0.61940 -3.95266 ? = 10?0 2.4 Closing

remarks Effects of Joule heating, thermophoresis and thermal radiation in MHD flow of thixotropic fluid are

analyzed. The main observations are listed below. • The non-Newtonian parameters ?1 and ?2 have

similar effects on the velocity in a qual- itative sense. • The effects of ? and ? on the velocity field are quite

opposite. • The variations of ?1 and ?2 on temperature and concentration are opposite in comparison to

velocity. •

13An increase in Schmidt number corresponds to a smaller variation in

concentration field. Chapter 3 Three-dimensional
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3mixed convection flow of viscoelastic fluid with thermal radiation and

convective conditions The objective of this chapter is to examine the thermal radiation effect in three-

dimensional

21mixed convection flow of viscoelastic fluid. The

resulting

14partial differential equations are re- duced into a system of nonlinear ordinary

differential equations

using appropriate transforma- tions. The series solutions are developed through a modern technique

known as the homotopy analysis method. The convergent expressions of the velocity components and

temperature are derived. The solutions obtained are dependent on seven sundry parameters including the

viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl

number, Biot number and radiation parameter. Discussion to these parameters is made via plots. 3.1

Mathematical analysis Let us consider three-dimensional

23mixed convection flow of second grade fluid due to an expo- nentially

stretching surface. The

surface coincides with the plane ? = 0 and the flow is confined in the region ? ? 0? The surface also

possess the convective boundary condition. Influence of thermal radiation through Rosseland’s

approximation is taken into account. Flow configuration is given below. Fig. 3.1: Geometry of problem The

governing boundary layer equations for steady three-dimensional flow of viscoelastic fluid can be put into

the forms: ?? ?? ?? ?? ?? ?? = 0? + + (3.1) ? ???? + ? ???? + ? ???? = ? ??2??2 + ??1 � ???3???2 ? +?

?3? − ???? ??2??2 + ???? ??2??2 ??3 � +2???? ???2??? + 2???? ??2??2 �� +??? (? − ?�∞)? �

��(3.2) ?? ?? ?? ?2? ?1 ?? ?2? ?? ?2? ? ?? + ? ?? + ? ?? = ? ??2 ? � ????2 + ? ??3 + ? ?3? ?3? − ??

??2 + ?? ??2 � +2???? ???2??? + 2???? ??2??2 �� ? (3.3) ? ???? + ? ???? + ? ???? ???? ??2??2 ?

1?? ????? ? � � �� = − (3.4) where ?? ? and ?

1are the velocity components in the ?−? ?− and ?−directions respectively, ?1

is the material fluid parameter, ? = (???) is the kinematic viscosity, ? is the dynamic

viscosity, ? is the

fluid density, ?

1is the fluid temperature, ? is the gravitational acceleration, ?? is thermal
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expansion coefficient of

temperature, ??

1is the specific heat, ? is the thermal conductivity and ?? the

radiative heat flux.

8By using the Rosseland approximation, the radiative heat flux ?? is given by

?? = −43???? ????4 (3.5)

14where ?? is the Stefan- Boltzmann constant and ?? the mean absorption

coefficient.

8By using the Rosseland approximation, the present analysis is limited to

optically thick fluids. If the temperature differences are sufficiently small then

Eq. (3.5) can be linearized by expanding ? 4 into the Taylor series about ?∞,

which after neglecting higher order terms takes the form:

? 4 = 4?∞3? − 3?∞4? By using Eqs. (3.5) and (3.6), Eq. (3.4) reduces to ? ?? ?? ?? ? ?2? 16???∞3 ?2?

?? + ? ?? + ? ?? ??? ??2 3????? ??2 = − ? The boundary conditions can be expressed as follows: ?=???

?=??? ?=0? −??? =?(??−?), at?=0? ?? ? → 0? ? → 0? ? → ?∞ as ? → ∞? (3.6) (3.7) (3.8) where

subscript ? corresponds to the wall condition, ?

3is the thermal conductivity, ?? is the hot fluid temperature, ? is the heat

transfer coefficient and ?∞ is the free stream temperature. The velocities and temperature are taken in the

following forms: ?? = ?0? ?+?? ? ?? = ?0? ?+?? ? ?? = ?? = ?∞ + ?0? ?(?2?+?) (3.9) in which ?0? ?0 are

the constants, ? is the reference length and ? is the temperature exponent. The

14mathematical analysis of the problem is simplified by using the

transformations [25]: ? = ?0? ?+?? ? 0(?)? ? = ?0? ?+?? ?0(?)? ? = − ?2??0 1?2 ? ?2+?? (? + ?? 0 + ? +

??0)? µ ¶ ? = ?∞ + ?0??(?2?+?) ?(?)? ? = 2?? ??2+?? ?? ? 0 1?2 (3.10) µ ¶ Incompressibility condition is

now clearly satisfied whereas Eqs. (3?2) − (3?8) give ? 000 + (? + ?)? 00 − 2(? 0 + ?0)? 0 + ? 6? 000? 0 +

(3?00 − 3? 00 + ??000)? 00 � +(4?0 + 2??00)?000 − (? + ? + ??0)?0000 � + 2?? = 0? (3.11) � � ?000 +

(? + ?)?00 − 2(? 0 + ?0)?0 + ? 6?000?0 + (3? 00 − 3?00 + ?? 000)?00 � +(4? 0 + 2?? 00)?000 − (? + ? +
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?? 0)?0000 � = 0? (3.12) (1 + 4 ?)?00 + ? ?(? + ?)?0 − Pr ?(? 0 + ?0)? = 0? � � 3 (3.13) ? = 0? ? = 0? ?

0 = 1? ?0 = ?, ?0 = −?1(1 − ?(0)) at ? = 0? (3.14) ?0 → 0? ?0 → 0? ? → 0 as ? → ∞ (3.15) in which ? is

the viscoelastic parameter? ? is the ratio parameter, Pr

1is the Prandtl number, ??? is the local Grashof number, ? is the radiation

parameter, ? is the

temperature exponent, ?1

19is the Biot number, ??? is the local Reynold number, ? is the mixed convection

parameter

and prime denotes the differentiation with respect to ?. These can be defined as ? = ??? = ?1?? ?0 ???

2?? 2?? ? ? = ?0 ? Pr = 4?∗?∞3 ? ? ?? = ??? ? ?1 = ? r ?? ? ?0? ? ?+?? ? ? = ?R?e2?? ? ??? = ???

(???−2 ?∞)?3 ? µ ¶ ? (3.16) The skin-friction coefficients in the ? and ? directions are given by ?? ? = ?? ?

= ? ?? 1?2???2 ? 1?2???2 ? ? ?? (3.17) (3.18) where ?2? ?? ?? ???|?=0 = � ?? + ?0 ? ?? ? ???2??? +

????2??? + ? ??2 + ?? ?? � +???? ???? + 2???? ???? − ???? ???? �� ? � � ?=0 ???|?=0 = ? ?? ? ??

?? �� + ?0 ???2??? + ????2??? + ???2??2 + ?? ?? . (3.19) � ?? � +???? ???? + 2???? ???? − ????

???? �� � � ?=0 �� By using Eq. (3.19) in Eqs. (3.17) and (3.18), the non-dimensional forms of skin

friction coefficients are as follows: ??? = ?=0 ? (3.20) µ Re −1?2 ?00 + ? −(? + ?)?000 + 5(?0 + ?0)?00 +

2?0?00 + 2?0?00 2 ¶ £ ¡ ¢¤ ??? = Re −1?2 ?00 + ? −(? + ?)?000 + 5(?0 + ?0)?00 + 2?0?00 + 2?0?00 ? µ

2 ¶ ?=0 £ ¡ ¢¤ Further the local Nusselt number has the form − 16?3????∞3 + ? ???? ? ?? = ³?(?? − ?∞)?

´? = − ? Re 1?2 (1 + 4?)?0(0)? µ 2 ¶ 3 3.2 Solutions development The initial guesses and auxiliary linear

operators in the desired HAM solutions are ?0(?) = 1 − ?−? ? ?0(?) = ? 1 − ?−? ? ?0(?) = ?1 exp(−?) ? ¡ ¢

¡ ¢ 1 + ?1 L? = ?000 − ?0? L? = ?000 − ?0? L? = ?00 − ?? (3.21) (3.22) (3.23) (3.24) subject to the

properties L?(?1+?2??+?3?−?) = 0? L?(?4+?5??+?6?−?)=0? L?(?7??+?8?−?) = 0? (3.25) in which ?? (?

= 1 − 8) are the arbitrary constants, L? ? L? and L? are the linear operators and ?0(?)? ?0(?) and ?0(?)

are the initial guesses. Following the idea in ref. [78] the zeroth order deformation problems are (1 − ?) L?

?ˆ(?; ?) − ?0(?) = ?~? N? ?ˆ(?; ?)? ?ˆ(?; ?) ? h i h i (1 − ?) L? [?ˆ(?; ?) − ?0(?)] = ?~?N?

31?ˆ(?; ?)? ?ˆ(?; ?) ? (1− ?) L? ˆ?(?; ?) − ?0(?) = ?~?N? ?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?? ?)

? h i h i

h i

12?ˆ(0; ?) = 0? ?ˆ0(0; ?) = 1? ?ˆ0(∞; ?) = 0? ?ˆ(0; ?) = 0? ?ˆ0(0; ?) = ?? ?ˆ0(∞; ?) =

0? ?ˆ0(0? ?) = −?1[1 − ?(0? ?)]? ?ˆ(∞? ?) = 0?

For ? = 0 and ? = 1 one has

12?ˆ(?;0) = ?0(?)? ?ˆ(?;0) = ?0(?)? ˆ?(??0) = ?0(?)? and ?ˆ(?; 1) = ?(?)? ?ˆ(?; 1) =
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?(?)? ˆ?(??

1) = ?(?)? (3.26) (3.27) (3.28) (3.29) (3.30) (3.31) Note that when ? increases from 0 to 1 then ? (?? ?)? ?

(?? ?) and ?(?? ?) vary from ?0(?)? ?0(?) and ?0(?) to ? (?)? ?(?) and ?(?)? So as

34the embedding parameter ? ∈ [0? 1] increases from 0 to 1,

the solutions ?ˆ(?; ?)? ?ˆ(?; ?) and ˆ?(?; ?) of the zeroth order deformation equations deform from the

initial guesses ?0(?)? ?0(?) and ?0(?) to the exact solutions ? (?)? ?(?) and ?(?) of the original nonlinear

differential equations. Such kind of continuous variation is called deformation in topology and that is why

the Eqs. (3.26-3.28) are called the zeroth order deformation equations. The values of the nonlinear

operators are given below: N?[?ˆ(???)??ˆ(???)] = ?3??ˆ(??3??)

30−2 ??ˆ?(????) ??ˆ(?????) ??ˆ?(????) + ?ˆ(???)+?ˆ(???) ?2 ??ˆ(?? 2??) Ã + !

6 ??ˆ?(????)? 3 ??ˆ(?? 3??) + 3 ?2?ˆ?(??2??)−3 ?2??ˆ(?? 2??) +??3 ??ˆ(??

3??) ³ ´ +? � ?2 ??ˆ(?? 2??) + 4 ³??ˆ?(????)

+2? ?2?ˆ(???) ?3

10?ˆ(???) ??2 ??3 ´� � − ?ˆ(?? ?)³+ ?ˆ(?? ?) + ? ??ˆ?(????)´?4 ??ˆ(??4??) +2 ?

ˆ�?(?? ?)? ³ ´ � � (3.32) N ?[?ˆ(?? ?)? ?ˆ(?? ?)] = ?3 ?ˆ(?? ?) ??ˆ(???)− 2 ?? ??

ˆ(?? ?) � +??ˆ?(????) � ?? + ?ˆ(?? ?) ?2 ?ˆ(?? ?) ??3 � +?ˆ(?? ?) � ??2 6 ??ˆ?

(????�)? 3 ??ˆ(?? 3??) + �3?2 ??ˆ(?? 2??) −3?�2 ??ˆ(??

2??) +??3�??ˆ(??3??) +? � ?2??ˆ(??2??) + 4³??ˆ?(????) + 2?

9?2??ˆ(?? 2??) ?3?ˆ?(??3??)´ �(?3.33) � − ?ˆ(?? ?)³+ ?ˆ(?? ?) + ? ??ˆ?(????)´?

4 ?ˆ?(?? 4??) ³ ´ � � � N ?[?ˆ(???)??ˆ(???)??ˆ(???)] = (1+ 4?) 3 ?2 ?ˆ(?? ?) + Pr

(?ˆ(?? ?) + ?ˆ(?? ?))??ˆ(?? ?) ??2 ?? − Pr ? Ã ??ˆ(?? ?) ??ˆ(?? ?) ?ˆ(??

?)? + (3.34) ?? ?? ! Here ~? ? ~? and ~? are the

4non-zero auxiliary parameters and N? ? N? and N? the nonlinear operators.

Taylor series expansion gives ?(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????(??;?)¯?=0 ∞ ? (3.35) ?

(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????(??;?)¯¯?=0 ∞ ¯ ? (3.36) P ¯ ?(?? ?) = ?0(?) ?=P1??(?)???

??(?)= ?1! ?????(??;?)¯?¯¯=0 ∞ ¯ ? (3.37)
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3where the convergence of above sePries strongly depends upon ~?? ~?

an¯¯d ~?? Considering that ¯ ~? ? ~? and ~? are

chosen in such a manner that Eqs. (3?35) − (3?37) converge at ? = 1 then ?(?) = ?0(?) + ??(?)? ∞ (3.38)

?=1 P ?(?) = ?0(?) + ??(?)? ∞ ?=1 P∞ ?(?) = ?0(?) + ??(?)? ?=1 P The corresponding problems at mth

order deformations satisfy L?[??(?) − ????−1(?)] = ~?R??(?)? L?[??(?) − ????−1(?)] = ~?R??(?)? L?[??

(?) − ????−1(?)] = ~?R??(?)? (3.39) (3.40) (3.41) (3.42) (3.43) ??(0) = ??0(0) = ??0(∞) = 0? ??(0) = ?0?

(0) = ??0(∞) = 0? ??0(0) − ?1??(0) = ??(∞) = 0? (3.44) R??(?) = ??000−1(?) − 2 ??0−1−???0 − 2 ??

0−1−???0 + (??−1−???00 + ??−1−???00) ?−1 ?−1 ?−1 ?=0 ?=0 ?=0 6 ?−P1 ??0−1−???000 + 3 ??

00−1−???00 − 3 ??00−1−???00 ?−P1 ?P−1 � ?−P1???000−1−???00 + 4 ?P−1 ??0−1−???000 + 2 ?P−1

??0?0−1−???000 ?=0 ?=0 ?=0 � +? + ?=0 ?=0 ?=0 − � P?−1 ??−1−???0000 ?P−1 ??−1−???0000 − − ?

=0 ?=0 ?−P1???0−1−? ??0000 +2??�? ?=0 P P P � � (3.45) R??(?) = ??000−1(?) − 2 ?0?−1−???0 − 2

??0−1−???0 + ?−1 ?−1 ?−1 (??−1−???00 + ??−1−??0?0) ?=0 ?=0 ?=0 6 ?−P1 ?0?−1−???000 + 3 ??

00−1−???00 − 3 ??00−1−??0?0 ?−P1 ?P−1 � ?=0 ?=0 � + ?−P1???000−1−???00 + 4 ?P−1 ??0−1−??0?

00 + 2 ?P−1 ???00−1−???000 ?=0 +? ? (3.46) ?=0 ?=0 ?=0 − � P?−1 ??−1−???0000 ?P−1 ??−1−???

0000 ?−P1???0−1−???0000 − − � ?=0 ?=0 ?=0 P P P � � R??(?) = (1 + 43?)?0?0−1 + Pr ?−1 ?=0 (?0?

−1−??? + ?0?−1−???) ?−1 P − Pr ? (??0−1−??? + ??0−1−???)? (3.47) ?=0 P ?? = 0? ? ≤ 1? � (3.48) 1?

? ? 1? The mth order deformation problems have the solutions � ??(?) = ??∗(?) + ?1 + ?2?? + ?3?−??

(3.49) ??(?) = ??∗(?) + ?4 + ?5?? + ?6?−?? (3.50) ??(?) = ?∗?(?) + ?7?? + ?8?−?? (3.51) where the

special solutions are ??∗? ??∗ and ?∗?. 3.3 Convergence analysis We recall that the series (3?38) − (3?

40) contain the auxiliary parameters ~? ? ~? and ~?. These parameters are useful to adjust and control

the convergence of homotopic solutions. Hence the ~−curves are sketched at 15?? order of

approximations in order to determine the suitable ranges for ~? ? ~? and ~?. Fig. 3.2 denotes that the

ranges of admissible values of ~? ? ~? and ~? are −0?7 ≤ ~? ≤ −0?2? −0?7 ≤ ~? ≤ −0?1 and −0?8 ≤ ~? ≤

−0?2? Table 3.1 presents the numerical values of −? 00(0)? −?00(0) and −?0(0) for different order of

approximations when ~? = −0?5? ~? = −0?6 and ~? = −0?7? It is seen that the values of −?00(0) and −?

00(0) converge from 20th order of deformations whereas the values of −?0(0) converge from 25th order

approximations. Further, it is observed that we have to compute less deformations for the velocities in

comparison to temperature for convergent series solutions. f''?0?,g''?0?,q'?0? 0.5 b = l = g1 = 0.5, Pr =

1.2, R = 0.3, K = A = 0.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.2 hf,hg,hq q'(0) g''(0) -05. f''(0) -10. -15. Fig. 3.2: ~

−curves for the functions ?? ? and ? Table 3

2.1: Convergence of series solutions for different order of approximations

when

? = 0?1? ? = 0?2? Pr = 1?2? ?1 = 0?6? ? = 0?2? ~? = −0?5? ~? = −0?6 and ~? = −0?7? order of

approximations 1 5 10 15 20 25 −? 00 (0) 1.06111 1.02482 1.02609 1.02623 1.02618 1.02618 −?00 (0)

0.544444 0.548057 0.548092 0.548043 0.548053 0.548053 −?0(0) 0.317778 0.305581 0.305729

0.305744 0.305738 0.305738 3.4 Discussion of results The effects of ratio parameter ?? viscoelastic

parameter ?? mixed convection parameter ?? Biot number ?1 and radiation parameter ? on the velocity

component ?0(?) are shown in the Figs. 3.3-3.5. It is observed from Fig. 3.3 that velocity component ?0(?)

2and thermal boundary layer thickness are decreasing functions of ratio
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parameter

?? This is due to the fact that with the increase of ratio parameter ?? the ?-component of velocity

coefficient decreases which

2leads to a decrease in both the momentum boundary layer and

velocity component ?0(?)? Fig. 3.4 illustrates the influence of viscoelastic parameter ? on the velocity

component ?0(?)? It is clear that both the boundary layer and velocity component ?0(?) increase when the

viscoelastic parameter increases. Influence of mixed convection parameter ? on the velocity component ?

0(?) is analyzed in Fig. 3.5. Increase in mixed convection parameter ? shows an increase in velocity

component ?0(?). This is due to the fact that the buoyancy forces are much more effective rather than the

viscous forces. Figs. 3.6 and 3.7 illustrate the variations of ratio parameter ? and viscoelastic parameter ?

on the velocity component ?0(?)? Variation of ratio parameter ? is analyzed in Fig. 3.6. Through

comparative study with Fig. 3.3 it is noted that ?0(?) decreases while ?0(?) increases when ? increases.

Physically, when ? increases from zero, the lateral surface starts moving in ?−direction and thus the

velocity component ?0(?) increases and the velocity component ?0(?) decreases. Fig. 3.7 is plotted to see

the variation of viscoelastic parameter ? on the velocity component ?0(?)?

1It is found that both the velocity component ?0(?) and momentum boundary layer

thicknesses are increasing functions of

? . It is revealed from Figs. 3.4 and 3.7 that the effect of ? on both the velocities are qualitatively similar.

Figs. 3.8-3.14 are sketched to see the effects of ratio parameter ?? viscoelastic parameter ?, the

temperature exponent ?? Biot number ?1? mixed convection parameter ?? Radiation para- meter ? and

Prandtl number Pr on the temperature ?(?)? Fig. 3.8 is drawn to see the impact of ratio parameter ?

4on the temperature ?(?). It is noted that the temperature ?(?) and also the

thermal boundary layer thickness

decrease with increasing ?. Variation of the viscoelastic parameter ? on the temperature ?(?) is shown in

Fig. 3?9. Here both

2the temperature and thermal boundary layer thickness are decreasing

functions of

?. Variation of mixed convection parameter ? is analyzed in Fig. 3?10. It is seen that both the

2temperature ?(?) and thermal boundary layer thickness are decreasing

functions of mixed convection parameter
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?? Fig. 3?11 presents the plots for the variation of Biot number ?1? Note that ?(?) increases when ?1 in-

creases. The

2thermal boundary layer thickness is also increasing function of

?1. It is also noted that the fluid temperature is zero when the Biot number vanishes. Influence of

temperature exponent ? is displayed in Fig. 3.12.

4It is found that both the temperature ?(?) and thermal boundary layer

thickness decrease when A is increased.

Also both the

13temperature ?(?) and thermal boundary layer thickness are increasing

functions of

thermal radiation parameter ? ( see Fig. 3.13). It is observed that an increase in ? has the ability to

increase the thermal boundary layer. It is due to the fact that when the thermal radiation parameter

increases, the mean absorption coefficient ?? will be decreased which in turn increases the

16divergence of the radiative heat flux.

Hence

16the rate of radiative heat transfer to the fluid is increased and consequently

the fluid temperature increases. Fig. 3?14 is

plotted to see the effects of Pr on ?(?).

4It is noticed that both the temperature profile and thermal boundary layer

thickness

are decreasing functions of Pr. In fact when Pr increases then thermal diffusivity decreases. This indicates

reduction in energy transfer ability and ultimate it results in the decrease of thermal boundary layer. f'?h?

1.0 0.8 K = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7 0.6 0.4 b = 0.0, 0.3, 0.6, 1.0 0.2 0 1 2 3 4 5 6 h Fig.

3.3: Influence of ? on the velocity ?0(?). f'?h? 1.0 b = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7 0.8 0.6 K

= 0.0, 0.2, 0.4, 0.6 0.4 0.2 0 1 2 3 4 5 6 h Fig. 3.4: Influence of ? on the velocity ?0(?). f'?h? 1.0 0.8 b =

0.2, g1 = A = 0.4, K = R = 0.3, Pr = 0.7 0.6 l = 0.0, 0.3, 0.6, 0.9 0.4 0.2 0 1 2 3 4 5 6 h Fig. 3.5: Influence of
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? on the velocity ?0(?). g'?h? 0.4 0.3 K = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7 0.2 b = 0.1, 0.2, 0.3,

0.4 0.1 1 2 3 4 5 6 h Fig. 3

2.6: Influence of ? on the velocity ?0(?). g'? h? 0.

20 b = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7 0.15 0.10 K = 0.0, 0.2, 0.4, 0.6 0.05 1 2 3 4 5 6 h Fig.

3.7: Influence of ? on the velocity ?0(?). q?h? 0.35 0.30 K = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7

0.25 0.20 0.15 b = 0.0, 0.5, 1.0, 1.5 0.10 0.05 1 2 3 4 5 6 h Fig. 3.8: Influence of ? on the temperature ?

(?). q?h? 0.35 0.30 b = 0.2, g1 = A = 0.4, l = 0.5, R = 0.3, Pr = 0.7 0.25 0.20 K = 0.0, 0.5, 1.0, 1.5 0.15

0.10 0.05 1 2 3 4 5 6 h Fig. 3.9: Influence of ? on the temperature ?(?). q?h? 0.35 0.30 K = R = 0.3, b = g1

= A = 0.4, Pr = 0.7 0.25 0.20 0.15 l = 0.0, 0.5, 1.0, 1.5 0.10 0.05 1 2 3 4 5 6 h Fig. 3.10: Influence of ? on

the tenperature ?(?). q?h? 0.6 0.5 K = R = 0.3,

3b = = 0. 4, l = 0. 5, Pr = 0.7 A 0. 4 0.

3 g1 = 0.1, 0.4, 0.7, 1.0 0.2 0.1 1 2 3 4 5 6 h Fig. 3.11: Influence of ?1 on the temperature ?(?). q?h? 0.3

K = R = 0.3, b = g1 = 0.4, l = 0.5, Pr = 0.7 0.2 A = 0.0, 0.3, 0.6, 0.9 0.1 1 2 3 4 5 6 h Fig. 3.12: Influence of

? on the temperature ?(?). q?h? 0.4 K = 0.3, b = 0.2, A = g1 = 0.4, l = 0.5, Pr = 0.7 0.3 R = 0.0, 0.3, 0.6,

1.0 0.2 0.1 1 2 3 4 5 6 h Fig. 3.13: Influence of ? on the temperature ?(?). q?h? 0.4 K = R = 0.3, b = 0.2, A

= g1 = 0.4, l = 0.5 0.3 0.2 Pr = 0.1, 0.5, 1.0, 1.5 0.1 1 2 3 4 5 6 h Fig. 3.14: Influence of ? on the

temperature ?(?). Table 3.2 includes the values for comparison of existing solutions with the previous

available solutions in a limiting case when ? = ? = ?1 = ? = 0 and ? varies. This Table presents an excellent

agreement with the previous available solutions. Table 3.3 is computed to see the influences of

viscoelastic parameter ? and ratio parameter ? on skin friction coefficients in the ? and ? directions. It is

noted that ? has quite opposite effect on skin friction coefficients while quite similar effect is seen within the

increase of ratio parameter ?. Table 3.4 examines the impact of viscoelastic parameter ?, mixed convection

parameter ?, ratio parameter ?, Biot number ?1, radiation parameter ?, Prandtl number Pr and

temperature exponent ? on the

2local Nusselt number (rate of heat transfer at the wall).

It is noted that the value of rate of heat transfer increases for larger viscoelastic parameter ?, mixed

convection parameter ?, ratio parameter ?, Biot number ?1, Prandtl number Pr and temperature exponent

? while it decreases through an increase in radiation parameter R. Table 3.2: Comparative values of −?

00(0)? −?00(0) and ?(∞) + ?(∞) for different values ? when ? = ? = ?1 = ? = 0? Liu et al. [25] Present

results ? −? 00(0) −?00(0) ?(∞) + ?(∞) −?00(0) −?00(0) ?(∞) + ?(∞) 0.0 1.28180856 0 0.50 1.56988846

0.78494423 1.00 1.81275105 1.81275105 0.90564383 1.10918263 1.28077378 1.28181 0 0.90564

1.56989 0.78494 1.10918 1.81275 1.81275 1.28077 Table 3.3:

4Values of skin friction coefficients for different values of ? and ? when

? = ?1 = 0?5? ? = 0?3? Pr = 1?2 and ? = 0?2. ? ? − R2e 1?2 ??? − R2e 1?2 ??? 0.0 0.5 4.9¡528¢9
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4.3¡736¢3 0.2 5.16586 3.97055 0.3 5.42622 3.96130 0.3 0.0 3.72170 1.65409 0.2 4.30247 2.34617 0.5

5.42622 3.96130 Table 3.4:

3Values of local Nusselt number−?0(0) for different values

of the parameters ?, ?? ?? ?? ?? Pr and ?1. ? ? ? ?1 ? Pr ? −(1 + 43?)?0(0) 0.0 0.5 0.5 0.5 0.3 1.2 0.2

0.297492 0.3 0.308234 0.5 0.311853 0.2 0.0 0.303062 0.3 0.304775 0.5 0.305738 0.2 0.5 0.0 0.282007

0.3 0.297135 0.5 0.305738 0.1 0.0885730 0.3 0.216850 0.5 0.305738 0.2 0.5 0.5 0.5 0.0 0.329701 0.3

0.305738 0.5 0.292750 0.2 0.5 0.5 0.5 0.3 1.0 0.292152 1.2 0.305738 1.5 0.321826 0.2 0.5 0.5 0.5 0.3

1.2 0.0 0.288530 0.2 0.305738 0.5 0.325492 3.5 Conclusions Three-dimensional mixed convection

2flow of viscoelastic fluid over an exponentially stretch- ing surface is analyzed.

The

analysis is carried out in the presence of thermal radiation and convective boundary conditions. The main

observations can be summarized as follows. • Influence of ratio parameter ? on the velocities ?0(?) and ?

0(?) is quite opposite. However the effect of viscoelastic parameter ? on the velocities ?0(?) and ?0(?) is

qualitatively similar. •

2Momentum boundary layer thickness increases for ?0(?) when ratio parameter

? is

large. Effect of ? on ?0(?) is opposite to that of ?0(?)? • Velocity component ?0(?) is increasing function of

mixed convection parameter ?? However ?(?)

14decreases with an increase of mixed convection parameter ?. The impacts of

Biot number ?1 and radiation parameter ? on ?0(?) and ?(?) are qualitatively similar. • Momentum

boundary layer is an increasing function of mixed convection parameter ? while thermal boundary layer is

decreasing function of mixed convection parameter ?? • Increase

4in Prandtl number decreases the temperature ?(?). • Thermal boundary layer

thickness

decreases when ratio parameter ?? viscoelastic para- meter ?, mixed convection parameter ?? Prandtl

number Pr and temperature exponent ? are increased. • Influence of viscoelastic parameter ? on the ? and

? directions of skin friction coefficients is opposite. • Both components of skin friction coefficient increase

through an increase in ratio parame- ter ?? • Local Nusselt number is an increasing function of Prandtl

number Pr? ratio parameter ?? viscoelastic parameter ?, mixed convection parameter ?? Biot number ?1

and temperature exponent ? while it decreases for radiation parameter ?. Chapter 4 Convective
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6heat and mass transfer in three-dimensional mixed convection flow of

viscoelastic fluid with

chemical reaction and heat source/sink This chapter investigates the

6heat and mass transfer effects in three-dimensional mixed

con- vection flow of viscoelastic fluid with internal heat source/sink and chemical reaction. An exponential

stretching surface induces the flow. Magnetic field normal to the direction of flow is applied. Convective

conditions at boundary surface are also encountered. Appropriate sim- ilarity transformations are utilized

to reduce the boundary layer

2partial differential equations into ordinary differential equations. Analytical

solutions of the

resulting systems are obtained. Convergence of the obtained solutions is discussed explicitly. The

1local Nusselt and Sherwood numbers are sketched and

examined. 4.1 Mathematical modeling We consider the three-dimensional mixed convection

1boundary layer flow of viscoelastic fluid past an exponentially stretching

surface. Mathematical analysis has been carried out in

1presence of internal heat source/sink and

generative/destructive chemical reaction.

6Magnetic field is applied to the normal direction of flow. The

surface coincides

23with the plane at ? = 0 and the flow is confined in the region ? ? 0?

Convective boundary conditions for both
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23heat and mass transfer on the sheet

are taken into account. The governing equations for three-dimensional flow are expressed as follows: ??

?? ?? ?? ?? ?? = 0? + + (4.1) ? ?? ?? ?? ?? + ? ?? + ? ?? =? ??2??2 + ??1 � ???3???2 + ? ? ?3? ????

??2??2 + ???? ??2??2 ??3 − � +2???? ???2??? + 2???? ??2??2 �� +??? (? − ?∞) + ???(? − ?∞) −�?

∗?02 ?? � �� ? (4.2) ? ?? ?? ?? ?2? ?? + ? ?? + ? ?? =? ??2 + ??1 � ???3???2 + ? ?? ?2? ?? ?2? ? ?

3? ?? ??2 ?? ??2 + ??3 − � +2???????2??? +2??????2??2 �� − ?∗?02 ?? � � �� ? (4.3) ? ?? ?? + ?

?? + ? ?? = ? ??2 ??? (? − ?∞) ? ?? ?? ?2? + ? (4.4) ? ?? ?? ?? ?2? ?? + ? ?? + ? ?? = ?? ??2 − ?1(? − ?

∞)? (4.5) In the above equations, ?? ? and ?

7are the velocity components in the ?−? ?− and ?−directions respectively, ?1

the material fluid parameter, ?? the thermal expansion coefficient, ?? the

concentration expansion coefficient, ?∗ the electrical conductivity, ?0 the magnitude of applied magnetic

field, ? the density of fluid, ? the gravitational acceleration, ? = (???) the kinematic viscosity, ? the dynamic

viscosity, ? the thermal diffusivity, ? the fluid temperature, ?? the specific heat of the fluid, ? the uniform

volumetric heat generation/absorption, ? the con- centration field, ? the mass diffusivity and prime denotes

the

15differentiation with respect to ?. The boundary conditions are given by

?=??? ?=??? ?=0? −????? =?(??−?), −????? =?∗(??−?)at?=0? ? → 0? ? → 0? ? → ?∞? ? → ?∞ as ? →

∞? (4.6) (4.7) where subscript ? corresponds to the wall condition, ? is the heat transfer coefficient, ?∗ is

the concentration transfer coefficient, ??

16is the ambient fluid temperature and ?? is the ambient fluid concentration. At

wall the

velocities, temperature and concentration distributions are defined as: ?+? ?+? ?(?+?) ?(?+?) ?? = ?0? ? ?

?? = ?0? ? ? ?? = ?∞ + ?0? 2? ? ?? = ?∞ + ?0? 2? ? (4.8) where ?0? ?0? ?0 are the constants, ? is the

reference length, ?∞

15is the ambient temperature, ?∞ is the ambient concentration, ? is the

temperature exponent and ? is the

concentration exponent. By using similarity transformations [25]: ? = ?0? ?+?? ? 0(?)? ? = ?0? ?+?? ?

0(?)? ? = − ??0 1?2 ? ?2+?? (? + ?? 0 + ? + ??0)? µ 2? ¶ ? ?(?+?) ?(?+?) = ?∞ + ?0? 2? ?(?)? ? = ?∞ + ?

0? 2? ?(?)? ? = ? 0 1?2 2?? ? ?2+?? ?? (4.9) µ ¶ equation (4.1) is identically satisfied and Eqs. (4?2) −

(4?9) give: ? 000+(? +?)? 00−2(? 0+?0)? 0+? 6? 000? 0 + (3?00 − 3? 00 + ??000)? 00 � +((4?0 + 2??

00)? 000 − (? + ? + ??0)? 0000 � +2?(?+? ?)−? ? 0 = 0? � � (4.10) ?000 + (? + ?)?00 − 2(? 0 + ?0)?0 +
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? 6?000?0 + (3? 00 − 3?00 + ?? 000)?00 � +(4? 0 + 2?? 00)?000 − (? + ? + ?? 0)?0000 � − ? ?0 = 0?

(4.11) ?00 + ? ?(? + ?)?0 − Pr ?(? 0 + ?0)? + Pr ?∗? = 0? � � (4.12) ?00 + ??(? + ?)?0 − ???(?0 + ?0)?

− ???∗? = 0? (4.13) ? = 0? ? = 0? ?0 = 1? ?0 = ?, ?0 = −?1(1 − ?(0))? ?0 = −?2(1 − ?(0))? at ? = 0?

(4.14) ?0 → 0? ?0 → 0? ? → 0? ? → 0 as ? → ∞? (4.15) where ?

11is the viscoelastic parameter? ? is the mixed convection parameter,

??? is the local Grashof number, ? is the concentration buoyancy parameter, ?

19is the Hartman number, ?? is the Prandtl number, ?∗ is the heat source/sink

parameter, ?∗ is the

chemical reaction parameter, ??

1is the Schmidt number, ? is the ratio parameter,

?1 is the heat transfer Biot number and ?2 is the mass transfer Biot number. The definitions of these

variables are ?? = ???∗ = ? ? ??? ? ?∗ = ??10??? = ?? = ??00??1 = r?? ?2 = ? ? ? ?∗ ? ? ? ? r ? ?

(4.16) ?1?? ? ? = ??? ??? (?? − ?∞)?3 ? ? = ??(?? − ?∞)? ? = ?∗?02 ? ? = Re2? ? ??? = 2? ? ?2 ?? (??

− ?∞) ? The local Nusselt and Sherwood numbers in dimensionless forms are ?????1??2 = −2? ? ?0(0)?

(4.17) ?????1??2 = −2? ? ?0(0)? (4.18) in which ??? = ?0????+?? is the local Reynolds number. 4.2

Series solutions For homotopic solutions, the initial guesses and auxiliary linear operators are chosen as

follows: ?0(?) = 1 − ?−? ¢ ? ?0(?) = ? 1 − ?−? ? ?0(?) = ?11ex+p(?−1?)? ?0(?) = ?21ex+p(?−2?) ? ¡ ¡ ¢ L?

= ?000 − ?0? L? = ?000 − ?0? L? = ?00 − ?? L? = ?00 − ?? (4.19) (4.20) The above operators satisfy the

following properties L?(?1 + ?2?? + ?3?−?) = 0? L?(?4 + ?5?? + ?6?−?) = 0? L?(?7?? + ?8?−?) = 0? L?(?

9?? + ?10?−?) = 0? where ?? (? = 1 − 10) are the

2arbitrary constants. The problems corresponding to zeroth order are (1

− ?) L? ?ˆ(?; ?) − ?0(?) = ?~? N?

29?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?; ?)? ˆ?(?; ?) ? h i h i (1

− ?) L? [?ˆ(?; ?) − ?0(?)] = ?~?N? ?ˆ(?; ?)? ?ˆ(?; ?) ? (1 − ?) L? ˆ?(?; ?) − ?0(?) = ?~?N?

17?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?; ?)? ?ˆ(?; ?) ? h i (1− ?) L? ˆ?(?; ?) − ?0(?) = ?~?N? ?ˆ(?;

?)? ?ˆ(?; ?)? ˆ?(?; ?)? ˆ?(?;

?) ?
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25h i h i h i h i

18?ˆ(0; ?) = 0? ?ˆ0(0; ?) = 1? ?ˆ0(∞; ?) = 0? ?ˆ(0; ?) = 0? ?ˆ0(0; ?) = ?? ?ˆ0(∞; ?) =

0? ˆ?0(0? ?) = −?1[1 − ?(0? ?)]? ?ˆ(∞? ?) = 0? ˆ?0(0? ?) = −?2[1 ?ˆ(0? ?)]? ˆ?(∞?

?) = 0?

− (4.21) (4.22) (4.23) (4.24) (4.25) (4.26) (4.27) (4.28) N?

10[?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?; ?)? ?ˆ(?; ?)] = ?3 ??ˆ(?? 3? ?) ??ˆ(?? ?) ??ˆ(?? ?) ??

ˆ(?? ?) −2 Ã ?? + ?? ! ?? + � ?ˆ(?? ?) ?2 ?ˆ(?? ?) + 2? ˆ?(?? ?) +?ˆ(?? ?) � − ? ??

ˆ(?? ?) ??2 � +??ˆ(?; ?) � ?? � � � ?2 ?ˆ(???) 3 � 6 ??ˆ?(????)? 3 ??ˆ(??3??) +

??2 � � −3?2 ??ˆ(??2??) +??3 ?ˆ?(?? 3??) � � +? ?2 ??ˆ(?? 2??) + � � �+24

???ˆ?(? 2 ????ˆ?(??? 2)??) � ?3 ??ˆ(??

3??) ?(4.29) − �

10?ˆ(?�??)?+?ˆ(??ˆ?(??)? ?) ?4 ??ˆ?(? 4??) � � +? ?? � � � � � � N ?[?ˆ(?;

?)? ?ˆ(?; ?)? ?ˆ(?; ?)? ?ˆ(?; ?)] = ?3ˆ??(??3? ?) ??ˆ(???)−2 ?? ??ˆ(?? ?) +??

ˆ(?????) � ?? + ?ˆ(?? ?) ?2 ?ˆ(?? ?) � � +?ˆ(?? ?) � ??2 �6 ??ˆ?(????) ?3 ??

ˆ(?? 3�??) � � +? � + 3 ?2 ?ˆ(???) ??2 − � � � 3 ?2 ??ˆ(??2??)+?? 3 ??ˆ(??

3??) � � � � ?2ˆ?(???) ??ˆ(???)� � � ??2 + 4 ?? ?3 ?ˆ(???)

�

9+2??2??ˆ(?? 2??) � ??3 � +? ?ˆ(?�??)+?ˆ(???) ?4 ?ˆ(???)� − � � ??4 � +? ??

ˆ?(????) −? �??ˆ(?? ?�) � � � ?? ? (4.30) N ?[?ˆ(?; ?)? ?ˆ(?; ?)? ?ˆ(?; ?)? ?ˆ(?;

?)] = ?2ˆ?(?? ?) ??2 + Pr � (?ˆ(?? ?) ?ˆ?(?? ?) + Pr ?∗ˆ?(?? ?) +?ˆ(?? ?) � ?? −

Pr ? Ã ??ˆ(??�?) ??ˆ(?? ?�) ?ˆ(?? ?)? + (4.31) ?? ?? ! N ?[?ˆ(?; ?)? ?ˆ(?; ?)? ?

ˆ(?; ?)? ?ˆ(?; ?)] = ?2 ?ˆ(?; ?) ?ˆ(?? ?) ??2 + ?? � +?ˆ(?? ?) � ??ˆ(?; ?) − ???∗?

ˆ(?; ?) ?? −? ?? Ã ??ˆ(?? ?�) ??ˆ(?? ?) ?ˆ(?;

?)? � + ! (4.32) ?? ?? Here ?

3is an embedding parameter, the non-zero auxiliary parameters are ~?? ~? ~?

and ~? and the nonlinear operators
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are N?? N?, N? and N?. Taking ? = 0 and ? = 1 we get

12?ˆ(?;0) = ?0(?)? ?ˆ(?;0) = ?0(?)? ˆ?(??0) = ?0(?)? ˆ?(?;0) = ?0(?) and ?ˆ(?; 1) =

?(?)? ?ˆ(?; 1) = ?(?)? ˆ?(?? 1) = ?(?)? ?ˆ(?;

1) = ?(?)? (4.33) As ? enhances from 0 to 1 then ?(???)? ?(???), ?(???) and ?(???) differ from ?0(?)? ?

0(?)? ?0(?) and ?0(?) to ?(?)? ?(?), ?(?) and ?(?)? Applying Taylor’s expansion we have ?(???)=?0(?)+?

=1??(?)??? ??(?)= ?1! ?????(??;?)¯?=0 ∞ ? (4.34) ?(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????

(??;?)¯¯?=0 ∞ ¯ ? (4.35) P ¯ ?(???)=?0(?)+?P=1??(?)??? ??(?)= ?1! ?????(??;?)¯¯¯?=0 ¯ ∞ ? (4.36) P

∞ ¯ ?(?? ?) = ?0(?) + (4.37) ?=1 ??(?)??? ??(?) = ?1! ?????(??; ?)¯¯¯?=0 ? The

3convergence of above series stroPngly depends upon ~?, ~?, ~? and ~?¯¯?

Considering that ~?, ¯ ~?, ~? and ~? are selected properly so that

Eqs. (4?34) − (4?37) converge at ? = 1? Therefore ?(?) = ?0(?) + ??(?)? ∞ ?=1

33P ?(?) = ?0(?) + ??(?)? ∞ ?=1 P∞ ?(?) = ?0(?) + ??(?)? ?=1 P∞ ?(?) = ?0(?) +

??(?)? ?=1 P

The general solution expressions can be written as ??(?) = ??∗(?) + ?1 + ?2?? + ?3?−?? ??(?) = ??∗(?)

+ ?4 + ?5?? + ?6?−?? ??(?) = ?∗?(?) + ?7?? + ?8?−?? ??(?) = ?∗?(?) + ?9?? + ?10?−?? where the

special solutions are ??∗? ??∗, ?∗? and ?∗?. (4.38) (4.39) (4.40) (4.41) (4.42) (4.43) (4.44) (4.45) 4.3

Convergence analysis and discussion Homotopic solutions (4?38) − (4?41) obviously depend on the

auxiliary parameters ~?? ~?, ~? and ~?. In order to control the convergence of series solutions’ these

auxiliary parameters play a central role. To obtain the convergence region, the ~−curves have been

plotted at 14?? order of approximations in Fig. 4.1. This Fig. clearly shows that the acceptable values of

~?? ~?, ~? and ~? are −1?0 ≤ ~? ≤ −0?4? −1?0 ≤ ~? ≤ −0?2, −1?2 ≤ ~? ≤ −0?1 and −1?2 ≤ ~? ≤ −0?1?

Table 4.1 ensures that the

1series solutions converge in the whole region of ? when ~? = ~? = ~? = ~? =

−0? 5? f ''?0?, g ''?0?,

q'?0?,f'?0? b*=b=A=B=02.,M=K=0.1,g1=g2=0.5, Pr=0.7,Sc=0.8,l=N=k*=0.3 0.0 -0.5 g''(0)

1f'(0) q'(0) -1.0 f''(0) -1 .5 -1 .0

-0.5 0.0 hf , hg, hq, hf Fig. 4.1: ~−curves for the functions ?? ?, ? and ?? Table 4

2.1: Convergence of series solutions for different order of approximations

javascript:openDSC(3202323864, 943, '78239');
javascript:openDSC(101753, 14, '2341');
javascript:openDSC(3876398937, 0, '49173');
javascript:openDSC(105151, 14, '1390');
javascript:openDSC(105151, 14, '1402');
javascript:openDSC(47692527, 37, '10851');


7/3/2014 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=437813038&sid=0&n=0&m=0&svr=9&r=97.82056855037808&lang=en_us 49/97

when

? = ? = 0?1? ? = ? = ?∗ = ? = 0?2? ? = ? = ?∗ = 0?3? ?1 = ?2 = 0?5? Pr = 0?7? ?? = 0?8 and ~? = ~? =

~? = ~? − 0?6? order of approximations 1 5 10 15 20 25 30 35 −? 00 (0) 1.155 1.104 1.078 1.068 1.065

1.064 1.064 1.064 −?00 (0) 0.2359 0.2395 0.2414 0.2420 0.2422 0.2422 0.2422 0.2422 −?0(0) 0.3084

0.2620 0.2437 0.2373 0.2349 0.2341 0.2340 0.2340 −?0 (0) 0.3300 0.3318 0.3336 0.3340 0.3341 0.3341

0.3341 0.3341 Figs. 4.2 and 4.3 are plotted to see the effects of Hartman number ? on the velocity profile

?0(?) and ?0(?). The velocity profiles ?0(?) and ?0(?) are decreased when we increase the values of ?.

Also the

2momentum boundary layer thicknesses are decreasing functions of ?. Fig.

4.4 is drawn to see the influence of internal heat source/ sink parameter ?∗ on the velocity profile ?0(?)?

Clearly in case of heat sink parameter ?∗ ? 0 both momentum boundary layer thickness and ?0(?)

decrease while in case of heat source parameter ?∗ ? 0 kinetic energy of the fluid particles increases due

to which the velocity profile ?0(?) increases. Outcome of mixed convection parameter ? on the velocity

profile ?0(?) in both assisting and opposing flows is seen in Fig. 4.5. In case of assisting flow ? ? 0 both ?

0(?) and momentum boundary layer thickness are enhanced while reverse effect is observed for opposing

flow ? ? 0? Fig. 4.6 exhibits the variation of concentration buoyancy parameter ? on the velocity profile ?

0(?)? It is examined that an enhancement in ? gives rise to the velocity profile ?0(?). Fig. 4.7 depicts the

influence of internal heat source/sink parameter ?∗ on the temperature ?(?)? With an increase in internal

heat source ?∗ ? 0 both the thermal boundary layer thickness and ?(?) increase while in case of heat sink

parameter ?∗ ? 0 both the thermal boundary layer thickness and ?(?) decrease. Figs. 4.8-4.10 are

sketched to see the variations of chemical reaction parameter ?∗, concen- tration exponent B and mass

transfer Biot number ?2 on the concentration profile ?(?)? Fig. 4.8 is presented to analyze the variation of

chemical reaction parameter ?∗ on the concentra- tion profile ?(?)? It is noted that the associated

boundary layer thickness and concentration profile ?(?) decrease for generative chemical reaction ?∗ ? 0

while reverse phenomena is noted for destructive chemical reaction ?∗ ? 0. With an enhancement in

concentration exponent ? both the concentration profile ?(?) and the boundary layer thickness decrease

(see Fig. 4.9). Variation of mass transfer Biot number ?2 on the concentration profile ?(?) is displayed in

Fig. 4.10. Here we examined that the effect of ?2 on the concentration profile ?(?) and associated

boundary layer thickness are increasing? Figs. 4.11-4.13 are displayed to see the impacts of mixed

convection parameter ?? concentra- tion buoyancy parameter ?, ratio parameter ?? Hartman number ?,

internal heat source/sink ?∗ and heat transfer

2Biot number ?1 on the local Nusselt number

−?0(0)? Fig. 4.11 shows that the

2heat transfer rate at the wall increases for

assisting flow ? ? 0 while it decreases for op- posing flow ? ? 0? It is also examined
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2that the heat transfer rate at wall is

increasing function of concentration buoyancy parameter ?. Fig. 4.12 exhibited that the larger values of

ratio parameter ? corresponds to a higher heat transfer rate −?0(0). Also it is to be noted that with an

increase in Hartman number heat transfer rate decreases. Fig. 4.13 depicts that

20the heat transfer rate at the wall −?0(0) decreases

with internal heat source ?∗ ? 0 while increases with internal heat sink ?∗ ? 0? Variations of mixed

convection parameter ?? concentration buoyancy parameter ?, ratio parameter ?? Hartman number ?,

chemical reaction ?∗ and mass transfer Biot number ?2 on Sherwood number −?0(0) are plotted in the

Figs. 4.14-4.16. Fig. 4.14 is drawn to see the influences of mixed convection parameter ? and

concentration buoyancy parameter ? on the Sherwood number −?0(0)? It is seen that the Sherwood

number −?0(0) is increasing function of ? and ? in case of assisting flow ? ? 0 while decreasing function for

opposing flow case. Fig. 4.15 depicts that the Sherwood number −?0(0) decreases with an enhancement

in Hartman number ? while it increases with an increase in ratio parameter ?? Fig. 4.16 exhibits that the

mass transfer at the wall −?0(0) enhances with generative chemical reaction ?∗ ? 0 while it reduces with

destructive chemical reaction ?∗ ? 0. It is also observed that the mass transfer at the wall −?0(0) is an

increasing function of mass transfer Biot number ?2?Table 4.2 ensures the validity of present results with

Liu et al. [25] in the limiting sense. f'?h? 1.0 0.8 b = b* = k* = A = B = 0.2, g1 = g2 = 0.3, 0.6 Pr = Sc = 0.7,

K = l = N = 0.5 0.4 0.2 M = 0.0, 0.3, 0.6, 0.9 0 1 2 3 4 5 6 h Fig. 4.2: Influence of ? on velocity ?0(?). g'?h?

0.20 b = k* = A = B = 0.2, g1 = g2 = 0.3, Pr = Sc = 0.7, b* = K = l = N = 0.5 0.15 0.10 0.05 M = 0.0, 0.3, 0.6,

0.9 1 2 3 4 5 6 h Fig. 4.3: Influence of ? on velocity ?0(?). f '?h? 1.0 b = k* = A = B = 0.2, M = g1 = g2 =

0.3, Pr = Sc = 0.7, K = l = N = 0.5 0.8 0.6 0.4 b* = -3.0, 0.0, 0.3, 7.0 0.2 0 1 2 3 4 5 6 h

2Fig. 4. 4: Influence of ?∗ on velocity ?0(?). f

'?h? 1.0 k* = A = B = 0.2, g1 = g2 = M = b = 0.3, Pr = Sc = 0.7, b* = K = N = 0.5 0.8 0.6 0.4 l = -0.5, 0.0,

0.5, 0.9 0.2 0 1 2 3 4 5 6 h

2Fig. 4. 5: Influence of ? on velocity ?0(?). f

'?h? 1.0 0.8 k* = A = B = 0.2, g1 = g2 = M = b = 0.3, Pr = Sc = 0.7, b* = K = l = 0.5 0.6 0.4 N = 0.0, 1.5, 3.0,

4.5 0.2 0 1 2 3 4 5 6 h Fig. 4.6: Influence of ? on velocity ?0(?). q?h? 0.30 0.25 b = k* = A = B = 0.2 , g1 =

g2 = M = 0.3 , Pr = Sc = 0.7 , K = l = N = 0.5 0.20 0.15 b* = -0.3 , 0.0 , 0.3 , 0.6 0.10 0.05 1 2 3 4 5 6 h Fig.

4.7: Influence of ?∗ on temperature ?(?). f?h? 0.25 0.20 b = A = B = 0.2, g1 = g2 = M = 0.3, Pr = Sc = 0.7,

K = l = N = b* = 0.5 0.15 0.10 0.05 k* = -0.2, 0.0, 0.2, 0.4 1 2 3 4 5 6 h Fig. 4.8: Influence of ?∗ on ?(?). f?

h? 0.25 0.20 b = A = k* = 0.2, g1 = g2 = M = 0.3, Pr = Sc = 0.7, K = l = N = b* = 0.5 0.15 0.10 0.05 B = 0.0,

0.2, 0.4, 0.6 1 2 3 4 5 6 h Fig. 4.9: Influence of ? on concentration ?(?). f?h? 0.4 b = A = B = k* = 0.2, g1 =

M = 0.3, Pr = Sc = 0.7, K = l = N = b* = 0.5 0.3 0.2 g2 = 0.1, 0.3, 0.5, 0.7 0.1 1 2 3 4 5 6 h Fig. 4.10:

Influence of ?2 on ?(?). -q'?0? A = B = b = b* = k* = 0.2, M = 0.1, 0.276 K = g1 = g2 = 0.5, Pr = 0.7, Sc =

0.8 l = -0.5, 0.0, 0.5, 1.0 0.274 0.272 0.270 0.268 0.266 0.5 1.0 1.5 2.0 N Fig. 4.11: Influence of ? and ?
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on −?0(0). -q'?0? 0.32 A = B = b* = k* = 0.2, l = N = 0.3, K = g1 = g2 = 0.5, Pr = 0.7, Sc = 0.8 0.31 0.30

0.29 0.28 M = 0.0, 0.5, 1.0, 1.5 0.27 0.5 1.0 1.5 2.0 b Fig. 4.11: Influence of ? and ? on −?0(0). -q'?0? A =

B = k* = b = 0.2, l = N = 0.3, 0.4 K = g2 = 0.5, Pr = 0.7, M = 0.1, Sc = 0.8 0.3 0.2 b* = -0.3, 0.0, 0.3, 0.6 0.1

0.2 0.4 0.6 0.8 1.0 g 1 Fig. 4.13: Influence of ?∗ and ?1 on −?0(0). -f'?0? 0.340 A = B = b = b* = k* = 0.2,

M 0.1, = K = g1 = g2 = 0.5, Pr = 0.7, Sc = 0.8 0.335 0.330 l = -0.5, 0.0, 0.5, 1.0 0.5 1.0 1.5 2.0 N Fig. 4.14:

Influence of ? and ? on −?0(0). -f'?0? 0.336 A = B = b* = k* = 0.2, l = N = 0.3, K = g1 = g2 = 0.5, Pr = 0.7,

Sc = 0.8 0.334 0.332 0.330 0.328 M = 0.0, 0.5, 1.0, 1.5 0.326 0.2 0.4 0.6 0.8 1.0 b Fig. 4.15: Influence of ?

and ? on −?0(0). -f'?0? 0.5 A = B = b = b* = 0.2, M = 0.1, l = N = 0.3 K = g1 = 0.5, Pr = 0.7, Sc = 0.8 0.4 0.3

k* = -0.3, 0.0, 0.3, 0.5 0.2 0.1 0.2 0.4 0.6 0.8 1.0 g2 Fig. 4.16: Influence of ?∗ and ?1 on −?0(0). Table

4.2: Comparative values of −?00(0)? −?00(0) and ?(∞) + ?(∞) for different values of ? when ? = ? = ? = ?1

= ?2 = ?∗ = ?∗ = 0? Liu et al. [25] Present results ? −? 00(0) −?00(0) ?(∞) + ?(∞) −?00(0) −?00(0) ?(∞) +

?(∞) 0.0 1.28180856 0 0.50 1.56988846 0.78494423 1.00 1.81275105 1.81275105 0.90564383

1.10918263 1.28077378 1.28181 0 0.90564 1.56989 0.78494 1.10918 1.81275 1.81275 1.28077 4.4

Closing remarks The present chapter deals with the three-dimensional

4mixed convection flow of MHD viscoelas- tic fluid over

an exponentially

1stretching surface in presence of heat source/sink and

genera- tive/destructive chemical reaction. The main outcomes are as follows. • Velocity profiles ?0(?) and

?0(?) reduce with an increase in Hartman number ?. • Momentum boundary layer thickness

2decreases with an increase in ratio parameter ?? • Both the

velocity profile ?0(?) and

2momentum boundary layer thicknesses are increasing functions of internal heat

source parameter

?∗ ? 0? assisting flow case ? ? 0 and concen- tration buoyancy parameter ? while decreasing functions of

internal heat sink parameter ?∗ ? 0 and opposing flow case ? ? 0? • Thermal boundary layer thickness

and temperature ?(?) decrease with an increase in internal heat sink ?∗ ? 0 while thermal boundary layer

thickness and temperature ?(?) increase with an increase in internal heat source ?∗ ? 0. • With an

enhancement in generative chemical reaction ?∗ ? 0, concentration exponent ? and Schmidt number ??

decreases the concentration profile ?(?)? The concentration boundary layer thickness increases for larger

mass transfer Biot number ?2 and destructive chemical reaction ?∗ ? 0? • Heat transfer rate −?0(0) boosts

up in case of assisting flow ? ? 0? concentration buoyancy parameter ?, ratio parameter ?? heat transfer

Biot number ?1 and internal heat sink parameter ?∗ ? 0 while heat transfer rate −?0(0) reduces with

opposing flow ? ? 0? Hartman number ? and internal heat source ?∗ ? 0? • With an increase in assisting

flow ? ? 0? concentration buoyancy parameter ?, ratio parameter ?? mass transfer Biot number ?2 and
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generative chemical reaction parameter ?∗ ? 0? the Sherwood number −?0(0) enhances while reverse

behavior is noted in case of opposing flow ? ? 0? Hartman number ? and destructive chemical reaction

parameter ?∗ ? 0? Chapter 5 Thermophoresis and MHD mixed convection flow

1with Soret and Dufour effects This chapter investigates the

4heat and mass transfer effects in three-dimensional

mixed convec- tion flow of viscoelastic fluid over a

4stretching surface with convective boundary conditions. The fluid is

electrically conducting in the presence of constant applied magnetic field.

Conservation laws of energy and concentration are based upon the Soret and Dufour effects. First order

chemical reaction effects are also taken into account.

15Dimensionless velocity, temperature and concentration distributions are

shown graphically

7for different values of involved parameters. Numerical

values of

1local Nusselt and Sherwood numbers are computed and analyzed. 5.1

Mathematical analysis We consider the steady

three-dimensional magnetohydrodynamic mixed convection

7flow of an incompressible viscoelastic fluid over a stretching surface at

? = 0? The flow takes place in the domain ? ? 0? Heat and mass transfer characteristics are taken into

account

6in the presence of Soret and Dufour and thermophoresis effects. The

ambient fluid temperature is taken as ?∞ while the surface temperature is maintained by convective heat
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transfer at a certain value ?? . A constant

6magnetic field ?0 is applied in the ?-direction.

2Induced magnetic field is not considered due to small Reynolds number.

In addition the effects of first order chemical reaction in mass transfer are taken into account. The

governing boundary layer equations for the flow under consideration are ?? ?? ?? ?? ?? ?? = 0? + + (5.1)

? ?? ?? ?? ?? + ? ?? + ? ?? ?2? ?1 ?3? ?3? ?? ?2? ?? ?2? = ? ??2 ? � ????2 + ???3 + ? − ?? ??2 + ??

??2 � +2???? ???2??? + 2???? ??2??2 �� +???(? − ?∞) + ???(? − ?∞) −�?∗?02?? � �� ? (5.2) ? ??

+ ? ?? + ? ?? ?? ?? ?? =? ?2? + ?1 ? ?3? ?? ?2? ?? ?2? +? ?3? − ?? ??2 + ?? ??2 ??2 ? � ????2 ??3 �

+2???????2??? +2??????2??2 �� − ?∗?02 ?? � � �� ? (5.3) ? ?? ?? + ? ?? + ? ?? = ? ??2 ???? ??2

?? ?? ?2? ???? ?2? + ? (5.4) ? ?? ?? ?? + ? ?? + ? ?? = ?? ?? ??2??2 ?????? ??2??2 − ?1(? − ?∞) − ??

(?? (? − ?∞))? + ? (5.5) In Eqs. (5?1) − (5?5) the respective velocity components in the ?−? ?− and ?

−directions are denoted by ?? ? and ?, ?1 the viscoelastic parameter, ?∗ the electrical conductivity, ?0 is

the magnitude of applied magnetic field, ? the density of fluid, ? the gravitational acceleration, ?? the

19thermal expansion coefficient, ?? the concentration expansion coefficient,

? the

fluid temperature, ? the thermal diffusivity of fluid, ? the kinematic viscosity, ? the dynamic viscosity of fluid,

? the concentration field, ?? the mass diffusivity, ?? the thermal diffusion ratio, ?? the specific heat, C? the

concentration susceptibility and ?? the thermophoretic velocity. In Eq. (5.5) the thermophoretic term ?? can

be defined as ? ?? ?? = −?2 ?? ?? (5.6) where ?2 is the thermophoretic coefficient and ?? is the reference

temperature. A thermophoretic parameter ? is defined as ? = −?2(?? − ?∞) ?? The boundary conditions

appropriate to the flow under consideration are given by ? = ?? = ??? ? = ??? ? = 0? − ? ?? = ?(?? − ? ), ?

= ?? at ? = 0? ?? ? → 0? ? → 0? ? → ?∞? ? → ?∞ as ? → ∞? (5.7) (5.8) where ? indicates the thermal

conductivity of fluid, ?? is the hot fluid temperature, ?∞ the ambient concentration and ? and ? have

dimension inverse of time. We now define ? = ???0(?)? ?=???0(?)? ?=− ??(?(?)+?(?))? √ ?(?) = ??? −−??

∞∞ ? ? = ?r ? ?(?) = ???−−??∞∞ ? ? ? (5.9) Now the use of above variables satisfy Eq. (5.1) automatically

while Eqs. (5.2)-(5.8) are reduced as follows: ?000 + (? + ?)?00 − ?02 − ? (? + ?)?0000 + (?00 − ?00)?00

− 2(?0 + ?0)?000 ¡ ¢ −?2?0 + ?(? + ??) = 0? ?000 + (? + ?)?00 − ?02 − ? (? + ?)?0000 + (?00 − ?00)?00

− 2(?0 + ?0)?000 − ?2?0 = 0? ¡ ?00 + ? ?(? + ?)?0 + Pr ?? ?00 = 0? ¢ ?00 + ??(? + ?)?0 − ???∗? +

?????00 − ???(?0?0 − ??00) = 0? ? = 0? ? = 0? ?0 = 1? ?0 = ?, ?0 = −?1(1 − ?(0))? ? = 1 at ? = 0? ?0 →

0? ?0 → 0? ? → 0? ? → 0 as ? → ∞? (5.10) (5.11) (5.12) (5.13) (5.14) where ? is the dimensionless

viscoelastic parameter? ?

19is the Hartman number, ? is the local buoyancy parameter, Gr? is the local

Grashof number,

? is the constant dimensionless concentration buoyancy parameter, ? ?
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1is the Prandtl number, ?? is the Dufour number, ?? is the Schmidt number, ??

is the Soret number, ?∗ is the chemical reaction parameter, ? is the

thermophoretic parameter, ? is ratio of rates parameters, ?1

2is the Biot number and prime shows the differentiation with respect to

?. These are given by ? = ?1?? ?=?∗?02? ?=?R?e?2?? ???=???(???−2?∞)?3? ?=????((????−−??∞∞))

? ? ? ? = ? ?? = ? ? ???? (?? − ?∞) ? ?? = ? ?? = ???? (?? − ?∞) ? ?∗ = ?1?? = −?2(?? − ?∞)? ? ????

(?? − ?∞)? ? ??? (?? − ?∞) ? ?? ? = ? ?? ?1 = ? ? ? ? r ? Local Nusselt and Sherwood numbers in

dimensionless forms are given by ?????1??2 = −?0(0)? (5.15) ?????1??2 = −?0(0)? (5.16) in which ??? =

????? is the local Reynolds number. 5.2 Construction of solutions The initial approximations and auxiliary

linear operators required for homotopy analysis solu- tions are presented below i.e. ?0(?) = 1 − ?−? ? ?

0(?) = ? 1 − ?−? ? ?0(?) = ?11ex+p(?−1?)? ?0(?) = exp(−?) (5.17) ¡ ¢ ¡ ¢ L? = ?000 − ?0? L? = ?000 − ?

0? L? = ?00 − ?? L? = ?00 − ?? with the following properties of the defined operators in Eq. (5.18) i.e. L?(?

1 + ?2?? + ?3?−?) = 0? L?(?4 + ?5?? + ?6?−?) = 0? L?(?7?? + ?8?−?) = 0? L?(?9?? + ?10?−?) = 0

where ?? (? = 1 − 10) indicate the arbitrary constants. (5.18) (5.19) The corresponding problems at the

zeroth order are given in the following forms: (1 − ?) L? ?ˆ(?; ?) − ?0(?) = ?~? N? ?ˆ(?; ?)? ?ˆ(?; ?) ? (5.20)

h i h i (1 − ?) L? [?ˆ(?; ?) − ?0(?)] = ?~?N? ?ˆ(?; ?)? ?ˆ(?; ?) ? (5.21) (1 − ?) L? ˆ?(?; ?) − ?0(?) = ?~?N?

29?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?? ?)? ?ˆ(?? ?) ? h i

(5.22) (1 − ?) L? ?ˆ(?; ?) − ?0(?) = ?~?N? ?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?? ?)? ?ˆ(?? ?) ?

25h i h i (5.23) h i h i

12?ˆ(0; ?) = 0? ?ˆ0(0; ?) = 1? ?ˆ0(∞; ?) = 0? ?ˆ(0; ?) = 0? ?ˆ0(0; ?) = ?? ?ˆ0(∞; ?) =

0? ?ˆ0(0? ?) = −?1[1 − ?(0? ?)]? ˆ?(∞? ?) = 0? ?ˆ(0? ?) = 1? ?ˆ(∞? ?) = 0

(5.24) 2 N?

10[?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)] = ?3 ?ˆ(?? ?) ??ˆ(?? ?) + (?ˆ(?? ?) + ?

ˆ(?? ?))?2 ?ˆ(?? ?) ??3 − Ã ?? ! ??2 (?ˆ(?? ?) + ?ˆ(?? ?)) ?4 ??ˆ(?? 4??) −? � +( ?2

??ˆ(?? 2??) − ?2 ??ˆ(?? 2??) ) ?2 ??ˆ(?? 2??) � −2( ??ˆ?(????) + ??ˆ?(????) ) ?

3??ˆ(?? 3??) −? �2??ˆ(?? ?) + ?ˆ?(?? ?) + ?? ˆ?(?? ?)�? � � (5.25) ?? N ?[?ˆ(??

?)? ?ˆ(?? ?)? ˆ?(?? ?)? ?ˆ(?? ?)] = ?3 ?ˆ(???) ??ˆ(???) 2 ??3 − +(?ˆ(???)+?

ˆ(???))? 2 ?ˆ(???)µ ?? ¶ ??2 (?ˆ(???)+?ˆ(???))? 4 ??ˆ(?? 4??) +?� +(?2 ??ˆ(??

2??) − ?2 ??ˆ(?? 2??))?2 ??ˆ(?? 2??) � −2 (??ˆ?(????) + ??ˆ?(????))? 3 ??ˆ(??
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3??) −?�2 ??ˆ(???)� � ? � (5.26) ?? N ?[?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)]

= ?2ˆ??(??2? ?) + Pr (?ˆ(?? ?) + ?ˆ(?? ?)) ?ˆ?(???? ?) + Pr ?? ??2 ?2 ?ˆ(?? ?) ?

(5.27) N ?[?ˆ(?? ?)? ˆ?(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)] = ?2 ?ˆ?(?? 2? ?) + ??(?ˆ(?? ?)

+ ?ˆ(?? ?)) ??ˆ?(??? ?) −???∗?ˆ(?? ?) + ???? ?2ˆ??(??2? ?) − ???( ?? ??ˆ(?? ?)

?ˆ?(?? ?) ?? −?ˆ(??

?) ?2ˆ??(??2? ?) )? (5.28) Here ?

4is an embedding parameter, ~?? ~?, ~? and ~? are the non-zero auxiliary

parameters and N?? N?, N? and N? indicate the nonlinear operators. When ? = 0

and ? = 1 one has

12?ˆ(?;0) = ?0(?)? ˆ?(??0) = ?0(?)? ?ˆ(??0) = ?0(?) ?ˆ(?; 1) = ?(?)? ˆ?(?? 1) = ?

(?)? ?ˆ(?? 1) = ?0(?)

? (5.29) Clearly when ? is increased from 0 to 1 then ?(???)? ?(???), ?(???) and ?(???) vary from ?0(?)?

?0(?)? ?0(?) and ?0(?) to ?(?)? ?(?)? ?(?)and ?(?)? By Taylor’s expansion we have ?(???)=?0(?)+?=1??

(?)??? ??(?)= ?1! ?????(??;?)¯?=0 ∞ ? (5.30) ?(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????(??;?)¯¯?=0

¯ ∞ ? (5.31) P ¯ ?(?? ?) = ?0(?) ?=P1??(?)??? ??(?)= ?1! ?????(??;?)¯?¯¯=0 ∞ ¯ ? (5.32) P ?(?? ?) = ?

0(?) ∞ ??(?)??? ??(?) = ?1! ?????(??; ?)¯¯¯?=0 ¯ ? (5.33) ?=1

3where the convergence of above sPeries strongly depends upon ~?? ~?

~¯¯? and ¯ ~?? Considering that ~?? ~?? ~? and ~? are selected properly so

that

Eqs. (5?30)−(5?33) converge at ? = 1 then we can write ?(?) = ?0(?) + ??(?)? ∞ (5.34) ?=1 P ?(?) = ?0(?)

+ ??(?)? ∞ ?=1 ?(?) = ?0(?) + P∞ ??(?)? ?=1 P∞ ?(?) = ?0(?) + ??(?)? ?=1 P The resulting problems at

mth order deformation can be constructed as follows: L?[??(?) − ????−1(?)] = ~?R??(?)? L?[??(?) − ????

−1(?)] = ~?R??(?)? L?[??(?) − ????−1(?)] = ~?R??(?)? L?[??(?) − ????−1(?)] = ~?R??(?)? (5.35) (5.36)

(5.37) (5.38) (5.39) (5.40) (5.41) ??(0) = ??0(0) = ??0(∞) = 0? (5.42) ??(0) = ?0?(0) = ?0?(∞) = 0? (5.43)

??0(0) − ?1??(0) = ??(∞) = 0? ??(0) = ??(∞) = 0? (5.44) R??(?) = ??000−1(?) − ??0−1−???0 + (??

−1−???00 + ??−1−???00) ?−1 ?−1 ?=0 ?=0 ?−P1 ??−1−???0000 + ??−1−???0000 ?P−1 � ?=0 ?=0 + P?

−1 ??00−1−???00 − P?−1 � −? ?0?0−1−???00 ?=0 ?=0 −2 ?P−1 ??0−1−? ??000 − 2P?−1 ??0−1−? ??

000 ?=0 ?=0 −? 2�??0−1 +P?? + ?? ?? � P � � (5.45) R??(?) = ??000−1(?) − ?0?−1−???0 + (??−1−???

00 + ??−1−???00) ?−1 ?−1 ?=0 ?=0 ?−P1 ??−1−???0000 + ??−1−??0?000 ?P−1 � ?=0 ?=0 P?−1 ??

00−1−??0?0 −P?−1 ?0?0−1−???00 � −? + (5.46) ?=0 ?=0 − ?2??0−1? � −2 ?P−1 ??0−1−???000 − 2P?

−1 ??0−1−???000 � ?=0 ?=0 P P � � R??(?) = ?0?0−1 + ? ? (?0?−1−??? + ?0?−1−???) + Pr ?? ?0?

0−1? ?−1 (5.47) ?=0 P R??(?) = ?0?0−1 + ?? (?0?−1−??? + ?0?−1−???) − ???∗? + ?????0?0−1 ?−1 ?=0

−??? (?0?−1−??0? − ??−1−??0?0)? ?−1 P (5.48) ?=0 P ?? = 0? ? ≤ 1? � 1? ? ? 1? (5.49) Solving the

above mth order deformation problems we have � ??(?) = ??∗(?) + ?1 + ?2?? + ?3?−?? (5.50) ??(?) = ??
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∗(?) + ?4 + ?5?? + ?6?−?? (5.51) ??(?) = ?∗?(?) + ?7?? + ?8?−?? (5.52) ??(?) = ?∗?(?) + ?9?? + ?10?

−?? (5.53) in which the ??∗? ??∗, ?∗? and ?∗? indicate the special solutions. 5.3 Analysis Obviously the

series solutions (5?34)−(5?37) contain the auxiliary parameters ~?? ~? ~? and ~?. These parameters are

very important in adjusting and controlling the convergence of homotopic solutions. Hence the

1~−curves are plotted at 10?? order of approximations in

order to find the suitable ranges of ~?? ~? ~? and ~?. Fig. 5.1 indicate that the admissible values of ~??

~?? ~? and ~? here are −1?5 ≤ ~? ≤ −0?40? −1?4 ≤ ~? ≤ −0?30, −1?40 ≤ ~? ≤ −0?25 and −1?40 ≤ ~? ≤

−0?20? Table 5.1 presents the convergence of homotopic solutions. It is noted that computations are

sufficient for 45?? order iterations of velocity and 35?? order iterations of the temperature and

concentration profiles for the convergent series solutions. 1 K = t = 0.2, l = N = k* = 0.3, b = Sc = Df = 0.5,

M = 0.7, g1 = 0.6, Df = 0.3, Sr = 0.4, Pr = 1.0 f''?0? 0.5 g''?0?

7q'?0? f ''?0?, g ''?0?, q '?0?, f'?0? 0 f '?0?

- 0.5 -1 - 1.5 -1.5 -1 -0.5 0 hf,hg,hq,h« Fig. 5.1: ~−curves for the functions ?? ?, ? and ?? Table 5.1:

1Convergence of series solutions for different order of approximations when

? = ? = 0?2? ? = ?? = ?? = 0?5? ?? = 1?0? ?? = 0?4? ? = 0?7? ? = ? = ?∗ = 0?3? ?1 = 0?6 and ~? = ~? =

~? = ~? = −0?7? order of approximations −? 00 (0) −?00 (0) −?0 (0) −?0 (0) 1 1.31063 0.632417

0.284766 0.763750 5 1.47588 0.746614 0.230340 0.599613 10 1.49331 0.762859 0.221636 0.578386 15

1.49592 0.764867 0.220665 0.575416 20 1.49650 0.765053 0.220797 0.574753 25 1.49664 0.765041

0.220916 0.574545 30 1.49667 0.765030 0.220950 0.574483 35 1.49667 0.765027 0.220953 0.574471

40 1.49667 0.765027 0.220953 0.574471 Figs. 5.2 − 5?5 depict the behaviors of mixed convection

parameter ? and concentration buoyancy parameter ? on ?0(?) and ?0(?)? Figs. 5.2 and 5.3 are drawn to

analyze the effects of mixed convection parameter ? on the velocity components ?0(?) and ?0(?)? It is

shown that ?0(?) and ?0(?) increase with an increase in ?. Effect of concentration buoyancy parameter ?

on the velocity components ?0(?) and ?0(?) are shown in the Figs. 5?4 and 5?5? It is examined that the

concentration buoyancy parameter ? shows the similar effects on momentum boundary layer thicknesses

and velocity components ?0(?) and ?0(?) as we observed for mixed convection parameter ?? Figs. 5?6 −

5?9 examine the variation

7of Dufour number ?? and Soret number ?? on the temperature ?(?) and

concentration

?(?)? Variations of ?? on temperature ?(?) and concentra- tion ?(?) are analyzed in the Figs. 5.6 and 5.7.

It is noted from these Figs. that ?? has reverse effects on temperature ?(?) and concentration ?(?). Figs.

5.8 and 5.9 are displayed to see the variation of ?? on the temperature ?(?) and concentration profiles ?

(?)? We noticed
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2that the temperature ?(?) and thermal boundary layer are reduced for an

increase in ??? The

concen- tration profile ?(?) increases when ?? is increased. To analyze the effect of thermophoretic

parameter ? on the concentration ?(?) profile we have sketched Fig. 5.10.

4It is found that an increase in thermophoretic parameter ? leads to a decrease in

both concentration profile ?(?) and concentration boundary layer thickness.

1 K = M = Sr = 0.5, b = N = Sc = 0.3, Df = k* = 0.3, t = 0.1, g1 = 0.4, Pr = 0.7

3l = 0.0 0.8 l = 0.5 l = 1.0 0.6 l

= 1.5 f'?h? 0.4 0.2 0 1 2 3 4 5 6 h Fig. 5.2: Influence of ? on ?0(?)? K = M = Sr = 0.5, b = N = Sc = 0.3, Df =

k* = 0.3, t = 0.1, g1 = 0.4, Pr = 0.7 0.3 0.25 0.2

3l = 0.0 l = 0.5 l = 1.0 l

= 1.5 g

4'?h? 0. 15 0. 1 0. 05 0 0 1 2 3 4 5 6 h Fig. 5. 3: Influence of ? on

?0 (?)? 1 K = M = Sr = l = 0.5, b = Sc = 0.3, Df = k* = 0.3, t = 0.1, g1 = 0.4, Pr = 0.7 N = 0.0 0.8 N = 0.5 N =

1.0 0.6 N = 1.5 f '?h? 0.4 0.2 0 1 2 3 4 5 6 h Fig. 5.4: Influence of ? on ?0(?)? K = M = Sr = 0.5, b = N = Sc

= 0.3, Df = k* = 0.3, t = 0.1, g1 = 0.4, Pr = 0.7 0.3 0.25

14N = 0. 0 N = 0.5 0.2 N = 1.0 N = 1 .5

g

4'?h? 0. 15 0. 1 0. 05 0 0 1 2 3 4 5 6 h Fig. 5. 5: Influence of ? on

?0(?)? K = M = l = N = Sr = 0.5, b = N = Sc = 0.3, k* = t = 0.2, g1 = 0.4, Pr = 0.7 0.5 Df = 0.1 Df = 0.4 0.4 Df

= 0.7 Df = 1.0

4q?h? 0.3 0.2 0.1 0 0 2 4 6 8 h
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Fig. 5.6: Influence of ?? on ?(?)? K = M = l = N = Sr = 0.5, b = N = Sc = 0.3, k* = t = 0.2, g1 = 0.4, Pr = 0.7 1

0.8 Df = 0.1 Df = 0.4 0.6 Df = 0.7 Df = 1.0 f?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 5.7: Influence of ?? on ?(?)? K =

M = l = N = Df = 0.5, b = N = Sc = 0.3, k* = t = 0.2, g1 = 0.4, Pr = 0.7 0.4 Sr = 0.1 Sr = 0.4 Sr = 0.7 0.3 Sr =

1.0

1q?h? 0. 2 0. 1 0 0 2 4 6 8 h

Fig. 5.8: Influence of ?? on ?(?)? K = M = l = N = Df = 0.5, b = N = Sc = 0.3, k* = t = 0.2, g1 = 0.4, Pr = 0.7 1

0.8 Sr = 0.1 Sr = 0.4 0.6 Sr = 0.7 Sr = 1.0 f?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 5.9: Influence of ?? on ?(?)? K =

M = l = N = Df = 0.5, b = N = Sc = 0.3, k* = Sr = 0.2, g1 = 0.4, Pr = 0.7 1 0.8 t = 0.1 t = 0.4 0.6 t = 0.7 t = 1.0

f?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 5.10: Influence of ? on ?(?)? Table 5.2 is prepared to analyze

1numerical values of local Nusselt and Sherwood numbers. The values of

−?0(0) and −?0(0) decrease by increasing Deborah number. Here −?0(0) increases by increasing Prandtl

and Biot numbers while reverse is the case of −?0(0). Table 5.3 shows that local Nusselt −?0(0) and

Sherwood numbers −?0(0) decrease with the increase in Hartman and Soret numbers.

1Values of local Nusselt−?0(0) and Sherwood numbers

−?0(0) are opposite for Schmidt, Dufour, thermophoretic and chemical reaction parameters. Table 5.2:

1Values of local Nusselt−?0(0) and Sherwood numbers−?0(0) for different

values of the parameters

?? ?? ?? ?? ? ?? and ?1 when ?? = ?? = 0?5? ?? = 0?4? ? = 0?2? ?∗ = 0?3 and ? = 0?5. ? ? ? ? ? ? ?1

−?0(0) −?0(0) 0.0 0.2 0.4 0.2 0.5 0.0 0.2 0.4 0.5 0.3 1.0 0.6 0.24700 0.23486 0.18422 0.21393 0.22444

0.23200 0.61363 0.59297 0.51482 0.55535 0.57294 0.58714 0.2 0.2 0.0 0.3 0.5 0.19606 0.21647

0.22444 0.54490 0.56327 0.57295 0.2 0.2 0.5 0.0 0.3 0.5 0.21880 0.22446 0.22772 0.56592 0.57285

0.57750 0.2 0.2 0.5 0.3 1.0 0.22443 0.57291 1.5 0.24490 0.56585 2.0 0.25725 0.56080 0.2 0.2 0.5 0.3

1.0 0.2 0.10779 0.58240 0.5 0.20254 0.57481 0.7 0.24341 0.57118 Table 5.3:

1Values of local Nusselt−?0(0) and Sherwood numbers−?0(0) for different

values of the parameters

??? ??? ?? ??? ?∗ and ? when ? = ? = 0?2? ? = 0?5? ?1 = 0?3? ?? = 1 and ? = 0?6? ?? ?? ?? ? ?∗ ? −?

0(0) −?0(0) 0.2 0.4 0.5 0.2 0.3 0.5 0.26950 0.32824 0.5 0.22446 0.57285 0.7 0.19729 0.71482 0.5 0.2

0.22285 0.58265 0.5 0.22530 0.56786 0.7 0.22690 0.55779 0.5 0.4 0.2 0.27834 0.52746 0.5 0.22695

0.55765 0.7 0.18905 0.57984 0.5 0.4 0.5 0.4 0.22160 0.58610 0.7 0.21705 0.60820 1.0 0.21164 0.63434

0.5 0.4 0.5 0.2 0.5 0.20529 0.67118 0.7 0.18854 0.75605 1.0 0.16638 0.86737 0.5 0.4 0.5 0.2 0.3 0.6

0.22122 0.56859 0.8 0.21345 0.55880 1.0 0.20402 0.54895 5.4 Conclusions
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2MHD three-dimensional flow of viscoelastic fluid over a stretching surface is

analyzed in the presence of thermophoresis and

convective condition.

6Effects of chemical reaction and Soret and Dufour

are analyzed. The main observations are listed below. • Effects of mixed convection parameter ? and

buoyancy concentration parameter ? on

1the velocity profiles and momentum boundary layer thickness are similar. •

Effects of

?? and ?? on ?(?) and ?(?) are opposite. • Thermal boundary layer thickness and temperature field

increase when ?? increases. • Concentration ?(?) and associated

2boundary layer thickness are decreasing functions of thermophoretic

parameter

? ? • There are opposite effects of

1local Nusselt number and local Sherwood number when ?1? ? ?, ??, ??? ?∗? ?

and

?? increase. • Qualitative effects of

1local Nusselt number and local Sherwood number are similar when ?, ?? ? and

? increase. Chapter 6

4Three-dimensional flow of Maxwell fluid over a stretching surface with heat

source and

convective conditions

11Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a
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stretching

sur- face are addressed in this chapter. Analysis has been performed in presence of internal heat

generation/absorption. Concentration and thermal buoyancy effects are accounted. Convec- tive boundary

conditions for heat and mass transfer analysis are explored. Series solutions of the resulting problems are

developed. Effects of mixed convection, internal heat genera- tion/ absorption parameter and Biot numbers

15on the dimensionless velocity, temperature and concentration distributions

are illustrated graphically.

7Numerical values of local Nusselt and Sherwood numbers are obtained and

analyzed for

all the physical parameters. 6.1

3Governing problems Here we consider the steady three -dimensional flow of

an incompressible Maxwell fluid over a stretching surface

at ? = 0? The flow takes place in the domain ? ? 0? Heat and mass transfer characteristics are taken into

account

8in the presence of internal heat generation/absorption and

mixed convection. Convective heat and mass boundary conditions are considered. The ambient fluid

temperature and concentration are taken as ?∞ and ?∞ while the surface temperature and concentration

are maintained by convective heat and mass transfer at certain value ?? and ??? The governing partial

differential equations subject to boundary layer flow are ?? ?? ?? ?? ?? ?? = 0? + + (6.1) ? ?? ?? ?? ?2? ?

2 ??2??2 + ?2 ??2??2 + ?2 ??2??2 + 2?? ???2??? ?? + ? ?? + ? ?? = ? ??2 − ?1 � +2?? ???2??? + 2??

???2??? � +? (?? (? −�?∞) + ??(? − ?∞)) ? � ? ?? ?? ?? ?2? ?2 ???2?2 + ?2 ??2??2 + ?2 ??2??2 +

2?? ???2??? + ?? + ? ?? + ? ?? = ? ??2 − ?1 � 2?? ???2??? + 2?? ???2??? � ? ?? ?? � ?? ?2? � ???

(? ?? + ? ?? + ? ?? ) = ? ??2 + ?(? − ?∞)? ? ?? ?? ?? ?2? ?? + ? ?? + ? ?? = ? ??2 ? (6.2) (6.3) (6.4)

(6.5) In Eqs. (6?1) − (6?5) the respective velocity components in the ?−? ?− and ?−directions are denoted

by ?? ? and ?, ?1 shows the relaxation time, ?∗ is the electrical conductivity, ? is the density of fluid, ? is

the gravitational acceleration, ?? and ?? are the thermal and concentration expansion coefficients

respectively, ? is the fluid temperature, ? = (???)

15is the kinematic viscosity, ? is the dynamic viscosity of fluid, ?? is the specific

heat, ? is the
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thermal conductivity, ? is the uniform volumetric heat generation/absorption, ? is the concentration field

and ? is the mass diffusivity. The subjected boundary conditions are given by ? = ?? = ??? ? = ??? ? = 0?

− ? ?? = ?(?? − ? ), − ? ?? ???? = ?∗(?? − ?) at ? = 0? (6.6) ? → 0? ? → 0? ? → ?∞? ? → ?∞ as ? → ∞?

(6.7) where ? is the heat transfer coefficient, ?∗ is the concentration transfer coefficient and ? and ? are

constants and have dimension (????)−1? We now define ? = ???0(?)? ?=???0(?)? ?=− ??(?(?)+?(?))? √

?(?) = ??? −−??∞∞ ? ? = ?r ? ?(?) = ???−−??∞∞ ? ? ? (6.8) The above variables satisfy Eq. (6.1)

automatically while Eqs. (6.2)-(6.7) are converted to the following forms: ?000 + (? + ?)?00 − ?02 + ?1[2(?

+ ?)?0?00 − (? + ?)2?000] + ?(? + ??) = 0? ?000 + (? + ?)?00 − ?02 + ?1[2(? + ?)?0?00 − (? + ?)2?000] =

0? ?00 + ??(? + ?)?0 + ?∗? = 0? ?00 + ??(? + ?)?0 = 0? ? = 0? ? = 0? ?0 = 1? ?0 = ?, ?0 = −?1(1 − ?

(0))? ?0 = −?2(1 − ?(0))? at ? = 0? ?0 → 0? ?0 → 0? ? → 0? ? → 0 as ? → ∞? (6.9) (6.10) (6.11) (6.12)

(6.13) (6.14) where ?1

1is the dimensionless Deborah number? ? is the local buoyancy parameter, ??? is

the local Grashof number, ? is the

concentration buoyancy parameter,

1Pr is the Prandtl number, ?∗ is the heat generation/absorption parameter, ?? is

the

Schmidt number, ? is ratio of rates parameters, ?1 and ?2 are

4the Biot numbers and prime shows the differentiation with respect to

?. These are given by ?1 = ?1?? ? = ?R?e2?? ? ??? = ??? (???−2 ?∞)?3 ? ? = ????((???? −− ??∞∞))

(6.15) ?? = ?? ?∗=??????= ??=???1= ?? ?2= ? ? ? ? ? ? ? ? ? ?∗ ? ? ? r r In dimensionless form

15the local Nusselt and local Sherwood numbers are given by ?????1??

2 = −?0(0)? (6.16) ?????1??2 = −?0(0)? (6.17) where ??? = ????? is the local Reynolds number. 6.2

Series solutions The initial approximations and auxiliary linear operators are required to develop homotopic

solutions. We select the following initial guesses and linear operators for the present flow analysis: ?0(?) =

1 − ?−? ? ?0(?) = ? 1 − ?−? ? ?0(?) = ?11ex+p(?−1?)? ?0(?) = ?21ex+p(?−2?) ? ¡ ¢ ¡ ¢ L? = ?000 − ?0?

L? = ?000 − ?0? L? = ?00 − ?? L? = ?00 − ?? with the following properties of the defined operators in Eq.

(6.19) i.e. L?(?1 + ?2?? + ?3?−?) = 0? L?(?4 + ?5?? + ?6?−?) = 0? L?(?7?? + ?8?−?) = 0? L?(?9?? + ?

10?−?) = 0? (6.18) (6.19) (6.20) where ?? (? = 1 − 10) are the

2arbitrary constants. The corresponding problems at the zeroth order

deformations are
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given in the following forms: (1 − ?) L? ?ˆ(?; ?) − ?0(?) = ?~? N? ?ˆ(?; ?)?

10?ˆ(?; ?)? ?ˆ(?? ?)? ?ˆ(?? ?) ? (6.21) (1− ?) L? [?ˆ(?; ?) − ?0(?)] = ?~?N? ?ˆ(?;

?)? ?ˆ(?; ?)? ?ˆ(?? ?)? ?ˆ(??

?) ? h i h i (6.22) (1 − ?) L? ˆ?(?; ?) − ?0(?) = ?~?N?

17?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?? ?)? ?ˆ(?? ?) ? h i (1− ?) L? ˆ?(?; ?) − ?0(?) = ?~?N? ?

ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?? ?)? ˆ?(??

?) ?

25h i h i h i h i

(6.23) (6.24)

18?ˆ(0; ?) = 0? ?ˆ0(0; ?) = 1? ?ˆ0(∞; ?) = 0? ?ˆ(0; ?) = 0? ?ˆ0(0; ?) = ?? ?ˆ0(∞; ?) =

0? ˆ?0(0? ?) = −?1[1 − ?(0? ?)]? ?ˆ(∞? ?) = 0? ?ˆ0( 0? ?) = −?2[1 − ?ˆ(0? ?)]? ?ˆ(∞?

?) = 0

(6.25) N?

9[?ˆ(?? ?)? ?ˆ(?? ?)? ˆ?(?? ?)? ?ˆ(?? ?)] = ?3 ?ˆ(?? ?) ??ˆ(?? ?) 2 ??3 − Ã ?? ! +

(?ˆ(?? ?) + ?ˆ(?? ?)) ?2 ?ˆ(?? ?) ??2 2 (?ˆ(?? ?) + ?ˆ(?? ?)) +?1 � ??ˆ(???) ?2 ?

ˆ(???) ?? ??2 � � −(?ˆ(?? ?) + ?ˆ(?? ?))2 ?3 ??ˆ(?? 2??) +?[ˆ?�(?? ?) + ?1 ?ˆ(??

?)]? � � � (6.26) N ?[?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)] = ?3 ?ˆ(?? ?) ??3 −

??ˆ(?? ?) 2 + (?ˆ(?? ?) + ?ˆ(?? ?))?2 ?ˆ(?? ?) µ ?? ¶ ??2 2 (?ˆ(?? ?) + ?ˆ(?? ?)) +?

1 � ??ˆ(???) ?2 ?ˆ(???) ?? ??2 � ? (6.27) � −(?ˆ(?? ?) + ?ˆ(?? ?))2 ?3 ??ˆ(??

2??) � � � N ?[?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)] = ?2ˆ??(??2? ?) +Pr (?ˆ(??

?)+?ˆ(?? ?))?ˆ?(???? ?) +?∗?ˆ(?? ?)? (6.28) N ?[?ˆ(?? ?)? ˆ?(?? ?)? ?ˆ(?? ?)? ?

ˆ(?? ?)] = ?2 ?ˆ(?? ?) + ??(?ˆ(?? ?) + ?ˆ(?? ?))??ˆ(??

?) ? (6.29) ??2 ?? Here ?

3is an embedding parameter, the non-zero auxiliary parameters are ~?? ~?, ~?

and ~? and the nonlinear operators
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are N?? N?, N? and N?. When ? = 0 and ? = 1 one has

12?ˆ(?;0) = ?0(?)? ?ˆ(??0) = ?0(?)? ˆ?(??0) = ?0(?)? ?ˆ(??0) = ?0(?)? ?ˆ(?; 1) = ?

(?)? ?ˆ(?? 1) = ?(?)? ˆ?(?? 1) = ?(?)? ?ˆ(?? 1) = ?0(?)?

(6.30) Clearly when ? is increased from 0 to 1 then ?(???)? ?(???), ?(???) and ?(???) vary from ?0(?)? ?

0(?)? ?0(?) and ?0(?) to ?(?)? ?(?)? ?(?)and ?(?)? By Taylor’s expansion we have ?(???)=?0(?)+?=1??

(?)??? ??(?)= ?1! ?????(??;?)¯?=0 ∞ ? (6.31) ?(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????(??;?)¯¯?=0

∞ ¯ ? (6.32) ¯ P ¯ ?(?? ?) = ?0(?) ?=P1??(?)??? ??(?)= ?1! ?????(??;?)¯?¯¯=0 ∞ ? (6.33) P ¯ ?(?? ?) =

?0(?) ∞ ? (6.34) ?=1 ??(?)??? ??(?) = ?1! ?????(??; ?)¯¯¯?=0

3where the convergence of above sPeries strongly depends upon ~? ? ~?

~¯¯? and ¯ ~?? Considering that ~?? ~?? ~? and ~? are selected properly so

that

Eqs. (6?31)−(6?34) converge at ? = 1 then we have ?(?) = ?0(?) + ??(?)? ∞ ?=1 P∞ ?(?) = ?0(?) + ??(?)?

?=1 P∞ ?(?) = ?0(?) + ??(?)? ?=1 P∞ ?(?) = ?0(?) + ??(?)? ?=1 The general solutions can be expressed

below: P ??(?) = ??∗(?) + ?1 + ?2?? + ?3?−?? ??(?) = ??∗(?) + ?4 + ?5?? + ?6?−?? ??(?) = ?∗?(?) + ?

7?? + ?8?−?? ??(?) = ?∗?(?) + ?9?? + ?10?−?? in which the ??∗? ??∗, ?∗? and ?∗? indicate the

special solutions. (6.35) (6.36) (6.37) (6.38) (6.39) (6.40) (6.41) (6.42) 6.3 Convergence analysis and

discussion Clearly the homotopic series solutions (6?35) − (6?38) depend on the auxiliary parameters ~? ?

~? ? ~? and ~? ? These parameters have important role in the convergence of series solutions. For this

purpose, the ~−curves are drawn at 15?? order of approximations to determine the suitable ranges of

these auxiliary parameters. Fig. 6.1 shows that the acceptable values of ~? ? ~? ? ~? and ~? are −1?4 ≤

~? ≤ −0?20? −1?6 ≤ ~? ≤ −0?40 and −1?50 ≤ ~? ? ~? ≤ −0?30. Table 6.1 ensures the convergence of

homotopic

1series solutions in the whole region of ? when ~? = ~? = ~? = ~? = −0? 5? f ''?

0?, g ''?0?,

q'?0?,f'?0? 0.5 b1 = b = b* = g1 = g2 = 0.2, l = N = 0.5, Pr = Sc = 0.7 g''(0) f'(0) 0.0 -05. q'(0) f''(0) -10. -15.

-10. -0.5 0.0 hf,hg,hq,hf Fig. 6.1: ~−curves for the functions ?? ?, ? and ?? Table 6

2.1: Convergence of series solutions for different order of approximations

when

? = ?1 = ?∗ = 0?2? ?2 = ? = ? = 0?3? ?1 = 0?5? ?? = 1?0? ? ? = 1?2 and ~? = ~? = ~? = ~? = −0?5?

order of approximations −?00(0) −?00(0) −?0(0) −?0(0) 1 1.018 0.1497 0.3133 0.2228 5 1.029 0.06217

0.2782 0.2095 10 1.028 0.03940 0.2703 0.2067 15 1.029 0.03866 0.2702 0.2066 20 1.029 0.03982

0.2705 0.2066 25 1.029 0.03993 0.2705 0.2066 30 1.029 0.03993 0.2705 0.2066 Figs. 6.2-6.7 show the

effects of Deborah number ?1? mixed convection parameter ?? con- centration buoyancy parameter ? and

javascript:openDSC(3202323864, 943, '78272');
javascript:openDSC(101753, 14, '2326');
javascript:openDSC(105151, 14, '1394');
javascript:openDSC(47692527, 37, '10853');


7/3/2014 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=437813038&sid=0&n=0&m=0&svr=9&r=97.82056855037808&lang=en_us 64/97

internal heat source/sink parameter ?∗ on the velocity profiles ?0(?) and ?0(?)? Figs. 6.2 and 6.3 are

drawn to see the behavior of Deborah number ?1 on the velocity profiles ?0(?) and ?0(?)? It is found that

both the velocity profiles ?0(?) and ?0(?) decrease with an enhancement in ?1? It is also examined from

these Figs. that associ- ated boundary layer thicknesses are decreasing functions of ?1? This is due to

the fact that ?1 depends on relaxation time. Larger relaxation time offers more resistance to the flow due to

which the velocities are decreased. Figs. 6.4 and 6.5 are displayed to see the impact of mixed convection

parameter ? on the velocity profiles ?0(?) and ?0(?)? It is seen that both the velocity profiles ?0(?) and ?

0(?) increase with an enhancement in ?? Also momentum boundary layer thicknesses are increased with

an increase in ?? In fact an increase in ? enhances the buoyancy forces which are more dominant to

viscous forces. Variations of concentration buoyancy para- meter ? on the velocity profiles ?0(?) and ?0(?)

are displayed in the Figs. 6.6 and 6.7. Similar behavior of ? is noted on the velocity profiles ?0(?) and ?

0(?)? Figs. 6.8 and 6.9 are plotted to see the variations of internal heat source/sink parameter ?∗ and

heat transfer

2Biot number ?1 on the temperature ?(?)? Fig.

6.8 depicts that the

13thermal boundary layer thickness and temperature ?(?) are increasing

functions of

internal heat source parameter ?∗ ? 0 and decreasing functions of internal heat sink ?∗ ? 0? With an

increase in heat transfer Biot number ?1? both the thermal boundary layer thickness and temperature ?(?)

are enhanced (see Fig. 6.9). The reason is that as ?1 depends on heat transfer coefficient ? which leads

to an increase in temperature ?(?)? Figs. 6.10 is displayed to analyze the behavior of concentration ?(?)

for different values of mass transfer Biot number ?2. It is observed that as ?2 increases the associated

boundary layer thickness and concentration profile ?(?) grow. As mass transfer Biot number ?2 depends

on mass transfer coefficient ?∗ so with an enhancement in ?2 the mass transfer coefficient increases

which leads to an increase in concentration profile ?(?)? Impacts of mixed convection parameter ??

concentration buoyancy parameter ?? Deborah number ?1 and internal heat source/sink parameter ?∗ on

the local Nusselt number (−?0(0)) are displayed in the Figs. 6.11 and 6.12. It is found that local Nusselt

number (−?0(0)) enhances with an increase in ? and ? (see Fig.6.11). Local Nusselt number (−?0(0))

reduces with internal heat source parameter ?∗ ? 0 while it increases with internal heat sink parameter ?∗

? 0 (see Fig. 6.12). It is also noticed from Fig. 6.12 that local Nusselt number (−?0(0)) decreases with an

increase in ?1? Figs. 6.13 and 6.14 are sketched to see the variations of mixed convection parameter ??

concentration buoyancy parameter ?? Deborah number ?1 and internal heat source/sink pa- rameter ?∗

on the Sherwood number (−?0(0)). Fig. 6.13 shows that the Sherwood number (−?0(0)) increases with an

increase in ? and ?. Fig. 6.14 indicates that the Sherwood number (−?0(0)) increases by increasing

internal heat source ?∗ ? 0 while reverse effect is examined with an increase in Deborah number ?1? f'?h?

1.0 0.8 b = b* = g1 = g2 = 0.2, l = N = 0.5, Pr = Sc = 0.7 0.6 0.4 b1 = 0.0, 0.3, 0.6, 1.0 0.2 0 1 2 3 4 5 6 h

Fig. 6.2: Variation of ?1 on ?0(?)? g'?h? 0.20 b = b* = g1 = g2 = 0.2, l = N = 0.5, Pr = Sc = 0.7 0.15 0.10 b1

= 0.0, 0.3, 0.6, 1.0 0.05 1 2 3 4 5 6 h Fig. 6.3: Variation of ?1 on ?0(?)? f '?h? 1.0 0.8 b1 = b = b* = g1 =

g2 = 0.2, N = 0.5, Pr = Sc = 0.7 0.6 0.4 l = 0.0, 0.5, 1.0, 1.5 0.2 0 1 2 3 4 5 6 h Fig. 6.4: Variation of ? on ?

0(?)? g'?h? 0.20 b1 = b = b* = g1 = g2 = 0.2, N = 0.5, Pr = Sc = 0.7 0.15 0.10 l = 0.0, 0.5, 1.0, 1.5 0.05 1 2
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3 4 5 6 h Fig. 6.5: Variation of ? on ?0(?)? f '?h? 1.0 0.8 b1 = b = b* = g1 = g2 = 0.2, l = 0.5, Pr = Sc = 0.7

0.6 0.4 N = 0.0, 1.5, 3.0, 4.5 0.2 0 1 2 3 4 5 6 h Fig. 6.6: Variation of ? on ?0(?)? g'?h? 0.20 b1 = b = b* =

g1 = g2 = 0.2, l = 0.5, Pr = Sc = 0.7 0.15 N = 0.0, 1.5, 3.0, 4.5 0.10 0.05 1 2 3 4 5 6 h Fig. 6.7: Variation of

? on ?0(?)? q?h? 0.20 b = b1 = g1 = g2 = 0.2, l = N = 0.5, Pr = Sc = 0.7 0.15 0.10 b* = -0.4, -0.2, 0.0, 0.2,

0.4 0.05 1 2 3 4 5 6 h Fig. 6.8: Variation of ?∗ on ?(?)? q?h? 0.35 0.30 b = b1 = b* = g2 = 0.2, l = N = 0.5,

Pr = Sc = 0.7 0.25 0.20 0.15 g1 = 0.1, 0.2, 0.3, 0.4 0.10 0.05 1 2 3 4 5 6 h Fig. 6.9: Variation of ?1 on ?

(?)? f?h? 0.35 0.30 b = b1 = b* = g1 = 0.2, l = N = 0.5, Pr = Sc = 0.7 0.25 0.20 0.15 g2 = 0.1, 0.2, 0.3, 0.4

0.10 0.05 1 2 3 4 5 6 h Fig. 6.10: Variation of ?2 on ?(?)? -q'?0? 0.33 0.32 b1 = b* = g1 = 0.2, g2 = 0.3, Pr

= Sc = 0.7 0.31 N = 0.0, 0.5, 1.0, 1.5 0.30 0.29 0.28 1 2 3 4 5 6 7 l Fig. 6.11: Variations of ? and ? on −?

0(0)? -q'?0? 0.32 b* = 0.2, 0.1, 0.0, -0.1, -0.2 0.31 0.30 0.29 0.28 l = N = 0.5, g1 = 0.2, g2 = 0.3, Pr = Sc =

0.7 1 2 3 4 b1 Fig. 6.12: Variations of ?∗ and ?1 on −?0(0)? -f'?0? 0.295 b1 = b* = g1 = 0.2, g2 = 0.3, Pr =

Sc = 0.7 0.290 0.285 N = 0.0,0.5,1.0,1.5 0.280 0.275 1 2 3 4 5 6 7 l Fig. 6.13: Variations of ? and ? on −?

0(0)? ??'?0? 0.2748 l = N = 0.5, g1 = 0.2, g2 = 0.3, Pr = Sc = 0.7 0.2746 0.2744 0.2742 0.2740 0.2738 b1

= 0.1, 0.2, 0.3, 0.4 0.2736 * 1 2 3 4 b Fig. 6.14: Variations of ?1 and ?∗ on −?0(0)? 6.3.1 Conclusions

Three-dimensional mixed

1convection flow of Maxwell fluid over a stretching sheet

2with internal heat generation/ absorption is analyzed. Convective boundary

conditions for both heat and mass transfer are considered. The main observations are mentioned below. •

Variations of mixed convection parameter ? and concentration buoyancy parameter ? enhance the velocity

profiles and associated boundary layer thicknesses. • Velocity profiles and temperature increase in case of

internal heat source ?∗ ? 0 while these reduce for heat sink ?∗ ? 0? • Heat transfer Biot number ?1

16increases the thermal boundary layer thickness and

tem- perature. Also concentration and its associated boundary layer are enhanced with an increase in

mass transfer Biot number ?2? • The

7local Nusselt and Sherwood numbers have quite similar behaviors for increasing

values of

mixed convection parameter ?? concentration buoyancy parameter ? and Deborah number ?1. • Larger

values of heat sink parameter ?∗ ? 0 give rise to the local Nusselt number (−?0(0))? However Sherwood

number (−?0(0)) enhances with an increase in heat source ?∗ ? 0? Chapter 7 Soret and Dufour effects in

three-dimensional

2flow of Maxwell fluid with chemical reaction and convective condition
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This chapter addresses the

11heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a

stretching

2surface with convective boundary conditions. Mass transfer is considered in

the

presence of first order chemical reaction.

1Soret and Dufour effects in the conservation law of

energy and concentration are considered. Convergent series solutions to the resulting nonlinear problems

are developed. Plots of physical quantities of interest are analyzed. 7.1 Problems formulation

3We consider the steady three -dimensional flow of an incompressible Maxwell

fluid induced by a stretching surface

at ? = 0? The flow takes place in the domain ? ? 0? The ambient fluid temperature is taken as ?∞ while the

surface temperature is maintained by convective heat transfer. Soret and Dufour effects in presence of

mixed convection flow are taken into account. In addition the effect of first order chemical reaction in mass

transfer is taken under consideration. Flow diagram is as follows: Fig. 7.1: Geometry of the problem The

governing boundary layer equations for three-dimensional flow of Maxwell fluid can be written as ?? ?? ??

?? ?? ?? = 0? + + (7.1) ? ?? ?? ?? ?2? ?2 ??2??2 + ?2 ??2??2 + ?2 ??2??2 + 2?? ???2??? ?? + ? ?? +

? ?? = ? ??2 − ?1 � +2?? ???2??? + 2?? ???2??? � +??? (? − �?∞) + ???(? − ?∞)? � ? ?? ?? ?? ?2?

?? + ? ?? + ? ?? = ? ??2 − ?1 ?2 ???2?2 + ?2 ??2??2 + ?2 ??2??2 + 2?? ???2??? + � 2?? ???2??? +

2?? ???2??? � ? � � ? ?? ?? ?? ?2? ???? ?2? + ? ?? 2 ?? 2 ?? + ? ?? + ? ?? = ? ??2 ???? ??2 ??? Ãµ

?? + + ? ¶ µ ?? ¶ ! ? ?? ?? ?? ?2? ???? ?2? ?? + ? ?? + ? ?? = ?? ??2 ?? ??2 − ?1(? − ?∞)? + (7.2) (7.3)

(7.4) (7.5) In Eqs. (7?1) − (7?5) the respective velocity components in the ?−? ?− and ?−directions are

denoted by ?? ? and ?, ?1 shows the relaxation time, ? the fluid temperature, ? the thermal diffusivity of

fluid, ? = (???) the kinematic viscosity, ? the dynamic viscosity of fluid, ? the concentration field, ?? the

mass diffusivity, ?? the thermal diffusion ratio, C? the specific heat, C? the concentration susceptibility and

? the density of fluid. The boundary conditions appropriate to flow under consideration are given by ? = ??

= ??? ? = ??? ? = 0? − ? ?? = ?(?? − ? ), ? = ?? at ? = 0? ?? (7.6) ? → 0? ? → 0? ? → ?∞? ? → ?∞ as ?

→ ∞? (7.7) where ?∗ indicates the thermal conductivity of fluid, ?? is the hot fluid temperature, ?∞ the

ambient concentration and ? and ? have dimension inverse of time. We now define ? = ???0(?)? ?=???

0(?)? ?=− ??(?(?)+?(?))? √ ?(?) = ??? −−??∞∞ ? ? = ? ? r ? ? ?(?) = ?? − ?∞ ? − ?∞ ? (7.8) Now the use

of above variables satisfy Eq. (7.1) automatically while Eqs. (7.2)-(7.7) are reduced as follows: ?000 + (? +

?)?00 − ?02 + ?1[2(? + ?)?0?00 − (? + ?)2?000] + ?(? + ??) = 0? ?000 + (? + ?)?00 − ?02 + ?1[2(? + ?)?

0?00 − (? + ?)2?000] = 0? ?00 + ??(? + ?)?0 + Pr???00 + Pr(?1?002 + ?2?002) = 0? ?00 + ??(? + ?)?0 −

???∗? + ?????00 = 0? ? = 0? ? = 0? ?0 = 1? ?0 = ?, ?0 = −?1(1 − ?(0))? ? = 1 at ? = 0? ?0 → 0? ?0 →
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0? ? → 0? ? → 0 as ? → ∞? (7.9) (7.10) (7.11) (7.12) (7.13) (7.14) ?1 = ?1?? ?=?R?e?2?? ???=???(???

−2?∞)?3? ?=????((????−−??∞∞))???= ? ? ? ?? = ? ?? = ? ??∗ = ?1?? = ???1 = ?∗r ? ? ? ?? ? ? ?

(7.15) ???????? ((????−−??∞∞)?)? ?? = ??????? ((????−−??∞∞))??1 = ??(???2?−2?∞)??2 = ??(???2?

−2?∞) Here ?1 is the Deborah number, ? the mixed convection parameter, ??? the local Grashof number,

? the concentration buoyancy parameter, ? ? the Prandtl number, ?? the Dufour number, ?? the Soret

number, ?1 and ?2 the Eckert numbers along the ? and ? directions respectively, ?? the Schmidt number,

?∗ the chemical reaction parameter, ? the ratio of rates parameters and ?1 the Biot number. All

parameters are defined in a sequence in which they are written and prime shows the differentiation with

respect to ?. Local Nusselt (dimensionless temperature gradient at the surface) and local Sherwood (di-

mensionless concentration gradient at the surface) numbers in dimensionless forms are given by ?????

1??2 = −?0(0)? (7.16) ?????1??2 = −?0(0)? (7.17) in which ??? = ????? is the local Reynolds number.

7.2 Homotopy analysis solutions The initial approximations and auxiliary linear operators required for

homotopy analysis solu- tions are presented below i.e. ?0(?) = 1 − ?−? ? ?0(?) = ? 1 − ?−? ? ?0(?) = ?

11ex+p(?−1?) ? ?0(?) = exp(−?) (7.18) ¡ ¢ ¡ ¢ L? = ?000 − ?0? L? = ?000 − ?0? L? = ?00 − ?? L? = ?00 −

?? (7.19) with the following properties of the defined operators in Eq. (7.18) i.e. L?(?1 + ?2?? + ?3?−?) =

0? L?(?4 + ?5?? + ?6?−?) = 0? L?(?7?? + ?8?−?) = 0? L?(?9?? + ?10?−?) = 0 (7.20) where ?? (? = 1 −

10) indicate the

2arbitrary constants. The corresponding problems at the zeroth order are

given in the following forms: (1 − ?) L? ?ˆ(?; ?) − ?0(?) = ?~? N? ?ˆ(?; ?)? ?ˆ(?; ?) ? (7.21) h i h i (1 − ?) L?

[?ˆ(?; ?) − ?0(?)] = ?~?N? ?ˆ(?; ?)? ?ˆ(?; ?) ? (7.22) (1 − ?) L? ˆ?(?; ?) − ?0(?) = ?~?N?

29?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?? ?)? ?ˆ(?? ?) ? h i

(7.23) (1 − ?) L? ?ˆ(?; ?) − ?0(?) = ?~?N? ?ˆ(?; ?)? ?ˆ(?; ?)? ˆ?(?? ?)? ?ˆ(?? ?) ?

25h i h i (7.24) h i h i

18?ˆ(0; ?) = 0? ?ˆ0(0; ?) = 1? ?ˆ0(∞; ?) = 0? ?ˆ(0; ?) = 0? ?ˆ0(0; ?) = ?? ?ˆ0(∞; ?) =

0? ?ˆ0(0? ?) = −?1[1 − ?(0? ?)]? ˆ?(∞? ?) = 0? ?ˆ(0? ?) = 1? ?ˆ(∞? ?) = 0 (7.25) N?

[?ˆ(?? ?)? ?ˆ(??

?)] = N

9?[?ˆ(?? ?)? ?ˆ(?? ?)] = ?3?ˆ(?? ?) ??ˆ(?? ?) 2 ??3 − Ã ?? ! + (?ˆ(?? ?) + ?ˆ(??

?)) ?2?ˆ(?? ?) ??2 +? 1 � 2 (?ˆ(?? ?) + ?ˆ(?? ?)) ??ˆ?(????) ?2 ??ˆ(?? 2??) −(?

ˆ(?? ?) + ?ˆ(?? ?))2 ?3 ??ˆ(?? 2??) � +? ?ˆ(?? ?) + ? ?ˆ(?? ?) ? � � (7.26) ³ ´ ?3ˆ?

(?? ?) ??ˆ(?? ?) 2 + (?ˆ(?? ?) + ?ˆ(?? ?))?2 ?ˆ(?? ?) ??3 − ?? ¶ ??2 +? 2 (?ˆ(?? ?)

+ ?ˆ(?? ?))??ˆ?(????) ?2 ??ˆ(?? 2??) µ 1� −(?ˆ(?? ?) + ?ˆ(?? ?))2 ?3 ??ˆ(??
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2??) � ? (7.27) � �

32N?[?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)] = N ?[?ˆ(?? ?)? ?ˆ(?? ?)? ?ˆ(?? ?)?

?ˆ(?? ?)] = ?2ˆ?(?? ?) + Pr (?ˆ(?? ?) + ?ˆ(??

?))

17?ˆ?(?? ?) ??2 ?? + Pr ?? ??2 ?2 ?ˆ(?? ?) 2 + Pr � +?2³ ?2 ??ˆ(??2??)´ 2 � ? ?1

?2 ??ˆ(??2??)� � ³ ´ � � ?2ˆ?(?? ?) + ??(?ˆ(?? ?) + ?ˆ(?? ?)) ??ˆ(?? ?) ??2

?? −???∗?ˆ(?? ?) + ???? ?2ˆ?(?? ?) ? ??2 (7.28) (7.29) Here ?

4is an embedding parameter, ~?? ~?, ~? and ~? are the non-zero auxiliary

parameters and N?? N?, N? and N? indicate the nonlinear operators. When ? = 0

and ? = 1 one has

12?ˆ(?;0) = ?0(?)? ˆ?(??0) = ?0(?)? ?ˆ(??0) = ?0(?) ?ˆ(?; 1) = ?(?)? ˆ?(?? 1) = ?

(?)? ?ˆ(?? 1) = ?0(?)

? (7.30) Clearly when ? is increased from 0 to 1 then ?(???)? ?(???), ?(???) and ?(???) vary from ?0(?)?

?0(?)? ?0(?) and ?0(?) to ?(?)? ?(?)? ?(?)and ?(?)? By Taylor’s expansion we have ?(???)=?0(?)+?=1??

(?)??? ??(?)= ?1! ?????(??;?)¯?=0 ∞ ? (7.31) ?(???)=?0(?)+?=1??(?)??? ??(?)= ?1! ?????(??;?)¯¯?=0

¯ ∞ ? (7.32) P ¯ ?=P1??(?)??? ??(?)= ?1! ?????(??;?)¯?¯¯=0 ∞ ¯ ?(?? ?) = ?0(?) ? (7.33) P ¯ ?(?? ?) =

?0(?) ∞ ? (7.34) ?=1 ??(?)??? ??(?) = ?1! ?????(??; ?)¯¯¯?=0

3where the convergence of above sPeries strongly depends upon ~? ? ~?

~¯¯? and ¯ ~?? Considering that ~?? ~?? ~? and ~? are selected properly so

that

Eqs. (7?31)−(7?34) converge at ? = 1 then we can write ?(?) = ?0(?) + ??(?)? ∞ (7.35) ?=1 ?(?) = ?0(?) +

P∞ ??(?)? (7.36) ?=1 ?(?) = ?0(?) + ??(?)? (7.37) P∞ ?=1 ?(?) = ?0(?) + ??(?)? ?=1 (7.38) P∞ P The

resulting problems at mth order deformation can be constructed as follows: L?[??(?) − ????−1(?)] = ~?R??

(?)? (7.39) L?[??(?) − ????−1(?)] = ~?R??(?)? (7.40) L?[??(?) − ????−1(?)] = ~?R??(?)? (7.41) L?[??(?)

− ????−1(?)] = ~?R??(?)? (7.42) ??(0) = ??0(0) = ??0(∞) = 0? ??(0) = ?0?(0) = ??0(∞) = 0? ?0?(0) − ?

1??(0) = ??(∞) = 0? ??(0) = ??(∞) = 0? (7.43) ?−1 ?−1 R??(?) = ??000−1(?) − ??0−1−???0 + (??−1−???

00 + ??−1−???00) ?=0 ?=0 +?1 ?−1 ? P 2(??−1−? + ??−1−?)??0−???00 − (??−1−???−? + ??−1−???−? +

2??−1−???−?)??000 P ?=0 ?=0 +? ?P?−1P+¡? ??−1 ? (7.44¢) ¡ ¢ R??(?) = ??000−1(?) − ?0?−1−??0? +

(??−1−??0?0 + ??−1−??0?0) ?−1 ?−1 ?=0 ?=0 +?1 ?−1 ? P [2(??−1−? + ??−1−?)??0−??0?0 P ?=0 ?=0 −
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(??P−1−P???−? + ??−1−???−? + 2??−1−???−?)?0?00]? (7.45) R??(?) = ?0?0−1 + ? ? (?0?−1−??? + ?0?

−1−???) + Pr ?? ??−1 ?−1 00 ?=0 ?−1 + Pr ?1 ?−P1 ??00−1−???00 + ?2 ??00−1−???00 ? µ ?=0 ?=0 P P

¶ R??(?) = ?0?0−1 + ?? (?0?−1−??? + ?0?−1−???) − ???∗? + ??????−1? ?−1 00 ?=0 P ?? = 0? ? ≤ 1?

� 1? ? ? 1? Solving the above mth order deformation problems we have � ??(?) = ??∗(?) + ?1 + ?2?? + ?

3?−?? ??(?) = ??∗(?) + ?4 + ?5?? + ?6?−?? ??(?) = ?∗?(?) + ?7?? + ?8?−?? ??(?) = ?∗?(?) + ?9?? + ?

10?−?? in which the ??∗? ??∗, ?∗? and ?∗? indicate the special solutions. (7.46) (7.47) (7.48) (7.49)

(7.50) (7.51) (7.52) 7.3 Analysis and discussion Obviously the homotopic solutions (7?35) − (7?38) involve

the auxiliary parameters ~?? ~? ~? and ~?. These parameters have pivotal role in adjusting and controlling

the convergence of homotopic solutions. Hence the ~−curves are displayed at 18?? order of

approximations in order to determine the suitable ranges of ~?? ~? ~? and ~?. Fig. 7.2 witness that the

admissible values of ~?? ~? ~? and ~? here are −1?25 ≤ ~? ≤ −0?50? −1?25 ≤ ~? ≤ −0?50, −1?40 ≤ ~? ≤

−0?25 and −1?20 ≤ ~? ≤ −0?75? Table 7.1 ensures that the developed

1series solutions converge in the whole region of

? when ~? = ~? = ~? = ~? = −1? Table 7.1:

1Convergence of series solutions for different order of approximations when

?1 = 0?2? ? = 0?3? ?? = 1?0? ?? = 0?4? ?? = 0?5? ?? = 0?5? ?∗ = 0?3? ?1 = 0?6 and ~? = ~? = ~? = ~?

= −1?0? order of approximations 1 5 10 15 20 25 30 35 −? 00 (0) 1.1215 1.1323 1.1323 1.1323 1.1323

1.1323 1.1323 1.1323 −?00 (0) 0.25735 0.25958 0.25951 0.25951 0.25951 0.25951 0.25951 0.25951 −?

0(0) 0.24141 0.22468 0.22127 0.22061 0.22045 0.22041 0.22040 0.22040 −?0 (0) 0.64583 0.56841

0.55948 0.55838 0.55820 0.55817 0.55816 0.55816 b1 = 0.4, l = N = 0.1,E1 = E2 = k* = Sr = 0.3, g1 = 0.6,

b = Df = 0.5, Pr = 1.0, Sc = 0.7 0.5 0 f''?0? g''?0? q'?0?

14f'?0? f''?0?, g''?0?, q '?0?, f'?0?

- 0.5 -1 - 1.5 -2 -1.5 -1 - 0.5 0 hf, hg, hq,hf Fig.7.2: ~−curves for the function ????? and ?? Figs. 7?3 and

7.4 depict the behaviors of mixed convection parameter ? and concentration buoyancy parameter ? on the

velocity profile ?0(?)? Fig. 7?3 is drawn to see the effect of mixed convection parameter ? on velocity

profile ?0(?)? It is noticed that momentum boundary layer thickness and velocity profile ?0(?) increase with

an increase in mixed convection parameter in case of assisting flow (? ? 0) while reverse effect is noted in

case of opposing flow (? ? 0)? This is due to the fact that buoyancy forces are more dominant to viscous

forces in case of assisting flow (? ? 0) while buoyancy forces reduce for opposing flow (? ? 0). Effect of

concentration buoyancy parameter ? on the velocity profile ?0(?) is analyzed in Fig. 7?4? It is seen that

both the momentum boundary layer thickness and velocity profile ?0(?) are increasing functions of

concentration buoyancy parameter ? . f '?h? 1 0.8 0.6 0.4 l = -0.3, 0.0, 0.3, 0.6 0.2 1 2 3 4 5 6 h Fig. 7.3:

Influence of ? on ?0(?) when ? = ?1 = ?2 = 0?3 and ?1 = 0?5? f '?h? 1 0.8 0.6 0.4 N = 0.0, 0.5, 1.0, 1.5 0.2

1 2 3 4 5 6 h Fig. 7.4: Influence of ? on ?0(?) when ? = ? = ?1 = ?2 = 0?3 and ?1 = 0?5? Figs. 7.5−7?9

examine the variation of Dufour number ??, Eckert numbers E1 and E2? mixed convection parameter ?

and concentration buoyancy parameter ? on the temperature ?(?)? Effect of Dufour number ?? on

temperature profile ?(?) is presented in Fig. 7.5. As Dufour effect pointed out the generation of energy flux
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by composition gradient, then the thermal boundary layer thickness and temperature ?(?) increase with an

increase in ??. Figs. 7.6 and 7.7 illustrate the effect of Eckert numbers ?1 and ?2 on the temperature ?(?)

along the ? and ? directions respectively? As the Eckert number expresses the relationship between the

kinetic energy in the flow and the enthalpy. It embodies the conversion of kinetic energy into internal

energy by work done against the viscous fluid stresses. Greater viscous dissipative heat causes a rise

13in the temperature and thermal boundary layer thickness. Fig. 7.8 is

drawn to see the influence of mixed convection parameter ? on

2the temperature ?(?)? Thermal boundary layer thickness

and temperature ?(?) decrease in case of assisting flow (? ? 0) while increase in case of opposing flow (?

? 0)? This is due to the fact that in case of assisting flow (? ? 0) the buoyancy forces are more dominant to

viscous forces which causes a reduction in the temperature ?(?) while in case of opposing flow (? ? 0) the

viscous forces are more dominant than buoyancy forces which in results enhances the temperature ?(?)?

Influence of concentration buoyancy parameter ? on the temperature ?(?) is seen in Fig. 7.9. It is found

that the associated boundary layer and temperature ?(?) is decreasing function of ?. q?h? 0.5 0.4 0.3 0.2

Df = 0.1, 0.3, 0.7, 1.0 0.1 1 2 3 4 5 6 h Fig. 7.5: Influence of ?? on ?(?) when ?1 = ?∗ = 0?5? ? ? = ?? =

0?5 ? = ?1 = ?2 = ? = ? = ?? = 0?3 and ?1 = 0?4? q?h? 0.5 0.4 0.3 0.2 E1 = 0.0, 0.3, 0.6, 0.9 0.1 1 2 3 4

5 6 h Fig. 7.6: Influence of ?1 on ?(?) when ?1 = ?∗ = 0?5? ? ? = ?? = 0?5, ? = ?? = ?2 = ? = ? = ?? = 0?3

and ?1 = 0?4? q?h? 0.4 0.3 0.2 E2 = 0.0, 0.3, 0.6, 0.9 0.1 1 2 3 4 5 6 h Fig. 7.7: Influence of ?2 on ?(?)

when ?1 = ?∗ = 0?5? ? ? = ?? = 0?5 ? = ?? = ?1 = ? = ? = ?? = 0?3 and ?1 = 0?4? q?h? 0.35 0.3 0.25 0.2

0.15 l = -0.5, 0.0, 0.5, 1.0 0.1 0.05 1 2 3 4 5 6 h Fig. 7.8: Influence of ? on ?(?) when ?1 = ?∗ = 0?5? ? ? =

?? = 0?5 ?? = ?1 = ?2 = ? = ? = ?? = 0?3 and ?1 = 0?4? q?h? 0.35 0.3 0.25 0.2 0.15 N = 0.0, 0.3, 0.6, 0.9

0.1 0.05 1 2 3 4 5 6 h Fig.7.9: Influence of ? on ?(?) when ?1 = ?∗ = 0?5? ? ? = ?? = 0?5 ?? = ?1 = ?2 = ?

= ? = ?? = 0?3 and ?1 = 0?4? Figs. 7.10-7.13 are sketched to see the effects of Soret number ???

generative/destructive chemical reaction ?∗? mixed convection parameter ? and concentration buoyancy

parameter ? on concentration profile ?(?)? Fig. 7.10 depicts the influence of Soret number ?? on concen-

tration profile ?(?)? As in Soret effect the temperature gradient causes the mass flux which in turn

enhances the concentration profile ?(?) and associated boundary layer thickness. Effect of

destructive/generative chemical reaction ?∗ on the concentration profile ?(?) is analyzed in Fig. 11. It is

found that in case of generative chemical reaction (?∗ ? 0) the reduction in ?(?) is noted while reverse is

in case of destructive chemical reaction (?∗ ? 0). Figs. 7.12 and 7.13 are presented to see the effects of

mixed convection parameter ? and concentration buoyancy parameter ? on the concentration profile ?(?)?

These Figs. show that ?(?) reduces with the increase in ? and ?. Also the associated boundary layer

thickness are decreasing functions of ? and ? . f?h? 1 0.8 0.6 0.4 0.2 Sr = 0.1, 0.3, 0.5, 0.7 1 2 3 4 5 6 h

Fig. 7.10: Influence of ?? on ?(?) when ?1 = ?∗ = 0?5? Pr = 0?5? ?1 = 0?4? ?? = ?1 = ?2 = ? = ? = ? = ??

= 0?3? f?h? 1 0.8 0.6 0.4 k* = -0.5, 0.0, 0.5, 1.0 0.2 1 2 3 4 5 6 h Fig. 7.11: Influence of ?∗ on ?(?) when ?

1 = 0?5? ? ? = ?? = 0?5? ?? = ?1 = ?2 = ? = ? = ? = ?? = 0?3 and ?1 = 0?4? f?h? 1 0.8 0.6 0.4 l = -0.5,

0.0, 0.5, 1.0 0.2 1 2 3 4 5 6 h Fig. 7.12: Influence of ? on ?(?) when ?1 = ?∗ = 0?5? ? ? = ?? = 0?5? ?? =

?1 = ?2 = ? = ? = ?? = 0?3and ?1 = 0?4? f?h? 1 0.8 0.6 0.4 N = 0.0, 0.3, 0.6, 0.9 0.2 1 2 3 4 5 6 h Fig.

7.13: Influence of ? on ?(?) when ?1 = ?∗ = 0?5? ? ? = ?? = 0?5? ?? = ?1 = ?2 = ? = ? = ?? = 0?3 and ?1

= 0?4? Table 7.1 presents the convergence of homotpic solutions. It is noted that computations are

sufficient for 15?? order iterations of velocity and 35?? order iterations of the temperature and
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concentration profiles for convergent series solutions. Tables 7.2 and 7.3 are prepared to analyze

1numerical values of local Nusselt and Sherwood numbers. The values of

−?0(0) and −?0(0) decrease by increasing Deborah number, mixed convection parameter and

concentration buoyancy parameter. Here −?0(0) increases by increasing Prandtl number and Biot number

while reverse is the case of −?0(0)? It is also found that −?0(0) decreases by increasing Eckert numbers

while opposite behavior of −?0(0)? Table 7.4 presents the comparison of −?00(0) and −?00(0) for various

values of ? in the limiting sense with ref. [13]. Table 7.5 ensures

4the values of local Nusselt number−?0(0) are in good agreement with

ref. [39] in a limiting sense. Table 7.2:

1Values of local Nusselt−?0(0) and Sherwood numbers−?0(0) for the different

values of the parameters

?1? ?? ??? ??? ??? ?∗? ?? and ?1 when ? = ? = ?1 = ?2 = 0?3. ?1 ? ? ? ?1 ?? ?? ?? ?∗ −?0(0) −?0(0)

0.0 0.2 0.7 0.4 0.5 0.4 0.5 0.3 0.16023 0.56411 0.2 0.15399 0.55548 0.4 0.14858 0.54795 0.2 0.0

0.14266 0.53103 0.2 0.15399 0.55548 0.4 0.16269 0.57666 0.2 0.2 0.4 0.13249 0.55814 0.8 0.16009

0.55462 1.2 0.17597 0.55212 0.2 0.2 0.7 0.2 0.098922 0.56163 0.4 0.15319 0.55548 0.6 0.18962

0.55150 0.2 0.2 0.7 0.4 0.0 0.20797 0.11228 0.5 0.15399 0.55548 1.0 0.11405 0.85681 0.2 0.2 0.7 0.4

0.5 0.0 0.15406 0.56553 0.5 0.15457 0.55288 1.0 0.15565 0.53984 0.2 0.2 0.7 0.4 0.5 0.5 0.2 0.19480

0.54212 0.5 0.15469 0.55287 1.0 0.084902 0.57214 0.2 0.2 0.7 0.4 0.5 0.5 0.5 0.0 0.18113 0.35157 0.3

0.15469 0.55212 0.5 0.14153 0.65090 Table 7.3:

1Values of local Nusselt−?0(0) and Sherwood numbers−?0(0) for the different

values of the parameters

?? ?? ?1 and ?2 when ?1 = ? = 0?2? ?? = ?? = 0?5, ?? = ?1 = 0?4? ? ? = 0?7 and ?∗ = 0?3. ? -0.3 0.0

0.3 0.3 ? 0.3 0.0 0.3 0.6 ?1 0.3 ?2 0.3 −?0(0) 0.0091701 0.091253 0.12419 0.11837 0.12444 0.12978 −?

0(0) 0.71369 0.73788 0.75068 0.74820 0.75042 0.75260 0.3 0.3 0.0 0.1 0.2 0.18952 0.16745 0.14557

0.73121 0.73772 0.74431 0.3 0.3 0.3 0.0 0.1 0.2 0.14414 0.13777 0.13110 0.74474 0.74657 0.74854

Table 7.4: Values of −?00(0) and −?00(0) with ? when ?1 = ? = ? = 0 with HPM (Ariel [13]) and exact

solution (Ariel [13]). ? −?00(0) −?00(0) HAM HPM[13] Exact[13] HAM HPM[13] Exact[13] 0.0 1 1 1 0 0 0 0.1

1.020260 1.017027 1.020260 0.066847 0.073099 0.066847 0.2 1.039495 1.034587 1.039495 0.148737

0.158231 0.148737 0.3 1.057955 1.052470 1.057955 0.243360 0.254347 0.243360 0.4 1.075788

1.070529 1.075788 0.349208 0.360599 0.349209 0.5 1.093095 1.088662 1.093095 0.465205 0.476290

0.465205 0.6 1.109946 1.106797 1.109947 0.590528 0.600833 0.590529 0.7 1.126397 1.124882

1.126398 0.724532 0.733730 0.724532 0.8 1.142488 1.142879 1.142489 0.866682 0.874551 0.866683

0.9 1.158254 1.160762 1.158254 1.016539 1.022922 1.016539 1.0 1.173720 1.178511 1.173721

1.173720 1.178511 1.173721 Table 7.5:
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3Values of local Nusselt number−?0(0) for different values

of ?∗?? and Pr in a limiting sense when ? = ? = ?1 = ?2 = ?? = ?? = ?∗ = 0?0 and ?1 = 0?6? ?1 ? Pr

Present Results Hayat et al [39] −?0(0) −?0(0) 0.0 0.5 1.0 0.330404 0.33040 0.3 0.321661 0.32160 0.8

0.308651 0.30799 1.2 0.299526 0.29873 0.4 0.0 0.287813 0.28908 0.4 0.316638 0.31664 0.7 0.330168

0.33017 1.0 0.340702 0.34070 0.4 0.5 0.7 0.282787 0.28279 1.2 0.340424 0.34042 1.6 0.368405

0.36840 2.0 0.388869 0.38887 7.4 Conclusions Three dimensional

2mixed convection flow of Maxwell fluid over a stretching surface with

convec- tive condition is investigated. Effects of chemical reaction and Soret and Dufour are analyzed. The

main observations are listed below. • Momentum boundary layer thickness and velocity profile ?0(?)

increase with the increase in ? and ?. • Concentration profile ?(?) is decreasing function of generative

chemical reaction parame- ter (?∗ ? 0) while increasing function of destructive chemical reaction (?∗ ? 0)

and Soret number ??. • Influences of ? and ? on ?(?) and ?(?) are qualitatively similar. • Thermal boundary

layer thickness and temperature field increase when ?? increases. • There are opposite effects of

1local Nusselt number and local Sherwood number when ??, ??? E1 and

E2 increase. • Local Nusselt and Sherwood numbers increase when ?∗, ?? and ?? are enhanced. • Effects

7of local Nusselt number and local Sherwood number for Pr, ??? ? and ? are

similar. Chapter 8 Radiative mixed convection

2flow of an Oldroyd-B fluid by an inclined stretching surface

Mixed convection

2flow of an Oldroyd-B fluid

in the presence of thermal radiation is investigated in this chapter. Flow is induced by an inclined

stretching surface. The

2boundary layer equations of an Oldroyd-B fluid

1in the presence of heat transfer are
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used. Appropriate transformations reduce the

2partial differential equations into the ordinary differential equations.

Computational analysis is performed for the convergent series solutions. The

4values of local Nusselt number are

numerically analyzed. Effects of various parameters involved in the velocity and temperature are

discussed. 8.1 Mathematical analysis Consider the steady two-dimensional mixed convection

2flow of an incompressible Oldroyd-B fluid by an inclined stretching surface. The

heat transfer is

considered

8in the presence of thermal radiation

using Rosseland approximation. Here

3?−axis is taken along the stretching surface and ?−axis normal to the ?−axis.

2Conservation laws of mass, linear momentum and energy

in absence of viscous dissipation give ?? ?? ?? ?? = 0? + (8.1) ? ???? + ? ???? = ? ??2??2 − ?1 ?2 ??

2??2 + ?2 ??2??2 + 2?? ???2??? ?3? ∙ ?3? ?? ?2? ?? ?2? ¸ +??2 ????2 + ? ??3 ?? ??2 ?? ??2 + ??? (?

− ?∞) cos ?? (8.2) ? − − ∙ ¸ ??? ? = ? ???? +????? ?? µµ16?3????∞3 +? ???? ? (8.3) µ ¶ ¶ ¶ where ?

and ?

1are the velocity components in the ?− and ?−directions,

?1 and ?2 are the relaxation and retardation times, respectively, ? = (???)

1is the kinematic viscosity, ?? is the Stefan-Boltzmann constant, ? is the fluid

temperature, ? is the fluid density, ? is the gravita- tional acceleration, ?? is

thermal expansion coefficient of temperature, ?? is the specific heat, ?? is the mean absorption coefficient
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and ? is the thermal conductivity. The appropriate boundary conditions are taken as follows: ? = ??? ? =

0? ? = ?? at ? = 0? ? → 0? ? → ?∞ as ? → ∞ with the surface temperature ?? by ??(?? ?) = ?∞ + ???

where ? and ? are the positive constants. If ? is the stream function then defining ? = ? √ r ? ?? ? = ????

(?)? ?(?) = ?? − ?∞ ? − ?∞ ? ? = ?? , ? = − ?? ?? ?? ? (8.4) (8.5) (8.6) (8.7) (8.8) the incompressibility

condition is clearly satisfied and the resulting problems for ? and ? satisfy the following equations ? 000 +

? ? 00 − ? 02 + ?1(2? ? 0? 00 − ? 2? 000) − ?2(? 002 − ? ? 0000) + ?? cos ? = 0? (8.9) 1 + 4? ?00 + Pr

??0 − ?0? = 0? (8.10) µ 3 ¶ ?(0) = 0? ?0(0) = 1? ?0(∞) → 0? ?(0) = 1? ?(∞) → 0? ¡ ¢ (8.11) In the above

expressions ?1 and ?2 are the Deborah numbers, ? is mixed convection parameter, ??? is the local

Grashof number, ??? is the Reynold number,

1Pr is the Prandtl number? ? is the radiation parameter and primes indicate the

differentiation with respect to ? i.e. ?1 = ?1?? ?2 = ?2?? ? = ?R?e?2? , ??? = ??(?? ?−2 ?∞)?3 , ??? = ?

2???22 ? Pr = ????? = (4???∞3)? ? (8.12) ??? Local Nusselt number ? ?? in terms of heat transfer ?? is

??? = ?(????−??∞) ? ?? = −? ? (8.13) µ ?? ?? ¶?=0 Above equation in dimensionless variables becomes

?????1??2 = −(1 + 4?) ?0(0)? 3 (8.14) Considering the set of base functions ?? exp(−??)|? ≥ 0? ? ≥ 0

(8.15) n o one can express that ∞ ∞ ??(?) = ??????? exp(−??)? (8.16)

28X?=0 X?=0∞ ∞ ??(?) = ??????? exp(−??)? (8.17) X?=0 X?=0

where ???? and ???? are the coefficients. Initial guesses ?0 and ?0 and auxiliary linear operators ~? and

~? are chosen as follows: ?0(?) = 1 − exp(−?)? ?0(?) = exp(−?)? (8.18) ?3? ?? ?2? L? = ??3 ?? ? L? = ??

2 − ?? − (8.19) where L? [?1 + ?2 exp(?) + ?3 exp(−?)] = 0? L? [?4 exp(?) + ?5 exp(−?)] = 0 (8.20) in which

?? (? = 1 − 5)

7are the arbitrary constants. Introducing ? ∈ [0? 1] as the embedding parameter

and ~? and ~? the non-zero auxiliary parameters, the deformation problems at

the

zeroth order are (1 − ?)L?[?ˆ(?? ?) − ?0(?)] = ?~?N? ?ˆ(?? ?)? ?ˆ(?? ?) ? (8.21) (1 − ?)L?[ˆ?(?? ?) − ?

0(?)] = ?~?N? ?ˆ(?? ?)? ˆ?(?? ?) ? h i (8.22) ??ˆ(?; ?) h ??ˆ(?; ?) i ?ˆ(?; ?) = 0? ?? = 1? ?? = 0? (8.23) ?=0

¯ ?=0 ?=∞ ¯ ?ˆ(?; ?) = 1?¯ ˆ?(?; ?) = 0? ¯ ¯ ¯ (8.24) ¯ ?=0 ¯ ¯ ?=∞ ¯ ¯ ¯ ?3

24?ˆ(?? ?) − ?ˆ(?? ?) ?2?ˆ(?? ?) ??ˆ(?? ?) 2 N? [?ˆ(?? ?)? ?ˆ(??

?)] = ??3 ??2 − Ã ?? ! +?1

242?ˆ(?? ?)??ˆ(???? ?) ?2 ??ˆ(?? 2? ?) − (?ˆ(?? ?))2 ?3 ?ˆ(?? ?) " ??3 # 2 +? 2

�Ã ?2 ?ˆ(?? ?) − ?ˆ(?? ?) ?4 ?ˆ(?? ?) ??2 ! ??4 � +?ˆ?(�??
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?) cos ?? � (8.25) N? 4 − ? (?; ?) ?? (?; ?) ? (8.26) h ?ˆ(?; ?)? ?ˆ(?; ?) = 1 + ? ?2ˆ??(??2? ?) +Pr ? (?; ?)

?? ?(??; ?) i µ 3 ¶ Ã ?? b b b b ! For ? = 0 and ? = 1, we have ? (?; 0) = ?0 (?) ? ? (?; 1) = ? (?) ? b ? (?;

0) = ?0 (?) ? ? (?; 1) = ? (?) b (8.27) (8.28) and when ? increases from 0 tbo 1 then ? (?; ?) and ?b(?; ?)

deform from ?0 (?) and ?0 (?) to ? (?) and ? (?) respectively. Further Taylor series expansion yields b b ∞

? (?; ?) = ?0 (?) + ?? (?) ??? (8.29) b ?X=1 ∞ ? (?; ?) = ?0 (?) + ?? (?) ??? (8.30) b ?X=1 ?? (?) = ?! ???

1 ??? (?; ?) ? ?? (?) = ?! ??? 1 ??? (?; ?) b ¯ ? (8.31) ¯ ¯?=0 b ¯?=0 ¯ The auxiliary parameters ~? and

~?

3are¯¯selected such that the series (8?29)¯¯ and (8?30) converge

¯ at ? = 1. Hence ∞ ?(?) = ?0(?) + ??(?)? ?X=1 ∞ ?(?) = ?0(?) + ??(?)? (8.32) ?X=1 The corresponding

problems at ??? order are given by L? [?? (?) − ????−1 (?)] = ~? R?? (?) ? L? [?? (?) − ????−1 (?)] = ~?

R?? (?) ? (8.33) ??(0) = 0? ??0(0) = 0? ??0(∞) = 0? ??(0) = 0? ??(∞) = 0? ??(0) = 0? ??(∞) = 0? (8.34)

R??(?) = ??000−1(?) + ?−1 ??−1−???00 − ??0−1−???0 00 ?=0 ?−1 P h ? i +?1 ??−1−? {2??0−???00 −

??−???000 − ???0−1(?) X?=0 X?=0 ?−1 ?−1 +?2{??0−1−? ??0 − ??−1−? ????) + ?? cos ?? (8.35) X?=0

X?=0 4 ?−1 R?? (?) = 1 + 3? ?0?0−1 + Pr ??−1−??0? − ??0−1−??? (8.36) µ ¶ ?X=0 ¡ ¢ ?? = 0? ? ≤ 1 ?

(8.37) 1? ? ? 1 The general solutions of Eq. (8.32) can be ¯written as follows: ??(?) = ??∗(?) + ?1 + ?2

exp(?) + ?3 exp(−?)? (8.38) ??(?) = ?∗?(?) + ?4 exp(?) + ?5 exp(−?)? (8.39) where the special solutions

are ??∗(?) and ?∗?(?) and ?2 = ?4 = 0? ?1 = −?3 − ??∗(0)? ?3 = ????∗?(?) ? ?=0 ?5 = −??∗(0)? ¯ ¯

(8.40) 8.2

1Convergence of the series solutions Clearly the

series solutions

7contain the non-zero auxiliary parameters ~? and ~?. Hence the ~? and

~? curves are plotted for 20th−order of approximation

1in order to find the admissible values of

~? and ~?. It is found that the admissible values of ~? and ~? are −1?4 ≤ ~?? ~? ≤ −0?25 (Fig. 8.1)? The

series given by Eq. (8?36) converges in the whole region of ? when ~? = ~? = −0?6? 0 l = 0.5, b1 = 0.2, b2

= 0.3, a = p?4, R = 0.3, Pr = 0.7 -0.2 f''?0? -0.4 q'?0? f''?0?, q'?0? -0.6 -0.8 -1 -1.2 -1.4 -1.5 -1.25 -1 -0.75

-0.5 -0.25 0 Ñf, Ñq Fig.8.1: ~−curves for the function ? and ?? 8.3

4Discussion This section examines the influence of physical parameters on the

velocity ?0(?) and

temperature ?(?)? Figs. 8.2 − 8?9 depict the graphical effects of inclination ?? Deborah numbers ?1 and ?

2 and mixed convection parameter ?. Figs. 8.2 and 8.3 depict that fluid velocity decreases while the fluid

javascript:openDSC(101753, 14, '2347');
javascript:openDSC(105151, 14, '1360');
javascript:openDSC(105153, 14, '4557');
javascript:openDSC(105151, 14, '1373');
javascript:openDSC(105147, 14, '464');


7/3/2014 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=437813038&sid=0&n=0&m=0&svr=9&r=97.82056855037808&lang=en_us 76/97

temperature

21increases with the increase of inclination parameter ?? It is also observed that

2momentum boundary layer thickness is a decreasing function of

? while

2thermal boundary layer thickness is an increasing function of

?? Figs. 8.4 and 8.5 are sketched to analyze the effect of relaxation time parameter ?1 on the velocity and

temperature. As the relaxation time parameter increases the velocity profile decreases while the

temperature profile is quite opposite to that of the velocity profile. Figs. 8.6 and 8.7 examine the influence

of mixed convection

27parameter ? on the velocity and temperature. The

fluid velocity and associated momentum boundary layer thickness increase by increasing ?? It is clear that

the temperature has opposite effect when compared with velocity. We also noticed that the fluid velocity

increases rapidly in comparison to the temperature with the increasing values of ?? Figs. 8.8 and 8.9

depict the effect of retardation time ?2 on the temperature and velocity fields. Here we observed that ?2

has quite opposite effect on the velocity and temperature. The fluid velocity increases with an increase in ?

2? b1 = 0.4, l = 0.5, b2 = 0.3, R = 0.3, Pr = 0.7 1 0.8 a = 0.0 a = p?6 0.6 a = p?4 a = p?3 f'?h? 0.4 0.2 0 0

2 4 6 8 10 h Fig. 8.2: Influence of sheet inclination ? on ?0(?)? b1=0.4,l=1.0,b2=0.2,R=0.5,Pr=0.7 1 0.8 a =

0.0 a = p?6 0.6 a = p?4 a = p?3

1q?h? 0.4 0.2 0 0 2 4 6 8 10 h

Fig. 8.3: Influence of sheet inclination ? on ?(?)? a = p?4, l = 1.0, b2 = 0.2, R = 0.5, Pr = 0.7 1 0.8 b1 = 0.0

b1 = 0.3 0.6 b1 = 0.6 b1 = 0.9 f '?h? 0.4 0.2 0 0 2 4 6 8 10 h Fig.8.4: Influence of Deborah number ?1 on ?

0(?)? a = p?4, l = 1.0, b2 = 0.2, R = 0.5, Pr = 0.7 1 0.8 b1 = 0.0 b1 = 0.3 0.6 b1 = 0.6 b1 = 0.9

1q?h? 0.4 0.2 0 0 2 4 6 8 10 h

Fig. 8.5: Influence of Deborah number ?1 on ?(?)? a = p?4, R = 0.5, b1 = 0.4, b2 = 0.2, Pr = 0.7 1 0.8 l =

-0.5

3l = 0.0 0.6 l = 0.5 l = 1.0
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f '?h? 0.4 0.2 0 0 2 4 6 8 10 h Fig. 8.6: Influence of mixed convection ? on ?0(?)? a = p?4, R = 0.5, b1 =

0.4, b2 = 0.2, Pr = 0.7 1 0.8 l = -0.5

3l = 0.0 0.6 l = 0.5 l = 1.0

1q?h? 0.4 0.2 0 0 2 4 6 8 10 h

Fig. 8.7: Influence of mixed convection ? on ?(?)? a = p?4, R = 0.5, Pr = 0.7, b1 = 0.4, l = 0.5 1 0.8 b2 =

0.0 b2 = 0.3 0.6 b2 = 0.6 b2 = 0.9 f '?h? 0.4 0.2 0 0 2 4 6 8 10 h Fig. 8.8:Influence of Deborah number ?2

on ?0(?)? a=p?4,R=0.5,Pr=0.7,b1=1.2,l=0.5 1 0.8 b2 = 0.0 b2 = 0.3 0.6 b2 = 0.7 b2 = 1.0

1q?h? 0.4 0.2 0 0 2 4 6 8 10 h

Fig. 8.9: Influence of Deborah number ?2 on ?(?)? Table 8.1 also shows

4that the series solutions converge for 20th -order of deformations for

both the velocity and temperature. Table 8.2 analyzes the

4numerical values of local Nusselt number for different values of ?1, ?2? ?? Pr

and

?? We note that the

3numerical values of local Nusselt number increase with the increase

of ?1? ?2? ? ? and such values decrease for ? and ?. Table 8.1:

2Convergence of homotopy solutions for different order of approximations

when

? = ??4? ?1 = 0?2? ? = 0?5? ?2 = 0?3? Pr = 0?7 and ? = 0?3? Order of approximation −?00(0) −?0(0) 1

0.69555 0.73000 05 0.75163 0.72503 10 0.75241 0.72457 15 0.75240 0.72457 20 0.75239 0.72456 25

0.75239 0.72456 30 0.75239 0.72456 Table 8.2: Local Nusselt number and skin friction coefficient ??−?1?

2 ??? for some values of ?1? ?? Pr? ?2 and ? when ? = ??4? ?1 ?2 ? ? ? ? −(1+ 43?) ?0(0) 0.0 0.2 0.5

0.7 0.3 0.73887 0.2 0.71284 0.4 0.72456 0.5 0.70528 0.2 0.0 0.70729 0.2 0.71925 0.4 0.72951 0.5

0.73413 0.2 0.0 0.66787 0.3 0.70324 0.5 0.71924 0.8 0.73869 0.5 0.3 0.43757 0.5 0.58961 0.7 0.71925

0.9 0.83472 0.7 0.0 0.84020 0.2 0.75419 0.5 0.66085 0.7 0.60959 8.4 Concluding remarks This chapter
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examines the effect of

1thermal radiation on the mixed convection flow of an Oldroyd-B fluid over an

inclined stretching sheet.

The main observations of this study are as follows. • Effect of mixed convection parameter ? on the velocity

and temperature are quite opposite. • Momentum and thermal boundary layers for ? have opposite effects.

• Decrease in temperature is more significant in comparison to velocity when Prandtl num- ber ? ?

increases? • Thermal

1boundary layer thickness is decreasing function of Prandtl number. • Deborah

numbers ?1 and ?2 have quite opposite effects for the velocity and temperature. Chapter 9 Mixed

convection flow of an Oldroyd-B

3fluid with power law heat flux and heat source

This chapter looks at the mixed convection

2flow of an Oldroyd-B fluid bounded by a porous

stretching surface. Mathematical formulation is developed

3in the presence of heat source and power law heat flux. Velocity and

temperature are computed. Plots for different parameters are analyzed.

3Numerical values of local Nusselt number

are examined. 9.1 Development of

3problems We consider the two-dimensional flow of an incompressible

Oldroyd-B fluid over a porous

sur- face.

3A Cartesian coordinate system is chosen in such a way that ?−axis is taken
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along the flow direction and the ?−axis perpendicular to the ?−axis. The fluid fills

the half space

? ? 0. Heat source is present and power law heat flux is imposed. Flow geometry is shown in Fig. 9.1. Fig.

9.1: Physical model of the problem The present boundary layer flow is governed by the following

expressions ?? ?? ?? ?? = 0? + (9.1) ? ?? + ? ?? ?? ?? = ? ??2??2 − ?1 ?2 ??2??2 + ?2 ??2??2 + 2??

???2??? ?3? ∙ ?3? ?? ?2? ?? ?2? ¸ +??2 ????2 + ? ??3 ?? ??2 ?? ??2 + ??? (? − ?∞)? (9.2) ? − − ∙ ¸ ?

?? ?? + ? ?? ??? ??2 ??? (? − ?∞)? ?? = ? ?2? + ? (9.3) In above equations ? and ?

1are the velocity components in the ?− and ?−directions,

?1 and ?2

3are the relaxation and retardation times respectively, ? the

gravitational acceleration, ?? the thermal expansion coefficient, ? = (???) the kinematic viscosity, ? the

fluid temperature, ? the

3density of fluid, ? the thermal conductivity of fluid, ?? the specific heat at

constant pressure and ? the heat source coefficient. The subjected boundary

conditions are

? = ??? ? = −?0? ???? = ??2 at ? = 0? ? = 0? ? = ?∞ as ? → ∞? where ?

3is the temperature coefficient and ?∞ is the ambient temperature. The

similarity transformations are given by (9.4) (9.5) ? = ???0(?)? ? = − ???(?)? ? = ?∞ + ? ?2?(?)? ? = √ ? ?

? (9.6) r ? r ? in which ?

3is a constant and prime denotes differentiation with respect to

?. Eq. (9?1) is automatically satisfied and the Eqs. (9.2-9.5) are reduced as follows ? 000 + ? ? 00 − ? 02 +

?1(2? ? 0? 00 − ? 2? 000) − ?2(? 002 − ? ? 0000) + ?? = 0? ?00 + ? ?? ?0 − 2? ?? 0? + ?∗? = 0? ? = ??

? 0 = 1? ?0 = 1 at ? = 0? ? 0 = 0? ? = 0 as ? → ∞? (9.7) (9.8) (9.9) (9.10) in which ?1 = ?1? and ?2 = ?2?

are the Deborah numbers? ? = ?R?e?2? the mixed convection parameter with ??? = ??? (??−2?∞)?3 the

local Grashof number and ??? = ??? the local Reynolds number, ? = √??0? the suction/injection

parameter, ? ? = ???? the Prandtl number and ?∗ = ????

3a heat generation/ absorption parameter. Expression of local Nusselt number
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? ?? is

??? = ?(??−???∞) ?? = −? ???? ¶?=0 ? ? (9.11) µ Dimensionless form of Eq. (9.11) is ? ????1??2 = − ?

(0) 1 ? (9.12) 9.2 Homotopy analysis solutions Choosing the following set of base functions {?? exp(−??)?

≥ 0? ? ≥ 0} (9.13) we express ? and ? as follows ∞ ∞ ?(?) = ?00?0 + ??????? exp(−??)? (9.14)

28X?=0 X?=0∞ ∞ ?(?) = ??????? exp(−??)? (9.15) X?=0 X?=0

where ????? and ????? are the

2coefficients. Initial approximations and auxiliary linear operators are taken in

the following forms

?0(?) = ? + 1 − exp(−?)? ?0(?) = − exp(−?)? L? = ? 000 − ? 0? L? = ?00 + ?0? L? (?1 + ?2?? + ?3?−?) =

0? L?(?4 + ?5?−?) = 0? (9.16) (9.17) (9.18) where ?? (? = 1 − 5) are the arbitrary constants. The

corresponding zeroth order deformation problems are developed in the following fash- ions. (1 − ?) L? ?

ˆ(?; ?) − ?0(?) = ??? N? ?ˆ(?; ?)? ˆ?(?? ?) ? (9.19) (1 − ?) L? ˆ?(?; ?) − ?0(?) = ???N? ?ˆ(?; ?)? ˆ?(?? ?) ?

h i h i (9.20)

12?ˆ(0; ?) = ?? ?ˆ0(0; ?) = 1? ?ˆ0(∞; ?) = 0? ˆ?0(0? ?) = 1? ˆ?(∞? ?) = 0?

h i h i (9.21) N?[?ˆ(???)] = ?3??ˆ(??3??)

17−?ˆ(???)?2??ˆ(??2??) ??ˆ(?? ?) 2− Ã ?? ! +?1 "2 ?ˆ(?? ?) ??ˆ(???? ?) ?2??

ˆ(??2? ?) − (?ˆ(?? ?))2 ?3 ??ˆ(?? 3? ?) # + (9 .22)

?2

31??ˆ(??2? ?) − ?ˆ(?? ?) 2 ?2�Ã ?4 ?ˆ(?? ?) ?ˆ?(??

?) ! ??4 � +? ? (9.23) ?? � � N

24?[ˆ?(?? ?)? ?ˆ(?? ?)] = ?2ˆ??(??2? ?) + ? ??ˆ(?? ?)?ˆ?(???? ?) − 2? ? ??

ˆ(???? ?)ˆ?(?? ?) + ?∗ˆ?(??

?)? (9.24)

3in which ? is an embedding parameter, ?? and ?? the non-zero auxiliary
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parameters and N? and N? the nonlinear operators. For ? = 0 and ? = 1 we have

?ˆ (?;0)

= ?0(?)? ˆ?(??0) = ?0(?) and ?ˆ(?;1) = ?(?)? ˆ?(??1) = ?(?)? (9.25) and when ? increases from 0 to 1 then

?(???) and ?(???) vary from ?0(?)??0(?) to ?(?) and ?(?)? Taylor’s series yields ? (?? ?) = ?0(?) + ??

(?)??? ∞ (9.26) ?=1 P∞ ?(?? ?) = ?0(?) + ??(?)??? (9.27) ?=1 1 ???(?;?) P 1 ???(?;?) ??(?) = ?! ??? ¯?

=0 ? ??(?) = (9.28) ?! ??? ¯?=0 ?

3where the convergence of above series str¯¯ongly depends upon ??

and¯¯???

The auxiliary para- ¯ ¯ meters ?? and ?? are selected in such a way that (9?26) and (9?27) converge at ?

= 1 and hence ?(?) = ?0(?) + ??(?)? ∞ ?=1 P∞ ?(?) = ?0(?) + ??(?)? ?=1 P The ?th

7-order deformation problems are constructed by the following expressions

L? [??(?) − ????−1(?)] = ?? R??(?)? (9.29) (9.30) (9.31) L?[??(?) − ????−1(?)] = ??R??(?)? ??(0) = ??

0(0) = ??0(∞) = 0? ?0?(0) − ???(0) = ??(∞) = 0? (9.32) (9.33) R??(?) = ??000−1(?) + ?−1 ??−1−???00 −

??0−1−???0 00 ?=0 ?−1 P h ? i +?1 ??−1−? {2??0−???00 − ??−???000 − ???0−1(?) X?=0 X?=0 ?−1 ?−1

+?2{??0−1−? ??0 − ??−1−? ????) + ???−1? (9.34) X?=0 ?X=0 ?−1 ?−1 R??(?) = ?0?0−1(?) + ? ? ?0?

−1−??? − 2? ? ??−1−???0 + ?∗??−1(?)? (9.35) ?=0 ?=0 P P ?? = 0? ? ≤ 1? � (9.36) 1? ? ? 1? If ??∗ and

?∗? are the special solutions then the general solutions are � ??(?) = ??∗(?) + ?1 + ?2?? + ?3?−??

(9.37) ??(?) = ?∗?(?) + ?4 + ?5?−?? (9.38) 9.3

1Convergence of the homotopy solutions The auxiliary parameters }? and }?

have significant role in

the convergence of developed series solutions. Here the }−curves are portrayed for 18?? order of

approximations in order to find the values of }? and }? ensuring convergence. Figs. 9.2 depict

2that the range of admissible values of }? and }? are −0?

8 ≤ }? ≤ −0?2 and −0?75 ≤ }? ≤ −0?2?

3The series solution converge in the whole region of ? when

}? = −0?4 and }? = −0?4? Table 9.1 depicts that 25?? order deformations are sufficient for both the

velocity and temperature expressions. -1 l = 0.1, S = 0.5, b1 = 0.2, b2 = 0.3, b* = 0.3, Pr = 0.5 -1.05 -1.1

f''?0?, q'?0? -1.15 -1.2 -1.25 -1.3 -1.35 f''?0? q'?0? -1 -0.8 -0.6 -0.4 -0.2 0 hf, hq Fig.9.2: ~−curves for the

function ? and ?? Table 9
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2.1. Convergence of homotopy solutions for different order of approximations

when

?1 = 0?2? ?2 = ?∗ = 0?3? ?? = ? = 0?5? ? = 0?1, }? = −0?4 and }? = −0?4? Order of approximation −?

00(0) 1 1.10000 5 1.19801 10 1.20255 15 1.20268 20 1.20271 25 1.20272 30 1.20272 9.4 Graphical

results and discussion −?00(0) 1.22000 1.34636 1.35611 1.35640 1.35642 1.35643 1.35643 The

2purpose of this section is to highlight the variations of interesting parameters

through Figs. 9.3−9?7 for velocity and temperature. Figs. 9.3 and 9?4 show the behaviors of

suction/injection parameter ?? Deborah number ?1 and mixed convection parameter ? on the velocity ?

0(?). Fig. 9.3 shows the effects of suction/injection parameter ? on the velocity profile ?0(?)? Here ? ? 0

corresponds to suction and ? ? 0 for injection case. We observed that the velocity ?0(?) is lower for

suction case in comparison to injection phenomenon. From physical point of view suction is an agent that

resists the fluid flow. Such resistance in fluid flow creates a reduction

7in the velocity field and associated boundary layer thickness.

Fig. 9?4 illustrates that both the

7fluid velocity and boundary layer thickness

decrease when mixed convection parameter is increased. Note that the mixed convection parameter

involves the buoyancy force. Buoyancy force is stronger for the larger mixed convection parameter and

weaker for the smaller mixed convection parameter. This stronger buoyancy acts as an agent to creates a

reduction in the velocity profile and momentum boundary layer thickness. f '?h? 1.0 0.8 0.6 b1 = 0.4, b2 = l

= 0.2, b* = 0.3, Pr = 0.5 0.4 0.2 S = -0.5, 0.0, 0.5, 1.0 0 1 2 3 4 5 6 h Fig. 9.3: Variation of ? on ?0(?)? f '?

h? 1.0 0.8 S=Pr=0.5,b1=0.4,b2=0.2,b*=0.3 0.6 0.4 0.2 l=-0.5,0.0,0.5,1.0 0 1 2 3 4 5 6 h Fig. 9.4: Variation

of ? on ?0(?)? Figs. 9?5−9?7 are displayed to examine the influence of arising parameters on

dimensionless temperature profile ?(?)? Fig. 9.5 presents the variations in temperature ?(?) for different

values of suction/injection parameter ?. From this Fig. it is analyzed that the temperature is higher for

injection case when we compared it with suction case. The effects of suction parameter ? on ?(?) is

qualitatively similar to that of the velocity.

4Both the temperature ?(?) and thermal boundary layer thickness

increase when mixed convection parameter ? increases (see Fig 9?6). Here buoyancy force is an agent

that creates an enhancement

13in the temperature and thermal boundary layer thickness.
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Influence of heat source ?∗ on ?(?) is presented in Fig. 9?7. Physically ?∗ ? 0 means that ?? ? ?∞ and in

this case heat is supplied to the flow region from the wall. The temperature boosts with heat source

parameter ?∗ ? 0 while reduction

4in thermal boundary layer thickness and

temperature is seen with heat sink parameter ?∗ ? 0. q?h? 0.0 S= -0.5,0.0, 0.5,1.0 - 0.5 - 1.0

Pr=0.7,b1=0.4,b2=l=0.2,b*=0.5 - 1.5 2 4 6 8 h Fig. 9.5: Variation of ? on ?(?)? q?h? 0.0 -0.2 -0.4

3Pr=0.7, b1 =0. 4,b2 =0.2,S=b*=0.

5 -0.6 l=-0.5, 0.0, 0.5, 1.0 -0.8 -1.0 1 2 3 4 5 6 h Fig. 9.6: Variation of ? on ?(?)? q?h? 0.0 -0.2 S = Pr =

0.5 , b1 = 0.4 , b2 = l = 0.2 -0.4 b* =-0.2, 0.0, 0.2, 0.3 -0.6 -0.8 1 2 3 4 5 6 h Fig. 9.7: Variation of ?∗ on ?

(?)? Table 9.2 shows that the local Nusselt number has quite opposite behavior for ?1 and ?2? The values

of Nusselt number increases by increasing ?∗? ?? and ?? However it decreases by increasing ?? Table.

9.3 ensures the validity of present results for ?00(0) in a limiting sense. Table 9.2: Values of local Nusselt

number ?????1??2 for the parameters ?1? ?2? ?∗? ??? ? when ? = 0?1? ?1 ?2 ?∗ Pr ? ? −?????1??2

0.0 0.3 0.3 0.5 0.5 0.1 1.20133 0.2 1.17496 0.4 1.14936 0?4 1?18647 0?5 1?19622 0?6 1?20463 −0?1

1?02500 −0?2 1?09798 −0?3 1?16099 0?6 1?27668 0?9 1?60523 1?2 1?91014 0?8 1?23081 1?0 1?

30323 1?5 1?45103 0?2 1?15381 0?4 1?13613 0?6 1?11294 Table 9.3: Comparison of ?00(0) for

different values of Maxwell parameter ?1 when ?2 = ? = ? = 0? Abel et al. [38] Present results ?1 −? 00(0)

−? 00(0) 0.0 1.00000 1.00000 0.2 1.051948 1.051889 0.4 1.101850 1.101903 0.6 1.150163 1.150137 0.8

1.196692 1.196711 1.2 1.285257 1.285363 1.6 1.368641 1.368758 2.0 1.447617 1.447651 9.5 Final

remarks This chapter deals with the

21mixed convection flow of Oldroyd-B fluid over a stretching sheet

with suction/injection, heat source/sink and power law heat flux. Effects of different involved parameters

such as mixed convection parameter ?

8and heat source/sink ?∗ on the flow

field and temperature are analyzed. The main observations are summarized as follows: • Velocity profile

2and momentum boundary layer thickness reduce in

case of suction ? ? 0 while these enhance in case of injection ? ? 0? •

2Thermal boundary layer thickness is increasing function of
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heat source parameter ?∗ ? 0 while it reduces with heat absorption parameter ?∗ ? 0? • Increase in mixed

convection parameter ? yields an enhancement

13in the temperature and thermal boundary layer thickness

while reduction in

2heat transfer rate at wall is

noted. • Behaviors of Deborah numbers ?1 and ?2 on the

2heat transfer rate at the wall are opposite? Heat transfer rate at wall

increases with the heat absorption ?∗ ? 0 and suction parame- ters ? ? 0? Chapter 10

1Soret and Dufour effects in mixed convection flow of an Oldroyd-B fluid

4with convective boundary conditions This chapter investigates the effects of

6heat and mass transfer in the mixed convection

1flow of an Oldroyd-B fluid over a stretching surface with convective boundary

conditions.

Emphasis is given to the analysis of Soret and Dufour effects. Relevant problems are first formulated and

then computed by the homotopy analysis method (HAM). Velocity, temperature and con- centration fields

are computed and analyzed through plots. In addition, the local Nusselt and Sherwood numbers are

examined through the numerical values. 10.1 Mathematical model We choose ?−axis

14along the stretching surface in the flow direction and y-axis is taken perpen-

dicular to the

surface. An incompressible Oldroyd-B fluid is considered. The surface satisfies the convective boundary

conditions. Further, the Soret and Dufour effects are taken into account. The resulting boundary layer

equations for flow of an Oldroyd-B fluid are ?? ?? ?? ?? = 0? + (10.1) ? ?? + ? ?? = ? ?? ?? ??2??2 − ?1 ?
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2 ??2??2 + ?2 ??2??2 + 2?? ?2? ???? ?3? ∙ ?3? ?? ?2? ?? ?2? ¸ +??2 ????2 + ? ??3 ?? ??2 ?? ??2 ? −

− +?[?? (? − ?∞) + ??(? − ?∞)]? ∙ ¸ (10.2) ? ?? ?? ?2? ???? ?2? ?? + ? ?? = ?? ??2 ???? ??2 + ? (10.3) ?

?? ?? ?2? ???? ?2? ?? + ? ?? = ?? ??2 ?? ??2 + ? (10.4) where ? and ? denote the

7velocity components in the ?− and ?−directions respectively, ?1 and ?2 the

relaxation and retardation times respectively, ? the fluid temperature, ? the con- centration field, ? the

kinematic viscosity, ? the fluid density, ?? the mass diffusivity, ?? the thermal conductivity, ?? the thermal-

diffusion ratio, ?? the specific heat, ?? the concentration susceptibility, ?? the fluid mean temperature and

? the fluid electrical conductivity. The boundary conditions are expressed in the following forms ? = ??(?) =

??? ? = 0? − ? ?? = ?(?? − ? )? ? = ?? at ? = 0? ?? (10.5) ? → 0? ? → ?∞? ? → ?∞ as ? → ∞ (10.6) in

which ?? denotes the convective fluid temperature, ?∞ the ambient temperature and ? the thermal

conductivity. Setting the following transformations ? =? ? ? ? = ???0(?)? ? = − ???(?)? ?(?) = ? − ?∞ ? ?(?)

= ? − ?∞ √ ?? − ?∞ ? (10.7) r ? ?? − ?∞ incompressibility condition (10?1) is automatically satisfied and the

other equations give ? 000 + ? ? 00 − ? 02 + ?1(2? ? 0? 00 − ? 2? 000) − ?2(? 002 − ? ? 0000) + ?? + ??

? = 0? (10.8) ?1? ?00 + ? ?0 + ?? ?00 = 0? ?00 + ??? ?0 + ???00 = 0? (10.9) (10.10) ? (0) = 0? ? 0(0) =

1? ? 0(∞) = 0? (10.11) ?0(0) = −?1(1 − ?(0))? ?(∞) = 0? (10.12) ?(0) = 1? ?(∞) = 0? (10.13) In above

expressions the prime indicates the differentiation with respect to ?? ?1 = ?1? and ?2 = ?2? are the

Deborah numbers? ? = ?R?e?2? the mixed convection parameter with ??? = ???(??−2?∞)?3 as the

Grashof number, ??? = ?? the local Reynold number, ?? = ???? the ? Prandtl number, ?1 = (???) ??? the

Biot number, ?? = ???? the

26Schmidt number, ?? the Dufour number and ?? the Sporet number.

The definition of ??and ?? are ?? = ???????? ((????−−??∞∞)?) ? ?? = ???? (?? − ?∞) ??? (?? − ?∞) ?

(10.14) Local Nusselt and local Sherwood numbers in dimensionless coordinates are expressed as follows:

??(???)−1?2 = −?0(0)? (10.15) ??(???)−1?2 = −?0(0)? (10.16) In the next section we will develop the

homotopy solutions for the resulting problems. 10.2 Series solutions The initial guesses and auxiliary linear

operators are taken as ?0(?) = (1 − ???(−?))? ?0(?) = ?11ex+p(?−1?)? ?0(?) = exp(−?) + exp(−?)? ? 2

(10.17) ?3? ?? ?2? L? = ??3 ?? ? L? = ??2 − ?? L? = ??2 − ?? − ?2? (10.18) L? [?1 + ?2 exp(?) + ?3

exp(−?)] = 0? (10.19) L? [?4 exp(?) + ?5 exp(−?)] = 0? L? [?6 exp(?) + ?7 exp(−?)] = 0? (10.20) in which

?? (? = 1 − 7) denote the arbitrary constants. 10.2.1 Zeroth and mth order deformation problems Having

the non-linear operators N? ? N? and N? in the forms N?

9[?ˆ(?? ?)? ˆ?(?? ?)] = ?3?ˆ(?? ?) − ?ˆ(?? ?) ?2 ?ˆ(?? ?) ??ˆ(?? ?) 2

??3 ??2 − Ã ?? ! +?1 "2?ˆ(?? ?) ??ˆ(???? ?) ?2??ˆ(??2? ?) − (?ˆ(?? ?))2 ?3??ˆ(??3? ?) # +? ?4?ˆ(?? ?) 2

�Ã ?2?ˆ(?? ?) − ?ˆ(?? ?) 2 ??2 ! ??4 � +?ˆ?(�?? ?) + ?? ?ˆ(?? ?)? � (10.21) N?[?ˆ(?? ?)? ˆ?(?? ?)? ?

ˆ(?? ?)] = ?1? ?2ˆ??(??2? ?) + ?ˆ(?? ?) ?ˆ?(?? ?) ?? + ?? ??2 ?2?ˆ(?? ?) ? N?[?ˆ(?? ?)? ˆ?(?? ?)? ˆ?(??

?)] = ?2?ˆ?(??2? ?) + ???ˆ(?? ?)??ˆ?(??? ?) ?2ˆ?(?? ?) + ???? ? ??2 (10.22) (10.23) the corresponding

problems at the zeroth and ?th orders can be expressed as follows: (1 − ?)L?[?ˆ(?? ?) − ?0(?)] = ?}?N?[?

ˆ(?? ?)? ˆ?(?? ?)? ?ˆ(?? ?)]? (10.24) (1 − ?)L?[ˆ?(?? ?) − ?0(?)] = ?}?N?[?ˆ(?? ?)? ˆ?(?? ?)? ˆ?(?? ?)]?

(10.25) (1 − ?)L?[ˆ?(?? ?) − ?0(?)] = ?}?N?[?ˆ(?? ?)? ˆ?(?? ?)? ?ˆ(?? ?)]? (10.26) ?ˆ(?; ?) = 0? ? ?) = 1? ?
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?) = 0? ?=0 ?? ¯ ?=0 ?? ?=∞ ?ˆ0(?; ?) = −?[1 − ˆ?(?¯; ?) ]? ˆ?(?; ?) ¯ = 0? ¯ ¯ ¯ ?=0 ?=0 ¯ ¯ ?=∞ ¯ ¯ ¯ ¯

¯ (10.27) (10.28) ?ˆ(?; ?) = 1? ˆ?(?; ?) ?=0 ?=∞ = 0? L? [??(?¯) − ????−1(?)] =¯ }? R??(?)? ¯ ¯ ¯ L?[??

(?) − ????−1(?)] = }?R??(?)? L?[??(?) − ????−1(?)] = }?R??(?)? (10.29) (10.30) (10.31) (10.32) ??(0) =

0? ??0(0) = 0? ??0(∞) = 0? ?0?(0) − ???(0) = 0? ??(∞) = 0? ??(0) = 0? ??(∞) = 0? (10.33) R??(?) = ??

000−1(?) + ?−1 ?=0 ??−1−???00 − ??0−1−???000 ?−1 P h ? i +?1 ??−1−? {2??0−???00 − ??−???000 −

???0−1(?) X?=0 ?−1 X?=0 ?−1 +?2{??0−1−? ??0 − ??−1−? ????) + ??0?−1(?) + ??1?0?−1(?)? (10.34)

X?=0 X?=0 1 ?−1 R??(?)= ???0?0−1(?)+ ??−1−??0?+???0?0−1(?)? X?=0 ?−1 R??(?) = ?0?0−1(?) + ??

??−1−??0? + ???0?0−1(?)? X?=0 ?? = 0? ? ≤ 1 1? ? ? 1? (10.35) (10.36) (10.37) where ? [0?1] is an

embedding parameter¯and }?? }? and }? are the nonzero auxiliary para- ∈ meters. Taylor’s series gives ?

ˆ(?; ?) = ?0(?) + ??(?)??? ??(?) = ?1! ????ˆ?(??; ?) ∞ ¯ ? ?X=1 ¯?=0 ¯ ¯ ?ˆ(?; ?) = ?0(?) + ??(?)??? ??

(?) = ?1! ???ˆ??(??; ?) ∞ ¯ ¯ ? ?X=1 ¯?=0 ¯ ¯ ¯ (10.38) (10.39) ?ˆ(?; ?) = ?0(?) + ??(?)??? ??(?) = ?1!

????ˆ?(??; ?) ∞ ? (10.40) ?X=1 ¯?=0 ¯ and when ? = 0 and ? = 1 then ¯ ¯ ¯ ?ˆ(?;0) = ?0(?)? ?ˆ(?;1) = ?

(?)? (10.41) ?ˆ(?;0) = ?0(?)? ˆ?(?;1) = ?(?)? (10.42) ?ˆ(?;0) = ?0(?)? ?ˆ(?;1) = ?(?)? (10.43) We choose

the auxiliary parameters in such a way that the series solutions converge for ? = 1 and so ∞ ?(?) = ?0(?) +

??(?)? (10.44) ?X=1 ∞ ?(?) = ?0(?) + ??(?)? (10.45) ?X=1 ∞ ?(?) = ?0(?) + ??(?)? (10.46) ?X=1 The

general solutions (??? ??? ??) in terms of special solutions (??∗? ?∗?? ?∗?) can be written as follows ??

(?) = ??∗(?) + ?1 + ?2 exp(?) + ?3 exp(−?)? (10.47) ??(?) = ?∗?(?) + ?4 exp(?) + ?5 exp(−?)? ??(?) = ?

∗?(?) + ?6 exp(?) + ?7 exp(−?)? 10.3 Convergence of the homotopy solutions (10.48) (10.49) The

convergence analysis of the series solutions depends upon the auxiliary parameters ~?, ~? and ~??

Hence the ~−curves for the 17?? order of approximations are plotted. It is found that the admissible ranges

of ~?, ~? and ~? are −1?7 ≤ ~? ≤ −0?20, −1?5 ≤ ~? ≤ −0?25 and −1?5 ≤ ~? ≤ −0?40. The series (10?44 −

10?46) converge in the whole region of ? when ~? = ~? = ~? = −1?0 (see Fig. 10.1)? Table 10.1 indicates

that how much terms for each physical quantity are required for the convergent solution. It is noticed that

less number of terms are required in the convergent expression of velocity. l = 0.2, b1 = 0.2, b2 = 0.1, Pr =

Sc = 0.7, Df = 0.3, Sr = 1.0, g1 = 1.0, Pr = 0.7, N = 1.0 0.5 0.25 f''?0? q'?0? 0 f''?0?, q'?0?, f'?0? f'?0?

-0.25 -0.5 -0.75 -1 -1.25 -2 -1 -1.5 -0.5 0 hf,hq,h« Fig?10?1 : ~−curves for the function ?, ? and ?? Table

10

2.1: Convergence of homotopy solutions for different order of approximations

when

?1 = 0?2? ?2 = 0?1? ?? = ?? = 0?7? ?1 = 1?0? ?? = 0?3? ?? = 0?2, ? = 1?0? ~? = ~? = ~? = −1?0?

Order of approximations −?00(0) −?0(0) −?0(0) 1 0.82500 0.39104 0.43194 5 0.79502 0.30304 0.45255

10 0.79137 0.29030 0.46033 15 0.79129 0.28971 0.46071 20 0.79132 0.28991 0.46044 25 0.79133

0.28993 0.46042 30 0.79133 0.28993 0.46043 10.4 Discussion Interest in this section is to analyze the

variations of different emerging parameters on the phys- ical quantities like temperature, concentration

field, local Nusselt and Sherwood numbers. Figs. 10?2 − 10?9 are displayed to see the variations of mixed

convection parameter ?? concentration buoyancy parameter ?, Dufour number ?? and Soret number ??

on the temperature of fluid ?(?)? Fig. 10?2 shows that the mixed convection parameter ? decreases

2the temperature ?(?)? Also thermal boundary layer thickness

reduces with an increase in mixed convection parameter ?? Fig. 10?3 illustrated that temperature and

associated thermal
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2boundary layer thickness are decreasing functions of ? .Fig. 10?4 shows that

temperature ?(?)

4and thermal boundary layer thickness increase

with an increase in Dufour number ??? With

13an increase in Soret number ??? temperature ?(?) and thermal boundary

layer thickness

decrease as seen in Fig. 10.5. b1 = g1 = 0.4, N = 0.3, Df = 0.5, Pr = Sc = 0.7, b2 = Sr = 0.2 0.3 l = -1.0

3l = 0.0 q?h? 0. 2 l = 1.0 l = 2.0

0.1 0 0 2 4 6 8 10 h Fig. 10.2: Influence of ? on ?(?)? b1 = g1 = 0.4, b2 = l = 0.3, Df = 0.5, Pr = Sc = 0.7, Sr

= 0.2 0.35 N = 0.0 0.3 N = 1.5 0.25 N = 3.0 N = 4.5 q?h? 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 h Fig. 10.3:

Influence of ? on ?(?)? b1 = 0.4, b2 = N = 0.3, g1 = 1.0, l = 0.6, Pr = Sc= 0.7, Sr = 0.8 0.6 Df = 0.0 0.5 Df =

0.5 Df = 1.0 0.4 Df = 1.5

4q?h? 0.3 0.2 0.1 0 0 2 4 6 8 10 h

Fig. 10.4: Influence of ?? on ?(?)? b1 = 0.4, b2 = N = 0.3, g1 = 1.0, l = 0.6, Pr = Sc = 0.7, Df = 0.5 0.6 Sr =

0.0 0.5 Sr = 0.5 Sr = 1.0 0.4 Sr = 1.5 q?h? 0.3 0.2 0.1 0 0 1 2 3 4 5 6 h Fig. 10.5: Influence of ?? on ?(?)?

Figs. 10?6 − 10?9 plot the effects of ?? ?? ?? and ?? on the concentration field ?(?)? From Fig. 10.6

4it is found that the concentration field and associated boundary layer thickness

show a decrease when

mixed convection parameter ? increases? Effects of concentration buoyancy parameter parameter ? on

the concentration are qualitatively similar to that of temperature (see Figs. 10?3 and 10?7). Figs. 10?4

and 10?8 show that the behaviors of the temperature and concentration profiles are quite opposite in case

of Dufour number. This shows that the Dufour number corresponds to weaker concentration and stronger

temperature. Fig. 10?9 pointed out that the larger Soret number has a strong concentration. b1 = g1 = 0.4,

N = 0.3, Df = 0.5, Pr = Sc = 0.7, b2 = Sr = 0.2 1 0.8 l = -1.0 l = 0.0 0.6 l = 1.0 l = 2.0 f?h? 0.4 0.2 0 0 2 4 6 8

10 h Fig. 10.6: Influence of ? on ?(?)? b1 = g1 = 0.4, b2 = l = 0.3, Df = 0.5, Pr = Sc = 0.7, Sr = 0.2 1 0.8 N

= 0.0 N = 1.5 0.6 N = 3.0 N = 4.5 f?h? 0.4 0.2 0 0 2 4 6 8 10 h Fig. 10.7: Influence of ? on ?(?)? b1 = 0.4,

b2 = N = 0.3, g1 = 1.0, l = 0.6, Pr = Sc = 0.7, Sr = 0.8 1 0.8 Df = 0.0 Df = 1.0 0.6 Df = 2.0 Df = 3.0 f?h? 0.4

0.2 0 0 2 4 6 8 10 h Fig. 10.8: Influence of ?? on ?(?)? b1 = 0.4, b2 = N = 0.3, g1 = 1.0, l = 0.6, Pr = Sc =
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0.7, Df = 0.5 1 0.8 Sr = 0.0 Sr = 0.5 0.6 Sr = 1.0 Sr = 1.5 f?h? 0.4 0.2 0 0 2 4 6 8 10 h Fig. 10.9: Influence

of ?? on ?(?)? Table 10.2:

7Values of local Nusselt number and Sherwood number

for the parameters ?1? ?2? ??? ???????1 and ? when ? = 0?1? ?1 ?2 ? ? ? ?? ?? ?? ?1 ? −?0(0) −?0(0)

0.0 0.2 0.1 0.7 0.5 0.8 1 1 1 0.29514 0.47225 0.2 0.28993 0.46033 0.4 0.28525 0.44998 0.2 0.0 0.28797

0.45592 0.2 0.29176 0.46462 0.4 0.29508 0.47226 0.2 0.2 0.0 0.27062 0.41866 0.2 0.29176 0.46463 0.4

0.30305 0.49095 0.2 0.2 0.2 0.8 0.30136 0.50625 0.9 0.30891 0.54602 1.0 0.31480 0.58434 0.7 0.0

0.28679 0.49981 0.2 0.29176 0.46462 0.4 0.29679 0.42800 0.2 0.0 0.33235 0.45353 0.2 0.30546

0.46096 0.4 0.27788 0.46830 0.2 1.0 0.30546 0.46094 1.2 0.30001 0.51681 1.4 0.29513 0.56908 1.0 1.0

0.30546 0.46094 1.2 0.32396 0.45920 1.4 0.33863 0.45781 1.0 1.0 0.30546 0.46094 1.2 0.30700

0.46444 1.4 0.30846 0.46779 10.5 Conclusions Mixed convection flow of an Oldroyd-B fluid is investigated

in the presence of convective bound- ary condition and Soret and Dufour effects. The main observations

are pointed out below. • Effects of ? and ? on temperature and concentration fields are similar. • Effects of

Soret number ?? on ?(?) and ?(?) are reverse. • Thermal boundary layer thickness and temperature field

increase when ??increases. • There are opposite effects of

1local Nusselt number and Sherwood number when ??, ?? and

?1 increase. • local Nusselt and Sherwood numbers decrease when ?1 increases. • With an increase in ?

and ?

1both local Nusselt and Sherwood numbers are

enhanced. Chapter 11

2Mixed convection Falkner-Skan wedge flow of an Oldroyd-B fluid

in presence of thermal radiation The present chapter examines the Falkner-Skan flow of rate type non-

Newtonian fluid. Ex- pressions of an Oldroyd-B fluid in the presence of mixed convection and thermal

radiation are used in the development of relevant equations. The resulting

4partial differential equations are reduced into the ordinary differential

equations employing appropriate transformations. Ex- pressions of flow and heat

transfer are

constructed. Convergence of derived nonsimilar series solutions is guaranteed. Impact of various

parameters involved in the flow and heat transfer is plotted and examined. 11.1 Problems development Let

us
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3consider the two-dimensional Falkner-Skan flow of an Oldroyd-B fluid.

We further consider the heat transfer. Cartesian coordinates (?? ?) are used

3in such a way that ?-axis is parallel to the wall and ?-axis normal to it. An

incompressible fluid occupies the

region ? ≥ 0? The equations governing the present flow situation are based on the

2conservation laws of mass, linear momentum and energy. Flow diagram of the

problem is as follows: Fig. 11.1: Physical Model Taking into account the aforementioned assumptions, the

resulting boundary layer equations can be written as follows: ?? ?? ?? ?? = 0? + (11.1) ? ???? + ? ???? =

? ??2??2 − ?1 ?2 ??2??2 + ?2 ??2??2 ?2? + 2?? ???? ?3? ∙ ?3? ?? ?2? ?? ?2? ¸ +??2 ????2 + ? ??3

?? ??2 ?? ??2 ? − − ∙ +??? (? − ?∞) Si n 2 ? ? ¸ (11.2) ??? ? ???? +????? ?? µµ16?3????∞3 +? ???? =

? ? (11.3) µ ¶ ¶ ¶ The appropriate boundary conditions are ? = ?? ? = 0? ? = ?? = ?∞ + ??? at ? = 0? ? →

0? ? → ?∞ as ? → ∞ (11.4) where ? (= ???) is the free stream velocity, ? is the dynamic viscosity, ?1 is the

relaxation time, ?2 is the retardation time, ? is the wedge angle, ? is the thermal conductivity, ? is the

surface temperature exponent, ? and ?∞ are the temperatures of the fluid and ambient respectively and ??

is the wall temperature. We utilize ? = ? (?) ? 0, ? = ? + 1 ? ?? ? = 2 √

352 ???? (?)? r r ?? ?=− ?+1 ?? r?+1 r 2 (11.5) r

? ? ∙ ? (?) + ?? −+ 11 ?? 0 (?) ? ? (?) = ???−−??∞∞ ¸ where ? is the similarity variable, ?

19is the stream function, ? is the dimensionless stream function and ? is the

dimensionless temperature. Now the continuity equation (11?1) is identi- cally satisfied and Eqs. (11?2) −

(11?4) lead to the following expressions ? 000 + ? ? 00 + ?1 −2? ?? −+ 11 ? 03 + (3? − 1) ? ? 0? 00 − ? +

1 ? 2? 000 + ? − 1 ?? 02? 00 µ µ ¶ µ 2 ¶ µ 2 ¶ ¶ +? 2 µµ 3? − 1 ? 00 ? + 1 ? ? 0000 + (? − 1) ? 0? 000 2?

? 02 + 2 − − 2 ¶ ¡ ¢ µ 2 ¶ ¶ ?+1 1+4? ?00+Pr(??0− 2? ?0?)=0? 3 ?+1 µ ¶ 2 ? + 1 ?? sin = 0? ? 2 (11.6)

(11.7) ?(0)=0? ?0(0)=1? ?(0)=1? ?0(∞)=0? ?(∞)=0? (11.8) Here prime denotes the differentiation with

respect to ?, ?1 and ?2 are the dimensionless material parameters, ? is mixed convection parameter, ???

is the local Grashof number,

1Pr is the Prandtl number and ? is the radiation parameter. The

definitions of these parameters are ?1 = ?1? ?2? ??? ??? ? ? ?2 = ? ? ? = Re2? ? Pr = ? ? ? = ( 4??????

∞3 )? ??? = ??(?? − ?∞)?3 ?2 ? (11.9) Local Nusselt number (???) along with heat transfer rate (??) are ?

?? = ??? ? ? (?? − ?∞) ?? = −? ?? µ ?? ¶?=0 (11.10) which in dimensionless form gives (Re?)−1?2 ??? =
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−?0 (0) ? (11.11) 11.2 Series solutions The initial guesses (?0? ?0) and auxiliary linear operators (??? ??)

are taken as follows ?0 (?) = 1 − ?−?? ?0(?) = ?−?? (11.12) ?3? ?? ? ?2? L? (?) = ??3 ?? L? (?) = ??2 −

?? − (11.13) with L? [?1 + ?2 exp(?) + ?3 exp(−?)] = 0? (11.14) L? [?4 exp(?) + ?5 exp(−?)] = 0? (11.15)

where ?? (? = 1 − 5) are the arbitrary constants. If ? ∈ [0? 1]

1is the embedding parameter and ~? and ~? are the non-zero auxiliary

parameters then the zeroth-order and ?th order deformation problems are

stated as follows. 11.2.1 Zeroth order problem

(1 − ?) L? ? (?; ?) − ?0 (?) = ?~? N? ? (?; ?) ? ? (?; ?) ? (1 − ?) L? ?b(?; ?) − ?0 (?) = ?~?N? ?b(?; ?) ? ?

b(?; ?) h i h i ? ? (0; ?) = 0? ? 0 (b0; ?) = 0? ? 0 (∞; ?) = 1? ? (0b;?) = 1? ?b(∞; ?) = 0? h i h i b b b b b

(11.16) (11.17) (11.18) N? ? (?? ?) ? ? (?; ?) = ?3? (?; ?) ?2? (?; ?) 2? ?? (?; ?) 2 h ??3 + ? (?; ?) ??2 − ?

+ 1 ¶ b b i 3 µ ?? +?1 −2?? + 1 ? − 1 ?? (?; ?) Ã ?? + (3? − 1) ? (?; ?) ?? (?; ?) ?2? (?; ?) µ ¶ ?? ??2 ! −?1

? + 1 2 ?3? (?; ?) ? − 1 ?? (?; ?) 2 ?2? (?; ?) Ã 2 (? (?; ?)) ??3 + 2 ? µ ?? ¶ ??2 ! +?2 3? − 1 ?2? (?; ?) 2

? + 1 − ? (?; ?) ?4? (?; ?) Ãµ 2 ??2 ¶ µ ¶ µ 2 ¶ ??4 ! +?2 (? − 1) ?? ?? (?; ?) ?3? (?; ?) + 2 ?ˆ?(?? ?) sin ?

µ ??3 ¶ ? + 1 2 ? (11.19) N? ? (?; ?) ? ? (?; ?) = 1+ ? 4 ?2ˆ?(?? ?) ?? (?; ?) h µ 3 ¶ ??2 + Pr ? (?; ?) ?? b

b i − Pr ?2+? 1 ? (?; ?) ?? ?(??; ?)b? b b b 11.2.2 ?th-order deformation problems L? [?? (?) − ????−1

(?)] = ~? R?? (?) ? L? [?? (?) − ????−1 (?)] = ~?R?? (?) ? (11.20) (11.21) (11.22) ?? (0) = ??0 (0) = ??0

(∞) = ??00(∞) = 0? ??(0) = ?? (∞) = 0? (11.23) ??−1−???00 − ?2+?1??0−1−???0 � −2? ??−+11 ??0−1−?

?=0 ??0−???0 + (3? − 1) ? ? ?−1−? ?=0 ??0−???00 ? � ?−1 R?? (?) = ??000−1 (?) + +?1 � −?+21??

−1−? P??=0 ??−???000 + ?−21???0−1−? ??P=0 ??0−???00 � X?=0 � P 3?−1 ??00−1−? ?00 2 ? P � +?

2 � − ?+1 ??−1−? ??0000 2 � 2 � ? � � + (? − 1) ??0−1−? ??000 ? + 1 ???−1 sin � � � � + 2 ?

(11.24) � R?? (?) = ?0?0−1 + Pr ?X?=−01 µ?0?−1−??? − ?2+? 1??0−1−??? ? (11.25) ¶ 0? ?? = � � 1?

For ? = 0 and ? = 1, we have � ? (?; 0) = ?0 (?) ? ?≤1 ? (11.26) ??1 ? (?; 1) = ? (?) ? (11.27) ? (?; 0) = ?0

(?) ? b ? (?; 1) = ? (?) ? b (11.28) and when ? increases from 0 tob 1 then ? (?; ?) andb ? (?; ?) vary from

the initial solutions ?0 (?) and ?0(?) to final solutions ? (?) and ?(?) respectively. By Taylor’s expansion

one has b b ? (?; ?) = ?0 (?) + ?? (?) ??? ?? (?) = ?1! ?????(??; ?) ∞ ? (11.29) b ?X=1 b ¯ ¯?=0 ¯ ¯ ? (?;

?) = ?0 (?) + ?? (?) ??? ?? (?) = ?1! ?????(??; ?) ∞ ¯ ? (11.30) b ?X=1 b ¯ ¯?=0 where

7the auxiliary parameters are so properly chosen that the series

(11?2¯¯9) and (11?31) con- ¯ verge at ? = 1 i.e. ∞ ? (?) = ?0 (?) + ?? (?) ? ?X=1 ∞ ? (?) = ?0 (?) + ?? (?)

? ?X=1 The general solutions of Eqs. (11?32) and (11?33) are ?? (?) = ??? (?) + ?1 + ?2?? + ?3?−?? ??

(?) = ??? (?) + ?4?? + ?5?−?? in which ??? and ??? are the special solutions. (11.31) (11.32) (11.33)

(11.34) 11.3 Convergence Note that the series solutions in Eqs. (11?32) and (11?33) contain two auxiliary

parameters ~? and ~?. The convergence of series solutions depend upon these auxiliary parameters. For

range of

1values of these parameters, the ~−curves at 15th-order of approximations

have been plotted in Fig. 11.2. It is found that the admissible values of ~? and ~?

are

javascript:openDSC(105151, 14, '1349');
javascript:openDSC(105153, 14, '4554');
javascript:openDSC(105151, 14, '1375');


7/3/2014 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=437813038&sid=0&n=0&m=0&svr=9&r=97.82056855037808&lang=en_us 91/97

−1?3 ≤ ~? ≤ −0?25 and −1?2 ≤ ~? ≤ −0?5. Table 11.1 further guarantees that the series solutions are

convergent up to five decimal places when ~? = ~? = −0?5. -0.6 b1 = 0.3, b2 = 0.2, d = 0.5, l = 0.2, a= p?4,

n = 1.5, R = 0.3, Pr = 1.2 -0.7 f''?0? -0.8 f''?0?, q'?0? -0.9 q'?0? -1 -1.1 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 Ñf,

Ñq Fig?11?2 : ~−curves for the function ? and ?? 11.4 Discussion The aim of this subsection is to present

5the effects of pertinent parameters on the velocity, tem- perature and

surface heat transfer. Variation of parameter ? on the velocity and temperature are sketched in the Figs.

11?3 and 11?4. Clearly the effects of ? on the velocity and temperature profiles are quite reverse.

Influence of

21mixed convection parameter ? on both the velocity and

temperature profiles are given in the Figs. 11.5 and 11.6.

1It is observed that the velocity and momentum boundary layer thickness

increase

15with the increase of mixed convection parameter ? while the temperature and

thermal boundary layer thickness

decrease. Figs. 11?7 and 11?8 are drawn to see the variation of ?

15on the velocity and temperature profiles. It is

noticed that

13the velocity and momentum boundary layer thickness increase when ?

increases? It is

found

2that the temperature and thermal boundary layer thickness are decreasing

functions of

?? Figs. 11.9 and 11.10 are sketched to see the variation of surface temperature parameter ? on the

velocity ?0(?) and the temperature ?(?). Both ?0(?) and ?(?) decrease with the increase in ?. It is also
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observed that both the momentum and thermal boundary layer thicknesses decrease when ? increases?

b1 = 0.3, b2 = 0.2, l = d = 0.5, a = p?4, R = 0.3, Pr = 0.7 1 n = 0.5 0.8 n = 2.0 n = 5.0 n = 7.0 f '?h? 0.6 0.4

0.2 0 0 2 4 6 8 h Fig. 11.3: Impact of ? on ? 0(?)? b1 = 0.3, b2 = 0.2, l = d = 0.5, a = p?4, R = 0.3, Pr = 0.7

1 n = 0.5 0.8 n = 2.0 n = 5.0 0.6 n = 7.0

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 11.4: Impact of ? on ?(?)? b1 = 0.4, b2 = 0.3, n = d = 0.5, a = p?4, R = 0.3, Pr = 0.7 1 0.8

3l = 0.0 l = 0.5 0.6 l = 1.0 l

= 1.5 f'?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 11.5: Impact of ? on ?0(?)? b1=0.4,b2=0.3,n=d=0.5,a=p?

4,R=0.3,Pr=0.7 1 0.8

3l = 0.0 l = 0.5 0.6 l = 1.0 l

= 1.5

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 11.6: Impact of ? on ?(?)? b1 = 0.4, b2 = 0.3, n = l = d = 0.5, R = 0.3, Pr = 0.7 1 a = 0.0 0.8 a = p?6 a

= p?4 0.6 a = p?3 f '?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 11.7: Impact of ? on ? 0(?)? b1 = 0.4, b2 = 0.3, l = 1.0, n

= d = 0.5, R = 0.3, Pr = 0.7 1 a = 0.0 0.8 a = p?6 a = p?4 0.6 a = p?3

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 11.8: Impact of ? on ?(?)? b1 = 0.4, b2 = 0.3, n = l = 0.5, a = p?4, R = 0.3, Pr = 0.7 1 d = 0.0 0.8 d =

5.0 d = 10 0.6 d = 15 f '?h? 0.4 0.2 0 0 2 4 6 8 h Fig. 11.9: Impact of ? on ?0(?)? b1 = 0.4, b2 = 0.3, n = l =

0.5, a = p?4, R = 0.3, Pr = 0.7 1 d = 0.0 0.8 d = 5.0 d = 10 0.6 d = 15

1q?h? 0.4 0.2 0 0 2 4 6 8 h

Fig. 11.10: Impact of ? on ?(?)? Figs. 11?11 and 11.12 are drawn to see the influence of mixed convection

parameter ?? wedge angle ?? surface temperature parameter ? and velocity index ? on the local Nusselt

number −?0(0)? Fig. 11?11 depicts the effects of ? and ? on −?0(0). It is noticed that −?0(0) increases

through increase of mixed convection parameter ? and wedge angle ?. Fig. 11?12 depicts that variations

of ? and ? have opposite effects on −?0(0)? A close look at Table 11.1 indicates that 25th-order

approximation gives convergent series solutions. 0.9 n = 0.5, R= 0.3, Pr = 1.2, b1 = 0.2, b2 = 0.3, d = 1.5 a

= 0.0 0.8 a = p?6 a = p?4 a = p?3 -q'?0 ? 0.7 0.6 0 1 2 3 4 l Fig. 11.11: Impacts of ? and ? on −?0(0)? 2.5

n = 0.5, R= 0.3, a = p?4, Pr = 1.2, b1 = 0.2, b2 = 0
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36.3 n = 0 .0 2 n = 0.5 n = 1.

5 n = 3.0 1.5 -q'?0? 1 0.5 0 1 2 3 4 d Fig. 11.12: Impacts of ? and ? on −?0(0)? Table 11

2.1 : Convergence of the homotopy solutions for different order of

approximation when

Pr = 1?0, ? = 0?3, ? = 1?5, ? = 0?5? ? = 0?3, ? = ??4? ?1 = 0?2? ?2 = 0?3 and ~? = ~? = −0?5. Order of

approximation 1 5 10 15 20 25 30 −? 000(0) 0.90330 0.86304 0.86077 0.86047 0.86045 0.86044 0.86044

−?0(0) 0.78889 0.64042 0.62757 0.62627 0.62616 0.62616 0.62616 11.5 Conclusions Mixed convection

and thermal

2radiation effects in the Falkner-Skan wedge flow of

an Oldroyd-B fluid are investigated. The following points are worth mentioning: • Table 11.1 shows

1that convergence of the functions ? and ? are obtained at 25th-order

approximations

up to five decimal places when ~? = ~? = −0?5? • Influence of mixed convection parameter ? increases

1the velocity and momentum boundary layer thickness while it decreases

the temperature and

7thermal boundary layer thickness. • Influence of wedge angle ? and radiation

parameter

? on both the temperature and velocity profiles are quite similar. • Thermal boundary layer and momentum

boundary layer thicknesses are decreasing func- tions of surface temperature exponent ?. • Surface heat

transfer −?0(0) increases with an increase of wedge angle ?? mixed convection parameter ? and surface
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37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
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