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0.3 Introduction

" It is the mark of an instructed mind to rest satis�ed with that degree of precision
which the nature of the subject admits, and not to seek exactness where only an
approximation of the truth is possible."

(Aristotle, 384�322 BC)
A great philosopher from history uttered these words and ironically, himself estab-

lished a binary logic that only admits the opposites of true and false, a logic which
does not admit degrees of truth in between these two extremes. In other words, Aris-
totelian logic does not admit imprecision in truth. However, Aristotle�s quote is so
appropriate today; it is a quote that admits uncertainty. It is required that we should
heed; we shall have to balance the precision we seek with the uncertainty that exists.
Most of the mathematical models, and solutions do not address the uncertainty in
given information. Again, we quote a genius mind L. A. Zadeh saying,

" The closer one looks at a real world problem, the fuzzier becomes its solution."
(Zadeh, 1973)
We are living in a world which is becoming ever more reliant on the use of intelligent

electronics to control the behavior of real-world resources. For example, an increasing
amount of commerce is performed through credit card or online banking systems.
Similarly, airports, large national databases, e-governments etc. are being run without
ever looking out of a window. Another, more individual, example is the increasing use
of personal gadgets or devices for organizing meetings and contacts and socializing
purposes. All these examples share a similar structure; multiple parties (e.g. data or
airplanes or people) combine together to coordinate their activities in order to attain
a common goal.

Fuzzy and vague logic means approximate reasoning, information granulation, com-
puting with words and so on. Ambiguity is always present in any realistic process.
This ambiguity may arise from the interpretation of data inputs and in the rules used
to describe relationships between the informative attributes. A logical view on vague-
ness provides an inference structure that enables the human reasoning capabilities to
be applied to arti�cial knowledge-based systems. A logical approach provides a means
for converting linguistic strategy into control actions and thus o¤ers a high-level com-
putation. L. A. Zadeh was the �rst one who introduced the concept of fuzzy sets in [46]
which was proved a paradigm shift in later years. Theory of soft sets was introduced
by Molodstov [34] in 1999. The purpose of this novel concept was to remove the inad-
equacy of parameterization tool in previously de�ned theories of fuzzy Mathematics.
Although the theory of rough sets [39] addresses the issue of parameterization and
the hybrid structure such as fuzzy rough sets can also be utilized for incorporating
the fuzziness of data but no signi�cant role of parameters can be found in operations
de�ned on rough sets. On the other hand, the absence of any restrictions while making
approximations for a given object in soft sets establishes this theory as more handy,
convenient and easily applicable in practice. Since the introduction of the theory of
soft sets in 1999, a lot of work has been done so far and for di¤erent applications of
soft sets see [2], [3], [4], [1], [13], [12], [21], [18], [19], [20], [25], [30], [31], [32], [33], [44].
Primarily the aim of soft set theory is to provide a tool with enough parameters to deal
with uncertainty associated with the data, whereas on the other hand it has the ability
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to represent the data in a useful manner. With the introduction of new operations on
soft sets, it is felt imperative to study the underlying algebraic structures. This will
give a forehand and better understanding for their applications.

In the past, studying the algebraic structure of a mathematical theory has proved
itself e¤ective in making the applications in the sciences more e¢ cient. This is the
inherent motivation for us to study the algebraic structures of these generalizations of
soft set theory. Such research may not only provide more insight into soft set theory,
but also hopefully develop methods for applications. Lattice theory has become a
popular mathematical framework in di¤erent domains of information processing, such
as fuzzy sets, formal concept analysis, mathematical morphology etc. In this work,
we consider three important extensions of soft set theory, from the point of view of
lattice theoretic algebraic structures. The �rst one deals with imprecision and vague-
ness in knowledge representation and information processing with one function for
approximations as we have done in Chapters 2 and 3 following the notions initiated
by Molodstov in [34], under the framework of crisp and fuzzy sets. The second one
handles imprecision and vagueness in multi-frames of knowledge representation and in-
formation processing with more than one function for approximations as we have done
in Chapters 4 and 5 following the notions initiated by Jun et al. in [18], under the
framework of crisp and fuzzy sets. The third one with more than one frames deals ad-
ditionally with the bipolarity of information c.f. [11], [26], [27] which occurs in several
domains, such as preference modeling under some parameters, spatial reasoning, argu-
mentation etc. In these domains, two types of information have often to be handled:
(i) positive information (which is possible and desired), and (ii) negative information
(which is not possible or constraint). Extension of soft set to this frameworks in crisp
and fuzzy context is studied in Chapters 6 and 7.

In the study of soft sets as algebraic structures there are mainly two types of
collections of soft sets. First the collection of soft sets with a �xed set of parameters,
and second the collection of soft sets with di¤erent sets of parameters. These two
types of collections with new operations sometimes behave similarly and sometimes
di¤erently. There are many algebras and lattice based structures associated with
logic. Boolean algebras are associated with traditional two valued Aristotelean logic.
MV algebras are suitable for multi-valued logic. BCI/BCK algebras generalize the
notion of algebra of sets with the set subtraction as the only non-nullary operation.
These algebras generalize implication algebras which is mostly based on lattice based
complements and pseudocomplements. In this work, we study algebraic structures
of soft sets associated with their unary and binary extended, restricted and product
operations in a systematic way.
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0.4 Chapter-wise Study

The present work in this thesis is written in the lattice-theoretical background of soft
sets. It contains the necessary part of soft set theory and shows how to formulate in an
elegant way various concepts and facts about the algebraic structures of soft sets and
its generalized structures. Prerequisites are minimal and the work is self-contained.

In this thesis, we have eight chapters. In the �rst chapter, we have given some
basic concepts and notations which will be helpful for understanding the rest of the
thesis. Classical Set theory and algebraic structures, a brief introduction of fuzzy sets
and bipolar fuzzy sets is included with most familiar notions as per use in literature.

In Chapter 2, de�nitions and operations on soft sets are given. This chapter sets
forth the use of mathematical notations adapted for soft sets in our thesis in order to
create a �ow and understanding without any ambiguity. De�nition of soft set is taken
from [34] and operations on soft sets are taken from [2]. In set theory we come across
with only one null set and the whole set itself as trivial cases and this holds in the
case of fuzzy sets as well, but surely this is not the case in soft sets. Here we have
relative null soft set and relative whole soft set over initial universe. This di¤erence
adds a new aspect to the soft set theory. Operations on soft sets are either extended
or restricted based upon the choice of parameters and this property is unique for soft
sets so far. No earlier vague structure addressed this problem of parametrization and
therefore soft set theory is more adequate in operational use with parameters. It is
important for us to get familiar with the properties of these newly de�ned operations
on soft sets. Properties of operations de�ned on soft sets are discussed and examples
are worked out to show way of working out with soft sets. The fact is also revealed that
the distributivity of union and intersection is not following as it holds in previously
de�ned crisp and vague set theories. A complete check for all the possible cases has
been made to establish distributive laws for soft sets. In the last section of chapter 2,
various algebraic structures of soft sets associated with the new operations are studied.
It is seen that the collection of soft sets with �xed parameters become a Boolean
algebra, MV-algebra, Stone algebra and Brouwerian and atomic lattices. Moreover, it
also becomes BCK-algebra with respect to restricted di¤erence and " ? " operations.

In Chapter 3 fuzzy soft sets are discussed for their algebraic structures. Newly
de�ned operations on fuzzy soft sets are used in this chapter in a similar way as used
for soft sets in Chapter 2. Some operations of soft sets, for example extended or
restricted di¤erence are not available for fuzzy soft sets and therefore there are some
properties which do not hold for fuzzy soft sets. On the other hand, we can de�ne
some operations on fuzzy soft sets which are not much meaningful in soft set theory
but give interesting results in fuzzy soft context. Algebras of collections of fuzzy soft
sets are studied and it is observed that the collection of fuzzy soft sets with �xed set
of parameters becomes Kleene algebra, Stone algebra and Brouwerian lattice.

Chapter 4 is concerned with the study of double-framed soft sets which is a general-
ization of soft sets. Operations on double-framed soft sets are de�ned and investigated
for their algebraic behaviors. After a rigorous account on the properties we have
discussed the algebraic structures of double-framed soft sets. It is shown that the col-
lection of double-framed soft sets has a di¤erent behavior than the soft sets and fuzzy
soft sets and proves to be richer because we can de�ne more operations. Collection
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of double-framed soft sets with �xed set of parameters becomes de Morgan algebra
with " � " operation, MV-algebra and Boolean algebra for " c " operation, pseudo-
complemented lattice for " } " operation and Brouwerian lattice. It also becomes
BCK-algebra with respect to restricted di¤erence and " ? " operations.

In Chapter 5, the concept of double-framed fuzzy soft sets is introduced as a
generalization of fuzzy soft sets and double-framed soft sets. We have de�ned various
operations on double-framed fuzzy soft sets and checked their algebraic properties. It
is found that the collection of this structure with �xed set of parameters gives rise to
Kleene algebra, de Morgan algebra, Stone algebra and Brouwerian lattice.

Chapter 6 introduces the idea of bipolar soft sets which is hybridization of structure
of soft set, double-framed soft set and bipolarity. It is a new concept and approximates
positive and negative information for available sets of choices and parameters. We have
shown that the class of bipolar soft sets is a subclass of the class of double-framed soft
sets. An example from psychology is also presented. Some operation of double-framed
soft sets are available to bipolar soft sets while some are not. We have �gured out
the algebras of bipolar soft sets and obtained the results which are not simply a
consequence but showing a di¤erence of character in this newly de�ned structure as
well. It is shown that the collection of bipolar soft sets with a �xed set of parameters
becomes a Kleene algebra.

In Chapter 7, we have initiated the ideas of fuzzy bipolar soft set as a generalization
of bipolar soft set and bipolar fuzzy soft set as a generalization of fuzzy soft set. We
have proved that both ideas coincide with each other. We have also shown that the
class of fuzzy bipolar soft sets is a subclass of the class of double-framed fuzzy soft
sets. Thus the structure of fuzzy bipolar soft sets is agreeable to proceed and it is
proved that the collection of fuzzy bipolar soft set with a �xed set of parameters is a
de Morgan algebra for operation " � " and Kleene algebra for operation " � ".

Chapter 8 is devoted for providing a general algebraic framework for extensions in
theory of soft sets in three di¤erent contexts: soft sets, multi-framed soft sets and multi-
polar soft sets. A standard formula is presented for de�ning aggregation operators on
the three types of extensions of soft sets in restricted and extended manner. The
topic provides an overview of the observations made in earlier chapters and we have
summarized the results in tabular form. At the end, an application of soft set theory
in decision making is given with an informal algorithm and worked out example is
provided for decision making with fuzzy bipolar soft sets.



Chapter 1

Preliminaries

In this chapter, theory of classical sets and theory of fuzzy sets are discussed. Various

operations, their laws and properties of classical and fuzzy sets are given. The classical

sets, we are going to consider, are de�ned by means of the crisp or de�nite boundaries.

The concept of a set is fundamental in Mathematics and intuitively can be described

as a collection of objects possibly linked through some properties. A classical set A

has clear boundaries, i.e. x 2 A or x =2 A exclude any other possibility. This implies
that there is a certainty or de�niteness involved in the approximation of these sets.

A fuzzy set, on the other hand, is de�ned by its uncertain or vague properties. A

fuzzy set is a class with a continuum of membership grades. So a fuzzy set A in a

referential (universe of discourse) X is characterized by a membership function �A
which associates with each element x 2 X a real number �A(x) 2 [0; 1], having the
interpretation �A(x) is the membership grade of x in the fuzzy set A. The crisp sets

are sets without any ambiguity in their membership whereas fuzzy set theory is an

e¢ cient theory in dealing with the concepts of vagueness. As an extension of fuzzy

sets, Lee [26] introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy

sets are an extension of fuzzy sets whose membership degree range is enlarged from

the interval [0; 1] to [�1; 1]. Bipolar-valued fuzzy sets have membership degrees that
represent the degree of satisfaction to the property corresponding to a fuzzy set and its

counter property. In a bipolar-valued fuzzy set, the membership degree 0 means that

elements are irrelevant to the corresponding property, the membership degrees on (0; 1]

indicate that elements somewhat satisfy the property, and the membership degrees on

[�1; 0) indicate that elements somewhat satisfy the implicit counter-property. Basic
notions of bipolar fuzzy sets given after reviewing the ideas of the crisp sets and fuzzy

sets.

1



1. Preliminaries 2

1.1 Crisp Sets

In this section, we recall the standard de�nitions and main results on algebraic struc-

ture of classical crisp set theory in detail. Following de�nitions are taken from [7].

1.1.1 De�nition

Let X be a set. An order � on X is a re�exive, antisymmetric, and transitive binary

relation, that is, for all x; y; z 2 X,

1) x � x,

2) x � y and y � x imply x = y, and

3) x � y and y � z imply x � z.

An ordered set is denoted by (X;�), where X is a non-empty set and � an order
on X.

1.1.2 De�nition

Let (X;�1) and (Y;�2) be two ordered sets. A mapping � : X ! Y such that

�(x1) �2 �(x2) whenever x �1 y is called a homomorphism or an order homomorphism

or order preserving.

1.1.3 De�nition

Let X be an ordered set and let A � X. Then x 2 X is a maximal element of A, if

x � a 2 A implies a = x. Further, x 2 X is the greatest element of A, if x � a for all
a 2 A.

A minimal element of A and the least element of A are de�ned dually. Note that

if A has a greatest element, it is unique. Similarly, the least element of A is unique.

1.1.4 De�nition

Let P be an ordered set and A � X. An element x 2 X is an upper bound of A if

a � x for all a 2 A. A lower bound of A is de�ned dually.
If there is a least element in the set of all upper bounds of A, it is called the

supremum of A and is denoted by supA or
_
A; dually a greatest lower bound is

called in�mum and written inf A or
^
A. We also write a _ b for supfa; bg and a ^ b

for inffa; bg. Supremum and in�mum are frequently called join and meet.
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1.1.5 De�nition

Let L be a non-empty ordered set. If a _ b and a ^ b exist for all a, b 2 L, then L
is called a lattice. If

_
A and

^
A exist for all A � L, then L is called a complete

lattice.

1.1.6 De�nition

Let (L;�) be a lattice. If
_
L and

^
L exist, then L is called a bounded lattice. In a

bounded lattice, the least element is denoted by 0 and greatest element by 1.

The de�nition of a lattice given with the help of a binary relation on X is a

constructive approach, now, we present the algebraic de�nition of a lattice which is an

axiomatic approach and given with the help of binary operations de�ned on X.

1.1.7 De�nition

A binary operation " � " on X is a map � : X � X ! X. A set X together with a

binary operation " � " on it, is called a groupoid and denoted by (X; �). In general
�(x; y) is denoted by x � y.

1.1.8 De�nition

Let (X; �) be a groupoid. Then � is called

1) Associative if x � (y � z) = (x � y) � z,

2) Commutative if x � y = y � x,

3) Idempotent if x � x = x

for all x, y, z 2 X

1.1.9 De�nition

An algebraic structure (S; �) is called a semilattice if S is a non-empty set and � is a
binary operation such that � is commutative, associative and idempotent.

1.1.10 De�nition

An algebraic structure (L;^;_) is called a lattice if L is a non-empty set and ^ and _
are binary operations on L, (L;^) and (L;_) are semilattices and absorption laws for
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^ and _ hold i.e.

x ^ (x _ y) = x and

x _ (x ^ y) = x for all x, y 2 L.

Using the basic lattice operations, an ordering can be de�ned as following:

1.1.11 Theorem

Let (L;^;_) be a lattice and x, y 2 L. The binary relation � on L is de�ned by:

x � y , x _ y = y or equivalently

x � y , x ^ y = x for all x, y 2 L.

Then (L;�) is a lattice satisfying the properties of lattice given in De�nition 1.1.5.

1.1.12 Theorem

Let (L;�) be a lattice and x, y 2 L. The binary oprations " ^ " and " _ " on L are
de�ned by:

x ^ y = inffx; yg and

x _ y = supfx; yg for all x, y 2 L.

Then (L;^;_) satis�es the properties of lattice given in De�nition 1.1.10.
Thus, both De�nition 1.1.5 and De�nition 1.1.19 are equivalent to each other.

Onwards from here, we consider both notations interchangeably without stating ex-

plicitly.

1.1.13 De�nition

Let (L1;^;_) and (L2;^;_) be two lattices. A mapping � : L1 ! L2 such that

�(x^ y) = �(x)^ �(y) and �(x_ y) = �(x)_ �(y) is called a homomorphism of lattices.

A one-to-one lattice homomorphism is called monomorphism. A one-to-one and onto

homomorphism is called lattice isomorphism.

Next we give the de�nitions of various algebras of lattices:

1.1.14 De�nition

Let L be a bounded lattice with a least element 0 and a greatest element 1. For an

element x 2 L, an element y 2 L is a complement of x if

x _ y = 1 and x ^ y = 0:

If an element x has a unique complement, we denote it by xc.
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1.1.15 Remark

There exist bounded lattices with elements having more than one complement or no

complement at all.

1.1.16 Example

Let L be a lattice given by the Figure 1.1.1. In this lattice b and e are complements

of a, c has no complement, 1 has 0 as complement and 0 has 1.

1.1.17 De�nition

A bounded lattice L in which every element has a complement is called a complemented

lattice.

Figure 1.1.1

1.1.18 Example

Let X be a non-empty set. Then (P(X);�) is a complemented lattice.

1.1.19 De�nition

Let L be a bounded lattice with a least element 0 and a greatest element 1. Let

´ : L! L, mapping x 7! x´ is such that

(x´)´ = x and x � y implies that y´ � x´ for all x; y 2 L.

Then " ´ " is called an involution or duality on L.

It follows that " ´ " is bijective, and that 0´= 1 and 1´= 0.
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1.1.20 Example

Let I = [0; 1]. Then (I;�) is a bounded lattice and ´ : x 7! 1�x is an involution on I.

1.1.21 De�nition

Let L be a lattice with a least element 0. Then x 2 L is called an atom of L, if 0 < x

and there is no element y in L with 0 < y < x. The set of atoms of L is denoted by

A(L).

1.1.22 Example

Let X be a non-empty set. Then every singleton subset of X is an atom of lattice

P(X) and A(P(X)) = ffxg : x 2 Xg.

1.1.23 De�nition

Let L be a bounded lattice and " ´ " is an involution on L; the identities

(x _ y)´ = x´ ^ y´

(x _ y)´ = x´ ^ y´

are called the de Morgan Laws.

A nice property of unions and intersections is that they distribute over each other.

Therefore, it is natural to consider lattices for which joins and meets have analogous

properties.

1.1.24 De�nition

A lattice L satisfying the distributive laws

x ^ (y _ z) = (x ^ y) _ (x ^ y);

x _ (y ^ z) = (x _ y) ^ (x _ z) for all x; y; z 2 L

is called a distributive lattice.

1.1.25 De�nition

If de Morgan�s laws hold for a bounded distributive lattice having an involution, then

it is called a de Morgan algebra. Such a system is denoted by (L;_;^;´ ; 0; 1).

1.1.26 De�nition

A bounded distributive lattice which is complemented is called a Boolean lattice.
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1.1.27 De�nition

A de Morgan�s algebra (L;^;_;´ ; 0; 1) that satis�es x ^ x´6 y _ y´ for all x, y 2 L, is
called a Kleene algebra.

1.1.28 De�nition

Let L be a lattice. Then L is said to be atomic if every element x of L is the supremum

of the atoms below it, i.e.

x =
_
fy 2 A(L)jy � xg.

1.1.29 De�nition

Let L be a lattice, and x; y 2 L. Then x is called pseudocomplemented relative to y if
the following set:

T (x; y) = fz 2 Ljz ^ x � yg

has a greatest element. This greatest element is said to be pseudocomplement of x

relative to y, denoted by x! y. So, x! y, in case it exists, has the following property:

z ^ x � y if and only if z � x! y.

1.1.30 De�nition

An element x 2 L is said to be relatively pseudocomplemented if x ! y exists for all

y 2 L.

1.1.31 De�nition

A lattice L is said to be an implicative lattice or relatively pseudocomplemented or

Brouwerian, if every element in L is relatively pseudocomplemented.

1.1.32 Example

Let L(X) be the lattice of open sets of a topological space X. Then L(X) is Brouw-

erian. For any open sets A;B 2 L(X); A! B = (Ac [ B)�, the interior of the union
of B and the complement of A.

1.1.33 De�nition

Let (L;^;_; 0; 1) be a bounded lattice and x 2 L. Then an element x� is called a
pseudocomplement of x, if x ^ x� = 0 and y 6 x� whenever x ^ y = 0. Note that

x! 0 = x�.
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1.1.34 De�nition

If every element of a lattice L has a pseudocomplement then L is said to be pseudo-

complemented.

1.1.35 De�nition

The equation

x� _ x�� = 1

is called Stone�s identity.

1.1.36 De�nition

A Stone algebra is a pseudocomplemented, distributive lattice satisfying Stone�s iden-

tity.

1.1.37 De�nition [17]

MV-algebra is an algebraic structure hM;�;� ; 0i, where � is a binary operation, " � "
is a unary operation, and 0 is a constant such that the following axioms are satis�ed

for any a, b 2M :

(MV1) (M;�; 0) is a commutative monoid,

(MV2) (a�)� = a,

(MV3) 0� � a = 0�,

(MV4) (a� � b)� � b = (b� � a)� � a.

1.1.38 De�nition [9]

A set X with a binary operation � and a constant 0 is called a BCI algebra if for any
x, y, z in X, it satis�es the following conditions:

(BCI-1) ((x � y) � (x � z)) � (z � y) = 0,

(BCI-2) (x � (x � y)) � y = 0,

(BCI-3) x � x = 0,

(BCI-4) x � y = 0 and y � x = 0 imply x = y.
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1.1.39 De�nition [9]

A BCI-algebra (X; �; 0) is called a BCK-algebra if it satis�es the following condition:

(BCK-5) 0 � x = 0: for all x 2 X.

1.1.40 De�nition [9]

A BCK algebra X is called bounded if there exists some element 1 2 X such that

x � 1 = 0 for all x 2 X. For a bounded BCK algebra (X; �; 0), if an element x 2 X
satis�es 1 � (1 � x) = x, then x is called an involution (Di¤erent meaning from the

involution given in De�nition 1.1.19.

1.2 Fuzzy Sets

The material presented in this section is taken from [46]. We give the de�nitions of

fuzzy sets and some related terms.

Let X be a set and A be a subset of X. The characteristic function of A is the

function CA of X into f0,1g de�ned by CA(x) = 1 if x 2 A and CA(x) = 0 if x =2 A.

1.2.1 De�nition

A fuzzy subset of X is a function from X into the unit closed interval [0,1]. The set

of all fuzzy subsets of X is called the fuzzy power set of X, and is denoted by FP(X).

1.2.2 De�nition

Let �, � 2 FP(X). If �(x) 6 �(x) for all x 2 X, then � is said to be contained in �,
and we write � � �( or � � �).

Clearly, the inclusion relation � is a partial order on FP(X).

1.2.3 De�nition

Let �, � 2 FP(X). Then � _ � and � ^ � are fuzzy subsets of X, de�ned as follows:
For all x 2 X,

(� _ �) (x) = � (x) _ � (x) ,

(� ^ �) (x) = � (x) ^ � (x) .

The fuzzy subsets � _ � and � ^ � are called the union and intersection of � and �,
respectively.
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1.2.4 De�nition

The complement of a fuzzy subset � is denoted by �´ and is de�ned by

�´(x) = 1� �(x),

for all x 2 X.

1.2.5 De�nition

The fuzzy subsets of X, denoted by ~0 and ~1, which map every element of X onto 0

and 1 respectively, are called the empty fuzzy set or null fuzzy subset and the whole

fuzzy subset of X respectively.

1.3 Bipolar Fuzzy Sets

The material presented in this section is taken from [26]. We give the de�nitions of

bipolar fuzzy sets and some related terms. In bipolar-valued fuzzy sets, two kinds of

representations are used: canonical representation and reduced representation. In the

canonical representation, membership degrees are expressed with a pair of a positive

membership value and a negative membership value. That is, the member ship degrees

are divided into two parts: positive part in [0; 1] and negative part in [�1; 0]. In the
reduced representation, membership degrees are presented with a value in [�1; 1]. In
our work, we use the canonical representation of a bipolar-valued fuzzy sets. For more

material on this topic we refer to [26] and [27]. Let X be the universe of discourse.

1.3.1 De�nition

A bipolar fuzzy set � in X is de�ned as:

� =
�
(x; �P (x); �N (x)) : x 2 X

	
where �P : X �! [0; 1] and �N : X �! [�1; 0] are mappings. The positive member-
ship degree �P (x) denotes the satisfaction degree of an element x to the property and

the negative membership degree �N (x) denotes the satisfaction degree of x to some

implicit counter-property. If �P (x) 6= 0 and �N (x) = 0, it is the situation that x is

regarded as having only positive satisfaction for �. If �P (x) = 0 and �N (x) 6= 0, it

is the situation that x does not satisfy the property of � but somewhat satis�es the

counter-property of �. It is possible for an element x to be �N (x) 6= 0 and �P (x) 6= 0
when the membership function of the property overlaps that of its counter-property

over some portion of the domain.
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For example, sweetness of foods is a bipolar fuzzy set. If sweetness of foods has been

given as positive membership values then bitterness of foods is for negative membership

values. Other tastes like salty, sour, pungent (e.g. chili) etc. are irrelevant to the

corresponding property. So these foods are taken as zero membership values.

For the sake of simplicity, we shall write � =
�
�P ; �N

�
for the bipolar fuzzy set

� =
�
(x; �P (x); �N (x)) : x 2 X

	
:

The set of all bipolar fuzzy sets of X is called the bipolar fuzzy power set of X,

and is denoted by BFP(X).

1.3.2 De�nition

Let �, � 2 BFP(X). If �P (x) 6 �P (x) and �N (x) 6 �N (x) for all x 2 X, then � is
said to be contained in �, and we write � � �( or � � �).

Clearly, the inclusion relation � is a partial order on BFP(X).

1.3.3 De�nition

Let �, � 2 BFP(X). Then set operations �[ � and �\ � are bipolar fuzzy sets of X,
de�ned as follows:

For all x 2 X,

(� [ �)P (x) = �P (x) _ �P (x) , (� [ �)N (x) = �N (x) ^ �N (x) and

(� \ �)P (x) = �P (x) ^ �P (x) , (� \ �)N (x) = �N (x) _ �N (x) .

The bipolar fuzzy subsets � [ � and � \ � are called the union and intersection of �
and �, respectively.

1.3.4 De�nition

The complement of a bipolar fuzzy subset � is denoted by �� and is de�ned by

(��)P (x) = 1� �P (x) , (��)N (x) = �1� �N (x)

for all x 2 X.



Chapter 2

Soft Sets and Their Algebraic
Structures

In this chapter we will present the basic concepts of soft set theory. Soft sets have

received much attention in the last decade because of their applications in decision

making problems. Molodstov [34] presented the concept of soft sets to deal with

uncertain type of data under a parametrized environment which is rich enough to

make approximations by incorporating the previous concepts like fuzzy sets, vague

sets, interval valued fuzzy sets, intuitionistic fuzzy sets, rough sets, etc. Molodstov

had given the concept of soft set and introductory ideas to apply in various �elds

while Maji et al. de�ned operations on soft sets in [32], [33]. Ali et al. [2] pointed out

some practical mistakes in the de�nition of operations by Maji et al. and de�ned new

operations introducing the concept of extended and restricted operations for soft sets.

These operations not only enriched the theory but also proved this new structure deep

enough to work for further structural investigations. This gives rise to our interest

in the algebraic properties of a soft set�s internal structure. So here we have made

our �rst study. Firstly the de�nition of a soft set and various operations are given

and then, we study some important properties associated with these operations. A

collection of all soft sets with respect to new operations inspires to be checked out

for various lattices and algebras. Going through di¤erent axiomatic requirements we

�gure out the algebraic structures of soft sets and �nally, we show that soft sets with

a �xed set of parameters are also MV algebras and BCK algebras.

2.1 Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the
power set of X and A, B be non-empty subsets of E.

12
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2.1.1 De�nition [34]

A pair (�,A) is called a soft set over X, where � is a mapping given by � : A! P(X).
Therefore, a soft set over X gives a parametrized family of subsets of the universe X.

For e 2 A, �(e) may be considered as the set of e�approximate elements of X by the

soft set (�,A). Clearly, a soft set is not a classical set. From now onwards, we shall

use the notation A� over X to denote a soft set (�,A) over X where the meanings of

�, A and X are clear in a harmony with the use of usual pair notation.

2.1.2 De�nition [12]

For two soft sets A� and B� over X, we say that A� is a soft subset of B� if

1) A � B and

2) �(e) � �(e) for all e 2 A.

We write A� ~�B�.
A� is said to be a soft super set of B�, if B� is a soft subset of A�. We denote it

by A� ~�B�.

2.1.3 De�nition [12]

Two soft sets A� and B� over X are said to be soft equal if A� and B� are soft subsets

of each other. We denote it by A� ~=B� .

2.1.4 Example

Let X be the set of cars under consideration, and E be the set of parameters of

di¤erent features in cars, X = fc1,c2,c3,c4,c5g, E = fe1,e2,e3,e4,e5g = f Seat Heater,
Automatic transmission, Sunroof, Leather Seats, Navigation Systemg. Suppose that
A = fe1,e2,e3g, and B = fe1,e2g. A soft set A� describing the � features of cars�

which Mr. X is going to consider for buying is given as follows:

� : A! P(X);

e 7�!

8><>:
fc2; c3; c4g if e = e1;

fc1; c3; c4g if e = e2;

fc2; c3; c4; c5g if e = e3.

And the soft set B� given by

� : B ! P(X);

e 7�!
(
fc3g if e = e1;

fc1; c3; c4g if e = e2;
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is a soft subset of A� which represents another look by Mr. X on his earlier choices,

so B� ~�A�.

2.2 Operations on Soft Sets

Now, we give various operations on soft sets as de�ned in [4]. We have made little

modi�cations to some notations just for the convenience of reader and in order to

create a unanimity in the �ow of this thesis.

2.2.1 De�nition

Let A� and B� be two soft sets over X. Then the or-product of A� and B� is de�ned

as a soft set (A�B)�~[� , where �~[� : (A�B)! P(X), de�ned by

(a; b) 7! �(a) [ �(b):

It is denoted by A� _B� ~=(A�B)�~[�.

2.2.2 De�nition

Let A� and B� be two soft sets over X. The and-product of A� and B� is de�ned as

a soft set (A�B)�~\�, where �~\� : (A�B)! P(X), de�ned by

(a; b) 7! �(a) \ �(b):

It is denoted by A� ^B� ~=(A�B)�~\� .

2.2.3 De�nition

The extended union of two soft sets A� and B� over X is de�ned as a soft set (A [
B)�~[�, where �~[� : (A [B)! P(X), de�ned by

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e) [ �(e) if e 2 A \B

We write A� t" B� ~=(A [B)�~[�.
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2.2.4 De�nition

The extended intersection of two soft sets A� and B� over X, is de�ned as a soft set

(A [B)�~\� where, �~\� : (A [B)! P(X), de�ned by

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e) \ �(e) if e 2 A \B

We write A� u" B� ~=(A [B)�~\�.

2.2.5 De�nition

Let A� and B� be two soft sets over X such that (A \ B) 6= ;. Then the restricted
union of A� and B� is de�ned as a soft set (A\B)�~[� where, �~[� : (A\B)! P(X),
de�ned by

e 7! �(e) [ �(e):

We write A� tB� ~=(A \B)�~[� .

2.2.6 De�nition

Let A� and B� be two soft sets over X such that (A \ B) 6= ;. Then the restricted
intersection of A� and B� is de�ned as a soft set (A \ B)�~\� where, �~\� : A \ B !
P(X), de�ned by

e 7! �(e) \ �(e):

We write A� uB� ~=(A \B)�~\� .

2.2.7 De�nition

The extended di¤erence of two soft sets A� and B� over X, is de�ned as a soft set

(A [B)�`"� where, � `" � : (A [B)! P(X), de�ned by

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e)� �(e) if e 2 A \B:

We write A� `" B� ~=(A [B)�`"�.
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2.2.8 De�nition

Let A� and B� be two soft sets over X such that A \ B 6= ;. Then the restricted
di¤erence of A� and B� is de�ned as a soft set (A \ B)�`� where, � ` � : A \ B !
P(X), de�ned by

e 7! �(e)� �(e):

We write A� ` B� ~=(A \B)�`�.

2.2.9 De�nition

The complement of a soft set A�, denoted by (A�)c and de�ned as (A�)c ~=A�c where,

�c : A! P(X) is de�ned by
e 7! X � �(e):

Clearly (�c)c is same as � and ((A�)c)c = A�.

2.2.10 Example

Let U be the set of houses under consideration, and E be the set of parameters,

U = fh1,h2,h3,h4,h5g, E = fe1,e2,e3,e4,e5,e6g = f in the green surroundings, wooden,
cheap, in good repair, furnished, traditional g. Suppose that A = fe1,e2g, and B =

fe2,e3g. The soft sets A� and B� describe the �requirements of the houses�which Mr.
X and Mr. Y are going to buy respectively and is given as follows:

� : A! P(X); de�ned by

e 7�!
(
fh2; h3g if e = e1,

fh1; h2; h5g if e = e2,

and

� : B ! P(X); de�ned by

e 7�!
(
fh2; h5g if e = e2,

fh1; h3; h5g if e = e3.

Now, we approximate the resulting soft sets obtained by applying the above men-

tioned operations on A� and B�. We have

(i) A� _B� ~=(A�B)�~[� , where

(�~[�) : (A�B)! P(X); de�ned by

e 7�!

8>>>><>>>>:
fh2; h3; h5g if e = (e1; e2),

fh1; h2; h3; h5g if e = (e1; e3),

fh1; h2; h5g if e = (e2; e2),

fh1; h2; h3; h5g if e = (e2; e3).
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(ii) A� ^B� ~=(A�B)�~\�, where

(�~\�) : (A�B)! P(X); de�ned by

e 7�!

8>>>><>>>>:
fh2g if e = (e1; e2),

fh3g if e = (e1; e3),

fh2; h5g if e = (e2; e2),

fh1; h5g if e = (e2; e3).

(iii) A� t" B� ~=(A [B)�~[�, where

(�~[�) : (A [B)! P(X); de�ned by

e 7�!

8><>:
fh2; h3g if e = e1,

fh1; h2; h5g if e = e2,

fh1; h3; h5g if e = e3,

(iv) A� u" B� ~=(A [B)�~\� , where

(�~\�) : (A [B)! P(X), de�ned by

e 7�!

8><>:
fh2; h3g if e = e1,

fh2; h5g if e = e2,

fh1; h3; h5g if e = e3,

(v) A� tB� ~=(A \B)�~[�, where

(�~[�) : (A \B)! P(X); de�ned by

e2 7�! fh1; h2; h5g

(vi) A� uB� ~=(A \B)�~\�, where

(�~\�) : (A \B)! P(X); de�ned by

e2 7�! fh2; h5g

(vii) A� `" B� ~=(A [B)�`"�, where

� ` "� : (A [B)! P(X); de�ned by

e 7�!

8><>:
fh2; h3g if e = e1,

fh1g if e = e2,

fh1; h3; h5g if e = e3,

(ix) A� ` B� ~=(A \B)�`�, where

� ` � : (A \B)! P(X); de�ned by

e2 7�! fh1g
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(x) (A�)c = A�c where

�c : A! P(X); where

e 7�!
(
fh1; h4; h5g if e = e1,

fh3; h4g if e = e2.

2.3 Properties of Soft Sets

In this section we discuss properties and laws of soft sets with respect to operations

de�ned on soft sets. Later on these results are utilized for the con�guration of algebraic

structures of soft sets. The new idea of restricted and extended operations gives

rise to some di¤erent results, for example, distributive laws do not hold in general

for the operations of soft sets which is an entirely new aspect in a vague structure.

Associativity, absorption, distributivity, de Morgan laws are investigated for soft set

theory.

2.3.1 De�nition

A soft set A� over X is called a relative null soft set, denoted by A�, if �(e) = ; for
all e 2 A.

2.3.2 De�nition

A soft set A� over X is called a relative whole or absolute soft set, denoted by AX, if

�(e) = X for all e 2 A.
Conventionally, we take soft sets with an empty set of parameters to be equal to

;� and so A� uB� ~=;� ~=A� tB� when A \B = ;.

2.3.3 Proposition

Let A�, A� be any soft sets over X. Then

1) A� t" A� ~=A� tA�; A� u" A� ~=A� uA� ,

2) A��A� ~=A�, for � 2 ft,ug, (Idempotent)

3) A� uAX ~=A� ~=A� tA�,

4) A� tAX ~=AX; A� uA� ~=A�,

5) A� u" ;� ~=A� ~=A� t" ;� ~=A� u EX,

6) A� u ;� ~=;�; A� t" EX ~=EX.

Proof. Straightforward.
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2.3.4 Proposition

Let A�, B� and C be any soft sets over X. Then the following are true:

1) A��(B��C) ~=(A��B�)�C , (Associative Laws)

2) A��B� ~=B��A�, (Commutative Laws)

for all � 2 ft",t,u",ug.
Proof. Straightforward.

2.3.5 Proposition (Absorption Laws)

Let A�, B� be any soft sets over X. Then the following are true:

1) A� t" (B� uA�) ~=A�,

2) A� u (B� t" A�) ~=A�,

3) A� t (B� u" A�) ~=A�,

4) A� u" (B� tA�) ~=A�.

Proof. Straightforward.

2.3.6 Proposition (Distributive Laws)

Let A�, B� and C be any soft sets over X. Then

1) A� u (B� t" C) ~=(A� uB�) t" (A� u C),

2) A� u (B� u" C) ~=(A� uB�) u" (A� u C),

3) A� u (B� t C) ~=(A� uB�) t (A� u C),

4) A� t (B� t" C) ~=(A� tB�) t" (A� t C),

5) A� t (B� u" C) ~=(A� tB�) u" (A� t C),

6) A� t (B� u C) ~=(A� tB�) u (A� t C),

7) A� u" (B� t" C) ~�(A� u" B�) t" (A� u" C),

8) A� u" (B� t C) ~=(A� u" B�) t (A� u" C),

9) A� u" (B� u C) ~�(A� u" B�) u (A� u" C),
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10) A� t" (B� t C) ~�(A� t" B�) t (A� t" C),

11) A� t" (B� u" C) ~�(A� t" B�) u" (A� t" C),

12) A� t" (B� u C) ~=(A� t" B�) u (A� t" C).

Proof. We prove only one part here, the other parts can be proved in a similar
way.

1) We have
A� u (B� t" C) ~=(A \ (B [ C))�~\(�~[)

and

(A� uB�) t" (A� u C) ~= (A \B)(�~\�) t" (A \ C)(�~\)
~= ((A \B) [ (A \ C))

(�~\�)~[(�~\)

~= (A \ (B [ C))
(�~\�)~[(�~\) .

Let e 2 A \ (B [ C). Then there can be one of three cases:

(i) If e 2 A \ (B � C), then

(�~[) (e) = � (e) and

f�~\(�~[)g(e) = � (e) \ � (e) .

Also A \ (B � C) = (A \B)� (A \ C) and hence

f(�~\�)~[(�~\)g(e) = (�~\�)(e) = � (e) \ � (e) .

(ii) If e 2 A \ (C �B), then

(�~[) (e) =  (e) and

f�~\(�~[)g(e) = � (e) \  (e) .

Also A \ (C �B) = (A \ C)� (A \B) and hence

f(�~\�)~[(�~\)g(e) = (�~\)(e) = � (e) \  (e) .

(iii) If e 2 A \ (B \ C), then

(�~[) (e) = � (e) [  (e) and

f�~\(�~[)g(e) = � (e) \ (� (e) [  (e)).
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Also A \ (B \ C) = (A \B) \ (A \ C) and hence

f(�~\�)~[(�~\)g(e)

= (�~\�)(e) [ (�~\)(e)

= (� (e) \ � (e)) [ (� (e) \  (e))

= � (e) \ (� (e) [  (e)).

Thus

�~\(�~[) = (�~\�)~[(�~\)

and so

(A \ (B [ C))�~\(�~[) ~=(A \ (B [ C))(�~\�)~[(�~\)

Similarly we can prove the remaining parts.

2.3.7 Example

Let X be the set of sample designs and E be the set of available colors for dresses in

a boutique,

X = fS1; S2; S3; S4; S5; S6; S7; S8g

E = f Red, Green, Blue, Yellow, Black, White, Pink g

Suppose that

A = fRed, Green, Blue, Whiteg, B = fGreen, Blue, Yellow, Blackg

and C = fBlue, Yellow, White, Pinkg.

Let A�,B� and C be the soft sets over X presenting the data record for three di¤erent

boutiques respectively, given as follows:

�(Red) = fS1; S2; S3; S4g;

�(Green) = fS3; S4; S5; S6g;

�(Blue) = fS1; S2; S4; S7g;

�(White) = fS2; S3; S4g.

�(Green) = fS4; S5; S6; S8g;

�(Blue) = fS1; S2; S3; S4g;

�(Yellow) = fS4; S5; S6; S7; S8g;

�(Black) = fS1; S2; S4; S7g.
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and

(Blue) = fS3; S4; S7; S8g;

(Yellow) = fS4; S5; S7g;

(White) = fS2; S4; S6; S8g;

(Pink ) = fS2; S3; S5; S7g.

Now

A� t" (B� t C) ~= (A [ (B \ C))�~[(�~[);

(A� t" B�) t (A� t" C) ~= ((A [B) \ (A [ C))(�~[�)~[(�~[);

A� t" (B� u" C) ~= (A [ (B [ C))�~[(�~\);

(A� t" B�) u" (A� t" C) ~= ((A [B) [ (B [ C))(�~[�)~\(�~[).

Then

(�~[(�~[))(Green) = fS3; S4; S5; S6g;

(�~[(�~[))(White) = fS2; S3; S4g.

((�~[�)~[(�~[))(Green) = fS3; S4; S5; S6; S8g;

((�~[�)~[(�~[))(White) = fS2; S3; S4; S6; S8g.

Thus

A� t" (B� t C) ~6=(A� t" B�) t (A� t" C).

Similarly it can be shown that

A� u" (B� u C) ~6=(A� u" B�) u (A� u" C).

Again, we see that

(�~[(�~\))(Green) = fS3; S4; S5; S6; S8g;

(�~[(�~\))(White) = fS2; S3; S4; S6; S8g

and

((�~[�)~\(�~[))(Green) = fS3; S4; S5; S6g;

((�~[�)~\(�~[))(White) = fS2; S3; S4g.

Thus

A� t" (B� u" C) 6= (A� t" B�) u" (A� t" C).

Similarly it can be shown that

A� u" (B� t" C) 6= (A� u" B�) t" (A� u" C).
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2.3.8 Proposition

Let A�, B� and C be any soft sets over X. Then

1)
A� t" (B� u" C) ~=(A� t" B�) u" (A� t" C)

if and only if

�(e) � �(e) for all e 2 (A \B)� C and

�(e) � (e) for all e 2 (A \ C)�B.

2)
A� u" (B� t" C) ~=(A� u" B�) t" (A� u" C)

if and only if

�(e) � �(e) for all e 2 (A \B)� C and

�(e) � (e) for all e 2 (A \ C)�B.

Proof. Straightforward.

2.3.9 Corollary

Let A�, B� and C be any soft sets over X. Then

A� t" (B� u" C) ~=(A� t" B�) u" (A� t" C)
A� u" (B� t" C) ~=(A� u" B�) t" (A� u" C)
if and only if

�(e) = �(e) for all e 2 (A \B)� C and

�(e) = (e) for all e 2 (A \ C)�B.

2.3.10 Corollary

Let A�, B� and C be any soft sets over X such that (A\B)�C = (A\C)�B = ;.
Then

1) A� t" (B� u" C) ~=(A� t" B�) u" (A� t" C),

2) A� u" (B� t" C) ~=(A� u" B�) t" (A� u" C).
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2.3.11 Corollary

Let A�, A� and A be any soft sets over X. Then

A��(A��A) ~=(A��A�)�(A��A)

for distinct �, � 2 fu",u,t",tg.

2.3.12 Theorem

Let A� and B� be two soft sets over X. Then the following are true

1) A�t"B� is the smallest soft set over X which contains both A� and B�. (Supre-

mum)

2) A� u B� is the largest soft set over X which is contained in both A� and B�.

(In�mum)

Proof.

1) We have A;B � (A [ B) and �(e); �(e) � �(e) [ �(e). So A� ~�A� t" B� and
B� ~�A�t"B�. Let C be a soft set overX, such that A�, B� ~�C . Then A;B � C
implies that (A [B) � C and �(e); �(e) � (e) implies that �(e) [ �(e) � (e).
Thus A� t" B� ~�C . It follows that A� t" B� is the smallest soft set over X
which contains both A� and B� .

2) We have A \ B � A;A \ B � B and �(e) \ �(e) � �(e); �(e) \ �(e) � �(e) for

all e 2 A \ B. So A� u B� ~�A� and A� u B� ~�B� . Let C be a soft set over
X, such that C ~�A� and C ~�B�. Then C � A;C � B imply that C � A \ B
and (e) � �(e), (e) � �(e) imply that (e) � �(e) \ �(e) for all e 2 C. Thus
C ~�A� u B� . It follows that A� u B� is the largest soft set over X which is

contained in both A� and B�.

2.4 Algebras of Soft Sets

In this section, we discuss lattices and algebras for the collections of soft sets. We con-

sider certain collections of soft sets and �nd their distributive lattices. The concepts of

involutions, complementations and atomicity are discussed. We denote the collections

as follows:

SS(X)E : collection of all soft sets de�ned over X
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SS(X)A: collection of all soft sets de�ned over X with a �xed parameter set A.

Firstly, we observe that these collections are partially ordered by the relation of

soft inclusion ~�.

2.4.1 Proposition

The structures (SS(X)E ,u",t), (SS(X)E ,t,u"), (SS(X)E ,t",u), (SS(X)E ,u,t"),
(SS(X)A,t,u), and (SS(X)A,u,t) are complete lattices.
Proof. Let us consider (SS(X)E ,u",t). Then for any soft sets A�,B�,C 2

SS(X)E ,

1) We have A� u"B� ~=(A[B)�~\� 2 SS(X)E and A� tB� ~= (A\B)�~[� 2 SS(X)E .

2) From Proposition 2.3.3, we have

A� u" A� ~=A� and A� tA� ~=A�.

3) From Proposition 2.3.4 we see that

A� u" B� ~= B� u" A� and

A� tB� ~= B� tA�.

Also

A� u" (B� u" C) ~= (A� u" B�) u" C and

A� t (B� t C) ~= (A� tB�) t C .

4) From Proposition 2.3.5,

A� u" (B� tA�) ~=A� and A� t (B� u" A�) ~=A�.

So we conclude that the structure forms a lattice.

Consider a collection of soft sets fAi�i : i 2 Ig over X. We have,
[
i2I
Ai � E

and, let �(e) = fj : e 2 Ajg for any e 2 Ai. Then
\

i2�(e)
�i(e) � X. Thus u"

i2I
Ai�i 2

SS(X)E . Again, we have,
\
i2I
Ai � E and for any e 2

\
i2I
Ai,

[
i2I
�i(e) � X. Thus

t
i2I
Ai�i 2 SS(X)

E .

Similarly we can show the remaining structures.
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2.4.2 Proposition

The structures (SS(X)E ,u,t",;�,EX), (SS(X)E ,t",u,EX,;�), (SS(X)A,u,t,A�,AX)
and (SS(X)A,t,u,AX,A�) are bounded distributive lattices.

Proof. From Proposition 2.3.6, we have

A� u (B� t" C) ~= (A� uB�) t" (A� u C)

A� t" (B� u C) ~= (A� t" B�) u (A� t" C)

for all A�,B� ,C 2 SS(X)E . So (SS(X)E ,u,t") and (SS(X)E ,t",u) are distributive
lattices. From Theorem 2.3.12, we conclude that (SS(X)E ,u,t",;�,EX) is a bounded
distributive lattice and (SS(X)E ,t",u,EX,;�) is its dual.

Now, for any soft sets A�,A� 2 SS(X)A,

A� uA� ~= A�~\� 2 SS(X)A and

A� tA� ~= A�~[� 2 SS(X)A.

Thus (SS(X)A,u,t) is a distributive sublattice of (SS(X)
E ,t",u). Proposition 2.3.3

tells us that A�,AX are its lower and upper bounds respectively. Therefore

(SS(X)A,u,t,A�,AX) is a bounded distributive lattice and (SS(X)A,t,u,AX,A�)
is its dual.

2.4.3 Proposition

Let A� be a soft set over X. Then A�c is a complement of A�.

Proof. As A� tA�c ~=A(�~[�c) so, for any e 2 A,

(�~[�c)(e) = �(e) [ (�(e))c = X.

Thus A� tA�c ~=AX.
Also A� uA�c ~=A(�~\�c), so

(�~\�c)(e) = �(e) \ (�(e))c = ;.

Thus A� uA�c ~=A�.
Now, we show that A�c is unique in the bounded lattice (SS(X)A,t,u,AX,A�). If

there exists some A� 2 SS(X)A such that A� t A� ~=AX and A� u A� ~=A�. For any
e 2 A,

�(e) \ �(e) = ;

) �(e) � (�(e))c = �c(e)
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and

�c(e) � X = �(e) [ �(e).

But

�(e) \ �c(e) = ; and so �c(e) � �(e) [ �(e)) �c(e) � �(e).

Therefore

�(e) = �c(e) for all e 2 A and A� ~=A�c .

Hence A�c is a complement of A�.

2.4.4 Remark

We see that (SS(X)A,u,t,A�,AX) and (SS(X)A,t,u,AX,A�) are dual lattices so all
the properties and structural con�gurations hold dually in an understood manner.

2.4.5 Proposition (de Morgan Laws)

Let A� and B� be any soft sets over X. Then the following are true

1) (A� t" B�)c ~=A�c u" B�c ,

2) (A� u" B�)c ~=A�c t" B�c ,

3) (A� _B�)c ~=A�c ^B�c ,

4) (A� ^B�)c ~=A�c _B�c ,

5) (A� tB�)c ~=A�c uB�c ,

6) (A� uB�)c ~=A�c tB�c .

Proof. We know that (A�t"B�)c ~=((A[B)�~[�)c ~=(A[B)(�~[�)c . Let e 2 (A[B).
Then there are three cases:

(i) If e 2 A�B, then

((�~[�)c)(e) = (�(e))c = �c(e) and (�c~\�c)(e) = �c(e).

(ii) If e 2 B �A, then

(�~[�)c(e) = (�(e))c = �c(e) and (�c~\�c)(e) = �c(e).
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(iii) If e 2 A \B, then

(�~[�)c(e) = (�(e) [ �(e))c = (�(e))c \ (�(e))c

and,

(�c~\�c)(e) = (�(e))c \ (�(e))c.

Therefore, in all the cases we obtain equality and thus

(A� t" B�)c ~=A�c u" B�c .

The remaining parts can be proved in a similar way.

2.4.6 Proposition

(SS(X)A,u,t,c,A�,AX) is a de Morgan algebra.
Proof. We have already seen that (SS(X)A,u,t,A�,AX) is a bounded distributive

lattice. Propositions 2.4.3 and 2.4.5 show that de Morgan laws hold with respect to "
c" in SS(X)A. Thus (SS(X)A,u,t,c,A�,AX) is a de Morgan algebra.

2.4.7 Proposition

(SS(X)A,u,t,c,A�,AX) is a boolean algebra.
Proof. Follows from Propositions 2.4.2 and 2.4.3.

2.4.8 Proposition

Let A� and A� be any soft sets over X. Then (A� u A�c) ~�(A� t A�c) and so
(SS(X)A,u,t,c,A�,AX) is a Kleene Algebra.

Proof. We have,
A� uA�c ~=A� ~�AX ~=A� tA�c

for all A�,A� 2 SS(X)A. We already know that (SS(X)A,u,t,c,A�,AX) is a de
Morgan algebra, so this condition assures that (SS(X)A,u,t,c,A�,AX) is a Kleene
Algebra.

2.4.9 Lemma

For any x 2 X and A � E. We de�ne a soft set Aex for each e 2 A, where ex : A !
P(X) such that

ex(e�) =

(
fxg if e�= e

; if e� 6= e
.
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Then Aex is an atom of lattice (SS(X)A,u,t) for each e 2 A and x 2 X and we have

A(SS(X)A) = fAex : e 2 E and x 2 Xg.

Proof. Let A� ~6=A� 2 SS(X)A such that A� ~�Aex . Then �(e) � ex(e) = fxg
and �(e´) � ; for all (e 6=)e´2 A. This implies that �(e´) = ; for all (e 6=)e´2 A
and the only possibility for �(e) is fxg because A� ~6=A�. Thus A� ~=Aex proves that
Aex 2 A(SS(X)A).

2.4.10 Proposition

(SS(X)A,u,t) is an atomic lattice.
Proof. Let A� 2 SS(X)A, and take

IA = fAex 2 A(SS(X)A) : Aex ~�A�g

the subcollection of A(SS(X)A) which is given in Lemma 2.4.9. Suppose that

A� ~=
_
IA.

For any e 2 A, �(e) =
[

x2�(e)
ex(e) =

[
x2�(e)

fxg = �(e). Thus
_
IA ~=A� and hence

(SS(X)A,u,t) is an atomic lattice.

2.4.11 Lemma

Let A�; B� 2 SS(X)E . Then the pseudocomplement of A� relative to B� exists in
SS(X)E .

Proof. Consider the set

T (A�; B�) = fC 2 SS(X)E : C uA� ~�B�g.

We de�ne a soft set Ac�c t" B� ~=(Ac [ B)�c~[� 2 SS(X)
E and claim that A� ! B� ~=

(Ac [B)�c~[�. First of all we show that (Ac [B)�c~[� 2 T (A�; B�). Consider

(Ac [B)�c~[� uA� ~= ((Ac [B) \A)(�c~[�)~\� (By distributive law)

~= ((Ac \A) [ (B \A))(�c~\�)~[(�~\�)
~= (A \B)�~\� ~�B�.

Thus (Ac [ B)�c~[� 2 T (A�; B�). For any C 2 T (A�; B�), we have C u A� ~�B� so
for any e 2 C \A � B

(e) \ �(e) � �(e).
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Now,

C \A � B ) (A \ C) \Bc = ;

) C � (A \Bc)c = Ac [B

and

(e) \ �(e) � �(e)) ((e) \ �(e)) \ �c(e) = ;

) (e) � (�(e))c \ �(e) = �c(e) \ �(e)

Thus C ~�(Ac [B)�c~[� and it also shows that

(Ac [B)�c~[� ~=
_
T (A�; B�) ~=A� ! B� :

2.4.12 Remark

We know that (SS(X)A,u,t) is a sublattice of (SS(X)
E ,u",t). For any A�, A� 2

SS(X)A, A� ! A� as de�ned in Lemma 2.4.11, is not in SS(X)A because A� !
A� ~=(A

c [A)�c~[� ~=E�c~[� =2 SS(X)A.

2.4.13 Lemma

Let A�; A� 2 SS(X)A. Then pseudocomplement of A� relative to A� exists in

SS(X)A.
Proof. Consider the set

T (A�; A�) = fA 2 SS(X)A : A uA� ~�A�g.

We de�ne a soft set A�c tA� ~=A�c~[� 2 SS(X)A. Consider

A�c~[� uA� ~= A(�c~[�)~\�

~= A(�c~\�)~[(�~\�)

~= A�~\� ~�A� .

Thus A�c~[� 2 T (A�; A�). For every A 2 T (A�; A�), we have A uA� ~�A� so for any
e 2 A,

(e) \ �(e) � �(e)) ((e) \ �(e)) \ �c(e) = ;

) (e) � (�(e))c \ �(e) = �c(e) \ �(e)

Thus A ~�A�c~[� and it also shows that

A�c~[� ~=
_
T (A�; A�) ~=A� !A A�.
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2.4.14 Proposition

(SS(X)E ,u",t) and (SS(X)A,u,t) are Brouwerian lattices.
Proof. Follows from Lemmas 2.4.11 and 2.4.13.

2.4.15 Theorem

(SS(X)A,u,c,AX) is an MV-algebra.
Proof. MV 1, MV 2 and MV 3 are straightforward. We prove MV 4:

(A�c uA�)c uA� ~= ((A�c)
c tA�c) uA�

~= (A� tA�c) uA�
~= (A� uA�) t (A�c uA�)

~= (A� uA�) tA�
~= (A� uA�) t (A�c uA�)

~= (A� tA�c) uA�
~= (A�c uA�)c uA�.

for all A�, A� 2 SS(X)A. Thus (SS(X)A,u,c,AXi is an MV-algebra.

2.4.16 Theorem

(SS(X)A,t,c,A�) is an MV-algebra.
Proof. MV 1, MV 2 and MV 3 are straightforward. We prove MV 4:

(A�c tA�)c tA� ~= ((A�c)
c uA�c) tA�

~= (A� uA�c) tA�
~= (A� tA�) u (A�c tA�)

~= (A� tA�) uAX
~= (A� tA�) u (A�c tA�)

~= (A� uA�c) tA�
~= (A�c tA�)c tA�.

for all A�, A� 2 SS(X)A. Thus (SS(X)A,t,c,A�) is an MV-algebra.

2.4.17 Theorem

(SS(X)A,^,A�) is a bounded BCK-algebra whose every element is an involution.
Proof. For any A�, A�, A 2 SS(X)A
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BCI-1 ((A� ^ A�)^ (A� ^ A))^ (A ^ A�)

~=(A�^� ^ A�^)^ A^�

~=A(�^�)^(�^) ^ A^�

~=A� ^ A^� ~=A�.

BCI-2 (A� ^ (A� ^ A�))^ A�

~=(A� ^ A�^�)^ A�

~=A(�^(�^�) ^ A�

~=A� ^ A� ~=A�^� ~=A�.

BCI-3 A� ^ A� ~=A�.

BCI-4 Let A� ^ A� ~=A� and A� ^ A� ~=A�. For any e 2 A,

�(e)� �(e) = ; and �(e)� �(e) = ; imply that �(e) = �(e).

Hence A� ~=A�.

BCK-5 A� ^ A� ~=A�^� ~=A�.

Thus (SS(X)A,^,A�) is a BCK-algebra. Now AX 2 SS(X)A is such that:

A� ^ AX ~=A�^X ~=A� for all A� 2 SS(X)A.

Therefore (SS(X)A,^,A�) is a bounded BCK-algebra.
For any A� 2 SS(X)A,

AX ^ (AX ^ A�) ~=AX ^ AX^� ~=AX ^ A�c ~=AX^�c ~=A(�c)c ~=A�.

So every element of SS(X)A is an involution.

2.4.18 De�nition

Let A� and A� be any soft sets over X. We de�ne

A� ? A� ~=A�?� ~=A� uA�c .
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2.4.19 Theorem

(SS(X)A,?,A�) is a bounded BCK-algebra whose every element is an involution.
Proof. For any A�, A�, A 2 SS(X)A.

BCI-1 ((A� ? A�) ? (A� ? A)) ? (A ? A�)

~=(A�?� ? A�?) ? A?�

~=A((�?�)?(�?))?(?�)

~=A((�~\�c)?(�~\c))?(~\�c)

~=A((�~\�c)~\(�~\c)c)~\(~\�c)c

~=A((�~\�c)~\(�c~[))~\(c~[�)

~=A((�~\�c)~\)~\(c~[�)

~=A((�~\�c)~\)~\�

~=A(�~\)~\(�c~\�) ~=A�.

BCI-2 (A� ? (A� ? A�)) ? A�

~=(A� ? A�?�) ? A�

~=A�?(�?�) ? A�

~=A�~\(�~\�c)c ? A�

~=A(�~\(�c~[�) ? A�

~=A�~\� ? A� ~=A(�~\�)~\�c ~=A�.

BCI-3 A� ? A� ~=A�~\�c ~=A�.

BCI-4 Let A� ? A� ~=A� and A� ? A� ~=A�. For any e 2 A,

�(e) \ (�(e))c = ; and �(e) \ (�(e))c = ; imply that �(e) = �(e).

Hence

A� ~=A�.

BCK-5 A� ? A� ~=A�?� ~=A�~\�c ~=A�.

Thus (SS(X)A,?,A�) is a BCK-algebra. Now AX 2 SS(X)A is such that:

A� ? AX ~=A�?X ~=A�~\Xc ~=A�~\� ~=A� for all A� 2 SS(X)A.

Therefore (SS(X)A,?,A�) is a bounded BCK-algebra.



Chapter 3

Algebraic Structures of Fuzzy
Soft Sets

In 2001, Maji and Roy proposed the concept of Fuzzy Soft Set in [30]. Di¤erent

algebraic structures have also been studied in fuzzy soft context. Irfan et al. [3]

pointed out some basic problems in the results related to the operations de�ned on

fuzzy soft sets. In the paper [3], some new operations are de�ned for fuzzy soft sets

and modi�ed results and laws are established. In this chapter, we step forward in the

same direction and check out the associativity and distributivity of these operations.

First we have given preliminaries of fuzzy soft sets. We have used new and modi�ed

de�nitions and operations from [3] to discuss the properties of these operations on fuzzy

soft sets. After accomplishing an account of algebraic properties of fuzzy soft sets, the

overall algebraic structures of collections of fuzzy soft sets are studied. The two types

of collections of fuzzy soft sets, one consisting of those fuzzy soft sets with a �xed set

of parameters while the other containing fuzzy soft sets de�ned over the same universe

with di¤erent set of parameters are taken into account. Both collections have some

common and some di¤erent algebraic properties and therefore the algebraic structures

also di¤er. The lattice structure of these collections is discussed and we �nd that the

collection of all fuzzy soft sets is a bounded distributive lattice and the collection of

fuzzy soft sets with a �xed set of parameters becomes a Kleene algebra. At the end

we de�ne pseudocomplement of a fuzzy soft set and with this pseudocomplement, this

collection becomes a stone algebra.

3.1 Fuzzy Soft Sets

Let X be an initial universe and E be a set of parameters. Let FP(X) denotes the
fuzzy power set of X and A, B be non-empty subsets of E.

34
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3.1.1 De�nition [30]

A pair (f ,A) is called a fuzzy soft set over X, where f is a mapping given by f : A!
FP(X).

Therefore, a fuzzy soft set over X gives a parametrized family of fuzzy subsets of

the universe X. For e 2 A, f(e) may be considered as the set of e�approximate fuzzy
elements of X. From now onwards, we shall use the notation Af over X to denote a

fuzzy soft set (f ,A) over X where the meanings of f , A and X are clear in a harmony

with the use of usual pair notation.

3.1.2 De�nition [3]

For two fuzzy soft sets Af and Bg over a common universe X, we say that Af is a

fuzzy soft subset of Bg if

1) A � B and

2) f(e) � g(e) for all e 2 A.

We write Af ~�Bg. Af is said to be a fuzzy soft super set of Bg, if Bg is a fuzzy soft
subset of Af . We denote it by Af ~�Bg.

3.1.3 De�nition

[3] Two fuzzy soft sets Af and Bg over X are said to be fuzzy soft equal if Af and Bg
are fuzzy soft subsets of each other. We denote it by Af ~=Bg.

3.1.4 Example

LetX be a set of candidates for a driver�s vacant position, and E be a set of parameters,

X = fc1,c2,c3,c4,c5g, E = fe1,e2,e3,e4g = f knowledge about routes, driving skills,
physical �tness, youngg. Suppose that A = fe1,e2,e3g, a fuzzy soft set Af describes
the �data of candidates�which Mr. X is going to hire and is given as follows:

f : A! FP(X);

e 7�!

8><>:
fc1=0:3; c2=0:1; c3=0:3; c4=0:1; c5=0:7g if e = e1;

fc1=0:1; c2=0:9; c3=0:3; c4=0:8; c5=0:2g if e = e2;

fc1=0:1; c2=0:3; c3=0:3; c4=0:3; c5=0:8g if e = e3;

Let B = fe2,e3g. Then fuzzy soft set Bg given as follows:

g : B ! FP(X);

e 7�!
(
fc1=0:1; c2=0:5; c3=0:3; c4=0:5; c5=0:2g if e = e2;

fc1=0:1; c2=0:2; c3=0:1; c4=0:2; c5=0:7g if e = e3;
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is a fuzzy soft subset of Af and represents a second analysis of choices made in Af .

3.2 Operations on Fuzzy Soft Sets

Now, we de�ne various operations on fuzzy soft sets taken from literature.

3.2.1 De�nition

Let Af and Bg be two fuzzy soft sets over X. Then the or-product of Af and Bg is

de�ned as a fuzzy soft set (A�B)f ~_g, where f ~_g : (A�B)! FP(X), de�ned by

(a; b) 7! f(a) _ g(b).

It is denoted by Af _Bg ~=(A�B)f ~_g.

3.2.2 De�nition

Let Af and Bg be two fuzzy soft sets over X. The and-product of Af and Bg is de�ned

as a fuzzy soft set (A�B)f ~̂g, where f ~̂g : (A�B)! FP(X), de�ned by

(a; b) 7! f(a) ^ g(b).

It is denoted by Af ^Bg ~=(A�B)f ~̂g.

3.2.3 De�nition

The extended union of two fuzzy soft sets Af and Bg over X is de�ned as a fuzzy soft

set (A [B)f ~_g, where f ~_g : (A [B)! FP(X), de�ned by

e 7!

8><>:
f(e) if e 2 A�B
g(e) if e 2 B �A
f(e) _ g(e) if e 2 A \B

We write Af t" Bg ~=(A [B)f ~_g.

3.2.4 De�nition

The extended intersection of two fuzzy soft sets Af and Bg over X, is de�ned as a

fuzzy soft set (A [B)f ~̂g, where f ~̂g : (A [B)! FP(X), de�ned by

e 7!

8><>:
f(e) if e 2 A�B
g(e) if e 2 B �A
f(e) ^ g(e) if e 2 A \B

We write Af u" Bg ~=(A [B)f ~̂g.
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3.2.5 De�nition

Let Af and Bg be two fuzzy soft sets over X such that A\B 6= ;. Then the restricted
union of Af and Bg is de�ned as a fuzzy soft set (A \ B)f ~̂g, where f ~_g : A \ B !
FP(X),

e 7! f(e) _ g(e).

We write Af tBg ~=(A \B)f ~_g

3.2.6 De�nition

Let Af and Bg be two fuzzy soft sets over X such that A\B 6= ;. Then the restricted
intersection of Af and Bg is de�ned as a fuzzy soft set (A\B)f ~̂g, where f ~̂g : A\B !
FP(X),

e 7! f(e) ^ g(e).

We write Af uBg ~=(A \B)f ~̂g.

3.2.7 De�nition

The complement of a fuzzy soft set Af , denoted by (Af )´ and de�ned by (Af )´ ~=Af�,

where f´ : A! FP(X) is given by

(f�(e))(x) = 1� (f(e))(x),

for all e 2 A, and for all x 2 X.
Clearly (f´)´ is same as f and ((Af )´)´= Af .

Now, we give an example to show how to apply these operations on fuzzy soft sets:

3.2.8 Example

Let X be the initial universe and E be the set of parameters,

X = fx1; x2; x3; x4; x5g, E = fe1; e2; e3; e4; e5g.

Suppose

A = fe1; e2g, and B = fe2; e4g.

Let Af and Bg be the fuzzy soft sets over X de�ned by the following:

f : A! FP(X);

e 7�!
(
fx1=0:1; x2=0:2; x3=0:3; x4=0:7; x5=0:4g if e = e1;

fx1=0:7; x2=0:9; x3=0:2; x4=0:4; x5=0:1g if e = e2;



3. Algebraic Structures of Fuzzy Soft Sets 38

g : B ! FP(X);

e 7�!
(
fx1=0:3; x2=0:7; x3=0:6; x4=0:9; x5=0:1g if e = e2;

fx1=0:4; x2=0:2; x3=0:7; x4=0:8; x5=0:7g if e = e4;

Then

(i) Af t" Bg ~=(A [B)f ~_g where

f ~_g : (A [B)! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:2; x3=0:3; x4=0:7; x5=0:4g if e = e1;

fx1=0:7; x2=0:9; x3=0:6; x4=0:9; x5=0:1g if e = e2;

fx1=0:4; x2=0:2; x3=0:7; x4=0:8; x5=0:7g if e = e4:

(ii) Af u" Bg ~=(A [B)f ~̂g where

f ~̂g : (A [B)! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:2; x3=0:3; x4=0:7; x5=0:4g if e = e1;

fx1=0:3; x2=0:7; x3=0:2; x4=0:4; x5=0:1g if e = e2;

fx1=0:4; x2=0:2; x3=0:7; x4=0:8; x5=0:7g if e = e4:

(iii) Af tBg ~=(A \B)f ~_g where

f ~_g : (A \B)! FP(X);

e2 7�! fx1=0:7; x2=0:9; x3=0:6; x4=0:9; x5=0:1g

(iv) Af uBg ~=(A \B)f ~̂g where

f ~̂g : (A \B)! FP(X);

e 7�!
(
fx1=0:3; x2=0:7; x3=0:2; x4=0:4; x5=0:1g if e = e2;

fx1=0:3; x2=0:7; x3=0:3; x4=0:2; x5=0:5g if e = e3:

(v) (Af )´ ~=Af ´ where

f ´ : A! FP(X);

e 7�!
(
fx1=0:9; x2=0:8; x3=0:7; x4=0:3; x5=0:6g if e = e1;

fx1=0:3; x2=0:1; x3=0:8; x4=0:6; x5=0:9g if e = e2;

3.3 Properties of Fuzzy Soft Sets

In this section we discuss properties and laws of fuzzy soft sets with respect to opera-

tions de�ned on fuzzy soft sets. Later on the results will be utilized for the con�gura-

tion of algebraic structures of fuzzy soft sets. Associativity, commutativity, absorption,

distributivity, de Morgan laws and properties of involutions, and atomicity are inves-

tigated for collection of fuzzy soft sets.
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3.3.1 De�nition

A fuzzy soft set Af over X is called a relative null fuzzy soft set, denoted by A~0, if

f(e) =~0 for all e 2 A, where ~0 is the fuzzy subset of X mapping every element of X

on 0.

3.3.2 De�nition

A fuzzy soft set Af over X is called a relative whole or absolute fuzzy soft set, denoted

by A~1, if f(e) = ~1 for all e 2 A, where ~1 is the fuzzy subset of X mapping every

element of X on 1.

Conventionally, we take fuzzy soft sets with an empty set of parameters to be equal

to ;~0 and so Af uBg ~=;~0 ~=Af tBg when A \B = ;.

3.3.3 Proposition

Let Af , Ag be any fuzzy soft sets over X. Then

1) Af�Af ~=Af , for � 2 ft,t",u,u"g, (Idempotent)

2) Af t" Ag ~=Af tAg; Af u" Ag ~=Af uAg,

3) Af uA~1 ~=Af ~=Af tA~0,

4) Af tA~1 ~=A~1; Af uA~0 ~=A~0,

5) Af u" ;~0 ~=Af ~=Af t" ;~0 ~=Af u E~1,

6) Af u ;~0 ~=;~0; Af t" E~1 ~=E~1.

Proof. Straightforward.

3.3.4 Proposition

Let Af , Bg and Ch be any fuzzy soft sets over X. Then the following are true:

1) Af�(Bg�Ch) ~=(Af�Bg)�Ch, (Associative Laws)

2) Af�Bg ~=Bg�Af , (Commutative Laws)

for all � 2 ft",t,u",ug.
Proof. Straightforward.
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3.3.5 Proposition (Absorption Laws)

Let Af , Bg be any fuzzy soft sets over X. Then the following are true:

1) Af u" (Bg tAf ) ~=Af ,

2) Af u (Bg t" Af ) ~=Af ,

3) Af t (Bg u" Af ) ~=Af ,

4) Af t" (Bg uAf ) ~=Af .

Proof. For any e 2 A,

(f ~̂(f ~_g))(e) =

(
f(e) if e 2 A� (A \B)
f(e) ^ (f ~_g)(e) if e 2 A \ (A \B)

=

(
f(e) if e 2 A� (A \B)
f(e) ^ (f(e) _ g(e)) if e 2 A \B

=

(
f(e) if e 2 A� (A \B)
f(e) if e 2 A \B

= f(e).

Thus Af u" (B tAf ) ~=Af . The remaining parts can also be proved similarly.

3.3.6 Proposition (Distributive Laws)

Let Af , Bg and Ch be any fuzzy soft sets over X. Then

1) Af u (Bg t" Ch) ~=(Af uBg) t" (Af u Ch),

2) Af u (Bg u" Ch) ~=(Af uBg) u" (Af u Ch),

3) Af u (Bg t Ch) ~=(Af uBg) t (Af u Ch),

4) Af t (Bg t" Ch) ~=(Af tBg) t" (Af t Ch),

5) Af t (Bg u" Ch) ~=(Af tBg) u" (Af t Ch),

6) Af t (Bg u Ch) ~=(Af tBg) u (Af t Ch),

7) Af u" (Bg t" Ch) ~�(Af u" Bg) t" (Af u" Ch),

8) Af u" (Bg t Ch) ~=(Af u" Bg) t (Af u" Ch),

9) Af u" (Bg u Ch) ~�(Af u" Bg) u (Af u" Ch),
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10) Af t" (Bg t Ch) ~�(Af t" Bg) t (Af t" Ch),

11) Af t" (Bg u" Ch) ~�(Af t" Bg) u" (Af t" Ch),

12) Af t" (Bg u Ch) ~=(Af t" Bg) u (Af t" Ch).

Proof. We prove only one part here, the other parts can also be proved in a similar
way.

5) We have
Af t (Bg u" Ch) ~=(A \ (B [ C))f ~_(g ~̂h)

and

(Af tBg) u" (Af t Ch) ~= (A \B)(f ~_g) u" (A \ C)f ~_h
~= ((A \B) [ (A \ C))

(f ~_g)~̂(f ~_h)

~= (A \ (B [ C))
(f ~_g)~̂(f ~_h) .

Let e 2 A \ (B [ C) then there are three possibilities:

(i) If e 2 A \ (B � C) then,

(g ~̂h) (e) = g (e) and

ff ~_(g ~̂h)g(e) = f (e) _ g (e) .

Also A \ (B � C) = (A \B)� (A \ C) and hence

f(f ~_g)~̂(f ~_h)g(e) = (f ~_g)(e) = f (e) _ g (e) .

(ii) If e 2 A \ (C �B) then,

(g ~̂h) (e) = h (e) and

ff ~_(g ~̂h)g(e) = f (e) _ h (e) .

Also A \ (C �B) = (A \ C)� (A \B) and hence

f(f ~_g)~̂(f ~_h)g(e) = (f ~_h)(e) = f (e) _ h (e) .

(iii) If e 2 A \ (B \ C) then,

(g ~̂h) (e) = g (e) ^ h (e) and

ff ~_(g ~̂h)g(e) = f (e) _ (g (e) ^ h (e)).
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Also A \ (B \ C) = (A \B) \ (A \ C) and hence

f(f ~_g)~̂(f ~_h)g(e) = (f ~_g)(e) ^ (f ~_h)(e)

= (f (e) _ g (e)) ^ (f (e) _ h (e))

= f (e) _ (g (e) ^ h (e)).

Thus

f ~_(g ~̂h) = (f ~_g)~̂(f ~_h)

and so

(A \ (B [ C))f ~_(g ~̂h) ~=(A \ (B [ C))(f ~_g)~̂(f ~_h):

3.3.7 Example

Let X be the set of houses under consideration, and E be the set of parameters,

X = fh1; h2; h3; h4; h5g,

E = fbeautiful, wooden, cheap, in good repair, furnishedg.

Suppose that

A = fbeautiful, wooden, cheapg,

B = fwooden, cheap, in good repairg,

and C = fcheap, in good repair, furnishedg:

Let Af ,Bg and Ch be the fuzzy soft sets over X de�ned by the following:

f : A! FP(X);

e 7�!

8><>:
fh1=0:1; h2=0:2; h3=0:3; h4=0:7; h5=0:4g if e = e1;

fh1=0:7; h2=0:9; h3=0:2; h4=0:4; h5=0:1g if e = e2;

fh1=0:3; h2=0:7; h3=0:5; h4=0:2; h5=0:6g if e = e3;

g : B ! FP(X);

e 7�!

8><>:
fh1=0:3; h2=0:7; h3=0:6; h4=0:9; h5=0:1g if e = e2;

fh1=0:6; h2=1:0; h3=0:3; h4=0:2; h5=0:5g if e = e3;

fh1=0:4; h2=0:2; h3=0:7; h4=0:8; h5=0:7g if e = e4;

h : C ! FP(X);

e 7�!

8><>:
fh1=0:7; h2=0:8; h3=0:5; h4=0:4; h5=0:4g if e = e3;

fh1=0:5; h2=0:3; h3=0:2; h4=0:1; h5=0:4g if e = e4;

fh1=0:7; h2=0:8; h3=0:2; h4=0:3; h5=0:9g if e = e5;

.
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Now

Af t" (Bg t Ch) ~= (A [ (B \ C))f ~_(g~_h);

(Af t" Bg) t (Af t" Ch) ~= ((A [B) \ (A [ C))(f ~_g)~_(f ~_h);

Af t" (Bg u" Ch) ~= (A [ (B [ C))f ~_(g ~̂h);

(Af t" Bg) u" (Af t" Ch) ~= ((A [B) [ (B [ C))(f ~_g)~̂(f ~_h).

Then

(f ~_(g~_h))(wooden) = fh1=0:7; h2=0:9; h3=0:2; h4=0:4; h5=0:1g

and

((f ~_g)~_(f ~_h))(wooden) = fh1=0:7; h2=0:9; h3=0:6; h4=0:9; h5=0:1g.

We see that

(f ~_(g~_h))(wooden) 6= ((f ~_g)~_(f ~_h))(wooden).

Thus

Af t" (Bg t Ch) ~6=(Af t" Bg) t (Af t" Ch).

Again,

(f ~̂(g~_h))(wooden) = fh1=0:3; h2=0:7; h3=0:2; h4=0:4; h5=0:1g

and

((f ~̂g)~_(f ~̂h))(wooden) = fh1=0:7; h2=0:9; h3=0:2; h4=0:4; h5=0:1g.

We see that

(f ~̂(g~_h))(wooden) 6= ((f ~̂g)~_(f ~̂h))(wooden).

Thus

Af u" (Bg t" Ch) ~6=(Af u" Bg) t" (Af u" Ch).

Similarly it can be shown that

Af u" (Bg u Ch) ~6= (Af u" Bg) u (Af u" Ch).

Af t" (Bg u" Ch) ~6= (Af t" Bg) u" (Af t" Ch).

3.3.8 Proposition

Let Af , Bg and Ch be any fuzzy soft sets over X. Then

1)
Af t" (Bg u" Ch) ~=(Af t" Bg) u" (Af t" Ch)

if and only if

f(e) � g(e) for all e 2 (A \B)� C and

f(e) � h(e) for all e 2 (A \ C)�B.
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2)
Af u" (Bg t" Ch) ~=(Af u" Bg) t" (Af u" Ch)

if and only if

f(e) � g(e) for all e 2 (A \B)� C and

f(e) � h(e) for all e 2 (A \ C)�B.

Proof. Straightforward.

3.3.9 Corollary

Let Af , Bg and Ch be any fuzzy soft sets over X. Then

Af t" (Bg u" Ch) ~= (Af t" Bg) u" (Af t" Ch) and

Af u" (Bg t" Ch) ~= (Af u" Bg) t" (Af u" Ch)

hold if and only if

f(e) = g(e) for all e 2 (A \B)� C and

f(e) = h(e) for all e 2 (A \ C)�B.

3.3.10 Corollary

LetAf , Bg and Ch be any fuzzy soft sets overX such that (A\B)�C = (A\C)�B = ;.
Then

1) Af t" (Bg u" Ch) ~=(Af t" Bg) u" (Af t" Ch),

2) Af u" (Bg t" Ch) ~=(Af u" Bg) t" (Af u" Ch).

3.3.11 Corollary

Let Af , Ag and Ah be any fuzzy soft sets over X. Then

Af�(Ag�Ah) ~=(Af�Ag)�(Af�Ah)

for distinct �, � 2 fu",u,t",tg.
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3.3.12 Proposition

Let Af and Bg be two fuzzy soft sets over X. Then the following are true

1) Af t" Bg is the smallest fuzzy soft set over X which contains both Af and Bg.

(Supremum)

2) Af uBg is the largest fuzzy soft set over X which is contained in both Af and Bg.

(In�mum)

Proof.

1) Af ~�Af t" Bg and Bg ~�Af t" Bg, because A � (A [ B), B � (A [ B) and f(e) �
f(e) _ g(e), g(e) � f(e) _ g(e). Let Ch be any fuzzy soft set over X, such

that Af ~�Ch and Bg ~�Ch. Then (A [ B) � C, and f(e) � h(e), for all e 2 A,
g(e) � h(e) for all e 2 B implies that (f ~_g)(e) � h(e) for all e 2 (A [B). Thus
Af t" Bg ~�Ch.

2) AfuBg ~�Af and AfuBg ~�Bg, because A\B � A, A\B � B and f(e)^g(e) � f(e),
f(e) ^ g(e) � g(e) for all e 2 A \ B. Let Ch be any fuzzy soft set over X, such
that Ch ~�Af and Ch ~�Bg. Then C � A \ B, and h(e) � f(e), h(e) � g(e)

for all e 2 C implies that h(e) � f(e) ^ g(e) = (f ~̂g)(e) for all e 2 C. Thus
Ch ~�Af uBg.

3.4 Algebras of Fuzzy Soft Sets

In this section, we use the ideas of lattices and algebras for fuzzy soft collections. We

consider collections of fuzzy soft sets and �nd their distributive lattices. The collections

are denoted as follows:

FSS(X)E : collection of all fuzzy soft sets de�ned over X
FSS(X)A: collection of all those fuzzy soft sets de�ned over X with a �xed para-

meter set A.

Firstly, we observe that these collections are partially ordered by the relation of

fuzzy soft inclusion ~�.

3.4.1 Proposition

(FSS(X)E ,u",t), (FSS(X)E ,t,u"), (FSS(X)E ,t",u), (FSS(X)E ,u,t"), (FSS(X)A,t,u),
and (FSS(X)A,u,t) are lattices.

Proof. From Propositions 3.3.3, 3.3.4 and 3.3.5 we conclude that the structures

form lattices.
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3.4.2 Proposition

Structures (FSS(X)E ,u,t",;~0,E~1), (FSS(X)
E ,t",u,E~1,;~0), (FSS(X)A,u,t,A~0,A~1)

and (FSS(X)A,t,u,A~1,A~0) are bounded distributive lattices.
Proof. Proposition 3.3.6 assures that (FSS(X)E ,u,t") and (FSS(X)E ,t",u) are

distributive lattices. From Lemma 3.3.12, we conclude that (FSS(X)E ,u,t",;~0,E~1) is
a bounded distributive lattice and (FSS(X)E ,t",u,E~1,;~0) is its dual. For any fuzzy
soft sets Af ,Ag 2 FSS(X)A,

Af uAg ~= Af ~̂g 2 FSS(X)A and

Af tAg ~= Af ~_g 2 FSS(X)A.

Thus (FSS(X)A,u,t) is also a distributive sublattice of (FSS(X)
E ,t",u) and Propo-

sition 3.3.3 tells us that A~0, A~1 are its lower and upper bounds, respectively. Therefore

(FSS(X)A,u,t,A~0,A~1) is a bounded distributive lattice and (FSS(X)A,t,u,A~1,A~0)
is its dual.

3.4.3 Proposition

Let Af be a fuzzy soft set over X. Then " ´ " is an involution on FSS(X)A.
Proof.

(i) We have to show that A(f ´) ´ ~=Af . Now, (Af ´ ) ´ ~=A(f ´) ´

((f ´)´(e))(x) = (~1� f ´(e))(x)

= 1� (f ´(e))(x)

= 1� (~1� f(e))(x)

= 1� 1 + (f(e))(x)

= 1� 1 + (f(e))(x)

= (f(e))(x)

for all e 2 A, x 2 X. Thus (Af ´ )´ ~=Af .

(ii) If Af ~�Ag then

(f(e))(x) � (g(e))(x) and so

1� (g(e))(x) � 1� (f(e))(x) which gives

(g�(e))(x) � (f�(e))(x) for all e 2 A; x 2 X.

Hence Ag�~�Af�.

Thus " ´ " is an involution on FSS(X)A.
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3.4.4 Proposition (de Morgan Laws)

Let Af and Bg be any fuzzy soft sets over X. Then the following are true

1) (Af t" Bg)´ ~=Af�u" Bg�,

2) (Af u" Bg)´ ~=Af�t" Bg�,

3) (Af _Bg)´ ~=Af�^Bg�,

4) (Af ^Bg)´ ~=Af�_Bg�,

5) (Af tBg)´ ~=Af�uBg�,

6) (Af uBg)´ ~=Af�tBg�.

Proof.

1) We know that (Af t" Bg)´ ~=((A [B)f ~_g)´ ~=((A [B)(f ~_g)�. Let e 2 (A [B). Then
there are three cases:

(i) If e 2 A�B, then

((f ~_g)�)(e) = (f(e))�= f�(e) and (f�~̂g�)(e) = f�(e).

(ii) If e 2 B �A, then

(f ~_g)�(e) = (g(e))�= g�(e) and (f�~̂g�)(e) = g�(e).

(iii) If e 2 A \B, then

(f ~_g)�(e) = (f(e) _ g(e))�= (f(e))�^ (g(e))�

and,

(f�~̂g�)(e) = (f(e))�^ (g(e))�

Therefore, in all three cases we obtain equality and thus

(Af t" Bg)�~=Af�u" Bg�.

The remaining parts can be proved in a similar way.

3.4.5 Proposition

(FSS(X)A,u,t,´,A~0,A~1) is a de Morgan algebra.
Proof. We have already seen that (FSS(X)A,u,t,A~0,A~1) is a bounded distrib-

utive lattice. Proposition 3.4.3 shows that " ´ " is an involution on FSS(X)A and
Proposition 3.4.4 shows that de Morgan laws hold with respect to ´ in FSS(X)A.
Thus (FSS(X)A,u,t,´,A~0,A~1) is a de Morgan algebra.
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3.4.6 Proposition

Let Af and Ag be any fuzzy soft sets over X. Then (Ag u Ag ´ ) ~�(Af t Af ´ ) and so
(FSS(X)A,u,t,´,A~0,A~1) is a Kleene Algebra.

Proof. For any Af ,Ag 2 FSS(X)A, such that

Af uAf ´ ~�Ag tAg ´ where Af uAf ´ ~6=Ag tAg ´ .

Then there exists some e 2 A such that

(f u f ´)(e) ~�(g t g ´)(e)

and so we have some x 2 X such that

((f u f ´)(e))(x) > ((g t g ´)(e))(x) or

(f(e) u f ´(e))(x) > (g(e) t g ´(e))(x) or

(f(e))(x) ^ (f ´(e))(x) > (g(e))(x) _ (g ´(e))(x).

But (f(e))(x) ^ (f ´(e))(x) � 0:5 and (g(e))(x) _ (g´(e))(x) � 0:5 which gives

(f(e))(x) ^ (f�(e))(x) � (g(e))(x) _ (g�(e))(x).

A contradiction, thus our supposition is wrong. Hence

Af uAf´ ~�Ag tAg´ .

Therefore (FSS(X)A,u,t,´,A~0,A~1) is a Kleene algebra.

3.4.7 Proposition

Let Af ; Bg 2 FSS(X)E . Then pseudocomplement of Af relative to Bg exists in

FSS(X)E .
Proof. Consider the set

T (Af ; Bg) = fCh 2 FSS(X)E : Ch uAf ~�Bgg.

We de�ne a fuzzy soft set (Ac [B)f!g 2 FSS(X)E where

((f ! g)(e))(x)

=

8>>>><>>>>:
1 if e 2 Ac �B(
1 if (f(e))(x) � (g(e))(x)
(g(e))(x) if (f(e))(x) > (g(e))(x)

if e 2 B �Ac

1 if e 2 Ac \B
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Then

(Ac [B)f!g uAf ~= ((Ac [B) \A)(f!g)~̂f
~= ((Ac \A) [ (B \A))(f!g)~̂f
~= (A \B)(f!g)~̂f .

For any e 2 A \B, x 2 X,

(((f ! g)~̂f)(e))(x)

=

(
1 ^ (f(e))(x) if (f(e))(x) � (g(e))(x)
(g(e))(x) ^ (f(e))(x) if (f(e))(x) > (g(e))(x)

=

(
(f(e))(x) if (f(e))(x) � (g(e))(x)
(g(e))(x) if (f(e))(x) > (g(e))(x)

� (g(e))(x).

Hence,

(Ac [B)f!g uAf ~�Bg

Thus (Ac [ B)f!g 2 T (Af ; Bg). For all Ch 2 T (Af ; Bg), we have Ch u Af ~�Bg so for
any e 2 C \A � B

h(e) ^ f(e) � g(e).

Now,

C \A � B ) (A \ C) \Bc = ;

) C � (A \Bc)c = Ac [B.

We have following cases:

(i) If e 2 (Ac �B) \ C, then h(e))(x) < 1 = ((f ! g)(e))(x)

(ii) If e 2 (B � Ac) \ C, and (f(e))(x) � (g(e))(x) then (h(e))(x) < 1 = ((f !
g)(e))(x)

(iii) If e 2 (B�Ac)\C and (f(e))(x) > (g(e))(x); then the condition h(e)^f(e) � g(e)
implies that (h(e))(x)^(f(e)(x)) � (g(e))(x) which is possible only if (h(e))(x)^
(f(e)(x)) = (h(e))(x) and thus (h(e))(x) � (g(e))(x) = ((f ! g)(e))(x)

(iv) If e 2 (Ac \B) \ C, then h(e))(x) < 1 = ((f ! g)(e))(x).

Thus Ch ~�(Ac [B)f!g and it also shows that (Ac [B)f!g ~=
_
T (Af ; Bg) ~=Af !

Bg.
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3.4.8 Remark

We know that (FSS(X)A,u,t) is a sublattice of (FSS(X)
E ,u",t). For any Af , Ag

2 FSS(X)A, Af ! Ag (as de�ned in Proposition 3.4.7) is not in FSS(X)A because
Af ! Ag ~=(A

c [A)f!g ~=Ef!g =2 FSS(X)A.

3.4.9 Proposition

Let Af ; Ag 2 FSS(X)A. Then pseudocomplement of Af relative to Ag exists in

FSS(X)A.
Proof. Consider the set

T (Af ; Ag) = fAh 2 FSS(X)A : Ah uAf ~�Agg.

We de�ne a fuzzy soft set Af!g 2 FSS(X)A where

((f ! g)(e))(x) =

(
1 if (f(e))(x) � (g(e))(x)
(g(e))(x) if (f(e))(x) > (g(e))(x)

for all e 2 A, x 2 X. Then Af!g uAf ~=A(f!g)~̂f and

(((f ! g)~̂f)(e))(x)

=

(
1 ^ (f(e))(x) if (f(e))(x) � (g(e))(x)
(g(e))(x) ^ (f(e))(x) if (f(e))(x) > (g(e))(x)

=

(
(f(e))(x) if (f(e))(x) � (g(e))(x)
(g(e))(x) if (f(e))(x) > (g(e))(x)

� (g(e))(x).

for all e 2 A, x 2 X. Hence,
Af!g uAf ~�Ag

and Af!g 2 T (Af ; Ag). For every Ah 2 T (Af ; Ag), we have Ah u Af ~�Ag so for any
e 2 A, following cases arise:

(i) If (f(e))(x) � (g(e))(x) then (h(e))(x) < 1 = ((f ! g)(e))(x)

(ii) If (f(e))(x) > (g(e))(x) then the condition h(e) ^ f(e) � g(e) implies that

(h(e))(x)^(f(e)(x)) � (g(e))(x) and so (h(e))(x) � (g(e))(x) = ((f ! g)(e))(x).

Thus Ah ~�Af!g and it also shows that

Af!g ~=
_
T (Af ; Ag) ~=Af !A Ag.
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3.4.10 Proposition

(FSS(X)E ,u",t) and (FSS(X)A,u,t) are Brouwerian lattices.
Proof. Follows from Propositions 3.4.7 and 3.4.9.

3.4.11 De�nition

For a fuzzy soft set Af over X, we de�ne a fuzzy soft set over X, which is denoted by

Af� and is given by Af� = (Af )� where

(f�(e))(x) =

(
0 if (f(e))(x) 6= 0
1 if (f(e))(x) = 0

for all x 2 X, e 2 A.

3.4.12 Theorem

Let Af be a fuzzy soft set over X. Then the following are true:

1) Af uAf� ~=A~0,

2) Ag ~� Af� whenever Af uAg ~=A~0,

3) Af� tAf�� ~=A~1.

Thus (FSS(X)A,u,t,�,A~0,A~1) is a Stone algebra.
Proof.

1) Straightforward.

2) If Af uAg ~=A�. Then for any x 2 X, e 2 A,

if (g(e))(x) = 0 then (g(e))(x) � (f�(e))(x).

If (g(e))(x) 6= 0 then (f(e))(x) ^ (g(e))(x) = 0

implies that (f(e))(x) = 0, so (f�(e))(x) = 1

and hence (g(e))(x) � 1 = (f�(e))(x).

Thus ,

(g(e))(x) � (f�(e))(x) for all x 2 X, e 2 A.

That is, Ag ~� Af� .
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3) For any x 2 X, e 2 A,

((f� t f��)(e))(x) = (f�(e) _ f��(e))(x)

= maxf(f�(e))(x), (f��(e))(x)g

=

(
maxf1; 0g if (f(e))(x) 6= 0
maxf0; 1g if (f(e))(x) = 0

= 1.

Thus Af� tAf�� ~=A~1 and so, (FSS(X)A,u,t,�,A~0,A~1) is a Stone algebra.

3.4.13 Remark

Note that Af� ~=Af !A A~0.



Chapter 4

Algebraic Structures of
Double-framed Soft Sets

This chapter explores the theory of double-framed soft sets. Double-framed soft sets

have been introduced by Jun et al. [19] in 2012. They discussed applications of

double-framed soft sets in BCK/BCI-algebras and veri�ed several results with uni-

int concepts. Recently, some further works are presented to characterize the ideals

of BCK/BCI-algebras in terms of double-framed soft sets in [20]. In our work, we

have focused upon the algebraic structural properties of double-framed soft sets. New

operations for double-framed soft sets are de�ned and their characteristics are studied.

Examples are given to elaborate the concepts and to show how the ideas are utilized

to work with double-framed soft sets. The lattice structure and di¤erent algebraic

speci�cations raised by the collections of double-framed soft sets have been shown in

a logical manner. Classes of MV-algebras and BCK/BCI-algebras of double-framed

soft sets are presented at the end.

4.1 Double-framed Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the
power set of X and A, B, C are non-empty subsets of E.

4.1.1 De�nition [19]

A double-framed pair h(�; �);Ai is called a double-framed soft set over X, where �
and � are mappings from A to P(X).

From now onwards, we shall use the notation A(�;�) over X to denote a double-

framed soft set h(�; �);Ai over X.

53
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4.1.2 De�nition

For double-framed soft sets A(�;�) and B(;�) over X, we say that A(�;�) is a double-

framed soft subset of B(;�), if

1) A � B and

2) �(e) � (e) and �(e) � �(e) for all e 2 A.

This relationship is denoted by A(�;�) ~�B(;�).
A(�;�) is said to be a double-framed soft superset of B(;�), if B(;�) is a double-

framed soft subset of A(�;�). We denote it by A(�;�) ~�B(;�).

4.1.3 De�nition

Two double-framed soft sets A(�;�) and B(;�) over X are said to be equal if A(�;�) is a

double-framed soft subset of B(;�) and B(;�) is a double-framed soft subset of A(�;�).

We denote it by A(�;�) ~=B(;�).

4.1.4 Example

Let X be the set of houses under consideration, and E be the set of parameters,

X = fh1,h2,h3,h4,h5g, E = fe1,e2,e3,e4,e5,e6g = f in the green surroundings, wooden,
cheap, in good repair, furnished, traditional g. Suppose that A = fe1,e2,e3,e6g, a
double-framed soft set A(�;�) describes the data for �requirements of the houses�where

function � approximates the houses with a high level of appreciation and � approxi-

mates the houses with a high level of critique by two di¤erent groups of experts and

given as follows:

� : A! P(X); e 7�!

8>>>><>>>>:
fh2; h3; h4g if e = e1;

fh3; h4g if e = e2;

X if e = e3;

fh2; h3; h4; h5g if e = e6;

� : A! P(X); e 7�!

8>>>><>>>>:
fh2; h4; h5g if e = e1;

fh1; h2; h3g if e = e2;

fh3; h4; h5g if e = e3;

fh1; h3; h4; h5g if e = e6:
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Let B = fe2,e3,e6g. The double-framed soft set B(;�) given by

 : B ! P(X); e 7�!

8><>:
fh3g if e = e2;

fh1; h4; h5g if e = e3;

fh2; h3; h4g if e = e6;

� : B ! P(X); e 7�!

8><>:
fh1; h2; h3; h5g if e = e2;

fh1; h3; h4; h5g if e = e3;

X if e = e6:

is a double-framed soft subset of A(�;�) so A(�;�) ~�B(;�). Here, we can see that 
approximates less houses than � being less appreciating, while � approximates more

houses than � being less critical. This justi�es our de�nition of inclusion for double-

framed soft sets.

4.2 Operations on Double-framed Soft Sets

4.2.1 De�nition [19]

Let A(�;�) and B(;�) be double-framed soft sets over X. The int-uni product of A(�;�)
and B(;�) is de�ned as a double-framed soft set (A � B)(�^;�_�) over X in which

� ^  : (A�B)! P(X), � _ � : (A�B)! P(X), de�ned by

(a; b) 7! �(a) \ (b), (a; b) 7! �(a) [ �(b).

It is denoted by A(�;�) ^B(;�) ~=(A�B)(�^;�_�).

4.2.2 De�nition [19]

Let A(�;�) and B(;�) be double-framed soft sets over X. The uni-int product of A(�;�)
and B(;�) is de�ned as a double-framed soft set (A � B)(�_;�^�) over X in which

� _  : (A�B)! P(X), � ^ � : (A�B)! P(X), de�ned by

(a; b) 7! �(a) [ (b), (a; b) 7! �(a) \ �(b).

It is denoted by A(�;�) _B(;�) ~=(A�B)(�_;�^�).

4.2.3 De�nition

For double-framed soft sets A(�;�) and B(;�) over X, the extended int-uni double-

framed soft set of A(�;�) and B(;�) is de�ned as a double-framed soft set (A[B)(�~\;�~[�)
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where �~\ : (A [B)! P(X), de�ned by

e 7!

8><>:
�(e) if e 2 A�B
(e) if e 2 B �A
�(e) \ (e) if e 2 A \B

and �~[� : (A [B)! P(X),

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e) [ �(e) if e 2 A \B

:

It is denoted by A(�;�) u" B(;�) ~=(A [B)(�~\;�~[�).

4.2.4 De�nition

For double-framed soft sets A(�;�) and B(;�) over X, the extended uni-int set double-

framed soft of A(�;�) and B(;�) is de�ned as a double-framed soft set (A[B)(�~[;�~\�)
where �~[ : (A [B)! P(X), de�ned by

e 7!

8><>:
�(e) if e 2 A�B
(e) if e 2 B �A
�(e) [ (e) if e 2 A \B

and �~\� : (A [B)! P(X), de�ned by

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e) \ �(e) if e 2 A \B

:

It is denoted by A(�;�) t" B(;�) ~=(A [B)(�~[;�~\�).

4.2.5 De�nition

For double-framed soft sets A(�;�) and B(;�) over X, the extended di¤erence double-

framed soft set ofA(�;�) andB(;�) is de�ned as a double-framed soft set (A[B)(�^";�^"�)

where

� ^"  : (A [B)! P(X), e 7!

8><>:
�(e) if e 2 A�B
(e) if e 2 B �A
�(e)� (e) if e 2 A \B

� ^" � : (A [B)! P(X), e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e)� �(e) if e 2 A \B

:

It is denoted by A(�;�) ^" B(;�) ~=(A [B)(�^";�^"�).
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4.2.6 De�nition

For double-framed soft sets A(�;�) and B(;�) over X with A \ B 6= ;, the restricted
int-uni double-framed soft set of A(�;�) and B(;�) is de�ned as a double-framed soft

set (A \B)(�~\;�~[�) where �~\ : (A \B)! P(X), de�ned by

e 7! �(e) \ (e),

and �~[� : (A \B)! P(X), de�ned by

e 7! �(e) [ �(e).

It is denoted by A(�;�) uB(;�) ~=(A \B)(�~\;�~[�).

4.2.7 De�nition

For double-framed soft sets A(�;�) and B(;�) over X with (A \B) 6= ;, the restricted
uni-int double-framed soft set of A(�;�) and B(;�) is de�ned as a double-framed soft

set (A \B)(�~[;�~\�) where �~[ : (A \B)! P(X), de�ned by

e 7! �(e) [ (e),

and �~\� : (A \B)! P(X), de�ned by

e 7! �(e) \ �(e).

It is denoted by A(�;�) tB(;�) ~=(A \B)(�~[;�~\�).

4.2.8 De�nition

For double-framed soft sets A(�;�) and B(;�) over X with (A \B) 6= ;, the restricted
di¤erence double-framed soft set of A(�;�) and B(;�) is de�ned as a double-framed soft

set (A \B)(�^;�^�) where � ^  : (A \B)! P(X), de�ned by

e 7! �(e)� (e),

and � ^ � : (A \B)! P(X), de�ned by

e 7! �(e)� �(e).

It is denoted by A(�;�) ^ B(;�) ~=(A \B)(�^;�^�).

4.2.9 De�nition

Let A(�;�) be a double-framed soft set over X. The complement of a double-framed

soft set A(�;�) is de�ned as a double-framed soft set A(�c;�c) where

�c : A! P(X), e 7! (� (e))c and �c : A! P(X), e 7! (� (e))c.

It is denoted by A(�;�)c ~=A(�c;�c).
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4.2.10 Example

LetX be the initial universe and E be the set of parameters, whereX = fx1,x2,x3,x4,x5,x6g,
E = fe1,e2,e3,e4,e5g. Suppose that A = fe2,e3g, and B = fe3,e4,g. The double-framed
soft sets A(�;�) and B(;�) over X are given as follows:

� : A! P(X);

e 7�!
(
fx2; x5; x6g if e = e2,

fx1; x3; x4; x5g if e = e3,

� : A! P(X);

e 7�!
(
fx1g if e = e2,

X if e = e3,

and

 : B ! P(X);

e 7�!
(
X if e = e3,

fx1; x4; x6g if e = e4,

� : B ! P(X);

e 7�!
(
fx1; x4; x5; x6g if e = e3,

fx1; x2; x5g if e = e4.

Now, we apply various operations on A(�;�) and B(;�). Then

(i) A(�;�) t" B(;�) ~=(A [B)(�~[;�~\�), where

(�~[) : (A [B)! P(X);

e 7�!

8><>:
fx2; x5; x6g if e = e2,

X if e = e3,

fx1; x4; x6g if e = e4,

(�~\�) : (A [B)! P(X);

e 7�!

8><>:
fx1g if e = e2,

fx1; x4; x5; x6g if e = e3,

fx1; x2; x5g if e = e4,

(ii) A(�;�) uB(;�) ~=(A \B)(�~\;�~[�), where

(�~\�) : (A \B)! P(X);

e3 7�! fx1; x3; x4; x5g

(�~[�) : (A \B)! P(X);

e3 7�! X
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(iii) A(�;�) ^" B(;�) ~=(A [B)(�^";�^"�), where

� ^ " : (A [B)! P(X);

e 7�!

8><>:
fx2; x5; x6g if e = e2,

fg if e = e3,

fx1; x4; x6g if e = e4,

� ^ "� : (A [B)! P(X);

e 7�!

8><>:
fx1g if e = e2,

fx2; x3g if e = e3,

fx1; x2; x5g if e = e4,

(iv) A(�;�)c ~=A(�c;�c), where

�c : A! P(X);

e 7�!
(
fx1; x3; x4g if e = e2,

fx2; x6g if e = e3,

�c : A! P(X);

e 7�!
(
fx2; x3; x4; x5; x6g if e = e2,

fg if e = e3.

4.3 Properties of Double-framed Soft Sets

In this section we discuss properties and laws of double-framed soft sets with respect

to their operations. Associativity, absorption, distributivity, de Morgan laws and

properties of involutions, complementations and atomicity are investigated for double-

framed soft set theory.

4.3.1 De�nition

A double-framed soft set over X is said to be a relative null double-framed soft set,

denoted by A(�;X) where

� : A! P(X), e 7! ; and X : A! P(X), e 7! X.

4.3.2 De�nition

A double-framed soft set over X is said to be a relative absolute double-framed soft set,

denoted by A(X;�) where

X : A! P(X), e 7! X and � : A! P(X), e 7! ;.

Conventionally, we take the double-framed soft sets with empty set of parameters

to be equal to ;(�;X) and so A(�;�)uB(;�) ~=A(�;�)tB(;�) ~=;(�;X) whenever (A\B) = ;.



4. Algebraic Structures of Double-framed Soft Sets 60

4.3.3 Proposition

If A(�;X) is a null double-framed soft set, A(X;�) an absolute double-framed soft set,

and A(�;�), A(;�) are double-framed soft sets over X, then

1) A(�;�) t" A(;�) ~=A(�;�) tA(;�),

2) A(�;�) u" A(;�) ~=A(�;�) uA(;�),

3) A(�;�) uA(�;�) ~=A(�;�) ~=A(�;�) tA(�;�),

4) A(�;�) tA(�;X) ~=A(�;�) ~=A(�;�) uA(X;�),

5) A(�;�) tA(X;�) ~=A(X;�); A(�;�) uA(�;X) ~=A(�;X).

Proof. Proofs of 1), 2) and 3) are straightforward.

4) As A(�;�) tA(�;X) ~=A(�~[�;�~\X). Therefore for any e 2 A;

(�~[�)(e) = �(e) [ �(e) = �(e) and (�~\X)(e) = �(e) \ X(e) = �(e).

Thus A(�;�) tA(�;X) ~=A(�;�).

Again, A(�;�) uA(X;�) ~=A(�~\X;�~[�). For any e 2 A;

(�~\X)(e) = �(e) \ X(e) = �(e) and (�~[�)(e) = �(e) [ �(e) = �(e).

So A(�;�) uA(X;�) ~=A(�;�).

Part 5) can be proved in a similar way.

4.3.4 Proposition

Let A(�;�), B(;�) and C(�;�) be any double-framed soft sets over X. Then the following

are true

1) A(�;�)�(B(;�)�C(�;�)) ~=(A(�;�)�B(;�))�C(�;�), (Associative Laws)

2) A(�;�)�B(;�) ~=B(;�)�A(�;�), (Commutative Laws)

for all � 2 ft";t;u";ug.
Proof.

1) Since A(�;�) t" (B(;�) t" C(�;�)) ~=(A [ (B [ C))(�~[(~[�);�~\(�~\�)), we have for any
e 2 A [ (B [ C):
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(i) If e 2 A� (B [ C), then

(�~[(~[�))(e) = �(e) = ((�~[)~[�)(e)

(�~\(�~\�))(e) = �(e) = ((�~\�)~\�)(e)

(ii) If e 2 B � (A [ C)

(�~[(~[�))(e) = (e) = ((�~[)~[�)(e)

(�~\(�~\�))(e) = �(e) = ((�~\�)~\�)(e)

(iii) If e 2 C � (A [B), then

�~[(~[�)(e) = �(e) = (�~[)~[�(e)

�~\(�~\�)(e) = �(e) = (�~\�)~\�(e)

(iv) If e 2 (A \B)� C, then

�~[(~[�)(e) = �(e) [ (e) = (�~[)(e) = (�~[)~[�(e)

�~\(�~\�)(e) = �(e) \ �(e) = (�~\�)(e) = (�~\�)~\�(e)

(v) If e 2 (A \ C)�B, then

�~[(~[�)(e) = �(e) [ �(e) = (�~[)~[�(e)

�~\(�~\�)(e) = �(e) \ �(e) = (�~\�)~\�(e)

(vi) If e 2 (B \ C)�A, then

�~[(~[�)(e) = (e) [ �(e) = (�~[)~[�(e)

�~\(�~\�)(e) = �(e) \ �(e) = (�~\�)~\�(e)

(vii) If e 2 (A \B) \ C, then

�~[(~[�)(e) = �(e) [ ((e) [ �(e)) = (�(e) [ (e)) [ �(e) = (�~[)~[�(e)

�~\(�~\�)(e) = �(e) \ (�(e) \ �(e)) = (�(e) \ �(e)) \ �(e) = (�~\�)~\�(e)

Thus A(�;�) t" (B(;�) t" C(�;�)) ~=(A(�;�) t" B(;�)) t" C(�;�). Similarly, we
can prove for � 2 ft;u";ug.

2) This is straightforward.
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4.3.5 Proposition (Absorption Laws)

Let A(�;�), B(;�) be any double-framed soft sets over X. Then the following are true:

1) A(�;�) t" (B(;�) uA(�;�)) ~=A(�;�),

2) A(�;�) u (B(;�) t" A(�;�)) ~=A(�;�),

3) A(�;�) t (B(;�) u" A(�;�)) ~=A(�;�),

4) A(�;�) u" (B(;�) tA(�;�)) ~=A(�;�).

Proof. Straightforward.

4.3.6 Proposition (Distributive Laws)

Let A(�;�), B(;�) and C(�;�) be any double-framed soft sets over X. Then

1) A(�;�) t" (B(;�) t C(�;�)) ~�(A(�;�) t" B(;�)) t (A(�;�) t" C(�;�)),

2) A(�;�) t" (B(;�) u" C(�;�)) ~�(A(�;�) t" B(;�)) u" (A(�;�) t" C(�;�)),

3) A(�;�) t" (B(;�) u C(�;�)) ~=(A(�;�) t" B(;�)) u (A(�;�) t" C(�;�)),

4) A(�;�) t (B(;�) t" C(�;�)) ~=(A(�;�) tB(;�)) t" (A(�;�) t C(�;�)),

5) A(�;�) t (B(;�) u" C(�;�)) ~=(A(�;�) tB(;�)) u" (A(�;�) t C(�;�)),

6) A(�;�) t (B(;�) u C(�;�)) ~=(A(�;�) tB(;�)) u (A(�;�) t C(�;�)),

7) A(�;�) u" (B(;�) t" C(�;�)) ~�(A(�;�) u" B(;�)) t" (A(�;�) u" C(�;�)),

8) A(�;�) u" (B(;�) t C(�;�)) ~=(A(�;�) u" B(;�)) t (A(�;�) u" C(�;�)),

9) A(�;�) u" (B(;�) u C(�;�)) ~�(A(�;�) u" B(;�)) u (A(�;�) u" C(�;�)),

10) A(�;�) u (B(;�) t" C(�;�)) ~=(A(�;�) uB(;�)) t" (A(�;�) u C(�;�)),

11) A(�;�) u (B(;�) u" C(�;�)) ~=(A(�;�) uB(;�)) u" (A(�;�) u C(�;�)),

12) A(�;�) u (B(;�) t C(�;�)) ~=(A(�;�) uB(;�)) t (A(�;�) u C(�;�)).

Proof. Consider 10)

A(�;�) u (B(;�) t" C(�;�)) ~=(A(�;�) uB(;�)) t" (A(�;�) u C(�;�)).

For any e 2 A \ (B [ C), we have following three disjoint cases:
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(i) If e 2 A \ (B � C), then

(�~\(~[�))(e) = �(e) \ (e) and (�~[(�~\�))(e) = �(e) [ �(e)

and

((�~\)~[(�~\�))(e) = (�~\)(e) [ ; = �(e) \ (e) and

((�~[�)~\(�~[�))(e) = (�~[�)(e) \X = �(e) [ �(e).

(ii) If e 2 A \ (C �B), then

(�~\(~[�))(e) = �(e) \ �(e) and (�~[(�~\�))(e) = �(e) [ �(e)

and

((�~\)~[(�~\�))(e) = ; [ (�~\�)(e) = �(e) \ �(e) and

((�~[�)~\(�~[�))(e) = X \ (�~\�)(e) = �(e) [ �(e).

(iii) If e 2 A \ (B \ C), then

(�~\(~[�))(e) = �(e) \ ((e) [ �(e)) and

(�~[(�~\�))(e) = �(e) [ (�(e) \ �(e))

and

((�~\)~[(�~\�))(e) = (�~\)(e) [ (�~\�)(e)

= (�(e) \ (e)) [ (�(e) \ �(e))

= �(e) \ ((e) [ �(e)) and

((�~[�)~\(�~[�))(e) = (�~[�)(e) \ (�~[�)(e)

= (�(e) [ �(e)) \ (�(e) [ �(e))

= �(e) [ (�(e) \ �(e)).

Thus

A(�;�) u (B(;�) t" C(�;�)) ~=(A(�;�) uB(;�)) t" (A(�;�) u C(�;�));

Similarly we can prove the remaining parts.
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4.3.7 Example

Let X = fm1;m2;m3;m4;m5;m6;m7;m8g be the set of candidates who have applied
for a job position of O¢ ce Representative in Customer Care Centre of a company. Let

E = fx1; x2; x3; x4; x5; x6; x7; x8; x9g = fHard Working, Optimism, Enthusiasm, Indi-
vidualism, Imaginative, Flexibility, Decisiveness, Self-con�dence, Politenessg. Suppose
that A = fx1,x2,x3,x6,x7,x9g, B = fx2,x4,x5,x7,x8g, C = fx3,x5,x7,x9g, the double-
framed soft sets A(�;�), B(;�), C(�;�) describes the � Personality Analysis of Candi-

dates� for three di¤erent positions. The company has recorded this data obtained

through interview and practical sessions conducted by a panel of experts which is

presented by mappings �; ; � and �; �; � for three positions respectively. The double-

framed soft sets A(�;�), B(;�), C(�;�) over X be given as follows:

� : A! P(X); e 7�!

8>>>>>>>>><>>>>>>>>>:

fm1;m4;m5;m6;m8g if e = x1;

fm1;m2;m3;m4;m7;m8g if e = x2;

fm2;m4;m6;m7;m8g if e = x3;

fm4;m5;m6;m7g if e = x6;

fm5;m6;m8g if e = x7;

fm2;m3;m4;m6;m7g if e = x9;

� : A! P(X); e 7�!

8>>>>>>>>><>>>>>>>>>:

fm1;m2;m3;m5;m7;m8g if e = x1;

fm2;m5;m6;m7g if e = x2;

fm1;m2;m3;m4;m6;m8g if e = x3;

fm3;m4;m5;m6;m7g if e = x6;

fm1;m2;m3g if e = x7;

fm4;m5;m6;m7;m8g if e = x9:

 : B ! P(X); e 7�!

8>>>>>><>>>>>>:

fm1;m2;m3;m6;m7g if e = x2;

fm2;m3;m4;m8g if e = x4;

fm1;m2;m4;m6;m7;m8g if e = x5;

fm2;m4;m6;m8g if e = x7;

fm1;m2;m3;m5;m6;m7g if e = x8;

� : B ! P(X); e 7�!

8>>>>>><>>>>>>:

fm2;m3;m4;m5;m6g if e = x2;

fm4;m6;m7;m8g if e = x4;

fm3;m4;m5;m7g if e = x5;

fm1;m2;m3g if e = x7;

fm3;m4;m5;m6;m7;m8g if e = x8:
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� : C ! P(X); e 7�!

8>>>><>>>>:
fm5;m7;m8g if e = x3;

fm1;m2;m4;m5;m6;m7g if e = x5;

fm6;m7g if e = x7;

fm1;m2;m3;m4;m5g if e = x9;

� : C ! P(X); e 7�!

8>>>><>>>>:
fm1;m2;m3;m4;m5;m8g if e = x3;

fm3;m4;m5;m6g if e = x5;

fm2;m3;m6g if e = x7;

fm2;m3;m5;m6;m7;m8g if e = x9.

Now

A(�;�) u" (B(;�) u C(�;�)) ~=(A [ (B \ C))(�~\(~\�);�~[(�~[�))

and

(A(�;�) u" B(;�)) u (A(�;�) u" C(�;�)) ~=((A [B) \ (A [ C))((�~\)~\(�~\�);(�~[�)~[(�~[�)).

Then the approximations for parameter x2 are not same on both sides e.g.

(�~\(~\�))(x2) = fm1;m2;m3;m4;m7;m8g

6= fm1;m2;m3;m7g = ((�~\)~\(�~\�))(x2) and

(�~[(�~[�))(x2) = fm2;m5;m6;m7g

6= fm2;m3;m4;m5;m6;m7g = ((�~[�)~[(�~[�))(x2):

Thus

A(�;�) u" (B(;�) u C(�;�)) ~6=(A(�;�) u" B(;�)) u (A(�;�) u" C(�;�)).

Now, consider

A(�;�) u" (B(;�) t" C(�;�)) ~=(A [ (B [ C))(�~\(~[�);�~[(�~\�))

and

(A(�;�) u" B(;�)) t" (A(�;�) u" C(�;�)) ~= (A [B)(�~\;�~[�) t" (A [ C)(�~\�;�~[�)
~= ((A [B) [ (A [ C))((�~\)~[(�~\�);(�~[�)~\(�~[�)).

Then the approximations for parameter x2 are not same on both sides e.g.

(�~\(~[�))(x2) = fm1;m2;m3;m7g

6= fm1;m2;m3;m4;m7;m8g = ((�~\)~[(�~\�))(x2) and

(�~[(�~\�))(x2) = fm2;m3;m4;m5;m6;m7;m8g

6= fm2;m5;m6;m7g = (�~[�)~\(�~[�))(x2).
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Thus

A(�;�) u" (B(;�) t" C(�;�)) ~6=(A(�;�) u" B(;�)) t" (A(�;�) u" C(�;�)).

Similarly it can be shown that

A(�;�) t" (B(;�) t C(�;�)) ~6=(A(�;�) t" B(;�)) t (A(�;�) t" C(�;�)).

A(�;�) t" (B(;�) u" C(�;�)) ~6=(A(�;�) t" B(;�)) u" (A(�;�) t" C(�;�)).

4.3.8 Proposition

Let A(�;�), B(;�) and C(�;�) be any double-framed soft sets over X. Then

1) A(�;�) t" (B(;�) u" C(�;�)) ~=(A(�;�) t" B(;�)) u" (A(�;�) t" C(�;�)) if and only if

�(e) � (e) and �(e) � �(e) for all e 2 (A \B)� C and

�(e) � �(e) and �(e) � �(e) for all e 2 (A \ C)�B.

2) A(�;�) u" (B(;�) t" C(�;�)) ~=(A(�;�) u" B(;�)) t" (A(�;�) u" C(�;�)) if and only if

�(e) � (e) and �(e) � �(e) for all e 2 (A \B)� C and

�(e) � �(e) and �(e) � �(e) for all e 2 (A \ C)�B.

Proof. Straightforward.

4.3.9 Corollary

Let A(�;�), B(;�) and C(�;�) are three double-framed soft sets over X. Then

1) A(�;�) t" (B(;�) u" C(�;�)) ~=(A(�;�) t" B(;�)) u" (A(�;�) t" C(�;�))

2) A(�;�) u" (B(;�) t" C(�;�)) ~=(A(�;�) u" B(;�)) t" (A(�;�) u" C(�;�))

if and only if

�(e) = (e) and �(e) = �(e) for all e 2 (A \B)� C and

�(e) = �(e) and �(e) = �(e) for all e 2 (A \ C)�B.

4.3.10 Corollary

Let A(�;�), B(;�) and C(�;�) are three double-framed soft sets over X such that (A \
B)� C = (A \ C)�B = ;. Then

1) A(�;�) t" (B(;�) u" C(�;�)) ~=(A(�;�) t" B(;�)) u" (A(�;�) t" C(�;�)),

2) A(�;�) u" (B(;�) t" C(�;�)) ~=(A(�;�) u" B(;�)) t" (A(�;�) u" C(�;�)).
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4.3.11 Corollary

Let A(�;�), A(;�) and A(�;�) are three double-framed soft sets over X. Then

A(�;�)�(A(;�)�A(�;�)) ~=(A(�;�)�A(;�))�(A(�;�)�A(�;�))

for distinct �, � 2 fu";u;t";tg.

4.3.12 Theorem

Let A(�;�) and B(;�) be double-framed soft sets over X. Then the following are true

1) A(�;�) t" B(;�) is the smallest double-framed soft set over X which contains both

A(�;�) and B(;�). (Supremum)

2) A(�;�) u B(;�) is the largest double-framed soft set over X which is contained in

both A(�;�) and B(;�). (In�mum)

Proof.

1) We have A;B � (A [ B) and �(e); (e) � �(e) [ (e) and �(e) \ �(e) � �(e),

�(e)\�(e) � �(e). So A(�;�) ~�A(�;�)t"B(;�) and B(;�) ~�A(�;�)t"B(;�). Let C(�;�)
be a double-framed soft set over X, such that A(�;�), B(;�) ~�C(�;�). Then A;B �
C implies that (A[B) � C and �(e); (e) � �(e) implies that �(e)[(e) � �(e).
Also �(e) � �(e), �(e) � �(e) imply that �(e) � �(e) \ �(e) for all e 2 A [ B.
Thus A(�;�)t"B(;�) ~�C(�;�). It follows that A(�;�)t"B(;�) is the smallest double-
framed soft set over X which contains both A(�;�) and B(;�).

2) We have A \ B � A;A \ B � B and �(e) \ (e) � �(e); �(e) \ (e) � (e) and

�(e) � �(e)[ �(e); �(e) � �(e)[ �(e) for all e 2 A\B. So A(�;�) uB(;�) ~�A(�;�)
and A(�;�)uB(;�) ~�B(;�). Let C(�;�) be a double-framed soft set overX, such that
C(�;�) ~�A(�;�) and C(�;�) ~�B(;�). Then C � A, C � B implies that C � A \ B
and �(e) � �(e), �(e) � �(e) imply that �(e) � �(e) \ �(e), and �(e) � �(e),

�(e) � �(e) imply that �(e)[�(e) � �(e) for all e 2 C. Thus C(�;�) ~�A(�;�)uB(;�).
It follows that A(�;�) uB(;�) is the largest double-framed soft set over X which

is contained in both A(�;�) and B(;�).

4.4 Algebras of Double-framed Soft Sets

In this section, we discuss the ideas of lattices and algebras for the collections of

double-framed soft sets. Let DSS(X)E be the collection of all double-framed soft sets
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over X and DSS(X)A be its subcollection of all double-framed soft sets over X with

�xed set of parameters A. We note that these collections are partially ordered by the

relation of soft inclusion ~� given in De�nition 4.1.2.

4.4.1 Theorem

(DSS(X)E ;u";t), (DSS(X)E ;t;u"), (DSS(X)E ;t";u), (DSS(X)E ;u;t"),
(DSS(X)A;t;u), and (DSS(X)A;u;t) are complete lattices.
Proof. Let us consider (DSS(X)E ,u",t). Then for any double-framed soft sets

A(�;�), B(;�), C(�;�) 2 DSS(X)E , we have

1) A(�;�)u"B(;�) ~=(A[B)(�~\;�~[�) 2 DSS(X)E and A(�;�)tB(;�) ~=(A\B)(�~[;�~\�) 2
DSS(X)E .

2) From Proposition 4.3.3, we have A(�;�)u"A(�;�) ~=A(�;�) and A(�;�)tA(�;�) ~=A(�;�).

3) From Proposition 4.3.4 we see that A(�;�) u" B(;�) ~=B(;�) u" A(�;�) and A(�;�) t
B(;�) ~=B(;�)tA(�;�). Also A(�;�)u" (B(;�)u"C(�;�)) ~= (A(�;�)u"B(;�))u"C(�;�)
and A(�;�) t (B(;�) t C(�;�)) ~=(A(�;�) tB(;�)) t C(�;�).

4) From Proposition 4.3.5,

A(�;�) u" (B(;�) tA(�;�)) ~=A(�;�) and A(�;�) t (B(;�) u" A(�;�)) ~=A(�;�).

So we conclude that the structure forms a lattice.

Consider a collection of double-framed soft sets fAi(�i;�i) : i 2 Ig over X. We have,[
i2I
Ai � E and, let �(e) = fj : e 2 Ajg for any e 2 Ai. Then

\
i2�(e)

�i(e) � X and[
i2I
�i(e) � X. Thus u"

i2I
Ai(�i;�i) 2 DSS(X)

E . Again, we have,
\
i2I
Ai � E and for any

e 2
\
i2I
Ai,

[
i2I
�i(e) � X and

\
i2I
�i(e) � X. Thus t

i2I
Ai(�i;�i) 2 DSS(X)

E .

Similarly we can show for the remaining structures.

4.4.2 Theorem

(DSS(X)E ;u;t"; ;(�;X); E(X;�)),(DSS(X)E ;t";u; E(X;�); ;(�;X)),
(DSS(X)A;u;t; A(�;X); A(X;�)) and(DSS(X)A;t;u; A(X;�); A(�;X)) are bounded

distributive lattices.

Proof. Proposition 4.3.6 assures that (DSS(X)E ;u;t") and (DSS(X)E ;t";u)
are distributive lattices. From Theorem 4.3.12, we conclude that (DSS(X)E ; u; t";
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;(�;X); E(X;�)) is a bounded distributive lattice and (DSS(X)E ;t";u; E(X;�); ;(�;X))
is its dual. For any double-framed soft sets A(�;�), A(;�) 2 DSS(X)A;

A(�;�) uA(;�) ~= A(�~\;�~[�) 2 DSS(X)A and

A(�;�) tA(;�) ~= A(�~[;�~\�) 2 DSS(X)A.

Thus (DSS(X)A;u;t) is a distributive sublattice of (DSS(X)
E ;t";u) and Propo-

sition 4.3.3 tells us that A(�;X), A(X;�) are its lower and upper bounds respectively.

Therefore (DSS(X)A;u;t; A(�;X); A(X;�)) is a bounded distributive lattice and
(DSS(X)A;t;u; A(X;�); A(�;X)) is its dual.

4.4.3 Proposition

Let A(�;�) be a double-framed soft set over X. Then A(�;�)c is a complement of A(�;�).

Proof. As A(�;�) tA(�;�)c ~=A(�~[�c;�~\�c). Now, for any e 2 A;

(�~[�c)(e) = �(e) [ (�(e))c = X and

(�~\�c)(e) = �(e) \ (�(e))c = ;.

Thus A(�;�) tA(�;�)c ~=A(X;�).
Again, we have A(�;�) uA(�;�)c ~=A(�~\�c;�~[�c), so for any e 2 A,

(�~\�c)(e) = �(e) \ (�(e))c = ; and

(�~[�c)(e) = �(e) [ (�(e))c = X.

Thus A(�;�)uA(�;�)c ~=A(�;X). From A(�;�)tA(�;�)c ~=A(X;�) and A(�;�)uA(�;�)c ~=A(�;X),
we conclude that A(�;�)c is a complement of A(�;�).

Now, we show thatA(�;�)c is unique in the bounded lattice (DSS(X)A,t,u,A(X;�),A(�;X)).
If there exists some A(;�) 2 DSS(X)A such that A(�;�) t A(;�) ~=A(X;�) and A(�;�) u
A(;�) ~=A(�;X). Then for any e 2 A,

�(e) \ (e) = ; and �(e) \ �(e) = ;

) (e) � (�(e))c = �c(e) and �(e) � (�(e))c = �c(e)

and

�c(e) � X = �(e) [ (e) and �c(e) � X = �(e) [ �(e).

But

�(e) \ �c(e) = ; and �(e) \ �c(e) = ; so

�c(e) � �(e) [ (e)) �c(e) � (e) and �c(e) � �(e) [ �(e)) �c(e) � �(e).

Therefore

(e) = �c(e) and �(e) = �c(e) for all e 2 A and A(;�) ~=A(�;�)c .

Hence A(�;�)c is unique complement of A(�;�).
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4.4.4 Proposition (de Morgan Laws)

Let A(�;�) and B(;�) be double-framed soft sets over X. Then the following are true:

1) (A(�;�) t" B(;�))c ~=A(�;�)c u" B(;�)c ,

2) (A(�;�) u" B(;�))c ~=A(�;�)c t" B(;�)c ,

3) (A(�;�) _B(;�))c ~=A(�;�)c ^B(;�)c ,

4) (A(�;�) ^B(;�))c ~=A(�;�)c _B(;�)c ,

5) (A(�;�) tB(;�))c ~=A(�;�)c uB(;�)c ,

6) (A(�;�) uB(;�))c ~=A(�;�)c tB(;�)c .

Proof.

1) We know that (A(�;�) t" B(;�))c ~=(A [ B)(�~[;�~\�)c ~=(A [ B)((�~[)c;(�~\�)c). Let
e 2 (A [B). Then there are three cases:

(i) If e 2 A�B, then

(�~[)c(e) = (�(e))c = �c(e) and (�c~\c)(e) = �c(e) and

(�~\�)c(e) = (�(e))c = �c(e) and (�c~[�c)(e) = �c(e).

Thus

(�~[)c(e) = (�c~\c)(e) and

(�~\�)c(e) = (�c~[�c)(e).

(ii) If e 2 B �A, then

(�~[)c(e) = ((e))c = c(e) and (�c~\c)(e) = c(e) and

(�~\�)c(e) = (�(e))c = �c(e) and (�c~[�c)(e) = �c(e).

Thus

(�~[)c(e) = (�c~\c)(e) and

(�~\�)c(e) = (�c~[�c)(e).

(iii) If e 2 A \B, then

(�~[)c(e) = (�(e) [ (e))c = (�(e))c \ ((e))c and

(�~[�)c(e) = (�(e) \ �(e))c = (�(e))c [ (�(e))c,
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and

(�c~\c)(e) = (�(e))c \ ((e))c = (�~[)c(e) and

(�c~\�c)(e) = (�(e))c [ (�(e))c = (�~[�)c(e).

Therefore, in all three cases we obtain equality and thus

(A(�;�) t" B(;�))c ~=A(�;�)c u" B(;�)c .

The remaining parts can be proved in a similar way.

4.4.5 Proposition

(DSS(X)A;u;t;c ; A(�;X); A(X;�)) is a de Morgan algebra.
Proof. We have already seen that (DSS(X)A;u;t; A(�;X); A(X;�)) is a bounded

distributive lattice. Proposition 4.4.3 show that " c" is a complementation and hence

an involution on DSS(X)A and Proposition 4.4.4 shows that de Morgan laws hold with
respect to " c" in DSS(X)A. Thus (DSS(X)A;u;t;c ; A(�;X); A(X;�)) is a de Morgan
algebra.

4.4.6 Proposition

(DSS(X)A;u;t;c ; A(�;X); A(X;�)) is a boolean algebra.
Proof. Proof follows from Propositions 4.4.4 and 4.4.3.

4.4.7 Proposition

(DSS(X)A;u;t;c ; A(�;X); A(X;�)) is a Kleene Algebra.
Proof. Note that, A(;�) u A(;�)c ~=;(�;X) ~�A(X;�) ~=A(�;�) t A(�;�)c . We already

know that (DSS(X)A;u;t;c ; A(�;X); A(X;�)) is a de Morgan algebra, so this condition
assures that (DSS(X)A;u;t;c ; A(�;X); A(X;�)) is also a Kleene Algebra.

4.4.8 De�nition

Let A(�;�) be a double-framed soft set over X. We de�ne

(A(�;�))
� ~=A(�;�)� ~=A(�;�):

4.4.9 Proposition

Let A(�;�) be a double-framed soft set over X. Then A(�;�) ~=(A(�;�)�)�, A(X;�)� ~=A(�;X)
and A(�;X)� ~=A(X;�).

Proof. Straightforward.
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4.4.10 Proposition (de Morgan Laws)

Let A(�;�) and B(;�) be double-framed soft sets over X. Then the following are true

1) (A(�;�) t" B(;�))� ~=A(�;�)� u" B(;�)� ,

2) (A(�;�) u" B(;�))� ~=A(�;�)� t" B(;�)� ,

3) (A(�;�) _B(;�))� ~=A(�;�)� ^B(;�)� ,

4) (A(�;�) ^B(;�))� ~=A(�;�)� _B(;�)� ,

5) (A(�;�) tB(;�))� ~=A(�;�)� uB(;�)� ,

6) (A(�;�) uB(;�))� ~=A(�;�)� tB(;�)� .

Proof.

1) We have (A(�;�) t" B(;�))� ~=((A [B)(�~[;�~\�))� ~=(A [B)(�~\�;�~[) and

A(�;�)� u" B(;�)� ~=A(�;�) u" B(�;) ~=(A [B)(�~\�;�~[).

Thus (A(�;�) t" B(;�))� ~=A(�;�)� u" B(;�)� .

The remaining parts can be proved in a similar way.

4.4.11 Proposition

(DSS(X)A;u;t;� ; A(�;X); A(X;�)) is a de Morgan algebra.
Proof. Proof follows from Propositions 4.4.9 and 4.4.10.

4.4.12 De�nition

Let A(�;�) be a double-framed soft set over X. We de�ne A(�;�)} as a double-framed

soft set A(�c;X) where

�c : A! P(X), e 7! (� (e))c

X : A! P(X), e 7! X.

4.4.13 Proposition

Let A(�;�) and A(;�) be double-framed soft sets over X. Then

1) A(;�) uA(;�)} ~=A(�;X),

2) A(;�) ~�A(�;�)} whenever A(;�) uA(�;�) ~=A(�;X).
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Proof.

1) For any e 2 A,

(~\c)(e) = (e) \ ((e))c = ; = �(e) and

(�~[X)(e) = �(e) [X = X = X(e).

Thus A(;�) uA(;�)} ~=A(�;X).

2) Assume A(;�) uA(�;�) ~=A(�;X). Now, for any e 2 A,

(e) \ �(e) = (~\�)(e) = �(e) = ; and so (e) � (�(e))c = �c(e).

Also �(e) � X = X(e).

ThereforeA(;�) ~�A(�;�)} . So, we conclude that (DSS(X)A;u;t;} ; A(�;X); A(X;�))
is pseudocomplemented.

4.4.14 Proposition

Let A(�;�); B(;�) 2 DSS(X)E . Then pseudocomplement of A(�;�) relative to B(;�)
exists in (DSS(X)E ;u;t").

Proof. Consider the set

T (A(�;�); B(;�)) = fC(�;�) 2 SS(X)E : C(�;�) uA(�;�) ~�B(;�)g.

We de�ne a double-framed soft set Ac(�c;�c) t"B(;�) ~=(A
c [B)(�c~[;�c~\�) 2 DSS(X)E .

Then

(Ac [B)(�c~[;�c~\�) uA(�;�) ~= ((Ac [B) \A)((�c~[)~\�;(�c~\�)~[�)
~= ((Ac \A) [ (B \A))((�c~\�)~[(~\�);(�c~[�)~\(�~[�))
~= (A \B)(~\�;�~[�) ~�B(;�).

Thus (Ac [ B)(�c~[;�c~\�) 2 T (A(�;�); B(;�)). For any C(�;�) 2 T (A(�;�); B(;�)), we
have C(�;�) uA(�;�) ~�B(;�) so for any e 2 C \A � B

�(e) \ �(e) � (e) and �(e) [ �(e) � �(e)

Now,

C \A � B ) (A \ C) \Bc = ;

) C � (A \Bc)c = Ac [B
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and

�(e) \ �(e) � (e) and �(e) [ �(e) � �(e)

) �(e) \ �(e) \ c(e) = ; and �c(e) \ �c(e) � �c(e)

) �(e) � �c(e) [ (e) and �c(e) \ �c(e) \ �(e) = ;

) �(e) � �c(e) [ (e) and �c(e) \ �(e) � �(e).

Thus C(�;�) ~�(Ac [B)(�c~[;�c~\�), also

(Ac [B)(�c~[;�c~\�) ~=
_
T (A(�;�); B(;�)) ~=A(�;�) ! B(;�).

4.4.15 Remark

We know that (DSS(X)A,u,t) is a sublattice of (DSS(X)
E ,u",t). For any A(�;�),

A(;�) 2 DSS(X)A, A(�;�) ! A(;�) as de�ned in Lemma 4.4.14, is not in DSS(X)A
because A(�;�) ! A(;�) ~=(A

c [A)(�c~[;�c~\�) ~=E(�c~[;�c~\�) =2 DSS(X)A.

4.4.16 Lemma

Let A(�;�); A(;�) 2 DSS(X)A. Then pseudocomplement of A(�;�) relative to A(;�)
exists in DSS(X)A.

Proof. Consider the set

T (A(�;�); A(;�)) = fA(�;�) 2 DSS(X)A : A(�;�) uA(�;�) ~�A(;�)g.

We de�ne a double-framed soft set A(�c;�c) t A(;�) ~=A(�c~[;�c~\�) 2 DSS(X)A. Con-
sider

A(�c~[;�c~\�) uA(�;�) ~= A((�c~[)~\�;(�c~\�)~[�)

~= A((�c~\�)~[(~\�);(�c~[�)~\(�~[�))

~= A((~\�);(�~[�)) ~�A(;�).

Thus A(�c~[;�c~\�) 2 T (A(�;�); A(;�)). For every A(�;�) 2 T (A(�;�); A(;�)), we have

A(�;�) uA(�;�) ~�A(;�) so for any e 2 A,

�(e) \ �(e) � (e) and �(e) [ �(e) � �(e)

) �(e) \ �(e) \ c(e) = ; and �c(e) \ �c(e) � �c(e)

) �(e) � �c(e) [ (e) and �c(e) \ �c(e) \ �(e) = ;

) �(e) � �c(e) [ (e) and �c(e) \ �(e) � �(e).
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Thus A(�;�) ~�A(�c~[;�c~\�) and also

A(�c~[;�c~\�) ~=
_
T (A(�;�); A(;�)) ~=A(�;�) !A A(;�).

4.4.17 Proposition

(DSS(X)E ,u",t) and (DSS(X)A,u,t) are Brouwerian lattices.
Proof. Follows from Lemmas 4.4.14 and 4.4.16.

4.4.18 Theorem

(DSS(X)A;u;c ; A(X;�)) is an MV-algebra.
Proof.

(MV1) (DSS(X)A;u; A(X;�)) is a commutative monoid.

(MV2) (A(;�)c)c ~=A(;�).

(MV3) A(X;�)c uA(;�) ~=A(�;X) uA(;�) ~=A(�;X) ~=A(X;�)c .

(MV4) (A(�;�)c uA(;�))c uA(;�)

~=(A(�c;�c) uA(;�))c uA(;�)

~=(A(�c;�c)c tA(;�)c) uA(;�)

~=(A(�;�) tA(c;�c)) uA(;�)

~=(A(�;�) uA(;�)) t (A(c;�c) uA(;�))

~=(A(�;�) uA(;�)) tA(�;X)

~=(A(;�) uA(�;�)) t (A(�;�)c uA(�;�))

~=(A(;�) tA(�;�)c) uA(�;�)

~=(A(;�)c uA(�;�))c uA(�;�)

for all A(�;�), A(;�) 2 DSS(X)A. Thus (DSS(X)A;u;c ; A(X;�)) is an MV-algebra.



4. Algebraic Structures of Double-framed Soft Sets 76

4.4.19 Theorem

(DSS(X)A;t;c ; A(�;X)) is an MV-algebra.
Proof.

(MV1) (DSS(X)A;t; A(�;X)) is a commutative monoid.

(MV2) (A(;�)c)c ~=A(;�).

(MV3) A(�;X)c tA(;�) ~=A(X;�) tA(;�) ~=A(X;�) ~=A(�;X)c .

(MV4) (A(�;�)c tA(;�))c tA(;�)

~=(A(�c;�c) tA(;�))c tA(;�)

~=(A(�c;�c)c uA(;�)c) tA(;�)

~=(A(�;�) uA(c;�c)) tA(;�)

~=(A(�;�) tA(;�)) u (A(c;�c) tA(;�))

~=(A(�;�) tA(;�)) uA(X;�)

~=(A(;�) tA(�;�)) u (A(�;�)c tA(�;�))

~=(A(;�) uA(�;�)c) tA(�;�)

~=(A(;�)c tA(�;�))c tA(�;�)

for all A(�;�), A(;�) 2 DSS(X)A. Thus (DSS(X)A;t;c ; A(�;X)) is an MV-algebra.

4.4.20 Theorem

(DSS(X)A;^;A(�;�)) is a bounded BCK-algebra whose every element is an involu-
tion.

Proof. For any A(�;�), A(;�), A(�;�) 2 DSS(X)A.

BCI-1 ((A(�;�) ^ A(;�))^ (A(�;�) ^ A(�;�)))^ (A(�;�) ^ A(;�))

~=(A(�^;�^�) ^ A(�^�;�^�))^ A(�^;�^�)

~=A(((�^)^(�^�))^(�^);((�^�)^(�^�))^(�^�))

~=A(�^(�^);�^(�^�)) ~=A(�;�).

BCI-2 (A(�;�) ^ (A(�;�) ^ A(;�)))^ A(;�)



4. Algebraic Structures of Double-framed Soft Sets 77

~=(A(�;�) ^ A(�^;�^�))^ A(;�)

~=A(�^(�^);�^(�^�)) ^ A(;�) ~=A(�^;�^�) ~=A(�;�).

BCI-3 A(�;�) ^ A(�;�) ~=A(�;�).

BCI-4 Let

A(�;�) ^ A(;�) ~=A(�;�) and

A(;�) ^ A(�;�) ~=A(�;�).

For any e 2 A;

�(e)� (e) = ; and (e)� �(e) = ; imply that �(e) = (e),

also

�(e)� �(e) = ; and �(e)� �(e) = ; imply that �(e) = �(e).

Hence

A(�;�) ~=A(;�).

BCK-5 A(�;�) ^ A(�;�) ~=A(�^�;�^�) ~=A(�;�).Thus (DSS(X)A;^;A(�;�)) is a BCK-
algebra.

Now A(X;X) 2 DSS(X)A is such that:

A(�;�) ^ A(X;X) ~=A(�^X;�^X) ~=A(�;�)

for all A(�;�) 2 DSS(X)A. Therefore (DSS(X)A;^;A(�;�)) is a bounded BCK-
algebra.

For any A(�;�) 2 DSS(X)A,

A(X;X) ^ (A(X;X) ^ A(�;�))

~= A(X;X) ^ A(X^�;X^�)

~= A(X;X) ^ A(�c;�c)

~= A(X^�c;X^�c)

~= A((�c)c;(�c)c) ~=A(�;�).

So every element of DSS(X)A is an involution.

4.4.21 De�nition

Let A(�;�) and A(;�) be double-framed soft sets over X. We de�ne

A(�;�) ? A(;�) ~=A(�;�) uA(;�)c .
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4.4.22 Theorem

(DSS(X)A; ?; A(�;X)) is a bounded BCK-algebra whose every element is an involution.
Proof. For any A(�;�), A(;�), A(�;�) 2 DSS(X)A.

BCI-1 ((A(�;�) ? A(;�)) ? (A(�;�) ? A(�;�))) ? (A(�;�) ? A(;�))

~=(A(�?;�?�);A?h(�?�;�?�)) ? A(�?;�?�)

~=A(((�?)?(�?�))?(�?);((�?�)?(�?�))?(�?�))

~=A(((�~\c)?(�~\�c))?(�~\c);((�~[�c)?(�~[�c))?(�~[�c))

~=A(((�~\c)~\(�~\�c)c)~\(�~\c)c;((�~[�c)~[(�~[�c)c)~[(�~[�c)c)

~=A(((�~\c)~\(�c~[�))~\(�c~[);((�~[�c)~[(�c~\�))~[(�c~\�))

~=A((�~\�)~\(c~\�c);(�~[�)~[(�c~[�c)) ~=A(�;X).

BCI-2 (A(�;�) ? (A(�;�) ? A(;�))) ? A(;�)

~=A(�~\(�~\c)c;�~[(�~[�c)c) ? A(;�)

~=A(�~\(�c~[);�~[(�c~\�)) ? A(;�)

~=A(�~\;�~[�) ? A(;�)

~=A((�~\)~\c;(�~[�)~[�c) ~=A(�;X).

BCI-3 A(�;�) ? A(�;�) ~=A(�~\�c;�~[�c) ~=A(�;X).

BCI-4 Let A(�;�) ? A(;�) ~=A(�;X) and A(;�) ? A(�;�) ~=A(�;X). For any e 2 A;

�(e) \ ((e))c = ; and (e) \ (�(e))c = ; imply that �(e) = (e),

also

�(e) [ (�(e))c = X and �(e) [ (�(e))c = X

) �(e) \ (�(e))c = ; and �(e) \ (�(e))c = ;

) �(e) = �(e).

Hence A(�;�) ~=A(;�).

BCK-5 A(�;X) ? A(�;�) ~=A(�?�;X?�) ~=A(�~\�c;X~[�c) ~=A(�;X).
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Thus (DSS(X)A; ?; A(�;X)) is a BCK-algebra.
Now A(X;�) 2 DSS(X)A is such that:

A(�;�) ? A(X;�) ~= A(�?X;�?�)

~= A(�~\Xc;�~[�c)

~= A(�~\�;�~[X)

~= A(�;X) for all A(�;�) 2 DSS(X)A.

Therefore (DSS(X)A; ?; A(�;X)) is a bounded BCK-algebra.
For any A(�;�) 2 DSS(X)A,

A(X;�) ? (A(X;�) ? A(�;�)) ~= A(X;�) ? A(X?�;�?�)

~= A(X;�) ? A(X~\�c;�~[�c)

~= A(X;�) ? A(�c;�c)

~= A(X~\(�c)c;�~[(�c)c)

~= A(X~\�;�~[�) ~=A(�;�).

So every element of DSS(X)A is an involution.



Chapter 5

Double-framed Fuzzy Soft Sets
and Their Algebraic Structures

This chapter explores the theory of double-framed fuzzy soft sets which is a general-

ization of double-framed soft sets and most generalized structure in our work. Double-

framed fuzzy soft sets and their operations are de�ned and their characteristics are

studied. Examples are given to elaborate the concepts and to show how the ideas are

utilized to work with double-framed fuzzy soft sets. We see from examples that the

cases for double-framed fuzzy soft sets are of more generalized nature and we cannot

model those with double-framed soft sets.

5.1 Double-framed Fuzzy Soft Sets

Let X be an initial universe and E be a set of parameters. Let FP(X) denotes the
fuzzy power set of X and A, B, C are non-empty subsets of E.

5.1.1 De�nition

A double-framed pair h(f; g) ;Ai is called a double-framed fuzzy soft set over X, where
f and g are mappings from A to FP(X).

From here, we shall use the notation A(f;g) over X to denote a double-framed fuzzy

soft set h(f; g);Ai over X where the meanings of f , g, A and X are clear.

5.1.2 De�nition

For double-framed fuzzy soft sets A(f;g) and B(h;i) over X, we say that A(f;g) is a

double-framed fuzzy soft subset of B(h;i), if

1) A � B and

80



5. Double-framed Fuzzy Soft Sets and Their Algebraic Structures 81

2) f(e) � h(e) and i(e) � g(e) for all e 2 A.

This relationship is denoted by A(f;g) ~�B(h;i). Also A(f;g) is said to be a double-
framed fuzzy soft superset of B(h;i), if B(h;i) is a double-framed fuzzy soft subset of

A(f;g). We denote it by A(f;g) ~�B(h;i).

5.1.3 De�nition

Two double-framed fuzzy soft sets A(f;g) and B(h;i) over X are said to be equal if A(f;g)
is a double-framed fuzzy soft subset of B(h;i) and B(h;i) is a double-framed fuzzy soft

subset of A(f;g). We denote it by A(f;g) ~=B(h;i).

5.1.4 Example

Let X be the set of houses under consideration, and E be the set of parameters,

X = fh1,h2,h3,h4,h5g, E = fe1,e2,e3,e4,e5,e6g = f in the green surroundings, wooden,
cheap, in good repair, furnished, traditional g. Suppose that A = fe1,e2,e3,e6g, a
double-framed fuzzy soft set A(f;g) describes the �highest and lowest budget ratings

of the houses under consideration�given by f and g respectively. The double-framed

fuzzy soft set A(f;g) over X is given as follows:

f : A! FP(X);

e 7�!

8>>>><>>>>:
fh1=0:9; h2=0:3; h3=0:8; h4=0:7; h5=0:5g if e = e1;

fh1=0:1; h2=0:5; h3=0:1; h4=0:8; h5=0:6g if e = e2;

fh1=0:2; h2=0:5; h3=0:2; h4=0:9; h5=0:9g if e = e3;

fh1=0:7; h2=0:4; h3=0:2; h4=0:1; h5=0g if e = e6;

g : A! FP(X);

e 7�!

8>>>><>>>>:
fh1=0:2; h2=0:3; h3=0:3; h4=0:4; h5=0:8g if e = e1;

fh1=0:7; h2=0:4; h3=0:8; h4=0:7; h5=0:9g if e = e2;

fh1=0:6; h2=0:4; h3=0:6; h4=0:6; h5=0:7g if e = e3;

fh1=0:9; h2=0:3; h3=0:8; h4=0:7; h5=0:5g if e = e6:

Let B = fe2,e6g. Then the double-framed fuzzy soft set B(h;i) given by

h : B ! P(X); e 7�!
(
fh1=0:1; h2=0:5; h3=0:1; h4=0:8; h5=0:6g if e = e2;

fh1=0:7; h2=0:4; h3=0:2; h4=0:1; h5=0g if e = e6;

i : B ! P(X); e 7�!
(
fh1=0:1; h2=0:2; h3=0:4; h4=0:3; h5=0:5g if e = e2;

fh1=0:9; h2=0:4; h3=0:9; h4=0:8; h5=0:7g if e = e6:

is a double-framed fuzzy soft subset of A(f;g) which represents a �ner data analysis

and so B(h;i) ~� A(f;g).
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5.2 Operations on Double-framed Fuzzy Soft Sets

In this section, we de�ne various operations on double-framed fuzzy soft sets:

5.2.1 De�nition

Let A(f;g) and B(h;i) be double-framed fuzzy soft sets over X. The int-uni product of

A(f;g) and B(h;i) is de�ned as a double-framed fuzzy soft set (A � B)(f ~̂h;g~_i) over X
in which f ~̂h : (A�B)! FP(X), where

(a; b) 7! f(a) ^ h(b),

and g~_i : (A�B)! FP(X), where

(a; b) 7! g(a) _ i(b).

It is denoted by A(f;g) ^B(h;i) ~=(A�B)(f ~̂h;g~_i).

5.2.2 De�nition

Let A(f;g) and B(h;i) be double-framed fuzzy soft sets over X. The uni-int product of

A(f;g) and B(h;i) is de�ned as a double-framed fuzzy soft set (A � B)(f ~_h;g ~̂i) over X
in which f ~_h : (A�B)! FP(X), where

(a; b) 7! f(a) _ h(b),

and g ~̂i : (A�B)! FP(X), where

(a; b) 7! g(a) ^ i(b).

It is denoted by A(f;g) _B(h;i) ~=(A�B)(f ~_h;g ~̂i).

5.2.3 De�nition

For double-framed fuzzy soft sets A(f;g) and B(h;i) over X, the extended int-uni double-

framed fuzzy soft set of A(f;g) and B(h;i) is de�ned as a double-framed fuzzy soft set

(A [B)(f ~̂h;g~_i) where f ~̂h : (A [B)! FP(X), given by

e 7!

8><>:
f(e) if e 2 A�B
h(e) if e 2 B �A
f(e) ^ h(e) if e 2 A \B

and g~_i : (A [B)! FP(X), given by

e 7!

8><>:
g(e) if e 2 A�B
i(e) if e 2 B �A
g(e) _ i(e) if e 2 A \B

:

It is denoted by A(f;g) u" B(h;i) ~=(A [B)(f ~̂h;g~_i).
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5.2.4 De�nition

For double-framed fuzzy soft sets A(f;g) and B(h;i) over X, the extended uni-int double-

framed fuzzy soft set of A(f;g) and B(h;i) is de�ned as a double-framed fuzzy soft set

(A [B)(f ~_h;g ~̂i) where f ~_h : (A [B)! FP(X), given by

e 7!

8><>:
f(e) if e 2 A�B
h(e) if e 2 B �A
f(e) _ h(e) if e 2 A \B

and g ~̂i : (A [B)! FP(X), given by

e 7!

8><>:
g(e) if e 2 A�B
i(e) if e 2 B �A
g(e) ^ i(e) if e 2 A \B

:

It is denoted by A(f;g) t" B(h;i) ~=(A [B)(f ~_h;g ~̂i).

5.2.5 De�nition

For double-framed fuzzy soft sets A(f;g) and B(h;i) over X with (A \ B) 6= ;, the
restricted int-uni double-framed fuzzy soft set of A(f;g) and B(h;i) is de�ned as a double-

framed fuzzy soft set (A \B)(f ~̂h;g~_i) where f ~̂h : (A \B)! FP(X),

e 7! f(e) ^ h(e),

and g~_i : (A \B)! FP(X),
e 7! g(e) _ i(e).

It is denoted by A(f;g) uB(h;i) ~=(A \B)(f ~̂h;g~_i).

5.2.6 De�nition

For double-framed fuzzy soft sets A(f;g) and B(h;i) over X with (A \ B) 6= ;, the
restricted uni-int double-framed fuzzy soft set of A(f;g) and B(h;i) is de�ned as a double-

framed fuzzy soft set (A \B)(f ~_h;g ~̂i) where f ~_h : (A \B)! FP(X), given by

e 7! f(e) _ h(e),

and g ~̂i : (A \B)! FP(X),
e 7! g(e) ^ i(e).

It is denoted by A(f;g) tB(h;i) ~=(A \B)(f ~_h;g ~̂i).
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5.2.7 De�nition

Let A(f;g) be a double-framed fuzzy soft set overX. The complement of a double-framed

fuzzy soft set A(f;g) over X is de�ned as a double-framed fuzzy soft set A(f ´ ;g ´) over

X where f ´ : A! FP(X), given by

e 7! (f (e))´

and g ´ : A! FP(X),
e 7! (g (e))´.

It is denoted by A(f;g) ´ ~=A(f ´ ;g ´).

5.3 Properties of Double-framed Fuzzy Soft Sets

In this section we discuss properties and laws of double-framed fuzzy soft sets with

respect to their operations. Associativity, commutativity, absorption, distributivity

and properties of double-framed fuzzy soft sets are investigated.

5.3.1 De�nition

A double-framed fuzzy soft set over X is said to be a relative null double-framed fuzzy

soft set, denoted by A(~0;~1) where

~0 : A! FP(X), e 7! ~0, where ~0 maps every element of X onto 0

~1 : A! FP(X), e 7! ~1, where ~1 maps every element of X onto 1

5.3.2 De�nition

A double-framed fuzzy soft set over X is said to be a relative absolute double-framed

fuzzy soft set, denoted by A(~1;~0) where

~1 : A! FP(X), e 7! ~1,

~0 : A! FP(X), e 7! ~0.

Conventionally, we take the double-framed fuzzy soft sets with empty set of parame-

ters to be equal to ;(~0;~1) and so A(f;g)uB(h;i) ~=A(f;g)tB(h;i) ~=;(~0;~1) where (A\B) = ;.

5.3.3 Proposition

If A(~0;~1) is a null double-framed fuzzy soft set, A(~1;~0) an absolute double-framed fuzzy

soft set, and A(f;g), A(h;i) are double-framed fuzzy soft sets over X, then
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1) A(f;g) t" A(h;i) ~=A(f;g) tA(h;i),

2) A(f;g) u" A(h;i) ~=A(f;g) uA(h;i),

3) A(f;g) uA(f;g) ~=A(f;g) ~=A(f;g) tA(f;g), (Idempotent)

4) A(f;g) tA(~0;~1) ~=A(f;g) ~=A(f;g) uA(~1;~0),

5) A(f;g) tA(~1;~0) ~=A(~1;~0); A(f;g) uA(~0;~1) ~=A(~0;~1).

Proof. Proofs of 1), 2) and 3) are straightforward.

4) As A(f;g) tA(�;~1) ~=A(f ~_~0;g ~̂~1). Therefore for any e 2 A;

(f ~_~0)(e) = f(e) _ ~0(e) = f(e) and (g ~̂~1)(e) = g(e) ^ ~1(e) = g(e).

Thus A(f;g) tA(~0;~1) ~=A(f;g).

Again, A(f;g) uA(~1;~0) ~=A(f ~̂~1;g~_~0). For any e 2 A;

(f ~̂~1)(e) = f(e) ^ ~1(e) = f(e) and (g~_~0)(e) = g(e) _ ~0(e) = g(e).

So A(f;g) uA(~1;~0) ~=A(f;g).

Part 5) can be proved in a similar way.

5.3.4 Proposition

Let A(f;g), B(h;i) and C(j;k)be any double-framed fuzzy soft sets over a common universe

X. Then the following are true

1) A(f;g)�(B(h;i)�C(j;k)) ~=(A(f;g)�B(h;i))�C(j;k), (Associative Laws)

2) A(f;g)�B(h;i) ~=B(h;i)�A(f;g), (Commutative Laws)

for all � 2 ft";t;u";ug.
Proof.

1) Since A(f;g) t" (B(h;i) t" C(j;k)) ~=A [ (B [ C)(f ~_(h~_j);g ~̂(g ~̂k)), we have for any e 2
A [ (B [ C):

(i) If e 2 A� (B [ C), then

(f ~_(h~_j))(e) = f(e) = ((f ~_h)~_j)(e)

(g ~̂(i ~̂k))(e) = g(e) = ((g ~̂i)~̂k)(e)
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(ii) If e 2 B � (A [ C), then

(f ~_(h~_j))(e) = h(e) = ((f ~_h)~_j)(e)

(g ~̂(i ~̂k))(e) = g(e) = ((g ~̂i)~̂k)(e)

(iii) If e 2 C � (A [B), then

(f ~_(h~_j))(e) = j(e) = ((f ~_h)~_j)(e)

(g ~̂(i ~̂k))(e) = k(e) = ((g ~̂i)~̂k)(e)

(iv) If e 2 (A \B)� C, then

(f ~_(h~_j))(e) = f(e) _ h(e) = (f ~_h)(e) = ((f ~_h)~_j)(e)

(g ~̂(i ~̂k))(e) = g(e) ^ i(e) = (g ~̂i)(e) = ((g ~̂i)~̂k)(e)

(v) If e 2 (A \ C)�B, then

(f ~_(h~_j))(e) = f(e) _ j(e) = ((f ~_h)~_j)(e)

(g ~̂(i ~̂k))(e) = g(e) ^ k(e) = ((g ~̂i)~̂k)(e)

(vi) If e 2 (B \ C)�A, then

(f ~_(h~_j))(e) = h(e) _ j(e) = (f ~_h)~_j(e)

(g ~̂(i ~̂k))(e) = g(e) ^ k(e) = (g ~̂i)~̂k(e)

(vii) If e 2 (A \B) \ C, then

(f ~_(h~_j))(e) = f(e) _ (h(e) _ j(e)) = (f(e) _ h(e)) _ j(e) = ((f ~_h)~_j)(e)

(g ~̂(i ~̂k))(e) = g(e) ^ (i(e) ^ k(e)) = (g(e) ^ i(e)) ^ k(e) = ((g ~̂i)~̂k)(e)

Thus A(f;g) t" (B(h;i) t" C(j;k)) ~=(A(f;g) t" B(h;i)) t" C(j;k).

Similarly, we can prove for � 2 ft;u";ug

2) This is straightforward.
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5.3.5 Proposition (Absorption Laws)

Let A(f;g), B(h;i) be any double-framed fuzzy soft sets over X. Then the following are

true:

1) A(f;g) t" (B(h;i) uA(f;g)) ~=A(f;g),

2) A(f;g) u (B(h;i) t" A(f;g)) ~=A(f;g),

3) A(f;g) t (B(h;i) u" A(f;g)) ~=A(f;g),

4) A(f;g) u" (B(h;i) tA(f;g)) ~=A(f;g).

Proof. Straightforward.

5.3.6 Proposition (Distributive Laws)

Let A(f;g), B(h;i) and C(j;k) be any double-framed fuzzy soft sets over X. Then

1) A(f;g) u (B(h;i) t" C(j;k)) ~=(A(f;g) uB(h;i)) t" (A(f;g) u C(j;k)),

2) A(f;g) u (B(h;i) u" C(j;k)) ~=(A(f;g) uB(h;i)) u" (A(f;g) u C(j;k)),

3) A(f;g) u (B(h;i) t C(j;k)) ~=(A(f;g) uB(h;i)) t (A(f;g) u C(j;k)),

4) A(f;g) t (B(h;i) t" C(j;k)) ~=(A(f;g) tB(h;i)) t" (A(f;g) t C(j;k)),

5) A(f;g) t (B(h;i) u" C(j;k)) ~=(A(f;g) tB(h;i)) u" (A(f;g) t C(j;k)),

6) A(f;g) t (B(h;i) u C(j;k)) ~=(A(f;g) tB(h;i)) u (A(f;g) t C(j;k)),

7) A(f;g) u" (B(h;i) t" C(j;k)) ~�(A(f;g) u" B(h;i)) t" (A(f;g) u" C(j;k)),

8) A(f;g) u" (B(h;i) t C(j;k)) ~=(A(f;g) u" B(h;i)) t (A(f;g) u" C(j;k)),

9) A(f;g) u" (B(h;i) u C(j;k)) ~�(A(f;g) u" B(h;i)) u (A(f;g) u" C(j;k)),

10) A(f;g) t" (B(h;i) t C(j;k)) ~�(A(f;g) t" B(h;i)) t (A(f;g) t" C(j;k)),

11) A(f;g) t" (B(h;i) u" C(j;k)) ~�(A(f;g) t" B(h;i)) u" (A(f;g) t" C(j;k)),

12) A(f;g) t" (B(h;i) u C(j;k)) ~=(A(f;g) t" B(h;i)) u (A(f;g) t" C(j;k)).

Proof. We prove only one part here and remaining parts can be proved in a similar
way.

1) Consider A(f;g)u (B(h;i)t"C(j;k)). For any e 2 A\ (B[C), we have following three
disjoint cases:
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(i) If e 2 A \ (B � C), then

(f ~̂(h~_j))(e) = f(e) ^ h(e) and (g~_(i ~̂k))(e) = g(e) _ i(e)

and

((f ~̂h)~_(f ~̂j))(e) = (f ~̂h)(e) = f(e) ^ h(e) and

((g~_i)~̂(g~_k))(e) = (g~_i)(e) = g(e) _ i(e).

(ii) If e 2 A \ (C �B), then

(f ~̂(h~_j))(e) = f(e) ^ j(e) and (g~_(i ~̂k))(e) = g(e) _ k(e)

and

((f ~̂h)~_(f ~̂j))(e) = (f ~̂j)(e) = f(e) ^ j(e) and

((g~_i)~̂(g~_k))(e) = (g~_k)(e) = g(e) _ k(e).

(iii) If e 2 A \ (B \ C), then

(f ~̂(h~_j))(e) = f(e) ^ (h(e) _ j(e)) and

(g~_(i ~̂k))(e) = g(e) _ (i(e) ^ k(e))

and

((f ~̂h)~_(f ~̂j))(e) = (f ~̂h)(e)~_(f ~̂j)(e)

= (f(e) ^ h(e)) _ (f(e) ^ j(e))

= f(e) ^ (h(e) _ j(e)) and

((g~_i)~̂(g~_k))(e) = (g~_i)(e) ^ (g~_k)(e)

= (g(e) _ i(e)) ^ (g(e) _ k(e))

= g(e) _ (i(e) ^ k(e)).

Thus

A(f;g) u (B(h;i) t" C(j;k)) ~=(A(f;g) uB(h;i)) t" (A(f;g) u C(j;k)):

5.3.7 Example

Let X be the set of cars of di¤erent models, and E be the set of colors, X =

fx1,x2,x3,x4,x5g, E = fe1,e2,e3,e4,e5,e6g = f green, red, blue, black, white, silver
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g. Suppose that A = fe1; e2; e3g; B = fe2; e3; e4g; and C = fe3; e4; e5g. The double-
framed fuzzy soft sets A(f;g), B(h;i) and C(j;k) over X describe the level of appreciation

from customers based upon the annual survey reports of three di¤erent showrooms re-

spectively. Here ff; h, jg and fg, i, kg collect results for positive and negative aspects
respectively. We have

f : A! FP(X);

e 7�!

8><>:
fx1=0:3; x2=0:1; x3=0:3; x4=0:1; x5=0:7g if e = e1;

fx1=0:1; x2=0:9; x3=0:3; x4=0:8; x5=0:2g if e = e2;

fx1=0:1; x2=0:3; x3=0:3; x4=0:3; x5=0:8g if e = e3;

g : A! FP(X);

e 7�!

8><>:
fx1=0:4; x2=0:7; x3=0:7; x4=0:7; x5=0:1g if e = e1;

fx1=0:8; x2=0; x3=0:5; x4=0:1; x5=0:6g if e = e2;

fx1=0:7; x2=0:5; x3=0:7; x4=0:6; x5=0:1g if e = e3:

h : B ! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:3; x3=0:6; x4=0:2; x5=0:3g if e = e2;

fx1=0:8; x2=0:9; x3=0:5; x4=0:4; x5=0:2g if e = e3;

fx1=0:1; x2=0:4; x3=0:3; x4=0:6; x5=0:9g if e = e4;

g : B ! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:3; x3=0:3; x4=0:6; x5=0:6g if e = e2;

fx1=0:1; x2=0; x3=0:3; x4=0:4; x5=0:6g if e = e3;

fx1=0:9; x2=0:5; x3=0:5; x4=0:3; x5=0:1g if e = e4:

j : C ! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:2; x3=0:3; x4=0:1; x5=0:1g if e = e3;

fx1=0:2; x2=0:2; x3=0:3; x4=0:3; x5=0:2g if e = e4;

fx1=0:1; x2=0:1; x3=0:3; x4=0:5; x5=0:7g if e = e5;

k : C ! FP(X);

e 7�!

8><>:
fx1=0:7; x2=0:7; x3=0:4; x4=0:7; x5=0:4g if e = e3;

fx1=0:6; x2=0:5; x3=0:6; x4=0:1; x5=0:6g if e = e4;

fx1=0:3; x2=0:4; x3=0:4; x4=0:3; x5=0:1g if e = e5:

We know that

A(f;g) t" (B(h;i) u" C(j;k)) ~=((A [B) [ C)(f ~_(h ~̂j);g ~̂(i~_k))

and

(A(f;g) t" Bhh;gi) u" (A(f;g) t" C(j;k)) ~=((A [B) [ C)((f ~_h)~̂(f ~_j)).
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Then

(f ~_(h ~̂j))(e2) = fx1=0:1; x2=0:9; x3=0:6; x4=0:8; x5=0:3g

6= fx1=0:1; x2=0:9; x3=0:3; x4=0:8; x5=0:2g

= ((f ~_h)~̂(f ~_j))(e2) and

(g ~̂(i~_k))(e2) = fx1=0:1; x2=0:0; x3=0:3; x4=0:1; x5=0:6g

6= fx1=0:8; x2=0:0; x3=0:5; x4=0:1; x5=0:6g

= ((g ~̂i)~_(g ~̂k))(e2),

so that

A(f;g) t" (B(h;i) u" C(j;k)) ~6=(A(f;g) t" B(h;i)) u" (A(f;g) t" C(j;k)):

Now,

A(f;g) u" (B(h;i) t" C(j;k)) ~=((A [B) [ C)(f ~̂(h~_j);g~_(i ~̂k))

and

(A(f;g) u" B(h;i)) t" (A(f;g) u" C(j;k)) ~=((A [B) [ C)((f ~̂h)~_(f ~̂j);(g~_i)~̂(g~_k)).

Then,

(f ~̂(h~_j))(e2) = fx1=0:1; x2=0:3; x3=0:3; x4=0:2; x5=0:2g

6= fx1=0:1; x2=0:9; x3=0:3; x4=0:8; x5=0:2g

= ((f ~̂h)~_(f ~̂j))(e2)

and

(g~_(i ~̂k))(e2) = fx1=0:8; x2=0:3; x3=0:5; x4=0:6; x5=0:6g

6= fx1=0:8; x2=0:0; x3=0:5; x4=0:1; x5=0:6g

= ((g~_i)~̂(g~_k))(e2).

So

A(f;g) u" (B(h;i) t" C(j;k)) ~6=(A(f;g) u" B(h;i)) t" (A(f;g) u" C(j;k)).

Similarly we can show that

A(f;g) t" (B(h;i) t C(j;k)) ~6=(A(f;g) t" B(h;i)) t (A(f;g) t" C(j;k));

and

A(f;g) u" (B(h;i) u C(j;k)) ~6=(A(f;g) u" B(h;i)) u (A(f;g) u" C(j;k)).
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5.3.8 Proposition

Let A(f;g), B(h;i) and C(j;k) be any double-framed fuzzy soft sets over X. Then

1) A(f;g) t" (B(h;i) u" C(j;k)) ~=(A(f;g) t" B(h;i)) u" (A(f;g) t" C(j;k)) if and only if

f(e) � h(e) and g(e) � i(e) for all e 2 (A \B)� C and

f(e) � j(e) and g(e) � k(e) for all e 2 (A \ C)�B.

2) A(f;g) u" (B(h;i) t" C(j;k)) ~=(A(f;g) u" B(h;i)) t" (A(f;g) u" C(j;k)) if and only if

f(e) � h(e) and g(e) � i(e) for all e 2 (A \B)� C and

f(e) � j(e) and g(e) � k(e) for all e 2 (A \ C)�B.

Proof. Straightforward.

5.3.9 Corollary

Let A(f;g), B(h;i) and C(j;k) be three double-framed fuzzy soft sets over X such that

(A \B)� C = (A \ C)�B = ;. Then

1) A(f;g) t" (B(h;i) u" C(j;k)) ~=(A(f;g) t" B(h;i)) u" (A(f;g) t" C(j;k)),

2) A(f;g) u" (B(h;i) t" C(j;k)) ~=(A(f;g) u" B(h;i)) t" (A(f;g) u" C(j;k)).

5.3.10 Corollary

Let A(f;g), A(h;i) and A(j;k) be three double-framed fuzzy soft sets over X. Then

A(f;g)�(A(h;i)�A(j;k)) ~=(A(f;g)�A(h;i))�(A(f;g)�A(j;k))

for distinct �, � 2 fu";u;t";tg.

5.3.11 Theorem

Let A(f;g) and B(h;i) be double-framed fuzzy soft sets over X. Then the following are

true

1) A(f;g) t" B(h;i) is the smallest double-framed fuzzy soft set over X which contains

both A(f;g) and B(h;i). (Supremum)

2) A(f;g) uB(h;i) is the largest double-framed fuzzy soft set over X which is contained

in both A(f;g) and B(h;i). (In�mum)
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Proof.

1) We have A;B � (A [ B) and f(e); h(e) � f(e) _ h(e) and g(e) ^ i(e) � g(e),

g(e) ^ i(e) � i(e). So A(f;g) ~�A(f;g) t" B(h;i) and B(h;i) ~�A(f;g) t" B(h;i). Let
C(j;k) be a double-framed fuzzy soft set over X, such that A(f;g), B(h;i) ~�C(j;k).
Then A; B � C implies that (A [ B) � C and f(e); h(e) � j(e) implies that

f(e) _ h(e) � j(e). Also k(e) � g(e), k(e) � i(e) imply that k(e) � g(e) ^ i(e)
for all e 2 A [ B. Thus A(f;g) t" B(h;i) ~�C(j;k). It follows that A(f;g) t" B(h;i) is
the smallest double-framed fuzzy soft set over X which contains both A(f;g) and

B(h;i).

2) We have A \ B � A; A \ B � B and f(e) ^ h(e) � f(e); f(e) ^ h(e) � h(e) and
g(e) � g(e) _ i(e); i(e) � g(e) _ i(e) for all e 2 A \ B. So A(f;g) u B(h;i) ~�A(f;g)
and A(f;g) u B(h;i) ~�B(h;i). Let C(j;k) be a double-framed fuzzy soft set over X,
such that C(j;k) ~�A(f;g) and C(j;k) ~�B(h;i). Then C � A, C � B implies that

C � A \ B and j(e) � f(e), j(e) � g(e) imply that j(e) � f(e) ^ g(e), and
g(e) � k(e), i(e) � k(e) imply that g(e) _ i(e) � k(e) for all e 2 C. Thus

C(j;k) ~�A(f;g) u B(h;i). It follows that A(f;g) u B(h;i) is the largest double-framed
fuzzy soft set over X which is contained in both A(f;g) and B(h;i).

5.4 Algebras of Double-framed Fuzzy Soft Sets

In this section, we discuss the concepts of lattices and algebras for the collections of

double-framed fuzzy soft sets. Let DFSS(X)E be the collection of all double-framed
fuzzy soft sets over X and DFSS(X)A be its sub collection of all double-framed fuzzy
soft sets over X with a �xed set of parameters A. We note that these collections are

partially ordered by the relation of soft inclusion ~� given in De�nition 5.1.2.

5.4.1 Proposition

(DFSS(X)E ;u";t), (DFSS(X)E ;t;u"), (DFSS(X)E ;t";u), (DFSS(X)E ;u;t")
(DFSS(X)A;t;u), and (DFSS(X)A;u;t) are complete lattices.
Proof. Let us consider (DFSS(X)E ,u",t). Then for any double-framed fuzzy

soft sets A(f;g), B(h;i), C(j;k) 2 DFSS(X)E ,

1) We have

A(f;g) u" B(h;i) ~= (A [B)(f ~̂h;g~_i) 2 DFSS(X)E and

A(f;g) tB(h;i) ~= (A \B)(f ~_h;g ~̂i) 2 DFSS(X)E .



5. Double-framed Fuzzy Soft Sets and Their Algebraic Structures 93

2) From Proposition 5.3.3, we have

A(f;g) u" A(f;g) ~=A(f;g) and A(f;g) tA(f;g) ~=A(f;g).

3) From Proposition 5.3.4 we see that

A(f;g) u" B(h;i) ~= B(h;i) u" A(f;g) and

A(f;g) tB(h;i) ~= B(h;i) tA(f;g).

Also

A(f;g) u" (B(h;i) u" C(j;k)) ~= (A(f;g) u" B(h;i)) u" C(j;k) and

A(f;g) t (B(h;i) t C(j;k)) ~= (A(f;g) tB(h;i)) t C(j;k).

4) From Proposition 5.3.5,

A(f;g) u" (B(h;i) tA(f;g)) ~=A(f;g) and A(f;g) t (B(h;i) u" A(f;g)) ~=A(f;g).

So we conclude that the structure forms a lattice. Consider a collection of double-

framed fuzzy soft sets fAi(fi;gi) : i 2 Ig over X. We have,
[
i2I
Ai � E and, let �(e) =

fj : e 2 Ajg for any e 2 Ai. Then
�^

i2�(e)
fi(e)

�
(x) 2 [0; 1] and

0@ _
i2�(e)

gi(e)

1A (x) 2
[0; 1] for all x 2 X. Thus u"

i2I
Ai(fi;gi) 2 DFSS(X)

E .

Again, we have,
\
i2I
Ai � E and for any e 2

\
i2I
Ai,

 _
i2I
fi(e)

!
(x) 2 [0; 1] and�^

i2I
gi(e)

�
(x) 2 [0; 1] for all x 2 X. Thus t

i2I
Ai(fi;gi) 2 DFSS(X)

E .

Similarly we can show for the remaining structures.

5.4.2 Proposition

The structures (DFSS(X)E ;u;t"; ;(~0;~1); E(~1;~0)), (DFSS(X)
E ;t";u; E(~1;~0); ;(~0;~1)),

(DFSS(X)A;u;t; A(~0;~1); A(~1;~0)) and (DFSS(X)A;t;u; A(~1;~0); A(~0;~1)) are bounded
distributive lattices.

Proof. Proposition 5.3.6 assures the distributivity of (DFSS(X)E ;u;t") and
(DFSS(X)E ;t";u). From Theorem 5.3.11, we conclude that (DFSS(X)E ;u;t"; ;(~0;~1); E(~1;~0))
is a bounded distributive lattice and (DFSS(X)E ;t";u; E(~1;~0); ;(~0;~1)) is its dual. For
any double-framed fuzzy soft sets A(f;g), A(h;i) 2 DFSS(X)A;

A(f;g) uA(h;i) ~= A(f ~̂h;g~_i) 2 DFSS(X)A and

A(f;g) tA(h;i) ~= A(f ~_h;g ~̂i) 2 DFSS(X)A.
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Thus (DFSS(X)A;u;t) is also a distributive sublattice of (DFSS(X)
E ;t";u) and

Theorem 5.3.3 tells us that A(~0;~1), A(~1;~0) are its lower and upper bounds respec-

tively. Therefore (DFSS(X)A;u;t; A(~0;~1); A(~1;~0)) is a bounded distributive lattice
and (DFSS(X)A;t;u; A(~1;~0); A(~0;~1)) is its dual.

5.4.3 Proposition

Let A(f;g) be a double-framed fuzzy soft set over X. Then the operation A(f;g) 7! A(f;g)�

on DFSS(X)E which is given in De�nition 5.2.7 satis�es:

1) (A(f;g) ´ )´ ~=A(f;g) and A(~1;~0) ´ ~=A(~0;~1), A(~0;~1) ´ ~=A(~1;~0),

2) if A(h;i) is a double-framed fuzzy soft set over X then A(f;g) ~�A(h;i) if and only if
A(h;i)�~�A(f;g)�.

Proof.

1) The proof follows from the fact that, for any e 2 A

((f ´)´)(e) = (f ´(e))´ = ((f(e)) ´)´ = f(e) and

((g ´)´)(e) = (g ´(e))´ = ((g(e)) ´)´ = g(e).

Also

A(~1;~0)´ ~= A(~1�;~0�) ~=A(~0;~1),

A(~0;~1)´ ~= A(~0�;~1�) ~=A(~1;~0).

2) Let e 2 A. If A(f;g) ~�A(h;i) then f(e) � h(e) and i(e) � g(e).

Now,

(f ´(e))(x) = (f(e))´(x)

= 1� (f(e))(x)

� 1� (h(e))(x)

= (h(e))´(x) = (h´(e))(x) and

(g´(e))(x) = (g(e))´(x)

= 1� (g(e))(x)

� 1� (i(e))(x)

= (i(e))´(x) = (i´(e))(x)

for all x 2 X. ThusA(h;i)´ ~�A(f;g)´ . Conversely, ifA(h;i)´ ~�A(f;g)�then (A(f;g)�)�~�(A(h;i)�)�
implies A(f;g) ~�A(h;i).
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5.4.4 Proposition (de Morgan Laws)

Let A(f;g) and B(h;i) be double-framed fuzzy soft sets over X. Then the following are

true

1) (A(f;g) t" B(h;i))´ ~=A(f;g)�u" B(h;i)�,

2) (A(f;g) u" B(h;i))´ ~=A(f;g)�t" B(h;i)�,

3) (A(f;g) _B(h;i))´ ~=A(f;g)�^B(h;i)�,

4) (A(f;g) ^B(h;i))´ ~=A(f;g)�_B(h;i)�,

5) (A(f;g) tB(h;i))´ ~=A(f;g)�uB(h;i)�,

6) (A(f;g) uB(h;i))´ ~=A(f;g)�tB(h;i)�.

Proof. 1) We have (A(f;g) t" B(h;i))´ ~=((A [ B)(f ~_h;g ~̂g))´ ~=(A [ B)((f ~_h)�;(g ~̂g)�).
Let e 2 (A [B). There are three cases:

(i) If e 2 A�B, then

(f ~_h)�(e) = (f(e))�= f�(e) = (f�~̂h�)(e)

(g ~̂i)�(e) = (g(e))�= g�(e) = (g�~_i�)(e),

(ii) If e 2 B �A, then

(f ~_h)�(e) = (h(e))�= h�(e) = (f�~̂h�)(e)

(g ~̂i)�(e) = (i(e))�= i�(e) = (g�~_i�)(e),

(iii) If e 2 (A \B), then

(f ~_h)�(e) = (f(e) _ h(e))�= (f(e))�^ (h(e))�

(g~_i)�(e) = (g(e) ^ i(e))�= (g(e))�_ (i(e))�,

and,

(f�~̂h�)(e) = (f(e))�^ (h(e))�= (f ~_h)�(e)

(g�~̂i�)(e) = (g(e))�_ (i(e))�= (g~_i)�(e).

Therefore, in all three cases we obtain equality and thus

(A(f;g) t" B(h;i))�~=A(f;g)�u" B(h;i)�.

The remaining parts can also be proved in a similar way.
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5.4.5 Proposition

(DFSS(X)A;u;t;´ ; A(~0;~1); A(~1;~0)) is a de Morgan algebra.
Proof. We have already seen that (DFSS(X)A;u;t; A(~0;~1); A(~1;~0)) is a bounded

distributive lattice. Proposition 5.4.3 shows that " ´ " is an involution on DFSS(X)A
and Proposition 5.4.4 shows that de Morgan laws hold with respect to " ´ " in

DFSS(X)A. Thus (DFSS(X)A;u;t;´ ; A(~0;~1); A(~1;~0)) is a de Morgan algebra.

5.4.6 Proposition

LetA(f;g) andA(h;i) be double-framed fuzzy soft sets overX. ThenA(h;i)uA(h;i)�~�A(f;g)t
A(f;g)� and so (DFSS(X)A;u;t;´ ; A(~0;~1); A(~1;~0)) is a Kleene Algebra.

Proof. We have already seen that (DFSS(X)A;u;t;´ ; A(~0;~1); A(~1;~0)) is a de Mor-
gan algebra. Now, suppose that for some A(f;g), A(h;i) 2 DFSS(X)A we have

A(h;i) uA(h;i)�~�A(f;g) tA(f;g)�where A(h;i) uA(h;i)�~6=A(f;g) tA(f;g)�.

Then there exists some e 2 A such that

(h ~̂h ´)(e) � (f ~_f ´)(e) or (g~_g´)(e) � (g ~̂g´)(e)

and so there exists some x 2 X such that

((h ~̂h´)(e))(x) > ((f ~_f ´)(e))(x)

) (h(e)~̂h´(e))(x) > (f(e)~_f ´(e))(x)

) (h(e))(x) ^ (h�(e))(x) > (f(e))(x) _ (f ´(e))(x)

or

((i~_i�)(e))(x) < ((g ~̂g�)(e))(x)

) (i(e)~_i�(e))(x) < (g(e)~̂g�(e))(x)

) (i(e))(x) _ (i�(e))(x) < (g(e))(x) ^ (g�(e))(x).

But

(h(e))(x) ^ (h�(e))(x) � 0:5 and

(g(e))(x) ^ (g�(e))(x) � 0:5

and

(f(e))(x) _ (f�(e))(x) � 0:5 and

(i(e))(x) _ (i�(e))(x) � 0:5.
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which gives

(h(e))(x) ^ (h�(e))(x) � (f(e))(x) _ (f ´(e))(x) or

(g(e))(x) ^ (g�(e))(x) � (i(e))(x) _ (i�(e))(x).

A contradiction. Thus our supposition is wrong and

A(h;i) uA(h;i)�~�A(f;g) tA(f;g)�.

Therefore (DFSS(X)A;u;t;´ ; A(~0;~1); A(~1;~0)) is a Kleene Algebra.

5.4.7 Lemma

Let A(f;g); B(h;i) 2 DFSS(X)E . Then pseudocomplement of A(f;g) relative to B(h;i)
exists in DFSS(X)E .

Proof. Consider the set

T (A(f;g); A(h;i)) = fC(j;k) 2 DFSS(X)E : C(j;k) uA(f;g) ~�B(h;i)g.

We de�ne a double-framed fuzzy soft set (Ac [ B)(f;g)!(h;i) ~=(Ac [ B)(f!h;g!i) 2
DFSS(X)E where

((f ! h)(e))(x)

=

8>>>><>>>>:
1 if e 2 Ac �B(
1 if (f(e))(x) � (h(e))(x)
(h(e))(x) if (f(e))(x) > (h(e))(x)

if e 2 B �Ac

1 if e 2 Ac \B
and

((g ! i)(e))(x)

=

8>>>><>>>>:
0 if e 2 Ac �B(
0 if (i(e))(x) < (g(e))(x)

(i(e))(x) if (i(e))(x) � (g(e))(x)
if e 2 B �Ac

0 if e 2 Ac \B

Then

(Ac [B)(f!h;g!i) uA(f;g) ~= ((Ac [B) \A)((f!h)~̂f;(g!i)~_g)
~= ((Ac \A) [ (B \A))((f!h)~̂f;(g!i)~_g)
~= (A \B)((f!h)~̂f;(g!i)~_g).
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For any e 2 A \B, x 2 X,

(((f ! h)~̂f))(e))(x)

=

(
1 ^ (f(e))(x) if (f(e))(x) � (h(e))(x)
(h(e))(x) ^ (f(e))(x) if (f(e))(x) > (h(e))(x)

=

(
(f(e))(x) if (f(e))(x) � (h(e))(x)
(h(e))(x) if (f(e))(x) > (h(e))(x)

� (h(e))(x).

and

(((g ! i)~_g)(e))(x)

=

(
0 _ (g(e))(x) if (i(e))(x) < (g(e))(x)

(i(e))(x) _ (g(e))(x) if (i(e))(x) � (g(e))(x)

=

(
(g(e))(x) if (i(e))(x) � (g(e))(x)
(i(e))(x) if (i(e))(x) > (g(e))(x)

� (i(e))(x).

Hence,

(Ac [B)(f!h;g!i) uA(f;g) ~�B(h;i)

Thus (Ac [ B)(f!h;g!i) 2 T (A(f;g); A(h;i)). For all C(j;k) 2 T (A(f;g); A(h;i)), we have
C(j;k) uA(f;g) ~�A(h;i) so for any e 2 C \A � B

j(e) ^ f(e) � h(e) and k(e) _ g(e) � i(e)

Now,

C \A � B ) (A \ C) \Bc = ;

) C � (A \Bc)c = Ac [B.

We have following cases:

(i) If e 2 (Ac � B) \ C, then j(e))(x) � 1 = ((f ! h)(e))(x) and k(e))(x) � 0 =

((g ! i) (e)) (x)

(ii) If e 2 (B�Ac)\C, and (i(e))(x) < (g(e))(x) then (k(e))(x) � 0 = ((g ! i)(e))(x)

(iii) If e 2 (B � Ac) \ C, and (f(e))(x) � (h(e))(x) then (j(e))(x) < 1 = ((h !
i)(e))(x)

(iv) If e 2 (B�Ac)\C and (i(e))(x) � (g(e))(x); then the condition k(e)_g(e) � i(e)
implies that (k(e))(x) � (i(e))(x) = ((h! i)(e))(x)
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(v) If e 2 (B�Ac)\C and (f(e))(x) > (h(e))(x); then the condition j(e)^f(e) � h(e)
implies that (j(e))(x) � (h(e))(x) = ((h! i)(e))(x)

(vi) If e 2 (Ac \ B) \ C, then j(e))(x) < 1 = ((h ! i)(e))(x) and k(e))(x) � 0 =

((g ! i) (e)) (x).

Thus C(j;k) ~�(Ac [B)(f!h;g!g) and it also shows that

(Ac [B)(f!h;g!g) ~=
_
T (A(f;g); A(h;i)) ~=A(f;g) ! A(h;i).

5.4.8 Remark

We know that (DFSS(X)A,u,t) is a sublattice of (DFSS(X)
E ,u",t). For any A(f;g),

A(h;i) 2 DFSS(X)A, A(f;g) ! A(h;i) as de�ned in Lemma 5.4.7, is not in DFSS(X)A
because A(f;g) ! A(h;i) ~=(A

c [A)(f!h;g!i) ~=E(f!h;g!i) =2 DFSS(X)A.

5.4.9 Lemma

Let A(f;g); A(h;i) 2 DFSS(X)A. Then pseudocomplement of A(f;g) relative to A(h;i)
exists in (DFSS(X)A,u,t).

Proof. Consider the set

T (A(f;g); A(h;i)) = fA(j;k) 2 DFSS(X)A : A(j;k) uA(f;g) ~�A(h;i)g.

We de�ne a double-framed fuzzy soft set A(f!h;g!i) 2 DFSS(X)A where

((f ! h)(e))(x) =

(
1 if (f(e))(x) � (h(e))(x)
(h(e))(x) if (f(e))(x) > (h(e))(x)

and

((g ! i)(e))(x) =

(
0 if (i(e))(x) < (g(e))(x)

(i(e))(x) if (i(e))(x) � (g(e))(x)

for all e 2 A, x 2 X. Then A(f!h;g!i) uA(f;g) ~=A(f!h;g!i)~̂h and

(((f ! h)~̂f))(e))(x)

=

(
1 ^ (f(e))(x) if (f(e))(x) � (h(e))(x)
(h(e))(x) ^ (f(e))(x) if (f(e))(x) > (h(e))(x)

=

(
(f(e))(x) if (f(e))(x) � (h(e))(x)
(h(e))(x) if (f(e))(x) > (h(e))(x)

� (h(e))(x).
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and

(((g ! i)~_g)(e))(x)

=

(
0 _ (g(e))(x) if (i(e))(x) < (g(e))(x)

(i(e))(x) _ (g(e))(x) if (i(e))(x) � (g(e))(x)

=

(
(g(e))(x) if (i(e))(x) � (g(e))(x)
(i(e))(x) if (i(e))(x) > (g(e))(x)

� (i(e))(x).

for all e 2 A, x 2 X. Hence,

A(f!h;g!i) uA(f;g) ~�A(h;i)

and A(f!h;g!i) 2 T (A(f;g); A(h;i)). For every A(j;k) 2 T (A(f;g); A(h;i)), we have A(j;k)
u A(f;g) ~� A(h;i) so for any e 2 A, following cases arise:

(i) If (i(e))(x) < (g(e))(x) then (k(e))(x) � 0 = ((g ! i)(e))(x)

(ii) If (f(e))(x) � (h(e))(x) then (j(e))(x) < 1 = ((h! i)(e))(x)

(iii) If (i(e))(x) � (g(e))(x); then the condition k(e) _ g(e) � i(e) implies that

(k(e))(x) � (i(e))(x) = ((h! i)(e))(x)

(iv) If (f(e))(x) > (h(e))(x); then the condition j(e) ^ f(e) � h(e) implies that

(j(e))(x) � (h(e))(x) = ((h! i)(e))(x).

Thus A(j;k) ~�A(f!h;g!i) and it also shows that

A(f!h;g!i) ~=
_
T (A(f;g); A(h;i)) ~=A(f;g) !A A(h;i).

5.4.10 Proposition

(DFSS(X)E ,u",t) and (DFSS(X)A,u,t) are Brouwerian lattices.
Proof. Follows from Lemmas 5.4.7 and 5.4.9.

5.4.11 De�nition

Let A(f;g) be a double-framed fuzzy soft set overX. We de�ne A(f;g)� as a double-framed

fuzzy soft set A(f�;g�) where

f� : A! FP(X), e 7! (f (e))�,

(f(e))�(x) =

(
0 if (f(e))�(x) 6= 0
1 if (f(e))�(x) = 0
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g� : A! FP(X), e 7! (g (e))�,

(g (e))�(x) =

(
1 if (g (e))�(x) 6= 1
0 if (g (e))�(x) = 1

for x 2 X.

5.4.12 Theorem

Let A(f;g) and A(h;i) be double-framed fuzzy soft sets over X. Then

1) A(f;g) uA(f;g)� ~=A(~0;~1),

2) A(f;g) ~�A(h;i)� whenever A(f;g) uA(h:i) ~=A(~0;~1),

3) A(f;g)� tA((f;g)�)� ~=A(~1;~0).

Thus (DFSS(X)A;u;t;� ; A(~0;~1); A(~1;~0)) is a Stone algebra.
Proof.

1) Consider A(f;g) uA(f;g)� . For any e 2 A

(f ~̂f�)(e) = f(e) ^ f�(e) and (g~_g�)(e) = g(e) _ g�(e).

=)

((f ~̂f�)(e))(x) =

(
(f(e))(x) ^ 0 if (f(e))(x) 6= 0

0 ^ 1 if (f(e))(x) = 0

= 0

and

((g~_g�)(e))(x) =

(
(g(e))(x) _ 1 if (g(e))(x) 6= 1

1 _ 0 if (g(e))(x) = 1

= 1

for all x 2 X. Thus A(f;g) uA(f;g)� ~=A(~0;~1).

2) If A(f;g) uA(h;i) ~=A(~0;~1), then

(f(e))(x) ^ (h(e))(x) = 0 (b)

and

(g(e))(x) _ (i(e))(x) = 1 (c)

for all x 2 X, e 2 A. From Equation (b) we have two cases :

If (h(e))(x) = 0 then (h�(e))(x) = 1 � (f(e))(x)

and

if (h(e))(x) 6= 0 then (f(e))(x) = 0 � (h�(e))(x).

Thus (f(e))(x) � (h�(e))(x) for all x 2 X.
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From Equation (c), there are two cases:

If (i(e))(x) = 1 then (i�(e))(x) = 0 � (g(e))(x)

and

if (i(e))(x) 6= 1 then (g(e))(x) = 1 � (i�(e))(x).

So (i�(e))(x) � (g(e))(x) for all x 2 X. This implies that

f(e) � h�(e) and i�(e) � g(e) for all e 2 A.

Therefore A(f;g) ~�A(h;i)� .

3) Consider A(f;g)� tA((f;g)�)� . For any e 2 A

(f�~_f��)(e) = f�(e) _ f��(e)

and

(g� ~̂g��)(e) = g�(e) ^ g��(e).

=)

((f�(e))(x) _ (f��(e))(x) =

(
0 _ 1 if (f(e))(x) 6= 0
1 _ 0 if (f(e))(x) = 0

= 1

and

((g�(e))(x) ^ (g��(e))(x) =

(
1 ^ 0 if (g(e))(x) 6= 1
0 ^ 1 if (g(e))(x) = 1

= 0

for all x 2 X. Thus A(f;g)� tA((f;g)�)� ~=A(~1;~0).

5.4.13 De�nition

Let A(f;g) be a double-framed fuzzy soft set over X. We de�ne

(A(f;g))
� ~=A(f;g)� ~=A(g;f):

5.4.14 Proposition (Involution)

LetA(f;g) be a double-framed fuzzy soft set overX. Then (A(f;g)�)� ~=A(f;g), A(~1;~0)� ~=A(~0;~1)
and A(~0;~1)� ~=A(~1;~0)

Proof. It is straightforward that A(~1;~0)� ~=A(~0;~1) and A(~0;~1)� ~=A(~1;~0). We have

(A(f;g)�)
� ~=A(g;f)� ~=A(f;g).
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5.4.15 Proposition (de Morgan Laws)

Let A(f;g) and B(h;i) be double-framed fuzzy soft sets over X. Then the following are

true

1) (A(f;g) t" B(h;i))� ~=A(f;g)� u" B(h;i)� ,

2) (A(f;g) u" B(h;i))� ~=A(f;g)� t" B(h;i)� ,

3) (A(f;g) _B(h;i))� ~=A(f;g)� ^B(h;i)� ,

4) (A(f;g) ^B(h;i))� ~=A(f;g)� _B(h;i)� ,

5) (A(f;g) tB(h;i))� ~=A(f;g)� uB(h;i)� ,

6) (A(f;g) uB(h;i))� ~=A(f;g)� tB(h;i)� .

Proof.

1) We have
(A(f;g) t" B(h;i))� ~=((A [B)(f ~_h;g ~̂i))� ~=(A [B)(g ~̂i;f ~_h)

and

A(f;g)� u" B(h;i)� ~=A(g;f) u" B(i;h) ~=(A [B)(g ~̂i;f ~_h).

Thus

(A(f;g) t" B(h;i))� ~=A(f;g)� u" B(h;i)� .

The remaining parts can be proved in a similar way.

5.4.16 Theorem

(DFSS(X)A;u;t;� ; A(~0;~1); A(~1;~0)) is a de Morgan algebra.
Proof. Follows from Propositions 5.4.14 and 5.4.15.



Chapter 6

Algebraic Structures of Bipolar
Soft Sets

Bipolarity refers to an explicit handling of positive and negative sides of information.

Three types of bipolarity were discussed in [11] but we are using a rather generalized

bipolarity here, dealing with the positive and negative impacts in information associ-

ated with a soft set and its representation. This chapter introduces the concept of a

bipolar soft set. A bipolar soft set is obtained by considering not only a carefully cho-

sen set of parameters but also an allied set of oppositely meaning parameters named as

"Not set of parameters". Structure of a bipolar soft set is managed by two functions,

say � : A ! P(X) and � : :A ! P(X) where :A stands for the "not set of A" and
� describes somewhat an opposite or negative approximation for the attractiveness of

a houses of X, relative to the approximation computed by �. Maji et al. [33] had

used the "not set" to de�ne complement of a soft set. The complement of a soft set

simply gives the complements of the approximations. The above mentioned soft func-

tion � is rather more generalized than soft complement function and (�,:A) can be
any soft subset of (�,A)c. The di¤erence is the gray area of choice, that is, we may

�nd some houses which do not satisfy any criteria properly e.g. A house may not be

highly expensive but it does not assure its cheapness either. Thus, we must be careful

while making our considerations for the parameterization of data keeping in view that,

during approximations, there might be some indi¤erent elements in X. This gives us

a motivation to de�ne the idea of bipolar soft sets. We have de�ned operations of

union and intersection for bipolar soft sets by taking restricted, extended and product

sets of parameters. The algebraic structures of bipolar soft sets are discussed with the

properties of operations.

104
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6.1 Bipolar Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the
power set of X and A, B, C be non-empty subsets of E.

6.1.1 De�nition

A triplet (�,� : A) is called a bipolar soft set over X, where � and � are mappings,

given by � : A! P(X) and � : :A! P(X) such that �(e) \ �(:e) = ; (Empty Set)
for all e 2 A.

In other words, a bipolar soft set over X gives two parametrized families of subsets

of the universe X and the condition �(e) \ �(:e) = ; for all e 2 A, is imposed

as a consistency constraint. For each e 2 A, �(e) and �(:e) are regarded as the
set of e-approximate elements of bipolar soft set (�,� : A). It is also observed that

the relationship between a complement function and the de�ning function of a soft

set becomes a particular case for the de�ning functions of a bipolar soft set, that is,

(�,�c : A) is a bipolar soft set over X. The di¤erence occurs due to the presence of

uncertainty or hesitation or lack of knowledge in de�ning the membership function. We

name this uncertainty or gray area as the approximation for the degree of hesitation.

Thus the union of three approximations, that is, e-approximation, :e-approximation,
and approximation of hesitation is X. We note that ; � X �f�(e)[ �(:e)g � X, for
each e 2 A. So, we may approximate the degree of hesitation in (�,� : A) by an allied
soft set Ah de�ned over X, where h(e) = X � f�(e) [ �(:e)g for all e 2 A.

6.1.2 De�nition

For two bipolar soft sets (�,� : A) and (,� : B) over a universe X, we say that

(�,� : A) is a bipolar soft subset of (,� : B), if

1) A � B and

2) �(e) � (e) and �(:e) � �(:e) for all e 2 A.

This relationship is denoted by (�,� : A) ~�(,� : B). Similarly (�,� : A) is said to
be a bipolar soft superset of (,� : B), if (,� : B) is a bipolar soft subset of (�,� : A).

We denote it by (�,� : A) ~�(,� : B).

6.1.3 De�nition

Two bipolar soft sets (�,� : A) and (,� : B) over X are said to be equal if (�,� : A)

is a bipolar soft subset of (,� : B) and (,� : B) is a bipolar soft subset of (�,� : A).
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Let BSS(X)E denotes the set of all bipolar soft sets de�ned over X with set of

parameters E ordered by the relation of inclusion ~� as de�ned in De�nition 6.1.2.
Now we claim that every bipolar soft set is equivalent to a double-framed soft set

and give the following theorem:

6.1.4 Theorem

The mapping � : BSS(X)E ! DSS(X)E , (�,� : A) 7! A(�1;�1) is a monomorphism of

lattices where

�(e) = �1(e), and �(e) = �1(:e) for all e 2 A.

Proof. Clearly � is well-de�ned. If

�((�; � : A)) ~=�((; � : B))

where

�((�; � : A)) ~=A(�1;�1) and �((; � : B)) ~=B(1;�1)

then A = B and

�(e) = �1(e), (e) = 1(e) and �(e) = �1(:e), �(e) = �1(:e) for all e 2 A.

Now,

�(e) = �1(e) = 1(e) = (e) and �(e) = �1(:e) = �1(:e) = �(e) for all e 2 A.

Thus

(�; � : A) ~=(; � : B)

shows that � is one-to-one. Clearly � preserves the order of inclusion.

6.1.5 Remark

Note that � is not onto because of the extra condition of consistency constraint for

de�ning bipolar soft sets.

By Theorem 6.1.4, we can equate every bipolar soft set with a double-framed soft

set with the consistency constraint and so, from onwards, we shall denote a bipolar

soft set (�,� : A) by its image �((�,� : A)) ~=Ah�;�i where the meanings of A, � and �

are clear.
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6.1.6 Example

Let X be the set of houses under consideration, and E be the set of parameters,

X = fh1,h2,h3,h4,h5g, E = fe1,e2,e3,e4,e5,e6g = f in the green surroundings, wooden,
cheap, in good repair, furnished, traditional g. Suppose that A = fe1,e2,e3,e6g, a
bipolar soft set Ah�;�i describes the �requirements of the houses�which Mr. Y is going

to buy. The bipolar soft set Ah�;�i over X, where � and � represent the classi�cation

under high and low investment respectively, is given as follows:

� : A! P(X); e 7�!

8>>>><>>>>:
fh1; h2; h4g if e = e1;

fh3; h4g if e = e2;

X if e = e3;

fh2; h3; h5g if e = e6;

� : A! P(X); e 7�!

8>>>><>>>>:
fh3; h5g if e = e1;

fh1; h2; h5g if e = e2;

fg if e = e3;

fh1g if e = e6:

Let B = fe2,e3g. Then bipolar soft set Bh;�i given by

 : A! P(X); e 7�!
(
fh3g if e = e2;

fh1; h4; h5g if e = e3;

� : A! P(X); e 7�!
(
X if e = e2;

fh1g if e = e3;

is a bipolar soft subset of Ah�;�i and represents the data under a strict set of parameters

B following A.

6.2 Operations on Bipolar Soft Sets

This section gives various operations de�ned on bipolar soft sets:

6.2.1 De�nition

If Ah�;�i and Bh;�i are two bipolar soft sets over X. The int-uni product of Ah�;�i
and Bh;�iis de�ned to be a bipolar soft set (A � B)h�~\;�~[�i over X in which �~\ :
(A�B)! P(X), where

(a; b) 7! �(a) \ (b),

and �~[� : (A�B)! P(X), where

(a; b) 7! �(a) [ �(b).

It is denoted by Ah�;�i ^Bh;�i ~=(A�B)h�~\;�~[�i.
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6.2.2 De�nition

If Ah�;�i and Bh;�i are two bipolar soft sets over X then uni-int product of Ah�;�i and

Bh;�i is de�ned as a bipolar soft set (A�B)h�~[;�~\�i over X in which �~[ : (A�B)!
P(X), where

(a; b) 7! �(a) [ (b),

and �~\� : (A�B)! P(X), where

(a; b) 7! �(a) \ �(b).

It is denoted by Ah�;�i _Bh;�i ~=(A�B)h�~[;�~\�i.

6.2.3 De�nition

For two bipolar soft sets Ah�;�i and Bh;�i over X, the extended int-uni bipolar soft set

of Ah�;�i and Bh;�i is de�ned as a bipolar soft set (A [ B)h�~\;�~[�i over X in which

�~\ : (A [B)! P(X), where

e 7!

8><>:
�(e) if e 2 A�B
(e) if e 2 B �A
�(e) \ (e) if e 2 (A \B)

and �~\� : (A [B)! P(X),

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e) [ �(e) if e 2 (A \B)

:

It is denoted by Ah�;�i u" Bh;�i ~=(A [B)h�~\;�~[�i.

6.2.4 De�nition

For two bipolar soft sets Ah�;�i and Bh;�i over X, the extended uni-int bipolar soft set

of Ah�;�i and Bh;�i is de�ned as a bipolar soft set (A [ B)h�~[;�~\�i over X in which

�~[ : (A [B)! P(X), where

e 7!

8><>:
�(e) if e 2 A�B
(e) if e 2 B �A
�(e) [ (e) if e 2 (A \B)

and �~\� : (A [B)! P(X), where

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e) \ �(e) if e 2 (A \B)

:

It is denoted by Ah�;�i t" Bh;�i ~=(A [B)h�~[;�~\�i.
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6.2.5 De�nition

For two bipolar soft sets Ah�;�i and Bh;�i over X, the extended di¤erence bipolar soft

set of Ah�;�i and Bh;�i is de�ned as a bipolar soft set (A [ B)h�^";�^"�i over X in

which � ^"  : (A [B)! P(X), where

e 7!

8><>:
�(e) if e 2 A�B
(e) if e 2 B �A
�(e)� (e) if e 2 (A \B)

and � ^" � : (A [B)! P(X), where

e 7!

8><>:
�(e) if e 2 A�B
�(e) if e 2 B �A
�(e)� �(e) if e 2 (A \B):

It is denoted by Ah�;�i ^" Bh;�i ~=(A [B)h�^";�^"�i.

6.2.6 De�nition

For two bipolar soft sets Ah�;�i and Bh;�i over X with (A\B) 6= ;, the restricted int-
uni bipolar soft set of Ah�;�i and Bh;�i is de�ned as a bipolar soft set (A\B)h�~\;�~[�i
over X in which �~\ : (A \B)! P(X), where

e 7! �(e) \ (e),

and �~[� : (A \B)! P(X), where

e 7! �(e) [ �(e).

It is denoted by Ah�;�i uBh;�i ~=(A \B)h�~\;�~[�i.

6.2.7 De�nition

For two bipolar soft sets Ah�;�i and Bh;�i over X with (A\B) 6= ;, the restricted uni-
int bipolar soft set of Ah�;�i and Bh;�i is de�ned as a bipolar soft set (A\B)h�~[;�~\�i
over X in which �~[ : (A \B)! P(X), where

e 7! �(e) [ (e),

and �~\� : (A \B)! P(X), where

e 7! �(e) \ �(e).

It is denoted by Ah�;�i tBh;�i ~=(A \B)h�~[;�~\�i.
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6.2.8 De�nition

For two bipolar soft sets Ah�;�i and Bh;�i over X with (A \ B) 6= ;, the restricted
di¤erence bipolar soft set of Ah�;�i and Bh;�i is de�ned as a bipolar soft set (A \
B)h�^;�^�i over X in which � ^  : (A \B)! P(X), where

e 7! �(e)� (e),

and � ^ � : (A \B)! P(X), where

e 7! �(e)� �(e).

It is denoted by Ah�;�i ^ Bh;�i ~=(A \B)h�^;�^�i.

6.2.9 Proposition

The mapping � : BSS(X)E ! DSS(X)E as de�ned in Theorem 6.1.4 preserves the

product, extended and restricted uni-int and int-uni operations.

Proof. Straightforward.

6.2.10 Remark

The operation of complementation as de�ned in De�nition 4.2.9 for double-framed soft

sets is no more valid for bipolar soft sets because (Ah�;�i)c ~=A(�c;�c) which may not

satisfy the consistency constraint as shown by the following example:

6.2.11 Example

Let E, A, X and bipolar soft set Ah�;�i over X be taken as in Example 6.1.6. Then

(Ah�;�i)
c is given as follows:

�c : A! P(X); e 7�!

8>>>><>>>>:
fh3; h5g if e = e1;

fh1; h2; h5g if e = e2;

fg if e = e3;

fh1; h2g if e = e6;

�c : A! P(X); e 7�!

8>>>><>>>>:
fh1; h2; h4g if e = e1;

fh3; h4g if e = e2;

X if e = e3;

fh2; h3; h5g if e = e6:

but

�c(e6) \ �c(e6) 6= ;

so (Ah�;�i)c =2 BSS(X)E . Thus "c " is not de�ned on BSS(X)E .
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6.2.12 Proposition

Let Ah�;�i be a bipolar soft set over X. Then � : BSS(X)E ! BSS(X)E is de�ned
and we denote (Ah�;�i)� by Ah�;�i� .

Proof. If Ah�;�i 2 BSS(X)E then

Ah�;�i� ~= Ah� �;��i where

�� : A! P(X), e 7! � (e) and �
�
: A! P(X), e 7! � (e) .

Clearly

��(e) \ ��(e) = �(e) \ �(e) = ;.

Thus Ah�;�i� 2 BSS(X)E .

6.3 Properties of Bipolar Soft Sets

In this section we check the properties and associative, commutative, distributive and

absorption laws of bipolar soft sets with respect to their operations.

6.3.1 De�nition

A bipolar soft set over X is said to be a relative null bipolar soft set, denoted by Ah�;Xi
where

� : A! P(X), e 7! ; and X : A! P(X), e 7! X.

6.3.2 De�nition

A bipolar soft set over X is said to be a relative absolute bipolar soft set, denoted by

AhX;�i where

X : A! P(X), e 7! X and � : A! P(X), e 7! ;.

Conventionally, we take the bipolar soft sets with empty set of parameters to be

equal to ;h�;Xi and so Ah�;�i uBh;�i ~=;h�;Xi ~=Ah�;�i tBh;�i whenever (A \B) = ;.

6.3.3 Proposition

If Ah�;Xi is a null bipolar soft set, AhX;�i an absolute bipolar soft set, and Ah�;�i, Ah;�i
are bipolar soft sets over X, then

1) Ah�;�i t" Ah;�i ~=Ah�;�i tAh;�i,

2) Ah�;�i u" Ah;�i ~=Ah�;�i uAh;�i,
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3) Ah�;�i uAh�;�i ~=Ah�;�i ~=Ah�;�i tAh�;�i,

4) Ah�;�i tAh�;Xi ~=Ah�;�i ~=Ah�;�i uAhX;�i,

5) Ah�;�i tAhX;�i ~=AhX;�i; Ah�;�i uAh�;Xi ~=Ah�;Xi.

Proof. Straightforward.

6.3.4 Proposition

Let Ah�;�i, Bh;�i and Ch�;�i be any bipolar soft sets over X. Then the following are

true

1) (Absorption Laws)

(i) Ah�;�i t" (Bh;�i uAh�;�i) ~=Ah�;�i,

(ii) Ah�;�i u (Bh;�i t" Ah�;�i) ~=Ah�;�i,

(iii) Ah�;�i t (Bh;�i u" Ah�;�i) ~=Ah�;�i,

(iv) Ah�;�i u" (Bh;�i tAh�;�i) ~=Ah�;�i.

2) (Associative Laws) Ah�;�i�(Bh;�i�Ch�;�i) ~=(Ah�;�i�Bh;�i)�Ch�;�i,

3) (Commutative Laws) Ah�;�i�Bh;�i ~=Bh;�i�Ah�;�i,

4) (Distributive Laws)

(i) Ah�;�i t" (Bh;�i t Ch�;�i) ~�(Ah�;�i t" Bh;�i) t (Ah�;�i t" Ch�;�i),

(ii) Ah�;�i t" (Bh;�i u" Ch�;�i) ~�(Ah�;�i t" Bh;�i) u" (Ah�;�i t" Ch�;�i),

(iii) Ah�;�i t" (Bh;�i u Ch�;�i) ~=(Ah�;�i t" Bh;�i) u (Ah�;�i t" Ch�;�i),

(iv) Ah�;�i t (Bh;�i t" Ch�;�i) ~=(Ah�;�i tBh;�i) t" (Ah�;�i t Ch�;�i),

(v) Ah�;�i t (Bh;�i u" Ch�;�i) ~=(Ah�;�i tBh;�i) u" (Ah�;�i t Ch�;�i),

(vi) Ah�;�i t (Bh;�i u Ch�;�i) ~=(Ah�;�i tBh;�i) u (Ah�;�i t Ch�;�i),

(vii) Ah�;�i u" (Bh;�i t" Ch�;�i) ~�(Ah�;�i u" Bh;�i) t" (Ah�;�i u" Ch�;�i),

(viii) Ah�;�i u" (Bh;�i t Ch�;�i) ~=(Ah�;�i u" Bh;�i) t (Ah�;�i u" Ch�;�i),

(ix) Ah�;�i u" (Bh;�i u Ch�;�i) ~�(Ah�;�i u" Bh;�i) u (Ah�;�i u" Ch�;�i),

(x) Ah�;�i t (Bh;�i t" Ch�;�i) ~=(Ah�;�i tBh;�i) t" (Ah�;�i t Ch�;�i),
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(xi) Ah�;�i t (Bh;�i u" Ch�;�i) ~=(Ah�;�i tBh;�i) u" (Ah�;�i t Ch�;�i),

(xii) Ah�;�i t (Bh;�i u Ch�;�i) ~=(Ah�;�i tBh;�i) u (Ah�;�i t Ch�;�i).

Proof. It follows from Theorem 6.1.4 and Proposition 6.2.9 in a straightforward

manner.

6.3.5 Example

Bipolar disorder is a serious psychological illness that can lead to dangerous behav-

ior, problematic careers and relationships, and suicidal tendencies, especially if not

treated early. Let X = f1,2,3,4,5,6,7g be the set of days in which the record has
been maintained i.e. i = ith day of patient under observation, for 1 � i � 7. Let

E = fe1,e2,e3,e4,e5g = fSevere Mania, Severe Depression, Anxiety, Medication, Side
e¤ectsg and :E = f:e1,:e2,:e3,:e4,:e5g = fMild Mania, Mild Depression, No Anx-
iety, No Medication, No Side e¤ectsg. Here the gray area is obviously the moderate
form of parameters. Suppose that A = fe1,e2,e3g, B = fe2,e4,e5g, C = fe1,e3,e5g.
Let the bipolar soft sets Ah�;�i, Bh;�i and Ch�;�i over X describe the �daily record of

the behavior�of P1, P2, and P3. Suppose that

� : A! P(X); e 7�!

8><>:
f1; 4; 5; 6g if e = e1;

f1; 2; 3; 4; 5; 7g if e = e2;

f2; 4; 6; 7g if e = e3;

� : A! P(X); e 7�!

8><>:
f2; 3; 7g if e = e1;

f6g if e = e2;

f3g if e = e3;

 : A! P(X); e 7�!

8><>:
f3; 5; 6g if e = e2;

f1; 5; 7g if e = e4;

f2; 3; 4; 5; 6g if e = e5;

� : A! P(X); e 7�!

8><>:
f1; 4; 7g if e = e2;

f3; 6g if e = e4;

fg if e = e5;

� : A! P(X); e 7�!

8><>:
X if e = e1;

f1; 2g if e = e3;

f4; 5; 6g if e = e5;

� : A! P(X); e 7�!

8><>:
fg if e = e1;

f3; 4g if e = e3;

f1; 2g if e = e5;
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We have

Ah�;�i u" (Bh;�i u Ch�;�i) ~=(A [ (B \ C))h�~\(~\�);�~[(�~[�)i
and

(Ah�;�i u" Bh;�i) u (Ah�;�i u" Ch�;�i) ~=(A [B) \ (A [ C)h(�~\)~\(�~\�);(�~[�)~[(�~[�)i.

Then the approximations for parameter e2 are not same on both sides

(�~\(~\�))(e2) = f1; 2; 3; 4; 5; 7g 6= f3; 5g = ((�~\)~\(�~\�))(e2)

and (�~[(�~[�))(e2) = f6g 6= f1; 4; 7; 6g = ((�~[�)~[(�~[�))(e2):

Thus

Ah�;�i u" (Bh;�i u Ch�;�i) ~6=(Ah�;�i u" Bh;�i) u (Ah�;�i u" Ch�;�i).

Now, consider

Ah�;�i u" (Bh;�i t" Ch�;�i) ~=(A [ (B [ C))h�~\(~[�);�~[(�~\�)i

and

(Ah�;�i u" Bh;�i) t" (Ah�;�i u" Ch�;�i) ~= (A [B)h�~\;�~[�i t" (A [ C)h�~\�;�~[�i
~= (A [B) [ (A [ C)h(�~\)~[(�~\�);(�~[�)~\(�~[�)i.

Then the approximations for parameter e2 are not same on both sides

(�~\(~[�))(e2) = f5g 6= f1; 2; 3; 4; 5; 7g = ((�~\)~[(�~\�))(e2)

and (�~[(�~\�))(e2) = f1; 4; 7; 6g 6= f6g = (�~[�)~\(�~[�))(e2).

Thus

Ah�;�i u" (Bh;�i t" Ch�;�i) ~6=(Ah�;�i u" Bh;�i) t" (Ah�;�i u" Ch�;�i).

Similarly it can be shown that

Ah�;�i t" (Bh;�i t Ch�;�i) ~6=(Ah�;�i t" Bh;�i) t (Ah�;�i t" Ch�;�i).

Ah�;�i t" (Bh;�i u" Ch�;�i) ~6=(Ah�;�i t" Bh;�i) u" (Ah�;�i t" Ch�;�i).

6.3.6 Corollary

Let Ah�;�i, Bh;�i and Ah�;�i be any bipolar soft sets over X. Then

Ah�;�i t" (Bh;�i u" Ah�;�i) ~= (Ah�;�i t" Bh;�i) u" (Ah�;�i t" Ah�;�i) and

Ah�;�i u" (Bh;�i t" Ah�;�i) ~= (Ah�;�i u" Bh;�i) t" (Ah�;�i u" Ah�;�i)

if and only if

�(e) = (e) and �(e) = �(e) for all e 2 (A \B)� C and

�(e) = �(e) and �(e) = �(e) for all e 2 (A \ C)�B.
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6.3.7 Corollary

Let Ah�;�i, Ah;�i and Ah�;�i are three bipolar soft sets over X. Then

Ah�;�i�(Ah;�i�A(�;�)) ~=(Ah�;�i�Ah;�i)�(Ah�;�i�Ah�;�i)

for distinct �, � 2 fu",u,t",tg.
A bipolar mood chart is a simple and yet e¤ective means of tracking and represent-

ing patient�s condition every month. Bipolar mood charts help patients, their families

and their doctors to see probable patterns that might have been very di¢ cult to de-

termine. Bipolar children and their families will greatly bene�t from mood charting

and can expect early detection of symptoms and determination of proper treatments

by their doctors. We construct a mood chart based upon a bipolar soft set as follows:

A bipolar soft set Ah�;�i over X may be represented by a pair of binary tables, one

for each of the functions � and � respectively. In both tables, rows and columns are

labeled by the elements of X and parameters respectively. We use following key for

tables of � and � respectively:

aij =

(
1 if xi 2 �(ej)
0 if xi =2 �(ej)

aij =

(
1 if xi 2 �(ej)
0 if xi =2 �(ej)

where aij is the ith entry of jth column of each table. We can also represent a bipolar

soft set with the help of a single table by putting

aij =

8><>:
1 if hi 2 �(ej)
0 if hi 2 X � f�(ej) [ �(ej)g

�1 if hi 2 �(ej)

where aij is the ith entry of jth column of table whose rows and columns are labeled

by elements of X and parameters respectively. The tabular representations of bipolar

soft set Ah�;�i as given in Example 6.3.5 are given by Table 6.1 and Table 6.2.

Both Tables 6.1 and Table 6.2 can be used as Mood Chart of patient P1 for a week.

6.4 Algebras of Bipolar Soft Sets

In this section, we discuss the lattices and algebras for collections of bipolar soft sets.

Let BSS(X)E be the collection of all bipolar soft sets over X and DSS(X)A be its
subcollection of all bipolar soft sets over X with �xed set of parameters A. We note

that these collections are partially ordered by the relation of soft inclusion ~� given in
De�nition 6.1.2. We conclude from above results that:
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� e1 e2 e3
1 1 1 0

2 0 1 1

3 0 1 0

4 1 1 1

5 1 1 0

6 1 0 1

7 0 1 1

� e1 e2 e3
1 0 0 0

2 1 0 0

3 1 0 1

4 0 0 0

5 0 0 0

6 0 1 0

7 1 0 0

Table 6.1: Tabular Representaion Using a Pair of Tables

Ah�;�i e1 e2 e3
1 1 1 0

2 �1 1 1

3 �1 1 �1
4 1 1 1

5 1 1 0

6 1 �1 1

7 �1 1 1

Table 6.2: Tabular Representaion Using Only One Table

6.4.1 Proposition

(BSS(X)E ,u",t), (BSS(X)E ,t,u"), (BSS(X)E ,t",u), (BSS(X)E ,u,t"), (BSS(X)A,t,u),
and (BSS(X)A,u,t) are lattices.

Proof. From Propositions 6.3.3 and 6.3.4, we conclude that the structures form

lattices.

6.4.2 Proposition

Let Ah�;�i and Bh;�i be two bipolar soft sets over X. Then the following are true

1) Ah�;�i t" Bh;�i is the smallest bipolar soft set over X which contains both Ah�;�i
and Bh;�i.

2) Ah�;�i u Bh;�i is the largest bipolar soft set over X which is contained in both

Ah�;�i and Bh;�i.

Proof. Straightforward.

6.4.3 Proposition

(BSS(X)E ,u,t",;h�;Xi,EhX;�i), (BSS(X)E ,t",u,EhX;�i,;h�;Xi), (BSS(X)A,u,t,Ah�;Xi,
AhX;�i) and (BSS(X)A,t,u,AhX;�i,Ah�;Xi) are bounded distributive lattices.
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Proof. From Proposition 6.3.4 and Lemma 6.4.2, we conclude that (BSS(X)E ,
u, t", ;h�;Xi, EhX;�i) is a bounded distributive lattice and (BSS(X)E , t", u, EhX;�i,
;h�;Xi) is its dual. For bipolar soft sets Ah�;�i, Ah;�i 2 BSS(X)A,

Ah�;�i uAh;�i ~= Ah�~\;�~[�i 2 BSS(X)A and

Ah�;�i tAh;�i ~= Ah�~[;�~\�i 2 BSS(X)A.

Thus (BSS(X)A,u,t) is also a distributive sublattice of (BSS(X)
E ,t",u) and Propo-

sition 6.3.3 tells us that Ah�;Xi, AhX;�i are its lower and upper bounds respectively.

Therefore (BSS(X)A, u, t, Ah�;Xi, AhX;�i) is a bounded distributive lattice and
(BSS(X)A, t, u, AhX;�i, Ah�;Xi) is its dual.

6.4.4 Proposition

Let Ah�;�i and Ah;�i be two bipolar soft sets over X. Then

1) (Ah�;�i�)� = Ah�;�i,

2) Ah�;�i ~�Ah;�i if and only if Ah;�i� ~�Ah�;�i� .

Proof.

1) Straightforward

2) If Ah�;�i ~�Ah;�i then

�(e) � (e) and �(e) � �(e) for all e 2 A

implies that

Ah;�i ~�Ah�;�i.

Hence Ah;�i� ~�Ah�;�i� . If Ah;�i� ~�Ah�;�i� then

Ah�;�i ~=(Ah�;�i�)
� ~�(Ah;�i�)� ~=Ah;�i.

6.4.5 Proposition (de Morgan Laws)

Let Ah�;�i and Bh;�i be two bipolar soft sets over X. Then the following are true:

1) (Ah�;�i t" Bh;�i)� ~=Ah�;�i� u" Bh;�i� ,

2) (Ah�;�i u" Bh;�i)� ~=Ah�;�i� t" Bh;�i� ,
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3) (Ah�;�i _Bh;�i)� ~=Ah�;�i� ^Bh;�i� ,

4) (Ah�;�i ^Bh;�i)� ~=Ah�;�i� _Bh;�i� ,

5) (Ah�;�i tBh;�i)� ~=Ah�;�i� uBh;�i� ,

6) (Ah�;�i uBh;�i)� ~=Ah�;�i� tBh;�i� .

Proof.

1) We have
(Ah�;�i t" Bh;�i)� ~=((A [B)h�~[;�~\�i)� ~=(A [B)h�~\�;�~[i

and

Ah�;�i� u" Bh;�i� ~=A(�;�) u" B(�;) ~=(A [B)h�~\�;�~[i.

Thus

(Ah�;�i t" Bh;�i)� ~=Ah�;�i� u" Bh;�i� .

The remaining parts can also be proved in a similar way.

6.4.6 Proposition

(BSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is a de Morgan algebra.
Proof. Proof follows from Propositions 6.4.4 and 6.4.5.

6.4.7 Proposition

(BSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is a Kleene algebra.
Proof. For Ah�;�i, Ah;�i 2 BSS(X)A

Ah�;�i uAh�;�i� ~= Ah�;�i uAh�;�i ~=Ah�~\�;�~[�i ~=Ah�;�~[�i and

Ah;�i tAh;�i� ~= Ah;�i tAh�;i ~=Ah~[�;�~\i ~=Ah~[�;�i.

Clearly Ah�;�i uAh�;�i� ~� Ah;�i tAh;�i� .

We already know that (BSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is a de Morgan algebra, so this
condition assures that (BSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is also a Kleene algebra.

6.4.8 Remark

We have seen that (DSS(X)A,u,t,�,A(�;X),A(X;�)) is a de Morgan algebra but not a
Kleene algebra whereas (BSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is its de Morgan subalgebra
and also a Kleene subalgebra.



Chapter 7

Algebraic Structures of Fuzzy
Bipolar Soft Sets

In this chapter, we have initiated a concept of fuzzy bipolar soft sets. The idea is

generated with the motivation of bipolarity of parameters and then the fuzziness of

data comes into play. A fuzzy bipolar soft set is de�ned with the help of two mappings,

one for approximating the degree of fuzziness of the positivity or presence of a certain

parameter in the objects of initial universal set and the other one is to approximate a

relative degree of fuzziness of the negativity or absence of same parameter. In this way,

we have combined these three concepts of bipolarity, fuzziness and parameterization

and thus it is shown through examples that we have found a very easy to use way of

modeling the phenomena where all these three factors are involved. To move further,

we have de�ned the basic algebra for the fuzzy bipolar soft sets and discussed their

algebraic properties in detail. It is also shown that the collection of fuzzy bipolar soft

sets forms a stone algebra.

7.1 Fuzzy Bipolar Soft Sets

Let X be an initial universe and E be a set of parameters. Let FP(X) denotes the
collection of all fuzzy subsets of X and A, B, C are non-empty subsets of E. Now, we

de�ne

7.1.1 De�nition

A triplet (f ,g : A) is called a fuzzy bipolar soft set overX, where f and g are mappings,

given by f : A! FP(X) and g : :A! FP(X) such that 0 � (f(e))(x)+(g(:e))(x) �
1 for all e 2 A.

119
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In other words, a fuzzy bipolar soft set over X gives two parametrized families of

fuzzy subsets of the universe X and the condition 0 � (f(e))(x) + (g(:e))(x) � 1 for
all.e 2 A, is imposed as a consistency constraint. For each e 2 A, f(e) and g(:e) are
regarded as the set of e-approximate elements of the fuzzy bipolar soft set Ahf;gi.

Note that, from now on, we shall use the notation Ahf;gi over X to denote a fuzzy

bipolar soft set (f ,g : A) over X where the meanings of f , g, A and X are clear.

7.1.2 De�nition

For a fuzzy bipolar soft set Ahf;gi over X, we de�ne a fuzzy soft set Ah over X for

the approximation of the degree of hesitation in Ahf;gi as h : A! FP(X) de�ned by
(h(e))(x) = 1� (f(e))(x)� (g(:e))(x) for all x 2 X, e 2 A. Clearly, Ah approximates
the lack of knowledge about the objects of X while considering the presence or absence

of a particular parameter from A.

7.1.3 De�nition

For two fuzzy bipolar soft sets Ahf;gi and Bhh;ii over X, we say that Ahf;gi is a fuzzy

bipolar soft subset of Bhh;ii, if

1) A � B and

2) f(e) � h(e) and i(:e) � g(:e) for all e 2 A.

This relationship is denoted by Ahf;gi ~�Bhh;ii.
Similarly Ahf;gi is said to be a fuzzy bipolar soft superset of Bhh;ii, if Bhh;ii is a

fuzzy bipolar soft subset of Ahf;gi. We denote it by Ahf;gi ~�Bhh;ii.

7.1.4 De�nition

Two fuzzy bipolar soft sets Ahf;gi and Bhh;ii over X are said to be equal denoted as

Ahf;gi ~=Bhh;ii if Ahf;gi is a fuzzy bipolar soft subset of Bhh;ii and Bhh;ii is a fuzzy bipolar

soft subset of Ahf;gi.

7.1.5 Example

Let X be a set of di¤erent books, and E be the set of parameters where, X =

fb1,b2,b3,b4,b5g, E = fe1,e2,e3,e4,e5,e6g = f Simple, Logical, Orderly, Concise, Varied,
Appealingg, :E = f:e1,:e2,:e3,:e4,:e5g = fComplicated, Illogical, Chaotic, Wordy,
Monotonous, Distantg. Suppose that A = fe1,e2,e3,e6g, a fuzzy bipolar soft set Ahf;gi
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describes the �reader ratings of books under consideration�. The fuzzy bipolar soft

set Ahf;gi over X is given as follows:

f : A! FP(X);

e 7�!

8>>>><>>>>:
fb1=0:9; b2=0:3; b3=0:8; b4=0:7; b5=0:5g if e = e1;

fb1=0:1; b2=0:5; b3=0:1; b4=0:8; b5=0:6g if e = e2;

fb1=0:2; b2=0:5; b3=0:2; b4=0:8; b5=0:7g if e = e3;

fb1=0:7; b2=0:4; b3=0:2; b4=0:1; b5=0:1g if e = e6;

g : :A! FP(X);

e 7�!

8>>>><>>>>:
fb1=0:1; b2=0:3; b3=0:1; b4=0:2; b5=0:3g if e = :e1;
fb1=0:7; b2=0:4; b3=0:8; b4=0:1; b5=0:2g if e = :e2;
fb1=0:6; b2=0:4; b3=0:6; b4=0:1; b5=0:3g if e = :e3;
fb1=0:2; b2=0:3; b3=0:8; b4=0:7; b5=0:5g if e = :e6:

Let B = fe2,e6g. Then a second approximations with respect to the earlier approxi-
mations by Ahf;gi is represented by a fuzzy bipolar soft subset Bhh;ii.of Ahf;gi and given

by:

h : B ! FP(X);

e 7�!
(
fb1=0:1; b2=0:5; b3=0:1; b4=0:8; b5=0:6g if e = e2;

fb1=0:7; b2=0:4; b3=0:2; b4=0:1; b5=0:1g if e = e6;

i : :B ! FP(X);

e 7�!
(
fb1=0:7; b2=0:4; b3=0:8; b4=0:1; b5=0:2g if e = :e2;
fb1=0:2; b2=0:3; b3=0:8; b4=0:7; b5=0:5g if e = :e6:

7.2 Bipolar fuzzy Soft Sets

We present the concept of bipolar fuzzy soft sets as a generalization of soft sets in

bipolar fuzzy context. Let BFP(X) denotes the set of all bipolar fuzzy subsets of X.

7.2.1 De�nition

A pair (f ,A) is called a bipolar fuzzy soft set over X, where f is a mapping given by

f : A! BFP(X).
Thus a bipolar fuzzy soft set over X gives a parametrized family of bipolar fuzzy

subsets of the universe X. For any e 2 A, f(e) = f(x,f(e)P ,f(e)N ) : x 2 Xg where
f(e)P : X ! [0,1] and f(e)N : X ! [�1; 0] are mappings.

Before proceeding to the further development of theory of bipolar fuzzy soft sets,

we give following interpretations:
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7.2.2 Proposition

A fuzzy bipolar soft set over X is equivalent to a bipolar fuzzy soft set over X and

vice versa.

Proof. Let Ahf;gi be a given fuzzy bipolar soft set de�ned over X. We de�ne a
bipolar fuzzy soft set (h,A) over X as:

h(e) = f(x; f(e);�(g(:e)(x)) : x 2 Xg

for all e 2 A. Then (x; f(e);�(g(:e)(x)) 2 BFP(X).
Conversely assume that we are given a bipolar fuzzy soft set (h,A) over X. We

can de�ne a fuzzy bipolar soft set Ahf;gi over X in the following manner:

f(e) = h(e)P

g(:e) = �(h(e)N )

for all e 2 A.
Thus both de�nitions are equivalent and may be used interchangeably.

Consider the following example:

7.2.3 Example

Let X = fm1,m2,m3,m4,m5g be the set of candidates who have applied for a job
position of O¢ ce Representative in Customer Care Centre of a company. Let E =

fe1,e2,e3,e4,e5,e6,e7g = fHard Working, Optimism, Enthusiasm, Individualism, Imag-
inative, Decisiveness, Self-con�denceg and :E = f:e1,:e2,:e3, :e4, :e5, :e6, :e7g =
fNegligent, Pessimism, Half-hearted, Dependence, Unimaginative, Indecisiveness, Shynessg.
Here the gray area is obviously a moderate form of parameters. Let us suppose that

the fuzzy bipolar soft set Ehf;gi describes � Personality Analysis of Candidates�as:

f : E ! FP(X);

e 7�!

8>>>>>>>>>>><>>>>>>>>>>>:

fm1=0:5;m2=0:7;m3=0:6;m4=0:7;m5=0:5g if e = e1;

fm1=0:6;m2=0:7;m3=0:8;m4=0:8;m5=0:4g if e = e2;

fm1=0:8;m2=0:8;m3=0:4;m4=0:6;m5=0:5g if e = e3;

fm1=0:7;m2=0:6;m3=0:1;m4=0:7;m5=0:6g if e = e4;

fm1=0:5;m2=0:8;m3=0:6;m4=0:5;m5=0:7g if e = e5;

fm1=0:4;m2=0:9;m3=0:5;m4=0:4;m5=0:7g if e = e6;

fm1=0:3;m2=0:8;m3=0:4;m4=0:6;m5=0:8g if e = e7;

g : :E ! FP(X);
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e 7�!

8>>>>>>>>>>><>>>>>>>>>>>:

fm1=0:3;m2=0:2;m3=0:4;m4=0:1;m5=0:3g if e = :e1;
fm1=0:4;m2=0:1;m3=0:2;m4=0:1;m5=0:5g if e = :e2;
fm1=0:05;m2=0:1;m3=0:5;m4=0:33;m5=0:4g if e = :e3;
fm1=0:23;m2=0:3;m3=0:6;m4=0:2;m5=0:3g if e = :e4;
fm1=0:4;m2=0:2;m3=0:35;m4=0:4;m5=0:1g if e = :e5;
fm1=0:4;m2=0:2;m3=0:3;m4=0:3;m5=0:2g if e = :e6;
fm1=0:7;m2=0:08;m3=0:5;m4=0:3;m5=0:18g if e = :e7;

Now let�s see the corresponding bipolar fuzzy soft set:

h(e1) = f(m1; 0:5;�0:3); (m2; 0:7;�0:2); (m3; 0:6;�0:4); (m4; 0:7;�0:1); (m5; 0:5;�0:3)g;

h(e2) = f(m1; 0:6;�0:4); (m2; 0:7;�0:1); (m3; 0:8;�0:2); (m4; 0:8;�0:1); (m5; 0:4;�0:5)g;

h(e3) = f(m1; 0:8;�0:05); (m2; 0:8;�0:1); (m3; 0:4;�0:5); (m4; 0:6;�0:33); (m5; 0:5;�0:4)g;

h(e4) = f(m1; 0:7;�0:23); (m2; 0:6;�0:3); (m3; 0:1;�0:4); (m4; 0:7;�0:2); (m5; 0:6;�0:3)g;

h(e5) = f(m1; 0:5;�0:4); (m2; 0:8;�0:2); (m3; 0:6;�0:35); (m4; 0:5;�0:4); (m5; 0:7;�0:1)g;

h(e6) = f(m1; 0:4;�0:4); (m2; 0:9;�0:2); (m3; 0:5;�0:3); (m4; 0:4;�0:3); (m5; 0:7;�0:2)g;

h(e7) = f(m1; 0:3;�0:7); (m2; 0:8;�0:08); (m3; 0:4;�0:5); (m4; 0:6;�0:3); (m5; 0:8;�0:18)g:

It is clear that fuzzy bipolar soft set depicts the information in a better and compre-

hensive way than bipolar fuzzy soft set. For example, if we read the data of candidate

m1 with fuzzy bipolar soft set Ahf;gi then he is having 0:6 fuzzy value for optimism and

0:4 fuzzy value for pessimism and if we use the bipolar fuzzy soft set (h,E) then m1 is

having 0:6 fuzzy value for optimism and �0:4 shows the degree where m1 is showing

pessimism.

Let FBSS(X)E denotes the set of all fuzzy bipolar soft sets de�ned over X with

set of parameters E, ordered by the relation of inclusion ~� as de�ned in De�nition

7.1.3. We show that every fuzzy bipolar soft set is equivalent to a double-framed fuzzy

soft set and give the following theorem:

7.2.4 Theorem

The mapping � : FBSS(X)E ! DFSS(X)E , Ahf;gi 7! A(f1;g1) is a monomorphism of

lattices where

f1(e) = f(e), and g1(e) = g(:e) for all e 2 A.

Proof. Clearly � is well-de�ned. If

�(Ahf;gi) ~=�(Bhh;ii)



7. Algebraic Structures of Fuzzy Bipolar Soft Sets 124

where

�(Ahf;gi) ~=A(f1;g1) and �(Bhh;ii) ~=B(h1;i1)

then

f1(e) = f(e), h1(e) = h(e) and g1(e) = g(:e), i1(e) = i(:e) for all e 2 A.

Now,

f(e) = f1(e) = h1(e) = h(e) and g(:e) = g1(e) = i1(e) = i(:e) for all e 2 A.

Thus

Ahf;gi ~=Bhh;ii

shows that � is one-to-one. Clearly � is order preserving.

7.2.5 Remark

Note that � is not onto because of the consistency constraint for de�ning fuzzy bipolar

soft sets and FBSS(X)E ~=BFSS(X)E ,! DFSS(X)E .
By Theorem 7.2.4, we can equate every fuzzy bipolar soft set Ahf;gi over X with

a double-framed fuzzy soft set and so, we can take f and g as mappings from A to

BFP(X) where the meanings of A, f and g are clear in this context.

7.3 Operations on Fuzzy Bipolar Soft Sets

This section provides some operations de�ned on fuzzy bipolar soft sets:

7.3.1 De�nition

Let Ahf;gi and Bhh;ii be fuzzy bipolar soft sets over X. The int-uni product of Ahf;gi
and Bhh;ii is de�ned as a fuzzy bipolar soft set (A�B)hf ~̂h;g~_ii over X in which

f ~̂h : (A�B)! FP(X), (a; b) 7! f(a) ^ h(b),

g~_i : (A�B)! FP(X), (a; b) 7! g(a) _ i(b).

It is denoted by Ahf;gi ^Bhh;ii ~=(A�B)hf ~̂h;g~_ii.

7.3.2 De�nition

Let Ahf;gi and Bhh;ii be fuzzy bipolar soft sets over X. The uni-int product of Ahf;gi
and Bhh;ii is de�ned as the fuzzy bipolar soft soft set (A�B)hf ~_h;� ~̂ii over X in which

f ~_h : (A�B)! FP(X), where

(a; b) 7! f(a) _ h(b),
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and g ~̂i : (A�B)! FP(X), where

(a; b) 7! g(a) ^ i(b).

It is denoted by Ahf;g) _Bhh;ii ~=(A�B)hf ~_h;g ~̂ii.

7.3.3 De�nition

For two fuzzy bipolar soft sets Ahf;gi and Bhh;ii over X, the extended int-uni fuzzy

bipolar soft set of Ahf;gi and Bhh;ii is de�ned as the fuzzy bipolar soft set (A[B)hf ~̂h;g~_ii
where f ~̂h : (A [B)! FP(X),

e 7!

8><>:
f(e) if e 2 A�B
h(e) if e 2 B �A
f(e) ^ h(e) if e 2 (A \B)

and g~_i : (A [B)! FP(X), where

e 7!

8><>:
g(e) if e 2 A�B
i(e) if e 2 B �A
g(e) _ i(e) if e 2 (A \B)

:

It is denoted by Ahf;gi u" Bhh;ii ~=(A [B)hf ~̂h;g~_ii.

7.3.4 De�nition

For two fuzzy bipolar soft sets Ahf;gi and Bhh;ii over X, the extended uni-int fuzzy

bipolar soft set of Ahf;gi and Bhh;ii is de�ned as the fuzzy bipolar soft set (A[B)hf ~_h;g ~̂ii
where f ~_h : (A [B)! FP(X),

e 7!

8><>:
f(e) if e 2 A�B
h(e) if e 2 B �A
f(e) _ h(e) if e 2 (A \B)

and g ~̂i : (A [B)! FP(X), where

e 7!

8><>:
g(e) if e 2 A�B
i(e) if e 2 B �A
g(e) ^ i(e) if e 2 (A \B)

:

It is denoted by Ahf;gi t" Bhh;ii ~=(A [B)hf ~_h;g ~̂ii.
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7.3.5 De�nition

For two fuzzy bipolar soft sets Ahf;gi and Bhh;ii over X with (A\B) 6= ;, the restricted
int-uni fuzzy bipolar soft set of Ahf;gi and Bhh;ii is de�ned as the fuzzy bipolar soft set

(A \B)hf ~̂h;g~_ii where f ~̂h : (A \B)! FP(X),

e 7! f(e) ^ h(e),

and g~_i : (A \B)! FP(X), where

e 7! g(e) _ i(e).

It is denoted by Ahf;gi uBhh;ii ~=(A \B)hf ~̂h;g~_ii.

7.3.6 De�nition

For two fuzzy bipolar soft sets Ahf;gi and Bhh;ii over X with (A\B) 6= ;, the restricted
uni-int fuzzy bipolar soft set of Ahf;gi and Bhh;ii is de�ned as the fuzzy bipolar soft set

(A \B)hf ~_h;g ~̂ii where, f ~_h : (A \B)! FP(X)

e 7! f(e) _ h(e),

and g ~̂i : (A \B)! FP(X),
e 7! g(e) ^ i(e).

It is denoted by Ahf;gi tBhh;ii ~=(A \B)hf ~_h;g ~̂ii.

7.3.7 Remark

The operation of complementation as de�ned in De�nition 5.2.7 for double-framed

fuzzy soft sets is no more valid for fuzzy bipolar soft sets because (Ahf;gi)´ ~=A(f�;g�) may

not satisfy the consistency constraint as shown by the following example:

7.3.8 Example

Let E, A, X and fuzzy bipolar soft set Ahf;gi over X be taken as in Example 7.1.5.

Then (Ahf;gi)´ is given as follows:

f� : A! FP(X);

e 7�!

8>>>><>>>>:
fb1=0:1; b2=0:7; b3=0:2; b4=0:3; b5=0:5g if e = e1;

fb1=0:9; b2=0:5; b3=0:9; b4=0:2; b5=0:4g if e = e2;

fb1=0:8; b2=0:5; b3=0:8; b4=0:1; b5=0:1g if e = e3;

fb1=0:3; b2=0:6; b3=0:8; b4=0:9; b5=1:0g if e = e6;

g� : A! FP(X);
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e 7�!

8>>>><>>>>:
fb1=0:8; b2=0:7; b3=0:7; b4=0:6; b5=0:2g if e = e1;

fb1=0:3; b2=0:6; b3=0:2; b4=0:3; b5=0:1g if e = e2;

fb1=0:4; b2=0:6; b3=0:4; b4=0:4; b5=0:3g if e = e3;

fb1=0:1; b2=0:7; b3=0:2; b4=0:3; b5=0:5g if e = e6:

but

(f�(e1))(b2) + (g�(e1))(b2) = 0:7 + 0:7 = 1:4 > 1

so (Ahf;gi)´ =2 FBSS(X)E . Thus " ´ " is not de�ned on FBSS(X)E .

7.3.9 Proposition

Let Ahf;gi be a fuzzy bipolar soft set over X. Then � : FBSS(X)E ! FBSS(X)E is
de�ned and we denote (Ahf;gi)� by Ahf;gi� .

Proof. If Ahf;gi 2 FBSS(X)E then

Ahf;gi� ~=Ahf�;g�i where f
� : A! FP(X), e 7! g (e) and g

�
: A! FP(X), e 7! f (e) .

Clearly

0 � (f�(e))(x) + (g�(:e))(x) � 1

Thus Ahf;gi� 2 FBSS(X)E .

7.4 Properties of Fuzzy Bipolar Soft Sets

In this section we discuss properties of fuzzy bipolar soft sets with respect to their

operations. Associativity, commutativity, absorption, distributivity and properties of

fuzzy bipolar soft sets are investigated.

7.4.1 De�nition

A fuzzy bipolar soft set over X is said to be a relative absolute fuzzy bipolar soft set,

denoted by Ah~1;~0i where

~1 : A! FP(X), e 7! ~1 and ~0 : A! FP(X), e 7! ~0.

7.4.2 De�nition

A fuzzy bipolar soft set overX is said to be a relative null fuzzy bipolar soft set, denoted

by Ah~0;~1i where

~0 : A! FP(X), e 7! ~0 and ~1 : A! FP(X), e 7! ~1.

Conventionally, we take the fuzzy bipolar soft sets with empty set of parameters

to be equal to ;h~0;~1i and so Ahf;giuBhh;ii ~=Ahf;gitBhh;ii ~=;h~0;~1i whenever (A\B) = ;.
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7.4.3 Proposition

If Ah~0;~1i is a null fuzzy bipolar soft set, Ah~1;~0i an absolute fuzzy bipolar soft set, and

Ahf;gi, Ahh;ii are fuzzy bipolar soft sets over X, then

1) Ahf;gi t" Ahh;ii ~=Ahf;gi tAhh;ii,

2) Ahf;gi u" Ahh;ii ~=Ahf;gi uAhh;ii,

3) Ahf;gi uAhf;gi ~=Ahf;gi ~=Ahf;gi tAhf;gi,

4) Ahf;gi tAh~0;~1i ~=Ahf;gi ~=Ahf;gi uAh~1;~0i,

5) Ahf;gi tAh~1;~0i ~=Ah~1;~0i; Ahf;gi uAh~0;~1i ~=Ah~0;~1i.

Proof. Straightforward.

7.4.4 Proposition

Let Ahf;gi, Bhh;ii and Chj;ki be any fuzzy bipolar soft sets over X. Then the following

are true

1) (Absorption Laws)

(i) Ahf;gi t" (Bhh;ii uAhf;gi) ~=Ahf;gi,

(ii) Ahf;gi u (Bhh;ii t" Ahf;gi) ~=Ahf;gi,

(iii) Ahf;gi t (Bhh;ii u" Ahf;gi) ~=Ahf;gi,

(iv) Ahf;gi u" (Bhh;ii tAhf;gi) ~=Ahf;gi.

2) (Associative Laws) Ahf;gi�(Bhh;ii�Chj;ki) ~=(Ahf;gi�Bhh;ii)�Chj;ki,

3) (Commutative Laws) Ahf;gi�Bhh;ii ~=Bhh;ii�Ahf;gi,

4) (Distributive Laws)(Distributive Laws)

(i) Ahf;gi t" (Bhh;ii t Chj;ki) ~�(Ahf;gi t" Bhh;ii) t (Ahf;gi t" Chj;ki),

(ii) Ahf;gi t" (Bhh;ii u" Chj;ki) ~�(Ahf;gi t" Bhh;ii) u" (Ahf;gi t" Chj;ki),

(iii) Ahf;gi t" (Bhh;ii u Chj;ki) ~=(Ahf;gi t" Bhh;ii) u (Ahf;gi t" Chj;ki),

(iv) Ahf;gi t (Bhh;ii t" Chj;ki) ~=(Ahf;gi tBhh;ii) t" (Ahf;gi t Chj;ki),

(v) Ahf;gi t (Bhh;ii u" Chj;ki) ~=(Ahf;gi tBhh;ii) u" (Ahf;gi t Chj;ki),

(vi) Ahf;gi t (Bhh;ii u Chj;ki) ~=(Ahf;gi tBhh;ii) u (Ahf;gi t Chj;ki),

(vii) Ahf;gi u" (Bhh;ii t" Chj;ki) ~�(Ahf;gi u" Bhh;ii) t" (Ahf;gi u" Chj;ki),
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(viii) Ahf;gi u" (Bhh;ii t Chj;ki) ~=(Ahf;gi u" Bhh;ii) t (Ahf;gi u" Chj;ki),

(ix) Ahf;gi u" (Bhh;ii u Chj;ki) ~�(Ahf;gi u" Bhh;ii) u (Ahf;gi u" Chj;ki),

(x) Ahf;gi u (Bhh;ii t" Chj;ki) ~=(Ahf;gi uBhh;ii) t" (Ahf;gi u Chj;ki),

(xi) Ahf;gi u (Bhh;ii u" Chj;ki) ~=(Ahf;gi uBhh;ii) u" (Ahf;gi u Chj;ki),

(xii) Ahf;gi u (Bhh;ii t Chj;ki) ~=(Ahf;gi uBhh;ii) t (Ahf;gi u Chj;ki).

Proof. From Theorem 7.2.4, it is easy to see that these properties hold as for

double-framed fuzzy soft sets

7.4.5 Example

Let X be the set of houses under consideration, and E be the set of parameters,

X = fh1,h2,h3,h4,h5g, E = fe1,e2,e3,e4,e5g = f in the green surroundings, cheap, in
good repair, furnished, traditional g. Let :E = f:e1,:e2,:e3,:e4,:e5g = f in the
commercial area, expensive, in bad repair, non-furnished, modern g. Suppose that
A = fe1,e2,e3g, B = fe2,e3,e4g, and C = fe3,e4,e5g. The fuzzy bipolar soft sets Ahf;gi
and Bhh;ii and Chj;ki describe the �requirements of the houses�which Mr. X, Mr. Y

and Mr. Z are going to buy respectively. Suppose that

f : A! FP(X);

e 7�!

8><>:
fx1=0:4; x2=0:7; x3=0:7; x4=0:7; x5=0:1g if e = e1;

fx1=0:8; x2=0:0; x3=0:5; x4=0:1; x5=0:6g if e = e2;

fx1=0:7; x2=0:5; x3=0:7; x4=0:6; x5=0:1g if e = e3:

g : A! FP(X);

e 7�!

8><>:
fx1=0:3; x2=0:1; x3=0:3; x4=0:1; x5=0:7g if e = e1;

fx1=0:1; x2=0:9; x3=0:3; x4=0:8; x5=0:2g if e = e2;

fx1=0:1; x2=0:3; x3=0:3; x4=0:3; x5=0:8g if e = e3;

h : B ! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:3; x3=0:3; x4=0:6; x5=0:6g if e = e2;

fx1=0:1; x2=0; x3=0:3; x4=0:4; x5=0:6g if e = e3;

fx1=0:9; x2=0:5; x3=0:5; x4=0:3; x5=0:1g if e = e4:

i : B ! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:3; x3=0:6; x4=0:2; x5=0:3g if e = e2;

fx1=0:8; x2=0:9; x3=0:5; x4=0:4; x5=0:2g if e = e3;

fx1=0:1; x2=0:4; x3=0:3; x4=0:6; x5=0:9g if e = e4;
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j : C ! FP(X);

e 7�!

8><>:
fx1=0:7; x2=0:7; x3=0:4; x4=0:7; x5=0:4g if e = e3;

fx1=0:6; x2=0:5; x3=0:6; x4=0:1; x5=0:6g if e = e4;

fx1=0:3; x2=0:4; x3=0:4; x4=0:3; x5=0:1g if e = e5:

k : C ! FP(X);

e 7�!

8><>:
fx1=0:1; x2=0:2; x3=0:3; x4=0:1; x5=0:1g if e = e3;

fx1=0:2; x2=0:2; x3=0:3; x4=0:3; x5=0:2g if e = e4;

fx1=0:1; x2=0:1; x3=0:3; x4=0:5; x5=0:7g if e = e5;

Let

Ahf;gi t" (Bhh;ii u" Chj;ki) ~=(A [B) [ Chf ~_(h ~̂j);g ~̂(i~_k)i

and

(Ahf;gi t" Bhh;ii) u" (Ahf;gi t" Chj;ki) ~=(A [B) [ Ch(f ~_h)~̂(f ~_j)i.

Then

(f ~_(h ~̂j))(e2) = fx1=0:1; x2=0:0; x3=0:3; x4=0:1; x5=0:6g

6= fx1=0:8; x2=0:0; x3=0:5; x4=0:1; x5=0:6g

= ((f ~_h)~̂(f ~_j))(e2) and

(g ~̂(i~_k))(e2) = fx1=0:1; x2=0:9; x3=0:6; x4=0:8; x5=0:3g

6= fx1=0:1; x2=0:9; x3=0:3; x4=0:8; x5=0:2g

= ((g ~̂i)~_(g ~̂k))(e2),

so that

Ahf;gi t" (Bhh;ii u" Chj;ki) ~6=(Ahf;gi t" Bhh;ii) u" (Ahf;gi t" Chj;ki):

Now,

Ahf;gi u" (Bhh;ii t" Chj;ki) ~=(A [B) [ Chf ~̂(h~_j);g~_(i ~̂k)i

and

(Ahf;gi u" Bhh;ii) t" (Ahf;gi u" Chj;ki) ~=(A [B) [ Ch(f ~̂h)~_(f ~̂j);(g~_i)~̂(g~_k)i.

Then,

(f ~̂(h~_j))(e2) = fx1=0:8; x2=0:3; x3=0:5; x4=0:6; x5=0:6g

6= fx1=0:8; x2=0:0; x3=0:5; x4=0:1; x5=0:6g

= ((f ~̂h)~_(f ~̂j))(e2)
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and

(g~_(i ~̂k))(e2) = fx1=0:1; x2=0:3; x3=0:3; x4=0:2; x5=0:2g

6= fx1=0:1; x2=0:9; x3=0:3; x4=0:8; x5=0:2g

= ((g~_i)~̂(g~_k))(e2).

So that

Ahf;gi u" (Bhh;ii t" Chj;ki) ~6=(Ahf;gi u" Bhh;ii) t" (Ahf;gi u" Chj;ki).

Similarly we can show that

Ahf;gi t" (Bhh;ii t Chj;ki) ~6=(Ahf;gi t" Bhh;ii) t (Ahf;gi t" Chj;ki);

and

Ahf;gi u" (Bhh;ii u Chj;ki) ~6=(Ahf;gi u" Bhh;ii) u (Ahf;gi u" Chj;ki).

7.4.6 Corollary

Let Ahf;gi, Bhh;ii and Chj;ki be three fuzzy bipolar soft sets over X such that (A\B)�
C = (A \ C)�B = ;. Then

1)
Ahf;gi t" (Bhh;ii u" Chj;ki) ~=(Ahf;gi t" Bhh;ii) u" (Ahf;gi t" Chj;ki),

2)
Ahf;gi u" (Bhh;ii t" Chj;ki) ~=(Ahf;gi u" Bhh;ii) t" (Ahf;gi u" Chj;ki).

7.4.7 Corollary

Let Ahf;gi, Ahh;ii and Ahj;ki be any fuzzy bipolar soft sets over X. Then

Ahf;gi�(Ahh;ii�Ahj;ki) ~=(Ahf;gi�Ahh;ii)�(Ahf;gi�Ahj;ki)

for distinct �, � 2 fu",u,t",tg.

7.4.8 Proposition

Let Ahf;gi and Bhh;ii be two fuzzy bipolar soft sets over X. Then the following are true

1) Ahf;gi t" Bhh;ii is the smallest fuzzy bipolar soft set over X which contains both

Ahf;gi and Bhh;ii. (Supremum)

2) Ahf;giuBhh;ii is the largest fuzzy bipolar soft set over X which is contained in both

Ahf;gi and Bhh;ii. (In�mum)

Proof. Straightforward.
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7.5 Algebras of Fuzzy Bipolar Soft Sets

Now we consider the collection of all fuzzy bipolar soft sets over X and denote it by

FBSS(X)E and let us denote its sub collection of all fuzzy bipolar soft sets over X
with �xed set of parameters A by FBSS(X)A. We note that this collection is partially
ordered by inclusion. We conclude from above results that:

7.5.1 Proposition

(FBSS(X)E ,u",t) and (FBSS(X)E ,t",u) are distributive lattices and (FBSS(X)E ,t,u")
and (FBSS(X)E ,u,t") are their duals, respectively.
Proof. Follows from Propositions 7.4.3 and 7.4.4.

7.5.2 Proposition

(FBSS(X)E ,u,t",;h�;Xi,EhX;�i), (FBSS(X)E ,t",u,EhX;�i,;h�;Xi),
(FBSS(X)A,u,t,Ah�;Xi,AhX;�i) and (FBSS(X)A,t,u,AhX;�i,Ah�;Xi) are bounded

distributive lattices.

Proof. From Proposition 7.4.8, we know that (FBSS(X)E ,u,t",;h�;Xi,EhX;�i) is
a bounded distributive lattice and (FBSS(X)E ,t",u,EhX;�i,;h�;Xi) is its dual. For any
fuzzy bipolar soft sets Ahf;gi,Ahh;ii 2 FBSS(X)A,

Ahf;gi uAhh;ii ~= Ahf ~̂h;g~_ii 2 FBSS(X)A and

Ahf;gi tAhh;ii ~= Ahf ~_h;g ~̂ii 2 FBSS(X)A.

Thus (FBSS(X)A,u,t) is also a distributive sublattice of (FBSS(X)
E ,t",u) and

Proposition 7.4.3 shows that (FBSS(X)A,u,t,Ah�;Xi,AhX;�i) is a bounded distributive
lattice and (FBSS(X)A,t,u,AhX;�i,Ah�;Xi) is its dual.

7.5.3 Proposition (de Morgan Laws)

Let Ahf;gi and Bhh;ii be two fuzzy bipolar soft sets over X. Then the following are true

1) (Ahf;gi t" Bhh;ii)� ~=Ahf;gi� u" Bhh;ii� ,

2) (Ahf;gi u" Bhh;ii)� ~=Ahf;gi� t" Bhh;ii� ,

3) (Ahf;gi _Bhh;ii)� ~=Ahf;gi� ^Bhh;ii� ,

4) (Ahf;gi ^Bhh;ii)� ~=Ahf;gi� _Bhh;ii� ,

5) (Ahf;gi tBhh;ii)� ~=Ahf;gi� uBhh;ii� ,
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6) (Ahf;gi uBhh;ii)� ~=Ahf;gi� tBhh;ii� .

Proof.

1) We have
(Ahf;gi t" Bhh;ii)� ~=((A [B)hf ~_h;g ~̂ii)� ~=(A [B)hg ~̂i;f ~_hi

and

Ahf;gi� u" Bhh;ii� ~=Ahg;fi u" Bhi;hi ~=(A [B)hg ~̂i;f ~_hi.

Thus

(Ahf;gi t" Bhh;ii)� ~=Ahf;gi� u" Bhh;ii� .

The remaining parts can be proved in a similar way.

7.5.4 Proposition

(FBSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is a de Morgan algebra.
Proof. Proof follows from Propositions 7.3.9 and 7.5.3.

7.5.5 De�nition

Let Ahf;gi be a fuzzy bipolar soft set over X. We de�ne Ahf;gi� as a fuzzy bipolar soft

set Ahf�;g�i where

f� : A! FP(X), e 7! (f (e))�,

(f(e))�(x) =

(
0 if (f(e))�(x) 6= 0
1 if (f(e))�(x) = 0

g� : A! FP(X), e 7! (g (e))�,

(g (e))�(x) =

(
1 if (g (e))�(x) 6= 1
0 if (g (e))�(x) = 1

for x 2 X.

7.2.4.

7.5.6 Theorem

(FBSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is a Stone algebra.
Proof. From Proposition 7.5.2 it is evident that (FBSS(X)A,u,t,Ah�;Xi,AhX;�i)

is a bounded distributive lattice and Ahf;gi� ~=�(A(f;g)�) where � is mapping de�ned

in Theorem 7.2.4 assures that � is a pseudocomplementing function satisfying Stone�s

identity. Thus (FBSS(X)A,u,t,�,Ah�;Xi,AhX;�i) is a Stone algebra.



Chapter 8

A Generalized Framework for
Soft Set Theory

This chapter is more of a collective nature than the previous ones and not only sum-

marizes the main results but also provides a general framework to deal with soft sets

in a logical manner. We have given an over all review of various kinds of soft sets.

A brief discussion about de�ning ideas of extended soft sets and their operations, a

summary of algebraic structures and an application of soft sets in decision making

problems has been made in this chapter to conclude thesis here. We initiate discussion

with de�nition of soft sets.

8.1 General De�nition of Soft Set and its Extensions:

Let X be an initial universe and E be a set of parameters. Let �P(X) be a generalized
fuzzy power set of X where �P(X) may be a collection of all crisp or fuzzy or type-2
fuzzy or n-fuzzy or hesitant fuzzy or interval-valued fuzzy or vague or intuitionistic

fuzzy or bipolar fuzzy subsets of X and, say, � stands for a fuzzy criteria of collection

�P(X).

� A mapping f : A! �P(X) is called a ��soft set over X denoted by Af where

A � E. We note that parameters in E can be a speci�c criteria for which an

approximation of elements of X is made by f , so a ��soft set over X gives a

parameterized family of ��subsets of X.

� In our next step towards a general framework for soft sets, we allow to consider
more than one frames of reference for X within the context of each parameter.

This consideration requires some modi�cations in the ongoing soft set based

model and so, this requirement is ful�lled by introducing a set of functions fi :

134
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A! �P(X), i = 1, 2, :::, n and denote it by A(f1;f2;:::;fn) and call it an n-framed
��soft set over X. Clearly, an n-framed ��soft set gives n parametrized families
of ��subsets of X.

� Now, if the frames of references are mutually exclusive or obeying some other
mutual relation which is causing a polarity among those, then we incorporate the

idea by imposing a suitably chosen set of consistency constraints C. Hence we give
the concept of � n-polar soft set over X comprising of functions fi : A! �P(X),
(fi 2 C) i = 1, 2, :::, n denoted by Ahf1;f2;:::;fni.

In a natural way, all � multi-polar soft sets are multi-framed ��soft sets over X
but the converse is not true. It is also interesting to observe that multi-polar � soft

sets can be presented in an equivalent and better way by using � multi-polar soft sets.

A particular case for n = 2 is already discussed in Chapter 7 for fuzzy subsets of X.

8.2 Aggregation Operators for Soft Sets in General Form

We need to apply a process for aggregation where the number of inputs are grouped

together in order to get a single output that is easier to use for further computations.

Usually when an object or an alternative is characterized by several numbers or values

describing its various parameters or is given evaluations from several experts and one

has to aggregate these values in order to describe the object by just one meaningful

value or set of values. Aggregation operators are an important tool that is used in

many domains [6], [8]. For a soft set and its hybrid generalizations and extensions, an

input space for aggregation is a bit unconventional because it is required to deal each

object in a parametrized context. Therefore a soft aggregation operator is a function

working on a particular number of inputs for each parameter, with output lying again

in a parametrized manner. We de�ne soft aggregation operators in either restricted

or extended context. A restricted soft aggregation operator joins two soft sets with a

restricted set of parameters, that is, only those parameters which are combined to both

and mathematically the set of parameters is taken as the intersection of parameters

sets in input soft sets. On the other hand, an extended soft aggregation operator

joins two soft sets with an extended set of parameters, that is, all those parameters

apparent are taken into consideration and mathematically the set of parameters in

output is union of parameters sets in input soft sets. Let m be a positive integer and

K be a set of various operations de�ned for � fuzzy subsets of X.

� Let Ai; B � E and Aifi be ��soft sets over X, where i = 1, 2, :::, m. Then

an aggregation operator is a mapping (A1f1 ,A2f2 ; :::; Amfm
) 7! Bg. We have two

cases:
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(i) For the case of restricted aggregation operators, we have B =
m\
i=1

Ai and

g(e) = kffi(e) : i = 1; 2; :::;mg

for all e 2 B.

(ii) For the case of extended aggregation operators, we have B =
m[
i=1

Ai and we

de�ne the set �(e) = fj : e 2 Ajg

g(e) = kffi(e) : i 2 �(e)g

for all e 2 B.

� Let Ai; B � E and Ai(fi1;fi2;:::;fin) be n-framed ��soft sets over X, where i = 1,
2, :::, m, and (k1; k2; :::; kn) 2 Kn. Then an aggregation operator is a mapping

(A1(f11;f12;:::;f1n) ,A2(f21;f22;:::;f2n) ; :::; Am(fm1;fm2;:::;fmn)
) 7! B(g1;g2;:::;gn). We have

two cases:

(i) For the case of restricted aggregation operators, we have B =
m\
i=1

Ai and

gj(e) = kjffij(e) : i = 1; 2; :::;mg, j = 1; 2; :::; n

for all e 2 B.

(ii) For the case of extended aggregation operators, we have B =
m[
i=1

Ai and we

de�ne the set �(e) = fj : e 2 Ajg

gj(e) = kjffij(e) : i 2 �(e)g, j = 1; 2; :::; n

for all e 2 B.

� Let Ai; B � E and Aihfi1;fi2;:::;fini (fij 2 C) be � n-polar soft sets over X where

i = 1, 2, :::, m, and (k1; k2; :::; kn) 2 Kn. Then an aggregation operator is

a mapping (A1hf11;f12;:::;f1ni ,A2hf21;f22;:::;f2ni ; :::; Amhfm1;fm2;:::;fmni
) 7! Bhg1;g2;:::;gni

(gj 2 C). We have two cases:

(i) For the case of restricted aggregation operators, we have B =
m\
i=1

Ai and

gj(e) = kjffij(e) : i = 1; 2; :::;mg, j = 1; 2; :::; n

for all e 2 B.
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(ii) For the case of extended aggregation operators, we have B =
m[
i=1

Ai and we

de�ne the set �(e) = fj : e 2 Ajg

gj(e) = kjffij(e) : i 2 �(e)g, j = 1; 2; :::; n

for all e 2 B.

All aggregation operators de�ned for n-framed ��soft sets over X can be used to

de�ne aggregation operators for � n-polar soft sets over X as except where consistency

constraints are absent. We have seen an example of complement operation de�ned for

double-framed soft sets which is no more available for bipolar soft sets due to hazard

of consistency constraint. Thus the set of aggregation operators for � n-polar soft sets

is contained in the set of aggregation operators for n-framed ��soft sets.

8.3 New Examples of Logical Algebraic Structures

In this section we present a summary of results that we have found in our research

regarding di¤erent types of soft sets and their collections and thus new examples of

these algebras are contributed through our work. Following table gives an overview of

the algebraic structures of soft sets:
1 Lattices:

(SS(X)E ;u";t); (SS(X)E ;t;u"); (FSS(X)E ;u";t);
(FSS(X)E ;t;u"); (DSS(X)E ;u";t); (DSS(X)E ;t;u");
(DFSS(X)E ;u";t); (DFSS(X)E ;t;u"); (BSS(X)E ;u";t);
(BSS(X)E ;t;u"); (FBSS(X)E ;u";t); (FBSS(X)E ;t;u")

2 Bounded Distributive Lattices:

(SS(X)E ;u;t"; ;�; EX); (SS(X)E ;t";u; EX; ;�);
(FSS(X)E ;u;t"; ;~0; E~1); (FSS(X)

E ;t";u; E~1; ;~0);
(DSS(X)E ;u;t"; ;(�;X); E(X;�)); (DSS(X)E ;t";u; E(X;�); ;(�;X));
(DFSS(X)E ;u;t"; ;(~0;~1); E(~1;~0)); (DFSS(X)

E ;t";u; E(~1;~0); ;(~0;~1));
(BSS(X)E ;u;t"; ;h�;Xi; EhX;�i); (BSS(X)E ;t";u; EhX;�i; ;h�;Xi);
(FBSS(X)E ;u;t"; ;h~0;~1i; Eh~1;~0i); (FBSS(X)E ;t";u; Eh~1;~0i; ;h~0;~1i)

3 De Morgan Algebras:

(DSS(X)A;u;t;� ; A(�;X); A(X;�)); (DSS(X)A;t;u;� ; A(X;�); A(�;X))
(DFSS(X)A;u;t;� ; A(~0;~1); A(~1;~0)); (DFSS(X)A;t;u;� ; A(~1;~0); A(~0;~1))
(FBSS(X)A;u;t;� ; Ah~0;~1i; Ah~1;~0i); (FBSS(X)A;t;u;� ; Ah~1;~0i; Ah~0;~1i);
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4 Boolean Algebras:

(SS(X)A;u;t;c ; A�; AX); (SS(X)A;t;u;c ; AX; A�);
(DSS(X)A;u;t;c ; A(�;X); A(X;�)); (DSS(X)A;t;u;c ; A(X;�); A(�;X));

5 Kleene Algebras:

(FSS(X)A;u;t;�; A~0; A~1); (FSS(X)A;t;u;�; A~1; A~0);
(DFSS(X)A;u;t;�; A(~0;~1); A(~1;~0)); (DFSS(X)A;t;u;�; A(~1;~0); A(~0;~1));
(BSS(X)A;u;t;� ; Ah�;Xi; AhX;�i); (BSS(X)A;t;u;� ; AhX;�i; Ah�;Xi);

6 Pseudocomplemented Lattices:

(DSS(X)A;u;t;} ; A(�;X); A(X;�))
7 Stone Algebras:

(FSS(X)A;u;t;� ; A~0; A~1); (DFSS(X)A;u;t;� ; A(~0;~1); A(~1;~0));
(FBSS(X)A;u;t;� ; Ah~0;~1i; Ah~1;~0i)

8 Atomic Lattices:

(SS(X)A;u;t)
9 Brouwerian lattices:

(SS(X)E ;u;t"); (SS(X)A;u;t); (FSS(X)E ;u;t"); (FSS(X)A;u;t)
(DSS(X)E ;u;t"); (DSS(X)A;u;t); (DFSS(X)

E ;u;t");
(DFSS(X)A;u;t)

10 MV-algebras:

(SS(X)A;u;c ; AX); (SS(X)A;t;c ; A�); (DSS(X)A;u;c ; A(X;�));
(DSS(X)A;t;c ; A(�;X))

11 BCK-algebras:

(SS(X)A;^;A�); (SS(X)A; ?; A�); (DSS(X)A;^;A(�;�));
(DSS(X)A; ?; A(�;X))

8.4 Application of Soft Sets in a Decision Making Prob-
lem

Decision making is an important factor of all scienti�c professions where experts apply

their knowledge in that area to make decisions wisely. Many researchers have applied

soft set theory in various decision making problems using di¤erent algorithms. A

general algorithm for the decision of best object using soft sets is given as follows:

8.4.1 Algorithm

Let X be an initial universal set of available objects and E be the set of parameters.

The algorithm for the selection of the best choice among the objects of X is given as:

1. Input A(f1;f2;:::;fn), an n-framed ��soft set over X where A � E.
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2. Input the set of choice parameters P � E and �nd the reduced n-framed ��soft
set over X which is reduct of A(f1;f2;:::;fn).

3. Compute the comparison tables for functions f1; f2; :::; fn by using the prede�ned

rule or Aggregation operator.

4. Compute the scores for each object.

5. Compute the �nal score Si for each object xi 2 X.

6. Find k, for which Sk = maxSi.

Then hk is the optimal choice object. If k has more than one values, then any one

of hk�s can be chosen.

Now, we apply the concept of fuzzy bipolar soft sets for modelling a given problem

and then, we give an algorithm for the choice of optimal object based upon the available

sets of information. Let X be the initial universe and E be a set of parameters. We

shall adapt the following terminology afterwards:

8.4.2 De�nition

Let Ehf;gi be a fuzzy bipolar soft set de�ned over X. A Comparison table for f is a

square table in which the number of rows and number of columns are equal, rows and

columns both are labelled by the object names h1, h2, h3, ..., hn of the initial universe

X, and the entries are tij , i, j = 1; 2; :::; n, given by

tij = the number of parameters for which the membership value of hi exceeds

or equal to the membership value of hj

Clearly, 0 � tij � k, and tii = k, for all i, j where k is the number of parameters present
in E. Thus, tij indicates a numerical measure, which is an integer. A Comparison

table for g is a square table in which the number of rows and number of columns are

equal, rows and columns both are labelled by the object names h1, h2, h3, ..., hn of

the initial universe X, and the entries are sij , i, j = 1; 2; :::; n, given by

sij = the number of parameters for which the membership value

of hi dominates or equal to the membership value of hj

Clearly, 0 � sij � k, and sii = k, for all i, j where k is the number of parameters

present in E. Thus, sij also indicates a numerical measure, which is an integer.
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8.4.3 De�nition

The positive row sum and column of an object hi, denoted by ri and ci are calculated

by using the formulae,

ri =
nX
j=1

tij , cj =
nX
i=1

tij ,

The negative row sum and column sum of an object hi, denoted by r´ i and c´j are

calculated by using the formulae,

r�i =
nX
j=1

sij , c�j =
nX
i=1

sij .

The positive score Pi of object hi will be given by:

Pi = ri � ci

while the negative score Ni will be given by:

Ni = r�i � c�i.

The �nal score Si of object hi will be given by:

Si = Pi �Ni

for all i = 1, 2, :::, n:

We wish to �nd an object from the set of choice parameters A. We are now giving

an algorithm for the choice of best object according to the speci�cations made by

observer and recorded data with the help of a fuzzy bipolar soft set.

8.4.4 Algorithm

The algorithm for the selection of the best choice is given as:

1. Input the fuzzy bipolar soft set Ehf;gi.

2. Input the set of choice parameters P � E and �nd the reduced fuzzy bipolar

soft set Phf;gi.

3. Compute the comparison tables for functions f and g respectively.

4. Compute the positive and negative scores for each object.

5. Compute the �nal score.

6. Find k, for which Sk = maxSi.

Then hk is the optimal choice object. If k has more than one values, then any one

of hk�s can be chosen
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8.4.5 Example

Let X = fm1;m2;m3;m4;m5;m6;m7;m8g be the set of candidates who have ap-
plied for a job position of O¢ ce Representative in Customer Care Centre of a com-

pany. Let E = fe1; e2; e3; e4; e5; e6; e7; e8; e9g = fHard Working, Optimism, Enthusi-
asm, Individualism, Imaginative, Flexibility, Decisiveness, Self-con�dence, Politenessg
and :E = f:e1;:e2;:e3;:e4;:e5;:e6;:e7;:e8;:e9g = fNegligent, Pessimism, Half-
hearted, Dependence, Unimaginative, Rigidity, Indecisiveness, Shyness, Harshness g.
Here the gray area is obviously the moderate form of parameters. Let the fuzzy bipolar

soft sets Ehf;gi describes the � Personality Analysis of Candidates�as:

f : E ! FP(X);

e 7�!

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

fm1=:5;m2=:7;m3=:6;m4=:7;m5=:5;m6=:5;m7=:4;m8=:8g if e = e1;

fm1=:6;m2=:7;m3=:8;m4=:8;m5=:4;m6=:4;m7=:2;m8=:7g if e = e2;

fm1=:8;m2=:8;m3=:4;m4=:6;m5=:5;m6=:5;m7=:4;m8=:8g if e = e3;

fm1=:7;m2=:6;m3=:1;m4=:7;m5=:6;m6=:6;m7=:6;m8=:9g if e = e4;

fm1=:5;m2=:8;m3=:6;m4=:5;m5=:7;m6=:3;m7=:7;m8=:6g if e = e5;

fm1=:4;m2=:9;m3=:5;m4=:4;m5=:7;m6=:3;m7=:6;m8=:5g if e = e6;

fm1=:3;m2=:8;m3=:4;m4=:6;m5=:8;m6=:2;m7=:5;m8=:4g if e = e7;

fm1=:6;m2=:7;m3=:5;m4=:5;m5=:6;m6=:4;m7=:3;m8=:6g if e = e8;

fm1=:8;m2=:5;m3=:6;m4=:6;m5=:7;m6=:4;m7=:2;m8=:7g if e = e9;

g : E ! FP(X);

e 7�!

8><>:
fm1=:3;m2=:2;m3=:4;m4=:1;m5=:3;m6=:5;m7=:4;m8=:2g if e = e1;

fm1=:4;m2=:1;m3=:2;m4=:1;m5=:5;m6=:5;m7=:7;m8=:1g if e = e2;

fm1=:05;m2=:1;m3=:5;m4=:33;m5=:4;m6=:3;m7=:6;m8=:15g if e = e3;

e 7�!

8>>>>>>>>><>>>>>>>>>:

fm1=:23;m2=:3;m3=:6;m4=:2;m5=:3;m6=:33;m7=:2;m8=:1g if e = e4;

fm1=:4;m2=:2;m3=:35;m4=:4;m5=:1;m6=:6;m7=:2;m8=:35g if e = e5;

fm1=:4;m2=:2;m3=:3;m4=:3;m5=:2;m6=:5;m7=:25;m8=:31g if e = e6;

fm1=:7;m2=:08;m3=:5;m4=:3;m5=:18;m6=:78;m7=:4;m8=:4g if e = e7;

fm1=:4;m2=:2;m3=:3;m4=:45;m5=:4;m6=:4;m7=:6;m8=:26g if e = e8;

fm1=:1;m2=:4;m3=:36;m4=:27;m5=:2;m6=:5;m7=:8;m8=:2g if e = e9.

1. Input the fuzzy bipolar soft set Ehf;gi.

2. Input the set of choice parameters P = fe1; e3; e4; e5; e7; e8g � E and �nd the
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reduced fuzzy bipolar soft set Phf;gi given as:

f : P ! FP(X);

e 7�!

8>>>>>>>>><>>>>>>>>>:

fm1=:5;m2=:7;m3=:6;m4=:7;m5=:5;m6=:5;m7=:4;m8=:8g if e = e1;

fm1=:8;m2=:8;m3=:4;m4=:6;m5=:5;m6=:5;m7=:4;m8=:8g if e = e3;

fm1=:7;m2=:6;m3=:1;m4=:7;m5=:6;m6=:6;m7=:6;m8=:9g if e = e4;

fm1=:5;m2=:8;m3=:6;m4=:5;m5=:7;m6=:3;m7=:7;m8=:6g if e = e5;

fm1=:3;m2=:8;m3=:4;m4=:6;m5=:8;m6=:2;m7=:5;m8=:4g if e = e7;

fm1=:6;m2=:7;m3=:5;m4=:5;m5=:6;m6=:4;m7=:3;m8=:6g if e = e8;

g : P ! FP(X);

e 7�!

8>>>>>>>>><>>>>>>>>>:

fm1=:3;m2=:2;m3=:4;m4=:1;m5=:3;m6=:5;m7=:4;m8=:2g if e = e1
fm1=:05;m2=:1;m3=:5;m4=:33;m5=:4;m6=:3;m7=:6;m8=:15g if e = e3
fm1=:23;m2=:3;m3=:6;m4=:2;m5=:3;m6=:33;m7=:2;m8=:1g if e = e4
fm1=:4;m2=:2;m3=:35;m4=:4;m5=:1;m6=:6;m7=:2;m8=:35g if e = e5
fm1=:7;m2=:08;m3=:5;m4=:3;m5=:18;m6=:78;m7=:4;m8=:4g if e = e7
fm1=:4;m2=:2;m3=:3;m4=:45;m5=:4;m6=:4;m7=:6;m8=:26g if e = e8

3. Compute the comparison tables for functions f and g respectively

f m1 m2 m3 m4 m5 m6 m7 m8

m1 6 2 3 4 4 6 4 2

m2 5 6 6 5 6 6 6 3

m3 3 0 6 2 1 4 3 2

m4 4 2 5 6 3 6 5 1

m5 4 2 5 3 6 6 6 3

m6 1 1 2 0 3 6 4 0

m7 2 1 4 1 2 3 6 2

m8 6 3 6 5 4 6 4 6

Table 8.1: Comparison Table for f

4. Compute the positive and negative scores for each object as given by Table 8.3

and Table 8.4.

5. Compute the �nal score given by Table 8.5.

6. From Table 8.5 we �nd k = 4.

Thus m4 is the best candidate for the position. In case that m4 can not join the

position either m3 or m8 may be selected.
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g m1 m2 m3 m4 m5 m6 m7 m8

m1 6 2 5 3 4 6 3 1

m2 4 6 6 4 5 6 5 5

m3 3 0 6 2 1 4 3 1

m4 2 2 4 6 3 4 5 1

m5 4 2 5 3 6 6 5 2

m6 2 0 2 2 2 6 2 0

m7 3 2 4 2 1 4 6 2

m8 5 2 6 4 3 6 5 6

Table 8.2: Comparison Table for g

Row Sum: ri Column Sum: ci Positive Score: Pi
m1 31 31 0

m2 43 17 26

m3 21 37 �16
m4 32 26 6

m5 35 29 6

m6 17 43 �26
m7 21 38 �17
m8 40 19 21

Table 8.3: Positive Score

Row Sum: r´ i Column Sum: c´ i Negative Score: Ni
m1 30 29 1

m2 41 16 25

m3 20 38 �18
m4 27 26 1

m5 33 25 8

m6 16 42 �26
m7 24 34 �10
m8 37 18 19

Table 8.4: Negative Score
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Final Score

m1 �1
m2 1

m3 2

m4 5

m5 �2
m6 0

m7 �7
m8 2

Table 8.5: Final Score
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Abstract. We have defined fuzzy bipolar soft sets and basic operations of union, intersection and complementation for fuzzy
bipolar soft sets. The algebraic properties of fuzzy bipolar soft sets are discussed. The concept of bipolar fuzzy soft set is also
given and the equivalence of both structures is established. An application of fuzzy bipolar soft sets in decision making problems
is presented with the help of an example.
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1. Introduction

While we talk about the modeling of real world
problems which are ranging from engineering to med-
ical and medical to social fields, we come across with
the presence of uncertainty in data. L.A. Zadeh [21]
was the first one to introduce the theory of fuzzy sets
that yielded a whole field of fuzzy mathematics. The
nature of data is an important factor in the process of
developing mathematical models in various fields like
engineering, life sciences, pattern recognition, neural
networks, artificial intelligence, behavioral and social
sciences. There are also some other factors which may
affect our considerations related to the nature of data
and an obvious one is the bipolarity of data. It is
evidently observed that every information about a par-
ticular phenomenon has two aspects i.e. presence of
a property or its absence [5]. There are models that
are developed through the tools (e.g. bipolar fuzzy sets
[8, 9]) in which a positive measure has been used to

∗Corresponding author. Munazza Naz, Department of Math-
ematical Sciences, Fatima Jinnah Women University, The Mall,
Rawalpindi, Pakistan. E-mail: munazzanaz@yahoo.com.

approximate the presence of a particular attribute and a
negative measure is used to approximate the degree of
absence of that same attribute. There is always a possi-
bility of gray areas where we get uncertain to decide
whether a phenomenon possesses a property or not.
Some other theories which are capable of handling
these kinds of situations include intuitionistic fuzzy
sets, interval valued fuzzy sets, vague sets etc [4, 7].

Theory of soft sets was introduced by Molodstov
in 1999 [15]. The purpose of the novel concept was
to remove the inadequacy of parameterization tool
in previously defined theories of fuzzy Mathematics.
Although the theory of rough sets [10, 16] addresses
the issue of parameterization and the hybrid structure
such as fuzzy rough sets can also be utilized for incor-
porating the fuzziness of data but the addition of any
further factor such as bipolarity of information makes it
too complicated to use. On the other hand, the absence
of any restrictions while making approximations for
a given object in soft sets establishes this theory as
more handy, convenient and easily applicable in prac-
tice. Since the introduction of the theory of soft sets in
1999, a lot of work has been done so far. We can find
the studies on structure as well as on the applications
of soft sets in various fields [1–3, 6, 11–14, 17–20].

1064-1246/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved
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Inthispaper,wehaveinitiatedaconceptoffuzzybipo-
lar soft sets. The idea is generated with the motivation of
bipolarity of parameters and then the fuzziness of data
comes into play. We have considered a set of parameters
and its negative set i.e. the absence of these parameters
and denote this set by “not set”, for each parametere,
not e = ¬e is the absence of e. A fuzzy bipolar soft
set is defined with the help of two mappings, one for
approximating the degree of fuzziness of the positivity
or presence of a certain parameter in the objects of ini-
tial universal set and the other one is to approximate the
relative degree of fuzziness of the negativity or absence
of the same parameter. In this way, we have combined
these three concepts of bipolarity, fuzziness and param-
eterization and thus it is shown through examples that
we have found a very easy to use way of modeling the
phenomena where all these three factors are involved.
To move further, we have defined the basic algebra for
the fuzzy bipolar soft sets and discussed their algebraic
properties in detail. It is also shown that the collection of
fuzzy bipolar soft sets forms a stone algebra. At the end,
an application of fuzzy bipolar soft sets in the decision
making problems is presented along with the algorithm.

2. Preliminaries

Let (L, ∨, ∧, 0, 1) be a bounded lattice with least
element 0 and maximum element 1. An involution µ on
L is a mapping µ : L → L such that µ(µ(x)) = x,
µ(0) = 1 and µ(1) = 0. A bounded lattice is called
distributive if the distributive laws hold with respect
to ∨ and ∧. If De Morgan’s laws hold for a bounded
distributive lattice having an involution µ, then it is
called De Morgan algebra. Let (L, ∨, ∧, 0, 1) be a
bounded lattice and x ∈ L, then an element x∗ is called
a pseudo complement of x, if x ∧ x∗ = 0 and y ≤ x∗
whenever x ∧ y = 0. If every element has a pseudo
complement thenL is pseudo complemented. The equa-
tion x∗ ∨ x∗∗ = 1 is called Stone’s identity. A Stone
algebra is a pseudo complemented distributive lattice
satisfying Stone’s identity.

Now we define fuzzy sets. Let X be a given set.

Definition 1. [21] A fuzzy subset of X is a function
from X into the unit closed interval [0, 1]. The set of
all fuzzy subsets of X is called the fuzzy power set of
X, and is denoted by FP(X).

Definition 2. [21] Let µ, ν ∈ FP(X). If µ(x) ≤ ν(x) for
all x ∈ X, then µ is said to be contained in ν, and we
write µ ⊆ ν( or ν ⊇ µ).

Clearly, the inclusion relation ⊆ is a partial order on
FP(X).

Definition 3. [21] Let µ, ν ∈ FP(X). Then µ ∨ ν and
µ ∧ ν are fuzzy subsets of X, defined as follows:

For all x ∈ X,

(µ ∨ ν) (x) = µ (x) ∨ ν (x) ,

(µ ∧ ν) (x) = µ (x) ∧ ν (x) .

The fuzzy subsets µ ∨ ν and µ ∧ ν are called the union
and intersection of µ and ν, respectively.

Definition 4. [21] Two fuzzy subsets of X are denoted
by ∅ and X which map every element of onto 0 and 1
respectively. We call ∅ as the empty set or null fuzzy
subset and X as the whole fuzzy subset of X.

Definition 5. [8] A bipolar fuzzy set µ in X is defined
as:

µ = {
(x, µP (x), µN (x)) : x ∈ X

}
where µP : X → [0, 1] and µN : X → [−1, 0]
are mappings. The positive membership degree µP (x)
denotes the satisfaction degree of an element x to the
property corresponding to a bipolar fuzzy set

µ = {
(x, µP (x), µN (x)) : x ∈ X

}
and the negative membership degree µN (x) denotes
the satisfaction degree of x to some implicit counter-
property of

µ = {
(x, µP (x), µN (x)) : x ∈ X

}
.

if µP (x) /= 0 and µN (x) = 0, it is the situation that x is
regarded as having only positive satisfaction for

µ = {
(x, µP (x), µN (x)) : x ∈ X

}
.

if µP (x) = 0 and µN (x) /= 0, it is the situation that x

does not satisfy the property of

µ = {
(x, µP (x), µN (x)) : x ∈ X

}
,

but somewhat satisfies the counter-property of

µ = {
(x, µP (x), µN (x)) : x ∈ X

}
.

it is possible for an element x to be µP (x) /= 0 and
µN (x) /= 0 when the membership function of the prop-
erty overlaps that of its counter-property over some
portion of the domain. For the sake of simplicity, we
shall write µ = (

µP, µN
)

for the bipolar fuzzy set

µ = {(
x, µP (x) , µN (x)

)
: x ∈ X

}
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3. Fuzzy bipolar soft sets

Let U be an initial universe and E be a set of param-
eters. Let FP(X) denotes the collection of all fuzzy
subsets of U and A, B, C are non-empty subsets of E.
Now, we define

Definition 6. A triplet (F, G, A) is called a fuzzy bipolar
soft set over U, where F and G are mappings, given by
F : A → FP(U) and G : ¬A → FP(U) such that

0 ≤ (F (e))(x) + (G(¬e))(x) ≤ 1

for all e ∈ A.
In other words, a fuzzy bipolar soft set over U gives

two parameterized families of subsets of the universe
U and the condition

0 ≤ (F (e))(x) + (G(¬e))(x) ≤ 1

for all e ∈ A, is imposed as a consistency constraint.
For each e ∈ A, F (e) and G(¬e) are regarded as the set
of e -approximate elements of the fuzzy bipolar soft set
(F, G, A).

Definition 7. For a fuzzy bipolar soft set (F, G, A) over
U, we define a fuzzy soft set (H(F, G), A) over U for the
approximation of the degree of hesitation in (F, G, A)
as follows:

H(F, G) : A → FP(U) defined by

(H(F, G)(e))(x) = 1 − (F (e))(x) − (G(¬e))(x)

for all x ∈ U, e ∈ A. Clearly, (H(F, G), A) approximates
the lack of knowledge about the objects of U while
considering the presence or absence of a particular
parameter of A.

Definition 8. For two fuzzy bipolar soft sets (F, G, A)
and (F1, G1, A) over a universe U, we say that
(F, G, A) is a fuzzy bipolar soft subset of (F1, G1, A),
if,

1. A ⊆ B and
F (e) ⊆ F1(e) and G1(¬e) ⊆ G(¬e) for all e ∈ A.

This relationship is denoted by (F, G, A) ⊆̃
(F1, G1, A). Similarly (F, G, A) is said to be a fuzzy
bipolar soft superset of (F1, G1, A), if (F1, G1, A) is
a fuzzy bipolar soft subset of (F, G, A). We denote it
by (F, G, A)⊇̃(F1, G1, A).

Definition 9. Two fuzzy bipolar soft sets (F, G, A)
and (F1, G1, A) over a universe U are said to be
equal if (F, G, A) is a fuzzy bipolar soft subset of

(F1, G1, A) and (F1, G1, A) is a fuzzy bipolar soft
subset of (F, G, A).

Definition 10. The complement of a fuzzy bipolar soft
set (F, G, A) is denoted by (F, G, A)c and defined
by (F, G, A)c = (Fc, Gc, A) where Fc and Gc are
mappings given by Fc(e) = G(¬e) and Gc(¬e) = F (e)
for all e ∈ A.

Definition 11. A fuzzy bipolar soft set over U is said
to be a relative null fuzzy bipolar soft set, denoted by
(�, U, A) if for all e ∈ A, �(e) = ∅ and U(¬e) = U,
for all e ∈ A.

Definition 12. A fuzzy bipolar soft set over U is said to
be a relative absolute fuzzy bipolar soft set, denoted by
(�, U, A), if for all e ∈ A, U(e) = U and �(¬e) = ∅,
for all e ∈ A.

Definition 13. If (F, G, A) and (F1, G1, B) are two
fuzzy bipolar soft sets over U then “(F, G, A) and
(F1, G1, B)” denoted by (F, G, A) ∧ (F1, G1, B)
is defined by (F, G, A) ∧ (F1, G1, B) = (H, I, A ×
B) where H(a, b) = F (a) ∧ F1(b) and I(¬a, ¬b) =
G(¬a) ∨ G1(¬b) for all (a, b) ∈ A × B.

Definition 14. If (F, G, A) and (F1, G1, B) are
two fuzzy bipolar soft sets over U then “(F, G, A)
or (F1, G1, B)” denoted by (F, G, A) ∨ (F1, G1, B)
is defined by (F, G, A) ∨ (F1, G1, B) = (H, I, A ×
B) where H(a, b) = F (a) ∨ F1(b) and I(¬a, ¬b) =
G(¬a) ∧ G1(¬b) for all (a, b) ∈ A × B.

Proposition 1. If (F, G, A) and (F1, G1, B) are two
fuzzy bipolar soft sets over U then

1. ((F, G, A) ∨ (F1, G1, B))c = (F, G, A)c ∧
(F1, G1, B)c

2. ((F, G, A) ∧ (F1, G1, B))c = (F, G, A)c ∨
(F1, G1, B)c

Proof. Straightforward.

Definition 15. Extended Union of two fuzzy bipolar
soft sets (F, G, A) and (F1, G1, B) over the common
universe U is the fuzzy bipolar soft set (H, I, C) over
U where C = A ∪ B and for all e ∈ C,

H(e) =

⎧⎪⎨
⎪⎩

F (e) if e ∈ A − B

F1(e) if e ∈ B − A

F (e) ∨ F1(e) if e ∈ A ∩ B
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I(¬e) =

⎧⎪⎨
⎪⎩

G(¬e) if e ∈ (¬A) − (¬B)

G1(¬e) if e ∈ (¬B) − (¬A)

G(¬e) ∧ G1(¬e) if e ∈ (¬A) ∩ (¬B)

we denote it by (F, G, A) ∪̃ (F1, G1, B) = (H, I, C).

Definition 16. Extended Intersection of two fuzzy
bipolar soft sets (F, G, A) and (F1, G1, B) over the
common universe U is the fuzzy bipolar soft set
(H, I, C) over U where C = A ∪ B and for all e ∈ C,

H(e) =

⎧⎪⎨
⎪⎩

F (e) if e ∈ A − B

F1(e) if e ∈ B − A

F (e) ∧ F1(e) if e ∈ A ∩ B

I(¬e) =

⎧⎪⎨
⎪⎩

G(¬e) if e ∈ (¬A) − (¬B)

G1(¬e) if e ∈ (¬B) − (¬A)

G(¬e) ∨ G1(¬e) if e ∈ (¬A) ∩ (¬B)

we denote it by (F, G, A) ∩̃ (F1, G1, B) = (H, I, C).

Definition 17. Restricted Union of two fuzzy bipolar
soft sets (F, G, A) and (F1, G1, B) over the common
universe U is the fuzzy bipolar soft set (H, I, C), where
C = A ∩ B is non-empty and for all e ∈ C

H(e) = F (e) ∨ G(e) and I(¬e) = F1(¬e) ∧
G1(¬e). We denote it by (F, G, A) ∪R (F1, G1, B) =
(H, I, C).

Definition 18. Restricted Intersection of two fuzzy
bipolar soft sets (F, G, A) and (F1, G1, B) over the
common universe U is the fuzzy bipolar soft set
(H, I, C), where C = A ∩ B is non-empty and for all
e ∈ C:

H(e) = F (e) ∧ G(e) and I(¬e) = F1(¬e) ∨
G1(¬e). We denote it by (F, G, A) ∩R (F1, G1, B) =
(H, I, C).

Conventionally we assume that (F, G, A) ∩R

(F1, G1, B) = (�, U, ∅) = (F, G, A) ∪R

(F1, G1, B) whenever A ∩ B = ∅.

Lemma 1. Let (F, G, A), (F1, G1, B) and
(F2, G2, C) be any fuzzy bipolar soft sets over a
common universe U. Then the following are true:

1. (F, G, A)α((F1, G1, B)α(F2, G2, C)) =
((F, G, A)α(F1, G1, B))α(F2, G2, C)

2. (F, G, A)α(F1, G1, B) = (F, G, A)α(F1, G1, B)
for all α ∈ {∩̃, ∩R, ∪̃, ∪R}.

Proof. Straightforward.

Lemma 2. If (�, U, A) is a null fuzzy bipolar soft
set (U, �, A) an absolute fuzzy bipolar soft set, and
(F, G, A), (F1, G1, A) are fuzzy bipolar soft sets over
U. Then

1. (F, G, A) ∪̃ (F1, G1, A) = (F, G, A) ∪R

(F1, G1, A),
2. (F, G, A) ∩̃ (F1, G1, A) = (F, G, A) ∩R

(F1, G1, A),
3. (F, G, A) ∪̃ (F, G, A) = (F, G, A) ∪R

(F, G, A) = (F, G, A),
4. (F, G, A) ∩̃ (F, G, A) = (F, G, A) ∩R

(F, G, A) = (F, G, A),
5. (F, G, A) ∪̃ (�, U, A) = (F, G, A) ∪R

(F, G, A) = (F, G, A),
6. (F, G, A) ∩̃ (U, �, A) = (F, G, A) ∩R

(U, �, A) = (F, G, A).

Proof. Straightforward.

Lemma 3. Let (F, G, A) and (F1, G1, B) be two fuzzy
bipolar soft sets over a common universe U. Then the
following are true:

1. (F, G, A) ∪̃ (F1, G1, B) is the smallest fuzzy
bipolar soft set over U which contains both
(F, G, A) and (F1, G1, B).

2. (F, G, A) ∩R (F1, G1, B) is the largest fuzzy
bipolar soft set over U which is contained in both
(F, G, A) and (F1, G1, B).

Proof. Straightforward.

Lemma 4. Let (F, G, A) and (F1, G1, B) be two fuzzy
bipolar soft sets over a common universe U. Then

1. ((F, G, A) ∪̃ (F1, G1, B))c =
(F, G, A)c∩̃(F1, G1, B)c,

2. ((F, G, A) ∩̃ (F1, G1, B))c =
(F, G, A)c∪̃(F1, G1, B)c,

3. ((F, G, A) ∪R (F1, G1, B))c = (F, G, A)c ∩R

(F1, G1, B)c,
4. ((F, G, A) ∩R (F1, G1, B))c = (F, G, A)c ∪R

(F1, G1, B)c.

Proof. Straightforward.

Lemma 5. Let (F, G, A), (F1, G1, B) and
(F2, G2, C) be any fuzzy bipolar soft sets over a
common universe U. Then
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1. (F, G, A)α((F1, G1, B)β(F2, G2, C))= ((F, G, A)
α(F1, G1, B))β((F, G, A)α(F2, G2, C)) where
α /= β, α ∈ {∩R, ∪R} and β ∈ {∩R, ∪R, ∪̃, ∩̃ }

2. (F, G, A) ∪̃ ((F1, G1, B) ∩̃ (F2, G2, C)) ⊃̃((F, G,

A) ∪̃ (F1, G1, B)) ∩̃ ((F, G, A) ∪̃ (F2, G2, C))
3. (F, G, A) ∪̃ ((F1, G1, B) ∪R (F2, G2, C)) ⊂̃((F, G,

A) ∪̃ (F1, G1, B)) ∪R ((F, G, A) ∪̃ (F2, G2, C))
4. (F, G, A) ∪̃ ((F1, G1, B) ∩R (F2, G2, C))= ((F, G,

A) ∪̃ (F1, G1, B)) ∩R ((F, G, A) ∪̃ (F2, G2, C))
5. (F, G, A) ∩̃ ((F1, G1, B) ∪̃ (F2, G2, C)) ⊂̃((F, G,

A) ∩̃ (F1, G1, B)) ∪̃ ((F, G, A) ∩̃ (F2, G2, C))
6. (F, G, A) ∩̃ ((F1, G1, B) ∪R (F2, G2, C))= ((F, G,

A) ∩̃ (F1, G1, B)) ∪R ((F, G, A) ∩̃ (F2, G2, C))
7. (F, G, A) ∩̃ ((F1, G1, B) ∩R (F2, G2, C))⊃̃((F, G,

A) ∩̃ (F1, G1, B)) ∩R ((F, G, A) ∩̃ (F2, G2, C)).

Proof.

1) For any e ∈ A ∩ (B ∪ C), we have following three
disjoint cases:
(i) If e ∈ A ∩ (B − C), then

(F ∩R (F1 ∪̃ F2))(e) = F (e) ∧ F1(e)

(G ∩R (G1∪̃G2))(¬e) = G(¬e) ∨ G1(¬e)

and

((F ∩R F1)∪̃(F ∩R F2))(e) = (F ∩R F1)(e) ∨ ∅
= F (e) ∧ F1(e)

((G ∩R G1)∪̃(G ∩R G2))(¬e) = (G ∩R G1)(¬e) ∧ U

= G(¬e) ∨ G1(¬e).

(ii) If e ∈ A ∩ (C − B), then

(F ∩R (F1∪̃F2))(e) =F (e) ∧ F2(e)

(G ∩R (G1∪̃G2))(¬e) =G(¬e) ∨ G2(¬e)

and

((F ∩R F1)∪̃(F ∩R F2))(e) = ∅ ∨ (F ∩R F2)(e)

= F (e) ∧ F2(e)

((G ∩R G1)∪̃(G ∩R G2))(¬e) = U ∧ (G ∩R G2)(¬e)

= G(¬e) ∨ G2(¬e).

(iii) If e ∈ A ∩ (B ∩ C), then

(F ∩R (F1∪̃F2))(e) = F (e) ∧ (F1(e) ∨ F2(e))

(G ∩R (G1∪̃G2))(¬e) = G(¬e) ∨ (G1(¬e) ∧ G2(¬e))

and

((F ∩R F1) ∪̃ (F ∩R F2))(e)

= (F ∩R F1)(e) ∨ (F ∩R F2)(e)

= (F (e) ∧ F1(e)) ∨ (F (e) ∧ F2(e))

= F (e) ∧ (F1(e) ∨ F2(e))

((G ∩R G1) ∪̃ (G ∩R G2))(¬e)

= (G ∩R G1)(¬e) ∧ (G ∩R G2)(¬e)

= (G(¬e) ∨ G1(¬e)) ∧ (G(¬e) ∨ G2(¬e))

= G(¬e) ∨ (G1(¬e) ∧ G2(¬e)).

thus

(F, G, A) ∩R ((F1, G1, B) ∪̃ (F2, G2, C))

= ((F, G, A) ∩R (F1, G1, B)) ∪̃ ((F, G, A)

∩R(F2, G2, C))

Similarly, we can check for the remaining parts.

Example 1. Let U be the set of houses under
consideration, and E be the set of parameters,
U = {h1, h2, h3, h4, h5} E = {e1, e2, e3, e4, e5} =
{in the green surroundings, cheap, in good
repair, furnished, traditional}. Let ¬E =
{¬e1, ¬e2, ¬e3, ¬e4, ¬e5} = { in the commercial
area, expensive, in bad repair, non-furnished, modern}.

Suppose that A = {e1, e2, e3}, B = {e2, e3, e4}
and C = {e3, e4, e5}. The fuzzy bipolar soft sets
(F, G, A), (F1, G1, B) and (F2, G2, C) describe the
requirements of the houses which Mr. X, Mr. Y and Mr.
Z are going to buy respectively.

suppose that

F (e1) = {h1/0.3, h2/0.1, h3/0.3, h4/0.1, h5/0.7},
F (e2) = {h1/0.1, h2/0.9, h3/0.3, h4/0.8, h5/0.2},
F (e3) = {h1/0.1, h2/0.3, h3/0.3, h4/0.3, h5/0.8},

G(¬e1) = {h1/0.4, h2/0.7, h3/0.7, h4/0.7, h5/0.1},
G(¬e2) = {h1/0.8, h2/0, h3/0.5, h4/0.1, h5/0.6},
G(¬e3) = {h1/0.7, h2/0.5, h3/0.7, h4/0.6, h5/0.1},
and

F1(e2) = {h1/0.1, h2/0.3, h3/0.6, h4/0.2, h5/0.3},
F1(e3) = {h1/0.8, h2/0.9, h3/0.5, h4/0.4, h5/0.2},
F1(e4) = {h1/0.1, h2/0.4, h3/0.3, h4/0.6, h5/0.9},
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G1(¬e2) = {h1/0.1, h2/0.3, h3/0.3, h4/0.6, h5/0.6},
G1(¬e3) = {h1/0.1, h2/0, h3/0.3, h4/0.4, h5/0.6},
G1(¬e4) = {h1/0.9, h2/0.5, h3/0.5, h4/0.3, h5/0.1}.
and

F2(e3)={h1/0.1, h2/0.2, h3/0.3, h4/0.1, h5/0.1},
F2(e4)={h1/0.2, h2/0.2, h3/0.3, h4/0.3, h5/0.2},
F2(e5)={h1/0.1, h2/0.1, h3/0.3, h4/0.5, h5/0.7},

G2(¬e3)={h1/0.7, h2/0.7, h3/0.4, h4/0.7, h5/0.4},
G2(¬e4)={h1/0.6, h2/0.5, h3/0.6, h4/0.1, h5/0.6},
G2(¬e5)={h1/0.3, h2/0.4, h3/0.4, h4/0.3, h5/0.1}.
let

(F, G, A) ∪̃ ((F1, G1, B) ∩̃ (F2, G2, C))

= (H1, I1, A ∪ B ∪ C)

and

((F, G, A) ∪̃ (F1, G1, B)) ∩̃ ((F, G, A) ∪̃ (F2, G2, C))

= (H2, I2, A ∪ B ∪ C).

then

H1(e1) = {h1/0.3, h2/0.1, h3/0.3, h4/0.1, h5/0.7},
H1(e2) = {h1/0.1, h2/0.9, h3/0.6, h4/0.8, h5/0.3},
H1(e3) = {h1/0.1, h2/0.3, h3/0.3, h4/0.3, h5/0.8},
H1(e4) = {h1/0.1, h2/0.2, h3/0.3, h4/0.3, h5/0.2},
H1(e5) = {h1/0.1, h2/0.1, h3/0.3, h4/0.5, h5/0.7},
and

I1(¬e1) = {h1/0.4, h2/0.7, h3/0.7, h4/0.7, h5/0.1},
I1(¬e2) = {h1/0.1, h2/0.0, h3/0.3, h4/0.1, h5/0.6},
I1(¬e3) = {h1/0.7, h2/0.5, h3/0.4, h4/0.6, h5/0.1},
I1(¬e4) = {h1/0.9, h2/0.5, h3/0.6, h4/0.3, h5/0.6},
I1(¬e5) = {h1/0.3, h2/0.4, h3/0.4, h4/0.3, h5/0.1}.
also

H2(e1) = {h1/0.3, h2/0.1, h3/0.3, h4/0.1, h5/0.7},
H2(e2) = {h1/0.1, h2/0.9, h3/0.3, h4/0.8, h5/0.2},
H2(e3) = {h1/0.1, h2/0.3, h3/0.3, h4/0.3, h5/0.8},
H2(e4) = {h1/0.1, h2/0.2, h3/0.3, h4/0.3, h5/0.2},
H2(e5) = {h1/0.1, h2/0.1, h3/0.3, h4/0.5, h5/0.7},

and

I2(¬e1) = {h1/0.4, h2/0.7, h3/0.7, h4/0.7, h5/0.1},
I2(¬e2) = {h1/0.8, h2/0.0, h3/0.5, h4/0.1, h5/0.6},
I2(¬e3) = {h1/0.7, h2/0.5, h3/0.4, h4/0.6, h5/0.1},
I2(¬e4) = {h1/0.9, h2/0.5, h3/0.6, h4/0.3, h5/0.6},
I2(¬e5) = {h1/0.3, h2/0.4, h3/0.4, h4/0.3, h5/0.1}.
Clearly H1(e2) /= H2(e2) and I1(¬e2) /= I2(¬e2), so
that

(F, G, A) ∪̃ ((F1, G1, B) ∩̃ (F2, G2, C))

/= ((F, G, A) ∪̃ (F1, G1, B)) ∩̃ ((F, G, A)

∪̃ (F2, G2, C)).

now, if we take

(F, G, A) ∩̃ ((F1, G1, B) ∪̃ (F2, G2, C))

= (H3, I3, A ∪ B ∪ C)

and

((F, G, A) ∩̃ (F1, G1, B)) ∪̃ ((F, G, A) ∩̃ (F2, G2, C))

= (H4, I4, A ∪ B ∪ C)

then

H3(e1) = {h1/0.3, h2/0.1, h3/0.3, h4/0.1, h5/0.7},
H3(e2) = {h1/0.1, h2/0.3, h3/0.3, h4/0.2, h5/0.2},
H3(e3) = {h1/0.1, h2/0.3, h3/0.3, h4/0.3, h5/0.2},
H3(e4) = {h1/0.2, h2/0.4, h3/0.3, h4/0.6, h5/0.9},
H3(e5) = {h1/0.1, h2/0.1, h3/0.3, h4/0.5, h5/0.7},
and

I3(¬e1) = {h1/0.4, h2/0.7, h3/0.7, h4/0.7, h5/0.1},
I3(¬e2) = {h1/0.8, h2/0.3, h3/0.5, h4/0.6, h5/0.6},
I3(¬e3) = {h1/0.7, h2/0.5, h3/0.7, h4/0.6, h5/0.4},
I3(¬e4) = {h1/0.6, h2/0.5, h3/0.5, h4/0.1, h5/0.1},
I3(¬e5) = {h1/0.3, h2/0.4, h3/0.4, h4/0.3, h5/0.1}.
also

H4(e1) = {h1/0.3, h2/0.1, h3/0.3, h4/0.1, h5/0.7},
H4(e2) = {h1/0.1, h2/0.9, h3/0.3, h4/0.8, h5/0.2},
H4(e3) = {h1/0.1, h2/0.3, h3/0.3, h4/0.3, h5/0.2},
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H4(e4) = {h1/0.2, h2/0.4, h3/0.3, h4/0.6, h5/0.9},
H4(e5) = {h1/0.1, h2/0.1, h3/0.3, h4/0.5, h5/0.7},
and

I4(¬e1) = {h1/0.4, h2/0.7, h3/0.7, h4/0.7, h5/0.1},
I4(¬e2) = {h1/0.8, h2/0.0, h3/0.5, h4/0.1, h5/0.6},
I4(¬e3) = {h1/0.7, h2/0.5, h3/0.7, h4/0.6, h5/0.4},
I4(¬e4) = {h1/0.6, h2/0.5, h3/0.5, h4/0.1, h5/0.1},
I4(¬e5) = {h1/0.3, h2/0.4, h3/0.4, h4/0.3, h5/0.1}.
Clearly, H3(e2) /= H4(e2) and I3(¬e2) /= I4(¬e2), so
that

(F, G, A) ∩̃ ((F1, G1, B) ∪̃ (F2, G2, C))

/= ((F, G, A) ∩̃ (F1, G1, B)) ∪̃ ((F, G, A)

∩̃ (F2, G2, C)).

similarly we can show that

(F, G, A) ∪̃ ((F1, G1, B) ∪R (F2, G2, C))

/= ((F, G, A) ∪̃ (F1, G1, B)) ∪R ((F, G, A)

∪̃ (F2, G2, C))

and

(F, G, A) ∩̃ ((F1, G1, B) ∩R (F2, G2, C))

/= ((F, G, A) ∩̃ (F1, G1, B)) ∩R ((F, G, A)

∪̃ (F2, G2, C))

Now we consider the collection of all fuzzy bipolar soft
sets over U and denote it by FBSS(U)E and let us denote
its sub collection of all fuzzy bipolar soft sets over U

with fixed set of parameters A by FBSS(U)A. We note
that this collection is partially ordered by inclusion. We
conclude from above results that:

Proposition 2. (FBSS(U)E, ∩̃ , ∪R) and (FBSS(U)E,

∪̃ , ∩R) are distributive lattices and
(FBSS(U)E, ∪R, ∩̃) and (FBSS(U)E, ∩R, ∪̃) are
their duals respectively.

Proof. Follows from above results.

Proposition 3. (FBSS(U)E, ∩R, ∪̃ ) is a bounded
distributive lattice, with least element (�, U, ∅)
and greatest element (U, �, E), while (FBSS(U)E,

∪̃ , ∩R, (U, �, E), (�, U, ∅)) is its dual.

Proof. Follows from above results.

Proposition 4. (FBSS(U)A, ∩R, ∪̃) = (FBSS(U)A,

∩̃ , ∪R) is a bounded distributive lattice, with least ele-
ment (�, U, A) and greatest element (U, �, A).

Proof. Follows from above results.

Proposition 5. Let (F, G, A) and (F1, G1, A) be two
fuzzy bipolar soft sets over a common universe U. Then

1. ((F, G, A)c)c = (F, G, A),
2. (F, G, A)⊆̃(F1, G1, A) implies (F1, G1, A)c⊆̃

(F, G, A)c.

Proof.

1. is straightforward.
2. If (F, G, A)⊆̃(F1, G1, A) then

F (e) ⊆ F1(e) and G1(¬e) ⊆ G(¬e) for all e ∈ A

implies that (G1, F1, A)⊆̃(G, F, A).
Hence (F1, G1, A)c⊆̃(F, G, A)c.

Proposition 6. (FBSS(U)A, ∩R, ∪R,c , (U, �, A),
(�, U, A)) is a De Morgan algebra.

Proof. Straightforward.

Definition 19. For a fuzzy bipolar soft set (F, G, A)
over U, we define a fuzzy bipolar soft set over U, which
is denoted by (F, G, A)∗ and given by (F, G, A)∗ =
(F∗, G∗, A) where

(F∗(e))(u) =
{

0 if (F (e))(u) /= 0

1 if (F (e))(u) = 0

and

(G∗(e))(¬u) =
{

1 if (G(¬e))(u) /= 1

0 if (G(¬e))(u) = 1

for all u ∈ U and for all e ∈ A.

Theorem 1. Let (F, G, A) be a fuzzy bipolar soft set
over U, then the following are true:

1. (F, G, A) ∩R (F, G, A)∗ = (�, U, A),
2. (F1, G1, A)⊆̃(F, G, A)∗ whenever

(F, G, A) ∩R (F1, G1, A) = (�, U, A),
3. (F, G, A)∗ ∪R (F, G, A)∗∗ = (U, �, A).

Thus (FBSS(U)A, ∩R, ∪R,∗ , (U, �, A), (�, U, A)) is
a Stone algebra.

Proof.

(1) Consider (F, G, A) ∩R (F, G, A)∗. For any e ∈ A



A
U

TH
O

R
 C

O
P

Y

1652 M. Naz and M. Shabir / On fuzzy bipolar soft sets, their algebraic structures and applications

(F ∩R F∗)(e) = F (e) ∧ F∗(e)

and

(G ∩R G∗)(¬e) = G(¬e) ∨ G∗(¬e).

⇒
((F ∩R F∗)(e))(u)

=
{

(F (e))(u) ∧ 0 if (F (e))(u) /= 0

0 ∧ 1 if (F (e))(u) = 0

= 0

and

((G ∩R G∗))(¬e)(u)

=
{

(G(¬e))(u) ∨ 1 if (G(¬e))(u) /= 1

1 ∨ 0 if (G(¬e))(u) = 1

= 1

for all u ∈ U.
Thus (F, G, A) ∩R (F, G, A)∗ = (�, U, A).

(2) If (F, G, A) ∩R (F1, G1, A) = (�, U, A), then
(F (e))(u) ∧ (F1(e))(u) = 0 and (G(¬e))(u) ∨
(G1(¬e))(u) = 1 for all u ∈ U e ∈ A. We have
two cases here:

(i) If (F(e))(u) = 0 then

(F∗(e))(u) = 1 ≥ (F1(e))(u) and

(ii) If (F(e))(u) /= 0 then

(F1(e))(u) = 0 ≤ (F∗(e))(u).

Thus (F1(e))(u) ≤ (F∗(e))(u) for all u ∈ U.
Again there are two cases:

(i) If (G(¬ e))(u) = 1 then

(G∗(¬e))(u) = 0 ≤ (G1(¬e))(u) and

(ii) If (G(¬ e))(u) /= 1 then

(G1(¬e))(u) = 1 ≥ (G∗(¬e))(u).

So (G∗(¬e))(u) ≤ (G1(¬e))(u) for all u ∈ U. This
implies that

F1(e) ⊆ F∗(e) and G∗(¬e) ⊆ G1(¬e)

for all e ∈ A.

Therefore, (F1, G1, A)⊆̃(F, G, A)∗.

(3) Consider (F, G, A)∗ ∪R (F, G, A)∗∗. For any e ∈
A

(F∗ ∪R F∗∗)(e) = F∗(e) ∨ F∗∗(e)

and

(G∗ ∪R G∗∗)(¬e) = G∗(¬e) ∧ G∗∗(¬e).

⇒
((F∗(e))(u) ∨ (F∗∗(e))(u)

=
{

0 ∨ 1 if (F (e))(u) /= 0

1 ∨ 0 if (F (e))(u) = 0

= 1

and

((G∗(e))(u) ∧ (G∗∗(e))(u)

=
{

1 ∧ 0 if (G(¬e))(u) /= 1

0 ∧ 1 if (G(¬e))(u) = 1

= 0

for all u ∈ U.
Thus (F, G, A)∗ ∪R (F, G, A)∗∗ = (U, �, A).

4. Application of fuzzy bipolar soft sets in a
decision making problem

Decision making is an important factor of all scien-
tific professions where experts apply their knowledge
in that area to make decisions wisely. We apply the con-
cept of fuzzy bipolar soft sets for modeling of a given
problem and then we give an algorithm for the choice
of optimal object based upon the available sets of infor-
mation. Let U be the initial universe and E be a set of
parameters. We shall adapt the following terminology
afterwards:

Definition 20. Let (F, G, E) be a fuzzy bipolar soft
set defined over U. A Comparison table for F is a
square table in which the number of rows and num-
ber of columns are equal, rows and columns both are
labeled by the object names h1, h2, h3, . . . , hn of the ini-
tial universe U, and the entries are tij , i,j = 1, 2, ..., n,
given by

tij = the number of parameters for which the mem-
bership value of hi exceeds or equal to the
membership value of hj

Clearly, 0 ≤ tij ≤ k, and tii = k, for all i, j where k is the
number of parameters present in E. Thus tij indicates a
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numerical measure, which is an integer. A Comparison
table for G is a square table in which the number of rows
and number of columns are equal, rows and columns
both are labeled by the object names h1, h2, h3, . . . ,
hn of the initial universe U, and the entries are sij , i,
j = 1, 2, . . . , n, given by

sij = the number of parameters for which the mem-
bership value of hi dominates or equal to the
membership value of hj

Clearly, 0 ≤ sij ≤ k, and sii = k, for all i, j where k is
the number of parameters present in E. Thus sij also
indicates a numerical measure, which is an integer.

Definition 21. The positive row sum and column of an
object hi, denoted by ri and ci are calculated by using
the formulae,

ri =
n∑

j=1

tij , cj =
n∑

i=1

tij ,

The negative row sum and column sum of an object
hi, denoted by r′

i and c′
j are calculated by using the

formulae,

r′
i =

n∑
j=1

sij , c′
j =

n∑
i=1

sij .

Definition 22. The positive score Pi of object hi will
be given by:

Pi = ri − ci

while the negative score Ni will be given by:

Ni = r′
i − c′

i.

The final score Si of object hi will be given by:

Si = Pi − Ni

for all j = 1, 2, ..., n.
We wish to find an object from the set of choice

parameters A. We are now giving an algorithm for the
choice of best object according to the specifications
made by observer and recorded data with the help of
a fuzzy bipolar soft set.

Algorithm. The algorithm for the selection of the best
choice is given as:

(1) Input the fuzzy bipolar soft set (F, G, E).
(2) Input the set of choice parameters P ⊆ E and

find the reduced fuzzy bipolar soft set (F, G, P).

(3) Compute the comparison tables for functions F

and G respectively
(4) Compute the positive and negative scores for

each object.
(5) Compute the final score.
(6) Find k, for which Sk = max Si.
(7) Then hk is the optimal choice object. If k has

more than one values, then any one of hk ‘s can
be chosen.

Example 2. Let U = {m1, m2, m3, m4, m5, m6, m7,

m8} be the set of candidates who have applied
for a job position of Office Representative
in Customer Care Centre of a company. Let
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9} = Hard
Working, Optimism, Enthusiasm, Individualism,
Imaginative, Flexibility, Decisiveness, Self-confidence,
Politeness and ¬E = {¬e1, ¬e2, ¬e3, ¬e4, ¬e5, ¬e6,

¬e7, ¬e8, ¬e9} = Negligent, Pessimism, Half-hearted,
Dependence, Unimaginative, Rigidity, Indecisiveness,
Shyness, Harshness. Here the gray area is obviously
the moderate form of parameters. Let the fuzzy bipolar
soft sets (F, G, E) describes the Personality Analysis
of Candidates as:

F e1 e2 e3 e4 e5 e6 e7 e8 e9
m1 0.5 0.6 0.8 0.7 0.5 0.4 0.3 0.6 0.8
m2 0.7 0.7 0.8 0.6 0.8 0.9 0.8 0.7 0.5
m3 0.6 0.8 0.4 0.1 0.6 0.5 0.4 0.5 0.6
m4 0.7 0.8 0.6 0.7 0.5 0.4 0.6 0.5 0.6
m5 0.5 0.4 0.5 0.6 0.7 0.7 0.8 0.6 0.7
m6 0.5 0.4 0.5 0.6 0.3 0.3 0.2 0.4 0.4
m7 0.4 0.2 0.4 0.6 0.7 0.6 0.5 0.3 0.2
m8 0.8 0.7 0.8 0.9 0.6 0.5 0.4 0.6 0.7

And

G ¬e1 ¬e2 ¬e3 ¬e4 ¬e5 ¬e6 ¬e7 ¬e8 ¬e9

m1 0.3 0.4 0.1 0.2 0.4 0.4 0.7 0.4 0.1
m2 0.2 0.1 0.1 0.3 0.2 0.2 0.1 0.2 0.4
m3 0.4 0.2 0.5 0.6 0.3 0.3 0.5 0.3 0.4
m4 0.1 0.1 0.3 0.2 0.4 0.3 0.3 0.4 0.3
m5 0.3 0.5 0.4 0.3 0.1 0.2 0.2 0.4 0.2
m6 0.5 0.5 0.3 0.3 0.6 0.5 0.8 0.4 0.5
m7 0.4 0.7 0.6 0.2 0.2 0.2 0.4 0.6 0.8
m8 0.2 0.1 0.1 0.1 0.3 0.3 0.4 0.3 0.2

(1) Input the fuzzy bipolar soft set (F, G, E).
(2) Input the set of choice parameters

P = {e1, e3, e4, e5, e7, e8} ⊆ E and find
the reduced fuzzy bipolar soft set (F, G, P)
given as:
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F e1 e3 e4 e5 e7 e8
m1 0.5 0.8 0.7 0.5 0.3 0.6
m2 0.7 0.8 0.6 0.8 0.8 0.7
m3 0.6 0.4 0.1 0.6 0.4 0.5
m4 0.7 0.6 0.7 0.5 0.6 0.5
m5 0.5 0.5 0.6 0.7 0.8 0.6
m6 0.5 0.5 0.6 0.3 0.2 0.4
m7 0.4 0.4 0.6 0.7 0.5 0.3
m8 0.8 0.8 0.9 0.6 0.4 0.6

G ¬e1 ¬e3 ¬e4 ¬e5 ¬e7 ¬e8

m1 0.3 0.1 0.2 0.4 0.7 0.4
m2 0.2 0.1 0.3 0.2 0.1 0.2
m3 0.4 0.5 0.6 0.3 0.5 0.3
m4 0.1 0.3 0.2 0.4 0.3 0.4
m5 0.3 0.4 0.3 0.1 0.2 0.4
m6 0.5 0.3 0.3 0.6 0.8 0.4
m7 0.4 0.6 0.2 0.2 0.4 0.6
m8 0.2 0.1 0.1 0.3 0.4 0.3

(3) Compute the comparison tables for functions F

and G respectively.
(4) Compute the positive and negative scores for

each object as given by Tables 3 and 4.
(5) Compute the final score given by Table 5.

From Table 5 we find k = 5.
Thus m5 is the best candidate for the position. In case

that m5 can not join the position m2 may be selected.

5. Bipolar fuzzy soft sets

Let U be an initial universe and E be a set of param-
eters. Let BFP(U) denotes the set of all bipolar fuzzy
sets of U and A, B, C be non-empty subsets of E.

Definition 23. A pair (F, A) is called a bipolar fuzzy
soft set over U, where F is a mapping given by F :
A → BFP(U).

Thus a bipolar fuzzy soft set over U gives a parame-
terized family of bipolar fuzzy subsets of the universe
U. For any e ∈ A,

F (e) = {(x, µP
F (e), µN

F (e)) : x ∈ U} where µP
F (e) :

U → [0, 1] andµN
F (e) : U → [−1, 0] are mappings.

Before proceeding to the further development of the-
ory of bipolar fuzzy soft sets, we give the following
interpretations:

Proposition 7. Let (F, G, A) and (F1, A) be the
fuzzy bipolar and bipolar fuzzy soft sets defined
over U respectively. Then (F, G, A) and (F1, A) are
equivalent.

Table 1

F m1 m2 m3 m4 m5 m6 m7 m8

m1 6 2 3 4 4 6 4 2
m2 5 6 6 5 6 6 6 4
m3 3 0 6 2 1 4 3 2
m4 4 2 5 6 3 6 5 1
m5 4 2 5 3 6 6 6 3
m6 1 1 2 0 3 6 4 0
m7 2 1 4 1 2 3 6 2
m8 6 3 6 5 4 6 4 6

Table 2

G m1 m2 m3 m4 m5 m6 m7 m8

m1 6 2 3 4 4 6 4 1
m2 5 6 6 4 5 5 5 5
m3 3 0 6 2 1 4 3 2
m4 4 2 4 6 4 6 5 2
m5 4 1 5 3 6 5 5 2
m6 1 2 2 2 3 6 2 0
m7 2 2 4 2 2 4 6 2
m8 6 2 6 4 4 6 5 6

Table 3

Row sum: ri Column sum: ci Positive score: Pi

m1 31 31 0
m2 44 17 27
m3 21 37 −16
m4 32 26 6
m5 35 29 6
m6 17 43 −26
m7 21 38 −17
m8 40 20 20

Table 4

Row sum: r′
i Column sum: c′

i Negative score:Ni

m1 30 32 2
m2 41 17 24
m3 21 36 −15
m4 33 27 6
m5 31 29 2
m6 18 42 −24
m7 25 35 −10
m8 39 20 19

Table 5

Final Score

m1 −2
m2 3
m3 −1
m4 0
m5 4
m6 −2
m7 −7
m8 1
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Proof. Let (F, G, A) be a given fuzzy bipolar soft
set defined over U. We define a bipolar fuzzy soft set
(F1, A) over U as:

F1(e) = {(x, F (e), −G(¬e)) : x ∈ U} where
−G(¬e)(x) = −(G(¬e)(x)) for all e ∈ A.

Conversely assume that we are given a bipolar
fuzzy soft set (F1, A) over U. We can define a fuzzy
bipolar soft set (F, G, A) over U in the following
manner:

F (e) = µP
F1(e), G(¬e) = −µN

F1(e) for all e ∈ A.
Thus both definitions are equivalent and may be used

interchangeably.
Consider the following example:

Example 3. Let U = {m1, m2, m3, m4, m5} be the set
of candidates who have applied for a job position of
Office Representative in Customer Care Centre of a
company. Let E = {e1, e2, e3, e4, e5, e6, e7}={Hard
Working, Optimism, Enthusiasm, Individualism, Imag-
inative, Decisiveness, Self-confidence} and ¬E =
{¬e1, ¬e2, ¬e3, ¬e4, ¬e5, ¬e6, ¬e7}={Negligent, Pe-
ssimism, Half-hearted, Dependence, Unimaginative,
Indecisiveness, Shyness}. Here the gray area is obvi-
ously the moderate form of parameters. Let the fuzzy
bipolar soft sets (F, G, E) describes the Personality
Analysis of Candidates as:

F (e1) = {m1/0.5, m2/0.7, m3/0.6, m4/0.7},
F (e2) = {m1/0.6, m2/0.7, m3/0.8, m4/0.8},
F (e3) = {m1/0.8, m2/0.8, m3/0.4, m4/0.6},
F (e4) = {m1/0.7, m2/0.6, m3/0.1, m4/0.7},
F (e5) = {m1/0.5, m2/0.8, m3/0.6, m4/0.5},
F (e6) = {m1/0.4, m2/0.9, m3/0.5, m4/0.4},
F (e7) = {m1/0.3, m2/0.8, m3/0.4, m4/0.6},

and

G(¬e1) = {m1/0.3, m2/0.2, m3/0.4, m4/0.1},
G(¬e2) = {m1/0.4, m2/0.1, m3/0.2, m4/0.1},
G(¬e3) = {m1/0, m2/0.1, m3/0.5, m4/0.3},
G(¬e4) = {m1/0.2, m2/0.3, m3/0.6, m4/0.2},
G(¬e5) = {m1/0.4, m2/0.2, m3/0.3, m4/0.4},
G(¬e6) = {m1/0.4, m2/0.2, m3/0.3, m4/0.3},
G(¬e7) = {m1/0.7, m2/0.1, m3/0.5, m4/0.3}.

Now let’s see the corresponding bipolar fuzzy soft set:

F1(e1) = {(m1, 0.5, −0.3), (m2, 0.7, −0.2),

(m3, 0.6, −0.4), (m4, 0.7, −0.1)},
F1(e2) = {(m1, 0.6, −0.4), (m2, 0.7, −0.1),

(m3, 0.8, −0.2), (m4, 0.8, −0.1)},
F1(e3) = {(m1, 0.8, −0), (m2, 0.8, −0.1),

(m3, 0.4, −0.5), (m4, 0.6, −0.3)},
F1(e4) = {(m1, 0.7, −0.2), (m2, 0.6, −0.3),

(m3, 0.1, −0.6), (m4, 0.7, −0.2)},
F1(e5) = {(m1, 0.5, −0.4), (m2, 0.8, −0.2),

(m3, 0.6, −0.3), (m4, 0.5, −0.4)},
F1(e6) = {(m1, 0.4, −0.4), (m2, 0.9, −0.2),

(m3, 0.5, −0.3), (m4, 0.4, −0.3)},
F1(e7) = {(m1, 0.3, −0.7), (m2, 0.8, −0.1),

(m3, 0.4, −0.5), (m4, 0.6, −0.3)}.
It is clear that fuzzy bipolar soft set depicts the infor-
mation in a better and comprehensive way than bipolar
fuzzy soft set. For example, if we read the data of can-
didate m1 with fuzzy bipolar soft set (F, G, E) then he
is having 0.6 fuzzy value for optimism and 0.4 fuzzy
value for pessimism and if we use the bipolar fuzzy soft
set (F1, E) then m1 is having 0.6 fuzzy value for opti-
mism and −0.4 shows the degree where m1 is lacking
optimism.

6. Conclusion

Our approach in this paper combines the bipolarity,
fuzziness and parameterization for defining the fuzzy
bipolar soft sets. The idea of fuzzy bipolarity of soft
sets has been given. We have also given the definition
of bipolar fuzzy soft sets in which the parameteriza-
tion is done through a single mapping from the set of
parameters to the collection of all bipolar fuzzy sets of
initial universal set. We have shown through a forma-
tion that the two ideas actually coincide with each other
and the fuzzy bipolar soft set is similar in working as
bipolar fuzzy soft set. Both definitions are equivalent
but it is easier and straightforward to model the phe-
nomenon using fuzzy bipolar soft sets because it is a
more logical and suitable approach according to the
nature of the modeling problems. Future research may
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be done to explore further aspects of this newly defined
structure. Modeling of supported physical phenomenon
is our next goal. Another prospective direction is to
study the topological structure and similarity measures
of fuzzy bipolar soft sets in order to explore for a solid
foundation of the research work and development of
working methodologies.
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