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0.3 Introduction

" It is the mark of an instructed mind to rest satisfied with that degree of precision
which the nature of the subject admits, and not to seek exactness where only an
approximation of the truth is possible."

(Aristotle, 384-322 BC)

A great philosopher from history uttered these words and ironically, himself estab-
lished a binary logic that only admits the opposites of true and false, a logic which
does not admit degrees of truth in between these two extremes. In other words, Aris-
totelian logic does not admit imprecision in truth. However, Aristotle’s quote is so
appropriate today; it is a quote that admits uncertainty. It is required that we should
heed; we shall have to balance the precision we seek with the uncertainty that exists.
Most of the mathematical models, and solutions do not address the uncertainty in
given information. Again, we quote a genius mind L. A. Zadeh saying,

" The closer one looks at a real world problem, the fuzzier becomes its solution."

(Zadeh, 1973)

We are living in a world which is becoming ever more reliant on the use of intelligent
electronics to control the behavior of real-world resources. For example, an increasing
amount of commerce is performed through credit card or online banking systems.
Similarly, airports, large national databases, e-governments etc. are being run without
ever looking out of a window. Another, more individual, example is the increasing use
of personal gadgets or devices for organizing meetings and contacts and socializing
purposes. All these examples share a similar structure; multiple parties (e.g. data or
airplanes or people) combine together to coordinate their activities in order to attain
a common goal.

Fuzzy and vague logic means approximate reasoning, information granulation, com-
puting with words and so on. Ambiguity is always present in any realistic process.
This ambiguity may arise from the interpretation of data inputs and in the rules used
to describe relationships between the informative attributes. A logical view on vague-
ness provides an inference structure that enables the human reasoning capabilities to
be applied to artificial knowledge-based systems. A logical approach provides a means
for converting linguistic strategy into control actions and thus offers a high-level com-
putation. L. A. Zadeh was the first one who introduced the concept of fuzzy sets in [46]
which was proved a paradigm shift in later years. Theory of soft sets was introduced
by Molodstov [34] in 1999. The purpose of this novel concept was to remove the inad-
equacy of parameterization tool in previously defined theories of fuzzy Mathematics.
Although the theory of rough sets [39] addresses the issue of parameterization and
the hybrid structure such as fuzzy rough sets can also be utilized for incorporating
the fuzziness of data but no significant role of parameters can be found in operations
defined on rough sets. On the other hand, the absence of any restrictions while making
approximations for a given object in soft sets establishes this theory as more handy,
convenient and easily applicable in practice. Since the introduction of the theory of
soft sets in 1999, a lot of work has been done so far and for different applications of
soft sets see [2], [3], [4], [1], [13], [12], [21], [18], [19], [20], [25], [30], [31], [32], [33], [44].
Primarily the aim of soft set theory is to provide a tool with enough parameters to deal
with uncertainty associated with the data, whereas on the other hand it has the ability
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to represent the data in a useful manner. With the introduction of new operations on
soft sets, it is felt imperative to study the underlying algebraic structures. This will
give a forehand and better understanding for their applications.

In the past, studying the algebraic structure of a mathematical theory has proved
itself effective in making the applications in the sciences more efficient. This is the
inherent motivation for us to study the algebraic structures of these generalizations of
soft set theory. Such research may not only provide more insight into soft set theory,
but also hopefully develop methods for applications. Lattice theory has become a
popular mathematical framework in different domains of information processing, such
as fuzzy sets, formal concept analysis, mathematical morphology etc. In this work,
we consider three important extensions of soft set theory, from the point of view of
lattice theoretic algebraic structures. The first one deals with imprecision and vague-
ness in knowledge representation and information processing with one function for
approximations as we have done in Chapters 2 and 3 following the notions initiated
by Molodstov in [34], under the framework of crisp and fuzzy sets. The second one
handles imprecision and vagueness in multi-frames of knowledge representation and in-
formation processing with more than one function for approximations as we have done
in Chapters 4 and 5 following the notions initiated by Jun et al. in [18], under the
framework of crisp and fuzzy sets. The third one with more than one frames deals ad-
ditionally with the bipolarity of information c.f. [11], [26], [27] which occurs in several
domains, such as preference modeling under some parameters, spatial reasoning, argu-
mentation etc. In these domains, two types of information have often to be handled:
(i) positive information (which is possible and desired), and (ii) negative information
(which is not possible or constraint). Extension of soft set to this frameworks in crisp
and fuzzy context is studied in Chapters 6 and 7.

In the study of soft sets as algebraic structures there are mainly two types of
collections of soft sets. First the collection of soft sets with a fixed set of parameters,
and second the collection of soft sets with different sets of parameters. These two
types of collections with new operations sometimes behave similarly and sometimes
differently. There are many algebras and lattice based structures associated with
logic. Boolean algebras are associated with traditional two valued Aristotelean logic.
MV algebras are suitable for multi-valued logic. BCI/BCK algebras generalize the
notion of algebra of sets with the set subtraction as the only non-nullary operation.
These algebras generalize implication algebras which is mostly based on lattice based
complements and pseudocomplements. In this work, we study algebraic structures
of soft sets associated with their unary and binary extended, restricted and product
operations in a systematic way.



0.4 Chapter-wise Study

The present work in this thesis is written in the lattice-theoretical background of soft
sets. It contains the necessary part of soft set theory and shows how to formulate in an
elegant way various concepts and facts about the algebraic structures of soft sets and
its generalized structures. Prerequisites are minimal and the work is self-contained.
In this thesis, we have eight chapters. In the first chapter, we have given some
basic concepts and notations which will be helpful for understanding the rest of the
thesis. Classical Set theory and algebraic structures, a brief introduction of fuzzy sets
and bipolar fuzzy sets is included with most familiar notions as per use in literature.
In Chapter 2, definitions and operations on soft sets are given. This chapter sets
forth the use of mathematical notations adapted for soft sets in our thesis in order to
create a flow and understanding without any ambiguity. Definition of soft set is taken
from [34] and operations on soft sets are taken from [2]. In set theory we come across
with only one null set and the whole set itself as trivial cases and this holds in the
case of fuzzy sets as well, but surely this is not the case in soft sets. Here we have
relative null soft set and relative whole soft set over initial universe. This difference
adds a new aspect to the soft set theory. Operations on soft sets are either extended
or restricted based upon the choice of parameters and this property is unique for soft
sets so far. No earlier vague structure addressed this problem of parametrization and
therefore soft set theory is more adequate in operational use with parameters. It is
important for us to get familiar with the properties of these newly defined operations
on soft sets. Properties of operations defined on soft sets are discussed and examples
are worked out to show way of working out with soft sets. The fact is also revealed that
the distributivity of union and intersection is not following as it holds in previously
defined crisp and vague set theories. A complete check for all the possible cases has
been made to establish distributive laws for soft sets. In the last section of chapter 2,
various algebraic structures of soft sets associated with the new operations are studied.
It is seen that the collection of soft sets with fixed parameters become a Boolean
algebra, MV-algebra, Stone algebra and Brouwerian and atomic lattices. Moreover, it
also becomes BCK-algebra with respect to restricted difference and " x " operations.
In Chapter 3 fuzzy soft sets are discussed for their algebraic structures. Newly
defined operations on fuzzy soft sets are used in this chapter in a similar way as used
for soft sets in Chapter 2. Some operations of soft sets, for example extended or
restricted difference are not available for fuzzy soft sets and therefore there are some
properties which do not hold for fuzzy soft sets. On the other hand, we can define
some operations on fuzzy soft sets which are not much meaningful in soft set theory
but give interesting results in fuzzy soft context. Algebras of collections of fuzzy soft
sets are studied and it is observed that the collection of fuzzy soft sets with fixed set
of parameters becomes Kleene algebra, Stone algebra and Brouwerian lattice.
Chapter 4 is concerned with the study of double-framed soft sets which is a general-
ization of soft sets. Operations on double-framed soft sets are defined and investigated
for their algebraic behaviors. After a rigorous account on the properties we have
discussed the algebraic structures of double-framed soft sets. It is shown that the col-
lection of double-framed soft sets has a different behavior than the soft sets and fuzzy
soft sets and proves to be richer because we can define more operations. Collection
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of double-framed soft sets with fixed set of parameters becomes de Morgan algebra
with " © " operation, MV-algebra and Boolean algebra for " ¢ " operation, pseudo-
complemented lattice for " ¢ " operation and Brouwerian lattice. It also becomes
BCK-algebra with respect to restricted difference and " x " operations.

In Chapter 5, the concept of double-framed fuzzy soft sets is introduced as a
generalization of fuzzy soft sets and double-framed soft sets. We have defined various
operations on double-framed fuzzy soft sets and checked their algebraic properties. It
is found that the collection of this structure with fixed set of parameters gives rise to
Kleene algebra, de Morgan algebra, Stone algebra and Brouwerian lattice.

Chapter 6 introduces the idea of bipolar soft sets which is hybridization of structure
of soft set, double-framed soft set and bipolarity. It is a new concept and approximates
positive and negative information for available sets of choices and parameters. We have
shown that the class of bipolar soft sets is a subclass of the class of double-framed soft
sets. An example from psychology is also presented. Some operation of double-framed
soft sets are available to bipolar soft sets while some are not. We have figured out
the algebras of bipolar soft sets and obtained the results which are not simply a
consequence but showing a difference of character in this newly defined structure as
well. It is shown that the collection of bipolar soft sets with a fixed set of parameters
becomes a Kleene algebra.

In Chapter 7, we have initiated the ideas of fuzzy bipolar soft set as a generalization
of bipolar soft set and bipolar fuzzy soft set as a generalization of fuzzy soft set. We
have proved that both ideas coincide with each other. We have also shown that the
class of fuzzy bipolar soft sets is a subclass of the class of double-framed fuzzy soft
sets. Thus the structure of fuzzy bipolar soft sets is agreeable to proceed and it is
proved that the collection of fuzzy bipolar soft set with a fixed set of parameters is a
de Morgan algebra for operation " © " and Kleene algebra for operation " * ".

Chapter 8 is devoted for providing a general algebraic framework for extensions in
theory of soft sets in three different contexts: soft sets, multi-framed soft sets and multi-
polar soft sets. A standard formula is presented for defining aggregation operators on
the three types of extensions of soft sets in restricted and extended manner. The
topic provides an overview of the observations made in earlier chapters and we have
summarized the results in tabular form. At the end, an application of soft set theory
in decision making is given with an informal algorithm and worked out example is
provided for decision making with fuzzy bipolar soft sets.



Chapter 1

Preliminaries

In this chapter, theory of classical sets and theory of fuzzy sets are discussed. Various
operations, their laws and properties of classical and fuzzy sets are given. The classical
sets, we are going to consider, are defined by means of the crisp or definite boundaries.
The concept of a set is fundamental in Mathematics and intuitively can be described
as a collection of objects possibly linked through some properties. A classical set A
has clear boundaries, i.e. z € A or x ¢ A exclude any other possibility. This implies
that there is a certainty or definiteness involved in the approximation of these sets.
A fuzzy set, on the other hand, is defined by its uncertain or vague properties. A
fuzzy set is a class with a continuum of membership grades. So a fuzzy set A in a
referential (universe of discourse) X is characterized by a membership function iy
which associates with each element z € X a real number pu,(x) € [0,1], having the
interpretation p4(x) is the membership grade of z in the fuzzy set A. The crisp sets
are sets without any ambiguity in their membership whereas fuzzy set theory is an
efficient theory in dealing with the concepts of vagueness. As an extension of fuzzy
sets, Lee [26] introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy
sets are an extension of fuzzy sets whose membership degree range is enlarged from
the interval [0,1] to [—1,1]. Bipolar-valued fuzzy sets have membership degrees that
represent the degree of satisfaction to the property corresponding to a fuzzy set and its
counter property. In a bipolar-valued fuzzy set, the membership degree 0 means that
elements are irrelevant to the corresponding property, the membership degrees on (0, 1]
indicate that elements somewhat satisfy the property, and the membership degrees on
[—1,0) indicate that elements somewhat satisfy the implicit counter-property. Basic
notions of bipolar fuzzy sets given after reviewing the ideas of the crisp sets and fuzzy

sets.
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1.1 Crisp Sets

In this section, we recall the standard definitions and main results on algebraic struc-

ture of classical crisp set theory in detail. Following definitions are taken from [7].

1.1.1 Definition

Let X be a set. An order < on X is a reflexive, antisymmetric, and transitive binary

relation, that is, for all z,y,z € X,

1) z <z,

2) z <yandy <z imply z =y, and
3) r<yand y<zimply z < z.

An ordered set is denoted by (X, <), where X is a non-empty set and < an order
on X.

1.1.2 Definition

Let (X,<3) and (Y, <3) be two ordered sets. A mapping 6 : X — Y such that
0(x1) <2 0(z2) whenever x <; y is called a homomorphism or an order homomorphism

or order preserving.

1.1.3 Definition

Let X be an ordered set and let A C X. Then x € X is a mazimal element of A, if
x < a € A implies a = x. Further, x € X is the greatest element of A, if x > a for all
a€ A

A minimal element of A and the least element of A are defined dually. Note that

if A has a greatest element, it is unique. Similarly, the least element of A is unique.

1.1.4 Definition

Let P be an ordered set and A C X. An element v € X is an upper bound of A if
a < x for all a € A. A lower bound of A is defined dually.

If there is a least element in the set of all upper bounds of A, it is called the
supremum of A and is denoted by sup A or \/A; dually a greatest lower bound is
called infimum and written inf A or /\ A. We also write a V b for sup{a,b} and a A b

for inf{a, b}. Supremum and infimum are frequently called join and meet.
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1.1.5 Definition

Let L be a non-empty ordered set. If a Vb and a A b exist for all a, b € L, then L
is called a lattice. If \/A and /\A exist for all A C L, then L is called a complete

lattice.

1.1.6 Definition

Let (L, <) be a lattice. If \/ L and /\ L exist, then L is called a bounded lattice. In a
bounded lattice, the least element is denoted by 0 and greatest element by 1.

The definition of a lattice given with the help of a binary relation on X is a
constructive approach, now, we present the algebraic definition of a lattice which is an
axiomatic approach and given with the help of binary operations defined on X.

1.1.7 Definition

A binary operation " * " on X is a map x : X x X — X. A set X together with a

n n

binary operation " * " on it, is called a groupoid and denoted by (X,x*). In general

*(z,y) is denoted by = * y.

1.1.8 Definition

Let (X, *) be a groupoid. Then x is called
1) Associative if zx (y*2) = (x *xy) * 2,
2) Commutative if x x y =y * x,

3) Idempotent if x x x = x

forall z, y, z € X

1.1.9 Definition

An algebraic structure (.S, *) is called a semilattice if S is a non-empty set and * is a

binary operation such that * is commutative, associative and idempotent.

1.1.10 Definition

An algebraic structure (L, A, V) is called a lattice if L is a non-empty set and A and V

are binary operations on L, (L, A) and (L, V) are semilattices and absorption laws for
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A and V hold i.e.

zA(xVy) = zand

zV(xAy) = zforalx, yelL.

Using the basic lattice operations, an ordering can be defined as following:

1.1.11 Theorem
Let (L, A, V) be a lattice and =, y € L. The binary relation < on L is defined by:
r < y & xVy=y or equivalently

z < y saxAy=cforallz, yelL.

Then (L, <) is a lattice satisfying the properties of lattice given in Definition 1.1.5.

1.1.12 Theorem

Let (L, <) be a lattice and x, y € L. The binary oprations " A " and " V " on L are
defined by:
x Ay = inf{z,y} and
xVy = sup{z,y} forall z,y e L.
Then (L, A, V) satisfies the properties of lattice given in Definition 1.1.10.
Thus, both Definition 1.1.5 and Definition 1.1.19 are equivalent to each other.

Onwards from here, we consider both notations interchangeably without stating ex-

plicitly.

1.1.13 Definition

Let (L1,A,V) and (L2,A,V) be two lattices. A mapping 6 : L; — Lo such that
O(xANy) =0(x)ANO(y) and §(zVy) = 0(x)VO(y) is called a homomorphism of lattices.
A one-to-one lattice homomorphism is called monomorphism. A one-to-one and onto
homomorphism is called lattice isomorphism.

Next we give the definitions of various algebras of lattices:

1.1.14 Definition

Let L be a bounded lattice with a least element 0 and a greatest element 1. For an

element € L, an element y € L is a complement of x if
zVy=1land x Ay =0.

If an element x has a unique complement, we denote it by x¢.
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1.1.15 Remark

There exist bounded lattices with elements having more than one complement or no

complement at all.

1.1.16 Example

Let L be a lattice given by the Figure 1.1.1. In this lattice b and e are complements

of a, ¢ has no complement, 1 has 0 as complement and 0 has 1.

1.1.17 Definition

A bounded lattice L in which every element has a complement is called a complemented

lattice.

1
a b
d e
0
Figure 1.1.1

1.1.18 Example

Let X be a non-empty set. Then (P(X), C) is a complemented lattice.

1.1.19 Definition

Let L be a bounded lattice with a least element 0 and a greatest element 1. Let

"t L — L, mapping x — x~ is such that
(x")” =z and z < y implies that y~ <z’ for all x,y € L.

Then " " is called an involution or duality on L.
It follows that " “ " is bijective, and that 0'=1 and 1°= 0.
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1.1.20 Example

Let I =0,1]. Then (I, <) is a bounded lattice and “: z +— 1 — z is an involution on I.

1.1.21 Definition

Let L be a lattice with a least element 0. Then x € L is called an atom of L, if 0 < x
and there is no element y in L with 0 < y < x. The set of atoms of L is denoted by

A(L).

1.1.22 Example

Let X be a non-empty set. Then every singleton subset of X is an atom of lattice

P(X) and A(P(X)) ={{z}: 2z € X}.

1.1.23 Definition

Let L be a bounded lattice and " “ " is an involution on L, the identities

(zVy) = z' Ay’

(zVy) = z' Ny’

are called the de Morgan Laws.
A nice property of unions and intersections is that they distribute over each other.
Therefore, it is natural to consider lattices for which joins and meets have analogous

properties.

1.1.24 Definition

A lattice L satisfying the distributive laws

xV(yAz) = (xVy A(xVz) forall z,y,z€ L

is called a distributive lattice.

1.1.25 Definition

If de Morgan’s laws hold for a bounded distributive lattice having an involution, then

it is called a de Morgan algebra. Such a system is denoted by (L, V,A,”,0,1).

1.1.26 Definition

A bounded distributive lattice which is complemented is called a Boolean lattice.
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1.1.27 Definition

A de Morgan’s algebra (L,N,V,”,0,1) that satisfies xt Az'< yVy’ forall z,y € L, is
called a Kleene algebra.

1.1.28 Definition

Let L be a lattice. Then L is said to be atomic if every element x of L is the supremum

of the atoms below it, i.e.
r=\/{y € ALy <z},

1.1.29 Definition

Let L be a lattice, and z,y € L. Then z is called pseudocomplemented relative to y if
the following set:
T(x,y) ={z€ LlzAz <y}

has a greatest element. This greatest element is said to be pseudocomplement of x

relative to y, denoted by x — y. So, x — v, in case it exists, has the following property:

zAx <yifand only if z <z — y.

1.1.30 Definition

An element x € L is said to be relatively pseudocomplemented if x — y exists for all
y € L.

1.1.31 Definition

A lattice L is said to be an implicative lattice or relatively pseudocomplemented or
Brouwerian, if every element in L is relatively pseudocomplemented.

1.1.32 Example

Let L(X) be the lattice of open sets of a topological space X. Then L(X) is Brouw-
erian. For any open sets A, B € L(X), A — B = (A°U B)°, the interior of the union
of B and the complement of A.

1.1.33 Definition

Let (L,A,V,0,1) be a bounded lattice and = € L. Then an element z* is called a
pseudocomplement of z, if x A x* = 0 and y < z* whenever x A y = 0. Note that

Tz — 0=zx*
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1.1.34 Definition

If every element of a lattice L has a pseudocomplement then L is said to be pseudo-

complemented.

1.1.35 Definition

The equation

vt =1

is called Stone’s identity.

1.1.36 Definition

A Stone algebra is a pseudocomplemented, distributive lattice satisfying Stone’s iden-

tity.

1.1.37 Definition [17]

MV-algebra is an algebraic structure (M, ®,*,0), where @ is a binary operation, " * "

is a unary operation, and 0 is a constant such that the following axioms are satisfied

for any a, b € M:

(MV1) (M,®,0) is a commutative monoid,
(MV2) (a*)* =a,
(MV3) 0*®a=0",

(MV4) (a*@b)*@b=(b*Da)" ®a.

1.1.38 Definition [9]

A set X with a binary operation * and a constant 0 is called a BCI algebra if for any

x, Yy, z in X, it satisfies the following conditions:
(BCI-1) ((zxy)*(xx2))*(zxy) =0,
(BCI-2) (z*(zxy))*xy =0,

(BCI-3) zxz =0,

(BCI-4) 2y =0and y*xx =0 imply = = y.
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1.1.39 Definition [9]

A BCl-algebra (X;*,0) is called a BCK-algebra if it satisfies the following condition:

(BCK-5) 0%z =0. for all z € X.

1.1.40 Definition [9]

A BCK algebra X is called bounded if there exists some element 1 € X such that
x*x1 =0 for all z € X. For a bounded BCK algebra (X;x,0), if an element z € X
satisfies 1 % (1 x &) = z, then z is called an involution (Different meaning from the

iwvolution given in Definition 1.1.109.

1.2 Fuzzy Sets

The material presented in this section is taken from [46]. We give the definitions of
fuzzy sets and some related terms.

Let X be a set and A be a subset of X. The characteristic function of A is the
function Cy of X into {0,1} defined by Cy(x) =1if x € A and Ca(x) =0if x ¢ A.
1.2.1 Definition

A fuzzy subset of X is a function from X into the unit closed interval [0,1]. The set
of all fuzzy subsets of X is called the fuzzy power set of X, and is denoted by FP(X).
1.2.2 Definition
Let p, v € FP(X). If u(x) < v(z) for all x € X, then p is said to be contained in v,
and we write u C v( or v D p).

Clearly, the inclusion relation C is a partial order on FP(X).

1.2.3 Definition

Let p, v € FP(X). Then p Vv and p A v are fuzzy subsets of X, defined as follows:
For all z € X,

V
A

—
<
S~—
—~
8
~—
I
—~
8
~

v(z).

The fuzzy subsets p Vv and p A v are called the union and intersection of p and v,

respectively.
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1.2.4 Definition

The complement of a fuzzy subset u is denoted by p” and is defined by

for all z € X.

1.2.5 Definition

The fuzzy subsets of X, denoted by 0 and 1, which map every element of X onto 0
and 1 respectively, are called the empty fuzzy set or null fuzzy subset and the whole

fuzzy subset of X respectively.

1.3 Bipolar Fuzzy Sets

The material presented in this section is taken from [26]. We give the definitions of
bipolar fuzzy sets and some related terms. In bipolar-valued fuzzy sets, two kinds of
representations are used: canonical representation and reduced representation. In the
canonical representation, membership degrees are expressed with a pair of a positive
membership value and a negative membership value. That is, the member ship degrees
are divided into two parts: positive part in [0, 1] and negative part in [—1,0]. In the
reduced representation, membership degrees are presented with a value in [—1,1]. In
our work, we use the canonical representation of a bipolar-valued fuzzy sets. For more

material on this topic we refer to [26] and [27]. Let X be the universe of discourse.

1.3.1 Definition

A bipolar fuzzy set p in X is defined as:

p={(z 1), yN@):ze X}

where uf : X — [0,1] and p/V : X — [~1,0] are mappings. The positive member-
ship degree u’ () denotes the satisfaction degree of an element z to the property and
the negative membership degree 1V (z) denotes the satisfaction degree of x to some
implicit counter-property. If uf'(z) # 0 and ™ (x) = 0, it is the situation that z is
regarded as having only positive satisfaction for p. If pf(z) = 0 and p(z) # 0, it
is the situation that x does not satisfy the property of pu but somewhat satisfies the
counter-property of p. It is possible for an element z to be u” (z) # 0 and u”(z) # 0
when the membership function of the property overlaps that of its counter-property

over some portion of the domain.
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For example, sweetness of foods is a bipolar fuzzy set. If sweetness of foods has been
given as positive membership values then bitterness of foods is for negative membership
values. Other tastes like salty, sour, pungent (e.g. chili) etc. are irrelevant to the
corresponding property. So these foods are taken as zero membership values.

For the sake of simplicity, we shall write p = (uP T ) for the bipolar fuzzy set

p={(z, p"(z), pN(x)):z e X}.
The set of all bipolar fuzzy sets of X is called the bipolar fuzzy power set of X,
and is denoted by BFP(X).
1.3.2 Definition

Let p, v € BFP(X). If uf(z) < v¥(z) and vV (z) < pV(z) for all z € X, then p is
said to be contained in v, and we write u C v( or v D ).

Clearly, the inclusion relation C is a partial order on BFP(X).

1.3.3 Definition

Let pu, v € BFP(X). Then set operations ;U v and pN o are bipolar fuzzy sets of X,

defined as follows:

For all x € X,
Do) (@) = P @)Vl @), (Uo)N (@) = p (@) AoV (z) and
(o) @) = uf @ A" @), o) @) = 6 @) Vo (=)

The bipolar fuzzy subsets U v and p N v are called the union and intersection of p

and v, respectively.

1.3.4 Definition

The complement of a bipolar fuzzy subset u is denoted by & and is defined by

(1) (@) = 1= p (), (B)V(x) = —1 = (2)

for all z € X.



Chapter 2

Soft Sets and Their Algebraic

Structures

In this chapter we will present the basic concepts of soft set theory. Soft sets have
received much attention in the last decade because of their applications in decision
making problems. Molodstov [34] presented the concept of soft sets to deal with
uncertain type of data under a parametrized environment which is rich enough to
make approximations by incorporating the previous concepts like fuzzy sets, vague
sets, interval valued fuzzy sets, intuitionistic fuzzy sets, rough sets, etc. Molodstov
had given the concept of soft set and introductory ideas to apply in various fields
while Maji et al. defined operations on soft sets in [32], [33]. Ali et al. [2] pointed out
some practical mistakes in the definition of operations by Maji et al. and defined new
operations introducing the concept of extended and restricted operations for soft sets.
These operations not only enriched the theory but also proved this new structure deep
enough to work for further structural investigations. This gives rise to our interest
in the algebraic properties of a soft set’s internal structure. So here we have made
our first study. Firstly the definition of a soft set and various operations are given
and then, we study some important properties associated with these operations. A
collection of all soft sets with respect to new operations inspires to be checked out
for various lattices and algebras. Going through different axiomatic requirements we
figure out the algebraic structures of soft sets and finally, we show that soft sets with

a fixed set of parameters are also MV algebras and BCK algebras.

2.1 Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the

power set of X and A, B be non-empty subsets of E.

12
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2.1.1 Definition [34]

A pair («,A) is called a soft set over X, where « is a mapping given by a: A — P(X).
Therefore, a soft set over X gives a parametrized family of subsets of the universe X.
For e € A, a(e) may be considered as the set of e—approximate elements of X by the
soft set (a,A). Clearly, a soft set is not a classical set. From now onwards, we shall
use the notation A, over X to denote a soft set («,A) over X where the meanings of

a, A and X are clear in a harmony with the use of usual pair notation.
2.1.2 Definition [12]

For two soft sets A, and Bg over X, we say that A, is a soft subset of Bg if
1) AC B and

2) a(e) C f(e) for all e € A.

We write AaéBﬁ.
A, is said to be a soft super set of Bg, if Bg is a soft subset of A,. We denote it
by AaiBg.

2.1.3 Definition [12]

Two soft sets A, and Bg over X are said to be soft equal if A, and Bg are soft subsets
of each other. We denote it by A,=Bg.

2.1.4 Example

Let X be the set of cars under consideration, and E be the set of parameters of
different features in cars, X = {c1,c2,c3,c4,¢5}, E = {e1,e2,e3,e4,e5} = { Seat Heater,
Automatic transmission, Sunroof, Leather Seats, Navigation System}. Suppose that
A = {e1,e2,e3}, and B = {ej,ea}. A soft set A, describing the ¢ features of cars”

which Mr. X is going to consider for buying is given as follows:

a : A-PX),
{ca,c3,c4} if e =eq,
e — {c1,c3,¢4} if e = eo,

{ca,c3,c4,c5} if e =es.

And the soft set Bg given by
I} : B — P(X),
{ {es} if e = ey,
(& —

{017637 04} if e = €2,
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is a soft subset of A, which represents another look by Mr. X on his earlier choices,
SO BﬁQAa.

2.2 Operations on Soft Sets

Now, we give various operations on soft sets as defined in [4]. We have made little
modifications to some notations just for the convenience of reader and in order to

create a unanimity in the flow of this thesis.

2.2.1 Definition

Let A, and Bg be two soft sets over X. Then the or-product of A, and Bg is defined
as a soft set (A x B),c5, where aUp : (A x B) — P(X), defined by

(a,b) = a(a) U 5(b).

It is denoted by Ay V Bg=(A x B),cs-

2.2.2 Definition

Let A, and Bg be two soft sets over X. The and-product of A, and Bg is defined as
a soft set (A x B),n5, where aNf : (A x B) — P(X), defined by

(a,b) — ala) N (D).

It is denoted by Ay A Bg=(A x B),As-

2.2.3 Definition

The extended union of two soft sets A, and Bg over X is defined as a soft set (AU
B) 05, where aUp : (AU B) — P(X), defined by

ale) ifeec A—B
e— < [B(e) ifeeB—A
ale)UB(e) ifeec ANB

We write Ay Ue Bg=(A U B),q-
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2.2.4 Definition

The extended intersection of two soft sets A, and Bg over X, is defined as a soft set
(AU B),ns where, aNf : (AU B) — P(X), defined by

a(e) ifec A-B
e— < fe) ifee B—A
ale)Nple) ifeec ANB

We write A, Mg Bﬂé(A U B)aﬁ/g"

2.2.5 Definition

Let Ay and Bg be two soft sets over X such that (AN B) # (. Then the restricted
union of A, and Bg is defined as a soft set (AN B),c5 where, aUB : (ANB) — P(X),
defined by

e — afe) U S(e).
We write A, U B@i(A N B)aCJB‘

2.2.6 Definition

Let A, and Bg be two soft sets over X such that (AN B) # (. Then the restricted
intersection of A, and Bg is defined as a soft set (AN B),~5 where, aNfg: ANB —
P(X), defined by

e— afe) N B(e).
We write A, M Bg=(AN B),As-

2.2.7 Definition

The extended difference of two soft sets A, and Bg over X, is defined as a soft set
(AU B)qe g where, a . f: (AU B) — P(X), defined by

a(e) ifeec A—B
e— < B(e) ifee B—A
ale) —fB(e) if e€c ANB.

We write A, ¢ Bﬂi(A U B)avgﬁ-
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2.2.8 Definition

Let A, and Bg be two soft sets over X such that AN B # (). Then the restricted
difference of A, and Bg is defined as a soft set (AN B)y_p where, a ~ f: ANB —
P(X), defined by

e— afe) — Be).
We write A, ~ B@i(A N B)avﬁ.

2.2.9 Definition

The complement of a soft set A, denoted by (Ay)¢ and defined as (A,)“=Aye where,
af: A — P(X) is defined by
e— X —afle).

Clearly (a¢)€ is same as a and ((Aq)%)¢ = Aq-

2.2.10 Example

Let U be the set of houses under consideration, and E be the set of parameters,
U = {h1,h2,h3,ha,h5}, E = {e1,e2,e3,e4,e5,e6} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that A = {ej,e2}, and B =
{e2,e3}. The soft sets A, and Bg describe the “requirements of the houses” which Mr.

X and Mr. Y are going to buy respectively and is given as follows:

a = A— P(X), defined by
{ha, h3} if e =eyq,
e
{h1>h27h‘5} 1f€: €2,
and
g : B —P(X), defined by
e

{ha, hs} if e = ey,
{hl,h3,h5} ife:eg.
Now, we approximate the resulting soft sets obtained by applying the above men-

tioned operations on A, and Bgz. We have
(i) AoV Bg=(A x B),g, where

(a0B) :  (Ax B)— P(X), defined by
{hg, h3,hs} if e = ( )

. {h1,ha, hs, hs} if e = (e1,e3),
(e2,€2)

(e2,€3)

{hl,hg,hg)} ife=
{h17h27h3ah5} 1f€:
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(i) Aa A Bg=(A x B),np, where

(aNB) : (Ax B)— P(X), defined by
{h2} if e = (e1, e2),
e {h3} if e = (617 63)7
{hg, h5} if e = (62, 62),
{hi,hs} if e = (e2,e3).

(iii) Aq Ue Bg=(AU B),n3, where

(aUB) : (AUB) — P(X), defined by
{ha, h3} if e =eq,
e +— {h1,ho,hs} if e = ey,
{h1,h3,hs} if e =es,

(iv) AaMe Bg=(AU B),n3, where

(aNB) : (AUB)— P(X), defined by
{hg,hg} ife:el,
e +— {ha, hs} if e = eg,

{h1,h3, hs} if e = e3,
(v) Ao U Bg=(AN B),qs, where
(aJB) : (ANB)— P(X), defined by
ez +—— {h1,ha, hs}
(vi) Aa N Bg=(AN B),ng, where
(aNB) : (ANB)— P(X), defined by
ez +—— {hg,hs}
(vii) Ay ~e Bg=(AU B)q__ g, where

a ~ f:(AUB)— P(X), defined by
{ha, h3} if e =eq,

e — {h1} if e = ey,
{h1,h3, hs} if e =es,

(ix) Ay~ Bg=(AN B),_g3, where

a ~ [:(ANB)— P(X), defined by
€9 | — {hl}
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(x) (An)¢ = Aye where

a® A —P(X), where

{hlah‘4ah‘5} ife:el)
{hs3, ha} if e = eg.

2.3 Properties of Soft Sets

In this section we discuss properties and laws of soft sets with respect to operations
defined on soft sets. Later on these results are utilized for the configuration of algebraic
structures of soft sets. The new idea of restricted and extended operations gives
rise to some different results, for example, distributive laws do not hold in general
for the operations of soft sets which is an entirely new aspect in a vague structure.
Associativity, absorption, distributivity, de Morgan laws are investigated for soft set
theory.

2.3.1 Definition

A soft set A, over X is called a relative null soft set, denoted by Ag, if a(e) = 0 for
all e € A.

2.3.2 Definition

A soft set A, over X is called a relative whole or absolute soft set, denoted by Ax, if
ale) = X for all e € A.
Conventionally, we take soft sets with an empty set of parameters to be equal to
0p and so A, M Bg=0p=A, LI Bg when AN B ={).
2.3.3 Proposition
Let A,, Ag be any soft sets over X. Then
1) A, U AﬂéAa (] Aﬁ; Ay Me AgéAa 1 Ag,
2) ANAL=A,, for X € {UN}, (Idempotent)
3) Ay MAx=A=A, U As,
4) Ay U Ax=Ax; Aa N As=As,
5) Aa Me @d);Aa&Aoa Lle (Z)@&Aa r E%a
6) A M00=0a; Ay Ll Ex=Ex.

Proof. Straightforward. m
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2.3.4 Proposition

Let A,, Bg and C, be any soft sets over X. Then the following are true:
1) A N(BACy)=(AaABg)ACy, (Associative Laws)

2) A ABg=BgAA,, (Commutative Laws)

for all A € {Ug,,Me,M}.
Proof. Straightforward. m

2.3.5 Proposition (Absorption Laws)

Let A,, B be any soft sets over X. Then the following are true:

K

1) Ay U (BgMAy)=Aq,
2) Ay (BglU: Ag)=Aq,
3) Ay U (BsMe An)=Aq,
4) Ay Mo (Bg U Ag)=A,.

Proof. Straightforward. m

2.3.6 Proposition (Distributive Laws)
Let A,, Bg and C, be any soft sets over X. Then
1) A1 (B U Cy)=(Aa M Bg) U: (An 1 CY),

2) Ao (BgM: Cy)=(Aa M Bg) M. (A M Cy),

3) A, M (BslUCy)=

—~

Ao T Bg) U (Aa11Cy),

4) A, U (BgU: Cy)=(Ay U Bg) L. (A U Cy),
5) A, U (BgM. Cy)=(Aa U Bg) N, (A U Cy),
6) A, U (BgNCy)=(A,UBg)N (A, LC,),

7) A e (Bg U Cy)C(Aq N Bg) Us (Ag 1 C),
8) An e (BgUC,)=(AaMe Bg) U (Ay M Cy),

9) An M. (BN Cy)2(Aq Me Bg) M (Aq N C),
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10) A, U: (Bg U Cy)C(Ag Ue Bg) U (A U: Cy),
11) Ay U (B M. C)2(Aq Ue Bg) Me (Aq Ue C),

12) A, U (BgNCy)=(Aq U Bg) M (Aq L C).

Proof. We prove only one part here, the other parts can be proved in a similar

way.

1) We have
Aq M (B/B Le C’Y)i(A n (B U C))aﬁ(ﬁ@y)

and

(Ao M Bg) U (Aa M Cy) = (AN B)(aﬁﬁ) U (AN C)(ar”w)
(AnB)U (AﬂC))(
(An(BUCQO))

IE

afB)0(af)

1K

(@NB)0(afy)
Let e € AN (BUC). Then there can be one of three cases:
(i) fee ANn(B—C), then
(BUy)(e) = pB(e) and
{eN(BUN)}(e) = ale)np(e).

Also AN(B—-C)=(ANB)—(ANC) and hence

{(eNB)0(an)}(e) = (eNB)(e) = a(e) N B (e) .
(ii) If e€ AN (C — B), then

(B07)(e) = ~(e) and
{aN(BUY)}He) = ale)ny(e).

Also AN(C—-B)=(ANC)— (AN B) and hence

{(enB)0(am)}(e) = (aM)(e) = ale) Ny (e).
(iii) Ifee AN(BNC), then

(B07)(e) = B(e)ury(e) and
{aN(BUY)}(e) = ale)n(B(e) U (e)).
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Also AN(BNC)=(ANB)N(ANC) and hence

= (anp)(e) U (ar)(e)
= (a(e)np(e)) U(ale)Ny(e)
= ale)N(B(e)Ur(e)).
Thus
an(BUy) = (anB)U(ary)
and so

(AN (BUCQC))aapan=(AN(BUC))wuAs)0aA)

Similarly we can prove the remaining parts.

2.3.7 Example

Let X be the set of sample designs and E be the set of available colors for dresses in
a boutique,
X = {Slv 527 S?n 545 557 S67 S77 SS}

E = { Red, Green, Blue, Yellow, Black, White, Pink }

Suppose that

A = {Red, Green, Blue, White}, B = {Green, Blue, Yellow, Black}
and C = {Blue, Yellow, White, Pink}.

Let A,,Bg and C, be the soft sets over X presenting the data record for three different

boutiques respectively, given as follows:

) = {51,82,53,54};

a(Green) = {S3,S54,S55,56};
) = {51, 52, 854,57};
) = {52,53,84}.

B(Green) = {S4,S5,5,S58};
f(Blue) = {S1,52,53,54};

B(Yellow) = {S4,Ss,S6,57,58};

p(Black) = {S1,52,5;,57}.
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and
7(B1ue) = {53,54,57758};
~v(Yellow) = {S4,S5,57};
’}/(White) = {52,54,56,58};
v(Pink ) = {953, S5s, 55,57}
Now
Ag U (Bﬁ U C’Y) = (A U (B n C))aO(ﬁO'y);
(Ao Ue Bg) U(Aa U Cy) = ((AUB)N(AUC))(008)0(a0);
AaU: (BgM:Cy) = (AU(BUC))aosam);
(Ao Ue Bg) Me (Aa U Cy) = ((AUB)U(BUCQC))(,os)Aaim)-
Then
(aU(BU7))(Green) = {S3, 854,55, S6};
(aU(BUv))(White) = {Ss,Ss3,S54}.
((a0B)U(aUy))(Green) = {Ss,S4,S5,S56,Ss};
((a0B)U(aUy))(White) = {S5,S53,S54,Sg, Ss}-
Thus

Aq U (Bg U Cy)#(Aq Ue Bg) U (A Ue C).
Similarly it can be shown that

Ay Me (Bg N Cy)#(Aq Me Bg) M (A Me C).
Again, we see that

(aU(By))(Green) = {S3, 54,55, 56, Ss};

(aJ(BMy))(White) = {Sa,Ss,S4, Se, Ss}
and

((aUB)N(ay))(Green) = {S3,S4, S5, Se};

((@0B)A(aln))(White) = {Ss, S, S4}.

Thus
Ay Ug (BgNe Cy) # (Aa U: Bg) Mz (Aq Ue C).

Similarly it can be shown that

AnNe (BgUe Cy) # (Ao e Bg) U (Aa Me C).
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2.3.8 Proposition

Let A,, Bg and C, be any soft sets over X. Then

1)
Aq Ue (BgNe Cy)=(Aqn Ue Bg) My (Aa U Cy)
if and only if
ale) € B(e) forall e e (ANB)— C and
ale) C ~(e)forallee (ANC)— B.
2)

Ao Ne (B Ue Cy)=(An Ne Bg) Ue (A M C)

if and only if

Q
O
U

B(e) for alle € (AN B) — C and
ale) D ~(e)forallee (ANC)— B.

Proof. Straightforward. m

2.3.9 Corollary

Let A,, Bg and C, be any soft sets over X. Then
Ay U (BgMe Cy)=(Aq U: Bg) Me (Aq U C)
AaNe (Bg Ue Cy)=(An Ne Bg) Ue (Aa M C5)
if and only if

ale) = pB(e) forallee (ANB)—C and

ale) = ~(e)foralee (ANC)— B.

2.3.10 Corollary

Let A,, Bg and C, be any soft sets over X such that (ANB)—C = (ANC)—-B=1.
Then

1) Ay U (BgMe Cy)=(Aa U Bg) Me (Aa U C),

2) Ag N (B U Cy)=(Aq Mo Bs) U (Ag Me Cs).
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2.3.11 Corollary

Let A,, Ag and A, be any soft sets over X. Then
ANAgpAy)=(AaAAg) (AaAAY)

for distinct A, p € {M.,M,Ug,U}.

2.3.12 Theorem

Let A, and Bg be two soft sets over X. Then the following are true

1) A, U Bg is the smallest soft set over X which contains both A, and Bg.  (Supre-

muim)

2) A, M Bg is the largest soft set over X which is contained in both A, and Bg.

(Infimum)
Proof.

1) We have A,B C (AU B) and a(e),8(e) C a(e) UB(e). So A,CA, L. Bz and
BgéAal_lsB/j. Let C be a soft set over X, such that A, BgéCA,. Then A, B C C
implies that (AU B) C C and «(e), B(e) C v(e) implies that a(e) U B(e) C v(e).
Thus A, U BgQCV. It follows that A, L. Bg is the smallest soft set over X
which contains both A, and Bg.

2) We have ANB C AJANB C B and a(e) N f(e) C ale),ale) N B(e) C S(e) for
alle € ANB. So A, N BﬁéAa and A, M BﬁéBﬁ. Let C, be a soft set over
X, such that CWQAQ and CvéBg. Then C C A,C C B imply that C C AN B
and y(e) C a(e), v(e) C B(e) imply that v(e) C a(e) N B(e) for all e € C. Thus
C’VQAQ M Bg. It follows that A, M Bg is the largest soft set over X which is
contained in both A, and Bg.

2.4 Algebras of Soft Sets

In this section, we discuss lattices and algebras for the collections of soft sets. We con-
sider certain collections of soft sets and find their distributive lattices. The concepts of
involutions, complementations and atomicity are discussed. We denote the collections
as follows:

SS(X)®: collection of all soft sets defined over X



2. Soft Sets and Their Algebraic Structures 25

SS(X) 4: collection of all soft sets defined over X with a fixed parameter set A.
Firstly, we observe that these collections are partially ordered by the relation of

soft inclusion C.

2.4.1 Proposition

The structures (SS(X)¥ M.,1), (SS(X)F,0,M.), (SS(X)F,L.,M), (SS(X)F ML),
(SS(X) 4,4,M), and (SS(X) 4,M,L) are complete lattices.
Proof. Let us consider (SS(X)¥,M.,U). Then for any soft sets A,,Bg,C, €
SS(X)7,

1) We have A, Me Bﬁi(AUB)aﬁB € SS(X)E and A, |_|Bg = (Aﬁ B)aOB S SS(X)E
2) From Proposition 2.3.3, we have

Ao Me A=A, and A, LU AL=A,.

3) From Proposition 2.3.4 we see that

Aal_lgBB = BgﬂgAa and
AaLlBﬁ = BBUAQ.

Also

AN (BgN: Cy) = (AaNe Bg)MNe Cy and
A U(BguCy) = (AU Bg)UC,.

4) From Proposition 2.3.5,
Ay Mz (BgU Ay)=A, and A, U (Bg Mz Ag)=Aq.
So we conclude that the structure forms a lattice.

Consider a collection of soft sets {A;, : i € I} over X. We have, UAi CFE

el
and, let A(e) = {j : e € A;} for any e € A;. Then ﬂ ai(e) € X. Thus M. A;,. €
ieA(e) el
SS(X)F. Again, we have, ﬂAi C FE and for any e € ﬂAi, Uai(e) C X. Thus
iel iel el

U A;, €S8S(X)E.
el 4

Similarly we can show the remaining structures. m



2. Soft Sets and Their Algebraic Structures 26

2.4.2 Proposition

The structures (SS(X)%,M,U.,09,Ex), (SS(X)¥ UM, Ex,08), (SS(X) 4,M,L,Ap,Ax)
and (SS(X) 4,U,M,Ax,Ag) are bounded distributive lattices.

Proof. From Proposition 2.3.6, we have

AN (BgU: Cy) = (AN Bg)U: (AaNCy)
AU (BgnCy) = (AgU: Bg)M(AqL: Cy)

for all Ay,Bs,Cy € SS(X)E. So (SS(X)¥ 1,U.) and (SS(X)F,L.,M) are distributive
lattices. From Theorem 2.3.12, we conclude that (SS(X)E,I_I,I_IE,@@E%) is a bounded
distributive lattice and (SS(X)¥,U.,M,Ex,0) is its dual.

Now, for any soft sets A,Ag € SS(X) 4,

AaMAg = A,qp € SS(X), and
AgUAg = Ao € SS(X)y.

Thus (SS(X) 4,M,U) is a distributive sublattice of (8S(X)¥ L.,M). Proposition 2.3.3
tells us that Ag,Ax are its lower and upper bounds respectively. Therefore
(SS(X) 4,M,U,Ap,Ax) is a bounded distributive lattice and (SS(X) 4,U,M,A%x,As)

is its dual. =

2.4.3 Proposition

Let A, be a soft set over X. Then A,c is a complement of A,.
Proof. As Ay U Age=A(q0qc) S0, for any e € A,

(aUa®)(e) = ale) U (afe)) = X.

Thus A, U Ayc=Ax.
Also Aq M Aqe=A(A0e), 5O

Thus Ay M Ape=Agp.

Now, we show that A,c is unique in the bounded lattice (SS(X) 4,U,M,Ax,As). If
there exists some Ag € SS(X), such that A, U Ag=Ax and A, M Ag=Ag. For any
e €A,

ale)Nple) =0
= B(e) € (a(e))® = a“(e)
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and
a(e) € X = afe) U B(e).
But
ale) Na(e) = 0 and so a(e) C a(e) U B(e) = a(e) C B(e).
Therefore

B(e) = af(e) for all e € A and Ag=Aqe.

Hence A,c is a complement of A,. =

2.4.4 Remark

We see that (SS(X) 4,M,U,A9,Ax) and (SS(X) 4,U,M,Ax,As) are dual lattices so all

the properties and structural configurations hold dually in an understood manner.

2.4.5 Proposition (de Morgan Laws)

Let A, and Bg be any soft sets over X. Then the following are true
1) (Aq U Bg)°=Aqe M. Bge,

2) (Aq Me Bg)*=Aqe L Bge,

3) (Ao V Bg)°=Anc A Bge,

4) (Aa N Bg)*=Ansc V Bge,

5) (Aq U Bg)*=Aqc N Bge,

6) (Aa M Bg)°=Anc U Bge.

Proof. We know that (Aq U: Bg)*=((AUB),05)=(AUB)a0p)e- Let e € (AUB).

Then there are three cases:
(i) If e € A— B, then

((a0B)%)(e) = (a(e))” = a“(e) and (a“NB%)(e) = a(e).
(ii) If e € B — A, then

(a0B)“(e) = (B(e)) = B%(e) and (a’NB°)(e) = B°(e).
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(iii) If e € AN B, then

(@0B)"(e) = (afe) U B(e))" = (ale))” N (B(e))

and,

(@“NB°)(e) = (a(e)) N (B(e))".
Therefore, in all the cases we obtain equality and thus
(Aq Us Bg)*=Aqe Me Bge.

The remaining parts can be proved in a similar way. =

2.4.6 Proposition

(SS(X) 4,M,u,¢,Ap,Ax) is a de Morgan algebra.

Proof. We have already seen that (SS(X) 4,M,U,As,Ax) is a bounded distributive
lattice. Propositions 2.4.3 and 2.4.5 show that de Morgan laws hold with respect to "
“"in S§(X) 4. Thus (SS(X) 4,M,U,°,Ap,Ax) is a de Morgan algebra. =

2.4.7 Proposition

(SS(X) 4,M,U,°, A, Ax) is a boolean algebra.
Proof. Follows from Propositions 2.4.2 and 2.4.3. =

2.4.8 Proposition

Let A, and Ag be any soft sets over X. Then (Ag I Aﬂc)Q(Aa L Age) and so
(SS(X) 4,M,U,¢,Ap,Ax) is a Kleene Algebra.
Proof. We have,
Ag M Age=AeCAx=An U Age

for all A,,Ag € SS(X),. We already know that (SS(X),,M,U,%As,Ax) is a de
Morgan algebra, so this condition assures that (SS(X),,M,U,%As,Ax) is a Kleene
Algebra. m

2.4.9 Lemma

For any x € X and A C E. We define a soft set A, for each e € A, where e, : A —

P(X) such that
e(€) ={ to} ife=e
0 if e#e
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Then A, is an atom of lattice (SS(X)4,M,U) for each e € A and = € X and we have
ASS(X),) ={Ac, ;e € E and x € X}.

Proof. Let Ap#A, € SS(X), such that A,CA.,. Then a(e) C ey(e) = {z}
and a(e”) C 0 for all (e #)e’e A. This implies that a(e”) = () for all (e #)e’e A
and the only possibility for a(e) is {2} because Ag#A,. Thus A,=A,, proves that
Ac, € ASS(X),). =
2.4.10 Proposition

(SS(X) 4,M,U) is an atomic lattice.
Proof. Let A, € SS(X) 4, and take

T ={Ac, € ASS(X) ) : Ae,CAs}

the subcollection of A(SS(X),) which is given in Lemma 2.4.9. Suppose that

A=\/Za.
For any e € A, fB(e) = U ex(e) = U {z} = a(e). Thus \/IAiAa and hence
z€a(e) z€ale)

(8S8(X) 4,M,U) is an atomic lattice. m

2.4.11 Lemma
Let Ay, Bg € SS(X )E Then the pseudocomplement of A, relative to Bg exists in

SS(X)E.
Proof. Consider the set

T(Aa, Bg) = {C, € SS(X)¥ : ¢, M A,CBgs}.

We define a soft set AGe Ue Bg=(A°U B),ecp € SS(X)¥ and claim that A, — Bg =
(A°U B)4eqp- First of all we show that (A°U B),ecp € T(Aq, Bg). Consider

(A°UB)aecgMAa = ((A°U B) N A)aetp)ia (By distributive law)
= ((A°NA) U (BN A))(acra)d(sra)
= (AmB)aﬁBQBB'
Thus (A°U B)eqp € T(Aa, Bg). For any C, € T(Aq, Bg), we have C, I A,CBg so

foranyec CNACB
v(e) Na(e) C Ble).
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Now,
CNA C B=(AnC)NB°=0
= CC(ANB*=A°UB
and
v(e)Nale) S Ble) = (v(e) Nale)) NBe) =10
= 7(e) € (a(e)) N Be) = a(e) N Be)
Thus C,C(A°U B) ,eq5 and it also shows that

(A°U B)yeqs=\/ T(Aa, Bg)=Aa — Bg.

2.4.12 Remark

We know that (SS(X),,M,L) is a sublattice of (SS(X)¥ M.,1). For any Aa, Ag €
SS8(X),, Aa — Ap as defined in Lemma 2.4.11, is not in SS(X), because A, —
Aﬁé(AC U A)aCOBEEaCOﬁ ¢ SS(X)A

2.4.13 Lemma

Let Ay, Ag € SS(X),. Then pseudocomplement of A, relative to Ag exists in
SS(X)4.
Proof. Consider the set
T(An,Ag) ={A, € SS(X),: AN AQQAB}.
We define a soft set A,e L AgéAacoﬁ € S§(X) . Consider

AacOB MNA, = A(acolg)ﬁa
= Afacria)i(ana)
= A,rpCAs.
Thus A,eqp € T(Aa, Ag). For every A, € T'(Aq, Ag), we have A, M A,CAg so for any
ec A,
W) Nafe) C Ble) = (1(e) Nafe)) N Ae) = 0
= 7(e) € (a(e)) N Ble) = a(e) N B(e)
Thus A’yéAaCOﬁ and it also shows that

Aetp=\ T(Aa, Ag)=A0 — 4 Ag.
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2.4.14 Proposition

(SS(X)F n.,1) and (8S8(X) 4,M,u) are Brouwerian lattices.
Proof. Follows from Lemmas 2.4.11 and 2.4.13. =

2.4.15 Theorem

(88(X)4,M,%,Ax) is an MV-algebra.

Proof. MV1, MV2 and MV 3 are straightforward. We prove MV 4:

(Aac MAR)* M A = ((Aac)"U Age) M Ag
(A U Age) 1 Ag
(Ao M Ag) L (Age M Ag)
= (AaMNAg)U As
(AgM Ag) U (Age M Ag)
(Ag U Age) M Ag
(Age MAL) M Ay

for all Ay, Ag € SS§(X)a. Thus (S5(X)a,M,¢,Ax) is an MV-algebra. m

2.4.16 Theorem

(S8(X)4,U,5,Ag) is an MV-algebra.

Proof. MV1, MV2 and MV3 are straightforward. We prove MV 4:

(Ao UAp) U Ag = ((Aae) T Age) U Ag
(Aa M Age) LI Ag
(Ao U Ag) M (Age U Ag)
= (AqUAg) M Ax
(AgU An) M (Aae U Ay)
(AgM Age) LU Ay
(Age L AL) U A,

for all Ay, Ag € S§(X)4. Thus (85(X)4,U,°,Ag) is an MV-algebra. m

2.4.17 Theorem

(88(X)a,—,As) is a bounded BCK-algebra whose every element is an involution.

Proof. For any A, Az, Ay € S§(X)a
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BCI-1 (A — Ag) — (Aq — A))) — (A, — Ap)

=(Aaep — Aay) — Ayp

=A(a—p)— (@) = Ay—p

=Ap — A, _p=As.

BCI-2 (A, — (Aa — Ag)) — Ag

=(Aqy — Ap_p) — Ag
=Ala—(a—p) — Ap
=Ap — Ap=As_p=As.

BCI-3 A, — A,=As.
BCI-4 Let A, — Ag=As and Ag — A,=Ag. For any e € A,

a(e) — B(e) = 0 and B(e) — a(e) = 0 imply that a(e) = S(e).

Hence A,=Ag.
BCK-5 A — An=As_o=As.
Thus (SS(X)a,—,As) is a BCK-algebra. Now Ay € SS(X)4 is such that:

Ay — Ax=A,_x=As for all A, € SS(X)A
Therefore (SS(X)a,—,As) is a bounded BCK-algebra.

For any A, € SS(X)a,
Ax — (Ax — An)=Ax — Ax_o=Ax — Ape=Ax_ac=A ey =Aa.

So every element of SS(X)4 is an involution. m

2.4.18 Definition
Let A, and Ag be any soft sets over X. We define

A, * ABEAQ*BEAO[ M Aﬁc.
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2.4.19 Theorem

(88(X)a,x,As) is a bounded BCK-algebra whose every element is an involution.
Proof. For any A,, Ag, Ay € SS(X)a.

BCI-1 ((Aa* Ag) x (Aax Ay)) % (A, x Apg)
i(Aoz*,é’ * Aa*v) * Ay
= A((xB)x(a))+(r48)
=A((0PBe)x(afn))x(:7B°)
=A((0AB*)A(af))A(ABY)
=A((arB*)A(acTy))A(7208)
=A((0B*)Am)A(08)
=A((ans)rm)ns
=A(arm)n(prs=Ae-
BCI-2 (Ay + (Aq % Ag)) * Ag
=(Ag * Aang) * Ag
=Aax(ans) * Ap
=AoA(anse)e * Ap
=A(ar(ac0p) * Ap
Z Aop * Ag=Ararpyipe=As.
BCI-3 Ag* Ag=Agnse=Ag.
BCI-4 Let A, x Ag=As and Agx A,=As. For any e € A,
a(e) N (B(e))° = 0 and A(e) N (a(e))® = 0 imply that a(e) = B(e).

Hence
An=Ag.

BCK-5 A@ * AaiAq)*aiAq)ﬁac iAq;.
Thus (SS(X)a,%,A3) is a BCK-algebra. Now Ay € S§(X)4 is such that:
Aﬁ * AxéAa*XéAaﬁxcéAaﬁééAq) for all A, € SS(X)A

Therefore (SS(X)a,%,A4) is a bounded BCK-algebra. m



Chapter 3

Algebraic Structures of Fuzzy
Soft Sets

In 2001, Maji and Roy proposed the concept of Fuzzy Soft Set in [30]. Different
algebraic structures have also been studied in fuzzy soft context. Irfan et al. [3]
pointed out some basic problems in the results related to the operations defined on
fuzzy soft sets. In the paper [3], some new operations are defined for fuzzy soft sets
and modified results and laws are established. In this chapter, we step forward in the
same direction and check out the associativity and distributivity of these operations.
First we have given preliminaries of fuzzy soft sets. We have used new and modified
definitions and operations from [3] to discuss the properties of these operations on fuzzy
soft sets. After accomplishing an account of algebraic properties of fuzzy soft sets, the
overall algebraic structures of collections of fuzzy soft sets are studied. The two types
of collections of fuzzy soft sets, one consisting of those fuzzy soft sets with a fixed set
of parameters while the other containing fuzzy soft sets defined over the same universe
with different set of parameters are taken into account. Both collections have some
common and some different algebraic properties and therefore the algebraic structures
also differ. The lattice structure of these collections is discussed and we find that the
collection of all fuzzy soft sets is a bounded distributive lattice and the collection of
fuzzy soft sets with a fixed set of parameters becomes a Kleene algebra. At the end
we define pseudocomplement of a fuzzy soft set and with this pseudocomplement, this

collection becomes a stone algebra.

3.1 Fuzzy Soft Sets

Let X be an initial universe and F be a set of parameters. Let FP(X) denotes the
fuzzy power set of X and A, B be non-empty subsets of E.

34
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3.1.1 Definition [30]

A pair (f,A) is called a fuzzy soft set over X, where f is a mapping given by f: A —
FP(X).

Therefore, a fuzzy soft set over X gives a parametrized family of fuzzy subsets of
the universe X. For e € A, f(e) may be considered as the set of e—approximate fuzzy
elements of X. From now onwards, we shall use the notation Ay over X to denote a
fuzzy soft set (f,A) over X where the meanings of f, A and X are clear in a harmony

with the use of usual pair notation.

3.1.2 Definition [3]

For two fuzzy soft sets Ay and By over a common universe X, we say that Ay is a
fuzzy soft subset of By if

1) AC B and
2) f(e) C g(e) for all e € A.

We write AféBg. Ay is said to be a fuzzy soft super set of By, if By is a fuzzy soft
subset of Ay. We denote it by AféBg.

3.1.3 Definition

[3] Two fuzzy soft sets Ay and B, over X are said to be fuzzy soft equal if Ay and By
are fuzzy soft subsets of each other. We denote it by A;=DB,.

3.1.4 Example

Let X be a set of candidates for a driver’s vacant position, and F be a set of parameters,
X = {a,c2,c3,ca,05}, E = {e1,ea,e3,e4} = { knowledge about routes, driving skills,
physical fitness, young}. Suppose that A = {e;,e2,e3}, a fuzzy soft set Ay describes

the “data of candidates” which Mr. X is going to hire and is given as follows:

f = A-FPX),
{c1/0.3,¢2/0.1,¢3/0.3,¢4/0.1,¢5/0.7} if e = €1,

e — {c1/0.1,¢2/0.9,¢3/0.3,¢4/0.8,¢5/0.2} if e = eq,
{c1/0.1,¢2/0.3,¢3/0.3,¢4/0.3,¢5/0.8} if e = e3,

Let B = {eg,e3}. Then fuzzy soft set B, given as follows:

g : B—FPX),

{c1/0.1,¢2/0.5,¢3/0.3,¢4/0.5,¢5/0.2} if e = eq,
{¢1/0.1,¢2/0.2,¢3/0.1,¢4/0.2,¢5/0.7} if e = e3,

(&
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is a fuzzy soft subset of A; and represents a second analysis of choices made in Ay.

3.2 Operations on Fuzzy Soft Sets

Now, we define various operations on fuzzy soft sets taken from literature.

3.2.1 Definition

Let Ay and B, be two fuzzy soft sets over X. Then the or-product of Ay and B, is
defined as a fuzzy soft set (A x B)g,, where fVg: (A x B) — FP(X), defined by

(a,0) = f(a) Vv g(b).

It is denoted by Ay V By=(A x B) g,

3.2.2 Definition

Let Ay and By be two fuzzy soft sets over X. The and-product of Ay and By is defined
as a fuzzy soft set (A x B)z,, where fAg: (A x B) — FP(X), defined by

(a,b) = f(a) A g(b).

It is denoted by Ay A By=(A X B)z,-

3.2.3 Definition

The extended union of two fuzzy soft sets Ay and By over X is defined as a fuzzy soft
set (AU B) gy, where fVg: (AU B) — FP(X), defined by

f(e) ifeec A—B
e— 4 g(e) ifee B—A
fleyvgle) ifec ANB

We write Af Le Bgi(A U B)f\79‘

3.2.4 Definition

The extended intersection of two fuzzy soft sets Ay and By over X, is defined as a
fuzzy soft set (AU B)z,, where fAg: (AU B) — FP(X), defined by
fle) ifeec A—B
e— 4 g(e) ifee B-A
fleyng(e) ifeec ANB

We write Af Me Bgi(A U B)ff\g‘
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3.2.5 Definition

Let Ay and B, be two fuzzy soft sets over X such that AN B # (). Then the restricted
union of Ay and By is defined as a fuzzy soft set (AN B)f;\g, where fVg: ANB —
FP(X),

e f(e)Vygl(e)

We write Ay U By=(AN B)g,

3.2.6 Definition

Let Ay and By be two fuzzy soft sets over X such that AN B # 0. Then the restricted
intersection of Ay and By is defined as a fuzzy soft set (ANDB) ¢z, where fAg : ANB —
FP(X),

e f(e) Agl(e).

We write Af 1 Bgé(A N B)ff\g'

3.2.7 Definition

The complement of a fuzzy soft set Ay, denoted by (Ay)” and defined by (Af) =Ag,
where f: A — FP(X) is given by

(f(e))(x) =1 = (f(e))(x),
for all e € A, and for all z € X.
Clearly (f”)" is same as f and ((Af)") = Ay.
Now, we give an example to show how to apply these operations on fuzzy soft sets:

3.2.8 Example

Let X be the initial universe and E be the set of parameters,
X ={z1,22,73,74, 75}, B = {e1,e2,€3,¢€4, €5}

Suppose
A ={e1,ex}, and B = {eg,e4}.

Let Ay and By be the fuzzy soft sets over X defined by the following:

f A= FPX),

{x1/0.1,22/0.2,23/0.3,24/0.7,25/0.4} if e = €1,
(& [
{.%‘1/0.7, .7}2/0.9, .%'3/0.2,{E4/0.4,$5/0.1} ife= €9,
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g : B—FPX),
{£1/0.3,22/0.7,23/0.6,24/0.9,25/0.1} if e = ea,
{21/0.4,22/0.2,23/0.7,24/0.8,25/0.7} if e = ey,

Then
(i) Ay U: By=(AU B) g, where

fVg : (AUB)— FP(X),
{x1/0.1,22/0.2,23/0.3,24/0.7,25/0.4} if e = ey,
e — {1/0.7,22/0.9,25/0.6,24/0.9, 25 /0.1} if e = eq,
{x1/0.4,22/0.2,23/0.7,24/0.8,25/0.7} if e = e4.

(ii) Ay M. By=(AU B)z, where
fAg : (AUB)— FP(X),

{£1/0.1,22/0.2,23/0.3,24/0.7,25/0.4} if e = ey,
e — {x1/0.3,22/0.7,23/0.2,24/0.4,25/0.1} if e = eq,
{£1/0.4,22/0.2,25/0.7,24/0.8,25/0.7} if e = e4.

(iii) Ay U By=(AN B)y, where

fVg : (ANB)— FP(X),
€y {$1/0.7,56'2/0.9,.%'3/0.6,(134/0.9,1‘5/0.1}

(iv) Ay By=(ANB)yz, where

fRg :+ (ANB)— FP(X),
{ {21/0.3,22/0.7,25/0.2, 24/0.4, 25/0.1} if e = eo,

(&
{3}1/0.3, .%'2/0.7,.’123/0.3,:64/0.2,.7}5/0.5} if e= €3.

(v) (Ay)'=A; - where

fo  A—-FPX),

{£1/0.9,22/0.8,23/0.7,24/0.3,25/0.6} if e = ey,
(& —
{21/0.3,22/0.1,23/0.8,24/0.6,25/0.9} if e = eq,

3.3 Properties of Fuzzy Soft Sets

In this section we discuss properties and laws of fuzzy soft sets with respect to opera-
tions defined on fuzzy soft sets. Later on the results will be utilized for the configura-
tion of algebraic structures of fuzzy soft sets. Associativity, commutativity, absorption,
distributivity, de Morgan laws and properties of involutions, and atomicity are inves-

tigated for collection of fuzzy soft sets.
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3.3.1 Definition

A fuzzy soft set Ay over X is called a relative null fuzzy soft set, denoted by Ag, if
f(e) =0 for all e € A, where 0 is the fuzzy subset of X mapping every element of X

on 0.

3.3.2 Definition

A fuzzy soft set Ay over X is called a relative whole or absolute fuzzy soft set, denoted
by Az, if f(e) = 1 for all e € A, where 1 is the fuzzy subset of X mapping every
element of X on 1.

Conventionally, we take fuzzy soft sets with an empty set of parameters to be equal
to 05 and so Ay M By=05=A; LI By when AN B = 0.

3.3.3 Proposition

Let Ay, Ay be any fuzzy soft sets over X. Then

1) ApAAp=Ay, for A € {U,U,M,MN:}, (Idempotent)
2) Afl. Ag=As U Ay Ap. Ag=Ap M Ay,

3) AyMA;=A;=A; U Ag,

4) Ay U A;=Aq; Ap N Ag=A;,

5) Ay M. 0g=A;=A; L. 05=A; N E3,

6) Ay N05g=05; ArU. Ey=Fj.

Proof. Straightforward. m

3.3.4 Proposition

Let Ay, By and C}, be any fuzzy soft sets over X. Then the following are true:
1) AfN(BgAChL)=(AfABg)A\Ch, (Associative Laws)

2) AfABy=Bg\Ay, (Commutative Laws)

for all A € {U.,L,Mc,M}.
Proof. Straightforward. m
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3.3.5 Proposition (Absorption Laws)
Let Ay, By be any fuzzy soft sets over X. Then the following are true:
1) ApNe (BgU Ap)=A4y,
2) ApM(ByUe Ap)=A4y,
3) ApU(ByNe Ap)=Ay,
4) Ayl (BgMAp)=Ay.
Proof. For any e € A,

ifec A— (AN DB)
e) A (fVg)(e) ifee AN(ANDB)

e f(e)

(fFA(fVg))(e) = {f()

{f(e) ifec A—(ANB)
f(e)

{ f(e)
f(e)

e) A\ (f(e)Vgle)) iteec ANB

ifeec A— (AN DB)
ifec ANB

Thus Ay M. (B U Ag)=Ay. The remaining parts can also be proved similarly. m

3.3.6 Proposition (Distributive Laws)

Let Ay, By and Cj, be any fuzzy soft sets over X. Then
1) Af Il (Bg Le Ch)i(Af Il Bg) Le (Af Il Ch),

2) Af 1 (Bg Me Ch)i(Af 1 Bg) Me (Af 1 Ch),

3) Ay (ByUChL)=

—~

Ap T Bg) U (A M Ch),

4) Ay U (Bg U Cp)=(Ay U By) L (Af UCh),
5) AU (ByMe Cn)=(As U By) N (Af UCh),
6) AU (ByMCh)=(AyUBg) M (AfUCy),

7) Af e (By Ue Cp)C(Af Ne By) Ue (Af N Cy),
8) Af e (By U Ch)=(AfMe By) U(Af e Cp),

9) As M. (BgMCp)2(Af M. By) M (Af M Cp),
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10) Af e (BguC’h)Q(Af e Bg)l_l(Af e Ch),
11) Af e (Bg Me Ch)é(Af Le Bg) Me (Af Ue Ch),
12) AjU. (ByMCL)=(Af U By) M (Af L Cp).

Proof. We prove only one part here, the other parts can also be proved in a similar

way.
5) We have
AU (ByMe Cp)=(AN(BUC))ri(gin)
and

(ANB)U(ANC)),
(AN(BUC))

IE

FIQA(FTR)

1K

(CAZINCAZON

Let e € AN (B UC) then there are three possibilities:
(i) Ifeec An (B —C) then,

(gAh)(e) = g(e)  and
{fV(ghh)t(e) = [fle)Vyg(e).

Also AN(B—-C)=(ANB)—(ANC) and hence
{(FV9)A(fVh)}(e) = (fVg)(e) = f(e) Vg (e).
(ii) If e€ AN (C — B) then,

(gAh)(e) = h(e) and
{fV(ghh)}(e) = f(e)Vh(e).

Also AN(C—B)=(ANC)— (AN B) and hence
{(FV9)A(fVR)}(e) = (fVh)(e) = f(e) V h(e).
(iii) If e € AN (BNC) then,

(gAh)(e) = g(e)Ah(e)  and
{fV(ghh)}(e) = [f(e)V (g(e) Ah(e)).
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Also AN(BNC)=(ANB)N(ANC) and hence
{(fVgA(fVR)}(e) = (fVg)(e) A (fVh)(e)

= (fe)Vgle)A(f(e)Vh(e)
= f(e)Vg(e) Ah(e)).
Thus
fV(ghh) = (fVg)A(fVh)
and so

(AN (BUCQC))pqgany=(AN(BUC))13g)A(fh)-

3.3.7 Example

Let X be the set of houses under consideration, and F be the set of parameters,
X = {hh h27 h37 h47 h5}7
E = {beautiful, wooden, cheap, in good repair, furnished}.

Suppose that

A = {beautiful, wooden, cheap},
B = {wooden, cheap, in good repair},
and C = {cheap, in good repair, furnished}.

Let Ay,By and C}, be the fuzzy soft sets over X defined by the following:

f A= FPX),
{h1/01, h2/02, h3/03, h4/07, h5/04} if e = €1,

(SR {h1/0.7, h2/0.9,h3/0.2,h4/0.4, h5/().1} ife= €9,
{h1/0.3, h2/0.7, h3/0.5, h4/0.2, h5/0.6} ife= €3,
g : B—FPX),
{h1/0.3, h2/0.7, h3/0.6, h4/0.97 h5/0.1} ife= €2,
€ {h1/06,h2/10,h3/03,h4/02,h5/05} if e = €3,
{h1/0.4, h2/0.2, h3/0.7, h4/0.8, h5/0.7} if e= €4,
h = C— FPX),

{h1/0.7,h2/0.8,h3/0.5,hs/0.4, h5/0.4} if e = e3,
e {h1/0.5,h2/0.3,h3/0.2,h4/0.1,h5/0.4} if e = €4,
{h1/0.7, h2/0.8, h3/0.2, h4/0.3, h5/0.9} ife= €5,
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Now
AfUe (BgUCr) = (AU(BNC))rygum);
(ApUe Bo) U (ApU: Cp) = ((AUB)N(AUC))(539)7(£7h);3
ApU: (BgMe Cp) = (AU(BUOC)) rg(gin);
(AfUe Bg)Me (Ap U Cp) = ((AUB)U(BUC))(rg)A(f7h)-
Then
(fV(gVh))(wooden) = {h1/0.7,h2/0.9, h3/0.2, hs/0.4, h5/0.1}
and
((fVg)V(fVh))(wooden) = {h1/0.7, ha/0.9, h3/0.6, hs/0.9, h5/0.1}.
We see that
(F9(g7h))(wooden) # ((99)7(f7h))(wooden).
Thus
Ap U (ByUCh)#(Af Us By) U (A U C).
Again,
(fA(gVh))(wooden) = {h1/0.3,h2/0.7,h3/0.2, hy/0.4, h5/0.1}
and
((fAg)V(fAh))(wooden) = {h1/0.7, h3/0.9, h3 /0.2, hy /0.4, hs/0.1}.
We see that
(FA(g7h)) (wooden) # ((fAg)¥(FAR))(wooden).
Thus

Af e (By Ue Cp)#(Af M By) Ue (A M C).

Similarly it can be shown that
A e (BgMCh)
Ay U (ByMe Cp)

# (AfNe By) M (A; e Cy).
;Z (Af Ue Bg) Mg (Af Ue Cp).
3.3.8 Proposition

Let Ay, By and C}, be any fuzzy soft sets over X. Then

1)
Ap U (BygNe Cp)=(Ay Ue By) M. (Af U C)

if and only if

g

—~
®

SN~—
N

g(e) forallee (AN B) — C and
fle) € h(e)forallee (ANC)— B.
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2)
Ay Mg (ByUe Cp)=(Af Ne By) e (Af M C)

if and only if

=
Ny
U

g(e) for all e € (AN B) — C and
f(e) 2 h(e)forallee (ANC)— B.

Proof. Straightforward. m
3.3.9 Corollary
Let Ay, By and C}, be any fuzzy soft sets over X. Then

Af L (Bg Me Ch) = (Af L Bg) Me (Af Ll Ch) and
ApN. (ByU:. Cy) = (ApNe By) Ue (ApNe Cy)

hold if and only if
fle) = g(e)foralleec (ANDB)—C and

fe) = h(e)forallee (ANC)— B.

3.3.10 Corollary

Let Ay, By and C}, be any fuzzy soft sets over X such that (ANB)—C = (ANC)—B = 0.
Then

1) AjUe (By e Cp)=(Af Uz Bg) Me (Af U C),

2) AfN. (BygU: Cp)=(Ay N By) L (Af M Cp).

3.3.11 Corollary

Let Ay, Ay and Aj, be any fuzzy soft sets over X. Then
AN AguAp)=(AfAAg) n(AfAAp)

for distinct A, p € {M.,M,Ug,U}.
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3.3.12 Proposition
Let Ay and By be two fuzzy soft sets over X. Then the following are true

1) Af L. By is the smallest fuzzy soft set over X which contains both A and B,.

(Supremum)

2) Ay By is the largest fuzzy soft set over X which is contained in both Ay and By.

(Infimum)
Proof.

1) AfQAf U. By and BgéAf Ue By, because A C (AU B), B C (AU B) and f(e) C
fle) v gl(e), gle) € f(e) V g(e). Let Cy be any fuzzy soft set over X, such
that A¢CC), and B,CC),. Then (AU B) C C, and f(e) C h(e), for all e € A,
g(e) C h(e) for all e € B implies that (fVg)(e) C h(e) for all e € (AU B). Thus
AU, ByCCh,.

2) AfI_IBgéAf and AfI_IBgéBg, because ANB C A, ANB C B and f(e)Ag(e) C f(e),
fle) Ng(e) C g(e) for all e € AN B. Let C}, be any fuzzy soft set over X, such
that C,CAy and C,CBy. Then C C AN B, and h(e) C f(e), h(e) C g(e)
for all e € C implies that h(e) C f(e) A g(e) = (fAg)(e) for all e € C. Thus
ChéAf M Bg.

3.4 Algebras of Fuzzy Soft Sets

In this section, we use the ideas of lattices and algebras for fuzzy soft collections. We
consider collections of fuzzy soft sets and find their distributive lattices. The collections
are denoted as follows:

FSS(X)E: collection of all fuzzy soft sets defined over X

FSS(X) 4 collection of all those fuzzy soft sets defined over X with a fixed para-
meter set A.

Firstly, we observe that these collections are partially ordered by the relation of

fuzzy soft inclusion C.

3.4.1 Proposition

(FSS(X)FM:,U), (FSS(X)E M., (FSS(X)E,U.,N), (FSS(X)E,M,Ue), (FSS(X) 4,L,11),
and (FSS(X) 4,M,L) are lattices.
Proof. From Propositions 3.3.3, 3.3.4 and 3.3.5 we conclude that the structures

form lattices. m
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3.4.2 Proposition

Structures (FSS(X)” M,U.,05,E7), (FSS(X)F Ue,M,E1,05), (FSS(X) 4,M,U,A45,47)
and (FSS(X) 4,L,M,A5,Ag) are bounded distributive lattices.

Proof. Proposition 3.3.6 assures that (FSS(X)” ML) and (FSS(X)¥,U.,N) are
distributive lattices. From Lemma 3.3.12, we conclude that (fSS(X)E,I_I,I_Ig,Q)(),Ei) is
a bounded distributive lattice and (fSS(X)E,I_IE,I_I,Ei,@()) is its dual. For any fuzzy
soft sets Ay, Ag € FSS(X) 4,

ApMA; = Agzg € FSS(X), and
AfUA, = Apy, € FSS(X),.

Thus (FSS(X) 4,M,U) is also a distributive sublattice of (FSS(X)¥ L.,M) and Propo-
sition 3.3.3 tells us that Ag, A5 are its lower and upper bounds, respectively. Therefore
(FSS(X) 4,M,U,A5,A7) is a bounded distributive lattice and (FSS(X) 4,L0,M,A7,45)

is its dual. =

3.4.3 Proposition

Let Af be a fuzzy soft set over X. Then " “ " is an involution on FSS(X) 4.
Proof.

(i) We have to show that A -y -=Ay. Now, (Ay ) "=A; - -

((f ) (e)) = ( —f (e)(x)
= 1-=(f "(e))(=)
= 1-(1-f(e)(2)
= 1—1+(f(6))(fv)
= 1-1+(f(e)(2)
= (f(e)(=)

for alle € A, x € X. Thus (Ay -)"=Ay .

(ii) If A;CA, then

—~
~
—~
®©
N—
=
&
N—
INA

(g(e))(x) and so
— (f(e))(x) which gives
(fle))(x) for alle € A,z € X.

—_
|
—~
o
—~N o~
@ D
~— ~—
S— S~—
—~
8 8
~— ~—
VAN VAN

Hence Agé Ay

Thus " * " is an involution on FSS(X)4. =
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3.4.4 Proposition (de Morgan Laws)
Let Ay and By be any fuzzy soft sets over X. Then the following are true
1) (AyUe Bg)'=Ar: By,
2) (AfnNe By) =ApU. By,
3) (AfV By) =ApA By,
4) (Af N By) '=ApV By,
5) (AyUBy) =ApnN By,
6) (AfNBy) =ApU By.
Proof.

1) We know that (Ay Us By) '=((AU B)fgg) =((AU B) (57, Let e € (AU B). Then

there are three cases:

(i) If e A— B, then

((fVg)(e) = (f(e)) = fle) and (fAg)(e) = fle).
(ii) If ee B — A, then
(fVg)(e) = (g(e)) = gle) and (fAg)(e) = gle).
(iii) If e € AN B, then
(fVg)le) = (f(e) v gle)) = (f(e))A (g(e))

and,
(fAg)(e) = (f(e)) A (gle))

Therefore, in all three cases we obtain equality and thus
(Af Ll Bg)gAf' Mg Bg'.

The remaining parts can be proved in a similar way. =

3.4.5 Proposition

(FSS(X)4,M,U,",Ag,A7) is a de Morgan algebra.

Proof. We have already seen that (FSS(X)4,M,L,A5,47) is a bounded distrib-
utive lattice. Proposition 3.4.3 shows that " * " is an involution on FSS(X), and
Proposition 3.4.4 shows that de Morgan laws hold with respect to “ in FSS(X),.
Thus (FSS(X) 4,M,U,",A5,47) is a de Morgan algebra. m
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3.4.6 Proposition

Let Ay and A, be any fuzzy soft sets over X. Then (A, M A, )C(A;U Ay +) and so
(FSS(X) 4,M,u,7,A5,A7) is a Kleene Algebra.
Proof. For any Af,A; € FSS(X)a, such that

ApMAp DAGUA, - where Ay MAp #A,UA, -
Then there exists some e € A such that
(ff )e)2gug e

and so we have some z € X such that

((FOf Nex) > ((gug )e)(x) or
(fle)mf (e)(@) > (gle)ug “(e))(z)  or
(F(e)@) A (e)(x) > (g(e))(x) V(g “(e))(z)

But (£(e))(@) A (f (e))(@) < 0.5 and (9(e))(x) V (9 (¢))(x) = 0.5 which gives
(F(e)(@) A () (@) < (9(e))(@) V (g(0)) (a).
A contradiction, thus our supposition is wrong. Hence
AsMAp-CA U Ay
Therefore (FSS(X) 4,M,L,",A4g,47) is a Kleene algebra. m

3.4.7 Proposition

Let A¢, By € }'SS(X)E. Then pseudocomplement of Ay relative to B, exists in
FSS(X)E.
Proof. Consider the set

T(Ay, By) = {Ch € FSS(X)¥ : C, M A;CB,}.
We define a fuzzy soft set (A°UB)s_.q4 € FSS(X)* where

((f = 9)e)(=)

1 ifteec A°- B

_ {1 it (f()@) < @) e
(9(e)(@)  if (F(e)(x) > (g(e))(

1 ifee A°NB
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Then

(A°UB)sogMAf (AU B)NA)(sg)ar

(A“NA)U(BNA))(s—g)ir

e el

(AN B)(—g)as-
Foranyee ANB, z € X,
((f = 9ANE))

_ { LA (f(e)() if (f(e))(x) < (g(e))(x)
(9(e))(@) A (F(e)(@)  if (F(e)(@) > (9(e))(x)

_ { (f(e))() if (f(e)(@) < (g9(e) (@)
(9(e))(x) if (f(e))(@) > (g(e))(x)

< (9(0))(@).

Hence,
(Ac U B)fﬁg 1 AféBg

Thus (A°U B) ¢, € T(Ay, By). For all C), € T(Ay, By), we have Cy, 1 AC B, so for
anyec CNACB

h(e) A f(e) € g(e).

Now,

CNA C B=(ANnC)NB*=0
= CC(ANB%® = A°UB.

We have following cases:
(i) If ee (A°— B)NC, then h(e))(x) < 1= ((f — g)(e))(x)

(ii) If e € (B— A°)NC, and (f(e))(z)
9)(e))(x)

(iii) Ife € (B—A°)NC and (f(e))(z) > (g(e))(x), then the condition h(e)Af(e) C g(e)
implies that (h(e))(z)A(f(e)(z)) < (g(e))(x) which is possible only if (h(e))(x) A
)

) < (
(f(e)(x)) = (h(e))(z) and thus (h(e))(x) < (g(e))(x) = ((f — g)(e))(z)
(iv) If ee (A°N B)NC, then h(e))(x) <1 = ((f — g)(e))(x).

IN
S
N
-+
=
@
=
—~
>
—~
@
~
=
8
~
A
—_
I
—~
—~~
s

Thus C,C(A°U B) s, and it also shows that (AU B)s_,,= \/ T(Af,By)=As; —
By, m
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3.4.8 Remark

We know that (FSS(X) 4,M,U) is a sublattice of (FSS(X)P n.,U). For any Ap, Ay
€ FSS(X)y, Af — Ay (as defined in Proposition 3.4.7) is not in FSS(X), because
Af — AQE(AC U A)fﬂgiEng ¢ fSS(X)A

3.4.9 Proposition

Let Af, Ay € FSS(X),4. Then pseudocomplement of Ay relative to A, exists in
FSS(X),.
Proof. Consider the set

T(Af, Ag) = {An € FSS(X) 4 : An M AFC A}
We define a fuzzy soft set Ay, € FSS(X), where

1 if (f(e))(x) < (g(e))(x)
(g(e))(z)  if (f(e))(z) >

forallec A, x € X. Then Ay_,, T AféA(ng);\f and

((f = 9)(e)(z) = {

((f — 9ANE)@)
_ {M(f(e) (x) if (£(e))() < (9(e))(2)
(9(eN@) A (Fe) @) i (fe))w) > (g(e))(@)
_ {(f(e))(w) if (£(e))(@) < (9(e))(®)
(9(e)) (@) it (£(e))(x) > (9(€) (@)
< (gle)@)

forall e € A, x € X. Hence,
Apg M AFCA,

and Ay, € T(A¢, Ay). For every Ay, € T'(Af, Ay), we have Ap M AfQAg so for any
e € A, following cases arise:
(1) If (f(e))(z) < (g(e))(z) then (h(e))(z) <1 = ((f — g)(e))(z)

(ii) If (f(e))(x) > (g(e))(z) then the condition h(e)
(h(e)) (@) A(f(e)(x)) < (g(e))(x) and so (h(e))(z) <

Thus A,CA f—g and it also shows that

A f(e) C g(e) implies that
(g(e))(z) = ((f = g)(e))(x).

Aj—g=\[T(Af, A)=A; =4 A,.
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3.4.10 Proposition

(FSS(X)¥ N.,U) and (FSS(X) 4,N,U) are Brouwerian lattices.
Proof. Follows from Propositions 3.4.7 and 3.4.9. =

3.4.11 Definition

For a fuzzy soft set Ay over X, we define a fuzzy soft set over X, which is denoted by
Ay« and is given by As = (Af)* where

0 if (f(e))(x) #0
L if (fe))(z) =0

RN

forallz € X, e € A.

3.4.12 Theorem

Let Ay be a fuzzy soft set over X. Then the following are true:
1) Ay Ap=A4A;,

2) Agé Ay« whenever Ay M A,=Ag,

3) Ap U Ap-=A4;.

Thus (FSS(X)a,M,U,*,A,A7) is a Stone algebra.
Proof.

1) Straightforward.

2) If Ay Ayj=Ags. Then for any v € X, e € A,

if (g(e))(x) = 0 then (g(e))(x) < (f*(e)) ().

If (g(e))(x) # 0 then (f(e))(x) A (g(e))(x) =0
implies that (f(e))(x) =0, so (f*(e))(x) =1
and hence  (g(e))(z) < 1= (f*(¢))(@).
Thus ,
(g(e))(x) < (f*(e))(z) for all z € X, e € A.

That is, Agé Aps.
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3) Foranyx € X, e € A,

(S U f)(e)(=)

(f*(e) v () ()
max{(f*(e))(x), (f**(e))(x)}
_ { max{1,0} i (f(e))(x)

max{0, 1} if (f(e))(

8
~—

= 1

Thus Ap« U Apex=A;z and so, (FSS(X)a,MM,U,%,A5,47) is a Stone algebra.

3.4.13 Remark

Note that Ap=Ar —4 Ap.



Chapter 4

Algebraic Structures of
Double-framed Soft Sets

This chapter explores the theory of double-framed soft sets. Double-framed soft sets
have been introduced by Jun et al. [19] in 2012. They discussed applications of
double-framed soft sets in BCK/BCI-algebras and verified several results with uni-
int concepts. Recently, some further works are presented to characterize the ideals
of BCK/BClI-algebras in terms of double-framed soft sets in [20]. In our work, we
have focused upon the algebraic structural properties of double-framed soft sets. New
operations for double-framed soft sets are defined and their characteristics are studied.
Examples are given to elaborate the concepts and to show how the ideas are utilized
to work with double-framed soft sets. The lattice structure and different algebraic
specifications raised by the collections of double-framed soft sets have been shown in
a logical manner. Classes of MV-algebras and BCK/BCl-algebras of double-framed

soft sets are presented at the end.

4.1 Double-framed Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the

power set of X and A, B, C are non-empty subsets of F.

4.1.1 Definition [19]

A double-framed pair ((a, 8); A) is called a double-framed soft set over X, where «
and 8 are mappings from A to P(X).

From now onwards, we shall use the notation A, gy over X to denote a double-
framed soft set ((a, §); A) over X.

93
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4.1.2 Definition

For double-framed soft sets A, g) and B(,s) over X, we say that A, gy is a double-
Jramed soft subset of By, s, if

1) AC B and

2) a(e) Cy(e) and d(e) C B(e) for all e € A.

This relationship is denoted by A(aﬁ)éB(%(;).
A(a,p) 1s said to be a double-framed soft Sup@TS?t of By s, it By s) is a double-
Jramed soft subset of A, g). We denote it by A, 3)2B4.4)-

4.1.3 Definition

Two double-framed soft sets A, gy and By, 5) over X are said to be equal if A, g) is a
double-framed soft subset of B, s) and B, 5) is a double-framed soft subset of A, g).
We denote it by A(a’g)iB(%(;).

4.1.4 Example

Let X be the set of houses under consideration, and E be the set of parameters,
X = {h1,ho,hs,h4,hs}, E = {e1,e2,e3,e4,65,66} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that A = {ej,ez,e3,66}, a
double-framed soft set A, g) describes the data for “requirements of the houses” where
function « approximates the houses with a high level of appreciation and S approxi-
mates the houses with a high level of critique by two different groups of experts and

given as follows:

( {hg, hg, h4} ife= €1,
{hs,hs} if e = eq,
X if e = e3,
L {hg, h3, h4, h5} ife= €g,

{ha, ha, h5} ife=eq,
{h1, ho, hs} if e = e9,
{hs, hq4, hs} if e = e3,
| {71 by hahs} if e = e

a : A—-PX), er—

B A—=PX), er—
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Let B = {e2,e3,e6}. The double-framed soft set B, s given by

{hg} ife= €9,
v : B—=P(X), e——< {hi,hg,hs} if e=es,
{ha,h3, ha} if e = eg,

{h17h27h3ah5} if e = eo,
§ : B—P(X), er—< {hi,hs hghs} ife=es,
X if€:66_

is a double-framed soft subset of A, g) so A(aﬁ)éB(%g). Here, we can see that
approximates less houses than « being less appreciating, while § approximates more
houses than (§ being less critical. This justifies our definition of inclusion for double-

framed soft sets.

4.2 Operations on Double-framed Soft Sets

4.2.1 Definition [19]

Let A(,,5) and B, 5) be double-framed soft sets over X. The int-uni product of A, g)
and B, ) is defined as a double-framed soft set (A x B)ny,8vs) over X in which
ahNy:(Ax B)—P(X),Vd:(Ax B)— P(X), defined by

(a,b) = afa) Ny(b), (a,b) = B(a) Ud(b).
It is denoted by A(a”g) A B(%(g)i(A X B)(a/\%g\/(;).

4.2.2 Definition [19]

Let A(,,5) and B, 5) be double-framed soft sets over X. The uni-int product of A, g)
and B, s is defined as a double-framed soft set (A X B),v+,8rs) Over X in which
aVy:(Ax B)—P(X), BAN0:(Ax B)— P(X), defined by

(a,b) = afa) Uy(b), (a,b) = B(a) N3(b).
It is denoted by A(a,,@) Vv B(%(g)i(A X B)(a\/%g/\g).

4.2.3 Definition

For double-framed soft sets A, gy and B(,s) over X, the extended int-uni double-
framed soft set of A, gy and By, s) is defined as a double-framed soft set (AUB) 47+,5006)
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where aNy : (AU B) — P(X), defined by
a(e) ifec A—B
e— ¢ (e ifee B—A
ale)Nvy(e) ifee ANB
and SU6 : (AU B) — P(X),
B(e) ifec A-B
er— < d(e) ifee B—A .
BleyUdle) if ec ANB

It is denoted by A(q,g) Me B(y,5)=(A U B)(afy,506)-

4.2.4 Definition

For double-framed soft sets A, g) and B, s) over X, the extended uni-int set double-
framed soft of A, ) and B, s) is defined as a double-framed soft set (AU B)40,576)
where aUy : (AU B) — P(X), defined by

) ifeec A—B
) ifee B-A

ale)Uvy(e) if e€e ANB
b

Q

and $N6 : (AU B) — P(X), defined by
Be) ifeec A—B
e d(e) ifee B—A .

Ble)Nd(e) if ec ANB

It is denoted by A(aﬁ) L B(A/,(;)&(A U B)(aomgﬁ(g).

4.2.5 Definition

For double-framed soft sets A, g) and B, 5 over X, the extended difference double-
framed soft set of A, g) and By, s) is defined as a double-framed soft set (AUB)(q—.,5—.5)

where
ae) ifec A-B
a—.v7:(AUB) = P(X), e~ ¢ ~(e) ifeeB-—A
ale) —y(e) ifee ANB
B(e) ifee A—B
f—c0:(AUB) = P(X), e— ¢ d(e) ifee B—A .

Ble) —d(e) ifec ANB
It is denoted by A, g) —c B(y,5)=(AU B)(a.v,8—.6)-
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4.2.6 Definition

For double-framed soft sets A, ) and B, over X with AN B # 0, the restricted
int-uni double-framed soft set of A, gy and By, s is defined as a double-framed soft
set (AN B)(apy,p0s) Where afy : (AN B) — P(X), defined by

e a(e) N(e),
and SUG : (AN B) — P(X), defined by

e B(e)Ud(e).
It is denoted by A(q,g) M B(y,5=(A N B)(afr,300)-

4.2.7 Definition

For double-framed soft sets A, gy and B, 5) over X with (AN B) # 0, the restricted
uni-int double-framed soft set of A, gy and B, s is defined as a double-framed soft
set (AN B)(ady,prs) Where aly : (AN B) — P(X), defined by

e - a(e) Un(e),
and 8Nd : (AN B) — P(X), defined by

e B(e)Nd(e).
It is denoted by A(q,g) U B(4,5=(A N B)(a0y,880)-

4.2.8 Definition

For double-framed soft sets A, gy and B, 5) over X with (AN B) # 0, the restricted
difference double-framed soft set of A, 3) and By, s) is defined as a double-framed soft
set (AN B)(q—~,3—s) Where a —v: (AN B) — P(X), defined by

e ale) —7(e),
and f—§: (AN B) — P(X), defined by

e [B(e) —d(e).
It is denoted by A, g) — B(y,6)=(AN B)acy,8—4)

4.2.9 Definition

Let A,3) be a double-framed soft set over X. The complement of a double-framed
soft set A, p) is defined as a double-framed soft set A(,e gey where

a:A—P(X),e— (a(e)and f°: A — P(X), e— (B (e))".

It is denoted by A(aﬁ)ciA(acﬁc).
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4.2.10 Example

Let X be the initial universe and E be the set of parameters, where X = {x1,22,23,24,25,26},
E = {e1,e9,e3,e4,65}. Suppose that A = {ez,e3}, and B = {e3,e4,}. The double-framed

soft sets A(q ) and B(, ) over X are given as follows:

a5 A-PX),
e s {96273?5,966} if e = eqg,
{131,5[33,564,1‘5} lf e = e3,
5 A-PX)
{z1} ife=ey,
e
X lf e = e3,
and
71 BoPX),
X ife= €3,
e
{1:15 X4, :L‘G} ife= €4,
0 : B — P(X),
{‘/Elv X4, 135,566} lf e = e3,
e
{21, 22, 25} if e =ey.

Now, we apply various operations on A, g) and B, 5. Then

(i) A(a,ﬁ) L B(%(;)i(A U B)(aO*y,ﬁﬁ&)’ where

(aUy) : (AUB)—P(X),
[ {ze, x5, 26} if e = ey,
e — X if e = egs,
{z1,24,26} if e = ey,
(576) : (AUB)—P(X),
{z1} if e = eg,
e +— {z1, 24, 25,26} if e = e3,
{x1, T2, 75} if e = ey,

(il) A(a,ﬁ) Il B(,y’(;)i(A N B)(aﬁ'y,BO&)? where

(@nB) : (ANB)—P(X),
e3 — {x1, w3, 24,75}
(B35) : (ANB)— P(X),

e3 — X
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(ili) A(a,ﬁ’) —c B(%(;)E(A U B)(CYVE%BVE(S)’ where

o < :(AUB)—P(X),
{z2, 25,26} if € = eg,
e — {} if e = e3,
{z1, 24,26} if e =ey,
B — :(AUB)— P(X),
{z1} if e = eo,
e {2, 23} if e = eg3,

{z1, 20,25} if e = ey,

iv) A, g)c=A(yc ge), where
(a,8) (a,8°)

a¢ A PX),
{z1, 23,24} if e = ey,
e [ —
{za, z6} if e = ez,
ge . A—PX),
{$2,$3,$4,IL‘5,$6} ife= €2,
[ [
{} if e = e3.

4.3 Properties of Double-framed Soft Sets

In this section we discuss properties and laws of double-framed soft sets with respect
to their operations. Associativity, absorption, distributivity, de Morgan laws and
properties of involutions, complementations and atomicity are investigated for double-

framed soft set theory.

4.3.1 Definition

A double-framed soft set over X is said to be a relative null double-framed soft set,

denoted by A(p x) where
P:A—-PX),e—0 and X: A — P(X), e— X.

4.3.2 Definition

A double-framed soft set over X is said to be a relative absolute double-framed soft set,

denoted by A(x ) where
X:A-PX),e—~Xand &: A— P(X), e 0.

Conventionally, we take the double-framed soft sets with empty set of parameters

to be equal to m(fb,%) and so A(aﬂ)[—lB(%(;)iA(a,B) |—|B('y,5)£®(<1>,%) whenever (ANB) = 0.
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4.3.3 Proposition

If Agx) is a null double-framed soft set, Ax o) an absolute double-framed soft set,

and A, gy, A(y,6) are double-framed soft sets over X, then
1) Aap) Ue A5 =A(a,5) H Ay 0);
2) Aa,p) e A=A M Awe);
3) Aw,p) N Awap=Awn) =400 H Awp):
1) Agp) U A@xn)=A0n=A@s N Axe),
5) Ao UAxe)=Axe) A N A@0=A@.2)
Proof. Proofs of 1), 2) and 3) are straightforward.

4) As Aa,p) U A@x)=A@0s,srx)- Therefore for any e € A,

(aU®)(e) = ale) U®(e) = ale) and (BNX)(e) = B(e) N X(e) = B(e).

Thus A(a,ﬁ) L A(Q};)&A(aﬂ).

Again, A(a,ﬁ) M A(%,@)éA(aﬁ%,BO@)‘ For any e € A,

(aNZ)(e) = a(e) N X(e) = a(e) and (B0P)(e) = B(e) UB(e) = Hle).

S0 A(a,8) M Az,0)=A(a,8):

Part 5) can be proved in a similar way. m

4.3.4 Proposition

Let A(q,p); B(y,5) and C(¢ ) be any double-framed soft sets over X. Then the following

are true
1) A(aﬁ)A(B(’Y,‘s)AC(C,TI))i(A(a,B))‘B(%é)))‘O(CJ))7 (Associative Laws)
2) A(a”g)AB(%(;);B(%(;))\A(&,ﬁ), (Commutative Laws)

for all A € {Ug,U,Me, M}
Proof.

1) Since Ay,p) Ue (B(y,5) Ue Cep)) =(A U (B U C))(an(y0c),sA(smm)), We have for any

ec AU(BUCQC):
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(i) Ifeec A— (BUC), then

(e0(y0))(

Q)
~

(i) Ife € B— (AUC)

(a0(y0Q))(e)

(BA(3Mm))(e)
(iii) If e € C — (AU B), then

aU(y0¢)(e)

AN(SMm)(e)

(iv) If ee (AN B) — C, then

a0(v0¢)(e)

BN(8Mm)(e)

(v) Ifee (ANC) — B, then

aU(y0¢)(e)

BN(SMm)(e)
(vi) If ee (BNC) — A, then

a0(v0¢)(e)
BN(8Mm)(e)

(vii) If e € (AN B)NC, then

aU(y0¢)(e)

AN(SMm)(e)

= afe) = ((aUy)()(e)
= B(e) = ((BNd)m)(e)
= 7(e) = ((e0y)Ud)(e)

Uy(e) = (aUv)(e) = (aUy)T((e)
nd(e) = (8Md)(e) = (BNS)Nmn(e)

U¢(e)) = (ale) Ur(e)) Ul(e) = (aUy)U¢(e)
nn(e)) = (Be) Né(e)) Nnle) = (BN5)Nn(e)

Thus A(a,ﬁ) Lle (B(%(;) Le C(Cﬂ?))i(A(awB) Le B(%(;)) Le C(Cv’?)’ Similarly, we

can prove for A € {U, M, M}.
2) This is straightforward.
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4.3.5 Proposition (Absorption Laws)

Let Ao, ), B(y,5) be any double-framed soft sets over X. Then the following are true:

1) Afap) e (B M Aa,8) =A(a,8)
2) Afa,p) M (B(y,6) Vs A(a,8))=A(a5):
3) Afa,0) U (B(y,0) Me Afa,8) = A(a,);
4) Ao, Me (By.0) U Aa,8)=A(0,)-

Proof. Straightforward. m

4.3.6 Proposition (Distributive Laws)

Let Ao,5), B(y,s) and C(¢ ) be any double-framed soft sets over X. Then

1) Aa,p) Us (By,5) U Cean) S(Afap) Ue Biys)) U (Aay) Ue Cieamy):
2) Afa,p) Ue (Biy.5) Me Ciean) 2(Afap) Uz By.g)) Me (Aa,) Ue Ciean)s
3) Afa,8) Ue (B(y,6) M Cen)) =(A(a,8) Ue Biy,8)) M (Aa,p) Ue Cre)s
4) A(ap) U (Biy.5) Ue Cem)=(A(a) U Biy.5)) Ue (Aqa,p) U Ciem)s

5) Afa,p) U (B(y.6) Me Cen))=(Afa,8) U Biy,5)) Me (A(a,p) U Cremy)s

6) Afa,p) U (Biy,e) M Cien)=(A(a,) U B(y,8) M (A(a,8) U Ciem))s

7) Aap) Me (Biy,5) Uz Cen) S(A(a,9) Me Biy.s)) Us (Agag) Me Ce);
8) A(a,p) Me (B(y,5) U Cien))=(A(a,8) Me Biy.9) U (A(a) Me Cremy)s
9) Aga,8) Me (By,5) M Cien) 2(Aa,8) Me Br.0) M (A, p) Me Cien))s
10) A(a,p) M (By.5) Ue Cem))=(A(a) M B(y.9)) Ue (A N Ciem)s
11) Atap) M (Biy.5) e Cem)=(A(ap) N Biy.5)) Me (A N Cem)s
12) A, M (B(y,5) U Crem)=(A(a,8) M Biy.8)) U (A, 1 Ciemy)-

Proof. Consider 10)

Aa,p) M (By,6) Ue Cien)=(A(a,8) 1 Bir.6)) Ue (Aa,p) M Ciem))-

For any e € AN (B UC), we have following three disjoint cases:
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(i) fee AN (B —C), then
(@N(v0Q))(e) = a(e) Ny(e) and (BU(6Mn))(e) = B(e) U d(e)
and

(@f)D(afO))(e) = (afn)(e) Ub=a(e) N(e) and

((BUO)N(BUN))(e) = (BUG)(e) N X = B(e) Ud(e).
(ii) If e € AN (C — B), then
(@N(v30))(e) = a(e) N ¢(e) and (BU(6Mm))(e) = B(e) Un(e)
and

((eMy)0(en))(e) = DU (ang)(e) = afe) N((e) and

((BO0)N(BUN))(e) = X n(Bm)(e) = B(e) Un(e).

(iii) If e € AN (BN C), then

(@N(yUQ))(e) = ale)n(v(e)U¢(e)) and
(BU(MM))(e) = Ble)U(d(e) Nnle
and
((aMy)U(ang))(e) = (arm)(e) U (end)(e)
= (a(e) Nv(e)) U (ale) N¢(e))
= a(e)N(y(e)Ul(e)) and
((BUS)A(BUN))(e) = (BUS)(e) N (BUn)(e)
= (Ble)Ud(e)) N(B(e) Un(e))
= PBle)U(d(e) Nnle)).
Thus

Aa,8) T (B(y6) Ue Cien)=(A(a,8) M By,6)) Ue (A(a,0) M Ciemy)s

Similarly we can prove the remaining parts. ®
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4.3.7 Example

Let X = {m1, ma, ms, ma, ms, mg, m7, mg} be the set of candidates who have applied
for a job position of Office Representative in Customer Care Centre of a company. Let
E = {x1, 22,23, x4, T5, 6, T7, T3, 9} = {Hard Working, Optimism, Enthusiasm, Indi-
vidualism, Imaginative, Flexibility, Decisiveness, Self-confidence, Politeness}. Suppose
that A = {z1,x9,x3,26,27,09}, B = {w2,x4,x5,27,28}, C = {x3,25,27,29}, the double-
framed soft sets A(q gy, B(y,5), C(¢,y) describes the “ Personality Analysis of Candi-
dates” for three different positions. The company has recorded this data obtained
through interview and practical sessions conducted by a panel of experts which is
presented by mappings «,y,( and 3, d,n for three positions respectively. The double-
framed soft sets A, gy, B(y,6), C(¢,y) over X be given as follows:

{m17m4)m57m67m8} ifezl'l,

{m1,ma, m3, ma,m7,mg} if e = x,

a : A—-PX), er— {ma, ma, me, mz, ms } ?fe:xg,
{ma, mis, me, m7} if e = xg,
{ms, mg, ms} if e = 27,
{ma, m3, mq, mg, m7} if e = x,

{m17m27m3a m57m7,m8} ife= Ty,
{m27m57m67 m7} if e = 9,

{m1)m27m3,m4,m6,m8} ifezl'g,

B A—VP(‘X)7 e r—

{ms, mg, ms, me, m7} if e = wg,

{ma, ma, ms} if e = x7,

{maq, ms, mg, mz, mg} if e = xg.

[ {m1, ma, m3, mg, mr} if e = 9,

{ma, ms3, mg, mg} if e =y,

v B—=PX), e« {mi,ma, my,mg,my,mg} if e=uzs,
{ma, m4, me, ms} if e = 7,

{m1, mg, m3, ms, mg, m7} if e = zg,

{ma, m3, my, ms5, me } if e = xo,
{ma, me, mz, mg} if e = 1y,
d : B—PX), e— < {mgz,mq, ms,ms} if e = s,
{m1, mg, ms3} if e = 27,

{mSa m4,m5,m6,m7,m8} if e = zg.
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{ms, m7,mg} if e = x3,
¢ O PX), e {m1, ma, mg, ms5, mg, m7} if e = s,
’ {me, mr7} if e = z7,

{mlam27m37m47m5} if e = zg,

( .
{ml,mg,mg,m4,m5,m8} 1f6:$3,

Do O P(X), e d UMMM, M} if e = a5,

7 {m27m37m6} if e = x7,

{m2am3am57m67m77m8} ier,CL‘g.
Now

Afa,8) Nz (By,5) M Ce.) =(AU (BN C)) (ai(r1¢),80(60m))
and

(A(a,8) Me Br,6)) M (A(a,8) Me Ce)=((AU B) N (AU O)) (af)A(anc),(806)0(50m)) -

Then the approximations for parameter xo are not same on both sides e.g.

(aN(YNQ)(z2) = {m1,ma, m3,ma, m7,ms}
# {m1,ma,m3,mr} = ((ay)N(aN¢))(x2) and
(BU(6UN))(z2) = {ma,ms,mg, m7}

#  {ma,m3,ma,ms, mg, mr} = ((BU8)0(BUn))(x2).

Thus

A(a,8) Ne (B(y,6) M C¢,m)#(A(a,8) Me By.,6)) M (Aa,) Me Cimy)-

Now, consider

Aa,8) Me (B(y,5) Ue Cem))=(AU (B U C)) ap(00),80(5m))

and

(A(a,8) Me B(y,)) Ue (Aa,0) Me Ciey) = (AU B)(ary,p05) Ue (AU C)ar¢ 50m)
= ((AUB) U (AU C))((afrm)3(aic),(806)A(Bm)) -

Then the approximations for parameter xo are not same on both sides e.g.

(aN(YUQ))(z2) = {m1,ma, m3, mr}
# {my,ma,m3, mg, mz,mg} = ((aNy)U(aN¢))(x2) and
(BU(0Mm))(z2) = {ma,m3,ma, ms, me, mz, ms}

# {mz2,ms5,me, mz} = (BUS)N(BUn))(22).
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Thus
Afa,p) Ne (Biy,) U Cle.n) A(Afap) Ne Biy,s) Ue (A(a,) Me Cem)-
Similarly it can be shown that
Afa,p) Us (Biy,g) U Cle.n) #(Afa,p) Us Bp,) U (A, Ue Clem))-
Afa,) Us (Biy,) N Cle.n)) A(Afap) U Birs) Me (A(a,) Ue Cem)-

4.3.8 Proposition

Let Ao ), B(y,s) and C¢ ) be any double-framed soft sets over X. Then

1) A(a,,B) e (B(%(;) Me C(Cﬂ?))i(A(awB) e B(%(g)) Me (A(oc,ﬁ) L C(Caﬁ)) if and only if
ale) € ~(e) and S(e) D d(e) for all e € (AN B) — C and
ale) C ((e) and B(e) D n(e) foralle e (ANC) —

2) A(a,ﬁ) Mg (B(’Yﬁ) Lle C(Cﬂ?))i(A(Otﬁ) MNe B(%(;)) e (A(a,ﬁ) Me C(C777)) if and only if
ale) 2D ~(e)and B(e) C d(e) for all e € (AN B) — C and
ale) O ((e) and B(e) Cn(e) foralle e (ANC) —

Proof. Straightforward. m

4.3.9 Corollary
Let A(a,8), B(y,s) and C(¢ ) are three double-framed soft sets over X. Then
1) Afa,p) Ue (By5) Ne Cien)=(Aga,p) Us Biy,)) Me (Aga) Ue Ciem)
2) A(a,p) Me (B(y.6) Us Ciem)=(Aa,p) Me B ) Ue (Ao, ) Me Clem)
if and only if
ale) = ~(e) and B(e) =d(e) for all e € (AN B) — C and
ale) = ((e) and B(e) =n(e) for alle € (ANC) — B.
4.3.10 Corollary

Let A(q,8), B(y,5) and C(c ) are three double-framed soft sets over X such that (AN
B)—C=(ANC)— B=10. Then

1) A(a,p) Ue (B(y,5) Me Cen))=(A(a,8) Us Biy,5)) Te (A(a,p) Ue Ciem)

2) A(a,p) Me (B(y,6) Ue Clem)=(A(a,p) Me By,5)) Ue (Aa,) T Cemy)-
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4.3.11 Corollary

Let A(a,8), A(y,5) and A¢ ) are three double-framed soft sets over X. Then

A, MAG,0) 1A ) =(A(a,5) A A (7,6)) (A0, A ()

for distinct A, p € {Mg, M, U, U}

4.3.12 Theorem

Let A, 5) and By, 5) be double-framed soft sets over X. Then the following are true

1) A(ap) Ue B(y,5) is the smallest double-framed soft set over X which contains both
A(a,p) and B, 5). (Supremum)

2) A(a,p) M B(y,6) is the largest double-framed soft set over X which is contained in
both A, 3) and B, 5. (Infimum)

Proof.

1) We have A,B C (AU B) and a(e),v(e) € a(e) Uvy(e) and B(e) Nd(e) C B(e),
B(e)nd(e) C d(e). So A(aﬁ)QA(aﬁ)l_lsB(%g) and B(775)§A(a75)|_|€B(775). Let Ci¢ )
be a double-framed soft set over X, such that A, g), B(+,6)SC(¢,y)- Then A, B C
C implies that (AUB) C C and «a(e),v(e) C ((e) implies that a(e)U~v(e) C ((e).
Also n(e) C B(e), n(e) € d(e) imply that n(e) C B(e) Nd(e) for all e € AU B.
Thus A, g)Le B(W;)QC’(Q,?). It follows that A, g)Ues By, .s) is the smallest double-
framed soft set over X which contains both A, gy and B, s).

2) We have ANB C A;AN B C B and ae) Ny(e) C ale),ale) Ny(e) C v(e) and
B(e) C Ble)Ud(e),d(e) C Ble)Ud(e) for all e € ANB. So A(n,p) 11 B(.6)CA(a,9)
and A(a’g)l—lB(%(;)QB(W;). Let C(¢ ) be a double-framed soft set over X, such that
O((,n)éA(a,ﬁ) and O(CW)QB(%(S)' Then C C A, C C B implies that C C AN B
and ((e) C a(e), ¢(€) C fle) imply that ¢(¢) C ale) N f(e), and fe) C n(e),
d(e) € n(e) imply that B(e)Ud(e) C n(e) for all e € C'. Thus C’(gn)éA(a’B)l_lB(%(;).
It follows that A, g) 1 B, s) is the largest double-framed soft set over X which
is contained in both A, gy and B, s).

4.4 Algebras of Double-framed Soft Sets

In this section, we discuss the ideas of lattices and algebras for the collections of
double-framed soft sets. Let DSS(X ) be the collection of all double-framed soft sets
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over X and DSS(X)4 be its subcollection of all double-framed soft sets over X with
fixed set of parameters A. We note that these collections are partially ordered by the

relation of soft inclusion C given in Definition 4.1.2.

4.4.1 Theorem

(DSS(X)¥, M., 1), (DSS(X)F,1,M.), (DSS(X)E, L., M), (DSS(X)E, M, L),
(DSS(X) 4,U,M), and (DSS(X) 4,M,U) are complete lattices.
Proof. Let us consider (DSS(X)¥,M.,1). Then for any double-framed soft sets
A(a,8), B(y.5) Ciem) € DSS(X)F, we have

1) A(a,,B) I_IeB('y,é)i(AUB)(aﬁ'y,BOé) (S DSS(X)E and A(oz,ﬁ)I—lB('y,(s)&(AmB)(aO'y,ﬁﬁ&) S
DSS(X)E.

2) From Proposition 4.3.3, we have A, 3): A(q,3)=A(a,8) and A ) U A0,3=A(a,8)-

3) From Proposition 4.3.4 we see that A, g) Me B(y,6)=B(y,6) MNe A(a,p) and A, gy U
B(y,5)=B(y,6) U A(a,5)- Als0 A(a,8) e (B(y,5) e Cle,m) = (Aa,p) e Biy,6)) Me Ce )
and A g) U (B(y,6) U C)=(A(a,p) U B(y,5)) U Cie,my-

4) From Proposition 4.3.5,

Afa,) Me (By,6) U Afa,8) =A(a,8) and A(a,8) U (B(y,5) Me Aa,3))=A(a,p)-
So we conclude that the structure forms a lattice.

Consider a collection of double-framed soft sets {4;, ,,:4 € I} over X. We have,
UAi C E and, let A(e) = {j : e € A;} for any e € A;. Then ﬂ a;(e) € X and
i€l i€A(e)
Uﬁi(e) C X. Thus M- 4;, ,, € DSS(X)¥. Again, we have, ﬂAi C E and for any
i€l el T iel
ee ﬂAi, Uai(e) C X and ﬂﬁi(e) CX. Thus UA; . € DSS(X)F.

iel i€l iel el

Similarly we can show for the remaining structures. m

4.4.2 Theorem

(DSS(X)P, 1M, Ue, (o, %), Ex.0)),(PSS(X) ¥, e, 1, Ex 0), Do, x))
(DSS(X) 4, M, U, Aa,x), Ax,0)) and(DSS(X) 4, U, 1, Az #), A@,x)) are bounded
distributive lattices.
Proof. Proposition 4.3.6 assures that (DSS(X)¥,M,U.) and (DSS(X)¥, L., M)
are distributive lattices. From Theorem 4.3.12, we conclude that (DSS(X )E , T, Ug,
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D x), E(x,3)) is a bounded distributive lattice and (DSS(X)E, L., M, B, 0@.x))
is its dual. For any double-framed soft sets A, ), A(y,5) € DSS(X) 4,

Aap) MA@ = Afarin,pos) € DSS(X) 4 and

Aty UAGe) = Aady,sis) € DSS(X) 4.
Thus (DSS(X) 4,M,U) is a distributive sublattice of (DSS(X)¥,U.,M) and Propo-
sition 4.3.3 tells us that Ag x), A(x,3) are its lower and upper bounds respectively.

Therefore (DSS(X) 4,M, U, A3 %), A(x,9)) is a bounded distributive lattice and
(DSS(X)A, L, r, A(x7(1>), A(q;,’x)) isits dual. m

4.4.3 Proposition
Let A, ) be a double-framed soft set over X. Then A, g) is a complement of A, g).
Proof. As A, p) U A(a,p)c=A(a0ac, prpse)- Now, for any e € A,
(aUa®)(e) = ale)U(ale))*=X and
(BB (e) = Ble)n (Ble)) =0.
Thus A(a,/)’) U A(a,B)CéA(%,tb)'
Again, we have A, g) M A(qa,5)c=A(afac,g08°), S0 for any e € A,
(aNa)(e) = ale)N(ale))=0 and
(B0B°)(e) = Ble)U(Ble))” = X.
Thus A(O{,B)HA(OC,ﬁ)CiA(¢7x)' From A(Oé7/3)|_|A(Oé75)c£A(%7q>) and A(a,ﬁ)ﬂA(a,,@)CiA(Q,%ﬁ
we conclude that A, gy is a complement of A, g)-
Now, we show that A, g)e is unique in the bounded lattice (DSS(X) 4,U,M,A(x 0),4(3,%))-
If there exists some A, 5) € DSS(X), such that A, gy U A5 =Ax,e) and Ay g) M1
A(y.5=A(@,x)- Then for any e € A,
ale)Ny(e) =0 and B(e) Nd(e) =0
= 7(e) € (a(e))” = a’(e) and é(e) < (B(e)) = (e)
and

a(e) € X = ale) Ury(e) and 5°(e) C X = B(e) Ud(e).

But
ale)Na‘(e) =0 and B(e) N B°(e) =0 so
a‘(e) C ale) Uy(e) = a(e) C v(e) and 5°e) C B(e) Ud(e) = B°(e) C d(e).
Therefore
v(e) = a“(e) and d(e) = B(e) for all e € A and A(, 5=A (4 g)e-

Hence A, g)c is unique complement of A, 5). ®
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4.4.4 Proposition (de Morgan Laws)

Let A, ) and B, s5) be double-framed soft sets over X. Then the following are true:

1) (A(ap) e Br.6)) =A(ap)e Ne Biyo)es
2) (A(,p) M B(1.0)) =A(a,8)c Ue B(y,)es
3) (A(p) V B(1.5)) =A(,8)c N By,6)e
4) (A0 N Br.5) =A@pye V Bysyes
5) (A(,p) U B(1,6)) = A(a,8)c 1 B(y,6)e
6) (A(,5) M B(1.5)) =A(a,8)c U By,

Proof.

1) We know that (A(a,g) Uz B(y,6)) (A U B)(aty,prie)=(A U B)((aim)e (570))-

Let

e € (AU B). Then there are three cases:

(i) If e A— B, then

(a@Uy)(e) = (ale))”=
(B19)(e) = (Ble)) =

Thus
(aUy)“(e)
(B13)“(e)

(ii) If e€ B — A, then

(aUy)(e) =
(B6)“(e) =

Thus

(7(€)) =7(e) and (a“M)(e) =~°(e) and
(0(€))® = 6°(e) and (B°U6°)(e) = 6°(e).
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and
(@) (e) = (ale))*N(v(e)® = (aly)*(e) and
(8°70%)(e) = (B(e))* U (d(e))" = (BUS)(e).
Therefore, in all three cases we obtain equality and thus
(A(a,8) Ue B(,6) = A(a,0)c Me By g)e-

The remaining parts can be proved in a similar way.

4.4.5 Proposition

(DSS(X) 4,1, ., Ara.x), A(x,a)) is a de Morgan algebra.

Proof. We have already seen that (DSS(X) 4, M, U, A x), Ax,9)) is a bounded
distributive lattice. Proposition 4.4.3 show that " “" is a complementation and hence
an involution on DSS(X) 4, and Proposition 4.4.4 shows that de Morgan laws hold with
respect to " “" in DSS(X) 4. Thus (DSS(X) 4, M,U,¢, Ag x), Ax,e)) is a de Morgan

algebra. m

4.4.6 Proposition

(DSS(X)a,M, ., A x), A(x,a)) is a boolean algebra.
Proof. Proof follows from Propositions 4.4.4 and 4.4.3. =

4.4.7 Proposition
(DSS(X)a,M,U,¢, Ag x), A(x,a)) is a Kleene Algebra.

Proof. Note that, A(%(g) M A(v,&)céq)(fb,%)éA(%ﬁD)&A(a,ﬁ) (W A(aﬂ)c. We already
know that (DSS(X)a,M,U,°, A x), Ax,9)) is a de Morgan algebra, so this condition
assures that (DSS(X)4,M,U,°, A x), Ax,9)) is also a Kleene Algebra. m
4.4.8 Definition
Let A, ) be a double-framed soft set over X. We define

(A(0,8)) " =A(a,8)=A5,0)-

4.4.9 Proposition

Let A(q,g) be a double-framed soft set over X. Then A, 3)=(A(a,8)0)% Ax,e)° =A(@,%)
and A(¢7x)o£A(x7q)).
Proof. Straightforward. m
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4.4.10 Proposition (de Morgan Laws)

Let A, ) and B, 5) be double-framed soft sets over X. Then the following are true

1) (Aq@p) Ue B1,5))°=A(a,p)0 Me B(y.6)°5

2) (A(ap) Me By,5))°=A(a,p)° U= By.9)°5

3) (Aa.p) V B1.6))"=A(a,8)° A B(y.0)

4) (A0 N Br.5) = A2 V B(y.o)°s

5) (A(,8) U B(1,6)) "= A(a)° 1 By.00°;

6) (A(ap) M B(1,6))"=Aa,50 U By -

Proof.
1) We have (A(q, gy Ue B(y,6))°=((AU B)(ao%ﬁm))oé(fl U B)(Bﬁ&ao,y) and
Aa,p)° Me B(y,5°=A(g,a) Me B(s,7)=(AU B)(55,a0)-
Thus (A(aﬁ) ([ B(%(;))OEA(aﬁ)o Me B(y,5)-

The remaining parts can be proved in a similar way. m

4.4.11 Proposition

(DSS(X)a,M,U,°, Aa x), A(x,9)) is a de Morgan algebra.
Proof. Proof follows from Propositions 4.4.9 and 4.4.10. m

4.4.12 Definition

Let A(q,g) be a double-framed soft set over X. We define A, g0 as a double-framed
soft sel A(qe x) where

a 1 A—-PX), e— (ale)

X : A-PX), e~ X.

4.4.13 Proposition
Let A, ) and A(, 5) be double-framed soft sets over X. Then
1) Awe) N A 50 =A@,2),

2) A(%(g)CA(aﬁ)o whenever A(%(g) M A(a,ﬁ)iA(é,j{)‘
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Proof.

1) For any e € A,

(v)(e) v(e) N (v(e))* =0 = 2(e) and
(B0X)(e) = (e)UX =X = X(e).

Thus A(%(;) M A(%(;)Q iA(q)’x).

2) Assume A, 5) M A(q 8= A(e,x)- Now, for any e € 4,

v(e)Nale) = (yNa)(e) = P(e) =0 and so y(e) € (a(e))® = a(e).
Also §(e) C X =X(e).

Therefore A(775)CA(Q’B)<>. So, we conclude that (DSS(X) 4,M,U,%, Aw.x), Aix,0))

is pseudocomplemented.

4.4.14 Proposition

Let Aa,5), B(v,6) € DSS(X)E. Then pseudocomplement of A, gy relative to B, s
exists in (DSS(X)F,m,L.).
Proof. Consider the set

T(A(a,5): B1,8) = {Cicamy € SS(X)P: Cleny M Ata,p) S B0 }-

We define a double-framed soft set Af, . se)Lle B(,5=(A°U B) (qe0y,576) € DSS(X)E.
Then

(AU B)(qety,pems) M Aw,p = (A°U B) N A)((ac0y)ha,(8°R5)08)
= ((A°NA) U (BN A))(acha)0(Aa),(8°08)AGTR))
= (AN B)(;i0,508 B 0)-

Thus (A°U B)(actr,gem0) € T(A(,p): By,g))- For any Ciey € T(A(a,p) Biys)), we
have C(¢ ) M A(a”g)QB(W;) so foranyec CNACBRB

((e) Nale) € v(e) and n(e) U B(e) 2 d(e)
Now,

CNACB=(ANC)NB*=10
= CC(ANB%*=A°UB
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and

¢(e) Nafe) € y(e) and n(e) U B(e) 2 d(e)
= ((e) Nafe) N7“(e) = 0 and 7°(e) N 5°(e) C 6°(e)
= ((e) S a’(e)U~(e) and n(e)NB°(e)Nd(e) =10
= ((e) S a’(e)Un(e) and 5°(e) Nd(e) Cnle).

Thus C(¢,)S(A°U B) (e, gems)s also

(A°U B) (aet,5500) = V T(A(,)s By.5)) = Atas) — Birsy:

4.4.15 Remark

We know that (DSS(X)4,M,U) is a sublattice of (DSS(X)¥M.,U). For any Ala,p)s
Ay,5) € DSS(X) 4, A(a,p) — Afy,5) as defined in Lemma 4.4.14, is not in DSS(X) 4
because A(a B) — A(,y &= =(A°U A)(aCU'y B°A8)= E(aCOW,BCﬁcS) ¢ DSS(X)A

4.4.16 Lemma

Let A(q8), A(y,5) € DSS(X),. Then pseudocomplement of A, g) relative to A, 5
exists in DSS(X)™.
Proof. Consider the set

T(A(a,p), Ars)) = {A(c) € DSS(X) 4+ Ay M A,)SA(5) }-

We define a double-framed soft set A (e gey U A(y, 5= A(acty,gems) € DSS(X) 4. Con-

sider

A(aetm,pers) MA@ = A(acOy)fha,@°06)08)
= A((aefa)0(vMa),(8°08)A(608))
A((47a),658) SA(7.8)-

IE

Thus A(aCOW,BCﬁ(S) S T(A(aﬁ),A(%(;)). For every A(Cﬂ?) S T(A(aﬁ),A(%(g)), we have
A(Cﬂ?) Il A(a,ﬂ)éA(%(;) so for any e € A,

¢(e) Nafe) € y(e) and nle) U B(e) 2 d(e)
= ((e) Nafe) N7 (e) = B and 71°(e) N 5°(e) C 6°(e)
= ((e) Ca(e)Un(e) and 7°(e)NB(e) Nd(e) =0
= ((e) S a’(e)Un(e) and 5°(e) Nd(e) Cnle).
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Thus A(Cyn)éA(acQ%ch) and also

Ataemgerny= V T(Aag) A1) =A(,8) =4 As.0)-

4.4.17 Proposition

(DSS(X)* ,M.,1) and (DSS(X) 4,M,U) are Brouwerian lattices.
Proof. Follows from Lemmas 4.4.14 and 4.4.16. m

4.4.18 Theorem

(DSS(X)a,M,¢, Az ¢)) is an MV-algebra.
Proof.

(MV1) (DSS(X)a,M, Aix.9)) is a commutative monoid.
(MV2) (Axy5)e)=A.6)-
(MV3) A N As=A@x T Aq0=A@n=Axe):

(MV4) (A(a’ﬁ)c I A(%(;))C I A(%(g)

I

(Afac,5e) M A(y,6))° 1 A(y.6)

Il

(A(acﬂc)c LI A(%(g)c) I A(%(g)

I

(Aa,p) U Agye,50)) T Ay,0)

K

(A(a,8) M A(y,8)) U (Agye 52 M Ay 5))

Il

(Aa,p) M Ap,s) U A@x)

I

(A0 M A(a,8) U (Aga,p) M Aa,p)

I

(A@,6) U Aa,p)e) M A(ap)

Il

(A@,60e M A(a,8) T A(a,p)

for all A, gy, A(y,5) € DSS(X)a. Thus (DSS(X)a,M,°, A(x,3)) is an MV-algebra.
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4.4.19 Theorem

(DSS(X)a,,°, Ap x)) is an MV-algebra.
Proof.

(MV1) (DSS(X)a,U, Ag x)) is a commutative monoid.
(MV2) (A(y,6)0)=A(,)-
(MV3) A((I)’x)c L A(%(;)iA(x,q)) L A(%(;)iA(x,q))iA(gx)c.

(MV4) (A5 U A@r,6) U Aws)

I

(A(ae,g) U A(,6) U Ay )

Il

(Afae,50)e M AG0)e) U A0)

I

(Aa,8) M Afye,69)) U Ay )

Il

(A(a,8) U A(y,5)) T (Age 52y U Ay 5))

I

(Aa,p) U A@,5) M Ax,0)

I

(A(y.0) U A@a,p) T (Aga,p)e U Afa,p))

1§

(A6 M A(a,p)e) U Aap)

[

(A(y,5)c U A(0,8) U A(a,p)

for all A, gy, A(y,5) € DSS(X)a. Thus (DSS(X)a,U,°, A x)) is an MV-algebra.

4.4.20 Theorem

(DSS(X)a,—, A@,)) is a bounded BCK-algebra whose every element is an involu-

tion.
Proof. For any A(a”g), A(%(;), A(Cﬂ?) S DSS(X)A.

BCI-1 ((A(a,p) = A(y,0) = (Aap) = Am)) = (A = Ans)

=(Aa—r.8-8) = Aa—cpon) ~ Ac—rm—d)
=A((ar) (@) (=) ((B—6)— (B—n)) — (1—))
=A@ (o) a—(n—s)=A@.2)-

BCI-2 (Aap) — (A — Ar9) = A
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=(A(a,p) = Alaer,5-0) = A@r.0)
=A(a—(a—m),8-(B-0) = A5 A@—r0-85)=A@,0)

BCI-3 A, 5 — A(as=4A@q)-
g — A(775)£A(q>,<1>) and

BCI-4 Let
A,
Ay ~ A@p=A@0):

For any e € A,

a(e) —y(e) =0 and v(e) — a(e) = 0 imply that a(e) = y(e),
Be) —d(e) =0 and d(e) — B(e) = 0 imply that G(e) = d(e).

also
Ala,5)=A(y.0)-

Hence
BCK-5 A(Qq)) ~ A(aﬁ)&A(q)va@vﬂ)&A(q),@).Thus (DSS(X)A, ~, A(@@)) is a BCK-

algebra.

Now Ax x) € DSS(X)4 is such that:
Afap) = Axn=Aa—rp-0=A(2,2)

Therefore (DSS(X)a,—, A(e,)) is a bounded BCK-

for all A,z € DSS(X)a.
(Azx) — Aw,p)

For any A, 3) € DSS(X)a,
Axx) = Axcax—p)

algebra.
Az x)
Axx) = Afae,po)

Ao x—p%)
A((ae)e,(82)9) = A(a,8)-

So every element of DSS(X)4 is an involution. m

4.4.21 Definition

Let A, ) and A(, 5) be double-framed soft sets over X. We define
Afap) * A 0)=Aap) N A0



4. Algebraic Structures of Double-framed Soft Sets 78

4.4.22 Theorem

(DSS(X)a,*, A x)) is a bounded BCK-algebra whose every element is an involution.
Proof. For any A(aﬁ), A(%(g), A(Cﬂ]) € DSS(X) 4.

BCI-1 ((A(a,p) * Ay.8) * (A * Aiem)) * (Agm * Ar,5))
= (A, 858); Ax{ (@, B3m) ) * A(Cxy,meo)
= A () (@) (C37) (B3 x (Bxm)x(1756))
A (((afrye)(alCE))*(Ce) ((BO6°)x(B0n))»(n05°))
= A (M)A )A(CHTE)e, ((BO69)D(B0ne)) O(mT6°)°)
=A(((afre)A(@e00)ACE Ty, (B08)D(B°Am))D(n°d))
=A((@A¢)A(AE). (8Om0 Tn) =A@ %)
BCI-2 (Aq,p) * (A(a,8) * A(y.8))) * A(r.9)
=A(af(afrye)e,80(806%)) * A(3.6)
=A(an(acm),80800) * A(3.0)
=A(ari,06) * A(1.9)
=A((af) e, (800)059) = A (@.2)-
BCIL-3 Ay 5 * A(a5)=Aarar 5059 =A(@.2)-
BCI-4 Let A(aﬂ) * A(%(g)iA(q)’x) and A(%é) * A(a’g)iA(q)’x). For any e € A,
ale) N (v(e))® =0 and y(e) N (a(e))® = O imply that a(e) = (e),
also

Be)UB(e)° = X and §(e) U (B(e)) = X
Be) N (6(e))” = 0 and d(e) N (B(e))” = 0
Ble) = d(e).

Hence A(aﬁ)iA(%(;).

BCK-5 A(sx) * A(a,8)=A(@xax8) =A(@rac,x089) =A%)
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Thus (DSS(X)a,*, A x)) is a BCK-algebra.
Now A(x¢) € DSS(X)4 is such that:

Ap * A@s) = Az pee)

= Aaaze,gooe)

= Awae,a0x)

Aa,x) for all A, 3) € DSS(X)a.

Therefore (DSS(X)a, x, A(s,x)) is a bounded BCK-algebra.
For any A, 3) € DSS(X)a,

Axa)* (Axe) * Ap) = Axe) * Arco,o0)
= A@x,e) * AxAae,a08°)
= A@,e) * Afac,89)
= AA(ac) 20(5))
= A@foe0s)=Aw,0)-

So every element of DSS(X)4 is an involution. m



Chapter 5

Double-framed Fuzzy Soft Sets
and Their Algebraic Structures

This chapter explores the theory of double-framed fuzzy soft sets which is a general-
ization of double-framed soft sets and most generalized structure in our work. Double-
framed fuzzy soft sets and their operations are defined and their characteristics are
studied. Examples are given to elaborate the concepts and to show how the ideas are
utilized to work with double-framed fuzzy soft sets. We see from examples that the
cases for double-framed fuzzy soft sets are of more generalized nature and we cannot

model those with double-framed soft sets.

5.1 Double-framed Fuzzy Soft Sets

Let X be an initial universe and F be a set of parameters. Let FP(X) denotes the
fuzzy power set of X and A, B, C are non-empty subsets of F.
5.1.1 Definition

A double-framed pair ((f, g); A) is called a double-framed fuzzy soft set over X, where
f and g are mappings from A to FP(X).
From here, we shall use the notation Ay ) over X to denote a double-framed fuzzy

soft set ((f,g); A) over X where the meanings of f, g, A and X are clear.

5.1.2 Definition

For double-framed fuzzy soft sets Ay gy and B, ;) over X, we say that Ay is a
double-framed fuzzy soft subset of By, ;), if

1) AC B and

80
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2) f(e) C h(e) and i(e) C g(e) for all e € A.

This relationship is denoted by A(fyg)éB(h,i). Also A(s ) is said to be a double-
Jramed fuzzy soft superset of B, if B,y is a double-framed fuzzy soft subset of
A(ﬁg). We denote it by A(f’g)éB(h,i).

5.1.3 Definition

Two double-framed fuzzy soft sets Ay gy and By, ;) over X are said to be equal if Ay 4
is a double-framed fuzzy soft subset of B, ;) and By, ;) is a double-framed fuzzy soft
subset of Ay 4. We denote it by Af y=B.)-

5.1.4 Example

Let X be the set of houses under consideration, and E be the set of parameters,
X = {hy,ha,hs,hq,h5}, E = {e1,e2,63,64,65,66} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that A = {ej,es,e3,66}, a
double-framed fuzzy soft set Ay ) describes the “highest and lowest budget ratings
of the houses under consideration” given by f and g respectively. The double-framed

fuzzy soft set A(s4) over X is given as follows:
f  A—-FPX),

{h1/0.9, h2/0.3, h3/0.8, h4/0.7, h5/0.5} ife= €1,
{hl/O.l, h2/0.5, h3/0.1, h4/0.8, h5/0.6} ife= €9,

e

{h1/0.2,h/0.5,h3/0.2,hs/0.9, h5/0.9} if e = e3,

{h1/07, h2/04, h3/02,h4/01,h5/0} if6:€6,
g : A—FPX),

{h1/0.2, h2/0.3, h3/0.3, h4/0.4, h5/0.8} ife= €1,
e {h1/0.7, h2/0.4, h3/0.8, h4/0.7, h5/0.9} if e= €9,

{h1/0.6,h2/0.4,h3/0.6, hs/0.6, h5/0.7} if e = e3,
{h1/0.9, h2/0.3, h3/0.8, h4/0.7, h5/0.5} ife= €6.

Let B = {ez,e}. Then the double-framed fuzzy soft set By, ;) given by
{hl/O.l, h2/05, h3/0.1, h4/08, h5/06} if e = €9,
{h1/0.7, h2/0.4,h3/0.2,h4/0.1,h5/0} if€:€6,

{hl/O.l, h2/0.2, h3/0.4, h4/0.3, h5/0.5} ife= €9,
{h1/0.9, h2/0.4, h3/0.9, h4/0.8, h5/0.7} ife= €6.

h : B—PX), e»—>{

i : B—PX), er—>{

is a double-framed fuzzy soft subset of A(; ) which represents a finer data analysis

and so B(h’i)é A(f,g).
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5.2 Operations on Double-framed Fuzzy Soft Sets

In this section, we define various operations on double-framed fuzzy soft sets:

5.2.1 Definition

Let A(yq) and By, ;) be double-framed fuzzy soft sets over X. The int-uni product of
A(y.g) and By is defined as a double-framed fuzzy soft set (A X B)fzp 4vi) Over X
in which fAh: (A x B) — FP(X), where

(a,b) — f(a) A R(b),
and gVi: (A x B) — FP(X), where

(a,b) = g(a) Vi(b).
It is denoted by Ay gy A B(n,iy=(A X B)(fin,g7i)-

5.2.2 Definition

Let A(s4) and B, ;) be double-framed fuzzy soft sets over X. The uni-int product of
A(y.g) and By is defined as a double-framed fuzzy soft set (A X B) g g5 over X
in which fVh: (A x B) — FP(X), where

(a,b) = f(a) v h(b),
and gAi: (A x B) — FP(X), where

(a,b) — g(a) Ni(b).
It is denoted by Ay gy V B(n,iy=(A X B)(rn,g7i)-

5.2.3 Definition

For double-framed fuzzy soft sets Ay 4y and B, ;) over X, the extended int-uni double-
Jramed fuzzy soft set of Ay g and B, ;) is defined as a double-framed fuzzy soft set
(AU B)(fin gvi) Where fAR: (AU B) — FP(X), given by
f(e) ifeec A—B
e h(e) ifee B—A
fle)Ah(e) ifeec ANB
and gVi: (AU B) — FP(X), given by
g(e) ifeec A—B
e— ¢ ife) ifee B—A .
gle)Vile) ifee ANB
It is denoted by A(f,g) Me B(h,i)i(A U B)(ff\h,g\7i)'
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5.2.4 Definition

For double-framed fuzzy soft sets Ay 4y and B, ;) over X, the extended uni-int double-
framed fuzzy soft set of Ay g and By, ;) is defined as a double-framed fuzzy soft set
(AU B)(s9ngri) Where fVh: (AU B) — FP(X), given by

f(e) ifec A—B
e h(e) ifee B—A
fle)Vh(e) ifeec ANB

and gAi : (AU B) — FP(X), given by

g(e) ifeec A—B
e— ¢ i(e) ifee B—A .
gle)Ni(e) ifec ANB

It is denoted by Ay ¢y Ue Bniy=(AU B)(ton,grs)-

5.2.5 Definition

For double-framed fuzzy soft sets Ay gy and B, ;) over X with (AN B) # 0, the
restricted int-uni double-framed fuzzy soft set of Ay q) and By, ;) is defined as a double-
framed fuzzy soft set (AN B)(yzn g7 Where fAR: (AN B) — FP(X),

e f(e) Ah(e),
and gVi: (AN B) — FP(X),
e g(e) Vi(e).

It is denoted by A(f’g) 1 B(h’i)i(A N B)(ff\h,g\?i)‘

5.2.6 Definition

For double-framed fuzzy soft sets A(g) and By, ;) over X with (AN B) # 0, the
restricted uni-int double-framed fuzzy soft set of A(y 4y and By, ;) is defined as a double-
framed fuzzy soft set (AN B)(yyn gas) Where fVh: (AN B) — FP(X), given by

e f(e)V h(e),

and gAi : (AN B) — FP(X),
e g(e) Ni(e).

It is denoted by Ay ¢y U B(n,iy=(A N B)(rn,g7i)-
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5.2.7 Definition

Let A(s 4) be a double-framed fuzzy soft set over X. The complement of a double-framed
fuzzy soft set A(g 4y over X is defined as a double-framed fuzzy soft set Ay - 4 -y over
X where f 1 A — FP(X), given by

e (f(e)

and g 1 A — FP(X),
e—(g(e)".

It is denoted by Ay q) - =A -4 -

5.3 Properties of Double-framed Fuzzy Soft Sets

In this section we discuss properties and laws of double-framed fuzzy soft sets with
respect to their operations. Associativity, commutativity, absorption, distributivity
and properties of double-framed fuzzy soft sets are investigated.

5.3.1 Definition

A double-framed fuzzy soft set over X is said to be a relative null double-framed fuzzy

soft set, denoted by A(ﬁ,i) where

0 : A— FP(X), e 0, where 0 maps every element of X onto 0
1 A — FP(X), e — 1, where 1 maps every element of X onto 1

5.3.2 Definition

A double-framed fuzzy soft set over X is said to be a relative absolute double-framed
fuzzy soft set, denoted by A(if)) where
1 A— FP(X), e 1,
0 A — FP(X), e 0.

Conventionally, we take the double-framed fuzzy soft sets with empty set of parame-
ters to be equal to @(ﬁ,i) and s0 Ay B,y =A(1.9) '—'B(h,i)iw((),i) where (ANB) = 0.
5.3.3 Proposition

If A(ﬁi) is a null double-framed fuzzy soft set, A(i,()) an absolute double-framed fuzzy
soft set, and Ay gy, A4 are double-framed fuzzy soft sets over X, then
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1) A(pg) Ue Aniy=Acs.9) Y Ay
2) A(r.g) Me Aniy=Acr.g) 1 A
3) Alrg) M A1.9=A1.9= A9 U A(r,g)»  (Idempotent)
4) A1) U A6 1)~ Ar9= A9 T Ad0)
5) Ar,9 UALs =418y Are T 461 40,1)
Proof. Proofs of 1), 2) and 3) are straightforward.

4) As Ay g) U A 1)=A(196,477)- Lherefore for any e € A,

(fV0)(e) = f(e) v O(e) = f(e) and (9AT)(e) = g(e) AL(e) = g(e).
Thus A(g) U Ag 1) =A(s,g)-
Again, Aggg) N A=A aig05) For any e € A,
(fAT)(e) = f(e) A1(e) = f(e) and (gV0)(e) = g(e) V O(e) = g(e).
So A, M A 5)=A(r.9)-

Part 5) can be proved in a similar way. m

5.3.4 Proposition

Let A(s.4), B(ns) and C(; ybe any double-framed fuzzy soft sets over a common universe

X. Then the following are true
1) A(f,g))‘(B(h,i)AC(j,k))i(A(f,g))‘B(h,i)))‘C(j,k)7 (Associative Laws)
2) At ABh,i)=Bh,i)AA(s,9), (Commutative Laws)

for all A € {Ug, U, M, M}.
Proof.

1) Since As gy Ue (B(n) Ue Cj ) =AU (B U C) (r39(n74).g4(gik))» We have for any e €
AU (BUCQC):

(i) fee A—(BUC), then

(fV(RVi))(e) = fle) = ((fVh)Vj)(e)
(gA(IAR))(e) = gle) = ((gAi)Ak)(e)
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(ii) If ee B— (AUC(C), then

(fV(RVG))(e) = hle) = ((fVR)Vj)(e)
(gA(iAk))(e) = gle) = ((gh)Ak)(e)

(iii) If e € C — (AU B), then

(fV(RVG)(e) = j(e) = ((fVh)Vj)(e)

(gAAR))(e) = k(e) = ((gAi)Ak)(e)
(iv) If ee (AN B) — C, then

(fV(hVi))(e) = fle)V h(e) = (FVh)(e) = ((fVR)V])(e)
(gAGAR))(e) = gle) Nile) = (gAi)(e) = ((9Ai)Ak)(e)

(v) Ifee (ANC) — B, then

(fV(RVi))(e) = fle)Vile) = ((fVR)Vj)(e)

(vi) If ee (BNC) — A, then

(fV(RVG))(e) = hle)Vi(e) = (fVh)Vj(e)

(gAIAR))(e) = gle) Nk(e) = (ghi)Ak(e)
(vii) If e € (AN B)NC, then

(fV(RVi))(e) = fle)V (hle) Vi(e)) = (fle) vV h(e)) Vi(e) = ((fVh)Vj)(e)

gA(iAk) = g(e) A (i(e) Ak(e)) = (g(e) Nile)) Ak(e) = ((gAi)Ak)(e)

—
~—
—
®
~—

Thus As,g) Ue (Bin,i) Ue Cj))=(A(1,9) Ue Binsiy) Ue Ciimy-
Similarly, we can prove for A € {U, M., M}

2) This is straightforward.



5. Double-framed Fuzzy Soft Sets and Their Algebraic Structures 87

5.3.5 Proposition (Absorption Laws)

Let A(f.4), Bn,iy be any double-framed fuzzy soft sets over X. Then the following are

true:

1) Arg) Ue (Bn) M A(1.9)= A1)
2) A(s.9) M By Ue As.9)=A(1,9)5
3) A(rg) U (Ba) Ne As.9)=A(1.9);
4) A(s.g) Ne (Bni) U A(r,9)=A(1.9)-

Proof. Straightforward. m

5.3.6 Proposition (Distributive Laws)

Let As.g), B,y and C(; iy be any double-framed fuzzy soft sets over X. Then
1) Arg) 1 (Biniy Ue Cliiky)=(A(g.9) M Bniy) Ue (A(r9) T Cie)s
2) A(rg) NV (Bny Ne Ciry) =(A(g.g) M Biny) Me (Arg) M Cliky)s
3) A(rg) N (Bni) U Cliky)=

4) A(s,9) U (Bniy Ue i) =(A(s,9) U Bniy) e (A(r,) U Cliy)s

—~

A(t,9) T Bnay) U (A(r,9) T Clk))s

5) A(r.9) U (Bni) Ne Clim)=(A(r9) U Bn) Te (Ar,g) U Cipy)s

6) A(r.9) U (Bni) M Cim)=(A(rg) Y Bniy) M (A0 U Cliky)s

7) A(rg) Me (Biniy Us i) S(As) Me Biai)) Ue (A(r,g) M Cliky):
8) A(s.g) e (Bn,i) U Cljm))=(A1,9) Me Bniy) U (As,g) Me Cimy)s

9) A(tg) Me (Bni) M C30) 2(A(s.9) Me Biniy) M (A(pg) Me Ciny)s
10) A(s,g) Ue (Bii) U i) S(A(rg) Ue Biay) U (A(rg) Ue Cin):
11) A(pg) Ue (Bn,i) Me Cy) 2(A(s.9) Ue Biniy) Me (A(pg) Ue Cliny)s
12) A(y,g) Ue (Bn,i) M Ci)) = (Ag,g) e Bniy) 1 (A(g.9) Ue Cimy)-

Proof. We prove only one part here and remaining parts can be proved in a similar

way.

1) Consider Ay q) M (B,i)Ue C(jpy)- For any e € AN(BUC), we have following three

disjoint cases:
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(i) Ifee An(B —C), then

(fA(RV))(e) = f(e) Ah(e) and (gV(iAk))(e) = g(e) Vi(e)

and

(FARV(fAG)(e) = (fAh)(e) = f(e) Ah(e) and

((gVD)A(gVE))(e) = (gVi)(e) = g(e) Vi(e).
(ii) If e € AN (C — B), then

(fA(hVG))(e) = f(e) A j(e) and (gV(iAk))(e) = g(e) V k(e)

and

(iii) If e € AN (BN C), then

(fA(RVI))(e) = f(e)A(h(e)Vi(e)) and
(gV(iAk))(e) = gle) V (i(e) Ak(e))

and

) and

Thus
A(1,9) T (B(n,iy Ue Ci))=(A(t,9) M Bniy) Ue (A(1,9) T Cih)-

5.3.7 Example

Let X be the set of cars of different models, and E be the set of colors, X =

{z1,22,23,24,25}, E = {e1,e2,e3,e4,65,6} = { green, red, blue, black, white, silver
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}. Suppose that A = {e1,e9,e3}, B = {ea,e3,e4}, and C = {e3,eq,e5}. The double-
framed fuzzy soft sets A(s 4y, B(n,) and C(; ) over X describe the level of appreciation
from customers based upon the annual survey reports of three different showrooms re-
spectively. Here {f, h, j} and {g, 4, k} collect results for positive and negative aspects

respectively. We have

f A= FP(X),
{£1/0.3,22/0.1,23/0.3,24/0.1,25/0.7} if e = ey,
e — {x1/0.1,22/0.9,23/0.3,24/0.8,25/0.2} if e = eq,
{£1/0.1,22/0.3,23/0.3,24/0.3,25/0.8} if e = e3,
g = A—-FPX),
{£1/0.4,22/0.7,23/0.7,24/0.7,25/0.1} if e = ey,
e — {21/0.8,22/0,23/0.5,24/0.1,25/0.6}  if e = eq,
{x1/0.7,22/0.5,23/0.7,24/0.6,25/0.1} if e = e3.

h : B—FPX),
{x1/0.1,22/0.3,23/0.6,24/0.2,25/0.3} if e = eq,
e — {1/0.8,22/0.9,23/0.5,24/0.4,25/0.2} if e = e3,
{x1/0.1,22/0.4,23/0.3,24/0.6,25/0.9} if e = ey,
g : B—FPX),
{£1/0.1,22/0.3,25/0.3,24/0.6,25/0.6} if e = e,
e — {£1/0.1,22/0,23/0.3,24/0.4,25/0.6}  if e = e3,
{£1/0.9,22/0.5,23/0.5,24/0.3,25/0.1} if e = e4.
j = C—=FPX),

{£1/0.1,22/0.2,23/0.3,24/0.1,25/0.1} if e = e3,
e — {£1/0.2,22/0.2,23/0.3,24/0.3,25/0.2} if e = ey,
{x1/0.1,22/0.1,23/0.3,24/0.5,25/0.7} if e = e5,
E: C— FP(X),
{£1/0.7,22/0.7,23/0.4,24/0.7,25/0.4} if e = e3,
e — {£1/0.6,22/0.5,23/0.6,24/0.1,25/0.6} if e = ey,
{21/0.3,22/0.4,23/0.4,24/0.3,25/0.1} if e = e5.

We know that
A(f,9) Ue (B(niy Ne Cji))=((AU B) U C) (£9(hj),gA(i7k))

and
(A(s.g) Ue Bin,gy) Me (A1,g) U Cy)) =((AU B) U C)((rompas9i))-
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Then
(f\~/(h/~\_]))(€2) = {$1/01’ 1’2/0.9, IE3/0.6, $4/0'87 1'5/03}
# {x1/0.1,22/0.9,25/0.3,24/0.8,25/0.2}
= ((fVR)A(fVj))(e2) and
(gA(1VEk))(e2) = {x1/0.1,22/0.0,23/0.3,24/0.1,25/0.6}
# {x1/0.8,22/0.0,23/0.5,24/0.1,25/0.6}
= ((gAi)V(gAk))(e2),
so that
A(r.9) Ue (Bini) Me Cin)#(A(1.9) U Beuay) Ne (A(r,g) U Ciny).
Now,
A(1,9) e (Bni) Ue Cjy) =((AU B) U C) (sR(155),9%(iAk))
and

(A(s.9) Me Bn,iy) Ue (A(g,9) Me Cijoi)) =((A U B) U C)((£an)3(£A7) (070 A(gTR)) -

Then,
(ff\(h\~/j))(€2) = {:1:1/0.1,362/0.3,x3/0.3,x4/0.2,:v5/0.2}
# {x1/0.1,22/0.9,25/0.3,24/0.8,25/0.2}
= ((FAR)V(fAG))(e2)
and
(gV(iAk))(e2) = {21/0.8,22/0.3,23/0.5,24/0.6,25/0.6}
7é {1‘1/0.8 xg/0.0 x3/0.5,x4/0.1,x5/0.6}
= ((gVi)A(gVk))(ez).
So

A.g) Ne (Bniy Ue Ciik)) A(Ag.g) Ne Bniy) Ue (A(s,g) M Ciiy)-
Similarly we can show that
Af.g) Ue (Bniy U Cip) A (As.g) Ue Beniy) U (As.g) U Ciiy)s

and
A(g.) Te (Bng) N Cip))A(A(rg) N Biaiy) M (A(rg) Me Ciiny)-
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5.3.8 Proposition
Let As.g) B,y and C; iy be any double-framed fuzzy soft sets over X. Then
1) A(f’g) Le (B(h,i) Me C(j,k))i(A(ﬁg) e B(h,i)) Mg (A(ﬁg) Lle Cuk)) if and only if

h(e) and g(e) D i(e) for all e € (AN B) — C and
j(e) and g(e) D k(e) for all e € (ANC) — B.

~—

-

-

2) A(f,g) Me (B(}m) e C(],k))i(A(f,g) Mg B(h,z)) L (A(f,g) Mg C(],k)) if and only if
D h(e) and g(e) Ci(e) for alle € (AN B) — C and

f(e) 2 j(e) and g(e) C k(e) for alle € (ANC) — B.

Proof. Straightforward. m

5.3.9 Corollary

Let A(fg), Bng and C;ry be three double-framed fuzzy soft sets over X such that
(ANB)—C =(ANC)— B ={. Then

1) A(f,g) Us (Bni) Me C ) =(A(f,9) Ue Biniy) Me (As,9) Ue Ciny)s

2) A(y,g) M (Bn,iy Us Cii)) =(A(,9) Ne Biniy) Ue (A(s,g) Me Ciny)-

5.3.10 Corollary

Let A(f.g), An,iy and A p) be three double-framed fuzzy soft sets over X. Then

A(1,9)C (A, PAG 1) )= (A(£,9)CA (1)) P(A(£,6)C A 1))

for distinct ¢, p € {Mg, M, Ug, U}.

5.3.11 Theorem

Let A(s4) and By, ;) be double-framed fuzzy soft sets over X. Then the following are

true

1) A(pg) Ue Bny is the smallest double-framed fuzzy soft set over X which contains
both As ) and B - (Supremum)

2) A(f,g) M B,y is the largest double-framed fuzzy soft set over X which is contained
in both Ay ) and B ;). (Infimum)
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Proof.

1) We have A,B C (AU B) and f(e),h(e) C f(e) V h(e) and g(e) Ai(e) C g(e),
g(e) Ni(e) C i(e). So A(ﬂg)éA(ﬁg) Us B and B(h,z’)éA(f,g) Ue Bp,i)- Let
C(jk) be a double-framed fuzzy soft set over X, such that A gy, By SCk)-
Then A, B C C implies that (AU B) C C and f(e), h(e) C j(e) implies that
f(e) vV h(e) C j(e). Also k(e) C g(e), k(e) C i(e) imply that k(e) C g(e) Ai(e)
for all e € AU B. Thus A 4 U B(h,i)QC(jk). It follows that A(s g Us By, is
the smallest double-framed fuzzy soft set over X which contains both A ;) and
Bni)-

2) We have ANB C A, ANB C B and f(e) A h(e) C f(e), f(e) A h(e) C h(e) and
g(e) C gle) Vi(e), i(e) € g(e) Vi(e) for all e € AN B. So Ay g) M B(h@éA(ﬁg)
and A(s oy 1 B,y SB4)- Let Cj ) be a double-framed fuzzy soft set over X,
such that C(; ) CA(sg) and C;pyCSB)- Then C C A, C C B implies that
C C AnB and j(e) C f(e), j(e) C g(e) imply that j(e) C f(e) A g(e), and
g(e) C k(e), i(e) C k(e) imply that g(e) Vi(e) C k(e) for all e € C. Thus
C’(j’k)QA(f’g) M B, It follows that A g M B, is the largest double-framed
fuzzy soft set over X which is contained in both Ay g and B, ;.

5.4 Algebras of Double-framed Fuzzy Soft Sets

In this section, we discuss the concepts of lattices and algebras for the collections of
double-framed fuzzy soft sets. Let DFSS(X)F be the collection of all double-framed
fuzzy soft sets over X and DFSS(X)4 be its sub collection of all double-framed fuzzy
soft sets over X with a fixed set of parameters A. We note that these collections are

partially ordered by the relation of soft inclusion C given in Definition 5.1.2.

5.4.1 Proposition

(DFSS(X)E, N, 1), (DFSS(X)E,u,m.), (DFSS(X)E,u.,n), (DFSS(X)E,m, L)
(DFSS(X)4,U,M), and (DFSS(X) 4,M,U) are complete lattices.
Proof. Let us consider (DFSS(X)¥ M.,l). Then for any double-framed fuzzy
soft sets A(y.), Bn,iy» Cijk) € DFSS(X)F,

1) We have

A(f,g) MNe B(h,i) = (A U B)(ff\h,gf/i) S D]:SS(X)E and
Ay U By = (ANB)(ungri € DFSS(X)*.
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2) From Proposition 5.3.3, we have

A(f,9) Ne A(1.9)=A(1,g) and Ap ) U A(7.)=A(1,9)-

3) From Proposition 5.3.4 we see that

A(f.9)Me Bngy = By Me A(f,g) and
A(f,g)UBniy = BniyUAx):

Also
A(t.g) e By Me Cimy) = (A(gg) Me Biny) Me Cjiny and
Arg) U B UCGk) = (Agrg U Bny) U Ciiny-
4) From Proposition 5.3.5,
A(f.9) e (Biniy U A(1,9)=A(r,g) and A(g.g) U (B Me A(1,9))=A(1.9)-

So we conclude that the structure forms a lattice. Consider a collection of double-

framed fuzzy soft sets {A :1 € I} over X. We have, U A; C E and, let Afe) =

(f1,90)

iel
{j:e€ A;} for any e € A;. Then </\i€A(e) fi(e)> (x) €10,1] and ( }\/( )gi(e)) (z) €
1eN(e
[0,1] for all z € X. Thus M. A;, € DFSS(X)E.
iel v
Again, we have, ﬂAi C FE and for any e € ﬂAi, (\/ fi(e)) (x) € [0,1] and
iel iel icl
(/\iel gi(e))( )€ [0,1) for all € X. Thus U 4;,, & DFSS(X)P.

Similarly we can show for the remaining structures ]

5.4.2 Proposition

The structures (DFSS(X)F, M, ., 0 1) E1) (DFSS(X E U, n Ei1.6),96.,1))

(DFSS(X) 4,1, A 1y, A(ipy) and (DFSS(X) 4, I_J,I‘I,A(i 8)> 4(5,1)) are bounded
distributive lattices.

Proof. Proposition 5.3.6 assures the distributivity of (DFSS(X)¥,r,L1.) and
(DFSS(X)¥,.,M). From Theorem 5.3.11, we conclude that (DFSS(X)E, N, L., (Z)(f),i)’ E(i,(”)))
is a bounded distributive lattice and (DFSS(X)¥, L., M, E i ) 0(6,1)) is its dual. For
any double-framed fuzzy soft sets Ay 4), A(n,i) € DFSS(X),,

A(f’g) 1 A(h,i) = A(ff\h,g\h’) € D]:SS(X)A and
Arg U Ay = Aongri € DFSS(X)4.
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Thus (DFSS(X) 4,M,U) is also a distributive sublattice of (DFSS(X)¥,.,M) and
Theorem 5.3.3 tells us that A((),i)’ A(Lﬁ) are its lower and upper bounds respec-
tively. Therefore (DFSS(X)4,M,U, A 1), A75)) 18 a bounded distributive lattice
and (DFSS(X) 4, U,1, Aq 5y, A ) 18 its dual. m

5.4.3 Proposition

Let Ay 4) be a double-framed fuzzy soft set over X. Then the operation Ay gy — A(s gy
on DFSS(X)¥ which is given in Definition 5.2.7 satisfies:

1) (A(f,g) ')/iA(ﬁg) and A(i,ﬁ) ’EA(f),iV A(ﬁ,i) 'iA(ivﬁ)’

2) if A, is a double-framed fuzzy soft set over X then A(fjg)éA(hﬂ) if and only if
Ay SA(r.9y

Proof.

1) The proof follows from the fact that, for any e € A

((g ))e) = (g () =((g(e)) ) =gle)
Also
Aig = Aae=460)
Acty = Aen=4ds)

Now,

(f “(e)(=)

v
N N = e
|
~ T~
>
—
®

—~
kS

—~
Cb

~—

N—

—~
8

~—
I

forall z € X. Thus A(m)/éA(f’g)f. Conversely, ifA(m)'éA(f’g)»then (A(ﬁg)»)'é (Aniy)
implies A(f,g)éA(h,i)'
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5.4.4 Proposition (de Morgan Laws)

Let A(s ) and By, ;) be double-framed fuzzy soft sets over X. Then the following are

true

1) (4
2) (4
3) (A
4) (A
5) (A
6) (A

(£.9) He B(n,iy)’

(f9) T Beri))
(r9) vV Bri)’
(f9) N Bna))”
(f.9) U Bni)’

(1.9) 1 Bniy)”

=A(f,9y M Bn,iy:

=A(f,9yUe Bniy,
=A(s,9y N By,
=A(,9yV By,

=A(1,9y 1 By,

=A(t,9y Y Bniy-

Proof. ]_) We have (A(f,g) e B(h,z)) £((14 U B)(f\7h,g/~\g)) i(14 U B)((f\~/h),(g/~\g)')
Let e € (AU B). There are three cases:

(i) If e€ A— B, then

(ii) If e € B— A, then

and,

(fVRh)(e) = (h(e))=hle) = (fAR)(e)
(ghi)(e) = (i(e))=ile) = (gVi)(e),

—~
[y
<2
>
=
—~
LY
Il

(f(e) v h(e)) = (F(e)) A (h(e))
(gVi)(e) = (g(e) Nile))= (g(e))V (i(e));

(fAR)(e) = (f(e)) A (h(e))= (fVh)(e)
(gAi)(e) = (g(e))V (i(e)) = (gVi)(e).

Therefore, in all three cases we obtain equality and thus

(A(s,9) Ue B(n,i))=A 1,9y Ne Biniy-

The remaining parts can also be proved in a similar way. =
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5.4.5 Proposition

(DFSS(X) 4,0, 7, A(() 1) A(i ﬁ)) is a de Morgan algebra.

Proof. We have already seen that (DFSS(X)4,M,U, A1), (1)) is a bounded
distributive lattice. Proposition 5.4.3 shows that " “ " is an involution on DFSS(X) 4
no-n

and Proposition 5.4.4 shows that de Morgan laws hold with respect to in

DFSS(X),. Thus (DFSS(X) 4, M, L, /’A(ﬁ,i)v A(if))) is a de Morgan algebra. m
5.4.6 Proposition

Let A (s 4y and Ay, ;) be double-framed fuzzy soft sets over X. Then A(M)I_IA(h,i)éA(ﬁg)l_l
A(y,gy and so (DFSS(X) 4, M, L, /’A(ﬁ,i)a A(i,ﬁ)) is a Kleene Algebra.

Proof. We have already seen that (DFSS(X) 4,M,L,", A(ﬁ,i)’ A(i,ﬁ)) is a de Mor-
gan algebra. Now, suppose that for some Ay ), Ay € DFSS(X)a we have

Ani) M Anay2A(1.g) U Ar.gy where Agiy M Ag#A(rg) U Argy

Then there exists some e € A such that

(hAR ") (e) D (FVf “)(e) or (gVg')(e) C (9Ag”)(e)

and so there exists some € X such that

((hAR")(e)) ()

or

AN
—~
—~
<

>
S
—

[
S—

((@Vi)(e)) ()

4

But

0.5 and
0.5

— —~
Q >
—_—
a Q)
—
~— ~—
—~ o)
8 8
- —
> >
—
Q=
—~)
[ ®
~— ~—
— —
—~
8 8
— —
IN A

and

0.5 and
0.5.

—
= =
—~~
® (@)
~— ~
N— —
—~
8 8
N~—
< <
—

=0 R
—~
a (@)
SN— SN—
~— ~—
—~~
8 8
SN— N—
(AVARNAVS
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which gives

(f(e)(@) v (f “(e))(z) or
(g(e))(z) A (gle))(x) < (ie))(z) v (i(e)) ().

=
—~
Q)
N
E
>
=
—~
8
~—
~
8
~—
IA

A contradiction. Thus our supposition is wrong and
A VAR SA(f.9) U Argr
Therefore (DFSS(X) 4,M,U,7, A((),i)’A(i,())) is a Kleene Algebra. m

5.4.7 Lemma

Let A¢s.g); B,y € DfSS(X)E. Then pseudocomplement of A 4 relative to B, ;)
exists in DFSS(X)F.
Proof. Consider the set

T(A(s.g)s Aniiy) = {Ciky € DFSS(X)F : Cliey M A1) CBny }-

We define a double-framed fuzzy soft set (A° U B)(fg)—n,i)=(A° U B)(s—hg—i) €
DFSS(X)¥ where

((f = h)le))(z)

1 ifec A°- B
_ {1 if (f(e)(@) < (he)@) o
(h(e)(@) i ((e)(@) > (h(e))(a)
1 ifee A°NB
and

0 ifee A°— B
_ {o if (i(0) (@) < (ge)@) o e
(i(e))(x)  if (i(e))(z) = (g9(e))(z
0 ifee A°NB
Then
(AU B)(fohg—i) VA = (AU B)NA)(mn)as g—i)vg)

= (A"NA)U(BNA)(r-h)is,(g—i)Tg)
= (AN B) (=it g—i)vg):
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Foranyee ANB, z € X,

((f — WAN)E) ()
_ {M(f(e))(x) it (f(e))(x) < (h(e)) ()
(h(e)(@) A (f(@) (@) i (f(e))(x) > (h(e))(x)
_ {(f(e))(m) it (f(e))(@) < (h(e)) (@)
(h(e))(x) it (f(e))(x) > (h(e))()
< (h(e))(a).
and
(((g — )Vg)(e) ()
_ {ov<g<e>><x> if (i(e))(z) < (g(e))(x)
(i(e)) (@) V (g(e)) (@) if (i(e))(z) = (9(e))()
_ {<g<e>><x> if (i(e))(z) < (g(e))(x)
(i(e))(x) if (i(e))(x) > (g(e))(x)
> (ie))(x).
Hence,

(AU B)(—hg—i) M A(1.9)SB i)

Thus (A°U B)(fﬁh’géi) € T(A(f,g)7A(h,i))' For all C(j,k) € T(A(f’g),A(h’i)), we have
Cigm M A(f,g)QA(h,i) so foranyec CNACB

j(€) A £(€) € h(e) and k(e) V gle) 2 ie)
Now,

CNA C B=(AnC)NnB‘=10
= CC(ANB%®=A°UB.

We have following cases:

(i) If e € (A°—= B)N C, then j(e))(x) <1 = ((f — h)(e))(z) and k(e))(z) > 0 =
((g =) (e) (2)

(ii) Ife € (B=A9)NC, and (i(e))(z) < (9(e))(z) then (k(e))(z) = 0 = ((g — 7)(e))(z)

(iii) If e € (B — A°)NC, and (f(e))(xz) < (h(e))(x) then (j(e))(z) < 1 = ((h —
i)(e)(x)

(iv) Ife € (B—A°)NC and (i(e))(x) > (g(e))(z), then the condition k(e)Vg(e) 2 i(e)
implies that (k(e))(z) > (i(e))(z) = (b — 1)(e))(@)



5. Double-framed Fuzzy Soft Sets and Their Algebraic Structures 99

(v) Ifee (B—A°)NC and (f(e))(z) > (h(e))(x), then the condition j(e)A f(e) C h(e)
implies that (j(e))(z) < (h(e))(z) = ((h — 7)(e))(z)

(vi) If e € (AN B)NC, then j(e))(z) < 1 = ((h — i)(e))(x) and k(e))(x) > 0 =
((g =) (&) (@).

Thus C’(j,k)é(Ac U B)(fﬁhhqﬂg) and it also shows that

(A°U B)(s-hg—)= \ T(A(1.9) An))=A(1.9) = Atui-

5.4.8 Remark

We know that (DFSS(X) 4,M,L) is a sublattice of (DFSS(X)¥ M.,1). For any A(f.9)5
A,y € DFSS(X) 4, A(f,g9) — A(nyi) as defined in Lemma 5.4.7, is not in DFSS(X) 4
because A(f 9) A(h )= =(A°U A)(fﬂh g—i)= E(fﬂh’gﬁi) ¢ ’DF«SS(X)A

5.4.9 Lemma

Let A¢yg), Aniy € DFSS(X),. Then pseudocomplement of Ay, relative to A, ;)
exists in (DFSS(X) 4,M,U).
Proof. Consider the set

T(A(r.g) Aniy) = {AGik) € DFSS(X) 4+ Ay M A(r.0) A}
We define a double-framed fuzzy soft set A, 4—i) € DFSS(X), where

1 if (f(e))(z) < (h(e))(x)
>

((f = W)(e)(z) = { (h(e))(@) i (f())(x)

and

0 if (i(e))(x) < (g9(e))(2)
(i(e))(x)  if (i(e))(z) = (9(e))()

foralle € A, z € X. Then Ay .p i) M A )=A(f—pg—i)in and

((g = )(e))(z) = {

((F = WAN)E)E)
_ {M(f(e))(w) if (f(e))(x) < (h(e))()
(h(e))(@) A (Fe)x) i (f(e))() > (hle))(x)
_ {(f(e))(af) if (1(e))() < (h(e))(x)
(h(e))() if (£(e))(@) > (h(e))(x)
< () (@).
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and

_ { 0V (g(e))(x) if (i(e))(z) < (g(e))(x)
(i(e)) (@) V (g(e)) (@) if (i(e))(z) = (9(e)) ()

_ { (9(e))(x) if (i(e))(z) < (g(e))(x)
(i(e)) (x) it (i) () > (g(e))(x)

Vv
—
>
—~
[
~— A
~—
—~
8

for all e € A, x € X. Hence,
Ap—hg—i) A9 S Ah)

and A(fﬂhvgﬁi) S T(A(f’g),A(hﬂ-)). For every A(j,k) S T(A(f,g)aA(h,i))v we have A(j,k)
M Asg) C A ) so for any e € A, following cases arise:

() If (i(e))(z) < (g(e))(x) then (k(e))(z) = 0 = ((g — i)(e))()
(ii) If (f(e))(z) < (h(e))(x) then (j(e))(x) <1 = ((h — i)(e))()

g(e))(x), then the condition k(e) V g(e) 2O i(e) implies that
)

(h = i)(e)) (=)

)= (
h(e))(x), then the condition j(e) A f(e) C h(e) implies that
= ((h = i)(e)) ().

Thus A(M)QA(fﬂh,gﬂi) and it also shows that

Ap—ng—i= NV T(A(r9) Ani)) = A1) =4 Ay

5.4.10 Proposition

(DFSS(X)¥ M.,U) and (DFSS(X)4,n,U) are Brouwerian lattices.
Proof. Follows from Lemmas 5.4.7 and 5.4.9. =

5.4.11 Definition

Let Ay g) be a double-framed fuzzy soft set over X. We define A v+ as a double-framed
Juzzy soft set Ay« 4+) where
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g A= FP(X), e~ (g(e))",
1 if * 1
(9(e))"(2) = LA frwex
0 if(g(e)(x) =1
5.4.12 Theorem
Let A(s ) and A, ;) be double-framed fuzzy soft sets over X. Then
1) Atr.g) M A0 =40,0)
2) A(ﬁg)éA(h’i)* whenever Ay ) A(h.z‘)iA((),i)?
3) At U A9 =Ad0):
Thus (DFSS(X) 4, M, L,* ’A(ﬁ,i)’ A(i,())) is a Stone algebra.
Proof.
1) Consider A(s ) M Ay gy For any e € A
(fFAf*)(e) = f(e) A f*(e) and (gVg™)(e) = g(e) V g™ (e).
=
< ox (fe)(@) A0 if (fle))(z) #0
((fAS)(e)(z) = B
0Nl if (f(e))(z)=0
=0
and
o x (9(e))(x)v1 if (g(e))(z) #1
((gvg™)(e)(z) = .
1vO0 if (g(e))(x) =1
=1
for all z € X. Thus A(ﬂg) I A(f,g)* iA(ﬁ,i).
2) If A(ﬁg) M A(h,i)iA(ﬁj)v then
(f(e))(@) A (h(e))(x) =0 (b)
and
(g(e))(z) V (i(e))(x) = 1 (c)

for all x € X, e € A. From Equation (b) we have two cases :

If (h(e))(x) = 0 then (h*(e))(z) = 1 = (f(e))(x)

and
if (h(e))(x) £ 0 then (f(e))(x) = 0 < (h*(€))(x).
Thus (f(e))(z) < (h*(e))(z) for all x € X.
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From Equation (c), there are two cases:
If (i(e))(z) = 1 then (i*(e))(z) = 0 < (g(e))(x)
and
if (i(e))(z) # 1 then (g(e))(z) =1 = (i"(e))().
So (i*(e))(z) < (g(e))(z) for all x € X. This implies that
f(e) C h*(e) and i*(e) C g(e) for all e € A.
Therefore A(f,g)éA(h,i)*‘
3) Consider As gy« U A((f,g)*)-- For any e € A

(fVf)(e) = fH(e) v [ (e)

and
(g"Ag™)(e) = g"(e) A g™ (e).
—
(F @)@V (7)) = { 0 e o
=1
and

(6" (©)(@) A (57 ()) (@) = {
0
A

for all x € X. Thus A(f,g)* L A((f,g)*)*: (176)

5.4.13 Definition
Let A(y4) be a double-framed fuzzy soft set over X. We define

(A1.0))° =A(1.9)°=A (0. 1)-

5.4.14 Proposition (Involution)

Let A(s,4) be a double-framed fuzzy soft set over X. Then (A(s 4y0)°=A(1,); A(L())O&A((),i)
and A(ﬁ,i)oiA(i,ﬁ)
Proof. It is straightforward that A 5.=A 1) and A 10 =Aj ). We have

(A1.9)°) =A(g, 1) =A(t,9)-
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5.4.15 Proposition (de Morgan Laws)

Let As ) and B ;) be double-framed fuzzy soft sets over X. Then the following are

true

1) (A(rg) Ue Bni)) =A(1.9)° Me Bn,ipes
2) (A(rg) Ne Bni))"=A(1.9)° Ue Bn.ipes
3) (A(r.g) V Bni)) " =A(r,9)° N Blnaipes
4) (A9 N Bni)) =A(1.900 V Bnsipe
5) (A Y Bni))"=A(r.9)° M Bnsipe

6) (A(s.9) 1 Bni)) " =A(t,9° U Bniye-

Proof.
1) We have
(A(f,9) Ue Bni))"=((AU B)(53n,g70)) " =(A U B) (g4, ron)
and
A(1.9)° Ne Biniye=A(g,p) Ne Biimy=(AU B)gri, yon)-
Thus

(A(f,9) Ue B(n,i))°=A(s,9)° Ne Binipe-

The remaining parts can be proved in a similar way.

5.4.16 Theorem

(DFSS(X)a,M,U,°, A1y, Ai5) is a de Morgan algebra.
Proof. Follows from Propositions 5.4.14 and 5.4.15. =



Chapter 6

Algebraic Structures of Bipolar
Soft Sets

Bipolarity refers to an explicit handling of positive and negative sides of information.
Three types of bipolarity were discussed in [11] but we are using a rather generalized
bipolarity here, dealing with the positive and negative impacts in information associ-
ated with a soft set and its representation. This chapter introduces the concept of a
bipolar soft set. A bipolar soft set is obtained by considering not only a carefully cho-
sen set of parameters but also an allied set of oppositely meaning parameters named as
"Not set of parameters". Structure of a bipolar soft set is managed by two functions,
say 1 A — P(X) and f: =A — P(X) where = A stands for the "not set of A" and
5 describes somewhat an opposite or negative approximation for the attractiveness of
a houses of X, relative to the approximation computed by «. Maji et al. [33] had
used the "not set" to define complement of a soft set. The complement of a soft set
simply gives the complements of the approximations. The above mentioned soft func-
tion [ is rather more generalized than soft complement function and (3,-A) can be
any soft subset of («,A)¢. The difference is the gray area of choice, that is, we may
find some houses which do not satisfy any criteria properly e.g. A house may not be
highly expensive but it does not assure its cheapness either. Thus, we must be careful
while making our considerations for the parameterization of data keeping in view that,
during approximations, there might be some indifferent elements in X. This gives us
a motivation to define the idea of bipolar soft sets. We have defined operations of
union and intersection for bipolar soft sets by taking restricted, extended and product
sets of parameters. The algebraic structures of bipolar soft sets are discussed with the

properties of operations.

104
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6.1 Bipolar Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the

power set of X and A, B, C' be non-empty subsets of F.

6.1.1 Definition

A triplet (a,8 : A) is called a bipolar soft set over X, where o and [ are mappings,
given by a: A — P(X) and §: A — P(X) such that a(e) N f(—e) = 0 (Empty Set)
for all e € A.

In other words, a bipolar soft set over X gives two parametrized families of subsets
of the universe X and the condition a(e) N B(—e) = 0 for all e € A, is imposed
as a consistency constraint. For each e € A, a(e) and [(—e) are regarded as the
set of e-approximate elements of bipolar soft set («,3 : A). It is also observed that
the relationship between a complement function and the defining function of a soft
set becomes a particular case for the defining functions of a bipolar soft set, that is,
(a,af : A) is a bipolar soft set over X. The difference occurs due to the presence of
uncertainty or hesitation or lack of knowledge in defining the membership function. We
name this uncertainty or gray area as the approximation for the degree of hesitation.
Thus the union of three approximations, that is, e-approximation, —e-approximation,
and approximation of hesitation is X. We note that ) C X — {a(e) US(—e)} C X, for
each e € A. So, we may approximate the degree of hesitation in («,3 : A) by an allied
soft set Ay, defined over X, where h(e) = X — {a(e) U B(—e)} for all e € A.

6.1.2 Definition

For two bipolar soft sets (a,f : A) and (7,0 : B) over a universe X, we say that
(o, : A) is a bipolar soft subset of (7,0 : B), if

1) AC B and
2) a(e) Cy(e) and 6(—e) C B(—e) for all e € A.

This relationship is denoted by (a,3 : A)C(v,6 : B). Similarly (a,3 : A) is said to
be a bipolar soft superset of (7,0 : B), if (7,0 : B) is a bipolar soft subset of (o, : A).
We denote it by (a,8: A)2(v,6 : B).

6.1.3 Definition

Two bipolar soft sets (a, : A) and (7,0 : B) over X are said to be equal if (a,5 : A)
is a bipolar soft subset of (7,0 : B) and (7,0 : B) is a bipolar soft subset of («,5 : A).
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Let BSS(X)¥ denotes the set of all bipolar soft sets defined over X with set of
parameters E ordered by the relation of inclusion C as defined in Definition 6.1.2.
Now we claim that every bipolar soft set is equivalent to a double-framed soft set

and give the following theorem:

6.1.4 Theorem

The mapping 6 : BSS(X)¥ — DSS(X)E, (a,8: A) — A(a,,5,) is & monomorphism of
lattices where
a(e) = ai(e), and B(e) = B;(—e) for all e € A.

Proof. Clearly 0 is well-defined. If

0((a, 5 : A))=0((7,9 : B))

where
0((a, B : A))=A(ay,8,) and 0((7,0 : B))=B(,, s)

then A = B and

ale) = ai(e), y(e) =v,(e) and B(e) = S1(—e), d(e) = d1(—e) for all e € A.

a(e) = a1(e) = 71(e) = 7(e) and B(e) = B (~e) = 1(~¢) = 5(e) for all ¢ € A.

(a,f: A)=(7,6: B)

shows that 0 is one-to-one. Clearly 6 preserves the order of inclusion. =

6.1.5 Remark

Note that 6 is not onto because of the extra condition of consistency constraint for
defining bipolar soft sets.

By Theorem 6.1.4, we can equate every bipolar soft set with a double-framed soft
set with the consistency constraint and so, from onwards, we shall denote a bipolar
soft set (a,3 : A) by its image 0((a,3 : A))=A, gy where the meanings of A, o and 3

are clear.
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6.1.6 Example

Let X be the set of houses under consideration, and E be the set of parameters,
X = {hy,ho,h3,hq,h5}, E = {e1,e2,63,64,65,66} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that A = {ej,es,es3,66}, a
bipolar soft set A, gy describes the “requirements of the houses” which Mr. Y is going
to buy. The bipolar soft set A, gy over X, where a and 3 represent the classification

under high and low investment respectively, is given as follows:

{h1,ha,ha} if e =ey,
{hs, h4} if e = e9,
X if e = eg,
{ha, h3, h5} if e = eg,
{hs, hs} if e =eq,
{h1,ha,h5} if e = eq,
{} if e = eg,
{h1} if e = eg.

a : A-PX), er—

g A-=PX), er—

Let B = {ez,e3}. Then bipolar soft set By, 5 given by

h if e =
v A-PX), er— {hs} re=en
{h1,ha, hs}t if e = es,
X if e =
5+ A-P(X), e— resen
{h1} if e=ce;3,

is a bipolar soft subset of A, g, and represents the data under a strict set of parameters
B following A.

6.2 Operations on Bipolar Soft Sets

This section gives various operations defined on bipolar soft sets:

6.2.1 Definition

If A gy and By, s are two bipolar soft sets over X. The int-uni product of A, g)
and By, 5is defined to be a bipolar soft set (A x B) a4 505 over X in which afy :
(A x B) — P(X), where

(a,b) — afa) N~(b),
and BUS : (A x B) — P(X), where

(a,b) — B(a) U4(b).
It is denoted by A(a”@ A B<%5>£(A X B)<Oﬁ%505>'
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6.2.2 Definition

If A gy and By, 5y are two bipolar soft sets over X then uni-int product of A, g and
By,s) is defined as a bipolar soft set (A X B) 40 grs) over X in which aUy : (Ax B) —
P(X), where

(a,b) = a(a) U~(b),
and 510 : (A x B) — P(X), where

(a,b) — B(a) N 4(b).
It is denoted by Ay 5V By 5 =(A X B) a5

6.2.3 Definition

For two bipolar soft sets A, gy and By 5y over X, the extended int-uni bipolar soft set
of Ay ) and By, s is defined as a bipolar soft set (AU B)<aﬁ%505> over X in which
aNy: (AU B) — P(X), where
a(e) ifeec A—B
e— ¢ vy(e) ifee B—A
ale)Ny(e) ifee (ANB)

and SNJ : (AU B) — P(X),

B(e) ifec A-B
e — i(e) ifeeB-—A
Ble)Ud(e) ifee (ANB)
It is denoted by Ay g) Me By 5=(A U B) (afry,806) -

6.2.4 Definition

For two bipolar soft sets A, gy and By 5y over X, the extended uni-int bipolar soft set
of Aiap) and By, s is defined as a bipolar soft set (AU B)<ao%ﬁﬁ(;) over X in which
aly: (AU B) — P(X), where
a(e) ifeec A—B
e— < v(e) ifeecB—-A
ale)U~(e) ifee (ANDB)
and SNd : (AU B) — P(X), where
B(e) ifeec A—B
er— ¢ d(e) ifee B—A
Ble)nd(e) ifee (ANB)
(

III

It is denoted by A(q, g) Ue By,5)=(A U B)(40+,576)-
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6.2.5 Definition

For two bipolar soft sets A, p) and By, 5 over X, the extended difference bipolar soft
set of Ay, 5 and By, s is defined as a bipolar soft set (AU B)4__yg_.5) over X in
which a —. v: (AU B) — P(X), where

a(e) ifeec A-B
er— < v(e) ifeeB-—A
ale) —v(e) ifee (ANB)

B(e) ifeec A-DB
e ¢ d(e) ifeeB-A
B(e) —d(e) ifee (AN DB).

It is denoted by A, gy —e B(y,5)=(AU B)a.vy,5—.5)-

6.2.6 Definition

For two bipolar soft sets A, g and B, 5, over X with (AN B) # (), the restricted int-
uni bipolar soft set of A, gy and By, s is defined as a bipolar soft set (AN B) Ay 405)
over X in which aNy: (AN B) — P(X), where

e— a(e) Ny(e),
and BUS : (AN B) — P(X), where

e Ble)Ud(e).
It is denoted by Ao g) M By,5)=(A N B)(afry,800)-

6.2.7 Definition

For two bipolar soft sets A, gy and B, 5y over X with (AN B) # 0, the restricted uni-
int bipolar soft set of A, gy and B, 5) is defined as a bipolar soft set (AN B)(a0y,570)
over X in which aUy : (AN B) — P(X), where

e afe) Uy(e),
and SN0 : (AN B) — P(X), where
e B(e)Nd(e).

It is denoted by A(a”@ L B(,Y’(g)i(A N B)(ao,ngf]&-
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6.2.8 Definition

For two bipolar soft sets Ay, gy and By, s over X with (AN B) # ), the restricted
difference bipolar soft set of Ay, 5 and By, s is defined as a bipolar soft set (AN
B)(a—~,3—s)y over X in which a — v : (AN B) — P(X), where

e— a(e) —(e),

and B — ¢ : (AN B) — P(X), where
e Be) —d(e).

It is denoted by A, gy — B(y,6=(AN B)a_vy,8_s)-

6.2.9 Proposition

The mapping 6 : BSS(X)F — DSS(X)¥ as defined in Theorem 6.1.4 preserves the
product, extended and restricted uni-int and int-uni operations.

Proof. Straightforward. m

6.2.10 Remark

The operation of complementation as defined in Definition 4.2.9 for double-framed soft
sets is no more valid for bipolar soft sets because (A<a7ﬁ>)c£A(ac7ﬁC) which may not

satisfy the consistency constraint as shown by the following example:

6.2.11 Example

Let E, A, X and bipolar soft set A, g over X be taken as in Example 6.1.6. Then

(Aia,p)¢ is given as follows:

{hs3, hs} if e = ey,
{h1,ha,hs} if e = eq,
{} if e = eg3,
{h1, ha} if e = eg,
{h1,ho,hs} if e =eq,
{hs3, ha} if e = e9,
X if e = eg,
{hg, hg, hs} if e = eg.

a¢ : A-PX), er—

g¢  A—-PX), er—

but
a“(eg) N B%(es) # 0
50 (A(ap)¢ ¢ BSS(X)P. Thus " " is not defined on BSS(X)*.
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6.2.12 Proposition

Let A, ) be a bipolar soft set over X. Then ° : BSS(X)F — BSS(X)F is defined
and we denote (A, 3 )° by A(q gyo-
Proof. If A, 5 € BSS(X)¥ then

A(a,ﬁ)o = A<a°,6°> where

a® : A—-PX),e—f(e) and 8 : A—P(X), e—ale).

Clearly
0(e) N 5°(e) = Ble) Nax(e) = 0.
Thus A<a75>o S BSS(X)E |

6.3 Properties of Bipolar Soft Sets

In this section we check the properties and associative, commutative, distributive and
absorption laws of bipolar soft sets with respect to their operations.
6.3.1 Definition

A bipolar soft set over X is said to be a relative null bipolar soft set, denoted by A (g x)

where

P:A—-PX),e—0 and X: A— P(X), e— X.

6.3.2 Definition

A bipolar soft set over X is said to be a relative absolute bipolar soft set, denoted by

Ax,3) where
X:A—-PX),e—~ X and ®: A— P(X), e 0.

Conventionally, we take the bipolar soft sets with empty set of parameters to be
equal to (g xy and so A, gy M By 5 =00 x)=A(a,p) U B(y,5) whenever (AN B) = (.
6.3.3 Proposition

If Aig %) is a null bipolar soft set, A x ) an absolute bipolar soft set, and A, gy, A5

are bipolar soft sets over X, then

1) A¢a,p) Ue Ay5)=Ala,p U Ay )

2) Aap) Ne Ay5)=Ata,8) M Afy,5)5
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3) Al M A,p)=A(0,8)=Aa,8) U Ala,p);
4) App) U A=A 0,8 A0, N Ax.s),
5) A UAxe)=Axe)i Ala,s) MA@ x) =A@ )

Proof. Straightforward. m

6.3.4 Proposition

Let A gy, Bys) and Cicpy be any bipolar soft sets over X. Then the following are

true

1) (Absorption Laws)

(1) Afa,s) Ue (Biyg) M Afa))=Asa,);

(1) Aa,p) M (Bys) Ue Afa,g)=A(a))

(iii) Aap U (Brs M An,g)=Ala ),

(iv) Ao, Me (Biy,) U Afa,8))=Aa.5)-

2) (Associative Laws) Ao 3\ A(By,6) AC ¢y ) =(A 10,8 AB 4,6 ) AC¢ )
3) (Commutative Laws) A, g AB(y.5)=B 4,5 A (a,8);

4) (Distributive Laws)

(1) Ao, Ue (Biys) UCicm)E(Afapy Us By s)) U (Agap) Ue Ciem),
(i) Ata,5) Ue (Biy,0) M Cien)2(Aa,5) Ue Biysy) Me (Aga,py Ue Cie),
(iii) Ao p) Ue (Biys) M Ciem)=(Agas) Ue Biosy) M (Agagy Ue Ci),
(iv) Aap) U (B, Ue Cremy)=(Aa,p U Biy)) Ue (Aga,s U Ciem);
(V) Atap) U (Bysy Me Crem)=(Agap) U Biygy) Me (Aap) U Cigmy)s
(Vi) At U (Biys) M Ciem)=(Aiap U Biys)) M (Agas) U Ciem)s
(vii) Ao Me (Biys) Ue Cie) S(Ata) Me Biysy) U (Aga,p) Me Crey)s
(viii) A¢a,6) e (Biy,5) U Ceny)=(Aa,p) Me Biygy) U (Aga,p) Me Crem)s
(ix) Ao M (Brys) M Clem) (At Me Biygy) M (A, Ne Cican)s

(%) Ao, U (Biy,6) Us Ciem)=(Aa,p) U Biy,s)) Ue (Aga,p) U Ciemy)
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(xi) Aga,p) U (Biys) Me Ciem)=(Afa,p) U Biy.6) Me (Ao, U Ciemy)s
(xii) A, gy U (By,s) M Clem)=(Aa,p) U Biy,5)) T (Aga,s) U Crem)-

Proof. It follows from Theorem 6.1.4 and Proposition 6.2.9 in a straightforward

manner. H

6.3.5 Example

Bipolar disorder is a serious psychological illness that can lead to dangerous behav-
ior, problematic careers and relationships, and suicidal tendencies, especially if not
treated early. Let X = {1,2,3,4,5,6,7} be the set of days in which the record has
been maintained i.e. ¢ = ith day of patient under observation, for 1 < i < 7. Let
E = {ejy,ea,e3,e4,65} = {Severe Mania, Severe Depression, Anxiety, Medication, Side
effects} and —=E = {—e1,-e2,—e3,7eq,me5} = {Mild Mania, Mild Depression, No Anx-
iety, No Medication, No Side effects}. Here the gray area is obviously the moderate
form of parameters. Suppose that A = {ej,es,e3}, B = {ea,eq,e5}, C = {e1,e3,e5}.
Let the bipolar soft sets A, g), B(y,s) and C(¢ y over X describe the “daily record of
the behavior” of P;, P>, and P3. Suppose that

{1,4,5,6} if e = ey,
a : A—=PX), e— 1 {1,2,3,4,5,7} if e = ey,
{2,4,6,7} if e = eg,
{2,3,7} ife=ce,
g+ A—=PX), e— ¢ {6} if e = ey,
{3} if e = e3,
{3,5,6} if e = ey,
v A-PX), e—< {1,5,7} if e = ey,

{2,3,4,5,6} ife=es,

{1,4,7} if e = eg,
d : A—=-P(X), er— ¢ {3,6} ife=ey,
{} if6:€5,
X if e = ey,
¢ : A—=PX), e—«¢ {1,2} if e = eg,
{4,5,6} if e =es5,
{} ife:el,
n : A-PX), e— 1 {3,4} ife=es,
{1,2} if e =es,
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We have

Aa,8) Te (Biy,g) M Cieny)=(A U (B N C))iairic),50(60m)
and

(A, Me Biy)) M (Aga,g) Me Cre ) =(AU B) N (AU C)(arin)A(aric),(B08)(80n))
Then the approximations for parameter es are not same on both sides
(aN(yN¢))(e2) = {1,2,3,4,5,7} # {3,5} = ((aMy)N(aN())(e2)
and (BU(6Un))(e2) = {6} # {1,4,7,6} = ((U6)U(BUn))(e2).
Thus
Ay Me (By,s) M Cremy) #(Aa,) Me Bia,s)) M (Afa,) Me Cremy)-

Now, consider

Afa,8) Mz (Byy,5) Ue Cie ) =(AU (B U C))tari(r06),80(57m))
and
(A, Me Byoy) Ue (A, Me Ciey) = (AU B)iary,pos) Us (AU C)anc som

= (AU B) U (AU C)((armn)0(afic),(806)A(80n))

Then the approximations for parameter es are not same on both sides

(@N(YUQ))(e2) = {5} #{1,2,3,4,5,7} = ((aMy)U(an())(e2)
and (BO(0Mn))(e2) = {1,4,7,6} # {6} = (BU5)N(BUn))(e2).
Thus
Afa,p) Ne (Bly.) Ue Ciean)F(Aa,5) M Biyay) Us (Ata,) Me Clan)-
Similarly it can be shown that

A3y Uz (Biy,y U Cren)Z(Aa,p) Ue Biasy) U (Aa,sy Us Clep)-
Aty Ue (Biy5) Me Cre)Z(Aayg) Us Biysy) Me (Ajays) Us Ceny)-

6.3.6 Corollary
Let Ay 5y, Biy,s) and Ay be any bipolar soft sets over X. Then
Aa,p) e (Birg) Me Age) = (Afa,p) Ue Biygy) Me (Agap) Ue Ag.) and
Afa,p) T (Biygy) Ue Agey) = (Agap) Me Brogy) Ue (Agap) Me Age.y)
if and only if
ale) = ~(e)and B(e) =0d(e) foralle € (AN B) — C and
ale) = ((e) and B(e) =n(e) for alle € (ANC) — B.
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6.3.7 Corollary

Let Aiy 5y, A(y,5) and Ae y are three bipolar soft sets over X. Then

Ata,p) MA(,5)0A )= (A, A A (4,6)) P(A a8 A i)

for distinct A, p € {M.,M,Le, L}

A bipolar mood chart is a simple and yet effective means of tracking and represent-
ing patient’s condition every month. Bipolar mood charts help patients, their families
and their doctors to see probable patterns that might have been very difficult to de-
termine. Bipolar children and their families will greatly benefit from mood charting
and can expect early detection of symptoms and determination of proper treatments
by their doctors. We construct a mood chart based upon a bipolar soft set as follows:

A bipolar soft set A, g over X may be represented by a pair of binary tables, one
for each of the functions o and [ respectively. In both tables, rows and columns are
labeled by the elements of X and parameters respectively. We use following key for

tables of a and ( respectively:

aij =

1 ifa; e ale)
0 ifz; ¢ a(e))
1 if z; € B(ej)
aj = .
0 if z; ¢ B(e;)
where a;; is the ith entry of jth column of each table. We can also represent a bipolar

soft set with the help of a single table by putting

1 if by € afey)
ajj = 0 ifh; € X —{ale;)UpBle)}
—1 if h; € ﬁ(ej)

where a;; is the ith entry of jth column of table whose rows and columns are labeled
by elements of X and parameters respectively. The tabular representations of bipolar
soft set A, g) as given in Example 6.3.5 are given by Table 6.1 and Table 6.2.

Both Tables 6.1 and Table 6.2 can be used as Mood Chart of patient P; for a week.

6.4 Algebras of Bipolar Soft Sets

In this section, we discuss the lattices and algebras for collections of bipolar soft sets.
Let BSS(X)® be the collection of all bipolar soft sets over X and DSS(X)4 be its
subcollection of all bipolar soft sets over X with fixed set of parameters A. We note
that these collections are partially ordered by the relation of soft inclusion C given in

Definition 6.1.2. We conclude from above results that:
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a e |e | e3 Blel|es|e3
1|1 1 0 110 (0 |0
210 |1 ]1 211 10 |0
310 1 0 311 0 1
411 11 |1 410 J0 |0
511 [1 0 510 [0 [0
6 |1 ]0 |1 610|110
710 [1 |1 71110 |o

Table 6.1: Tabular Representaion Using a Pair of Tables

Anpy | €1 | e |e3
1 1 1 0
2 — 1 1
3 — 1] -1
4 1 1
5 1 1 0
6 -1 1
7 — 1 1

Table 6.2: Tabular Representaion Using Only One Table

6.4.1 Proposition

(BSS(X)E N.,L), (BSS(X)F,u,MNe.), (BSS(X)F L,M), (BSS(X)E ML), (BSS(X) 4,L,01),
and (BSS(X) 4,M,L) are lattices.

Proof. From Propositions 6.3.3 and 6.3.4, we conclude that the structures form
lattices. m

6.4.2 Proposition

Let Ay, 5y and B, 5y be two bipolar soft sets over X. Then the following are true

1) Ay ) Ue By sy is the smallest bipolar soft set over X which contains both A, g
and B, s)-

2) Aa,py M By is the largest bipolar soft set over X which is contained in both
Aa,p) and By 5.

Proof. Straightforward. m

6.4.3 Proposition

(BSS<X>E7|_|7U€7®(<I>,%> 7E(f,<1>>)7 (BSS(X)Eau&I_l?E(%,@) 7®<<I>,.'{)>7 (BSS(X)A7I_|7U7A(<I>,%>7
Ax.y) and (BSS(X) 4,U,M,Ax #),Aa,x)) are bounded distributive lattices.
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Proof. From Proposition 6.3.4 and Lemma 6.4.2, we conclude that (BSS(X)¥,
M, Ue, O@,x), Erx,ey) is a bounded distributive lattice and (BSS(X)®, U, n, B ),
0 %)) is its dual. For bipolar soft sets A, gy, Ay € BSS(X) 4,

Aapy M A5 = Apay,sos) € BSS(X) 4 and
Ay UAps) = Aadyprs) € BSS(X) 4.

Thus (BSS(X) 4,M,U) is also a distributive sublattice of (BSS(X)¥ U.,M) and Propo-
sition 6.3.3 tells us that Ag x), A(x,3) are its lower and upper bounds respectively.
Therefore (BSS(X)4, M, U, A x), Ax.e)) is a bounded distributive lattice and
(BSS(X) 4, U, M, Az ey, Ao, xy) is its dual. =

6.4.4 Proposition

Let Ay, 5y and A, 5y be two bipolar soft sets over X. Then
1) (Ata,p)° = Alapy
2) Ay 5 CAr s if and only if A(, 50 C A, gy
Proof.
1) Straightforward
2) If A<a,5>§A<%5> then
a(e) Cy(e) and d(e) C B(e) foralle € A

implies that
A6 SAa,)-

Hence A<,y75>o éA(a”@o. If A(,y’(S)o éA(oz,ﬁ)" then

Ik

Ata,py=(Aia)o) C(Ap5)0) = A 5)-

6.4.5 Proposition (de Morgan Laws)

Let Ay, gy and B, 5y be two bipolar soft sets over X. Then the following are true:

1) (Afa,8) Ue Biy,6))°=A(a,p0 Te Biy,s0,

2) (A(a,8) Me Biy.6)) =Aa,8)° Ue By 50
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3) (Aia,p) V Biy,5)) " =A(ap)0 N By gyos
4) (A, A Biys)) =Aap° V Biysyes
5) (Ao, U Biy5) =Aa,0° M By g0,

6) (Aia,p) M By,5))°=Aa,p)° U By g0

Proof.
1) We have
(A(a,8) Ue Biy,5))"=((AU B) (a0y,876)) =(A U B) (575,a0+)
and
Ata,pye Me By sy0=A(8,0) Me B5,7)=(AU B) 575 a07)-
Thus

(Aa,8) Ue Biy,6))°=Aa,p)° Me Biy,sp0-

The remaining parts can also be proved in a similar way.

6.4.6 Proposition

(BSS(X)a,1,U,°,A1p x),A(x,8)) is a de Morgan algebra.
Proof. Proof follows from Propositions 6.4.4 and 6.4.5. =

6.4.7 Proposition

(BSS(X)A,1,U,°%, A xy,Ax,3)) is a Kleene algebra.
Proof. For A, gy, A5 € BSS(X)a

Ata,py M A@gye = Afa,g) M AB0)=A(aRs,600)=A(@,800) and
Ay WA s = Apysy U A =An0s 500 =A(05,8)-
Ay sy U Ay sy

M

Clearly A(a,ﬁ) Il A(a’5>o
We already know that (BSS(X)A,,U,°, A3 x),A(x,¢)) is a de Morgan algebra, so this
condition assures that (BSS(X)a,M,U,°,A s x),A(x,4)) is also a Kleene algebra. m
6.4.8 Remark

We have seen that (DSS(X)a,M,U,°, A x),4(x,9)) is a de Morgan algebra but not a
Kleene algebra whereas (BSS(X)a,M,U,% A x),A(x,®)) is its de Morgan subalgebra

and also a Kleene subalgebra.



Chapter 7

Algebraic Structures of Fuzzy
Bipolar Soft Sets

In this chapter, we have initiated a concept of fuzzy bipolar soft sets. The idea is
generated with the motivation of bipolarity of parameters and then the fuzziness of
data comes into play. A fuzzy bipolar soft set is defined with the help of two mappings,
one for approximating the degree of fuzziness of the positivity or presence of a certain
parameter in the objects of initial universal set and the other one is to approximate a
relative degree of fuzziness of the negativity or absence of same parameter. In this way,
we have combined these three concepts of bipolarity, fuzziness and parameterization
and thus it is shown through examples that we have found a very easy to use way of
modeling the phenomena where all these three factors are involved. To move further,
we have defined the basic algebra for the fuzzy bipolar soft sets and discussed their
algebraic properties in detail. It is also shown that the collection of fuzzy bipolar soft

sets forms a stone algebra.

7.1 Fuzzy Bipolar Soft Sets

Let X be an initial universe and F be a set of parameters. Let FP(X) denotes the
collection of all fuzzy subsets of X and A, B, C are non-empty subsets of E. Now, we
define

7.1.1 Definition

A triplet (f,g : A) is called a fuzzy bipolar soft set over X, where f and g are mappings,
givenby f: A — FP(X)and g : ~A — FP(X) such that 0 < (f(e))(x)+(g(—e))(z) <
1 for all e € A.

119
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In other words, a fuzzy bipolar soft set over X gives two parametrized families of
fuzzy subsets of the universe X and the condition 0 < (f(e))(x) + (g(—e))(z) < 1 for
all.e € A, is imposed as a consistency constraint. For each e € A, f(e) and g(—e) are
regarded as the set of e-approximate elements of the fuzzy bipolar soft set Ay .

Note that, from now on, we shall use the notation Ay over X to denote a fuzzy

bipolar soft set (f,g: A) over X where the meanings of f, g, A and X are clear.

7.1.2 Definition

For a fuzzy bipolar soft set A,y over X, we define a fuzzy soft set Aj, over X for
the approximation of the degree of hesitation in A4y as h: A — FP(X) defined by
(h(e))(x) =1—=(f(e))(z)— (g(—e))(x) for all z € X, e € A. Clearly, Aj approximates
the lack of knowledge about the objects of X while considering the presence or absence

of a particular parameter from A.

7.1.3 Definition

For two fuzzy bipolar soft sets Ay gy and By, ;y over X, we say that Ay g is a fuzzy
bipolar soft subset of By, ;y, if

1) AC B and

2) f(e) C h(e) and i(—e) C g(—e) for all e € A.

This relationship is denoted by 4, f7g)§B<h7i>.
Similarly Ay gy is said to be a fuzzy bipolar soft superset of By, ;, if B, is a
Juzzy bipolar soft subset of Ay . We denote it by A<f7g>§B<h7i>.

7.1.4 Definition

Two fuzzy bipolar soft sets Ay g and By, ;y over X are said to be equal denoted as
Ap.y=Bny if Aigg) is a fuzzy bipolar soft subset of By, ;) and By, ; is a fuzzy bipolar
soft subset of A .

7.1.5 Example

Let X be a set of different books, and E be the set of parameters where, X =
{b1,b2,b3,b4,b5}, E = {e1,e2,e3,64,65,66} = { Simple, Logical, Orderly, Concise, Varied,
Appealing}, - F = {—e;1,—ea,e3,—eq,me5} = {Complicated, Illogical, Chaotic, Wordy,
Monotonous, Distant}. Suppose that A = {e1,e2,e3,e6}, a fuzzy bipolar soft set Ay g
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describes the “reader ratings of books under consideration”. The fuzzy bipolar soft

set Ay gy over X is given as follows:

f  A—-FPX),

{61/0.9,b2/0.3,b3/0.8,b1/0.7,b5/0.5} if e = e1,
{61/0.1,b2/0.5,b3/0.1,b4/0.8, b5 /0.6} if e = es,
{61/0.2,b2/0.5,b3/0.2,b4/0.8,b5/0.7} if ¢ = es,

| {51/0.7,b5/0.4,b3/0.2,b4/0.1,b5 0.1} if € = e,
g = —A—-FP(X),

[b1/0.1,b2/0.3,b3/0.1,b1/0.2,b5/0.3} if e = —er,
(61/0.7,b5/0.4,b3/0.8,b1/0.1,b5/0.2}  if & = —ea,
{b1/0.6,b3/0.4,b3/0.6,b1/0.1,b5/0.3} if e = —es,
| {61/0.2,02/0.3,b3/0.8,b4/0.7,b5/0.5} if e = —es.

Let B = {e2,e6}. Then a second approximations with respect to the earlier approxi-
mations by Ay g is represented by a fuzzy bipolar soft subset B, ;y.of Ay ) and given
by:

h : B—FPX),
{61/0.1,b2/0.5,b3/0.1,b4/0.8,b5/0.6}  if e = ea,
{ {b1/0.7,b2/0.4,b3/0.2,b4/0.1,b5/0.1} if e = e,
i+ —B— FP(X),
{b1/0.7,b3/0.4,b3/0.8,b4/0.1,b5/0.2} if € = —ea,
c { (61/0.2,b5/0.3, b3 /0.8,b4/0.7,b5/0.5} if € = —eg.

7.2 Bipolar fuzzy Soft Sets

We present the concept of bipolar fuzzy soft sets as a generalization of soft sets in
bipolar fuzzy context. Let BFP(X) denotes the set of all bipolar fuzzy subsets of X.

7.2.1 Definition

A pair (f,A) is called a bipolar fuzzy soft set over X, where f is a mapping given by
f:A— BFP(X).

Thus a bipolar fuzzy soft set over X gives a parametrized family of bipolar fuzzy
subsets of the universe X. For any e € A, f(e) = {(z,f(e),f(e)") : z € X} where
fe) : X —[0,1] and f(e)" : X — [~1,0] are mappings.

Before proceeding to the further development of theory of bipolar fuzzy soft sets,

we give following interpretations:
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7.2.2 Proposition

A fuzzy bipolar soft set over X is equivalent to a bipolar fuzzy soft set over X and
vice versa.

Proof. Let A4 be a given fuzzy bipolar soft set defined over X. We define a
bipolar fuzzy soft set (h,A) over X as:

h(e) = {(z, f(e), —(g9(—€)(z)) : x € X}

for all e € A. Then (z, f(e), —(g(—e)(x)) € BFP(X).
Conversely assume that we are given a bipolar fuzzy soft set (h,A) over X. We

can define a fuzzy bipolar soft set A,y over X in the following manner:

fle) = h(e)”
g(-e) = —(h(e)")

for all e € A.
Thus both definitions are equivalent and may be used interchangeably. m

Consider the following example:

7.2.3 Example

Let X = {mq,ma,ms3,mq,ms} be the set of candidates who have applied for a job
position of Office Representative in Customer Care Centre of a company. Let E =
{e1,e2,€3,€4,€5,66,7} = {Hard Working, Optimism, Enthusiasm, Individualism, Imag-
inative, Decisiveness, Self-confidence} and —FE = {—ej,—eq,—es, —eyq, es, —eg, mer} =
{Negligent, Pessimism, Half-hearted, Dependence, Unimaginative, Indecisiveness, Shyness}.
Here the gray area is obviously a moderate form of parameters. Let us suppose that

the fuzzy bipolar soft set E(; 4 describes “ Personality Analysis of Candidates” as:

f : E—-FPX),

[ {m1/0.5,m2/0.7,m3/0.6,m4/0.7,m5/0.5} if e = ey,
{m1/0.6,m2/0.7,m3/0.8,m4/0.8,m5/0.4} if e = ey,
{m1/0.8,m3/0.8,m3/0.4,m4/0.6,m5/0.5} if e = e3,
e — {m1/0.7,m2/0.6,m3/0.1,m4/0.7,m5/0.6} if e = ey,
{m1/0.5,m2/0.8,m3/0.6,m4/0.5,m5/0.7} if e = e5,
{m1/0.4,m2/0.9,m3/0.5,m4/0.4,ms5/0.7} if e = e,
{m1/0.3,m2/0.8,m3/0.4,m4/0.6, m5/0.8} if e = ey,
g : ~FE—-FPX),
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( {m1/0.3,m2/0.2,m3/0.4,m4/0.1,m5/0.3}  if e = —ey,
{m1/0.4,m2/0.1,m3/0.2,m4/0.1,ms5/0.5} if e = —eo,
{m1/0.05,m5/0.1,m3/0.5,m4/0.33,m5/0.4} if e = —es,
er— ¢ {m1/0.23,m2/0.3,m3/0.6,m4/0.2,m5/0.3} if e = ey,
{m1/0.4,m5/0.2,m3/0.35,m4/0.4,m5/0.1}  if e = —es,
{m1/0.4,m3/0.2,m3/0.3,m4/0.3,ms5/0.2} if e = —eg,
{m1/0.7,m2/0.08, m3/0.5,m4/0.3,m5/0.18} if e = —ey,

Now let’s see the corresponding bipolar fuzzy soft set:

h(er) = {(m1,0.5,—0.3),(mg,0.7,—0.2), (ms, 0.6, —0.4), (m4, 0.7, —0.1), (ms, 0.5, —0.3)},
h(es) = {(m1,0.6,—0.4), (ms,0.7,—0.1), (ms, 0.8, —0.2), (m4, 0.8, —0.1), (ms, 0.4, —0.5)},
h(es) = {(m1,0.8,—0.05), (mz,0.8,—0.1), (ms,0.4, —0.5), (4, 0.6, —0.33), (ms, 0.5, —0.4)},

es) = {(mq,0.5,—0.4), (ms,0.8,—0.2), (ms, 0.6, —0.35), (m4, 0.5, —0.4), (ms, 0.7, —0.1)},
= {(m1,0.4,-0.4), (m2,0.9, —0.2), (ms, 0.5, —0.3), (my4, 0.4, —0.3), (ms, 0.7, —0.2)},
(

= {(m1,0.3,=0.7), (mg,0.8,—0.08), (ms, 0.4, —0.5), (my4, 0.6, —0.3), (ms, 0.8, —0.18) }.

€6

(e1) (
(e2) (
(e3) (
h(es) = {(mq,0.7,—0.23), (m2,0.6,—0.3), (ms,0.1,—0.4), (m4, 0.7, —0.2), (ms, 0.6, —0.3)},
(es) (
(e6) (
(e7) (

>

er

It is clear that fuzzy bipolar soft set depicts the information in a better and compre-
hensive way than bipolar fuzzy soft set. For example, if we read the data of candidate
my with fuzzy bipolar soft set Ay ) then he is having 0.6 fuzzy value for optimism and
0.4 fuzzy value for pessimism and if we use the bipolar fuzzy soft set (h,E) then m; is
having 0.6 fuzzy value for optimism and —0.4 shows the degree where m; is showing
pessimism.

Let FBSS(X)F denotes the set of all fuzzy bipolar soft sets defined over X with
set of parameters E, ordered by the relation of inclusion C as defined in Definition
7.1.3. We show that every fuzzy bipolar soft set is equivalent to a double-framed fuzzy

soft set and give the following theorem:

7.2.4 Theorem

The mapping 6 : FBSS(X)¥ — DFSS(X)F, A9y = A(fr,g1) 18 @ monomorphism of
lattices where
fi(e) = f(e), and gi(e) = g(—e) for all e € A.

Proof. Clearly 6 is well-defined. If

0(A(£,)=0(Bns)
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where
0(A<f79>)£A(f1791) and 9<B<hvi>)£B(h17i1)
then

fi(e) = f(e), hi(e) = h(e) and gi(e) = g(—e), i1(e) = i(—e) for all e € A.

f(e) = fi(e) = hi(e) = h(e) and g(—e) = g1(e) = i1(e) = i(—e) for all e € A.

Thus
A1,9y=Bin,iy

shows that 6 is one-to-one. Clearly 6 is order preserving. m

7.2.5 Remark

Note that 0 is not onto because of the consistency constraint for defining fuzzy bipolar
soft sets and FBSS(X)F=BFSS(X)F — DFSS(X)E.

By Theorem 7.2.4, we can equate every fuzzy bipolar soft set A, over X with
a double-framed fuzzy soft set and so, we can take f and g as mappings from A to

BFP(X) where the meanings of A, f and g are clear in this context.

7.3 Operations on Fuzzy Bipolar Soft Sets

This section provides some operations defined on fuzzy bipolar soft sets:

7.3.1 Definition

Let Ay 4 and By, ;) be fuzzy bipolar soft sets over X. The int-uni product of Ay g
and By, ; is defined as a fuzzy bipolar soft set (A X B)sip 474y over X in which

FAL © (Ax B) — FP(X), (a,b) — f(a) A (D),

gVi : (Ax B)— FP(X), (a,b) — g(a) Vi(b).

It is denoted by A(f,g) A B(h,z>£(A X B)(ff\h,g@i)‘

7.3.2 Definition

Let Aif g and By, ) be fuzzy bipolar soft sets over X. The uni-int product of Ay g
and By, ;) is defined as the fuzzy bipolar soft soft set (A x B) g5 g over X in which
fVh:(Ax B)— FP(X), where

(a,b) — f(a) Vv h(b),
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and gAi : (A x B) — FP(X), where
(a,b) — g(a) Ni(D).

It is denoted by Ay gy V Bniy=(A X B) (rn,g7i)-

7.3.3 Definition

For two fuzzy bipolar soft sets A,y and By, ;) over X, the extended int-uni fuzzy
bipolar soft set of Ay 4y and By ; is defined as the fuzzy bipolar soft set (AUB) txp 474
where fAh: (AU B) — FP(X),

f(e) ifec A-B
er— 4 h(e) ifeecB—A
f(e)ANh(e) ifee(ANB)

and gVi: (AU B) — FP(X), where

g(e) ifec A-B
e ¢ ife) ifeec B—A
gle)Vi(e) ifee (ANB)

It is denoted by Ay gy Me By iy =(AU B) tin,gvs)-

7.3.4 Definition

For two fuzzy bipolar soft sets A,y and By, ;) over X, the extended uni-int fuzzy
bipolar soft set of Ay 5y and By, ; is defined as the fuzzy bipolar soft set (AUB) rgn 74
where fVh: (AU B) — FP(X),

f(e) ifeec A-B
e— q h(e) ifeecB-A
f(e)Vh(e) ifee(ANB)

and gAi : (AU B) — FP(X), where

g(e) ifeec A-B
er— ¢ i(e) ifee B-—A
gle) Ni(e) ifeec (ANB)

It is denoted by Ay gy Ue By iy =(AU B) 1on gis)-
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7.3.5 Definition

For two fuzzy bipolar soft sets Ay gy and By, ;y over X with (AN B) # 0, the restricted
int-uni fuzzy bipolar soft set of Ay y and By, ; is defined as the fuzzy bipolar soft set
e f(e) Ah(e),

and gVi: (AN B) — FP(X), where
e g(e) Vi(e).

It is denoted by A<f7g> M B(h,i>£(A N B)(ff\h,g\%)'

7.3.6 Definition

For two fuzzy bipolar soft sets Ay gy and By, ;y over X with (AN B) # 0, the restricted
uni-int fuzzy bipolar soft set of Ay y and By, ; is defined as the fuzzy bipolar soft set

e fe)V hie),

and gAi : (AN B) — FP(X),
e g(e) Ni(e).

It is denoted by A<f7g> L B(h,i)i(A N B)(f\7h,g/~\i>‘

7.3.7 Remark

The operation of complementation as defined in Definition 5.2.7 for double-framed
fuzzy soft sets is no more valid for fuzzy bipolar soft sets because (A ) =44 may

not satisfy the consistency constraint as shown by the following example:

7.3.8 Example

Let £, A, X and fuzzy bipolar soft set A, over X be taken as in Example 7.1.5.
Then (Ay,q)) " is given as follows:

o A—= FPX),
(b1/0.1,b2/0.7,b3/0.2,b4/0.3, b5 /0.5} i e = e1,
(51/0.9,b2/0.5,b3/0.9,b4/0.2,b5/0.4} if e = eo,
(b1/0.8,b2/0.5,b3/0.8,b4/0.1,b5/0.1} if e = es,
{61/0.3,b2/0.6,b3/0.8,b1/0.9,b5/1.0} if e = eg,

g  A—-FPX),
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{b1/0.8,b2/0.7,b3/0.7,b4/0.6,b5/0.2} if e = ey,
{b1/0.3,b2/0.6,b3/0.2,b4/0.3,b5/0.1} if e = e,
{b1/0.4,b3/0.6,b3/0.4,b4/0.4,b5/0.3} if e = eg,
{b1/0.1,b5/0.7,b3/0.2,b4/0.3,b5/0.5} if e = eg.

€ H—

but
(fle1))(b2) + (gler))(b2) =0.7+0.7=1.4 > 1
SO (A<f,g>) ¢ ]:BSS(X)E. Thus " “ " is not defined on FBSS(X)E.

7.3.9 Proposition

Let Ay, be a fuzzy bipolar soft set over X. Then © : FBSS(X)F — FBSS(X)F is
defined and we denote (A g)° by A(f gyo-
Proof. If Aj; ) € FBSS(X)F then

A(f’g>o£A<fo’go> where fo A — fP(X), [ d g(e) and go A — _F'P()()7 e — f (e) .

Clearly
0 < (f°(e))(x) + (9°(me))(z) < 1
Thus A<f’g>o S fBSS(X)E |

7.4 Properties of Fuzzy Bipolar Soft Sets

In this section we discuss properties of fuzzy bipolar soft sets with respect to their
operations. Associativity, commutativity, absorption, distributivity and properties of

fuzzy bipolar soft sets are investigated.

7.4.1 Definition

A fuzzy bipolar soft set over X is said to be a relative absolute fuzzy bipolar soft set,

denoted by A(i,ﬁ) where
1:A—-FP(X),e—1 and 0: A — FP(X), e 0.

7.4.2 Definition

A fuzzy bipolar soft set over X is said to be a relative null fuzzy bipolar soft set, denoted

by A(ﬁ,i) where
0:A— FP(X),e—0 and 1: A — FP(X), e 1.

Conventionally, we take the fuzzy bipolar soft sets with empty set of parameters

to be equal to Q)(ﬁ,i) and so Ay oy M B, iy =A(f,g) U B(h,i>£@<(~),i> whenever (AN B) = (.
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7.4.3 Proposition

IfA (©.1) is a null fuzzy bipolar soft set, A(i,ﬁ) an absolute fuzzy bipolar soft set, and
Aif.g)s Aniy are fuzzy bipolar soft sets over X, then

1) Aipg) Ue A iy=As,g) U A
2) Aipg) Ne Aniy=Ar.g) T A
3) Aoy M AG g =Ag)=Alrg) U Af.g)

4) Aoy UAGH=A0=Alr9) M Ad )

T

Proof. Straightforward. m

7.4.4 Proposition

Let Aif gy By and Cyjpy be any fuzzy bipolar soft sets over X. Then the following

are true

1) (Absorption Laws)

(1) Air.g) Ue (Biniy M A(r.9)=A (1)

(ii) As.g) M By Ue Afr9))=Ai1g)
(i) A(zg) U (B Ne Atf.g)=Ac1.9)5
(iv) Airg) Ne (Bniy U Atr.g)) = A1)

2) (Associative Laws) A r s AM(Bna AC k) )= (A (1,09 AB iy )AC .k »
3) (Commutative Laws) A(f,g))\B<h,i>£B<h,i))‘A<f,g>7

4) (Distributive Laws)(Distributive Laws)

(1) Afg) Ue (Biniy U Cliny) S(A(rg) Ue Biniy) U (Agpgy Ue Climy)s

(i) A g Us (B Me Cliny) 2(A(g) Ue Bini)) Ne (A(rg) Ue Cig),
(iif) Ayyg) Ue (Binyy M Ciy)=(A(s,) Ue Ben )”(Afg e C< w)
(iv) Agggy U (Biiy Ue Cimy)=(Asg) U Biniy) Ue (Agsg) U Crigy )

(V) Aigg) U By Me Cijiny)=(Arg) U Biniy) Me (A<f,g> L C<j,k>>7
(vi) Agpgy U (B M CGky)=(Agg,g) U Binay) M (Agg,9) U Cliny)s
(vii) A Me (B Ue Ciiny)
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(viii) Arg) Me (Bny U Cimy)=(Ag.g) Me Binay) U (Agrg) Me Cligy)s
(ix) Afyg) Me (Bniy M Clsy) 2(Asg) Me Biniy) M (Agrgy Me Cipy),
(X)44wg>”(3wi>uecwkﬂiﬁAuy>ﬂfihw)ueﬁﬁﬁmFWCuxﬂv
(xi) A(rg) M (B Me Cigy)=(Afrg) M Biny) Ne (A, N CGy)s
(xii) Airg) M (Bni) U Climy)=(Agr.g) M Biny) U (Agrg) N CGky)-

||*

(A
(4
Proof. From Theorem 7.2.4, it is easy to see that these properties hold as for

double-framed fuzzy soft sets m

7.4.5 Example

Let X be the set of houses under consideration, and E be the set of parameters,
X = {h1,ho,h3,hq,hs}, E = {e1,e2,e3,e4,e5} = { in the green surroundings, cheap, in
good repair, furnished, traditional }. Let =E = {—ej,—e2,—e3,meq,—e5} = { in the
commercial area, expensive, in bad repair, non-furnished, modern }. Suppose that
A = {e1,e2,e3}, B = {ez,e3,ea}, and C = {e3,eq,e5}. The fuzzy bipolar soft sets Ay g
and By, ;y and C; ) describe the “requirements of the houses” which Mr. X, Mr. Y
and Mr. Z are going to buy respectively. Suppose that

f  A—-FP(X),
{£1/0.4,22/0.7,23/0.7,24/0.7,25/0.1} if e = ey,
e — {21/0.8,22/0.0,23/0.5,24/0.1,25/0.6} if e = eq,
{x1/0.7,22/0.5,23/0.7,24/0.6,25/0.1} if e = e3.
g = A—-FPX),
{£1/0.3,22/0.1,23/0.3,24/0.1,25/0.7} if e = ey,
e {£1/0.1,22/0.9,23/0.3,24/0.8,25/0.2} if e = eq,
{£1/0.1,22/0.3,23/0.3,24/0.3,25/0.8} if e = eg,
h : B—FPX),
{£1/0.1,22/0.3,23/0.3,24/0.6,25/0.6} if e = eq,
e — {£1/0.1,22/0,23/0.3,24/0.4,25/0.6}  if e = e3,
{21/0.9,22/0.5,23/0.5,24/0.3,25/0.1} if e = e4.
i . B FPX),
{£1/0.1,22/0.3,23/0.6,24/0.2,25/0.3} if e = eq,
e — {21/0.8,22/0.9,23/0.5,24/0.4,25/0.2} if e = eg,
{21/0.1,22/0.4,23/0.3,24/0.6,25/0.9} if e = ey,
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j = C—=FPX),
{£1/0.7,22/0.7,23/0.4,24/0.7, 25 /0.4} if e = e3,
{21/0.6,22/0.5,23/0.6,24/0.1,25/0.6} if e = ey,
{£1/0.3,22/0.4,23/0.4,24/0.3,25/0.1} if e = es.
k. C— FPX),
{x1/0.1,22/0.2,23/0.3,24/0.1,25/0.1} if e = e3,
— {£1/0.2,22/0.2,23/0.3,24/0.3,25/0.2} if e = ey,
{z1/0.1,22/0.1,23/0.3,24/0.5,25/0.7} if e = e5,

!

@

Let
Af,9) Ue (Bnay Ne Cjy)=(A U B) U Cpqnj),gh(i7k))
and
(A(f,g) Ue Biniy) Me (Agg,g) Ue Cyiy ) =(AU B) U C(pamyacraiy)-
Then
(FURR)(e2) = {21/0.1,22/0.0,3/0.3,24/0.1,35/0.6}
# {x1/0.8,22/0.0,23/0.5,24/0.1,25/0.6}
= ((fVR)A(fV4))(e2) and
(gA(iVEk))(e2) = {x1/0.1,22/0.9,23/0.6,24/0.8,25/0.3}
75 {ZL’l/O.l .%'2/0.9 $3/0.3,£L‘4/0.8,.’L’5/0.2}
= ((gAi)V(gAk))(e2),
so that
Ap.gy Ue (Biniy NMe Cjiny) (A .9y Ue Binig) Ne (Afgy Ue Cligy)-
Now,
A(f,g) Ne (Bniy Ue Cj ) =(AU B) U Cpanvj) g9(iAk))
and
(A(s.g) Me Biniy) Ue (Agg,g) Te Cyiy ) =(A U B) U C(an)a(£Ad) (970 A(gTh))
Then,

(ff\(h\~/j))(€2) = {.21?1/0.8, 1'2/0.3, x3/0.5, .%'4/0.6, :B5/0.6}
# {x1/0.8,22/0.0,25/0.5,24/0.1,25/0.6}
= ((fARV(fA]))(e2)
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and
(gV(iAk))(e2) = {x1/0.1,22/0.3,25/0.3,24/0.2,25/0.2}
£ {21/0.1,25/0.9,23/0.3,24/0.8, x5/0.2}
= ((gVi)A(gVk))(e2).
So that

Afgg) Ne (Biniy Uz Ciji)) Z(A(r.g) Ne Binay) Us (Agrg) N Ciigy)-

Similarly we can show that

Af.gy Ue (Binyiy U Cipy) (A gy Ue Biniy) U (Agggy Ue Cligy)s
and

A1.g) Ne (Bniy M Ciiy ) #(Arg) Ne Bnsiy) M (Agg.g) Me Ciny)-
7.4.6 Corollary

Let Ais gy, Bingy and Cy; iy be three fuzzy bipolar soft sets over X such that (AN B) —
C=(ANnC)— B={. Then

1)
A f,gy Ue (Bn,iy Ne Cj ) =(Aqp,g) Ue Biniy) Me (Apg) Ue Cimy)

2)
Ats.g) Me (Biiy Ue Ciiin))=(A(gg) Ne Bingy) Ue (Aggg) Me Ciimy)-
7.4.7 Corollary
Let Aif gy, Anyiy and Agjpy be any fuzzy bipolar soft sets over X. Then
A M A PAG )= (A1) A A i) ) (A, 0) A A1y )

for distinct A, p € {M,M,Lg,U}.

7.4.8 Proposition
Let A(s gy and By, ;) be two fuzzy bipolar soft sets over X. Then the following are true

1) Ay Ue By is the smallest fuzzy bipolar soft set over X which contains both
Af,g) and By, jy. (Supremum)

2) A(gg) By is the largest fuzzy bipolar soft set over X which is contained in both
Af.gy and By, ;. (Infimum)

Proof. Straightforward. m
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7.5 Algebras of Fuzzy Bipolar Soft Sets

Now we consider the collection of all fuzzy bipolar soft sets over X and denote it by
FBSS(X)F and let us denote its sub collection of all fuzzy bipolar soft sets over X
with fixed set of parameters A by FBSS(X)4. We note that this collection is partially

ordered by inclusion. We conclude from above results that:

7.5.1 Proposition

(FBSS(X)¥ Me,1) and (FBSS(X)E,L.,M) are distributive lattices and (FBSS(X)E,L,.)
and (FBSS(X)¥,M,L.) are their duals, respectively.
Proof. Follows from Propositions 7.4.3 and 7.4.4. =

7.5.2 Proposition

(FBSS(X)E MU 00 x).Eix0)), (FBSS(X)P U, E i 0y,0(0 1)),
(FBSS(X) MU, A x),Ax,e)) and (FBSS(X) 4,U,,Ax #),A(3,%)) are bounded
distributive lattices.
Proof. From Proposition 7.4.8, we know that (FBSS(X)¥ M,Ue,0(p x),Ex,a)) is
a bounded distributive lattice and (FBSS(X)E,Us,I_I,E<3€7¢>,0@73@) is its dual. For any
fuzzy bipolar soft sets A f ., Ay € FBSS(X)y,

A(f,g) r A(h,i) = A(ff\h,g\7i) € fBSS(X)A and
Apgy Uiy = Ayongry € FBSS(X) .

Thus (FBSS(X) ,,M,U) is also a distributive sublattice of (FBSS(X)",U.,M) and
Proposition 7.4.3 shows that (FBSS(X) 4,,U,A ¢ x),A(x,4)) is a bounded distributive
lattice and (FBSS(X) 4,L,1,Ax @), A x)) is its dual. =

7.5.3 Proposition (de Morgan Laws)

Let Ay g and By, ;) be two fuzzy bipolar soft sets over X. Then the following are true

1) (Ag.g) Ue Biniy) " =Aip,g)e N Binipes
2) (A.g) Me Bini))*=A 1,90 Ue Binipe,
3) (Airg) V Bini)) =A(rg0 N Binsiyes
4) (Airg) A Bini))*=A(rgpe V Bniyes

5) (Af.9) U Bniy) " =Aig.g° M Bnyiye,
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6) (A(rg) M Bniy) =Ar,g)e U Bniye-

Proof.
1) We have
(A(f,g) Ue Biniy)*=((AU B) (53n,g74y) " =(AU B) (g7, f7n)
and
Ap.gye e Biniye=A(g,p) Ne Blimy=(AU B)gri, yony-
Thus

(A(,g) Ue Bniy) =A( gy Te Bpipe-

The remaining parts can be proved in a similar way.

7.5.4 Proposition

(FBSS(X)4,M,U,°, A %), Ax,0)) is a de Morgan algebra.
Proof. Proof follows from Propositions 7.3.9 and 7.5.3. =

7.5.5 Definition

Let A(s 4 be a fuzzy bipolar soft set over X. We define Ay g+ as a fuzzy bipolar soft
set A« gvy where

A FPX) e (),
v {0 @I @ £0
e {1 £ (7(6)"(@) = 0
¢ A FPO0), e (g0
{0 @A
(6" ) {0 T2 terex

7.2.4.

7.5.6 Theorem

(FBSS(X)4,MU,% A xy,A(x,9)) s a Stone algebra.

Proof. From Proposition 7.5.2 it is evident that (FBSS(X)a,M,U,A(q x),4(x,0))
is a bounded distributive lattice and A g«=0(A(s4)+) where 6 is mapping defined
in Theorem 7.2.4 assures that * is a pseudocomplementing function satisfying Stone’s
identity. Thus (FBSS(X)a,M,U,",A¢ x),A(x,4)) is a Stone algebra. =



Chapter 8

A Generalized Framework for
Soft Set Theory

This chapter is more of a collective nature than the previous ones and not only sum-
marizes the main results but also provides a general framework to deal with soft sets
in a logical manner. We have given an over all review of various kinds of soft sets.
A Dbrief discussion about defining ideas of extended soft sets and their operations, a
summary of algebraic structures and an application of soft sets in decision making
problems has been made in this chapter to conclude thesis here. We initiate discussion

with definition of soft sets.

8.1 General Definition of Soft Set and its Extensions:

Let X be an initial universe and E be a set of parameters. Let AP(X) be a generalized
fuzzy power set of X where AP(X) may be a collection of all crisp or fuzzy or type-2
fuzzy or n-fuzzy or hesitant fuzzy or interval-valued fuzzy or vague or intuitionistic
fuzzy or bipolar fuzzy subsets of X and, say, A stands for a fuzzy criteria of collection

AP(X).

e A mapping f: A — AXP(X) is called a A—soft set over X denoted by A; where
A C E. We note that parameters in F can be a specific criteria for which an
approximation of elements of X is made by f, so a A—soft set over X gives a

parameterized family of A—subsets of X.

e In our next step towards a general framework for soft sets, we allow to consider
more than one frames of reference for X within the context of each parameter.
This consideration requires some modifications in the ongoing soft set based

model and so, this requirement is fulfilled by introducing a set of functions f; :

134
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A— AP(X),i=1,2,..,nand denote it by Ay, , . f,) and call it an n-framed
A—soft set over X . Clearly, an n-framed \—soft set gives n parametrized families
of A—subsets of X.

e Now, if the frames of references are mutually exclusive or obeying some other
mutual relation which is causing a polarity among those, then we incorporate the
idea by imposing a suitably chosen set of consistency constraints C. Hence we give
the concept of A n-polar soft set over X comprising of functions f; : A — AP(X),
(fieC) i=1,2, .., ndenoted by Ay, 1, 5.

In a natural way, all A multi-polar soft sets are multi-framed \—soft sets over X
but the converse is not true. It is also interesting to observe that multi-polar \ soft
sets can be presented in an equivalent and better way by using A multi-polar soft sets.

A particular case for n = 2 is already discussed in Chapter 7 for fuzzy subsets of X.

8.2 Aggregation Operators for Soft Sets in General Form

We need to apply a process for aggregation where the number of inputs are grouped
together in order to get a single output that is easier to use for further computations.
Usually when an object or an alternative is characterized by several numbers or values
describing its various parameters or is given evaluations from several experts and one
has to aggregate these values in order to describe the object by just one meaningful
value or set of values. Aggregation operators are an important tool that is used in
many domains [6], [8]. For a soft set and its hybrid generalizations and extensions, an
input space for aggregation is a bit unconventional because it is required to deal each
object in a parametrized context. Therefore a soft aggregation operator is a function
working on a particular number of inputs for each parameter, with output lying again
in a parametrized manner. We define soft aggregation operators in either restricted
or extended context. A restricted soft aggregation operator joins two soft sets with a
restricted set of parameters, that is, only those parameters which are combined to both
and mathematically the set of parameters is taken as the intersection of parameters
sets in input soft sets. On the other hand, an extended soft aggregation operator
joins two soft sets with an extended set of parameters, that is, all those parameters
apparent are taken into consideration and mathematically the set of parameters in
output is union of parameters sets in input soft sets. Let m be a positive integer and

K be a set of various operations defined for A fuzzy subsets of X.

e Let A;,B C F and Aifz- be A—soft sets over X, where ¢ = 1, 2, ..., m. Then
an aggregation operator is a mapping (Alf1 Azpy s Amy,, ) — Bg. We have two

cases:



8. A Generalized Framework for Soft Set Theory 136

m
(i) For the case of restricted aggregation operators, we have B = ﬂ A; and
i=1

9(e) = k{fi(e) 11 = 1,2,...,m}
for all e € B.
m
(ii) For the case of extended aggregation operators, we have B = U A; and we

i=1
define the set A(e) = {j : e € A;}

g(e) = k{fi(e) : i € Ale)}
for all e € B.

e Let A;, B C FE and Ai(f.l,fg ,,,,, )
2, ..., m, and (ki, ka,...,k,) € K™. Then an aggregation operator is a mapping
We have

be n-framed A—soft sets over X, where i = 1,

= B(g1,92,...0)"

two cases:

m
(i) For the case of restricted aggregation operators, we have B = ﬂ A; and
i=1

gj(e) = kj{fij(e) 1= 1,2, ...,m}, j = 1,2, N
for all e € B.

m
(ii) For the case of extended aggregation operators, we have B = U A; and we
i=1
define the set A(e) ={j:e € A;}

gjle) =ki{fijle) i e Ale)}, 7=1,2,....,n

for all e € B.

AAAAAAA

i =1, 2, ..., m, and (ki,ka2,...,k,) € K"™. Then an aggregation operator is

a mapping (A1<f11,f12 ot 20001 oy Am g fmmy) ™ Blg1,g2,90)

(gj € C). We have two cases:

m
(i) For the case of restricted aggregation operators, we have B = ﬂ A; and

=1
g5(€) = ki {fis(€) 17 = 1,2, com}, 5 = 1,2,.0m

for all e € B.
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(ii) For the case of extended aggregation operators, we have B = U A; and we
i=1
define the set A(e) = {j : e € A;}

g](e) - k]{fl](e) S A(e)}a j = 1727"'777'
for all e € B.

All aggregation operators defined for n-framed A—soft sets over X can be used to
define aggregation operators for A n-polar soft sets over X as except where consistency
constraints are absent. We have seen an example of complement operation defined for
double-framed soft sets which is no more available for bipolar soft sets due to hazard
of consistency constraint. Thus the set of aggregation operators for A n-polar soft sets

is contained in the set of aggregation operators for n-framed A—soft sets.

8.3 New Examples of Logical Algebraic Structures

In this section we present a summary of results that we have found in our research
regarding different types of soft sets and their collections and thus new examples of
these algebras are contributed through our work. Following table gives an overview of

the algebraic structures of soft sets:

1 ‘ Lattices:
(SS(X)*¥ ”a,U)v(SS( )P, U, M), (FSS(X)P, e, ),
(FSS(X)P,1,Me), (DSS(X)*, M, L), (DSS(X)*, L, Me),

(DFSS(X)¥ ,I‘IE,LI),(D}"SS( Ve U, M), (BSS(X)F,n., L),
(BSS(X)F,u,M.), (FBSS(X)¥,n., 1), (FBSS(X)¥,1,1M.)

2 ‘ Bounded Distributive Lattices:
(SS(X)¥, M, e, b, Ex), (SS(X)”, L, M, Ex, 0s),
(FSS(X)¥,M, L., 05, E5), (FSS(X)®, Ug, N, Bz, 0),
(DSS(X)#,M, U, 0@ 2), Ex.2)), (DSS(X)”, Ue, M, E(x 0y, D.x)),
(DFSS(X)”,M,U:, 051 B g))» (DFSS(X)®, 0,1, Eiq ), 0.1
(
(

1
BSS(X)E,M, Uz, 0o xy. Egx,0), (BSS(X)P, 0,1, Ex 0y, Do 1))
FBSS(X),M,Ue, 05 1y, Bii g))s (FBSS(X)”, U, 1, B 5y, 05.5))
3 ‘ De Morgan Algebras:
(DSS(X)a,M,U,°, A x), Ax.2)): (DSS(X)a,U,1,°, Az 3), Aa x))
(DFSS(X) 4,1, L%, Ay, Ai)) (DFSS(X) 4, U, 117, Ad 6y Ao 1))
(FBSS(X)a,1,,°, Ag 1y, A gy), (FBSS(X)a, UM, A gy A ay)s
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4 ‘ Boolean Algebras:

(SS(X)A7 rla I—lvc ) A@'a A%)v (SS(X)A7 I—la |—|70 9 A}:) A@)a
(DSS(X)Av M, U, A(@,f{)? A(%,@))v (DSS(X)Aa L, m,e, A(%,@)) A(‘?,%))a

5 ‘ Kleene Algebras:

(FSS(X) 4,M,1,% Ag, Ag), (FSS(X) 4, 1,1, Az, Ap),
(D:FSS( )A7|_| L, 7A(01 A(l ()))7 (DfSS( Avl—l ﬂng(i 0)° A(~ i))
(BSS( )Avl_l U,° 7A<<I>% )7(8 ( )A?l—l M,° 7A<% D) A(‘:I) %))

6 ‘ Pseudocomplemented Lattlces.

(DSS(X)a,M,U,°, Aw.x), Az 2))

7 ‘ Stone Algebras:

(.FSS(X)A, M, L,* ,Aﬁ, Ai)’ (D]:SS(X)A, M, L,* 7A(f),i)7 A(ivﬁ))’
(FBSS(X)A, M, L* 7A(6,i ?A(i,f)))

8 ‘ Atomic Lattices:

(SS(X)Av M, I—l)

9 ‘ Brouwerian lattices:

(SS(X)F,M, 1), (SS(X) 4, M, L), (FSS(X)F, M, L), (FSS(X) 4,1, 1)
(DSS(X)¥,M,1.), (DSS(X) 4,M, 1), (DFSS(X)*, M, L),
(DFSS(X)4,1,1)

0 ‘ MV-algebras:

(SS(X)A7 ﬂ’c ) AX)) (SS(X)A7 |—Ivc ) A‘P)a (DSS(X)Aa |—|’c ) A(X,@))v
(DSS(X)A, |_|,c 5 A(¢,7%))

1 ‘ BCK-algebras:

(SS(X)Aa ~ A@): (SS(X)Aa *, A‘I))’ (DSS(X)Aa ~ A(@,@))a
(DSS(X)A,*, A(q)’x))

8.4 Application of Soft Sets in a Decision Making Prob-

lem

Decision making is an important factor of all scientific professions where experts apply

their knowledge in that area to make decisions wisely. Many researchers have applied

soft set theory in various decision making problems using different algorithms.

A

general algorithm for the decision of best object using soft sets is given as follows:

8.4.1 Algorithm

Let X be an initial universal set of available objects and E be the set of parameters.

The algorithm for the selection of the best choice among the objects of X is given as:

L. Input Ay, f,,... f0)» a0 n-framed A—soft set over X where A C F.
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2. Input the set of choice parameters P C F and find the reduced n-framed A—soft
set over X which is reduct of A¢y, 5, . 1)

3. Compute the comparison tables for functions fi, fo, ..., fn by using the predefined

rule or Aggregation operator.
4. Compute the scores for each object.
5. Compute the final score .S; for each object z; € X.

6. Find k, for which S, = max S;.

Then hy is the optimal choice object. If £ has more than one values, then any one
of hi’s can be chosen.

Now, we apply the concept of fuzzy bipolar soft sets for modelling a given problem
and then, we give an algorithm for the choice of optimal object based upon the available
sets of information. Let X be the initial universe and E be a set of parameters. We

shall adapt the following terminology afterwards:

8.4.2 Definition

Let E(; 4 be a fuzzy bipolar soft set defined over X. A Comparison table for f is a
square table in which the number of rows and number of columns are equal, rows and
columns both are labelled by the object names hy, ha, hs, ..., hy, of the initial universe

X, and the entries are t;5, 7, 7 = 1,2, ...,n, given by

tij = the number of parameters for which the membership value of h; exceeds

or equal to the membership value of h;

Clearly, 0 < t;; < k, and t;; = k, for all 4, j where k is the number of parameters present
in . Thus, ¢;; indicates a numerical measure, which is an integer. A Comparison
table for g is a square table in which the number of rows and number of columns are
equal, rows and columns both are labelled by the object names hi, ho, hs, ..., hy of

the initial universe X, and the entries are s;j, ¢, j = 1,2, ...,n, given by

sij = the number of parameters for which the membership value

of h; dominates or equal to the membership value of h;

Clearly, 0 < s;; < k, and s;; = k, for all 4, j where k is the number of parameters

present in . Thus, s;; also indicates a numerical measure, which is an integer.
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8.4.3 Definition

The positive row sum and column of an object h;, denoted by r; and ¢; are calculated

by using the formulae,
n n
T = Ztij7 cj = Ztijv
j=1 i=1

The negative row sum and column sum of an object h;, denoted by r"; and c¢”; are

calculated by using the formulae,
n n
7“,2‘ = Zsij, C,j = Zsij.
j=1 i=1
The positive score P; of object h; will be given by:
Pi=ri—c¢
while the negative score N; will be given by:
Ni = ’I“/Z' — C'i.
The final score S; of object h; will be given by:
Si =P —N;

foralli=1, 2, ..., n.
We wish to find an object from the set of choice parameters A. We are now giving
an algorithm for the choice of best object according to the specifications made by

observer and recorded data with the help of a fuzzy bipolar soft set.

8.4.4 Algorithm
The algorithm for the selection of the best choice is given as:
L. Input the fuzzy bipolar soft set E ;g .

2. Input the set of choice parameters P C E and find the reduced fuzzy bipolar
soft set P gy.

3. Compute the comparison tables for functions f and g respectively.
4. Compute the positive and negative scores for each object.

5. Compute the final score.

6. Find k, for which S; = max 5.

Then hy is the optimal choice object. If £ has more than one values, then any one

of hi’s can be chosen
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8.4.5 Example

Let X = {mj,ma, ms, mg, ms, mg, m7, mg} be the set of candidates who have ap-
plied for a job position of Office Representative in Customer Care Centre of a com-
pany. Let E = {e1,ea,€3,e€4, €5, €6, €7, €8, 9} = {Hard Working, Optimism, Enthusi-
asm, Individualism, Imaginative, Flexibility, Decisiveness, Self-confidence, Politeness}
and —F = {—e1, —eq, me3, neyq, —es, meg, mer, neg, egt = {Negligent, Pessimism, Half-
hearted, Dependence, Unimaginative, Rigidity, Indecisiveness, Shyness, Harshness }.
Here the gray area is obviously the moderate form of parameters. Let the fuzzy bipolar

soft sets Ey gy describes the “ Personality Analysis of Candidates” as:

f  E—-FPX),

{m1/.5,ma/.7,ms3/.6,ma/.7,ms5/.5,me/.5,m7/.4,mg/.8} if e =eq,

{m1/.6,ma/.7,m3/.8, ma/.8, ms/.4,me/.4,m7/.2,mg/. 7} if e = eq,

{m1/.8,ma/.8, ms/.4,my/.6,ms5/.5,mg/.5,my/.4,mg/.8} if e = es,

{m1/.7,ma/.6,m3/.1,mq/.7,ms5/.6,mg/.6,m7/.6,mg/.9} if e = eu,

e — {m1/.5,ma/.8, m3z/.6,ma/.5,ms/.7,me/.3,m7/.7,mg/.6} if e = es,

{m1/.4,ma/.9,m3/.5,mqs/.4,ms5/.7,me/.3,m7/.6,mg/.5} if e = eg,

{m1/.3,ma/.8,msg/.4,my/.6,ms5/.8, mg/.2,my/.5,mg/.4} if e = e,

{m1/.6,ma/.7,m3/.5,ma/.5,ms5/.6,me/.4,mz7/.3,mg/.6} if e = es,

[ {m1/.8,ma/.5,m3/.6,m4/.6,m5/.7,m¢/.4,m7/.2,mg/. T} if e = ey,

g : FE—FPX),

{m1/.3,ma/.2,m3/.4,mqs/.1,ms/.3,m¢/.5, my/.4,mg/.2} if e = ey,

e — {m1/.4,ma/.1,ms/.2,mq/.1,ms/.5,me/.5,m7/.7,mg/.1} if e = eg,
L {m1/.05,ma/.1,m3/.5,ma/.33,ms5/.4,me/.3, m7/.6,mg/.15} if e = e3,

{m1/.23,ma/.3,m3/.6,ma/.2,ms/.3,me/.33,m7/.2,mg/.1} if e = ey,
{m1/.4,mz/.2,m3/.35,my/.4,ms5/.1,mg/.6,m7/.2,mg/.35} if e = es,
{m1/.4,ma/.2,m3/.3,myg/.3,m5/.2,m¢/.5,mz/.25,mg/.31} if e = eg,
{m1/.7,ma/.08, m3/.5,ma/.3,ms5/.18, me /.78, m7/.4,mg/. 4} if e = e,
{m1/.4,ma/.2,m3/.3,ms/.45,ms5/.4,m¢/.4,my/.6,mg/.26} if e = eg,
{m1/.1,ma/.4,m3/.36,my/.27,ms5/.2,ms/.5,m7/.8,mg/.2} if e = ey.

\

L. Input the fuzzy bipolar soft set E ;g .

2. Input the set of choice parameters P = {ej,e3,e4,€5,e7,es} C E and find the
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reduced fuzzy bipolar soft set P g given as:

f : P—FPX),

( {m1/.5,ma/.7,m3/.6,ma/.7T,ms5/.5,m/.5,m7/.4,mg/.8} if e = ey,
{m1/.8,ma/.8,ms/.4,my/.6,m5/.5,mg/.5,m7/.4,mg/.8} if e = es,
{m1/.7,ma/.6,m3/.1,my/.7,ms5/.6,mg/.6,m7/.6,mg/.9} if e = ey,
{m1/.5,ma/.8, m3/.6,ma/.5,ms5/.7,ms/.3,m7/.7,mg/.6} if e = es,
{m1/.3,ma/.8,ms/.4,my/.6,m5/.8, mg/.2,m7/.5,mg/.4} if e = ez,
{m1/.6,ma/.7,m3/.5,my/.5,ms/.6,mg/.4,m7/.3,mg/.6} if e = eg,

g : P—-FPX),

{m1/.3,ma/.2,m3/.4,mqs/.1,ms5/.3,mg/.5,my/.4,mg/.2} ife=e;
{m1/.05,ma/.1,ms/.5,mq/.33,ms/.4,me/.3,m7/.6,mg/.15} if e =e3
{m1/.23,ma/.3,m3/.6,ma/.2,ms5/.3,me/.33,m7/.2,mg/.1} ife=es
{m1/.4,ma/.2,m3/.35,mq/.4,ms5/.1,me/.6,my/.2,mg/.35} if e =e;5
{m1/.7,ma/.08,m3/.5,mq/.3,m5/.18, me/.78, m7/.4,mg/ .4} ife=ey
{m1/.4,ma/.2,m3/.3, ma/.45,ms5/.4,me/ .4, m7/.6,mg/.26} if e =eg

\

3. Compute the comparison tables for functions f and g respectively

[ [ [[me | 5 |

7 [ ms |

(=]

3 [ ma |

mg || ms || ma | M
2 3 4 4
6 6 5 6
0 6 2 1
2 5 6 3
2 ) 3 6
1 2 0 3
1 4 1 2
3 6 ) 4

olwl olo|ol oo 3

m m
6 4
5) 6
3 3
my 4 5
4 6
1 4
2 6
6 4

DO W N W N

Table 8.1: Comparison Table for f
4. Compute the positive and negative scores for each object as given by Table 8.3
and Table 8.4.
5. Compute the final score given by Table 8.5.

6. From Table 8.5 we find k£ = 4.

Thus my is the best candidate for the position. In case that m4 can not join the

position either ms or mg may be selected.
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Table 8.2: Comparison Table for g

H Row Sum: r; H Column Sum: ¢; H Positive Score: P;

mi 31 31 0
mo 43 17 26
ms 21 37 —16
mMa 32 26 6
ms 35 29 6
me 17 43 —26
mry 21 38 —-17
mg 40 19 21

Table 8.3: Positive Score

H H Row Sum: r7; H Column Sum: ¢’; H Negative Score: N;

mi 30 29 1
ma 41 16 25
ms3 20 38 —18
my 27 26 1
ms 33 25 8
me 16 42 —26
my 24 34 —10
mg 37 18 19

Table 8.4: Negative Score
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H H Final Score ‘

mia -1
mo 1
m3

may 5
ms —2
meg 0
my -7
ms 2

Table 8.5: Final Score
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Abstract. We have defined fuzzy bipolar soft sets and basic operations of union, intersection and complementation for fuzzy
bipolar soft sets. The algebraic properties of fuzzy bipolar soft sets are discussed. The concept of bipolar fuzzy soft set is also
given and the equivalence of both structures is established. An application of fuzzy bipolar soft sets in decision making problems

is presented with the help of an example.
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1. Introduction

While we talk about the modeling of real world
problems which are ranging from engineering to med-
ical and medical to social fields, we come across with
the presence of uncertainty in data. L.A. Zadeh [21]
was the first one to introduce the theory of fuzzy sets
that yielded a whole field of fuzzy mathematics. The
nature of data is an important factor in the process of
developing mathematical models in various fields like
engineering, life sciences, pattern recognition, neural
networks, artificial intelligence, behavioral and social
sciences. There are also some other factors which may
affect our considerations related to the nature of data
and an obvious one is the bipolarity of data. It is
evidently observed that every information about a par-
ticular phenomenon has two aspects i.e. presence of
a property or its absence [5]. There are models that
are developed through the tools (e.g. bipolar fuzzy sets
[8, 9]) in which a positive measure has been used to

*Corresponding author. Munazza Naz, Department of Math-
ematical Sciences, Fatima Jinnah Women University, The Mall,
Rawalpindi, Pakistan. E-mail: munazzanaz @yahoo.com.

approximate the presence of a particular attribute and a
negative measure is used to approximate the degree of
absence of that same attribute. There is always a possi-
bility of gray areas where we get uncertain to decide
whether a phenomenon possesses a property or not.
Some other theories which are capable of handling
these kinds of situations include intuitionistic fuzzy
sets, interval valued fuzzy sets, vague sets etc [4, 7].

Theory of soft sets was introduced by Molodstov
in 1999 [15]. The purpose of the novel concept was
to remove the inadequacy of parameterization tool
in previously defined theories of fuzzy Mathematics.
Although the theory of rough sets [10, 16] addresses
the issue of parameterization and the hybrid structure
such as fuzzy rough sets can also be utilized for incor-
porating the fuzziness of data but the addition of any
further factor such as bipolarity of information makes it
too complicated to use. On the other hand, the absence
of any restrictions while making approximations for
a given object in soft sets establishes this theory as
more handy, convenient and easily applicable in prac-
tice. Since the introduction of the theory of soft sets in
1999, a lot of work has been done so far. We can find
the studies on structure as well as on the applications
of soft sets in various fields [1-3, 6, 11-14, 17-20].

1064-1246/14/$27.50 © 2014 — 10S Press and the authors. All rights reserved
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Inthis paper, we have initiated aconcept of fuzzy bipo-
lar soft sets. The idea is generated with the motivation of
bipolarity of parameters and then the fuzziness of data
comes into play. We have considered a set of parameters
and its negative set i.e. the absence of these parameters
and denote this set by “not set”, for each parametere,
not e = —e is the absence of e. A fuzzy bipolar soft
set is defined with the help of two mappings, one for
approximating the degree of fuzziness of the positivity
or presence of a certain parameter in the objects of ini-
tial universal set and the other one is to approximate the
relative degree of fuzziness of the negativity or absence
of the same parameter. In this way, we have combined
these three concepts of bipolarity, fuzziness and param-
eterization and thus it is shown through examples that
we have found a very easy to use way of modeling the
phenomena where all these three factors are involved.
To move further, we have defined the basic algebra for
the fuzzy bipolar soft sets and discussed their algebraic
properties in detail. It is also shown that the collection of
fuzzy bipolar soft sets forms a stone algebra. At the end,
an application of fuzzy bipolar soft sets in the decision
making problems is presented along with the algorithm.

2. Preliminaries

Let (L, Vv, A, 0, 1) be a bounded lattice with least
element 0 and maximum element 1. An involution . on
L is a mapping [ L — L such that pu(u(x)) = x,
n(0) =1 and w(1) = 0. A bounded lattice is called
distributive if the distributive laws hold with respect
to v and A. If De Morgan’s laws hold for a bounded
distributive lattice having an involution u, then it is
called De Morgan algebra. Let (L, Vv, A, 0,.1) be a
bounded lattice and x € L, then an element x* is called
a pseudo complement of x, if x A x* =0and y < x*
whenever x A y = 0. If every element has a pseudo
complement then L is pseudo complemented. The equa-
tion x* Vv x** =1 is called Stone’s identity. A Stone
algebra is a pseudo complemented distributive lattice
satisfying Stone’s identity.

Now we define fuzzy sets. Let X be a given set.

Definition 1. [21] A fuzzy subset of X is a function
from X into the unit closed interval [0, 1]. The set of
all fuzzy subsets of X is called the fuzzy power set of
X, and is denoted by FP(X).

Definition 2. [21] Let u, v € FP(X).If u(x) < v(x) for
all x € X, then u is said to be contained in v, and we
write w C v(orv D w).

Clearly, the inclusion relation C is a partial order on
FP(X).

Definition 3. [21] Let i, v € FP(X). Then u Vv v and
u A v are fuzzy subsets of X, defined as follows:
Forall x € X,

(mVvv) () =p@ Vi),
(mAV) () =p(x) Av(x) .
The fuzzy subsets i VvV vand u A v are called the union

and intersection of x and v, respectively.

Definition 4. [21] Two fuzzy subsets of X are denoted
by ¥ and X which map every element of onto 0 and 1
respectively. We call ¢ as the empty set or null fuzzy
subset and X as the whole fuzzy subset of X.

Definition 5. [8] A bipolar fuzzy set  in X is defined
as:

p={0 1o, w¥ay: xex}

where p? X — [0, 1] and p& X — [-1, 0]
are mappings. The positive membership degree u” (x)
denotes the satisfaction degree of an element x to the
property corresponding to a bipolar fuzzy set

w=A{0x w0, W) xe X}

and the negative membership degree u(x) denotes
the satisfaction degree of x to some implicit counter-
property of

pw={@x uf@), uN@): xeX}.
if £P(x) = 0 and ™ (x) = 0, it is the situation that x is
regarded as having only positive satisfaction for
pw=A{0x @, @) xexj.
if £P(x) =0 and u(x) # 0, it is the situation that x
does not satisfy the property of
u= {(x, /LP()C), MN(x)) I X€E X},

but somewhat satisfies the counter-property of
pw={x uf@, pN@): xeX}.

it is possible for an element x to be pLP (x) #0 and
™ (x) # 0 when the membership function of the prop-
erty overlaps that of its counter-property over some
portion of the domain. For the sake of simplicity, we
shall write u = (u”, w) for the bipolar fuzzy set

p={ w"w, 1WNw) : xex}
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3. Fuzzy bipolar soft sets

Let U be an initial universe and E be a set of param-
eters. Let FP(X) denotes the collection of all fuzzy
subsets of U and A, B, C are non-empty subsets of E.
Now, we define

Definition 6. A triplet (F, G, A)is called afuzzy bipolar
soft set over U, where F and G are mappings, given by
F:A— FP(U)and G : =A — FP(U) such that

0 < (F(e)(x)+ (G(—e)(x) < 1

forall e € A.

In other words, a fuzzy bipolar soft set over U gives
two parameterized families of subsets of the universe
U and the condition

0 < (F(e)(x)+ (G(—e)(x) < 1

for all e € A, is imposed as a consistency constraint.
Foreach e € A, F(e) and G(—e) are regarded as the set
of e -approximate elements of the fuzzy bipolar soft set
(F, G, A).

Definition 7. For a fuzzy bipolar soft set (F, G, A)over
U, we define a fuzzy soft set (H(r, gy, A) over U for the
approximation of the degree of hesitation in (F, G, A)
as follows:

Hr )
(HF, 6)(@)(x) =1 — (F(e))(x) — (G(—e))(x)

forallx € U,e € A.Clearly, (Hr, ), A)approximates
the lack of knowledge about the objects of U while
considering the presence or absence of a particular
parameter of A.

A — FP(U) defined by

Definition 8. For two fuzzy bipolar soft sets (F, G, A)
and (F1, Gy, A) over a universe U, we say that
(F, G, A)isafuzzy bipolar soft subset of (F, G1, A),
if,

1. AC Band
F(e) C Fi(e) and G1(—e) C G(—e)foralle € A.

This relationship is denoted by (F, G, A) c
(F1, Gy, A). Similarly (F, G, A) is said to be a fuzzy
bipolar soft superset of (F1, G1, A), if (F1, G, A) is
a fuzzy bipolar soft subset of (F, G, A). We denote it
by (F, G, A)S(F1, Gy, A).

Definition 9. Two fuzzy bipolar soft sets (F, G, A)
and (Fi, G1, A) over a universe U are said to be
equal if (F, G, A) is a fuzzy bipolar soft subset of

(F1, G1, A) and (F1, G1, A) is a fuzzy bipolar soft
subset of (F, G, A).

Definition 10. The complement of a fuzzy bipolar soft
set (F, G, A) is denoted by (F, G, A)° and defined
by (F, G, A = (F¢, G°, A) where F¢ and G° are
mappings given by F¢(e) = G(—e) and G°(—e) = F(e)
forall e € A.

Definition 11. A fuzzy bipolar soft set over U is said
to be a relative null fuzzy bipolar soft set, denoted by
(@, U, A)ifforalle € A, ®(e) =¥ and U(—e) = U,
for all e € A.

Definition 12. A fuzzy bipolar soft set over U is said to
be a relative absolute fuzzy bipolar soft set, denoted by
(®, U, A), if forall e € A, U(e) = U and ®(—e) = 0,
forall e € A.

Definition 13. If (F, G, A) and (F;, G|, B) are two
fuzzy bipolar soft sets over U then “(F, G, A) and
(Fy, G, B)” denoted by (F, G, A) A (Fy, G, B)
is defined by (F, G, A) A (F1, G1, B)=(H, I, A x
B) where H(a, b) = F(a) A F1(b) and I(—a, —b) =
G(—a) Vv G(—b) forall (a, b) € A x B.

Definition 14. If (F, G, A) and (F;, Gi, B) are
two fuzzy bipolar soft sets over U then “(F, G, A)
or (Fy, G1, B)” denoted by (F, G, A) Vv (Fy, G1, B)
is defined by (F, G, A)V (F|, G|, By=(H, I, A x
B) where H(a, b) = F(a) Vv F1(b) and I(—a, —b) =
G(—a) A G1(—b) for all (a, b) € A x B.

Proposition 1. If (F, G, A) and (F{, G, B) are two
fuzzy bipolar soft sets over U then

L. (F, G, AV (F1, G1, B)) =(F, G, A A
(1, G, B

2. (F, G, A)An(F1, G1, B)) =(F, G, AV
(F1, Gy, B

Proof. Straightforward.

Definition 15. Extended Union of two fuzzy bipolar
soft sets (F, G, A) and (F;, G, B) over the common
universe U is the fuzzy bipolar soft set (H, I, C) over
U where C = AU Band foralle € C,

F(e) ifee A—B
H(e) = Fi(e) ifee B—A
F(e)Vv Fi(e) if ec ANB
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G(—e) if e€ (—mA) — (—B)
Gi(—e) if e € (—B) — (—A)
G(—e)AGi(—e) if e € (mA)N(—B)

I(—e) =

we denote it by (F, G, A)U(Fy, G1, B) = (H, I, C).

Definition 16. Extended Intersection of two fuzzy
bipolar soft sets (F, G, A) and (F1, G1, B) over the
common universe U is the fuzzy bipolar soft set
(H, I, C)over U where C = AU Bandforalle € C,

F(e) ifeec A—B
H(e) = Fi(e) ifee B—A
Fle)AFi(e)ifeec ANB

G(—e) if e€ (—mA) — (—B)
Gi(—e) if e € (=B) — (—A)
G(—e)V Gi(—e) if e € (mA)N(—B)

I(—e) =

we denote it by (F, G, A)N(Fy, G1, B) = (H, I, C).

Definition 17. Restricted Union of two fuzzy bipolar
soft sets (F, G, A) and (F1, G, B) over the common
universe U is the fuzzy bipolar soft set (H, I, C), where
C = AN Bisnon-empty and foralle € C

H(e) = F(e) vV G(e) and I(—e) = Fi(—e) A
G1(—e). We denote itby (F, G, A)Ug (F1, G1, B) =
(H, I, C).

Definition 18. Restricted Intersection of two fuzzy
bipolar soft sets (F, G, A) and (F1, G1, B) over the
common universe U is the fuzzy bipolar soft set
(H, I, C), where C = A N B is non-empty and for all
eeC:

H(e) = F(e) A G(e) and I(—e) = Fi(—e) V.
G1(—e). We denote itby (F, G, A)Ng (F1, Gy, B) =
(H, I, C).

Conventionally we assume that (F, G, A)Ng
(F1, G1, B)y=(®, U, W) = (F, G, A) Ug
(F1, G, B) whenever AN B = (.

Lemma 1. Let (F, G, A), (Fi, Gy, B) and
(F>, Ga, C) be any fuzzy bipolar soft sets over a
common universe U. Then the following are true:

1. (F, G, Aa((F1, G1, Ba(F2, G2, C)) =
((F, G, Aa(F1, G1, B)a(F, G2, C)

2. (F, G, Aa(Fy, Gy, B)y=(F, G, A)a(F,G1, B)
foralla € (A, Ng, U, Ug).

Proof. Straightforward.

Lemma 2. If (®, U, A) is a null fuzzy bipolar soft
set (U, ®, A) an absolute fuzzy bipolar soft set, and
(F, G, A), (F1, Gy, A)are fuzzy bipolar soft sets over
U. Then

1. (F, G, A)U(Fy, G1, A) = (F, G, A)Ug
(F1, G1, A),

2. (F, G, A)N(F1, Gy, A)=(F, G, A)Ng
(F1, G1, A),

3. (F, G, AU, G, A)=(F, G, A)Ug

(F, G, A).=(F, G, A),

4. (F, G, AN(F, G, A) =(F, G, A)Ng
(F, G, A) =(F, G, A),

5 (F, G, AHU(D, U, A)=(F, G, A)Ug
(F, G, A) = (F, G, A),

6. (F, G, ANU, &, A)=(F, G, A)Ng
(U, &, 4) = (F, G, A).

Proof. Straightforward.

Lemma3. Let (F, G, A)and (F|, G1, B) be two fuzzy
bipolar soft sets over a common universe U. Then the
following are true:

1. (F, G, A)U(F1, G1, B) is the smallest fuzzy
bipolar soft set over U which contains both
(F, G, A)and (F1, G1, B).

2. (F, G, A)Ng (F1, G1, B) is the largest fuzzy
bipolar soft set over U which is contained in both
(F, G, A)and (F1, Gy, B).

Proof. Straightforward.

Lemmad.Let(F, G, A)and (F;, G, B)betwofuzzy
bipolar soft sets over a common universe U. Then

1. (F, G, A)U(Fy, Gy, B)* =
(F, G, AN\(Fy, G, B,
2. ((F, G, A)N(F1, G1, B)* =
(F, G, A°U(F1, G1, B,
3. (F, G, A) Ug (F1, Gy, B) =(F, G, A Ng

(F1, G1, B,
4. (F, G, A)Ng (F1, G1, B)° =(F, G, A Ug
(F1, G1, B)Y.

Proof. Straightforward.

Lemma 5. Let (F, G, A), (Fi, G, B) and
(F>, Ga, C) be any fuzzy bipolar soft sets over a
common universe U. Then
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1. (F, G, A)a((F1, G, B)B(F2, G2, C))=((F, G, A)
a(Fy, G, B)B((F, G, A)a(F,, G, C)) where
o # B, € {Ng,Ug}and B € {Ng, Ug, g, N}

2. (F, G, A)U((F1, G1, BN (F2, G2, 0)) D((F, G,
AU (Fy, G, B)N((F, G, A)U(F,, G, C))

3. (F, G, A)U((F1, G1, B) Ug (F2, G2, 0)) C((F, G,
A)U(F1, G, B)UR ((F, G, A)U(F2, G2, C))

4. (F, G, A)U((F1, G1, B) Ng (F2, G2, C)=((F. G,
A)YO(F1. G1. B) N (F. G, AYO(F, Ga, O)

5. (F, G, AN((F1, Gi, BIU(F2, G2, €)) C((F, G,
AN (F1, G1. B)U((F, G, AN (F2, G2, ©))

6. (F,G,A)N((F1, Gy, B)Ug (F2, G2, C))=((F, G,
A)N(F1, G1, B)) Ur (F, G, A)N(F2, G2, €))

7. (F, G, A)N((F1, G1, B) Ng (F2, G2, C)S((F, G,
A)A(F1, G1. B) Ng ((F, G, A)N(F,, G2, O)).

Proof.

1) For any e € AN (B U C), we have following three
disjoint cases:
(i) Ifee AN(B— C), then

(F Ng (F1 U F))(e) = F(e) A Fi(e)
(G NR (G1UGy))(—e) =G(—e) v Gi(—e)
and
((F Ng FU(F Ng F2))(e) = (F Ng Fi)(e) v #
= F(e) A Fi(e)
(G Nr GNU(G Ng G2))(—e) = (G N G1)(—e) AU
= G(—e) V.Gi(—e).
(i) Ife € AN(C — B), then
(F Ng (F1UF))(e) =F(e) A Fa(e)
(G Ng (G1UG2))(—e) =G (=e) v Ga(—e)
and
((F Ng FU(F Ng F2))(e) = ¥ v (F Ng F2)(e)
— F(e) A Fa(e)
(G Nr GNU(G Ng G2))(—e) = U A (G Ng Go)(—e)
— G(—e) v Ga(—e).

(i) Ife € AN (BN C), then

(F Ng (FiOF))(e) = F(e) A (Fi(e) V Fa(e))
(G N (G1UG2))(—e) = G(—e) V (Gi(—e) A Ga(—e))

and
(FNgr F1)U(F Ng F2))(e)
= (FNg Fi)e) vV (FNg F2)(e)
= (F(e) A Fi(e)) V (F(e) A Fa(e))
= F(e) A (Fi(e) V Fa(e))
(G Nr G1)U(G Ng G2))(—e)
= (G NR G1)(—e) A (G Ng G2)(—e)
=(G(—e) vV Gi(—e)) A (G(—e) vV Ga(—e))
= G(=e) vV (Gi(—e) A Ga(—e)).
thus

(F.G, A)Ng ((F1, G1, BYU(F, G2, 0))
=((F, G, A)Ng (F1, G1, BHU((F, G, A)
Nr(F2, G2, 0))

Similarly, we can check for the remaining parts.

Example 1. Let U be the set of houses under
consideration, and E be the set of parameters,
U = {h1, ha, h3, hg, hs} E = ey, e, €3, e4, €5} =
{in the green surroundings, cheap, in good
repair, furnished, traditional }. Let -F =
{—ey1, —ep, —e3, —eyq, —mes} = { in the commercial
area, expensive, in bad repair, non-furnished, modern}.

Suppose that A = {eq, ez, e3}, B = {e2, €3, e4}
and C = {e3, e4, e5}. The fuzzy bipolar soft sets
(F, G, A), (F1, G1, B) and (F,, G,, C) describe the
requirements of the houses which Mr. X, Mr. Y and Mr.
Z are going to buy respectively.

suppose that

F(e1) = {h1/0.3, hy/0.1, h3/0.3, hsa/0.1, h5/0.7},
F(e2) = {h1/0.1, h2/0.9, h3/0.3, hs/0.8, h5/0.2},
F(e3) = {h1/0.1, h2/0.3, h3/0.3, h4/0.3, h5/0.8},
G(—ey) = {h1/0.4, h2/0.7, h3/0.7, hs/0.7, hs/0.1},
G(—ep) = {h1/0.8, h2/0, h3/0.5, ha/0.1, h5/0.6},
G(—e3) = {h1/0.7, h2/0.5, h3/0.7, ha/0.6, h5/0.1},
and
Fi(e2) = {h1/0.1, h2/0.3, h3/0.6, ha/0.2, hs5/0.3},

Fi(e3) = {h1/0.8, h2/0.9, h3/0.5, ha/0.4, hs/0.2},
Fi(es) = {h1/0.1, h2/0.4, h3/0.3, h4/0.6, hs/0.9},
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Gi(=ez) = {h1/0.1, h2/0.3, h3/0.3, h4/0.6, hs/0.6},

Gi(—e3) = {h1/0.1, h2/0, h3/0.3, h4/0.4, h5/0.6},

Gi(=es) = {h1/0.9, h»/0.5, h3/0.5, hs/0.3, hs/0.1}.

and

Fa(e3)=1{h1/0.1, h2/0.2, h3/0.3, ha/0.1, hs/0.1},

Fa(ea)={h1/0.2, h2/0.2, h3/0.3, ha/0.3, hs/0.2},

Fa(es)=1{h1/0.1, h2/0.1, h3/0.3, ha/0.5, hs/0.7},
Ga(=e3)=1{h1/0.7, h/0.7, h3/0.4, ha/0.7, hs/0.4},
Ga(—eq)=1{h1/0.6, h2/0.5, h3/0.6, ha/0.1, hs/0.6},
Ga(—es)={h1/0.3, h2/0.4, h3/0.4, ha/0.3, hs/0.1}.
let

(F, G, A)U((F1, G1, BIN(F,, G2, 0))
—(H, I;, AUBUC)

and

(F, G, AHU(F1, Gi, B)N((F, G, A)U(F, Gy, 0))

= (Ha, I, AUBUC).

then

Hi(er) = {h1/0.3, hy/0.1, h3/0.3, hsa/0.1, h5/0.7},
Hi(ez2) = {h1/0.1, h2/0.9, h3/0.6, h4a/0.8, h5/0.3},
Hi(e3z) = {h1/0.1, hy/0.3, h3/0.3, h4/0.3, h5/0.8},
Hi(es) = {h1/0.1, h2/0.2, h3/0.3, h4/0.3, h5/0.2},
Hi(es) = {h1/0.1, hy/0.1, h3/0.3, ha/0.5, h5/0.7},
and

I1(—e1) = {h1/0.4, hy/0.7, h3/0.7, ha/0.7, h5/0.1},
I1(—ez) = {h1/0.1, hy/0.0, h3/0.3, hs/0.1, hs5/0.6},
I1(—e3) = {h1/0.7, h2/0.5, h3/0.4, hs/0.6, h5/0.1},
I1(—e4) = {h1/0.9, h2/0.5, h3/0.6, hs/0.3, h5/0.6},
I1(—es) = {h1/0.3, hy/0.4, h3/0.4, hs/0.3, h5/0.1}.
also

Hs(e1) = {h1/0.3, h2/0.1, h3/0.3, ha/0.1, h5/0.7},
Ha(e2) = {h1/0.1, h2/0.9, h3/0.3, hsa/0.8, h5/0.2},
Hs(e3) = {h1/0.1, h2/0.3, h3/0.3, hs/0.3, h5/0.8},
Hy(es) = {h1/0.1, h2/0.2, h3/0.3, h4/0.3, hs5/0.2},
Hs(es) = {h1/0.1, h2/0.1, h3/0.3, ha/0.5, h5/0.7},

and

I(—ey) = {h1/0.4, h2/0.7, h3/0.7, ha/0.7, h5/0.1},
I(—ep) = {h1/0.8, h2/0.0, h3/0.5, hs/0.1, h5/0.6},
I(—e3) = {h1/0.7, hy/0.5, h3/0.4, hs/0.6, h5/0.1},
I(—es) = {h1/0.9, hy/0.5, h3/0.6, ha/0.3, h5/0.6},
I(—es) = {h1/0.3, h2/0.4, h3/0.4, hs/0.3, h5/0.1}.

Clearly Hi(ez) # Ha(e2) and I1(—ep) # I(—e2), so
that

(F, G, HU((F1, G1, B)N(F2, G2, 0))
# ((F, G, A)U(F1, G1, B)N((F, G, A)
U(F, Ga, O)).
now, if we take
(F, G, AN((F1, G1, B)U(F, Gy, 0))
=(Hz3, I3, AUBUC)
and
((F, G, AN (F1, G1, B) U((F, G, A)N (F2, Go, 0))
= (Hy, 14, AUBUCQC)
then

Hs(er) = {h1/0.3, h2/0.1, h3/0.3, h4/0.1, hs/0.7},
Hs(ez) = {h1/0.1, h2/0.3, h3/0.3, h4/0.2, hs/0.2},
Hs(e3) = {h/0.1, h2/0.3, h3/0.3, h4/0.3, hs/0.2},
Hs(eq) = {h1/0.2, h2/0.4, h3/0.3, h4/0.6, hs/0.9},
Hs(es) = {h1/0.1, h2/0.1, h3/0.3, h4/0.5, hs/0.7},

and

I3(—e1) = {h1/0.4, h/0.7, h3/0.7, ha/0.7, hs5/0.1},
I3(—e2) = {h1/0.8, h/0.3, h3/0.5, h4/0.6, h5/0.6},
I3(—e3) = {h1/0.7, h/0.5, h3/0.7, ha/0.6, h5/0.4},
I3(—es) = {h1/0.6, hy/0.5, h3/0.5, hsa/0.1, h5/0.1},
I3(—es) = {h1/0.3, hy/0.4, h3/0.4, hs/0.3, hs5/0.1}.
also

Ha(er) = {h1/0.3, ha/0.1, h3/0.3, hs/0.1, h5/0.7},
Hy(ez) = {h1/0.1, hy/0.9, h3/0.3, hs/0.8, hs5/0.2},
Hy(e3) = {h1/0.1, h2/0.3, h3/0.3, hs/0.3, h5/0.2},
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Hy(es) = {h1/0.2, h2/0.4, h3/0.3, hs/0.6, h5/0.9},
Ha(es) = {h1/0.1, h2/0.1, h3/0.3, hs/0.5, h5/0.7},
and

14(—ey) = {h1/0.4, h2/0.7, h3/0.7, ha/0.7, h5/0.1},
14(—ep) = {h1/0.8, h2/0.0, h3/0.5, hs/0.1, h5/0.6},
14(—e3) = {h1/0.7, hy/0.5, h3/0.7, hs/0.6, h5/0.4},
14(—eq) = {h1/0.6, h2/0.5, h3/0.5, ha/0.1, h5/0.1},
14(—es) = {h1/0.3, h/0.4, h3/0.4, hs/0.3, h5/0.1}.

Clearly, Hz(ez) = Ha(ez) and I3(—e2) # 14(—e2), so
that

(F, G, AN((F1, G1, B)U(F2, G2, 0))
# ((F, G, AN (F1, Gi, B)U((F, G, A)
N(F2, Gz, CO)).
similarly we can show that
(F, G, A)U((F1, G1, B)UR (F2, G2, C))
# ((F, G, A)U(F1, G1, B) Ur((F, G, A)
U(F, Ga, O)
and
(F, G, A)N((F1, G1, B)Ng (F2, G2, €)
# (F, G, AN(F, Gi, B)NR((F, G, A)
U(F, Ga, )

Now we consider the collection of all fuzzy bipolar soft
setsover U and denoteitby FBSS(U )E and letusdenote
its sub collection of all fuzzy bipolar soft sets over U
with fixed set of parameters A by FBSS(U)4. We note
that this collection is partially ordered by inclusion. We
conclude from above results that:

Proposition 2. (FBSS(U)E, A, Ug) and (FBSS(U)E,
J,Ng) are distributive lattices and
(FBSS(U)E, Ug, M) and (FBSS(U)E,Ng, U) are
their duals respectively.

Proof. Follows from above results.

Proposition 3. (FBSS(U)E,Ng, U) is a bounded
distributive lattice, with least element (O, U, Q)
and greatest element (U, ®, E), while (FBSS(U)E,
U, Ng, (U, ®, E), (®, U, D)) is its dual.

Proof. Follows from above results.

Proposition 4. (FBSS(U)a, Ng, U) = (FBSS(U) 4,
0\, Ug) is a bounded distributive lattice, with least ele-
ment (@, U, A) and greatest element (U, ®, A).

Proof. Follows from above results.

Proposition 5. Let (F, G, A) and (F1, G1, A) be two
fuzzy bipolar soft sets over a common universe U. Then

L. (F, G, A)Y) =(F, G, A),
2. (F, G, AE(F,, Gy, A) implies (Fy, Gy, AY¥E
(F, G; A).

Proof.

1. is'straightforward.
2. If(F, G, A)Z(F,, G1, A) then

F(e) € Fi(e) and G (—e)  G(—e) forall ¢ € A
implies that (G, Fy, A)Z(G, F, A).
Hence (Fi, Gi, AC(F, G, A).

Proposition 6. (FBSS(U)a,Ng,Ug,¢, (U, @, A),
(P, U, A))isaDe Morgan algebra.

Proof. Straightforward.

Definition 19. For a fuzzy bipolar soft set (F, G, A)
over U, we define a fuzzy bipolar soft set over U, which
is denoted by (F, G, A)* and given by (F, G, A)* =
(F*, G*, A) where

) 0 if (F(e))u) #0
(EHEDW) =14 1 i¢ (Fley)u) = 0
and
) 1 if (G(—e))(u) # 1
(GTON1) =3 if (G(=e)) ) = 1

forallu € U and foralle € A.

Theorem 1. Let (F, G, A) be a fuzzy bipolar soft set
over U, then the following are true:

1. (F, G, A)Ng (F, G, A)* = (®, U, A),

2. (F1, G1, AZ(F, G, A)* whenever
(F, G, A)Ng (F1, Gy, A) = (D, U, A),

3. (F, G, A*Ug (F, G, A)** = (U, @, A).

Thus (FBSS(U)a, Ng, Ug,™, (U, @, A), (®, U, A))is
a Stone algebra.

Proof.

(1) Consider (F, G, A)Ng (F, G, A)*.Forany e € A
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(FNg F*)(e) = F(e) A F*(e)
and
(G Ng G*)(—e) = G(—e) vV G*(—e).
=
((F Ng F*)(e))(u)

(F(e)@) A0 if (F(e))(m) # 0
- 0Al if (F(e))(u) =0

=0
and
((G Nr GM))(—e)(u)
{ (G(—e))(w) v 1 if (G(—e))(u) # 1

1v0 if (G(=e))u) = 1
=1

forallu € U.
Thus (F, G, A)Ng (F, G, A)* = (@, U, A).

) If (F, G, A)Ng (Fy, G1, A) = (P, U, A), then
(F(e)w) A (Fi(e)u) =0 and (G(—e))(u) Vv
(Gi(—e)u)=1 for all u € U e € A. We have
two cases here:

(i) If (F(e))(u) = 0 then
(F*(e))(u) = 1 > (Fi(e))(u) and
(ii) If (F(e))(u) # O then
(Fi(e)(u) =0 < (F*(e))(u).

Thus (Fi(e))(u) < (F*(e))(u) forallu € U.
Again there are two cases:

(i) If (G(= e))(u) = 1 then
(G*(=e)(u) =0 < (G1(—e))(u) and
(i) If (G(= ))(u) # 1 then

(Gi(=e)(u) = 1 = (G*(=e))(u).

So (G*(—e))(u) < (G1(—e))(u) for all u € U. This
implies that

Fi(e) € F*(e) and G*(—e) C G1(—e)
foralle € A.

Therefore, (F1, G, A)Z(F, G, A)*.

(3) Consider (F, G, A)* Ug (F, G, A)**.Foranye €
A
(F* Ug F*¥)(e) = F*(e) v F**(e)

and
(G* Ug G™)(—e) = G*(—e) A G**(—e).
=
(F*(e)@) v (F*(e))(u)

0V 1 if (F(e)(u) # 0
T Y 1vO0 if (Fle))(u)=0

=1
and

(G™(e))(u) A (G™(e))(u)

1AO if (G(—e))u) # 1
TYOA1 if(G(=e))m) =1

=0

forall u € U.
Thus (F, G, A)* Ug (F, G, A)** = (U, @, A).

4. Application of fuzzy bipolar soft sets in a
decision making problem

Decision making is an important factor of all scien-
tific professions where experts apply their knowledge
in that area to make decisions wisely. We apply the con-
cept of fuzzy bipolar soft sets for modeling of a given
problem and then we give an algorithm for the choice
of optimal object based upon the available sets of infor-
mation. Let U be the initial universe and E be a set of
parameters. We shall adapt the following terminology
afterwards:

Definition 20. Let (F, G, E) be a fuzzy bipolar soft
set defined over U. A Comparison table for F is a
square table in which the number of rows and num-
ber of columns are equal, rows and columns both are
labeled by the objectnames k1, hy, h3, ... , h, of theini-
tial universe U, and the entries are #;;,i,j = 1, 2, ..., n,
given by

tij = the number of parameters for which the mem-
bership value of h; exceeds or equal to the
membership value of /4 ;

Clearly,0 < 1;; < k,andt; = k,foralli, j where k is the
number of parameters present in E. Thus #;; indicates a
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numerical measure, which is an integer. A Comparison
table for G is a square table in which the number of rows
and number of columns are equal, rows and columns
both are labeled by the object names h, ho, h3,...,
hy of the initial universe U, and the entries are s;;, i,
j=1,2,..., n,given by

sij = the number of parameters for which the mem-
bership value of /#; dominates or equal to the
membership value of 4 ;

Clearly, 0 < s;; < k, and s;; = k, for all i, j where k is
the number of parameters present in E. Thus s;; also
indicates a numerical measure, which is an integer.

Definition 21. The positive row sum and column of an
object h;, denoted by r; and ¢; are calculated by using
the formulae,

n n
ri = E lij, Cj = E lijs
j=1

i=1

The negative row sum and column sum of an object
hi, denoted by r; and ¢; are calculated by using the
formulae,

n

n

/ } : / } :

r; = Sijs Cj = Sij.
j=1

i=1

Definition 22. The positive score P; of object h; will
be given by:

P=ri—c
while the negative score N; will be given by:

N; =r;—cj.
The final score S; of object h; will be given by:

Si= P, —N;

forall j =1, 2, ..., n.

We wish to find an object from the set of choice
parameters A. We are now giving an algorithm for the
choice of best object according to the specifications
made by observer and recorded data with the help of
a fuzzy bipolar soft set.

Algorithm. The algorithm for the selection of the best
choice is given as:

(1) Input the fuzzy bipolar soft set (F, G, E).
(2) Input the set of choice parameters P C E and
find the reduced fuzzy bipolar soft set (F, G, P).

(3) Compute the comparison tables for functions F
and G respectively

(4) Compute the positive and negative scores for
each object.

(5) Compute the final score.

(6) Find k, for which Sy = max S;.

(7) Then hy is the optimal choice object. If k has
more than one values, then any one of hy ‘s can
be chosen.

Example 2. Let U = {m, my, m3, mq, ms, mg, m7,
mg} be the set of candidates who have applied
for a job position of Office Representative
in Customer Care Centre of a company. Let
E = {ey, e, e3, ea, es, eg, €7, €3, €9} = Hard
Working, - Optimism, Enthusiasm, Individualism,
Imaginative, Flexibility, Decisiveness, Self-confidence,
Politeness and —E = {—e|, —en, —e3, —eq, —es, —eg,
—e7,—eg, —eg} = Negligent, Pessimism, Half-hearted,
Dependence, Unimaginative, Rigidity, Indecisiveness,
Shyness, Harshness. Here the gray area is obviously
the moderate form of parameters. Let the fuzzy bipolar
soft sets (F, G, E) describes the Personality Analysis
of Candidates as:

F e es e3 ey es eg ey es e9
my 05 06 08 07 05 04 03 06 038
mp 07 07 08 06 08 09 08 07 05
m3 06 08 04 0.1 0.6 0.5 04 05 06
my 07 08 06 07 05 04 06 05 06
ms 05 04 05 06 07 07 08 06 07
mg 05 04 05 0.6 03 0.3 02 04 04

mg 08 07 08 09 06 05 04 06 07

G —e; —ey Tey Teqs Tes  —eg  —e;  —eg ey
my 03 04 0.1 02 04 04 07 04 0.1
my; 02 0.1 0.1 03 02 02 0.1 02 04
my 04 02 05 06 03 0.3 0.5 03 04
my 0.1 0.1 03 02 04 03 0.3 04 03
ms 03 05 04 03 0.1 02 02 04 02
mg 05 05 03 03 06 05 08 04 05
m; 04 07 06 02 02 02 04 06 08
mg 02 0.1 0.1 0.1 0.3 0.3 04 03 02

(1) Input the fuzzy bipolar soft set (F, G, E).

(2) Input the set of choice parameters
P ={ey, e3, e4, €5, 7, e} T E and find
the reduced fuzzy bipolar soft set (F, G, P)
given as:
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F e es ey es ey es
my 0.5 0.8 0.7 0.5 0.3 0.6
my 0.7 0.8 0.6 0.8 0.8 0.7
m3 0.6 0.4 0.1 0.6 0.4 0.5
my 0.7 0.6 0.7 0.5 0.6 0.5
ms 0.5 0.5 0.6 0.7 0.8 0.6
mg 0.5 0.5 0.6 0.3 0.2 0.4
my 0.4 0.4 0.6 0.7 0.5 0.3
mg 0.8 0.8 0.9 0.6 0.4 0.6
G —e| —e3 —ey —es —ey —eg
my 0.3 0.1 0.2 0.4 0.7 0.4
my 0.2 0.1 0.3 0.2 0.1 0.2
m3 0.4 0.5 0.6 0.3 0.5 0.3
my 0.1 0.3 0.2 0.4 0.3 0.4
ms 0.3 0.4 0.3 0.1 0.2 0.4
mg 0.5 0.3 0.3 0.6 0.8 0.4
my 0.4 0.6 0.2 0.2 0.4 0.6
mg 0.2 0.1 0.1 0.3 0.4 0.3

(3) Compute the comparison tables for functions F
and G respectively.

(4) Compute the positive and negative scores for
each object as given by Tables 3 and 4.

(5) Compute the final score given by Table 5.

From Table 5 we find k = 5.
Thus m 5 is the best candidate for the position. In case
that m5 can not join the position m, may be selected.

5. Bipolar fuzzy soft sets

Let U be an initial universe and E be a set of param-
eters. Let BFP(U) denotes the set of all bipolar fuzzy
sets of U and A, B, C be non-empty subsets of E.

Definition 23. A pair (F, A) is called a bipolar fuzzy
soft set over U, where F is a mapping given by F :
A — BFP(U).

Thus a bipolar fuzzy soft set over U gives a parame-
terized family of bipolar fuzzy subsets of the universe
U.Foranye € A,

F(e) = {(x, 1 ,ul}l(e)) : x €U} where up, :
U — [0, l]andu%’(e) : U — [—1, 0] are mappings.

Before proceeding to the further development of the-
ory of bipolar fuzzy soft sets, we give the following
interpretations:

Proposition 7. Let (F, G, A) and (F1, A) be the
fuzzy bipolar and bipolar fuzzy soft sets defined
over U respectively. Then (F, G, A) and (F1, A) are
equivalent.

Table 1
F my mo ms my ms meg my mg
my 6 2 3 4 4 6 4 2
mo 5 6 6 5 6 6 6 4
ms 3 0 6 2 1 4 3 2
my 4 2 5 6 3 6 5 1
ms 4 2 5 3 6 6 6 3
meg 1 1 2 0 3 6 4 0
my 2 1 4 1 2 3 6 2
mg 6 3 6 5 4 6 4 6
Table 2
G my mo ms my ms meg my mg
mj 6 2 3 4 4 6 4 1
mo 5 6 6 4 5 5 5 5
msg 3 0 6 2 1 4 3 2
my 4 2 4 6 4 6 5 2
ms 4 1 5 3 6 5 5 2
me 1 2 2 2 3 6 2 0
mry 2 2 4 2 2 4 6 2
mg 6 2 6 4 4 6 5 6
Table 3
Row sum: r; Column sum: ¢; Positive score: P;
myp 31 31 0
mo 44 17 27
ms 21 37 —16
my 32 26 6
ms 35 29 6
meg 17 43 -26
my 21 38 —17
mg 40 20 20
Table 4
Row sum: 7 Column sum: ¢} Negative score:N;
my 30 32 2
mo 41 17 24
ms 21 36 —15
my 33 27 6
ms 31 29 2
me 18 42 —24
mry 25 35 —10
mg 39 20 19
Table 5
Final Score
mj -2
mg 3
ms -1
m4 0
ms 4
meg -2
my -7
mg 1
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Proof. Let (F, G, A) be a given fuzzy bipolar soft
set defined over U. We define a bipolar fuzzy soft set
(F1, A)over U as:

Fi(e) = {(x, F(e), —G(—e)): x e U} where
—G(—e)(x) = —(G(—e)(x)) forall e € A.

Conversely assume that we are given a bipolar
fuzzy soft set (Fy, A) over U. We can define a fuzzy
bipolar soft set (F, G, A) over U in the following
manner:

F(e) = 1} () G(—e) = —puf, foralle € A.

Thus both definitions are equivalent and may be used
interchangeably.

Consider the following example:

Example 3. Let U = {m1, my, m3, myg, ms} be the set
of candidates who have applied for a job position of
Office Representative in Customer Care Centre of a
company. Let E = {ey, e, €3, e, es, eq, e7}={Hard
Working, Optimism, Enthusiasm, Individualism, Imag-
inative, Decisiveness, Self-confidence} and —E =
{—e1, —ea2, —e3, —eq, —es, —ep, —e7}={Negligent, Pe-
ssimism, Half-hearted, Dependence, Unimaginative,
Indecisiveness, Shyness}. Here the gray area is obvi-
ously the moderate form of parameters. Let the fuzzy
bipolar soft sets (F, G, E) describes the Personality
Analysis of Candidates as:

F(e1) = {m1/0.5, my/0.7, m3/0.6, ma/0.7},
F(ez) = {m1/0.6, m2/0.7, m3/0.8, m4/0.8},
F(e3) = {m1/0.8, m»/0.8, m3/0.4, ms/0.6},
F(eq) = {m1/0.7, m3/0.6, m3/0.1, m4/0.7},
F(es) = {m1/0.5, m»/0.8, m3/0.6, m4/0.5},
F(eg) = {m1/0.4, m»/0.9, m3/0.5, m4/0.4},
F(e7) = {m1/0.3, m»/0.8, m3/0.4,'m4/0.6},

and

G(—e1) = {m1/0.3, mz/0.2, m3/0.4, ms/0.1},
G(—e2) = {m1/0.4, my/0.1, m3/0.2, m4/0.1},
G(—e3) = {m1/0, mz/0.1, m3/0.5, m4/0.3},

G(—eq) = {m1/0.2, my/0.3, m3/0.6, m4/0.2},
G(—es) = {m1/0.4, my/0.2, m3/0.3, m4/0.4},
G(—eg) = {m1/0.4, m3/0.2, m3/0.3, m4/0.3},
G(—e7) = {m1/0.7, my/0.1, m3/0.5, m4/0.3}.

Now let’s see the corresponding bipolar fuzzy soft set:
Fi(e1) = {(m1, 0.5, —0.3), (m2, 0.7, —0.2),
(m3, 0.6, —0.4), (m4, 0.7, —0.1)},
Fi(e2) = {(m1, 0.6, —0.4), (m2, 0.7, —0.1),
(m3, 0.8, —0.2), (m4, 0.8, —0.1)},
Fi(e3) = {(m, 0.8, =0), (m2, 0.8, —0.1),
(m3, 0.4, —0.5), (m4, 0.6, —0.3)},
Fi(es) = {(m1, 0.7, —0.2), (m2, 0.6, —0.3),
(m3, 0.1, —0.6), (m4, 0.7, —0.2)},
Fi(es) = {(m1, 0.5, —=0.4), (m2, 0.8, —0.2),
(m3, 0.6, —0.3), (m4, 0.5, —0.4)},
Fi(eg) = {(m1, 0.4, —0.4), (m2, 0.9, —0.2),
(m3, 0.5, —=0.3), (m4, 0.4, —0.3)},
Fi(e7) = {(m1, 0.3, =0.7), (m2, 0.8, —0.1),
(m3, 0.4, —0.5), (m4, 0.6, —0.3)}.

It is clear that fuzzy bipolar soft set depicts the infor-
mation in a better and comprehensive way than bipolar
fuzzy soft set. For example, if we read the data of can-
didate m with fuzzy bipolar soft set (F, G, E) then he
is having 0.6 fuzzy value for optimism and 0.4 fuzzy
value for pessimism and if we use the bipolar fuzzy soft
set (F1, E) then m is having 0.6 fuzzy value for opti-
mism and —0.4 shows the degree where m is lacking
optimism.

6. Conclusion

Our approach in this paper combines the bipolarity,
fuzziness and parameterization for defining the fuzzy
bipolar soft sets. The idea of fuzzy bipolarity of soft
sets has been given. We have also given the definition
of bipolar fuzzy soft sets in which the parameteriza-
tion is done through a single mapping from the set of
parameters to the collection of all bipolar fuzzy sets of
initial universal set. We have shown through a forma-
tion that the two ideas actually coincide with each other
and the fuzzy bipolar soft set is similar in working as
bipolar fuzzy soft set. Both definitions are equivalent
but it is easier and straightforward to model the phe-
nomenon using fuzzy bipolar soft sets because it is a
more logical and suitable approach according to the
nature of the modeling problems. Future research may
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be done to explore further aspects of this newly defined
structure. Modeling of supported physical phenomenon
is our next goal. Another prospective direction is to
study the topological structure and similarity measures
of fuzzy bipolar soft sets in order to explore for a solid
foundation of the research work and development of
working methodologies.
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Chapter 1

Preliminaries

In this chapter, theory of classical sets and theory of fuzzy sets are discussed. Various
operations, their laws and properties of classical and fuzzy sets are given. The classical
sets, we are going to consider, are defined by means of the crisp or definite boundaries.
The concept of a set is fundamental in Mathematics and intuitively can be described
as a collection of objects possibly linked through some properties. A classical set A
has clear boundaries, i.e. x € A or ¢ A exclude any other possibility. This implies
that there is a certainty or definiteness involved in the approximation of these sets,
A fuzzy set, on the other hand, is defined by its uncertain or vague properties. A
fuzzy set is a class with a continuum of membership grades. So a fuzzy set A in a
referential (universe of discourse) X is characterized by a membership function p,
which associates with each element @ € X a real number p4(z) € [0,1], having the
interpretation () is the membership grade of x in the fuzzy set A. The crisp sets
are sets without any ambiguity in their membership whereas fuzzy set theory is an
efficient theory in dealing with the concepts of vagueness. As an extension of fuzzy
sets, Lee [26] introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy
sets are an extension of fuzzy sets whose membership degree range is enlarged from
the interval [0,1] to [-1,1]. Bipolar-valued fuzzy sets have membership degrees that
represent the degree of satisfaction to the property corresponding to a fuzzy set and its
counter property. In a bipolar-valued fuzzy set, the membership degree 0 means that
elements are irrelevant to the corresponding property, the membership degrees on (0, 1]
indicate that elements somewhat satisfy the property, and the membership degrees on
[~1,0) indicate that elements somewhat satisfy the implicit counter-property. Basic
notions of bipolar fuzzy sets given after reviewing the ideas of the crisp sets and fuzzy
sets,

1.1 Crisp Sets

In this section, we recall the standard definitions and main results on algebraic struc-
ture of classical crisp set theory in detail. Following definitions are taken from [7].
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1.1.1 Definition

Let X be a set. An order < on X is a reflexive, antisymmetric, and transitive binary
relation, that is, for all z,y,z € X,

1) z <=,
2) x<yand y < ximply 2 =y, and
3) e<yand y £z imply z < z.
An ordered set is denoted by (X, <), where X is a non-empty set and < an order
on X.
1.1.2 Definition

Let (X,<;) and (Y, <3) be two ordered sets. A mapping 8 : X — Y such that
O(zy) <9 #(x2) whenever x <, y is called a homemorphism or an order homomorphism
or order preserving.

1.1.3 Definition

Let X be an ordered set and let A C X. Then r € X is a mazimal element of A, if
T <ac Aimplies a = z. Further, € X is the greatest element of A, if 2 > a for all
a€ A

A minimal element of A and the least element of A are defined dually. Note that
it A has a greatest element, it is unique. Similarly, the least element of A is unigque.

1.1.4 Definition

Let P be an ordered set and 4 € X. An element x € X is an upper bound of A if
a<zforallac A A lower bound of A is defined dually.

It there is a least element in the set of all upper bounds of A, it is called the
supremum of A and is denoted by sup A or VA:_ dually a greatest lower bound is
called infimum and written inf A or /\ A. We also write a Vv b for sup{a,b} and a A b
for int{a,b}. Supremum and infimum are frequently called join and meet.

1.1.5 Definition

Let L be a non-empty ordered set. If a vV b and a A b exist for all a, b € L, then L
is called a lattice. If \/A anc /\A exist for all A C L, then L is called a complete

lattice.
1.1.6 Definition

Let (L, <) be a lattice, It VL ancl /\ L exist, then L is called a bounded lattice. In a
bounded lattice, the least element is denoted by 0 and greatest element by 1.
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The definition of a lattice given with the help of a binary relation on X is a
constructive approach, now, we present the algebraic definition of a lattice which is an
axiomatic approach and given with the help of binary operations defined on X .

1.1.7 Definition

A binary operation " * "on X isamap #: X x X — X. A set X together with a
binary operation " % " on it, is called a groupoid and denoted by (X, ). In general
#(x,y) is denoted by x % y.

1.1.8 Definition
Let (X,#) be a groupoid. Then # is called
1) Associative if z# (y* z) = (z#y)* 2,
2) Commutative it xxy =y » x,
3) Idempotentif x+xx =2

forall z, y, z € X

1.1.9 Definition

"An algebraic structure (5, =) is called a semilattice if § is a non-empty set and = is a
binary operation such that # is commutative, associative and idempotent."

1.1.10 Definition

"An algebraic structure (L, A, V) is called a lattice it L is a non-empty set and A and
\ are binary operations on L, (L,/) and (L, V) are semilattices and absorption laws
for A and v hold ie.

zA(zVy) = zand
zV(zhy) = zforallz, ye L.

Using the basic lattice operations, an ordering can be defined as following:
1.1.11 Theorem
" Let (L,A,V) be a lattice and z, y € L. The binary relation < on L is defined by:

y = x Wy =y or equivalently

IA 1A

y Szxhy=uxzforall z, yc L.

Then (L, <) is a lattice satisfying the properties of lattice given in Definition 1.1.5."
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1.1.12 Theorem

"Let (L, <) be a lattice and x, y € L. The binary oprations " A " and " v " on L are
defined by:

Thy inf{x,y} and

zVy = sup{z,y}foral z, ye L

Then (L, A, V) satisfies the properties of lattice given in Definition 1.1.10."

Thus, both Definition 1.1.5 and Definition 1.1.19 are equivalent to each other.
Onwards from here, we consider both notations interchangeably without stating ex-
plicitly.

1.1.13 Definition

"Let (Ly,n,V) and (Lg, A, V) be two lattices. A mapping @ : L, — Lo such that
O(zAy)=0(z)A0(y) and 8(zv y) = 8(x) v O(y) is called a homomorphism of lattices.
A one-to-one lattice homomorphism is called monomorphism. A one-to-one and onto
homomorphism is called lattice isomorphism."

Next we give the definitions of various algebras of lattices:

1.1.14 Definition

"Let L be a bounded lattice with a least element 0 and a greatest element 1. For an
element z € L, an element y € L is a complement of z if

sVy=landxz Ay =0

It an element = has a unique complement, we denote it by z©."

1.1.15 Remark

There exist bounded lattices with elements having more than one complement or no
complement at all.

1.1.16 Example

"Let L be a lattice given by the Figure 1.1.1. In this lattice b and e are complements
of a, ¢ has no complement, 1 has 0 as complement ancd 0 has 1."

1.1.17 Definition

"A bounded lattice L in which every element has a complement is called a comple-
mented lattice."
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4]
Figure 1.1.1

1.1.18 Example

Let X be a non-empty set. Then (P(X),C) is a complemented lattice.

1.1.19 Definition

Let L be a bounded lattice with a least element 0 and a greatest element 1. Let
"+ L — L, mapping = +— x° is such that

(z7)" =z and = < y implies that y" < =" for all =,y € L.
Then " * " is called an invelution or duality on L.
It follows that " “ " is bijective, and that 0'= 1 and 1"'= 0.
1.1.20 Example

Let I = [0,1]. Then (I, <) is a bounded lattice and “: x + 1 — x is an involution on T,

1.1.21 Definition

"Let L be a lattice with a least element 0. Then x € L is called an afom of L, if 0 < =
and there is no element ¢ in L with 0 < y < 2. The set of atoms of L is denoted by
A(L)."

1.1.22 Example

Let X be a non-empty set. Then every singleton subset of X is an atom of lattice
P(X) and A(P(X)) = {{z}: 2 € X}
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1.1.23 Definition
"Let L be a bounded lattice and " “ " is an involution on L, the identities
(xvy)” = z"Ay’
(zVy)

are called the de Morgan Laws."

A nice property of unions and intersections is that they distribute over each other,
Therefore, it is natural to consider lattices for which joins and meets have analogous
properties,

z Ay’

1.1.24 Definition
"A lattice L satisfying the distributive laws

(zAy)V(zAy);
(zvy)n(zvz) forall z,y,ze L

2Ny Vz)
2V (ynz)

is called a distributive lattice,

1.1.25 Definition

"If de Morgan’s laws hold for a bounded distributive lattice having an involution, then
it is called a de Morgan algebra. Such a system is denaoted by (L,v,n,",0,1)."
1.1.26 Definition

"A bounded distributive lattice which is complemented is called a Boolean latfice.”

1.1.27 Definition
"A de Morgan's algebra (L,A,Vv,",0,1) that satisfies z Az € yvy ftorall z, y € L,

is called a Kleene algebra.”

1.1.28 Definition

"Let L be a lattice. Then L is said to be atomic if every element = of L is the supremum
of the atoms below it, i.e,

T = V{y € A(L)y € z}."

1.1.29 Definition

"Let L be a lattice, and z,y € L. Then =z is called pseudocomplemented relalive to y
if the following set:

T(z,y) ={z € LlzAz <y}
has a greatest element. This greatest element is said to be pseudocomplement of
relative to y, denoted by & — y. So, & — y, in case it exists, has the following property:

zhz<yifandoenlyif z <2 —y."
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1.1.30 Definition

"An element z € L is said to be relatively pseudocomplemented if © — y exists for all
ye L.

1.1.31 Definition

"A lattice L is said to be an implicative lattice or relatively pseudocomplemented or
Brouwerian, if every element in L is relatively pseudocomplemented."

1.1.32 Example

"Let L(X) be the lattice of open sets of a topological space X. Then L(X) is Brouw-
erian. For any open sets A, B € L(X), A - B = (A°U B)", the interior of the union
of B and the complement of A4."

1.1.33 Definition

"Let (L,A,V,0,1) be a bounded lattice and = € L. Then an element z* is called a

pseudocomplement of 2, if A 2* = 0 and y € =™ whenever = Ay = 0. Note that

t—=0=z"'"

1.1.34 Definition

"It every element of a lattice L has a pseudocomplement then L is said to be pseudo-
complemented."

1.1.35 Definition

"The equation

is called Stone’s identity."

1.1.36 Definition
"A Stone algebra is a pseudocomplemented, distributive lattice satistying Stone’s 1iden-

tity."

1.1.37 Definition [17]

"MV-algebra is an algebraic structure (M, &,* ,0), where & is a binary operation, " *

" is a unary operation, and 0 is a constant such that the following axioms are satisfied
for any a, b € M:

(MV1) (M,®,0) is a commutative monoid,
(MV2) (a*)* =a,
(MV3) 0" @a =0,
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(MV4) (" @b)*Bb=(b"Da) Ga."

1.1.38 Definition [9]

"A set X with a binary operation % and a constant 0 is called a BCI algebra if for any
x, ¥, z in X, it satisfies the following conditions:

(BCI-1) ((z+y)*(z*z))*(zxy) =0,
(BCI-2) (zx(xxy))xy=0,
(BCI-3) a+z =0,

(BCI-4) z+y=0and y* z=0imply z = »."

1.1.39 Definition [9]

"A BCl-algebra (X; #,0) is called a BCK-algebra if it satisfies the following condition:

(BCEK-5) 02 =0 forallz e X."

1.1.40 Definition [9]

"A BCK algebra X is called bounded if there exists some element 1 € X such that
z%1 =10forall z € X. For a bounded BCK algebra (X; #,0), if an element € X
satisfies 1 # (1 # x) = x, then x is called an invelution (Different meaning from the
invelution given in Definition 1.1.19."

1.2 Fuzzy Sets

"The material presented in this section is taken from [46]. We give the definitions of
fuzzy sets and some related terms.

Let X be a set and A be a subset of X. The characteristic function of A is the
function C'4 of X into {0,1} defined by Cy(z) =1ifx € A and Cyz) =0ifa ¢ A."

1.2.1 Definition
"A fuzzy subset of X is a function from X into the unit closed interval [0,1]. The set
of all fuzzy subsets of X is called the fuzzy power set of X, and is denoted by FP(X)."

1.2.2 Definition

"Let p, v e FP(X). It p(z) € v(z) for all z € X, then p is said to be contained in v,
and we write g C v or v 2 p).
Clearly, the inclusion relation C is a partial order on FP(X)."
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1.2.3 Definition

"Let p, v € FP(X). Then pu Vv and p A v are tuzzy subsets of X, defined as follows:
Forall z e X,

(1Vo)(2) = (@) Volo),
(Av)(2) = pl2)Av(o).

The fuzzy subsets p V v and p A v are called the union and infersection of p and v,
respectively."

1.2.4 Definition

"The complement of a fuzzy subset p is denoted by p” and is defined by
pi(z) =1 - p(x),

for all z € X."

1.2.5 Definition

"The fuzzy subsets of X, denoted by 0 and 1, which map every element of X onto 0
and 1 respectively, are called the empty fuzzy set or null fuzzy subset and the whole
fuzzy subset of X respectively."

1.3 Bipolar Fuzzy Sets

The material presented in this section is taken from [26]. We give the definitions of
bipolar fuzzy sets and some related terms. In bipolar-valued fuzzy sets, two kinds of
representations are used: canonical representation and reduced representation. In the
canonical representation, membership degrees are expressed with a pair of a positive
membership value and a negative membership value, That is, the member ship degrees
are divided into two parts: positive part in [0,1] and negative part in [—1,0]. In the
reduced representation, membership degrees are presented with a value in [-1,1]. In
our work, we use the canonical representation of a bipolar-valued fuzzy sets, For more
material on this topic we refer to [26] and [27]. Let X be the universe of discourse.

1.3.1 Definition

"A bipolar fuzzy set p in X is defined as:

p={(z pP(z), ¥¥(2)) : 2 € X}

where uf : X — [0,1] and pV : X — [—1,0] are mappings. The positive member-
ship degree ' (z) denotes the satisfaction degree of an element z to the property and
the negative membership degree u’¥(x) denotes the satisfaction degree of z to some
implicit counter-property. If u”(z) # 0 and p™(x) = 0, it is the situation that z is
regarded as having only positive satisfaction for p. If _u,P(a:) = 0 and ,u‘\r(::} # 0,1t
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is the situation that x does not satisfy the property of p but somewhat satisfies the
counter-property of p. It is possible for an element x to be u™(z) # 0 and pP(x) £ 0
when the membership function of the property overlaps that of its counter-property
over some portion of the domain.

For example, sweetness of foods is a bipolar fuzzy set. If sweetness of foods has been
given as positive membership values then bitterness of foods is for negative membership
values. Other tastes like salty, sour, pungent (e.g. chili) etc. are irrelevant to the
corresponding property. So these foods are taken as zero membership values.

For the sake of simplicity, we shall write p = {p:'p, ,u""r] for the bipolar tuzzy set

p={(z; p*(x), p¥(2)): =€ X}.
The set of all bipolar tuzzy sets of X is called the bipolar fuzzy power sel of X,
and is denoted by BFP(X)."
1.3.2 Definition

"Let p, v € BFP(X). If pP(z) € vP(z) and vV (z) € pV(z) for all z € X, then p is
said to be contained in v, and we write p C v( or v 2 p).
Clearly, the inclusion relation C is a partial order on BFP(X)."

1.3.3 Definition

"Let g, v € BFP(X). Then set operations g U v and p M v are bipolar fuzzy sets of
X, defined as follows:

Forall z € X,
oo)'@ = p" @) Ve (@), (pUv)Y (@) =p" (@) Ae" (2) and
(wnv)’(2) = pP (@) AvP(2), (BNV)V(2) = p" (z) Vo (2).

The bipolar fuzzy subsets p U v and pNv are called the union and infersection of p
and v, respectively."

1.3.4 Definition
"The complement of a bipolar fuzzy subset i is denoted by i and is defined by
(B (@) =1-p"(2), (" (2) = -1 - u" (z)

for all 2 € X."




Chapter 2

Soft Sets and Their Algebraic
Structures

In this chapter we will present the basic concepts of soft set theory. Soft sets have
received much attention in the last decade because of their applications in decision
making problems. Molodstov [34] presented the concept of soft sets to deal with
uncertain type of data under a parametrized environment which is rich enough to
make approximations by incorporating the previous concepts like fuzzy sets, vague
sets, interval valued fuzzy sets, intuitionistic fuzzy sets, rough sets, etc. Molodstov
had given the concept of sott set and introductory ideas to apply in various fields
while Maji et al. defined operations on soft sets in [32], [33]. Ali et al. [2] pointed out
some practical mistakes in the definition of operations by Maji et al. and defined new
operations introducing the concept of extended and restricted operations for soft sets.
These operations not only enriched the theory but also proved this new structure deep
enough to work for further structural investigations. This gives rise to our interest
in the algebraic properties of a soft set’s internal structure. So here we have made
our first study. Firstly the definition of a soft set and various operations are given
and then, we study some important properties associated with these operations. A
collection of all soft sets with respect to new operations inspires to be checked out
for various lattices and algebras. Going through different axiomatic requirements we
figure out the algebraic structures of soft sets and finally, we show that soft sets with
a fixed set of parameters are also MV algebras and BCK algebras.

2.1 Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the
power set of X and 4, B be non-empty subsets of F.

2.1.1 Definition [34]

A pair (a,A) is called a soft setf over X, where a is a mapping given by a : A — P(X).
Therefore, a soft set over X gives a parametrized family of subsets of the universe X .
For e € A, a(e) may be considered as the set of e—approximate elements of X by the

11




2. Soft Sets and Their Algebraic Structures 12

soft set (a,A). Clearly, a soft set is not a classical set. From now onwards, we shall
use the notation A, over X to denote a soft set (a,A4) over X where the meanings of
o, A and X are clear in a harmony with the use of usual pair notation.

2.1.2 Definition [12]
For two soft sets A, and Bg over X, we say that A, is a soft subset of By if
1) AC B and
2) a(e) C B(e) for all e € A.
We write A,CBs.
Aﬂ‘is said to be a soft super set of By, if Ba is a soft subset of A,. We denote it
b‘)'. Au QB:':T-
2.1.3 Definition [12]
Twao soft sets A, and By over X are said to be soft equal if A, and By are soft subsets
of each other, We denote it by A,=Bg.
2.1.4 Example

Let X be the set of cars under consideration, and E be the set of parameters of
different features in cars, X = {e|,co,c3,64,65}, E = {e1,69,63,64,65} = { Seat Heater,
Automatic transmission, Sunroof, Leather Seats, Navigation System}. Suppose that
A = {e1,e2,e3}, and B = {ej,ea}. A soft set A, describing the © features of cars”
which Mr. X is going to consider for buying is given as follows:

43 H A —>F(X}’
{53!53.'5'1} ite =g,
e = {e1,e3,¢4} if e = es,

{ea,e3,64,051 if e = es.
And the soft set Bg given by
8 : B -=PX),

{es} ife=e,
e b= i
{e1, 3,4} if e = ey,

is a soft subset of A, which represents another look by Mr. X on his earlier choices,

S0 BdgAct

2.2 Operations on Soft Sets

Now, we give various operations on soft sets as defined in [4]. We have made little
modifications to some notations just for the convenience of reader and in order to
create a unanimity in the flow of this thesis.
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2.2.1 Definition

Let A, and Bg be two soft sets over X. Then the or-product of A, and By is defined
as a soft set (A x B),3, where aU8 : (A x B) — P(X), defined by

{a,b) — ala) U (D).

It is denoted by A, Vv Bg=(A4 x B) 3.

2.2.2 Definition

Let A, and Bg be two soft sets over X. The and-product of A, and Bj is defined as
a soft set (A x B),x~g, where a3 : (A x B) — P(X), defined by

(a,b) — a(a) N B(b).

It is denoted by A, A Bg=(A4 % B) 4.

2.2.3 Definition
The extended union of two soft sets A, and Bz over X is defined as a soft set (A U
B).:a, where alU3: (AU B) — P(X), defined by

afe) ifec A-B
e ¢ [B(e) ifee B—A
ale) U B(e) ifee ANB

We write An L B;‘iil:A U B]nfj&'

2.2.4 Definition

The extended intersection of two soft sets A, and Bg over X, is defined as a soft set
(AU B),~a where, an : (AU B) — P(X), defined by

afe) ifec A-B
e ¢ [e) ifeec B-A
afe)NB(e) ifec ANB

We write Acs. Me Bgif:A u B)nr_i-g'

2.2.5 Definition

Let A, and Bg be two soft sets over X such that (AN B) # . Then the resiricied
union of A, and Bj is defined as a soft set (AN B),~5 where, alB: (ANB) — P(X),
defined by

e — ale) U B(e).

We write A, U Bg=(AN B),03.
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2.2.6 Definition

Let A, and Bg be two soft sets over X such that (AN B) # . Then the restricted
intersection of A, and Bj is defined as a soft set (AN B),~3 where, a3 : AN B —
P(X), defined by

e — ale) N Ble).

We write Ay M Bg=(AN B),as-

2.2.7 Definition

The extended difference of two soft sets A, and Bg over X, is defined as a soft set
(AU B),. g where, a ~. §: (AU B) — P(X), defined by

ale) itfec A-B
e— 4 B(e) ifeec B—A
ale) — Ble) ifec ANB.

We write A, ~; Bg=(AU B)a.,3.

2.2.8 Definition

Let A, and Bz be two soft sets over X such that AN B # 0. Then the restricted
difference of A, and Bg is defined as a soft set (AN B),_5 where, a —~ 5: ANB —
P(X), defined by

e afe) — B(e).

We write A, ~ Bg=(AN B)a.g.

2.2.9 Definition

The complement of a soft set A, denoted by (A, )" and defined as (A,)"=A,- where,
a®: A — P(X) is defined by
e— X — ale).

Clearly (a“)° is same as a and ((A4,)°)° = A..

2.2,10 Example

Let I7 be the set of houses under consideration, and E be the set of parameters,
U = {hy,hs.hg,hyhs}, E = {e1,e2,e3.€4.65,66} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that 4 = {e;,es}, and B =
{es,e3}. The soft sets A, and Bg describe the “requirements of the houses” which Mr.
X and Mr. Y are going to buy respectively and is given as follows:

a A— P(X), defined by

3 s {hz, ha} ife=ey,
{h1,ho hs} ife=es,
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and

8 : B —=P(X), defined by

., [ Ah2hs}  ife=es,
‘ (s hachel iFe=ies:

Now, we approximate the resulting soft sets obtained by applying the above men-
tioned operations on A, and Bs. We have

(i) A,V Bg=(A x B),g, where

(elB)  : (Ax B)—P(X), defined by
{ha, ha, hs} it e = (eq,ea),
i {h1,ha, ha, hs} if e = (ey,e3),
{h1,ha, hs} if e = (e2,e2),
‘: b, ks, ha, "la} if e = (E',E, 63}*

(ii) Ao A Bg=(A x B),ng, where

(@h8) : (A x B)— P(X), defined by
{ha} if e = (e1,e2),
{hs} if e = (e1,e3),
{ha,hs} if e = (e2,e2),
{hi,hs} if e = (es,e3).

(i) Aa Ue Bs=(AU B),q3, where
(aUB) : (AUB)— P(X), defined by
{ha, ha} ife=ey,
e  — {hl._h-_g,hg} ifE:E',E,
{h1,ha,hs} if e = e,

(iv) Ann. Bag=(AU B),a3, where

(eNB8) : (AUB)— P(X), defined by
{h'.i!h:'-:-' ife=e,
e — {ha, hs} if e =es,

{h1,ha,hs} ife=es,
(v) Ao uBz=(AnB),;3, where

(alUB) : (AN B)— P(X), defined by
ez — {hy,ho, hs}

(vi}) Aa N Bg=(AN B),~g, where
(af8) (AN B) — P(X), defined by

&q {hz,hs}
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(vii) A, —. Bg=(AU B)s..3, where

a ~ B:(AUB)—P(X), defined by
{ha, hs} ife=e,

e — {h1} if e=es,
{hl! ha, hﬁ} if e = e3,

(ix) Ao — Bg=(AnN B),_g, where

a ~ [B:(ANB)— P(X), defined by
es — {h}

(x) (Aa)° = Ase where

o : A P(X), where
. {h1,ha,hs} ifte=ey,
{hg, hy} if e = es.

2.3 Properties of Soft Sets

In this section we discuss properties and laws of soft sets with respect to operations
defined on soft sets. Later on these results are utilized for the configuration of algebraic
structures of soft sets. The new idea of restricted and extended operations gives
rise to some different results, for example, distributive laws do not hold in general
for the operations of soft sets which is an entirely new aspect in a vague structure,
Associativity, absorption, distributivity, de Morgan laws are investigated for soft set
theory.

2.3.1 Definition

A soft set A, over X is called a relative null soft set, denoted by Ag, it a(e) = @ for
alle € A.

2.3.2 Definition

A soft set A, over X is called a relative whole or absolute soft sel, denoted by Ay, if
ale) = X for all e € A.

Conventionally, we take soft sets with an empty set of parameters to be equal to
fp and so A, 1M Bg=ls=A, UBg when AnB =1,
2.3.3 Proposition

Let A., Az be any soft sets over X. Then

1} An U A,:':fifln U Ag; AaMe Ag=Aa A_.’J‘,
2) AnAAL=A,, tor A e {U,}, (Idempotent)
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8) AaN Ax=Aa=A. U A,

4) A U Ax=Ayg; A, N Ap=As,

5) AaleBe=An=AoU. Bs=Aa 1 Ex,
6) AaNls=0s; As U Ex=Ex.

Proof. Straightforward., m

2.3.4 Proposition
Let A, Bg and C., be any soft sets over X. Then the following are true:
1) A MBgAC,)=(A.ABg)AC,, (Associative Laws)
2) A,ABg=BgiA,, {Commutative Laws)
for all A € {U.,U,7.,M}.

Proof. Straightforward. m

2.3.5 Proposition (Absorption Laws)

Let A,, Bs be any soft sets over X. Then the following are true:
1) A, U (Bag A.)=A.,

2) AN (Bg U: 43)=A.,

3) AU (Bal. Ay)=Aa,

4) AaMe (BgU Ay)=Ax.

Proof. Straightforward. m

2.3.6 Proposition (Distributive Laws)
Let A, Bg and C., be any soft sets over X. Then
1) AxN(Bg U, Cy)=(4a N Bs) U, (AaN1C,),

2) AxN (Bg M. C,)=(Aa N Bg) M. (A, N C,),

3) A, N (BgUC)E(Aa MBs) U (AaNCy),

4) AU (Bs U: C)=(A, UBg) L (Aq UCY),

B) A, U (BsN. Cy)=(4. UBg) M. (A, LC,),

6) A.U(BsNECy=(4a UBs)N(AaUC,),

T) Ao (Bg U C4)C(Aa Me Bs) L. (4. C),
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8) AN (BgUCy)=(A4,N: Bg) U (AN Cy),

9) A.N. (Bs N C)2(AaN: Bg) N (A4 N Cy),
10) A, U, (Bs UGIE(AL U Bs)u (A, L. C,),
11) A, U (Bg M. Cy)2(4a U Bg) M. (A L &),
12) Aq Ue (Bs N Cy)=(Aa Ue Bg) N (Ag U, Cy).

Proof. We prove only one part here, the other parts can be proved in a similar
way.
1) We have
An N {B.I‘i‘ Lle C,,]i(A n (B U C};'-.\rﬁ(_-m-;}

and

(AaT Bg) Ue (AaN1Ca) 2 (AN B)(arpy Us (AN C)iaii)
{((AnB)u(An C}}[nﬁ,s}ﬁlnﬁw_l

E {A m (B U C}}[,th.ijﬂfr-h‘:}'

Let e € AN (B UC). Then there can be one of three cases:

(i) fec AN (B - C), then

d(e)  and
a(e)nge).

(BU7y) (e)
{an(8Uy)}e)

Also AN(B -C)=(ANnB) - (ANC) and hence

{(afB)U(ary)}He) = (aNB)(e) = ale) N3 (e).
(i) Ifee AN (C — B), then

(807)(e) = (e} and
{aN(BUy)}(e) = ale)Ny(e).

Also AnN(C—-B)=(ANC) - (AN B) and hence
{(aM8)0(arm)}(e) = (af)(e) = a(e) N7 (e).
(iii) Ilfe e AN(BNC), then

(B07) (e)
{en(8Uy)}(e)

Ble)uy(e) and
a(e) N (8 (e) Uy (e)).
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Also AnN(BnC)=(AnB)0 (AN C) and hence
{(anB)U(ary)}(e)

(af1B8)(e) U (afry)(e)
(a(e)NB(e)) U (ale)Ny(e))
= a(e)N(B(e)Uy(e))

Thus
af(807) = (aAB)0(aln)
and so
(A N (B UC)angainy=(4N (B UC))ang)iai)
Similarly we can prove the remaining parts.

2.3.7 Example

Let X be the set of sample designs and E be the set of available colors for dresses in
a boutique,
X = {511 521 53| S‘h 5.5| Sﬁ! ST-. SH}

E = { Red, Green, Blue, Yellow, Black, White, Pink }
Suppose that

A
and C

{Red, Green, Blue, White}, B = {Green, Blue, Yellow, Black}
{Blue, Yellow, White, Pink}.

Let A, ,Bs and O, be the soft sets over X presenting the data record for three different
boutiques respectively, given as follows:

a(Red) = {81,52,83,51};
a{Green) = {S3,5;,55,56}

a(Blue) = {S1,5,85: 87}
a(White) = {S3,83,5;}.
B(Green) = {S4,855,56,58};

B(Blue) = {81,859,83,5}
B(Yellow) = {S4,S5,5%,57,5s);
B(Black) = {81,S2,54,57).

and

v(Blue) = {S53,84,57,5};
¥(Yellow) = {54,55,57};
",r'(‘]‘rhit'e} — {52,54,55,53};
v(Pink ) = {S2,83,55,57}.
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Now

AalUe (BgUCy) = (AU (BN C)at(aom):

(Ao Ue Bg) U (Aaple Cy) = ((AUB) N (AU C))aipyiati)
AU (BgNe Cy) = (AU (BUC)aoisnmi

(Aa Ue Bg) Me (Ao U Cy) ((A U B) U (B U C))ausyiat)-

e

Then

(aU(80y))(Green) {53, 84,55, 56};
{a-CJ{_‘.‘iL]ﬂ){“’hite} = {SQ, Sy, 54}.

[[003}0((1&'}‘})(61'8911} {‘53!5‘[155'.565 Sﬂ}:
((aUB)0(aln))(White) = {Sa,Sa, 54, Se, Ss}.

Thus )
A Ue (Bg U CY)#(An Ue Bg) U (A Le C5).

Similarly it can be shown that
Aq M (Bs N C,)#(Ag N Bg) N (Ao Ne Cy).
Again, we see that

(aU(8y))(Green) = {S3,54,855,56,5s);

(a0(8My))(White) = {52, 53, 5S4, Ss, Ss}
and

((aUB)"(aln))(Green) = {Ss,54,55,56};

((a0B8)N(aly))(White) = {52, 53,54}
Thus

Ao Uq (Bg M Cy) # (Aq Ug Bg) N, (Ax U, C,).

Similarly it can be shown that

A‘-‘ Me {BJ L, G’)} ?é (Aﬂ Me Bd} U [:An Me ('.‘"?}

2.3.8 Proposition
Let A, Bg and C., be any soft sets over X. Then
1)
A Ue (Bg Me C'T:Ii(.d,_] U Bg) Me (Aq L G‘))
if and only if

a(e)

ale)

B(e) forallec (AN B) - C and
vie) forallee (ANC) - B.

NN
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2)
Ac\ Me {BJ Ll C‘f}i{Aﬂ Me BJ} Lle (-4:1 Me C’:.}

if and only if

Ble) for alle € (AN B) — C and
(e} for alle € (AN C) — B.

ale) 2
ale) 2

Proof. Straightforward. m

2.3.9 Corollary

Let A, Bg and € be any soft sets aver X. Then
Aq Us (Bg N Cy)=(Aqn U: Bg) Ny (Ag L Cy)
Arz Me (B.’i Le c‘;}i‘:-’qn Mg B_u?) e {:A,} e C"r:'
it and only it

ale) = Ble)foralleec (ANB) - C and
v(e) forallee (ANC) — B.

afe)

2.3.10 Corollary

Let Ay, Bg and C, be any soft sets over X such that (AN B)-C=(AnC)-B =1.
Then

1) AaU: (Bg G’rli(‘qﬁ Ue Bg) Me (Aa U ),
2} An M {Bﬂ Llg Cw)i(“lm Me B-’S} Lg (A-':r n C‘) }
2.3.11 Corollary
Let An, Ag and A, be any soft sets over X, Then
Aa A AgpAy)=(AaAAg)u( AarAy)
for distinet A, p € {M.,M,U.,U}.
2.3.12 Theorem
Let A, and Bz be two soft sets over X. Then the following are true

1) A,ll: Bg is the smallest soft set over X which contains both A, and Bg.  (Supre-
mum)

2) A, M Bg is the largest soft set over X which is contalned in both A, and Bg.
(Infimum)

Proof.
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1) We have A, B C (AU B) and a(e),B(e) C ale) U B(e). So A.CA, U, Bg and
Bs;CALU.Bs. Let -, be a soft set aver X, such that A, B..gQC?. Then A, B C
implies that (AU B) C C and a(e), B(e) € v(e) implies that a(e) U B(e) € v(e).
Thus Aq U: Bg C;C-,. It follows that A, L. Bg is the smallest soft set over X
which contains both A, and Bj.

2) We have ANB C A,AN B C B and ale) N 8(e) C ale),ale) N B(e) € Ble) for
allee AnB. So A, N B,gCA.;. and Aq M BJCBJ Let Cy be a soft set over
X, such that C., CA, and C CB,,- Then ¢ C A,C C B imply that € C AN B
a,nd v(e) C a(e], 7(e) € .ﬁ‘(e} unply that v(e) C ale) N F(e) for all e € C. Thus
C.LA M Bg. It follows that A, M Bz is the largest soft set over X which is
contained in both A, and Bjs.

2.4 Algebras of Soft Sets

In this section, we discuss lattices and algebras for the collections of soft sets. We con-
sider certain collections of soft sets and find their distributive lattices. The concepts of
involutions, complementations and atomicity are discussed. We denote the collections
as follows:

SS{X]E: collection of all sott sets defined over X

SE(X) 4: collection of all soft sets defined over X with a fixed parameter set A.

Firstly, we observe that these collections are partially ordered by the relation of
soft inclusion C;

2.4.1 Proposition

The structures (SS(X)E,M.,U), (SS(X)F,uN.), (SS(X)E LN, (SS(X)E N,u.),
(SS(AX) 4,1,), and (SS(X) 4,M,L) are complete lattices.
Proof. Let us consider {bb{X}L e}, Then for any soft sets A,,Bg,C, €
SS8(X)E,

1) We have A, N, Bg=(AUB),z5 € SS(X)F and A UBg = (AN B) o5 € SS(X)E.
2) From Proposition 2.3.5, we have

An’.‘! |_|=' AuiAq ﬁ-nd An |_| ‘A-N:'I i,ﬁlu

3) From Proposition 2.3.4 we see that

AxNe@Bp = ByMe A, and
A,UBg = BgUA,.

Also

Aa e (BaMe@@) = (AaM: Bg)N: Cy and
AqU(BgUCY) & (A,UBg)UT,.




2. Soft Sets and Their Algebraic Structures 23

4) From Proposition 2.3.5,
AaMe (BgU Aa)=Aa and Aa U (Bg N: Aa)=Aa.
So we conclude that the structure forms a lattice.

Consider a collection of soft sets ‘:Arr., i1 € I} over X. We have, U A; CF

il
and, let A(e) = {j : e € A;} for any e € A;. Then ﬂ ci(e) € X. Thus M. 4;, €
iz A(e) L
SS(X)E, Again, we have, ﬂAg C F and for any e € ﬂ A;, Uag(e} C X. Thus
el il il

U A4, € SS(X)E.
el L

Similarly we can show the remaining structures, m

2.4.2 Proposition

The structures (SS{X)E,H,I_IE,@‘{,,E;}, [C‘?C‘;()i'}E,l_l_c,ﬂ._E_t,@'qx]', (SS(X) 4,0, A8,A%)
and (SS(X),,U,M,4%,44) are bounded distributive lattices.
Proof. From Proposition 2.3.6, we have

AaN(Bg U Cy) = {Aa N Bp) g (Aan Cs)
Au Ue (B_ﬁ M C’y} {Au |—|e_' Bn:l'} M [:Au Ll C}}

for all A,,Bg,C, € SS(X)E. So (S8(X)F N,u.) and (SS(X)E,L.,N) are distributive
lattices. From Theorem 2.3.12, we conclude that (L"?C'?(X:}E'H+I_Ie-,l?.'q: Ex) is a bounded
distributive lattice and {&\‘{X)E,u.‘.,;—: Ex lg) is its dual.

Now, for any soft sets A,,Az € SS(X),,

Ao T Ag & A s € S8(X)j and
B . B < BB

Thus (SS(X) ,,Nn,U) is a distributive sublattice of (-L“?S(X}E,I_Ihl‘l}. Proposition 2.3.3
tells us that Ag, Ay are its lower and upper bounds respectively. Therefore

(SS(X) 4 1U,A5,47) is a bounded distributive lattice and (S&S(X) ,U,0,A4¢,44)
is its dual. m

2.4.3 Proposition

Let A, be a soft sef over X. Then A, is a complement of A,.
Proof. As Aa U Aac=A(qriaey 30, for any e € A,

(alaf)(e) = ale) U (ale))® = X.

Thus A, U Ape=Ax.
Also Aa [l Au-\:iA[Qr'-ﬂc), 50

(aNa®)(e) = ale) N (a(e))® = 0.
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Thus A, N Ape=Ag.

Now, we show that A,- is unique in the bounded lattice (8S(X) (UM, 4%, Ag). If
there exists some Ag € S&(X), such that A, U Ag=Ax and A, 1 Ag=As. For any
e€ A,

ale) M Ble) =1
= Ble) € (afe))® = a®(e)

and
a(e) € X = ale)U S(e).
But
a(e) Na(e) = [ and so a(e) C ale) U G(e) = a(e) C B(e).
Therefore

3(e) = a(e) for all e € A and Ag=A,-.

Hence A,- is a complement of 4,. =

2.4.4 Remark

We see that (SS(X),1,U,A45,Ax) and (SS(X),,U,N,45,Ag) are dual lattices so all
the properties and structural configurations hold dually in an understood manner.

2.4.5 Proposition (de Morgan Laws)

Let A, and Bg be any soft sets over X. Then the following are true
1) (Aa U Bg)*=Aae M. Bge,

2) (AaMe Bg)*=dae Ll Bge,

3) (AaV Bg)°=Aqa: A Bge,

4) (Aa A Bg)*=Aq: V Bge,

5) (A, U Bg)*=Ane N Bge,

6) (Ao M Bg)*=Aqc UBge.

Proof. We know that { Aa L Bg)°=((AU B),05)°=(AU B)(a08)- Let e € (AUB).
Then there are three cases:

(i) Ifec A~ B, then
((a08)%)(e) = (a(e))® = a(e) and (a“13%)(e) = a(e).
(ii) Ife € B — A, then

(aUB)%(e) = (B(e))° = A°(e) and (a®N3%)(e) = B%(e).
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(iii) Ite € AN B, then
(aUB)(e) = (ale) U B(e))° = (ale))* N (B(e))"
and,
(a°15%)(e) = (ale))* N (B(e))".
Therefore, in all the cases we obtain equality and thus
(AxU. Bg)*=Aq: N, Bge.

The remaining parts can be proved in a similar way. =

2.4.6 Proposition

SE(X) 4. U5 Ap, Ay ) is a de Morgan algebra.
A
Proof. We have already seen that (SS(X) 4,M,1,45,4%) is a bounded distributive

lattice. Propositions 2.4.3 and 2.4.5 show that de Morgan laws hold with respect to
" in SS(X) 4. Thus (SS(X) 4,M,U,5A,Ax) is a de Morgan algebra. m

2.4.7 Proposition

(SS(X) U5, Ap,Ax) s a boolean algebra.
n’]
Proof. Follows from Propositions 2.4.2 and 2.4.3. =

2.4.8 Proposition

Let A, and Az be any soft sets over X. Then (dz M A’gu:}(;[:.‘lﬁ L A,e) and so
(SS(X) 4,105, A5,4x) is a Kleene Algebra.
Proof. We have,
Ag M Age=AsCAx=A, U Age
for all A,,Az € SS(X),. We already know that (SS(X) M, As,Ax) is a de
Morgan algebra, so this condition assures that (SS(X) 1,05 A, Ax) is a Kleene
Algebra. m

249 Lemma
For any 2 € X and A C E. We define a soft set A, for each e € A, where e, : A —
P(X) such that
[ {a} ife=e
ex(€) = { 0 ife#e
Then A, is an atom of lattice (S8S(X),,M,) for each e € A and x € X and we have
A(SS(X), ) ={A4;, :e€ Eandz € X}

Proof. Let A.p%.dn € &88(X) 4 such that _Aai.‘lc,. Then a(e) C erle) = {z}
and afe’) C @ for all (e #)e’€ A. This implies that afe”) = @ for all (e #)e'e A
and the only possibility for a(e) is {2z} because Ag#A,. Thus A,=A, proves that
A, e ASS(X),). =
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2.4,10 Proposition

S&(X) ,.,U) is an atomic lattice.
A
Proof. Let A, € 85(X),, and take

Ta= {Acr € -4{88{2{),1} : AC;C;AI.'I}

the subcollection of A(SS(X) ,) which is given in Lemma 2.4.9. Suppose that

Ag=\/14.

For any e € A, 3(e) = U e.(e) = U {z} = ale). Thus V'I_.[éf‘-lﬁ and hence
reale) reale)

(SS(X) 4. M10) is an atomic lattice. m

2.4.11 Lemma

Let A,,Bs € &85(X )E. Then the pseudocomplement of A, relative to By exists in
SS(x)F.
Proof. Consider the set

T(Aa, Bg) = {Cy € 88(X)F : €, N A.CBg).

We define a soft set AL U Bag=(A"U B),e05 € CS{X}E and claim that 4, — Bg =
(A® U B)gepg. First of all we show that (A°U B),er5 € T(Aaq, Bg). Consider
(A°UB)gerigMAa = ((A°U B)N A)aetip)ia (By distributive law)
= ((A°N A)U (B N A))(acha)i(sha)
= (AN B)oasCBs.
Thus (A° UB),ers € T(Aa, Bg). For any €. € T(Aa, Bg), we have C, 1 AaCBjg so

foranyec CNACB
v(e) Na(e) € Ble).

Now,

CnA B={AnCynB°=4{

c
= CC(AnB®)*=A°UB
and

ve)Nale) S Ble) = (v(e)Nale)) N s%e) =1
= 7(e) S (afe))" N 5(e) = a®(e) N S(e)

Thus €, C(A° U B) 3 and it also shows that

(A°U B)aeos= \/ T(Aa, Bg)=Aa — Bp.
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2.4.12 Remark

We know that (S&(X),4,M1,U) is a sublattice of (SL'[X)E,FI_‘-,I_I}. For any A., Ag €
SS(X) 4, Aa — Ag as defined in Lemma 2.4.11, is not in §8(X), because A, —
Ag=(A°U A)ye3=E e & SS(X) 4.

2.4.13 Lemma

Let A., A € SS(X),;. Then pseudocomplement of A, relative to Ag exists in
S8(X)*.
Proof. Consider the set
T(Aa, Ag) = {A, € S8(X) 4 : A, N A,CAg).
We define a soft set Aqe U Ag=A -3 € SS(X) yopConsider
ApegMAa = Apeggyia
= Apacfia)0(sia)
= Aopslhs
Thus A,eg € T(Aa, Ag). For every A, € T(Aa, Ag), we have 4,1 ALC As so for any
ee A,
He)Nale) < Ble) = (v(e) Nale))n B%e) =1
= ~(e) € (ale))® N Ble) = a®(e) N B(e)
Thus A.,(;Aﬂ.-,‘-._.g and it also shows that
Ageog=\f T(Aa, Ag)=Aa —a Ap.
]

2.4.14 Proposition

SS(X E,I‘I.c.,u and (SS(X) ,,0,U) are Browwerian lattices.
A
Proof. Follows from Lemmas 2.4.11 and 2.4.13. =

2.4,15 Theorem
(SS(X) 41,5 Ay ) is an MV-algebra.
Proof. MV1, MV2 and MV3 are straightforward. We prove M174:
(Aae T Ag)* M Ag ((Aae)® U Age) M Ag

B (Aa L Ag-’} MnAg
= (AaMAg)U (Age Ap)
= (AaMAz)U Ag
= (AgN As) U (Aae N Ag)
Z (AgUAs) N4,
= (Ag:N AN A..

for all Ao, Ag € SS(X)a. Thus (85(X)4,M1,5Ax) is an MV-algebra, =

IIe
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2.4.16 Theorem

(SS(X)a,1,5,Ag) is an MV-algebra.
Proof. MV1, MV2 and MV'3 are straightforward. We prove M174:

(Aac U Ag) UAg = ((Aac)MAge)U Ag
= (A, M Age) Ll Ag
= (AU Ag)N(Ag U Ag)
= (AU Ag)M Ag
= (Ag U 4s) N (Aqe UAq)
= (AgNAge) U A,
= (Ag: U Am)°U As.

for all A,, Ag € SS(X)a. Thus (SS(X) 4,15 4As) is an MV-algebra. m

2.4.17T Theorem

(SS(X)a,—,Ag) is a bounded BCK-algebra whose every element is an involution.
Proof. For any A,, Ag, A, € S5(X)a

BCI-1 ((Aq — Ag) — (Aa — 43)) — (Ay — Ap)
=(Aa—p = Aawqy) — Ay_p
=Ala—py—(a—m) ~ Ay—s
=Ag — Ay_pg=As.
BCL-2 (A
=(Aa — Aap) — Ap
=Aa—(a—p) — 45
=Asp — Ag=As_p=As.
BCI-3 A, — A.=Ag.
BCI-4 Let An — Ag=Ag and Ag — Aa=Ag. Foranyec A,
ale) — Ble) = 0 and B(e) — ale) = @ imply that a(e) = 3(e).
Hence A,.=A3.
BOK-6 Ap — Ao=Ap_o=As.
Thus (SS8(X)a,—,44) is a BCK-algebra. Now Ay € SS(X ), is such that:
Ay — Ax=A,_x=Ag for all A, € SS(X)a.

Therefore (SS({X)4,—,As) is a bounded BCK-algebra.
For any A, € S5(X)a,

.‘l,}_‘ ot {ril‘ = An}iﬂl i A.i‘-.—t.ri-lfl.f e An"ifq.’{--fn"iA{r:."}"iAn-

So every element of S&(X') 4 is an involution. =
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2.4.18 Definition
Let A, and Az be any soft sets over X. We define
Aa * AHEA('LR_HEAQ M AJ'

2.4.19 Theorem

(SS(X)a,*,A4g) is a bounded BCK-algebra whose every element is an involution.
Proof. For any A, Ag, A, € S5(X)a.

BCI-1 ((An * Ag) % (Aa» A)) * (A, * Ag)
=(Aaxs * Aasy) * Ayas
=A((axB)rlar)x(v48)
=A((af8°)x(afme))x(176°)
= A((aRg°)(afne)) ARG
= A((afB8)i(ac0))(+<08)
=A((aAae)imAes)
=A(arse)imns
£"‘.‘{or‘w}nfﬁ(-“i“f'ﬁu_ﬂ}ii‘q‘i:-
BCI-2 (A, » (A, » Ag)) x Az
=(Ag * Am;j) * Ag
=Agu(asp) * Ap
=AoA(anse)e * Ap
=A(ahi(acag) * Ag
=Aanp * Ap=Aoagrge=4As.
BCI-3 Ag» Ag=Agr5-=Ag.
BCI-4 Let A, » Ag=Ag and Ag» A,=Ag. For any e € A,
ale) N (B(e))® = I and B(e) N (ale))® = § imply that a(e) = 3(e).

Hence
As=A5.

BCK-5 Ag x Au=Agea=Aprac=As.
Thus (SS5(X)4.%,44) is a BCK-algebra. Now Ay € S5(X )4 is such that:
Ap* A=Az =Agipe=Agrp=As for all A, € SS(X)a.

Therefore (SS(X).4,+.44) is a bounded BCK-algebra. m




Chapter 3

Algebraic Structures of Fuzzy
Soft Sets

In 2001, Maji and Roy proposed the concept of Fuzzy Soft Set in [30]. Different
algebraic structures have also been studied in fuzzy soft context. Irfan et al. [3]
pointed out some basic problems in the results related to the operations defined on
fuzzy solt sets. In the paper [3], some new operations are defined for fuzzy soft sets
and modified results and laws are established. In this chapter, we step forward in the
same direction and check out the associativity and distributivity of these operations.
First we have given preliminaries of fuzzy soft sets. We have used new and modified
definitions and operations from [3] to discuss the properties of these operations on fuzzy
soft sets, After accomplishing an account of algebraic properties of fuzzy soft sets, the
overall algebraic structures of collections of fuzzy soft sets are studied. The two types
of collections of fuzzy soft sets, one consisting of those fuzzy soft sets with a fixed set
of parameters while the other containing fuzzy soft sets defined over the same universe
with different set of parameters are taken into account. Both collections have some
common and some different algebraic properties and therefore the algebraic structures
also differ. The lattice structure of these collections is discussed and we find that the
collection of all fuzzy soft sets is a bounded distributive lattice and the collection of
tuzzy soft sets with a fixed set of parameters becomes a Kleene algebra. At the end
we define pseudocomplement of a fuzzy solt set and with this pseudocomplement, this
collection becomes a stone algebra.

3.1 Fuzzy Soft Sets

Let X be an initial universe and £ be a set of parameters. Let FP(X) denotes the
tuzzy power set of X and A, B be non-empty subsets of F.

3.1.1 Definition [30]
A pair (f,A) is called a fuzzy soft sef over X, where f is a mapping given by f: A —
FP(X).

Therefore, a fuzzy soft set over X gives a parametrized tamily of fuzzy subsets of

30
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the universe X. For e € A, f(e) may be considered as the set of e—approximate fuzzy
elements of X. From now onwards, we shall use the notation Ay over X to denote a
fuzzy soft set (f,A4) over X where the meanings of f, A and X are clear in a harmony
with the use of usual pair notation.

3.1.2 Definition [3]

For two fuzzy soft sets Ay and B, over a common universe X, we say that Ay is a
fuzzy soft subset of B, it

1) AC B and
2) fle) C gle) for all e € A.

We write A;(;ZBQ. Ay is said to be a fuzzy soft super set of By, if B, is a fuzzy soft
subset of Ay. We denote it by Af2B,.
3.1.3 Definition
[3] Two fuzzy soft sets Ay and B, over X are said to be fuzzy soft equal if Ay and B,
are fuzzy soft subsets of each other. We denote it by A;=B,.

3.1.4 Example

Let X be a set of candidates for a driver’s vacant position, and E be a set of parameters,
X = {a,ees,00,05}, E = {e1,ea,e3,e4} = { knowledge about routes, driving skills,
physical fitness, young}. Suppose that A = {ej,ea,e3}, a fuzzy soft set A s describes
the “data of candidates” which Mr. X is going to hire and is given as follows:

o A= FPX),
{€1/0.3,¢0/0.1,e3/0.3,¢4/0.1,¢5/0.7} ife=ey,

e — {£1/0.1,09/0.9,e3/0.3,24/0.8,¢5/0.2} if e = eq,
{£1/0.1,00/0.3,e3/0.3,24/0.3,¢5/0.8} if e = e3,

Let B = {es,e3}. Then fuzzy soft set B, given as follows:

g : B—FPX),
- {€1/0.1,e2/0.5,¢3/0.3,04/0.5,05/0.2} if e = e,
¢ {€1/0.1,02/0.2,¢3/0.1,64/0.2,¢5/0.7} if e = eg,

is a fuzzy soft subset of A and represents a second analysis of choices made in Ay,

3.2 Operations on Fuzzy Soft Sets

Now, we define various operations on fuzzy solt sets taken from literature.
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3.2.1 Definition

Let Ay and By be two fuzzy soft sets over X. Then the or-product of Ay and By is

defined as a fuzzy soft set (A x B)y,, where fvg : (A x B) — FP(X), defined by

(a,b) = fla) V g(b).

It is denoted by Ay Vv By=(A x B) sy,

3.2.2 Definition
Let Ay and B, be two tuzzy soft sets over X. The and-product of Ay and B, is defined
as a fuzzy soft set (A x B)yz,, where fAg: (A x B) — FP(X), defined by

(a,8) — f(a) A g(b).

It is denoted by Af A By=(A x B)jj,.

3.2.3 Definition

The extended union of two fuzzy soft sets Ay and By over X is defined as a fuzzy soft
set (AU B)y,, where fug: (AU B) — FP(X), defined by

fle) ifecA-B
e ¢ gle) ifeec B—A
fleyvgle) ifec ANE

We write Ay U: By=(AU B) yyq.

3.2.4 Definition

The extended intersection of two fuzzy soft sets Ay and B, over X, is defined as a
fuzzy soft set (AU B)s,, where fAg: (AU B) — FP(X), defined by

f(e) ifec A-B
e— ¢ gle) ifecB-A4A
fle)hgle) ifec ANB

We write Af M. By=(AU B) ;.

3.2.5 Definition

Let A; and B, be two fuzzy soft sets over X' such that AN B # . Then the restricted
union of Ay and By is defined as a fuzzy soft set (AN B);z,, where fvg: AnB —
FP(X),

e — f(e) Vgle).

We write Ay Ll By=(AN B) o,
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3.2.6 Definition

Let A7 and B, be two fuzzy soft sets over X such that AN B # 0. Then the restricted
intersection of Ay and By is defined as a fuzzy soft set (ANB) s5,, where fAg: ANB —

FP(X),
e — f(e) Agle).
We write Ay By=(ANB) .

3.2.7 Definition

The complement of a fuzzy soft set Ay, denoted by (A;) " and defined by (A7) "=Ap,

where f 1 A — FP(X) is given by
(fle))(z) = 1 - (fe))(=),

for all e € A, and for all x € X,
Clearly (f ") is same as f and ((Af) ") "= Aj.

Now, we give an example to show how to apply these operations on fuzzy soft sets:

3.2.8 Example

Let X be the initial universe and E be the set of parameters,
X = {=1, 29,23, 24,25}, E = {e1,e9,€3,€4,€5}.

Suppose
A= {ei,ea}, and B = {es, e4}.

Let Ay and By be the fuzzy soft sets over X defined by the following:

Fo: Ao FPEX),

5 {21 /0.1,@3/0.2, 25/0.3, 24 /0.7, 25 /0.4} if e = ey,
{21 /0.7, 22/0.9, 25/0.2, 24 /0.4, 25 /0.1} if e = eq,

g : B-— FAhX),

§ {z1/0.3,23/0.7, 23/0.6, 24 /0.9, 25/0.1} if e = eq,
{x1/0.4,22/0.2, 23/0.7, 24 /0.8, 25/0.7} if e = ey,

Then
(i) AyU: By=(AU B)y, where

fvg : (AUB) sFP(X),
{z1/0.1,@3/0.2, 23/0.3, 24 /0.7, 25/0.4} ife
e — {z1/0.7,@2/0.9, 23/0.6,24/0.9, 25 /0.1} ife
{21/04,22/0.2, 2 /0.7,24/0.8,25 /0.7} ife=
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(i) AsM. B;=(AU B),;, where

fAg : (AUB)m FP(X),
{21/0.1,@5/0.2, 23/0.3, 24/0.7, 25 /0.4} if e = ¢,
e — {21/0.3,@2/0.7, 23/0.2, 24 /0.4, 25/0.1} if e = ea,
{21/04,22/0.2, 29 /0.7, 24/0.8, 25 /0.7T} if e = ey.

(iii) AU B,=(AnN B)yy, where

Vg : (ANnB)gm FP(X),
g9 {I[[G.T,szﬂ.g._I3,f|].5,1¢f0.9,1'5f0.1}

(iv) Ay B,=(AnN B)y;, where

fAg : (AN B)—=gEP(X),
{21/0.3,22/0.7, 23/0.2, 24/0.4, 25 /0.1} if e = ey,
{z1/0.3,29/0.7,25/0.3, 24 /0.2, 25 /0.5} if e = e3.

[

(v) (Af)"=Ajy - where

F° : A- FP(h
{21/080x/0.8,25/0.7,24/0.3,25/0.6} ife=e,
{21/0.3,29/0.1, 25 /0.8, 24/0.6,25/0.9} if e = ey,

3.3 Properties of Fuzzy Soft Sets

In this section we discuss properties and laws of fuzzy soft sets with respect to opera-
tions defined on fuzzy soft sets. Later on the results will be utilized for the configura-
tion of algebraic structures of fuzzy soft sets. Associativity, commutativity, absorption,
distributivity, de Morgan laws and properties of involutions, and atomicity are inves-
tigated for collection of tuzzy soft sets.

3.3.1 Definition

A fuzzy soft set Ay over X is called a relative null fuzzy soft set, denoted by Ag, if
fle) =0 for all e € A, where 0 is the fuzzy subset of X mapping every element of X
on 0.

3.3.2 Definition

A fuzzy soft set A over X is called a relative whole or abselute fuzzy soft set, denoted
by Aj, it f(e) = 1 for all e € A, where 1 is the fuzzy subset of X mapping every
element of X on 1.

Conventionally, we take fuzzy soft sets with an empty set of parameters to be equal
to 05 and so Ay N B,=05=Af U B, when AN B = {.
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3.3.3 Proposition

Let Ay, Ay be any fuzzy soft sets over X. Then

1) AgrAg=Ay, for A € {UU,N,N}, (Idempotent)
2) Apl Ag=Ap U Ay ApNe Ag=Apn A,

3) ArnA;=A=A;0 A5,

4) ApU A7=Ag; AN Az=A;s,

5) AfN. bg=A;=AsU. bg=As N Eq,

6) Arnidg=0s; Ayl E;=E;.

Proof. Straightforward. m

3.3.4 Proposition
Let Ay, B, and Cy, be any fuzzy soft sets over X. Then the following are true:
1) AfMBgAC,)=(AfAB,)ACY, (Associative Laws)
2) AfAB =B AAy, (Commutative Laws)
for all A € {U.,L0,M.,M}.
Proof. Straightforward. m
3.3.5 Proposition (Absorption Laws)
Let Ay, B, be any fuzzy soft sets over X. Then the following are true:
1) AfMe (BgU Ag)=Ay,
2) Afn(ByU.: Af)=Ay,
3) AsU(ByN. Af)=Ay,
4) Ayl (ByN Ap)=Ay.

Proof. For any e € A,

o fle) ifee A-(ANB)
(FA(FVg))(e) { fle)A(fvg)e) ifec An(ANB)
_ [ f(e) ifec A-(ANB)
h Fle) A (fle) v gle) ifeec ANB
fle) fec A- (AN B)
fle) ifec ANB
= f(e).

Thus Af M. (BU Af)=Ay. The remaining parts can also be proved similarly. m
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3.3.6 Proposition (Distributive Laws)
Let Af, By and C), be any fuzzy soft sets over X. Then
1) AfN(BgUs Cr)=(Ag M Bg) Us (Af N Ca),

2) Agn(BgN. Cr)=(Af M Bg) N (Af N Ch),

8) Ayn(ByUCh)=(AsnBy)u (AyMNCy),

4) AsU(BgU. Ch)=(AgUBg) Ue (AU Ch),

5) AfU(ByM: Cp)=(Af U Bg) Ne (Af U Ch),

6) A;U(B,NCR)=(A;UBy)N(AfUCY),

7) AfNe (By Ue Ch)C(A; Me Bg) e (A7 Ne Ch),
8) Ay (ByUCh)=(AgN: Bg) U (Af N Ch),

9) AgM, (ByNCR)2(AsMe By) N {4y N, Cy),
10) Ay U, (By UCh)C(Af U By) L (Af L Ch),
11) Af U (Bg Me Cn)2(Af Ue Bg) Me (Af L Ch),
12) AsU. (B, N Ch)=(As Ue Bg) M (Af Ue Ch).

Proof. We prove only one part here, the other parts can also be proved in a similar
way.

5) We have
AgU(BgMe Cp)=(AN (B UC))pu(gin

and

(AyU Bg) Me (A UCh) (AN B)gig) MNe (AN C) g
(AN B)U (AN C))

(AN(BUC))

[l

(S ahALSEh)

11

(Feg)A(fh)”

Let e € AN (B UC) then there are three possibilities:
(i) fec An(B - C) then,

(gAh)(e) = g(e) and
{fv(ghh)}(e) = fle)Vgle).

Also AN(B-C)=(ANB) - (AN C) and hence

{(fVa)A(fVh)}(e) = (fVg)(e) = f (e} V g(e).
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(ii) Ite e An(C — B) then,

(ghh)(e) = hie) and
{fv(ghh)}(e) = f(e)Vhie).

Ao AN(C -B)=(ANC) - (AN B) and hence
{(FVa)A(FVh)He) = (FVh)(e) = f(e) v R (e).
(iii) Ife € AN (BNC) then,

(gAh)(e) = gle)rh(e) and
{fV(ghh)}(e) = f(e)V(gle)nh(e)).
Ao AN(BNC)=(AnB)nN(AnNC) and hence

{(fVa)A(fVh)}(e) (FVg)(e) A (fvh)(e)
(F(e)Vgle)A(fle)Vhie)

f(e) V(g (e) Ah(e)).

Thus
f(ghh) = (fvg)A(fVh)
and so
(AN (BUC))piginy=(AN (BUC))(rugacsvn):

[ ]

3.3.7 Example

Let X be the set of houses under consideration, and E be the set of parameters,
X = {hh hﬂ! h;},h,\, h{'r}*r

E = {beautiful, wooden, cheap, in good repair, furnished}.

Suppose that

{beautiful, wooden, cheap},

{wooden, cheap, in good repair},

A
B
and ¢ = {cheap, in good repair, furnished},

Let Ay B, and Cy, be the fuzzy soft sets over X defined by the following:

f o A= FP(X),
{h1/0.1,ha/0.2, h3 /0.3, he /0.7, hs 0.4} ife = e,
[ =4 e

{h1/0.7,ha/0.9, h3 /0.2, ha /0.4, hs 0.1} ife = e,
{h1/0.3,ha/0.7, h3 /0.5, he /0.2, hs 0.6} if e = es,
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q . B —= FPX),
{h1/0.3, ho/0.7,ha/0.6,hs /0.9, h5/0.1} if e = ey,
e — { {h1/0.6,ho/1.0,h3/0.3,hs/0.2, h5/0.5} if e = es,
{h1/0.4, hy/0.2,h3/0.7,hs /0.8, h5/0.7} if e = ey,

h : C—=FPX),
{h1 /0.7, ha /0.8, hg /0.5, hy /0.4, hs 04} if e = €3,

g — {h1/0.5,ha/0.3,hs/0.2,he /0.1, hs/04} ife=eq, .
{h1/0.7,ha /0.8, h3/0.2,hy/0.3, hs/0.9} if e =e5,

Now
AfU: (BgUCh) = (AU(BNCY) pogimys
(AfU: Bg)u(Apu: Cr) = ((AUB) N(AUC)) pugynsony;
Af Lle {Bg Mne Ch) = {A u (B U G}}f\?(gf\h);
(AfUe By) Me (Af U Cr) = ((AUB)U(BUC))rugiaisin-
Then
(v (gvh))(wooden) = {hy/0.7,h2/0.9, hy /0.2, hy /0.4, h5/0.1}
and
((fvg)V(fVh))(wooden) = {h1/0.7,h2/0.9, h3/0.6, he /0.9, hs/0.1}.
We see that
(Fv(gvh))(wooden) # ((fvg)v(fVh))(wooden).
Thus )
A_f Lig (Bg U Ch}#(ﬂf L Bg:} ] (A; Li: C},:].
Again,
(FA(gVh))(wooden) = {hy /0.3, ho/0.7, h3/0.2, hs /0.4, hs/0.1}
and

((fAg)V(fAh))(wooden) = {h1/0.7,h2/0.9,h3/0.2, ha /0.4, hs/0.1}.

We see that

(fA(gvh))(wooden) # ((fAg)V(fAh))(wooden).

Thus .
A_f' Me {Bg Ll Ch}#{Af M Bg} U (Aj' Me Ch}-

Similarly it can be shown that

AfNe (BgNCh) # (AfNe Bg) N (AN, Ch).
AsUs (BgMe Ch) # (AyUs Bg) Me (Af Ue Ch).
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3.3.8 Proposition
Let Ay, By and Cy be any fuzzy soft sets over X. Then

1)
A_.F U {:Bg Mg Cﬂr]it'qf L Bg} M (Af Le Ch}
if and only if
fle) € gle)forallee (ANB) - C and
fle) C hle) forallec (ANC) - B.
2)

A_Ir Mg {:Bg g Ch)it.qf Me Bg] Lie l:_‘-’.lj' Mg Ch}
if and only if

fle) 2 gle)foralleec (AN B) - C and
fle) 2 hie)forallec (ANC) - B.

Proof. Straightforward. m
3.3.9 Corollary

Let Ay, B, and Cj, be any fuzzy soft sets over X. Then

(Ay Ue Bg) Ne (Ay Ue C) and
[Af Me Bq} L (Af Me Cr',l,)

G

A_f' Ue {Bg Me (-jh}
ApMe (By U: Cp)

Il

hold if and only if
fle) = gle)foralle e (ANEB)—C and
fle) = hle)torallec (ANC) - B.

3.3.10 Corollary

Let Ay, By and Cj, be any fuzzy soft sets over X such that (ANB)-C = (ANC)—B = {.
Then

1) Apll (BaMe Cr)=(Ap U Bg) Mg (Af U Ch),

2) Apn. (ByU: Cp)=(ApN: By) Ue (Af N C).

3.3.11 Corollary

Let Ay, Ay and Ay be any fuzzy soft sets over X. Then
ApMAgnAn)=(ApAAg)u(ApAAy)

for distinet A, p € {M.,M,U.,U},
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3.3.12 Proposition

Let Ay and By be two fuzzy soft sefs over X. Then the following are true

1) As U. B, is the smallest fuzzy soft set over X which contains both A; and Bj.
(Supremum)

2) Asr1 B, is the largest fuzzy soft set over X which is contained in both Ay and B,
(Infimum)

Proof.

1) AyCA;Ue By and B;C Ay L, By, because AC (AUB), B C (AUB) and f(e) C
F(e) v gle), gle) € fle) v gle). Let Cp be any fuzzy soft set over X, such
that A;CC)y and B,CCy. Then (AU B) C C, and f(e) C h(e), for all e € A,
g(e) C he) for all e € B implies that (fVg)(e) C h(e) for all e € (AU B). Thus
A; U, ByCCh.

2) A;NB,CAjand A;MB,CB,, because ANB C A, ANB C B and f(e)Agle) C f(e),
fle) ngle) € gle) for all e € AN B. Let Cy, be any fuzzy soft set over X, such
that C,CAs and CRCB,.[Then € C AN B, and hfe) € f(e), h(e) C g(e)
for all e € € implies that h(e) C f(e) A gle) = (fAg)(e) for all e € C. Thus
CrCA; N B,

3.4 Algebras of Fuzzy Soft Sets

In this section, we use the ideas of lattices and algebras for fuzzy soft collections. We
consider collections of fuzzy soft sets and find their distributive lattices. The collections
are denoted as follows:

FSS(X )f": collection of all tuzzy soft sets defined over X

FES(X) 0 collection of all those tuzzy soft sets defined over X with a fixed para-
meter set A,

Firstly, we observe that these collections are partially ordered by the relation of
fuzzy soft inclusion C.

3.4.1 Proposition

(FSS(X)E N.,U), (FSS(X)E,U,N.), (FES(X)E L), (FSS(X)ENL.), (FSS(X)4,u,n),
and (FSS(X) ,4,M,U) are lattices,

Proof. From Propositions 3.3.3, 3.3.4 and 3.3.5 we conclude that the structures
form lattices. m
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3.4.2 Proposition
Structures (FSS(X)E,N,Ue,05,E1), (FSS(X)E Le,N,Eq,05), (FSS(X),,NU,Ag,A1)
and (FSS(X) ,4,U,1,47,45) are bounded distributive lattices.

Proof. Proposition 3.3.6 assures that (.FSS{);'}E,H,LJE} and (JF:-FS(X}E,LJE,I‘I) are
distributive lattices. From Lemma 3.3.12, we conclude that (.FSS(X}E,I‘I,LIE,IZ'ﬁ,Ei} is
a bounded distributive lattice and [.F'&*[J;'}E,I_I,-,H,EE.M} is its dual. For any fuzzy
soft sets Ay 4, € FSS(X),,

AfNAg = Agig€ FSS(X), and
AjuA, = Ay, € FSS(X),

Thus (FSS(X) ,,/1,U) is also a distributive sublattice of (FSS(X }E,LIE,I—I} and Propo-
sition 3.3.3 tells us that Az, Aj are its lower and upper bounds, respectively. Therefore
(FSS(X)4,M,0,45,47) is a bounded distributive lattice and (FSS(X),,U,07,47,435)
is its dual. =

3.4.3 Proposition

Let Ay be a fuzzy soft set over X. Then " ~ " is an involution on F&S(X) .
Proof.

(i) We have to show that Ay - -=A;. Now, (Ay <) "=A; - -

((F ) (eN=) = (1-7f (=)
= 1-(f "(e))(=)
= 1-(1—gfife))(=
= 1-1+(f(e))(=
= 1-1+(f(e))(=
= (fle))(z)

forallec A, z € X. Thus (Ay -)"=Af .

)
)
)

(ii) If AyCA, then

(fle))(z) < (gle))(z) and so
1—(gfe))(z) < 1-—(f(e))(x) which gives
(gle)z) < (fle))(z) forallec A,z € X.

Hence A;CAp

Thus " * " is an involution on FSES(X),y. =
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3.4.4 Proposition (de Morgan Laws)
Let Ay and By be any fuzzy soft sets over X. Then the following are true
1) (AgU: Bg) "=Afn: By,
2) (AfNe By) '=ArU: By,
3) (Ayv By) '=Arn By,
4) (Af A By) '=Arv By,
5) (AyUB,) =ArN By,
6) (AfNB,) =AyU By
Proof.

1) We know that (A U By) "=((AU B) gy4) "=((AU B)(sygy Let e € (AU B). Then
there are three cases:

(i) Ife € A— B, then
((FVa))(e) = (f(e)) = fle) and (fAg)(e) = fle).
(ii) If e € B — A, then
(FVg)Te) = (g(e))= gle) and (fAg)(e) = gle).
(iii) Ife € AN B, then
(FYg)le) = (fe) v g(e))'= (f(e))A (ale))

and,
(1Ag)(e) = (Fe)y A (gle))

Therefore, in all three cases we obtain equality and thus
(A Le By)=AyD: By.
The remaining parts can be proved in a similar way. =®

3.4.5 Proposition

(FSS(X) 4N, 7,45,47) is a de Morgan algebra.

Proof. We have already seen that (FSS(X),4,,U,45,45) is a bounded distrib-
utive lattice. Proposition 3.4.3 shows that " * " is an involution on #S&(X), and
Proposition 3.4.4 shows that de Morgan laws hold with respect to * in FSS(X) .
Thus (FSS(X) 10,7, 45.45) is a de Morgan algebra. m
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3.4.6 Proposition

Let A; and Ay be any fuzzy soft sets over X. Then (A, M A, -)C(A;U Ay -) and so
(FSS(X) 40,7, Ag,47) is a Kleene Algebra.
Proof. For any Ay ,A, € FSS(X)a, such that

A;NA; DA U A, - where A; N Ap #Ag U Ay -
Then there exists some e € A such that
(FNF "MNe)2(gUg “Ne)

and so we have some x € X such that

((Fmf Wez) > ((gUg “)e)(z) or
(fley f “(e))(z) > (gle)g “(e))(=) or
(fleD() A(f “(elz) > (gle))(z) V(g “(e))(x).

But (f(e))(z) A(f “(e))(z) < 0.5 and (g(e))(z) V (g7(e))(z) = 0.5 which gives
(F(e)) (=) A (Fle))(z) < (gle))(2) V (gle))(x).
A contradiction, thus our supposition is wrong. Hence
ApMApCA U Ay
Therefore (FSS(X) ,,,U,",Ag, A7) is a Kleene algebra. m

3.4.7 Proposition
Let Ay, B, € FSS(X ]E . Then pseudocomplement of Ay relative to B, exists in
FSS(X)E.
Proof. Consider the set
T(Ay,By) ={Ch e FSS(X)F o A;QBQ].
We define a fuzzy soft set (A°U B), , € FSS(X }E where

((f — g)e))(=)

1 fec A°— B
B 1 i (fe)(@) < @) e
- { @e@)z) i (fe)a)> (gle)(z) 1e€B-A4
1 ifec AN B
Then
(ACUB)I_.QHAI = [:[:A':UB}H_A:}(I__Q};‘I

= (AN AU (BN A) i
(AN B)(sg)as-

I
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Foranyee AnNB,ze X,
(((f = gAf(e)) (=)

{1t it (7(e)(#) < (9(e))(@)
(9(e)(@) A (f(e)(@) it (Fle))(e) > (g(e))(a)
{ giena i (1(e))(2) < (9(¢))()
(s(e))(x) it (7(e))(@) > (9(€)) ()

< (gle)(@)

Hence, )
(A°UB) sy 1 A(CB,

Thus (A°U B) ., € T(Af, By). For all Oy € T(Ay, By), we have Cp N A;QBQ so for
anyec CNACRH
h(e) A f(e) C gle).

Now,

CnA B=(AnC)nB°=4

= CC(AnB®°= A°uUB.
We have following cases:
(i) Ife e (A° — B)n C, then he))(2) < 1 = ((f — g)(e))(x)

(i) fec (B-A)NC, and (f(e))(z) < (gle))(z) then (R(e))(z) < L = ((f
g)(e))(x)

(iii) Ite € (B—A°)NC and (f(e))(z) > (g( )(z), then the condition hie)n f(e) C g(e)
implies that (k(e))(z) A (f(e)(z)) (g( e)){z) which is possible only if (h(e))(z)A
(F(e)(2)) = ((e))(x) and thus (h(e))(2) < (a(e))(z) = ((f — g)(e))(z)

(iv) If e € (4N B) 1 C, then h(e))(x) < 1= ((f — g)(e))(x)-

Thus C,C(A° U B)s ., and it also shows that (A°U B)s_, VT(A_,- By)=A; —
By m
3.4.8 Remark

We know that (FSS(X),.11,1) is a sublattice of (.F-L\‘S();'}E,I‘IE.J_I}. For any Ay, Ay
€ F8S(X) 4, A — Ay (as defined in Proposition 3.4.7) is not in F&8S(X), because
Ap = Ag=(A°U A);_..=E; ., ¢ FE5(X),.

3.4.9 Proposition

Let Ay, A, € FSS(X),. Then pseudocomplement of A relative to A, exists in
FSS(X) ,
Proof. Consider the set

T(Ag, Ag) = {An € FSS(X), : An N AsCAG}.
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We define a fuzzy soft set Ay, € FSS(X), where

_ om0 if (£(e))(2) < (9(e))(x)
(7 = g)e))(=) {{g[e))(:c) if (F(e))(z) > (g(e))(x)

for alle € A, z € X. Then Ay, I‘IAJr&A”_,Q}M and

(((F — gAfe)z)

{ LA (fle))(z) if (f(e))(x) < (g(e))(z)
(g(eN(@) A (fle))(z) it (fle))(x) > (g(e))(x)
_ { (f(e))(=) if (f(e))(z) < (g(e))(=)

(g(e))(z) if (f(e))(z) > (g(e))(=z)
< (g(eN(=).

for alle € A, x € X. Hence,
Ap.gMAfCAg

and Af_.; € T(Ay, Ag). For every Ay € T(Ay, Ay), we have Ay N A;C;Ag so for any
e € A, following cases arise:

(i) It (£(e))(=) < (gle))(x) then (h(e))(z) < 1 = ((f — g)(e))(=)

(ii) If (f(e))(z) > (g(e))(z) then the condition hie) A f(e) € g(e) implies that
(h(e))(z) A (f(e)(x)) < (g(e))(=) and so (h(e))(x) < (g(e))(=) = ((f — g)(e)) ().

Thus A,CAj_.g and it also shows that
Afg=\[T(As, A)=As —a A,

3.4.10 Proposition

(FSS(X)EN.,L) and (FSS(X) ,4,M,U) are Brouwerian lattices.
Proof. Follows from Propositions 3.4.7 and 3.4.9. =

3.4.11 Definition

For a fuzzy soft set Ay over X, we define a fuzzy soft set over X, which is denoted by
Ay. and is given by Aj. = (Af)* where

e < d 0 @) £0
re@={7 F{iome

forallz € X, ec A
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3.4.12 Theorem

Let Ay be a fuzzy soft set over X. Then the following are true:
1) Ay Ap=A4s,

2) AgC Ay whenever Ay A=Az,

3) ApUAp=Ay,

Thus (FSS(X)4,ML", Ag,Az) is a Stone algebra.
Proof.

1) Straightforward.

2) f Ay A;=As. Then for any x € X, e € A,

if (g(e))(x) = O then (g(e))(z) < (f*(e))(2).

If (g(e))(x) # Ohen (f(e))(z) A (g(e))(z) =0
implies that (f(e))(z) =0, so (f*(e))(z) =1
and hence (g(e))(z) <1 = (f"(e))(x).

Thus ,
(gle))(z) £ (f*(e))(zx) forallz e X,e e A.

That is, A,C Afe.

3) Forany r € X, ec A,

((f* U f)(e)) (=)

(f*(e) V [**(e))(=)
= max{(f(e))(x), (f7(e))(x)}

N { 111a.x4;1., D;r it (fle))z) #£0
max{0,1} it (f(e))(z)=0

= 1.

Thus Ag- U Ap-e=Ag and so, (FSS(X)a,NU,* A5, 41) is a Stone algebra,

3.4.13 Remark
Note that Af.=A; — 4 A5,




Chapter 4

Algebraic Structures of
Double-framed Soft Sets

This chapter explores the theory of double-framed soft sets. Double-framed soft sets
have been introduced by Jun et al. [19] in 2012. They discussed applications of
double-framed soft sets in BCK/BCI-algebras and verified several results with uni-
int concepts. Recently, some further works are presented to characterize the ideals
of BCK/BCI-algebras in terms of double-framed soft sets in [20]. In our work, we
have focused upon the algebraic structural properties of double-framed solt sets. New
operations for double-framed soft sets are defined and their characteristics are studied,
Examples are given to elaborate the concepts and to show how the ideas are utilized
to work with double-framed soft sets, The lattice structure and different algebraic
specifications raised by the collections of double-framed soft sets have been shown in
a logical manner. Classes of MV-algebras and BCK /BCl-algebras of double-framed
soft sets are presented at the end.

4.1 Double-framed Soft Sets

Let X be an initial universe and F be a set of parameters. Let P(X) denotes the
power set of X and A, B, C' are non-empty subsets of F.
4.1,1 Definition [19]

A double-framed pair ((o, 3); A) is called a double-framed soft set over X, where o
and 3 are mappings from A to P(X).

From now onwards, we shall use the notation A, g over X to denote a double-
framed soft set ((a, 3); A) over X.

4.1.2 Definition

For double-framed soft sets A(, g) and By, 5) over X, we say that A, g) is a double-
framed soft subset of By, 4, if

1) AC B and
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2) a(e) € vy(e) and d(e) C 3(e) for alle € A.

This relationship is denoted by A{Q,S}‘EB(‘T.J}'
Afa,g) is said to be a double-framed soft superset of By, g, if B4 is a double-
framed soft subset of A, 5. We denote it by A{a‘gjéBh‘,g).

4.1.3 Definition

Two double-framed soft sets Ay, gy and By, 4) over X are said to be equal if A¢, g)isa
double-framed seft subset of By, 5 and By, 5) is a double-framed soft subset of A, 5.
We denote it by A, 5=B(,.4)-

4.1.4 Example

Let X be the set of houses under consideration, and £ be the set of parameters,
X = {hy,ha,hs,hq.h5}, E = {e1,e0,e3,64,65,66} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that A = {ej,es,e3.66}, a
double-framed soft set A, ) describes the data for “requirements of the houses” where
function a approximates the houses with a high level of appreciation and 3 approxi-
mates the houses with a high level of critique by two different groups of experts and
given as follows:

{hoha,he}  ie=er,

L {hs, ha} ife=e,
o 1 AR, s o if e = e3,
{:h'i‘hli!hfl!h{"} it e = €i,

{hg,r'lf;,ha} ife=e,

. : tih[,r‘lg,h‘}} if e = es,

g x4 P(X), e {hg,r'lf;,ha} if e = ez,
tih[,r‘l_},hf;,hs} if e = e5.

.

Let B = {es,e3,e5}. The double-framed soft set B, 5 given by

{hs} if e = es,
¥ : B—=P(X), er——{ {hihg,hs} ife=ez,
{r‘lz,h;},hd‘} ife= Efs
{r'l1,fl-2,fl-3+ha} ife= €9,
§ :+ B—=P(X), e— < {hi,h3 hahs} if e = e,
X if e = eg.

is a double-framed soft subset of A, 4 so A(ﬂ:g;(;B,[T‘,g}. Here, we can see that -~
approximates less houses than o being less appreciating, while § approximates more
houses than 3 being less critical. This justifies our definition of inclusion for double-
framed soft sets.
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4.2 Operations on Double-framed Soft Sets

4.2.1 Definition [19]

Let A, g and By, 5) be double-framed soft sets over X. The int-uni product of 4, g
and By, ;) is defined as a double-framed soft set (A x B),y,8vs over X in which
afry:(AxB)—=P(X), v (Ax B) - P(X), defined by

(a,b) — ala) N y(b), (a,b) — B(a) U &(b).

It is denoted by A, g) A B(y.5)=(A4 X B)(any,své)-

4.2.2 Definition [19]

Let A, g and By, s5) be double-framed soft sets over X. The uni-int product of A, g
and By, s is defined as a double-framed soft set (A x B}y gn) over X in which
avy:(AdxB)—P(X), BAd: (A x B) — P(X), defined by

(@, b) — al(a)U~(b), (a,b) — B(a) N &(b).
It is denoted by A(a,5) V B(y,5)=(A4 X B)iavy,80d)-

4.2.3 Definition

For double-framed soft sets A, 5 and By, 4 over X, the exiended int-uni double-
framed soft set of A, g) and By, 4) is defined as a double-framed soft set (AUB) . a0
where ary : (AU B) — P(X), defined by

ale) ifec A-B
e 4 v(e) ifeecB-—A
ale) Nyle) ifec ANEB

and gUd : (AU B) — P(X),

B(e) ifec A-B
e— o d(e) ifeeB-—A .
Ble)Udle) ifec ANB

It is denoted by A(ﬂ.-.ﬁ') e B{.hé]é{.il U B]{aﬁ-,,_.‘injei}-

4.2.4 Definition

For double-framed soft sets A(, 5 and B, s over X, the extended uni-int set double-
framed soft of Ay, 5 and By, ;) is defined as a double-framed soft set (A U B)(at,804)
where ally : (AU B) — P(X), defined by

ale) ifec A- B
er— < (el ifeeB-A
ale)Uvle) ifec ANE
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and 316 : (AU B) — P(X), defined by

B(e) ifecA-B
e & d(e) ifec B—A .
Bleynéle) ifec ANB

It is denoted by A, g) Ue By 5=(A U B)(aiy,576)-

4.2.5 Definition

For double-framed soft sets A, 5) and By, 5 over X, the extended difference double-
framed soft set of A, gy and B, 3) is defined as a double-framed soft set (AUB) (o, 4.5-,48)
where

ale) ifec A—B
a—v: (AUB) = P(X), e ¢ 7le) iftecB-A

afe) —yle) ifec ANKB

5(e) iflec A-B
B—ed:(AUB) = P(X),e— < d(e) fecB-A .

Ble) —dle) ifec ANE
It lb Clellote(l b)" A(‘-‘-.ﬁ) e B[),d}i(‘é L B}(n---.‘r:s‘-ué}'

4.2.6 Definition

For double-framed soft sets A, gy and By, 5 over X with AN B # @, the restricted
int-uni double-framed soft set of A, gy and By, ) is defined as a double-framed soft
set (AN B)(apn,p05) Where alvy : (AN B) — P(X), defined by

e = afe) N(e),
and 308 : (AN B) — P(X), defined by

e — 3(e) L d(e).
It is denoted by A, g) M B(y,5)=(A N B)(arwy,506)-

4.2.7 Definition

For double-framed soft sets A, g and By, 5 over X with (AN B) # 0, the restricted
uni-int double-framed soft set of A, 5 and By, ;) is defined as a double-framed soft
set (A N B)(q0+,5n8) Where alky : (AN B) — P(X), defined by

e a(e) Ule),
and 318 : (AN B) — P(X), defined by
e — 3(e) Nd(e).

It iS denot.ed b:{ A(n,,@) LI Bh{j)={:A M B:I[nl.:.lj,iil’:‘-ﬁj'
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4.2,.8 Definition

For double-framed soft sets A, g) and By, ) over X with (AN B) # 0, the restricted
difference double-framed soft set of A, ) and By, 4) is defined as a double-framed soft
set (AN B)q_y,3_s) Where a — v : (AN B) — P(X), defined by

e — afe) — v(e),
and 3 —d:(ANB) — P(X), ddefined by

e Ble) — d(e).
It is denoted by A g) — B(y,5=(A N B)(a—v,5—5)-

4.2.9 Definition

Let A, 5y be a double framed soft set over X. The complement of a double framed
soft set A, g) is defined as a double-framed soft set A(,- o) where

a®:A—-P(X),e—(a(e))and 3°: A - P(X),e— (8(e))"

It is denoted by A, gy-=A(qe 5y

4.2,10 Example

Let X be the initial universe and E be the set of parameters, where X = {x,29,23,24,25,25},

E = {ey,e9,e3,4,e5}. Suppose that A = {es,e3}, and B = {e3,e4,}. The double-framed
soft sets A, g and By, 5 over X are given as follows:

It : A — P(X),
g s {z2, 5,25} if e = e,
{%1,%3, 74,25} ife=ey,
g  A-=PX),
P — {21} ife=e,
X ite = eg,
and
¥ : B-=PX),
X if e = e,
e — :
{z1, 24,1} i €=egy,
5 BoP(X),

5 {21, 24, 25,26} if e = e,
{@1, 29,25} if e = ey.

Now, we apply various operations on A, g and By, 5. Then
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(i) A(a,p) Us Biy.6)=(AU B)(q0,87s): Where

(alvy) : (AuB) - P(X),
{z9,z5, 26} 1if e = es,
e — X if e = eg,
{@y, 24,06} ife=ey,
(818) : (AUB)—PX),
{21} if e = ey,
e — {1, 24, 25,26} if e = e,
{1:1,:?:-_;_.335:! ife= €4;

(ii) A¢a,) M Biq,5=(A N B)(apiy,s08), Where

(af3) : (ANB)—=P(X),
e3 +—— {x1,73,%4,T5}
(BU8) - (AnB)—="P(X),

ey — X

{iii:l A[n,.‘}] — Bh‘é)i(‘q U B}[(I---.’),S‘ B where

a ~— ¢:(4AUB)—-P(X),

{.If-_g,l'{—,, Iﬁ} it e = eg,

e — {} if e = es,
{21, 24,26} ife=ey,

B <« «8:(AUB)—=P(X),
{a1} if e = es,

e —+ {@o, 23} if e = e,

{21, w0, 25} if e = ey,

iv) A, gye=A(qc goy, Where
(o, 3) (e=,8%)

a® A= P(X),
P { {®1,%3,24)} if e = e2,
{xg, 26} if e = eg,
B 1 A—PX),
g, T3, T4, L5, if e = eq,
B {}}" o & if e = es.

4.3 Properties of Double-framed Soft Sets

In this section we discuss properties and laws of double-framed soft sets with respect
to their operations. Associativity, absorption, distributivity, de Morgan laws and
properties of involutions, complementations and atomicity are investigated for double-
framed soft set theory.
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4.3.1 Definition

A double-framed soft set over X is said to be a relative null double-framed soft set,
denoted by Ag x) where

b:A-P(X),e—0 and X¥: A - P(X), e— X.

4.3.2 Definition

A double-framed soft set over X 1is said to be a relative absolute double-framed soft set,
denoted by A(x g) where

¥:A-PX),e—nXand : A - P(X),e— 0.

Conventionally, we take the double-framed soft sets with empty set of parameters
to be equal to §(s x) and so A(q 5B, 5)=A(a,8) U B(4.6)=0(#,x) whenever (ANB) = {.

4.3.3 Proposition

It Ay is a null double framed soft set, Ay 5) an absolute double-framed soft set,
and Ay, g, A, 4) are double framed soft sets over X, then

1) A Ue Ay 5)=Afa,s U Ay6)
2) A, Ne A5 =A(a,8) N Ay 5)
3) Afa,s) N Afa,5)=Ata,5)=A(a,8) U A(a,8)s
4) Aap U A= As =A@ M Ax,e);
8) Ap g U Aix,0)=Ax,2)5 Arap) N Aa,x)=A(2,3)-
Proof. Proofs of 1), 2) and 3) are straightforward.
4) As A, U Agx)=A(acs grx)- Therefore for any e € A,
(aU®)(e) = a(e) U B(e) = a(e) and (8NX)(e) = Ble) N X(e) = Ble).
Thus A, 5y U A 2)=A(a.5)-
Again, A, ) N A(x 3)=A(anx,s00)- For any e € A,
(anX)(e) = ale) NX(e) = ale) and (BUB)(e) = Ble)U B(e) = B(e).
So A(a,p) M A@.2)=A(a.8)-

Part 5) can be proved in a similar way. =
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4,3.4 Proposition

Let A(q gy, B4 and C¢ ;) be any deuble-framed soft sets over X. Then the following
are true

1} A[ﬂl_ﬁ‘})‘(B{T,é}AC{C.’J})E(A(GL'S};\B{TFJ});\C(C!'T}’ I:AESDCiat.ive Laws)
2) A pAB(y5)=Br.s A0, (Commutative Laws)

for all A € {U, U, N, M}

Proof.

1) Since A(q,g) Us (B(y,5) Ue Cieom)=(A U (B U C))(aciiic),85(50m)), We have for any
ec AU(BUC):

(i) fee A—(BUC), then
(aU(yU¢))(e) = ale) = ((aUy)TC)(e)
(B0(B0m))(e) = B(e) = ((803)"m)(e)
(ii) fec B-(AUQ)
(a0(yU0))(e) = 7(e) = ((aUy)UC)(e)
(80(8Nm))(e) = &(e) = ((BrE) m)(e)
(iii) Ife € C — (AU B), then
al(yUg)(e) = (le) = (aly)Ug(e)
sr(anm)(e) = nle) = (BNd)Nn(e)
(iv) Ifec (AN EB) — C, then
al(yUC)(e) = ale)Uqle) = (aly)(e) = (aUr)UC(e)
an(dnm)(e) = Ble) Nd(e) = (8nd)(e) = (BN3)Nn(e)
(v) fec (ANC) — B, then
a0(1K)(e) = ale)Ugle) = (aly)T¢(e)
BAEm)(e) = Ale) Nnle) = (B76)m(e)
(vi) Ifee (BNC) — A, then
al(yU¢)(e)
BA(5m)(e)
(vii) Ifee (AN B)nC, then
alJ(v)(e) = ale)U(v(e)Ul(e)) = (ale) Ur(e)) Ul(e) = (aly)UC(e)
BA(dNm)(e) = B(e) N (3(e) Nnle)) = (B(e) Nd(e)) Nnle) = (BNE)n(e)

Thus A(ag) Us (B(y,6) Us Ce,)=(A(a,) Us B(y,5)) Ue Ciep)- Similarly, we
can prove for A € {L 1,1}

v(e) U(e) = (aUy)U¢(e)
d(e) Nle) = (B18)Nn(e)

2) This is straightforward.
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4.3.5 Proposition (Absorption Laws)

Let A, 5), B8 be any double framed soft sets over X. Then the following are true:
1) Ata,8) Ue (B(3,8) M Afa,8))=A(a,5);

2) At 1 (Biy.6) Ue Ata)=Ac,9);

3) Aap) U (B Me Aia,8)=A(a,8),

4) A, Ne (Byo) U Aa,9)=A(a 0.

Proof. Straightforward. m

4.3.6 Proposition (Distributive Laws)
Let A gy, Biys) and Cic oy be any double-framed soft sets over X. Then
1) A, Ue (Biyo) U Cgm) E(A(a ) U Bir,)) U (Aa) Us Cigmp)s
2) Aga,5) Ue (B(5) Me Cien)2(A(a,8) Ue Bir,)) Ne (Aga,9) Ue Cim)s
3) Afap) Ue (By.8) M Clem) =(Aa,8) Ue Bi3,8)) M (Aga,8) Ue Ccim)s
4) Aa,p) U (B(y,8) Us Cle ) =(A(a,8) U Biy,5)) Ue (Aa,8) U Cigim)s
8) Aa,8) U (By,) Ne Cien)=(A(a,8) U By,6)) Ne (A(ay U o)
6) Aap U (B8 N Clgm))=(A(ap) U Biy,8)) M (A(a,8) U Ciem)s
7) Aty Ne (Biy) Us Ciem)E(Aiag) Mo Bn.5)) Us (Afa,8) M Cie.my)s
8) Afa,p) M (B(y,5) U Clem))=(Aa,8) N B(r,5)) U (Aga,8) Me Cieiny)»
9) Aga,8) Ne (B8 M Cle.) 2(Aga,8) Me B(3,6)) M (Ao, Te Ciem):
10) A(a,8) M (By,s) Ve Clea) =(Aa,8) M By.)) Us (Agas) M Ciemy)s
11) Ay N (B8 N Clem)=(A(a,s) N Biy.5)) Me (A8 0 Cem)
12) Afa,5) N (B(y.a) Y Ciem)=(Afa,) N By,5)) U (Afap) T Cigm)-
Proof. Consider 10)

Aa,p) N (B(y,6) Ue Clem)=(A(a,8) 1 Biy.5)) Ue (A(a,8) 1 Cre my)-
For any e € A (B U C), we have following three disjoint cases:
(i) fec AN (B - C), then

(an(yUQ))(e) = ale) Ny(e) and (BU(dNn))(e) = Ble) U &(e)

and

((afm)O(a))(e) = (af)(e)Ul = afe) Ny(e) and
(BIA(BIM)e) = (BI8)(e) N X = Ble) Us(e).
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(ii) Ife € AN (C — B), then
(an(vU¢))(e) = ale) N¢(e) and (80U(67n))(e) = Ble) U nle)
and

fu (an)(e) = ale) N {(e) and
X n(80m)(e) = Ble) Unle).

((aM)0(anE))(e)
((8U)N(8Un))(e)

(iii) Ifee AN(BNC), then

(@N(yU¢))(e) = ale) N (y(e) Ucle)) and
(BU(6Nn))(e) = Ble) U (d(e) Nnle))
and
((afy)U(ang))(e) = (afiy)(e) U (anc)(e)
= (afe) Ny(e)) U (ale) N(e))
= ale) N (y(e)uU(e)) and
((BUS)N(BUN))(e) = (BUS)(e) N (BOn)(e)
= (B(e)udle)) N (B(e) Un(e))
= Ble) U (d(e) Nnle)).
Thus

Aa,p) T (B(y,8) Ue Ciem) =(A(a,8) M B(y,5)) Ue (A(a,8) N Cigmy)s
Similarly we can prove the remaining parts. m

4,3.7 Example

Let X = {my, mg, mg, My, ms, mg, m7, mg} be the set of candidates who have applied
for a job position of Office Representative in Customer Care Centre of a company. Let
E = {&, &9, 23, 24, ¥5, 25, 27, 05, x9 } = {Hard Working, Optimism, Enthusiasm, Indi-
vidualism, Imaginative, Flexibility, Decisiveness, Self-confidence, Politeness}. Suppose
that A = {@1,29,23,26,27,20}, B = {x0,24,25,27,28}, C = {a3,25,27,29}, the double-
framed soft sets A, 5), By, s, C(¢) describes the “ Personality Analysis of Candi-
dates” for three different positions. The company has recorded this data obtained
through interview and practical sessions conducted by a panel of experts which is
presented by mappings a,7y, ¢ and 4,4,n for three positions respectively. The double-
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framed soft sets A, ), B(,.5), Ci¢n) Over X be given as follows:

Now

and

a : A—=PX),

g : A—-PX),

§ : B-—-PX),

¢ : C—=PX),

n:C—P(X), e—s

"

{my,my, ms, mg, mg}

{my, ma, ms, myg, my, mg}

i
{ma, my, mg, my, mg
{my, ms, mg, my }
{ms,ms, ma}

¥

{ma, mg, mq, mg, mz}

e, o

11y 4 Tg, Mg, Mg, T, ma}
{ma, ms, mg, mz }

11y 4 TTg, TR, TThg, TG, ma}
{ma, ma, ms, mg, my}

my, ma, ms }

{my, ms, mg, my, mg}

e, e, g,

b, o

S,

{my,ms, mg, mg, m7}

e,

{ma, mg, my, mg}
{my, ma, my, mg, mz, Mg}
{ma, my, mg, mg}

{ml, ma, Mg, Ms, Mg, mr}

{ma, mg, my, ms, mg}
{my, mg, m7, mg}

{ma, m4, ms, m7}
{my,mo, ms}

{ma, myq, mg, mg, mz, Mg}

{mg5, m7,mg}
{m1, ma, my, ms, Mg, M7 }
{mg, m7}

{my,ma, ma, ma, ms }

{my, mo, m3, my, ms, mg}
{ma, my, mz, mg }
{ma,ms, mg}

{ma, m3, ms, mg, my, mg}

if e
if e
if e
it e
if e
if e
if e
if e
if e
if e
if e
if e
ife
ife
if e
if
if
if e
ife
if e
ife
ife
if e
if e
if e
if e

ife=
ife=
ife=
ife=

A(a,p) Me (Biy,5) N Ce ) =(A U (B N C))afityie), 80(50m))

Ty,
Iz,
I3,
L,
T,
Lo,

T,
Lz,
T3,
L,
IT,
Iyg.
T2y
Ty
Is.
Iy,
g,
Ia,
Ty,
L5y

(Aga,8) Me Biy,6)) M (Aa,8) Ne Ce) =((A U B) N (AU C))((ar)i(ainc),(806)(BTn))-

Then the approximations for parameter zs2 are not same on both sides e.g.

(aN(y1¢)) (z2)

(BU(8Um))(w2)

;

{my, ma, m3, mg, my, mg}
{my,ma,ma, m7} = ((aNy)"(aN¢))(zs) and

o,

{mq, mg, mg, my }

ma, M3, M4, M5, Mg, m7} = ((BU8)0(B80n)) (x2).
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Thus

Afa,p) Ne (B(q,8) N Ciem) E(Afa,8) Me Bih,s)) M (Aga,s) Me Ciem))-
Now, consider
A(a,8) Me (Byq,8) Ue Ciem)=(AU (B U C)) (o), 80(50m))
and

(A(a,8) Me B(y,8)) Ue (Aa,8) Ne Ciem) = (AU B) (o, s08) Ue (AU Clare,80m)
((AUB) U (AU C))((arm)iifaic),(806)(B0m))

Then the approximations for parameter 3 are not same on both sides e.g.

(NI (za) = {my,ma, ms, ms;}
#  {my,ma, mg, mg,mz,ms} = ((ay)2{an¢))(z2) and
(B0(80m))(z2) = {ma,ma, my, ms, ms, M7, ms }

# {ma,mg,mg, mz} = (8U8)N(BUn))(x2).

Thus
A(a,8) Ne (B(y,8) Ue Ci¢n)) #(A(a,8) Ne Biy,s)) Ue (A(a,8) Ne Ciemy)-
Similarly it can be shown that
Afa,p) Ue (Bira) U Ciem)#(A(a,) Ue Bin,a)) U (A(a,8) Ue Ciem):
Afa,8) Ue (B(y,8) Ne Cig)) #(A(a,8) Ue Bia,8)) Me (Afa,8) Ue Ciem))-
4.3.8 Proposition
Let A, 5, B4 and Ci; ) be any double-framed soft sets over X. Then
1) A[a,ﬁ) Ll (B(T.ﬁ) MNe C{C,q]]i{A(nﬁ) Lle B{T‘,j}} Ie (A(u:_-_g} Ue C{c,ﬂ} if and O]]I}" if
ale) C v(e) and 3(e) 2 d(e) foralle € (AN B) — C and
ale) C ((e) and S(e) 2 n(e) forallec (AN C) — B.
2} A[ﬂ,ﬁ) Me {B[';.,E) L C{C,n}]i(‘é(n.ﬁ) Me B{T.é}} L. (A(u,.'.?] Me (:“(erj} if and O]‘Ily if

ale) 2 ~le) and B(e) C d(e) foralle e (AN B) — C and
ale) 2 ((e) and B(e) Cy(e) forallec (AN C) — B.

Proof. Straightforward. m
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4,3.9 Corollary
Let A 5), B, and C¢ ) are three double-framed soft sefs over X. Then

1) Aa,8) Ue (B(y,9) M Cie.m)=(A(a,8) Ue By,8)) Ne (A(,8) Ue Ciemp)
2) Aa,8) Ne (B(y,) Us Clem)=(A(a,8) Me By,5)) Us (A(e,8) Me Cic.n))
if and only if
ale) = ~(e) and B(e) = (e) for all e € (AN B) — C and
ale) = ((e) and Ble) =nle) forallee (ANC) - B.
4.3.10 Corollary

Let A, g), B(y,s) and Cic ;) are three double-framed soft sets over X such that (AN
BYy—C=(ANC)- B ={. Then

1) A(a,8) Ue (Biv,8) T Cie))=(Afa,8) Ue Bia,6)) Ne (Afa,8) Ue Ciem)s
2) A g Ne (Biy,5) Ue Cem))=(Aia,3) Ne Biy,sy) Ue (Afa,) M= Ciem)-

4.3.11 Corollary

Let A, 3, Agy.6) and A, are three double-framed soft sets over X. Then

A,y M Ay, A () =(A(0,8) M (3,0 )1 Aja,3) A (¢ )

for distinet A, p € {M.,M, U, U}

4.3.12 Theorem

Let A(, 5 and B, s5) be double-framed soft sets over X. Then the following are true

1) A, g Us By g) is the smallest double-framed soft set over X which contains both
Afa,g and By, 5). {Supremum)

2) A M By is the largest double-framed soft set over X which is contained in
both A, 5 and B, 4. (Infimum)

Proof.

1) We have A,B C (AU B) and a(e),y(e) € ale) Uy(e) and B(e) Nd(e) € 3(e),
3(8)“5(9) Q {5(9) So A[Q,S}(;A(Q.S}UFB{';,J) and B(T“;}QA(Q-!S}UFB{,N;). Let C(C‘?)
be a double-framed soft set over X, such that A{Q_SJ, Bh:ﬂ»JC_ZC'@:,”. Then A, B C
C implies that (AUB) C C and a(e),v(e) C ((e) implies that ale)U~(e) C {(e).
Also n(e) € B(e), nle) C d(e) imply that nle) C Ble) N dle) foralle e AU B,
Thus A(a,5)Ue Bi,.6)SCic.m- 1t follows that A, gL B,.4) is the smallest double-
framed soft set over X which contains both Ay, g and By, 4.
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2) We have ANB C A AN B C B and ale) N ~y(e) C ale),ale) Nvy(e) € y(e) and
Ble) C Ble)Ldle),d(e) € Ble)ud(e) foralle € ANB. So Ay, gl B(?EJ)C;A(QES)
and A[OIS]FIB[_,IJ)EQBM_‘&}. Let C; »y be a double-framed soft set over X, such that
Clem)TAie,5) and Clgy)SB(y.4)- Then € C A, C C B implies that C C AN B
and ((e) € afe), C(e) C S(e) imply that {(e) C afe) N B(e), and S(e) C nle),
d(e) C nle) imply that 3(e)ud(e) C nle) foralle € €. Thus C(c:,?}QA(Q:S)I‘IBh‘ﬁ),
It follows that A, gy B(,4) is the largest double-framed soft set over X which
is contained in both Ay, g and B, 5.

4.4 Algebras of Double-framed Soft Sets

In this section, we discuss the ideas of lattices and algebras for the collections of
double-framed soft sets. Let DSS(X)F be the collection of all double-framed soft sets
over X and DSE(X) 4 be its subcollection of all double-framed soft sets over X with
fixed set of parameters A. We note that these collections are partially ordered by the
relation of soft inclusion C given in Definition 4.1.2.

4.4.1 Theorem

(DSS(X)E,n,,u), (DSS(X)E,u,N.), (DSS(X)E,u., M), (DSS(X)E,N,L,),
(PSS(X) 4, U, M), and (PSS(X) 4,M,U) are complete lattices.
Proof. Let us consider (DSS(X),M.,U). Then for any double-framed soft sets
A(Q1.'j}, B["r"ﬂ’ C[C.IJ}I 1= PC“S(X:]E, we have

1) Afa,)NeB(y,5)=(AUB) (o 506 € PSS(X)F and Aq,5)UB (5 =(ANB) (a0, s05) €
PSS(X)E.
2) From Proposition 4.3.3, we have A(, g7 Ao g =A(a,8) a0d Ay g)U A 5)=A(a,5)-

3) From Proposition 4.3.4 we see that Aa,p) Ne B(Trﬁ}éB(Tﬁ} Ne Afe,g) and Ay, 5 U
B(3,8)=B(,6)U A(a8)- Also A(a 57 (Biy,5)0 Ciem) = (Aga,) N Biy,5)) M Cgn)
and Aga,g) U (Bey,g) U Cgn))=(A(a,8) U By, U i)

4) From Proposition 4.3.5,
Afa,5) N (B(y,6) U Afa,8))=Afa,) and A(a,g) U (B(y.,6) N A(a,5))=A(a,8)-
So we conclude that the structure forms a lattice.

Consider a collection of double-framed soft sets {A;,, 1 € I'} over X. We have,

v )

U A; € E and, let Ale) = {j : e € A;} for any e € A;. Then m ai(e) € X and

ief i€ Ae)

U Bile) € X. Thus NeAig,. 4, € DES(X)E. Again, we have, ﬁ A; C E and for any
iel gt iel

e €[] A | Jaile) C X and (] B;(e) € X. Thus Y Aias) € DSS(X)E.

ie] el el
Similarly we can show for the remaining structures. m




4. Algebraic Structures of Double-framed Soft Sets 61

4.4,2 Theorem

(DSS(X)E,M,Ue, bo, 2y, Biz,0)(PSS(X)®, Le, N, Bz ), ba,x))»

(PSS[:X)‘_P 1,4, AE‘EE}’ A[I,‘[’}] &IId{P&qﬁ{X}A y Ly Iy A(_{‘q,}, A(@{)} are bounded
distributive lattices.

Proof. Proposition 4.3.6 assures that (‘P&“?(X}E,I‘LI_IE} and (ﬂSS(X}E,LIE,I‘I)
are distributive lattices. From Theorem 4.3.12, we conclude that (ﬂSS(X}E, M, L;
@), E(x.a)) is & bounded distributive lattice and (DSS(X)®,U., M, Ex 4y, 0(a.3))
is its dual. For any double-framed soft sets Ay, 5, A(y.5 € PSS(X) 4,

Aop) N Apysy = Aarnsog € DSS(X), and
AU Ang = Aainsns € DSS(X),.

Thus (PSS(X),4,M,0) is a distributive sublattice of (DSS(X }E \U:,M) and Propo-

sition 4.3.3 tells us that Ag x), A(x e) are its lower and upper bounds respectively.

Therefore (DSS(X) 4,M,U, A@ x), A(x #)) is a bounded distributive lattice and
(DSS(X) 4, U1, Ax,4), Aga,x)) is its dual. =

4.4.3 Proposition

Let A, 5) be a double-framed soft set over X. Then A, g)c is a complement of A, 3.
Proof. As A(q5) U A(ag)e=A(atac gng). Now, for any e € A,
(alef)(e) = ale)U(ale))*=X and
(BN8%)e) = Ble) N (B(e))f = 0.
Thus A[O,-'g:l L A(ﬂ,-‘?]ciA[.t,‘[’}‘
Again, we have A, 5 N A{a,.’i}ﬂi‘q(aﬁnc.ﬁuﬁﬂm so for any e € A,
(aNa)(e) = afe)n(ale))*=0 and
(B0B)(e) = Ble)U(Ble))° = X.
Thus A(n,ﬁ)ﬂfq[ﬂ‘ﬁ)ciﬂ(ﬁ‘_}:). From A[n‘ﬁ)'f_';“-l[ulg}r-iﬂ{x‘fp} and A(nn:l’j ﬂ..‘l(u:g)r-ﬁfi(.pvr),
we conclude that A, g)c is a complement of A, g).
Now, we show that A, g)- is unique in the bounded lattice (DSS(X) U, A(x #),A(e,x))-

If there exists some A, 5 € DSS(X), such that A, gy U Ap, 5= Az ) and Ay N
Ay 5)=A(3,x). Then for any e € A,

ale) My(e) =0 and S(e)ndle) =1
= 7(e) € (a(e))® = a%(e) and 5(e) € (B(E)) = 5°(e)
and
a(e) T X = a(e) Uy(e) and 5%(e) C X = F(e) U &(e).
Bug
ale) N a(e) = I and g(e) N 5%e) = I so
a“(e) € ale) Uy(e) = a®(e) S v(e) and 3%(e) € B(e) U d(e) = 3%(e) < d(e).
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Therefore
v(e) = af(e) and 5(e) = B%(e) for all e € A and A, 5)=Aa)c-

Hence A, gy is unique complement of A, 5. ®
4.4.4 Proposition (de Morgan Laws)
Let A, 5 and B, 5 be double-framed soft sets over X. Then the following are true:
1) (A(a,8) Ue B3,8)) =Ata,p)c Nz Biae,
2) (A(a.5) NeB(2.0))=A(ap)c U= Biro)e
3) (A(a,8) YV Br,9)*=A(a,8)° A By
1) (Ap) A B5)) =A@ p V Birsys
8) (A(a) U B(y,5) =A(a,8)c N By,
8) (A(a,8) N B(5,8)=A(0,8) U By g)e-

Proof.

1) We know that (A{n‘_;;) (1 Bh_‘&})‘:i(_.cl W] E}(QQT,_gﬁé}.:ﬁl:A U B}{(Qh}n_w,—‘-ﬁ)n}. Let
e € (AU B). Then there are three cases:

(i) Ifee A— B, then

(aUy)(e) = (ale))® = a®(e) and (a°Ny®)(e) = a®(e) and
(8N8)(e) = (B(e))® = B°(e) and (5°0U8°%)(e) = 5(e).

Thus

(aly)(e) = (a“M~")(e) and
(8M8)(e) = (B°0&%)(e).

(ii) If e € B — A, then

(@078 = (1e))® =7°(e) and (a“F*)(e) = () and
(BR6)%(e) = (8(e))° = &%(e) and (5°US%)(e) = &°(e).

Thus

{a“1v°)(e) and
(8508 ().

(aUy)°(e)
(BN&) (e)
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(iii) It e € AN B, then

(aly)(e) (a(e) Unle))® = (ale))N (y(e))® and
(8U8)(e) = (Ble)nd(e))® = (Ble))" U (3(e)),

and

(ay%)(e)
(8°78¢)(e)

(a(e)® N (v(e))® = (ay)(e) and
(B(e))" U (3(e))° = (BUS)“(e)-

Therefore, in all three cases we obtain equality and thus

(A(a,8) Ue B(y,5)) "= A(a,8) MNe By 5)c-
The remaining parts can be proved in a similar way.

4.4.5 Proposition

(PSS(X) 4,7, 0,7, Afp,xy, A(x.4)) is a de Morgan algebra.

Proof. We have already seen that (PSS(X) 4,M,U, A(g x), A(x,#)) 15 a bounded
distributive lattice. Proposition 4.4.3 show that " " is a complementation and hence
an involution on PSS(X) , and Proposition 4.4.4 shows that de Morgan laws hold with
respect to " “" in DES(X),. Thus (PSS(X) 4,1, U°, Ap x), A(x @) is a de Morgan
algebra. m

4.4.6 Proposition

(PSS(X)a,M,U,5, Ag x)s Ax,4)) 18 a boolean algebra.

Prool':. Proof follows trom Propositions 4.4.4 and 4.4.3. =
4.4.7 Proposition
(PSS(X) 4,7, 1,7, A xy, Agx,e)) is a Kleene Algebra.

Prooi:. Note th&t, A[.hd] M A[)‘,&}"5@[19:.1'}&‘4(1_{?]EA(n:S} LI A(HJJ V‘-"e alreacl}'
know that (DSS(X)a,M,U,°, As x), A(x4)) is a de Morgan algebra, so this condition
assures that (DSS(X)a,M,U,%, A@ x)s A(x,@)) is also a Kleene Algebra. =
4.4.8 Definition

Let A, 3 be a double-framed soft set over X. We define
(A(a,8))°=A(a,8o=A(8,a)-

4,49 Proposition

Let A, 5) be a double-framed soft set over X. Then A, 5=(A(a,5)2)°, Ax,a)p=4(s.x)
and :‘l(:p‘_r)oiﬂ[_r‘q.].
Proof. Straightforward. m
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4.4,10 Proposition (de Morgan Laws)
Let A, 5 and B, ;) be double-framed soft sets over X. Then the following are true
1) (Ao Ue Biy,8))"=A(a,p° M= By ape,
2) (Afa,8) Ne B3,0))"=4(ap)e Ue Biy,apes
3) (Afa,8) V B(1,6))°=A(a,8 A By oy,
4) (A8 A B(y5)°=Aag)e V By sy,
5) (A(a,8) U B(n,5)°=A(a,8)° N By g0,
6) (A(a,8) N By,8))°=A(a,8)° U B(y.6p-
Proof.
1) We have (A5 g) U B(y,6))°=((A U B)(asy,506))° =(AU B) (g a0y and
A(a,ppe Ne B gie=4(5.0) Ne Bgn=(AU B) (575 a07)-
Thus (A(a,8) Ue Biyd))°=A(agye Me Beyye-

The remaining parts can be proved in a similar way. m

4,4,11 Proposition

(PSS(X)a,M,1,°, Ara %) A(x,#)) is a de Morgan algebra.
Proof. Proof follows from Propositions 4.4.9 and 4.4.10. m

4.4,12 Definition

Let A, 5 be a double-framed soft set over X. We define A(n,_ﬁ‘){’ as a double-framed
soft set A, xy where

a® : A= P(XJ, £ (Q‘[e}}c

¥ A-PX),e— X.
4.4.13 Proposition
Let A, 5 and Ap, 5) be double-framed soft sets over X'. Then
1) Aps) N A s0=Aw.x),
2) A[-.hé]iA[a‘:j]{) whenever A¢, 5 M A y=A(e.x)-

Proof.
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1) For any e € A,

(v")e)
(8UX)(e)

v(e) N (y(e))* =0 = ®(e) and
dle)UX = X = X(e).

Thus Ay M A g0 =4(8,%)-
2) Assume Apg) M Aa,s) =A@ x). Now, for any e € A,
r(e)Nale) = (yNa)(e) = ®(e) =@ and so y(e) C (ex(e))® = a(e).
Also d{e) € X = X(e).

Therefore A(",‘JJCA[G.__SW. So, we conclude that (PSS(X )4, M, L,%, Aa x) Az )
is psendocomplemented.

4.4.14 Proposition

Let Aoy, B8 € ‘DSS{X}E. Then pseudocomplement of Ay, g relative to By, 5
exists in (DSS(X)F,n,L.).

Proof. Consider the set

T(Aa,8) Biy8) = {Cigm) € SS(X)® : Ciey M Aa,5)C By -

We define a double-framed soft set AC . 5y Ue By 5)=(A°U B) ey gois) € DSS(X)E.
Then

(A°U B)(qeoy,gers) T A,y =  ((A° U B) N A)gaetin)ia, (8556)08)
((A° N A) U (B N A))((acra)0(via),(8°08)AGE0E))
(AN B) 410,08 S Br.0)-
Thus {A° U B}(ﬂem:ﬁ-rmg) = T{A[ng},Bh,‘;)). For any C(‘i.':'i} € 'T(A{,_-..m,Bh“;}), we
have Ci¢ y M A4 2)CB(, 4 s0 foranye e CNACB

¢(e) N a(e) € 1(e) and n(e) U Ble) 2 3(e)

Il

Now,
CNACB=(ANnC)NB*=10
=>CC(ANBY)*=A"UB
and
Ce) N a(e) C v(e) and n(e) U S(e) 2 &(e)
= (e)N ale) Ny (e) = @ and 5°(e) N 5%(e) C &°(e)
= ((e) C a(e)Uy(e) and n%(e)ng(e)ndle) =1
= ((e) Ca(e)Uy(e) and 5°%e)ndle) C nle).

Thus C’(c,,,;\i(“lc U B)(actiy,g°76)» also

(A°U B)actngor8)= \ T(A(a,8)s B(r,6))=A(a,8) = Bir)-
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4.4.15 Remark

We know that (PSS(X),.1,U) is a sublattice of {'PL‘-'L‘:(X)E,HE-.ru}. For any A, ),
Ay € PSE(X),, Afa,s) — Agq,s) as defined in Lemma 4.4.14, is not in PSS(X) 4
because A(n.:’i) — Ah‘a’)i{Ac lJ A:]I:a':l:h,3‘:r_16}£El,’n"l:w.,-‘j“ﬁd) e ‘Ptqtq()‘:}._l.

4.4.16 Lemma

Let A, 5y, A(y,5) € PSS(X),. Then pseudocomplement of A, g) relative to A, 5
exists in DSS(X)A.
Proof. Consider the set

T(Aa,8) A(r8) = {Aim € DSS(X) 4 2 Agein) N Ala,p) S A1) }-

"'.i\"cla define a double-framed soft set A(qe ge) U A(y.6)=A(acon,gom6) € PSS(X),. Con-
sider

Acimger) T A@g) = Alasin)ta(8h6)08)

A((athia)O(yRa),(B°0B)A(S08))

A((ri0),(508) EA(7.9)-

Thus A{ﬂcc_.r:.acf‘j} € T(Aa,py A(y,s)). For every Ay € T(Aga gy Aq)); We have
A(t:‘].” M A{a,_ﬂ]gAh,&) so for any e € A1

¢(e) Nale) € y(e) and n(e) U B(e) 2 d(e)
= ((e) N a(e) N °(e) = @ and 5°(e) N 8%(e) C 6°(e)
=((e) Ca®(e)Uvy(e) and xn%(e)nS%(e)nédle) =10
= ((e) S a®(e)Uv(e) and 3°(e) Nd(e) S nle).

Thus A[C.,”Q,ﬂl(ueﬁmg-:m} and also

Aaetmgensy= V T(Awap)s A = Aw8) A Ay s)-

4.4.17 Proposition

{T-'&\‘(X)E,l_lc-,u] and (DSS(X) 4,,U) are Browwerian lattices.
Proof. Follows from Lemmas 4.4.14 and 4.4.16. m

4.4.18 Theorem

(PSS(X) A, Agz,gy) is an MV-algebra.
Proof.

(MV1) (PSS(X)a,0, Agx ¢)) is a commutative monoid.

(MV2) (A5 ) =4
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(MV3) Agx 2y A= A@,x) T A=A 0)=Ax,0)
(MV4) (Aq,gye M Ay5)° T A

=(A(ar,e) N A(y,5) )50 Afy,6)

=(A(ar,5) U Agy5)e) 1 Ay )

=(A(a,g) U Aye,g0)) M Ay )

Z(A(a,p) N Ap5)) U (Aye,6) N Agrs)

=(A(a, N Ay U A x)

=(A(y,5) 1 A(a,5)) U (Aa,8)c N Afa,8))

=(A(0 U Apgy) N A

(A, M A(a8))° N Aa,p)

for all A gy, Ay.6) € PSS(X)a. Thus (PSS(X)a,M°, Az g)) is an MV-algebra.

4.4.19 Theorem

(PSS(X)a,U°, Ajp x)) is an MV-algebra.
Proof.

(MV1) (PSS(X)a,U, Aig x)) is a commutative monoid.
(MV2) (A(,5))=A0.5)-
(MV3) Agx)c U A= Aix0) U A= Ax.0) =A@ x)e-
(MV4) (A(q,0): U A3,8))° U Apr0)

=(A(ac,5) U A9))* U i)

=( A5ty NAgr,0):) U drg)

=(A(a,8) M Apes) UAg

(A U Apy,)) T (Agge 5y U Ar )

(Ao U Apa) N Az 0)

=(A(y,5 U Aa,5) N (Aga,8)e U Afas))

=(A(1,5) 1 Aa,pe) U Ao )

=(Agy,5pe U Aa,8))° U Afa,5)

for all Ay ), A(y.5) € PSS(X)a. Thus (PSS(X)a, U, A(e,x)) is an MV-algebra.
L]
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4.4,20 Theorem

(PSS(X ]_.-i_.‘—f_..d.(fp‘q.]:l is a bounded BCK-algebra whose every element is an involu-
tion.

Proof. For any A, 3y, A(.4), Ac.n) € PSS(X)a.
BCI-1 ((A(a,8) — Ap,8) ~ (Agag ~ Ae)) = (A ~ Aqs)
(Afa—r,8-8) = Aa—com) ~ Ag—rn—3)
=A(((a—r)—la— )¢V ((B—8)—(B—))—(n—5))
=A@ = A@a)
BCI-2 (A(a) ~ (A(a,8) ~ Ar8))) ~ A
=(A(a,p) ~ Ala,p—8)) ~ A(4)
2 Aot = A i E Aty = A3
BCI-3 A — Aay=4A(2.9)-
BCI-4 Let
Aap) ~ Apn=A@e) and
Apg) ~ Appn=A@s)
For any e € A,
ale) —v(e) = I and ~(e) — a(e) = @ imply that a(e) = y(e),
also
B(e) — 5(8) = 0 and S(EN=IB(E) = 0 imply that SEVE=HE).
Hence
Aa,8)=A(ra)-

BCK-5 A{q;__.[,] o A{ﬂl__a)iﬂ(@._"_ﬂlq)___s)5A(.§I¢.).Thus [:'pu1g1(X}‘.l, —y AW’-{"}] is a BCK-
algebra.
Now Ay x) € PSS(X) 4 is such that:

Aap) — A= Aa—xs-0)=A2,2)

for all Ai, 5 € DSS(X)4. Therefore (DSS(X)4,—, Age)) is a bounded BCK-
algebra.

For any Ay, g) € DSS(X)a,
Axxy — (Agx) — Awg)
A@x) — #@g—ox-p)
= A@.x) — Aees)
= Ax_asx_p9)
= Aace (599 = Afep)-
So every element of DSS(X) 4 is an involution, m
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4.4.21 Definition

Let A, 5 and Ay, 5) be double-framed soft sets over X. We define
Afa,8) * Ay,5)=A(a,p) 1 Ay 8)-

4.4.22 Theorem

DES(X) 4%, A is a bounded BCK-algebra whose every element is an involution.
($,X)
Proof. For any A, 3), A(y.4): Aicm) € PSS(X)a.

BCT-1 (A0 * Ay.8)) * (Aa) * Aigm)) * (A * Apy )

=(Afany pes)ias((as,m)) * Ay ned)

= A () an ) (C37), ((B38)+(Bam)) (1738))

= A(((afiye )4 (afiCe) (A=), ((BUS°)(BON) ) (n15°))

= A(((arme ) (afige))AC e ), ((BUG) D BUne )0 (nUise)e)

=A(((arfe ) (@ TENA(ET ), (BU6°) (B Am) O(n36)

= A(aiig)Arenge) (Bon)0eone)) =A@, x) -
BCI-2 (Aps * (A * Apns))) * A

=A(an(arie)e, 80806 * A(r,9)

=A(ari(a0n),60(8°76)) * A(,6)

=A(afiy,p06) * A(2,6)

= A (arm)irye,(806)6°) = A, 1)
BCI-3 A * A=A amc sos) = A 1)-
BCI-4 Let A[um * Ah‘ﬂ-]i}l[q,l_r} and Ah.-f}l ® A{nlj}i.ﬁ-l,[q,:xj. For any e € A,

a(e) N(y(e))® =0 and y(e) N (a(e))® = 0 imply that a(e) = y(e),

also
Ble)u(d(e))® = X andd(e)U(B(e)) =X
= Ale)n(8(e))° =0 and 5(e) N(B(e))E =0
= Ble) =d(e).

HEHCB A[cx,_S}i A['),J:] E

BCK-5 Ag x) * A(a,5)=A(0ra,x48) = A(dfias, x08°) = A, 3)-
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Thus (PSS(X)a,*, Aa 1)) is a BCK-algebra.
Now Az gy € PSS(X )4 is such that:

Afag) * A, o) = Afaux,sed)
= A{nr'1_l’"..-‘3|:J'IJ"}
= A{nfud::j(.'_'f}
= A{;p“t} for all .4.{,-,.3} € DSS(X)a.

Therefore (PSS(X )4, %, A3 x)) is a bounded BCK-algebra.
For any A, g € PSS(X)a,

Ao * (A@xe) * App) = Axe)* Ag.ofdis)
= Ae) * Acas 5089
Arx 8) * A(ae,5°)
Aer(ae)e #0(87)¢)
= A@xfa,a08)=A(a,8)

So every element of PSS(X) 4 is an involution. m




Chapter 5

Double-framed Fuzzy Soft Sets
and Their Algebraic Structures

This chapter explores the theory of double-framed fuzzy soft sets which is a general-
ization of double-framed soft sets and most generalized structure in our work. Double-
framed fuzzy soft sets and their operations are defined and their characteristics are
studied. Examples are given to elaborate the concepts and to show how the ideas are
utilized to work with double-framed fuzzy soft sets. We see from examples that the
cases for double-framed fuzzy soft sets are of more generalized nature and we cannot
model those with double-framed soft sets.

5.1 Double-framed Fuzzy Soft Sets

Let X be an initial universe and E be a set of parameters. Let FP{X) denotes the
fuzzy power set of X and A, B, C' are non-empty subsets of F.
5.1.1 Definition

A double-framed pair {(f,g); A) is called a double-framed fuzzy soft set over X, where
f and g are mappings from A to FP(X).

From here, we shall use the notation A”:g} over X to denote a double-framed tuzzy
soft set {(f,g); A} over X where the meanings of f, g, A and X are clear.

5.1.2 Definition

For double-framed fuzzy soft sets A(fq) and By, over X, we say that Ay, is a
double framed fuzzy soft subset of By ;), if

1) ACB and
2) f(e) C hie) and i(e) € g(e) for all e € A,

This relationship is denoted by A[Jr‘g}éB”,:!-}. Also Ay is said to be a double-
framed fuzzy soft superset of By, if By, is a double framed fuzzy soft subset of
AUuQ)' \"\'.E denote it b}' A(J-.H):—)B[h.!'}'
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5.1.3 Definition

Two double-framed fuzzy soft sets Aqyq) and By, ;) over X are said to be equal if Ay
is a double-framed fuzzy soft subset of B, ;) and By ;) is a double-framed fuzzy soft
subsetl of A(s ). We denote it by Ay =B ).

5.1.4 Example

Let X be the set of houses under consideration, and F be the set of parameters,
X = {hy,ha,hs.hy.hs}, E = {e1,e0,e3,64,65,66} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that A = {e;.,es,e3.66}, a
double-framed fuzzy soft set Ay, describes the “highest and lowest budget ratings
of the houses under consideration” given by f and g respectively. The double-framed
fuzzy soft set Ay over X is given as follows:

f o A= FPX),
{h1/0.9,h2/0.3, h3 /0.8, ha /0.7, h5/0.5} if e = er,
{h1/0.1,hy/0.5, hy/0.1,he /0.8, hs/0.6} if e = e,

B {Rh1/0.2,ho/0.5, by (0.2, hy /0.9, hs/0.9} if e = eg,
{h1 /0.7, ho/0.4, b3 /0.2, ha /0.1, hs/0}  if e = eg,
g : A= FP(X),
{h1/0.2, ho /0.3, 83/0.3, hy /0.4, hs/0.8} if e = ey,
o ) /07 h2/0.4,ha/0.8,he /0.7, hs[0.9} it € = ez,

{h1/0.6, h2/0.4,h3/0.6,hs/0.6, hs/0.7} if & = e3,
{h1/0.9, h2/0.3,h3/0.8,h /0.7, hs 05} if e = eg.

Let B = {es,eq}. Then the double-framed fuzzy soft set B given by
{h1/0.1,ho/0.5, hs/0.1, he /0.8, hs/0.6} ife = ea,
{h/0.7,ho/04, k3 /0.2, hy/0.1,hs/0}  if e = eg,

{h1/0.1,h3/0.2, h3/0.4,he /0.3, h5/0.5} ife = e,
{h1/0.9,h3/0.4, h3/0.9, ha /0.8, hs/0.7} if e = eg.

h : B PX), e>—-{

i 1 BoPX), e—
is a double-framed fuzzy soft subset of Ay which represents a finer data analysis

and so B(,,,;]é A(1.9)-

5.2 Operations on Double-framed Fuzzy Soft Sets

In this section, we define various operations on double-framed fuzzy soft sets:

5.2.1 Definition

Let A;; . and By, ;) be double-framed fuzzy soft sets over X. The int-uni product of
A(r.q) and By ;) is defined as a double-framed fuzzy soft set (A x B)ap gvi) Over X
in which fAh: (4 x B) — FP(X), where

(a,b) — fla) A h(b),
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and gvi: (A x B) — FP(X), where
(a,b) — gla) v i(b).
It 1s denoted by Ayjg) A Bihiy=(A X B)(gingvi)-

5.2.2 Definition

Let A(sq and By, iy be double-framed fuzzy soft sets over X. The uni-int product of
A(1.g) and By ;) is defined as a double-framed fuzzy soft set (A x B)(yip gai) over X
in which fvh: (A4 x B) — FP(X), where

(a,b) — fla) V h(b),
and ghi : (A x B) — FP(X), where

(a,b) — gla) A i(b).
It is denoted by A(sq) V Bniy=(A X B)(rongii)-

5.2.3 Definition

For double-framed fuzzy seft sets A,y and By, ;) over X, the extended int-uni double-
framed fuzzy seft set of Ay, and By, ;) is defined as a double framed fuzzy soft set
(AU B)(angvi) Where fAh : (AU B) — FP(X), given by

fle) ifec A-B
e < hie) ifeecB-A
fley nhie) ifec ANB

and gVi: (AU B) — FP(X), given by

gle) ifec A-B
e ¢ ile) ifecB-A .
gle)vile) ifec ANB

It is denoted b)" A(f,g] Me B[;,I!')il:ﬂ U B)(ff\h.g\},}.

5.2.4 Definition

For double-framed fuzzy soft sets Ay, and By, ;) over X, the extended uni-int double-
framed fuzzy seft set of A(Lg) ancl BU:.:'} is defined as a double-framed fuzzy soft set
(AU B)(fingriy Where fVh : (AUB) — FP(X), given by

Jle) ifecA-B
e ¢ hle) ifecB-A
fle)yvhie) ifec ANB
and gAi: (AU B) — FP(X), given.by
gle) ifecA-B
e 4 ife) iE c B .
gleyrnile) ifec ANB

It is denoted by A(; ) Us Baiy=(A U B)(fin gii)-




5. Double-framed Fuzzy Soft Sets and Their Algebraic Structures T4

5.2.5 Definition

For double-framed fuzzy soft sets Ay, and By, ;) over X with (AN B) # 0, the
restricted int-uni double-framed fuzzy soft set of A(y gy and By, ;) is defined as a double-
framed fuzzy soft set (AN B) gz gvi) Where FAh: (AN B) = FP(X),

e f(e) Ah(e),
and gvi: (AN B) — FP(X),

e — g(e) v i(e).
It is denoted by A )M B(h,i)é(ﬂﬂ B:l(_ff\h.g":q)_

5.2.6 Definition

For double-framed fuzzy soft sets Ay, and By, ;) over X with (AN B) # {, the
restricted uni-int double-framed fuzzy soft set of Aiy 5y and By, ; is defined as a double-
framed fuzzy soft set (AN B)(top gisy Where f\h: (AN B) — FP(X), given by

e — f(e) Vv h(e),

and ghi : (AN B) = FP(X),
e — gle) Aile).
It is denoted I:l],’ A(fg] L B(h,i)i(}l!ﬂl B)U\?f:.g*"-ii'

5.2.7 Definition

Let A(f,g'] be a double-framed fuzzy soft set over X. The complement of a double-framed
fuzzy soft set Aig oy over X is defined as a double-framed fuzzy soft set Ay - 4 -y over
X where f 1 A — FP(X), given by

e (f ()’
and g "+ A — FP(X),

e (g(e) "
It is denoted by A(Lgl 'iA{f 9 ):

5.3 Properties of Double-framed Fuzzy Soft Sets

In this section we discuss properties and laws of double-framed fuzzy soft sets with
respect to their operations. Associativity, commutativity, absorption, distributivity
and properties of double-framed fuzzy soft sets are investigated.

5.3.1 Definition

A double-framed fuzzy soft set over X is said to be a relative null double-framed fuzzy
saft set. denoted by ‘4(6.11 where

0 : Ao FP(X), e — 0, where O maps every element of X onto 0
1

A — FP(X), e — 1, where 1 maps every element of X onto 1
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5.3.2 Definition

A double-framed fuzzy soft set over X is sald to be a relative absolute double-framed
fuzzy soft set, denoted by A(i_.ﬁ) where

Conventionally, we take the double-framed fuzzy solt sets with empty set of parame-
ters to be equal to "E'(ﬁ,i) and so A{f.g}HB(iz:a'jiAU,g}UBUr:z‘}i'I'(ﬁ:iJ where (ANB) = 0.

5.3.3 Proposition

It A(ﬁ,i) is a null double-framed fuzzy soft set, A{i:ﬁj an absolute double framed fuzzy
soft set, and Ay 4, A are double framed fuzzy soft sets over X, then

1) Aire U Ao =A(s.9) U Aehsiys
2) A(rg) M A =A(q) 1 Ansi):
3) A(g) N A1) =Ar9)=Alsg) U At (Idempotent)
4) Ay U Ag =A== A9 N A1)
5) Airg U Aas=Aisy Are N A1) =A61)
Proof. Proofs of 1), 2) and 3) are straightforward.
4) As Aipg A[d-,iji“q(mf),gﬁi)- Theretore for any e € A,
(£90)(e) = f(e) v O(e) = f(e) and (9A1)(e) = g(e) A L(e) = g(e).
Thus A(sq) U Ag1)=A(1.9)-
Again, Agy 0 ‘4'(1,ﬁ]£‘4[fﬁi,y\3ﬁ}' For any e € 4,
(fAL)(e) = fle) A 1(e) = f(e) and (gvD)(e) = gle) v O(e) = g(e).
So Agfg) N A{i,bjéA[f.g)‘
Part 5) can be proved in a similar way. m

5.3.4 Proposition

Let A(j.q)s Bin,iy and C(j ) be any double-framed fuzzy soft sets over a common universe
X. Then the following are true

1} Au"g]/\.{B(h,t]f\{ju,k)]=(A[L9.))‘LB“]t}))‘LCUL}, [Associati\-'e L&“-'S}

2) A AB iy =Bni) A 1.9)» (Commutative Laws)
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for all A € {U.,U,M.,MN}.
Proof.

1) Since A(yq) Uz (Bni) Ue Ciik))=A U (B U C)( ri(hvj).gAlghk))» We have for any e €

AuU(BUC):
(i) fec A- (BUC), then

(FV(RVG))(e) = fle) = ((FVh)Vj)(e)
(gA(irk))(e) = gle) = ((ghi)Ak)(e)

(ii) Ifec B — (AU C), then

(FV(hVH))(e) = h(e) = ((FfVR)V])(e)
(gh(irk))(e) = gle) = ((ghi)Ak)(e)

(iii) Ite € C' — (AU B), then

(fv(hvi))e) = jle) = ((fVh)Vi)(e)
(gA(iAK))(e) = k() = ((gAi)Ak)(e)
(iv) Ifec (AN B) — C, then

(FV(hVi))(e) = f(e)V hie) = (fVh)(e) = ((fVh)Vj)(e)
(gA(iAk))(e) = gle) Adle) = (ghi)(e) = ((gAi)Ak)(e)

(v) Ifec (ANC) — B, then

(FIRTNE) = fle)V ile) = ((FVh)Vi)(e)
(gAGAR)(e) = gle) Ak(e) = ((ghi)Ak)(e)

(vi) Ifec (BNC)— A, then

(FV(RV5))(e)
(gAGEAK)) (e)

(vil) If e € (AN B) N, then

h(e) v j(e) = (fVh)Vi(e)
gle) A k(e) = (ghi)Ake)

(fV(RVi))(e) = f(e) Vv (h(e) v i(e)) = (fle) v h(e)) V j(e) = ((fVh)Vi)(e)
(gA(iAk))(e) = gle) A (ile) A k(e)) = (gle) A ile)) A k(e) = ((ghi)Ak)(e)

Thus A(y,g) Us (Bn,i) Us C(,1))=(A¢1.g) Us Bnyiy) Ue Ciny-
Similarly, we can prove for A € {U, 1,1}
2) This is straightforward.
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5.3.5 Proposition (Absorption Laws)

Let Ay, Bini) be any double-framed fuzzy soft sets over X. Then the following are
true:

1) Agg)Ue (Bni) N A1) =A(1.9):
2) Agsg) M (Bni) Us A(r))=A(1.9);
3) Ay U (B Me Ar.))=A1.9)»
4) A(sg)Ne By U Agr.9))=A1,9)-

Proof. Straightforward. m

5.3.6 Proposition (Distributive Laws)
Let Agfq), By and Cpj iy be any double-framed fuzzy soft sefs over X. Then

1) AN (Bing Us Ci ) =(Ags,9) N Biny)) Ue (A(19) 1 Ciy)s

2) Ags,g) M (Bni) Ne C ) =(A(1,9) N Bini)) N (A(1,9) M C5y )
3) A1) 1 (B iy U Clie)) =(A(1,6) N Binyiy) U (A1) N Clipy)s

4) Asg) U (Bn,iy Ue Ciiy)) =(A(1,9) U Bnyiy) Us (A(rg) U Ciy s

58) A(sg) U (Bina) Me Cyim) =(Aqs.9) U Bii)) Me (A1) U Cliiy)s
6) A(sg) U (Biai) M Cliky)=(Ar.) U Bny) M (Ags,9) U Cliky)s

7} A(r.9) Ne (Bia,i) Ue City)) S(A(1,0) Me Bin,iy) Ue (A(sg) Me i)
8) Ags,g) Me (Biiy U Cii)) =(A(1,9) Me Bai) U (Asg) T Cliy)s
9) A(z,g) Ne (Bir,i) N Ci 1) 2(A(1,6) e Bin,ip) N (A Me Ciip)
10) A(zg) U (Biny U Cliay)S(Arg) Ve Biai)) U (A(z,g) U Ciimy)s
11) A(sg) Ue (Bias) N Ci) 2(Asg) Us Bai) N (A(sg) Us Cig)s
12) Aqzg) Ue (Bni) M Ciy)=(Ap,g) e Binay) 1 (Ags,g) U Ciimy)-

Proof. We prove only one part here and remaining parts can be proved in a similar
way.

1) Consider A(sq) M(BpniyUs Cjky). For any e € AN(BUC), we have following three
disjoint cases:
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(i) Ifeec AN (B — C), then
(fA(AV]))(€) = f(e) A hle) and (gV(iAk))(e) = g(e) V ile)
and

(fAR)(e) = f(e) A h(e) and
(gVi)(e) = g(e) V i(e).

((FAR)(FAG))(e)
((gVi)AlgVE))(e)

(ii) If e € AN (C — B), then

(FA(RV))(e) = f(e) Aj(e) and (gV(iAk))(e) = gle) V k(e)

and

(fAj)(e) = fle) A j(e) and
(gVk)(e) = gle) Vv k(e).

((fARYV(FAG))(e)
((gVi)A(gVE))(e)

(iii) Ilfe € AN(BNC), then

(FA(hVI))(e) = f(e) A (h(e)Vj(e)) and
(gV(iAK))(e) = gle)V (i(e) A kle))
and
((fAR)V(fAG))(e) = (fAR)(e)V(fAj)(e)
= (f(e) Ahle)) v (f(e) Ajle))
= J(e) A(h(e) V (e)) and
((gVi)A(gVk))(e) = (gVi)(e) A (gVk)(e)
= (g(e) Vi(e)) A (g(e) v k(e))
= gle) V (i(e) A k(e)).
Thus

A1) T (Bniy Ue Ciii) ) =(A(1,g) N Bia,iy) Ue (A (g9 N Cliny)-

5.3.7 Example

Let X be the set of cars of different models, and F be the set of colors, X =
{@1,29,23,20,25}, B = {eq,e0,e5,e4,65,66} = { green, red, blue, black, white, silver
}. Suppose that A = {ej,e2,e3}, B = {es,e3,e4}, and C = {es,eq4,e5}. The double-
framed fuzzy soft sets Ay ), By iy and Cy; 4y over X describe the level of appreciation
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from customers based upon the annual survey reports of three different showrooms re-
spectively, Here {f, h, j} and {g, i, k} collect results for positive and negative aspects
respectively. We have
f+ A-FPEdn
{z /08, 23/0.1,23/0.3, 24/0.1,35/0.7} ite=e,
{z1/0.1,22/0.9,23/0.3, 4 /0.8, 35/0.2} if e = eo,
{21/0.1,25/0.3, 25 /0.3, 24 /0.3, 25/0.8} if e = e3,
g : A= FP(X)ky
{@1/0.4,@3/0.7, 23/0.7, 24 /0.7, 25 /0.1} if e = ey,
{21/0.8,23/0,23/0.5, 24/0.1,25/0.6}  if e = eg,
{21/0.7,22/0.5, 23 /0.7, 24 /0.6, 25 /0.1} if & = ea.

h : B—=FPX)k
{z/0.1,29/0.3, 23/0.6, 24 /0.2, 25 /0.3} if e = eq,
{z) /08, 22/0.9, 23/0.5,24/04,35/0.2} if e = eg,
{z1/0.1,29/0.4, 23/0.3,24/0.6, 25 /0.9} if e = ey,
g : B - FPX),
{1 /0 22/0.3, £3/0.3, 24/ 0.6, 25 /0.6} if e = e,
{ {1/0.1,@8/0, 23/0.3, 24 /0.4, 25 /0.6  if e = e3,
{21/0.9, 29 /0.5, 23 /0.5, 24/0.3, 25 /0.1} if e = eq.

i 1 C—oFPX),
{ {21/0.1,[@5/0.2, 25 /0.3, 24/0.1, 25 /0.1} if e = e3,
e — {21/02,22/0.2, 23/0.3,24/0.3, 25 /0.2} ife = ey,
{z1/0.1,22/0.1,23/0.3, 24 /0.5, 25 /0.7} if e = e5,
k. C—FP(Xn
= ey,

{x1/0.6,29/0.5,23/0.6, 24 /0.1, 25/0.6} if e = ey,

{21/0.7, 29 /0.7, 23 /0.4, 24 /0.7, 25 /0.4} ife
{x1/0.3,20/0.4,23/0.4,24/0.3, 25/0.1} ife = es.

We know that

A(1.g) Ue (Beni) Me Cii ) =((AU B) U C) piniag).gilivi))

and
(As.9) Ue Bigy) Ne (A(z,g) Ue Cigy)=((AU B) U C)(pomya(s9))-
Then
(FURA)(e2) = {on/04l, 2a/0.9, 55/06,54/08, 55/0.3)
# {21/0.1,22/0.9, 23/0.3, 24/0.8, 25/0.2}
= ((fVh)A(SV]))(e2) and
(gA(iVEk))(e2) = {z1/0.1,@3/0.0,253/0.3,24/0.1,25/0.6}
# {x1/0.8,25/0.0,23/0.5, 24/0.1, 35/0.6}

((ghi)V(ghk))(ez),
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s0 that
A(s.g) Ue (B i) Ne Climy)# (A1) Ue Bni)) Me (Agg) Ue Ciimy)-
Now,
A(g.g) Me (Biniy Ue Gy )=((AU B) U C) gaeniv ). g9k
and

(A(1,9) Me Bniy) Ue (A(s,g) Ne Clin))=((AU B) U C)pamyusagy, aviritgin)-

Then,
(FABY))e2) = {z1/04,22/0.3,23/03,24/0.2,25/0.2)
# {21/0.1,22/0.9, 23/0.3, 24/0.8, 25 /0.2}
= ((fARIV(FA]))(e2)
and
(gV(iAk))(e2) = {z1/0.8,29/0.3,23/0.5, 24/0.6,25/0.6}
£ {r1/0.8, 22/0.0,23/0.5, 24/0.1,25/0.6}
= ((gVi)A(gVk))(e2).
So

A(7.g) Ne (Bn) Ue Ciip))#(A(s.9) e Bniy) Ue (Azg) Me Ciimy)-
Similarly we can show that
A(g.g) Us (Biniy U Ciin))# (A g.g) Ue Biniy) U (Ags.9) Ue Ciiky)s
and

A(Ly) Me (Blh.i]l r C‘U,kﬂ ?é(AU.yJ Me B{h.:‘}} n (A(J‘.g] Me Cl[j.kj)'

5.3.8 Proposition
Let A(fay, B,y and Cyj 1y be any double-framed fuzzy soft sefs over X. Then

1} A[}"g] l_Ié- (B(f:.f] ﬂ_-,_- C{j,k))E{A[fg) U_;_- B{!l.i}} |_|\._- {A{fg} L C(Jk)} ]1 ﬂnd 01’11}" Il

) and gle) D i(e) forallee (AN B)— € and

fle) € hle
C jle) and gle) D kle) forallec (ANC) —

L

2} A[f.g] Mg (BUH'E] U Uuk))E{AU-QJ Me B{}:.i}} Lle {A{fy,'l MNe C(j:k)} if and Onl}' it

fle) = hie) and g(e) Ci(e) forallee (AN B)—C and
fle) 2 jle) and gle) C k(e) forallec (ANC) -

Proof. Straightforward. m
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5.3.9 Corollary

Let A¢yg), Bng and Cpj ) be three double-framed fuzzy soft sets over X such that
(ANB)-C=(ANC) - B ={. Then

1) A(s,g) Ue (Beni) Ne Ciiny)=(A(1,) Ue Binip) Me (A(pg) Ue i),

2) A(s.g) Ne (Bn,i) Ue Clik))=(A(1,g) Ne Beniy) Us (A(1,g) Ne Cim))-

5.3.10 Corollary
Let A(fay, Angy and Ag; iy be three double-framed fuzzy soft sets over X. Then

A0S (A PAGx)) = (A0S A (A (1.9) A G 1)

for distinct ¢, p e {M.,M, L., U}

5.3.11 Theorem

Let Ajs,y and By ) be double-framed fuzzy soft sets over X. Then the following are
true

1) Agjg) Ue Bypiy is the smallest double-framed fuzzy soft set over X' which contains
both Agfq and By . (Supremum)

2) Agjg) By, is the largest double-framed fuzzy soft set over X which is contained
in both Ay, and By ;). (Infimum)

Proof.

1) We have A,B C (AU B) and ,[(eLh.{e} C fle) v hie) anc} gle) nile) C gle),
g(e) M 1{8) ’; Z{E) So Aug)gfl”g} |_|c- BUI,J.) and B(hn)g.‘i{!!g} Uf B(h.")‘ Let
Cljx) be a double-framed fuzzy soft set over X, such that Ay, B SCHk-
Then A, B C C implies that {4 U B) C ' and f(e), hie) C jle) implies that
F(e) vV hie) C jle). Also k(e) € gle), k(e) C i(e) imply that k(e) C gle) A i(e)
for all e € AU B. Thus A{f‘g} Ug B(h,i}gc{j,k)' It follows that 4{;53 L B(ﬁ::') is
the smallest double-framed fuzzy soft set over X which contains both Ay and
B(p,i)-

2) We have ANB C A, AN B C B and f(e) A h(e) C f(e), fle) A h(e) C h(e) and
gle) € gle) v i(e), i(e) C gle) vi(e) forallec ANB. So Ay B(;,_‘,],QAU.Q)
and Ay M B(ir,i}éB{h_.i}- Let € ) be a double-framed fuzzy soft set over X,
such that C[J-Jc)(;_ﬁl”‘g) and C{j,k}ég[h,i;- Then € C A, C C B implies that
€ C AN B and j(e) C fle), j(e) € g(e) imply that j(e) C f(e) A g(e), and
gle) € k(e), i(e) C k(e) imply that gle) v i(e) C k(e) for all e € C. Thus
C[Ji‘k]iA[Ly:] M Bpiy. It follows that Ay M By ;) is the largest double-framed
fuzzy soft set over X which is contained in both A, and By, ;.
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5.4 Algebras of Double-framed Fuzzy Soft Sets

In this section, we discuss the concepts of lattices and algebras for the collections of
double-framed fuzzy soft sets. Let DFSS(X)E be the collection of all double-framed
fuzzy soft sets over X and DFSES(X) 4 be its sub collection of all double-framed fuzzy
soft sets over X with a fixed set of parameters 4. We note that these collections are
partially ordered by the relation of soft inclusion = given in Definition 5.1.2.

5.4.1 Proposition

(DFSS(X)E, N, L0), (DFSS(X)E,U,1,), (DFSS(X)E, U, 1), (DFSS(X)E,, L)
(PFSS(X) ,.U,M), and (PFSS(X) ,,MN, L) are complete lattices.
Proof. Let us consider (DFSS(X)®,N.,1). Then for any double-framed fuzzy
soft sets A(ysq), Biniy» Ciixy € DFSS(X)E,

1) We have
At Ne By = (AU B)(fangwi) € DFSS(X)” and
Aipg U By = (AN B}U‘\?h.gf\:’} e 'DJFSS(X)‘E,

2) From Proposition 5.3.3, we have

Ag.g) Te A g)=A(pg) and Apg) U As)=A(sg)-

3) From Proposition 5.3.4 we see that

At Ne Blngy = Bny N A(gg) and
Airg) U By = By U A(sg)
Also
As.g) Ne (B M Cyiy) = (A(g) Ne Biy) Ne Cjpy and
Af U By UChm) = (Agrg)UBma) U Cpp-

4) From Proposition 5.3.5,
A(1,g) Ne (Bn,i) U Agr,g))=A(rg) and A(s.g) U (Bn) Ne A(s.9))=A(1,9)-

So we conclude that the structure forms a lattice. Consider a collection of double-
framed fuzzy soft sets {A 11 € I}t over X. We have, U A; C E and, let Afe) =
el

fl(ﬁ’}) (I] = [U‘., 1] and V gt(e) l:.l] c

i€ Ale)

i figi)

{j:e€ Aj}forany e € A;. Then ("f\mMe)

[0,1] for all z € X. Thus . A
el

T

€ DFSS(X)E.

i)

Again, we have, ﬂ_ﬁh C F and for any e € ﬂ A;, (V f?(e}) (z) € [0,1] and

el el el
. i P E
(/\h“g,(e]) (2) € [0,1] for all € X. Thus U Ay, € DFSS(X)E.

Similarly we can show for the remaining structures. m
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5.4.2 Proposition

The structures (DFSS(X)E,N,Ue, 05 1) E1gy)s (PFSS(X)F,Ue, N, E i1 6, 0i.1))s
(PFSS(X) 41U, Ag 1y Arg)) and (DFSS(X) 4, U, A 5)5 As,1)) are bounded
distributive lattices. )
Proof. Proposition 5.3.6 assures the distributivity of (P.’a‘-’..*h‘»‘()(}‘lyl‘l,l_lg} and
(DFSS(X)*,U.,M). From Theorem 5.3.11, we conclude that (PFSS(X)E, M, L., 06 1)

is a bounded distributive lattice and (DFSS(X)®,U.,n, Ei 5y Vo1 1s its dual. For
any double-framed fuzzy soft sets Ay, Ay € DFSS(X) ,,

_‘1{!'9,) Mn A[h.t] = A[fﬂh.y\:‘i} = T}.‘FC'?SI:X}_.‘ and
A UApy = Aginghy € PFSS(X),.

Thus (DFSS(X) ,4,M,L) is also a distributive sublattice of (DFSS(X)*,U.,M) and
Theorem 5.3.3 tells us that A[-:'.I,i;' Ali.ﬂ} are its lower and upper bounds respec-
tively. Therefore ('J"'.?-_SS{X}_IL,-"!_.U,I.a'l(sii},zﬂl[i:ﬁ;} is a bounded distributive lattice
and (T".'be(X}A_.I_I,I_I,A{i‘ﬁ]_. Ap ) 1s its dual. =

5.4.3 Proposition

Let Ay, be a double-framed fuzzy soft sef over X. Then the operation Ay — Agpgyr
on DFSS(X)F which is given in Definition 5.2.7 satisfies:

1) (A¢sg) -) '=A(sg) and A{i.ﬁ) 'iA(ﬂ.i}, A{G.i} 'iA{i.ﬁJu

2) it Agn iy 15 a double-framed fuzzy soft set over X then AU‘QJ(;A“,‘E) if and only 1if
Aniy=As.gy-

Proof.

1) The proof follows from the fact that, for any e € A

((f))e) = (F "(e))” =((fle)) )" = fle) and
(g ))e) = (g °(e))" = ((gle)) )" = gle).

Also

Aie: = Agy=4@iy
A =Ad,0)

=

=

:1
Il

2) Letec A If AU_‘H)QA”;,,-) then f(e) C hie) and i(e) C g(e).

Eig)
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Now,

(f “(e))(=)

(f(e)) ()
= 1-(f(e)=z)
1 - (h(e))(z)
(h(e))"(z) = (h"(e))(z) and
(g°(e))(z) = (g(e)) (z)
= 1-(g(e))(z)
1 - (i(e)) (=)
(i(e)) "(z) = (i"(e))(=)

forallz € X. Thus A[hﬂ)«éA”_y}-_ Conversely, 1f _qthll'J'iA(f\g)'t]]en (A[I.QJ'}’Q(AU!JIJ’
implies A7 CAni)-

IV

[Pl

5.4.4 Proposition (de Morgan Laws)

Let Ay, and By, ;) be double-framed fuzzy soft sets over X. Then the following are
true

1) (A(sg) Us Bing)) "=A(g,9y M= By
2) (A(sg) Ne Bni)) "= A(s,9rUe Biniys
3) (A(s.g) V Bni) "=A(s,gy A Biniys
4) (A A Bini)) "=AgsgrV Bnys
5) (As.g) U Bini)) "=A(s,gy 1 Bn,iy:
6) (A(sg) N Bna) "=A(s,gr Y Bniy-

Proof. 1) We have {A(LQ] L B{h,i)}‘i{(A L B}(f‘:"h-gf\g}} 'iliA U B}{(f\_f’l}',(gf\yn'
Let e € (AU B). There are three cases:

(i) Ifec A - B, then

(fVvh)le) = (f(e))'= fle) = (FAR)(e)

(ghifle) = (g(e))=gle) = (gVi)(e),
(ii) f e € B — A, then

(fvh)(e) = (h(e))= hle) = (fAR)(e)

(ghi)le) = (i(e))'=ile) = (gVi)(e),
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(iii) If e € (A B), then

(fvh)le) = (f(e)V hie)y=(f(e))'A (h(e))
(gVi)le) = (gle) Aile))= (g(e))'V (i(e));
and,
(fAR)(e) = (f(e)}A (k(e))= (fVh)(e)
(ghi)(e) = (g(e))V (i(e)) = (gVi)le).

Therefore, in all three cases we obtain equality and thus

(A¢s.g) Ue Bra))= A9y Bingy.

The remaining parts can also be proved in a similar way. =

5.4.5 Proposition

(PFES(X),4,M,U,7, Ag 1y, A(1,5y) is a de Morgan algebra.

Proof. “e have already seen that (DFSS(X) l,I‘I eI A(ﬁ i)s A(1,8)) is a bounded
distributive lattice. Proposition 5.4.3 shows that " “ " is an involution on DFES(X) ,
and Proposition 5.4.4 shows that de Morgan laws hold with respect to " ~ " in
DFSE(X) 4. Thus (PFSS(X) 40,07, Afﬁ.i)'— Aﬁ,ﬁ}} is a de Morgan algebra. m

5.4.6 Proposition

Let Ay g and Ay, ;) be double fmmea’fuzzg soft sets over X. Then A, i],I‘I.fil,“.,_!-,-f;.-ﬂ’lU_Q.JI_I
Ay gy and so (DFSE(X),, N, L, A[,j 1),A[15 ) is a Kleene Algebra.

Proof. We have already seen that (DFSS(X),,M,0," A(ﬁ i) -4.[1 ,5}} is a de Mor-
gan algebra. Now, suppose that for some A(f .y, Ay € PFSE(X )4 we have

Agniy 1 Aniy2A(1g) U A(g.gy where Aguiy N Agi# A(rg) U Agrgr
Then there exists some e € A such that
(RAR “)(€) D (FVS “)(e) or (gVg~)(e) C (9Ag7)(e)
and so there exists some = € X such that
((RAR)(e)(x) > ((FVF “)e))(=)

= (h(e)Ah (e))(x) > (f(e)Vf “(e))(=)
(h(e))(z) A (hle))(z) > (Fle))(z) v (f “(e))(z)

4

or

(@vi)ed(z) < ((gAg)(e))(=)
= (i(e)Vile))(z) < (g(e)Agle))(x)

= (i(e))(z) v (ie))(x) < (g(e))(x) A (gle)) ().
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But
(h(e))(z) A (hie))(z) < 0.5 and
(g(e))(z) A (gle))(z) < 0.5
and
(fle))(z) v (fle))(z) > 0.5 and
(i(e)) (=) v (ile))(x) = 0.5

which gives

(hle))(z) A(RTe))(z) < (fle))(z)V (f “(e))(x) or
(g(e))(z) A (gle))(z) < (ile))(z) V (ile))(x).

A contradiction. Thus our supposition is wrong and
A N AwiySAs.9) Y Agsgr
Therefore (DFSS(X),4,0,U, 7, A(ﬁ.i}! A[i.ﬁ)) is a Kleene Algebra. m

5.4.7T Lemma

Let Agsay: By € 'P.‘FSSI[X]E. Then pseudocomplement of Ay, relative to By,
exists in DFSS(X)E.
Proof. Consider the set
T(A¢sg) Aniy) = {Cliny € DFSS(X)E : Ciny N A1) EBinsy -

We define a double-framed fuzzy soft set (A°U B)(sg—n,i=(A° U B)(sng—i) €
DPFSS(X)F where

((f — h)(e))(=z)

1 iteec A°— B
- 1 it (f(e))(2) < (h(e))(x) .. s
= { () i () > (hle))z) TeEB-4
1 ifeec AN B
and
(g — i)(e))a)
0 ifee A* - B
- 0 it (i(e))(x) < (g(e))(z) . o
g { (@) i ((@)) > @)z 1e€B-4
0 ifeec AN B
Then
(A°U B)(fohg—i) N A(rg) = ((A°U B) N A)(snjAfig—i)vg)

1

([:A¢ A} ] (B M A}:}[(J’ vh)A S lg—i)va)
(ANB)(s-nyif(s—i)va)-

Il
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Foranyee AnNB,ze X,

(((f — RAR)e))(2)

{ LA (f(e))(z) it (f(e))(z) < (h(e))(x)
(h(e))(z) A (fle))(z) it (f(e))(z) > (h(e))(x)
{ (f(e))(=) it (f(e))(z) < (h(e))(z)
(h(e))(x) if (f(e))(z) > (h(e))(z)
< (h(e))(=).
and
((lg — )Vva)le))=)
{ 0V (g(e))(z) if (i(e))(x) < (g(e))(z)
(i(e))(=) V (g(e)) (=) 1f (i(e))(x) = (g(e))(x)
_ { (g(e))(x) if (i(e))(z) < (g(e))(2)
(%{B))(x) if (i(e))(z) > (g(e))(2)
= (i(e))(x).
Hence,

(A°U B)(s-ang—i) 1 A1) SBni)
Thus I[AL UB]U’ sh,g—+i) = T(A{I,Q}EA{.F:,E})- For all C{J--H = T(A(I;QJ’AU!.!'}]? we have
Ciip N A(Ly)(;fl(h-i) soforanyece CNACBE
Jjle) A fle) C hie) and k(e) v gle) 2 i(e)
Now,

cnA = (ANC)NB° =§

c 58
= CC(ANB*)*=AUBRB.
We have following cases:

(i) If e € (A° — B)N C, then jle))(z) <1 = ((f — h)(e))(z) and k(e)){z) = 0 =
((g — 1) () (2)

(ii) Ife € (B—A)NC, and (i(e))(z) < (g(e))(x) then (k(e))(z) = 0 = ((g — i)(e))(=)

(iii) It e € (B - AN C, and (f(e))(z) < (h{e)})(z) then (j(e))(z) < 1 = ((k —
i)(e))(z)

(iv) Ife € (B— A°)NC and (i(e))(z) = (g(e))(x), then the condition k(e) v g(e) 2 i(e)
implies that (k(e))(x) = (ile))(z) = ((h — i)(e))(x)

(v) Ite e (B-A°)NC and (f(e)}(z) > (h(e))(z), then the condition j(e)A f(e) C h(e)
implies that (j(e))(z) < (h(e))(z) = ((h — i)(e))(z)

(vi) If e € (A°n1 B) N C, then j{e))(z) < 1 = ((h — 9)(e))(z) and k(e))(z) = 0 =
((g — ) (e)) ().
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Thus Cj 1) C(A°U B) (1 pg.g) and it also shows that

(A°U B)(1ohg—g)= V T(As.g) Ani) =A(19) = Ansy

5.4.8 Remark

We know that (DFSS(X),,1,U) is a sublattice of (PFSS(X)E M.,1). For any Aita)
Aniy € DFSS(X) 4, A(gg) — A(ni) 8s defined in Lemma 5.4.7, is not in DFSS(X) 4

because A(LQ‘] — A(h‘i]i{flc U A}U shg ‘E}iEﬂf ch,g—+i) 3 P.:FC‘:S(J‘:}A.

5.4.9 Lemma

Let Agpgy, Ay € PDFSS(X) 4. Then pseudocomplement of Ay gy relative to A
exists in (DFSS(X) ,,U).
Proof. Consider the set

T(Asg) An) = {AGa) € DFSS(X) 2 Ay N Atrg) C A}
We define a double-framed fuzzy soft set Ay 4.i) € DFSS(X), where

1 if (f(e))(z) < (h(e))(x)

((f = h)(e)x) = { (h(e))(=)  if (f(e))(@) > (h(e))(=)

and
P it (i(e)() < (g(e)) =)
G mD -1 B ¥t s e

for alle € A, x € X. Then Ay .pg i) N A(s.0)=A(s—hg—i)in and

((F = hJAN)e) (=)
. { 1 A (F(e))(x) it (fle))(z) < (h(e))(x)
(h(e))(z) A (fle))(z) it (f(e))(x) > (h(e))(x)
- { (f(e))(z) if (f(e))(z) < (h(e))=)
(h(e))(=) it (f(e))(=) > (h(e))(z)

< (h(e))(=).

and
((lg — vglle))(z)
- (e if (i(¢))(2) < (g(e))(2)
(ie))(z) v (g(e))(z)  if (i(e))(z) = (g(e))(z)
_ {(g{emm) i (i())(@) < (9(e))()
(i(e))(z) if (i(e))(z) > (g(e)) (=)
> (i(e))(x).

forallec A, z € X.

Hence,

Aff—ng—i) M A(1.0)S Ani)
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and A”' :;!‘g +i) 1= T{A(f‘g)1 A(h‘;}}, For every A{Jk:‘ e T( A{I:QJ’ A{h,i}}? we have A(,i;kj

M Agpgr © Agp,y so for any e € A, following cases arise:

(i) If (i(e)) (=) < (g(e))(x) then (k(e))(x) = 0 = ((g — i)(e))(x)
(i) If (f(e))(=) < (h(e))(z) then (j(e))(z) <1 = ((h — i)(e))(z)

(iii) It (i(e))(z) = (g(e))(x), then the condition k(e) V gle) 2 i(e) implies that
(k(e))(z) = (i(e))(z) = ((h — i)(e))(z)

(iv) If (fle))(z) > (h(e))(z), then the condition j(e) A f(e) C h(e) implies that
(i(e))z) = (h(e))(z) = ((k — i)(e))(z).

Thus A[j,_a_.]{;A”_.;,,y_.,) and it also shows that

Aigng >|E]]£vT(A{I:Q)SA{FJ.E})iA{f:gJ — 4 A iy-

5.4.10 Proposition

(PFSS(X)E,n.,u) and (DFSS(X)4,NL) are Brouwerian lattices.
Proof. Follows from Lemmas 5.4.7 and 5.4.9. =

5.4.11 Definition

Let A( f.g) be a double-framed fuzzy soft set over X. We define A{ fg)* @S @ double-framed
fuzzy soft set Ay. ;o) where

fFrA=FP(X), e~ (f(e)),
v [0 (F()(x) 0
D ER R
g A FP(X), e (9 (),

(g(e))(z) :{ é if (g(e))*(z) #1

if Cael] (2] =1 for x € X.

5.4.12 Theorem

Let A(jg) and Ay, ;) be double-framed fuzzy soft sets over X. Then
1) Ay M Agg»=Ap1)

2) AU‘QJQA”,I;]- whenever A(I.g] n AUf-i}iAfb.i)’

3) A U Aqrerr =410

Thus (PFSS(X) 4,M,U," Ag 1) A3,g)) is a Stone algebra.
Proof.
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1) Consider Ay g1 A(sq)- Foranyee A

(FAS")(e) = f(e) A f*(e) and (gVg")(e) = g(e) V g"(e).

_ [ (@ A0 it (f(e))(w) £0
((FAI)(Ee)(@) = o it (F(e))(z) = 0

= ——

and

((gvg®)(e))(z) = 1v0 if (g(e))(z) = 1

{ (gle))(z) V1 if (g(e))(x) #1
1

for all @ € X. Thus Ay M A(Lg)-iﬂfﬁli}.
(f(e))(=) A (h(e))(z) = O (b)

and
(g(e))(z) v (i(e))(z) =1 (c)

for all x € X, e € A, From Equation (b) we have two cases :

If (h(e))(z) = O then (h*(e))(z) =1 = (f(e))(=)
and
if (h(e))(z) # 0 then (f(e))(z) = 0 < (h*(e))(z).
Thus (f(e))(z) < (h*(e))(z) for all z € X.

From Equation (c), there are two cases:

If (i(e))(x) = 1 then (i*(e))(x) =0 < (gle))(x)
and

if (i(e))(z) # 1 then (g(e))(z) =12 (i*(e))(=)-
So (i*(e))(x) < (g(e))(x) for all € X. This implies that
fle) € h*(e) and i*(e) C g(e) for alle € A.
Therefore Asg)C Aqpiye-
3) Consider A(; g+ U A((fg))-- For any e € A
(FVI™)(e) = fi(e) V f(e)

and
(g"Ag**)(e) = g"(e) A g™ (e).
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Ov1 i (fle))(a
1v0 i (fe))(z) =0

——
-
=

((F*(e)(=) v (£ (e))(=)

Il
r——,

and

((g™(e))(x) A (97" (e))()

1A0 it (gle))(z) #1
0Aal it (gle))(z) =1
= 0

for all z € X. Thus Ay U A[{j.g}'}'ﬁA{i_ﬁ}-

5.4.13 Definition

Let Az, be a double-framed fuzzy soft set over X. We define
(A(1.0)"=As90 =A.p)-

5.4.14 Proposition (Involution)

Let Ay ) be a double framed fuzzy soft set over X. Then (A,[Jr:yjujciﬂ,[fm, A{i,ﬁpi’i{ﬁ,i)
and A(ﬁi]oi.ﬁl(i‘ﬁ
Proof. It is straightforward that A g.=A4 1) and Ag1.=415). We have

(Agsg10) = A, 1 =A(1,g)-

5.4.15 Proposition (de Morgan Laws)

Let Aif .y and By iy be double-framed fuzzy soft sets over X. Then the following are
true

1) (A(s.g) U= Bni))°=A(gg)e T Bihyipe,
2) (A(sg)e Bn,i))*=A(s,g)e Us Bniyes
3) (AsanV Bino) =Agrg° N Binyes
4) (Aisg) ABn,i))"=A(sg)e V Bajiyes
5) (A(fg) U Bno) =Arg) 1 Bnipes

6) (A(sg) N B,i) =A(sg)e U Bn,ipe-

Proof.
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1) We have
(A(r,g) Ue Bni))"=((AU B)(pongai))"=(A U B)(gai, pun)

and
Agg.g1e Ne B sye=Ag, 1) Ne Bin)=(AU B)(gai, pin)-

Thus
(A(r9) Ue Bni))"=A(s.02 N Binipe-

The remaining parts can be proved in a similar way.
[

5.4.16 Theorem

(PFSS(X) AT, U°5 Ag 1y A(ig)) is a de Morgan algebra.
Proof. Follows from Propositions 5.4.14 and 5.4.15. m




Chapter 6

Algebraic Structures of Bipolar
Soft Sets

Bipolarity refers to an explicit handling of positive and negative sides of information.
Three types of bipolarity were discussed in [11] but we are using a rather generalized
bipolarity here, dealing with the positive and negative impacts in information associ-
ated with a soft set and its representation. This chapter introduces the concept of a
bipolar soft set. A bipolar soft set is obtained by considering not only a carefully cho-
sen set of parameters but also an allied set of oppositely meaning parameters named as
"Not set of parameters". Structure of a bipolar soft set is managed by two functions,
say a: A — P(X)and 8: -4 — P(X) where —A stands for the "not set of A" and
2 describes somewhat an opposite or negative approximation for the attractiveness of
a houses of X, relative to the approximation computed by a. Maji et al. [33] had
used the "not set" to define complement of a soft set, The complement of a soft set
simply gives the complements of the approximations. The above mentioned soft func-
tion F is rather more generalized than soft complement function and (3,-4) can be
any soft subset of (a,4)° The difference is the gray area of choice, that is, we may
find some houses which do not satisty any criteria properly e.g. A house may not be
highly expensive but it does not assure its cheapness either. Thus, we must be careful
while making our considerations for the parameterization of data keeping in view that,
during approximations, there might be some indifferent elements in X. This gives us
a motivation to define the idea of bipolar soft sets. We have defined operations of
union and intersection for bipolar soft sets by taking restricted, extended and product
sets of parameters. The algebraic structures of bipolar soft sets are discussed with the
properties of operations.

6.1 Bipolar Soft Sets

Let X be an initial universe and E be a set of parameters. Let P(X) denotes the
power set of X and A, B, C be non-empty subsets of E.

93
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6.1.1 Definition

A triplet (a,3 : A) is called a bipolar soft set over X, where a and 3 are mappings,
given by a: A — P(X) and 3 : -4 — P(X) such that a{e) 1 5(—-e) = | (Empty Set)
for all e € A.

In other words, a bipolar soft set over X gives two parametrized families of subsets
of the universe X and the condition ale) N G(—e) = 0 for all e € A, is imposed
as a consistency constraint. For each e € A, a(e) and F(—e) are regarded as the
set of e-approximate elements of bipelar soft set (a,3 : A). It is also observed that
the relationship between a complement function and the defining function of a soft
set becomes a particular case for the defining functions of a bipolar soft set, that is,
(a,0¢ : A) is a bipolar soft set over X. The difference occurs due to the presence of
uncertainty or hesitation or lack of knowledge in defining the membership function. We
name this uncertainty or gray area as the approximation for the degree of hesitation.
Thus the union of three approximations, that is, e-approximation, —e-approximation,
and approximation of hesitation is X. We note that § C X — {a(e)U 8(—e)} C X, for
each e € A. So, we may approximate the degree of hesitation in (a,3 : A) by an allied
soft set Ay, defined over X, where hie) = X — {a(e) U 8(—e)} for all e € A.

6.1.2 Definition

For two bipolar soft sets (a,8 : A) and {%,6 : B) over a universe X, we say that
(a,3: A) is a bipolar solt subset of (v,d : B), if

1) AC B and
2) a(e) € y(e) and 8(=e) C 3(—e) for all e € A.

This relationship is denoted by (a,3 : A)C(%,6 : B). Similarly (a,8 : A) is said to
be a bipolar soft superset of (v : B), if (v,0: B) is a hipolar soft subset of (a,5: 4).
We dencte it by (a,5: A)2(v,d : B).

6.1.3 Definition

Two bipolar soft sets (a5 : A) and (7,6 : B) over X are said to be equal if (a,5: A)
is a bipolar soft subset of (3.4 : B) and (.0 : B) is a bipolar soft subset of (a3 : 4).
Let BSS(X)® denotes the set of all bipolar soft sets defined over X with set of
parameters E ordered by the relation of inclusion C as defined in Definition 6.1.2.
Now we claim that every bipolar soft set is equivalent to a double-framed soft set
and give the tollowing theorem:

6.1.4 Theorem

The mapping 8 : BSS(X)F — DSS(X)E, (a,8: A) — A(a,,8,) 18 @ monomorphism of
lattices where
a(e) = ai(e), and F(e) = F,(—e) for all e € A.
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Proof. Clearly ¢ is well-defined. If
0((e, 3 : A))=0((~,8: B))
where
0((a 8 : A)=A(a 5,) and 0((3,6 : B))=B(,, 5,)
then A = B and

ale) = ayle), v(e) = y,(e) and S(e) = 54(—e), 6(e) = &;(—e) forallec A
Now,
ale) = ajle) = y(e) = v(e) and F(e) = 3,(—e) = §,(—e) = d(e) foralle € A.

Thus
(e, 5 : A)y=(v,6:B)

shows that # is one-to-one., Clearly # preserves the order of inclusion. m

6.1.5 Remark

Note that # is not onto because of the extra condition of consistency constraint for
defining bipolar soft sets.

By Theorem 6.1.4, we can equate every bipolar soft set with a double-framed soft
set with the consistency constraint and so, from onwards, we shall denote a bipolar
soft set (a,3 : A) by its image #((a,5 : A))=A, 5 where the meanings of A, a and 3
are clear,

6.1.6 Example

Let X be the set of houses under consideration, and F be the set of parameters,
X = {hy,ha,ha by hs), E = {e,e9,e3,4,65,66} = { in the green surroundings, wooden,
cheap, in good repair, furnished, traditional }. Suppose that A = {ey,e2,e5.65}, a
bipolar soft set A, g describes the “requirements of the houses” which Mr. Y is going
to buy. The bipolar soft set A, 3 over X, where a and § represent the classification
under high and low investment respectively, is given as follows:

{hlshi’!hd} ife=ep,

. g {h3, ha} it e = ea,

a : A-PX), e— X "
{hz, r'lg._ r'la} ife= €5,

{ha, hs} if e = ey,

& . {hi,ha,hs} ife = eq,
3 : A=P(X), e {} i o=ros
L {} if e = eg.
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Let B = {es,es}. Then bipolar soft set B, s, given by

{ha} if e = ea,

¥ o A—'P(}'J| E_‘{ {fh_l!h,,i!hﬁ} ite =eg,
- ‘ X it e =es,
d : A P(X), e { {hl} it e = e3,

is a bipolar soft subset of A, 3 and represents the data under a strict set of parameters
B following A.

6.2 Operations on Bipolar Soft Sets

This section gives various operations defined on bipolar soft sets:

6.2.1 Definition

It 4, g and B s are two bipolar soft sets over X. The int-uni product of Am 8)
and Bh 418 defined to be a bipolar soft set (A % B)(aiy,808 over X in which alvy :
(A x B) = P(X), where

(a,b) = a(a) N7(b),

and SUS : (A x B) — P(X), where
(@, b) = Bla) U S(b).

It is denoted by Aa,g) A Biy,5)=(A X B)(ar,s08)-

6.2.2 Definition

It Aqs,3) and By, 5 are two bipolar soft sets over X' then uni-int product of A, g and
B, s) is defined as a bipolar soft set (A x B) .0, grs) over X in which aly: (AxB) —
P(X), where

(a,8) = ala) Uy (2),

and 814 : (A x B) — P(X), where
(a,b) = B(a) N 5(b).

It is denoted b)' ."l(ﬂ‘_ﬂg W B.h‘g:: i{A x B},:nfj.)lsr'-.d}.

6.2.3 Definition

For two bipolar soft sets Ay, g and By, 5 over X, the extended int-uni bipolar soft set
of A, 5 and By, s is defined as a bipolar soft set (AU B),~, gos) over X in which
aly: (AU B) — P(X), where

ale) ifecA-B
e— 4 y(e) ifeecB-A
ale)nyle) ifee (AN B)
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and 3Md : (AU B) — P(X),

Ble) ifec A-B
e o d(e) ifecB-A
Bleyud(e) ifec (AN B)

It is denoted by Aqg) Me By =(A U B)asiy a06)-

6.2.4 Definition

For two bipolar soft sets A, g and B, 5 over X, the extended uni-int bipolar soft set
of Ay, g and By, 4 is defined as a bipolar soft set (AU B) ., gas) over X in which
aly: (AU B) — P(X), where

ale) ifec A-B
e— & v(e) ifeec B— A
ale) Uy(e) ifec (AN B)

and 818 : (AU B) — P(X), where

B(e) ifec A-B
e— o d(e) ifeecB-A
Ble)ynd(e) ifec (ANB)

It is denoted by Aiq gy Ue By 5y=(A U B) (504,508

6.2.5 Definition

For two bipolar soft sets Ay, g and By, s over X, the extended difference bipolar soft
set of Ay, g and B, g is defined as a bipolar soft set (AU B),._ g4 over X in
which o —, v: (AU B) — P(X), where
ale) iteec A-— B
er— < yle) itee B-A
ale) —vy(e) ifee(ANB)
and 3 —. & : (AU B) — P(X), where

B(e) ifec A-B
e 4 d(e) ifecB-A
B(e) — 8(e) ifee (ANB).

It is denoted b:{ A':‘-‘-.ﬁ.! —e B{‘r‘.a} é(A U B:Il:cl gy B o)+

6.2.6 Definition

For two bipolar soft sets A, 5 and By, ;) over X with (AN B) # {, the restricied int-
uni bipolar soft set of Ay, g, and B, 5 is defined as a bipolar soft set (AN B) 74 504
over X in which ary : (AN B) — P(X), where

e — afe) Ny(e),
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and BUd : (AN B) — P(X), where
e— Ble)Ud(e).
It is denoted by Aiq gy N By 5 =(A N B)(ary,p06) -

6.2.7 Definition

For two bipolar soft sets A, g, and B, 5 over X with (AN B) # {, the restricted uni-
int bipolar soft sel of Ay, 5y and By, 4 is defined as a bipolar soft set (AN B)ariy, 508

over X in which aly : (4N B) — P(X), where

e — afe) Uy(e),
and 316 : (AN B) — P(X), where

e — B(e) ndle).
It is denoted by Aiq gy U Biy.5y=(A N B)(acy,s06)-

6.2.8 Definition

For two bipolar soft sets A, g and By, over X with (AN B) # 0, the restricted
difference bipolar soft set of A, 5 and By, ;5 is defined as a bipolar soft set (AN
B)(a—v,8—8 over X in which a — v: (AN B) — P(X), where

e — ale) —vle),
and 3 — d: (AN B) — P(X), where
e [Ble) — d(e).

It is denoted b:{ A {ex,3) st B'l'? A) ={A n B)\ﬁ oy BB

6.2.9 Proposition

The mapping @ : BSS(X)F — DSS(X)F as defined in Theorem 6.1.4 preserves the
product, extended and restricted uni-int and int-uni operations.
Proof. Straightforward. m

6.2.10 Remark

The operation of complementation as defined in Definition 4.2.9 for double-framed soft
sets is no more valid for bipolar soft sets because (A, g )°=A4(ac 3=y which may not
satisfy the consistency constraint as shown by the following example:
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6.2.11 Example

Let E, A, X and bipolar soft set A, 5y over X be taken as in Example 6.1.6. Then
(Ain. )¢ is given as follows:

{ha, hs} if e=ey,
& s {hi,ha,hs} if e = es,
a® : A=P(X), e I et

{hy,hs} if e = e,
{hl._h-z._ hg_} ife= €],
{h:’_{._ h\} ife= £,
X if e = es,
{ha,h3, hs} if e = es.

3¢ A-P(X), e—

but
a”(eg) N 3%(es) # 0

so (Aja)° ¢ BSS(X)E. Thus "® " is not defined on BSS(X)E.

6.2.12 Proposition
Let A, 5 be a bipolar soft set over X. Then ° : BSS(X)F — BSS(X)F is defined
and we denote (A, 5)° by A gje-
Proof. It Ai, 3 € BSS(X)F then
Apgre = Aope where
a® : A-PX),e—B(e) and 8 : A— P(X), e ale).
Clearly
a®(e) N B°(e) = Ble) N afe) = B.
Thus ACC\,.’;“_:'D [ BL\-‘L\-‘{XJE. [ |

6.3 Properties of Bipolar Soft Sets

In this section we check the properties and associative, commutative, distributive and
absorption laws of bipolar soft sets with respect to their operations.

6.3.1 Definition

A bipolar soft set over X is said to be a relative null bipolar soft set, denoted by A 1
where
b:A-P(X),e—~0 andX: A - P(X), e~ X.
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6.3.2 Definition

A bipolar soft set over X is said to be a relative absolute bipolar soft set, denoted by
Ax ¢) where

¥ A-PX),e—X and $: 4 — P(X), e~ 0.
Conventionally, we take the bipolar soft sets with empty set of parameters to be

equal to @4 ) and so Ay, g M By 5y =0s x)=A(a 8 U B4 Whenever (AN B) = 0.

6.3.3 Proposition

If A(g x) is a null bipolar soft set, Ay ¢) an absolute bipolar soft set, and A, g, 4, 5
are bipolar soft sets over X, then

1) A Yo A=Al Y Ay )

2) Apg) Ne Aps)=Ala,s N Ap )

3) Aas) M Ala)=Aa8=Alas) U Ap,g);

4) Aag U A@e,5)= 40,8 =A(as) 1 Ax,8),

8) A YA e)=Ax,9) Aia.s) N Aa,5=A2,3)-

Proof. Straightforward. m

6.3.4 Proposition

Let Ay g, Biys) and Cicyy be any bipolar soft sets over X. Then the following are
true

1) (Absorption Laws)

() A, Us (Biys) M Afa,0))=Aa,8)5

(ii) Aoy N (Byy,6) Ue Afa,5))=Ala);

(iii) Agap) U (By.6) Me Afa,8))=4(a8)5

(iv) Aa,p) MNe (B{"r_.é} . Aiﬂ,_ﬁ}]if‘l{a,ﬁ}'

2) (Associative Laws) A{ﬂ13)}‘(Bhﬁ}‘)\c{i.ﬂ}}i{:‘q{ﬂ.ﬁ} AB{‘r‘:'f"J"}AC{Q:’ﬁ’
3) (Commutative Laws) A gy AB 1y 5 =By 5)A A (a,8)»

4) (Distributive Laws)

(i) Aa) Ue (Bir.g) U Ciem)S(Aasy Ue Bir.g)) U (Af) U Cicmp),
(ii) Aa,g) Ue (Biyg) Ne Cim) 2AAa,8) Ue Blas) Me (Agag) Ue Cim)s

(iii) Aa gy Ue (B8 N Ciem)=(Afa,p) Us Biy,5) N (Afa, Ue Ciem).
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(iv) Ao U (Biys) Ue Ciep)=(Aga,8) U By,) Ue (Afag) U Cicmp)s
(v) Afag) U (By gy Me Ciep)=(Ata,p) U Bia.g)) Me (Afa,8) U Clem)s
(vi) Ao U(Biys) NCm)=(A@s U Birs) M (Aias) U Cicmp)s
(vii) Agag Me (Bry gy Ue CiemlS(Aies) Ne Bry.gy) Ue (Afa,p Me Cicom)
(viid) A g Ne (Birs U Cremp)=(Aagg) Ne By a)) U (Ajagy Me Cicon)s
(ix) Agag) Me (Bya) N Cieap2(Aia,p Me Bios)) M (Aga,) Me Ciom)s
(%) Afap) U (Biys) Ue Ciep)=(Ala,p) U Biy,5)) Us (Afag) U Ciemp)s
(xi) Afa,p) U (Biy,8) Ne Cien)=(Aia,8) U Biy,5) Ne (A8 U Cie i)
(xii) Afap U (B8 NClem)=(Afap) U Biy,5)) N (Afa,8 U Ciem)-

Proof. It follows from Theorem 6.1.4 and Proposition 6.2.9 in a straightforward
manner, W

6.3.5 Example

Bipolar disorder is a serious psychological illness that can lead to dangerous behav-
ior, problematic careers and relationships, and suicidal tendencies, especially if not
treated early. Let X = {1,2,3,456.,7} be the set of days in which the record has
been maintained i.e. i = ith day of patient under observation, for 1 < i < 7. Let
E = {ej,e0,e3,e4,e5} = {Severe Mania, Severe Depression, Anxiety, Medication, Side
effects} and —F = {—e,~ez,~e3,7eq,7e5} = {Mild Mania, Mild Depression, No Anx-
iety, No Medication, No Side effects}. Here the gray area is obviously the moderate
form of parameters. Suppose that A = {ej,es,es}, B = {eseq,es}, C = {ej,es.e5}.
Let the bipolar soft sets A, 3, B, 4 and Cy over X describe the “daily record of
the behavior” of Py, P, and Py. Suppose that

{1,4,5,6} ite=ey,
a : A—=P(X), e— ¢ {1,2,3,4,5,7} ife=eq,
{2,4,6,7} it e =eg,
{2,8,7} ife=e,
B : A—P(X), e— < {6} if e = e,
{3} ite = es,
{3,5,6} = e,
¥ : A=P(X), e— ¢ {1,577} it e = eq,

{2,3,4,5,6} if e =es,
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{1,4,7} ife=ey,
§d 1 A= P(X), e— ¢ {3,6} if e = ey,
{} if e = g5,
X if e =g,
¢ : A—-P(X), e— ¢ {1,2} ife=es,
{4,5,6} ife=es,
{} ife=e,
n : A—=P(X), e— ¢ {3,4} ife=eg,
{1,2} ifte=ces;,

We have
Afa,8) Me (Biyg) M Ciey )=(A U (B N C)aipyisg), s0(a0m))
and
(Afa,g) Ne By gy) M (Afa,g) Me Cig ) =(A U B) N (AU C)iai)ianc) (508)0(80m))

Then the approximations for parameter es are not same on both sides

(@A(AQ))(e2) = {1,2,3,4,5,7) # (3,5} = ((arm)A(ar1())(e2)
and (B0(80n))(ea) = {6} # {1,4,7,6} = ((308)0(80m))(es).

Thus )
Aia,g) Me (Biy,g) N Cig ) #(Afa,8) Ne Biygy) N (Agas) Me Ciem)-

Now, consider
Aia,8) Me (B8 Ue Ciemy )=(A U (B U C))(arityac),80(55m))
and
(Afa,) Me By g)) Ue (Aga,) Ne Ciem) = (AU B)jain,pus) Us (AU Chiaae,0m)
= (AU B) U (AU C)((ain)0(ar)(808)A(80m)

Then the approximations for parameter e are not same on both sides

(an(vU¢))(e2) {6} # {1,2,3,4,5,7} = ((a")0(a{))(e2)
and (8U(3Mn))(e2) = {1,4,7,6} # {6} = (BUS)N(BUn))(e2).

Thus
Ata,) Ne (Biy,g) Ue Cign)#(Aa,g) Ne Biyg)) Ue (Afa,8) Ne Ciomy)-

Similarly it can be shown that
Aje,p) Ue (Biys) U Cenp) E(Afa,8) Ue Biaya)) U (A, Ue Cigm)-

Ata,8) Ue (Biy,6) Ne Cien) #(Afa,8) Ue Bia,)) Ne (Aay) Le Cigmy)-
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6.3.6 Corollary
Let A, 4, By,4 and Ay, be any bipolar soft sets over X. Then

A gy Ue (Biys) Ne Aey) = (Aja,g) Ue Biy,g)) Ne (Afa,) Us Agpy) and
Aoy Ne (Bpyg) Ue Aey) = (Aja,p) Me Bia,g)) Ue (A Ne Aiemy)
if and only if

afe)

ale)

y(e) and 3(e) = d(e) for all e € (AN B) — C and
C(e) and B(e) = nle) foralle e (ANC) — B.

6.3.7 Corollary

Let Ay, ), A5 and Ay, are three bipolar soft sets over X. Then

Ala,g) M Ay PAc ) =(Alag) AA1y,5)) p(Afa,8) A igm)

for distinet A, p € {N.,M,L: L1}

A bipolar mood chart is a simple and yet effective means of tracking and represent-
ing patient’s condition every month. Bipolar mood charts help patients, their families
and their doctors to see probable patterns that might have been very difficult to de-
termine. Bipolar children and their families will greatly benefit from mood charting
and can expect early detection of symptoms and determination of proper treatments
by their doctors. We construct a mood chart based upon a bipolar soft set as follows:

A bipolar soft set A, g over X may be represented by a pair of binary tables, one
for each of the functions o and 3 respectively. In both tables, rows and columns are
labeled by the elements of X and parameters respectively. We use following key for
tables of o and 3 respectively:

o 1 if ; € afe;)
HOT 10 it ¢ ale)
(e5)
(e;)

- 1 if #; € B(e;
e = 0 if @; ¢ Be;

where a;; is the ith entry of jth column of each table. We can also represent a bipolar
soft set with the help of a single table by putting

1 if h; € ale;)
@i = 0 ifhie X — {ale;) U Ble;)}
-1 if h; € ,S[Ej}

where a;; is the ith entry of jth column of table whose rows and columns are labeled
by elements of X and parameters respectively. The tabular representations of bipolar
solt set A, 5 as given in Example 6.3.5 are given by Table 6.1 and Table 6.2.

Both Tables 6.1 and Table 6.2 can be used as Mood Chart of patient Py for a week.
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Table 6.1: Tabular Representaion Using a Pair of Tables

Ain,ﬁ': e e ey
1 1 1 0
2 -1 1 I:
3 -1 1| -1
4 1 1 1
] 1 1 0
fi 1] -1 1
7 - 1 1

Table 6.2: Tabular Representaion Using Only One Table

6.4 Algebras of Bipolar Soft Sets

In this section, we discuss the lattices and algebras for collections of bipolar soft sets.
Let BSS(X)# be the collection of all bipolar soft sets over X and DSS(X), be its
subcollection of all bipolar soft sets over X with fixed set of parameters A. We note
that these collections are partially ordered by the relation of soft inclusion € given in
Definition 6.1.2. We conclude from above results that:

6.4.1 Proposition
(BSS(X)F,Me,0), (BSS(X)F,U,N:), (BSS(X)F,L,N), (BSS(X)F N,U), (BSS(X) 4,0,M),
and (BSS(X),,1,L) are lattices.

Proof. From Propositions 6.3.3 and 6.3.4, we conclude that the structures form
lattices. m

6.4.2 Proposition

Let A, 5 and By, 5 be two bipolar soft sets over X. Then the following are true

1) A g Ue By, 4 is the smallest bipolar soft set over X which contains both A, g
and By, 4.

2) A M By is the largest bipolar soft set over X which is contained in both
Aa,py 80d By ).

Proof. Straightforward. m
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6.4.3 Proposition

(BSS(X)E,NUebo,5), B x.8)), {BSS{:X)F;M-{-F.E{_r,qa:. Diaxy)s (BSS(X) 4N, A0 x),
Ax g)) and (BSS(X) 4,U,7,A (3 2y, A (@ x)) are bounded distributive lattices.

Proof. From Proposition €.3.4 and Lemma 6.4.2, we conclude that (BSS(X)E,
M, Ue, O3,%)> Ex,#)) is a bounded distributive lattice and (BSS(X};:, Ue, N, Eix ¢
#(@,x)) is its dual. For bipolar soft sets A, g), A(, 5 € BSS(X),,

A{ng} L Ahla} = A{aﬁq_ggﬂ'} e BSS(X}‘,[ and
AppUALs = Apoysrs € BSS(X),.

Thus (BSS(X) 4,M,U) is also a distributive sublattice of (B«.‘L‘T[X}E,LIL-,I‘I} and Propo-
sition 6.3.3 tells us that Ag x), Az ¢ are its lower and upper bounds respectively.
Therefore (BSS(X),, M, U, Agx), Apxe)) is a bounded distributive lattice and
(BSS(X) 4, 0, A,:_;Iq;,}, A{q;__;g:.] is its dual. m

6.4.4 Proposition
Let Ay, g and A, 5 be two bipolar soft sets over X. Then
1) (Aag)° = Aja )
2) AagCAps if and only if Ay, g0CAage-

Proof.
1) Straightforward
2) If A S Ay g then

ale) € y(e) and §(e) C 3(e) forallee A

implies that )
Ay,5 S A(as)-

Hence A{T1é}o§A{al_a}D. It A':Tﬂj}"c;‘q{ﬁ.s)o then
At py=(Ala,8)0) (A1, ) = A 6) -
| ]

6.4.5 Proposition (de Morgan Laws)

Let Ay, 3 and By, ; be two bipolar soft sets over X. Then the following are true:
1) (A, Us By,5))°=Aia,8)e Ne By g,

2) (Atap) Ne B(y,5))°=Ata,g)e Ue By s,

3) (A, V Bi.5)) =Aias)e A Biyae,
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4) (A A By ))° =A@l V Biysles

B) (Aja,8 U B(,5)°=A(a,8)° M Biygpes

6) (Aias M By5)°=Aa80° U By,ope-
Proof.

1) We have
{A\'n,:}} Ue B-;q,a}}oiff-“l u B}{m‘,w,,arﬁa))ni(fq U B]’tﬁr"ﬁ_.m:lﬂ

and
Aapre Ne By sio=A(8,0) Ne Bis )=(A U B) g6 aci)-

Thus
(Afa,8) Ue B(y,5))°=Aia g)e Me By gye-

The remaining parts can also be proved in a similar way.

6.4.6 Proposition

(BSS(X)4,MU,°% Aig x),A(x.9)) is a de Morgan algebra.
Proof. Proof follows from Propositions 6.4.4 and 6.4.5. m

6.4.7 Proposition

(BSS(X) 4,nU,°% A(g x),Ax,4)) is a Kleene algebra.
Proof. For A{n,.‘}}! Al’)d‘} 1= BS'IS{X}_’-L

Apgy M Agre = Apg) N A=A 0n8,800) =A(8,800) and
A UApge = Apg U Aey=Anoe60m=An069)
Cle&rl}' A{a13}, Il Al:cx,.'j}” = Ah.‘a‘} | Ah‘.ﬁ}"'

We already know that (BSS(X)a,M,U,°, A (g x),A(x #)) is a de Morgan algebra, so this
condition assures that (BSS(X)4,MU,°%, A x),A(x @) is also a Kleene algebra. m

6.4.8 Remark

We have seen that {IDSLQ{X}l.!“I_I"_l,C,AE.{;I_}:J'A{_f:{pJ} is a de Morgan algebra but not a
Kleene algebra whereas (BSS(X) 4 LU A x4 x.¢)) is its de Morgan subalgebra
and also a Klesne subalgebra,




Chapter 7

Algebraic Structures of Fuzzy
Bipolar Soft Sets

In this chapter, we have initiated a concept of fuzzy bipolar soft sets. The idea is
generated with the motivation of bipolarity of parameters and then the fuzziness of
data comes into play. A fuzzy bipolar soft set is defined with the help of two mappings,
one for approximating the degree of fuzziness of the positivity or presence of a certain
parameter in the objects of initial universal set and the other one is to approximate a
relative degree of fuzziness of the negativity or absence of same parameter. In this way,
we have combined these three concepts of bipolarity, fuzziness and parameterization
and thus it is shown through examples that we have found a very easy to use way of
modeling the phenomena where all these three factors are involved. To move further,
we have defined the basic algebra for the fuzzy bipolar soft sets and discussed their
algebraic properties in detail. It is also shown that the collection of fuzzy bipolar soft
sets forms a stone algebra.

7.1 Fuzzy Bipolar Soft Sets

Let X be an initial universe and F be a set of parameters. Let FP(X) denotes the
collection of all fuzzy subsets of X and A, B, C' are non-empty subsets of £, Now, we
define

7.1.1 Definition

A triplet ( f,g : A) is called a fuzzy bipolar soft set over X, where f and g are mappings,
given by f: A — FP(X)and g: -A — FP(X) such that 0 < (f(e))(x)+(g(—e))(z) <
1forallee A

In other waords, a fuzzy bipolar soft set over X gives fwo parametrized families of
fuzzy subsets of the universe X and the condition 0 < (f(e))(x) + (g(—e))(x) < 1 for
alle € A, I8 imposed as a consistency constraint. For each e € A, f(e) and g(—e) are
regarded as the set of e-approximate elements of the fuzzy bipolar soft set A,

Note that, from now on, we shall use the notation 4 over X to denote a fuzzy
bipolar soft set (f,g : A) over X where the meanings of f, g, A and X are clear.

107
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7.1.2 Definition

For a fuzzy bipolar soft set A, over X, we define a fuzzy soft set A, over X for
the approximation of the degree of hesitation in Ay as h: A — FP(X) defined by
(h(e))(z) =1 — (f(e))(x) — (g(—e))(z) for all z € X, e € A. Clearly, Aj, approximates
the lack of knowledge about the objects of X while considering the presence or absence
of a particular parameter from A,

7.1.3 Definition

For two fuzzy bipolar soft séts Ay, and B, ;) over X, we say that A, is a fuzzy
bipolar soft subset of By, ;, if

1) AC B and
2) f(e) € hie) and i(—e) C g(—e) for all e € A.

This relationship is denoted by Ai.l",g}éB{h.i}-
Similarly Ay is said to be a fuzzy bipolar soft superset of By, ;, if By is a
fuzzy bipolar soft subset of Ay . We denote it by A i/th_ﬂ.

7.1.4 Definition

Two fuzzy bipolar soft sets Ay, and By ;) over X are said to be egual denoted as
Aipa =B it Agyg is a fuzzy bipolar soft subset of By, ;) and By, ;) is a fuzzy bipolar
soft subset of A, .

7.1.5 Example

Let X be a set of different books, and E be the set of parameters where, X =
{by,ba,ba,bybs}, E = {e1,e0,e3,e4,65,66 = { Simple, Logical, Orderly, Concise, Varied,
Appealing}, -E = {—ej,~ea,~e3,7€4,-e5} = {Complicated, Illogical, Chaotic, Wordy,
Monotonous, Distant}. Suppose that A = {ey,e9,e5,e5}, a fuzzy bipolar soft set Agsa
describes the “reader ratings of books under consideration”. The fuzzy bipolar soft
set Air, over X is given as follows:

f A= FPX),

{61/0.9,b2/0.3,b3/0.8,b,/0.7,b5/0.5} ife=e,
{b1/0.1,b5/0.5,b5/0.1,b,/0.8,b5/0.6} if e = ey,
{61/0.2,b/0.5,b3/0.2,b,/0.8,b5/0.7} if e =e3,
{61/0.7,b2/0.4,b3/0.2,b4/0.1,b5/0.1} if & = eg,
g = —A—- FPX),

{b1/0.1,b2/0.3,b3/0.1,b4/0.2,b5/0.3} if e = —ey,
{b1/0.7,b2/0.4,b3/0.8,b4/0.1,b5/0.2} if e = —ea,
{b1/0.6,b2/0.4,b3/0.6,b4/0.1,b5/0.3} if e = —eg,
{b1/0.2,b5/0.3,bg /0.8,b4 /0.7,b5/0.5} if e = —eg.
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Let B = {es,e5}. Then a second approximations with respect to the earlier approxi-
mations by Ay, is represented by a fuzzy bipolar soft subset By, ; .of A4, and given
by:

h : B-— FP(X),
{b1/0.1,59/0.5, b3/0.1, b4 /0.8, b5/0.6} if e = ea,
. { {b1/0.7,2,/0.4, b3/0.2, b4 /0.1,b5/0.1} if e = eg,
§ @ =B FP(X),
{b1/0.7,2/0.4, b3 /0.8, b4 /0.1,b5/0.2} if e = —ea,
i { {1/0.2,9/0.3, b3 /0.8, b4 /0.7, b5 /0.5} if e = —eg.

7.2 Bipolar fuzzy Soft Sets

We present the concept of bipolar fuzzy soft sets as a generalization of soft sets in
bipolar fuzzy context. Let BFP[X) denotes the set of all bipolar fuzzy subsets of X,

7.2.1 Definition

A pair (f,A) is called a bipolar fuzzy soft set over X, where f is a mapping given by
f: A - BFP(X).

Thus a bipolar tuzzy soft set over X gives a parametrized family of bipolar fuzzy
subsets of the universe X. For any e € A, f(e) = {(=,f(e)",f(e)") : x € X} where
fle)?: X —[0,1] and f(e)V : X — [~1,0] are mappings.

Before proceeding to the further development of theory of bipolar tuzzy soft sets,
we give following interpretations:

7.2.2 Proposition
A fuzzy bipolar soft set over X is equivalent to a bipolar tuzzy soft set over X and
vice versa,

Proof. Let A/, be a given fuzzy bipolar soft set defined over X. We define a
bipolar fuzzy soft set (h,A4) over X as:

h(e) = {(=, f(e), —(g(-e)(x)) : = € X}

for all e € A, Then (x, f(e), —(g(—e)(x)) € BFP(X).
Conversely assume that we are given a bipolar fuzzy soft set (h,A4) over X. We
can define a fuzzy bipolar soft set A ¢y over X in the following manner:

fle) = hle)”
gl-e) = —(h(e)™)
for alle € A.

Thus both definitions are equivalent and may be used interchangeably. m
Consider the following example:
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7.2.3 Example

Let X = {mi,ma,m3,m4,ms} be the set of candidates who have applied for a job
position of Office Representative in Customer Care Centre of a company. Let F =
{e1,e0,e9,64,65,66,e7 ) = {Hard Working, Optimism, Enthusiasm, Individualism, Imag-
inative, Decisiveness, Self-confidence} and —FE = {—ej,~es,—e3, —e4, —es5, —eg, —er} =

{Negligent, Pessimism, Half-hearted, Dependence, Unimaginative, Indecisiveness, Shyness}.

Here the gray area is obviously a moderate form of parameters. Let us suppose that
the fuzzy bipolar soft set E;, describes “ Personality Analysis of Candidates” as:

f : E—=FPX),
{m /0.5, mo /0.7, mg /0.6, m4/0.7,m;/0.5} ife=e¢g,
{m /0.6, m9/0.7,mg/0.8,m4/0.8, mz/04} if e =eo,
{m /0.8, ma /0.8, mg /0.4, m,4/0.6,m5/0.5} ife=es,

e — {m /0.7, ma /0.6, m3/0.1,my /0.7, m5/0.6} if e = ey,
{m /0.5, ma/0.8, m3 /0.6, my/0.5, m5/0.7} if e =es,
{my/0.4,ma/0.9,m3/0.5,m4/04,ms/0.7} if e = eg,
{my /0.3, ma /0.8, m3/0.4, mq/0.6,ms/0.8} if e =eq,

g : =E = FP(X),
{m1 /0.3, ma /0.2, m3/0.4,m4/0.1,m5/0.3} if e = —ey,
{m, /0.4, ma/0.1,m3/0.2, my/0.1,m5/0.5} if e = —es,
{m, /0.05, mo /0.1, mg /0.5, m4/0.33,m;/0.4} if e = —eg,

e — {m/0.23, mo /0.3, mg /0.6,m4/0.2,mz/0.3} if e = —ey,
{m /0.4, m9/0.2,my/0.35,m4/0.4,mz/0.1} if e = —egg,
{m /0.4, m9 /0.2, my /0.3, m4/0.3,m;/0.2} it e = —eg,
{m /0.7, ma /0.08, m3 /0.5, m4/0.3, m5/0.18} if e = —er,

Now let’s see the corresponding bipolar fuzzy soft set:

her) = {(m1,0.5,—0.3),(me,0.7,-0.2), (m3, 0.6, —0.4), (m4, 0.7, - 0.1}, (ms, 0.5, —0.3) },
hiea) = {(m1,0.6,-0.4),(mo,0.7,-0.1),(m3,0.8,-0.2), (m4, 0.8, -0.1), (ms, 04, -0.5)},
hies) {(m,0.8, —0.05), (ma, 0.8, —0.1), (m3, 0.4, —0.5), (m4, 0.6, —0.33), (m5, 0.5, —-0.4) },
hes) = {(m,0.7,-0.23), (me,0.6, —0.3), (m3, 0.1, -0.4), (m4, 0.7, -0.2), (ms, 0.6, —0.3) },
hies) = {(m1,0.5,—0.4),(ms,0.8, —0.2), (m3, 0.6, —0.35), (m4, 0.5, -0.4), (ms, 0.7, —0.1) },
hieg) {(m,0.4, —0.4), (mg,0.9, —0.2), (m3, 0.5, —0.3), (my, 0.4, —0.3), (m;5,0.7, -0.2)},
hier) = {(m1,0.3,-0.7),(m2,0.8, —0.08),(ms, 0.4, —0.5), (m4, 0.6, —0.3), (ms5, 0.8, —0.18) }.

It is clear that fuzzy bipolar soft set depicts the information in a better and compre-
hensive way than bipolar fuzzy soft set. For example, if we read the data of candidate
my with fuzzy bipolar soft set 4, . then he is having 0.6 fuzzy value for optimism and
0.4 tuzzy value for pessimism and if we use the bipolar fuzzy soft set (h,E) then m, is
having 0.6 fuzzy value for optimism and —0.4 shows the degree where m; 1s showing
pessimism.

Let FBSS(X)F denotes the set of all fuzzy bipolar soft sets defined over X with
set of parameters F, ordered by the relation of inclusion C as defined in Definition
7.1.3. We show that every fuzzy bipolar soft set is equivalent to a double-framed fuzzy
soft set and give the following theorem:
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7.2.4 Theorem

The mapping € : FRSS(X)F — DFSS(X)E, A
lattices where

(f.9) = A(f1 1) 18 @ monomorphism of

File) = fle), and gy(e) = g(—e) for all e € A.
Proof. Clearly @ is well-defined. If
0( A1) )=0(Bn )

where

0(Ai56))=A 5. q1) a0d O(Byp ;) )=B,

1)

then

fi(e) = f(e), hi(e) = h(e) and gi(e) = g(—e), ir1(e) = i(-e) foralle € A.
Now,

fle) = file) = hi(e) = h(e) and g(—e) = gi(e) = ir(e) =i(~e) forall e € A.

Thus
A{f.g;:iﬂih.i}

shows that @ is one-to-one. Clearly @ is order preserving. m
7.2.5 Remark
Note that 6 is not onto because of the consistency constraint for defining tuzzy bipolar
soft sets and FBSS(X)E=BFSS(X)E — DFSS(X)E.
By Theorem 7.2.4, we can equate every fuzzy bipolar soft set 4, over X with

a double-framed fuzzy soft set and so, we can take f and g as mappings from A to
BFP(X) where the meanings of A, f and g are clear in this context.

7.3 Operations on Fuzzy Bipolar Soft Sets
This section provides some operations defined on fuzzy bipolar soft sets:

7.3.1 Definition

Let Ay, and By, ;) be fuzzy bipolar soft sets over X. The int-uni product of Ay
and By, ;) 1s defined as a tuzzy bipolar soft set (A x B) i 40 over X in which

FAR i (AxB)— FP(X), (a,b) — f(a) A h(b),
gVi : (A x B) = FP(X), (a,b) — g(a) vV i(b).

It is denoted by Ay A Bniy=(A X B)singvi)-
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7.3.2 Definition

Let Ay, and By ;) be fuzzy bipolar soft sets over X. The uni-int product of Ay
and By, ;) is defined as the fuzzy bipolar soft soft set (A x B) pyp gas) over X in which
fvh: (A x B) = FP(X), where

(a,b) — fla) V h(b),
and ghi : (A x B) — FP(X), where

(3,5) > gla) A ).
It is denoted by A ) v B”,‘E::i(_ﬁl ® B)(ron.ghi)-

7.3.3 Definition

For two fuzzy bipolar seft sets Ay, and By, over X, the extended int-umi fuzzy
bipolar soft set of Ay, and By;, ;) is defined as the fuzzy bipolar soft set (AL_JB}UM:Q\;,!-}
where fAh: (AU B) — FP(X),

fle) ifec A—B
e ¢ h(e) ifec B-A
fle) Ahle) ifee (ANB)
and gVi : (AU B) — FP(X), where
gle) ifec A—B
e q ife) ifeecB=4
gle) vi(e) ifee (AN B)

It is denoted by As g Me By iy =(A U B) sip gvs)-

7.3.4 Definition

For two fuzzy bipolar soft sets Ay, and By, ;) over X, the evtended uni-int fuzzy
bipolar soft set of Ay o) and By, ;) is defined as the fuzzy bipolar soft set (AUB) oy, a4
where fvh: (AU B) — FP(X),

fle) ifec A-B
e hie) ifecB-A4
fle) v h(e) ifec (ANB)

and ghi: (AU B) — FP(X), where

gle) ifec A-B
e ¢ i(e) ifec B-—A
gleynile) ifee (ANEB)

It is denoted by A g Ue Bniy=(A U B)fingai)-
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7.3.5 Definition

For two fuzzy bipolar soft sets Ay, and By, ;) over X with (ANB) # 1, the restricted
int-uni fuzzy bipolar soft set of Aiy , and By ;) is defined as the fuzzy bipolar soft set
(AN B)sangwiy Where fAh: (AN B) = FP(X),

e f(e) Ahle),
and gVi: (AN B) — FP(X), where

e — gle) v ile).
It is denoted by A':f.y} n B,:ﬁﬁ}i(_»‘l n B)l:f.-"\f:,g\;-'i}‘

7.3.6 Definition

For two fuzzy bipolar soft sets A ;. and By, ;) over X with (ANB) # 0, the resiricied
uni-int fuzzy bipolar soft set of Ay ., and By, ; is defined as the fuzzy bipolar soft set
(An B}u@h‘gﬁﬂ where, f\Vh: (AN B) = FP(X)

e f(e)V he),
and ghi : (AN B) — FP(X),

e — gle) Aile).
It 15 denoted b:{ A':LQJ" L B(h‘l;::i[:zq n B}I:f‘;’f:,ga‘:‘.!"'r'

7.3.7T Remark

The operation of complementation as defined in Definition 5.2.7 for double-framed
fuzzy soft sets is no more valid for fuzzy bipolar soft sets because (Ay ) =4y may
not satisty the consistency constraint as shown by the following example:

7.3.8 Example

Let E, A, X and fuzzy bipolar soft set A
Then {AU‘QF}' is given as follows:

o A= FPX),
{b1/0.1,b2/0.7,b3/0.2,b4/0.3,b5/0.5} if e = ey,
{b1/0.9,b2/0.5,b3/0.9,b4/0.2,b5/0.4} if e = e,
{b1/0.8,b5/0.5,b3/0.8,b4/0.1,b5/0.1} if e = eg,
{b1/0.3,b5,/0.6,b3/0.8,b4/0.9,b5/1.0} if e = eg,
g : A= FP(X),

( {b1/0.8,b2/0.7,b3/0.7,b4/0.6,b5/0.2} if e=ey,
{b1/0.3,b2/0.6,b5/0.2,b4/0.3,b5/0.1} if e = e,
{b1/0.4,b5/0.6,b3/0.4,b4/0.4,b5/0.3} if e = e3,
{b1/0.1,b2/0.7,b5/0.2,b4/0.3,b; /0.5} if e = eg.

{f.g) over X be taken as in Example 7.1.5.

but
(flet))b2) + (gler))(b2) =07 +07=142>1
so (Airg)) ¢ FBSS(X)E. Thus " * " is not defined on FBSS(X)E.
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7.3.9 Proposition

Let Ay be a fuzzy bipelar soft set over X. Then ° : FBSS(X)E - FBSS(X)E is
defined and we denote (Arg)° by A(s 0.
Proof. It Ay, € FBSS(X)E then

Aipgre=A(go goy where f°: A — FP(X), e g(e) and g A— FP(X), e fle).

Clearly
0 < (f°(e))(@) + (¢°(—e))(z) <1
Thus A, fa° € FBSS( X}H, -

7.4 Properties of Fuzzy Bipolar Soft Sets

In this section we discuss properties of fuzzy bipolar soft sets with respect to their
operations. Associativity, commutativity, absorption, distributivity and properties of
tuzzy bipolar soft sets are investigated.

7.4.1 Definition

A fuzzy bipolar soft set over X is said to be a relative absolute fuzzy bipolar soft sef,
denoted by A g g where

1:A> FP(X),e—1 and 0: A - FP(X), e 0.

7.4.2 Definition

A fuzzy bipolar soft sef over X is said to be a relative null fuzzy bipolar soft sei, denoted
by A, where

0: A5 FP(X),e—0 and1: 4 - FP(X), e 1.
Conventionally, we take the fuzzy bipolar soft sets with empty set of parameters
to be equal to §4 1, and so A N B =A1q) -_-B{;,:;-Iaéli'.-{ﬁ:i} whenever (AN B) = (.
7.4.3 Proposition

If Aig 1) is a null fuzzy bipolar soft set, 43 g, an absolute fuzzy bipolar soft set, and
Aig s Ay are tuzzy bipolar soft sets over X, then

1) Ay Ue Aniy=Airg) U Apnji)s

2) Ag) Ne Apniy=A1,g) N Aniys

3) Aisg) M Ay =Als.0)=Als9) U As.g)5

4) Ayg U Apn=Aya=Ae NAge).

B) Ayg UAgp=Aia; Aire N A1 =A40,1)-

Proof. Straightforward. m
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7.4.4 Proposition

Let Aoy, By and Cjpy be any fuzzy bipolar soft sets over X. Then the following
are true

1) (Absorption Laws)

(@) Airg Ue (Bingy M Ay0) =414,
(i) Agrg) M (Bihi) Ue Arg))=Aisg)»
(iii) Asg) U (B Ne Aygy)=Asg)s
(iv) Agsg Ne (Biniy U Airg)) =4 1g)-

2} (ASSDCiB.tiVE La\l's} A{fg} )"{B“"f’\clji:'}i':ALJ.Q}AB{".U}AC{Jk'"
3} (Gommutative L&WS) Atf.y'; )\th,i}iBih,E})\AU’.g}1

4) (Distributive Laws)(Distributive Laws)

() A(sg Ue (Bingy UCGx)S(A ) Ue Biiy) U (A(gg) Ue Ciiy),
(i) Aqfg) Ue (Bins) Me Cliy)2(A(1,g) Ue Biniy) Me (Asg) Ue Cimy)s
(iii) Asg) Ue (Bini) M Cliny)=(A¢sg) Ue Biniy) N (Agg) Ue Ciimy )
(iv) Aqsg) U (Bni) Ue Ciik))=(A(1,9) U Bny) Ue (A(s,g) UCHR),
(%) Az.g) U (Binay Me Cliiy)=(A(s,9) U Binyiy) Me (A1g) U Cliey)s
(vi) Az U (B N Cliry) =(A(r,g) U Bny)) N (Agsg U Cligy)s
(vii) Aqgg) Ne (Bing Ue Ciin))S(Agg) Ne Biay) Ue (Agg) Me Cligy)s
(viii) A¢sg Me (Bini) UCHk)=(A(19) Ne Bini)) U (Asg) Me Cliy )s
(ix) Ayzgy Ne (Bpniy N Cyy)2(A(1.g) Ne Biniy) N (Ag,g) Ne Ciimy)s
(x) Agsg) N (Biniy Ue i) )=(As,g) M Bingi)) Ue (Aggg) M Ciny ),
(xi) A(sg) M (Bni) Ne Ciik))=(A(z,9) N Bny) Ne (A(g,g) M Cliiy)s
(xii) Agrg) N By U Clim)=(A(sg) M Biniy) U (A1,g) N Ciigy)-

Proof. From Theorem 7.2.4, it is easy to see that these properties hold as for
double-framed fuzzy soft sets m

7.4.5 Example

Let X be the set of houses under consideration, and F be the set of parameters,
X = {hi,hohahahs}, E = {e1,e2,e3,e4,e5} = { in the green surroundings, cheap, in
good repair, furnished, traditional }. Let =E = {-e;,~eq,-e3,7e4,~e5} = { in the
commercial area, expensive, in bad repair, non-furnished, modern }. Suppose that
A ={eiea,e3}, B = {eaeaeq}, and C' = {eg,eq,es}t. The fuzzy bipolar soft sets Aija)
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and By, ;) and Cy; ) describe the “requirements of the houses” which Mr. X, Mr. Y
and Mr. Z are going to buy respectively. Suppose that

f

h

A— FP(X)N

{21/0.4,@3/0.7, 23/0.7, 24 /0.7, 25 /0.1} if e = ey,

{z1/0.8,23/0.0,23/0.5, 24/0.1,25/0.6} ife = es,
{ {21/0.7,22/0.5, 23 /0.7, 24 /0.6, 25 /0.1} if e = e3.

{z1/08,z2/0.1,23/0.3, 24/0.1,55/0.7} ife=e,

{z1/0.1,22/0.9,23/0.3, 24 /0.8, 35/0.2} if e = eo,

{21/0.1, 25/0.3, 25/0.3, 24 /0.3, 25 /0.8} if e = e,
B — FP{X),

{z /0 20 /0.3, 23 /0.3, 24 /0.6, 25/0.6} if e = e,

{z/0.1,%3/0, x5 /0.3, 404, 25 /0.6} if e = eg,

{21/0.9,29/0.5, 23/0.5,24/0.3,25/0.1} if e = e4.
B — FPiZn

{1/0.1,29/0.3, 5 /0.6,24/0.2,25/0.3} if e = e,
{ {21/0.8,22/0.9, 23 /0.5, 24/0.4,25/0.2} if e = e3,

{21/0.1,29/0.4, 23 /0.3, 24/ 0.6, 25 /0.9} if e = ey,
C — FP( Xy

{21/0.7,@9/0.7, 23/0.4, 24/ 0.7, 25/0.4} if e = e3,

{z/0.6,29/0.5, 23/0.6, 24 /0.1, 25 /0.6} if e = ey,
{ {z1/0.3,20/0.4, 23/0.4,24/0.3, z5/0.1} if & = e5.
C — FPEK),

{z1/0.1,@3/0.2, 23/0.3,24/0.1, 35 /0.1} if e = e3,
{ {:1/0.2,29/0.2, 23 /0.3, 24 /0.3, 25 /0.2} if e = ey,

{21/0.1,29/0.1, 253 /0.3, 24/ 0.5, 25 /0.T} if e = e5,

Let
As.gy Ue (Bipgy Ne Cpiny}=(A U BYU C g (nig),gh (k)
and
(A(sg) Ue Biniy) Me (Ay.g) Ue Ciip))=(AU B) U Cpimyas9)-
Then
(FY(hAG)(e2) = {o1/01@a/0.0,55/03; /0.1, 55/0.6)
# {r1/0.8,29/0.0,23/0.5,24/0.1, 25/0.6}
= ((FVRIAFVI))(e2) and
(gA(ivE))(ea) = {x1/0d322/0.9,23/0.6,24/0.8, x5/0.3}
{x1/0.1, 20/0.9, 23/0.3, 24 /0.8, 25/0.2}

I~k

((gAi)V(gAk))(ea),




T. Algebraic Structures of Fuzzy Bipolar Soft Sets 117

so that
A(g.gy U (Br) Me Clip (A 1.0y e Bny) Me (Agg) Ue Cliy)-
Now,
A(s.g) Ne (Binyi) Us Ciigy)=(AU B) U Cyamvj).gv6Ak)
anc

(A{s.g) Te Ba,i) Us (A(g,g) Me Cliry )J=(A U B) U C panyusig), (avi) Algvh)) -
Then,
(FA(RVI))ez) = {1/0.8,29/0.3,23/0.5,24/0.6, 25/0.6}
{z1/0.8, 22 /0.0, 2z3/0.5, 24 /0.1, 25 /0.6}
((FARWV(FAG))(e2)

e

and

{:!:11‘['.1, 1‘2,“].3, J:3f[]'.3, 1:4!0.2, .1'5,"0.2}
{x1/0.1, 25/0.9, z3/0.3, 24/0.8, 25/0.2}
((gvi)A(gVE))(ez).

(gV(iAk))(e2)

H

So that
Aoy Ne (Bing) Ue Ciik))#(A(1,6) Ne Bnyiy) Ue (A(z.g) Ne Cliny)-

Similarly we can show that

A(sg) Ue (Bniy U Cligy ) #(A(f.g) Ue Bin)) U (A(1.g) Ue Cliy)s
and )
Asg) Me (Biniy N Cimy)#E(Aggg) Me Biniy) N{Ais.g Ne Criiy)-

7.4.6 Corollary

Let Ay 41, Biniy and Cyjpy be three fuzzy bipolar soft sets over X such that (AN B) -
C=(ANC)—-B =1. Then

1)

Agp gy Ue (Biniy Ne Cin))=(Af.6) Ue Binyiy) Me (A(pg) Ue Ciiny )

2)
A7 g) Ne (Bin,iy Ue Ciiey)=(A(1,6) Ne Biniy) Ue (Ags,g) Ne Ciny)-

7.4.7 Corollary

Let Apoy, Ay and Ay be any fuzzy bipolar soft sets over X. Then

Ay M A pPAG R )= (A 1.0 A ina) (A g0y AA G 1)

for distinet A, p € {.,M,U.,U}.
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7.4.8 Proposition

Let Ay, and By, ;) be two fuzzy bipolar soft sets over X. Then the following are true

1) Aigg) Us By is the smallest fuzzy bipolar soft set over X which contains both
A and By, . (Supremum)

2) Ay N B, is the largest fuzzy bipolar soft set over X which is contained in both
Agg and By . (Infimum)

Proof. Straightforward. m

7.5 Algebras of Fuzzy Bipolar Soft Sets

Now we consider the collection of all fuzzy bipolar soft sets over X and denote it by
FBSS(X)F and let us denote its sub collection of all fuzzy bipolar soft sets over X
with fixed set of parameters A by FBSS(X) 4. We note that this collection is partially
ordered by inclusion. We conclude from above results that:

7.5.1 Proposition

(FBSS(X)E N, ,U) and (FBSS(X)E L, ,N) are distributive lattices and (FBSS(X)E,,M,)
and (FBSS(X)F M,L.) are their duals, respectively.
Proof. Follows from Propositions 7.4.3 and 7.4.4. m

7.5.2 Proposition

(FBSS(X)E,NUe 8ia,x) B x,8))s (FBSS(X)E UeNEx )0 (2.%))

{.'FBSS(X}A !m.'l—l"‘qf@..f:i“’qlf.’{.‘f'}l and (.’FBL‘;LQ[X}{l,!_i,ﬂ1,.lqc\*’lé:}}Aiqﬁ:l{}} are bounded
distributive lattices.

Proof. From Proposition 7.4.8, we know that (FRSS(X)® 1,0, 05 5,.Ex.8) is
a bounded distributive lattice and (FBSS(X)F e L E % gy, 0 @, %)) s its dual. For any
fuzzy bipolar soft sets Ay, Ay € FBSS(X),,

Al:f.g} ] A{h.a} = A{fﬁ.h_y\'..-g:, (= .:FBSS(X)_,I ancl
Aiﬁy} L A{h,a} = A{_r‘\}h.gf\ﬁ' (= .:FBC';C'?(X:}‘_I.

Thus (FBSS(X),4,MU) is also a distributive sublattice of (.FB,.“FS(X}EJ_IE,I‘I} and
Proposition 7.4.3 shows that (FBSS(X) ,1,U,A¢,%),4x 3 ) is a bounded distributive
lattice and (FBSS(X) 4,U,7,4 1% ¢),4(8,%)) is its dual. m

7.5.3 Proposition (de Morgan Laws)
Let Ay, and B, ;) be two fuzzy bipelar soft sets over X. Then the following are true

1) (A(sg) Us Bini))°=Aig.g)e Ne Bypipe,

2) (A(rg) Me Biny)°=Asg)e Ue Binipe,
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3) (Airg) V Biny))°=A(sg)e A Bingye,

4) (Agg) ABpi)°=Agio V Biaiye,

5) (Aisq UBua)°=Age N B,

6) (A(sg) N B iy)*=A¢s g0 U Biajijo.
Proof.

1) We have
(A¢r.g) Ue Bagy)"=((AU B)(ronghs) =(A U B)ghi, ron)
and
Aiggre Ne Bipipe=Agg, 1y Ne Biiny =(AU B)gii, pomy-
Thus
(A(f,g) Ue Biii))"=A(g,g0 Ne Bipije-

The remaining parts can be proved in a similar way.

7.5.4 Proposition

(FBSS(X)a,NU,°, A x),A(x,e)) is a de Morgan algebra.
Proof. Proof follows from Propositions 7.3.9 and 7.5.3. =

7.5.5 Definition

Let Ay, be a fuzzy ipolar soft set over X. We define A ;. as a fuzzy bipolar soft
set Ay g+ where

P A= FPX),e— (f(e))7,
R _ J O it(f(e))*(x) #0
dore = {7 sty
g A FP(X),e—(g(e)),
1

. = if (g (e))"(z) # 1 :

7.5.6 Theorem

(FBSS(X a0 A x)Arx,a)) is a Stone algebra.

Proof. From Proposition 7.5.2 it is evident that (FBSS(X)a,NU, A x),Ax,0))
is a bounded distributive lattice and A - EH[AU:Q}-] where @ is mapping defined
in Theorem 7.2.4 assures that * is a pseudocomplementing function satisfying Stone’s
identity. Thus (FBSS(X) 4N, A9 x),4(x.9)) is a Stone algebra. m




Chapter 8

A Generalized Framework for
Soft Set Theory

This chapter is more of a collective nature than the previous ones and not only sum-
marizes the main results but also provides a general framework to deal with soft sets
in a logical manner. We have given an over all review of various kinds of soft sets.
A brief discussion about defining ideas of extended soft sets and their operations, a
summary of algebraic structures and an application of soft sets in decision making
problems has been made in this chapter to conclude thesis here. We initiate discussion
with definition of soft sets.

8.1 General Definition of Soft Set and its Extensions:

Let X be an initial universe and E be a set of parameters. Let XP(X) be a generalized
fuzzy power set of X where AP(X) may be a collection of all crisp or fuzzy or type-2
tuzzy or n-fuzzy or hesitant fuzzy or interval-valued fuzzy or vague or intuitionistic
tuzzy or bipolar fuzzy subsets of X and, say, A stands for a fuzzy criteria of collection

AP(X).

® A mapping f : A — XP(X) is called a A—soft set over X denoted by Ay where
A C E. We note that parameters in £ can be a specific criteria for which an
approximation of elements of X is made by f, so a A—soft set over X gives a
parameterized family of A—subsets of X.

® In our next step towards a general framework for soft sets, we allow to consider
more than one frames of reference for X within the context of each parameter.
This consideration requires some modifications in the ongoing soft set based
model and so, this requirement is fulfilled by introducing a set of functions f; :
A= AP(X),i=1,2,..,n and denote it by Ay, r, . r.) and call it an n-framed
A—soft set over X, Clearly, an n-framed A—soft set gives n parametrized families
of A—subsets of X.

e Now, if the frames of references are mutually exclusive or obeying some other
mutual relation which is causing a polarity among those, then we incorporate the

120
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idea by imposing a suitably chosen set of consistency constraints C. Hence we give
the concept of A n-pelar soft set over X comprising of functions f; : 4 — AP(X),
(fieC) i=1,2,.. ndenoted by Al:fl-fzg----fn}'

In a natural way, all A multi-polar sofi sefs are multi-framed A—soft sets over X
but the converse is not true. It is also interesting to observe that multi-pelar A soft
sets can be presented in an equivalent and better way by using A multi-polar soft sets.
A particular case for n = 2 is already discussed in Chapter 7 for fuzzy subsets of X,

8.2 Aggregation Operators for Soft Sets in General Form

We need to apply a process for aggregation where the number of inputs are grouped
together in order to get a single output that is easier to use for further computations.
Usually when an object or an alternative is characterized by several numbers or values
describing its various parameters or is given evaluations from several experts and one
has to aggregate these values in order to describe the object by just one meaningtul
value or set of values. Aggregation operators are an important tool that is used in
many domains [6], [8]. For a soft set and its hybrid generalizations and extensions, an
input space for aggregation is a bit unconventional because it is required to deal each
object in a parametrized context. Therefore a soft aggregation operator is a function
working on a particular number of inputs for each parameter, with output lying again
in a parametrized manner. We define soft aggregation operators in either restricted
or extended context. A restricted soft aggregation operator joins two soft sets with a
restricted set of parameters, that is, only those parameters which are combined to both
and mathematically the set of parameters is taken as the intersection of parameters
sets in input soft sets. On the other hand, an extended soft aggregation operator
joins two soft sets with an extended set of parameters, that is, all those parameters
apparent are taken into consideration and mathematically the set of parameters in
output is union of parameters sets in input soft sets. Let m be a positive integer and
K be a set of various operations defined for A fuzzy subsets of X,

o Let 4;,8B C E and Af,r, be A—soft sets over X, where ¢ = 1, 2, ..., m. Then
an aggregation operator is a mapping (A i JAa PR Am,, ) — Bg. We have two
cases:

m
(i) For the case of restricted aggregation operators, we have B = ﬂ A; and
1=1
gle) = k{fi(e):1=1,2,...,m}
for alle € B.
i
(ii) For the case of extended aggregation operators, we have B = U A; and we

i=1
define the set Ale) = {j:e € A;}

gle) = k{fi(e) : i € Ale)}
for all e € B,
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o Let 4, BC F and A be n-framed A—seoft sets over X, where i = 1,

Wi Sigetin
2, ..., m, and {k1,k‘g1...,k,,j e K" Then an aggregation operator is a mapping
{Al[hl-hz ----- IluJ’AEUﬂ-bz----Iz-;l'""A"’Hmt-hng. ..._:...J,.J} et B(Ql-ﬁz:----gn)‘ We have
two cases:

m
(i) For the case of restricted aggregation operators, we have B = ﬂ A; and

=1
gj{ej = kj‘:f:_;[e] = 1!21-'-9”1'}: J = 1329 vy TH

for alle € B.

m
(ii) For the case of extended aggregation operators, we have B = U A; and we

i=1

define the set Ae) = {j: e € A;}

gj{e) = kj‘:fz_;(e} 5 = ﬁ(e)}lj =12,.,n

for alle € B.
o Let A;,, B C E and A,—U TR (fij € C) be X n-polar soft sets over X where
i =1, 2 ..., m and (k,ko,....k,) € K". Then an aggregation operator is
a mapping (Ay, o nss 42000 o Ay s tmm) = Blargagn)

(g; € C). We have two cases:

m
(i) For the case of restricted aggregation operators, we have B = ﬂ A; and
=1

gie) =ki{fij(e) :i=1,2,..,m},j=1,2,..,n

for all e € B.

I
(ii) For the case of extended aggregation operators, we have B = U A; and we
1=1

define the set Afe) = {j:ec A;}
gile) = kj{fijle):i€ Ale)}, i =1,2,..,n
for all e € B.

All aggregation operators defined for n-framed A—soft sets over X can be used to
define aggregation operators for A n-polar soft sets over X as except where consistency
constraints are absent. We have seen an example of complement operation defined for
double-framed soft sets which is no more available for bipolar soft sets due to hazard
of consistency constraint. Thus the set of aggregation operators for A n-polar soft sets
is contained in the set ol aggregation operators for n-framed A—soft sets.
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8.3 New Examples of Logical Algebraic Structures

In this section we present a summary of results that we have found in our research
regarding different types of soft sets and their collections and thus new examples of
these algebras are contributed through our work. Following table gives an overview of
the algebraic structures of soft sets:
1 | Lattices:
(SS(X)",Me, 1), (SS(X)®,U,Me), (FSS(X)*,Ne, L),
(FSS(X)E, UML), (PSS(X)E, ML), (PSS(X)E,u,m.),
(DFSS(X)E,N.,L), (PFSS(X)E, L, M), (BSS(X)E, R, L),
(BSS(X)E,U,N.), (FBSS(X)E,n,, L), (FBSS(X)E,u,Nn,)
2 | Bounded Distributive Lattices:
{SS{X)B ’ l_l.' Lle, @'b.- El:] s {:‘Q‘Q{X)b1 L, 1, EI: @q’):
{",ESS{X)E!‘ My Ue, @d’; El) ] {"F'SS{X}E! Ue, I, E.3;'+ G’d’}&
{T’SS{X)E, My Ue, 'z'{fl’..t”) ' E(.E,'P):h [PSS{X)E- Ue, I, E(I,Q:}- ﬂ{dﬂ,.’t‘))!
(DFSS(X)E,N,Le, Vo) Ex.0)), (PSS(X)F, ., M, Bz ) Via.x))
(BSS(X)E,N, Ue, b2y, Eie.ay), (BSS(X)F,Ue, 1, Epe gy, 01,3))
(FBSS(X)®, M, U, Uia 3y, Ez.0)): (FBSS(X) P, 0,0, Biz gy, Do x))
3 | De Morgan Algebras:
(PSS(X)a,M,U°, A@x) Aix,e))s (DSS(X)a, U107, Az 0y, Aa,x))
(PFSS(X)4,MU,°, Aex)s Ax,3)) (DFSS(X) 4,1, U,°, Aax)s A(z,8))
(FBSS(X)a,MU°, A )y Agx ay)s (FBSS(X)a,U,N,°, Ay )y Ara 1)
4 | Boolean Algebras:
{SS{X)A! n,u,e, A@‘! AI)‘ (SS(X:}A1U1 n,c, Ax, A@‘}s
(DES(X) ;1,7 A 2)s Az 0), (PSS(X)a, U, 1, A9y, A(.3),
5 | Kleene Algebras:
(FES(X) 4, M,U,5 Ag, Ax), (FSS(X) 4, 1,0, Ax, Ag),
(PFSS(X) 4,M,L5 A x)s Az ,a) (PDFSS(X) 4,1, 1,5 Az 2y, Aga,x))
(BSS(X)a,M,U,°, Ag 2y, Az @), (BSS(X) 4, U,M.°, Aix ), Aax))s
6 | Pseudocomplemented Lattices:
(DSS(X)a,1,U,% , Awa x), Az 9))
7 [ Stone Algebras:
(F88(X)a,M,U,°, As, Ax), (PFSS(X) 4,1 U" Ae vy Az )
(FBSS(X)a,N,U*  Ae 3y, A 4)
8 | Atomic Lattices:
(SS(X) 0,1, 0)
9 | Brouwerian lattices:
{SS{X)E, MU ), (SS(X) 4, M,U), (FSS(X)E,n,u,), (FSS(X)a,N, L)
(DSS(X)E, M, Le), (DSS(X) 4,N,U), (PFSS(X)E, N, L),
(DFSS(X),,N,U)
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10 [ MV-algebras:
(S8(X)a, N5, Ax), (S8(X) 4,15, Ap), (DSS(X)a,N,°, Ax,0)),
(PSS(X)a, U7, Ap 1))

11 | BCK-algebras:
(SS(X)a,— As), (SS(X) s %, Ap), (PSS(X) 4, —, A@,3)):
(DSS(X) 4, %, A x))

8.4 Application of Soft Sets in a Decision Making Prob-
lem

Decision making is an important factor of all scientific professions where experts apply
their knowledge in that area to make decisions wisely. Many researchers have applied
soft set theory in various decision making problems using different algorithms. A
general algorithm for the decision of best object using soft sets is given as tollows:

8.4.1 Algorithm

Let X be an initial universal set of available objects and E be the set of parameters.
The algorithm for the selection of the best choice among the objects of X is given as:

1. Input A(fl-f.h---‘f--]’ an n-framed A—soft set over X where A C F.

2. Input the set of choice parameters P C F and find the reduced n-framed A—soft
set over X which is reduct of A¢p, r, 1)

3. Compute the comparison tables for functions fy, fa,..., fn by using the predefined
rule or Aggregation operator.

4. Compute the scores for each object.

5. Compute the final score S; for each object z; € X.

6. Find k, for which 5 = max 5;.

Then hy. is the optimal choice object. If & has more than one values, then any one
of hi's can be chosen.

Now, we apply the concept of fuzzy bipelar soft sets for modelling a given problem
and then, we give an algorithm for the choice of optimal object based upon the available
sets of information. Let X be the initial universe and E be a set of parameters. We
shall adapt the tollowing terminology afterwards:

8.4.2 Definition

Let E; . be a tuzzy bipolar soft set defined over X. A Comparison table for f is a
square table in which the number of rows and number of columns are equal, rows and
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columns both are labelled by the object names hy, ha, hs, ..., h, of the initial universe
X, and the entries are ¢;;, 4, j = 1,2,...,n, given by

t;; = the number of parameters for which the membership value of h; exceeds

or equal to the membership value of h;

Clearly, 0 < #;; < k, and £;; = k, for all 4, j where k is the number of parameters present
in E. Thus, #; indicates a numerical measure, which is an integer. A Comparison
table for ¢ is a square table in which the number of rows and number of columns are
equal, rows and columns both are labelled by the object names hy, ha, hs, ..., b, of
the initial universe X, and the entries are s;;, 4, j = 1,2, ...,n, given by

sij = the number of parameters for which the membership value

of h; dominates or equal to the membership value of h;

Clearly, 0 < sj; < k, and s;; = k, for all 4, j where k is the number of parameters
present in E. Thus, s;; also indicates a numerical measure, which is an integer.
8.4.3 Definition

The positive row sum and column of an object h;, dencted by r; and e; are calculated

by using the formulae,
n n
i = Ztrju Cy = Ztgh
=1

i=1

The negative row sum and column sum of an object h;, denoted by r*; and ¢”; are
calculated by using the formulae,

n n
7'1=25¢j1 & =ZSU',
i=1 i=1
The positive score F; of object h; will be given by:
P=ri-q
while the negative score N; will be given by:
Ni =ri—d.
The final score S; of object h; will be given by:

S; = P, - N;

foralli =1, 2, ..., n.

We wish to find an object from the set of choice parameters 4. We are now giving
an algorithm for the choice of best object according to the specifications made by
observer and recorded data with the help of a fuzzy bipolar soft set.
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8.4.4 Algorithm

The algorithm for the selection of the best choice is given as:

1. Input the fuzzy bipolar soft set E .

2. Input the set of choice parameters P C E and find the reduced fuzzy bipolar
soft set, Plf_f.g}'

3. Compute the comparison tables for functions f and g respectively.
4. Compute the positive and negative scores for each object.
5. Compute the final score.

6. Find k, for which 5 = max 5;.

Then hy. is the optimal choice object. If & has more than one values, then any one
of h;’s can be chosen

8.4.5 Example

Let X = {my, mg,ms, ma, ms, mg, m7,mg} be the set of candidates who have ap-
plied for a job position of Office Representative in Customer Care Centre of a com-
pany. Let E = {e1,ea,e3,e4, €5, €6, 7,658,090+ = {Hard Working, Optimism, Enthusi-
asm, Individualism, Imaginative, Flexibility, Decisiveness, Self-confidence, Politeness}
and —FE = {—ey, ~es, ey, neq, e, —eg, €7, e85, €9} = {Negligent, Pessimism, Half-
hearted, Dependence, Unimaginative, Rigidity, Indecisiveness, Shyness, Harshness }.
Here the gray area is obviously the moderate form of parameters. Let the fuzzy bipolar
soft sets By, describes the * Personality Analysis of Candidates” as:

f : E - FP(X),
{my/.5,ma/.T,maf.6,ma/. T, ms/.5, mg /D, ms/ 4, mg/ 8} ife=e,
{my/.6,ma/.T,ms/.8, my/ 8 ms/ 4, mg/ 4, m7/2,mg/ T} ife=eq,
{m1/.8,ma/.8, maf.4,my/.6,ms/ .5 ms/.5, mz/4,ms/8} ife=es
{my/.Tymaf.6,msf.1,my/.T,ms/.6,mg/.6,mz7/.6,mg/ 9} ife= ey,
e — {my/.5,ma/.8,ma/.6,my/.5,ms/.T,me/ .3, me/. T, mg/ 6} ife=es,
{my/.4,ma/.9,maf.5,my/ 4, ms/.T,mp/.3,mz/.6,mg/ 5} ife=es,
{m1/.3,ma/.8 mafd,my/6,ms5/.8 me /2, m7/ 5, mg/ 4} ife=er,
{m1/.6,ma/.T,maf.5,my/.5,ms/.6,me/.4,m7/.3,mg/ 6} ife=es,
{my/.8,ma/.5, maf.6,myf.6,ms/.T, mg/ 4, m;/.2,mg/. T} ife=eq,
g : E-FPX),
{my/.3,ma/.2, maf.d,myf. 1, ms/.3, mg/.5, my/. 4, mg/.2} if e = ey,
e — {mi/.4,ma/. 1, maf.2,msf. 1, ms/.5, me/.5, m7/.T,ma/ 1} if e = es,
{my/.05,ma/.1, ma/. 5, ma/. 33, ms/ .4, mg/. 3, mz /.6, mg/ 15} if e = ey,
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{m1/.23,ma/. 3, ma/.6,ma/.2,ms/3,me/ 33, mz/.2,maf .1} ife=ey
{mi/.4,ma/.2,m3/.35, ma/ 4, ms/.1,me/ .6, m7/.2,ma/.35} ife=es
{my/.4,mo/.2,myg/.3, mq/ .3, ms/.2, mg/.5,m7/.25,mg/.31} if e=eq,

G {my/.T,mo/.08, myg /.5, mq/.3, ms/ .18 mg,/. T8 m7/ 4, mg/. 4} if e= ey,
{my/.4,ma/.2, m3/.3, mq/ 45, m5/.4, mg/.4, m7/.6,mg/.26} if e = eg,
{my/.1,ma/. 4, ms /.36, mq/. 27, ms/.2, mg/.5,m7/ 8, mg/.2} ife=eq

1. Input the fuzzy bipolar soft set E ;.

2. Input the set of choice parameters P = {ej, e3,€4,€5,¢e7,e5} C E and find the

reduced fuzzy bipolar soft set P, given as:

f : P> FPX),

{my/.5,ms/.7T,ma/.6,
{my/.8,ms/.8, maf 4,
{my /.7, ma/.6,ma/.1,
{m1 /.5, ma/.8, ms/.6,

3. Compute the comparison tables for functions f and g respectively

my/.7,mg/.5,mg /.5, m7/.4, mg/ .8}
my/.6,ms/.5,mg /.5, m7/.4, mg/ .8}
my /.7, mgs/.6,mg/.6,m7/.6, ms .9}
my /.5, ms/.T,ms /.3, m7/.T, ms/ .6}
{mq/.3,maf 8 maf 4, my/.6,ms) 8 mg/.2, mz/.5,mg/ 4}
{m1/.6,ma/.T,ma .5, my/.5,ms/.6,mg/.4, mz/.3, mg/.6}
g : P-=FPX),

[ {mi/.3,ma/.2,maf A, myf.1,ms/) .3, me /.5, m7/.4,mg/.2} ife=e;
{mq /.05, ma/.1,ma/.5, mq/.33, ms/ .4, mg/ .3, mr/.6,mg/.15} ife=e3
{my /.23, ma/ .8, ma/.6, mq/.2, ms/. 3, mg/. 33, m7/.2,mg/. 1} He=ey
{my /.4, ma/.2,ms/. 35, mqf 4, ms/.1,mg/.6,m7/.2,mg/. 35} ie=e;
{my /.7, me/ .08, ma /.5, mq /.3, ms/. 18, mg/. TR, m7/ .4, mg/ 4} U e=e;
{my /.4, ms/.2, maf.3, my/. 45, ms /.4, mg/ .4, m7/.6, mg/. 26}

L5 Lma[[mo | ms [ my] ms [ mel]l mg]l ms]
mi] 6] 2| 314 ]2] 6] 4] 2
ma| 51 6 | 6|5 |66 6] 3
ms 3101 61211413/ 2
mal| 4| 2|51 6|3 6] 5|1
ms| 41 2 5126663
me| 1| 1] 210|236 4]0
mr |l 21 114112316/ 2
ms]| 6| 3 | 6|5 | 2|6 2] 6

Table 8.1: Comparison Table for f

if e =gy,
if e = e3,
if e = ey,
if e = es,
if & = eg,
if e = ez,

if e=eg

4. Compute the positive and negative scores for each object as given by Table 83

and Table
8.4,
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q ey [ ma | ey | my | mg l mg | my | g |
my || 6 2 5 3 4 6 3 1
msa 4 6 6 4 5 5] 5 5
ma | 3 | O 6 2 1 1 3 1
my 2 2 4 5] 3 4 5 1
ms || 4 2 5 3 6 6 5 2
mg | 2 0 2 2 2 &] 2 0
my || 3 2 4 2 1 1 6 2
mg | B 2 6 4 3 &] 5 4]

Table 8 2: Comparison Table for g

Row Sum: r; | Column Sum: ¢ | Positive Score: F, |
my 3 31 0
mao 43 17 26
ma 21 37 —16
My 32 26 6
ms 35 29 6
mg 17 43 —26
my 21 38 -17
mg 40 19 21

Table 83: Positive Scare
5. Compute the final score given by Table
8.5.
6. From Table 8.5 we find k& = 4.

Thus my is the best candidate for the position. In case that m, can not join the
position either ms or mg may be selected.
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]l Row Sum: r7; ” Column Sum: ¢7; ” Negative Score: N;

my 30 20 1
Nty 41 16 25
ma 20 38 -18
ma 27 26 1
ms 33 25 8
mg 16 42 —26
mr 24 34 -10
ntg 37 18 19

Table 8.4: Negative Score

| Final Score |

my -1
Mg 1
mg 2
Ty b
my — 2
mg 0
my =T
ms 2

Table 8.5: Final Score
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