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Abstract

In this dissertation we theoretically study the dynamics of a Nano Electro Op-

tomechanical system (NEOMS) in the presence of a strong pump field and a weak

probe field.The system consists of a Fabry-Perot cavity which is composed of a

fixed and partially transparent mirror at one end and a fully reflecting movable

mirror MR1 at the other end. MR1 is coupled to the intra-cavity field through op-

tomechanical coupling. An additional movable micro-resonator MR2 is provided

to the cavity which is electrostatically coupled to MR1 via Coulomb interaction.

Mechanical driving fields ε1 and ε2 are applied to selectively pump the mechanical

resonators (MRs).

A non-linear effect, in the probe transmission field, known as Four-wave mixing,

is investigated in the Nano-electro-optomechanical system (NEOMS). The non-

linearity which is caused by the radiation pressure force of the intra-cavity field,

gives rise to Four-wave mixing (FWM) phenomenon, which is equivalent to the

nonlinear Kerr effect in optical fibers that causes a nonlinear susceptibility in the

medium. Here this nonlinear effect is called effective Kerr effect, which is caused

by the radiation pressure force and is responsible for Four-wave mixing (FWM).

In the probe transmission field, Four-wave mixing (FWM) is reported by se-

lectively driving the mechanical resonators MR1 and MR2, which provides extra

control of FWM. The FWM is observed to show consistent modifications by chang-

ing the amplitudes and phases of the external driving fields. We show in our results

that significant suppression and amplification can be achieved in the FWM peaks

by controlling the phases of external driving fields.

We also report enhancement in the FWM phenomenon, in the presence of Bose-

Einstein Condensate (BEC) trapped inside the cavity. We show that the FWM

intensity is greatly suppressed and amplified in the presence of atomic medium
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(BEC) in the optical cavity. The intensities of FWM peaks change coherently by

varying the value of atom-field coupling. Moreover, we show that the medium

mediated FWM signal is efficiently controlled by selective mechanical drivings of

MRs.
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Chapter 1

Introduction

Light, most commonly known as photons, has been a predominant topic of dis-

cussion since the birth of physics. Light bears both classical and quantum effects.

The quantum effect of light is studied in Quantum optics, the physics which in-

vestigates phenomena involving light (photons) and their interaction with matter

at submicroscopic level [1].

It is commonly believed that Quantum mechanics only deals with the micro-

scopic systems and particles having very small dimensions, particularly photons,

atoms, electrons and sub-atomic particles but the scope of quantum mechanics is

so wide that it also covers the very dynamics of macroscopic systems and devices.

1.1 Radiation pressure force

In a book about comets, astronomer Johannes Kepler noted that the tail of a comet

always points away from the sun. His explanation says that the light emitting

from the sun pushes away the tail. This is apparently the first known conjecture

about the phenomenon of radiation pressure. James Clark Maxwell came up

with a quantitative analysis for radiation pressure force and later in 1901, it was

detected in laboratory (by Nichols and Hull in Dartmouth). Since then, radiation
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Chapter 1 Introduction

pressure force has been investigated and exploited in various contexts, for example

in influencing the motion of cold atoms or subatomic particles. Since the light

only provides fixed forces, so the back-action of the mechanical motion onto the

electromagnetic field is absent in such settings. However, this kind of two-way

interaction is present in an optomechanical system [2].

The geometry of optical cavity in an optomechanical system changes due to

the mechanical motion of the end mirror. This is termed as optomechanical effect.

The question, how large this effect would be, depends on the geometry of the cavity

and amplitude of mechanical motion. When an intense pump field is injected to

the cavity, the incoming laser intensity is resonantly enhanced. The optical finesse

of the cavity which is in order of million, is multiplied to the incoming laser field

which increases the radiation force by the same amount. At the very same time,

small changes in the boundary of the cavity induce a shift in the optical resonant

frequency which leads to a rapid decrease of light intensity, which in turn decreases

the radiation force. In this way the resulting motion acts back on the light field and

as a result it modifies the radiation pressure force. This is a genuine interaction

between light and mechanical motion, which is at the heart of optomechanics.

The radiation pressure force is considerable when it is exerted on particles

and systems having very small dimensions such as electron, micro-resonators and

micro mirrors etc. Cavity Optomechanics deals with systems involving optical field

interacting with mechanical resonators, thus producing very interesting non-linear

quantum effects which are measured by using well developed methods of quantum

optics [2,3]. These systems are extensively used in series of developments such

as sensors and actuators in integrated circuits, and optical systems [4,5]. The

amended and modified dynamics of the mechanical system can be studied by

observing the optical field which interacts with it. The efficiency of these systems

depends on how the thermal environment interacts with them.
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Chapter 1 Introduction

1.2 Cavity fields

In a typical optomechanical system, the cavity is driven by a strong laser field.

This strong field creates the radiation pressure force. The photons of this intense

pump field continuously strike the mirror and export their momentum to it, which

in turn excite the movable mirror at some resonance frequency (by the continuous

action of radiation pressure force). The intense laser field is accompanied by a

weak probe field, to investigate the dynamics and internal changes of the system.

1.3 Hybrid optomechanical system

The framework of cavity based optomechanical system with other systems like,

two-level atoms [12,13], mechanical membranes [14,15] and Bose-Einstein conden-

sate [16,17,18], is regarded as Hybrid quantum systems [19,20]. One of such hybrid

systems is quantum electro-optomechanical system (QEMS) [22,23], in which the

mechanical and electronic parametric quantities are of great significance. In such

systems, electrostatic Coulomb interaction provides an extra degree of freedom,

with which the resolved side-band regime [27,28] can be reached. When this kind

of electro-mechanical system is combined with quantum optomechanical system,

a new type of hybrid system is formed, which is commonly known as Nano Electro

Optomechanical system (NEOMS).

Nano Electro Optomechanical systems (NEOMS) bear the potential for ef-

ficient low-noise Nano-transducers between microwave and optical signals, both

in classical and quantum domains. Such systems provide nano-scale precision for

mechanical motion of the micro-resonators. The mechanical vibrations of the mov-

able mirrors (micro-resonators) has a significant effect on the output signal of the

probe field.
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Chapter 1 Introduction

Fixed Mirror MR1 MR2

Pump Field

Probe Field

Output Field

Cavity Field gc

Figure 1.1: Schematic representation of the Nanoelectro-optomechanical system:

MR1 is coupled with the cavity field through optomechanical coupling g0 and to

the second mechanical resonator MR2 through the coulomb coupling strength gc.

This hybrid system couples optical, electrical and mechanical degrees of free-

dom. A typical Nano Electro Optomechanical system (NEOMS) is shown in

Fig. 1.1. The system is composed of a fixed mirror and two movable mirrors

(micro-resonators) MR1 and MR2. The cavity formed by the fixed mirror and

movable mirror (MR1) contains the optical signal i.e, cavity field. MR1 is coupled

to another mechanical resonator MR2 through electrostatic Coulomb interaction

gc. The advantage of these Nano electro Optomechanical systems (NEOMS) over

quantum optomechanical systems is remarkable as these systems provide dynamic

control of the flow of light in nanophotonic structures, at higher speeds and low

power consumption.

1.4 Mechanical driving fields

The selective mechanical driving of mechanical resonators MR1 and MR2 provides

an additional control of the probe transmission field in nano transducers. Sym-

metric and asymmetric amplifications and suppressions of the output signal can

be achieved with selective acoustic control. Switchable signal amplification and

light communications can be made possible by selectively driving the mechanical
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Chapter 1 Introduction

resonators MR1 and MR2. For this purpose, mechanical driving fields with am-

plitude ε1(ε2) at frequency ω1(ω2), are shined on the mechanical resonators MR1

and MR2 respectively, as shown Fig. 1.2.

Fixed Mirror MR1 MR2

Pump Field

Probe Field

Output Field

Cavity Field gc

Selective mechanical driving

ε1 ε2

Figure 1.2: Schematic representation of the Nanoelectro-optomechanical system:

MR1 is coupled with the cavity field through optomechanical coupling g0 and to

the second mechanical resonator MR2 through the coulomb coupling strength gc.

MR1(MR2) is selectively driven by ε1(ε2).

1.5 Non-linearities in Cavity based optomechan-

ical systems (COMS)

As the input laser power increases, the relative fluctuations of the photon numbers

become smaller. At some point, for higher laser powers an another effect kicks in,

i.e the backaction of the vibrating end mirror onto the cavity field, which modifies

the radiation pressure force. These unavoidable photon shot noise fluctuations of

the laser beam exert a random force on the end mirrors which imprints some extra

motion that masks the real signal. This is how non-linearities are introduced in the
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Chapter 1 Introduction

cavity. One of these non-linearities is the effective Kerr effect [30,32], which arises

from the radiation pressure force [18,19]. The concept of effective Kerr medium

is due to the fact that the length of the optical cavity depends on the radiation

pressure force. Because of the intensity dependent length of the cavity, the op-

tomechanical coupling strength is changed. When the radiation pressure force is

lowered, the mirrors displacement increases due to which the cavity length also

increases and the whole story repeats itself. In this way the non-linearities come

in the system that can be studied using well developed methods of quantum op-

tics. Four-wave mixing (FWM) [45,46], electromagnetically induced transparency

(EIT) [37,38,40], optomechanically induced transparency (OMIT) [17,18] and op-

tical bistability [22,25] and multistability [41.42] are efficient tools to investigate

the nonlinear nature of hybrid optomechanical systems.

1.6 Layout

In this dissertation, the dynamics of a cavity based hybrid Electro Optomechan-

ical system is described in the presence of a strong pump laser. In addition to

the intense pump field a weak probe field is injected into the cavity to scan the

nonlinear optical features of the output light signal. In the Second Chapter we

describe a basic cavity based optomechanical system (COMS) in which a cavity

field is coupled to a moving end mirror through an optomechanical coupling.The

intense pump laser and weak probe fields are injected into the cavity from the

partially reflecting fixed mirror. The dynamics of the system is studied using the

outgoing intracavity field. The abrupt changes in phase and amplitude of the out-

going cavity field tell about all the statistical information related to the dynamics

of the system. An intermodulation phenomenon in non-linear quantum optics,

known as Four-wave mixing, is theoretically studied using the probe transmis-

sion field of the system. Four-wave mixing (FWM) is a non-linear phenomenon
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which arises due to the effective Kerr effect caused by radiation pressure force. In

such a system, four-wave mixing is generated by the interference of reflected and

transmitted light signal to the optomechanical coupling field. FWM is capable

for understanding the nonlinear behavior of cavity based optomechanical systems

(COMS). Four-wave mixing has promising applications in the quantum optical

regime for generating single photons, squeezed light and entangled photons [6].

In this work, we investigate the behavior of four-wave mixing (FWM) intensity

by driving the mechanical resonator MR1 externally. Switchable mechanical driv-

ing field ε1 is applied to MR1, which provides an additional control of the FWM

signal.

In the Third Chapter, we investigate the features of four-wave mixing light

signal in a hybrid Electro optomechanical system commonly known as Nano Elec-

tro Optomechanical system (NEOMS).In this system a second moving-end mir-

ror (MR2) is provided to the cavity, which is coupled to MR1 via electrostatic

Coulomb interaction. The behavior of four-wave mixing (FWM) intensity is stud-

ied by selectively driving the two mechanical resonators MR1 and MR2. Switch-

able mechanical drivings of MRs provide a versatile route to realize switchable

signal amplification in optical devices. In the Fourth Chapter of the thesis,

we study the nonlinear FWM phenomenon in a Nano transducer (NEOMS), in

the presence of Bose-Einstein condensate (BEC), trapped inside the Fabry-Perot

cavity. In different areas of experimental physics, BEC plays very important role

in studying and investigating the underlying mysteries. It has been found that

Bose-Einstein condensate (BEC) is used as “Quantum Simulators” to stimulate

condensed matter systems [7,8]. Researchers proposed that Bose-Einstein conden-

sate (BEC) could be used to observe quantum mass acquisition [8]. A coherent

optical non-linearity, known as Electromagnetically-induced transparency (EMIT)

[9] and a useful measure of time distortion, known as Group delay [10], has been

extensively studied using Bose-Einstein condensate (BEC) in different quantum

7



Chapter 1 Introduction

systems.

In this work, we report the enhancement of FWM intensity in the presence of

atomic medium, i.e Bose-Einstein condensate (BEC), in the optical cavity. We

show in our results that the medium mediated FWM signal is greatly suppressed

and amplified by selectively driving the mechanical resonators MR1 and MR2.

8



Chapter 2

Controlled Four-wave mixing in

an Optomechanical system

2.1 Objective of the work

In this chapter we shall cover the basic dynamics of an optomechanical system

which is composed of a fixed and partially reflecting mirror at one end and a mov-

able mirror at the other end. The optical cavity is coupled to the movable mirror

(MR1) through an optomechanical coupling strength. Our work is based on the

phenomenon of Four wave mixing (FWM) in which we report that FWM intensity

is suppressed or amplified in the presence of switchable mechanical driving of the

movable mirror MR1.

2.2 System Model

A basic Cavity optomechanical system (COMS) with a high finesse and single

mode optical cavity is presented, as shown in Fig.2.1. The intracavity field exerts

a radiation pressure force on the vibrating end mirror (MR1) thus displacing it

from its mean position, which in response modifies the radiation pressure force.

9



Chapter 2 Controlled Four-wave mixing in an Optomechanical system

We consider a high Q Fabry-Perot cavity of length L, with a fixed mirror at one end

and a movable mirror (mechanical resonator MR1) at the other end. Mechanical

resonator MR1 is coupled to the cavity field through optomechanical coupling g0.

Fixed Mirror MR1
Pump Field

Probe Field

Output Field

Cavity Field

Selective mechanical driving

ε1

ε l

εp

L

Figure 2.1: Schematic representation of a basic optomechanical system: MR1 is

coupled with the cavity field through optomechanical coupling g0. A strong input

laser field of amplitude εl and a weak probe field of amplitude εp are fed to the

cavity through the fixed mirror. L is the length of cavity , ε1 is the selective

mechanical driving of MR1.

A strong input laser field of amplitude εl and a weak probe field of amplitude εp

are injected to the cavity through the fixed mirror. The radiation pressure force

displaces the mechanical resonator MR1 from its mean position which changes

the length of the cavity. To compensate this change the movable mirror exerts a

backaction force onto the cavity field which lowers the radiation pressure and vice

versa.

10



Chapter 2 Controlled Four-wave mixing in an Optomechanical system

2.2.1 Total Hamiltonian of the System

We consider single mechanical mode for vibrating end mirrors, modeled as har-

monic oscillator MR1 with frequency ω1, therefore the Hamiltonian of the me-

chanical resonator is given by

HMR1 = }ω1b1
†b1 (2.1)

where ω1 is frequency and b1
† and b1 are annihilation and creation operators of

MR1 with [b1, b
†
1] = 1.

The cavity is driven by a strong pump field εl =
√

2Plκ
~ωl

and a weak probe

field εp =
√

2Ppκ

~ωp
is injected into the cavity to scan the outgoing optical signal.

Here κ is the cavity decay rate and Pl and Pp correspond to strong laser and

weak probe field powers. We are interested in the free Hamiltonian for the cavity

with frequency ωc and photon creation(annihilation) operators c†(c) together with

coupling Hamiltonians of probe field and strong pump fields, which is given by

total Hamiltonian of the field as

Hfield = }ωcc†c− i}(cεpe
iωpt − c†ε?pe−iωpt) + i}εl(ceiωlt − c†e−iωlt) (2.2)

The hamiltonians for optomechanical coupling between cavity field and MR1 are

summed up as the total interaction Hamiltonian of the system which is given as

Hint = −g0c†c(b1† + b1) (2.3)

where, g0 is optomechanical coupling strength which depends on the length of

cavity and is given by g0 = (ωc

L
)
√

}
2m1ω1

.

The Hamiltonian for the external mechanical driving field of MR1, with am-

plitude ε1 is given as

Hdr = i}(ε1b1
†e−iω1t − ε1b1eiω1t) (2.4)

The effective Hamiltonian describing this cavity based optomechanical system is

yielded in a rotating frame at the frequency of strong pump laser field ωl by

11
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(for } = 1)

H = H0 +Hint +Hfields (2.5)

where,

H0 = ∆cc
†c

Hint = −g0c†c(b1† + b1)

Hfields = iε1b1
†e−iδt + εlc

† + εpc
†e−iδt −H.c

Where ∆c = ωc − ωl. We suppose that the frequencies of the four driving fields

satisfy the condition δ = ωp − ωl = ω1.

2.2.2 Heisenberg-Langevin Equations of motion of the Sys-

tem

A strong laser field of frequency ωl and a weak probe field of frequency ωp are

applied to the optical cavity and a switchable mechanical driving field of ampli-

tudes ε1 is applied to the mechanical resonators MR1. The heisenberg-langevin

equations of motion for the system can be calculated by using the standard relation

dO

dt
=

i

}
[H,O]− 1

2
{Γ, O}+N (2.6)

O can be any operator of the system. First term gives the commutation relation

between total energy of the system and operator of the system.Second term ac-

counts for decays associated with that operator and the last term is noise operator,

gives noise in the system.Now we write the equations of motion using equation

(2.5) in (2.6)

ċ = −(i∆c +
κ

2
)c+ ig0(b1

† + b1)c+ εl + εpe
−iδt +

√
2κcin(t)

ḃ1 = −(iω1 +
γ1
2

)b1 + ig0c
†c+ ε1e

−iδt +
√

2γ1ζ1(t) (2.7)

12
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where ∆c = ωc − ωl, κ and γ1 are decay terms related to cavity and mechanical

resonators respectively. cin(t) is the input vacuum noise with zero mean value,

ζ1(t) and ζ2(t) are the Brownian noise operators connected with the damping

of the two mechanical resonators.Using Markov approximation, the correlation

functions of these input noise operators are given by

〈cin(t)cin(t′)〉 = δ(t− t′)

〈ζi(t)ζi(t′)〉 = (nth + 1)δ(t− t′)

with i = 1, 2 , here nth = (e
}ω

kBT − 1)−1 and kB is the Boltzmann constant and T is

the temperature of the reservoir of the mechanical resonator.Using the mean-field

approximation 〈c†c〉 ≈ 〈c†〉〈c〉 to decouple the coupled operators, the equations of

motion can be written as

〈ċ〉 = −(i∆c +
κ

2
)〈c〉+ ig0(〈b1〉† + 〈b1〉)〈c〉+ εl + εpe

−iδt +
√

2κ〈cin(t)〉

〈ḃ1〉 = −(iω1 +
γ1
2

)〈b1〉+ ig0〈c†〉〈c〉+ ε1e
−iδt +

√
2γ1〈ζ1(t)〉 (2.8)

We are only concerned with the linear response of the nano-electro-optomechanical

system to the weak probe field. We can neglect the noise terms associated with the

system. So, in the case of εp, ε1 << εl, we can linearize the dynamical equations

of the proposed system by introducing small perturbations as c = cs + δc and

b1 = b1s+ δb1. The steady state values of the system are found by setting the time

derivative of the operators zero, in Eq(2.8).

cs =
εl

i∆c − ig0(b1s† + b1s) + κ
2

b1s =
ig0|cs|2

iω1 + γ1
2

(2.9)

where cs and b1s are steady state values of cavity field photon number and phonon

number of micro resonator MR1,respectively.

13
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The fluctuation terms of the equations of motion can be reduced to

δċ = −(i∆ +
κ

2
)δc+ ig0cs(δb1

† + δb1) + εpe
−iδt

δḃ1 = −(iω1 +
γ1
2

)δb1 + ig0csδc
† + ig0cs

∗δc+ ε1e
−iδt (2.10)

where, ∆ = ∆c − g0(b1s∗ + b1s) is the effective detuning.

To determine the amplitudes of first order side-bands in the system, we consider

the following fluctuation terms

δc = A1
−e−iδt + A1

+eiδt

δb1 = B1
−e−iδt +B1

+eiδt (2.11)

Substituting ansatz (2.11) into the set of equations (2.10), we get the following

group of eight linear equations for first order sidebands

h1
+A1

+ = iGB1
+ + iGB1

−∗ + εp

h1
−A1

− = iGB1
− + iGB1

+∗

h2
−B1

+ = iGA1
−∗ + iG∗A1

+ + ε1

h2
+B1

− = iGA1
+∗ + iG∗A1

−

h1
+A1

−∗ = −iGB1
−∗ − iGB1

+

h1
−A1

+∗ = −iGB1
+∗ − iGB1

− + εp

h2
+B1

+∗ = −iGA1
−∗ − iG∗A1

+

h2
−B1

−∗ = −iGA1
+∗ − iG∗A1

− + ε1 (2.12)

where, G = g0cs, h1
± = ±i∆ + κ/2− iδ and h2

± = ±iω1 + γ1/2− iδ.

By introducing the phase term φ1 in the above set of equations as ε1 = ε1e
−iφ1

for external driving field ε1, we can solve the system of equations for the value

of A1
+. It is obvious from above set of equations that A1

+ is a function of weak
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probe field frequency δ. By solving above set of equations in Eq. (2.12) leads to

A1
+ =

−2|G|2(2Gε1e−iφ1 − ih2−εp)h1+

h1
+(2i|G|2h2−h1+ − h1−(−2i|G|2 + h2

−h1
+)h2

+)

+
(G2h1

−εp − (2iGh1
−ε1e

−iφ1 + (G2 + h1
−h2

−)εp)h1
+)h2

+

h1
+(2i|G|2h2−h1+ − h1−(−2i|G|2 + h2

−h1
+)h2

+)
. (2.13)

2.3 Four-wave mixing (FWM)

Non-linearities arise in every system, when a high energy optical field is applied.In

the context of cavity optomechanical system, non-linearities are present as in non-

linear media,but the sources that produce these non-linearities in both cases are

different.In basic cavity optomechanical systems, there is no medium inside the

cavity but the non-linearities analogous to Kerr effect [12] are present. Such non-

linear effects are due to radiation pressure force.As the radiation pressure force is

changed with the oscillation of micro resonators, the non-linearity in the medium

also is also changed with it.Due to non-linearity, the optical response of the op-

tomechanical system is altered because of the mechanical interaction, and different

phenomena like OMIT [13, 14, 15], and slow light effect [16] come into account.

Four Wave Mixing is also one of those nonlinear effects investigated, as Huang

and Agarwal [17]. Four-wave mixing (FWM) which has been under extensive

research since the dawn of nonlinear optics, is one of the most prominent non-

linear optical phenomenon based on quantum interference and coherence. This

has potentially diverse applications, as frequency-conversion phenomenon [18],

quantum-entanglement phenomenon [19], stopped light [20] and fast light [21].

Though, a comparatively small amount of the non-linear co-efficient can be taken

into account by the loss of linear absorption in conventional materials. In order to

overcome this hurdle, Harris. [22] presented that the third-order susceptibility can

be resonantly enhanced using electromagnetically induced transparency (EIT) in

a three-level system, which means that a highly efficient Four-wave mixing process
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based on EIT is possible to be gained by reducing linear absorption. An experi-

mental observation of the enhancement of non-degenerate Four-wave mixing based

on EIT in a lambda-type three-level system of Rubidium atoms was made by Li

and Xiao [23]. Wu et al. [24] showed that FWM can be enhanced by suppression

of photon absorption from EIT in a five-level atomic system. Deng et al. [25] sug-

gested a plan of action to open Four-wave mixing optical channels in a four-level

system.

2.3.1 Calculation of FWM

The standard input-output relation is written as

〈cout(t)〉 = (εl −
√

2κcs)e
−iωlt + (εp −

√
2κc−)e−iωpt −

√
2κc+e

−i(2ωl−ωp)t

Here we assume c− = A1
− and c+ = A1

+. There are three components in the

relation with frequencies ωl, ωp and 2ωl−ωp . The third component with a newly

generated frequency 2ωl−ωp corresponds to the Four-wave mixing (FWM), which

is generated when two pump field photons combine with a probe field photon in the

presence of optomechanical coupling. When there is no optomechanical coupling,

there will be no four-wave mixing.The intensity of the four-wave mixing (FWM)

is calculated by following relation

FWM = | −
√

2κA1
+

εp
|2. (2.14)

2.4 Numerics and Results for Four-wave mixing

(FWM)

For simulations, we choose experimental parameters for optomechanical system

presented in [26].The length of cavity is taken L = 25cm and other parameters

are g0 = 2π × 4kHz, ω1 = 2π × 947kHz, γ1 = 2π × 140kHz and mass of the
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micro-resonator MR1 is taken as m1 = 145ng. As presented in [27] the cavity

decay rate is κ = 2π × 215kHz. The cavity field frequency is calculated by the

relation ωc = 2πc/λc ,where c is speed of light, and the value is calculated as

1.77× 1015Hz. We choose ∆c = ω1 and ωl = ωc − ω1, and the power of the pump

field is taken as 9mW . We consider the value of effective detuning to be ∆ = ω1.

As we can see that the value of mechanical resonator frequency is greater than

cavity decay rate, hence the system stays in the resolved sideband regime [28,29].

2.4.1 Coupling Controlled FWM in an optomechanical sys-

tem

g0/2 =0kHz

g0/2 =2kHz
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g0/2 =6kHz
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Figure 2.2: A 2-D plot for FWM Intesity (arbitrary units) vs normalized detuning

δ/ω1, for different values of optomechanical coupling strength g0.The coulomb

coupling parameter is kept zero, i.e gc = 0. Other parameters are ε1 = 0 and

ε2 = 0 .

When the mechanical driving field is absent, i.e, ε1 = 0, the FWM spectra

consist of a single peak for lower optomechanical coupling values, as shown in Fig.

2.2. The peaks are located at Stokes (δ < ω1) and Anti-Stokes (δ > ω1) side-

band regimes. It can be clearly observed that when the optomechanical coupling
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is absent, there is no FWM signal in the output probe field [see, black dashed

line in Fig. 2.2]. The FWM signal appears in the probe transmission field as

optomechanical coupling is introduced (blue dashed line in Fig. 2.2) and the signal

is amplified when the optomechanical coupling coefficient is increased [see, black

dot-dashed curve in Fig. 2.2]. For lower optomechanical coupling strengths, the

FWM curve consists of a single peak which is centered at δ = ω1 [see blue dashed

and red dotted curves]. This feature accounts for single photon resonance process

[53]. For stronger optomechanical coupling strength, the curve becomes broadened

and splits into two asymmetric peaks [see black dot-dashed line], thus producing

two photons resonance process. The reason behind these features is explained as:

When optomechanical coupling is increased, the cavity-mirror interaction becomes

more stronger due to which more number of photons enter into the cavity which

accounts for a stronger signal in the output field.

2.4.2 Phase Controlled FWM

We show the behavior of FWM intensity by keeping the optomechanical coupling

strength constant and varying the amplitude and phase of external driving field

ε1. The value of coupling strength g0 is taken as 2π × 4kHz.

In the presence of external driving field on micro-resonator MR1 , the FWM

peak can be suppressed at stokes sideband and amplified at anti-stokes sideband

regimes.The intensity of FWM peak at anti-stokes sideband is smaller than the

intensity of the peak at stokes sideband [see Fig. 2.3(a)]. With increasing the

phase angle φ1 of the driving field on MR1 from 0 to π/4, the FWM spectra

greatly increases for the peak at anti-stokes sideband but the signal is suppressed

at the stokes sideband. This behavior is shown in Fig. 2.3(b).The reason behind

these features is that the effective optomechanical coupling strength is enhanced

due to the externally driven field.
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In Fig. 2.4(a), for ε1/εp = 0.45, the FWM intensity for the peak at stokes side-
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Figure 2.3: FWM Intensity as a function of normalized detuning δ/ω1. Only

optomechanical coupling is present,and is kept constant,i.e, g0/2π = 4kHz.The

Coulomb coupling parameter is kept zero, i.e gc = 0. Other parameters are ε1/εp =

0.45 and ε2/εp = 0. (a) φ1 = 0 and (b) φ1 = π/4.

band increases while decreases for the peak at anti-stokes side-band by setting the

phase φ1 = π. The increase in phase angle φ1 leads to a single peak (φ1 = 3π/2)

at the resonance point, with increase in FWM intensity [see Fig. 2.4(b)].

As we further increase the phase angle, relative suppressions and amplifications
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Figure 2.4: FWM Intensity as a function of normalized detuning δ/ω1. Other

parameters are ε1/εp = 0.45 and ε2/εp = 0. (a) φ1 = π and (b) φ1 = 3π/2.

of the FWM signal are appeared in the observed FWM spectra. This is due to
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the fact that the effective optomechanical coupling coefficient is modified at every

phase value.This periodic behavior is more clearly depicted in the Fig. 2.5. The

Figure 2.5: FWM Intensity as a function of normalized detuning δ/ω1 and phase

φ1.Other parameters are ε1/εp = 0.45 and ε2/εp = 0.

FWM signal is strong at stokes line but the signal is very weak at anti-stokes line

in the range of phase φ1 = π to 2π, which can be clearly seen in Fig.2.5. These

periodic amplification and suppression are observed in the intensity spots shown

in Fig.2.5.

2.4.3 Amplitude controlled FWM signal

The amplification of the FWM signal is observed by varying the amplitude of the

mechanical driving field at MR1.

The phase value is kept constant while investigating the effect of varying ampli-

tude of mechanical driving on the FWM signal. From Fig. 2.6 , it can be seen

that the intensity of FWM spectra prominently increases for both peaks, as well

as the FWM near the resonance point becomes more stronger while in the absence

of mechanical driving field, there was no FWM signal at the resonance point [see,

Fig. 2.2].These features are due to the significant enhancement in the effective op-

tomechanical coupling g0. The optomechanical coupling strength g0 plays a central
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role in generating the FWM signal.The external mechanical driving field enhances

the optomechanical coupling strength which accounts for a stronger FWM inten-

sity in the output light signal. The intensity of both FWM peaks increases with
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Figure 2.6: FWM Intensity as a function of normalized detuning δ/ω1, for different

values of ε1/εp.

increase in the amplitude of external mechanical driving of MR1. For the ampli-

tude ε1/εp = 0.25, the FWM signal is absent at the off-resonance δ/ω1 = 1 [see

blue dashed curve]. When the amplitude of driving field at MR1 is increased, the

FWM signal in the off-resonance regime prominently increases [see blue line and

dot-dashed curves].
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Chapter 3

Controlled FWM in a Nano

Electro Optomechanical system

In this chapter, a new class of quantum hybrid system known as Nano Electro Op-

tomechanical system (NEOMS) is discussed in the context of quantum optics.This

system couples the optical, electrical and mechanical degrees of freedom in a single

nano-scale device, a Nano transducer [63,65].

3.1 System Model

A typical Nano Electro Optomechanical system (NEOMS) is shown in Fig. 3.1,

which is composed of a fixed mirror and a vibrating end mirror that combine to

form an optomechanical system.The mechanical resonator MR1 is coupled to the

cavity field via radiation pressure force.A second mirror (mechanical resonator

MR2) is provided to the cavity which is coupled to the mechanical resonator MR1

through position-position coupling.
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Fixed Mirror MR1 MR2
Pump Field

Probe Field

Output Field

Cavity Field gc

Selective mechanical driving

ε1 ε2

V1 -V2

r0

ε l

εp

Figure 3.1: Schematic representation of the Nanoelectro-optomechanical system:

MR1 is coupled with the cavity field through optomechanical coupling g0 and to

the second mechanical resonator MR2 through the Coulomb coupling strength

gc. A strong pump field εl and a weak probe field εp is fed to the cavity. MR1

is charged by biased by V1 and MR2 is charged by −V2. r0 is the equilibrium

distance. MRs are selectively driven by ε1 and ε2.

The second mirror gives an additional control over the cavity field and it pro-

vides a versatile route to understand the nonlinear phenomena of cavity based

electro-optomechanical systems.

3.2 Total Hamiltonian of the system

We consider single mechanical mode for vibrating end mirrors, modeled as har-

monic oscillators MR1 and MR2 with frequencies ω1 and ω2 respectively, therefore

the Hamiltonian of the mechanical oscillators is given by

HMRs = }ω1b1
†b1 + }ω2b2

†b2 (3.1)

where ω1 and ω2 are frequencies and (b1
†) b1 and (b2

†) b2 are (annihilation)creation

operators of MR1 and MR2 respectively with [bi, bi
†] = 1.

We are interested in the free Hamiltonian for the cavity with frequency ωc and
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bosonic creation(annihilation) operators c†(c) together with coupling Hamiltonians

of probe field and strong pump fields, which is given by total Hamiltonian of the

field as

Hfield = }ωcc†c− i}(cεpe
iωpt − c†ε?pe−iωpt) + i}εl(ceiωlt − c†e−iωlt) (3.2)

The hamiltonians for optomechanical coupling between cavity field and MR1,

and the coulomb coupling between MR1 and MR2 are summed up as the total

interaction Hamiltonian of the system which is given as

Hint = −g0c†c(b1† + b1) + }gc(b1†b2 + b1b2
†) (3.3)

where, g0 is optomechanical coupling coefficient and its value is given by

g0 = (ωc

L
)
√

}
2m1ω1

and gc is coulomb coupling strength and is given by

gc = keq1q2
r03

√
}

2m1m2ω1ω2
[54,55].

The Hamiltonians for the two external mechanical driving fields with amplitudes

ε1 and ε2 are given as

Hdr = i}(ε1b1
†e−iω1t − ε1b1eiω1t) + i}(ε2b2

†e−iω2t − ε2b2eiω2t) (3.4)

The effective Hamiltonian describing this Nano Electro Optomechanical system is

yielded in a rotating frame at the frequency of strong pump laser field ωl by (for

} = 1)

H = H0 +Hcoup +Hfields (3.5)

where,

H0 = ∆cc
†c

Hcoup = −g0c†c(b1† + b1) + gc(b1
†b2 + b1b2

†)

Hfields = i(
2∑
j=1

εjbj
†e−iδt + εlc

† + εpc
†e−iδt −H.c)

Where ∆c = ωc − ωl. We suppose that the frequencies of the four driving fields

satisfy the condition δ = ωp − ωl = ω1 = ω2
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3.2.1 Heisenberg-Langevin Equations of motion of the Sys-

tem

A strong laser field of frequency ωl and a weak probe field of frequency ωp are

applied to the optical cavity and two external driving fields of amplitudes ε1 and

ε2 are applied to the mechanical resonators MR1 and MR2 respectively. The

heisenberg-langevin equations of motion for the system can be calculated by using

the standard relation

dO

dt
=

i

}
[H,O]− 1

2
{Γ, O}+N (3.6)

O can be any operator of the system. First term gives the commutation relation

between total energy of the system and operator of the system.Second term ac-

counts for decays associated with that operator and the last term is noise operator,

gives noise in the system.Now we write the equations of motion using Eq. 3.5 in

Eq. 3.6 as

ċ = −(i∆c +
κ

2
)c+ ig0(b1

† + b1)c+ εl + εpe
−iδt +

√
2κcin(t)

ḃ1 = −(iω1 +
γ1
2

)b1 + ig0c
†c− igcb2 + ε1e

−iδt +
√

2γ1ζ1(t)

ḃ2 = −(iω2 +
γ2
2

)b2 − igcb1 + ε2e
−iδt +

√
2γ2ζ2(t) (3.7)

where ∆c = ωc − ωl, κ and γi(i = 1, 2) are decay terms related to cavity and me-

chanical resonators respectively. cin(t) is the input vacuum noise with zero mean

value, ζ1(t) and ζ2(t) are the Brownian noise operators connected with the damp-

ing of the two mechanical resonators.Using Markov approximation, the correlation

functions of these input noise operators are given by

〈cin(t)cin(t′)〉 = δ(t− t′)

〈ζi(t)ζi(t′)〉 = (nth + 1)δ(t− t′)

with i = 1, 2 , here nth = (e
}ω

kBT − 1)−1 and kB is the Boltzmann constant and T is

the temperature of the reservoir of the mechanical resonator.Using the mean-field
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approximation 〈c†c〉 ≈ 〈c†〉〈c〉 to decouple the coupled operators, the equations of

motion can be written as

〈ċ〉 = −(i∆c +
κ

2
)〈c〉+ ig0(〈b1〉† + 〈b1〉)〈c〉+ εl + εpe

−iδt +
√

2κ〈cin(t)〉

〈ḃ1〉 = −(iω1 +
γ1
2

)〈b1〉+ ig0〈c†〉〈c〉 − igc〈b2〉+ ε1e
−iδt +

√
2γ1〈ζ1(t)〉

〈ḃ2〉 = −(iω2 +
γ2
2

)〈b2〉 − igc〈b1〉+ ε2e
−iδt +

√
2γ2〈ζ2(t)〉 (3.8)

We are only concerned with the linear response of the Nano Electro Optomechan-

ical system to the weak probe field. We can neglect the noise terms associated

with the system. So, in the case of εp, ε1,2 << εl, we can linearize the dynamical

equations of the proposed system by introducing small perturbations as c = cs+δc

and b = bis + δbi (i = 1, 2). The steady state values of the system are found by

setting the time derivative of the operators zero, in Eq. 3.8.

cs =
εl

i∆c − ig0(b1s† + b1s) + κ
2

b1s =
ig0|cs|2 − igcb2s

iω1 + γ1
2

b2s =
−igcb1s
iω2 + γ2

2

(3.9)

where cs and bis(i = 1, 2) are steady state values of cavity field and micro res-

onators,respectively.

The fluctuation terms of the equations of motion can be reduced to

δċ = −(i∆ +
κ

2
)δc+ ig0cs(δb1

† + δb1) + εpe
−iδt

δḃ1 = −(iω1 +
γ1
2

)δb1 + ig0csδc
† + ig0cs

∗δc− igcδb2 + ε1e
−iδt

δḃ2 = −(iω2 +
γ2
2

)δb2 − igcδb1 + ε2e
−iδt (3.10)

where, ∆ = ∆c − g0(b1s∗ + b1s) is the effective detuning.

To determine the amplitudes of first order side-bands in the system, we consider

the following fluctuation terms

δc = A1
−e−iδt + A1

+eiδt
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δb1 = B1
−e−iδt +B1

+eiδt

δb2 = B2
−e−iδt +B2

+eiδt (3.11)

Substituting ansatz (3.11) into the set of equations (3.10), we get the following

group of eight linear equations for first order sidebands

h1
+A1

+ = iGB1
+ + iGB1

−∗ + εp

h1
−A1

− = iGB1
− + iGB1

+∗

k+B1
+ = iGA1

−∗ + iG∗A1
+ + ε1 − fε2

k−B1
− = iGA1

+∗ + iG∗A1
−

h1
+A1

−∗ = −iGB1
−∗ − iGB1

+

h1
−A1

+∗ = −iGB1
+∗ − iGB1

− + εp

h2
+B1

+∗ = −iGA1
−∗ − iG∗A1

+ + sB1
+ + fε2

h2
−B1

−∗ = −iGA1
+∗ − iG∗A1

− + tB1
− + ε1 (3.12)

where, G = g0cs, h1
± = ±i∆ + κ/2 − iδ, h2± = ±iω1 + γ1/2 − iδ, h3± = ±iω2 +

γ2/2− iδ, k± = h2
± + gc

2/h3
±, s = gc

2/h3
+, t = gc

2/h3
− and f = igc/h3

+.

By introducing the phase terms in the above set of equations as ε1 = ε1e
−iφ1

and ε2 = ε2e
−iφ2 for external driving fields ε1 and ε2 respectively , we can solve

the system of equations for the value of A1
+.

Solving the system of Eq. 3.12 for A1
+, we find

A1
+ =

[2i|G|2(sk− − st+ h2
−h2

+ + k+h2
+)− k−h1−h2+(h2

− + k+)]G

4i|G|4(t− k−)(s− k+) + h2
−h2

+(2|G|2 + ik−h1
−)(k+h1

+ − 2i|G|2)
ε1

+
[2if |G|2(st− sk− − tk+ + k−k+ − h2−h2+) + fk−h1

−h2
−h2

+]G

4i|G|4(t− k−)(s− k+) + h2
−h2

+(2|G|2 + ik−h1
−)(k+h1

+ − 2i|G|2)
ε2

+
[2|G|2(st− sk− − tk+ + k−k+ − h2−h2+)]G2

4i|G|4(t− k−)(s− k+) + h2
−h2

+(2|G|2 + ik−h1
−)(k+h1

+ − 2i|G|2)
εp

+
ik+h2

+(k− − t)G2 + h2
−h2

+(2|G|2k+ + ik−h1
−k+ − iG2k−h1

−)

4i|G|4(t− k−)(s− k+) + h2
−h2

+(2|G|2 + ik−h1
−)(k+h1

+ − 2i|G|2)
εp
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3.3 Simulations

We numerically study the periodic suppressions and amplifications in FWM signal

by choosing experimental parameters for a Nano Electro Optomechanical system

presented in [26,27].The length of cavity is taken L = 25cm and other parameters

are g0 = 2π × 4kHz, gc = 0.2MHz, ω1,2 = 2π × 947kHz, γ1,2 = 2π × 140kHz

and masses of the micro-resonator MR1 are taken as m1,2 = 145ng. As presented

in [27] the cavity decay rate is κ = 2π × 215kHz. The cavity field frequency is

calculated by the relation ωc = 2πc/λc ,where c is speed of light, and the value is

calculated as 1.77× 1015Hz. We choose ∆c = ω1 and ωl = ωc−ω1, and the power

of the pump field is taken as 9mW . We consider the value of effective detuning to

be ∆ = ω1. As we can see that the values of mechanical resonator frequencies are

greater than cavity decay rate,i.e ω1,2¿κ, hence the system stays in the resolved

sideband regime [28,29].

3.3.1 FWM signal in the probe transmission field

The FWM signal in the output field is calculated using the relation from Eq. 2.14,

which follows as

FWM = | −
√

2κA1
+

εp
|2. (3.13)

3.3.2 Coulomb coupling dependent FWM signal

In the absence of switchable mechanical driving fields at MRs, the FWM intensity

is observed to show consistent amplifications and modifications.

Keeping the optomechanical coupling coefficient constant, i.e g0 = 2π × 4kHz,

the FWM spectra is shown in Fig. 3.2 for different values of electrostatic Coulomb

coupling strength gc. The FWM spectra consists of two mode-splitting peaks.The
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Figure 3.2: A 2-D plot for FWM Intesity (arbitrary units) vs normalized detuning

δ/ω1, for different values of gc. Other parameters are g0/2π = 4kHz, and ε1 =

ε2 = 0..

intensity of peaks are almost same for lower values of Coulomb coupling (gc)

[see,dashed and dot-dashed black curves in Fig. 3.2] but intensity is different for

higher values of gc [see, black curve in Fig. 3.2]. An another prominent effect

by the additional control of second mirror (MR2) kicks in, i.e the frequency shift

between the two peaks.This frequency shift increases for higher values of gc. The

line width of both FWM peaks (at stokes and anti-stokes lines) decreases as the

Coulomb coupling is increased.

These features are more clearly shown in a 3-D representation, as depicted in Fig.

3.3.

In Fig. 3.3, two intensity streams, separated by the frequency shift are clearly seen.

Resonances, which are responsible for the FWM signal, appear in the regions of

these bright bands. The FWM signal is absent in between (off-resonant points)

these intensity streams.
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Figure 3.3: A 3-D plot for FWM Intesity (arbitrary units) as a function of nor-

malized detuning δ/ω1 and Coulomb coupling gc.

3.3.3 Phase Controlled FWM signal

The versatile phase control gives intuitive understanding of the nonlinearities in

cavity optomechanical systems. The extra control provided by the second mirror

(MR2) can be appraised by varying the phases of the selective mechanical driving

fields of MRs.

By only driving the second mirror (MR2) mechanically, i.e ε1/εp = 0 and ε2/εp =

0.45, two mode-splitting peaks are formed in the FWM spectra, which is shown

in Fig. 3.4. In both peaks an asymmetrically amplified FWM signal is achieved

[see, blue-dashed and black curves in Fig.3.4]. The FWM signal is suppressed

(φ2 = π/4) and amplified (φ2 = π) at anti-stokes line while the light signal is

amplified (φ2 = π/4) and suppressed (φ2 = π) at stokes line.The physics behind

this asymmetric amplification and suppression can be explained as follows: In

this system, by driving the mechanical resonator MR2, only effective Coulomb

coupling can be enhanced. That is why asymmetric amplification and suppression
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Figure 3.4: A 2-D plot for FWM Intesity (arbitrary units) as a function of normal-

ized detuning δ/ω1, for different values of φ2. Other parameters are g0/2π = 4kHz,

gc = 0.4MHz, ε1 = 0, and ε2/εp = 0.45.

of the FWM signal can be achieved by selective mechanical driving of MR2.

A 3-D representation of the phase controlled intensity of FWM signal is shown

in Fig. 3.5. The amplification of FWM signal changes periodically with the

phase φ1 [see Fig. 3.5] by driving the mechanical resonator MR2 only. This

asymmetric amplification of the light signal is due to enhancement in the effective

Coulomb coupling. The FWM signal is absent in the off resonant region. Selective

mechanical driving of both MRs, imparts the ability to completely block or amplify

the FWM signal. To understand the FWM spectra in the presence of mechanical

driving fields on both MRs,the amplitudes of both mechanical driving fields are

set to ε1/εp = ε2/εp = 0.45. Asymmetric amplifications in the FWM light signal is

achieved for the phase values φ2 = 0 and π, which is demonstrated in Fig.3.6. The

mechanical driving of both MRs is advantageous at some extent because symmetric

amplification can also be observed in the FWM signal [see blue-dashed curve in

Fig.3.6]. A jitter variation (notch) in the FWM signal is found at the resonance

point δ = ω1. This feature is due to the fact that both effective optomechanical

31



Chapter 3 Controlled FWM in a Nano Electro Optomechanical system

Figure 3.5: A 3-D plot for FWM Intesity (arbitrary units) as a function of nor-

malized detuning δ/ω1 and phase φ2.
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Figure 3.6: A 2-D plot for FWM Intesity (arbitrary units) as a function of normal-

ized detuning δ/ω1, for different values of φ2. Other parameters are g0/2π = 4kHz,

gc = 0.4MHz, ε1/εp = ε2/εp = 0.45.
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coupling and Coulomb coupling strengths are enhanced by driving both MRs at

the same time.

Figure 3.7: A 3-D plot for FWM Intesity (arbitrary units) as a function of nor-

malized detuning δ/ω1 and phase φ2.

In the off resonant region (δ = ω1), the FWM signal is not zero but has a weak

signal in this area, as shown in Fig.3.7.

3.4 Amplitude Controlled FWM Spectra

In Fig.3.8 the FWM intensity is shown against the normalized detuning for varying

amplitude of mechanical driving on MR2. Again asymmetric amplifications and

suppressions are seen in the FWM signal around the resonance point. The FWM

signal is almost blocked at the off resonant region δ = ω1. This ability of selective

switching and amplifying the input probe signal is highly desirable in practical

optical communications [72-79].
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Figure 3.8: A 2-D plot for FWM Intesity (arbitrary units) as a function of nor-

malized detuning δ/ω1, for different values of ε2/εp.
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Chapter 4

Controlled FWM in NEOMS

with Bose-Einstein Condensate

4.1 Basic Theory

Bose-Einstein condensation is a macroscopic occupation of atoms in a single quan-

tum state. BEC was theoretically studied by Albert Einstein and Satyendra Nath

Bose in 1924. BEC is formed when samples of bosons are trapped at tempera-

tures near to absolute zero by different cooling techniques such as laser cooling

[30], evaporative cooling [31] and magneto-optic trapping [32]. Experimentally, the

pure Bose-Einstein condensate was observed in Rubidium-87 by Eric Cornell, Carl

Weiman [33] and co-workers in June 1995., using a combination of laser cooling

and magnetic-evaporative cooling [34,35]. Four months later, Wolfgang Ketterle

[36] independently condensed Sodium-23 in MIT. In Lithium atoms BEC was ob-

served by Randal Hullet [37] at Rice University. Many other groups are pursuing

Bose-Einstein condensation by optical traps [38].

Electromagnetic Induced Transparency (EIT) [39,40] and Slow light [41,42,43]

has been experimentally observed in Bose-Einstein condensate (BEC). Bose-Einstein

condensate is an ideal test bed for EIT studies and Optical information processing.
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4.2 Interatomic interaction in BEC

Several properties of Bose-Einstein condensate enter into the picture from the

effects of atomic interactions. As we know that BEC is formed, when the de-

Broglie wavelength of the atoms in the condensate is nearly approximate to the

average inter-particle spacing.So, without working through detailed calculation, it

is quite simple to understand the characterization of the scattering process by a

single parameter, known as scattering length a.Normally, the chemical potential is

effective across the distance of approximately 1nm, and the de-Broglie wavelength

is very large as 1000 times of the distance.This spells out that the collisions should

be taken as diffracting waves from small obstacles.Therefore the dispersed field

should consist of a spherical wave, which is only specified by its amplitude.This

amplitude is actually the scattering length a. The condition for BEC to occur,

with total number of trapped-atoms N, is

N(
}ω
kBT

)3 = 1.2021

We notice that the condensate exists at temperature 700nK , with approximately

10,000,000 atoms in the optical trap [65].

4.2.1 Nature of atom-atom interaction

In two atoms with cross wavefunctions, the inter-atomic interaction changes the

energy of the atomic pair.This occurs due to a big amount of interaction energy

when two atoms are closed to each other.The magnitude of energy shift depends

on the scattering length a.If an atomic pair has an unperturbed energy E and the

condensate is trapped in a volume of l3 , its energy will be E ≈ }2/ml2. Therefore

∆E

E
≈ N0

a

l
(4.1)

where N0 is the number of atoms. The dilute-gas condition, is therefore written

as N0
1/3a/l << 1.
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The scattering length a can either be negative or positive. The negative sign

indicates that the condensate has attractive interaction and the positive sign shows

that the nature of interatomic interaction is repulsive.Rubidium condensate has

repulsive interaction while Lithium has attractive interactions.By increasing N ,

the condensate will always reduce its energy by decreasing l which in turn rises

the density and the condensate is no more a dilute gas.Another type of phase

transition (liquid/solid) occurs instead of BEC.Hence, this limits the number of

atoms N in a condensate with attractive interactions.

4.3 System Model

In this chapter we discuss the enhanced FWM signal in the presence of an atomic

medium, i.e Bose-Einstein condensate (BEC). We explore the versatility of a

trapped Bose-Einstein condensate (BEC) in a Nano Electro optomechanical sys-

tem in the presence of switchable mechanical driving fields on mechanical res-

onators MR1 and MR2. The modifications in the intensity of FWM signal in the

presence of atomic medium (BEC) will be studied numerically using suitable ex-

perimental parameters. A Nano Electro Optomechanical system (NEOMS) with

a Bose-Einstein condensate trapped inside the optical cavity accompanied by the

additional control of mechanical driving fields ε1 and ε2, is shown in Fig.4.1.

4.3.1 Mathematical Treatment

We assume that the atomic density is quite large that two body atom-atom in-

teraction cannot be neglected and on-site kinetic energies and hopping of atoms

are considerable. So we shall use Bose-Hubbard Model (BHM) [44], to fully de-

scribe the dynamics of Bose-Einstein condensate in NEOMS. From the microscopic
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Fixed Mirror MR1 MR2

Pump Field

Probe Field

Output Field

Cavity Field gc

Selective mechanical driving

ε1 ε2

εL

εp
BEC

Figure 4.1: Schematic description of NEOMS with BEC trapped inside the op-

tical cavity: MR1 is coupled with the cavity through optomechanical coupling

and optical field is coupled with two level N-atoms of BEC with atomic coupling

stregnth ga , and mechanical resonators MR1 and MR2 are coupled through the

coulomb coupling strength gc. ε1 and ε2 are external driving fields on MR1 and

MR2 respectively.

second-quantized Hamiltonian,

H =

∫
dxψ†(x)[− }2

2m
∆2 + V (x)]ψ(x)

+
λ

2

∫
d3xψ†(x)ψ†(x)ψ(x)ψ(x) (4.2)

where, λ = 4πasc}2/2m with as as s-wave scattering length and m is the mass

of the condensate, and V (x) = U0c
†c cos2(kx) (here k is the wave number) with

U0 = ga
2/∆a (here ga is atomic coupling strength and ∆a is the atomic detuning).

Now, expanding the field operators in terms of Wannier functions, i.e

ψ(x) =
∑
i,n

ωn(x− xi)bi

we can write the optomechanical Bose-Hubbard Hamiltonian (OMBH) for the

system presented in the work by assuming nearest neighbor approximation [45]

HBH =
U

2

∑
j

(bj
†bj
†bjbj) +

∑
j

bj
†bj(E0 + }U0(Vcl + c†c)J0)

+
∑
j

(bj+1
†bj + bj+1bj

†)(E + }U0(Vcl + c†c)J) (4.3)
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The first term of Eq.4.3 represents the atom-atom interaction, second term is the

hamiltonian of on-site kinetic energy and tunneling energy and the third term

represents the tunneling (hopping) of atoms along the lattice sites. Where, U is

two body atom-atom interaction energy,bj
†(bj) are bosonic creation(destruction)

operators at the jth site, E0 is the on-site kinetic energy, U0 is the height of the

optical lattice potential per photon, Vcl is the classical potential added to the

system and J0 is the tunneling energy. The relations for these terms are given as

U =
4πasc}2

2m

∫
d3x|ω(x− xj)|4,

E0 =

∫
d3xω(x− xj)(−

}2∆2

2m
)ω(x− xj),

J0 =

∫
d3xω(x− xj) cos2(kx)ω(x− xj),

U0 =
ga

2

∆a

(4.4)

We are using nearest neighbour approximation, so we can neglect the third term of

Eq.4.2, and only considering the first two terms, the total Hamiltonian of the sys-

tem in a rotating frame with laser frequency ωl in the presence of input pump field

εl, weak probe field εp and selective mechanical drivings of mechanical resonators

MR1 and MR2, can be written as

HT =
U

2

∑
j

(bj
†bj
†bjbj) +

∑
j

bj
†bj(E0 + }U0(Vcl + c†c)J0)

+∆cc
†c− g0c†c(b1† + b1) + gc(b1

†b2 + b1b2
†)

+i(
2∑

k=1

εkbk
†e−iδt + εlc

† + εpc
†e−iδt −H.c) (4.5)

For a detailed investigation of dynamics of the system, photon losses are included

along with the decay rate connected to the condensate, κ and γb respectively.So,

the dynamics of the system is described by solving the Heisenberg-Langevin equa-

tions of motion, we get

ċ = −(i∆c +
κ

2
)c+ ig0(b1

† + b1)c− iU0J0c
∑
j

bj
†bj + εl + εpe

−iδt +
√

2κcIN

ḃj = −E0

}
bj − iJ0[

Vcl
}

+ U0c
†c]bj − i

U

}
bj
†bjbj − γbbj +

√
2γbbIN
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Where, cIN and bIN are noise operators connected to the cavity-field and BEC,

respectively.Using the ansatz c = cs+δc and b = bs+δb, we can linearize the equa-

tions of motion. In case of negligible tunneling, we remove the site index j from

the bosonic operators [45,46].Moreover we explicate the quadrature of mechanical

mode of BEC by assuming Hermitian operators,that is, δq = (δb+ δb†)/
√

2 and

δp = (δb− δb†)/i
√

2. By excluding the quantum fluctuation terms averaged to

zero [47,48], the linearized set of Heisenberg-Langevin equations of motion along

with equations for mechanical resonators , is

δq̈ + γbδq̇ + ωb
2δq = −gF (δc+ δc†)

δċ = −(
κ

2
+ i∆)δc− igq + ig0cs(δb1

† + δb1) + εl + εpe
−iδt

δḃ1 = −(iω1 +
γ1
2

)δb1 + ig0csδc
† + ig0cs

∗δc− igcδb2 + ε1e
−iδt

δḃ2 = −(iω2 +
γ2
2

)δb2 − igcδb1 + ε2e
−iδt (4.6)

where, ∆ = ∆c − U0NJ0 − g0(b1s
† + b1s) + gqs is the effective detuning, g =

2U0J0
√
N |cs|2 , F = Ueff + v, ωb =

√
(F )(v + 3Ueff ), Ueff = UN

}M and v =

U0J0|cs|2 + VclJ0
} + E0

} , (here N represents number of atoms in M sites).

To calculate the first order sidebands, we use the ansatz [49,50]

δc = A1
−e−iδt + A1

+eiδt

δb1 = B1
−e−iδt +B1

+eiδt

δb2 = B2
−e−iδt +B2

+eiδt

δq = E−e−iδt + E+eiδt
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Using above ansatz in the set of Eq.4.6, we get a system of twelve linear equations,

−gFA1
+ − gFA1

−∗ − r1−E+ = 0

−gFA1
− − gFA1

+∗ − r1−E− = 0

h1
+A1

+ − iGB1
+ − iGB1

−∗ + igE+ = 0

h1
−A1

+ − iGB1
− − iGB1

+∗ + igE− = εp

h1
+A1

+∗ + iGB1
− + iGB1

+∗ − igE− = 0

h1
−A1

−∗ + iGB1
+ + iGB1

−∗ − igE+ = εp

−iG∗A1
+ − iGA1

−∗ + k1
+B1

+ + igcB2
+ = 0

−iG∗A1
+∗ − iG∗A1

− + k1
−B1

− + igcB2
− = ε1

iGA1
+∗ + iG∗A1

− − igcB2
− + k1

+B1
+∗ = 0

iG∗A1
+ + iGA1

−∗ − igcB2
+ + k1

−B1
−∗ = 0

k2
+B2

+ + igcB1
+ = 0

k2
−B2

− + igcB1
− = ε2 (4.7)

Here,

G = g0cs ; h1
± = κ/2 + i(∆± δ)

k1
± = γ1/2 + i(ω1 ± δ) ; k2

± = γ2/2 + i(ω2 ± δ)

G∗ = g0cs
∗ ; r1

± = ωb
2 − δ2 ± iδγb

To understand the complete dynamics of medium (BEC) mediated FWM signal,

phases for mechanical drivings ε1 and ε2 are introduced as,

ε1 = ε1e
−iφ1 ; ε2 = ε2e

−iφ2

Solving the set of linear equations in Eq.4.7 for the first order sideband mode A1
+,

we get

A1
+ =

H1

C1 + C2 + C3

ε1 +
H2

C1 + C2 + C3

ε2 +
H3

C1 + C2 + C3

εp (4.8)
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Where,

H1 = G(gc
2 + k1

+k1
−)(−2ig2F + h1

−r1
−)

H2 = −Ggc(k1+ − k1−)(2g2F + ih1
−r1

−)

H3 = −(g2Fk1
+(gc

2 + k1
−k2

−)− iG(k1
+ − k1−)k2

−r1
−G∗)

C1 = g2F (gc
2(h1

+ + h1
−)k1

+ − 2G2k2
−((k1

+ − k1−) + (h1
+ − h1−)k1

+k1
−))

C2 = ih1
−(gc

2h1
+k1

+ + h1
+k1

+k1
−k2

− +G2(k1
− − k1+)k2

−)r1
−

C3 = G(k1
+ − k1−)k2

−(2g2F + ih1
+r1

−)G∗

4.4 Numerical Results

We examine a repulsive Bose-Einstein condensate Rb87 of two level N-atoms and

take data from real experiments [52,53]. We use experimental parameters to study

enhancement in FWM signal in a Nano Electro Optomechanical system (NEOMS)

in the presence of Bose-Einstein condensate (BEC) trapped inside the optical

cavity. The experimental parameters for the Rb87 condensate [53] is given in

the Table 4.1. Other parameters related to cavity field, coupling strengths and

Experimental parameters

Parameters Values

mbec 1.45× 10−25kg

asc 109a0

ω 38.628kHz

N 105atoms

Table 4.1: In the table, a0 = 0.529× 10−10m is the Bohr radius.

mechanical resonators are same as in Section 3.3.
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The FWM intensity is calculated using the relation,

FWM = | −
√

2κ

εp
A1

+|2.

4.4.1 FWM signal for varying atom-field coupling g

g=2πx20kHz

g=2πx30kHz

g=2πx40kHz
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Figure 4.2: A 2-D plot for FWM Intesity (arbitrary units) as a function of normal-

ized detuning δ/ω1. Other parameters are ωb = ω1, Ueff = v = ωb, γb = 0.01γ1,

∆a = ω1 and ∆ = ω1.

In the presence of an atomic medium, i.e, Bose Einstein Condensate (BEC),

a third peak appears at the resonance point (δ/ω1) in the FWM intensity curve,

as shown in Fig 4.2. When the atom-field coupling is increased, three prominent

changes occur in the FWM intensity; The FWM intensity decreases for the peaks

right and left to the resonance point, the intensity of the new peak at the resonance

point increases and the line-width of the peak at resonance point also increases

[see blue-dotdashed and red-dotted curves in Fig 4.2]. These changes occur due to

the following reason; When the atom-field coupling is increased, the non-linearity

in the cavity is enhanced, which rigorously alters the output signal.
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4.4.2 Phase controlled FWM Signal in the presence of

atomic medium (BEC)
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Figure 4.3: A 2-D plot for FWM Intesity (arbitrary units) as a function of nor-

malized detuning δ/ω1, for different values of phase angle φ1. Other parameters

are g/2π = 30kHz, ε1/εp = 0.45, ε2/εp = 0, ωb = ω1, Ueff = v = ωb, γb = 0.01γ1,

∆a = ω1 and ∆ = ω1.

When the mechanical resonator MR1 is driven, the FWM signal confronts to

various modifications.As the phase angle φ1 is increased, the intensities of FWM

peaks on both sides of the resonance point (δ/ω1) increase [see Fig.4.3]. The FWM

signal strength at the resonance point is independent of the phase value, as shown

in Fig 4.3. For lower phase values, the FWM signal right to the resonance point

is suppressed [see black-dotted and blue-dashed curves in Fig 4.3]. When MR1

is driven, the optomechanical coupling strength is enhanced, due to which consis-

tent modifications occur in the output field. Because of this reason, asymmetric

suppression and amplifications are observed in the FWM signal.
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Figure 4.4: A 2-D plot for FWM Intesity (arbitrary units) as a function of nor-

malized detuning δ/ω1, for different values of phase angle φ2. Other parameters

are g/2π = 30kHz, ε1/εp = 0, ε2/εp = 0.45, ωb = ω1, Ueff = v = ωb, γb = 0.01γ1,

∆a = ω1 and ∆ = ω1.

When the mechanical resonator MR2 is driven instead of MR1, anomalous

changes occur in the FWM signal. At the phase angle φ2 = π/4, the amplitude

of the FWM peak left to the resonance point δ/ω1 is greater than that of the

peak right to the resonance point [see black-line curve in Fig 4.4]. For the phase

value φ2 = π/2, almost symmetric FWM peaks are observed around the resonance

point δ/ω1 [see blue-dashed curve in Fig 4.4]. At higher phase values, i.e φ2 = π,

the FWM intensity of the peak right to the resonance point is greatly amplified

while the FWM signal is almost absent at the left side of the resonance point [see

black-dotdashed curve in Fig 4.4].
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Chapter 5

Conclusion

In the first part of the dissertation, we investigate the phenomenon of four-wave

mixing in an optomechanical system in the presence of a switchable mechanical

driving field on the moving-end mirror (MR1). Asymmetric amplifications and

suppressions have been observed in the output light signal (FWM).In addition, it

has been shown that the FWM signal can be controlled by varying the amplitude

and phase of mechanical driving on MR1.

The four-wave mixing phenomenon has been studied in a typical Nano Electro

Optomechanical system (NEOMS), in the second part of the thesis. We show

that the second micro resonator (MR2) provides an extra control over the FWM

signal. It has been seen that the selective mechanical drivings of both MRs have

a significant effect on the FWM spectra. These switchable mechanical drivings

impart a tunable FWM signal at the output.Moreover, it has been observed that

the intensities of FWM peaks can be amplified and suppressed by varying the

amplitude and phase of mechanical drivings of MRs.

The last part of the dissertation discusses effect of atomic medium on the

FWM signal. For this purpose a trapped Bose-Einstein condensate (BEC) in a

Nano Electro Optomechanical system (NEOMS) has been studied by selectively

driving the mechanical resonators MR1 and MR2. The medium-enhanced FWM
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Conclusion

signal has been observed to show inconsistent modifications by varying the phase

angle of mechanical driving fields of MRs. Moreover, it has been observed that the

FWM signal can be greatly enhanced by driving the mechanical resonator (MR2)

only.
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