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Preface 
There is no doubt about extensive applications of peristalsis in 
physiology and industry. Especially the dynamics of non-Newtonian 
fluids by peristaltic mechanism is hottopic of research. Peristalsis is 
quite significant in various engineering problems associated with 
powder technology, sedimentation, combustion, fluidization, heart-lung 
machine and paint spraying. In plant physiology, such mechanism is 
involved in phloem translocation by driving a sucrose solution along 
tubules by peristaltic contractions. Heat transfer analysis in peristalsis 
has been also used to obtain information about the properties of tissues 
and thus quite significant in the biomedical sciences. In fact heat transfer 
is important because nutrients diffuse out from blood. Further the 
temperature difference in any situation results from energy flow into a 
system or energy flow from a system to surroundings. The former leads 
to heating whereas latter leads to cooling of an object. This is known as 
convection heat transfer. Bulk motion of fluid boosts heat transfer in 
many physical situations. It is supportive to predict how long it takes for 
a hot object to cool down at a certain temperature.Heat transfer subject 
to convective conditions is involved in processes such as thermal energy 
storage, gas turbines, nuclear plants etc. This concept is of great value 
because the thermodynamic aspects of blood are quite prevalent in 
processes such as oxygenation and hemodialysis. Moreover the energy 
flux is not only induced by the temperature gradient but by composition 
gradient as well. The simultaneous effects of heat and mass transfer with 
convective boundary conditions provide complicated expressions 
relating the fluxes and driving potentials. Keeping this in mind the 
present thesis highlights the heat transfer in peristaltic transport of fluids 
in a channel with convective boundaries. The relevant equations are 
modeled and solved for the approximate and numerical solutions. Salient 
features of heat transfer in view of convective boundary conditions are 
emphasized. Motivated by all such facts we structure the present thesis 
as follows: 



The review of some existing literature relevant to peristaltic transport 
and some fundamental equations is given in chapter one. 

Chapter two addresses the peristaltic flow of third order fluid in an 
asymmetric channel. Channel walls are subjected to the convective 
boundary conditions. The channel asymmetry is produced by choosing 
the peristaltic wave train on the walls to have different amplitudes and 
phase. Long wavelength approximation and perturbation method yield 
the series solutions for the stream function, temperature and longitudinal 
pressure gradient. Analysis has been further carried out for pressure rise 
per wavelength through numerical integration. Several graphs of 
physical interest are displayed and discussed. The results of this chapter 
are published inJournal of Mechanics 29(2013) pp. 599-607. 

Chapter three dealswith the peristaltic transport of viscous nanofluid in 
an asymmetric channel. The channel walls satisfy the convective 
conditions. Effects of Brownian motion and thermophoresis are taken 
into account. The relevant flow analysis is first modeled and then 
computed for the series solutions of temperature and concentration 
fields. Closed form expression of stream function is constructed. Plots 
are prepared for a parametric study reflecting the effects of Brownian 
motion, thermophoresis, Prandtl, Eckert and Biot numbers. The findings 
of this chapter have been published inJournal of Molcular Liquids 
193 (2014) pp. 74-82. 

The peristaltically driven Casson fluid flow in an asymmetric channel 
with convective conditions is investigated in chapter four. The Soret and 
Dufour effects are studied in the presence of chemical reaction. The 
relevant flow analysis is modelled for Casson fluid in a wave frame. 
Computations of solutions are made for the velocity, temperature and 
concentration fields. The performed analysis shows that the two yield 
planes exist because of channel asymmetry. These planes are described 



in terms of the core width by working on the transcendental equation. 
Closed form expression of streamfunction is obtained. Results displayed 
and discussed for the effects ofCasson fluid parameter, chemical 
reaction parameter, Prandtl, Schmidt, Soret, Dufour and Biot numbers. 
The research presented in this chapter is published inComputers & 
Fluids 89 (2014) pp. 242-253. 

Chapter five explores the heat transfer effects in peristaltic flow of 
couple stress fluid. An incompressible fluid is considered in a channel 
with convective boundary conditions. This study is motivated towards 
investigating the physiological flow through particle size effect. Long 
wavelength and low Reynolds number approach is adopted. Effects of 
various physical parameters like couple stress parameter and Brinkman 
and Biot numbers on the velocity profile, streamlines pattern, 
temperature profile, pumping action and trapping are studied. 
Computational results are presented in graphical form. The contents of 
this chapter have been accepted for publication inHeat Transfer 
Research(2013). 

Chapter six is concerned with the peristaltic transport of Johnson-
Segalman fluid in an asymmetric channel with convective boundary 
conditions. Mathematical modelling is based upon the conservation laws 
of mass, linear momentum and energy. Resulting equations have been 
solved after using long wavelength and low Reynolds number 
considerations. Results for the axial pressure gradient, velocity and 
temperature profiles are obtained for small Weissenbergnumber. 
Expressions of the pressure gradient, velocity and temperature are 
analyzed for various embedded parameters. Pumping and trapping 
phenomena are also explored.The observations of conducted analysis are 
published inApplied Mathematics and Mechanics-English Edition 
35 (2014) pp. 697-717. 



The peristaltic flow of power law fluid in an asymmetric channel is 
discussed in chapter seven. The flow is generated because of peristaltic 
waves propagating along the channel walls. Heat transfer is examined 
through convective conditions at channel walls. Mathematical model is 
presented employing lubrication approach. The differential equations 
governing the flow are nonlinear and admit non-unique solutions. There 
exists two different physically meaningful solutions one of which 
satisfying the boundary conditions at the upper wall and the other at the 
lower wall. The effects of Biot numbers and the power-law nature of the 
fluid on the longitudinal velocity, temperature and pumping 
characteristics are studied in detail. The streamlines pattern and trapping 
are given due attention. Important conclusions have been pointed out. 
The contents of this chapter are published inJournal of the Brazilian 
Society of Mechanical Sciences and Engineering37 (2014) pp. 463-
477. 

Chapter eight examines the peristaltic transport of an incompressible 
micropolar fluid in an asymmetric channel with heat source/sink and 
convective boundary conditions. Mathematical formulation is completed 
in a wave frame of reference. Long wavelength and low Reynolds 
number approach is adopted. The solutions for velocity, microrotation 
component, axial pressure gradient, temperature, stream function and 
pressure rise over a wavelength are obtained. Velocity and temperature 
distributions are analyzed for different parameters of interest. The 
findings of this chapter arepublished 
inZeitschriftfürNaturforschungA (ZNA) 69 (2014) pp. 425-432. 

Chapter nine investigates the peristaltic flow of Sisko fluid in an 
asymmetric channel with sinusoidal wave propagating down its walls. 
The channel walls in heat transfer process satisfy the convective 
conditions. The flow and heat transfer equations are modeled and 



nondimensionalized. The shear-thinning and shear-thickening properties 
of Sisko fluid in the present nonlinear analysis are examined. 
Comparison between the results of Sisko and viscous fluids is given. 
Velocity and temperature distributions, pressure gradient and streamline 
pattern are addressed with respect to different parameters of interest. 
Pumping and trapping phenomena are also analyzed. The analysis of this 
chapter has been accepted for publication in International Journal of 
Applied Mathematics and Information Sciences (2015). 

Peristaltic motion of Carreau fluid in an asymmetric channel with 
convective boundary conditions is investigated in chapter ten. 
Mathematical formulation is first reduced in a wave frame of reference 
and then solutions are constructed. Expressions of the stream function, 
axial pressure gradient, temperature and pressure rise over a wavelength 
are obtained for small Weissenberg number. Velocity and temperature 
distributions are explored for the sundry parameters. A comparative 
study between the results of viscous and Carreau fluid is made. Such 
observations are published inApplied Bionics and Biomechanics11 
(2014) pp. 157-168. 

Chapter eleven addresses the peristaltic flow of an incompressible and 
electrically conducting Williamson fluid in a symmetric planar channel 
with heat and mass transfer. Hall effects, viscous dissipation and Joule 
heating are also taken into consideration. Mathematical model is 
presented for long wavelength and low Reynolds number 
approximations. The differential equations governing the flow are highly 
nonlinear and thus perturbation solution for small Weissenberg number 
is obtained. Effects of the heat and mass transfer Biot numbers and Hall 
parameter on the longitudinal velocity, temperature, concentration and 
pumping characteristics are studied in detail. The streamlines pattern and 
trapping are also given due attention. Main observations of present study 



are included in the concluding section. The results of this chapter are 
published in International Journal of Biomathematics7 (2014) 
1450058 (27 pages) DOI:10.1142/S1793524514500582. 
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Chapter 1

Literature survey on peristalsis

The study of peristaltic flows has been originated by pioneer experimental work of Latham

[1]. He conducted the experimental study for the peristaltic motion of viscous fluid. The

theoretical work by Shapiro [2] has good agreement with the experimental results in ref. [1].

Burns and Parkes [3] presented the peristaltic motion with zero Reynolds number for both

planar and axisymmetric flow geometries. The series solution was acquired for small amplitude

ratio. Fung and Yih [4] discussed the reflux phenomenon for small amplitude ratio in a planar

channel. They concluded that the reflux occurs at the middle of the channel. They ventured

that in the vasomotion of small blood vessels, the peristalsis is convoluted. The peristaltic

motion in tubes is revealed by Barton and Reynor [5]. They determined the relationship among

pressure difference and average flow rate through a wavelength. They expressed two types of

analysis; firstly for very large wall disturbance wavelength when compared with average radius

and secondly for smaller wall disturbance wavelength than the average radius of the tube.

Shapiro et al. [6] discussed the peristaltic flows for both planar and axisymmetric cases. Both

the geometries are investigated by means of amplitude ratios ranging from zero to full occlusion

and physiological significance of reflux phenomenon is presumed to be true in ureter and the

gastrointestinal systems. Another theoretical study for axisymmetric geometry is proposed

by Yin and Fung [7] under the postulation of small amplitude ratio. Jaffrin and Shapiro

[8] looked at the inertia-free viscous fluid movement and they offered the physical picture of

peristaltic pump. Peristaltic flow for small wave number is inspected by Zein and Ostrach [9].

Their exploration was directed to the possible application of peristalsis to urine flow in the

6



human ureters. Lew et al. [10] discussed two solutions for the peristaltic motion of mixing and

carrying chyme in small intestine; one for peristaltic carrying in which fluid motion is created

in the absence of net pressure gradient and the other for peristaltic compression deprived of the

net transport of fluid. Lew and Fung [11] discussed the axisymmetric flow of the Newtonian

fluid at low Reynolds number through a rigid circular cylindrical tube. This analysis gave

the basics for understanding the fluid flow in vessels (such as veins and lymphatic ducts) of

the living body. Peristaltic pumping with the effects of inertia and streamline curvature has

been seen by Jaffrin [12]. He obtained theoretical results for the peristaltic pumping in two-

dimensional tube with inertia and curvature effects which physically corresponds to the case

of roller pumps and the gastrointestinal tract. Semleser et al. [13] presented a mathematical

model for the mechanism of swimming of spermatozoa in the cervix. Gupta and Seshadri [14]

explored the mechanism of peristalsis in non-uniform channels/tubes with particular reference

to the spermatic fluid flow in the vas deferens. Liron [15] developed the solution by double

expansion for Reynolds number and the square of the wave number for pipe/channel flow with

peristalsis and he discussed the efficiency and performance of biological functions due to the

peristaltic fluid transport. The blood flow affected by moving magnetic field is perceived by

Stud et al. [16]. Srivastava and Srivastava [17] discussed the peristaltic flow of a two-phase fluid,

peripheral and core fluid, model in the non-uniform tube and channel. The results obtained by

Srivastava and Srivastava was applied and matched with the experiential flow rates of spermatic

fluid in vas deferens of rhesus monkeys. Agrawal and Anwaruddin [18] scrutinized the magnetic

field effects on blood flow through a flexible channel which is equally branched. They deduced

that the cardiac operations can be carried out under the influence of magnetic field which

works as a blood pump. The mathematical aspects of intestinal peristaltic waves as a physical

model were investigated by Metry and Chauvet [19]. Subsequent problem is solved by means of

finite element scheme. The analysis of two immiscible viscous fluids with peristalsis is carried

out by Rao and Usha [20] in a circular tube. The reflux phenomenon is observed in pumping

and co-pumping regions and it is revealed that reflux occurs in pumping region and in the co-

pumping region, it is vague. Chu and Fang [21] discussed two important cases i.e., the no-slip

and slip flow cases with peristalsis. Eytan et al. [22] discussed the flow pattern and transport

phenomena of intrauterine fluid in a finite tapered channel on account of the displacements of

7



symmetric and asymmetric channel walls. They explored that the results have great relevance

to intrauterine fluid transport, embryo transfer and hydrosalpinx. Selverov and Stone [23] found

the results for the flows along the boundary of a closed rectangular container and concluded that

these results might be convenient for modeling peristaltically operated micro-electromechanical

systems devices. Shehawey and Husseny [24] have talked about the viscous fluid under the

transverse magnetic field effects through the porous channel with peristalsis. Shehawey et al.

[25] examined the influence of constant magnetic field on an incompressible viscous fluid flow

between the two inclined porous plates. Mekheimer [26] examined the effect of magnetic field

on peristaltic motion of blood in a non-uniform channel. Mishra and Rao [27] studied the

peristaltic flow of Newtonian fluid in an asymmetric channel. Tzirtzilakis [28] has suggested

three-dimensional mathematical model depicting the Newtonian blood flows under the influence

of an applied magnetic field. Teymori and Sani [29] designed and simulated the electrostatic

micro-channel pump that works on the basis of peristaltic action and fulfills all the requirements

of medical drug delivery. Shehawey et al. [30] employed the Adomian decomposition method

to obtain the solution of the incompressible viscous fluid flow through a porous medium in an

asymmetric channel. Srivastava [31] studied the effects of endoscope on the chyme movement

in the small intestines. The pressure drop and frictional forces were discussed at the intestinal

walls and endoscope. Design, fabrication, and experimental characterization of a peristaltic

micropump for biomedical applications are discussed by Nguyen et al. [32]. Ebaid [33] studied

the transport of Newtonian fluid in an asymmetric channel under the slip and magnetic field

effects with peristalsis. Ali et al. [34] have discussed the slip effect on peristalsis with variable

viscosity and they obtained the exact and series solutions (in the power of viscosity parameter)

for hydrodynamic and magnetohydrodynamic cases. Lozano and Sen [35] investigated the

peristaltic transport in two-dimensional planar and axisymmetric flow cases. They discussed

the streamline patterns and their local and global bifurcations. Wave shape optimization is

discussed by Walker and Shelley [36] for peristaltic pumping by using variational method in a

two-dimensional channel with Navier-Stokes fluid. A compressible viscous fluid with peristalsis

is discussed by Mekheimer and Abdel-Wahab [37]. Keimanesh et al. [38] explored the third

grade fluid flow between two parallel plates. They have used the multi-step differential transform

method to obtain the solution.
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Since most of the fluids in physiology are of non-Newtonian character. Hence the mechanism

of peristalsis has been also discussed for the non-Newtonian fluids in the past. The analytical

properties of physiological non-Newtonian fluids with peristalsis were deliberated by Raju and

Devanathan [39]. They took peristaltically driven power-law fluid and found the results in

terms of the power series of wave amplitude in a tube. Casson [40] elaborated the flow equation

for pigment oil-suspensions of the printing ink type fluid. The discussion on viscoelastic fluid

with peristalsis is given by Raju and Devanathan [41]. They considered the solutions for small

Reynolds number and no inertia force. Johnson and Segalman [42] proposed the model for

viscoelastic fluid behavior with non-affine deformation. Eringen [43] described the theory of

micropolar fluid which can support couple stresses, body couples and exhibits microrotation

and microinertial effects. The theory of micropolar fluids is a special case of the theory of

simple microfluids introduced by Eringen [44]. Bohme and Friedrich [45] studied the peristaltic

motion of viscoelastic fluids with small Reynolds number and no inertia force. Srivastava and

Srivastava [46] investigated the problem of peristaltic transport of blood assuming a single-

layered Casson fluid and ignored the presence of a peripheral layer. The peristaltic motion in

the uniform/non-uniform tubes was contributed by Srivastava and Srivastava [47] in which they

have taken power-law fluid and this study was associated with pragmatic flow rates in the vas

deferens and small intestine. Chaturani and Samy [48] showed the blood as Herschel-Bulkley

fluid in their study. They inquired the blood flow through a stenosed artery and discussed some

arterial diseases in detail. Misery [49] reflected the creeping flow assumption for Carreau fluid in

a planar channel with peristalsis. Siddiqui and Schwarz [50] analyzed the flow characteristics of

third order fluid through peristaltic motion. They inspected fluid flow in a planar channel and

obtained perturbation solution for small Deborah number. Siddiqui and Schwarz [51] scrutinized

the peristaltic pumping of a second order fluid contained in an axisymmetric duct. Perturbed

solution for wave number in dimensionless form was developed. Strohmer et al. [52] found the

relationship between the individual uterine size and the thickness of endomaterial in stimulated

cycles. Usha and Rao [53] considered the two-layered power-law fluids within axisymmetric

conduits executing peristaltic movement. Eytan and Elad [54] observed that the situation of

intrauterine fluid flow due to myomaterial contractions is a peristaltic type fluid motion in a

cavity. The passage of food bolus through the oesophagus is inquired by Misra and Pandey
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[55]. The transfer of power-law fluid via axisymmetric peristaltic waves in a circular tube was

analyzed. A mathematical study of peristaltic transport of Casson fluid is given by Mernone et

al. [56] in two dimensional axisymmetric channel using the generalized form of the constitutive

equation for Casson fluid. Rao and Mishra [57] studied the peristaltic flow of power-law fluid.

They have made investigation in axisymmetric porous tube with slip conditions and concluded

that the results of this study have obtained appreciation in observing the movement of chyme in

small intestines. Nagarani and Sarojamma [58] studied the peristaltic transport of Casson fluid

in an asymmetric channel. They discussed the effects of yield stress of the fluid and asymmetry

of the channel. Vajravelu et al. [59] looked at the peristaltic pumping for Herschel-Bulkley

fluid in a two-dimensional channel. They gave a comparison of trapping phenomenon between

the Newtonian, Bingham, power-law and Herschel-Bulkley fluids. Vajravelu et al. [60] studied

the peristaltic flow of Herschel-Bulkley fluid in contact with a Newtonian fluid. They explored

its numerous applications to flows with biological fluids like blood, chyme, intrauterine fluid

etc. Haroun [61] discussed the peristaltic motion of third order fluid in an asymmetric channel.

Series solution was obtained up to second order for small Deborah number. Peristaltic flow of

MHD third grade fluid in a circular cylinder-shaped tube was discussed by Hayat and Ali [62].

Hayat et al. [63] pondered the MHD peristaltic motion of third grade fluid in a planar channel

and solution in the series of Deborah number is demonstrated. Hayat et al. [64] discussed the

peristaltic transport of third order fluid in an asymmetric channel with slip conditions. Hayat et

al. [65] discussed the peristaltic flow of third order fluid with induced magnetic field effects. The

solution for stream function, axial velocity, magnetic force function and axial-induced magnetic

field are obtained. Haroun [66] studied the peristaltic flow of fourth grade fluid in an asymmetric

channel. Tsiklauri and Beresnev [67] have studied the viscoelasticity of fluid by considering the

flow of Maxwell fluid in a circular tube with porous medium. They analyzed that such type

of study have practical applications like blood flow in living creatures. Shehway et al. [68]

studied the effect of slip conditions in porous media by examining the flow of Newtonian and

non-Newtonian Maxwellian fluids in cylindrical axisymmetric tube. Peristaltic flow of Maxwell

fluid in an asymmetric channel was probed by Hayat et al. [69]. They obtained series solutions

for small values of wave number. Hayat et al. [70] studied the peristaltic motion of an Oldroyd-

B fluid in a planar channel. The effects of relaxation and retardation times have been explained
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by Haroun [71] while discussing an Oldroyd viscoelastic fluid with peristalsis. Hayat et al. [72]

have obtained the solution for small wave number by applying regular perturbation method

up to second order for peristaltic transport of Burgers’ fluid in a planar channel. A detailed

analysis is given on the biviscosity fluid which is electrically conducting in a non-uniform tube

(see Eldabe [73]). Ali and Hayat [74, 75] discussed the peristaltic flow of micropolar and

Carreau fluids in an asymmetric channel, respectively. Induced magnetic field was given due

attention. Kothandapani and Srinivas [76] studied the MHD peristaltic motion of Jeffrey fluid

in an asymmetric channel. This article inspected the pumping features, pressure gradient and

trapping phenomenon. Wang et al. [77] examined the MHD peristaltic transport of Sisko

fluid in the symmetric and asymmetric channels numerically. They obtained solution by using

iterative method and analyzed the shear thinning and thickening effects. Different wave forms

are discussed in a diverging tube by Hariharan et al. [78] for power-law and Bingham fluids

under the influence of peristaltic mechanism. They discussed the reflux phenomenon by tracing

the path lines of massless particles. Nadeem and Akbar [79] discussed the peristaltic flow of

Walter’s B fluid in a uniform inclined tube. Ali et al. [80] discussed the peristaltic transport

of third grade fluid in a curved channel. The peristaltically driven second grade in porous

medium is examined by Abd elmaboud and Mekheimer [81]. Ellahi et al. [82] constructed

the series solutions of MHD Jeffrey fluid flow in eccentric cylinders. Peristaltic motion of

fractional bio-fluids is discussed numerically by Tripathi [83]. Nadeem et al. [84] studied the

Walter’s B fluid in endoscope with peristalsis. Fractional Maxwell fluid flow between coaxial

cylinders is discussed by Fetecau et al. [85]. Noreen et al. [86] considered the peristaltic

motion of pseudoplastic fluid under the influence of slip and induced magnetic field. Peristaltic

flow of second order fluid in presence of induced magnetic field is investigated by Hayat et al.

[87]. Yazdanpanh-Ardakani and Niroomand-Oscii [88] proposed a new approach in modeling

peristaltic motion of non-Newtonian fluid. Maiti and Misra [89] and Rao and Rao [90] discussed

the peristaltic flow of couple stress fluid through porous medium. Hayat et al. [91] considered

the Phan-Thein-Tanner fluid flow in a planar channel under peristaltic action. Exact solution to

peristaltic transport of power-law fluid in asymmetric channel with compliant walls is obtained

by Hayat and Javed [92]. Kalantri et al. [93] explored numerical study of the non-Newtonian

fluid through curved channels. Peristaltic motion of fourth grade fluid between porous walls
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with suction and injection is analyzed by Hari Prabakaran et al. [94]. Effects of Hall current

on pulsatile and peristaltic motion of a particle-fluid suspension is observed by Gad [95]. El

Koumy et al. [96] examined the Hall and porous boundaries effects on peristalsis of Maxwell

fluid through porous medium with peristalsis. Three dimensional peristaltic flow of Williamson

fluid in a rectangular duct is investigated by Ellahi et al. [97]. Nadeem et al. [98] observed

the Williamson fluid in a curved channel with compliant walls. Akram et al. [99] obtained the

numerical and analytical solutions for Williamson fluid under the influence of induced magnetic

field.

There are many applications of heat transfer with peristalsis such as in biomedical sciences

and electronic industries etc. Radhakrishnamacharya and Murty [100] studied the non-uniform

channel with peristalsis containing viscous fluid. They have given the series solutions in terms

of wave number for temperature distribution and heat transfer coefficient by using perturba-

tion technique. Vajravelu et al. [101] analyzed the heat transfer analysis in a vertical porous

annular region for viscous fluid between two concentric tubes with peristalsis. Double pertur-

bation method is utilized to obtain the solution about free convection and porosity parame-

ters. In vertical annulus with heat sink/source the problem was deliberated by Mekheimer and

Elmaboud [102]. Srinivas and Kothandapani [103] have talked about the peristaltically driven

MHD viscous fluid flow with consideration of asymmetry of the channel. Srinivas and Gayathri

[104] examined heat transfer effects on peristalsis in vertical asymmetric channel with porous

medium. Hayat et al. [105] canvased the heat transfer effects on MHD viscous fluid flow within

an asymmetric channel featuring porous medium with peristalsis. Nadeem and Akbar [106]

proposed the mathematical analysis for peristaltic transport of electrically conducting viscous

fluid in a channel with heat transfer. Solution was found by using the method called Adomian

Decomposition method. Mekheimer et al. [107] revisited the same problem in a channel which

was discussed by Vajravelu et al. [101] in tubes. Vasudev et al. [108] examined the simulta-

neous effects of heat transfer and porous medium on peristaltic transport of viscous fluid in

an asymmetric channel. Nadeem and Akram [109] scrutinized consequence of heat transfer on

peristalsis with velocity slip condition. Hayat et al. [110] examined the effects of velocity and

thermal slips on peristaltic flow with MHD in a channel which is asymmetric. Frictional forces

and pressure rise are analyzed with velocity and temperature distributions. An Oldroyd-B fluid
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is analyzed under the effects of heat transfer in a channel by Sobh et al. [111]. The channel

walls are exhibiting sinusoidal behavior due to the propagation of peristaltic waves. They have

obtained series solution by using analytical method called perturbation method for small wave

number. Nadeem and Akbar [112, 113] illustrated the heat transfer effects in non-uniform tubes

containing Johnson-Segalman and Jeffrey-six constant fluids. A detailed analysis of heat trans-

fer on peristaltically driven fourth grade fluid with effects of induced magnetic field is given by

Hayat and Noreen [114]. Ali et al. [115] talked about the influence of curved channel and heat

transfer on peristalsis. They have used numerical technique to obtain the solution for temper-

ature distribution whereas stream function is given by analytic technique. Eldabe et al. [116]

presented the mixed convection peristaltic flow between two vertical walls. Thermo-diffusion

(Soret) and diffusion-thermo (Dufour) effects with temperature dependent viscosity are also

interpreted. The mixed convective heat and mass transfer with porous medium through a ver-

tical wavy channel is assessed by Muthuraj and Srinivas [117]. They described two parts of the

solution i.e. a mean part and a perturbed part. Third order fluid in a diverging wavy tube with

heat transfer is reflected by Nadeem et al. [118]. Nadeem and Akbar [119] inspected radially

varying MHD peristaltically driven viscous fluid flow with heat and mass transfer effects in an

annulus. Peristaltic flow under the effects of slip and heat transfer is analyzed by Hayat et al.

[120]. Srinivas et al. [121] investigated the effects of heat and mass transfer in an asymmetric

channel with peristalsis. Srinivas and Muthuraj [122] discussed the MHD mixed convective flow

with peristalsis. Effects of chemical reaction and space porosity were also taken into account

in a vertical asymmetric channel. Mekheimer et al. [123] considered the simultaneous effects

of heat and mass transfer and induced magnetic field effects in peristaltic flow of second grade

fluid. Mathematical modelling of unsteady Sisko fluid flow was analyzed by Mekheimer and

Elkot [124]. They have considered anisotropically tapered arteries with time-variant overlap-

ping stenosis. Akbar et al. [125] examined the slip and heat transfer effects in flow of third

order fluid with peristalsis in an asymmetric channel. Influence of heat transfer on flow of

Jeffrey fluid in a vertical porous stratum with peristalsis is mentioned by Vajravelu et al. [126].

Tripathi [127] proposed a mathematical model for swallowing of food bolus via esophagus un-

der the effects of heat transfer. Heat and mass transfer analysis with slip effects in Maxwellian

fluid flow under peristaltic action is discussed by Hayat et al. [128]. Nield and Kuznetsov [129]
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examined the Cheng-Minkowycz problem for the double-diffusive natural convective boundary

layer flow in a porous medium saturated by a nanofluid. Non-Newtonian nanofluid under the

heat transfer effects with variable viscosity in two coaxial cylinders and pipe is analyzed by

Ellahi et al. [130, 131] respectively. Eldabe et al. [132] discussed the heat and mass transfer

in MHD peristaltic flow of a couple stress fluid through a porous medium. Effects of heat and

mass transfer on peristaltic flow of a nanofluid between eccentric cylinders are investigated by

Nadeem et al. [133]. Peristaltic motion with Soret and Dufour effects is discussed by Hayat

et al. [134]. Peristaltic slip flow of viscoelastic fluid with heat and mass transfer in a tube is

observed by Sobh [135]. Rao and Rao [136] analyzed the influence of heat transfer on peristaltic

transport of couple stress fluid through porous medium. Peristaltically driven viscous fluid flow

in a vertical asymmetric channel is studied by Srinivas et al. [137]. They have also considered

the wall slip and heat and mass transfer effects. Abd elmaboud et al. [138] revealed the thermal

properties of couple stress fluid flow with peristalsis in an asymmetric channel. El-Sayed et al.

[139] investigated the effects of chemical reaction and heat and mass transfer through porous

medium in vertical peristaltic tube containing non-Newtonian fluid. Shaaban and Abou-Zeid

[140] predicted the effects of heat and mass transfer in MHD peristaltic flow between two coaxial

cylinders through porous medium. Saravana et al. [141] investigated the peristaltically driven

third order fluid in an inclined channel under the influences of slip and heat and mass transfer.

Slip effects on MHD peristaltic motion with heat and mass transfer is examined by Hina et al.

[142]. Ellahi et al. [143] considered the peristaltic flow in a non-uniform rectangular duct in

presence of heat and mass transfer.

Literature survey witnesses that peristaltic flows are also discussed with compliant walls

by taking both Newtonian and non-Newtonian fluids in channels/tubes. Mitra and Prasad

[144] explored the effects of wall properties on peristalsis. They revealed that the mean flow

reversal phenomenon exists at the center and boundaries of the channel. The stability analysis

of plane channel flow is examined by Davies and Carpenter [145] between compliant walls.

Haroun [146] studied the mean velocity and reversal flow in an asymmetric wavy channel with

the compliant wall effects. The peristaltic flow and heat transfer in a channel with flexible

walls is analyzed for small wave number by Radhakrishnamacharya and Srinivasulu [147]. The

peristaltic flow of micropolar fluid was taken into account by Muthu et al. [148] in a circular
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cylindrical tube having flexible walls. Viscous fluid flow with peristalsis is examined by Elnaby

and Haroun [149] under the consideration of wall properties. Johnson-Segalman and Jeffrey

fluids in a wavy channel with compliant wall properties were investigated by Hayat et al. [150,

151]. Linear Maxwell fluid within a compliant wavy channel was studied by Ali et al. [152] for

small amplitude ratio. The effects of wall properties and porous medium in MHD viscous fluid

channel flow were revealed by Kothandapani and Srinivas [153]. Srinivas et al. [154] extended

the work of Kothandapani and Srinivas [153] for slip effects. Srinivas and Kothandapani [155]

have discussed the compliant wall effects on MHD peristaltic flow through a porous space when

heat and mass transfer effects are present in the flow analysis. Mustafa et al. [156, 157] obtained

the analytical and numerical solutions for the peristaltic flow of nanofluid with slip and heat and

mass transfer effects with wall properties. Wall properties effects in peristaltic flow of power-law

fluid in an asymmetric peristaltic channel is discussed by Eldabe et al. [158]. Maxwell fluid

in an asymmetric channel with wall properties is investigated by Hayat et al. [159]. Hina et

al. [160] observed the Johnson-Segalman fluid flow under heat and mass transfer effects in a

curved channel with compliant walls.
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Chapter 2

Peristaltic flow of third-order fluid

in a channel with convective

boundary conditions

2.1 Introduction

This chapter addresses peristaltic flow of third order fluid in an asymmetric channel. Channel

walls are subjected to the convective boundary conditions. The channel asymmetry is produced

by choosing the peristaltic wave train on the walls to have different amplitudes and phase. Long

wavelength approximation and perturbation method give the series solutions for the stream

function, temperature and longitudinal pressure gradient. Analysis has been further carried

out for pressure rise per wavelength through numerical integration. Several graphs of physical

interest are displayed and discussed.

2.2 Mathematical formulation and flow equations

Here we formulate the problem for an incompressible third order fluid bounded in a two-

dimensional infinite asymmetric channel (see Fig. 2.1). The ̄ and ̄ axes are selected along

and perpendicular to the channel walls respectively. The flow created is due to the imposition
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of the following sinusoidal waves:

̄1(̄ ̄) = 1 + 1 sin
2


(̄ − ̄) upper wall,

̄2(̄ ̄) = −2 − 2 sin

µ
2


(̄ − ̄) + 

¶
 lower wall. (2.1)

Fig. 2.1. Schematic drawing of the problem

In above expressions  is the wave speed, 1 2 are the waves amplitudes,  is the wavelength,

1 + 2 is the width of the asymmetric channel, the phase difference  varies in the range

0 ≤  ≤  ( = 0 corresponds to symmetric channel with waves out of phase and  =  the

waves are in phase) and further 1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (2.2)

For incompressible fluid the continuity equation is

div V̄ = 0 (2.3)

The equations of motion and energy in absence of body forces are as follows:


V̄

̄
= − grad ̄+ div S̄ (2.4)
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 


̄
= ∇2 + τ̄ (grad V̄) (2.5)

in which V̄ is the velocity,  density of the fluid,


̄
the material time derivative,  the fluid

temperature,  the specific heat,  the thermal conductivity of the material, the Cauchy stress

tensor τ̄ = −̄Ī + S̄, ̄ the pressure, S̄ the extra stress tensor and ∇2 =
³

2

̄2 +
2

̄ 2

´
(The

overbar refers to a dimensional quantity).

The exchange of heat with ambient at the walls through Newton’s cooling law is given by




̄
= −( − 0) at ̄ = ̄1 and ̄ = ̄2 (2.6)

where  is the heat transfer coefficient and 0 the temperature at the channel walls.

For two-dimensional flow of third order fluid, we have the velocity V̄ and extra stress tensor

S̄ in the forms:

V̄ = (̄(̄̄ ̄)̄ (̄̄ ̄)0) (2.7)

S̄=Ā1 + 1Ā2 + 2Ā
2
1 + 1Ā3 + 2(Ā2Ā1 + Ā1Ā2) + 3(Ā

2
1)Ā1 (2.8)

Here  is the coefficient of shear viscosity and 1 2 1 2 3 being the material constants.

The Rivlin-Ericksen tensors are defined by

Ā1 = (grad V̄) + (grad V̄) 

Ā =
Ā−1


+ Ā−1(grad V̄) + (grad V̄) Ā−1   1 (2.9)

If (̄ ̄) and (̄ ̄) are the coordinates and velocity components in the wave frame (̄ ̄) then

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)−  ̄(̄ ̄) = ̄ (̄ ̄  ̄)  (̄ ̄) =  (̄ ̄  ̄)

(2.10)

Employing these transformations and introducing the following dimensionless variables:

 =
2̄


  =

̄

1
  =

̄


  =

̄


  =

221̄




1 =
̄1

1
 2 =

̄2

1
  =

2̄


 S =

1


S̄  =

 − 0

0
 (2.11)
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the extra stress tensor S in dimensionless form can be expressed as follows:

S=A1 + 1A2 + 2A
2
1 + 1A3 + 2(A2A1 +A1A2) + 3(A

2
1)A1 (2.12)

The velocity components  and  in terms of stream function  are

 =



  = −


 (2.13)

Now Eq. (23) is satisfied identically and (24) and (25) yield

Re

∙µ







− 







¶µ




¶¸
+




= 




+




 (2.14)

−3Re
∙µ








− 







¶µ




¶¸
+




= 2




+ 




 (2.15)

Re

∙







− 







¸
 =

1

Pr

µ
2

2

2
+

2

2

¶


+

∙

2


( − ) +

µ
2

2
− 2

2

2

¶


¸
 (2.16)

In the above equations, the dimensionless wave number , the Reynolds number Re, the Prandtl

number Pr, the Eckert number , the material coefficients 1 2 1 2 and 3 are defined

respectively by

 =
21


 Re =

1


 1 =

1

1


2 =
2

1
 1 =

1
2

21
 2 =

2
2

21
 3 =

3
2

21


Pr =



  =

2

0
  = Pr (2.17)

where  is the Brinkman number. Eq. (26) gives




+ = 0 at  = 1 and  = 2, (2.18)

where  = 1 is the Biot number.
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Here we can see that the components of S enters through (212) in Eqs. (214 − 216).
Eliminating  in Eqs. (214) and (215), we can find the compatibility equation

Re

∙µ







− 







¶
∇2

¸
=

∙µ
2

2
− 2

2

2

¶


¸
+ 

∙
2


( − )

¸
 (2.19)

where

∇2 =
µ
2

2

2
+

2

2

¶


and  is given by

 =
2

2
+ 2Γ

µ
2

2

¶3
 (2.20)

in which Γ(= 2 + 3) is the Deborah number.

In the fixed frame, the instantaneous volume flow rate is given by

 =

Z ̄1(̄̄)

̄2(̄̄)

̄(̄ ̄  ̄)̄  (2.21)

The volume flow rate in wave frame is

 =

Z ̄1(̄)

̄2(̄)

̄(̄ ̄)̄ (2.22)

From Eqs. (210), (221) and (222) we can write

 =  + ̄1(̄)− ̄2(̄) (2.23)

The time-mean flow over a period Ω(= ) is defined by [27]:

 =
1

Ω

Z Ω

0

̄ (2.24)

Substituting Eq. (223) into Eq. (224) and then integrating the resulting expression one has

 =  + 1 + 2 (2.25)

Defining Θ and  as the dimensionless time-mean flows in the laboratory and wave frames
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respectively by

Θ =


1
  =



1
 (2.26)

equation (225) becomes

Θ =  + 1 +  (2.27)

with

 =

Z 1()

2()




 = (1())− (2()) (2.28)

The dimensionless forms of  ( = 1 2) are

1() = 1 +  sin() 2() = −−  sin(+ ) (2.29)

where  = 11  = 21  = 21 and  satisfies the following relation

2 + 2 + 2 cos ≤ (1 + )2 (2.30)

The conditions for the dimensionless stream function in wave frame are

 =


2





= −1 at  = 1()

 = −
2





= −1 at  = 2() (2.31)

2.3 Method of solution

The resulting equation (219) is highly non-linear even under the long wavelength and low

Reynolds number assumptions [6]. For arbitrary values of parameters involving in this equation,

the general solution in closed form seems very difficult. Here the resulting system consists of

non-linear differential equation. Attention is hence focused to the perturbation solution for
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small Deborah number Γ. For that we expand , , ,  and  as:

 = 0 + Γ1 + Γ
22 + 

 = 0 + Γ1 + Γ
22 + 

 = 0 + Γ1 + Γ
22 +  (2.32)

 = 0 + Γ1 + Γ
22 + 

 = 0 + Γ1 + Γ
22 + 

Substitution of above equations into Eqs. (214−216), (218), (219), (231) and then collecting
the terms of like powers of Γ we have:

2.3.1 Zeroth order system and its solution

40
4

= 0 (2.33)

20

2
+

µ
20
2

¶
0 = 0 (2.34)

0


=

30
3

 (2.35)

0 =
0

2

0


= −1 0


+0 = 0 at  = 1() (2.36)

0 =
−0
2


0


= −1 0


+0 = 0 at  = 2() (2.37)

The solutions of the Eqs. (233) and (234) subject to the boundary conditions (236) and (237)

are

0 = 1
3 +2

2 +3 +4 (2.38)

0 = 1
4 +2

3 +3
2 +4 +5 (2.39)
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The longitudinal velocity and pressure gradient are given by

0 = 31
2 + 22 +3

0


=
−12(0 + 1 − 2)

(1 − 2)3


The non-dimensional pressure rise per wavelength (∆0) is given by

∆0 =

2Z
0

0




We note that the solution expressions at this order corresponds to the case of the viscous fluid

[27].

2.3.2 First order system and its solution

41
4

= −2 2

2

"µ
20
2

¶3#
 (2.40)

21

2
+

∙µ
20
2

¶
1 +

µ
21
2

¶
0

¸
= 0 (2.41)

1


=

31
3

+ 2




"µ
20
2

¶3#
 (2.42)

1 =
1

2

1


= 0
1


+1 = 0 at  = 1() (2.43)

1 =
−1
2


1


= 0
1


+1 = 0 at  = 2() (2.44)

Substituting Eq. (238) into Eqs. (240) and (241), solving the resulting equations and then

applying the corresponding boundary conditions we get the solutions for 1 1 1 and 1

23



in the following forms:

1 = 1
5 +2

4 +3
3 +4

2 +5 +6 (2.45)

1 = 1
6 +2

5 +3
4 +4

3 +5
2 +6 +7 (2.46)

1 = 51
4 + 42

3 + 33
2 + 24 +5 (2.47)

1


=
−601 +

³
0


´3
12 +

³
0


´2
213 +

³
0


´
2214

5(1 − 2)3
 (2.48)

The pressure rise per wavelength (∆1) is given by

∆1 =

2Z
0

1




2.3.3 Second order system and its solution

42
4

= −6 2

2

"
21
2

µ
20
2

¶2#
 (2.49)

22

2
+

∙µ
20
2

¶
2 +

µ
21
2

¶
1 +

µ
22
2

¶
0

¸
= 0 (2.50)

2


=

32
3

+ 6




"
21
2

µ
20
2

¶2#
 (2.51)

2 =
2

2

2


= 0
2


+2 = 0 at  = 1() (2.52)

2 =
−2
2


2


= 0
2


+2 = 0 at  = 2() (2.53)

Employing the same methodology as for the zeroth-order and first-order systems we obtain

2 = 1
7 +2

6 +3
5 +4

4 +5
3 +6

2 +7 +8 (2.54)

2 = 1
8 + 2

7 + 3
6 + 4

5 + 5
4 +6

3 + 7
2 + 8 + 9 (2.55)

2 = 71
6 + 62

5 + 53
4 + 44

3 + 35
2 + 26 +7 (2.56)

2


=
−4202 +

³
0


´2
30 +

³
0


´
231 + 2232

35(1 − 2)3
 (2.57)
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where the values of ’s, ’s, ’s, ’s,  ’s, ’s and ’s in above equations are given as follows:

1 =
−2(0 + 1 − 2)

(1 − 2)3


2 =
3(0 + 1 − 2)(1 + 2)

(1 − 2)3


3 =
−31 − 6012 − 3212 + 3122 + 32

(1 − 2)3


4 =
−(1 + 2)(212(−1 + 2) + 0(

2
1 − 412 + 22))

2(1 − 2)3


1 =
−1
10

µ
0



¶3
 2 = −

µ
0



¶2
2

3 =
−201 +

³
0


´3
1 +

³
0


´2
22

10(1 − 2)3


4 =
3 +

³
0


´3
4 +

³
0


´2
25

5(1 − 2)4


5 =
6 +

³
0


´2
27 +

³
0


´3
8

10(1 − 2)4


6 =
9 +

³
0


´2
211 +

³
0


´3
10

10(1 − 2)4

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1 = (1 − 2)
3(321 + 412 + 3

2
2)

2 = 20(1 − 2)
3(1 + 2)

3 = 151(
2
1 − 22)

4 = −(1 − 2)
4(1 + 2)(

2
1 + 312 + 22)

5 = 5(1 − 2)
3(1 − 2)(

2
1 + 412 + 22)

6 = −60112(1 − 2)

7 = 2012(1 − 2)
4(1 + 2)

8 = (1 − 2)
2[12(1 − 2)

2(421 + 712 + 4
2
2)

9 = −51(21 − 22)(
2
1 − 412 + 22)

10 = −22122(1 − 2)
4(1 + 2)

2

11 = −102122(1 − 2)
4

12 = 3(1 − 2)
3(321 + 412 + 3

2
2)

13 = 60(1 − 2)
3(1 + 2)

14 = 120(1 − 2)
3

15 = (1 − 2)
3[500411 + 16

3
1(5021 + 212) + 9

2
1(100

2
21 + 5622 + 213)

+2(500
3
21 + 336

2
22 + 18923 + 704) + 1(800

3
21 + 504

2
22

+25223 + 704)]

16 = 840(1 − 2)
2[(1 − 2)((3

2
1 + 412 + 3

2
2)1 + 2(1 + 2)2)]

17 = 56(1 − 2)
2[(1 − 2)(401(

3
1 + 32) + 60121(1 + 2) + 272(

2
1 + 22)

+36121 + 153(1 + 2))]
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18 = 1052(
2
1 − 22)

19 = −84(1 − 2)
3[(1 − 2)(4(

2
1 + 312 + 22)(5(

2
1 + 12 + 22)1 + 3(1 + 2)2)

+5(21 + 412 + 22)3 − 2(20411 + 31(−4021 + 182)− 321(20221

+622 − 53)− 21(20321 + 9
2
22 − 54)]

20 = −(1 − 2)
3[(1 − 2)(200(1 + 2)(2

4
1 + 6

3
12 + 5

2
1
2
2 + 61

3
2 + 2

4
2)1

+252(21 + 12 + 22)(
2
1 + 312 + 22)2 + 126(1 + 2)(

2
1 + 312 + 22)3

+35(21 + 412 + 22)4)− 6(100511 + 41(−30021 + 842)

−3122(100221 + 5622 + 213) + 31(−42(12521 + 422) + 633)

−21(500321 + 252
2
22 + 6323 − 354)]

21 = 840(1 − 2)
2[−(1 − 2)

2(2(1 + 2)(
2
1 + 312 + 22)1 + (

2
1 + 412 + 22)2)

+2(1 − 2)(3(
3
11 + 21(−21 +2)]

22 = −210212(1 − 2)

23 = 840(1 − 2)
2[12(1 − 2)

2((421 + 712 + 4
2
2)1 + 2(1 + 2)2)

−2(1 − 2)(2
4
11 + 3

2
122 + 32(221 +2) + 31(321 +2)

+312(2(21 +2) +3)]

24 = 168(1 − 2)
2[12(1 − 2)

2(20311 + 4
2
1(1021 + 32) + 1(40

2
21

+2122 + 53) + 2(42(521 + 32) + 53))− (1 − 2)(20
5
11

+441(521 + 32) + 31(−20221 + 1822 + 53)]
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The non-dimensional pressure rise per wavelength (∆2) is

∆2 =

2Z
0

2




The perturbation expressions of   ∆ and  upto (Γ2) are denoted by (2), (2)

∆
(2)

 and (2) i.e.

(2) = 0 + Γ1 + Γ
22

(2) = 0 + Γ1 + Γ
22

(2)


=

0


+ Γ

1


+ Γ2

2




∆
(2)

 = ∆0 + Γ∆1 + Γ
2∆2  (2.58)

2.4 Graphical analysis and discussion

2.4.1 Pumping characteristics

In this section our aim is to analyze the behavior of longitudinal pressure gradient and pressure

rise per wavelength for embedded flow parameters in the present problem. Note that the

definition of pressure rise involves integration of (2). The arising integral is not solvable

analytically. Therefore the involved integral has been computed numerically. The variations

of (2) for fixed values of involved parameters are sketched in the Figs. 2.2 and 2.3. The

variation of longitudinal pressure gradient ((2)) per wavelength for various values of the

Deborah number Γ can be seen in Fig. 2.2. It is observed that (2) increases by increasing

Γ i.e. the longitudinal pressure gradient for a third order fluid (Γ 6= 0) is greater in magnitude
when compared with that of a Newtonian fluid (Γ = 0). In fact larger Γ physically corresponds

to small values of dynamic viscosity. It is also interesting to note that the magnitude of

resistance or assistance from the pressure gradient is higher for a third order fluid in comparison

to a Newtonian fluid. Fig. 2.3 is plotted to serve the effects of variation of phase difference 

on (2). This Fig. reveals that the longitudinal pressure gradient (2) decreases by

increasing the phase difference . Figs. 2.4-2.6 illustrate the relation between pressure rise per
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wavelength ∆
(2)

 and flow rate Θ(2) for various values of Γ,  and , respectively. It is observed

that ∆
(2)

 increases by increasing Γ (Fig. 2.4) and it decreases with increasing  and  (Figs.

2.5 and 2.6). This means that peristalsis has to work against greater pressure rise for a third

order fluid when compared to that of a Newtonian fluid. We have calculated the pressure rise

required to produce zero average flow rate ∆
(2)

(max)
as a function of  for different values of

Deborah number Γ (Fig. 2.7). For a third order fluid (Γ 6= 0), the value of ∆(2)
(max)

is larger

than for a Newtonian fluid (Γ = 0). Maximum pressure rise decreases with increasing .

Fig. 2.2 Fig. 2.3

Fig. 2.2: Plot of longitudinal pressure gradient (2) for various values of the Deborah

number Γ with  = 07,  = 12,  = 2,  = 2 and Θ = 01.

Fig. 2.3: Plot of longitudinal pressure gradient (2) for various values of the phase

difference  with  = 07,  = 12,  = 2, Γ = 001 and Θ = 01.
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Fig. 2.4 Fig. 2.5

Fig. 2.4: Plot of pressure rise per wavelength ∆
(2)

 versus flow rate Θ(2) for various values of

the Deborah number Γ with  = 07,  = 12,  = 2 and  = 2.

Fig. 2.5: Plot of pressure rise per wavelength ∆
(2)

 versus flow rate Θ(2) for various values of

the channel width  with  = 07,  = 12, Γ = 01 and  = 2.

Fig. 2.6 Fig. 2.7

Fig. 2.6: Plot of pressure rise per wavelength ∆
(2)

 versus flow rate Θ(2) for various values of

the phase difference  with  = 07,  = 12,  = 2 and Γ = 001.

Fig. 2.7: Plot of maximum pressure rise per wavelength ∆
(2)

(max)
for various values of the

Deborah number Γ with channel width  when  = 03,  = 02,  = 2 and Θ = −0001.

37



2.4.2 Velocity and temperature profiles

In this subsection the effects of various emerging parameters on the velocity  and temperature

profile (2) are discussed. Fig. 2.8 displays the effects of Γ on the longitudinal velocity . It

shows that an increase in Γ causes a decrease in the magnitude of  at the boundaries of channel.

However the magnitude of  increases by increasing Γ at the center of channel . Physically this

corresponds to the situation when fluid offers less resistance in terms of small viscous effects. The

selected values in this Fig. for the Deborah number are taken less than unity because we have

developed the perturbation solution. The Deborah number is treated here as a perturbation

quantity. Figs. 2.9 and 2.11 show an increase in the fluid temperature with maximum value

along the centerline and minimum at the walls due to convective condition. It is noteworthy

that the fluid temperature generally increases with increasing values of the Deborah number Γ

and the Brinkman number . Actually Brinkman number  involves the viscous dissipation

effects which are due to the energy production and thus temperature increases. Fig. 2.10

illustrates the effects of Biot number  on temperature profile (2). This Fig. reveals that by

increasing the value of Biot number  the temperature profile (2) increases at the lower wall

of the channel while it has the opposite behavior at the upper wall of channel. Here we have

considered the Biot number  much larger than one due to non-uniformity of the temperature

fields within the fluid. However problems involving small  are thermally simple due to the

uniform temperature fields inside the fluid.
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Fig. 2.8 Fig. 2.9

Fig. 2.8.:Plot of longitudinal velocity  for various values of Deborah number Γ with  = 03,

 = 06,  = 09,  = 4, Θ = 12,  = −3 and (2) = 1.

Fig. 2.9: Plot of the temperature (2) for various values of the Deborah number Γ with

 = 03,  = 05,  = 09,  = 4, Θ = 05,  = −3, (2) = 1,  = 1 and  = 10.

Fig. 2.10 Fig. 2.11

Fig. 2.10: Plot of the temperature (2) for various values of the Biot number  with  = 03,

 = 05,  = 09,  = 4, Θ = 05,  = −3, (2) = 1,  = 1 and Γ = 01.
Fig. 2.11: Plot of the temperature (2) for various values of the Brinkman number  with

 = 03,  = 05,  = 09,  = 4, Θ = 05,  = −3, (2) = 1,  = 10 and Γ = 01.
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2.4.3 Trapping

In general the shape of streamlines is similar to that of a boundary wall in the wave frame.

However, some of the streamlines split and enclose a bolus under certain conditions and this

bolus moves as a whole with the wave. This phenomenon is known as trapping. Effect of Γ

on trapping is illustrated in Fig. 2.12. It is observed that the size of trapped bolus decreases

with increasing Γ and disappears for Γ = 02 when we have considered the negative flux. The

streamlines for different  are plotted in Fig. 2.13. It is observed that the bolus appears at

the center region for  = 0 and it moves towards left and decreases in size as  increases and

disappears for  = .

(a) Γ = 00 (b) Γ = 01

(c) Γ = 02 (d) Γ = 03

Fig. 2.12: Streamlines for  = 05,  = 07,  = 1,  = 6, (2) = 1, Θ = 128 with

different Γ.
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(a)  = 0 (b)  = 4

(c)  = 2 (d)  = 

Fig. 2.13: Streamlines for  = 05,  = 07,  = 1, (2) = 1, Θ = 128, Γ = 001 with

different .

2.5 Closing remarks

In this chapter the regular perturbation method is employed to investigate the peristaltic flow of

third order fluid in an asymmetric channel with convective conditions at the channel walls. The

study reveals that a combined increase in Biot number, Brinkman number and non-Newtonian

parameter enhances the thermal stability of the flow. The results for viscous fluid can be

deduced as special case of present problem when Γ = 0. A comparative study of present results

for zero Deborah number in equation of motion is with complete agreement to the case of

viscous fluid (see ref. [27]).
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Chapter 3

Simultaneous effects of convective

conditions and nanoparticles on

peristaltic motion

3.1 Introduction

This chapter deals with the peristaltic transport of viscous nanofluid in an asymmetric chan-

nel. The channel walls satisfy the convective conditions. The effects of Brownian motion and

thermophoresis parameters are taken into account. The relevant flow analysis is first modeled

and then computed for the series solutions of temperature and concentration fields. Closed

form expression of stream function is constructed. Plots are prepared for a parametric study

reflecting the effects of Brownian motion, thermophoresis, Prandtl, Eckert and Biot numbers.

3.2 Constitutive equations

The balances of mass, momentum, temperature and nanoparticle volume fraction are given by

[129]:
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div V̄ = 0 (3.1)

V̄

̄
= − 1


∇̄ + ∇2V̄ (3.2)

̄

̄
= ∗∇2̄ + 



¡
τ̄ L̄

¢
+ ∗

£
∇̄∇̄ + (̄̄)∇̄∇̄

¤
 (3.3)

̄

̄
= ∇2̄ + (̄̄)∇2̄  (3.4)

Here V̄ is the velocity field, ̄ is the fluid temperature, ̄ the nanoparticle concentration,

̄ the material time derivative,  the kinematic viscosity, ̄ the pressure,  the density

of an incompressible fluid,  the density of nanoparticles, 
∗ the thermal diffusivity,  the

Brownian motion coefficient, ̄ the thermophoretic diffusion coefficient, 
∗ = ()() the

ratio of effective heat capacity of the nanoparticle material to heat capacity of the fluid and ̄

the mean temperature.

3.3 Mathematical medeling

Let us consider the peristaltic motion of viscous nanofluid in an asymmetric channel. We take

(̄ ̄ ) as the Cartesian coordinates with ̄ being measured in the direction of wave propagation

and ̄ in the direction normal to the ̄-axis. Let ̄ = ̄1 and ̄ = ̄2 be the upper and lower

boundaries of the channel respectively (see Fig. 2.1). The motion is induced by sinusoidal wave

trains propagating with a constant speed  along the channel walls. These are defined by

̄1(̄ ̄) = 1 + 1 cos

∙
2


(̄ − ̄)

¸
 upper wall, (3.5)

̄2(̄ ̄) = −2 − 2 cos

∙
2


(̄ − ̄) + 

¸
 lower wall, (3.6)

where 1 2 are the waves amplitudes,  is the wavelength, 1+2 is the width of the asymmetric

channel and the phase difference  varies in the range 0 ≤  ≤  ( = 0 corresponds to

symmetric channel with waves out of phase and for  =  the waves are in phase). Further
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1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (3.7)

Considering a wave frame (̄ ̄) that moves with a velocity  away from the fixed frame

(̄ ̄ ), we write

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)−  ̄(̄ ̄) = ̄ (̄ ̄  ̄)

̄ (̄ ̄) = ̄ (̄ ̄  ̄) ̄(̄ ̄) = ̄(̄ ̄  ̄) ̄(̄ ̄) = ̄ (̄ ̄  ̄) (3.8)

in which (̄ ̄) and (̄  ̄ ) are the velocity components in the wave and the fixed frames re-

spectively, ̄ and ̄ stand for pressure in the wave and fixed frames.

The exchange of heat with ambient at the walls through Newton’s cooling law is given by


̄

̄
= −(̄ − 0) at ̄ = ̄1 (3.9)


̄

̄
= −(1 − ̄ ) at ̄ = ̄2 (3.10)

where  is the heat transfer coefficient and 0 and 1 are the ambient temperatures at the

upper and lower channel walls respectively.

The relevant flow equations in wave frame can be expressed as

̄

̄
+

̄

̄
= 0 (3.11)

̄
̄

̄
+ ̄

̄

̄
= − 1



̄

̄
+ 

µ
2̄

̄2
+

2̄

̄2

¶
 (3.12)

̄
̄

̄
+ ̄

̄

̄
= − 1



̄

̄
+ 

µ
2̄

̄2
+

2̄

̄2

¶
 (3.13)

̄
̄

̄
+ ̄

̄

̄
= ∗

µ
2̄

̄2
+

2̄

̄2

¶
+





"
4

µ
̄

̄

¶2
+

µ
̄

̄
+

̄

̄

¶2#

+∗
"


µ
̄

̄

̄

̄
+

̄

̄

̄

̄

¶
+

̄

̄

(µ
̄

̄

¶2
+

µ
̄

̄

¶2)#
 (3.14)

̄
̄

̄
+ ̄

̄

̄
= 

µ
2̄

̄2
+

2̄

̄2

¶
+

̄

̄

µ
2̄

̄2
+

2̄

̄2

¶
 (3.15)
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Defining dimensionless variables, Reynolds number (Re), Prandtl number (Pr), Eckert number

(), Brownian motion parameter (), the thermophoresis parameter (), Schmidt number

() and Biot number () through the following variables

 =
̄


  =

̄

1
  =

̄


  =

̄


  =

21̄


  =

1




1 =
̄1

1
 2 =

̄2

1
  =

̄


  =

̄ − 0

1 − 0
  =

̄ −0

1 − 0


Re =
1


 Pr =



∗
  =

2

 (1 − 0)
  =

∗(1 − 0)




 =
∗̄ (1 − 0)

̄
  =




  =

1


 (3.16)

the governing Eqs. (311− 315) can be put into the forms





+




= 0 (3.17)

Re

µ





+ 





¶
 = −


+ 2

2

2
+

2

2
 (3.18)

Re 

µ

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



¶
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
+ 

µ
2
2
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¶
 (3.19)
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Re

µ





+ 





¶
 = 2

2

2
+

2

2
+





µ
2
2

2
+

2

2

¶
 (3.21)

Defining the velocity components  and  in terms of the stream function  by

 =   = − (3.22)

In the limit Re → 0, the inertialess flow corresponds to Poiseuille-like longitudinal velocity

profile. The pressure gradient depends upon  and  only in laboratory frame. It does not

depend on . Such features can be expected because there is no streamline curvature to produce

transverse pressure gradient when  = 0. The assumptions of long wavelength and small

Reynolds number give  = 0 and Re = 0. It should be pointed out that the theory of long
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wavelength and zero Reynolds number remains applicable for case of chyme transport in small

intestine [47]. In this case  = 2 cm/min,  = 125 cm and  = 801 cm. Here half width

of intestine is small in comparison to wavelength i.e.  = 0156. It is also declared by

Lew et al. [10] that Reynolds number in small intestine was small. Further, the situation of

intrauterine fluid flow due to myomaterial contractions is a peristaltic type fluid motion in a

cavity. The sagittal cross section of the uterus reveals a narrow channel enclosed by two fairly

parallel walls [54]. The 1 − 3 mm width of this channel is very small compared with its 50

mm length [52], defining an opening angle from cervix to fundus of about 004 rad. Analysis

of dynamics parameters of the uterus revealed frequency, wavelength, amplitude and velocity

of the fluid-wall interface during a typical contractile wave were found to be 001 − 0057 Hz,
10− 30 mm, 005− 02 mm and 05− 19 mm/s respectively. Therefore adopting low Reynolds
number and long wavelength analysis [6] we have




=

3

3
 (3.23)




= 0 (3.24)

1
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µ
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¶2
= 0 (3.25)

2

2
+





2

2
= 0 (3.26)

where continuity equation is identically satisfied and the above equations indicate that  6= ().

Defining Θ and  as the dimensionless time-mean flows in the laboratory and wave frames

respectively we have

Θ =  + 1 +  (3.27)

 =

Z 1

2




 (3.28)

Keeping in view the physical constraints of the problem, the boundary conditions in the fixed
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frame may be expressed mathematically as follows

̄ = 0 at ̄ = ̄1 and ̄ = ̄2 (3.29)

̄ = 0 at ̄ = ̄1 (3.30)

̄ = 1 at ̄ = ̄2 (3.31)

Writing the above conditions through Eq. (38), the dimensionless boundary conditions are

 = −1 at  = 1 and  = 2 (3.32)

 = 2,  = 0 at  = 1 (3.33)

 = −2,  = 1 at  = 2 (3.34)

Also Eqs. (39) and (310) give




+ = 0 at  = 1, (3.35)




+(1− ) = 0 at  = 2. (3.36)

The dimensionless forms of ’s ( = 1 2) are

1() = 1 +  cos(2) 2() = −−  cos(2+ ) (3.37)

where  = 11  = 21  = 21 and  satisfy the following relation

2 + 2 + 2 cos ≤ (1 + )2

The pressure rise per wavelength (∆) is

∆ =

1Z
0




 (3.38)
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3.4 Solution procedure

The computations of Eqs. (325) and (326) are made through homotopy perturbation method

(HPM). For that we write

( ) = (1− )
£
() +2 − (0)

¤
+ 

"
() +

µ








¶
+

µ




¶2#
(3.39)

( ) = (1− ) [()− (0)] + 

∙
() +





µ
2

2

¶¸
 (3.40)

where we have taken  = 2

2
as the linear operator and () is computed by using Eq. (323)

and boundary conditions (332− 334). Exact solution for  is

() = −(1 + 2 − 2)
2(1 − 2)3

⎡⎣ −2(1 − 2)(1 − )(2 − )

+
¡
21 − 412 + 22 + 2(1 + 2) − 22

¢
⎤⎦  (3.41)

We define initial guesses as

0() = 1 +
(2 − )− 1
(1 − 2) + 2

+
3Pr( + 1 − 2)

2

4(1 − 2)3

×
∙
8 +(1 − 2)


− (1 − 2 − 2)4

(1 − 2)3

¸
 (3.42)

0() =
1 − 

1 − 2
 (3.43)

Let us write

( ) = 0 + 1 + 22 +  (3.44)

( ) = 0 + 1 + 22 +  (3.45)

The solutions of temperature and nanoparticle concentration (for  = 1) are constructed as

follows:

() = 1
8 +2

7 +3
6 +4

5 +5
4 +6

3 +7
2 +8 +9 (3.46)

() = 1
4 +2

3 +3
2 +4 +5 (3.47)
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where

1 =
−2882( + 1 − 2)

4Pr2

7(1 − 2)12


2 = −4(1 + 2)1

3 = 7(1 + 2)
21

4 =
12Pr( + 1 − 2)

2

5(2 +(1 − 2))(1 − 2)12

£
(1 − 2)

5 {(2 +(1 − 2))

+2(2 − 1)}+ 120(2 +(1 − 2))( + 1 − 2)
2

×(1 + 2)
3Pr

¤


5 =
6Pr( + 1 − 2)

2

(1 − 2)12

£−2(1 − 2)
6 − (1(2 +(1 − 2)))

×{(1 − 2)
5(1 + 2)((2 +(1 − 2))+ 2(−1 + 2))}

−30Pr( + 1 − 2)
2(1 + 2)

4
¤


6 =
6Pr( + 1 − 2)

2

(1 − 2)12

£
4(1 − 2)

6(1 + 2) + (1(2 +(1 − 2)))

×{(1 − 2)
5(1 + 2)

2((2 +(1 − 2))+ 2(−1 + 2))}

+12Pr( + 1 − 2)
2(1 + 2)

5
¤


7 =
1

2(1 − 2)12

£
36Pr( + 1 − 2)

2(1 − 2)
6(1 + 2)

2

+((2 +(1 − 2))
2)
©−(1 − 2)

6 + 6Pr(2 +(1 − 2))

×( + 1 − 2)
2(1 + 2)

3
ª©
(1 − 2)

5((2 +(1 − 2))

+(−1 + 2)) + 6Pr(2 +(1 − 2))( + 1 − 2)
2(1 + 2)

3
ª¤



8 =
−

2 +(1 − 2)
+
6Pr( + 1 − 2)

2(1 + 2)
3

(1 − 2)6

+


70(2 +(1 − 2))2(1 − 2)12

£
240Pr( + 1 − 2)

2

×{712(1 − 2)
5(21 + 22)+ 3Pr( + 1 − 2)

2(1 + 2)
7}

+2(1 − 2)
2
©
35(−)((111 + 112 )− 912(91 + 92)
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+3521
2
2(

7
1 + 72)− 753132(51 + 52) + 90

4
1
4
2(

3
1 + 32)

−425152(1 + 2)) + 42(1 − 2)
5( + 1 − 2)

2((41

+1612(
2
1 + 22) + 6

2
1
2
2)− 2012(21 + 22)) Pr

+36022(1 − 2)(1 + 2)
7( + 1 − 2)

4
ª¤



9 = 1 +
−1 +2

2 +(1 − 2)
− (8 + (1 + 2)

4 +(1 − 2)
3)

+((70(2 +(1 − 2))
2(1 − 2)

12)[−70(1 − 2)
12

+84(1 − 2)
5( + 1 − 2)

2(51 − 5412 − 5142 + 52)Pr

+7202(1 − 2)
7( + 1 − 2)

42 + 7202( + 1 − 2)
4

×((81 + 82)− 912(61 + 62) + 28
2
1
2
2(

4
1 + 42)− 633132(21 + 22)

+7041
4
2)2 −312(1 − 2)

2{−35(−)(1 − 2)
10

+42(1 − 2)
5( + 1 − 2)

2(1 + 2)(
2
1 + 22)(− 2) Pr

+1802( + 1 − 2)
4(21 + 22)(

4
1 + 6

2
1
2
2 + 42)2}

+2(1 − 2){−35((121 + 122 )− 1412(101 + 102 ) + 86
2
1
2
2(

8
1 + 82)

−3103132(61 + 62) + 735
4
1
4
2(

4
1 + 42)− 12125152(21 + 22) + 1428

6
1
6
2)

+35(1 − 2)
12 + 42(1 − 2)

5( + 1 − 2)
2(1 + 2)

×((− 2)(41 + 6
2
1
2
2 + 42) + 412(−2+ 3)

×(21 + 22)) Pr+180
2( + 1 − 2)

4(81 − 12712 + 286122 − 845132
+7041

4
2 − 843152 + 282162 − 12172 + 82)2}]

 = −3Pr( + 1 − 2)
2

4(1 − 2)6


1 =
12Pr( + 1 − 2)

2

(1 − 2)6


2 = 2(1 + 2)1

3 =
3

2
(1 + 2)

21

4 =
−1

(1 − 2)
+
1

2
(1 + 2)

31

5 =
2

(1 − 2)
+

12

2
(21 + 22)1
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3.5 Results and discussion

In this section, the effects of various emerging parameters on the temperature , nanoparticle

volume fraction  and heat transfer coefficient at the upper wall are discussed in detail. Figs.

3.1 and 3.2 show the effects of Eckert number  and Prandtl number Pr on temperature

profile  respectively. These Figs. depict that the temperature  increases with an increase

in Eckert and Prandtl numbers due to the strong viscous dissipation effects. Also  = 0

corresponds to the situation in which viscous dissipation effects are absent. Effect of Brownian

motion parameter  and thermophoresis parameter  on temperature profile  is illustrated

in Fig. 3.3. It is observed from this Fig. that the temperature  increases when  and  are

increased. As the Brownian motion and thermophoretic effects strengthen, this corresponds to

the effective movement of nanoparticles from the wall to the fluid which results in the significant

increase of temperature . The temperature profile  decreases with an increase in the Biot

number  because of the non-uniform temperature distribution in the fluid (see Fig. 3.4).

Effects of Eckert number () and Prandtl number (Pr) on nanoparticle volume fraction field

 are seen in the Figs. 3.5 and 3.6. The nanoparticles volume fraction field  is found to

decrease when the effects of Eckert and Prandtl numbers intensify. However the nanoparticle

volume fraction field  increases with an increase in Brownian motion parameter . On the

other hand  decreases when we intensify the thermophoresis parameter  (see Figs. 3.7 and

3.8). The behaviors of parameters on the heat transfer coefficient at the upper wall have been

observed in the Figs. 3.9-3.12. The heat transfer coefficient is denoted by () = (1)(1)

which actually defines the rate of heat transfer or heat flux at the upper wall. The heat transfer

coefficient () increases when the values of Biot number  are set to be increased (see Fig.

3.9). According to Fig. 3.10 the heat transfer coefficient () increases by increasing the

values of Brownian motion parameter  and thermophoresis variable . As a consequence

the nanoparticle enhances the heat transfer rate. Further it is noted that increasing the values

of Prandtl number Pr, the heat transfer coefficient () is increased (see Fig. 3.11). It is

important to note that in all these Figs. the viscous dissipation effects are significantly large

( = 10) which enhances the heat transfer rate. Fig. 3.12 shows the effects of Eckert number

 on heat transfer coefficient (). This Fig. depicts that the heat transfer coefficient ()

is much larger for higher values of the Eckert number (  1) when compared with the case
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of no viscous dissipation ( = 001). Fig. 3.13 is plotted to see the effects of channel width 

on trapping. For this Fig.  = 06 (panels () and ()),  = 07 (panels () and ()),  = 13

(panels () and ()) and the other parameters are  = 05,  = 07 and Θ = 12. It is observed

from this Fig. that size of the trapping bolus decreases by increasing the value of channel width

. The left panel shows the trapping for phase difference  = 0 and right panel for  = 2.

A comparative study of these panels reveals that the trapping bolus is symmetric with respect

to the channel for  = 0. On the other hand for  = 2 the trapping bolus shifts towards left

because of the asymmetry of channel. Fig. 3.14 depicts the effects of flow rate Θ on trapping.

This Fig. shows that the trapping bolus increases in size when we increase the values of flow

rate Θ. In this Fig. Θ = 09 (panels () and ()), Θ = 12 (panels () and ()), Θ = 18 (panels

() and ()) and other parameters are  = 05,  = 07 and  = 12. Also the trapping bolus

shifts towards left in an asymmetric case (right panel) when compared with the symmetric case

(left panel).

Fig. 3.1 Fig. 3.2

Fig. 3.1: Temperature profile () for .

Fig. 3.2: Temperature profile () for Pr.
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Fig. 3.3 Fig. 3.4

Fig. 3.3: Temperature profile () for  and .

Fig. 3.4: Temperature profile () for .

Fig. 3.5 Fig. 3.6

Fig. 3.5: Nanoparticle volume fraction () for .

Fig. 3.6: Nanoparticle volume fraction () for Pr.
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Fig. 3.7 Fig. 3.8

Fig. 3.7: Nanoparticle volume fraction () for .

Fig. 3.8: Nanoparticle volume fraction () for .

Fig. 3.9 Fig. 3.10

Fig. 3.9: Heat transfer coefficient () for .

Fig. 3.10: Heat transfer coefficient () for  and .
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Fig. 3.11 Fig. 3.12

Fig. 3.11: Heat transfer coefficient () for Pr.

Fig. 3.12: Heat transfer coefficient () for .
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.13: Streamlines for different values of  (panels (), () and () for  = 0 and panels

(), () and () for  = 2).
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(a) (b)

(c) (d)

(e) (f)
Fig. 3.14: Streamlines for different values of Θ (panels (), () and () for  = 0 and panels

(), () and () for  = 2).

3.6 Main points

This chapter addresses the effects of nanoparticles and convective conditions on peristaltic mo-

tion in an asymmetric channel. Viscous dissipation effects are also considered. The conducted
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study leads to the following observations:

• The temperature increases while nanoparticle volume fraction decreases when there is
increase in Eckert and Prandtl numbers.

• By increasing the value of Brownian motion and thermophoresis parameter, the temper-
ature profile increases.

• Temperature is a decreasing function of Biot number.

• Nanoparticle volume fraction field increases with an increase in Brownian motion para-
meter and it decreases by increasing thermophoresis parameter.

• Heat transfer coefficient increases when there is increase in the Biot, Brownian motion,
thermophoresis, Prandtl and Eckert parameters.

• Trapping decreases with an increase in channel width while it increases by increasing the
flow rate.
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Chapter 4

Soret and Dufour effects in

peristaltic transport of physiological

fluids with chemical reaction: A

mathematical analysis

4.1 Introduction

The peristaltically driven Casson fluid flow in an asymmetric channel with convective conditions

is investigated in this chapter. The Soret and Dufour effects are studied in the presence of

chemical reaction. The relevant flow analysis is modelled for Casson fluid in a wave frame.

Computations of solutions are made for the velocity, temperature and concentration fields.

Here two yield planes exist because of channel asymmetry. These planes are described in terms

of the core width by working on the transcendental equation. Closed form expression of stream

function is constructed. Plots are prepared for a parametric study reflecting the effects of

Casson fluid parameter, chemical reaction parameter, Prandtl, Schmidt, Soret, Dufour and

Biot numbers.
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4.2 Governing equation

The constitutive equation corresponding to the flow of a Casson fluid is given by

̄
1
2 = ̄

1
2
 +

¯̄̄̄
−∞

̄

̄

¯̄̄̄ 1
2

if ̄ ≥ ̄ (4.1)

̄

̄
= 0 if ̄ ≤ ̄ (4.2)

where ∞ is the viscosity at high shear rate and ̄ is the yield stress. It is interesting to note

that when shear stress is less than the yield stress, the velocity gradient vanishes (see relation

(42)). As a concequence whenever ̄ ≤ ̄, plug flow sets in. These relations between
̄
̄

and

̄ are applicable for positive values of ̄ and negative values of ̄
̄
. For more general situation,

the equivalent form of these relations where ̄ and ̄
̄

can change the sign may be written as

∞
̄

̄
= −

⎛⎝1 + ̄

|̄ | − 2
̄
1
2


|̄ |12

⎞⎠ ̄ if ̄ ≥ ̄ (4.3)

̄

̄
= 0 if ̄ ≤ ̄ (4.4)

4.3 Problem formulation

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson fluid in the two

dimensional asymmetric channel by taking (̄ ̄ ) as the Cartesian coordinates with ̄ being

measured in the direction of wave propagation and ̄ in the direction normal to the ̄-axis.

The motion is induced due to the propagation of sinusoidal wave trains with a constant speed

 along the channel walls. Let ̄ = ̄1 and ̄ = ̄2 be the upper and lower boundaries of the

channel respectively (see Fig. 2.1). Then

̄1(̄ ̄) = 1 + 1 cos

∙
2


(̄ − ̄)

¸
 upper wall, (4.5)

̄2(̄ ̄) = −2 − 2 cos

∙
2


(̄ − ̄) + 

¸
 lower wall, (4.6)
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where 1 2 are the waves amplitudes,  is the wavelength, 1+2 is the width of the asymmetric

channel and the phase difference  varies in the range 0 ≤  ≤  Here  = 0 corresponds

to symmetric channel with waves out of phase and  =  the waves are in phase. Further

1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (4.7)

From Eqs. (43) and (44) there is no doubt that such type of flows are three phase in nature

when asymmetric channel is considered. Here the plug flow region is the central core region.

If the plug flow region is represented by ̄1 ≤ ̄ ≤ ̄2 where ̄2 ≤ ̄1 ̄2 ≤ ̄1 and the two

shear flow regions by ̄2 ≤ ̄ ≤ ̄1 and ̄2 ≤ ̄ ≤ ̄1, then in these regions the Casson fluid’s

constitutive equations (43) and (44) can be written as

∞
̄

̄
= −̄ + ̄ − 2̄12 |̄ |12 if ̄2 ≤ ̄ ≤ ̄1 (4.8)

̄

̄
= 0 if ̄1 ≤ ̄ ≤ ̄2 (4.9)

∞
̄

̄
= −

³
̄ + ̄ − 2̄12 |̄ |12

´
if ̄2 ≤ ̄ ≤ ̄1 (4.10)

in which the two yield plane locations, namely ̄ = ̄1 and ̄ = ̄2, are to be discovered as

part of solution to the problem under consideration.

The flow is steady in wave frame, if pressure difference between the ends of the channel is

constant and channel length is finite (equal to an integral number of wavelength) as given by

Shapiro et al. [6]. We presume that these conditions are best fitted to our problem in wave

frame then Galilean transformations between the moving ( ) and fixed frames ( )

are given by

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)−  ̄(̄ ̄) = ̄ (̄ ̄  ̄)

̄ (̄ ̄) = ̄ (̄ ̄  ̄) ̄(̄ ̄) = ̄(̄ ̄  ̄) ̄(̄ ̄) = ̄ (̄ ̄  ̄) (4.11)

in which (̄ ̄) and (̄  ̄ ) are the velocity components in the wave and the fixed frames re-

spectively and ̄ and ̄ stand for pressure in the wave and fixed frames. Also ̄ and ̄ are the
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temperature and concentration of the fluid in dimensional form.

Defining dimensionless variables, wave number (), temperature (), concentration (),

Prandtl number (Pr), Dufour number (), Schmidt number (), Soret number () and

chemical reaction parameter () by

 =
̄


  =

̄

1
  =

̄


  =

̄


  =

21̄

∞
  =

1


  =

̄1

∞


1 =
̄1

1
 2 =

̄2

1
  =

̄


  =

̄ − 


  =

̄ − 0

1 −0
  =

̄1

∞


 =
2

1
  =

1

1
  =

1

1
 ̄1 =

1

1
 ̄2 =

2

1
 Pr =




  =






 =
 (1 − 0)


  =



(1 − 0)
  =

1
2
1


 ∗ =

1
2
10

(1 − 0)
 (4.12)

the relevant dimensionless flow equations under long wavelength along with low Reynolds num-

ber assumptions can be expressed as

−

− 


= 0 (4.13)




= 0 (4.14)

1

Pr

2

2
+

2

2
= 0 (4.15)

1



2

2
+ 

2

2
−  − ∗ = 0 (4.16)

Eq. (414) indicates that  6= ().

The Casson’s fluid constitutive equation in dimensionless form is expressed by




= − +  − 212 | |12 if 2 ≤  ≤ 1 (4.17)




= 0 if 1 ≤  ≤ 2 (4.18)




= −

³
 +  − 212 | |12

´
if 2 ≤  ≤ 1 (4.19)
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whereas the non-dimensional form of the peristaltic walls are given by

 = 1 = 1 +  cos(2) (4.20)

 = 2 = −−  cos(2+ ) (4.21)

In fixed frame of reference, the instantaneous volume flow rate is given by

 =

̄1(̄̄)Z
̄2(̄̄)

̄(̄ ̄  ̄)̄  (4.22)

whereas in wave frame of reference, it is given by

 =

1(̄)Z
2(̄)

̄(̄ ̄)̄ (4.23)

From Eqs. (411), (422) and (423) we can write

 =  + ̄1(̄)− ̄2(̄) (4.24)

The time-mean flow over a period Ω is defined as

̄ =
1

Ω

ΩZ
0

̄ =  + 1 + 2 (4.25)

DefiningΘ and  as the dimensionless time-mean flows in the fixed and wave frames respectively

by

Θ =
̄

1
  =



1
 (4.26)

we have

Θ =  + 1 +  (4.27)

 =

Z 1()

2()

()  (4.28)
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Keeping in view the physical constraints of the problem, the boundary conditions in the fixed

frame may be expressed mathematically as follows:

̄(̄ = ̄1) = 0 = ̄(̄ = ̄2) (4.29)

−̄(̄ = ̄1) = ̄ = ̄(̄ = ̄2) (4.30)

̄(̄ = ̄1) = ̄ = ̄(̄ = ̄2) (4.31)


̄

̄
= −1(̄ − ) ̄ = 1 at ̄ = ̄1 (4.32)


̄

̄
= −2( − ̄ ) ̄ = 0 at ̄ = ̄2 (4.33)

Writing the above conditions through Eqs. (411) and (412), the dimensionless boundary

conditions are

( = 1) = −1 = ( = 2) (4.34)

−( = 1) =  = ( = 2) (4.35)

( = 1) =  = ( = 2) (4.36)




+1 = 0  = 1 at  = 1 (4.37)




−2 = 0  = 0 at  = 2 (4.38)

where 1 = 11 and 2 = 21 are the Biot numbers at the upper and lower walls of

channel respectively.

4.4 Solution methodology

The solution of Eq. (413) through (435) is given by

 = −

( − Λ) (4.39)

where

Λ =

µ
1 + 2

2

¶
 (4.40)
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Using Eqs. (435) and (439), we obtain

2 − 1

2
=  (4.41)

where

 = (−

) (4.42)

represents the half width of plug flow region.

Replacing the expression for  from Eq. (439) in the constitutive equations (417 − 419)
and integrating with the help of distribution in different regions as

() = −() = −1− 


{(Λ+ )( − 2)− 1

2
(2 − 22)

+
4

3

p
[(Λ− )32 − (Λ− 2)

32]}  2 ≤  ≤ 1 (4.43)

() =  = constant  1 ≤  ≤ 2 (4.44)

() = +() = −1− 


{1
2
(21 − 2) + ( − Λ)(1 − )

−4
3

p
[(1 − Λ)32 − ( − Λ)32]}  2 ≤  ≤ 1 (4.45)

where − and + are the velocities in respective shear flow regions 2 ≤  ≤ 1 and 2 ≤  ≤ 1

and  shows the velocity in plug flow region 1 ≤  ≤ 2 which can be determined from Eq.

(436). Here  → 0 corresponds to the Newtonian fluid and  = ,  = 1 and  = 0, the

expression for longitudinal velocity are in good agreement with the expression obtained by

Shapiro et al.[6] in symmetric channel case.

The relation for velocity profile at  = 1 and  = 2 after using the continuity condition

(436) is given by

−321 + 322 − 8
p
Λ
p
1 − Λ+ 82

p
Λ− 2 − 8

p
Λ
p
Λ− 2

−62( + Λ) + 1(−6 + 8
p

p
1 − Λ+ 6Λ) + 8

p
Λ
p
Λ− 1 − 8

p
1

p
Λ− 1

+8
p
Λ
p
2 − Λ− 8

p
2

p
2 − Λ+ 3

¡
(2( + Λ)− 1)1 + 2( − Λ)2 + 22

¢
= 0 (4.46)
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A system of equations in two unknowns 1 and 2 is demonstrated from relations (441) and

(446). From these equations and with the help of the relation Λ =
¡
1+2
2

¢
, we can get the

values of 1 and 2.

The transverse velocity component  can be calculated from the continuity equation through




= −


 (4.47)

Defining the stream function as

 =  −  (4.48)

and using the conditions  = 
2
at  = 1 and  = −

2
at  = 2, the stream function is

obtained in the three regions as given below.

() = −() = − − 


{(Λ+ )(

2

2
− 2)− 1

2
(
3

3
− 22)

−4
3

p
[
2

5
(Λ− )52 + (Λ− 2)

32]}+ 1  2 ≤  ≤ 1 (4.49)

() =  =  +   1 ≤  ≤ 2 (4.50)

() = +() = − − 


{1
2
(21 −

3

3
) + ( − Λ)(1 − 2

2
)

−4
3

p
[(1 − Λ)32 − 2

5
( − Λ)52]}+ 2  2 ≤  ≤ 1 (4.51)

where

1 =
−
2
+ 2 +




{−Λ

2
2

2
+

32
3
− 22

2
− 4

15

p
(Λ− 2)

32(2Λ+ 32)} (4.52)

 =
−
2
+ 2 − 


{(Λ+ )

µ
22 − 21
2

¶
+
1

3
(31 − 32)

− 4
15

p
[(Λ− 1)

32(2Λ+ 32)− (Λ− 2)
32(2Λ+ 32)]} (4.53)

2 =


2
+ 1 +




{

3
1

3
+ ( − Λ)

2
1

2
− 4

15

p
(1 − Λ)32(31 + 2Λ)} (4.54)

For symmetric channel case, the expression for  matches to that found by Mernone et al. [56].

As  → 0 (Newtonian case) we have 1 = 2 =
1+2
2

and in this case the stream function
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agrees with the expression given by Mishra and Rao [27], when  = 0 and  = ,  = 1,  = 0

(i.e. the flow of Newtonian fluid in symmetric channel case) the stream function corresponds

to that of Shapiro et al. [6].

The pressure gradient is obtained by using Eq. (428) as follows:




= −( + 1 − 2)

()
 (4.55)

where

() =
1

3
(31 − 32 + 31 − 32) +

Λ

2
(22 − 21 + 22 − 21) +



2
(21 + 22 − 21 − 22)

− 4
15

p
[(Λ− 1)

32(2Λ+ 31)− (Λ− 2)
32(2Λ+ 32)

+(1 − Λ)32(31 + 2Λ)− (2 − Λ)32(2Λ+ 32)] (4.56)

The pressure rise per wavelength (∆) is

∆ =

Z
0




 (4.57)

The solutions of Eqs. (415) and (416) corresponding to boundary conditions (437) and (438)

are given by

() =
1

(24)
[Pr csc3{(1(−1 +1( − 2)) +1(1 +2( − 2)) cosh3

+2(1(1 +2( − 2)) sinh3 +4 sinh(
(2 − )1

2
)))

+(1(−2 +1( − 1)−2( − 2)) +1(2−1( − 1) +2( − 2)) cosh3

+24(sinh3 − sinh((1 − )1

2
) + sinh(

(2 − )1

2
)))∗}] (4.58)

() = −1

[csc3{ sinh((2 − )1

2
)

+(sinh3 − sinh((1 − )1

2
) + sinh(

(2 − )1

2
))∗}] (4.59)
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where

1 =
p
 2 =

√
1−Pr

3 =
(1 − 2)1

2
 4 = 1 +2 +12(1 − 2)

4.5 Discussion

4.5.1 Yield plane locations

The solid-like behavior of the fluid (i.e. a plug core) is perceived under the yield stress effects

in a region in which the yield stress is greater than the magnitude of shear stress. A yield point

is defined as a point where the yield value is equal to the magnitude of actual shear stress and

yield plane is the locus of all yield points. The positions of two yield planes are deliberated

from the perspective of asymmetry of channel walls. The width of core region is determined

by these two yield planes. It is interpreted from Eq. (442) that the width 2 of the plug

flow region is dependent on shear stress . However the pressure gradient does not depend

on the channel asymmetry. Location of the first yield plane 1 with inflicted phase angle  on

the lower channel wall is shown in Table 4.1. By using the relation (441) and Table 4.1, the

location for second yield plane 2 can be computed. It is remarkable that the yield plane (1)

moves in the direction near to upper channel wall as  increases for fixed value of  and the

width of plug region increases with an increase in . We can see that these results are in an

excellent agreement with the results obtained by Rani and Sarojamma [58].
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 

00 005 01 015 20 25

0 0.000 -0.05 -0.100 -0.150 -2.00 -0.250

6 0.033 -0.016 -0.066 -0.116 -0.166 -0.216

3 0.125 0.075 0.025 -0.025 -0.075 -0.125

2 0.250 0.200 0.150 0.100 0.050 0.000

23 0.376 0.325 0.275 0.225 0.175 0.125

56 0.466 0.416 0.366 0.316 0.266 0.216

 0.500 0.450 0.4 0.350 0.300 0.250

Table 4.1. Variation in yield plane location 1 with  when the amplitudes are same

( =  = 05  = 1) for various values of .

4.5.2 Pumping characteristics

In this subsection our aim is to analyze the pressure gradient  and pressure rise per

wavelength ∆ for different embedding parameters in the present problem. Fig. 4.1 is plotted

to serve the effects of Casson fluid parameter  on pressure gradient . It is anticipated

that the pressure gradient increases at the center of the channel while it decreases near the

walls with an increase in Casson fluid parameter . It is interesting to note that the assistance

or resistance from pressure gradient for a Casson fluid ( 6= 0) is higher when compared to a
Newtonian fluid ( = 0). Fig. 4.2 depicts the variation in pressure gradient  for different

values of phase difference . We observe that by increasing the values of the phase difference 

the pressure gradient  decreases. The effects of various values of flow rate Θ on pressure

gradient  are shown in Fig. 4.3. It is observed that pressure gradient increases when

flow rate Θ increases. Fig. 4.4 shows the variation in pressure rise per wavelength ∆ against

flow rate Θ for various values of Casson fluid parameter . For such purpose, the numerical

integration has been carried out in Eq. (457) using "MATHEMATICA". It is seen that by

increasing the value of  the pressure rise increases in the peristaltic pumping region and it

decreases in the copumping region when  is increased. This means peristalsis works against

greater pressure rise for a Casson fluid ( 6= 0) when compared to a Newtonian fluid ( = 0).
The opposite behavior is observed for different values of phase difference  in Fig. 4.5. That
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is pressure rise per wavelength ∆ decreases in peristaltic pumping region and it increases in

copumping region when phase difference  is increased. Figs. 4.6 and 4.7 are plotted to see

the effects of upper and lower wave amplitudes  and  on pressure rise per wavelength ∆

respectively. These Figs. show that pressure rise increases in the peristaltic pumping region

with an increase in upper wave amplitude  as well as lower wave amplitude . However it has

opposite behavior in the copumping region.

Fig. 4.1 Fig. 4.2

Fig. 4.1: Variation in  for  when  = 07,  = 12,  = 2,  = 2, Θ = 12.

Fig. 4.2: Variation in  for  when  = 07,  = 12,  = 2,  = 01, Θ = 12.

Fig. 4.3 Fig. 4.4

Fig. 4.3: Variation in  for Θ when  = 07,  = 12,  = 2,  = 2,  = 02.

Fig. 4.4: Variation in ∆ versus Θ for  when  = 07,  = 12,  = 2,  = 2.
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Fig. 4.5 Fig. 4.6

Fig. 4.5: Variation in ∆ versus Θ for  when  = 07,  = 12,  = 2,  = 01.

Fig. 4.6: Variation in ∆ versus Θ for  when  = 12,  = 2,  = 2,  = 01.

Fig. 4.7

Fig. 4.7: Variation in ∆ versus Θ for  when  = 05,  = 2,  = 2,  = 01.

4.5.3 Velocity distribution

The variations of axial velocity in symmetric ( =  = 05  = 1  = 0) and asymmetric

( = 05,  = 12,  = 12,  = 4) channels are shown in the Figs. 4.8 (a) and 4.8 (b)

respectively. The velocity in a symmetric channel is seen to be symmetric while the profiles

are skewed towards lower boundary in an asymmetric channel. Also it is noticed that the
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magnitude of the velocity reduces as yield stress is increased and plug flow dominates over the

cross-section.

Fig. 4.8 (a) Fig. 4.8 (b)

Fig. 4.8 (a): Longitudinal velocity () for  when  = 05,  = 05,  = 1,  = 0,  = 025

and Θ = 1.

Fig. 4.8 (b): Longitudinal velocity () for  when  = 05,  = 12,  = 12,  = 0,  = 025

and Θ = 1.

4.5.4 Temperature profile

This subsection deals with the effects of various emerging parameters on temperature field

(). It is noteworthy that the temperature profile () increases when there is an increase in

the Prandtl Pr and Schmidt numbers  (see Figs. 4.9 and 4.10). Effects of chemical reaction

parameter  on temperature profile () are shown in Fig. 4.11. It is observed that by increasing

the chemical reaction parameter  the temperature profile increases. Here we have considered

  0 which represents the destructive chemical reaction process. In Figs. 4.12 and 4.13, the

effects of the Biot numbers 1 and 2 on temperature profile () are observed. We see that

by increasing the values of 1 the temperature decreases near the upper wall while it has no

significant effect near the lower wall of channel. Also temperature decreases near the lower wall

of the channel when there is an increase in 2 while it has no effect near the upper wall of

channel. Here we have considered the non-uniform temperature fields within the fluid (i.e., Biot

numbers are much greater than 1) because problems involving small Biot numbers are thermally
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simple due to the uniform temperature fields within the material. Effects of Soret and Dufour

on temperature profile () are depicted in Figs. 4.14 and 4.15. We illustrate that by increasing

the value of Soret number  the temperature profile gradually decreases (see Fig. 4.14) while

it increases with an increase in Dufour number  (see Fig. 4.15). Physically we can observe

that the diffusion-thermo or Dufour effect describes the heat flux created when a chemical

system is under a concentration gradient. These effects depend upon thermal diffusion which

is generally very small but can be sometimes significant when the participating species are of

widely differing molecular weights. Mass diffusion occurs if the species are initially distributed

unevenly i.e., when a concentration gradient exists. A temperature gradient can also work as

a driving force for mass diffusion called thermo-diffusion or Soret effects. Therefore the higher

the temperature gradient, the larger the Soret effects.

Fig. 4.9 Fig. 4.10

Fig. 4.9: Temperature profile () for various values of Pr when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, 1 = 8, 2 = 10,  =  =  =  = 02.

Fig. 4.10: Temperature profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, 1 = 8, 2 = 10, Pr = 20,  =  =  = 02.
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Fig. 4.11 Fig. 4.12

Fig. 4.11: Temperature profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, 1 = 8, 2 = 10, Pr = 20,  =  =  =  = 02.

Fig. 4.12: Temperature profile () for various values of 1 when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, 2 = 10, Pr = 20,  =  =  =  = 02.

Fig. 4.13 Fig. 4.14

Fig. 4.13: Temperature profile () for various values of 2 when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, 1 = 10, Pr = 20,  =  =  =  = 02.

Fig. 4.14: Temperature profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, 1 = 8, 2 = 10, Pr = 20,  =  =  = 02.
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Fig. 4.15

Fig. 4.15: Temperature profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, 1 = 8, 2 = 10, Pr = 20,  =  =  = 02.

4.5.5 Concentration profile

This subsection deals with the variation in the concentration profile () for different values

of embedding parameters in the problem. Here it is noted that by increasing the values of

Prandtl number Pr, chemical reaction parameter , Soret  and Dufour  numbers and

Schmidt number  concentration profile () decreases (see Figs. 4.16-4.20). Schmidt number

 is a dimensionless number defined as the ratio of momentum diffusivity (viscosity) and mass

diffusivity and it is used to characterize fluid flows in which there are simultaneous momentum

and mass diffusion convection processes. The effect of chemical reaction parameter  is very

important in concentration field (). Chemical reaction increases the rate of interfacial mass

transfer. Reaction reduces the local concentration, thus increases its concentration gradient

and its flux when we have constructive chemical reaction. In our problem we have considered

  0 which corresponds to the destructive chemical reaction.
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Fig. 4.16 Fig. 4.17

Fig. 4.16: Concentration profile () for various values of Pr when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05,  = 20,  =  =  = 02.

Fig. 4.17: Concentration profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, Pr =  = 20,  =  = 02.

Fig. 4.18 Fig. 4.19

Fig. 4.18: Concentration profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, Pr =  = 20,  =  = 02.

Fig. 4.19: Concentration profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, Pr =  = 20,  =  = 02.
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Fig. 4.20

Fig. 4.20: Concentration profile () for various values of  when  = 05,  = 07,  = 12,

 = 2, Θ = 12,  = −05, Pr = 20,  =  =  = 02.

4.5.6 Streamlines and trapping

The shape of the streamlines is generally the same as that of the walls in the wave frame of

reference. However some of the streamlines split and enclose a bolus under certain conditions

which moves as a whole with the wave. This is known as trapping. Figs. 4.21 and 4.22 are

sketched to see the effects of Casson fluid parameter  and volume flow rate Θ on trapping.

The panels on left side show the trapping phenomenon for the case of symmetric channel

( =  = 05  = 1,  = 0) and the panels on right side show the trapping for the case

of asymmetric channel ( = 05  = 07,  = 12  = 4). From Fig. 4.21 it is revealed

that trapped bolus exists and decreases in size when there is an increase in the Casson fluid

parameter . In this Fig.  = 00 (panels () and ()),  = 02 (panels () and ()) and  = 03

(panels () and ()). Fig. 4.22 shows that the trapped bolus increases by increasing the value

of volume flow rate Θ. For this Fig. Θ = 12 (panels () and ()), Θ = 15 (panels () and

()) and Θ = 17 (panels () and ()). A comparative study of these panels reveals that the

trapped bolus is symmetric with respect to the channel for  = 0 (left panel). On the other

hand for  = 4 the trapped bolus shifts towards left (lower wall) because of the asymmetry

of channel (right panel).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.21: Streamlines for different values of  (panels (), () and () for  = 0 and panels

(), () and () for  = 4).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.22: Streamlines for different values of Θ (panels (), () and () for  = 0 and panels

(), () and () for  = 4).
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4.6 Conclusions

This chapter addresses the Soret and Dufour effects in Casson fluid flow in an asymmetric

channel with peristalsis and convective conditions. The presented study leads to the following

observations:

• Due to asymmetry in the channel, the yield stress  of the fluid tends to form two yield

planes in the plug core region. The yield planes are found to be located symmetrically

when channel is symmetric and they are skewed towards the boundary wall with higher

amplitude (or phase difference) in an asymmetric channel.

• The magnitude of the pressure gradient  increases by increasing the values of Casson
fluid parameter (). Also assistance or resistance from pressure gradient for a Casson fluid

( 6= 0) is higher than that of a Newtonian fluid ( = 0).

• Pressure rise per wavelength ∆ increases in peristaltic pumping region and it decreases
in copumping region when there is an increase in the Casson fluid parameter ().

• By increasing the values of Casson fluid parameter  the magnitude of velocity increases
at the center of the channel and it decreases near the channel walls. The velocity in a

symmetric channel ( = 0) is seen to be symmetric while the profiles are skewed towards

lower boundary in an asymmetric channel ( = 4).

• The magnitude of the velocity () lessens and plug flow dominates over the cross-section
when  increases.

• By increasing the values of Prandtl (Pr), Schmidt () and Soret () numbers, temper-
ature profile () increases. On the other hand temperature profile () decreases when

Biot numbers (1, 2), chemical reaction parameter () and Dufour number () are

increased.

• Concentration profile () is a decreasing function of Prandtl (Pr), Soret (), Dufour
(), Schmidt () and chemical reaction () parameters.

• Trapping decreases with an increase in Casson fluid parameter  while it increases by
increasing the volume flow rate Θ.
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Chapter 5

Exact solution for peristaltic flow of

couple stress fluid in an asymmetric

channel with convective conditions

5.1 Introduction

This chapter explores the heat transfer effects in peristaltic flow of couple stress fluid. An

incompressible fluid is considered in a channel with convective boundary conditions. This

study is motivated towards investigating the physiological flow through particle size effect.

Long wavelength and low Reynolds number approach is adopted. Effects of various physical

parameters reflecting couple stress parameter and Brinkman and Biot numbers on the velocity

profile, streamlines pattern, temperature profile, pumping action and trapping are studied.

Computational results are presented in graphical form.

5.2 Mathematical modeling and analysis

Let us consider the peristaltic motion of couple stress fluid in an asymmetric channel. We take

(̄ ̄ ) as the Cartesian coordinates with ̄ being measured in the direction of wave propagation

and ̄ in the direction normal to the ̄-axis. Let ̄ = ̄1 and ̄ = ̄2 be the upper and lower

boundaries of the channel respectively (see Fig. 2.1). The motion is induced by sinusoidal wave
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trains propagating with a constant speed  along the channel walls. These are

̄1(̄ ̄) = 1 + 1 cos

∙
2


(̄ − ̄)

¸
 upper wall,

̄2(̄ ̄) = −2 − 2 cos

∙
2


(̄ − ̄) + 

¸
 lower wall, (5.1)

where 1 2 are the waves amplitudes,  is the wavelength, 1+2 is the width of the asymmetric

channel and the phase difference  varies in the range 0 ≤  ≤  ( = 0 corresponds to

symmetric channel with waves out of phase and  =  the waves are in phase). Further

1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (5.2)

The relevant equations in the absence of body moment and body couple can be put as follows:

̄

̄
+

̄

̄
= 0 (5.3)



µ


̄
+ ̄



̄
+ ̄



̄

¶
̄ = − ̄

̄
+ ∇21̄ − ∗∇41̄  (5.4)



µ


̄
+ ̄



̄
+ ̄



̄

¶
̄ = −̄

̄
+ ∇21̄ − ∗∇41̄  (5.5)

 

µ


̄
+ ̄



̄
+ ̄



̄

¶
 = ∇21 + 

"
2

µ
̄

̄

¶2
+ 2

µ
̄

̄

¶2
+

µ
̄

̄
+

̄

̄

¶2#

+∗
"µ

2̄

̄2
+

2̄

̄ 2

¶2
+

µ
2̄

̄2
+

2̄

̄ 2

¶2#
 (5.6)

where  is the fluid density, ̄ the time, ̄ and ̄ are the velocity components,  the dynamic

viscosity, ̄ the pressure, ∗ the couple stress parameter,  the fluid temperature,  the specific

heat,  the thermal conductivity of the material, ∇21 =
³

2

̄2 +
2

̄ 2

´
and ∇41 = ∇21∇21 Note

that the overbar just refers to a dimensional quantity.

Considering a wave frame (̄ ̄) that moves with a velocity  away from the fixed frame
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(̄ ̄ ), we write

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)− 

̄(̄ ̄) = ̄ (̄ ̄  ̄)  (̄ ̄) =  (̄ ̄  ̄) ̄(̄ ̄) = ̄ (̄ ̄  ̄) (5.7)

in which (̄ ̄) and (̄  ̄ ) are the velocity components in the wave and the fixed frames re-

spectively,  and  denote the pressure in wave and fixed frames of reference.

The exchange of heat with ambient at the walls through Newton’s cooling law is given by




̄
= −1( − ) at ̄ = ̄1 (5.8)




̄
= −2( −  ) at ̄ = ̄2 (5.9)

where 1 (2) is the heat transfer coefficient at the upper (lower) channel wall and  is the

ambient temperature.

The relevant flow equations can be expressed as follows

̄

̄
+

̄

̄
= 0 (5.10)



µ
̄


̄
+ ̄



̄

¶
̄ = −̄

̄
+ ∇2̄− ∗∇4̄ (5.11)



µ
̄


̄
+ ̄



̄

¶
̄ = −̄

̄
+ ∇2̄ − ∗∇4̄ (5.12)

 

µ
̄


̄
+ ̄



̄

¶
 = ∇2 + 

"
2

µ
̄

̄

¶2
+ 2

µ
̄

̄

¶2
+

µ
̄

̄
+

̄

̄

¶2#

+∗
"µ

2̄

̄2
+

2̄

̄2

¶2
+

µ
2̄

̄2
+

2̄

̄2

¶2#
 (5.13)

where ∇2 =
³

2

̄2
+ 2

̄2

´
and ∇4 = ∇2∇2.

The non-dimensional variables, Reynolds number (Re), Prandtl number (Pr), Eckert number

(), Brinkman number () and Biot numbers (1, 2) are represented by the following
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definitions:

 =
̄


  =

̄

1
  =

̄


  =

̄


  =

21̄


  =

1




1 =
̄1

1
 2 =

̄2

1
  =

̄


  =

 − 


  =

∗

21


Re =
1


 Pr =




  =

2


  = Pr

1 =
11


 2 =

21


 (5.14)

The governing Eqs. (510− 513) can be written as




+




= 0 (5.15)

Re 

µ




+ 





¶
 = −


+∇2− ∇4 (5.16)

Re 3
µ




+ 





¶
 = −


+ 2∇2 − 2∇4 (5.17)

PrRe 

µ




+ 





¶
 = ∇2 +

"
22

µ




¶2
+ 22

µ




¶2
+

µ



+ 2





¶2#

+

"
2
µ
2
2

2
+

2

2

¶2
+

µ
2
2

2
+

2

2

¶2#
 (5.18)

where ∇2 =
³
2 2

2
+ 2

2

´
. Equations (58) and (59) give




+1 = 0 at  = 1, (5.19)




−2 = 0 at  = 2. (5.20)

By long wavelength and low Reynolds number assumptions [6] we have




− 2

2
+ 

4

4
= 0 (5.21)




= 0 (5.22)

2

2
+

µ




¶2
+ 

µ
2

2

¶2
= 0 (5.23)
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where continuity equation is identically satisfied. The above equations indicate that  6= ().

Keeping in view the physical constraints of the problem, the boundary conditions in the

fixed frame may be expressed mathematically as follows:

̄ = 0 ̄̄ ̄ = 0 at ̄ = ̄1 and ̄ = ̄2 (5.24)

The non-dimensional boundary conditions in wave frame are

 = −1  = 0 at  = 1 and  = 2 (5.25)

The closed form solutions of Eqs. (521) and (523) satisfying the boundary conditions (519)

(520) and (525) are found in the forms

() =
1

2
[−2 + 


(1 − ) (2 − ) + 2





−2 

cosh

µ
1 + 2

2
√


¶
sec

µ
1 − 2

2
√


¶
] (5.26)

() = 

µ




¶2 £
1

4 +2
3 +3

2 +4() +5()
¤
 (5.27)
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where

1 =
−1
12

 2 =
(1 + 2)

6
 3 = −(1 + 2)

2 + 4

8


4() =
1

[24(1 +2 +12(1 − 2))(1 + cosh(
1−2√


))]

× £21(3212 + 32 + 121) +2(1(
4
1 − 42)

−2122(−3 +12) + 2
3
1(1 +12) + 121

2
1

−122(−2 +12)) +
©
21(3

2
12 + 32 + 121)

+2(1(
4
1 − 42)− 2122(−3 +12) + 2

3
1(1 +12)

+121
2
1 − 122(−2 +12))} cosh(1 − 2√


)

+2432{(−1 +2) sinh(
1 − 2√


)

−2(1 +2 +12(1 − 2))

µ
sinh(

1 − √

) + sinh(

2 − √

)

¶¾¸


5() =
1

[24(1 +2 +12(1 − 2))(1 + cosh(
1−2√


))]

× £32(−2 +22) + 41(1(1−22)) + 31(2− 222 +12(−4 +22))

−122(−2 +22) + 48(1 +2 −122)
2 + 21(2(−6 + 322

+12(3−22))− 121(1 +22)) + 1(−2(1 + 22)32
+12

4
2 + 24(−1 + 212) + 622(1 + 212)) +

©
32(−2 +22)

+41(1 −122) + 31(2− 222 +12(−4 +22))− 122(−2 +22)

+60(1 +2 −122)
2 + 21(2(−6 + 322 +12(3−22))

−121(1 +22)) + 1(−2(1 + 22)32 +12
4
2 + 6

2
2(1 + 212)

+12(−2 + 512))} cosh(1 − 2√


) + 1232 {−(1 +2 +12(1 − 2))

×√ cosh(1 + 2 − 2√


)− 2(−2−12 +2(1 +1(1 − 2)
2)) sinh(

1 − 2√


)

+2(1 +2 +12(1 − 2))

µ
−2√(cosh(1 − √


) + cosh(

2 − √

))

+(1 + 2)(sinh(
1 − √


) + sinh(

2 − √

))

¶¾¸


Defining Θ and  as the dimensionless time-mean flows in the laboratory and wave frames
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respectively we have

Θ =  + 1 +  (5.28)

 =

Z 1

2

()  (5.29)

Substituting Eq. (526) into Eq. (529) and performing the integration, we find that

 = − 1
12
(1 − 2)

µ
12 +





¡
(1 − 2)

2 − 12¢¶− 232 

tanh

µ
1 − 2

2
√


¶
 (5.30)

The pressure gradient obtained from Eq. (530) can be expressed as




=

( + 1 − 2)h
1
12
(2 − 1) ((1 − 2)2 − 12)− 232 tanh

³
1−2
2
√


´i  (5.31)

The dimensionless forms of  ( = 1 2) are

1() = 1 +  cos(2) 2() = −−  cos(2+ ) (5.32)

where  = 11  = 21  = 21 and  satisfy the following relation

2 + 2 + 2 cos ≤ (1 + )2

The pressure rise per wavelength (∆) is given by

∆ =

1Z
0




 (5.33)

5.3 Results and discussion

5.3.1 Pumping characteristics

In this subsection, we discuss the effects of pertinent parameters on pumping characteristics.

Figs. 51 and 52 are plotted to see the effects of couple stress parameter  and flow rate Θ

on pressure gradient respectively. These Figs. show that pressure gradient decreases with an
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increase in couple stress parameter  and pressure gradient increases by increasing flow rate

Θ. Figs. 53 − 57 depict the effects of different parameters on pressure rise per wavelength
∆ versus flow rate Θ. Note that the definition of pressure rise per wavelength ∆ involves

integration of  (see Eq. (533)). The arising integral is not solvable analytically. Therefore

the involved integral has been computed numerically by using "Mathematica". Figs. 53− 55
reveal that pumping increases in the peristaltic pumping region (∆  0 Θ  0) while it

decreases in augmented pumping region (∆  0 Θ  0) with an increase in couple stress

parameter , upper wave amplitude  and lower wave amplitude  respectively. Figs. 56 and 57

show the effects of channel width  and phase difference  on the pressure rise per wavelength

∆. These Figs. depict that pumping decreases in peristaltic pumping region (∆  0

Θ  0) while it increases in augmented pumping region (∆  0 Θ  0) with an increase in

 and .

Fig. 5.1 Fig. 5.2

Fig. 5.1: Plot of  for  with  = 05,  = 05,  = 1,  = 4, Θ = 12.

Fig. 5.2: Plot of  for Θ with  = 05,  = 05,  = 1,  = 4,  = 02.
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Fig. 5.3 Fig. 5.4

Fig. 5.3: Plot of ∆ versus Θ for various values of  with  = 05,  = 05,  = 15,  = 4.

Fig. 5.4: Plot of ∆ versus Θ for various values of  with  = 02,  = 05,  = 15,  = 4.

Fig. 5.5 Fig. 5.6

Fig. 5.5: Plot of ∆ versus Θ for various values of  with  = 05,  = 02,  = 15,  = 4.

Fig. 5.6: Plot of ∆ versus Θ for various values of  with  = 05,  = 05,  = 02,  = 4.
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Fig. 5.7

Fig. 5.7: Plot of ∆ versus Θ for various values of  with  = 05,  = 05,  = 15,  = 04.

5.3.2 Velocity behavior

In this subsection, we discuss the behavior of velocity profile () for different values of emerging

parameters. Fig. 58 shows that the axial velocity () increases at the center of channel by

increasing couple stress parameter . However the axial velocity () decreases near the channel

walls with an increase in the couple stress parameter . It is worth mentioning that magnitude

of axial velocity () is larger for couple stress fluid when compared to the Newtonian case

( → 0). Effect of various values of the flow rate Θ is shown in Fig. 59. It is important to note

that the axial velocity () increases with an increase in the flow rate Θ.

Fig. 5.8 Fig. 5.9
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Fig. 5.8: Plot of axial velocity  for  with  = 05,  = 05,  = 1,  = 2, Θ = 12,

 = −05.
Fig. 5.9: Plot of axial velocity  for Θ with  = 05,  = 05,  = 1,  = 2,  = 03,

 = −05.

5.3.3 Temperature profile

The effects of various parameters on temperature profile () are analyzed in this subsection.

Figs. 510 and 511 reveal that temperature profile () increases by increasing the values of

couple stress parameter  and Brinkman number . Since Brinkman number is the product

of Prandtl Pr and Eckert  number and Eckert number  involves the viscous dissipation

effects which are due to the energy production. That is why the temperature increases in view

of viscous dissipation. By increasing the values of Biot number 1 the temperature profile ()

decreases near the upper wall while it has no significant effect near the lower wall of the channel.

On the other hand, the temperature profile () decreases near lower wall for increasing values

of 2 while it has no significant effect near the upper wall of the channel (see Figs. 512 and

513). Here we have considered the Biot numbers much larger than unity. This is because of

non-uniformity of the temperature fields within the fluid. The present analysis of convective

conditions reduces to the results for the prescribed surface temperature for high Biot numbers

(i.e. 1 →∞ and 2 →∞) [136].

Fig. 5.10 Fig. 5.11
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Fig. 5.10: Plot of the temperature profile  for  with  = 05,  = 05,  = 1,  = 2,

Θ = 12,  = −05, 1 = 8, 2 = 10,  = 1.
Fig. 5.11: Plot of the temperature profile  for  with  = 05,  = 05,  = 1,  = 2,

Θ = 12,  = −05, 1 = 8, 2 = 10,  = 02.

Fig. 5.12 Fig. 5.13

Fig. 5.12: Plot of the temperature profile  for 1 with  = 05,  = 05,  = 1,  = 2,

Θ = 12,  = −05,  = 02, 2 = 10,  = 1.
Fig. 5.13: Plot of the temperature profile  for 2 with  = 05,  = 05,  = 1,  = 2,

Θ = 12,  = −05,  = 02, 1 = 10,  = 1.

5.3.4 Trapping

The shape of streamlines is similar to that of a boundary wall in the wave frame as the walls

are stationary in general. However, some of the streamlines split and enclose a bolus under

certain conditions and this bolus moves as a whole with the wave. This phenomenon is known

as trapping. In this subsection we check the effects of different parameters on trapping. Thus

Figs. 514 − 516 are plotted to see the effects of couple stress parameter , the flow rate Θ
and the channel width . These Figs. indicate that the size of trapped bolus decreases with

an increase in couple stress parameter  and channel width  (see Figs. 514 and 516). The

number of streamlines reduce when the channel width  increases and consequently the trapping

reduces. Further the size of the trapped bolus increases when flow rate Θ is increased (see Fig.

515). It is also interesting to note that for negative flow rate Θ the trapping does not exist.
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However trapping only exists for positive values of flow rate Θ.

(a) (b)

(c)

Fig. 5.14: Streamline pattern for  = 05,  = 05,  = 1,  = 4, Θ = 15 with different  (a)

 = 01, (b)  = 02, (c)  = 03.
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(a) (b)

(c)

Fig. 5.15: Streamline pattern for  = 05,  = 05,  = 1,  = 4,  = 01 with different Θ (a)

Θ = −1, (b) Θ = 05, (c) Θ = 15.
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(a) (b)

(c)

Fig. 5.16: Streamline pattern for  = 05,  = 05,  = 01,  = 4, Θ = 15 with different 

(a)  = 07, (b)  = 09, (c)  = 12.

5.3.5 Closing remarks

Peristaltic flow of couple stress fluid in an asymmetric channel with convective boundary con-

ditions at the channel walls is investigated in this chapter. Here we have the following observa-

tions:

• The peristaltic pumping decreases with an increase in couple stress parameter . Such
fact is due to the consideration of body couples and body moments within the fluid.

• The longitudinal pressure gradient  decreases by increasing the couple stress para-
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meter  in the narrow part of the channel while in the wider part of the channel there is

no effective difference.

• The axial velocity () increases in the narrow part of the channel while it shows opposite
behavior in the wider part of the channel when couple stress parameter  increases.

• Impact of couple stress parameter  and Brinkman number  on the temperature is
similar qualitatively.

• The Biot and Brinkman numbers on temperature have opposite effects.

• The results for the prescribed surface temperature are deduced as a special case of the
present analysis when 1 →∞ and 2 →∞ [136].
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Chapter 6

Peristaltic flow of Johnson-Segalman

fluid in an asymmetric channel with

convective boundary conditions

6.1 Introduction

This chapter is concerned with the peristaltic transport of Johnson-Segalman fluid in an asym-

metric channel with convective boundary conditions. Mathematical modelling is based upon

the conservation laws of mass, linear momentum and energy. Resulting equations have been

solved after using long wavelength and low Reynolds number considerations. Results for the

axial pressure gradient, velocity and temperature profiles are obtained for small Weissenberg

number. Expressions of the pressure gradient, velocity and temperature are analyzed for various

embedded parameters. Pumping and trapping phenomena are also explored.

6.2 Flow equations

The constitutive equations of Johnson-Segalman fluid are [42]

σ̄ = −̄Ī+ τ̄  τ̄ = 2D̄+ S̄ (6.1)

S̄+1

∙
S̄


+ S̄

¡
W̄− D̄

¢
+
¡
W̄− D̄

¢∗
S̄

¸
= 2D̄ (6.2)
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in which σ̄ is the Cauchy stress tensor, ̄ the pressure, Ī the unit tensor, τ̄ the extra stress

tensor,  the dynamic viscosity,  the elastic shear modulus, 1 the relaxation time and  the

slip parameter. Here D̄ and W̄ are the symmetric and skew-symmetric parts of the velocity

gradient (L̄ = grad V̄), respectively. These are given by

D̄ =
1

2
(L̄+ L̄∗) W̄ =

1

2
(L̄− L̄∗) (6.3)

We note that, for  = 1 and  = 0, the model (2) reduces to Maxwell model. Further, when

1 = 0 the model recovers viscous fluid and asterisk (∗) denotes the matrix transpose.
The equations of continuity, momentum and energy are

div V̄ = 0 (6.4)


V̄

̄
= div σ̄ (6.5)

 


̄
= ∇2 + τ̄ (grad V̄) (6.6)

where  is the fluid density, ̄ the time, V̄ the velocity,  the fluid temperature,  the specific

heat,  the thermal conductivity of the material and ∇2 =
³

2

̄2 +
2

̄ 2

´
 Note that the over

bar just refers to a dimensional quantity.

6.3 Problem statement

We investigate the flow of peristaltically driven incompressible Johnson-Segalman fluid in an

asymmetric channel (see Fig. 2.1). The ̄ and ̄ axes are selected along and perpendicular

to the channel walls respectively. The flow is caused by waves propagating along the channel

walls. The channel walls for heat transfer satisfy the convective conditions. The geometry of

the walls is put into the forms given below:

̄1(̄ ̄) = 1 + 1 sin

∙
2


(̄ − ̄)

¸
 upper wall,

̄2(̄ ̄) = −2 − 2 sin

∙
2


(̄ − ̄) + 

¸
 lower wall. (6.7)
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In above expressions  is the wave speed, 1 2 are the wave amplitudes,  is the wavelength,

1 + 2 is the width of the asymmetric channel, the phase difference  varies in the range

0 ≤  ≤  ( = 0 corresponds to symmetric channel with waves out of phase and  =  the

waves are in phase) and further 1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (6.8)

The exchange of heat with ambient at the walls is given by




̄
= −1( − 1) at ̄ = ̄1 (6.9)




̄
= −2( − 0) at ̄ = ̄2 (6.10)

where 1 (2) and 1 (0) are the heat transfer coefficients and temperatures at the upper

(lower) channel wall respectively.

The velocity V̄ for two-dimensional flow is

V̄ = (̄(̄̄ ̄)̄ (̄̄ ̄)0) (6.11)

If (̄ ̄) and (̄ ̄) are the coordinates and velocity components in the wave frame (̄ ̄) then

we have the following transformations:

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)−  ̄(̄ ̄) = ̄ (̄ ̄  ̄)  (̄ ̄) =  (̄ ̄  ̄)

(6.12)

Employing these transformations and introducing the following dimensionless variables

 =
2̄


  =

̄

1
  =

̄


  =

̄


  =

221̄

(+ )


1 =
̄1

1
 2 =

̄2

1
  =

2̄


 S =

1


S̄  =

 − 0

1 − 0
 (6.13)

and the stream function ( ) by

 =



  = −


 (6.14)
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Eq. (64) is satisfied identically and Eqs. (65) and (66) help in writing the following equations

in terms of stream function  as

Re

∙µ







− 







¶µ




¶¸
+
(+ )






= 2

3

2
+

3

3
+ 




+




 (6.15)

−3Re
∙µ








− 







¶µ




¶¸
+
(+ )






= −2

∙
2
3

3
+

3

2

¸
+ 2




+ 






(6.16)

Re

∙







− 







¸
 =

1

Pr

µ
2

2

2
+

2

2

¶


+

∙

2


( − ) +

µ
2

2
− 2

2

2

¶


¸
 (6.17)

where Eq. (62) gives



µ
2




2



¶
=  + 

∙







− 







¸
 − (2)

2



−

∙
(1 + )

2

2
− 2(1− )

2

2

¸
 (6.18)





µ
2

2
− 2

2

2

¶
=  + 

∙







− 







¸
 +



2

∙
(1− )

2

2
+ (1 + )2

2

2

¸


−

2

∙
(1 + )

2

2
− (1− )2

2

2

¸
 (6.19)

−
µ
2




2



¶
=  + 

∙







− 







¸
 + (2)

2



+

∙
(1− )

2

2
+ (1 + )2

2

2

¸
 (6.20)

In the above equations the dimensionless wave number , the Reynolds number Re, the Weis-

senberg number , the Prandtl number Pr and the Eckert number  are defined as follows:

 =
21


 Re =

1


  =

1

1
 Pr =




  =

2

(1 − 0)
 (6.21)
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Equations (69) and (610) give




+1( − 1) = 0 at  = 1, (6.22)




+2 = 0 at  = 2, (6.23)

where 1 = 11 and 2 = 21 are the Biot numbers.

Under the assumption of long wavelength  ¿ 1 and low Reynolds number Re→ 0 [6], Eqs.

(615) and (616) are reduced to

(+ )






=

3

3
+




 (6.24)

(+ )






= 0 (6.25)

The above equation indicates that  is independent of . Eliminating the pressure  from Eqs.

(624) and (625) we arrive at

4

4
+

2

2
= 0 (6.26)

Also Eq. (617) yields

2

2
+

µ
2

2

¶
 = 0 (6.27)

in which the Brinkman number  is

 = Pr (6.28)

Equations (618)− (620) become

 =(1 + )
2

2
 (6.29)

 +


2
(1− )

2

2
 − 

2
(1 + )

2

2
 =





2

2
 (6.30)

 = −(1− )
2

2
 (6.31)
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From Eqs. (629)− (631), we write

 =




"
2

2
−2(1− 2)

µ
2

2

¶3#
 (6.32)

and thus Eq. (624) takes the form

3

3
− 12(1− 2)





"µ
2

2

¶3#
=




 (6.33)

where 1 =
1
1+1

and 1 =




The conditions for the dimensionless stream function in wave frame are [27]

 =


2




= −1 at  = 1() (6.34)

 = −
2




= −1 at  = 2() (6.35)

where

 =

Z 1()

2()




 = (1())− (2()) (6.36)

6.4 Solution scheme

The resulting equation (626) is highly non-linear. It seems difficult to find exact solution of

this equation. Therefore our interest now is to obtain the series solution for small Weissenberg

parameter 2. Hence we expand , , ,  and  in the forms

 = 0 + (2)1 + 

 = 0 + (2)1 + 

 = 0 + (2)1 +  (6.37)

 = 0 + (2)1 + 

 = 0 + (2)1 + 
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Substituting Eqs. (637) into Eqs. (622), (623), (626), (627) and (632)-(635) and then

collecting the terms of like powers of (2) we can write the following systems.

6.4.1 Zeroth order system

40
4

= 0 (6.38)

20

2
+ 1

µ
20
2

¶2
= 0 (6.39)

0


=

30
3

 (6.40)

0 =
0

2

0


= −1 0


+1(0 − 1) = 0 at  = 1() (6.41)

0 =
−0
2


0


= −1 0


+20 = 0 at  = 2() (6.42)

6.4.2 First order system

41
4

− 1(1− 2)
2

2

µ
20
2

¶3
= 0 (6.43)

21

2
+ 1

"
2
20
2

21
2

− (1− 2)

µ
20
2

¶4#
= 0 (6.44)

1


=

31
3

− 1(1− 2)




µ
20
2

¶3
 (6.45)

1 =
1

2

1


= 0
1


+11 = 0 at  = 1() (6.46)

1 =
−1
2


1


= 0
1


+21 = 0 at  = 2() (6.47)

The next two subsections will develop the solutions of zeroth and first order systems.
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6.4.3 Zeroth order solution

The solutions of Eqs. (639) and (640) satisfying the boundary conditions (641) and (642)

are

0 = 01
3 + 02

2 + 03 + 04 (6.48)

0 = 01
4 +02

3 +03
2 +04 +05 (6.49)

where

01 =
−2(0 + 1 − 2)

(1 − 2)3


02 =
3(0 + 1 − 2)(1 + 2)

(1 − 2)3


03 =
−31 − 6012 − 3212 + 3122 + 32

(1 − 2)3


04 =
−(1 + 2)(212(−1 + 2) + 0(

2
1 − 412 + 22))

2(1 − 2)3


 = (2 +1(−1 +2(1 − 2)))

01 = −31201 02 = −410102 03 = −21202

04 =
1


[421(

2
02 + 301021 + 3

2
01

2
1)1 +1{−42(202 + 301022 + 320122)1

+2(1 +(2202(
2
1 − 22) + 40102(

3
1 − 32) + 3

2
01(

2
1 − 22))1)}]

05 = − 1

[{40102(321(1 +22)− 22(3 +22)) + 3

2
01(4

3
1(1 +22)

−32(4 +22)) + 202(−22(2 +22) + 4(1 +212))}1
+1{1 +1(2

2
02(1 − 22) + 40102(21 − 322) + 3201(31 − 432))1

+22(1 +1(1 − 2)(2
2
02 + 40102(1 + 2) + 3

2
01(

2
1 + 12 + 22))1)}]

Expressions of longitudinal velocity and pressure gradient are

0 = 301
2 + 202 + 03 (6.50)

0


= 601 (6.51)
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The non-dimensional pressure rise per wavelength (∆0) can be put into the form

∆0 =

2Z
0

0


 (6.52)

It is worthmentioning to note that the solution expressions at this order correspond to the

Newtonian fluid.

6.4.4 First order solution

Substituting Eqs. (648) and (649) into Eqs. (643− 645), solving the resulting equations and
then applying the corresponding boundary conditions we get the solutions for 1 1, 1

and 1 in the forms presented below:

1 = 11
5 +12

4 +13
3 + 14

2 + 15 + 16 (6.53)

1 = 511
4 + 412

3 + 313
2 + 214 + 15 (6.54)

1 = 11
6 +12

5 +13
4 +14

3 +15
2 +16 +17 (6.55)

1


= −

µ
121

(1 − 2)3
+ 3(1 − 2)

211

¶
 (6.56)
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where

11 = −54
5
(2 − 1)3011

12 = −18(2 − 1)201021

13 =
2

5
[

51

(2 − 1)3
+ 9(2 − 1)201(1002(1 + 2) + 301(3

2
1 + 412 + 3

2
2))1]

14 =
3

5(1 − 2)3
[51(1 + 2)− 6(2 − 1)201(1 − 2)

3(601(1 + 2)(
2
1 + 312 + 22)

502(
2
1 + 412 + 22))1]

15 =
6

5
12[

51

(2 − 1)3
+ 3(2 − 1)201(1002(1 + 2) + 301(4

2
1 + 712 + 4

2
2))1]

16 = −1(1 + 2)(
2
1 − 412 + 22)

2(2 − 1)3


11 = −8
5
01(27(

2 − 1)301 + 511)1

12 = −4
5
(108(2 − 1)30102 + 50211 + 90112)1

13 = −2(36(2 − 1)201202 + 20212 + 30113)1

14 = −4(0213 + 01(8(
2 − 1)302 + 14))1

15 = −402(2(2 − 1)302 + 14)1

16 =
1

5
[21{−212(20(2 − 1)402 + 120(2 − 1)013022 + 360(2 − 1)20120222

+3012(514 + 2(1013 + 2(1512 + 4(27(
2 − 1)301 + 511)2))) + 502

×(214 + 2(313 + 2(412 + (108(
2 − 1)301 + 511)2)))) +2(20(

2 − 1)402
×(1(2 +11)−1

2
2) + 80(

2 − 1)01302(21(3 +11)−1
3
2) + 180(

2 − 1)

×201202(31(4 +11)−1
4
2) + 202(5141(2 +11) + 513

2
1(3 +11)

+512
3
1(4 +11)− 511422 − 511332 − 511242 + (108(2 − 1)301 + 511)

×(41(5 +11)−1
5
2))_01(1014(

2
1(3 +11)−1

3
2) + 1513(

3
1(4 +11)

−142) + 2(91241(5 +11)− 911252 + 2(27(2 − 1)301 + 511)

×(51(6 +11)−1
6
2))))}]
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17 = −21
5

[80(2 − 1)01302(21(3 +11) +2
2
1(3 +11)2 − 3(1 +11)

2
2

−2(1 +11)
3
2 + 180(

2 − 1)201202(31(4 +11) +2
3
1(4 +11)2

−4(1 +11)
3
2 −2(1 +11)

4
2) + 20(

2 − 1)402(121(1 +22)

−2(2 +22) + 1(2 + 222 −12(2 +22))) + 01(1014

×(21(3 +11) +2
2
1(3 +11)2 − 3(1 +11)

2
2 −2(1 +11)

3
2)

+1513(
3
1(4 +11) +2

3
1(4 +11)2 − 4(1 +11)

3
2 −2(1 +11)

4
2)

+2(912(
4
1(5 +11) +2

4
1(5 +11)2 − 5(1 +11)

4
2 −2(1 +11)

5
2

+2(27(2 − 1)301 + 511)(51(6 +11) +2
5
1(6 +11)2 − 6(1 +11)

5
2

−2(1 +11)
6
2))) + 202(513(

2
1(3 +11) +2

2
1(3 +11)2

−3(1 +11)
2
2 −2(1 +11)

3
2 + 512(

3
1(4 +11) +2

3
1(4 +11)2

−4(1 +11)
3
2 −2(1 +11)

4
2) + (108(

2 − 1)301 + 511)(41(5 +11)

+2
4
1(5 +11)2 − 5(1 +11)

4
2 −2(1 +11)

5
2) + 514(1

2
1(1 +22)

−2(2 +22) + 1(2 + 222 −12(2 +22))))]

The pressure rise per wavelength at this order (∆1) is

∆1 =

2Z
0

1


 (6.57)

The perturbation expressions of   ∆ and  upto (2)1 are

 = 0 + (2)1

 = 0 + (2)1




=

0


+ (2)

1




∆ = ∆0 + (2)∆1  (6.58)
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6.5 Discussion

6.5.1 Pumping characteristics

In this subsection the developed series solutions in the flow of the Johnson-Segalman fluid model

are illustrated in the Figs. 61− 614. In order to see the effects of emerging parameters ,

1, , , ,  and  on axial pressure gradient , we have plotted Figs. 61 − 67. It can
be clearly seen from these Figs. that axial pressure gradient decreases for increasing values of

Weissenberg number , viscosity ratio parameter 1, phase difference  and channel width 

whereas it increases by increasing the values of slip parameter , upper wave amplitude  and

lower wave amplitude . Fig. 61 indicates that the pressure gradient is larger for Newtonian

fluid ( = 0) in comparison to that of Johnson-Segalman fluid (0    1). Figs. 68−614
are prepared for the pressure rise ∆ per wavelength against volume flow rate Θ for different

values of, 1, , , ,  and  respectively. It is observed from these Figs. that with increase

in , 1,  and  the pressure rise per wavelength ∆ increases, while ∆ decreases by

increasing ,  and . Moreover, pressure rise within one wavelength ∆ gives larger values

for small volume flow rate (peristaltic pumping occurs in the region −1  Θ  1) and it gives

smaller values for large Θ i.e., augmented pumping occurs in the region 1  Θ  3 (see Figs.

68 69 611 and 612) whereas it has opposite behavior in Figs. 610 613 and 614.

Fig. 6.1 Fig. 6.2

Fig. 6.1: Pressure gradient  versus  for  when  = 05,  = 07,  = 12, 1 = 1,

 = 08,  = 4 and Θ = 01.
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Fig. 6.2: Pressure gradient  versus  for 1 when  = 05,  = 07,  = 12,  = 1,

 = 02,  = 4 and Θ = 01.

Fig. 6.3 Fig. 6.4

Fig. 6.3: Pressure gradient  versus  for  when  = 05,  = 07,  = 12,  = 01,

 = 4, 1 = 1 and Θ = 01.

Fig. 6.4: Pressure gradient  versus  for  when  = 05,  = 07,  = 12,  = 01,

1 = 1,  = 08 and Θ = 01.

Fig. 6.5 Fig. 6.6

Fig. 6.5: Pressure gradient  versus  for  when  = 05,  = 07,  = 4, 1 = 1,

 = 01,  = 08 and Θ = 01.

Fig. 6.6: Pressure gradient  versus  for  when  = 05,  = 12,  = 4, 1 = 1,

 = 01,  = 08 and Θ = 01.
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Fig. 6.7 Fig. 6.8

Fig. 6.7: Pressure gradient  versus  for  when  = 07,  = 12,  = 4, 1 = 1,

 = 01,  = 08 and Θ = 01.

Fig. 6.8: ∆ versus Θ for  when  = 05,  = 07,  = 12, 1 = 1,  = 08 and  = 4.

Fig. 6.9 Fig. 6.10

Fig. 6.9: ∆ versus Θ for 1 when  = 05,  = 07,  = 12,  = 01,  = 08 and  = 4.

Fig. 6.10: ∆ versus Θ for  when  = 05,  = 07,  = 12, 1 = 1,  = 01 and  = 4.
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Fig. 6.11 Fig. 6.12

Fig. 6.11: ∆ versus Θ for  when  = 05,  = 07,  = 12, 1 = 1,  = 08 and  = 01.

Fig. 6.12: ∆ versus Θ for  when  = 05,  = 07,  = 01, 1 = 1,  = 08 and  = 4.

Fig. 6.13 Fig. 6.14

Fig. 6.13: ∆ versus Θ for  when  = 05,  = 12,  = 01, 1 = 1,  = 08 and  = 4.

Fig. 6.14: ∆ versus Θ for  when  = 07,  = 12,  = 01, 1 = 1,  = 08 and  = 4.

6.5.2 Velocity behavior

This subsection addresses the behavior of velocity profile through Figs. 615 − 617. It is

observed that with the increase in  and 1 the velocity profile decreases in the narrow part

of the channel. However the velocity increases in the wider part of the channel (see Figs. 615

and 616). Opposite behavior is noted in Fig. 617 for different values of .
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Fig. 6.15 Fig. 6.16

Fig. 6.15: Velocity profile  for  when  = 05,  = 07,  = 12,  = 4,  = 02, 1 = 1,

Θ = 08 and  = 0.

Fig. 6.16: Velocity profile  for 1 when  = 05,  = 07,  = 12,  = 4,  = 02,  = 08,

Θ = 08 and  = 0.

Fig. 6.17

Fig. 6.17: Velocity profile  for  when  = 05,  = 07,  = 12,  = 4,  = 08, 1 = 1,

Θ = 08 and  = 0.

112



6.5.3 Temperature profile

Here the effects of various emerging parameters on the temperature profile  are discussed.

Figs. 618 and 622 show a decrease in the fluid temperature due to the increase in Weissenberg

number  and Biot number 1 (due to the convective condition at the upper wall) respec-

tively. It is worth mentioning to point out that the fluid temperature  generally increases when

the values of viscosity ratio parameter 1, the slip parameter , Brinkman number  and the

Biot number 2 (due to the convective condition at the lower wall) are increased (see Figs.

619− 621 and 623).

Fig. 6.18 Fig. 6.19

Fig. 6.18: Temperature profile  for  when  = 03,  = 05,  = 1,  = 4, Θ = 15,

 = 0,  = 08,  = 1, 1 = 1, 1 = 1 and 2 = 10.

Fig. 6.19: Temperature profile  for 1 when  = 03,  = 05,  = 1,  = 4, Θ = 15,  = 0,

 = 08,  = 1,  = 01, 1 = 1 and 2 = 10.
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Fig. 6.20 Fig. 6.21

Fig. 6.20: Temperature profile  for  when  = 03,  = 05,  = 1,  = 4, Θ = 15,  = 0,

 = 02,  = 1, 1 = 1, 1 = 1 and 2 = 10.

Fig. 6.21: Temperature profile  for  when  = 03,  = 05,  = 1,  = 4, Θ = 15,  = 0,

 = 08,  = 01, 1 = 1, 1 = 1 and 2 = 10.

Fig. 6.22 Fig. 6.23

Fig. 6.22: Temperature profile  for 1 when  = 03,  = 05,  = 1,  = 4, Θ = 15,

 = 0,  = 08,  = 1, 1 = 1,  = 01 and 2 = 10.

Fig. 6.23: Temperature profile  for 2 when  = 03,  = 05,  = 1,  = 4, Θ = 15,

 = 0,  = 08,  = 1, 1 = 1, 1 = 10 and  = 01.
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6.5.4 Trapping

In general the shape of streamlines is similar to that of a boundary wall in the wave frame

due to stationary walls. Nevertheless, some streamlines split and enclose a bolus under certain

conditions and this bolus moves as a whole with the wave. This phenomenon is known as

trapping. Figs. 624 and 625 show the streamlines for three different values of and viscosity

ratio parameter 1. The streamlines near the channel walls strictly follow the wall waves, which

are mainly generated by the relative movement of the walls. A bolus is formed in the center

region. These Figs. reveal that by increasing the values of  and 1 the size of the trapping

bolus decreases. Fig. 626 gives the sketch of the streamlines for various values of the slip

parameter . It is noticed that the size of the trapping bolus increases with an increase in the

slip parameter .
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(a) (b)

(c)

Fig. 6.24: Streamlines for (a)  = 01, (b)  = 05, (c)  = 09. The other parameters

are chosen as  = 05,  = 07,  = 1,  = 6, 1 = 1,  = 08 and Θ = 15.
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(a) (b)

(c)

Fig. 6.25: Streamlines for (a) 1 = 0, (b) 1 = 06, (c) 1 = 1. The other parameters are

chosen as  = 05,  = 07,  = 1,  = 6,  = 09,  = 08 and Θ = 15.
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(a) (b)

(c)

Fig. 6.26: Streamlines for (a)  = 03, (b)  = 08, (c)  = 1. The other parameters are chosen

as  = 05,  = 07,  = 1,  = 6, 1 = 1,  = 09 and Θ = 15.

6.6 Closing remarks

In this chapter peristaltic motion of Johnson-Segalman fluid in an asymmetric channel with con-

vective conditions is investigated. Behaviors of the velocity and temperature profiles, pumping

and trapping phenomena are discussed. It is noticed that Biot number at the lower wall 2,

viscosity ratio parameter 1, slip parameter  and Brinkman number  together enhance the

thermal stability of the flow. Further an increase in the Weissenberg number  and Biot

number at the upper channel wall 1 decrease the temperature profile.
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Chapter 7

Convective heat transfer analysis on

power-law fluid in a channel with

peristalsis

7.1 Introduction

The peristaltic flow of power law fluid in an asymmetric channel is discussed. The flow is

generated because of peristaltic waves propagating along the channel walls. Heat transfer is

examined through convective conditions of channel walls. Mathematical model is presented

employing lubrication approach. The differential equations governing the flow are nonlinear

and admit non-unique solutions. There exists two different physically meaningful solutions one

of which satisfying the boundary conditions at the upper wall and the other at the lower wall.

The effects of Biot numbers and the power-law nature of the fluid on the longitudinal velocity,

temperature and pumping characteristics are studied in detail. The streamlines pattern and

trapping are given due attention. Important conclusions have been pointed out.

7.2 Problem formulation and flow equations

The flow of incompressible power-law fluid in an asymmetric channel with convective effects

is considered (see Fig. 2.1). The ̄ and ̄ axes are selected along and perpendicular to the
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channel walls respectively. The flow created is due to the imposition of the following sinusoidal

waves:

̄1(̄ ̄) = 1 + 1 cos
2


(̄ − ̄) upper wall,

̄2(̄ ̄) = −2 − 2 cos

µ
2


(̄ − ̄) + 

¶
 lower wall. (7.1)

In above expressions  is the wave speed, 1 2 are the waves amplitudes,  is the wavelength,

1+2 the width of the asymmetric channel, the phase difference  varies in the range 0 ≤  ≤ .

Here  = 0 corresponds to symmetric channel with waves out of phase and  =  the waves

are in phase. Further 1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (7.2)

Conservation of mass for an incompressible fluid is given by

div V̄ = 0 (7.3)

The equations of motion and energy are


V̄

̄
= − grad ̄+ div S̄ (7.4)

 


̄
= ∇2 +Φ (7.5)

in which V̄ is the velocity,  is density of the fluid,


̄
is material time derivative,  the

fluid temperature,  the specific heat,  the thermal conductivity of the material, the viscous

dissipation effects Φ, ̄ the pressure, S̄ the extra stress tensor and ∇2 =
³

2

̄2 +
2

̄ 2

´
(the over

bar refers to a dimensional quantity).

The exchange of heat with ambient at the walls is given by




̄
= −1( − ) at ̄ = ̄1 (7.6)




̄
= −2( −  ) at ̄ = ̄2 (7.7)
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where 1 and 2 are the heat transfer coefficients at the upper and lower channel walls respec-

tively and  is the ambient temperature.

For two-dimensional flow of power-law fluid, we have the velocity V̄ and extra stress tensor

S̄ in the forms:

V̄ =
£
̄(̄̄ ̄)̄ (̄̄ ̄)0

¤
 (7.8)

S̄=
¯̄̄

¡
Ā1
¢2 ¯̄̄

Ā1 (7.9)

Ā1 = L̄+ L̄
∗ L̄ =grad V̄ (7.10)

Here Ā1 is the rate of deformation tensor,  the dynamic viscosity and L̄ is the velocity

gradient. Here  is the power-law index. The fluid behaves like shear-thinning or Newtonian

or shear-thickening according to whether   0 or  = 0 or   0.

If (̄ ̄) and (̄ ̄) are the coordinates and velocity components in the wave frame (̄ ̄)

then

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)−  ̄(̄ ̄) = ̄ (̄ ̄  ̄)  (̄ ̄) =  (̄ ̄  ̄)

(7.11)

Employing these transformations and introducing the dimensionless variables by

 =
̄


  =

̄

1
  =

̄


  =

̄


  =

1



µ
21
22

¶

̄

1 =
̄1

1
 2 =

̄2

1
  =

̄


 S =

1



µ
21
22

¶

S̄  =
 − 


(7.12)

and the stream function ( ) through

 =



  = −


 (7.13)

continuity equation (73) is identically satisfied while Eqs. (74) and (75) yield

Re

∙µ







− 







¶µ




¶¸
+




= 




+




 (7.14)

−3Re
∙µ








− 







¶µ




¶¸
+




= 2




+ 




 (7.15)
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Re

∙







− 







¸
 =

1

Pr

µ
2

2

2
+

2

2

¶


+

∙

2


( − ) +

µ
2

2
− 2

2

2

¶


¸
 (7.16)

where the components of extra stress tensor from Eq. (79) are

 = 2

"¯̄̄̄
¯42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶2 ¯̄̄̄¯
#

2


 (7.17)

 =

"¯̄̄̄
¯42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶2 ¯̄̄̄¯
#µ

2

2
− 2

2

2

¶
 (7.18)

 = −2
"¯̄̄̄
¯42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶2 ¯̄̄̄¯
#

2


 (7.19)

In the above equations the dimensionless wave number , the Reynolds number Re, the Prandtl

number Pr and the Eckert number  are defined respectively as

 =
1


 Re =

1



µ
21
22

¶

 Pr =




µ
21
22

¶

  =
2


 (7.20)

and Eqs. (76) and (77) give




+1 = 0 at  = 1, (7.21)




−2 = 0 at  = 2, (7.22)

where 1 = 11 and 2 = 21 are the Biot numbers at the upper and lower channel

walls respectively.

Under the assumption of long wavelength  ¿ 1 and low Reynolds number Re→ 0 [6], Eqs.

(714) and (715) become




=




 (7.23)




= 0 (7.24)

The above equation indicates that  is independent of . Eliminating the pressure  from (723)
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and (724) we get the following governing equation

2

2
= 0 (7.25)

Also Eq. (716) takes the form

2

2
+

µ
2

2

¶
 = 0 (7.26)

where

 = Pr ∗ (7.27)

and  is given by

 =

¯̄̄̄
2

2

¯̄̄̄2
2

2
 (7.28)

The dimensionless forms of  ( = 1 2) are

1() = 1 +  cos 2 2() = −−  cos(2+ ) (7.29)

where  = 11  = 21  = 21 and  satisfies the following relation

2 + 2 + 2 cos ≤ (1 + )2 (7.30)

The conditions for the dimensionless velocity in wave frame are

 = −1 at  = 1() and  = 2() (7.31)

7.3 Non-unique solutions of the problem

As the modulus sign appears in the leading equations, therefore the correct sign for this modulus

has to be chosen. The researchers who have solved their problems for symmetric channel

presented the solutions in the region between the middle line and the upper channel wall by

taking the advantage of the symmetry about the center line. We found that the solution

presented by such authors does not satisfy the conditions at lower channel wall because they
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have taken  root to find the solution and lead to a non-unique solution. To determine the

axial velocity in channel flow uniquely, a regularity condition is employed on the axis. Here

we have analyzed two appropriate non-unique solutions from Eqs. (723) − (726) and (728).
These solutions satisfy the corresponding boundary conditions.

The axial velocity attains a maximum value on the axis and similar regularity condition

extends to asymmetric channel geometry. Thus, we choose for our problem




= 0 for  =

1 + 2

2
 (7.32)

As the maximum velocity  is on the middle line, we have




 0 for  

1 + 2

2
 (7.33)

and




 0 for  

1 + 2

2
 (7.34)

Integrating (723) with respect to , removing modulus using (733), we have

µ
−


¶2+1
= −

µ



 + 1

¶
for  

1 + 2

2
(7.35)

Using (732) and taking  root (always to be taken for a positive quantity as the negative

quantities lead to complex values which are not physically meaningful), Eq. (735) can be

written as




=

¯̄̄̄




¯̄̄̄ −2
2+1 



µ
 − 1 + 2

2

¶ 1
2+1

  ≥ 1 + 2

2
 (7.36)

Integrating (736) with respect to  and using (731), we get

() =

µ
2+ 1

2+ 2

¶ ¯̄̄̄




¯̄̄̄ −2
2+1 



"µ
 − 1 + 2

2

¶2+2
2+1

−
µ
1 − 2

2

¶ 2+2
2+1

#
− 1  ≥ 1 + 2

2


(7.37)

Here the flow problem in an asymmetric channel is conducted, therefore, solution given in Eq.

(737) does not satisfy the condition at the lower channel wall  = 2 and can not be used for

  1+2
2
. In this region, a physically meaningful solution is found by using (731), (732) and
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(734) as follows:

() =

µ
2+ 1

2+ 2

¶ ¯̄̄̄




¯̄̄̄ −2
2+1 



"µ
1 + 2

2
− 

¶2+2
2+1

−
µ
1 − 2

2

¶ 2+2
2+1

#
− 1  ≤ 1 + 2

2


(7.38)

In order to study trapping phenomenon, a solution in terms of stream function ( = ) is

required. The volume flow rate  in wave frame of reference is given by

 =

Z 1

2

  =

Z 1

2




 = |=1 − |=2  (7.39)

 =

Z (1+2)2

2

  +

Z 1

(1+2)2

 

= −4+ 2

4+ 3

¯̄̄̄




¯̄̄̄ −2
2+1 



µ
1 − 2

2

¶4+3
2+1

− (1 − 2) (7.40)

Thus we take the boundary conditions for  as

|=1 = 2 |=2 = −2 and

 = 0 at  = (1 + 2)2 (7.41)

Therefore the solution in terms of stream function satisfying the boundary conditions (741) is

obtained as

 = −
µ
4+ 3

4+ 4

¶
( + 1 − 2)

µ
2

1 − 2

¶ 4+3
2+1

×

⎡⎢⎣
³
2+1
4+3

´³
 − 1+2

2

´ 4+3
2+1

−
³
1−2
2

´ 2+2
2+1

³
 − 1+2

2

´
⎤⎥⎦−µ − 1 + 2

2

¶
  ≥ 1 + 2

2
 (7.42)

 =

µ
4+ 3

4+ 4

¶
( + 1 − 2)

µ
2

1 − 2

¶ 4+3
2+1

×

⎡⎢⎣
³
2+1
4+3

´³
1+2
2
− 

´ 4+3
2+1

−
³
1−2
2

´ 2+2
2+1

³
1+2
2
− 

´
⎤⎥⎦−µ1 + 2

2
− 

¶
  ≤ 1 + 2

2
 (7.43)
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When the power-law index ‘’ takes the value 0, our solutions (742) and (743) reduce to a

single unique solution given by

 = −2( + 1 − 2)

(1 − 2)3

×
⎡⎣ ³

 − 1+2
2

´3
−3
³
1−2
2

´2 ³
 − 1+2

2

´
⎤⎦−µ − 1 + 2

2

¶
 2 ≤  ≤ 1 (7.44)

This solution coincides with that of Mishra and Rao [27] for peristaltic flow of a Newtonian

fluid in an asymmetric channel.

From Eq. (740), we have




= −

µ
4+ 3

4+ 2

¶2+1
|− ( + 1 − 2)|2( + 1 − 2)

µ
2

1 − 2

¶4+3
 (7.45)

The instantaneous flux  in the laboratory frame is

 =

Z 1

2

(+ 1) =

Z 1

2

 +

Z 1

2



=  + 1 − 2 (7.46)

The average flux over one period (Ω = ) of the peristaltic wave is

Θ =
1

Ω

Z Ω

0

 =
1

Ω

Z Ω

0

( + 1 − 2) =  + 1 +  (7.47)
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Also the solution of Eq. (726) subject to boundary conditions (721) and (722) is given by

() = − 1

(3(3+ 2)(4+ 3))
[2
−6+5
2+1

µ




¶2
(2+ 1)

¯̄̄̄




¯̄̄̄− 4
2+1

×{1(1 − 2)
2+3
2+14(−1 +2(2 − )) +2(−1 + 2)

2+3
2+1

×5(1 +1(1 − )) +3(2+ 1)(−1 + 2 + 2)
4(+1)

2+1

×(2− 1
2+1




(−1 − 2 + 2)

1
2+1

¯̄̄̄




¯̄̄̄− 2
2+1

)2}]  ≥ 1 + 2

2
(7.48)

() =
1

(3(3+ 2)(4+ 3))
[2
−6+5
2+1

µ




¶2
(2+ 1)

¯̄̄̄




¯̄̄̄− 4
2+1

×{1(1 − 2)
2+3
2+15(1 +1(1 − )) +2(−1 + 2)

2+3
2+1

×4(−1 +2(2 − ))−3(2+ 1)(1 + 2 − 2)
4(+1)

2+1

×(2− 1
2+1




(1 + 2 − 2)

1
2+1

¯̄̄̄




¯̄̄̄− 2
2+1

)2}]  ≤ 1 + 2

2
(7.49)

where

1 =

Ã
2
− 1
2+1

µ




¶
(1 − 2)

1
2+1

¯̄̄̄




¯̄̄̄− 2
2+1

!2


2 =

Ã
2
− 1
2+1

µ




¶
(−1 + 2)

1
2+1

¯̄̄̄




¯̄̄̄− 2
2+1

!2


3 = 1 +2 +12(1 − 2)

4 = 8 + 12+1(1 − 2)(2+ 1)

5 = 8 + 12+2(1 − 2)(2+ 1)

7.4 Results and discussion

This section deals with the graphical results for various parameters involved in the solution

such as the power-law fluid parameter , phase difference , Brinkman number  and Biot

numbers 1 and 2. Fig. 7.1 reveals the effects of phase difference  on pressure gradient

 for different values of . We observed that by increasing the values of phase difference

 the pressure gradient  decreases. It is also noted that the magnitude of the pressure

gradient for shear-thickening fluid ( = 005) is larger when compared to that of Newtonian
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( = 000) and shear-thinning ( = −005) fluids. Fig. 7.2 shows the effects of power-law fluid
parameter  on pressure gradient . It is found that the pressure gradient  is higher

for a shear-thinning fluid ( = −005) than for a shear-thickening fluid ( = 000) in the wider

part of the channel whereas the pressure gradient  for a Newtonian fluid ( = 000)

lies between. On the other hand, the opposite behavior is observed in the narrow part of the

channel i.e. the pressure gradient  is higher for the shear-thickening ( = 005) fluid when

compared to the shear-thinning ( = −005) fluid in the narrow part of the channel. However
the case of Newtonian fluid ( = 000) lies in between. Figs. 7.3 and 7.4 are plotted to see the

effects of power law fluid parameter  and phase difference  on pressure rise per wavelength

∆ versus the flow rate Θ. It is observed that the pressure rise per wavelength ∆ is larger

for shear-thickening ( = 005) fluid when compared to that of a Newtonian ( = 000) and

shear-thinning ( = −005) fluids in the peristaltic pumping region (∆  0Θ  0) and free

pumping region (∆ = 0). While in the copumping region (∆  0Θ  0), the pressure rise

per wavelength ∆ is larger for the shear-thinning ( = −005) fluid when compared with that
of the shear-thickening ( = 005) fluid. Whereas the case of a Newtonian fluid ( = 000)

lies in between. Hence it indicates that pumping increases as the fluid character changes from

shear-thinning to Newtonian and then to shear-thickening. Fig. 7.4 (a-c) illustrates that the

pressure rise per wavelength ∆ decreases in the peristaltic pumping region while it increases

in the copumping region when we increase the phase difference . It is also demonstrated that

the pressure rise per wavelength ∆ is larger in magnitude for shear-thickening ( = 005)

fluid when compared with that of the Newtonian ( = 000) and shear-thinning ( = −005)
fluids for various values of phase difference .

The effects of various values of power-law fluid parameter  on the longitudinal velocity

() are shown in Fig. 7.5. It is evident from this Fig. that the magnitude of the longitudinal

velocity () is larger at the center of channel for the shear-thinning ( = −005) fluid when
compared to that for the Newtonian ( = 000) and shear-thickening ( = 005) fluids. Also

the magnitude of the longitudinal velocity () is larger near the channel walls for the shear-

thickening ( = 005) fluid than the shear-thinning ( = −005) fluid. The case of a Newtonian
fluid ( = 000) lies in between. Fig. 7.6 (a-c) shows the effects of Brinkman number  on

temperature profile () with variation in the power-law fluid parameter . It is confirmed
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that by increasing the values of Brinkman number  the temperature profile () increases

gradually. It is also noteworthy that the temperature profile () for shear-thinning ( =

−001) fluid is larger in magnitude when compared to that of Newtonian ( = 000) and

shear-thickening ( = 001) fluids when we increase the values of Brinkman number  (see

Fig. 7.6 (a-c)). Fig. 7.7 is sketched to see the effects of power-law fluid parameter  on the

temperature profile (). It is noticed that the temperature profile () is larger for a shear-

thinning ( = −003) fluid when compared with a shear-thickening ( = 003) fluid. The case

of Newtonian fluid ( = 000) lies in between. Fig. 7.8 (a-c) is plotted to perceive the effects of

Biot number 1 on the temperature profile () for shear thinning ( = −001, Fig. 7.8 (a)),
Newtonian ( = 000, Fig. 7.8 (b)) and shear-thickening ( = 001, Fig. 7.8 (c)) fluids. The

temperature profile () decreases gradually by increasing values of Biot number 1 near the

upper wall while it has no significant effect near the lower wall of the channel. It is also noted

that the temperature profile () for a shear-thinning ( = −001) fluid is higher in magnitude
than that of the Newtonian ( = 000) and shear-thickening ( = 001) fluids. Fig. 7.9 (a-c)

witnesses that the temperature profile () decreases when we increase the Biot number 2

near the lower wall of the channel whereas it has no significant effect near the upper wall of

the channel. Here we have considered the non-uniform temperature fields within the fluid as

the values of the Biot numbers are much larger than 001 because the problems with uniform

temperature fields within the fluid (i.e. when Biot number is less than 001) are simple in

nature.

Another interesting phenomenon of peristalsis is trapping, the formulation of internally

circulating bolus of fluid which moves along with the wave. The effects of power-law fluid

parameter  on the streamlines in the wave frame for  = 03  = 05  = 1  = 4

and Θ = 131 show that the trapped bolus appearing in the center region and the bolus size

decreases as the power-law fluid parameter  decreases (see Fig. 7.10). We observe that the

streamlines for different phase shifts  and different with  = 05  = 05  = 1 and Θ = 127

produce results similar to those given by Mishra and Rao [27], where the trapped bolus shifts

towards left and decreases in size as  increases (see Figs. 7.11 and 7.12). Further the trapping

is more for shear-thickening fluid when compared with shear-thinning fluid. Fig. 7.13 shows

the streamlines for shear-thinning fluid with  = 03  = 05  = 1 and Θ = 127 for different
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values of . It is revealed that trapping exists only for  = 0 and the trapping disappears as

 increases. Whereas for shear-thickening fluid the trapping exists for all phase shifts  even

when walls are moving in phase ( = ) (see Fig. 7.14).

Fig. 7.1 (a) Fig. 7.1 (b)

Fig. 7.1 (c)

Fig. 7.1: Variation in  for  when  = 03  = 05  = 1, Θ = 02 with (a)  = −005,
(b)  = 000 and (c)  = 005.
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Fig. 7.2 Fig. 7.3

Fig. 7.2: Variation in  for  when  = 03  = 05  = 1 Θ = 02 and  = 4

Fig. 7.3: Variation in ∆ versus Θ for  when  = 03  = 05  = 1 and  = 4
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Fig. 7.4 (a) Fig. 7.4 (b)

Fig. 7.4 (c)

Fig. 7.4: Variation in ∆ versus Θ for  when  = 03  = 05,  = 1 with (a)  = −005,
(b)  = 000 and (c)  = 005.
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Fig. 7.5

Fig. 7.5: Longitudinal velocity () for  when  = 03  = 05  = 1 Θ = 02 and  = 4
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Fig. 7.6 (a) Fig. 7.6 (b)

Fig. 7.6 (c)

Fig. 7.6: Temperature profile () for  when  = 03  = 05  = 1 Θ = 02  = 4

1 = 8, 2 = 10 with (a)  = −001, (b)  = 000 and (c)  = 001.
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Fig. 7.7

Fig. 7.7: Temperature profile () for  when  = 03  = 05  = 1 Θ = 02  = 4

1 = 8 2 = 10 and  = 15
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Fig. 7.8 (a) Fig. 7.8 (b)

Fig. 7.8 (c)

Fig. 7.8: Temperature profile () for 1 when  = 03  = 05  = 1 Θ = 02  = 4

 = 15, 2 = 10 with (a)  = −001, (b)  = 000 and (c)  = 001.
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Fig. 7.9 (a) Fig. 7.9 (b)

Fig. 7.9 (c)

Fig. 7.9: Temperature profile () for 2 when  = 03  = 05  = 1 Θ = 02  = 4

 = 15, 1 = 10 with (a)  = −001, (b)  = 000 and (c)  = 001.
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(a) (b)

(c)

Fig. 7.10: The streamlines in wave frame for (a)  = −005 (b)  = 000 and (c)  = 005
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(a) (b)

(c) (d)

Fig. 7.11: The streamlines in wave frame for symmetric channel when  = −005 with (a)
 = 0 (b)  = 4 (c)  = 2 and (d)  = .
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(a) (b)

(c) (d)

Fig. 7.12: The streamlines in wave frame for symmetric channel when  = 005 with (a)

 = 0 (b)  = 4 (c)  = 2 and (d)  = .
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(a) (b)

(c) (d)

Fig. 7.13: The streamlines in wave frame for asymmetric channel when  = −005 with (a)
 = 0 (b)  = 4 (c)  = 2 and (d)  = .
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(a) (b)

(c) (d)

Fig. 7.14: The streamlines in wave frame for asymmetric channel when  = 005 with (a)

 = 0 (b)  = 4 (c)  = 2 and (d)  = .

7.5 Concluding remarks

We have presented the peristaltic motion of power-law fluid in an asymmetric channel with

convective conditions at the channel walls. Closed form non-unique solutions of velocity, tem-

perature and stream function are computed. By choosing different material parameters, the

behaviors of the shear-thinning, shear-thickening and Newtonian fluids are compared and dis-

cussed. Typical features of peristaltic flow, e.g. pumping and trapping, are observed from the

presented results. The thermal study reveals that a combined increase in Biot numbers and

power-law fluid parameter decreases the temperature of fluid. On the other hand the Brinkman
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number enhances the temperature of fluid.
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Chapter 8

Exact solution for peristaltic

transport of micropolar fluid in a

channel with convective conditions

and heat source/sink

8.1 Introduction

This chapter investigates the peristaltic transport of an incompressible micropolar fluid in an

asymmetric channel with heat source/sink and convective boundary conditions. Mathematical

formulation is completed in a wave frame of reference. Long wavelength and low Reynolds

number approach is adopted. The solutions for velocity, microrotation component, axial pres-

sure gradient, temperature, stream function and pressure rise over a wavelength are obtained.

Velocity and temperature distributions are analyzed for different parameters of interest.

8.2 Flow equations

We consider the peristaltic transport of an incompressible micropolar fluid in a two-dimensional

asymmetric channel of width 1+ 2 (see Fig. 2.1). In Cartesian coordinate system the ̄-axis

is taken along the walls of the channel and ̄ -axis perpendicular to the ̄-axis. The flow created
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is due to the propagation of sinusoidal waves parallel to the channel walls. The shapes of such

waves are given by

̄1(̄ ̄) = 1 + 1 cos
2


(̄ − ̄) upper wall,

̄2(̄ ̄) = −2 − 2 cos

µ
2


(̄ − ̄) + 

¶
 lower wall. (8.1)

In above expressions  is the wave speed, 1 2 are the waves amplitudes,  is the wavelength,

1 + 2 is the width of the asymmetric channel, the phase difference  varies in the range

0 ≤  ≤  ( = 0 corresponds to symmetric channel with waves out of phase and  =  the

waves are in phase) and further 1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (8.2)

Let (̄  ̄ ) be the velocity components in a fixed frame of reference (̄ ̄ ). The flow in fixed

frame of reference is unsteady. However if observed in a coordinate system moving at the wave

speed  (wave frame) (̄ ̄) it can be treated as steady. The coordinates and velocities in the

two frames are related through the following expressions:

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)− 

̄(̄ ̄) = ̄ (̄ ̄  ̄)  (̄ ̄) =  (̄ ̄  ̄) (8.3)

where ̄ and ̄ indicate the velocity components in the wave frame.

The equations governing without body force and body couple are given by

div v̄ = 0 (8.4)

(v̄∇)v̄ = −∇̄+ ∗∇× w̄ + (+ ∗)∇2v̄ (8.5)

̄(v̄∇)w̄ = −2∗w̄+ ∗∇× v̄− ̆(∇×∇× w̄) + (̆+ ̌+ ̆)∇(∇w̄) (8.6)

 


̄
= ∇2 +0 (8.7)

in which v̄ is the velocity, w̄ the microrotation vector, ̄ the fluid pressure,  the fluid density,

̄ the microgyration parameter, ̄ the material time derivative,  the fluid temperature, 
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the specific heat,  the thermal conductivity of the material, the constant heat source/sink

parameter 0, and ∇2 =
³

2

̄2 +
2

̄ 2

´
(The overbar refers to a dimensional quantity). The

material constants  ∗ ̆ ̌ and ̆ satisfy the following inequalities [43]

2+ ∗ ≥ 0 ∗ ≥ 0 3̆+ ̌+ ̆ ≥ 0 ̆ ≥ |̌|  (8.8)

The exchange of heat with the ambient temperature at the walls through Newton’s law of

cooling is given by

−
̄

= 1( − ) at ̄ = ̄1 (8.9)

−
̄

= 2( −  ) at ̄ = ̄2 (8.10)

in which  is the ambient temperature and 1and 2 are heat transfer coefficients at the upper

and lower channel walls respectively.

For the flow under consideration, the velocity field is v̄ = (̄ ̄ 0) and microrotation vector

is w̄ = (0 0 ̄). We introduce dimensionless variables, the Reynolds number (Re), the wave

number (), Prandtl number (Pr) and the Biot numbers as follows:

 =
̄


  =

̄

1
  =

̄


  =

̄


  =

1̄




 =



̄  =

21̄


  =

̄

21
  =

1


 1 =

̄1

1


2 =
̄2

1
  =

 − 


 Re =

1

0
 Pr =







0
=

0
2
1


 1 =

11


 2 =

21


 (8.11)
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The dimensionless formulation gives




+




= 0 (8.12)

Re 

µ




+ 





¶
 = −


+

1

1−

µ




+ 2

2

2
+

2

2

¶
 (8.13)

Re 

µ




+ 





¶
 = −


+

2

1−

µ
− 


+ 2

2

2
+

2

2

¶
 (8.14)

Re (1−)



µ




+ 





¶
 = −2 +

µ
2



− 



¶
+
2−

2

µ
2
2

2
− 2

2

¶
 (8.15)

RePr 

µ




+ 





¶
 = 2

2

2
+

2

2
+ 

0
 (8.16)




+1 = 0 at  = 1, (8.17)




−2 = 0 at  = 2, (8.18)

where  = ∗(+∗) is the coupling number (0 ≤  ≤ 1), 2 = 21
∗(2+∗)(̆(+∗)) is

the micropolar parameter [43], 
0
is the dimensionless heat source/sink parameter and ̆ ̌ do

not appear in the governing equation as the microrotation vector is solenoidal. These equations

reduce to the classical Navier-Stokes equation when ∗ −→ 0

Equations (812)−(816) subject to long wavelength and low Reynolds number assumptions
yield




+




= 0 (8.19)





+

2

2
= (1−)




 (8.20)




= 0 (8.21)

−2 − 


+

µ
2−

2

¶
2

2
= 0 (8.22)

2

2
+ 

0
= 0 (8.23)
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where Eq. (821) indicates that  6= ().

The conditions in wave frame of reference are

 = −1 at  = 1()  = 2() (8.24)

 = 0 at  = 1()  = 2() (8.25)

where

1() = 1 +  cos(2) 2() = −−  cos(2+ ) (8.26)

8.3 Exact solution

With the help of Eq. (821), Eq. (820) can be written in the following form

2

2
=





µ
(1−)




 −

¶
 (8.27)

Integration of the above equation yields




= (1−)




 − + 1 (8.28)

Putting above equation in Eq. (822) we get

2

2
−2 = 21 + 2(1−)




 (8.29)

The general solution of Eq. (829) is

 = −
21

2
− 2

2
(1−)




 +2 cosh + 3 sinh (8.30)

Through Eqs. (828) and (830) we have

 =
1

2

µ
1 +

2

2

¶
(1−)


2+1

µ
1 +

2

2

¶
−2


sinh−3


cosh+4 (8.31)

in which 1−4 are the constants of integration and 2 = 2(2−).

The arbitrary constants involved in Eq. (831) can be found with the help of boundary
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conditions (824) and (825) and are given by

1 =
7

26




 2 =

8

26




 3 =

9

−46



 4 =

10

46




+

11

46
 (8.32)

The exact solution of the energy equation (823) is given by

 = 5
2 + 6 + 7 (8.33)

in which the constants 5−7 can be found with the help of boundary conditions (817) and

(818) and are given by

5 = −
0

2
 6 =

13

212
 7 = − 14

212
 (8.34)

Using

 =

1()Z
2()



we find that




=

 − 11
46
(1 − 2)


 (8.35)

where

 =
2

3
(31 − 32) +

17

26
(21 − 22) +

38

46
(cosh1 − cosh2)

− 39

46
(sinh1 − sinh2) +

10

46
(1 − 2) (8.36)

The corresponding stream function is

 =
11

46
 +





∙
2

3

3
+

17

6

2

2
+

38

46
cosh − 39

46
sinh +

10

46


¸
 (8.37)
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where

1 =
1

2

µ
1 +

2

2

¶


2 = 1(1−)

3 = −

 4 = − 2

2
 5 = 4(1−)

6 = (1 − 2)1 cosh

µ
1 − 2

2

¶
− 34 sinh

µ
1 − 2

2

¶


7 = −(1 + 2)

∙
(1 − 2)2 cosh

µ
1 − 2

2

¶
− 35 sinh

µ
1 − 2

2

¶


¸


8 = (1 − 2) csc

µ
1 − 2

2

¶
[345(cosh2 − cosh1) + (1 + 2)24 sinh1

+215(1 sinh2 − 2 sinh1)− (1 − 2)24 sinh2]

9 = (1 − 2) csc

µ
1 − 2

2

¶
[(1 + 2)24(cosh1 − cosh2)

+215(2 cosh1 − 1 cosh2) + 345(sinh2 − sinh1)]

10 = csc

µ
1 − 2

2

¶
[−235(21 + 22)

¡
234(

2
1 + 22)− 412135

¢
× cosh(1 − 2)+ 2135(

2
1 + 22)

+(1 − 2) sinh(1 − 2)
¡
21212 − 2345

¢
]

11 = csc

µ
1 − 2

2

¶
 [234(cosh(1 − 2)− 1)− 2(1 − 2)1 sinh(1 − 2)] 

12 = (2 +1(−1 +2(1 − 2))) 

13 = 221 +1 (−22 +2(2 + (1 − 2)(1 + 2)))

14 = 21(1 +22) + 21 − 1(2 +2(−21 + 2))

+11(1 +212 − 2(2 +22))

The dimensionless expression for the pressure rise per wavelength ∆ is

∆ =

Z 1

0

µ




¶
 (8.38)
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8.4 Shear stress distribution at the walls

It is interesting to note that the stress tensor of the micropolar fluid is not symmetric. The

non-dimensional shear stresses in the problem under consideration are given by

 =



− 

1−
 (8.39)

 =
1

1−




+



1−
 (8.40)

8.5 Results and discussion

To discuss qualitatively the influence of embedding parameters of interest on flow quantities

such as velocity () and temperature distribution (), we have prepared Tables 81− 85 and
Figs. 81− 84. The effects of various parameters on pressure gradient , pressure rise per
wavelength ∆, shear stresses at upper and lower walls and pumping and trapping are already

investigated in ref. [74]. Hence we avoid to include such results here. Tables 81 and 82 show

the effects of  and  on velocity profile. It is observed from the tabulated values that the

velocity profile increases near the center of the channel and it has opposite behavior near the

channel walls for increasing values of  and  . Fig. 81 discloses that by increasing the value

of 1 the temperature profile () decreases near the upper wall while it has no significant

effect near the lower wall of channel. Also the temperature () decreases near the lower wall

by increasing the Biot number 2 and it has no effect on temperature profile near the upper

wall of the channel (see Fig. 82). Figs. 83 and 84 portray the temperature distribution for

different values of 
0
. It is found that the temperature distribution decreases when there is a

sink and it increases when there is an external source. These results for different values of 1,

2 and 
0
are also confirmed from Tables 83− 85 respectively.
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Table 81: Values of the axial velocity  at  = −05 for  = 05  = 05  = 1 Θ = 12
 = 2 and  = 03

  = −1  = −08  = −06  = −05  = −02  = 0  = 01  = 03  = 05

3 -1 0.0470 0.7982 1.0528 1.3092 1.0528 0.7982 0.0470 -1

5 -1 0.0384 0.7991 1.0579 1.3188 1.0579 0.7991 0.0384 -1

7 -1 0.0359 0.8006 1.0600 1.3208 1.0600 0.8006 0.0359 -1

Table 82: Values of the axial velocity  at  = −05 for  = 05  = 05  = 1 Θ = 12
 = 2 and  = 4

  = −1  = −08  = −06  = −05  = −02  = 0  = 01  = 03  = 05

0.3 -1 0.0417 0.7985 1.0558 1.3153 1.0558 0.7985 0.0417 -1

0.4 -1 0.0335 0.7983 1.0602 1.3251 1.0602 0.7983 0.0335 -1

0.5 -1 0.0247 0.7980 1.0649 1.3357 1.0649 0.7980 0.0247 -1

Fig. 8.1 Fig. 8.2

Fig. 8.1: Plot showing  versus . Here  = −05  =  = 05  = 1 Θ = 12  = 2

2 = 10 and 
0
= 05.

Fig. 8.2: Plot showing  versus . Here  = −05  =  = 05  = 1 Θ = 12  = 2

1 = 10 and 
0
= 05.
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Fig. 8.3 Fig. 8.4

Fig. 8.3: Plot showing  versus  for heat sink. Here  = −05  =  = 05  = 1 Θ = 12

 = 2 1 = 8 and 2 = 10.

Fig. 8.4: Plot showing  versus  for heat source. Here  = −05,  =  = 05  = 1 Θ = 12

 = 2 1 = 8 and 2 = 10.

Table 83: Values of the temperature  at  = −05 for  =  = 05  = 1 Θ = 12  = 2

2 = 10 and 
0
= 05

1  = −1  = −08  = −06  = −05  = −02  = 0  = 01  = 03  = 05

1 0.05048 0.14144 0.21240 0.24038 0.29432 0.30529 0.30327 0.28423 0.24519

2 0.04464 0.12392 0.18321 0.20536 0.24177 0.24107 0.23321 0.20250 0.15179

3 0.04202 0.11608 0.17013 0.18965 0.21823 0.21228 0.20181 0.16586 0.10991

Table 84: Values of the temperature  at  = −05 for  =  = 05  = 1 Θ = 12  = 2

1 = 10 and 
0
= 05

2  = −1  = −08  = −06  = −05  = −02  = 0  = 01  = 03  = 05

1 0.24519 0.28423 0.30327 0.30529 0.28135 0.24038 0.21240 0.14144 0.05048

2 0.15179 0.20250 0.23321 0.24107 0.23464 0.20536 0.18321 0.12392 0.04464

3 0.10991 0.16586 0.20181 0.21228 0.21370 0.18965 0.17013 0.11608 0.04202
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Table 85: Values of the temperature  at  = −05 for  =  = 05  = 1 Θ = 12  = 2

1 = 8 and 2 = 10


0

 = −1  = −08  = −06  = −05  = −02  = 0  = 01  = 03  = 05

-1 -0.076 -0.208 -0.300 -0.332 -0.365 -0.337 -0.308 -0.220 -0.092

-2 -0.152 -0.416 -0.601 -0.663 -0.730 -0.674 -0.616 -0.440 -0.185

-3 -0.228 -0.625 -0.901 -0.994 -1.094 -1.011 -0.924 -0.661 -0.277

1 0.076 0.208 0.300 0.332 0.365 0.337 0.308 0.220 0.092

2 0.152 0.416 0.601 0.663 0.730 0.674 0.616 0.440 0.185

3 0.228 0.625 0.901 0.994 1.094 1.011 0.924 0.661 0.277

8.6 Concluding remarks

A mathematical model subject to long wavelength and low Reynolds number approximations is

presented in order to study the effects of convective boundary conditions on peristaltic transport

of micropolar fluid in an asymmetric channel with heat source/sink. Solution expressions of

stream function, longitudinal velocity, temperature and pressure gradient are developed. It is

concluded that velocity has maximum value near  = −02 (due to asymmetry of the channel)
while it decreases near the channel boundaries for increasing values of  and  . The thermal

study discloses that with increase in Biot numbers at the lower wall 2 and the upper wall 1,

the fluid temperature decreases. It is worth mentioning that when we take very large values of

Biot numbers, the case of prescribed surface temperature is deduced. It is also found that the

temperature increases (decreases) when there is an increase in heat source (sink) parameter.
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Chapter 9

Peristaltic flow of Sisko fluid in an

asymmetric channel with convective

boundary conditions

9.1 Introduction

This chapter deals with the peristaltic flow of Sisko fluid in an asymmetric channel with si-

nusoidal wave propagating down its walls. The channel walls in heat transfer process sat-

isfy the convective conditions. The flow and heat transfer equations are modeled and non-

dimensionalized. Analysis has been carried out subject to long wavelength and low Reynolds

number considerations. The shear-thinning and shear-thickening properties of Sisko fluid in

the present nonlinear analysis are examined. Comparison between the results of Sisko and vis-

cous fluids is given. Velocity and temperature distributions, pressure gradient and streamline

pattern are addressed with respect to different parameters of interest. Pumping and trapping

phenomena are also analyzed.

9.2 Problem formulation and flow equations

We consider the flow of an incompressible Sisko fluid in an asymmetric channel (see Fig. 2.1).

The ̄ and ̄ axes are selected along and perpendicular to the channel walls respectively. The
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flow created is due to the following sinusoidal waves:

̄1(̄ ̄) = 1 + 1 cos
2


(̄ − ̄) upper wall,

̄2(̄ ̄) = −2 − 2 cos

µ
2


(̄ − ̄) + 

¶
 lower wall. (9.1)

In above expressions  is the wave speed, 1 2 are the waves amplitudes,  is the wavelength,

1 + 2 is the width of the asymmetric channel, the phase difference  varies in the range

0 ≤  ≤  ( = 0 corresponds to symmetric channel with waves out of phase and  =  the

waves are in phase) and further 1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (9.2)

Incompressibility condition gives

div V̄ = 0 (9.3)

The equations of motion and energy are


V̄

̄
= − grad ̄+ div S̄ (9.4)

 


̄
= ∇2 + τ̄ (grad V̄) (9.5)

in which V̄ is the velocity,  is density of the fluid, ̄ is material time derivative, body forces

are absent,  the fluid temperature,  the specific heat,  the thermal conductivity of the

material, the Cauchy stress tensor τ̄ = −̄Ī+ S̄, ̄ the pressure, S̄ the extra stress tensor and
∇2 =

³
2

̄2 +
2

̄ 2

´
(The overbar refers to a dimensional quantity).

The exchange of heat with ambient at the channel walls can be expressed in the forms




̄
= −1( − 1) at ̄ = ̄1 (9.6)




̄
= −2( − 0) at ̄ = ̄2 (9.7)

where 1and 2, 1 and 0 are the heat transfer coefficients and the temperatures at the upper

and lower channel walls respectively.
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For two-dimensional flow of Sisko fluid, we have the velocity V̄ and extra stress tensor S̄ in

the forms:

V̄ = (̄(̄̄ ̄)̄ (̄̄ ̄)0) (9.8)

S̄=

∙
̃+ ̃

¯̄̄p
Π̄

¯̄̄̃−1¸
Ā1 (9.9)

Ā1 = L̄+ L̄
∗ L̄ = grad V̄, Π̄ =

1

2
(Ā21) (9.10)

Here Ā1 is the rate of deformation tensor, Π̄ the second invariant of the symmetric part of the

velocity gradient, ̃ ̃ and ̃ the material parameters defined differently for different fluids.

Note that for ̃ = 1 ̃ =  ̃ = 0 or ̃ = 0 ̃ =  the Newtonian fluid model is recovered, and

for ̃ = 0 the power-law model can be obtained.

If (̄ ̄) and (̄ ̄) are the coordinates and velocity components in the wave frame (̄ ̄)

then we define

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)−  ̄(̄ ̄) = ̄ (̄ ̄  ̄)  (̄ ̄) =  (̄ ̄  ̄)

(9.11)

where (̄ ̄ ) are the coordinates in the fixed frame. Employing these transformations and

introducing the following dimensionless variables

 =
̄


  =

̄

1
  =

̄


  =

̄


  =

21̄


 ∗ =

̃

̃(1)̃−1


1 =
̄1

1
 2 =

̄2

1
  =

̄


 S =

1


S̄  =

 − 0

1 − 0
(9.12)

and the stream function ( ) by

 =



  = −


 (9.13)

Eq. (93) is satisfied identically and Eqs. (94) and (95) yield

Re

∙µ







− 







¶µ




¶¸
+




= 




+




 (9.14)

−3Re
∙µ








− 







¶µ




¶¸
+




= 2




+ 




 (9.15)
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Re

∙







− 







¸
 =

1

Pr

µ
2

2

2
+

2

2

¶


+

∙

2


( − ) +

µ
2

2
− 2

2

2

¶


¸
 (9.16)

where the components of extra stress tensor from Eq. (99) are

 = 2

⎡⎣1 + ∗
¯̄̄̄
¯42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶¯̄̄̄
¯
2(̃−1)2⎤⎦ 2


 (9.17)

 =

⎡⎣1 + ∗
¯̄̄̄
¯42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶¯̄̄̄
¯
2(̃−1)2⎤⎦µ2

2
− 2

2

2

¶
 (9.18)

 = −2
⎡⎣1 + ∗

¯̄̄̄
¯42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶¯̄̄̄
¯
2(̃−1)2⎤⎦ 2


 (9.19)

In the above equations the dimensionless wave number , the Reynolds number Re, the Prandtl

number Pr and the Eckert number  are defined respectively as follows:

 =
1


 Re =

1


 Pr =




  =

2

(1 − 0)
 (9.20)

Now Eqs. (96) and (97) give




+1( − 1) = 0 at  = 1, (9.21)




+2 = 0 at  = 2, (9.22)

where 1 = 11 and 2 = 21 are the Biot numbers. Under the assumptions of long

wavelength  ¿ 1 and low Reynolds number Re→ 0 [6], Eqs. (914) and (915) become




=




 (9.23)




= 0 (9.24)

The above equation indicates that  is independent of . Eliminating the pressure  from Eqs.
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(923) and (924) we get

2

2
= 0 (9.25)

Also Eq. (916) gives

2

2
+

µ
2

2

¶
 = 0 (9.26)

where the Brinkman number  is

 = Pr (9.27)

and  is given by

 =

Ã
1 + ∗

¯̄̄̄
2

2

¯̄̄̄(̃−1)!
2

2
 (9.28)

The quantity

µ
1 + ∗

¯̄̄
2
2

¯̄̄(̃−1)¶
is called apparent viscosity. When the apparent viscosity

decreases with increasing shear rate, we call the fluid shear-thinning. In the opposite case

where the apparent viscosity increases as the fluid is subjected to a higher shear rate, the fluid

is called shear-thickening. It turns out that the material relation (928) describes shear-thinning

fluids for ̃  1 and shear-thickening fluids for ̃  1. For ̃ = 1, it reduces to Newtonian fluids.

The conditions for the dimensionless stream function in wave frame are

 =


2





= −1 at  = 1() (9.29)

 = −
2





= −1 at  = 2() (9.30)

with

 =

Z 1()

2()




 = (1())− (2()) (9.31)

The dimensionless forms of  ( = 1 2) are

1() = 1 +  cos(2) 2() = −−  cos(2+ ) (9.32)

9.3 Method of solution

The resulting equation (925) is highly non-linear. For arbitrary values of parameters involving

in this equation, the general solution in closed form seems impossible. Attention is thus focused
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to the series solution for small parameter ∗. For that we expand , , ,  and  as follows:

 = 0 + (
∗)1 + 

 = 0 + (
∗)1 + 

 = 0 + (
∗)1 +  (9.33)

 = 0 + (
∗)1 + 

 = 0 + (
∗)1 + 

Substitution of above equations into Eqs. (921−926), (928), (929), (930) and then collecting
the terms of like powers of ∗ we have:

9.3.1 Zeroth order system

40
4

= 0 (9.34)

20

2
+

µ
20
2

¶
0 = 0 (9.35)

0


=

30
3

 (9.36)

0 =
0

2

0


= −1 0


+1(0 − 1) = 0 at  = 1() (9.37)

0 =
−0
2


0


= −1 0


+20 = 0 at  = 2() (9.38)
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9.3.2 First order system

2

2

"µ
20
2

¶̃

+
21
2

#
= 0 (9.39)

21

2
+

"
2

µ
20
2

¶µ
21
2

¶
+

µ
20
2

¶̃+1
#
= 0 (9.40)

1


=





"µ
20
2

¶̃

+
21
2

#
 (9.41)

1 =
1

2

1


= 0
1


+11 = 0 at  = 1() (9.42)

1 =
−1
2


1


= 0
1


+21 = 0 at  = 2() (9.43)

In the next two subsections we will develop the solutions of above systems.

9.3.3 Zeroth order solution

The solutions of Eqs. (934) and (935) subject to the boundary conditions (937) and (938)

are

0 = 1
3 +2

2 +3 +4 (9.44)

0 = 1
4 +2

3 +3
2 +4 +5 (9.45)
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where

1 =
−2(0 + 1 − 2)

(1 − 2)3


2 =
3(0 + 1 − 2)(1 + 2)

(1 − 2)3


3 =
−31 − 6012 − 3212 + 3122 + 32

(1 − 2)3


4 =
−(1 + 2)(212(−1 + 2) + 0(

2
1 − 412 + 22))

2(1 − 2)3


1 = 2 +1(−1 +2(1 − 2))

2 = 321
2
1 + 3112 +22 3 = 3

2
2

2
1 + 3212 +22

4 = 3(41 − 42)
2
1 + 4(

3
1 − 32)12 + 2(

2
1 − 22)

2
2

5 = 1 +22 6 = −4125 7 = 9
2
2

2
1 + 8212 + 2

2
2

8 = 3 + 212 +22

9 = −3(31 − 432)21 − 4(21 − 322)12 − 2(21 − 22)
2
2

10 = 3(−31 + 32)
2
1 + 4(−21 + 22)12 + 2(−1 + 2)

2
2

1 = −321 2 = −412 3 = −222

4 =
1

1
[4212 +1{−423 +2(1 +4)}]

5 =
1

1
[{6 + 2(7 +58)}+1{−1 +19 +22(−1 +110)}]

The longitudinal velocity and pressure gradient are given by

0 = 31
2 + 22 +3 (9.46)

0


= 61 (9.47)

The non-dimensional pressure rise per wavelength (∆0) is given by

∆0 =

1Z
0

0


 (9.48)

We note that the solution expressions at this order correspond to the Newtonian fluid.
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9.3.4 First order solution

Substituting Eq. (944) into Eqs. (939−941), solving the resulting equations and then applying
the corresponding boundary conditions we get the solutions for 1 1, 1 and 1 in the

forms given below.

1 =
1

611(1 − 2)3
[3111

¡
16 − 622 + 43 + 31(22 − 42 + 22)

¢
+2̃+1{222173 − 32212(19 − 3̃113)− 3222(20 −21)

+32(312(22 − 2(2 + 31)̃) +22(12 − (2 + 31)̃)

−9212(23 + (2 + 31)̃)) + 31(24 − 312(25 − 2(2 + 31)̃)

+921
2(26 + (2 + 31)

̃) +22(−13 + (2 + 31)̃)− 321(27

+̃(28 +29)))− 321(30 − 22117(31 +32) +1
2(33 +34)

+2(−3212(35 − 3(2 + 31)̃) +22(−13 + (2 + 31)̃)

+12(36 + 6(2 + 31)
̃))) + 31(−22(20 +37) + 217(38

+39 +40
2) + 321(−27 + ̃(41 +42)) + 22(−3212(43

−3(2 + 31)̃) +22(−12 + (2 + 31)̃)

+12(44 + 6(2 + 31)
̃)))}] (9.49)

1 = 1 +2 +3
2 +4(2 + 31)

̃+1 (9.50)

1


= − 2

(1 − 2)311
[6111 + 2

̃{14 + 222(12 −13) + 3212((̃+ 2)12

+(̃− 2)13) + 311(15 −2((̃− 2)12 + (̃+ 2)13))}] (9.51)
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with

11 = (2 + 3̃+ ̃2)21 12 = (311 +2)
̃

13 = (321 +2)
̃ 14 = −9̃21(2112 + 2213)

15 = (̃− 2)12 + (̃+ 2)13 16 = 31 − 3212 + 22

17 = 12 −13 18 = 12 +13

19 = 2(417 + ̃(12 +18)) 20 = 217

21 = 1(12 +17 + ̃18) 22 = (̃+ 2)12

23 = (̃− 1)13 24 = 9
2
2

2
1(−17 + ̃18)

25 = (̃+ 2)13 26 = (̃− 1)12

27 = −6117 28 = −213

29 = 6118 30 = 3
2
2

2
1(17 + ̃18)

31 = (̃− 4)2 32 = 3(̃+ 2)1

33 = −2(−417 + ̃(18 +13)) 34 = 3̃112

35 = (̃− 1)12 + (2̃+ 4)13 36 = (2̃− 8)12 + (̃+ 2)13

37 = 1(−217 + ̃18) 38 = 2
2
2

39 = (̃− 4)12 40 = 3(̃+ 2)
2
1 41 = −212

42 = 31(12 + 213) 43 = (2̃+ 4)12 + (̃− 1)13

44 = (̃+ 2)12 + (2̃− 8)13
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1 =
1

11(1 − 2)3
[−611112 + 2̃1712(38 +32121)

−2̃1{2712(21 + 22) + ̃29
3
12 − ̃421

3
2 + (25

3
1

−2(−3621 + 2(441 +222)))2}]

2 =
2

11(1 − 2)3
[3111(1 − 2) + 2

̃{173912 +1(−3321
+326

3
11 − 2(−335211 + 2(19 + 3(431 +232)1)))

−20(1 + 2)2}]

3 =
1

11(1 − 2)3
[6111 + 2

̃{3174012 − 334211
+9̃13

2
2

2
1 − 33712 + 32122 + 21722}]

4 =
2̃(̃+ 2)1

11


Also

1 = 1(2 + 31)
̃+3 + 2

4 + 3
3 + 4

2 (9.52)

with

1 =
2̃+1

911

µ
6(̃+ 1)

̃+ 3
+

11

(̃+ 2)(̃+ 3)21

¶


2 =
21

11(1 − 2)3
[6111 + 2

̃{3114012 − 334211
+913

2
2̃

2
1 − 33712 + 32122 + 21722}]

3 =
4

311(1 − 2)3
[3111(311 − 321 + 22)

+2̃{−321(3321 − 326311 + 2(−335211
+2(19 + 3(431 +232)1)))− 31(3421
+20(1 + 2)− 31322̃1)2 + 3(−371 +212)

2
2

+17(339121 + 340122 + 2
3
2)}]

4 =
−42

11(1 − 2)3
[3111(2 − 1) + 2

̃{−173912
+1(33

2
1 − 326311 + 2(−335211 + 2(19

+3(431 +232)1))) +20(1 + 2)2}]
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The pressure rise per wavelength (∆1) is given by

∆1 =

2Z
0

1


 (9.53)

The perturbation expressions of   ∆ and  upto (∗)1 are

 = 0 + (
∗)1

 = 0 + (
∗)1




=

0


+ (∗)

1




∆ = ∆0 + (
∗)∆1  (9.54)

9.4 Results and discussion

9.4.1 Pumping characteristics

In this section the perturbed results of the Sisko fluid model are illustrated in Figs. 91− 96.
The variations of  for fixed values of involved parameters are sketched in the Figs. 91−93.
The variation of axial pressure gradient () for various values of the Sisko fluid parameter

∗ is depicted in Fig. 91. The material parameter ∗ occurring in the governing equation

specifies the ratio of a power-law part to a viscous part in a Sisko fluid if ̃ 6= 1 In the case

of ̃ 6= 1, ∗ = 0 denotes a viscous fluid. It is observed from Fig. 91 that a negative pressure

gradient in the wider part of the channel assists the flow, whereas in the narrow part positive

pressure gradient repels the flow. Pumping of the peristalsis is more dominant in this case

and flow is in the peristaltic direction. Fig. 92 is plotted to serve the effects of variation of

the phase difference  on . This Fig. reveals that the longitudinal pressure gradient

 decreases by increasing the phase difference . In Fig. 93 the axial distribution of

the pressure gradient is portrayed for three different values of ̃. An interesting phenomenon

observed from Fig. 93 is that the fluctuation in pressure gradient for a shear thickening fluid

(̃  1) is typically much higher than that for a shear thinning fluid ((̃  1) although all

these phenomena reported above are alike for the Newtonian (̃ = 1)), shear-thinning and
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shear-thickening fluids. Their difference can be observed without any difficulty from the total

pressure rise per one wavelength. Note that the definition of pressure rise involves integration

of . The arising integral is not solvable analytically. Therefore the involved integral has

been computed numerically. Figs. 94 − 96 illustrate the relation between pressure rise per
wavelength ∆ and flow rate Θ for various values of 

∗,  and ̃, respectively. It is observed

that ∆ increases by increasing ∗ and ̃ (Figs. 94 and 96) and decreases with increasing

 (Fig. 95). Effects of Sisko fluid parameter and phase differences are displayed in the Figs.

94 and 95 only for a shear-thickening fluid (̃ = 15). There is a linear relationship between

∆ and Θ for a Newtonian fluid as revealed in Fig. 96. A much greater pressure gradient is

required for a shear thickening fluid (̃  1) when compared with a shear thinning fluid (̃  1).

The case for a Newtonian fluid (̃ = 1) lies in-between.

Fig. 9.1 Fig. 9.2

Fig. 9.1: Plot of  for ∗ with  = 10,  = 07,  = 12, ̃ = 15,  = 2 and Θ = 1.

Fig. 9.2: Plot of  for  with  = 10,  = 07,  = 12, ̃ = 15, ∗ = 02 and Θ = 1.
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Fig. 9.3 Fig. 9.4

Fig. 9.3: Plot of  for ̃ with  = 10,  = 07,  = 12, ∗ = 02,  = 2 and Θ = 1.

Fig. 9.4: Plot of ∆ versus Θ for 
∗ with  = 10,  = 07,  = 12, ̃ = 15 and  = 4.

Fig. 9.5 Fig. 9.6

Fig. 9.5: Plot of ∆ versus Θ for  with  = 10,  = 07,  = 12, ̃ = 15 and ∗ = 02.

Fig. 9.6: Plot of ∆ versus Θ for ̃ with  = 10,  = 07,  = 12, ∗ = 02 and  = 4.

9.4.2 Velocity behavior

Figs. 97() and 97() display the effects of ∗ on the velocity  for two different values of the

power-law exponent ̃ = 05 and ̃ = 15, respectively. It can be interpreted that an increase

in ∗strengthens the power law effect of the Sisko fluid under observation. When we consider

the case of ̃ = 05, the boundary layers become thinner as ∗ increases. On the other hand, an
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increase in ∗ thickens the boundary layer for the case when ̃ = 15. The axial velocity profile

is shown in Fig. 9.8 for three different values of power law index ̃. Here, to better observe

the effect of rheology of fluid, we investigate a shear-thinning fluid (̃ = 05) and a shear-

thickening fluid (̃ = 15) and compare the corresponding results with those of a Newtonian

fluid. Apparently, sharp boundary layer is not developed near the walls of the channel for shear

thickening fluid (̃ = 15), whereas two thin boundary layers are formed near both walls of the

channel for shear thinning fluid (̃ = 05). Behavior of Newtonian fluid (̃ = 1) lies in-between.

Fig. 9.7 (a) Fig. 9.7 (b)

Fig. 9.7 (a): Plot of  for ∗ with  = 06,  = 03,  = 10,  = 4, Θ = 1,  = 0 and ̃ = 05.

Fig. 9.7 (b): Plot of  for ∗ with  = 06,  = 03,  = 10,  = 4, Θ = 1,  = 0 and ̃ = 15.
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Fig. 9.8

Fig. 9.8: Plot of  for ̃ with  = 06,  = 03,  = 10,  = 4, Θ = 1,  = 0 and ∗ = 02.

9.4.3 Temperature profile

Here the effects of various emerging parameters on the temperature profile  are discussed.

Figs. 99 and 910 show an increase in the fluid temperature due to convective conditions

(only for shear thickening fluid). It is noteworthy that the fluid temperature generally increases

with increasing values of the material parameter ∗ and the Brinkman number . Fig. 911

illustrates the effects of Biot number 1 on temperature profile  (for shear thickening fluid

̃ = 15). This Fig. reveals that by increasing the value of Biot number 1 the temperature

profile  decreases at the upper wall of the channel while it does not show any effect near the

lower wall of channel. Fig. 912 illustrates the effects of Biot number 2 on temperature

profile  (for shear thickening fluid ̃ = 15). It is observed that the temperature  increases

near the lower wall by increasing the Biot number 2. The effect of different power values ̃

on the temperature can also be clearly observed from Fig. 913. This Fig. indicates that the

temperature for a shear thickening fluid (̃ = 15) is higher than that of a shear thinning fluid

(̃ = 05). Also temperature for a Newtonian fluid (̃ = 1) lies above these two.
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Fig. 9.9 Fig. 9.10

Fig. 9.9: Plot of  for ∗ with  = 03,  = 03,  = 06,  = 4, Θ = 1,  = 0 ̃ = 15,

 = 05, 1 = 1 and 2 = 10.

Fig. 9.10: Plot of  for  with  = 03,  = 03,  = 06,  = 4, Θ = 1,  = 0, ̃ = 15,

∗ = 02, 1 = 1 and 2 = 10.

Fig. 9.11 Fig. 9.12

Fig. 9.11: Plot of  for 1 with  = 03,  = 03,  = 06,  = 4, Θ = 1,  = 0, ̃ = 15,

 = 05, ∗ = 02 and 2 = 10.

Fig. 9.12: Plot of  for 2 with  = 03,  = 03,  = 06,  = 4, Θ = 1,  = 0, ̃ = 15,

 = 05, ∗ = 02 and 1 = 10.
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Fig. 9.13

Fig. 9.13: Plot of  for ̃ with  = 03,  = 03,  = 06,  = 4, Θ = 1,  = 0, ∗ = 02,

 = 05, 1 = 1 and 2 = 10.

9.4.4 Trapping

In general the shape of streamlines is similar to that of a boundary wall in the wave frame

as the walls are stationary. However, some of the streamlines split and enclose a bolus under

certain conditions and this bolus moves as a whole with the wave. This phenomenon is known

as trapping. Fig. 914 shows the streamlines for three different power values ̃ = 05 (panels

(), ()), ̃ = 1 (panels (), ()) and ̃ = 15 (panels (), ()) with two phase differences  = 0

(left panels) and  = 2 (right panels). The streamlines near the channel walls strictly follow

the wall waves, which are mainly generated by the relative movement of the walls. In the center

region a bolus is formed. Comparisons among the flow fields obtained with different values of 

show that the bolus rotation is faster for a shear-thickening fluid (panels () and ()) than that

for a shear-thinning fluid (panel () and ()). The case of a Newtonian fluid lies in between.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9.14: Streamlines for ̃ = 05 (panels (a), (b) for shear thinning fluid), ̃ = 1 (panels (c),

(d) for Newtonian fluid) and ̃ = 15 (panels (e), (f) for shear thickening fluid) for two values

of the wall phase difference  = 0 (left panels) and  = 2 (right panels). The other

parameters are chosen as  = 05,  = 07,  = 1, ∗ = 01 and Θ = 15.
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9.5 Concluding remarks

In this chapter the peristaltic motion of the Sisko fluid in an asymmetric channel with con-

vective conditions at the walls is investigated. By choosing different material parameters, the

behaviors of the shear-thinning, shear-thickening and Newtonian fluids are compared and dis-

cussed. Typical features of peristaltic flow, e.g. pumping and trapping, are observed from the

presented perturbed results. The thermal study reveals that a combine increase in Biot num-

bers, Brinkman number and non-Newtonian parameter enhances the thermal stability of the

flow. To the best of our knowledge, such observation has never been reported for the peristaltic

flows.
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Chapter 10

Peristaltic motion of Carreau fluid

in a channel with convective

boundary conditions

10.1 Introduction

Peristaltic motion of Carreau fluid in an asymmetric channel with convective boundary condi-

tions is investigated here. Mathematical formulation is first reduced in a wave frame of reference

and then solutions are constructed. Results of the stream function, axial pressure gradient,

temperature and pressure rise over a wavelength are obtained for small Weissenberg number.

Velocity and temperature distributions are analyzed for different parameters of interest. A

comparative study between the results of Newtonian and Carreau fluids is made.

10.2 Flow description

Consider the problem for an incompressible Carreau fluid in a two-dimensional asymmetric

channel of width 1 + 2 (see Fig. 2.1). The ̄ and ̄ axes are the rectangular coordinates

with ̄-axis along the walls of the channel and ̄ -axis perpendicular to the ̄-axis. The flow
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created is due to the imposition of the following sinusoidal waves:

̄1(̄ ̄) = 1 + 1 cos
2


(̄ − ̄) upper wall,

̄2(̄ ̄) = −2 − 2 cos

µ
2


(̄ − ̄) + 

¶
 lower wall. (10.1)

In above expressions  is the wave speed, 1 2 are the wave amplitudes,  is the wavelength,

1 + 2 is the width of the asymmetric channel and the phase difference  varies in the range

0 ≤  ≤  ( = 0 corresponds to symmetric channel with waves out of phase and  =  the

waves are in phase). Further 1 2 1 2 and  satisfy the condition

21 + 22 + 212 cos ≤ (1 + 2)
2 (10.2)

The Carreau fluid depends upon the shear rate by the following equation

τ̄ = −
∙
∞ + (0 − ∞)

³
1 +

¡
Γ̇
¢2´ ̃−1

2

¸
̇ (10.3)

where τ̄ is the extra stress tensor, ∞ the infinite shear-rate viscosity, 0 the zero shear-rate

viscosity, Γ the time constant, ̃ the dimensionless power law index and ̇ is defined as

̇ =

s
1

2

X


X


̇ ̇ =

r
1

2
Π (10.4)

Here Π is the second invariant of strain-rate tensor. Consider the constitutive equation (103)

in the case for which ∞ = 0, and so we can write

τ̄ = −0
∙
1 +

³
Γ̆̇
´2¸ ̃−12

̇ (10.5)
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Note that the above model reduces to Newtonian model for ̃ = 1 or Γ = 0. Here

̄ ̄̄ = −0
∙
1 +

µ
̃− 1
2

¶
Γ̆2̇

2
¸
̄

̄


̄ ̄̄ = −0
∙
1 +

µ
̃− 1
2

¶
Γ̆2̇

2
¸µ

̄

̄
+

̄

̄

¶


̄ ̄ ̄ = −0
∙
1 +

µ
̃− 1
2

¶
Γ̆2̇

2
¸
̄

̄


Incompressibility condition gives

div V̄ = 0 (10.6)

The equations of motion and energy are


V̄

̄
= − grad ̄+ div τ̄  (10.7)

 


̄
= ∇2 + τ̄ (grad V̄) (10.8)

where V̄ is the velocity,  the density of fluid,


̄
the material time derivative,  the fluid

temperature,  the specific heat,  the thermal conductivity of the material, the Cauchy stress

tensor τ̄ , ̄ the pressure and∇2 =
³

2

̄2 +
2

̄ 2

´
(The over bar refers to a dimensional quantity).

Heat exchange at the walls is expressed as




̄
= −1( − 1) at ̄ = ̄1 (10.9)




̄
= −2( − 0) at ̄ = ̄2 (10.10)

where 1and 2, 1 and 0 are the heat transfer coefficients and the temperatures at the upper

and lower channel walls respectively. For two-dimensional flow of Carreau fluid, we have the

velocity V̄ in the form

V̄ = (̄(̄̄ ̄)̄ (̄̄ ̄)0) (10.11)
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The transformations between laboratory and wave frames are

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)− 

̄(̄ ̄) = ̄ (̄ ̄  ̄)  (̄ ̄) =  (̄ ̄  ̄) (10.12)

Introducing

 =
̄


  =

̄

1
  =

̄


  =

̄


  =




̄  =

21̄

0
  =

Γ̆

1


1 =
̄1

1
 2 =

̄2

1
  =

̄


 =



0
τ̄ ̄̄ =

1

0
τ̄ ̄̄ ̇ =

̇1




 =
1

0
τ̄ ̄̄  =

 − 0

1 − 0
  =

1


 Re =

1

0
 Pr =






 =
2

(1 − 0)
 (10.13)

along with Eq. (1012) and defining the stream function ( ) by

 =



  = −


 (10.14)

equation (106) is satisfied identically and Eqs. (107) and (108) yield

Re

∙µ







− 







¶µ




¶¸
+




= −2


− 


 (10.15)

−3Re
∙µ








− 







¶µ




¶¸
+




= −2


− 




 (10.16)

Re

∙







− 







¸
 =

1

Pr

µ
2

2

2
+

2

2

¶


+

∙

2


( − ) +

µ
2

2
− 2

2

2

¶


¸
(10.17)

where the components of extra stress tensor through Eq. (105) are

 = −2
∙
1 +

̃− 1
2

2̇2
¸
2


 (10.18)
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 = −
∙
1 +

̃− 1
2

2̇2
¸µ

2

2
− 2

2

2

¶
 (10.19)

 = 2

∙
1 +

̃− 1
2

2̇2
¸
2


 (10.20)

̇ =

"
22

µ
2



¶2
+

µ
2

2
− 2

2

2

¶2
+ 22

µ
2



¶2# 12
 (10.21)

Here , Re, , Pr and  are the wave, Reynolds, Weissenberg, Prandtl and Eckert numbers

respectively. Equations (109) and (1010) give




+1( − 1) = 0 at  = 1, (10.22)




+2 = 0 at  = 2, (10.23)

where 1 = 11 and 2 = 21 are the Biot numbers.

Long wavelength  ¿ 1 and low Reynolds number assumptions yield




=





"Ã
1 +

̃− 1
2

2
µ
2

2

¶2!
2

2

#
 (10.24)




= 0 (10.25)

The above equation indicates that  6= (). Eliminating the pressure  from Eqs. (1024) and

(1025) we get the governing equation for the stream function in the form

2

2

"Ã
1 +

̃− 1
2

2
µ
2

2

¶2!
2

2

#
= 0 (10.26)

Also Eq. (1017) becomes

2

2
+

µ
2

2

¶2 "
1 +

̃− 1
2

2
µ
2

2

¶2#
= 0 (10.27)

where the Brinkman number

 = Pr (10.28)
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The subjected conditions are

 =


2





= −1 at  = 1() (10.29)

 = −
2





= −1 at  = 2() (10.30)

10.3 Perturbation solution

For perturbation solution, we expand , ,  and  as follows:

 = 0 +21 +(4)

 = 0 +21 +(4)

 = 0+2(1) +(4)

 = 0 +21 +(4)

Substitution of above equations into Eqs. (1022− 1024), (1026), (1027), (1029), (1030) and
then collecting the terms of like powers of 2 we arrived at

10.3.1 System of order 0

40
4

= 0 (10.31)

20

2
+

µ
20
2

¶2
= 0 (10.32)

0


=

30
3

 (10.33)

0 =
0

2

0


= −1 0


+1(0 − 1) = 0 at  = 1() (10.34)

0 =
−0
2


0


= −1 0


+20 = 0 at  = 2() (10.35)
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10.3.2 System of order 2

41
4

+

µ
̃− 1
2

¶
2

2

µ
20
2

¶3
= 0 (10.36)

21

2
+

"
2

µ
20
2

¶µ
21
2

¶
+

µ
̃− 1
2

¶µ
20
2

¶4#
= 0 (10.37)

1


=

31
3

+

µ
̃− 1
2

¶




µ
20
2

¶3
 (10.38)

1 =
1

2

1


= 0
1


+11 = 0 at  = 1() (10.39)

1 =
−1
2


1


= 0
1


+21 = 0 at  = 2() (10.40)

10.3.3 Solution for system of order 0

The solutions of the Eqs. (1031) and (1032) subject to the boundary conditions (1034) and

(1035) are

0 = 1
3 +2

2 +3 +4 (10.41)

0 = 1
4 +2

3 +3
2 +4 +5 (10.42)

where

1 =
−2(0 + 1 − 2)

(1 − 2)3


2 =
3(0 + 1 − 2)(1 + 2)

(1 − 2)3


3 =
−31 − 6012 − 3212 + 3122 + 32

(1 − 2)3


4 =
−(1 + 2)(212(−1 + 2) + 0(

2
1 − 412 + 22))

2(1 − 2)3

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1 = 2 +1(−1 +2(1 − 2))

2 = 321
2
1 + 3112 +22 3 = 3

2
2

2
1 + 3212 +22

4 = 3(41 − 42)
2
1 + 4(

3
1 − 32)12 + 2(

2
1 − 22)

2
2

5 = 1 +22 6 = −4125 7 = 9
2
2

2
1 + 8212 + 2

2
2

8 = 3 + 212 +22

9 = −3(31 − 432)21 − 4(21 − 322)12 − 2(21 − 22)
2
2

10 = 3(−31 + 32)
2
1 + 4(−21 + 22)12 + 2(−1 + 2)

2
2

1 = −321 2 = −412 3 = −222

4 =
1

1
[4212 +1{−423 +2(1 +4)}]

5 =
1

1
[{6 + 2(7 +58)}+1{−1 +19 +22(−1 +110)}]

The longitudinal velocity and pressure gradient are

0 = 31
2 + 22 +3 (10.43)

0


= 61 (10.44)

The non-dimensional pressure rise per wavelength (∆0) is given by

∆0 =

1Z
0

0


 (10.45)

We note that the solution expressions at this order are for the Newtonian fluid.
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10.3.4 Solution for system of order 2

Putting Eq. (1041) into Eqs. (1036−1038), solving the resulting equations and then employ-
ing the corresponding boundary conditions we have

1 = 1
5 +2

4 +3
3 +4

2 +5 +6 (10.46)

1 = 51
4 + 42

3 + 33
2 + 24 +5 (10.47)

1


= − 2

5(1 − 2)3
[301 − (1 − 2)

3(−1 + ̃)(3(1 + 2)1 + 22)

×(9(221 + 12 + 2
2
2)

2
1 + 15(1 + 2)12 + 5

2
2)] (10.48)

1 = 1
6 + 2

5 + 3
4 + 4

3 + 5
2 + 6 + 7 (10.49)

1 = −27
5
(−1 + ̃)31

2 = −9(−1 + ̃)212

3 = − 1

5(1 − 2)3
[101 − 9(1 − 2)

3(−1 + ̃)21(3(3
2
1 + 412 + 3

2
2)1 + 10(1 + 2)2))

4 =
1

5(1 − 2)3
[3(51(1 + 2)− 3(1 − 2)

3(−1 + ̃)21(6(1 + 2)(
2
1 + 312 + 22)1

+5(21 + 412 + 22)2))]

5 = − 1

5(1 − 2)3
[312(101 − 3(1 − 2)

3(−1 + ̃)21(3(4
2
1 + 712 + 4

2
2)1

+10(1 + 2)2))]

6 = − 1

10(1 − 2)3
[51(1 + 2)(

2
1 − 412 + 22)

+1821(1 − 2)
322(−1 + ̃)21(6(1 + 2)1 + 52)]

1 = −4
5
1(101 + 27(−1 + ̃)31)

2 = −4
5
(512 + 91(2 + 6(−1 + ̃)212))

3 = −2(331 + 22(2 + 9(−1 + ̃)212))

4 = −4(41 +32 + 4(−1 + ̃)1
3
2

5 = −42(4 + (−1 + ̃)32)
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6 =
2

51
[−212{6421(101 + 27(−1 + ̃)31) + 102(4 + (−1 + ̃)32)

+152(41 +32 + 4(−1 + ̃)1
3
2) + 5

3
2(512 + 91(2 + 6(−1 + ̃)212))

+1022(331 + 22(2 + 9(−1 + ̃)212))}+2{21611(101 + 27(−1 + ̃)31)

+2012(4 + (−1 + ̃)32) + 10
2
1(332 +4(31 +12) + (−1 + ̃)32

×(121 +12)) + 5
4
1(2(51 + 54(−1 + ̃)31)2 + 22(91 +12)

+311(3 + 6(−1 + ̃)1
2
2)) + 10

3
1(3(61 +12) + 42(2

+9(−1 + ̃)212) +11(4 + 4(−1 + ̃)32)) + 2
5
1(51(121 +12)

+9(18(−1 + ̃)41 +11(2 + 6(−1 + ̃)212))}−1
2
2(

4
2(2011

+54(−1 + ̃)41) + 102(4 + (−1 + ̃)32) + 102(41 +32

+4(−1 + ̃)1
3
2) + 2

3
2(512 + 91(2 + 6(−1 + ̃)212)) + 5

2
2(331 + 22(2

+9(−1 + ̃)212)))}]
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7 =
2

51
[21

6
1(1 +22)1(101 + 27(−1 + ̃)31) + 10

2
1(1 +22)(332

+4(31 +12) + (−1 + ̃)32(121 +12)) + 5
4
1(1 +22)(2(51

+54(−1 + ̃)31)2 + 22(91 +12) + 311(3 + 6(−1 + ̃)1
2
2))

+1031(1 +22)(3(61 +12) + 42(2 + 9(−1 + ̃)212)

+11(4 + 4(−1 + ̃)32)) + 2
5
1(1 +22)(51(121 +12)

+9(18(−1 + ̃)41 +11(2 + 6(−1 + ̃)212)))− 2{22521(101 + 27(−1 + ̃)31)

+202(4 + (−1 + ̃)32) + 102(332 +4(31 +22) + (−1 + ̃)32(121 +22))

+532(2(51 + 54(−1 + ̃)31)2 + 22(91 +22) + 321(3 + 6(−1 + ̃)1
2
2))

+1022(3(61 +22) + 42(2 + 9(−1 + ̃)212) +21(4 + 4(−1 + ̃)32)) + 2
4
2

×(51(121 +22) + 9(18(−1 + ̃)41 +21(2 + 6(−1 + ̃)212)))}

−1{−20(1 +22)2(4 + (−1 + ̃)32) +12(22
5
21(101 + 27(−1 + ̃)31)

+202(4 + (−1 + ̃)32) + 102(332 +4(31 +22) + (−1 + ̃)32(121 +22))

+532(2(51 + 54(−1 + ̃)31)2 + 22(91 +22) + 321(3 + 6(−1 + ̃)1
2
2))

+1022(3(61 +22) + 42(2 + 9(−1 + ̃)212) +21(4 + 4(−1 + ̃)32))

+242(51(121 +22) + 9(18(−1 + ̃)41 +21(2 + 6(−1 + ̃)212))))}]

The pressure rise per wavelength (∆1) is

∆1 =

2Z
0

1


 (10.50)

The perturbation expressions of   ∆ and  upto 2 are

 = 0 +21

 = 0 +21




=

0


+2

1




∆ = ∆0 +2∆1  (10.51)
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10.4 Results and discussion

To discuss qualitatively the behavior of embedding parameters of interest on flow quantities such

as longitudinal velocity  and temperature distribution , we have prepared Figs. 101− 109.
The effects of various parameters on pressure gradient , pressure rise per wavelength ∆

and pumping and trapping are already investigated by Ali and Hayat [75] . Hence we avoid

to include such results here. However the longitudinal velocity for different values of , ̃, 

and Θ have been plotted in Figs. 91 − 94. Effects of  and ̃ on the longitudinal velocity

are indicated in the Figs. 101 and 102. These Figs. depict that velocity for Newtonian fluid

(when  = 00 and ̃ = 1) is greater than the Carreau fluid (when  = 03, 04 and

̃ = 0398, 0496) in the narrow part of the channel. But in wider part of the channel we

witness the opposite behavior. Fig. 103 designates the effect of phase angle  on longitudinal

velocity . This Fig. directs to the result that  decreases when  increases and such behavior

is quite opposite in the other region. In Fig. 104, the effect of Θ on longitudinal velocity is

shown. It is perceived that with an increase in Θ, the velocity increases. Fig. 105 confirms

an increase in fluid temperature with maximum value along the centerline and minimum at

the walls due to convective conditions. It is interesting to note that the fluid temperature

generally increases with increasing values of the Brinkman number . Actually Brinkman

number  involves viscous dissipation effects which are due to the energy production and thus

temperature enhances. Fig. 106 discloses that by increasing the value of 1 the temperature

profile  decreases at the upper wall while it has no significant effect near the lower wall of

channel. Also the temperature  increases near the lower wall by increasing the Biot number

2 and it has no effect on temperature profile near the upper wall of the channel (see Fig.

107). Here we have considered the values of Biot numbers much larger than 0.1 due to non-

uniform temperature fields within the fluid. However problems involving small Biot numbers

are thermally simple due to the uniform temperature fields within the fluid. Fig. 108 portrays

the temperature distribution for numerous values of . It is found that the temperature

distribution is larger for the Newtonian fluid ( = 0) when compared with the Carreau fluid

( = 02 04). Similar behavior is observed for the power-law index ̃ in Fig. 109. Here for

̃ = 1 (Newtonian fluid), the temperature distribution is greater than the Carreau fluid (when

̃ = 0398 0496). The behaviors of parameters on the heat transfer coefficient at the upper
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wall have been observed in the Figures 1010− 1013. The heat transfer coefficient is denoted
by () = (1)(1) which actually defines the rate of heat transfer or heat flux at the upper

wall. The heat transfer coefficient () increases when the values of Brinkman number  are

set to be increased (see Fig. 1010). Here  = 0 shows the absence of viscous dissipation

effects. It is also note worthy that heat transfer coefficient () is higher when we consider

the viscous dissipation effects (i.e. when  6= 0). According to Fig. 1011 the heat transfer

coefficient () decreases by increasing . Also heat transfer coefficient () is higher for

Newtonian fluid ( = 0) than the Carreau fluid ( 6= 0). It is interesting to note that the
heat transfer coefficient () increases for increasing values of Biot number 1 and 2 (see

Figs. 1012 and 1013).

Fig. 10.1 Fig. 10.2

Fig. 10.1: Plot showing  versus . Here  = 06,  = 03,  = 11, Θ = 4,  = 6,  = 025

and ̃ = 0398.

Fig. 10.2: Plot showing  versus . Here  = 06,  = 03,  = 11, Θ = 4,  = 6,  = 025

and  = 04.
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Fig. 10.3 Fig. 10.4

Fig. 10.3: Plot showing  versus . Here  = 06,  = 03,  = 11, Θ = 4, ̃ = 0398,  = 025

and  = 04.

Fig. 10.4: Plot showing  versus . Here  = 06,  = 03,  = 11,  = 6, ̃ = 0398,

 = 025 and  = 04.

Fig. 10.5 Fig. 10.6

Fig. 10.5: Plot showing  versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15, ̃ = 0398,

1 = 1, 2 = 10,  = 02 and  = 01.

Fig. 10.6: Plot showing  versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15, ̃ = 0398,

 = 1, 2 = 10,  = 02 and  = 03.
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Fig. 10.7 Fig. 10.8

Fig. 10.7: Plot showing  versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15, ̃ = 0398,

1 = 10,  = 1,  = 02 and  = 03.

Fig. 10.8: Plot showing  versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15, ̃ = 0398,

1 = 1, 2 = 10,  = 02 and  = 1.

Fig. 10.9

Fig. 10.9: Plot showing  versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15,  = 1,

1 = 1, 2 = 10,  = 02 and  = 01.
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Fig. 10.10 Fig. 10.11

Fig. 10.10: Plot showing () versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15,

1 = 1, 2 = 10, ̃ = 0398 and  = 01.

Fig. 10.11: Plot showing () versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15,

 = 2, 1 = 1, 2 = 10 and ̃ = 0398.

Fig. 10.12 Fig. 10.13

Fig. 10.12: Plot showing () versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15,

 = 2, 2 = 10, ̃ = 0398 and  = 01.

Fig. 10.13: Plot showing () versus . Here  = 03,  = 05,  = 1,  = 4, Θ = 15,

 = 2, 1 = 10, ̃ = 0398 and  = 01.
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10.5 Concluding remarks

A mathematical model subject to long wavelength and low Reynolds number approximations is

presented in order to study the effects of convective boundary conditions on peristaltic transport

of Carreau fluid in an asymmetric channel. Series expressions of stream function, longitudinal

velocity and pressure gradient are developed. A comparative study is made between the New-

tonian and Carreau fluids. It is concluded that in the narrow part of the channel, longitudinal

velocity for Newtonian fluid is greater than the Carreau fluid while in the wider part of the

channel the velocity for Newtonian fluid is lower than that of a Carreau fluid. The thermal

study discloses that an increase in Biot number at the lower wall 2 and  boosts the fluid

temperature while it decreases for the Biot number at the upper wall of the channel 1. Also

the fluid temperature for a Newtonian fluid is higher than Carreau fluid. The heat transfer

coefficient at the upper wall is an increasing function of Biot numbers.
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Chapter 11

Convective heat and mass transfer

analysis on peristaltic flow of

Williamson fluid with Hall effects

and Joule heating

11.1 Introduction

This chapter deals with the peristaltic flow of an incompressible and electrically conducting

Williamson fluid in a symmetric planar channel with heat and mass transfer. Hall effects,

viscous dissipation and Joule heating are also taken into consideration. Mathematical model

is presented for long wavelength and low Reynolds number approximations. The differential

equations governing the flow are highly nonlinear and thus perturbation solution for small Weis-

senberg number (0    1) is presented. Effects of the heat and mass transfer Biot num-

bers and Hall parameter on the longitudinal velocity, temperature, concentration and pumping

characteristics are studied in detail. The streamlines pattern and trapping are also given due

attention. Main observations are presented in the concluding section.
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11.2 Flow equations

The basic equations that govern the flow of an incompressible Williamson fluid in the presence

of heat and mass transfer with viscous dissipation and Joule heating are

∇V̄ = 0 (11.1)


V̄

̄
= −∇̄ +∇S̄+ J̄× B̄ (11.2)


̄

̄
= ∇2̄ +Φ+1


J̄J̄ (11.3)


̄

̄
= ∇2̄ + 


∇2̄  (11.4)

where V̄ is the velocity of fluid, J̄ the current density, B̄ the magnetic flux density, S̄ the

extra stress tensor representing the stresses resulting from a relative motion within a Williamson

fluid,  the density of fluid, ̄ the pressure,  the specific heat at constant pressure,  the

electrical conductivity, ̄ the temperature of fluid, ̄ the concentration of fluid,  the mean

temperature,  the thermal diffusion ratio,  the coefficient of mass diffusivity and Φ the

viscous dissipation factor.

The constitutive equation for the extra stress tensor S̄ is

S̄= −[∞ + (0 − ∞)(1− Γ̆̇)−1]̇ (11.5)

where ∞ is the infinite shear rate viscosity, 0 is the zero shear rate viscosity, Γ̆ the time

constant and ̇ is defined by

̇ =

s
1

2

X


X


̇ ̇ =

r
1

2
Π̄ (11.6)

Here Π̄ is the second invariant shear-rate tensor. By considering ∞ = 0 and Γ̆̇  1 in the

constitutive Eq. (5), we can write

S̄= −0[(1− Γ̆̇)−1]̇ (11.7)

in which Eq. (117) reduces to a Newtonian fluid when Γ̆ = 0.
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11.3 Problem formulation

Let us consider the peristaltic flow of an incompressible and electrically conducting Williamson

fluid bounded in a two-dimensional infinite symmetric flexible channel of width 2. The flow is

considered in the direction of ̄-axis. Here ̄ -axis is taken normal to the flow. A sinusoidal wave

of amplitude  propagates along the channel walls with constant speed  along the direction

of the ̄-axis. A strong uniform magnetic field with magnetic flux density B̄ = (0 0 0) is

applied and the Hall effects are taken into account. The induced magnetic field is neglected by

assuming a very small magnetic Reynolds number ( ¿ 1). Also it is assumed that there is

no applied or polarization voltage so that the total electric field Ē = 0. The geometry of the

wall surface is described by

̄(̄ ̄) = ±±  cos

∙
2


(̄ − ̄)

¸
 (11.8)

In the above equation  is the mean half width of the channel,  is the wave amplitude,  is the

wavelength,  is the velocity of propagation and ̄ is the time.

The generalized Ohm’s law can be written as follows:

J̄ = (Ē+ V̄ × B̄− ̆J̄× B̄) (11.9)

where ̆ = 1 is the Hall factor,  the mass of electron and  is charge of the electron.

Eq. (119) can be solved in J̄ to yield the Lorentz force vector in the form

J̄× B̄ = −
2
0

1 + ̆2
[(̄ − ̂̄ )̂+ (̂̄ + ̄ )̂] (11.10)

where ̄ and ̄ are the ̄ and ̄ components of the velocity vector and ̂ = 0̆ is the Hall

parameter.

The boundary conditions in the fixed frame are given by

̄

̄
= 0 ̄ = ̄0 ̄ = ̄0 at ̄ = 0

̄ = 0 
̄

̄
= −(̄ − ̄1) 

̄

̄
= −(̄ − ̄1) at ̄ = ̄ (11.11)
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in which  is the thermal conductivity,  the wall heat transfer coefficient and ̄1 the temper-

ature at the wall. Analogues to the convective heat transfer at the boundary, we use the mixed

condition for the mass transfer as well. Therefore  is the mass transfer coefficient that is

defined in almost the same way as the heat transfer coefficient (it is a parameter that is used

to describe the ratio between actual mass flux of a specy into or out of the flowing fluid and

the driving force that causes that flux) and ̄1 is the concentration at the wall. Also ̄0 and

̄0 are the temperature and concentration at the center of the channel respectively.

Using the transformations

̄ = ̄ − ̄ ̄ = ̄  ̄(̄ ̄) = ̄(̄ ̄  ̄)−  ̄(̄ ̄) = ̄ (̄ ̄  ̄)

̄ (̄ ̄) = ̄ (̄ ̄  ̄) ̄(̄ ̄) = ̄(̄ ̄  ̄) ̄(̄ ̄) = ̄ (̄ ̄  ̄) (11.12)

the unsteady flow in the fixed frame (̄ ̄ ) appears steady in the wave frame (̄ ̄). Further

(̄ ̄) and ̄ are the velocity components and pressure in the wave frame.

We define the following non-dimensionless quantities

 =
̄


  =

̄


  =

̄


  =

̄


  =

̄


  =

2


̄  =






Re =



 ̇∗ =




̇  =

̄ − ̄0

̄1 − ̄0
  =

̄ − ̄0

̄1 − ̄0
  =

̄




S=



S̄ Pr =




  =

r



0  =




  =

 (1 − 0)

(1 −0)


 =
2

(1 − 0)
  = Pr  =

Γ̆


  =

̄


  =




  =




 (11.13)

where Re is the Reynolds number,  the Hartman number, Pr the Prandtl number,  the

Schmidt number,  the Soret number,  the Eckert number,  the Brinkman number, 

the Weissenberg number,  the stream function,  the heat transfer Biot number and  the

mass transfer Biot number.

Using Eq. (1112) and the above set of non-dimensional variables into Eqs. (111)− (114),
the resulting equations in the wave frame of reference in terms of the stream function  ( =
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  = −) are

Re

∙µ







− 







¶µ




¶¸
= −


+ 2





µ
[1 +̇∗]

2



¶
+





µ
[1 +̇∗]

µ
2

2
− 2

2

2

¶¶
− 

̂2

1 + ̂2

µ




¶
− 2

1 + ̂2

µ



+ 1

¶
 (11.14)

3Re

∙µ







− 







¶µ




¶¸
= −


+ 2





µ
[1 +̇∗]

µ
2

2
− 2

2

2

¶¶
−22 



µ
[1 +̇∗]

2



¶
− 

̂2

1 + ̂2

µ



+ 1

¶
+2

̂2

1 + ̂2

µ




¶
 (11.15)

Re

∙







− 







¸
 =

1

Pr

µ
2

2

2
+

2

2

¶
 +[1 +̇∗]

×
"
42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶2#

+
2

1 + ̂2

"
2
µ




¶2
+

µ



+ 1

¶2#
 (11.16)

Re

∙







− 







¸
 =

1



µ
2

2

2
+

2

2

¶
+ 

µ
2

2

2
+

2

2

¶
 (11.17)

with

̇∗ =

"
42

µ
2



¶2
+

µ
2

2
− 2

2

2

¶2# 12
 (11.18)
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For long wavelength  ¿ 1 and low Reynolds number → 0 [6], we finally obtain

0 = −

+





µ
[1 +̇∗]

2

2

¶
− 2

1 + ̂2

µ



+ 1

¶
 (11.19)

0 = −


 (11.20)

0 =
1

Pr

2

2
+

"µ
2

2

¶2
+

µ
2

2

¶3
+

2

1 + ̂2

µ



+ 1

¶2#
 (11.21)

0 =
1



2

2
+ 

2

2
 (11.22)

Eq. (1120) implies that  6= () and so we can write Eq. (1119) in the form

0 =
2

2

∙µ
[1 +

2

2
]
2

2

¶
− 2

1 + ̂2


¸
 (11.23)

The nondimensional conditions in wave frame are given as follows:

 = 0
2

2
= 0  = 0  = 0 at  = 0

 = 



= −1 


+ ( − 1) = 0




+ (− 1) = 0 at  =  (11.24)

where () = 1 +  cos(2),  = 

(0    1) is the amplitude ratio and  the dimensionless

time mean flow rate in the wave frame. It is related to the dimensionless time mean flow rate

Θ in the laboratory frame through the relation Θ =  + 1.

The non-dimensional expression for the pressure rise ∆ per wavelength  is given by

∆ =

Z 2

0

µ




¶
 (11.25)

197



11.4 Series solution

In order to get closed form solutions of the Eqs. (1121)− (1124), we are looking for a regular
perturbation technique in terms of the small parameter  as follows:

 = 0 +1 +22 +  (11.26)

 = 0 +1 +22 +  (11.27)




=

0


+

1


+2

2


+  (11.28)

 = 0 +1 +22 +  (11.29)

 = 0 +1 +22 +  (11.30)

Substituting Eqs. (1126)− (1130) into Eqs. (1121)− (1124) and then comparing the coeffi-
cients of like powers of  up to the first order and neglecting powers of order two and higher

we have

11.4.1 System of order zero

0 =

∙
2

2
− 2

1 + ̂2

¸
20
2

 (11.31)

0 =
1

Pr

20

2
+

"µ
20
2

¶2
+

2

1 + ̂2

µ
0


+ 1

¶2#
 (11.32)

0 =
1



20
2

+ 
20

2
 (11.33)

0 = 0
20
2

= 0 0 = 0 0 = 0 at  = 0

0 = 0
0


= −1 0


+ (0 − 1) = 0

0


+ (0 − 1) = 0 at  = (11.34)
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11.4.2 System of order one

0 =
41
4

− 2

1 + ̂2

21
2

+
2

2

µ
20
2

¶2
 (11.35)

0 =
1

Pr

21

2
+

"
2

µ
20
2

¶µ
21
2

¶
+

µ
20
2

¶3
+

2

1 + ̂2

µ
2

µ
0


+ 1

¶
1


¶#
(11.36)

0 =
1



21
2

+ 
21

2
 (11.37)

1 = 0
21
2

= 0 1 = 0 1 = 0 at  = 0

1 = 1
1


= 0
1


+ 1 = 0

1


+ 1 = 0 at  =  (11.38)

Solving the resulting zeroth and first order systems we arrive at

 =
1

1
[(̂ cos(̂) + sin(̂)) − ( +  ) sin(̂)]

− 1

1231
( +  )2̂

2
[8̂+ ̂{(6 − 9) cos(̂) +  cos(3̂)

+(cos(( − 2)̂)− 8 cos(( − )̂) + 2 cos((2 − )̂)− 2 cos((2 + )̂)

+ cos(( + 2)̂))}− 6 sin(̂)− sin(( − 2)̂) + 8 sin(( − )̂)

− sin((2 − )̂) + 6 sin(̂) + sin((2 + )̂)− sin(( + 2)̂)] (11.39)




=
4̂
5

331
[(+ )2(2+cos(̂)) sin4(

̂

2
)]− ̂

2

1
(̂ cos(̂)+ sin(̂)) (11.40)
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 =
1

43
[−2 + (22 +( +  )2(2 − 5))̂

2
+( +  )2((1 +2)

−2)̂4 − (−2 + ((−2 + 3)2 + 3 ( + 2))̂
2 −( +  )2

×((1 +2)−2)̂
4
) cos(2̂) + 8( +  )2̂

2
cos(̂)(−2 + 

+2 cos(̂)) + ̂(−2( +  )2̂ cos(2̂)− 2(2 +( +  )2̂
2
)

× sin(2̂))]− ( +  )3̂
4

244
[−542 + 81 + 3(3 +(−7− 3( − ))̂

2

+8(92 − 16 + 22( − )̂
2
) cos(̂)− 2(92 − 24

+2((3 + 22)− 22)̂2) cos(2̂) +  cos(4̂)((
2̂
2 − 1) +̂

2
)

+2{−2̂2 cos(4̂) + cos(( − 3)̂)− 8 cos(( − 2)̂)− 27 cos(( − )̂)

+16 cos((2 − )̂) + 48 cos(̂) + 6 cos(2̂)− 37 cos(( + )̂)

+2 cos(2( + )̂)− cos(( + 3)̂)}− 8̂(2 + 3) sin(̂)

+2̂(11− 16) sin(2̂) + ̂2{20 sin(2̂)− 16 sin(̂)− sin(( − 3)̂)

+8 sin(( − 2)̂)− sin(( − )̂)− sin(2( − )̂)− 16 sin((2 − )̂)

+4 sin((3 − )̂) + 16 sin(̂)− 2 sin(2̂) + 9 sin(( + )̂)− 3 sin(2( + )̂)

+4 sin((3 + )̂) + sin(( + 3)̂)}− 8̂(2 − ) sin(3̂)

−̂(1 +2) sin(4̂)] (11.41)
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 =
1

46
[−2 − (−22 +( +  )2(5 − 5))̂

2
+( +  )2

×( +(−1−5 + ))̂
4
+ (2 + (2

2 + 3( +  )2)̂
2

−( +  )2(2 −  +( − ))̂
4
) cos(2̂)

−8( +  )2̂
2
cos(̂)× (−5 +  +5 cos(̂))

+̂((+ )25̂ cos(2̂) + 2(−2 +( +  )2̂
2
) sin(2̂))]

+
( +  )3̂

4

247
[−545 + 81 + 3(−7 + 3 + 3(− + ))̂

2

+8(95 − 16 + 2( − )5̂
2
) cos(̂)− 2(95 − 24 + 2(5 − 2

+2( − )̂
2
) cos(2̂)−  cos(4̂) +5{( + )̂

2
cos(4̂)

+ cos(( − 3)̂)− 8 cos(( − 2)̂)− 27 cos(( − )̂)

+16 cos((2 − )̂) + 48 cos(̂) + 6 cos(2̂)− 37 cos(( + )̂)

+2 cos(2( + )̂)− cos(( + 3)̂)}− 8̂(2− 3) sin(̂)

+2̂(11− 16) sin(2̂) + 8̂ sin(3̂)− ̂(1 + 2) sin(4̂)

+̂5{−16 sin(̂) + 20 sin(2̂)− 8 sin(3̂)− sin(( − 3)̂)

+8 sin(( − 2)̂)− sin(( − )̂)− sin(2( − )̂)− 16 sin((2 − )̂)

+4 sin((3 − )̂) + 16 sin(̂)− 2 sin(2̂) + 9 sin(( + )̂)

−3 sin(2( + )̂) + 4 sin((3 + )̂) + sin(( + 3)̂)}] (11.42)

where

̂ =

r
2

1 + ̂2


1 = ̂ cos(̂)− sin(̂)

2 = 1 +  3 = 2
2
1

4 = 3
2
1 5 = 1 + 

6 = 5
2
1 7 = 6

2
1

201



11.5 Results and discussion

In this section we have presented a set of Figs. that describe qualitatively the effects of various

parameters of interest on the flow quantities like axial pressure gradient , pressure rise

per wavelength ∆, axial velocity (), temperature distribution () and concentration dis-

tribution (). Figs. 11.1-11.3 display the variation of axial pressure gradient  with  for

different values of Weissenberg number , Hartman number  and Hall parameter ̂. It is

revealed that the magnitude of the pressure gradient decreases with the increase of Weissenberg

number  and Hall parameter ̂ while it increases with an increase in the Hartman number

 . It is also observed that the maximum pressure gradient occurs at the narrow part of the

channel i.e.  = 05. Fig. 11.1 also shows that the pressure gradient  for the Newtonian

fluid ( = 0) is greater in magnitude when compared to that of a Williamson fluid (  0).

The pressure rise per wavelength ∆ against flow rate Θ for different values of Weissenberg

number, Hartman number and Hall parameter ̂ are shown in the Figs. 11.4-11.6. Note

that Eq. (1125) involves the integration of . This integral is not solvable analytically so

it is computed numerically by using "Mathematica". It is obvious from Figs. 11.4-11.6 that in

the pumping region (∆  0), the pumping rate decreases by increasing Hall parameter ̂ and

it increases for increasing values of Weissenberg number , while in the co-pumping region

(∆  0), the pumping rate decreases by increasing Hartman number  and it increases

by increasing Hall parameter ̂ and the Weissenberg number . For the free pumping case

(∆ = 0), there is no noticeable difference. Figs. 11.7-11.9 are prepared to study the role

of Weissenberg number , Hartman number  and Hall parameter ̂ on the axial velocity

(). It is obvious from Fig. 11.9 that an increase in Hall parameter ̂, the magnitude of

the velocity () increases at the center of the channel whereas it decreases near the channel

walls. From Figs. 11.7 and 11.8 it is found that the Weissenberg number  and Hartman

number  have opposite behavior when compared with Hall parameter ̂. The variation of

temperature distribution () for several values of Weissenberg number , Hartman number

 , Hall parameter ̂, the Brinkman number  and heat transfer Biot number  are plotted

in Figs. 11.10-11.14. These Figs. depict an increase in the temperature field when Hartman

number  and Brinkman number  are increased. A decrease in the temperature field is

noticed through increase in Weissenberg number , Hall parameter ̂ and heat transfer Biot
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number . Figs. 11.15-11.20 represent the concentration distribution () for various values of

Weissenberg number , Hartman number  , Hall parameter ̂, Schmidt number , Soret

number  and mass transfer Biot number . It can be noticed from these Figs. that the

concentration distribution decreases by increasing the Hartman number , Schmidt number 

and the Soret number  while it increases when the Weissenberg number , Hall parameter

̂ and mass transfer Biot number  increase. Another fascinating phenomenon of peristal-

sis is known as trapping i.e. an internally circulating bolus of fluid is formed which travels

along with the wave. The effects of Weissenberg number  on the streamlines for  = 02

̂ = 2 Θ = 05 and  = 15 in the wave frame show that the trapped bolus size decreases

when the Weissenberg number  increases (see Fig. 11.21). Further the trapping is more for

Williamson fluid (  0) when compared with Newtonian fluid ( = 0). Fig. 11.22 depicts

the streamlines for different values of Hartman number  when  = 02 ̂ = 2 Θ = 05 and

 = 08. It is revealed that the size of trapped bolus increases with an increase in Hartman

number . Whereas for the Hall parameter ̂ the size of the trapped bolus decreases as shown

in Fig. 11.23 when  = 02  = 08 Θ = 05 and  = 15.

Fig. 11.1 Fig. 11.2

Fig. 11.1: Variation in  for  when  = 02  = 2 ̂ = 2 and Θ = −1.
Fig. 11.2: Variation in  for  when  = 02  = 008 ̂ = 2 and Θ = −1.
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Fig. 11.3 Fig. 11.4

Fig. 11.3: Variation in  for ̂ when  = 02  = 2  = 008 and Θ = −1.
Fig. 11.4: Variation in ∆ versus Θ for  when  = 02  = 1 and ̂ = 1.

Fig. 11.5 Fig. 11.6

Fig. 11.5: Variation in ∆ versus Θ for  when  = 02  = 005 and ̂ = 15.

Fig. 11.6: Variation in ∆ versus Θ for ̂ when  = 02  = 1 and  = 005.
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Fig. 11.7 Fig. 11.8

Fig. 11.7: Axial velocity () for  when  = 025 ̂ = 2  = 2 Θ = 15 and  = 0.

Fig. 11.8: Axial velocity () for  when  = 015 ̂ = 1  = 005 Θ = 05 and  = 0.

Fig. 11.9

Fig. 11.9: Axial velocity () for ̂ when  = 015  = 005  = 3 Θ = 05 and  = 0.
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Fig. 11.10 Fig. 11.11

Fig. 11.10: Temperature profile () for  when  = 02  = 15  = 2 Θ = 15  = 0

̂ = 15 and  = 10.

Fig. 11.11: Temperature profile () for  when  = 02  = 008  = 2 Θ = 15  = 0

̂ = 2 and  = 10.

Fig. 11.12 Fig. 11.13

Fig. 11.12: Temperature profile () for ̂ when  = 02  = 15  = 2 Θ = 15  = 0

 = 008 and  = 10.

Fig. 11.13: Temperature profile () for  when  = 02  = 15  = 008 Θ = 15

 = 0 ̂ = 15 and  = 10.
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Fig. 11.14

Fig. 11.14: Temperature profile () for  when  = 02  = 15  = 2 Θ = 15  = 0

̂ = 15 and  = 008.

Fig. 11.15 Fig. 11.16

Fig. 11.15: Concentration profile () for  when  = 02  = 15  = 2 Θ = 15  = 0

̂ = 2  =  = 1 and  = 10.

Fig. 11.16: Concentration profile () for  when  = 02  = 008  = 2 Θ = 15

 = 0 ̂ = 15  =  = 1 and  = 10.
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Fig. 11.17 Fig. 11.18

Fig. 11.17: Concentration profile () for ̂ when  = 02  = 15  = 2 Θ = 15  = 0

 = 008  =  = 1 and  = 10.

Fig. 11.18: Concentration profile () for  when  = 02  = 15  = 2 Θ = 15  = 0

̂ = 2  = 008  = 1 and  = 10.

Fig. 11.19 Fig. 11.20

Fig. 11.19: Concentration profile () for  when  = 02  = 15  = 2 Θ = 15  = 0

̂ = 2  = 1  = 008 and  = 10.

Fig. 11.20: Concentration profile () for  when  = 02  = 15  = 2 Θ = 15  = 0

̂ = 2  =  = 1 and  = 008.
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(a) (b)

(c)

Fig. 11.21: The streamlines in wave frame for (a)  = 00 (b)  = 04 and (c)  = 08
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(a) (b)

(c)

Fig. 11.22: The streamlines in wave frame for (a)  = 15 (b)  = 2 and (c)  = 3
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(a) (b)

(c)

Fig. 11.23: The streamlines in wave frame for (a) ̂ = 05 (b) ̂ = 1 and (c) ̂ = 15

11.6 Concluding remarks

This chapter addresses the Joule heating, viscous dissipation and Hall effects in the peristaltic

motion of Williamson fluid. The convective conditions for both heat and mass transfer at the

channel walls are employed. The main observations have been summarized as follows.

• The axial pressure gradient  decreases with an increase in the Hall parameter ̂
while it decreases by increasing Hartman number  .

• Effect of Hartman number  on temperature () is quite opposite to that of Hall para-

meter ̂ and Weissenberg number .
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• Effects of Hartman number  , Hall parameter ̂ and Weissenberg number  on the

temperature () and concentration () are opposite.

• The variations of Hartman number  and Weissenberg number  on the longitudinal

velocity () are quite reverse to that of Hall parameter ̂.

• An increase in the heat transfer Biot number  decays the fluid temperature.

• The concentration of fluid increases when mass transfer Biot number  is increased.

• In the absence of Joule heating effect the roles of Hartman number and Hall parameter

̂ on the temperature () and concentration () distributions are reversed.
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Chapter 12

Summary

Here the research conducted in this thesis is summarized through the contents of chapters’ two

to eleven. In all these chapters, the main focus is to investigate the novel idea of convective heat

transfer for different non-Newtonian fluids exhibiting peristaltic motion in channels (symmetric

or asymmetric). The channel asymmetry is produced by choosing the peristaltic waves along

channel walls having different amplitudes and phase difference. Lubrication approximation is

used for mathematical modelling. To obtain the series solutions for the stream function, temper-

ature, concentration and pressure gradient, the regular and homotopy perturbation techniques

are used. Exact solutions are also obtained in some chapters as well. Numerical integration

is performed to calculate the pressure rise per wavelength. Variation of sundry parameters

on the velocity, pressure gradient, pressure rise per wavelength, temperature, concentration

and streamlines are shown graphically and discussed physically. The main observations of the

conducted study are as follows:

• Pressure gradient increases when there is an increase in Deborah number, power-law fluid
and Casson fluid parameters.

• Pressure gradient decreases by increasing the Sisko and couple stress fluid parameters,
Weissenberg number, viscosity ratio, slip parameters, magnetic and Hall parameters.

• It is worth mentioning that the pressure rise per wavelength is enhanced in the peristaltic
pumping region through larger Deborah number, upper and lower wave amplitudes, vis-

cosity ratio parameter, Casson, couple stress parameter, power-law parameter, Sisko fluid
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parameter, Hartman number and Weissenberg number. However pressure rise decays in

the co-pumping region for these parameters.

• With an increase in phase difference, channel width, slip and Hall parameter, pressure
rise per wavelength decreases in the peristaltic pumping region while these parameters

have opposite effects in co-pumping region.

• The magnitude of the axial velocity increases at the center of channel for increasing values
of couple stress fluid, power-law fluid, microrotation parameter and coupling number.

• In the narrow part of the channel, the magnitude of axial velocity decreases when there
is an increase in Deborah number, Weissenberg number, Carreau fluid, Casson fluid,

magnetic and Hall parameters.

• Temperature of the fluid decays with increasing Biot numbers at the upper and lower
channel walls, Soret number, constructive chemical reaction parameter and Weissenberg

number.

• By increasing Deborah number, Brinkman, Prandtl, Schmidt and Dufour numbers, tem-
perature of the fluid enhances. Same is the case for Brownian motion, thermophoresis,

couple stress fluid, viscosity ratio and Slip parameters, Sisko fluid, magnetic and Hall

parameters and destructive chemical reaction parameters.

• The case of the prescribed surface temperature can be obtained as the special case of the
presented studies for large values of Biot numbers.

• Concentration of the fluid increases when Brownian motion parameter and mass transfer
Biot number are increased.

• An increase in Soret, Dufour and Schmidt numbers, fluid concentration decreases. Also
there is a decrease in concentration for increasing values of thermophoresis, chemical

reaction and magnetic and Hall parameters.

• Magnitude of heat transfer coefficient increases for Biot numbers at the upper and lower
channel walls, Brinkman number, Brownian motion and thermophoresis parameter. On

the other hand it decreases with an increase in Weissenberg number.
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• Size of the trapped bolus decreases for Deborah number, phase difference, Casson fluid,
Weissenberg number, Hall parameter, Couple stress fluid, viscosity ratio and slip para-

meters while it increases when flow rate, power-law fluid parameter, slip and magnetic

parameters are increased.

All the chapters in this thesis provide the basis for the convective heat and mass transfer

analysis in peristaltic flows with different rheological effects. These studies can be extended to

discuss more complicated situations in the regime of peristalsis. The following problems will be

discussed in future regarding to the peristaltic flows:

• Convective heat and mass transfer with Soret and Dufour effects.

• Effects of radiation, Joule heating and magnetohydrodynamics with convection.

• Nanofluid with different non-Newtonian fluids as base materials.

• Consideration of different flow geometries such as ducts, cylindrical tubes, annulus, curved
channels etc.
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