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0.2 Introduction

The concept of hyperstructure was first introduced by Marty [55] at the eighth Congress of
Scandinavian Mathematicians in 1934, when he defined hypergroups and started to analyze
their properties. Now, the theory of algebraic hyperstructures has become a well-established
branch in algebraic theory and it has extensive applications in many branches of mathematics
and applied science. Later on, people have developed semi-hypergroups, which are the simplest
algebraic hyperstructures having closure and associative properties. Many books have been
written on different algebraic structures by different authors [23, 24, 40, 64]. In [24], the
author discussed some applications of theory of hyperstructures in rough set theory, coding
theory, lattices, binary relations, cryptography, automata, probability, geometry, graphs and
hypergraphs. Some basic concepts and notions of semihypergroups theory can be found in
[21, 35]. A comprehensive review of the theory of hyperstructures can be found in [23, 24,
64]. The canonical hypergroup is a special type of hypergroups which was introduced by
Mittas [57]. The theory of hypermodules in which their additive structure is just a canonical
hypergroup has been studied by several authors, for example, Massouros [56], Corsini [24],
Davvaz [27, 29], Zhan et al. [70], Ameri [8], Zahedi and Ameri [73]. A semiring in which
addition is a hyperoperation is called a semihyperring [30]. In [65], Vougiouklis generalized
the concept of hyperring (R, ®,®) by dropping the reproduction axiom where & and © are
associative hyperoperations and ® distributive over @, and named it as semihyperring. In [22],
Chaopraknoi et al studied semihyperring with zero. In [34], Davvaz and Poursalavati introduced
the matrix representation of poly-groups over hyperring and also over semihyperring. Ameri and
Hedayati studied semihyperring and its hyperideals in [10]. Dehkordi and Davvaz introduced
the notion of I'-semihyperrings and discussed roughness as a type of strong regular equivalence
relations on I'-semihyperrings.

The study of fuzzy hyperstructure is an interesting research topic of fuzzy sets. There is a
lot of work that has been done on the connections between fuzzy sets and hyperstructures [24].
The theory of fuzzy sets, introduced by Zadeh [71] in 1965, has provided a useful mathematical
tool for describing the behavior of systems that are too complex or ill-defined to admit precise
mathematical analysis by classical methods and tools. In [1, 3, 7, 52, 53, 60, 74, 75], some

applications of this theory in algebraic structures and hyperstructures can be seen. Some of



them concern the fuzzy hyperalgebras. This is a direct extension of the concept of fuzzy algebras
(fuzzy subgroups, groups, fuzzy lattices, fuzzy rings etc). This approach can be extended to
fuzzy hypergroups. Nowadays, Fuzzy hyperstructures is a fascinating research area. Davvaz
introduced the notion of fuzzy subhypergroups in [28], Ameri and Nozari [7] defined fuzzy
regular relations and fuzzy strongly regular relations of fuzzy hyperalgebras and also established
a connection between fuzzy hyperalgebras and algebras. Fuzzy subhypergroup has also been
studied by Cristea [26]. Fuzzy hyperideals of semihyperrings have been studied by Davvaz et al
[9, 30, 33]. Recently, Sen et al have introduced and analyzed semihypergroups [61]. Leoreanu
introduced and studied the notion of fuzzy hypermodules of hyperrings.

Davvaz et. al. initiated the concept of fuzzy krasner (m,n)-hyperrings, («, §)-fuzzy Hy-
ideals of Hy-rings and (o, 3)-fuzzy ideals of ternary semigroups [31, 32, 41]. In [58], Murali
proposed the concept of a fuzzy point belonging to a fuzzy subset under natural equivalence
on fuzzy subset. Bhakat and Das introduced the concepts of («, [3)-fuzzy subgroups by using
the "belong to" relation (€) and "quasi-coincident with" relation (g) between a fuzzy point and
a fuzzy subgroup, and defined an (€, € Vq)-fuzzy subgroup of a group [20]. In [54], Tariq
et. al. introduced the concept of («, 3)-fuzzy hyperideals and (€, € Vq)-fuzzy hyperideals in
semihypergroups. Y. Yin et. al. defined the general forms of (o, 5)-fuzzy subhypergroups of
hypergroups [67].

Zadeh also introduced the idea of interval valued fuzzy sets, in 1975 [72]. The three di-
mensional sets are defined by Li et al [8]. Shang et al introduced n-dimensional fuzzy sets
in 2010. In 1984, Atanassov introduced in [16], the concept of intuitionistic fuzzy sets on a
non-empty set X, which gives both a membership degree and a non-membership degree. The
relations between intuitionistic fuzzy sets and algebraic structures have been already considered
by many mathematicians. In [39], using Atanassov’s idea, Davvaz established the intuitionistic
fuzzification of the concept of hyperideals in a semihypergroup and investigated some of their
properties. Recently, in [15, 47], the authors have initiated a study on intuitionistic fuzzy sets

in semihypergroups.
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0.4 Chapter-wise study

This thesis consists of six chapters. Throughout in this thesis, R will represent a semihyperring.

Chapter one, which is of introductory nature, provides basic definitions and results, which
are necessary for the subsequent chapters.

In chapter two, we pursue an algebraic approach to investigate the concept of fuzzy semihy-
perring and related notions in order to set the ground for future work. First, we provide basic
definitions and establish some preliminary results. After that we investigate fully idempotent
semihyperrings, that is, semihyperrings all of whose hyperideals are idempotent. It is proved
that such semihyperrings are characterized by the property that each proper fuzzy hyperideal is
the intersection of fuzzy prime hyperideals containing it. Finally, we construct the fuzzy prime
spectrum of fully idempotent semihyperrings in a manner analogous to the construction of the
prime spectrum in classical semiring theory.

In chapter three, we concentrate on the concept of quasi-coincidence of fuzzy point with a
fuzzy subset. By using this idea, the notion of («, 3)-fuzzy hyperideal in a semihyperring is
introduced and, consequently, a generalization of fuzzy hyperideal is defined. We also study the
related properties of the (a, 8)-fuzzy hyperideals and in particular, an (€, € Vq)-fuzzy hyperideal
in semihyperring is investigated. Moreover, we also considered the concept of implication-based
fuzzy hyperideals in a semihyperring and obtained some useful results. In what follows, «, 3
will denote one of €, q, € Vg, or € Aq unless otherwise specified. Also @ means a does not hold.

In chapter four, we concentrate on the concept of quasi-coincidence of interval valued
fuzzy point with an interval valued fuzzy subset. By using this idea, the notion of interval
valued («, 8)-fuzzy hyperideal in a semihyperring is introduced and consequently, a generaliza-
tion of interval valued fuzzy hyperideal is defined. We study the related properties of the interval
valued (a, B)-fuzzy hyperideals and in particular, an interval valued (€, € Vq)-fuzzy hyperideals
in semihyperrings are investigated. Moreover, we also consider the concept of implication-based
interval valued fuzzy hyperideals in a semihyperring and obtained some results.

In chapter five, we introduce the generalization of intuitionistic fuzzy bi-hyperideals of a
semihyperring. First, we discuss the notion of intuitionistic fuzzy hyperideal (bi-hyperideal) in
semihyperrings. We also define the («, 5)-intuitionistic fuzzy bi-hyperideal of a semihyperring.

This concept is a new generalization of the notion of intuitionistic fuzzy bi-hyperideal of a



semihyperring. We give some interesting results as well as examples of this notion. In the last
section we discuss intuitionistic fuzzy bi-hyperideal of type (€ , € Vq).

In chapter six, we introduce the notion of n-dimensional fuzzy sets, fuzzy hyperideals and
fuzzy prime hyperideals in semihyperrings with identity. We also discuss some basic proper-
ties of n-dimensional fuzzy prime hyperideals and characterize the n-dimensional fuzzy prime
hyperideals. We also investigate the topology on n-dimensional fuzzy hyperideals and fuzzy
prime hyperideals. Furthermore, we introduce the notion of n-dimensional weak (resp. strong)
fuzzy k-hyperideals and the behavior of them under homomorphisms of semihyperrings. Also
we define the quotient of fuzzy weak (resp. strong) k-hyperideals by regular relation of semihy-
perring and obtain some results. In last section, we combine the notions of n-dimensional fuzzy
set and n-dimensional fuzzy point to introduce a new notion called n-dimensional (o, 5)-fuzzy
hyperideal in semihyperring. We also introduce the characterization of n-dimensional («, 3)-
fuzzy hyperideal in semihyperring by upper level set. Moreover, we define n-dimensional prime

(a, B)-fuzzy hyperideal in semihyperring.



Chapter 1

Fundamental Concepts

The aim of this chapter is to provide a brief summary of basic definitions and preliminary

results, concerning semihyperrings, which will be of great help in further pursuits.

1.1 Basic definitions and notations

A hyperstructure is a non-empty set H together with a mapping ” o”: H x H — P*(H), where
P*(H) is the set of all the non-empty subsets of H and ” o” is called a hyperoperation. If
x € Hand A,B € P*(H), then by Ao B, Aox, and x o B, we mean Ao B =U{aob:a € A
and b € B}, Aox = Ao {z} and z o B = {z} o B, respectively. A hypergroupoid is a set H
with a binary hyperoperation ” o 7. If ‘o ¢ is associative, that is, x o (y o 2) = (z o y) o z, for
all z,y,z € H, then it is called a semihypergroup. A hypergroup is a semihypergroup, such
that, for all x € H, we have x o H = H = H o x, which is called reproduction axiom. If H is a
hypergroup and K is a non-empty subset of H, then K is a subhypergroup of H if K itself a
hypergroup under the same hyperoperation, defined in H. Hence it is clear that a subset K of
H is a subhypergroup if and only if, for all a € K, ao K = K oa = K, under the hyperoperation
on H.

”0” is called a polygroup, if the following conditions

A set H together with a hyperoperation
are satisfied:
(1) zo(yoz)=(xoy)oz foral x,y,z € H.

(2) There exists a unique element, e € H such that eox =z oe = {z}, for all z € H.

10



(3) For all x € H, there exists a unique element, say #’ € H such that e € zoz' Na' oz
(where 2’ = z71).

(4) For all z,y,2 € H, 2z €zoy=aczoy ' =ycazloz

A non-empty subset K of a polygroup (H,o) is called a subpolygroup if (K, o) is itself a
polygroup. In this case, we write K <, H.

A commutative polygroup is called a canonical hypergroup.

Definition 1 [10] A semihyperring is an algebraic hypersystem (R,®, -) consisting of a non-

”

empty set R together with one hyperoperation” &7 and one binary operation” -7 on R, such
that (R, ®) is a commutative semihypergroup and (R,.) is a semigroup. For all x,y,z € R, the
binary operation of multiplication is distributive over hyperoperation from both sides, that is,

z(y®z)=zydx.z and (z DY)z =x.2DY.2.

Definition 2 [10] A semihyperring (R, ®,.) has a zero element, if there exists a unique element
0€R, such that c € 0z = {z} =2 ®0, and 0.x =0 = 2.0, for all x € R. Element 0 is also

called an absorbing element.

A semihyperring (R, @, -) is called a hyperring if (R, @) is a canonical hypergroup and (R, .)

is a semigroup.

Definition 3 [/3] A non-empty subset S of a semihyperring (R, ®,.) is called a subsemihyper-
ring of R ifVx,ye S

()rzoyCSs,
(ii)) z.y € S.

Example 4 On four elements semihyperring (R, ®,.) defined by the following two tables:

® |0 a b c 0 a b c
0 | {0} {a} {0} {c} 0[0 0 0 O
a | {a} {a} {0} A{c} al0 a a a
b | {o} {b} {b} ¢} b|0 b b b
¢ | {ct A} A} A{c} c|0 ¢ ¢ ¢




By routine calculation {0}, {0,b}, {0,c}, {0,a,b}, {0,b,c}, R, are subsemihyperrings of R.

Example 5 Consider Z, the set of integers. Define a hyperoperation ” &7 and a binary op-

eration ” -7 on Z as follow m & n = {m,n} and mn = mn ¥ m,n € Z. Clearly (Z,®,-) is a
semihyperring.
Example 6 Let R = {0,a,b} be a set with hyperoperation ” & ” and binary operation ” -7 on

R, defined by the following two tables:

@© 10 a b 0
0 | {0} {a} {b} 00
a | {a} {0,a} {0,a,b} al0 a a
b | {b} {0,a,b} {0,b} b |0

Then R is a semihyperring.

Example 7 Consider the semihyperring R, defined by the following two tables:

@0 a b c 0 a b c
0 | {0} {a} {b} {c} 00 0 0 O
a | {a} {0,a} {0,a,b} {0,a,c} al0 a a a
b | (b} {0,a,b} {06}  {0,b,c}  b|O b b b
¢ | {c} {0,a,c} {0,b,c} {0,c} c|0 ¢ ¢ ¢

For every = € R there exists one and only one —z € R such that 0 € x & (—x) = (—z) ® =.
We shall write & for —z and call it the opposite of x.

Denote the set all opposite elements of a semihyperring R, by V(R),

VIR)y={aeR|IbeR and 0 € a ® b}.

Definition 8 [10] A semihyperring (R, ®,.) is called commutative if a.b = b.a, for all a,b € R.

Definition 9 [10] A semihyperring (R,®,.) is called a semihyperring with identity if 1x € R,

such that x.1g = lg.x = x, for all x € R.

Definition 10 An element v € R is called a unit if and only if there exists y € R such that,

1gr = z.y = y.x. The set of all unit elements of a semihyperring R is denoted by U(R).

12



1.2 Hyperideals

Definition 11 [18/ By a left (right) hyperideal of R, we mean a subsemihyperring I of R
such that for all 7 € R and z € I, we have rz € I (xr € I) or a non-empty subset I of
a semihyperring R is called a left (resp., right) hyperideal of R if it satisfies I + 1 C I and
RICI (resp., IR C1I).

By a hyperideal, we mean a subset of R which is both a left and a right hyperideal of R.
An absorbing element 0 € R also belong to any hyperideal I of R, since 0 € R so for any x € I,

we have 0.x =x.0=0¢€ [.
Example 12 On four elements semihyperring (R, ®,.) defined by the example 4.
These all {0,b}, {0,c}, {0,a,b}, {0,b,c}, are right hyperideals of semihyperring R.

Example 13 By example 5, it is easy to verify that [ =< 2 >= {2k|k € Z}, is a hyperideal of
7.

Proposition 14 A left (resp. right) hyperideal of a semihyperring is a subsemihyperring.

Proof. Let I be a left hyperideal of a semihyperring. For any a,b € I, we have a + b C I.
Also, for any a,b € I, since a € I CR. We have a.b € I. Hence [ is a subsemihyperring of the

semihyperring R. m

Lemma 15 [13] The intersection of any collection of hyperideals in a semihyperring R is also

a hyperideal of R.

If I and J are two hyperideals of a semihyperring R, then the sum and product of two
hyperideals are also a hyperideal and defined as respectively:
IoJ= U (%’@bj)

a;el
b;eJ

and
1J = U{ > aibj;ai S I,bj € J}
finite

We can see that I.J is a hyperideal of R contained in I N .J.

13



Lemma 16 [13] If R is a semihyperring with unity and x € R then

Tz R= U { b x.r} (R.az: U { b)) T.’L’})
reR | finite reR | finite

18 the smallest hyperideal of R containing x.

Definition 17 [11] Let A be a non-empty subset of a semihyperring R. Then a hyperideal
generated by A and denoted by (A), is the intersection of all hyperideals of R, which contains
A;

<A> =n{Iis ahyperideal of R : A C I}

It is smallest hyperideal of R containing A.

Lemma 18 [11] If R is a commutative semihyperring with unity and x € R\{0}, then

<zx> = U { b x.r}
reR | finite

Proposition 19 [/3] If S is a subsemihyperring of a semihyperring R and I is a hyperideal of
R then;

(i) S+ I is a subsemihyperring of R.
(i) S NI is a hyperideal of S.

Definition 20 [13/ Let (R,®,.) be a semihyperring and {I;}icn be a family of hyperideals of
R. Then ‘ﬂAIi 18 also a hyperideal of R.
1€

Theorem 21 [40] If I and J are hyperideals of a semihyperring R, then I + J is the smallest
hyperideal of R, containing both I and J. Where

I J= aiLéI(ai@bj)

bieJ

Definition 22 /6] A hyperideal I is idempotent if I* = 1.

14



Definition 23 [6] A semihyperring R is called fully idempotent if each hyperideal of R is

idempotent.

Definition 24 [6] A semihyperring R is said to be reqular if for each © € R, there exists a € R

such that x = xax.

Definition 25 [8/ A non-empty set M, which is a commutative semihypergroup with respect
to addition, with an absorbing element 0 is called a right, R-semihypermodule Mg, if R is a
semihyperring and there is a function a : M X R — P*(M), where P*(M) = P(M)N\{0}, such
that if a(m,x) is denoted by mx and mx C M, for all x € R and m € M. Then the following

conditions hold, for all x,y € R and my, mo,m € M :

i) (m1 @ ma)r = miz @ max

(
(id) m(z ® y) = ma & my
(iii) m(wy) = (ma)y

(tv) 0.x = m.0 = 0.

Similarly, we can define a left R-semihypermodule M. A semihyperring R is a right semi-
hypermodule over itself which will be denoted by Rr. A non-empty subset N of a right R-
semihypermodule M is called a subsemihypermodule of M, if (N, @) is a subsemihypergroup of
(M,®) and RN C P*(N). Also note that, the right (left) subsemihypermodules Rr (rR) are

right (left) hyperideals of R.
Remark 26 FEvery hyperideal of a semihyperring R is a semihypermodule of R.

Definition 27 [6] A hyperideal I of a semihyperring R is called a prime hyperideal of R if for
any two hyperideals A, B of R, AB C I implies that either AC I or BC 1.

Proposition 28 [6/ The following conditions on hyperideal I of a semihyperring R with iden-

tity are equivalent.

(1) I is prime hyperideal of R.
(73) {arb:r € R} C I if and only if, either a € I or b € 1.
(73t) If a and b are elements of R satisfying; (a)(b) C I, then either a € I or b € I.

15



Corollary 29 [13] If a and b are elements of a semihyperring R, then the following conditions

on prime hyperideal I of semihyperring R are equivalent.

(i) Ifabel, thenaclorbel.
(i3) If a.b € I, then b.a € I.

Definition 30 [6] A hyperideal I of a semihyperring R is called semiprime hyperideal if for
any hyperideal J of R satisfying J? C I implies J C I.

Remark 31 Prime hyperideals are surely semiprime hyperideals.

Proposition 32 The following conditions on a hyperideal I of a semihyperring R with unity

are equivalent.

(1) I is semiprime.

(i7) {ara:r € R} C I if and only if a € I.

Definition 33 [6] A hyperideal I of a semihyperring R is called irreducible if for all hyperideals
A, BofR,ANB =1, implies A=1 or B=1.

Definition 34 [6] A hyperideal I of a semihyperring R is called strongly irreducible if for all
hyperideals A, B of R, ANB C 1, implies AC I or BCI.

Remark 35 FEvery strongly irreducible hyperideal is an irreducible hyperideal.
Remark 36 Any prime hyperideal is strongly irreducible.

Proposition 37 [6] Any hyperideal of a semihyperring R is the intersection of all irreducible
hyperideals of R containing it.

Proposition 38 [6] A hyperideal I of a semihyperring R is prime if and only if it is semiprime

and strongly irreducible.

Definition 39 A non-empty subset B of a semihyperring R is called a bi-hyperideal of R if it
satisfies B4+ B C B, BBC B and BRB C B.

Definition 40 A non-empty subset Q of a semihyperring R is called a quasi-hyperideal of R
if it satisfies @ +Q C Q, QRNRQ C Q.

16



1.3 k-Hyperideals

Definition 41 [44] A non-empty subset I of R is called a left (resp. right) weak k-hyperideal
of R iff

(i) (I,4+) is a semihypergroup of (R, +);

(1) re € I (vesp. ar € I),Vz €l and r € R.

(i) r+xClore+rCl=rel, forxelandrecR.

And I is called a left (resp. right) strong k-hyperideal of R iff

(7) (I,+) is a semihypergroup of (R, +);

(16) re € I (vesp. zr € I), Yoz €l andr € R.
(w)r+ax~lore+rrIl=rel,VeeclandreR.

where by A ~ B, we mean AN B # ¢, V non-empty subsets A and B of R.

A two sided weak (resp. strong) k-hyperideal is called a weak (resp. strong) k-hyperideal

of R. As (R,+) is a commutative semihypergroup, so r +x = = + 7, ¥ elements of I or R.

1.4 Fuzzy sets

Definition 42 If X is a universe and A C X, then characteristic function of A is a function

Xa:X —{0,1}, defined by
(z) = 1 ifxe A
XAl =0 ifodA

A fuzzy subset A of X is a function X\ : X — [0,1]. We write A(x) € [0,1], for all x € X, where
A is a fuzzy subset of X such that for each x € X, 0 < \(z) < 1.

A fuzzy set p in a set X of the form

t#0, ify==x

0, ify#x
is said to be a fuzzy point with support x and value ¢ and is denoted by x; A fuzzy point x; is
said to be belong to (resp. quasi-coincident with) a fuzzy set p, written as x; € p (resp. xiqu)

if p(z) >t (u(x)+t>1). If x4 € p or x4qu, then we write z; € Vqu. If z; € p and zqu, then
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we write z; € Agqu. The symbol € Vg means neither € nor ¢ holds. The symbol € Aqg means €
or q does not hold.

For any two fuzzy subsets A and p of X, A < p if and only if A(z) < u(x), for all z € X.
The symbols A A p, and AV p will mean the following fuzzy subsets of X, for all z € X.

AAp)(@) = minfA(@), p(x)}
AV p)(z) = max{A(@), u(x)}

More generally, if {\; : i € A} is a family of fuzzy subsets of X, then Ajea\; and Viep\; are
defined by

(Nieadi)(z) = min(Ni(z)

i€EA

(Vieadi)(z) = max(\i(z)

i€EA

and will called the intersection and union of the family {); : ¢ € A} of fuzzy subsets of X.
Let \ be a fuzzy subset of X and ¢ € (0,1]. Then the set U} = {x € X : A(x) > t} is called
the level subset of X.

1.5 Fuzzy hyperideals

Definition 43 [/4] Let R be a semihyperring and p a fuzzy set in R. Then, u is said to be a
fuzzy hyperideal of R if for all r,x,y € R the following axioms hold:

() _inf p(=) > p(2) A ply), for all 2,y € R.
zex®y

(ii) p(zr) > p(z) and p(re) > p(z) for all r,z € R.

Example 44 Let pu be a fuzzy set in a semihyperring (Z,®,-), where Z is the set of integers
defined by

0.2 if x is odd,
wx) =14 0.6 if x is non-zero even,
1 if x=0.
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Then it is easy to show that p is a fuzzy hyperideal of Z.

Example 45 Let pu be a fuzzy set in a semihyperring (Z,®,-), where Z is the set of integers
defined by

1 if 8<x,
p(z) =4 0.5 if 5<ax<8,
0 if x<b.

Then it is easy to show that p is a fuzzy hyperideal of Z.

Lemma 46 [44] Let i be a fuzzy set in a semihyperring R. If R has zero element, then
w1(0) > p(x) for all x € R.

Lemma 47 [12] Let i be a fuzzy set of a semihyperring R. Then, u, defined as

. = {w € Rlp(z) = p(0)}.
If 1 is a fuzzy hyperideal of R, then p, is a hyperideal of R.

1.6 Interval valued fuzzy sets

By an interval number a, we mean an interval [a‘,cﬁ], where 0 < a~ < at < 1. The set of
all interval numbers is denoted by D[0, 1]. We now identify the interval [a , a] with the number
a € [0,1].

For the interval number @; = [a; ,a;] € D [0,1], i € I, we define the following notations:

rmax{a;, b;} = max{a; ,b; },max{a;", b},

rmin{a;, b;} = [min{a; ,b; }, min{a;", b} }],

rinf @; = [Aa; , Aaj ], tsup @; = [Va;, Va;],

and then, we put

(1) a1 <az <= a; <a, and af < a;,

(2) @1 = ag <= a] = a, and af = ay,

(3) a1 < ag <= a1 < az and a1 # as,
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(4) ka = [ka™, ka™], whenever 0 < k < 1.
It is clear that (D[0,1],<,V, A) is a complete lattice with 0 = [0, 0] as the least element and

1 = [1,1] as the greatest element. By an interval valued fuzzy set F on X, we mean the set,

F={(z, [pp(x),np(z) |z € X},

where pi7, and p} are two fuzzy subsets of X such that pn(z) < ph(z) for all z € X. Putting

pp(z) = [up(x), ph(2)], then we see that

F={(z,pp(x)) |z € X},

where pp : X — D[0,1].

Theorem 48 Let 1 be an interval valued fuzzy set in a semihyperring R. Then, i is a fuzzy
hyperideal of R if and only if for every t € (0,1], the level subset i, = {x € R|u(x) >t} # ¢,

s a hyperideal of R.

Lemma 49 Let i be an interval valued fuzzy set in a semihyperring R. If R has zero element,

then ([0,0]) > f([z~,zT]) for all z € R.

1.7 Intuitionistic Fuzzy sets

The concept of intuitionistic fuzzy set was introduced and studied by Atanassov [16]. Intu-
itionistic fuzzy sets are extensions of the standard fuzzy sets. An intuitionistic fuzzy set A in a
non-empty set X has the form A = {(z, uy(z),va(z)) | x € X}. Here, p1y : X — [0, 1] is the
degree of membership of the element z € X to the set A, and v4 : X — [0, 1], is the degree of
nonmembership of the element z € X to the set A. We have also 0 < py(z) + va(z) < 1, for
all z € X.

Example 50 Consider the universe A = {< 10,0.01,0.9 >, < 100, 0.1,0.88 >, < 500, 0.4,0.05 >
, < 1000,0.8,0.1 >, < 1200,1,0 >}.

For simplicity, we can use the symbol A = (4, 4) instead of

A=A{(z,pa(z),va(z)) |2 € X}.
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Let A= (n4,v4) and B = (up,vp) be two intuitionistic fuzzy sets of X. Then the following
expressions are defined as follows:

(1) AC B iff py(z) < pg(z) and va(x) > vp(z), for all x € X,

(2) A®={(z,va(2), pa(z)) | 2 € X},

(3) AN B = {(z, min{ps(z), pp(2)}, max{va(z), vp(z)}) | for all z € X},

(4) AU B = {(z, min{puy (2), pp(2)}, max{va(z),vp(2)}) | for all z € X},

(5) oA = {(@, (), 45 (x)) [for all @ € X},

(6) A = {(z,v5(x),vp(x)) |for all z € X}.

An interval valued intuitionistic fuzzy set A in a non-empty set X has the form

A = {(z,i4(z),va(z)) | © € X}. Here, uy : X — [0,1] is the degree of membership
of the element € X to the set A and 74 : X — [0,1] is the degree of nonmembership of

the element x € X to the set A. We have also 0 < fis(z) + v4(z) < 1, for all z € X, where

fia(@) = [y (2), i ()], Dal@) = [V (@),vi(2)).

Definition 51 [5] Let ¢ be a point in a non-empty set X. If t € (0,1] and s € [0,1) are two
numbers such that 0 < t+s <1 and at the same time both values t and s are not less than 0.5.

Then, the IFS

C(tv 5) = <$act7 1- les>

is called an intuitionistic fuzzy point in X, where t (resp. s) is the degree of membership (resp.
non-membership) of c(t,s) and ¢ € X is the support of c(t,s). Let c(t,s) be an intuitionistic
fuzzy point in X and let A = (x, 4, Aa) be an intuitionistic fuzzy set in X. Then, c(t,s) is
said to belong to A written c(t,s) € A, if pys(c) > t and Aa(c) < s. We say that c(t,s) is
quasi-coincident with A, written c(t,s)qA, if pa(c) +t > 1 and Aa(c) +s < 1. To say that
c(t,s) € VqgA (resp. c(t,s) € NgA) means that c(t,s) € A or c(t,s)qA (resp. c(t,s) € A and
c(t,s)qA) and c(t,s)€ VgA means that c(t,s) € VgA does not hold.

1.8 n-Dimensional Fuzzy sets

Let L, = {(a1,a2,....,an) | 0 < a1 <ay <..<a,<1}. We set operations in L,, as follow:
1. (al,ag, ...,an) < (bl,bg, ,bn) S a; < bZ(Z =1,2, ...,n),

(a1,a2,...,an) < (b1,b2,....,bn) & a; < bi(i =1,2,...,n), where at least one a; # b;.
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2. Let oy = (a},db,...;al) € L,(t € T =[0,1]). Then
Va=(Vat, vab, .., Val ANag=(ANat, Nadb,..., A al
rer™ (teTal’ rer?’ 7teTa”)’ et (teTal’ e’ ’teTa”)
3. Let a = (a1, a2, ...,ay) € Ly. Then o = (1 —ap, 1 —ap—1,...,1 — ay).
4. (1,1,...,1) and 0 = (0,0, ..., 0).

1=
Then (L, V,A,1,0) form a De Morgan algebra.

Definition 52 [2, 62, 69] Let X be a set and L} = {A| A: X — L,, is a mapping}. A € LY

is called an n-dimensional fuzzy set of X and denoted as
A(z) = (A1(z), Ag(x), ..., Ap(x)), Vx € X .

Definition 53 Let A be a subset of R and i be an n-dimensional fuzzy set in a semihyperring

R is defined by R
t:(tl,tg,...,tn) ifxe A

fale) = {0 =(0,0,...,0) otherwise

In particular, if A = {x}, we denote fyey by fiy and call it a fuzzy point of R.

If i1, 0 are two n-dimensional fuzzy sets, then i C U if i(z) C D(z) for all x € R. The
intersection and union of two n-dimensional fuzzy sets [i, 7 are defined respectively as

(pNv)(x) = p(z) Av(x) and (LU D) (z) = j(x) V o (z), for all z € R.

Definition 54 Let A be a non-empty subset of a semihyperring R. Then the n-dimensional

characteristic function of A denoted and defined by

o (T=(1,1,..,1) ifzeA
XA = 0=(0,0,...,0) otherwise

Clearly, the n-dimensional characteristic function of any subset of R is an n-dimensional fuzzy

subset of R.

1.9 Fuzzy k-hyperideals

Definition 55 [44/ Let R be a semihyperring and i a fuzzy set in R. Then, p is said to be a
weak fuzzy k-hyperideal of R iff V r,x,y € R, the following axioms hold:
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() w(z) =2 plz) Aply), ¥V zex+y,

(ii) p(rez) = p(z) and par) = p(z),

(iii) p(z) 2 [( inf p(u)) v ( inf p())]Auy), vy zeR.
ucz+y veEY+z

And a strong fuzzy k-hyperideal of R iff

(1) w(z) = p(@)Ap(y), vV zex+y,

(i) p(rz) = p(x) and plaer) = p(z),

(iii) wp(z) > [w@) V) Aply), Ve ez+yand 2’ €y + 2.

Note that, (R, +) is commutative semihypergroup, therefore above conditions of weak and
strong fuzzy k-hyperideal of R are reduced to the following conditions:

(i) w(z) =2 p@) Ap(y),Vzex+y,

(i) u(re) > p(z) and plar) > pa),

(iii) p(z) > p(@) Ap(y), Vo € z+y.

Proposition 56 [/4] Let u be a fuzzy set in a semihyperring R. Then,

(i) p is a fuzzy hyperideal of R if and only if for every t € (0, 1], the level subset p,(# ) is
a hyperideal of R, where p, = {x € R| p(z) > t}.

(ii) p is a weak fuzzy k-hyperideal of R if and only if for every t € (0,1], the level subset
we(# @) is a weak k-hyperideal of R, where i, = {z € R| u(x) > t}.

(iii) w is a strong fuzzy k-hyperideal of R if and only if for every t € (0, 1], the level subset
i (F ) is a strong k-hyperideal of R, where p, = {x € R| p(x) > t}.

Lemma 57 Let u be a fuzzy hyperideal of a semihyperring R. If R has a zero element, then
w(0) > pu(z) VreR.
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Chapter 2

Fuzzy Hyperideals in

Semihyperrings

2.1 Introduction

In this chapter, we pursue an algebraic approach to investigate the concept of fuzzy semihy-
perring and related notions in order to set the ground for future work. First, we provide basic
definitions and establish some preliminary results. Then we investigate fully idempotent semi-
hyperrings, that is, semihyperrings all of whose hyperideals are idempotent. It is proved that
such semihyperrings are characterized by the property that each proper fuzzy hyperideal is the
intersection of fuzzy prime hyperideals containing it. Finally, we construct the fuzzy prime
spectrum of fully idempotent semihyperrings in a manner analogous to the construction of the

prime spectrum in classical semiring theory.

2.2 Fuzzy hyperideals

In [44], the concept of fuzzy hyperideal of semihyperring was introduced by Hedayati and Ameri.
They discussed some basic properties of fuzzy hyperideals. We extend this concept for further

studies. We discuss some more general properties of fuzzy hyperideals of semihyperrings.

Theorem 58 Let i be a fuzzy set in a semihyperring R. Then, u is a fuzzy hyperideal of R if
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and only if for every t € (0,1], the level subset

e =1{r € Rlu(z) >t} # ¢

s a hyperideal of R.

Proof. Suppose that p is an fuzzy hyperideal of a semihyperring R and ¢ € (0, 1] such
that p, # . Let x,y € p, then p(z) > t and u(y) > t. As Zeigéy w(z) > p(z) A uly), so
Zéggayu(z) >t=ze€u, forallzeczady.

For r € R, p(rz) > p(x) >t so p(rx) > t. This implies rz € p,. Hence p, is a hyperideal of
R.

Conversely, assume i, is a hyperideal of R, let z,y € R be such that Zégéyp(z) < () Ap(y).
We take ¢ € (0,1] such that Zeirxléy,u(z) <t < p(z) A p(y), then z,y € p, but z ¢ p,, for all
2z € x @ y. Which is contradiction, hence . égclefa yu(z) > u(x) A p(y). Similarly, we can show
that p(zr) > p(z) and p(ra) > wp(x), for all r,z,y € R. Thus p is a fuzzy hyperideal of a
semihyperring R. m

Now, we define fuzzy subsemihypermodules of semihypermodules and discussed some basic

properties with fuzzy hyperideals.

Definition 59 Let M be a right (left) R-semihypermodule. A function p: M — [0,1], is called
a fuzzy subsemihypermodule of Mz (rM ), if the following conditions hold for all mi,ma,m €
M:

(i) p(Onr) =1

(i) inf  p(m') > p(ma) A p(ms), for all my,me € M,

m/EmiBdma

(iii) p(mr) > p(m), (u(rm) > p(m)), for all € R and m € M.

Also note that, fuzzy subsemihypermodules of Rz (g R) are called fuzzy hyperideals of R.
Generalizing the notion of a fuzzy hypermodule [1, 53, 59], we formulate the following

definition.

Definition 60 Let A be a fuzzy subsemihypermodule of a right semihypermodule Mz and u a
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fuzzy hyperideal of R. Then the fuzzy subset A of M is defined by

Au)(z) = vV [ A [Ai) A p(zi)]]

zeXl_ yiz 1<i<p
where x € M, y; € M, z; € R and p € n.

Proposition 61 If )\ is a fuzzy subsemihypermodule of Mg and i a fuzzy hyperideal of R, then
the fuzzy subset A\u is a fuzzy subsemihypermodule of M.

Proof. We have

(O = v [ A M) A (] 2 MOw) A (0) = 1.

Thus (Ap)(0ar) = 1. Also

Aw)(m) = v [ A [Myj) A pE))]),

mEE;I-:lyJ’-z;- 1<j<q
and
(Ap)(m') = v A Ay, A p(z)]], where m,m/ € M.

syl 1<k
Thus
(Ap)(m) A (Ap)(m')
= Y A IS A (D] A Vv A [My) Az,
s PO ARGIAL v [ D) At
(using the infinite meet distributive law)
= v Vo LA W) ABEDIANL A (M) A plz)]

meSI_yl2! miesy_ 2! 15i<q L<k<r

< Vo LA A Aulz D= inf Au(m)

meam,ng:lyll”zlm 1<i<s m/’emPm’

IA
<

maCxt_ o 2" 1§n§t[)\(yn) A p(z,)]] = Ap(ma). m
==j=1Y; %

Corollary 62 If A and u are fuzzy hyperideals of R, then Au is a fuzzy hyperideal of R, called
the product of \ and .
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Remark 63 If A and p are fuzzy hyperideals of R, then A\ A\ u is clearly a fuzzy hyperideal of
R. In general, A\ u # A\.

Definition 64 If A and p are fuzzy hyperideals of R. The fuzzy subset A® p of R is defined by

(@) =, V. M) A (),

forx € R.

Proposition 65 For fuzzy hyperideals A and p of R, A @ p is a fuzzy hyperideal of R (called
the sum of X\ and ).

Proof. For any z, 2’ € R

MA@ p)(@)AAop)(z) = eV, () A p(2)] A [x,eygz/@(y') A ()]
= v Q@) AR A ) A p)]
= v [[O@) AAGNIA [1(z) A )]
= z”Gy\/”@Z” [y”ieggéy/)\(y”) A z”ieggaz'ﬂ(zu)]
< it (e @)
Again
Cowe@ = v [Aw)AuG)
< mgy\{l@m[)\(ya) A p(za)] (where a is any element of R)
S e M) Ap(E] = inf (A© ) (b).

Hence A @ p is a fuzzy hyperideal of R. m
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2.3 Fully idempotent semihyperrings

A semihyperring R is called fully idempotent if each hyperideal of R is idempotent (a hyperideal
I is idempotent if I2 = I), and a semihyperring R is said to be regular if for each 2 € R, there
exist a € R such that x = zax.

For these semihyperrings, we prove the following characterization theorem.
Theorem 66 The following conditions for a semihyperring R, are equivalent:

(1) R is fully idempotent,

(2) Fuzzy hyperideal of R is idempotent.

(3) For each pair of fuzzy hyperideals A\ and p of R, AA p = Ap.

If R is assumed to be commutative (that is, xy = yz for all x,y € R), then the above
conditions are equivalent to:

(4) R is regular.

Proof. (1)=(2). Let 6 be a fuzzy hyperideal of R. For any = € R,

§%(z) = (86)(x)

IEZ{):lylzl 1<’L<p (
(

(0

Yi) N 6(2))]
Yyizi) A 5(%21))]
] AL A i)

N (w ) o(z)] = 5( 0).
TEYX,_1Yizi

Since each hyperideal of R is idempotent, therefore, () = (z)2, for each € R. Since
z € (z) it follows that z € ()2 = ReRRaR. Hence, x = L, a;xalb;zb} where a;, al,b;, b} € R
and ¢ € n. Now, §(z) = 0(z) A d(z) < d(aza;) Ad(biab]) (1 <1i<q).

IN

Py

[ A
zeXl_lyiz; [1<Z<P
xGEf:Iyizl [

[0

IN

Therefore,

. Y,
o(z) < 1§/i\§q[5(alxai) A 6(bjzb])]

ra b
= wGEg:I(X-:Ua’b xb! 1</i\<q[5(alxa ) A 5(bszz)]]
< VoL [y Az

zeT!_ yiz; 1SS
= (80)(x) = 6*(x).
Thus 62 = 4.
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(2)=(1). Let I be a hyperideal of R. Thus §;, the characteristic function of I, is a fuzzy
hyperideal of R. Hence 5% = 67. Therefore, 67067 = 67, hence d;2 = 7. It follows that I? = I.
Hence (2)<(1).

(1)=(3). Let A and p be any pair of fuzzy hyperideals of R. For any = € R.

(Aw)(x) = xezley,.zi[lg%p“(%) A p(z))]
- xEEfZWiZi[lS/Z'\Sp()\(yZzZ) A ,u(yzzz))]
_ xegf\;%[[qup)\(yzzz)] AL piz)]
< Vo D) au@)

wezizlyizi

= Ma) Ap(z) = (AN p) ().

Again, since R is fully idempotent, (z) = ()2, for any € R. Hence, as argued in the first
part of the proof of this theorem, we have

(A p)(2) = A(2) A p(a)

< IEEf\:/lyizi[li/i\Sp()\(yi) A pu(zi))]

— () ().

Thus A A p = Ap.

(3)=(1). Let A and p be any pair of fuzzy hyperideals of R. We have, A A p = Au. take
w=A

Thus A A XA = A2, that is, A\ = A%, where \ is any fuzzy hyperideal of R. Hence, (3)=(2).
Since we already proved that (1) and (2) are equivalent, hence it follows that (3)=(1) and
(1)=-(3). This establishes (1)< (2)«<(3). Finally, if R is commutative then it is easy to verify
that (1)<(4).

Next, we prove another characterization theorem for fully idempotent semihyperrings. =
Theorem 67 Let R be a semihyperring, Then, the following conditions are equivalent;

(1) R is fully idempotent,

(2) The set of all fuzzy hyperideals of R (ordered by < ) forms a distributive lattice FIg
under the sum and intersection of fuzzy hyperideals with A A u = A, for each pair of fuzzy
hyperideals A, u of R.

Proof. (1)<(2). The set FIg of all fuzzy hyperideals of R (ordered by < ) is clearly

a lattice under the sum and intersection of fuzzy hyperideals. Moreover, since R is a fully
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idempotent semihyperring, it follows from above Theorem that A A p = Ap, for each pair of
fuzzy hyperideals A, u of R. We now show that F'I is a distributive lattice, that is, for fuzzy
hyperideals A, and 7 of R, we have

(NS @] = (A &n) A0 @),

For any = € R,

(And)@ml@) = v (AN An(2)]
= v AW A () An(2))

= e, W) A O An(z) An(2)]

= e, AW AN A 8() An(2)]

= Vv _[(Aen)(x) A6 @) ()

because, for z € y ® z, A(y) & n(z) < (A& n)(x) and, similarly, 6(y) An(z) < (§ & n)(x)
= (A @n)(z) A (6 @n)(z)
=[A@n)(@) A en)(x)

Again,

[(Aen) A @G on)(z)

=[(A@n)(d ®n)(z)

= e s LA LA @m) () A @@ n)(z))

= v ATV @) AR)IAL Vo (8(t) An(u)]]

= V[ A V(A An(s) A 6(t) An(u)]]]

€T yiz; 1SISp ¥icri®si

using infinite meetzﬁ;;f;iibutive law

™ sest e 1t gl (A7) A A 1 00) Anfu)l]

< ce€SP iz 1 ZZEZ?&; [(A(rits) A S(rits) An(sits) An(siug) An(rau)]]
= xEZf\z/lyizi [1§/z‘\§p[gzgt>ggsﬁ [(AA0)(rits) An(sit; @ sju; @ iu;)]]]

= xezf\:/lyizi[lg/i\gp[()\ A S) Anl(yizi)]

< Y [(adanj@)

weXl_ yizi

[(AA0) An)().
[(A@n) A(@@n)]=[(AANS)An].
(2)<(1). Suppose that the set FIg, of all the fuzzy hyperideals of R (ordered by < ) is a

distributive lattice under the sum and intersection of fuzzy hyperideals with A A p = A, for
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each pair of fuzzy hyperideals A, p of R.
Then for any fuzzy hyperideals A of R, we have A> = A = AA X =g.lb. of {\,\} = \.

Hence R is fully idempotent. m

Definition 68 A hyperideal I of a semihyperring R is called a prime hyperideal of R if for all
hyperideals A, B of R, AB C I implies that either AC I or BC 1.

Definition 69 A hyperideal I of a semihyperring R is called an irreducible if for all hyperideals
A, Bof R, ANB =1, implies A=1 or B=1.

Definition 70 A fuzzy hyperideal n of a semihyperring R is called a fuzzy prime hyperideal of
R if for fuzzy hyperideals A and p of R, Ap <n = X< n orpu<mn;nis called fuzzy irreducible
if for fuzzy hyperideals \,jp of R, A\ANp=n=A=mn or u=n.

Theorem 71 Let R be a fully idempotent semihyperring. For a fuzzy hyperideal n of R, the

following conditions are equivalent:

(1) n is a fuzzy prime hyperideal,

(2) n is a fuzzy irreducible hyperideal.

Proof. (1) Assume that 7 is a fuzzy prime hyperideal. We show that 7 is fuzzy irreducible,
that is , for fuzzy hyperideals A\,u of R, AAp =n = X =nor u = n. Since R is a fully
idempotent semihyperring, the set of fuzzy hyperideals of R (ordered by < ) is a distributive
lattice under the sum and intersection of fuzzy hyperideals by Theorem 67

This implies that n = g.l.b. of {\, u}, since n = X\ A p. Thus it follows that A < 7 and
7 < w. On the other hand, as A < R is fully idempotent, it follows from Theorem 66 (3) that
AA = Ap. Hence n = AA = Ap. Since 7 is a fuzzy prime hyperideal, by the above definition,
either A < n or u < n. As already noted, n < X\ and 1 < u; so it follows that either A = 7 or
u =mn. Hence 7 is a fuzzy irreducible hyperideal.

(2) Conversely, assume that 7 is a fuzzy irreducible hyperideal. We show that 7 is a fuzzy
prime hyperideal. Suppose there exist fuzzy hyperideals A and p such that Ay < 7. Since R is
assumed to be a fully idempotent semihyperring, it follows from Theorem 66 (3) that the set
of fuzzy hyperideals of R (ordered by < ) is a distributive lattice with respect to the sum and

intersection of fuzzy hyperideals. Hence the inequality A A u <n = (AA pu) ®n =mn, and using
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the distributivity of this lattice, we have n = (AA ) ®n = (A& n) A (@ n)]. Since 7 is fuzzy
irreducible, it follows that either A @ n = n or u @& n = 7. This implies that either A < 7 or

u < 1. Hence 7 is a fuzzy prime hyperideal. m

Lemma 72 Let R be a fully idempotent semihyperring. If X is a fuzzy hyperideal of R with
Aa) = a, where a is any element of R and o € [0, 1], then there exists a fuzzy prime hyperideal

1 of R such that A < n and n(a) = a.

Proof. Let X = {u : p is a fuzzy hyperideal of R, p(a) = a, and A < u}. Then X # ¢,
since A € X. Let 7 be a totally ordered subset of X, say 7 = {\; : i € I['}. We claim that V;c1\;
is a fuzzy hyperideal of R. Clearly, V;cr\i(z) = 1. Also, for any x,r € R, we have

\l/)\z(ac) = \Z/)\,(w) < [V(Ai(zr))] = \z//\z(xr)

Similarly, \Z/)\l(m) < VAi(rz). Finally, we show that inf V \;(z) > \Z/)\z(:v) A \i/)\i(y), for any

zexDyY 1
z,y € R. Consider

= [V N(@)] A

—-
=
=
>
BESN
—
N
=

< v
iJeIz€x®yA
< i J
< v Lt NG
: J
12y 2)
Thus V is a fuzzy hyperideal of R. Clearly A < V A; and V Ai(a) = V Ai(a) = a. Thus
i€l el i€l i€l

V A; is the Lu.b of 7.
i€l

Hence, by Zorn’s lemma, there exists a fuzzy hyperideal n of R which is maximal with
respect to the property that A < 7 and 7n(a) = . We now show that 7 is a fuzzy irreducible
hyperideal of R. Suppose n = §1 A d2, where §; and do are fuzzy hyperideal of R. Since R is
assumed to be a fully idempotent semihyperring, so by Theorem 67, the set of fuzzy hyperideals
of R (ordered by <) is a distributive lattice under the sum and intersection of fuzzy hyperideals.

Hence n = 61 A d2 = ¢.1.b.{d1,d2}. This implies that n < §; and n < §3. We claim that either
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17 = 61 or n = J2. Suppose, on the contrary, n # 01 and 1 # Jo, it follows that d1(a) # a and
d2(a) # a. Hence o = n(a) = (01 Ad2)(a) = {d1(a) A d2(a)} # «, which is contradiction. Hence
either n = §1 or n = d2.This proves that 7 is a fuzzy irreducible hyperideal. Hence by Theorem
71, n is a fuzzy prime hyperideal. m

Now, we prove the main characterization theorem for fully idempotent semihyperrings.
Theorem 73 Let R be a semihyperring. Then the following conditions are equivalent:

(1) R is fully idempotent,

(2) The lattice of all fuzzy hyperideals of R (ordered by <) is a distributive lattice under
the sum and intersection of fuzzy hyperideals with AA pu = Ap, for each pair of fuzzy hyperideals
A, poof R.

(3) Each fuzzy hyperideal is the intersection of those fuzzy prime hyperideals of R which
contain it. If, in addition, R is assumed to be commutative, then the above conditions are
equivalent to:

(4) R is regular.

Proof. (1)=-(2). This follows from Theorem 67.

(2)=(3). Let A be a fuzzy hyperideal of R and let {\s : s € Q} be the family of all
fuzzy prime hyperideals of R which contain A. Obviously, A < AzcqAs. We now prove that
NscAs < A. Let a be any element of R. By Lemma 72, there exists a fuzzy prime hyperideal
At (say) such that A < Ay and A(a) = M(a). Thus Ay € {\s : s € Q}. Hence Ageqds < A, S0
Nseads(a) < A(a) = A(a). This implies that Ageqds < A, 80 Ageads = A

(3)=(1). Let A be any fuzzy hyperideal of R. Then \? is also a fuzzy hyperideal of R.
Hence, according to statement (3), A% can be written as A?> = Asen)s, where {\s : s € Q} is
the family of all fuzzy prime hyperideals of R which contains A%. Now A2 < X is always true.
Hence, A2 = \. Therefore, R is fully idempotent. Finally, if R is assumed to be commutaive,
then as noted in Theorem 66, (1)<>(4). This completes the proof of the theorem. m

At the end of this section, we prove the following fuzzy theoretic characterization of regular

semihyperring. First we recall the following definition.

Definition 74 Let A and p be fuzzy subsets of a semihyperring R. Then the fuzzy subset Ao p
is defined by (Ao p)(x) = V [(AMy) A u(z))], for all z € R.
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Theorem 75 The following conditions for a semihyperring R are equivalent:

(1) R is regular,

(2) For any right hyperideal of R and any left hyperideal L of R, RN L = RL,

(3) For any fuzzy right hyperideal A and any fuzzy left hyperideal p of R, AA = Ao p.

Proof. For (1)=(2), we refer to Golan [43], proposition 5.27, p.63]. So we have to prove
only (1)=-(3). Suppose that R is regular. Let § be any fuzzy right hyperideal and p any fuzzy
left hyperideal of R. We show that AA = Ao u. Let x € R. Then

(om@) = v ) Au2)

<V M) A ply)) = v @) A (o)

= v D@ Aw()] = 0 Aw)),

Thus (Ao u) < (A A p). This does not depend upon the hypothesis. We now show that
(AAp) < (Aopu). Let z € R. Since R is von Neumann regular, there exists a € R such that
x = xax. Thus

AAp)(@) = (Mz) A () < (Mza) Ap(z) < vV (Ay) Apz)) = (Ao p)(@).

Hence Ao p = A A . Conversely, assume that A A p = A o p for any fuzzy right hyperideal
A and any left hyperideal p of R. We show that R is regular. Let x € R, R and Rz are the
principal right and left hyperideals of R, respectively, which are generated by x. Thus, if d,r
and dg, denote, respectively, the characteristic functions of xR and Rz, then clearly §,z and
Oz are fuzzy right and left hyperideals of R. Hence, by the assumption %7 A dre = 02R 0 0Rz.
This implies that R N 'Rax = 2 RRx. Thus x € 2R NRx = 2 RRx C z’Rx. Hence, there exists

z € R such that x = zazx, thus showing that R is regular. m

2.4 Fuzzy prime spectrum of a fully idempotent semihyperring

In this section R will denote a fully idempotent semihyperring, F' Iz will denote the lattice of
fuzzy hyperideals of R, and F'Pr the set of all proper fuzzy prime hyperideals of R. For any
fuzzy hyperideal A of R, we define Oy = {p € FPr : A £ p} and 7(FPgr) = {O\: A\ € FIg}. A
fuzzy hyperideal A\ of R is called proper if X\ # A, where the fuzzy hyperideal A of R is defined
by A(x) =1, for all x € R. We prove the following;:
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Theorem 76 The set T(FPgr) forms a topology on the set F'Pr. The assignment A — O) is
an isomorphism between the lattice Flg of fuzzy hyperideals of R and the lattice of open subsets

Of FPR.

Proof. First we show that 7(F'Pg) forms a topology on the set F'Pg. Note that O, =
{p € FPr : ¢ £ u} = ¢, where ¢ is the usual empty set and ¢ is the fuzzy zero hyperideal
of R defined by ¢(a) = 0 for all a € R. This follows since ¢ is contained in every fuzzy
(prime) hyperideal of R. Thus O, is the empty subset of 7(#Pgr). On the other hand, we have
Oa ={p € FPr : A £ pu} = FPg. This is true, since FPg is the set of proper fuzzy prime
hyperideals of R. So O4 = FPg is an element of 7(FPg). Now, let Os,,0s, € FPr with 6;
and dy in FIg. Then Os, NOs, = {pn € FPr : 61 £ p and 02 £ p}. Since R is fully idempotent,
therefore, 6162 = d1 A 02, by Theorem 66. Since p is fuzzy prime, so 9192 < p implies that
61 < por 62 < p. Hence, it follows that §102 £ p, that is, 61 A d2 £ p. Conversely, 61 A d2 £ p,
obviously, implies that 6; € w and d2 £ p. Thus the statements 61 £ p and d2 £ p, and
81 A 82 £ p, are equivalent. Hence

Os5,NOs, = {pn € FPr : 61 A3 % pu} = Ogy ps,-

Let us now consider an arbitrary family

{n; }ier of fuzzy hyperideals of R. Since

U o :ig]{,ueFPR:nijéu}:{,uEFPR:EIkelsothatnijéu}.

ier
Note that
(Em)@) =V (n(en) Ama(ez) Ama(es) A )

where only a finite number of the zs are not 0. Thus, since 7,;(0) = 1, therefore, we are
considering the infimum of a finite number of terms, because the 1’s are effectively not being
considered.

Now, if for some k € I, n;, £ p, then there exists « € R such that n;, > p. Consider the
particular factorization of x for which = = = and z; = 0 for all i # k. We see that n,(z) is an
element of the set whose supremum is defined to be (Elnz)(m) Thus, (ngnz)(x) > n(z) > p(x).
Thus (Elm)(:n) > u(x). Hence, we have Elni £ p.

Hence, n;, £ p for some k € I implies that Elni £ p.

Conversely, suppose that %}Ini % p. Therefore, there exists an element € R such that

(O)(z) > p(z). This means that w€x1®x\2/®x3®...(771($1) Ang(za) Ans(zs) A...) > p(z).
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Now, if all the elements of the set, whose supremum we are taking, are individually less
than or equal to u(x), then we have

(2 n;)(x)

= ) <
b oo (@) Amae2) As(as) A ) < ula)

which does not agree with what we have assumed. Thus, there is at least one element of the
set (whose supremum we are taking), say, n;(x]) A ny(25) A n3(ah) A ...which is greater than
p(z)(z € ) @ 2 @2 @ ...being the corresponding breakup of x, where only a finite number of
the 2’s are nonzero). Thus 1, (z]) A ny(xh) Anz(xh) A ... > p(x) > p(a)) A plah) A plas) A ...

That is, 0y (21) Ama(a5) Anz(@s) Ao > (@) A p(ah) A p(as) A ..

That is, ny(z7) Ana(x3) Ans(@s) A ... > p(z)

where p(z;,) = (@) A p(ah) A p(zs) A-..(p € I).

Hence 7y () > p(z),). It follows that 7, £ p for some p €n. Hence, iglni % p=mn, £ p for
some p €n. Hence, the two statements, that is,

() S £ . and

(ii) n, # u for some p € I are equivalent. Hence

U Oy, :ié{”EFPR:”i £ p}

el

- U FPr: S,
UfneFPr Z,elmiéu}
:O,Em

because, %31772» is also a fuzzy hyperideal of R. Thus, ing"i € 7(FPgr). Hence it follows that
7(FPgr) forms a topology on the set F'Pr. Let ¢ : FIg — F Pgr be the mapping defined by
A — O,. It follows from the above that the prescription ¢(A) = O, preserves finite intersection
and arbitrary union. Thus ¢ is a lattice homomorphism. To conclude the proof, we must show
that ¢ is bijective. In fact, we need to prove the equivalence §; = d2, if and only if Os, = Oy,,
for 61, 62 in L4. Suppose that Os, = Os,. If §; # d2, then there exists z € R such that
d1(x) # d2(x). Thus, either §1(x) > da(z) or da(x) > d1(x). Suppose that §1(z) > da(x). Using
Lemma 72, there exists a fuzzy prime hyperideal p of R such that 02 < p and da(z) = p(x).
Hence, 01 % u, because 61(z) > da2(x) = p(z). Therefore, §1(x) > u(z). Thus, u € Os,. Our
assumption is that Os, = Os,. Hence, we have u € Os,. Hence d2 £ p. this is a contradiction.

If, in the beginning, we had assumed that d2(z) > d1(x) then, again, by similar reasoning,
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we get a contradiction. Thus, Os, = Os, implies that §; = d2. Conversely, if §; = 2, then,
by definition, it is obvious that Os, = Os,. Thus, we have proved that 6; = d2 if and only if
Os, = Os, for 61and 62 in L 4. This completes the proof of the theorem.

The set FPr will be called the fuzzy prime spectrum of R and the topology 7(FPg)
constructed in the above theorem will be called the fuzzy spectral topology on F'Pr. The

associated topological space will be called the fuzzy spectral space of R. m
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Chapter 3

On (o, f)-Fuzzy Hyperideals of

Semihyperrings

In this chapter we concentrate on the concept of quasi-coincidence of fuzzy point with a fuzzy
subset. By using this idea, the notion of («, 3)-fuzzy hyperideal in a semihyperring introduced
and consequently, a generalization of fuzzy hyperideals is defined. We also study the related
properties of the («a, §)-fuzzy hyperideals and in particular, an (€, € Vq)-fuzzy hyperideals in
semihyperrings will be investigated. Moreover, we also consider the concept of implication-
based fuzzy hyperideals in a semihyperring and obtained some useful results. In what follows,
R will denote a semihyperring, and «, 8 will denote one of €, g, € Vq, or € Aq unless otherwise

specified. Also @ means « does not hold.

Definition 77 A fuzzy set p in R is called an (o, B)-fuzzy hyperideal of R, where a #€ Nq, if
for all ryz,y € R and t1, t2 € (0,1], the following conditions hold:

(i) zyap and y,ap imply (2)yaBu, for all z € o+ y,

(ii) @y ap implies (rz)y, Sp and (xr)y, Su.

where t1 A to = min{t, t2} . Let p be a fuzzy set in R such that u(z) < 0.5 for all z € R.
Suppose that z € R and ¢ € (0, 1], such that z; € Agu. Then p(z) > ¢ and (pu(x) +¢ > 1).
It follows that 1 < p(z) +¢ < p(z) + p(z) = 2u(z), so that p(z) > 4. This means that

{z¢| ¢ € Aqu} = . Therefore, the case o =€ Aq in Definition 77 is omitted.
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In the next theorem , by an («, 5)-fuzzy hyperideal of R, we construct an ordinary hyperideal

of R.

Theorem 78 Let p be a non-zero («, 3)-fuzzy hyperideal of R. Then, the set
supp(p) = {xz € R| p(x) > 0} is a hyperideal of R.

Proof. Suppose that x,y € supp(u). Then p(xz) > 0 and u(y) > 0. Assume that u(z) = 0,
forall z € x+y. If a € {€, € Vq} then =z, ap and y,,(,yap. But, for all 2z € z+y, (z)H(I)AH(y)Bu,
for every € {€,q, € Vq, € Aq}, which is a contradiction. Note that x;, qu and y.,qu but, for all
z€x+y, (2)1a1 = (2)18u, for every B € {€,q, € Vq, € Aq}, which is a contradiction. Hence,
wu(z) > 0, for all z € z + y, that is, for all z € x + y, z € supp(p). Also, let there exists 7 € R
such that p(zr) = 0. If a € {€, € Vq}, then z,;)au . But (xr)s, B, for every B € {€,q, € Vq,
€ Aq}, which is a contradiction. We know that x1qu . But (zr);8u for every 8 € {€,q, € Vg,
€ Aq}, which is a contradiction. Hence, pu(zr) > 0, that is xr €supp(p). Similarly, we can show
that rz € supp(u). Therefore, supp(u) is a hyperideal of R.

In the next theorem, we see that a (g, ¢)-fuzzy hyperideal is constant under suitable condi-

tion. m

Theorem 79 Let R have a zero element and p be a non-zero (q, q)-fuzzy hyperideal of R, then,

W is constant on supp(p).

Proof. By Lemma 46, we know that u(0) = V{u(x)|x € R}. Suppose that there exists
x €supp(u) such that t, = u(x) # to, then ¢, < to. Choose t1,t2 € (0, 1] such that 1 —tp < t; <
1 —ty < ta. Then 0 qu and w4, qu but (2)e,at, = @, qp for all z € 0+ x and (2)g e, = T, G
for all z € z + 0, which is a contradiction. Thus, p(xz) = (0) for all © €supp(u). Therefore, u
is constant on supp(u). In the following theorem, we investigate some conditions that make a

fuzzy set uin R as a (q, € Vq)-fuzzy hyperideal. m
Theorem 80 Let I be a hyperideal of R and u a fuzzy set in R such that

() YoeR\T, u) =0,
(i) Vazel, pu(z)>0.5.
Then, u is an (g, € Vq)—fuzzy hyperideal of R.
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Proof. Suppose that z,y € R and t1,t2 € (0,1] such that =4 qu and y,qu. Then z,y € I,
and so z C [ for all z € x +y. We can consider the following cases:

(1) t1 Ata <0.5, then u(z) > 0.5 > t1 Atg, for all z € x + y and hence ( 2)¢,a, € p for all
zexr+y.

(2) t1 Ata > 0.5, then p(z) +t1 Ata > 0.5+ 0.5 = 1 and so ( z)¢at,qu. Therefore,
( 2)tiat, € Vau for all z € z +y.

Now, suppose that 7 € R and ¢ € (0, 1] such that x;qu. Then, x € I, and so rz € I. We can
see two following cases:

(1) t <0.5, then p(rz) > 0.5 >t and hence (rz); € p. Similarly, (zr); € p.

(2) t> 0.5, then pu(rx) +1 > 0.5+ 0.5 =1 and so (rx)iqu. Similarly, (zr):qpu. Therefore,
(ra); € Vqu and (zr): € Vgu. This completes the proof.

Also, we have the converse of this Theorem as follows: m

Theorem 81 Let R be a semihyperring with zero and p an (q, € Vq)-fuzzy hyperideal of R,
such that p is not constant on supp(p). Then, p(x) > 0.5, for all x € supp(p).

Proof. By Lemma 46, we know that u(0) = V{ pu(z)|x € R}. Assume that p(z) < 0.5 for
all x € R. Since p is not constant on supp (i), there exists « € supp(u) such that t, = p(z) #
w1(0) = to, then t, < tg. Choose t1 > 0.5 such that t, +t1 < 1 < tg+ t1. Then 0y, qu and x4, qu.
Since p(z) +t1 =ty +t1 < 1, we have x4, Gu and so (z)1a, = 2, € Vqu for all z € 0+ z or
z € x + 0. This contradicts p is a (g, € Vq)-fuzzy hyperideal of R. Therefore, u(y) > 0.5 for
some y € R. Also, since p(0) > u(y), then ©(0) > 0.5. Finally, let ¢, = p(z) < 0.5 for some
x € supp(p). Take t; > 0 such that t, +¢t; < 0.5, then z1gp and 0g 544 qpr. But p(z) + 0.5
+t1 =ty + 0.5+t < 0.5+ 0.5 = 1, which implies xg 544 gu.Thus, (2)100.5+t; = 0.5+ € Vi,
for all z € 0+ or z € +0, which is a contradiction. Therefore, p(z) > 0.5 for all € supp(u).
[ ]

A fuzzy set p in R is said to be proper if Im(u) has at least two elements. Two fuzzy sets
are said to be equivalent if they have the same family of level subsets. Otherwise, they are
said to be non-equivalent. Now, we can discuss on (€, €)-fuzzy hyperideal of R which can be

expressed as the union of two proper non-equivalent (&, €)-fuzzy hyperideals.

Theorem 82 Let R have proper hyperideals. A proper (€, €)-fuzzy hyperideal 1 of R such
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that 3 <| Im(u) |< oo, can be expressed as the union of two proper non-equivalent (€, €)-fuzzy

hyperideals of R.

Proof. Let ;1 be a proper (€, €)-fuzzy hyperideal of R with Im(p) = {to,t1,. tn}, where
to >ty > ... >t and n> 2. Then, p,; € py, € py, € ... € gy, = R is the chain of level

hyperideals of R. Define fuzzy sets v and 6 in R by

™ if € Mtl,
to if v € /"Ltg\ Ky
v(z) =
\ tn if z € lu’tn\/j/tn,p
and ) \
tO ifx € :u’t() 5
t1 ifz € Mtl\ iy
() ifre Mtg\ lutla
t4 ifx € s
9(1’) _ :u’t4\ :u’tg
ln if z € :utn\ Hp—15

V4
where to < 171 < t1 and t4 < r9 < to. Then, v and 0 are (€, €)-fuzzy hyperideal of R,
P, © iy © pig € oo Sy, = Ry and gy C gy C pyy € oo © g, = R, are the chains of
level hyperideals respectively, and v, 8 < u. Therefore, ¢ and 6 are non-equivalent, and clearly,

p=vVveo m

3.1 Fuzzy hyperideals of type (€, € Vq)

In this section, we investigate some results and properties of («, 5)-fuzzy hyperideals (specifi-

cally, ( €, € Vq)-fuzzy hyperideals ) of R.

Definition 83 A fuzzy set p in R is called an (€,€ Vq)-fuzzy hyperideal of R, if for all
r,x,y € R and t1, ta € (0,1] the following conditions hold:
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(i) @t € pand y, € pimply (2)¢ne, € Vap, for all z € z +y,
(ii) ¢, € pimplies (rz):, € Vgu and (ar)y € Vau.

Theorem 84 Every ( € Vq, € Vq)-fuzzy hyperideal of R is an ( €,€ Vq)-fuzzy hyperideals of
R.

Proof. Let p be an ( € Vg, € Vq)-fuzzy hyperideal of R. Suppose that xz,y € R and
ti,ta € (0,1] such that z;;, € p and vy, € p. Then, x;, € Vgu and y,, € Vqu. By the
hypothesis, if it follows that (z)ya, € Vau, for all z € z + y. Now, let r,x € R and t € (0, 1]
such that z; € u. Then, z; € Vqpu, so by hypothesis (rz); € Vqu and (xr); € Vgu. Therefore, p
is an ( €, € Vq)-fuzzy hyperideal of R. m

Theorem 85 FEvery (€, €)-fuzzy hyperideal of R is an ( €, € Vq)-fuzzy hyperideal.
Proof. The proof is straight forward. m

Proposition 86 If I is a hyperideal of R, then X (the characteristic function of 1) is an
(€, €)-fuzzy hyperideal of R.

Proof. Suppose that z,y € R and t1,t2 € (0,1] such that z;;, € X and vy, € X;. Then,
Xi(z) > t; > 0 and X(z) > t2 > 0, which imply that X;(x) =1 = X;(y). Hence z,y € I and
so z € I for all z € x+y, it follows that X(z) =1 > t1Atg, for all z € z+y, that is (2) e, € X1
for all z € z+y. Now, let r,z € R and t € (0, 1] such that z; € X;. Then X;(z) > ¢ > 0 which
implies Xj(xz) = 1. Hence, x € I so rx € I and zr € I. It follows X;(rz) = X(zr) =1 > ¢,
that is (rz); € X1 and (ar); € X;. Therefore, X1 is an (€, €)-fuzzy hyperideal of R. m

Conversely, if I is an ideal of R, then by proposition 86, X; is an (€, €)-fuzzy hyperideal
of R. Therefore, by Theorem 84, X7 is an (€, € Vq)-fuzzy hyperideal of R.

Example 87 On four element semihyperring (R,+,.) defined by the following two tables:

® |0 a b c 0 a b c
0 | {0} {a} {b} {c} 0/0 0 0 O
a | {a} {a} {b} {c} a0 a a a
b | {b} {b} {b} A{c} b0 b b b
¢ | {c} A} {c} A} c|0 ¢ ¢ ¢




Consider a fuzzy set v as follows:

0.6, if x=0
0.7, if  x#0.

p(z) =

It is easy to see that p is an (€, € Vq)-fuzzy hyperideal of (R,+,.).

Example 88 Consider Z, the set of integers. Define a hyperoperation ” @& 7 and a binary

”

operation” -” on Z as follow m @ n = {m,n} and mn =mn ¥V m,n € Z. Clearly (Z,®,") is a

semihyperring. Now define

0.6, if x € (4),
w(x) =13 08, if v € (2)\(4),
0.7, otherwise,

where (n) denotes the set of all integers divisible by n, it is a routine work to calculate that p

is an (€, € Vq)-fuzzy hyperideal of (Z,+,.).
In the next theorem, we prove an equivalent condition for (€, € Vq)-fuzzy hyperideals.

Theorem 89 A fuzzy set p in R is an (€, € Vq)-fuzzy hyperideal of R if and only if for all
r,z,y € R the following two conditions hold:

(i) w(z) > p(x) A p(y) A0.5, for all z € x +y.
(i) p(rx) > p(x) AN0.5 and p(xr) > p(x) A0.5.

Proof. Let u be an (€, € Vq)-fuzzy hyperideal of R and z,y € R. We can consider the
following cases:

(1) w(x) A p(y) < 0.5. In this case, if pu(z) < wp(x) A u(y), for all z € = + y. We can
choose t € (0,0.5) such that, for all z € =z +y, pu(z) < t < p(z) A p(y). Then z; € p and
Yyt € w, but (z).€ Vqu, for all z € = + y, which is a contradiction. Thus, for all z € z + y,
w(z) > p(@) A p(y) = () A p(y) A0.5.

(2) p(x) A p(y) > 0.5. In this case, we have pg5 € ppand yo5 € p. If for all z € 4y, p(z) <
0.5, then, for all z € x 4+ y, (2)o5€n and p(z) +0.5 < 1 (or (2)o.5qu, for all z € z + y). Hence,
(2)0.500.5€ Vqu, for all z € x4y, which is a contradiction. Thus, p(z) > 0.5 = p(z) Ap(y) A0.5,

for all z € x + y. Also, if r,z € R, we can consider two following cases:
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(1) p(x) > 0.5. In this case, if p(zr) < p(z), we can choose ¢ € (0,0.5) such that u(rz) <t <
w(x). Then x; € p, but (rz).€ Vgu, which is a contradiction. Thus, p(rz) > p(z) = pu(z) A0.5.
Similarly, p(zr) > p(z) = p(x) A 0.5.

(2) p(z) > 0.5. In this case, we have ugs € p. If p(rz) < 0.5, then (rx)os€p and p(re) +
0.5 < 1 (or (rx)osqu). Hence (rz)os€ Vqu, which is a contradiction. Thus, p(rz) > 0.5 =
w(x) A 0.5. Similarly, u(xr) > u(x) A 0.5.

Conversely, suppose that p satisfies condition (i) and (ii). Let z,y € R and t;,t2 € (0, 1]
such that zy, € pand y, € p. Then, p(z) > t1 and p(y) > to. Suppose that u(z) < t1 Aty for all
ze€x+y. If plx) Ap(y) < 0.5, then, for all z € x4y, u(z) > p(@) Ap(y) N0.5 = p(x) Ap(y) >
t1 A t2, which is a contradiction, so u(x) A p(y) > 0.5. It follows that, for all z € = + v,
w( 2) + (1 Ata) > 2u( z) > 2(u(z) A p(y) A0.5) = 1. Hence, (2)4at,qp, for all z € z + y, which
implies (2)y At € Vau, for all z € o +y. Also, let r,xz € R and ¢ € (0, 1] such that z; € p, then
, () > t. Suppose that p(rz) < t. If pu(x) < 0.5, then p(rz) > p(x) A0.5 = p(z) > ¢, which is
contradiction, and so p(z) > 0.5. It follows that u(rz)+t > 2u(rz) > 2(u(z) A0.5) = 1. Hence,
(ra)iqu, which implies (rx); € Vgu. Similarly, (zr); € Vqu. Therefore, p is an (€, € Vq)-fuzzy
hyperideal of R. m

In the following theorem, we characterize (€, € Vq)-fuzzy hyperideals based on level subsets.

Theorem 90 Let p be a fuzzy set in R. If u is an (€, € Vq)-fuzzy hyperideal of R, then for
all 0 <t <0.5, u, = @ or p, s a hyperideal of R.

Conversely, if 1,(# ¢) is a hyperideal of R for all 0 < ¢ < 0.5, then p is an (€, € Vq)-fuzzy
hyperideal of R.

Proof. Let u be an (€, € Vq)-fuzzy hyperideal of R and 0 < ¢t < 0.5. If z,y € p,, then
w(x) >t and p(y) > t. Hence, for all z € v +y, pu(z) > p(x) A p(y) A0.5 >t A0.5 =t , which
implies that p(z) > t, for all z € x + y. That is z € y, for all z € x + y. Now, suppose that
x € py, and 7 € R. Then, p(z) > t, and hence p(rzx) > p(x) A0.5 > t A 0.5 = t. It implies
wu(rx) > t, that is rz € p,. Similarly, xr € u,. Therefore, y, is a hyperideal of R.

Conversely, let © be a fuzzy set in R such that u,(# ¢) is a hyperideal of R, for all
0<t<05 Ifzr,y € R, we have pu(x) > p(x) A pu(y) A 0.5 =to, pu(y) > p(x) A p(y) A 0.5 = to,

then z,y €y, and so z € y, for all z € x +y. Now, we have u( z) > to = p(x) A p(y) A 0.5,

44



for all z € = + y. Hence, condition (i) of the Theorem 89 is verified. Now, if z € R, we have
pw(x) > p(x) A0.5 = ty. Then, x € p, , so ro € py, for all r € R. Hence, pu(x) >ty = p(a) A0.5.
Similarly, p(xr) > t) = pu(a)A0.5. This shows condition (ii) of the Theorem 89 holds. Therefore,
u is an (€, € Vq)-fuzzy hyperideal of R. In next Theorem , we discuss on level subsets in the

interval (0,0.5]. In the next theorem, we see what happen to the subsets in interval (0.5,1]. m

Theorem 91 Let p be a fuzzy set in R. Then, p,(# @) is a hyperideal of R for allt € (0.5, 1]
if and only if for all x,y € R.

(i) @) Aply) <up(z) V0.5, for all z € x+y,

(ii))  p(x) < p(rz) v 0.5 and p(x) < p(zr) Vv 0.5.

Proof. Let p be a hyperideal of R for all ¢ € (0.5, 1]. If there exists x,y € R such that
w(z) V05 < p(x) Au(y) =t for all z € o +y, then t € (0.5,1], u(z) < t, x € p, and
y € u, for all z € z 4+ y. Hence, z € p,, for all z € z 4+ y and so u(z) > t, for all z € x + y,
which is a contradiction. Therefore, for all z,y € R, we have u(z) V0.5 > p (z) A u(y), for all
z € x +y. Thus, (1) is proved. Also, if there exist r,x € R such that u(rz) Vv 0.5 < u(z) =t
( p(zr) V0.5 < p(z) =t ), then t € (0.5,1], u(rx) < ¢t and = € u,. Hence, rx € p, and so
w(rz) > t, which is a contradiction. Therefore, for all r, z € R, we have p(rz) Vv 0.5 > p(z) and
w(zr) V0.5 > u(x). Thus, (2) is proved.

Conversely, let (1) and (2) hold. Assume that ¢t € (0.5,1] and =,y € p;. Then, by (1) we
have 0.5 < t < p(z) A pu(y) < p(z) vV 0.5, for all z € z + y. It implies that 0.5 < ¢ < p(z) V0.5
for all z € x + y. Hence, pu(z) > ¢ for all z € x + y, which means z € g, for all z € x + y. Also,
suppose that ¢ € (0.5,1], € p, and r € R. Then, by (2) we have 0.5 < ¢t < p(z) < u(rz) Vv 0.5.
It implies 0.5 < ¢t < p(rz) vV 0.5. Hence, p(rx) > ¢,which means ra € p,. Similarly, xr € p,.
Therefore, i, is a hyperideal of R. Let p be a fuzzy set in R and J be the set of ¢ € (0, 1] such
that p, = ® or pu, is a hyperideal of R. If J = (0, 1], then by Theorem 90, p is an (€, € Vq)-fuzzy
hyperideal of R . Naturally, a corresponding result should be considered when J = (0.5,1]. m

Definition 92 A fuzzy set p in R is called (€, € Aq)- fuzzy hyperideal of R if for all t1,ty €
(0,1] and 7, z,y € R, the following condition hold:

(i) (2)ya EW, for all z € x + y, implies x4, € Agu or Yy, € Aqp.

(ii)  (rx)¢€p or (zr).Ep implies xt, € Agu.
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Theorem 93 Let p be a fuzzy set in R. Then, p is an (€, € Aq)- fuzzy hyperideal of R if and
only if for all r,z,y € R,

the following conditions hold:

(i) w(z) V0.5 > p(x) Au(y) for all z € z + v,

(i)  p(rz) v 0.5 > p(zr) and p(zr) v 0.5 > u(zx).

Proof. Let p be an (€, € Aq)-fuzzy hyperideal of R. If there exist x,y € R such that
w(z) V0.5 < p(x)Auly) =t, for all z € x +y. Then ¢ € (0.5,1], (2)¢€p, for all z € x + y and
xt, Yt € p. By definition 92, it follows that x;qu or ygu. Then, (u(xz) >t and p(z) +t < 1) or
(u(y) >t and p(y) +t < 1). It follows that ¢ < 0.5, which is a contradiction. Hence, (1) holds.
Also, if there exist r,x € R such that p(rz) V0.5 < p(z) =t,( or p(zxr) V0.5 < p(z) = 1),
then ¢t € (0.5,1], (rz)€p and x; € p. By definition 92, it follows that z;gu. Then, p(z) > ¢ and
wu(x) +t < 1. It concludes that ¢ < 0.5, which is a contradiction. Thus, (2) holds

Conversely, let conditions (1) and (2) hold. Also, let z,y € R such that (2)¢ ¢, €Ep for all
z € ¢ +y, then pu(z) < t; Ate for all z € z + y we can consider the following cases:(a)  If
w(z) > p(z) A p(y), for all z € z +y, then u(z) A pu(y) < t1 Ate and so u(x) < t1, p(y) < to. It
follows that z;, €p or yg, €, which implies that x¢, € Agqu or yi, € Aqpu.

(b) If u (2) < p(z) A p(y) for all z € x + y, then by (i) we have 0.5 > u(x) A u(y). Hence
w( z) V0.5 > pu(x) Awu(y) for all z € x +y. Now, if x4, ¥, € p, then t1 < p(z) < 0.5 or

ta < u(y) < 0.5. It follows that xyqu or y.qu, which implies that x;, € Aqu or v, € Aqu. Now,
let r,xz,y € R such that (rz),Ep or (ar)Ep, then p(rx) <t or pu(xr) < t. We can consider two
following cases:

(a) If p(rx) > p(z), then p(x) < t. It follows that x;€pu, which implies that =4, € Agpu.

(b) If u(rz) > p(x), then by (2) we have 0.5 > u(x). Hence, p(rz) vV 0.5 > p(x). Now if
xp € p, then t < p(x) < 0.5. It follows that x;gu, which implies that z,€ Aqu. Therefore, u is
an (€, € Aq)- fuzzy hyperideal of R. m

In the following theorem, we characterize (€, € Aq)- fuzzy hyperideals based on level subsets.

Theorem 94 A fuzzy set p in R is an (€, € Aq)- fuzzy hyperideal of R if and only if p,(# ®)
is a hyperideal of R for allt € (0.5,1].
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Proof. It follows by Theorem 90 and Theorem 93. For any fuzzy set u in R and t € (0, 1],
we put fi; = {z € R [ xequ}, | p |, = {x € R|zy € vgu}. Clearly | p |, = py U, In fact, &, and
| 1o |, are generalized level subsets. Now, we can characterize (€, € Vq)-fuzzy hyperideals based

on generalized level subsets. =

Theorem 95 A fuzzy set p in R is an (€, € Vq)- fuzzy hyperideal of R if and only if mt 18
a hyperideal of R for all t € (0.5,1].

Proof. Let pu be an (€,€ Vq)- fuzzy hyperideal of R and z,y € mt for t € (0.5,1].
Then, z; € Vqu and y; € Vqu, which means p(x) > t or p(x) +¢ > 1, and p(y) > ¢ or
wu(y) +t > 1. On the other hand, by Theorem 89, we know p (2) > u(x) A p(y) A 0.5 for all
ze€x+uy,s0pn(z) >tN0.5, for all z € x +y (since, if p (2) <t A0.5, for all z € z + y, then
w(@)Ap(y)A0.5 < g (2) < tA0.5, for all z € x+y, which implies p(z)Au(y)A0.5 < tA0.5). Hence,

w(z) < tor u(y) <t that is z;Ep or y,€p. Thus, x,€ Vau or y, € Vqu which is contradiction.
We know ¢ € 0.5, then p (2) > ¢tA0.5=1andso z € p, C |pl, for all z € z +y. Also, let
re€Rand z € | p|, for t € (0,0.5]. Then, ; € Vgu which means p(z) >t or u(x) +¢ > 1. On
the other hand, by Theorem 89, we know that u(rz) > p(z) A 0.5, so p(rz) > t A 0.5 (since if
w(rz) < tA0.5, then u(x)A0.5 < p(rz) < tA0.5). Hence, u(x) < t, that is x;€p, thus xy, € Aqu,
which is a contradiction. We know ¢ < 0.5, then p(rz) >t A 0.5 =t and so rax € u, C mt.
Similarly, zr € mt’ therefore, mt is a hyperideal of R.

Conversely, let mt be a hyperideal of R for ¢t € (0,0.5]. Suppose z,y € R such that
w(z) < p(x) A p(y) A0S, for all z € x 4+ y. Then, there exists t € (0,0.5) such that pu(z) <t <
w(x) A pu(y) A0.5, for all z € o +y. It follows x,y € 1, C | pt|,, which implies 2 € | i |, for all
z € x+y. Hence, u (z) > tor p (2)+t > 1 for all z € x+y, which is a contradiction. Therefore,
w(z) > p(z) Au(y) A0.5 for all z € x+y. Also, suppose 7, x € R such that p (rz) < pu(z)A0.5,
then there exists ¢ € (0,0.5) such that u (rx) <t < pu(x) A 0.5. It follows = € p, C | u |,, which
implies rz € |y |,. Hence, pu(rz) >t or p(rz) +¢ > 1, which is a contradiction. Thus, u(rz) >
w(x) A 0.5. Similarly, u(xr) > u(x) A 0.5, therefore, the proof is completed. m

In the next theorem, we discuss on (€, € Vq)-fuzzy hyperideal of R which can be expressed

as the union of two proper non-equivalent (€, € Vq)- fuzzy hyperideals.
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Theorem 96 Let p be a proper (€, € Vq)- fuzzy hyperideal of R such that

2 <[ {n(a) | nlx) < 0.5} |< oc.

Then, there exist two proper non-equivalent (€, € Vq)- fuzzy hyperideal of R such that p can be

expressed as the union of them.

Proof. Let {u(z) | p(x) < 0.5} = {to, 1, tn}, where t; > to > ... > ¢, and r > 2. Then,

the chain of (€ Vg)-level hyperideals of R is [ p[g5 C [ ply, S |l S pl;, = R. Let v
and 6 be fuzzy sets in R defined by

. —_— )
t ifx e ’ M ‘tl’
t2 lf T 6 th\ mtl’
v(z) =
[t itz e mtr\mtr—l’
and
() if zelplys
k ifz e th\ mo.rﬂ
t3 ifx e mt3\ mt2a
ty ifx e T\ ] )
6 (2) | e\ el
t, if x € mtr \mt,,_p

where t3 < k < to. The, v and 0 are (€, € Vq)- fuzzy hyperideals of R, and v, 0 < u. The chains

of (€ Vg)-level ideals of v and 6 are, respectively, given by | u |o5 C [ p ], S|y, Sl ply,

and | p o5 S ply, S1aely-- S| ply, - Thus, v and 0 are non-equivalent and clearly p = vV 0.
Therefore, p be expressed as the union of two proper non-equivalent (€, € Vq)- fuzzy hyperideals

of R. m
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3.2 t-Implication-based fuzzy hyperideals of semihyperrings

In this section, we generalize the notion of ordinary fuzzy hyperideals, (€, € Vq)-fuzzy hyper-
ideals and (€, € Vq)- fuzzy hyperideals. Specially, we characterize fuzzy hyperideals, (€, € Vq)-

fuzzy hyperideals and (€, € Vq)- fuzzy hyperideals based on implication operators.

Definition 97 Let m,n € [0,1], m < n and p be a fuzzy set in R. Then, u is said to be a fuzzy
hyperideal with thresholds (m,n) of R, if for all r,x,y € R, the following conditions hold:

(i) wl@) Ap(y) An < p(z) vVm, forall z € x +y.

(ii))  p(x) An < p(re)Vm and p(x) An < p(zr) Vm.

Clearly, every fuzzy hyperideal with thresholds (m,n) of R is an ordinary fuzzy hyperideal
when m = 0 and n = 1 (see definition 1). Also, it is an (€, € Vq)- fuzzy (resp. (€, € Vq)- fuzzy)

hyperideals when m = 0 and n= 0.5 (resp. m = 0 and n = 0.5) (see Theorem 96).

Theorem 98 A fuzzy set u in R is a fuzzy hyperideal with threshold (m,n) of R if and only
if u(# ®) is a hyperideal of R for all t € (m,n].

Proof. Suppose that u is a fuzzy hyperideal with thresholds (m,n) of R and t € (m,n]. If
T,y € g, then p (z) >t and p (y) >t. We have u(z) Vm > p(z) Au(y) An>tAn=t>m,
for all z € x 4+ y. Hence, pu(z) Vm >t > m, for all z € x + y, Which implies u(z) > t, for all
z € x+y, that is z € p, for all z € z +y. Now, if x € pu, and r € R, then pu(x) >t . We have
wlrz) Vm > p(x) An >t An=t>m. Hence, pu(rxz) Vv m >t > m, Which implies p(rz) > t,
that is rx € p;. Similarly, zr € p,. Therefore, p, is a hyperideal of R.

Conversely, let p© be a fuzzy set in R. If there exist z,y € R such that p(z) vm <
w@) A p(y) An =t, for all z € x + y. then t € (m,n], u(z) < t, x € pand y € p,, for all
z € x +y. Since p, is a hyperideal of R, we have z € y, for all z € x + y. Thus, 2z C p,, for all
z € z+y. Hence, p(z) > t for all z € x+y , which is a contradiction. Therefore, for all z,y € R,
we have p(z) A p(y)N < p(z) Vv m, for all z € z 4+ y. Also, if there exist r,x € R such that
w(re) Vm > p(x) An >t An=t, then t € (m,n], u(rz) > t, which is a contradiction. Thus,
for all r,x € R, we have p (z) An < p(rz) vV m. Similarly, u (z) An < p(zr) V m. Therefore, p

is a fuzzy hyperideal with thresholds (m,n) of R. m
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Set theoretic multivalued logic is a special case of fuzzy logic such that the truth values
are linguistic variables (or terms of the linguistic variables truth). By using extension principal
some operators like A, V,—, — can be applied in fuzzy logic. In fuzzy logic, [P] means the
truth value of fuzzy proposition P. In the following, we show a correspondence between fuzzy

logic and set-theoretical notions.

v € Al = Aa), v # A= 1- Az),
[P A Q] = min{[P], [Q]}. [PV Q] = max{[P], [Q]},

P — Q] = min{1,1 - [P] + [Q]}.

[Vx € P(x)] = inf[P(x)], = P if and only if [P] =1 for all valuations.

We show some of important implication operators, where a denotes the degree of member-
ship of the premise and f is the degree of membership of the consequence, and I the resulting

degree of truth for the implication.

Early Zadeh I, (e, B) = max{l — o, min{«, B} },
Lukasiewicz I,(o, ) = min{l — a + 8},
1 a<p
Standard Star (Godel) Iy(o, B) = ,
I} otherwise
1 a<p
Contraposition of (Godel) Ig(a, ) =
11—« otherwise
1 a<p
Gaines-Rescher Iy (a,B) =
0 otherwise
kleene-dienes Iy(a, B) = max{1l — «a, #}.

Definition 99 A fuzzy set p in R is called fuzzifying hyperideal of R, if and only if for all
r,x,y € R it satisfies:

(1) FlreuAlyen — z+yeup]

2) FlrepAlreep]and =[x e p] — [zre pl].

Clearly, definition 99 is equivalent to definition 43. Therefore, a fuzzifying hyperideal is an
ordinary fuzzy hyperideal. We have the notion of ¢{—tautology. In fact =, P, if and only if
[P] > ¢ ([68]).
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Definition 100 A fuzzy set p in R is said to be a t-implication-based fuzzy hyperideal of R
with respect to the implication — if the following conditions hold for all r,x,y € R :

(1) Eellrepnlyep] — [zepll forall z€x+y,

(9) il Alre € pl and = [[o € 1] — [or € g,

Example 101 (1) Consider the semihyperring (R,+,.) defined by the following two tables:

+10 a b c 0 a b c
0 | {0} {a} {b} A{c} 00 0 0 O
a | {a} {a} {0} A{c} al0 a a a
b | {b} {b} {b} {c} b0 a a a
c [ {ct {c} {c} {b} c|0 a a a

Define a fuzzy set i in R as follows:

0.85 ifz=0
0.8 if x40

Then, 1 is a fuzzifying hyperideal of R. Also,  is a 0.5-implication-based fuzzy hyperideal of R
with respect to the

Gaines-Rescher implication operator

”

(2) Consider the semihyperring (N, @®,.) defined by a hyperoperation ” &7 and a binary

” 9

operation on N as follow m &n = {m,n} and mn =mn, ¥ m,n € N. Clearly (N,&,-) is a

semihyperring. Define a fuzzy set p as follows:

0.52, if v € (4),
w(x) =< 0.55, if z € (2)\(4),
0.57, otherwise,

Then, p is an 0.5-implication-based fuzzy hyperideal of R with respect to the Godel implication

operator.
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(8) Consider the above semihyperring (N, +,.) and fuzzy set p as follows:

0.2, if 1 < x <5,
w(x) =4 0.35, if5<ax <7,
0.37, ifx>1.

Then, p s a 0.5-tmplication-based fuzzy hyperideal of R with respect to the contraposition of

Godel implication operator.

Proposition 102 A fuzzy set p of R is a t-implication-based fuzzy hyperideal of R with respect
to the implication operator I if and only if for all r,z,y € R.

(1) I(p(@) Apy), plez+y) >t forallz€xdy,
(ii) I(u(2)), p(ra) = t and I(p(z)), p(ar) = ¢.

Proof. The proof is clear by considering the definitions. m

Theorem 103 (1) Let I = Iy (Gaines-Rescher). Then, p is a 0.5-implication-based fuzzy
hyperideal of R if and only if p is a fuzzy hyperideal with thresholds m =0 and n =1 of R (or
equivalent, 1 is an ordinary fuzzy hyperideal of R).

(2) Let I =1, (Godel). Then, p is a 0.5-implication-based fuzzy hyperideal of R if and
only if p is a fuzzy hyperideal with thresholds m = 0 and n= 0.5 of R (or equivalent, y is an
(€, € Vq)—fuzzy hyperideal of R).

(3)  Let I = I.4 (Contraposition of Godel). Then, p is an 0.5-implication-based fuzzy
hyperideal of R if and only if p is a fuzzy hyperideal with thresholds m = 0.5 and n =1 of R
(or equivalent, p is an (€, € Vq)—fuzzy hyperideal of R).

Proof. (1) Let p be a 0.5-implication-based fuzzy hyperideal of R. Then Ig ((u(z) A
w(y), p(2)) > 0.5, for all z €  + y. Which implies p(z) > p(z)) A p(y), for all z € z + y. Also,
Iy ((p(x), p(ra)) > 0.5, which implication p(rz) > p(zx). Similarly, p(xr) > p(z). Therefore, p
is a fuzzy hyperideal with threshold m = 0 and n=1 of R.
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Conversely, let i be a fuzzy hyperideal with threshold m = 0 and n = 1 of R. Then, for
all r,x,y € R,

w(x) A p(y), forall z € x + vy,

E
&
Y

pre) = p(x), plar) = p@).

Hence, Iy (pu(x) A p(y), m(z)) = 1, for all z € = +y, Igp(u(x), pler)) = 1 = Ig(pu(x),
p(rx)). Thus, Ig-((n(z) A p(y), p(z)) > 0.5, for all z € x + vy, Iy (pu(z), p(re)) > 0.5, and
Iy ((u(x), p(zr)) > 0.5. Therefore, p is a 0.5-implication-based fuzzy hyperideal of R.

(2) Let u be a 0.5-implication-based fuzzy hyperideal of R. Then, for all r, z,y € R we have
Io((p(z) A p(y), p(z)) > 0.5, for all z € x + vy, Iy(p(x), p(ra) > 0.5, and Iy((pu(x), p(zr)) > 0.5.
By the definition of I, we can consider the following cases:

(a) Tg(p(x) A ply), u(z)) =1, for all z € x +y, then p(x) A p(y) < p(z), for all z € z 4y,
which implies p(z) A p(y) A 0.5 < p(z), for all z € z + y.

(b) Ig(p(x) Ap(y), p(z+y)) = 1, then pu(z) = p(z), for all z € x +y then p(z) > 0.5, for all
z € x+y. Which implies pu(z) A pu(y) A 0.5 < pu(z), for all z € x + y. Similarly, we can show that
w(x) AN0.5 < p(rx) and p(x) A 0.5 < p(xr). Therefore, p is a fuzzy hyperideal with thresholds
m =0 and n = 0.5 of R.

Conversely, let p is a fuzzy hyperideal with thresholds m = 0 and n = 0.5 of R. Then, for
all 7, z,y € R, by Definition 97 pu(x) Ap(y) A0.5 < pu(2), for all z € x4y, and pu(x) A0.5 < p(re)
and p(x) A 0.5 < p(xr). Hence, in each case, Iy(u(z) A p(y), p(z)) > 0.5, for all z € = + y,
Iy(p(zx), p(re)) > 0.5, and I4(p(x), p(zr)) > 0.5. Therefore, p is an 0.5—implication-based
fuzzy hyperideal of R.

(3) Let p be a 0.5-implication-based fuzzy hyperideal of R. Then, for all r,z,y € R, we
have I.q(p(x) A p(y), p(x +y)) > 0.5, Ieg(p(z), p(re)) > 0.5 and Ieg(p(z), p(ar)) > 0.5. By
definition of I.4, we can consider the following cases:

(a)  Ieg(p(z) Aply), u(2)) = Lfor all z € x+y. Then p(x) A p(y) < u(z), for all z € x4y,
which implies that p(z) A p(y) < u(z) V0.5, for all z € x 4+ y.

(b)  Leglu(w) Apay), (=) = 1 — () A p(y)), for all 2 € z+y. Then 1 ((x) Apu(y) > 0.5,
it implies that u(x) A u(y) < 0.5 and hence u(x) A p(y) < p(z) V0.5, for all z € z +y. Similarly,

);
u(
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we can show that pu(x) < p(rz) V0.5 and p(z) < p(zr) Vv 0.5. Therefore, p is a fuzzy hyperideal
with threshold m = 0.5 and n =1 of R.

Conversely, let i be a fuzzy hyperideal with threshold m = 0.5 and n = 1 of R. Then,
for all r,z,y € R, we have u(z) A u(y) < p(z) vV 0.5, for all z € x +y, u(x) < p(rz) v 0.5 and
w(x) < p(xr) v 0.5. Now, we can consider two following cases:(a) p(x) A u(y) < p(z), for all
z € x 4y, which implies I.4(p(x) A p(y), 1u(2)) =1 > 0.5, for all z € x +y.

(b)  p(z) A p(y) > p(z), for all z € z + y, which implies p(z) A p(y) > 0.5.

Hence, 1 — (u(2) A p(y)) = 0.5. Thus, Ieg(pu(z) A pu(y), u(2)) =1 = (u(@) A p(y)) = 0.5, for
all z €  +y. Similarly, we can prove that I.4(u(z), u(rz)) > 0.5 and I.g(p(z), p(xr)) > 0.5.
Therefore, p is a 0.5-implication-based fuzzy hyperideal of R. =
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Chapter 4

Interval valued («, 3)-Fuzzy
Hyperideals of Semihyperrings

In this chapter, we concentrate on the concept of quasi-coincidence of interval valued fuzzy point
with an interval valued fuzzy subset. By using this idea, the notion of interval valued («, 3)-
fuzzy hyperideal in a semihyperring is introduced and consequently, a generalization of interval
valued fuzzy hyperideal is defined. We study the related properties of the interval valued
(a, B)-fuzzy hyperideals and in particular, an interval valued (€,€ Vgq)-fuzzy hyperideal in
semihyperring are investigated. Moreover, we also consider the concept of implication-based

interval valued fuzzy hyperideals in a semihyperring and obtain some results.

4.1 Interval valued (o, 5)-fuzzy hyperideals

An interval valued fuzzy set i of a semihyperring R of the form

t#1[0,0] ify=u=x,
[0, 0] if y # a,

is said to be a interval valued fuzzy point with support z, interval value ¢ and is denoted by

w(z;t). An interval valued fuzzy point p(z;t) is said to be belong to (resp. quasi-coincident

with) an interval valued fuzzy set [i, written as

() € fulresp. pu(as)qi) i filx) > i(resp. fi() + 1> [1,1]).
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If u(z;t) € i or (resp. p(x;t)qfi), then we write u(z;t) € Vaji. If u(z;t) € i and p(z;t)qf,
then we write pu(x;t) € Agfi. The symbol € Vg means neither € nor ¢ holds. The symbol € Aq
means € or ¢ does not hold.

In what follows, we let R be a semihyperring. Then we use «, [ to denote any one of the
” €,q,€ Vq or € Aq” unless otherwise specified. We also emphasis that ji(z) = [p~(x), ut ()],
must satisfy the following conditions:

(1) Any two elements of D[0, 1] are comparable;
(2) [ (z), u(z)] <[0.5,0.5] or [0.5,0.5] < [~ (), u" (x)], for all z € R.

Definition 104 An interval valued fuzzy set [i in R is called an interval valued (o, B)-fuzzy

hyperideal of R, where a #€ Agq, if for all r,xz,y € R and the following conditions hold:

(i) p(x;t)afi and p(y;t)af imply u(z;r min{t,7})Bf, for all z € z + v,

(if) p(x; ) evis implies p(ra; )i and p(ar; )6

Let /i be an interval valued fuzzy set in R such that fi(z) < [0.5,0.5] for all x € R. Suppose
that € R and ¢ € D(0,1], such that u(x;t) € Agfi. Then fi(x) >t and ji(z) +¢ > [1,1]. It

follows that

[1.1] < () +1 < fi@) + fu(x) = 20i(=),

so that zi(x) > [0.5,0.5]. This means that

{n(z; t)|u(z; 1) € Aqii} = .

Therefore, the case « =€ Aq in this Definition is omitted.
In the next theorem, by an interval valued (o, 5)-fuzzy hyperideal of R, we construct an

ordinary hyperideal of R.

Theorem 105 Let i be a non-zero interval valued (c, 8)-fuzzy hyperideal of R. Then, the set
supp(f) = {x € R|f(z) > [0,0]} is a hyperideal of R.

Proof. Suppose that z,y € supp(f) and ¢,r € (0,1]. Then p(x;t) > [0,0] and f(y;r) >

[0,0]. Assume that fi(z) = [0,0] for all z € x +y. If a € {€,€ Vq} then u(x;t)air and
w(y; r)aji. But, for all z € x + vy, u(z;rmin{t, 7})Bf, for every 8 € {€,q, € Vq, € Aq}, which is
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a contradiction. Note that pu(z;t)ai and pu(y;r)af but, for all z € x + y,

p(z;rmin{[1, 1], [1,1]}) = (= [1,1]) B2,

for every 8 € {€,q, € Vq, € Aq}, which is a contradiction. Hence, for all z € x + y, fi(z) > [0,

0], that is, for all z € x 4+ y, 2z €supp(ft). Also, let there exists 7 € R such that u(xr;t) = [0,0].
If a € {€,€ Vq}, then p(x;t)afi. But u(ar;t)Bi, for every B € {€,q, € Vq, € Aq}, which is a
contradiction. We know that p(x;[1,1])gfi. But p(zr ;)37 for every 8 € {€,q,€ Vq, € Aq},
which is a contradiction. Hence, p(xr ;t) > [0,0] that is zr € supp(f). Similarly, we can show
that rz €supp(ft). Therefore, supp (ft) is a hyperideal of R. m

In the next theorem, we see that an interval valued (q, ¢)-fuzzy hyperideal is constant under

suitable condition.

Theorem 106 Let R have zero element and [i be a non-zero interval valued (q, q)-fuzzy hyper-

ideal of R. Then, [ is a constant on supp(ft).

Proof. By Lemma 49, we know that

(5 [0,0]) = V{p(z) > [0,0]|z € R}.

Suppose that there exists = €supp(ji) such that , = fi(x) # to, then
tz < to. Choose 11, t2 € D(0,1] such that

1—7§O<£1<1—£z<£2~

Then p([0,0];%1)gft and p(z;ts)gfi but for all z € 0 + x,

w(z;rmin{ty, t2} = pu(z;t)qh

and for all z € = + 0,

p(z;rmin{ty, t2}) = p(w;t1)qh

which is a contradiction. Thus, fi(x) = f(0), for all © € supp(ft). Therefore, fi is constant on

supp(f). =
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In the following theorem, we investigate some conditions that make an interval valued fuzzy

set 1t in R as an interval valued (g, € Vq)-fuzzy hyperideal.
Theorem 107 Let I be a hyperideal of R and i is an interval valued fuzzy set in R such that

() ¥ 2 € R\L, () = [0,0],

(i) Vz € I, p(x) > [0.5,0.5],

Then, fi is an interval valued (¢, € Vq)-fuzzy hyperideal of R.

Proof. Suppose that z,y € R and #1, t € D(0, 1] such that u(z;t1)qf and (y;#2)qji. Then
x,y € I, and so z C [ for all z € z 4+ y. We can consider the following cases:

(1) In case of 1 Atz < [0.5,0.5], then
fi(z) > [0.5,0.5] > &1 Aty

for all z € x +y and hence (z;rmin{ty, t2}) € i for all z € = + .
(2) In case of 1 Atz > [0.5,0.5], then

ji(z) +ti Ata > [0.5,0.5] +[0.5,0.5] = [1,1]
pu(z; rmin{ty, ta})gji.
Therefore,
w(z;rmin{ty, ta} € Vqfi, for all z € z + .

Now, suppose that 7 € R and ¢ € D (0,1] such that u(z;t)gji, then, € I, and so rx C I. We
can see two following cases:

(1) In case of ¢ < [0.5,0.5], then

f(rz) > [0.5,0.5] >t

and hence p(rz;t) € fi. Similarly, p(zr;t) € fi.
(2) In case of ¢ > [0.5,0.5], then

fi(rz) + [1,1] > [0.5,0.5] + [0.5,0.5] = [1,1]
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and so p(rz;t)qp. Similarly, u(xr;t)gp. Therefore, u(rz;t) € Vg and p(xr;t) € Vgp. This
completes the proof. m

Also, we have the converse of above Theorem as follows:

Theorem 108 Let R be a semihyperring with zero and fi be an interval valued (q,€ Vq)-

fuzzy hyperideal of R, such that i is not constant on supp(ir). Then, ji(x) > [0.5,0.5] for all

x €supp(fi).

Proof. By Lemma 49, we know that

fu(0) = V{p(z)|z € R}

Assume that

fi(z) < [0.5,0.5]

for all z € R. Since fi is not constant on supp(ft), there exists = € supp(ji) such that

then £, < tp. Choose 1 > [0.5,0.5] such that
te +1 < [1,1] < o +11.
Then p(0;%1)qfi and p(w;t;)gfi. Since
f(x) +1 =t + 1 < [1,1],
we have u(z;t1)gj and so

p(z;rmin{[1,1],#1]) = p(z;t)€ Vgji for all z € 0+ z or 2z € x + 0.

This contradicts fi is an interval valued (q, € Vq)-fuzzy hyperideal of R. Therefore, for some
yEeR.
ily) > [0.5,0.5]
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Also, since

1(0) = f(y) = 1(0) = [0.5,0.5]

Finally, let £, = fi(x) < [0.5,0.5] for some z €supp(jz). Take 1 > [0,0] such that #, +t; <
[0.5,0.5] then

pu(; [1,1])gfe and p1(0; {[0.5,0.5] + £1})gfi-

But

fi(z) +[0.5,0.5] + &1 = £, + [0.5,0.5] + 1 < [0.5,0.5] +[0.5,0.5] = [1, 1]

which implies

w(x;{]0.5,0.5] + 1 })qp.

Thus,
u(z;rmin{[1,1],[0.5,0.5] + £1}) = p(x; {[0.5,0.5] + 1 })€ Vg,

for all z € 04+ z or z € x + 0, which is a contradiction. Therefore, fi(x) > [0.5,0.5] for all x €
supp(f). =

An interval valued fuzzy set i in R is said to be proper if Im(ji) has at least two elements.
The two interval valued fuzzy sets are said to be equivalent if they have same family of interval
valued level subsets. Otherwise, they are said to be non-equivalent. Now, we can discuss an
interval valued (€, €)-fuzzy hyperideal of R which can be expressed as the union of two proper

non-equivalent interval valued (€, €)-fuzzy hyperideals.

Theorem 109 Let R have some proper hyperideals. Then a proper interval valued (€,€)-
fuzzy hyperideal i of R such that 3 <|Im(fi) |< oo, can be expressed as the union of two proper

non-equivalent interval valued (€, €)-fuzzy hyperideals of R.

Proof. Let i be a proper interval valued (€, €)-fuzzy hyperideal of R with Im(g) =

{to, 517_,,7 tn}, where tg > 1 > ... > t,, and n> 2. Then,

i to) C pisth) C p(iista) C ... C p(fistn) = R
is the chain of interval valued level hyperideals of R. Define two interval valued fuzzy sets A
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and B in R by and
fa(x) =71, for x € p(fi;t1) and iy (x) = 7, for & € p(fi; tx)\yu(ji; tr_1), where (k = 2, ...,n).
lig(z) = to, for @ € p(fistr); pig(z) = t1, for @ € p(f;ti)\u(fi;to); pp(x) = 72, for
w € p(fts) \u(st) and jip(x) = by, for @ € p(fis te) \pu(jis tr—1), where (k =4, ...n).

plist) C pfiste) © . C plfistn) = R

and

p(fisto) € p(fistr) © . C plfistn) = R

are respectively the chain of level hyperideals of R, and A, B < fi. Thus A and B are non-

equivalent, and it is obvious that A U B = [i. This completes the proof. m

4.2 Interval valued (€, € Vq)-fuzzy hyperideals

In this section, we investigate some results and properties of interval valued («, §)-fuzzy hyper-

ideals (specifically, ( €, € Vq)-fuzzy hyperideals ) of R.

Definition 110 An interval valued fuzzy set ji in R is called an interval valued (€, € Vq)-fuzzy
hyperideal of R, if for all r,x,y € R and the following conditions hold:

(i) p(x;t) € i and p(y;t) € i imply u(z;r min{t,r}) € Vgjii, for all z € z + v,

(ii) p(z;t) € ji implies pu(ra;t) € Vgji and p(ar;t) € Vaj.
Theorem 111 FEvery interval valued (€ Vq, € Vq)-fuzzy hyperideal of R is an interval valued
(€, € Vq)-fuzzy hyperideals of R.

Proof. Let i be an interval valued ( € Vg, € Vq)-fuzzy hyperideal of R. Suppose that
z,y € R and 11, to € D (0,1] such that u(x;t;) € i and u(y;t1) € fi. Then, u(z;t1) € Vgii and
w(x;t1) € Vgji. By the hypothesis, if it follows that u(z;rmin{ty,£2}) € Vi, for all z € = + .
Now, let 7,> € R and t € D(0,1] such that u(x;t) € fi. Then, u(x;t) € Vqji, so by hypothesis
w(rz;t) € Vgii and p(xr;t) € Vgji. Therefore, fi is an interval valued ( €, € Vq)-fuzzy hyperideal
of R. m
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Theorem 112 Every interval valued (€, €)-fuzzy hyperideal of R is an interval valued ( €, €

\Vq)-fuzzy hyperideal.
Proof. The proof is straight forward. m

Proposition 113 If I is a hyperideal of R, then Xp(the characteristic function of I is an
interval valued (€, €)-fuzzy hyperideal of R.

Proof. Suppose that z,y € R and t1, t5 € D (0,1] such that u(x;#1) € X7 and p(y;ts) €
X;. Then, X;(x) >t > [0,0] and X(x) > £ > [0, 0], which imply that X;(z) = [1,1] = X (y).
Hence z,y € I and so z € I for all z € x + y, it follows that X; (z) = [1,1] > #; A tg, for all
z € x +y, that is u(z;rmin{t;, t2} € X; for all z € x + y. Now, let 7,0 € R and ¢ € D(0,1]
such that u(z;t) € X;. Then Xr(z) >t > [0,0] which implies X;(x) = [1,1]. Hence, z € I so

w(rx;t) € I and zr € 1. Tt follows
Xp(ra) = Xy(ar) = [1L1] > L

that is p(rz;t) € X and p(xr;t) € X;. Therefore, X; is an interval valued (€, €)-fuzzy hyper-
ideal of R.

Conversely, if I is a hyperideal of R, then by Proposition 113, X is an interval valued
(€, €)-fuzzy hyperideal of R. Therefore, by Theorem 112, X is an interval valued (€, € Vq)-

fuzzy hyperideal of R. m

Example 114 On four element semihyperring (R,+,.) defined by the following two tables:

+10 a b c 0 a b ¢
0 | {0} {a} {b} {c} 0/0 0 0 O
a | {a} {a} {0} {c} al0 a a a
b | {o} {b} {b} A} b0 b b b
c | {c} A} {c} Ac} c|0 ¢ ¢ ¢

62



Consider a fuzzy set [i as follows:

(0.8,0.9] ifr=0
ig(r) =< [0.6,0.7] ifx=a,b
[0.2,0.3] ifr=c

It is easy to see that [i is an interval valued (€, € Vq)-fuzzy hyperideal of (R, +,.).

In the next theorem, we prove an equivalent condition for interval valued (€, € Vq)-fuzzy

hyperideals.

Theorem 115 An interval valued fuzzy set fi in R is an interval valued (€, € Vq)-fuzzy hy-
perideal of R if and only if for all t, r € (0,1] and z,y € R the following two conditions
hold:

(i) rmin{fi(x), i(y), [0.5,0.5]} < rinf{fi(z)\ for all z € x +y}, for all x,y € R.

(i) p(rz) > rmin{i(x), [0.5,0.5]} and f(zr) > rmin{i(x), [0.5,0.5]}.

Proof. Let i be an interval valued (€, € Vq)-fuzzy hyperideal of R and z,y € R. We can
consider the following cases:

(1) rinf{a(x), ii(y)} < [0.5,0.5]. In this case, r min{fi(2)\ if for all z € z+y} < rmin{j(z),
f(y)}. We can choose £ € (0,0.5) such that, for all z € x + y,

fiz) <t < {ia(@), ily)}-

Then p(x;t) € i and u(y;t) € fi, but u(z;t)€ Vai, for all z € z + v,

which is a contradiction. Thus, for all z € x + v,

i(z) > rmin{ji(e), fi(y)} = rmin{a(z), ily), [0.5,0.5]}.

(2) rmin{ju(x), fi(y)} > [0.5,0.5]. In this case, we have fijg505 € f and ju(y; [0.5,0.5]) € fi. If

for all z € x + y, we have

i(z) < [0.5,0.5] = u(z;[0.5,0.5])€n

i(z) +[0.5,0.5] < [1,1] (or u(z;[0.5,0.5])qn, for all z € = + y).
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Hence, p(z;rmin{[0.5,0.5],[0.5,0.5]})€ Vqp, for all z € x + y, which is a contradiction. Thus,
forall zex+y
fi(z) = [0.5,0.5] = rmin{ji(x), i(y), [0.5,0.5]},

Also, if 7,z € R we can consider two following cases:

(1) fi(x) > [0.5,0.5]. In this case, if ji(zr) < ji(z), we can choose £ € (0,0.5) such that

f(rz) <t < ji(z). Then u(x;t) € fi, but u(rz;t)€ Vgji, which is a contradiction. Thus,
f(rz) > f(x) = rmin{p(z), [0.5,0.5]}.

Similarly,
f(zr) > a(x) = rmin{p(z), [0.5,0.5]}.

(2) fi(z) > [0.5,0.5]. In this case, we have fijg 5 9.5 € fi. If fi(rz) < [0.5,0.5] then p(ra;[0.5,0.5])€f
and fi(rz) 4+ [0.5,0.5] < [1,1] (or p(rz;[0.5,0.5])gk).

Hence p(rz; [0.5,0.5])€ V@i which is a contradiction. Thus,
f(rz) >[0.5,0.5] = rmin{f(z),[0.5,0.5]}.

Similarly,

f(xr) > rmin{j(z), [0.5,0.5]}.

Conversely, suppose that i satisfies condition (i) and (ii). Let z,y € R and #1, t2 € D (0,1]
such that

Suppose that for all z € x + v,
fil(z) < rmin{ty,ta}.

If
rmin{/i(x), i(y) < [0.5,0.5],
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then, for all z € = + y,

() = rmin{f(e), fy), [0.5,0.5]} = rmin{j(a), fi(y)} > rmin{fy, f},
which is a contradiction. So
rmin{f(z), i(y)} > [0.5,0.5].

It follows that, for all z € z + v,

fi(z) + rmin(ty, t2) > 2f(z) > 2rmin{ji(z), i(y),[0.5,0.5]} = [1,1].

Hence, p(z;7min{t1,%2})qjfi, for all z € x + y, which implies u(z;r min{t, 2} € Vg, for all
z €x+y. Also, let r,z € R and t € D (0, 1] such that u(x;t) € fi, then, fi(z) > . Suppose
that fi(rz) < t. If fi(x) < [0.5,0.5], then

A(ra) > rmin{i(z), [0.5,0.5]} = f(z) >
which is a contradiction, and so fi(z) > [0.5,0.5]. It follows that
p(rz) +t > 2f(rz) > 2r min{j(z), [0.5,0.5]} = [1,1].

Hence, p(rx;t)qfi, which implies u(rx;t) € Vgji. Similarly, u(zr;t) € Vgji. Therefore, fi is an
interval valued (€, € Vq)-fuzzy hyperideal of R. =
In the following theorem, we characterize interval valued (€, € Vq)-fuzzy hyperideals based

on level subsets.

Theorem 116 Let fi be an interval valued fuzzy set in R. If fu is an interval valued (€, € Vq)-
fuzzy hyperideal of R, then for all [0,0] < t < [0.5,0.5], u(fi;t) = ¢ or u(j1;t) is a hyperideal of
R.

Conversely, if u(fi;t)(# ¢) is a hyperideal of R for all [0,0] < ¢ < [0.5,0,5], then fi is an

interval valued (€, € Vq)-fuzzy hyperideal of R.
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Proof. Let fi be an interval valued (€, € Vq)-fuzzy hyperideal of R and [0,0] < ¢ < [0.5,0.5].
If 2,y € u(fist), then fi(x) > ¢ and ji(y) > t. Hence, for all 2 € 2 + v,

f(z) > rmin{f(z), fi(y), [0.5,0.5]} > rmin{¢,[0.5,0.5]} = ¢,

which implies that fi(z) > ¢, for all z € 2 +y. That is z € u(ji; ) for all z € 2 +y. Now, suppose
that = € u(ji;t) and » € R. Then, ji(x) > ¢, and hence

f(rz) > rmin{fi(x),[0.5,0.5]} > rmin{t, [0.5,0.5]} = ¢.

It implies i(rz) > ¢, that is ra € p(f;t). Similarly, zr € u(fi; t). Therefore, u(fi; t) is a hyperideal
of R.

Conversely, Let i be an interval valued fuzzy set in R such that pu(fi;f) # ¢) is a hyperideal
of R for all [0,0] <t <[0.5,0.5]. If z,y € R, we have

Tmin{ﬂ(m)7 :D’(y)a [0'5a 0'5]} = EO

[L(y) > Tmin{ﬁ(£)? ﬁ(y)a [0'5’ 0'5]} = EO,

=
2
V

then z,y € u(fi;to), and so z € u(fi;tp) for all z € x 4 y. Now, we have
i) > fo = rmin{f(x), fly), [0.5,0.5]},
for all z € x 4+ y. Hence, condition (i) of Theorem 115 is verified. Now, if x € R, we have
fi(x) > rmin{j(z),[0.5,0.5]} = i,
Then, = € u(fi;tg), so rx € u(fi;tg), for all r € R. Hence,
fi(z) >ty = rmin{ji(a), [0.5,0.5]}.

Similarly,

p(xr) >ty = rmin{f(a), [0.5,0.5]}.
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This shows condition (ii) of Theorem 115 holds. Therefore, fi is an interval valued (€, € Vq)-
fuzzy hyperideal of R. m
In Theorem 116, we discuss on level subsets in the interval (0,0.5]. In the next theorem, we

see what happen to the subsets in interval (0.5, 1].

Theorem 117 Let ji be an interval valued fuzzy set in R. Then, u(fi;to)(# @) is a hyperideal
of R for all t € (0.5,1] if and only if for all z,y € R.

(i) r min{i(x), i(y)} < rmax{f(z,[0.5,0.5]}, for all z € = + y.

(i) fp(x) < rmax{p(rz),[0.5,0.5]} and f(z) < rmax{u(zr),[0.5,0.5]}.

Proof. Let p(fi;t9)(# ) be a hyperideal of R for all £ € (0.5,1]. If there exists z,y € R

such that, for all z € z + v,

rmax{fi(z), [0.5.0.5]} < rmin{j(z), i(y)} =1

then t € (0.5,1], fi(z) < t, * € p(fi;t) and y € p(fi;to) for all z € x + y. Hence, z € u(fi;t),
for all z €  +y and so fi(z) > t, for all z € z + y, which is a contradiction. Therefore, for all

z,y € R, we have for all z € x 4y,

rmax{fi(z),[0.5,0.5]} > rmin{f(x), i(y)},

Thus, (1) is proved. Also, if there exist r,z € R such that

rmax{ji(rz),[0.5,0.5]} < fi(z) = t(r max{i(xr),[0.5,0.5]} < p(z) =t),

then ¢ € (0.5,1],fi(rz) < t and = € u(f1;t) Hence, rz € u(fi;t) and so ji(rx) > ¢, which is a

contradiction. Therefore, for all r,z € R, we have

rmax{i(rx),[0.5,0.5]} > f(x)

and
r max{/(zr), [0.5,0.5]} > f(x).

Thus, (2) is proved.
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Conversely, let (1) and (2) hold. Assume that ¢ € (0.5,1] and =,y € p(f;t). Then, by (1)
we have

[0.5,0.5] < t < rmin{f(z), i(y)} < rmax{j(z),[0.5,0.5]}

for all z € x + y. It implies that

[0.5,0.5] < £ < rmax{ji(z),[0.5,0.5]}

for all z € x + y. Hence, ji(z) > ¢, for all z € & + y, which means z € u(fi;t), for all z € z + .
Also, suppose that ¢ € (0.5,1], x € u(fi;t) and r € R. Then, by (2) we have

[0.5,0.5] < t < ju(x) < rmax{j(rz),[0.5,0.5]}.

It implies

[0.5,0.5] < < rmax{fi(rz),[0.5,0.5]}.

Hence, fi(rz) > t, which means ra € u(fi;t), similarly, xr € wp(f;t). Therefore, u(fi;t) is a
hyperideal of R. Let fi be an interval valued fuzzy set in R and J be the set of £ € D(0,1]
such that u(fi;t) = ® or u(fi;t) is a hyperideal of R. If J = D(0, 1], then by Theorem 116, i
is an interval valued (€, € Vq)-fuzzy hyperideal of R. Naturally, a corresponding result should

be considered when J = (0.5,1]. =

Definition 118 An interval valued fuzzy set i in R is called interval valued (€, € Aq)- fuzzy
hyperideal of R if for all t1,ts € D(0,1] and r,x,y € R, the following condition hold:
(i) p(z;r min{ty, £2})€f, for all z € x + 1y, implies u(x;t1)€ Aqii or p(y;t2)€ Aqji.

(ii) p(rz; t)ER or p(xr;t)Ep implies p(x;t) € Agfi.
In the next theorem, we prove an equivalent condition for interval valued (€, € Aq)- fuzzy

hyperideals.

Theorem 119 Let ji be an interval valued fuzzy set in R. Then, [ is an interval valued
(€, € Aq)- fuzzy hyperideal of R if and only if for all r,z,y € R, the following conditions
hold:

(i) rmax{ji(z),[0.5,0.5]} > r min{i(z), i(y)}, for all z € x +y.
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(i) r max{ji(rx),[0.5,0.5]} > fi(z) and r max{u(xr),[0.5,0.5]} > f(z).

Proof. Let i be an interval valued (€, € Aq)- fuzzy hyperideal of R. If there exist z,y € R

such that
rmax{fi(z), [0.5,0.5]} < rmin{j(z), i(y)} =¢

for all 2 € x +y, then ¢ € (0.5,1], u(z;t)€R for all z € x +y and p(x;t), u(y;t) € fi. By
Definition 118, it follows that u(z;%)gf or p(y;t)gi. Then, (i(x) >t and ji(z) +¢ < [1,1]) or
(i(y) >t and fu(y) +t < [1,1]). It follows that ¢ < [0.5,0.5] which is a contradiction. Hence,
(i) holds. Also, if there exist 7,z € R such that

rmax(fi(rz), [0.5,0.5]) < ji(x) = t,

or

rmax(fi(zr), [0.5,0.5]) < ji(x) =1,

then ¢ € (0.5, 1], u(rz;t)€fi and p(x;t) € fi. By Definition 118, it follows that p(z;¢)gji. Then,
fu(x) >t and fi(z) +t < 1. It concludes that # < [0.5,0.5] which is a contradiction. Thus, (2)
holds

Conversely, let conditions (i) and (ii) hold. Also, let z,y € R such that for all z € z + y

p(z;rmin{ty, t2})ER

fi(z) < rmin{t1, t2}. Then, we can consider the following cases:

(a) Ifforall z €z +y

fi(z) = rmin{i(x), i(y)},

then

rmin{ji(z), i(y)} < rmin{ty, o}
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and so

ﬂ(ﬂj) < 51 or ﬂ(y) < 'Eg

p(; )€ or p(y; ta)Ef

pu(x; t)€ Agfi or p(; ta) € Agj.
(b) If
i(z) < rmin{ji(z), i(y)} for all z € x + y,

then by (i), we have
[0.5,0.5] > rmin{j(x), ii(y)}.

Hence for all z € x + v,
fi(z) V [0.5,0.5] > fi(z) A fuly)

Now, if :u(m,fl)v :U’(ya £2) € pﬁ then

t1 < i)

IN

[0.5,0.5]

or

ty < fu(y) < [0.5,0.5].

It follows that u(z;1)gi or wu(x; t)gj.

Which implies that p(z;t1)€ Agfi or u(y; t2)€ Agii. Now, let 7,2,y € R such that u(rz;t)€f
or u(zr;t)€fl, then fi(rx)t or fi(xr) < t. We can consider two following cases:

(a) If fu(rz) > fi(x), then fi(x) < t. It follows that u(z; t)€fi, which implies that u(x; ;)€ Agfi.

(b) If fi(rx) > fi(x), then by (ii) we have [0.5,0.5] > fi(z). Hence,
r max(fi(rx),[0.5,0.5]) > f(z).

Now if p(x;t) € fi, then
t < ji(w) <[0.5,0.5].
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It follows that u(x;t)gf, which implies that p(z;t)e Agpi. Therefore, fi is an interval valued
(€, € Aq)-fuzzy hyperideal of R. m
In the following theorem, we characterize interval valued (€, € Aq)-fuzzy hyperideals based

on level subsets.

Theorem 120 An interval valued fuzzy set fu in R is an interval valued (€, € Aq)- fuzzy hy-
perideal of R if and only if u(x;t)(# ®) is a hyperideal of R for all t € (0.5,1].

Proof. It follows by Theorem 117 and 119. For any interval valued fuzzy set © in R
and ¢ € D(0, 1], we put

and

Clearly | fi]; = 1 ;U /:j,f. In fact, /:Lfand | i |; are generalized level subsets. Now, we can

characterize interval valued (€, € Vq)-fuzzy hyperideals based on generalized level subsets. ®

Theorem 121 An interval valued fuzzy set i in R is an interval valued (€,€ Vq)- fuzzy hy-
perideal of R if and only ifmgis a hyperideal of R for all t € (0.5,1].

Proof. Let fi be an interval valued (€,€ Vgq)-fuzzy hyperideal of R and z,y € | |;
for £ € (0.5,1]. Then, u(z;t) € Vgji and u(y;t) € Vgii, which means ji(z) > t or ji(z) + ¢ > 1,
and fi(y) > t or fi(y)+t > [1,1]. On the other hand, by Theorem 115, we know, for all z € 2+,

fi(z) = rmin{p(x), i(y), [0.5.0.5]}

so for all z € x 4y,
fi(z) > rmin{t, [0.5,0.5]).

Since, if for all z € x + y,
fi(z) < rmin{t, [0.5,0.5]}

then for all z € x + v,

rmin{ji(z), i(y), [0.5,0.5]) < fi(z) < rmin{t,[0.5,0.5]},
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which implies,

rmin{f(z), fi(y),[0.5,0.5]} < rmin{t,[0.5,0.5]).

Hence, fi(r) <t or fi(y) < t, that is u(x;t)€f or p(y;t)Ef. Thus, u(z;t)€ Vaii or u(y;t)€ Vaj
which is a contradiction. We know ¢ € [0.5,0.5] then

f(z) > rmin{¢, [0.5,0.5]} = [1,1]

and so z € iy C | fu|; for all z € z +y. Also, let r € R and = € | i |; for £ € (0,0.5]. Then,
w(x;t) € Vgii which means fi(x) >t or fi(x) +% > 1. On the other hand, by Theorem 115, we

know that
f(rz) > rmin{i(z),[0.5,0.5]}
S0)
f(rz) > rmin{t, [0.5,0.5]}
Since if,
fil(rz) < rmin{t,[0.5,0.5]}
then,

rmin{fi(x),[0.5,0.5]} < fi(rz) < rmin{,[0.5,0.5]).

Hence, ji(x) < t, that is p(x;t)€f, thus u(z;t)€ Agft, which is a contradiction. We know
t < [0.5,0.5] then
f(rz) > rmin{t, [0.5,0.5]} = ¢

and so rx € fiy C | fi |;. Similarly, xr € | [i |;, therefore, | i |; is a hyperideal of R.

Conversely, let | fi |; be a hyperideal of R for ¢ € (0,0.5]. Suppose z,y € R such that, for
all z e x +y,

(=) < rmin{i(z), i), 05,0.5]}
Then, there exists £ € (0,0.5) such that for all z € z +y

fi(2) <t < fi(z) A fi(y) A [0.5,0.5]}
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It follows z,y € fiy C | i |z, which implies 2z € | fi |7, for all 2 € x + y. Hence, ji(z) > ¢ or
f(z) +1 > [1,1], for all z € z + y, which is a contradiction. Therefore, for all z € x + v,

fi(z) = rmin{p(x), i(y), [0.5,0.5]}
Also, suppose r, x € R such that
f(ra) < rmin{f(zx),[0.5,0.5]}
then there exists ¢ € (0,0.5) such that

fi(rz) <t < rmin{j(z),[0.5,0.5]}.

It follows x € fi ; € | fi |3, which implies rz € | fi |;.
Hence, fi(rz) >t o

r ji(rz) 4+t > [1,1] which is a contradiction. Thus,
f(rz) > rmin{j(x), [0.5,0.5]}.

Similarly,

f(xr) > rmin{j(z), [0.5,0.5]}

therefore, the proof is completed. m
In the next theorem, we discuss an interval valued (€, € Vq)-fuzzy hyperideal of R which
can be expressed as the union of two proper non-equivalent interval valued (€, € Vq)- fuzzy

hyperideals.

Theorem 122 Let i be a proper interval valued (€, € Vq)-fuzzy hyperideal of R such that
2 <|{i(z) | a(z) <[0.5,0.5]} [< oo.

Then, there exist two proper non-equivalent interval valued (€,€ Vq)- fuzzy hyperideal of R

such that [i can be expressed as their union.
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Proof. Let

{fi(z) | i) < [0.5,0.5]} = {fo, t1..... tn},

where t; >ty > ... > t, and r > 2. Then, the chain of interval valued (€ Vq)-level hyperideals
of R is

| [ ’[0.5,0_5} C ‘ [ |El C | P |£2~-- C ‘ [ |£,n =R.

Let 7 and 6 be fuzzy sets in R defined by

tl if x € | 1 ‘~17
i if el \[ Al
v(z) =
ty if v € mty\m{ﬁp
and ¢
w(x) fzeln ’[0.5,0.5] ’
k ifx e m;Z\m[o.E,,o.E)]’
iy if x € |1l \ 7 lg,,
~ t ifxe 121\ 7z )
0 (x) = ! A
t, ifx e W{T\mt}—b

\
where 3 < k < t5. The, 7 and @ are interval valued (&, € Vq)- fuzzy hyperideals of R, and
7,0 < fi. The chains of interval valued (€ Vq)-level hyperideals of 7 and 6 are, respectively,

given by

| 1 ‘[0.5,0.5} Clauly ol Slrl;

and

|2 los05 S 1AL SRl S TR

74



Thus, 7 and @ are non-equivalent and clearly i = 7 V 0. Therefore, i can be expressed as the

union of two proper non-equivalent interval valued (€, € Vq)- fuzzy hyperideal of R. m

4.3 t-Implication-based interval valued fuzzy hyperideals of semi-

hyperrings

In this section, we generalize the notion of ordinary fuzzy hyperideals, interval valued (€, € Vq)-
fuzzy hyperideals and interval valued (€, € Vq)-fuzzy hyperideals. Specially, we characterize
fuzzy hyperideals, interval valued (€, € Vq)-fuzzy hyperideals and interval valued (€, € Vq)-

fuzzy hyperideals based on implication operators.

Definition 123 Let m,n € [0,1], m < 7 and i be an interval valued fuzzy set in R. Then, [i
is said to be a fuzzy hyperideal with threshold (m,n) of R, if for all r,x,y € R, the following

conditions hold:

(i) rmin{f(z), @(y),n} < rmax{p(z),m}, for all z € z +y,

(ii) rmin{p(z),n} < rmax{i(rz,m} and rmin{ji(z),n} < rmax{i(xr),m}.

Clearly, every interval valued fuzzy hyperideal with thresholds (m,n) of R is an ordinary
interval valued fuzzy hyperideal when m = [0,0] and n = [1,1]. Also, it is an interval valued
(€,€ Vq)-fuzzy (resp. interval valued (€, € Vq)-fuzzy) hyperideal when m = [0,0] and 1 =
[0.5,0.5] (resp. m = [0,0] and 7 = [0.5,0.5]) (see Theorem 119).

Theorem 124 An interval valued fuzzy set ji in R is a interval valued fuzzy hyperideal with

threshold (v, 7) of R if and only if fi;( ®) is a hyperideal of R for all t € (7, 7).

Proof. Suppose that fi is an interval valued fuzzy hyperideal with thresholds (m,n) of R
and t € (M, 7). If 7,y € fi;, then fi(z) >t and fi(y) > t. We have, for all z € = + y,

rmax{ji(z),m} > rmin{i(z), i(y),n} > rmin{t,n} = > m,

Hence, r max{fi(z),m} >t > m, for all z € x +y,
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which implies i(z) > ¢, for all z € x +y, that is 2z € fi; for all 2 € x +y. Now, if z € i ; and
r € R, then fi(z) > t. We have

rmax{fi(rz),m} > rmin{j(z), 7} > rmin{t, i} =t > m.
Hence,
rmax{j(rz),m} >t >m,
which implies fi(rx) > ¢, that is r@ € fi;. Similarly, zr € fi;. Therefore, fi; is a hyperideal of R.
Conversely, let i be an interval valued fuzzy set in R. If there exist x,y € R such that

r max{ﬂ(z)7 Th} <r min{ﬁ($)7 Ia(y)7 ﬂ} = t~7

for all z € x +y, then t € (M, 7], i(z) < ¢, x € i and y € [if, for all z € z + y. Since fi; is
a hyperideal of R, we have z € i ; for all z € x + y. Thus, z C [, for all z € z + y. Hence,
fi(z) >t for all z € z + y, which is a contradiction. Therefore, for all z,y € R, we have for all

zexr+y

rmin{fi(z), i(y)} < rmax{fi(z),m},

Also, if there exist r, z € R such that
rmax{j(rz),m} > rmin{i(z),7n} > rmin{t, 7} = t,
then ¢ € (m, 7], fi(rz) > £, which is a contradiction. Thus, for all r,x € R, we have
rmin{i(x),n} < rmax{u(rz),m}.

Similarly,

rmin{fi(z), 71} < rmax{fier),m},

therefore, [i is an interval valued fuzzy hyperideal with thresholds (m,7) of R. =
Set theoretic multivalued logic is a special case of fuzzy logic such that the truth values

are linguistic variables (or terms of the linguistic variables truth). By using extension principal
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some operators like A, V,—, — can be applied in fuzzy logic. In fuzzy logic, [P] means the
truth value of fuzzy proposition P. In the following, we show a correspondence between fuzzy

logic and set-theoretical notions.

[z € i) = f(z), [z # i) = [1,1] = A(z),

[P A Q] = min{[P], [Q]}, [PV Q] = max{[P], [Q]},

[P — Q] = min{[1,1], [1,1] = [P] + [Q]},

Vz € P(z)] = inf[P(z)], = P if and only if [P] = [1, 1]for all valuations.

We show some of important implication operators, where a denotes the degree of member-
ship of the premise and f is the degree of membership of the consequence, and I the resulting
degree of truth for the implication.

Early Zadeh Iy (&, B) = max{[1,1] — &, min{a, 5}},

Lukasiewicz I (&, B) = min{[1,1] — & + B},

Standard Star (Godel)

_ 1,1 a < f
Ig(daﬁ): [ ] “ B ’

B otherwise

- [1,1] a<p
Icg(aa ﬁ) -
1,1 — otherwise
Gaines-Rescher
. [1,1] a<p
Igr(awB =
[0,0] otherwise

kleene-dienes

Iy(a, B) = max{[1,1] — a, B}.

Definition 125 An interval valued fuzzy set [i in R is called fuzzifying hyperideal of R, if and
only if for all r,x,y € R it satisfies:

(1) Flzepnlyen —lzcpl, forallzcz+y,

2) ElzepAlreep]and = [z € g] — [or € A]].
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Clearly, Definition 125 is equivalent to Definition 43. Therefore, a fuzzifying hyperideal is
an ordinary fuzzy hyperideal. We have the notion of {-tautology. In fact |=; P, if and only if
[P] > 1 (see [68]).

Definition 126 An interval valued fuzzy set i in R is said to be t-implication-based fuzzy left
(resp. right) interval valued hyperideal of R with respect to the implication — if the following
conditions hold for all r,x,y € R :

(1) Fllzepnlyen —[zepl foralzex+y,

(2)  Eillzep]ANrz € pi] (vesp. =5 [z € ] — [zr € f]].).

An interval valued fuzzy set fi in R is said to be f-implication-based interval valued fuzzy
hyperideal of R with respect to the implication — if i is both #-implication-based interval

valued fuzzy left and right hyperideal of R with respect to the implication —.

Proposition 127 An interval valued fuzzy set ji of R is a t-implication-based interval valued

fuzzy hyperideal of R with respect to the implication operator I if and only if for all r,z,y € R.

(i) I (rmin{a(z), w(y)}, i(z)) >t for all z € x + 9,
(i) 1 (a(e),fira)) > and 1((z), ilor) > £

Proof. The proof is clear by considering the definitions. =

Theorem 128 (1) Let I = I, (Gaines-Rescher). Then, i is an [0.5,0.5]-implication-based
interval valued fuzzy hyperideal of R if and only if i is an interval valued fuzzy hyperideal with
thresholds m = [0,0] and n = [1,1] of R (or equivalent, [i is an ordinary interval valued fuzzy
hyperideal of R ).

(2) Let I = Iy (Godel). Then, fi is an [0.5,0.5]-implication-based interval valued fuzzy
hyperideal of R if and only if i is an interval valued fuzzy hyperideal with thresholds m = [0, 0]
and n = [0.5,0.5] of R (or equivalent, [i is an interval valued (€, € Vq)—fuzzy hyperideal of R ).

(3) Let I = 1.4 (Contraposition of Godel). Then, [i is an [0.5,0.5]-implication-based interval
valued fuzzy hyperideal of R if and only if [i is an interval valued fuzzy hyperideal with thresholds
m = [0.5,0.5] and n = [1,1] of R (or equivalent, [ is an interval valued (€,€ Vq)- fuzzy
hyperideal of R ).
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Proof. (1) Let i be an [0.5,0.5]-implication-based interval valued fuzzy hyperideal of R.
Then for all z € x 4+ y

Lgr(rmin{fi(x), i(y)}, i(2)) = [0.5,0, 5],

Which implies for all z € z 4+ y

)},

=

fi(z) = r min{ji(z)),

Also,
Igr (i), pi(ra)) = [0.5,0.5]

which implies fi(rz) > fi(z). Similarly, a(xr) > fi(z). Therefore, fi is an interval valued fuzzy
hyperideal with threshold m = [0,0] and n = [1,1] of R.

Conversely, let i be an interval valued fuzzy hyperideal with threshold m = [0,0] and
n = [1,1] of R. Then,

Hence, for all z € x +y

Tgr (r min{p(z), i(y)}, i(2)) = [1,1]
Lo (i), i) = [1,1] = Lor (i), pu(r))-

Thus, for all z € z 4y,

and

Therefore, is a [0.5,0.5]-implication-based interval valued fuzzy hyperideal of R.
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(2) Let i1 be an [0.5,0.5]-implication-based interval valued fuzzy fi hyperideal of R. Then,

for all r,z,y € R, we have, for all z € z + y,

and

1,((ji(a), fi(ar) > [0.5,0.5].

By the definition of I;, we can consider the following cases:

(a) Ig(rmin{f(z), i(y)}, f(z)) = [1,1] for all z € z +y, then rmin{f(x), i(y)} < fi(z), for
all z € x + y, which implies, for all z € x +y

rmin{fi(z), i(y), [0.5,0.5]} < (=),

(b) Iy(rmin{f(z), i(y)}, i(2)) = fi(2), for all z € x +y. Then fi(z) > [0.5,0.5] for all z € = +y.
Which implies, for all z € z +y

rminji(x), fi(y), [0.5,0.5]} < fi(2)

Similarly, we can show that

rmin{/i(x), [0.5,0.5]} < f(rz)

and

rmin{fi(z), [0.5,0.5]} < f(xr).

Therefore, fi is an interval valued fuzzy hyperideal with thresholds m = [0, 0] and n = [0.5,0.5]
of R.
Conversely, let i is an interval valued fuzzy hyperideal with thresholds m = [0,0] and

n = [0.5,0.5] of R. Then, for all r,z,y € R, by Definition 123 for all z € = + y,

rmin{fi(z), i(y), [0.5,0.5]} < (=),
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and

rmin{/i(x), [0.5,0.5]} < f(rz)
rmin{f(z),[0.5,0.5]} < a(ar).

Hence, in each case, for all z € x + y

Iy(rmin{fi(x), i(y)}, u(2)) = [0.5,0.5]

1,(i(x), ji(ra)) > [0.5,0.5]

and

I, (=), iar)) > [0.5,0.5].

Therefore, fi is an [0.5, 0.5]-implication-based interval valued fuzzy hyperideal of R.
(3) Let @ be an [0.5,0.5]-implication-based interval valued fuzzy hyperideal of R. Then, for

all r,z,y € R, we have for all z € x + y,

and

By definition of I.4, we can consider the following cases:

(a) If Ig(rmin{fi(x), 2(y)}, f(2)) = [1,1], for all z € z + v,
then for all z € z + v,

rmin{zi(z), u(y)} < fu(z),

which implies that for all z € =z + y.

rmin{zi(z), i(y)} < rmax{f(z),[0.5,0.5]}
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(b) If for all z € x + y,

Leg(rmin{zi(z), i(y)}, i(2)) = [1,1] = (a(z) A A(y)),

then
[1,1] = rmin{f(z), a(y)} = [0.5,0.5]

it implies that
rmin{f(z), i(y)} < [0.5,0.5]

and hence for all z €z +y

rmin{/i(x), i(y)} < rmax{f(z),[0.5,0.5]}.

Similarly, we can show that

a(x) < rmax{f(rz),[0.5,0.5]}

and

f(x) < rmax{f(zr),[0.5,0,5]}.

Therefore, fi is an interval valued fuzzy hyperideal with threshold m = [0.5,0.5] and n = [1, 1]
of R.

Conversely, let i be an interval valued fuzzy hyperideal with threshold m = [0.5,0.5] and
n= [1,1] of R. Then, for all r,z,y € R,

we have, for all z € x +y

rmingji(e), fi(y)} < rmax{ji(=), 0.5,0.5}

a(x) < rmax{f(rz),[0.5,0.5]}

and

fa(x) < rmax{f(zr),[0.5,0.5]}
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Now, we can consider two following cases:

(a) For all z € x + y,

rmin{fi(z), i(y)} < fi(2),
which implies, for all z € z 4y,

Leg(r min{zi(z), i(y)}, i(z)) = [1,1] = [0.5,0.5]

(b) If r min{f(z), i(y)} > fi(z), for all z € x + y, which implies

rmindi(w), fi(y)} > [0.5,0.5).

Hence,

[1,1] - rmin{i(), i(y)} > [0.5,0.5.

Thus, for all z € x +y

Leg(fu(2) A uy), 1(2)) = [1,1] = ((z) A fuy)) = [0.5,0.5]

Similarly, we can prove that

Leg (i), p(re)) = [0.5,0.5]

and

Therefore, fi is an [0.5,0.5]-implication-based interval valued fuzzy hyperideal of R. m
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Chapter 5

(cr, B)-Intuitionistic Fuzzy
Bi-hyperideals

The aim of this chapter is to introduce the generalization of intuitionistic fuzzy bi-hyperideals of
a semihyperrings. First, we discuss the notion of intuitionistic fuzzy hyperideals (bi-hyperideals)
in semihyperring and we then define the (o, 5)-intuitionistic fuzzy bi-hyperideals of a semihy-
perring. This concept is a new generalization of the notion of intuitionistic fuzzy bi-hyperideals
of a semihyperring. We give some interesting results and as well as examples of this notion. In

the last section we discuss the intuitionistic fuzzy bi-hyperideals of type (€ , € Vq).

5.1 Intuitionistic fuzzy hyperideal

Definition 129 Let R be a semihyperring. An intuitionistic fuzzy set A = (u4,v4) in R is
called a left (resp. right) intuitionistic fuzzy hyperideal of a semihyperring R if

(i) infeexmy pa(2) 2 minfpy(z), pa(y)} and sup.eqqy va(z) < max{va(z),va(y)}-

(i) pa(zy) = pay) and va(zy) < va(y) (vesp. right pa(zy) = pa(x) and va(zy) < va(z),
for all z,y € R.

An intuitionistic fuzzy set A = (uy,v4) in R is called an intuitionistic fuzzy hyperideal of

semihyperring R if it is both left and right intuitionistic fuzzy hyperideal of semihyperring R.

Theorem 130 Let A be an intuitionistic fuzzy set in a semihyperring R. Then, A is an intu-
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itionistic fuzzy hyperideal of R if and only if for every t,s € (0,1], the level subset U(py;t) =
{x € Rlpa(x) >t} # ¢ and V(va;s) = {z € Rlva(x) < s} # ¢ are hyperideals of R.

Definition 131 Let R be a semihyperring. An intuitionistic fuzzy set A = (u4,v4) in R is
called an intuitionistic fuzzy bi-hyperideal of R if for all x,y,z € R,

(i) infzezmy pa(z) = min{pa(z), na(y)} and sup.c g, va(z) < max{va(z),va(y)}.
(i) pa(zy) = pay) and va(zy) < va(y) (vesp. right pa(zy) = pa(x) and va(zy) < va(z),
for all x,y € R.

(ii) pa(eyz) = min{py (), pa(2)} and va(ryz) < max{va(z),va(z)}.

5.2 (a, f)-Intuitionistic fuzzy bi-hyperideals

In the above section we introduced the notion of an intuitionistic fuzzy hyperideal, intuitionistic
fuzzy bi-hyperideal in a semihyperring and studied some fundamental properties.

In this section, we introduce the concept of an («, §)-intuitionistic fuzzy bi-hyperideal of a
semihyperring by using the notion of intuitionsitic fuzzy point to intuitionistic fuzzy set. The
notion of an («, 8)-intuitionistic fuzzy bi-hyperideal of a semihyperring is a generalization of

ordinary intuitionitic fuzzy bi-hyperideal.

Definition 132 An IFS A = (uy, Aa) in a semihypergroup R is said to be an (o, B)-intuitionistic
fuzzy hyperideal of a semihyperring R, where «, 3 are any two of {€,q, € Vq, € Nq} with o #£€
Ag, if for all x,y,z € R, t1,t2 € [0,0.5] and s1, s2 € (0.5,1] orty,te € (0.5,1] and s1,s2 € [0,0.5]

the following conditions hold:

(1) z(t1, s1)aA and y(ta, s2)ad = (2)(m{t1, t2}, M{s1, s2})BA, for each z € z B y,
(13) z(t1, s1)aA and y(te, s2)aA = (zy)(m{t1,ta}, M{s1,s2})BA.

Definition 133 An IFS A = (4, Aa) in a semihypergroup R is said to be an («, B)-intuitionistic
fuzzy bi-hyperideal of a semihyperring R, where o, are any two of {€,q, € Vq, € Nq} with
a #€ Ng, if for all x,y,z € R, ti,ta € [0,0.5] and s1,s2 € (0.5,1] or t1,t2 € (0.5,1] and
s1,82 € 10,0.5] , the following conditions hold:
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(1) z(t1, s1)aA and y(ta, s2)ad = (2)(m{t1, t2}, M{s1, s2})BA, for each z € z @ y,
(13) z(t1, s1)aA and y(te, s2)aA = (zy)(m{t1,ta}, M{s1,s2})BA,
(131) x(t1, s1)A and z(ta, s2)aA = (zyz)(m{ti, ta}, M{s1, s2})BA.

Theorem 134 Let A = (u4,v4) be a non-zero (a, B)-intuitionistic fuzzy subsemihyperring of

R. Then, the set A1)y ={r € R:py(x) >0 andva(z) < 1} is a subsemihyperring of R.

Proof. (i) Let z,y € Ag). Then, uy(r) > 0 and va(z) < 1, and py(y) > 0 and
va(y) < 1. Let us suppose that py(z) =0and va(z) =1, forall z e z @ y. If a € {€, € Vg},
then

z(pa(z),va(z)) ad and y(ua (y),va(y)) A but

pa(z) = 0<m{psg(x),na(y)} andvyg(z)=1> M{va(z),va(y)}, forall z €z dy,

So, for all 2 € 5@y, (2) (m {jua (2) i (9)}, M {va (), w4 (9)}) FA for 6 € {€, 4, € Vg, € Ad},
which is a contradiction. Now, let = (1,0) ¢A and y (1,0) ¢A but (2) (1,0) BA, for all z € x @y,
for g € {€, q, € Vq, € Ag}, which is a contradiction. Hence 4 (2) > 0 and v4 (2) < 1, for all
z€x®y, that is z € A(gp), forall z € z B y.

(i) Let x,y € A1). Then, py(z) > 0 and v4(z) <1, and py (y) > 0 and v4 (y) < 1.
Let us suppose that p,(ry) =0 and va (zy) = 1. If o € {€, € Vg}, then

z(pa (2),va(2) aA and y (pa (y) ,va (y)) @A but

pa(zy) =0 <m{py (x),p4 (y)} and va (zy) = 1> M{va(z),va(y)}

So, (zy) (m{pa (@), pa W)}, M{va(e),va(y)})BA for B € {€, ¢, € Vg, € Ag}, which is a
contradiction. Now, let x (1,0) g4 and y (1,0) ¢4 but (zy) (1,0) BA, for 3 € {€, q, € Vq, € Aq},
which is a contradiction. Hence 4 (zy) > 0 and v4 (vy) < 1, that is xy € A ). Thus, A()

is a subsemihyperring of R. m

Theorem 135 Let A = (uy,va) be a non-zero (o, )-intuitionistic fuzzy bi-hyperideal of R.
Then, the set A1y ={x € R:py (v) >0 and va (v) <1} is a bi-hyperideal of R.

Proof. Let A = (u4,v4) be a non-zero («, 3)-intuitionistic fuzzy bi-hyperideal of R. Then,

86



by Theorem 134, A1) is a subsemihyperring of R. Now, let x,2 € A1), y € R and. Then,
pa(x) >0and vy (x) <1, and py(z) > 0 and v4 (2) < 1. Suppose that py (zyz) = 0 and
vg(zyz) =1. If a € {€, € Vq}, then

(g (x),va(z))ad and z (py (2),v4 (2)) @A but

pa(yz) =0 <mipy (), (2)} and va(zyz) = 1> M{va(z),va(2)},

which implies that, (zyz)(m {4 (z), 4 (2)}, M {va(z),va(2)})BA for B € {€, q, € Vg,
€ Aq}, this is a contradiction. Now, let x(1,0)gA and z(1,0)¢A but, (zyz)(1,0)3A for
B € {€, q, € Vq, € Nq}, which is again contradiction. Hence, pu4 (zyz) > 0 and v 4 (zyz) < 1,
that is, zyz C A(g1). Thus, A1) is a bi-hyperideal of R. m

Theorem 136 Let L be a left (resp. right)-hyperideal of R and let A = (4,v4) be an IFS
such that

(a) (Y2 € R\ L) (a(z) = 0 and va(x) = 1),

(b) (Vx € L) (py(x) > 0.5 and va(z) < 0.5).

Then, A = (uy,va) is an (o, € Vq)-intuitionistic fuzzy left (resp. right)-hyperideal of R.

Proof. (i) (Fora=g¢q), let z,y € R, t € [0,0.5] and s € (0.5,1] or s € [0,0.5] and
t € (0.5,1] be such that y(t,s)gA. Then, puy(y) +t > 1 and va(y) +s < 1. So, y € L.
Therefore, x @y C L. Thus, if ¢t < 0.5 and s > 0.5, then for all z € x Dy, py(z) > 05>t
and v4 (z) < 0.5 < s. So, (2)(t,s) € A, for all z € x®y. If t > 0.5 and s < 0.5, then for all
ze€x By pa(z)+t>054+05=1and vs(z)+s < 0.5+ 0.5 = 1. This implies (2) (¢,s) g4,
for all z € x B y.

(13) Let x,y € R, t € [0,0.5] and s € (0.5,1] or s € [0,0.5] and ¢t € (0.5,1] be such that
y(t,s)gA. Then, py(y) +¢t > 1 and vy (y) + s < 1. So, y € L. Therefore, zy € L. Thus,
if ¢t < 0.5 and s > 0.5, then py (zy) > 0.5 > t and v4 (zy) < 0.5 < s and so (zy) (¢,s) € A.
If t > 0.5 and s < 0.5, then py (zy) +t > 05405 = 1 and v4 (zy) +s < 0.5+ 0.5 = 1,
this implies (zy) (¢,s)gA. Since 0 < t + s < 1, the case t > 0.5 and s > 0.5 does not occur.
From the fact that at the same time all values of ¢ and s are not less than 0.5, thus the case
t < 0.5 and s < 0.5 are not occur. Therefore, (zyz) (¢,s) € VqA. Hence, A = (uy,v4) is an

(g, € Vq)-intuitionistic fuzzy left hyperideal of R.
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(17) (For a =€), let z,y € R, t € (0,1] and s € [0,1) or s € [0,0.5] and ¢ € (0.5,1] be such
that y (¢,s) € A. Then, puy (y) > tand va (y) < s. So,y € L. Therefore, z € L, for all z € xDy.
Thus, if t < 0.5 and s > 0.5, then py(2) > 0.5 >tand vg(z) < 0.5 <s, for all z € x @y, this
implies (z) (¢t,s) € A, forall z€ x @ y. If t > 0.5 and s < 0.5, then py (2) +¢ > 0.54+0.5=1
and v4 (2) +s < 05+ 05 =1, for all z € z @ y, this implies (2) (¢, s) gA, for all z € z @ y.
Since 0 <t+s <1, the case t > 0.5 and s > 0.5 are not occur. From the fact that at the same
time all values of ¢,s are not less than 0.5, thus the case t < 0.5 and s < 0.5 are not occur.
Therefore, (z) (t,s) € VqA, for all z € x B y.

Now again let z,y € R, t € (0,1] and s € [0,1) or s € [0,0.5] and ¢ € (0.5,1] be such that
y(t,s) € A. Then, uy(y) >t and v (y) < s. So, y € L. Therefore, zy € L. Thus, if ¢t < 0.5
and s > 0.5, then py (xy) > 0.5 > t and v (xy) < 0.5 < s, this implies (xy) (¢,s) € A. If
t > 0.5 and s < 0.5, then py (zy)+t > 0.54+0.5 =1 and v4 (zy)+s < 0.5+ 0.5 = 1 this implies
(xy) (t,s) gA. Since 0 < t+ s < 1, the case ¢ > 0.5 and s > 0.5 are not occur. From the fact
that at the same time all values of t, s are not less than 0.5, thus the case t < 0.5 and s < 0.5
are not occur. Therefore, (zy) (t,s) € VgA. Hence, A = (uy,v4) is an (€, € Vq)-intuitionistic
fuzzy left-hyperideal of R.

(731) (For o =€ Vq), follows from (i) and (i7). m

Theorem 137 Let L be a subsemihyperring of R and let A = (uy,v4) be an IFS such that
(@) (Vo € R\ L) (pa(z) =0 and va(z) = 1),
(b) Vz € L) (pa(zx) > 0.5 and va(z) <0.5).

Then, A = (u,va) is an (o, € Vq)-intuitionistic fuzzy subsemihyperring of R.
Proof. As in the previous pages. =

Theorem 138 Let L be a bi-hyperideal of a semihyperring R and let A = (i4,v4) be an IFS
of R such that

(a) (Vo € R\ L) (pa(z) =0 and va(z) = 1),

(b) Vz e L) (pa(zx) > 0.5 and va(z) <0.5).

Then, A = (uy,va) is an (a, € Vq)-intuitionistic fuzzy bi-hyperideal of R.

Proof. (i) (For a =q), let x,y € R, t1,t2 € [0,0.5] and s1,s2 € (0.5,1] or s1,s2 € [0,0.5]
and t1,t2 € (0.5,1] be such that z(t1,s1) € A and y(te,s2) € A. Then, x,y € B. Since
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B is a subsemihyperring of R. So, z € B, for all z € =z & y. If m(t1,t2) > 0.5 and
M (s1,82) < 0.5, then py(z) + m(t1,t2) > 1 and va(z) + M(s1,s2) < 1, for all z € =z @ y.
Thus, (2)(m(t1,t2), M(s1,82))qA, for all z € x ®y. If m(ty,t2) < 0.5 and M(s1,s2) > 0.5, then
(z)(m(t1,t2), M(s1,52)) € A, forall z € x@y. Since 0 <t;+s1 <1and 0 <ty+ sy <1, the

case

m(tl,tg) > 0.5
does not occur.

M(Sl, 82) > 0.5
From the fact that at same time all values of ¢;, s; are not less than 0.5, the case

m(tl,tg) < 0.5
does not occur.

M(Sl,SQ) < 0.5
And again, let z,y € R, t1,t2 € [0,0.5] and s1,s2 € (0.5,1) or s1,s2 € [0,0.5] and

ti,t2 € (0.5,1] be such that xz(t1,s1) € A and y(te,s2) € A. Then, z,y € B. Since B
is a subsemihyperring of R. So, zy € B. If m(t1,t2) > 0.5 and M(s1,s2) < 0.5, then
palzy) + m(ti, ta) > 1 and va(xy) + M(s1,s2) < 1. Thus, (xy)(m(t1,ta), M(s1,s2))gA. If
m(t1,t2) < 0.5 and M(sy1,s2) > 0.5, then (zy)(m(t1,t2), M(s1,s2)) € A. Since 0 < t; +s1 <1

and 0 <ty + s9 < 1, the case
m(tl,tg) > 0.5 .
does not occur. From the fact that at the same time all values of ¢;, s;
M(Sl, 82) > 0.5

are not less than 0.5, thus the case

m(tl,tg) < 0.5 . . e e .
does not occur. Hence, A = (u4,v4) is a (g, € Vq)-intuitionistic fuzzy

M(s1,s92) < 0.5
subsemihyperring of R. Let z,y,z € A, t1,t2 € [0,0.5] and s1,s2 € (0.5,1] or s1,s2 € [0,0.5]

and t1,t2 € (0.5, 1] be such that x(t1,s1) € A and z(t2, s2) € A. Then, =,z € B. Since B is a bi-
hyperideal of R. So, zyz € B. If m(t1,t2) > 0.5 and M(sy, s2) < 0.5, then py(zyz)+m(ts,t2) >
1 and va(zyz) + M(s1,s2) < 1. So, (zyz)((m(ti,t2), M(s1,s2))qA. If m(ti,t2) < 0.5 and
M(s1,s2) > 0.5, then (xyz)(m(t1,t2), M(s1,82)) € A. Therefore, (xyz)(m(t1,t2), M(s1,52)) €
VqA. Hence, A = (4, 4) is a (g, € Vq)-intuitionistic fuzzy bi-hyperideal of R.

(13) (For « =€ and € Vq), the case is straightforward. m
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5.3 Intuitionistic fuzzy bi-hyperideal of type (€, € Vq)

The concept of (€, € Vg)-intuitionistic fuzzy bi-hyperideals in a semihyperring plays a vital rule
in the theory of (o, 3)-intuitionistic fuzzy bi-hyperideals. We give some different characteriza-

tion of (€, € Vq)-intuitionistic fuzzy bi-hyperideals in a semihyperring.

Definition 139 An IFS A = (ju4,v ) in semihyperring R is said to be an (€, € Vq)-intuitionistic
fuzzy bi-hyperideal of a semihyperring S if V z,y,a € R, t1,t2 € [0,0.5] and s1,s2 € (0.5,1] or
s1, 82 € [0,0.5] and t1,t2 € (0.5,1] the following conditions hold.

(1) z(t1,s1) € A and y(t2, s2) € A = (2)(m{t1, ta}, M{s1,s2}) € VqA for each z € x B y,

(i) z(t1,51) € A and y(l2, 52) € A = (wy)(m{ts, 2}, M{s1,52}) € VA,

(13i) x(t1,51) € A and z(ta, s2) € A = (zyz)(m{t1, ta}, M{s1,s2}) € VqA.

Proposition 140 An IFS A = (ju4,va) of a semihyperring R is an intuitionistic fuzzy sub-
semihyperring if and only if it satisfy for all x,y € R, t1,ta € [0,0.5] and s1,s2 € (0.5,1] or
s1, 82 € [0,0.5] and t1,t2 € (0.5,1].
(1) z(t1,s1) € A and y(t2, s2) € A = (2)(m{t1, ta}, M{s1,s2}) € A, for each z € v ® y,
(i1) x(t1,51) € A and y(ta, s2) € A = (xy)(m{t1,ta}, M{s1,s2}) € A.

Proof. Let us suppose that A = (uy,v4) is an intuitionistic fuzzy subsemihyperring of
R. Let z,y € R, t1,ta € [0,0.5] and s1,s2 € (0.5,1] or s1,s2 € [0,0.5] and ¢1,t2 € (0.5,1] and
let z(t1,51) € A and y(t2,s2) € A. Then, py(x) >t and v4 (z) < s; and py (y) > t2 and

v4 (y) < s2. Since by given condition, for each z € x @ y,

i a(2) 2 min (g (@), g ()} and sup v (2) < max{va (o), v ()}
ZEX zEXPy

inf py(z) > m{t;,te} and sup vg(z) < {s1,s2}.

z€xDy 2ExPy

So, (2)(m{t1,t2}, M{s1,s2}) € A, forall z€ x B y.
Let z,y € R, t1,t2 € [0,0.5] and s1,s2 € (0.5,1] or s1,s2 € [0,0.5] and ¢1,t2 € (0.5,1] and
let z(t1,s1) € A and y(ta,s2) € A. Then, py (x) > t1 and vy (z) < s1, and py (y) > t2 and

v4 (y) < s2. Since by given condition,
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pa(zy) = minfpy (), pa (y)} and va (zy) < max{va (), va(y)}

pal(zy) > mit,ta} and vy (zy) < {s1,s2}.

So, (zy)(m{ti,ta}, M{s1,s2}) € A. Thus, A = (uy,va) is an (€, €)-intuitionistic fuzzy sub-
semihyperring of R.

Conversely, suppose that A = (uy4,v4) is satisfies the given conditions. We show that
infcoy 4 (2) > min {14 (2) , ja ()}, SUDscsy va (2) < max {va (), wa ()} and juy () >
min{py (z), pa(y)}, va(ry) < max{va(z),rva(y)}. On the contrary we first assume that
there exist z,y € R such that, for all z € z @ y, infocpmypg (2) < min{uy (z), pa(v)}
and SUp,cq g, VA (2) > max{va(z), va(y)}. Let t € [0,0.5] and s € (0.5,1] be such that
infcazy i (2) < ¢ < min{jig (@), foa (5)} and SUp,coqy va (2) > 5 > max {va (@), va (¥)}
for all z € x @ y,. Then, x(t,s) € A and y(t,s) € A but (z) (¢,s)€A, for all z € = @ y, which
contradicts to our hypothesis.

Similarly, if there exist x,y € R such that p, (zxy) < min{u, (), pa (y)} and va (zy) >
max{va(x),va(y)}. Lett € [0,0.5]and s € (0.5,1] be such that py (zy) <t < min{u, (x), pa (v)}
and v4 (zy) > s > max{va (z), va(y)}. Then, x(t,s) € A and y(t,s) € A but (zy) (¢, s)€EA,
which contradicts to our hypothesis. Hence, inf.coay p14 (2) > min{py (%), pg (Y)}, SUP,epay va (2) <
max {4 (), va ()} and juy (y) > min {jug (2), s W)}, va (2y) < max {va (2), va (1)} =

A = (uy,v4) is an intuitionistic fuzzy subsemihyperring of R. m

Proposition 141 An IFS A = (uy4,v4) of a semihyperring R is an intuitionistic fuzzy bi-
hyperideal of R if and only if it satisfy for all x,y,z € R and t1,t2 € [0,0.5] and s1, s2 € (0.5, 1]
or s1, 82 € [0,0.5] and t1,t2 € (0.5,1].

(a) z(t1,s1) € A and y(ta2, s2) € A = (2)(m{t1, ta}, M{s1,s2}) € A, for each z € z &y,

(b) x(t1,51) € A and y(t2, s2) € A = (zy)(m{t1,ta}, M{s1,52}) € A,

(c) z(t1,s1) € A and z(ta, s2) € A = (zyz)(m{t1,t2}, M{s1,s2}) € A.

Proof. Proof follows from Proposition 140. =
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Theorem 142 Let A = (uy,va) be IFS in semihyperring R. Then, A = (uy,va) is an
(€, € Vq)-intuitionistic fuzzy bi-hyperideal of a semihyperring R if and only if the following
conditions hold;

(@) infacamy i () > min (s (&), 04 (4) 0.5} andsup,eppy va (2) < max {va (2),v4 (y), 0.5},

(0) pa (zy) = min{py (), 14 (y), 0.5} and va (zy) < max{va (z),va(y),0.5}.

(€) pa (wyz) = min{py (2),p4 (y), 0.5} and va (zyz) < max{va(z),va(y),0.5}.

Proof. Suppose that A = (uy,v4) is an (€, € Vg)-intuitionistic fuzzy bi-hyperideal of a
semihyperring R.
(a) Let z,y € R. We consider the following cases:
1) min{py (z),p4 (v)} < 0.5 and max{v4 (z),va (y)} > 0.5,
2) min{py (z),p4 (y)} > 0.5 and max{v4 (z),va (y)} < 0.5,

(1)
(2)
(3) min{p, (), 14 (y)} < 0.5 and max {v4 (z),va(y)} <0.5.
(1) First assume that, for all z € z @y,

EinEfo,uA(z) < min{uy (), p4 (y),0.5} and sug va(z)>max{va(xz),va(y),0.5}.
zex zexdy

Then, inf y4(2) < minfpuy (), pa(y)} and Sup va(z) >max{va(z),va(y);-
zex zexDy

Choose t € [0,0.5] and s € (0.5,1] or s € [0,0.5] and ¢ € (0.5, 1] such that, for all z € x © y,

Inf palz) <t <min{p, (@), pa(y)} and sup va(z) > s>max{va(z),va )}
zex zexdy

If min{pu, (z), 04 (y)} < 0.5 and max{va (z),va (y)} > 0.5, then x(t,s) € A and y(t,s) € A,
but (z)(t,s)€ VgA, a contradicts, for all z € z @ y.
And if we take,

pa(zy) < min{puy (x), 14 (y),0.5} and v (zy) > max{va (z),v4 (y),0.5}.

Then, jis (zy) < min{py (2),p4 (1)} and va (ay) > max {va (@), va ()}

Choose t € [0,0.5] and s € (0.5,1] or s € [0,0.5] and ¢ € (0.5, 1] such that

a(2y) <t < minfpy (@), g4 (4)} and va (2y) > s > max {va (2),va ()
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If min {py (), p4 ()} < 0.5 and max{v4 (z),va (y)} > 0.5, then z(¢,s) € A and y(¢,s) € A,
but (zy)(t, s)€ VgA, a contradicts.

(2) Ifmin {py (x), 14 (y)} > 0.5 and max {va (z),va (y)} < 0.5, then inf.cpqy 14 (2) < 0.5
and sup,c,q, V4 (2) > 0.5. Thus, (0.5,0.5) € A and y(0.5,0.5) € A, but (2)(0.5,0.5)€ VqA, for
all z € x@y, a contradicts. And similarly if min {4 (), pu4 (y)} > 0.5 and max{v4 (z),va (y)} <
0.5, then p,4 (zy) < 0.5 and v4 (zy) > 0.5. Thus, 2(0.5,0.5) € A and y(0.5,0.5) € A, but
(zy)(0.5,0.5)€ VqA, a contradicts.

(3) If min{py (z),p4 (y)} < 0.5 and max{v4 (z),va(y)} < 0.5, then for all z € z @ vy,
inf.epmy pa (2) < min{uy (), 14 (y)} and sup,c,e, va(z) > 0.5. Thus, z(t,s) € A and
y(t,s) € A, but (z)(t,s)€ VgA, for all z € @y, a contradicts. Therefore, inf,cpqy 1y (2) >
min {4 (), 14 (y),0.5} and sup,c,q,va (2) < max{va(z),va(y),0.5}. And similarly if
min {ju4 (), oa ()} < 0.5 and max v (z), 4 (4)} < 0.5, then o (zy) < min {114 (2) i (1)}
and v 4 (zy) > 0.5. Thus, z(t,s) € A and y(t,s) € A, but (zy)(t, s)€ VA, a contradicts. There-
fore, pq (xy) > min{uy (z), 14 (y),0.5} and vy (zy) < max{va (z),va (y),0.5}.

(b) Now, let z,y,z € R. We consider the following case’s
1) min {puy (2), pa (y)} < 0.5 and max {v4 (z),va(y)} > 0.5,

2) min{uy (z), 14 (y)} > 0.5 and max {va (z),va (y)} < 0.5,

3) min {py (z), 14 (y)} < 0.5 and max{va (z),va (y)} < 0.5.

(
(
(
(1

)
)
)
) Assume that for some

pa(eyz) < minfpy (), pa(y),0.5} and va (zyz) > max{va (z),v4(y),0.5}

pa(eyz) < minfpy (), pa (y)} and va (zyz) > max{va (z),va (y)}

Choose t € [0,0.5] and s € (0.5,1] or s € [0,0.5] and ¢ € (0.5, 1] such that

pa (zyz) <t <min{py (x),p4 (v)} and va (xyz) > s > max{va (z),va(y)}

Then z(t,s) € A and y(t,s) € A, but (xyz)(t, s)€ VgA, which is a contradiction.
(2) If min{py (z),p4 (y)} > 0.5 and max{va (x),v4 (y)} < 0.5, then py (zyz) < 0.5 and
v (zyz) > 0.5. Since, 2(0.5,0.5) € A and y(0.5,0.5) € A, but (zy2)(0.5,0.5)€ VqgA, which is a

contradiction.
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(3) Ifmin {py (), ()} <0.5and max{va (z),va (y)} < 0.5, then py (zyz) < min{pu, (), w4 (y)}
and vy (zyz) > 0.5. Thus, z(t,s) € A and y(t,s) € A, but (xyz)(t,s)€ VgA, which is again a

contradiction. Therefore,

jia (2y2) > min {j14 (2) g (y),0.5) and va (yz) < max {4 (), va (), 0.5}

Conversely, assume that A = (u 4, v 4) satisfy (a) and (b). Let for any =,y € S and ¢y, € (0, 1]
and s1, s € [0,1), such that x(t1,s1) € A and y(t2,s2) € A. Then, p, (x) > t; and vy (z) < 1,

and p4 (y) >ty and v4 (y) < so.

paleyz) > min{uy (@), (y), 0.5} and va(ayz) < max{va (@), va (y), 0.5}

pa(ryz) > min{ty,t,0.5} and v (ryz) < max{si,s2,0.5}.

Then, we have the following cases:

(1) min {¢;,t2} < 0.5 and max {s1,s2} > 0.5,

(2) min {t1,t2} > 0.5 and max {s1, s2} < 0.5.

(1) If min{t1,t2} < 0.5 and max{s1,s2} > 0.5. Then, puy (xyz) > min{t;, ta} and
v4 (zyz) < max {s1, s2}, which implies that (xyz)(m {t1,t2}, M {s1,s2}) € A.

(2) If min{¢1,t2} > 0.5 and max {s1,s2} < 0.5, then py (zyz) > 0.5 and v4 (zyz) < 0.5,
which implies that py (xyz) + min {t1,t2} > 0.5+ 0.5 =1 and v4 (zyz) + max {s1,s2} < 0.5 +
0.5 = 1. Therefore, (xyz)(m{t1,t2}, M {s1,s2})qA. Hence, (zyz)(m{t1,t2}, M {s1,s2}) €
VqA.

Let z,y,z € R, t1,t2 € [0,0.5] and s1, s2 € (0.5,1] or s1, s2 € [0,0.5] and ¢1,t2 € (0.5, 1].such
that x(t1,s1) € A and y(t2,s2) € A. Then, py () > t1 and v () < s1, and py (y) > to and

v4 (y) < s2. Now we have

paeyz) = minfpy (), p4(y),0.5} and va (zyz) < max{va(z),va(y),0.5}

pa(ryz) > min{ty,t,0.5} and vy (ryz) < max{si,ss2,0.5}.

Then, we have the following cases:

(3) min {t1,t2} < 0.5 and max {s1, s2} > 0.5,
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(4) min {¢;,t2} > 0.5 and max{sy, s2} < 0.5.

(3) If min {t1,t2} < 0.5 and max {s1,s2} > 0.5, then p4 (zyz) > min {t1,t2} and v4 (zyz) <
max {1, s2}, which implies that (zyz)(m {t1,t2}, M {s1,s2}) € A.

(4) If min{¢1,t2} > 0.5 and max {s1,s2} < 0.5, then py (zyz) > 0.5 and v4 (zyz) < 0.5,
which implies that p 4 (xyz) + min {t1,t2} > 0.5+ 0.5 =1 and v4 (zyz) + max {s1,s2} < 0.5 +
0.5 = 1. Therefore, (xyz)(m{t1,t2}, M {s1,s2})qA. Hence, (xyz)(m{t1,t2}, M {s1,s2}) €
VqA. This completes the proof. m

Remark 143 FEvery intuitionistic fuzzy bi-hyperideal of a semihyperring R is an (€,€ Vq)-

intuitionistic fuzzy bi-hyperideal of R. The converse is not true, as in the example.

Example 144 Let R = [—1,1] be a non-empty set with hyperoperation @ and a binary operation”-
” defined for all z,y € R as follows:

(252, 0] ifz <0 andy <0,
rTDy = [0, 2] ifz >0 andy > 0,
0 otherwise,

and x.y = xy. Then clearly R satisfies all conditions of a semihyperring. Let A = (u4,vA) be

an IFS in a semihyperring R defined by.

0.6 if z € [~0.5,0) U (0,0.5],
pa(r) =
0.5 x=0 orxze[-1,-0.5)U(0.5,1],
and
0.3 if x € [~0.5,0) U (0,0.5],
va(r) =
0.5 x=0 orxze[-1,-0.5)U(0.5,1].

Hence, by routine calculation A = (4, v4) is an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of

a semihyperring R. But A = (uy,v4) is not an intuitionistic fuzzy bi-hyperideal of a semihy-
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perring R. If z,y € [—0.5,0) U (0,0.5], then we have

infpy(z@®y) = 0.5% min{uy (2),p4(y)} = 0.6,

supva (z@®@y) = 0.5 < max{ra(z),valy)} =0.3.

Proposition 145 (1) Every (€ Vq, € Vq)-intuitionistic fuzzy bi-hyperideal of R is an (€, €
\Vq)-intuitionistic fuzzy bi-hyperideal of R.

(2) Every (€, €)-intuitionistic fuzzy bi-hyperideal of R is an (€,€ Vq)-intuitionistic fuzzy
bi-hyperideal of R.

Proof. The proof is straightforward. =

Example 144 shows that the converse of Proposition 145, is not true in general.

Theorem 146 If {A}, ., is a family of (€, € Vq)-intuitionistic fuzzy bi-hyperideals of R, then
Nica Ai is an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R, where (V;cp Ai = (Niea #a,> Viea VA;)-

Proof. Let z,y € R and for each z € x & y. Then, we have

(/\M.) (2) = A (4, (2) = N (min {jus, (@) .11, (4),0.5})

LIS\ €A LIS\

= min { N ta, (@), N\ pa, () ,0-5}

€A €A

</\ M) () > min{(/\ M) (), (/\ MAZ-> (y) 70-5} and
iEA iEA iEA

(\/ Vm-) (2) = \ (va,(2)) £ \/ (max{va, (), v4, (),0.5})

i€A €A €A

= max{\/ va, (z), \/ va, (y) ,0.5}

LISHN €A

(\/ VAl.> (z) < max { (\/ I/Ai> (x), (\/ VAl.> (y) ,0.5}
LIS LIS €A
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Let x,y € R. Then, we have

(/\MAZ) @) = A (u ) = A (min (i, (), 3),05))

1EA 1EA 1EA
= wn{ A @0, A .03
1EA €A

(A} = mind (A ) ) (/\M) )03} ma
ieA icA ieA

(\/ Vm) (@y) =\ (va, (2y)) < \/ (max{va, (), va, (y),0.5})

€A €A i€

_ mM{\/VA o }

€A €A

(\/ I/Ai> (ry) < max { <\/ I/Ai> (x), (\/ 1/A1.> (y) ,0.5}
€A €A €A

Now, let x,y,y € R. Then, we have

(/\ m) zyz) = N (wa, (@y2)) = N\ (min {pa, (@), 04, (y),0.5})

TSN €A €A
= i A 9 A .05
€A €A

(Qx P, ) ryz) = { <ZQ\ oy ) (A 1, ) } and

(\/ Vm) (ey2) = \/ (v, (2) < \/ (max{va, (2),v4, (y),05})

i€A LIS €A

_ maX{\/VA A\ va }

€A iEA

(\/ l/A,L.> (xyz) max{(\/ I/A,L.> (x), (\/ I/A,L.> (y),0.5}
1EA €A €A

Hence (;cp Ai = (Nica #a,> Viea v4;) is an (€, € Vg)-intuitionistic fuzzy bi-hyperideal of R.

IN

Remark 147 If {A},_, is a family of (€, € Vq)-intuitionistic fuzzy bi-hyperideals of R, then
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Uiea Ai is not an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R, where | J;cp Ai = (Viea a;» Niea VA:) -

Theorem 148 If {A;},., is a family of (€, € Vq)-intuitionistic fuzzy bi-hyperidealof R such
that A; C Aj or A; C A; for all i, j € I, then (V;cp Ai = (Vica tha,» Nica v4,) 5 an (€, € Vq)-

intuitionistic fuzzy bi-hyperideal of R.

Proof. For all z,y € R and for each z € x & y we have

<\/ MAZ) (2) = \/ (b4, (2)) > \/ (11, () A g, (y) AO.5}]

SN iEA SN
= |V 1, (@) A\ pa, () AO. 5]
LieA €A

) (zevw) o

<\/ :qu-) (2) > (\/ MAi> (\/ MA) /\05]
€A L \i€A iEA
It is clear that

\/ [1a, (@) A pia, () A 0.5] [(\/m) (\/uA> A05]

1EA 1EA €A

Assume that
V (14, () A, (y) A 0.5] [(\/MA) (\/MA) A05]
€A IS IS
Then, there exists ¢ such that
V 14, (@) A pa, (y) A 0.5] <t<[<\/ﬂA> <\/uA> A05]
€A €A 1€EA

Since pg, € pa, or pa; S pga, for all i, j € I, so there exists k € I such that ¢ < py, () A
ta, (y) A0.5. On other hand juy, (z) A py, (y) A0.5 <t for all i € I, a contradiction. Hence,

\/ [a, (@) A pra, () A 0.5] [(\/m) (\/m) A05]

€A €N €A
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and also for each z € z ® y,

(/\VAZ.) () = A Wa ()< N lva, (@) Vs, @) V05)

(IS (1SN €A
= /\VAZ, () V /\VAi (y)\/0.5]
LicA i€

= </\VA¢> (x) Vv (/\VAZ> (y)\/0.5]
L i€ €A
(/\ VAZ.> () < </\ I/Ai> (x) Vv (/\ I/Al.> (y)\/O.E)] )
€A L \ieA iEA

It is clear that

/\ [va, (x) Vg, (y) V0.5 > [(/\ VAi> () Vv </\ MAZ-> (y) vV 0.5] .

1€EA 1€EA 1€EA

Assume that

/\ [va, (x) Vva, (y) vV 0.5] # [(/\ VAZ-> () V (/\ VAZ.> (y) Vv 0.5] :

i€ 1€EA 1€EA

Then there exists ¢ such that

/\ [va, (z) Vva, (y) V0O.5] >t > !(/\VA1> (z) v </\VA¢> (y)\/O5]

€A €A €A

Since vy, C va; Or va; C v, for all 4, j € I, so there exists k € I such that k> KA, () A

ta, (y) A0.5. On other hand juy, (z) A pig, (y) A0.5 >t for all i € I, a contradiction. Hence,

N\ va; () Ava, (y) A0.5] = [(/\ UAZ.) (z) A (/\ UAZ.) () A 0.5]

LIS 1€EA 1€EA
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Similarly, for all z,y € R we have

(\/ NAZ-> (@y) =\ (w4, @) =\ [a, (@) A pa, () A 0.5}]

ieA ieA ieA
= |V 1, @) A\ pa, () A 0-5]
LicA (1SN

= [0 (a0
(i\e{x'uAZ) (zy) > (Z\E/AMA) (z\e{\MA) A05]

(7/\/ll ) (Z\/ll > /\ ]
€ S

V (14, (@) A pa, (y) A 0.5] [(\/m) (\/m) A05]

1EA €A €A

\ (14, () A, (y) A 0.5]
€A

Assume that

Then, there exists t such that

V 4, (@) A pa, (y) A0O.5] <t<[<\/u,4> <\/NA> A05]

€A 1EA 1EA

Since p14, C pa, or pa; C pg, for all i, j € I, so there exists k € I such that ¢ < py, () A
ta, (y) A0.5. On other hand jiy, (z) A pg, (y) A0.5 <t for all i € I, a contradiction. Hence,

\/ [ia, (@) A g, (y) A 0O.5] [(\/m) (\/MA) A05]

€A €A 1EA
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and

(/\m) (2y) = N\ (wa ()< A lva, @)V, () V05Y

€A IS (ISHN
= /\VAi (.T)\//\VAZ. (y)\/0.5]
LicA ISV

= </\ VAZ) (z) VvV </\ uAZ) (y)\/0.5]
- €A €A

</\VA1-> (zy) < </\ m-) (z)V </\ m-) (y)v0-5]-

€A L \icA €A

It is clear that

/\ [va, (x) Vg, (y) V0.5 > [(/\ I/AZ-> (x)V </\ MAZ-> (y) Vv 0.5] .
€A 1EA 1EA
Assume that
/\ [VA«; (ZC) Vva, (y) \% 05] # [(/\ VAi) (:L‘) v (/\ VAZ') (y) v 05] .
1EA 1EA 1EA
Then there exists ¢ such that
/\ [va, (x) Vva, (y) V0.5 >t > [(/\ VAi) (z) v </\ VAi) (y) v 0'5]
icA icA icA

Since v4, C vA; or va, Cva, for all 4, j € I, so there exists k € [ such that k& > Ha, (z) A

ta, (y) A0.5. On other hand juy, (z) A pg, (y) A0.5 >t for all i € I, a contradiction. Hence,

A Wa; (@) Ava, (y) A0.5] = [(/\ m) () A (/\ m-) (y) A 0-5]

1€EA 1€EA 1€EA
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For all x,y,z € R , we obtain

o

(o

and

(Aor) e
€A

< A VAZ-> (zy2)

LIS

=V (14, (xy2)) >

ISV

= [V ua, (@

LicA

()
- ()

AV 1, (2

1EA

\/ (14, () A g, (2) A 0.5}]

(IS

ml

Y oros
Y oros

= N\ (va, (waz)) < \ [va, (@) Vva, (2) v 0.5)]

iEA

= [ A

LicA

IN

v N

= (/\%) (z) v </\VA7.,> (z)\/0.5]
. i€ i€

</\ yAi> (z) v (/\ yAi> (z) Vv 0.5]
L \i€A i€

€A

\/05]

Hence, MN;ep Ai = (Viea tha,, Nica V4,) is an (€, € Vg)-intuitionistic fuzzy bi-hyperideal of R.

Definition 149 Let R be a semihyperring and A =
Then, the 0.5-sum of A and B is defined by:

(a,va) and B = (ug,vp) be IFSs of R.

AgosB = (14 ®os g, va Pos VB)
V {pa(@)App(y) A0S} if z€xdy
(1a ®os pp)(2) = ZErdy
0 ifz¢zdy
N {va(@)Vvp(y)V0b} ifzexdy
(va @osvp)(2) = z€xdy
1 ifz¢xdy
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Definition 150 Let R be a semihyperring and A = (j14,va) and B = (ug,vp) be IFSs of R.
Then, the 0.5 product of A and B 1is defined by:

A5 B = (s -05M1p, VA 05VB)
V {pa (@) App (y) ANOSY if 2 =y
(1t 05 pp) (2) = =
0 if z # xy
N {va(z)Vve(y)V0.5} if z=uzy
(va-osvB)(2) = r=y=z
1 if z # xy

Let A= {uy,va) and B = (ug,vp) be (€, € Vq)-intuitionistic fuzzy bi-hyperidealof R. Then,

ANos B = (paNos B, vaVosVs)
(aMos pp) (®) = pa(z)App(z)A0.5 and
(vaVosvp)(z) = va(z)Vrp(xz)VO0.5.

Remark 151 If R is a semihyperring and A, B, C, D are IFSs of R such that A C B and
C - D, then A ‘0.5 C - B ‘0.5 D.

Proposition 152 Let R be a semihyperring, A = (u,va) and B = {(ug,vp) be (€,€ Vq)-
intuitionistic fuzzy bi-hyperidealof R. Then, A Ngs B is an (€,€ Vq)-intuitionistic fuzzy bi-
hyperideal of R.

Proof. The proof is straightforward. m

Definition 153 An (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R is called 0.5 idempotent if
A5 A=A

Theorem 154 Let R be a semihyperring and A = (uy,v4) be an IFS of R. Then, A =

(La,va) is an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R if and only if the following hold

(a) AdosAC A
(b) A ‘0.5 A g A7
(¢) A-gsR-05ACA.
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Proof. Let A = (14,v4) be an (€, € Vg)-intuitionistic fuzzy bi-hyperideal of R. (a) For
each z € R, we have two cases: (1) If z¢ 2 Dy. 2)If z €z dDy.
Case 1: If z ¢ = @ y, then clearly

(4 o5 pa) (2) = 0<py(2) and (va @osva)(z) =12>wa

Thus, A®gs A C A.

Case 2: If z € x @ y, then

(a Bospa) () = \/ {min{ua(2),p4(y),05}}
zZEXTDY
<V {Lint a2}
(1o @os pa)(2) < pap(z), forallzexzdy.
and
(va®osva)(z) = N\ {max{va(z),va(y),05}}

zExDy

> A {SHP VA(Z)}
2Cady zExDy

(va@osva)(z) > va(z), forallzexzdy.

Thus, A ®g5 A C A.
Similarly, for (b) we have cases for each x € R : (1) If z # zy. (2) If z = zy.

Case 1: If z # xy, then clearly
(ha-05ma)(2) =0 < py(2) and (va-05v4)(2) =12va

Thus, Aogs A C A.
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Case 2 : If z = zy, then

(a-05ma)(z) =\ {min{ps (@), pa(y).0.5}}
Z=xy
< \/ {pa(zy)} = pa (2y)
2=y

IN

(14 05 1a) (2) toa (yz)

and

(vaosva)(z) = )\ {max{va(z),va(y),0.5}}

Z=xy

> N {va(ey)} =va(zy)

Z=xy

(va-osva)(z) > val(ry)

Thus, A ‘0.5 A - A.
Now, for (3) we have also two cases, for each x € R. (1) If x # yz for every y,z € R. (2) If
x = yz for some y, z € R.

Case 1: If x # yz, then clearly
(1a 0051005 1) (x) =0 < py (z) and (vao0050005v4) =121y

ThUS, A 00.5 R 00.5 A Q A.

Case 2 :If z = yz for some y, z € R, then we have

(acosloospa) () = \/ {min{us(y),(Loos ua)(2),0.5}}
=Yz
= \/ {min{MA (y)v \/ {mln{l (t)nuA (T)705}}705}}
T=Yz z=tr

= \/ 'V {min{ps(y),1,p4(r),05}}

=Yz z=tr

= \/ {min{ps(y),pa(r),05}}

r=ytr
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Since x = yz = y(tr) = ytr and A = (4, v4) is an (€, € Vg)-intuitionistic fuzzy bi-hyperideal

of R, so we have piy (ytr) > min{py (y),p4 (r),0.5}. Thus,

\/ {min {4 (y), pa (r),0.5}} \/ {1a (@)} = py (ytr)

r=ytr r=ytr
(1a 051005 pa) (ytr) < g (ytr)

IN

and
(vaops0005v4)(x) = /\ {max{v4 (y),(00g5v4)(2),0.5}}
r=yz
= /\ {max {,uA (y), /\ {max {0 (t),v4(r),0.5}} ,0.5}}

- /\ /\ {max{v4(y),0,va(r),0.5}}

=Yz z=tr

= N\ {max{ra(y),va(r),0.5}}.
r=ytr
A = (uag,va)isan (€, € Vg)-intuitionistic fuzzy bi-hyperideal of R, so we have sup,_,,, v (z) <
max{va (y),va(r),0.5}. Thus,

N {min{va(y),va(r), 051} > A\ {va(@)}=va(yir)

T=ytr T=ytr
(vaops0005v4) () < wval(ytr).

Hence, AogsRogs A C A. Then, by Proposition 152 and Theorem 148, we have A@g5 A C A,
Aogs AC Aand AogsRogs A C A.

Conversely, suppose that the given conditions hold. Let z,y € R such that z € x®y. Then,
we have

nf pa(z) = (pacosia) (2) = \/ {min{us (), pa (1), 0.5}

> min{puy (z), 14 (y),0.5}

zei%y pa(z) = min{py(z),pa(y),0.5}
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and

sug va(z) < (vaopsva)(z) = /\ {max{va (s),va(t),0.5}}
z€ExDyY zEsDt

max {va (x),v4(y),0.5}

IN

sup v4(z) < min{va(z),v4(y),0.5}.
zExDy

Now, let x,y € R such that z = zy. Then, we have

v

(A 005 pa) (2) = \/ {min{ps (s), pa ()05}

z=st

min {MA (.’L‘) y A (y) 70'5}

inf 4 (2)

Z=TY

Y

inf py(2) = min{uy(z),p4(y),0.5}

z=xYy

and

IN

(vaocosva)(a) = N {max{va(s),va(t),05}}

z=st

max {v4 (z),va (y),0.5}

sup v4 (2)
2=y

IA

sup v4 (z) < min{va (z),va(y),0.5}.

Z=xY

Now, let x,y, 2z € R such that w = zyz. Then, we have

fa(w) > (pao0s5 1005 py)(w) = \/ {min {14 (s),(Loos pa)(t),0.5}}

w=st

=\ {min{m (s), \/ {min{1(p),ps (Q),0-5}},0-5}}
w=st t=pq
= \/ {min{,uA (s), \/ {min {1, p4 (q),0.5}},0.5}}
> N/ i (i (9), 04 (@), 053 > \/ {min {a (5) e (), 051}
> min{p, (z),p4(2),0.5}
pa(w) = min{py(z),py(z),05}.
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and

va(w) > (raogs00p5v4)(w)= /\ {max{v4(s),(0op5v4)(t),0.5}}
= /\ {max{VA(s), /\ {max {0 (p),va (q),0.5}},0.5}}
= /\ {maX{VA(s), /\ {maX{O,I/A(q),O.5}},O.5}}
< A\ N fmax{ra(s),va(q),05)} >\ {max{va(s),va(q),05}}
w=st t=pq w=spq
< max{vg(z),va(z),0.5}
va(w) < max{va(z),va(z),0.5}.

Hence, A = (u4,v4) is an (€, € Vqg)-intuitionistic fuzzy bi-hyperideal of R. =

Theorem 155 Let R be a semihyperring and A = (uy,v4) be an IFS of R. Then, A =
(a,va) is an (€, € Vq)-intuitionistic fuzzy left (resp. right, two sided) hyperideal of R if and
only if the following hold: R ogs A C A (resp. Aogs R C A, Aogs R C A and Rogs AC A).

Proof. Let A = (uy,v4) be an (€, € Vg)-intuitionistic fuzzy left hyperideal of R and let
x € R. Then, we have two cases (1) If x # yz for every z,y € R and (2) If z = yz for some
T,y €R.

Case (1) If x # yz for every z,y € R, then clearly (1ogspuy)(z) = 0 < py(z) and
(Ooosva)(z) =1 < g (2).

Case (2) If x = yz for some z,y € R, then we have

(Loospa) () = \/ {min{l(y),pma(2).0.5}}

T=Yz

— \/ {min {1, 4 (2),0.5}}

T=yz

—\/ fmin {4 (2),05))

T=yYz
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Since A = (1 4,v4) be an (€, € Vg)-intuitionistic fuzzy left hyperideal of R, so

inf p14 (yz) > min {py (2),0.5}
T=yz

Thus,
V Gnin s (.05} <\ (i ja (o)) = a2
(Loos pa) (x) < dnf iy (2) < pg (y2)
and

(0cosva)(x) = /\ {max{0(y),va(z),0.5}}

r=yz

— /\ {max{0,v4(2),0.5}}

= /\ {max{r4(z),0.5}}

r=yz

Since A = (u4,v4) be an (€, € Vg)-intuitionistic fuzzy left hyperideal of R, so
va(r) <max{ra(z),0.5}.
Thus,

/\ {max{r (2),0.5}}

T=Yyz T=yz

(0cs5va)(x) = supwva(z) = wva(yz)

Vv
Y
[9)]
=

fo]
S
b
"]
S~—
~__
|
R
b
—
<
R
S~—

Hence, R og5 A C A.
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Conversely, suppose that the given condition holds and let x,y € R such that z = zy. Then,

it pa(2) = (Leospa) (2) = \/ {min{1(p) s (0).05))
r=pq

\/ {min {17 KA <Q) 705}} = \/ {min {:U’A (Q) 705}}
min {p4 (y),0.5}, because z = zy.

v

v

and

SUP V4 (2) = (0opsva)(z)= N {max{0(p),va(q),0.5}}
a=pq
< A {max{0,v4(q),05}} = /\ {max{va(q),0.5}}
< max{uy (y),0.5}, because z = zy.

Hence, A = (uy,v4) is an (€, € Vg)-intuitionistic fuzzy left hyperideal of R. This completes

the proof. m

Theorem 156 Let A = (uy,v4) and B = {(up,vp) be (€,€ Vq)-intuitionistic fuzzy bi-
hyperideals of R. Then, Aoy B is an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R.

Proof. Let A = (uy,va) and B = (ug,vp) be (€, € Vg)-intuitionistic fuzzy bi-hyperideals
of R and let € R. Then, we have two cases (1) If x # yz for any y,z € R (2) If z = yz for
some Y,z € R.

Case 1: If x # yz for any y, z € R, then

(14005 1) 905 (Ha 05 kp)) (T) =0 < (14 005 pp) (2)

and

((vaocosvB)oos (vacesvp))(x) =12 (vaoesvp)(x)

Thus, A og5 A C A in this case.
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Case 2: If x = yz for some y, z € R, then

((a 005 1) 005 (A C05 1p)) (T) =

L <

{ (1 005 t15) () A (4 005 pi) (2) }

x N0.5
V. {paa) A g () 105}
I AV Aba ) s ()1 03)

VAV \/{ {114 (a) A pi (B) A 0.5) }

v=yz y=abz=pq | N{ka(p) A pp(q) A0.5}
_ {ra(a) AN pa(p)
x\/yz y\{zb z\/pq { Aup (b) A pp (q) A 0.5} }

\/ \/ \/{MA a) A g (P) NOSA pp(9)}

T=Yz y=ab 2=pq

IN

Since © = yz, y = ab and z = pq. So, z = (ab) (pq) = (abp) ¢ and we have

\/ \/ \/{MA a) Apg (p) NOSA pp(q)}

r=yz y=ab z=pq

<V A{ma(@) Apa(p) ANOSA g () A0S}
z€(abp)q

Since A = (u4,v4) is an (€, € Vg)-intuitionistic fuzzy bi-hyperideal of R we have

inf 14 () 2 pra (@) A g (p) AO5.

So,

\/ {ra(a) Npa(p) NODA pp(q) A0.5}

< \/ {mmaf pa (m) A pp (q) A0-5}
< \/ {pa (m) A pg(q) NO.5} = (4 005 ) (Mbg) = (ka4 05 k) (2)

x=mbq
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Therefore, ((p4 0.5 1p) 0.5 (114 205 k) () < (k4 005 1p) (). Now,

((vaocosvB)oos (Vacosvp))(r) = /\

T=yz

/\{ A (@) Vvs () v05) }
= y=a

a=yz | V i\ {va(p)Vvp(q) VvO0.5}

_ /\ /\ /\{ {va(a) Vg (b)V0.5} }

v=yzy=abz=pq | V{va(p)Vve(q)V0.5}

(vaocosvB)(y)V (vaocesve) ()
V0.5

B a)Vva(p)
AAM }

=Yz y=ab 2=pq Ve (q)\/05

> A A\ N\ {va@vea)vosves(q)}

r=yz y=ab z=pq

Since x € yaz, y € ayb and z € pBq. So, x € (ayb) a (pBq) = (aybap) fq and we have

A N N\ {ra@Vvvap)vosves(e)}

reyaz yeayb z€pPq

> /\ {va(a)Vva(p)vV05Vre(q)}

z=(aybap)Bq

Since A = (1 4,v4) is an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R we have
sup v4 (w) <wvga(a)Vwva(p)VO0.b5.

w=abp

So,

/\ {I/A \/VA )\/0.5\/I/B(q)}

> /\ { sufz va(w )\/VB(q)\/O.S}
r=(w)g LWatp
> /\ {va(w)Vrp(qV05}=(waoesve)(wg) =vaoosvg) ().
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Therefore, ((IJA 00.5 l/B) 0.5 (VA 00.5 l/B)) (a:) > (VA 90.5 VB) (m) and so A 00.5 A - A. Thus,
A = (j14,v4) is an (€, € Vq)-intuitionistic fuzzy subsemihyperring of R.
Now, let z,y,2 € R. Then,

|V @) A (9105

z=ab

(1a 005 pp) () A(pac0s pp) (2) A0S =

Zl/pq {14 (p) A g (@) A 0.5}] AOS

{pg (a) A g (b) AN0.5}
= V V| AMua®) A pg(e) 705}

z=ab z=pq
i N0.5
<V V pa(a) Apa(p) App(b)
z=ab z2=pq Aug (@) N0O.5
<V \/ pa (@) A (p) A pg (q) A 0.5]
z=ab z2=pq

Since x € yz, y € ab and z € pq. So, x € (ab) (pg) = (abp) ¢ and we have

V V [ka(@) Apa (0) A pg (@) A0.5]

r=ab z2=pq

<V Huala) Apa(p) A0} A pg ()]
zyz=(a(by)p)q

Since A = (4,7 4) is an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R we have

Ala(by)p) > pa(a) Ay (p) AOS.

So,
Vo Hea(@) Apa(p) AOBYA pg(q)]
zyz=(a(by)p)q
< [1a (a(by)p) A pp (@) = (14 c05 kp) (zy2) .
zyz=(a(by)p)q
Thus,

(14 cos pp) (Tyz) = (4 05 ) () A (14 o5 pp) (2) A0S
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and

{ A {va(a) Vs ) v0.5}] v

r=ab

(vaoosvp)(x)V (vaocesvp)(2) V05 =

i\ {rap)Vve(9)V 0.5}] V0.5

{va(a)Vvg(b)VvO0.5}
= A A | vivaw) ves(e)vos)

e V0.5

S va(a)Vva(p)Veg(b)

B xgb zgq L \/VB (q) V0.5

> A A a(@Vveap) ves(a)vos)
r=ab z=pq

Since © = ab and z = pq, so zyz = (ab) y (pq) = (a (by) p) ¢ and we have

/\ /\ [va(a)Vva(p)Vvs(q) VO0.5]

r=ab z2=pq

> AN Hvala)vea(p)v0.5}vwg(g)
zyz=(a(by)p)q

Since A = (uu4,v4) is an (€, € Vq)-intuitionistic fuzzy bi-hyperideal of R, we have

va(a(by)p) >va(a) Vg (p) V0.5

So,
A\ Hva(a)Vvva(p)vVO5}Vug(g)
zyz=(a(by)p)q
> [va(a(by)p) Vve (@) = (vacosvp) (zyz).
zyz=(a(by)p)q
Thus,

(vaoosvp) (zyz) < (vaocoesvp) () V (vacosve) (2) V 0.5.

Hence, Ao B is an (€, € Vg)-intuitionistic fuzzy bi-hyperideal of R. m

114



For any intuitionistic fuzzy set A = (u4,v4) in R and t € (0.5,1], s € [0,0.5] or s € (0.5, 1],
t €[0,0.5], we denote Uy ) = {z € R: (L, s) € A}, Aps) ={z € R:z(t,5) gA} and [4], ;) =
{x eR:z(t,s) € VgA}. Obviously, [A] (ts) = At,s) UUts), where Utt,s)s A(t,s) and [A](m) are

called €-level set, g-level set and € Vg-level set of A = (uy,v4), respectively ( [4]).

Theorem 157 Let R be a semihyperring and A = (juq,va) an IFS of R. Then, A = (uy,va)
is an (€,€ Vq)-intuitionistic fuzzy left (resp. right) hyperideal of R if and only if for all
t € (0,0.5] and s € (0.5,1) or s € (0,0.5] and t € (0.5,1), the set Uy s # ¢ is a left (resp.
right) hyperideal of R.

Proof. Let A = (uy,v4) be an (€, € Vq)-intuitionistic fuzzy left hyperideal of R and
Ugt,s) #  for any t € (0,0.5] and s € [0.5,1) or s € (0,0.5] and ¢ € (0.5,1). Let y € Uy 5) # ¢

and x € R. Then, p4 (y) >t and v4 (y) < s. Since z € Uy for all 2z € z @ y because

inf py(2) > pa(y) A0S >EAN05 >t sup va(z) <va(y)V0.5<tV0.5<s.
zex@y zex@y

and

pa(xy) > pa (W) A0S >EAN05 >t va(zy) <va(y)V05<tV0.5<s.

So, also zy € U 5). Hence, Uy ) is a left hyperideal of R.
Conversely, let us suppose that A = (u4,v4) is an IFS of R such that Uy g # ¢ is a left

hyperideal of R. Suppose on the contrary there exist x,y € R such that

inf py(2) <pa(y)AN05, sup va(z)>rva(y) A0.5.
z2€xDy 2E€ETDyY

and

pia (zy) < pa(y) A0S, va(zy) >va(y) AOS5.

Let us choose t € (0,0.5] and s € (0.5,1] or s € (0,0.5] and ¢ € (0.5, 1]. Then,

inf py(2) <t<psa(y)AN05, sup va(z)>s>wva(y)A0.5.
Z€xdy z€xDyY

and
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fra(zy) <t <pa(y) ANO.5, va(zy) >s>va(y) A0S

Thus, y € Uy but 2 ¢ Up for all z € x @y and © @y C Upy, which is a contradiction.

Hence,

inf py(2) >pa(y)A05, sup va(z) <va(y)A0.5.
z2€xDyY ZETPyY

and

ta(zy) > ps (Y N0DS>EtN05 >t va(zy) <va(y) V0S5 <tV0.5<s.

This completes the proof. m

Theorem 158 Let R be a semihyperring and A = (q,va) an IFS of R. Then, A = (uy,va)
is an (€,€ Vq)-intuitionistic fuzzy bi-hyperideal of R if and only if for all t € (0,0.5] and
5 €(0.5,1) or s € (0,0.5] and t € (0.5,1), the set Uy s # ¢ is a bi-hyperideal of R.

Proof. The proof follows from Theorem 157. m

Theorem 159 Let R be a semihyperring and A = (ju4,v4) an IFS of R. Then, A = (uy,va)
is an (€, € Vq)-intuitionistic fuzzy subsemihyperring of R if and only if for all t € (0,0.5] and
s € (0.5,1) or s € (0,0.5] and t € (0.5,1), the set [A](m) %+ is a subsemihyperring of R.

Proof. Let z,y € [A];,. Then, py(z) > ¢t and va(z) < s or py(z) +¢t > 1 and
va(z)+s<1l,and py(y) >tand va(y) < sorpy(y)+t>1and va(y)+s <1l We can
consider four cases:

(1) pa(r)>tand vy (x) <s,and py (y) > tand va (y) <s,
(1)  py(x)>tand va(x

) <
)<s,and py (y) +t>1and vy (y) +s <1,
(191)  py(x)+t>1and vy

—

x)+s<1,and py (y) >t and vy (y) < s,
(tv)  py(z)+t>1and vy

—~

x)+s<l,and py(y)+t>1land va(y)+s <1
For the first case, by Theorem 142 (a), it implies that, for all z € x @ y

0.5 ift>0.5
inf i (2) > min{py (2), 14 (y),0.5} = min{t,0.5} =
#erdy t ift<0.5

116



and

0.5 if s<0.5
sup v4 (z) <max{ra (z),va(y),0.5} = max{s,0.5} =
z€Exdy S if s > 0.5

and 50 inf ey p4 (2)+t > 0.5+0.5 = 1 and sup,c,q, va (2)+s < 0.5+0.5 = 1, d.e., (2) (s, 1) ¢4,
or z € Ay for all z € z @ y. Therefore, for all z € x Dy, 2 € Uy ) U A s) = [A](t’s).

Similarly
) ) 0.5 if ¢ > 0.5
jia (2y) = minfiuy (2) 114 (), 0.5} = min{t, 0.5} =
t ift<05
and
0.5 if s <0.5

va(zy) <max{va (z),va(y),0.5} = max{s, 0.5} =
s if s>0.5

and so py (zy) +t > 05+ 0.5 =1 and va (zy) +s < 0.5+ 0.5 = 1, i.e., (zy)(s,t)qA, or
zy € A(y,s)- Therefore, zy € Ugy ) U A(rs) = [A](m).
For the case (i7), assume that ¢ > 0.5 and s < 0.5. Then, 1 —¢t < 0.5and 1 —s > 0.5. If

min{p4 (y),0.5} < py (z) and max{v4 (y),0.5} > v4 (z), then

einé pa(z) >min{puy (y),0.5} >1—tand sup va(z) <max{ra(y),0.5} <1—s
zExDy zex®dy

and if min{p, (y),0.5} > p, (z) and max{ra(y),0.5} < va(x), then infocoqypy (2) >
ta (z) > tand sup,c,g, va (2) S va(z) < s, forall z € x®y. Hence, z € Uy o) UA 1) = [A] 4
for all 2 € x @ y. Therefore, for all z € 2Dy, 2 € Uy o) U A5 = [A](ms) for t > 0.5 and s < 0.5.
Similarly

poa (xy) > min{u, (y),0.5} > 1 —t and v4 (zy) < max{ra (y),05} <1—s

and if min{py (y),0.5} > py () and max{v (y),0.5} < v4 (x), then py (zy) > py(x) >t
and v (zy) <wva(z) < s. Hence, zy € Uts) U A(r,s) = [A](ts)‘ Therefore, xy € U o) U A 5) =
[A] 4,5 for t > 0.5 and s < 0.5.
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Suppose that ¢ < 0.5 and s > 0.5. Then, 1 —¢ > 0.5 and 1 — s < 0.5. If min{pu, (x),0.5} <
ta (y) and max{va (x),0.5} > v4 (y). Then, for all z € z @y,

inf py(z) > min{p, (x),0.5} >t and
z€x®y

sup v4(z) < max{ra(z),05} <s
zex®y

and if min{p, (2),0.5} > py (y) and max{va (z),0.5} < va(y), then inf.cppyps (2) >
pa(y) >1—tand sup,c,q, va (2) <va(y) <1l-—s,forall z € x@y. Thus, 2 € Uy o) U A, =
[A](m) , for all z € z @ y. Therefore, for all z € 2Dy, 2 € Uy ) U A ) = [A](LS) for ¢ < 0.5 and

s > 0.5. Similarly

pa(zy) = min{py (2),0.5} > ¢ and

va(ry) < max{rva(z),0.5} <s

and if min{py (z),0.5} > 4 (y) and max{v4 (z),0.5} <v4 (y), then py (xy) > pa(y) > 1t
and v (zy) <va(y) < 1—s. Thus, 2y € Uy oUAy,) = [A](t7s). Therefore, zy € Uy o) UA(15) =
[A] 4,5 for ¢ < 0.5 and s > 0.5. We have similar result for the case (iii). For final case, if t > 0.5

and s < 0.5, then 1 —¢ < 0.5 and 1 — s > 0.5. Hence, for all z € x & y,

ciné Ha (Z) 2 HliIl{MA (33) y A (y) 705}
zETDY

05>1—t¢ if min{py(z),pnq(y)} > 0.5,

min {fy (2),pa (y)y > 1=t if min{py (2), 04 (y)} <0.5,

and

sup v4(z) < max{va(z),va(y),0.5}
zexrdy

00<1-s if max{va(z),va(y)} <0.5,

max {va(x),va(y)} <1—s if max{va(z),va(y)} > 0.5,
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and so z € Ay ) C [A] (t.5) > for all z € x @ y. Similarly

pa(zy) = min{py (2),pa (y),0.5}
{ 05>1—t if min{py(z),py (y)} > 0.5,

min {fy (), pa (y)} > 1=t if min{py (2),pa(y)} <0.5,

and

va(zy) < max{va(z),va(y),0.5}
{ 06<1l—s if max{va(x),va(y)} <0.5,

max {va(x),va(y)} <1—s if max{va(z),va(y)} > 0.5,

and so zy € Ay ) C [A] 1)
Ift<05and s >0.5, then 1 —¢ > 0.5 and 1 — s <0.5. Thus, for all z € x By,

inf iy (2) = min{py (z),p4(y),0.5}

zEx®y
{ 05>1—t if min{ps(z),py (y)} > 0.5,

min {fy (), pa ()} > 1=t if min{py (2),pa(y)} <0.5,

and

sup va(z) < max{va(z),va(y),0.5}
zexdy

05<1—s if max{v4 (x),va(y)} <0.5,
max {v4(x),va(y)} <1—s if max{va(z),va(y)} > 0.5,

and so z € A 5) C [4] (t,5) for all z € x @ y. Similarly
pa(wy) = min{pa (z),p4(y),0.5}

{ 05>t if min{py(z),py (y)} > 0.5,
min {py (), pa (y)} > 1=t if min{py (2),p4 (y)} <0.5,
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and

va(zy) < max{vy(xz),va(y),0.5}
05<s if max{va(z),va(y)} <0.5,

max{va (z),va(y)} <1—s if max{va(z),va(y)} > 0.5,

which implies that zy € Uy o) U A q) = [4] (t,5)"
Conversely, suppose that A = (4, v4) is an IFS in R such that [A] (t,s) 1S & subsemihyperring
of R. Suppose that A = (uy,v4) is not an (€, € Vg)-intuitionistic fuzzy subsemihyperring of

R. Then, there exist x,y € R such that, for all z € z @y,

inf pa () < minfug ()04 (4), 0.5} and sup v (2) > max{va (@), va (y) 05}
zex zexdy

and

pa(zy) <min{py (z),p4 (y), 0.5} and v4 (zy) > max{ya (z),v4 (y),0.5}.

Let, for all z € x d v,

C = g | (2) +mingi (0) i (0,05} | and
s = % ngy va(z) +max{v (z),va (y) ,0.5}] .

Then, for all z € x By,

inf py(z) < t<min{ps(2),p4(y),0.5} and
2€xdY

sup va(z) > s>max{rva(z),va(y),0.5}.
zexDy

this implies that z,y € [A]; ) and z € [A4], ), for all z € 2 ®y. Hence, inf.coey 114 (2) = t and
SUD,epamy VA (2) < s or infoepqy pig (2) +¢ > 1 and sup,cq, va(2) +5 < 1, forall z € z D y.

Which is a contradiction. Therefore, we have, for all z € z ® y,

inf ha(z) 2 min{p, (), 54 (y),05} and Sup va (2) < max{va (z),va(y),0.5}.
zex zexDy
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Similarly we can prove for p14 (xy) > min{py (z),p4 (v),0.5} and v 4 (zvy) < max{va (z),va (y),0.5}.

Thus, A = (u4,v4) is an (€, € Vq)-intuitionistic fuzzy subsemihyperring of R. m

Theorem 160 Let R be a semihyperring and A = (juq,va) an IFS of R. Then, A = (uy,va)
is an (€,€ Vq)-intuitionistic fuzzy left (resp. right) hyperideal of R if and only if for all
t € (0,0.5] and s € (0.5,1) or s € (0,0.5] and ¢t € (0.5,1), the set [A], ) # ¢ is a left (resp.
right) hyperideal of R.

Proof. Assume that A = (uy,v4) is an (€, € Vg)-intuitionistic fuzzy left hyperideal of R
and let ¢ € (0,0.5] and s € (0.5,1) or s € (0,0.5] and ¢ € (0.5, 1), be such that [4], ;) # ¢. Let
y € [A]; 5 and z € R. Then, py(y) > tand va(y) < sorpy(y) +t>1land va(y) +s <L
Assume that p4 (y) >t and v (y) < s by Theorem 142 (a), implies that for all z € z @ y,

if t <0.5,
inf gy (2) > min{py (y),0.5} > min{t,0.5} =
zerdy 0.5>1—t ift>05,
and
if s > 0.5,
sup v4 (2) < max{ra (y),0.5} > max{s,0.5} =
z€x®y 0b<1-—s ifs<0.5,
so that, forall z € x @y, 2 € Uy ) U Ars) = [A](t,s) .
Similarly
if < 0.5,

ia (zy) > minfus (y), 0.5} > min{t, 0.5} =
05>1—t ift>0.5,

and
if s > 0.5,

05<1—s ifs<0.5,

va (zy) < max{va(y),0.5} > max{s,0.5} =
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so that zy € Ug ) U Ars) = [A] (1 5)- Suppose that py (y) +¢>1Land va(y) +s <1. If ¢ >0.5
and s < 0.5, then for all z € x By,

05>1—t ift<0.5,

inf 14 (2) 2 min{py (y),0.5} =
#ExoY pa(y) >1—t ift>0.5,

and

05<1—s if s > 0.5,
sup v4(z) > max{rv4 (y),0.5} =
2€xy valy)<l—s if s<0.5,

and thus z € Ay ) C [4] (t,5)» for all z € x @ y. Similarly

. 05>1—t ift<0.5,
fea (zy) = minfpy (y), 0.5} =
pa(y)>1—1t ift> 0.5,

and

05<1—s  ifs>05,
v4 (zy) > max{r4 (y),0.5} =
valy)<l—s if s<0.5,

and thus zy € A, C [4] (t,5)- Consequently, [A] (t,) 18 & left hyperideal of R.
Conversely, suppose that A = (1 4,v4) is an IFS in R such that [A] (t.5) is a left hyperideal
of R. Suppose that A = (u4,v4) is not an (€, € Vq)-intuitionistic fuzzy hyperideal of R. Then,

there exist x,y € R such that, for all z € x &y,

einé pa(z) <min{py (y),0.5} and v (zy) > max{va (y),0.5}.
2€ETDyY

and

ta (xy) < min{p, (y),0.5} and v (zy) > max{rva (y),0.5}.

Let for all z € x @ y,

1 1
t=—1| inf py(2)+ min{uy (y) ,0.5}] and s = — { sup v4 (z) + max{r (y),0.5}] .
2 |zexdy 2€xdy

inf py(2) <t<min{uy(y),0.5} and sup va(z) > s> max{ra (y),0.5}.
zex@y zex@y
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N

this implies that x,y € Uy [A](t’s), so that z € [A](t,s) for all z € & y. Thus, for
all z € v @y, infocapypia (2) > t and sup,c,p, va(2) < s or infieppy pg(2) +¢ > 1 and

SUD,epay V4 (2) + 5 < 1, which is a contradiction. Therefore, we have

inf py(2) > min{uy (y),0.5} and sup va(z) <max{ra(y),0.5},
2Cady ety

for all z € x @ y. Similarly we can prove for py (zy) > min{u (), u4 (y),0.5} and v4 (xy) <
max{va (z),va(y),0.5}. Hence, A = (uy,v4) is an (€, € Vq)-intuitionistic fuzzy left hyper-

ideal of R. Similarly, the right case also follows. This completes the proof. m

Theorem 161 Let R be a semihyperring and A = (uq,va) an IFS of R. Then, A = (uy,va)
is an (€,€ Vq)-intuitionistic fuzzy bi-hyperideal of S if and only if for all t € (0,0.5] and
€(0.5,1) or s € (0,0.5] and t € (0.5,1), the set [A], ;) # ¢ is a subsemihyperring of R.

Theorem 162 Every (€, € Vq)-intuitionistic fuzzy bi-hyperideal of a semihyperring R is an

(€, € Vq)-intuitionistic fuzzy hyperideal of a semihyperring R.

Proof. Let A= (uy,v4) be an (€, € Vg)-intuitionistic fuzzy bi-hyperideal of a semihyper-
ring R. Then

Jnf pa(2) 2 min{py (@), 14 (y) 0.5, Sup va (z) < max{va(z),va(y),0.5}
zZEx Dy

and 14 (zy) = min{py (%), 04 (y),0.5}, va (zy) < max{va(z),va(y),0.5}

Now let for any x,y,z,a € R. Then

pa(za(yz)) = min{py (zay),pa(2),0.5}
pa((way)z) > min{py (zay),pa(z),0.5}
pa(za(yz)) = min{ps (@), pa(y),pa(z),0.5}.
va(za(yz)) < max{va(zay),va(z),0.5}
va(za(yz)) < max{va(zay),va(z),0.5}
va(ra(yz)) < max{va(z),va(y),va(z),0.5}

Therefor A = (4, 4) is an (€, € Vq)-intuitionistic fuzzy hyperideal of a semihyperring R. =
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Chapter 6

n-Dimensional Fuzzy Hyperideals in

Semihyperrings

The defined notion is a generalization of fuzzy hyperideals, fuzzy prime hyperideals and topo-
logical space of fuzzy prime hyperideals of a semihyperring. In this chapter, we introduce the
notion of n-dimensional fuzzy sets, fuzzy hyperideals and fuzzy prime hyperideals in semihyper-
ring with identity. We also discuss some basic properties of n-dimensional fuzzy prime hyper-
ideals and characterize the n-dimensional fuzzy prime hyperideals. We will also investigate the
topology on n-dimensional fuzzy hyperideals and fuzzy prime hyperideals. In the second sec-
tion, we study and describe the behavior of n-dimensional fuzzy weak (strong) k-hyperideals of
semihyperrings under homomorphism of semihyperrings and some different characterization of
fuzzy weak (strong) k-hyperideals of semihyperrings. In the last section, we study n-dimensional

(a, B)-fuzzy hyperideals in semihyperring and their characterization.

6.1 n-Dimensional fuzzy hyperideals

This section deals with some basic definitions of an n-dimensional fuzzy set in a semihyperring

R. We also discuss some relative results.

Definition 163 Let R be a semihyperring. A map i : R — I, is called an n-dimensional

fuzzy subset of R and denoted as
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(@) = (11 (@), 13(2), ot (2)), ¥ 2 € R.

Definition 164 Let A be a subset of R and i be an n-dimensional fuzzy set in a semihyperring

R is defined by R
. ( ) t:(tl,tg,...,tn) ifee A
T) =14 .
Ha 0=(0,0,...,0) otherwise
In particular, if A = {z}, we denote fi(, by fi, and call it a fuzzy point of R.
If i1, are two n-dimensional fuzzy sets, then 4 C v if j(z) C ©(x), for all x € R. The

intersection and union of two n-dimensional fuzzy sets [i, are defined respectively as (i N

v)(z) = p(x) Av(x) and (U D) (x) = p(z) V (), for all x € R.

Definition 165 Let A be a non-empty subset of a semihyperring R. Then the n-dimensional
characteristic function of A denoted and defined by

. [1=(11,..,1) ifre A
Xa= 0= (0,0,...,0) otherwise

Clearly, the n-dimensional characteristic function of any subset of R is an n-dimensional

fuzzy subset of R.

Definition 166 An n-dimensional fuzzy subset i of a semihyperring R is called an n-dimensional
fuzzy subsemihypering of R if it satisfies the following conditions:
(i) inf a(z) > p(z) A i(y), for all z,y € R.
zex®y
(i) p(xy) > (x) Aa(y) for all z,y € R, where each 1 = p;, @ = 1,2,3,...,n, is a fuzzy
subsemihyperring of R.

Definition 167 An n-dimensional fuzzy subset i of a semihyperring R is called an n-dimensional

fuzzy left (right) hyperideal of R if it satisfies the following conditions:

() inf ji(z) > f(x) A fy), for all 2,y € R.
ZETBY
(i) p(zy) > p(x) and p(zy) > a(y), for all z,y € R, where each p;, i = 1,2,3,...,n, is a
fuzzy left (right) hyperideal of R.
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Example 168 By example 5, let (Z,®,-), be a semihyperring, where 7 is the set of integers

”

defined by a hyperoperation” @” and a binary operation” -7 on Z as follows m & n = {m,n}
and mn =mn ¥V m,n € Z.

Consider a T-dimensional fuzzy set as follows:

(0.2,0.22,0.23,0.24, 0.25,0.26, 0.27) if x s odd
f(x) = (0.6,0.61,0.62,0.63,0.64,0.65,0.67) if x is non-zero even
(0.9,0.91,0.92,0.93,0.94,0.95,0.96) if =0

Then it is easy to show that [ is a 7-dimensional fuzzy hyperideal of Z.

Proposition 169 A non-empty subset A of a semihyperring R is a subsemihyperring of R iff
the n-dimensional characteristic function of A is an n-dimensional fuzzy subsemihyperring of

R.

Proof. Suppose A is a subsemihyperring of R and xz,y € R. If z,y € A, then for all
ze€x®y,2C Aand zy € A. (i) As X4(z) =X4a(y) =1=(1,1,...,1) and forall z€e z®y C
A= inf Y4(2)=1=(1,1,...,1). For all z,y € A,

zExDy

inf X4(2) > Xa(z) AXa(y)
zexDy

(11) For all x,y € A /XA(‘%) = ?A(y) = ?A(xy) =1= (17 17 ) 1)
Xa(zy) = Xa(®) AXaly)

Ifz,y ¢ A, then (i) X4(z) = Xa(y) =0=(0,0,...,0) and forall z € s Py € A = Zell;léyiA(z) =
0=(0,0,...,0). This implies zeig:léySZA(z) > Xal@)AXa(y), forall z,y ¢ A. (ii) X4(z) = Xa(y) =
Xa(zy) =0 = (0,0,...,0). This implies X 4(xy) > X4(x) A X4(y), for all z,y ¢ A. This shows
that Y 4 is an n-dimensional fuzzy subsemihyperring of R.

Conversely, assume that X 4 is an n-dimensional fuzzy subsemihyperring of R. Let x,y € A,
then for all z,y € A, X4(z) = X4(y) =1 = (1,1,...,1) and as Zeigéyfm(z) > Xalz) Axaly) =
1=(1,1,...,1). This implies zeigéyiA(z) =1=(1,1,...,1) = x®y C A. Similarly, x4(zy) >
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Xa(z) AXa(y), for all z,y € A. This implies X 4(z) = Xa(y) = Xa(zy) =1=(1,1,...,1). Thus,
zy € A. Hence A is a subsemihyperring of R. =

Theorem 170 Let ji be an n-dimensional fuzzy subset of a semihyperring R. Then, [i is an

n-dimensional fuzzy hyperideal of R if and only if for every t € [0,1], the level subset or t-cut,

iy = {z € Rlp(x) = t} # ¢
is a hyperideal of R.

Proof. Suppose that i is an n-dimensional fuzzy hyperideal of a semihyperring R and
t € I, such that i, # ¢. Let z,y € fi, then fi(x) >t and j(y) > t. As Zeigléy i(z) > () A p(y),
S0) Zeigéyﬂ(z) >t=acDYE .

For r € R, fi(rz) > fi(x) >t so ju(rxz) > t. This implies rz € [i,. Hence i, is a hyperideal of
R.

Conversely, assume ji, is a hyperideal of R, let z,y € R be such that Zeigefoﬂ(z) < i(x)ANiu(y).
We take ¢ € (0,1] such that Zeigéy,&(z) <t < ifx) A p(y), then z,y € i, but z ¢ [, for all
z € x @ y. Which is contradiction, hence Zeigclefay,&(z) > iu(z) A fi(y). Similarly, we can show that
a(xy) > p(x) and f(xy) > A(y), for all z,y € R. Thus i is an n-dimensional fuzzy hyperideal

of a semihyperring R. m

Proposition 171 A non-empty subset of a semihyperring R is a left (right) hyperideal of R iff
the n-dimensional characteristic function of A is an n-dimensional fuzzy left (right) hyperideal

of R.

Theorem 172 If i, are two n-dimensional fuzzy left (right) hyperideals of a semihyperring
R, then iiN v is also an n-dimensional fuzzy left (right) hyperideal of a semihyperring R.

Proof. (i)zéa}éy( anNvov)
{i@) No(e)} AMiy) Ao
)

(x
= (ano)(z) A (BN
i) (

z) = inf a(z) A inf D(z) > {p(z) A )} A H{o(z) AD(y)} =

( zExDy zExDy
y)}
)

—~

(x) ANo(z) > (N v)(z), which proves the result. m

=
=
=
D
>
=
8
N
—
|
=
)
<
S~—
>
A
)
<
S~—
v
=
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Definition 173 Let i be an n-dimensional fuzzy subset of a semihyperring R. Then, [i, is
defined as

fr. = {z € R|i(z) = [1(0)}.
If iy is a hyperideal of R, then fi, is a hyperideal of R.

Definition 174 If i, are two n-dimensional fuzzy left (right) hyperideals of a semihyperring
R. Then fuzzy subset s ® U of R is defined by

(hev)(r) = V_[u(y)Ai(z)], for somey,z € R.
reydz

Definition 175 If i, are two n-dimensional fuzzy left (right) hyperideals of a semihyperring
R. Then product of two n-dimensional fuzzy subsets ji and U of R is defined by

() (x) = V [((y) AD(z)], for some y,z € R.

=Yz
Lemma 176 Let z,y € R, then <z ><y >C<xy > .

n
Proof. Let z €< o >< y >, then z € leyz for x; €< x > and y; €< y > . But for
i=1

n
each 1 < i < n there exist r;,7, € R, such that z; = r,z and y; = rjy. So z € Z(nx)(r;y) =

i=1
n

> () (ay).
i=1
n
But Z(nr;)(xy) = W{eblc e U a;.b=zy}. Now there exist c€ U a; and b = z.y,
=1 a;EriT] a; €Tyt
such that z = ¢.b. Since ¢ € U aj;, then for ¢ = 1,2,...,n, there exist a; = 7}, such that

/
a;erir;
n n

n
c € a;. Therefore z € (Zai).b = Zai.b, this means that z €< z.y > . Thus < z > . <

i=1 i=1 i=1
y>C<zy>. n

Definition 177 Let R be a semihyperring and ji be an n-dimensional fuzzy subset of R, then
< fp >= N{v; v is an n-dimensional fuzzy subset of R | i1 C ©}.

then < [ > 1is called an n-dimensional fuzzy hyperideal generated by fi.
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Lemma 178 Let {ji;}icr is set of an n-dimensional fuzzy hyperideals of R, then .ﬂlﬂ 1s also
1€

an n-dimensional fuzzy hyperideal of R.

Proof. For each ¢ € I we have for all z € 4y,

i (2) > (@) A i (y) > 0 fii(2) A N i (y).

So for all z € x + v,
C NS A o),
D Ri(z) 2 0 (@) A O R (y)

Similarly we can prove N i(zy) > N a(x) or Na(zy) > Nia(y). =
iel iel iel iel

Corollary 179 Let i is an n-dimensional fuzzy subset of R, then < j1 > is an n-dimensional

fuzzy hyperideal of R.
Theorem 180 Let R be a semihyperring and A C R and t € I,,. Then toas =<1tg > .
Proof. Since A C< A >, so ta C t<a> and then
<ia>Cihoas (1)

Now let ji be an n-dimensional fuzzy hyperideal of R such that 4 C fi, so for each a € A, we
have t < f(a). Let y €< A >, then y € X' r;a; for r; € R and a; € A and ne N. Therefore,

for ¢ = 1,2,...,n there exist s; = r;a;, such that y € ¥ ;s;. Now

My) =

vV
I>s TI>s
=

~
—_

v
>
Il
>
A
S
V
—
<
SN—

and if y ¢< A > then 0 =t 4~ (y) < ji(y). Hence t- 4~ < fi and then
teas CN{ilta C i} =<ia> (2)
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By (1), (2) we have < f4 >=1_4~. m
Corollary 181 < iy >=t.as, fort €I, and z € R.

Theorem 182 Let i, U be n-dimensional fuzzy subsets of R, if i is an n-dimensional fuzzy

hyperideal of R, then pv C [i.

Proof. Suppose that z = yz, for y,z € R, so

) 2 A @) 2 i) V) 2 i) = ) A 0 e)

Then for all y, z € R, such that x = yz, we have

fi(z) = V{i(y) v o(2) | & = yz} = (i) (x)
andso o C 1. =

Corollary 183 Let fi, o are n-dimensional fuzzy hyperideals of R, then pp C N D.

6.2 n-Dimensional prime fuzzy hyperideals

In this section, we discuss n-dimensional fuzzy prime hyperideals of a semihyperring and cor-

responding results.

Definition 184 An n-dimensional fuzzy hyperideals p of R is called an n-dimensional fuzzy
prime hyperideal if p is non-constant and for any n-dimensional fuzzy hyperideals f1, 0 of R if

v C p, then either i C p or v C p.

Lemma 185 Let x,y € R and a,b € I,, then (d<ps.beys)(2) C< (@A D)y > -

Proof. By Theorem 180 and Corollary 181 it is sufficient to show that a<;~.b<y~ C
(@ Ab)<gy>. Let z € R. Then,

(<as-bey>)(2) = V{dcas (r) Abeys(s)]2 = rs).
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If there exist r €< z > and s €< y > such that z = .5, then (G<z>.boys)(2) = @ A b. Since
re<x>and s E<y >, 2z €< x >< y > . Bylemma 176 < x >< y >C< zy >, so
z €< xy > and hence (a A B)<my>(z) —aAnb Ifforeachr €<z > and s €<y >, z # r.s, then

(czs-boys)(2) = 0. Hence (dps.beys)(2) C< (A D)y > . m

Theorem 186 If p is an n-dimensional fuzzy prime hyperideal of R, then p. is a prime hy-
perideal of R.

Proof. Let z, y € R and z.y € p,. Then, < zy >C p,. Let 1 = 1oy, O = i<y>. By
Corollary 181, ji =< 1, >,0 =< iy > and v C< imy >, again by theorem 180, < iwy >=
i<xy>. Therefore v C i<xy> - iﬁ* C p. Since p is an n-dimensional fuzzy prime hyperideal
either i C p or © C p. So either 1.~ C p or i<y> C p = either < x >C p, or <y >C p, and

finally either x € p, or y € p.. Hence p, is a prime.

Theorem 187 Suppose that p is an n-dimensional fuzzy hyperideal of R. Then p is an n-
dimensional fuzzy prime hyperideal of R if and only if p(0) = 1, p, is a prime hyperideal of R

and p = iﬁ* Uigr for somet € I,.

Proof. Suppose that p is an n-dimensional fuzzy prime hyperideal. By theorem 186 p,
is a prime hyperideal of R. Now we show that p(0) = 1. Suppose that $(0) < 1, since p is
non-constant, then there exist x € R such that p(x) < p(0). Let i, 0 are n-dimensional fuzzy

sets of R and defined by

%):{i:ﬂJJ,MD xeﬁ*wdmwzpm)

=30 = (0,0,0,...,0) z & P

So fi, © are n-dimensional fuzzy hyperideals of R and fi, © C p. But 1(0) = 1 > p(0) and for
z € R Itz ¢ p, 0(x) = p(0) > p(x), so o € p, © € p which is a contradiction. Therefore
p(0) = 1. Since 1 C H(R) and p is non-constant, | p(R) |> 2. Let =,y € R\p.. We shall show
that p(z) = p(y). Let p(z) = £. Then by Corollary 181 fo4> =< t;3 >C p. Now 1y, tr are

n-dimensional fuzzy hyperideals of R and by Corollary 183, we have
leps,tr Cleps Nig =tcas C .
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z> ¢ p. Since p is an n-dimensional fuzzy prime hyperideal of R, tr C p. Thus p(z) =
t=1ip (y) < p(y). Similarly it can be shown that p(y) < p(x). Hence p(z) = p(y). This means
that | p(R) IZ
of R and i €

2. Therefore, p = 1p* U tR where p, is an n-dimensional fuzzy prime hyperideal

Conversely, Suppose that p(0) = 1, py is a prime hyperideal of R and p = iﬁ* UtAK fort € I,.
Since p(R) = {1,%} then p is non-constant. Let for fi, © be an n-dimensional fuzzy hyperideals
of R, 0 C pbut i € p and © ¢ p. Then there exist z,y € R, such that j(z) > p(z) and
0(y) > p(y). It means that x,y € R\ps, then p(x) = p(y) = £. Thus j(z) > £ and o(y) > .
Since x,y € R\p« and p, is a prime hyperideal of R. Therefore there exists s = xy such that

s € p, and then p(s) = £. Now since s = xy then :

t = p(s)

Y

(0)(s) = ilz) Ao (y).

Hence fi(x) >t or d(y) > t, which is a contradiction. Thus p is an n-dimensional fuzzy prime

hyperideal of R. m

6.3 Topology on n-dimensional fuzzy spectrum of R

Let R be a commutative semihyperring. We mean by an n-dimensional fuzzy spectrum of R, the
set of all n-dimensional fuzzy prime hyperideals of R. Let X = {n-dimensional fuzzy spectrum
of R}. If [ is an n-dimensional fuzzy hyperideal of R, then we define V(i) = {p € X | it C p},
E(f) = X\V ().

Lemma 188 Let i be an n-dimensional fuzzy set of R. Then, V(< 1 >) = V(f1).

Proof. The proof is straight forward m
Let T' = {E(f1)|ft € n-dimensional fuzzy hyperideals of R}. Next we will prove that the pair
(X,T) is a topological space.

Theorem 189 The pair (X,T) is a topological space, where T = {E(j1)|ix € n-dimensional
fuzzy hyperideal of R}.

Proof. (1) Let it = 1g and ©# = Og. Then V(1) = ¢ and V(1) = X , therefore E(f1) = X
and E(0) = ¢. therefore X, ¢ € T.
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(2) Suppose that fi;, fis are n-dimensional fuzzy hyperideals of R, we have to show

E(fi) N E(fig) = E(fiy N fig).

Let & € E(fi;) N E(fiy), then ji; € Pand fiy, ¢ . Since ¥ is an n-dimensional fuzzy prime
hyperideal, fiji, ¢ . Using Corollary 183, fi;fiy C fiy N jiy. Therefore fi; N fi, € © and hence
v € E(fi; N fip). Thus

E(iiy) N E(f1p) € E(fiy N i) (1)

Now let 7 € E(fiy N fip), then jiy N fig € U, so iy € vand fiy € 0. Hence v € E(ji;) and
v € E(fiy). Thus & € E(fi;) N E(f15), so

E(fn N jg) C E(fin) N E(ft) (2)
From (1) and (2) it follows
E(jiy) N E(fiy) = E(f1y N fig)-

(3) Suppose that {f;|i € I} is a family of n-dimensional fuzzy hyperideals of R. We show that

E(ii)=E i >).
Y, (f;) (< B >)

Let i1 ¢ ‘UIE(/fLi), then for each ¢ € I, i ¢ E(j1;) and for each ¢ € I, fi; C fi. Then 'Ulﬂi C f.
1€ 1€
Now we have

<Yk >Cp=pe V(< Up>) = ¢ B(< Up>)

It means that

E(< iLEJIﬂi >) C igIE(ﬂz‘)
Let o ¢ E(< igjﬂi >), then for 1 € V(< ig['&i >) therefore < iLeJI/]Z» >C fi. For each i € I,
i, C U, =< iLEJI[Li >C i1 = foreach ¢ € I, i C ji. Thus

el

pwe V), forallie I = ¢ UIE(,&@)
1€
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Thus

UE(L) CFE U {1 .
Y (1) (<i€1m >)

Using (1) and (2)

UE() = E(< U >).
Y, (f1;) (<ieluz>)

Hence the pair (X, T) is a topological space. m

Theorem 190 Let z,y € R and d,I; € I,. Then,

E(xz) N E(yb) U (Lt(;mi,))-

o t=xy

Proof. Suppose that i € E(xs) N E(y;) then i € E(xa) N E(y;) then i € E(zs) and
f€ E(y) = x4 € ppand y; € o = a > fi(z) and b > ji(y). Thus i(z) # land j(y) # 1.
Since fi is an n-dimensional fuzzy prime hyperideal and |Im(u)| = 2 then i(z) = i(y) and
x,y ¢ fi,. But i, is a prime hyperideal and hence zy ¢ [i,, then there exists ¢ = xy, such that
t ¢ i, hence i(t) = i(x) = 1(y) and we have

i) < a,b=p(t) <aNb=1,;Z = i€ E(fgp) = i € iLEJI(f(&N;)).

Thus

E(a) N E@W) € U (fan) (1)

=xyY

Now suppose that fi € 'UIE(f( )), then
1€

anb

banyy € = ilt) <anb<a,b.

But fi(t) # 1 and so t ¢ ji,. Now we have
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So
(z) < a, ply) <b= x4 & jpand y; € i = f1 € E(xa), E(y;) = o € E(za) N E(yp).
Therefore,

UB(t

Y ) € E(za) N E(y;) (2).

(anb)
From (1) and (2), 'UIE(tA(&M;)) = E(za) N E(y;). m
1€

Theorem 191 The set B = {E(z;)|x € R, 4 € I,,, where a # 0}, forms a base for (X, T).

Proof. Let E(j1) be an open set in T and let » € E(j1), then i ¢ » and so for some
z € R, j(z) > v(y). Letting o = ji(z) then x; € 0, therefore & € E(x;). Now we show that
V(i) C V(xa). Let 6 € V(i), then i C 0 = z4(x) = fu(z) < 0(z) = x4 C 0 = 0 € V(za).
Hence V(1) C V(zy) and so E(xs) C E(f1). Thus # € E(xzz) € E(i1). It means B is a base for
(X,T). m

Lemma 192 Let a,b € I, where a,b # 0 and @ < b. Then E(zs) C E(x;) for v € R.
Proof. Suppose that ji € E(x;) then
T € = a > p(x).
But b > @ then b > ji(z) and hence
xy € o= fr € E(x;).
Therefore E(zs) C E(z;). m

Lemma 193 Let k C I,, where k ¢ 0 and let X = U{E((z:);)|i € I, € k, x; € R}. Then
V{t|lt € k} = 1.

Proof. The proof is same as in [50]. =
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Theorem 194 The topological space (X,T) is compact.

Proof. Since the set B = {E(x3)|z € R, @ € I,, where & # 0} is a base for (X,T), we
assume that the set {F((z;);)|i € I, t € k C I,, where k ¢ 0, x; € R} is a cover for X. Let
& = V{t|t € k}. By Lemma 192, & = 1 and by Lemma 193, the set {E((z;);)|i € I} is a covering

X. Now we know {E((a:z)i)\z el, X = .UIE((xi)i> = E(< 'UIx,- >) = X\V(< U(%‘)i >). On
1€ 1€ el
the other hand we have V(< U(x;); >) = V(U(x4);), so X = X\V(< U(z;); >), and hence
i€l iel iel
V(U(z;);) = ¢. Let P be any n-dimensional fuzzy prime hyperideal of R and let
i€l

Clearly fu is an n-dimensional fuzzy prime hyperideal of R and ji € V/(U(x;);), then U(z;); €
i€l iel
f1, so there exists j € I, such that (x;); € ji. Therefore fi(z;) < 1 and hence x; ¢ p.Thus there is

no any n-dimensional fuzzy prime hyperideal consisting the set {z;|i € I'} and then there is no
n-dimensional hyperideal consisting the set {x;|i € I'}, otherwise I C m for some maximal n-

dimensional hyperideal m and so m is prime. Which is contradiction, hence < {z;|i € I} >=R.

n
Since 1z € R, then 1 € Z(n:nz) for r; € R and n € N. Now we show that V (U(x;);) = ¢. Let
i=1 iel
fo € V(U(x;)7). Then, U(x;); C fi. So for each i = 1,2,...n, (x;); C fi, therefore for each i =
icl el
1,2,...n, 1 < ji(x;) and so ji(z;) = 1 for each i = 1,2, ...,n. Thus for each i = 1,2,...,n, z; € i,
n

and hence Zrixi C fi,, therefore 1% € fi,, which is a contradiction. Thus, V(EJ (i)1) = ¢ and
i=1
n

so X = X\V(igl(xi)i) = X\V(< igl(a:i)i >) = BE(< U(@i); >) = ingE((xi)i). This shows

that X is compact. =

6.4 Homomorphism of n-dimensional fuzzy k-hyperideals

In this section, we study and describe the behavior of n-dimensional fuzzy weak (strong) k-
hyperideals of semihyperrings under homomorphism of semihyperrings. We give some different
results of fuzzy weak (strong) k-hyperideals related to homomorphism of semihyperings. We also

study some different characterization of fuzzy weak (strong) k-hyperideals of semihyperrings.
Definition 195 Let R be a semihyperring and fi an n-dimensional fuzzy set in R. Then, i is
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said to be a weak n-dimensional fuzzy k-hyperideal of R iff V r,x,y € R, the following axioms
hold:

() A(z) = ) A jy), ¥ 2 €z @y,
(i) ju(rz) > jilw) and j(wr) > ju(x),

(i) fitw) > [(inf p(w) v ( inf (o)) Afily), ¥ .y € R.

And a strong n-dimensional fuzzy k-hyperideal of R iff

() i) = @) A jly), ¥ z €z @y,

(i) f(rz) > fp(z) and pler) > pz),

(ii) p(z) > [az) vVa()Aply),Vzex @y and 2/ € y ® .

Note that, (R,+) is commutative semihypergroup, therefore above conditions of weak and
strong n-dimensional fuzzy k-hyperideal of R are reduced to the following conditions:

(i) alz) = pz) Aiy), vV z € z @Y,

(i) ju(ra) > i) and j(wr) > ji(x),

(it) () = (=) A july), ¥ 2 € & .

Proposition 196 Let i be an n-dimensional fuzzy set in a semihyperring R. Then,

(i) i is an n-dimensional fuzzy hyperideal of R if and only if for every t € I, the level
subset jiz(# ®) is a hyperideal of R, where fi; = {x € R| ju(z) > t}.

(ii) fu is a weak n-dimensional fuzzy k-hyperideal of R if and only if for every t € I,,, the
level subset fi;(# ®) is a weak k-hyperideal of R, where ji; = {x € R| ji(x) > t}.

(iii) i is a strong n-dimensional fuzzy k-hyperideal of R if and only if for every t € I, the
level subset fi;(# ®) is a strong k-hyperideal of R, where fi; = {x € R| ju(z) > t}.

Lemma 197 Let i be an n-dimensional fuzzy hyperideal of a semihyperring R. If R has zero
element, then 1(0) > ju(z), ¥V x € R.

Definition 198 /23] Let R and S be semihyperrings. A mapping f : R — S is said to be
(i) homomorphism if and only if f(z ®y) C f(x) ® f(y) and f(xy) = f(z)f(y) ¥V z,y € R.
(i) good homomorphism if and only if f(x ®y) = f(x) ® f(y) and f(zy) = f(x)f(y) ¥
T,y €R.
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Proposition 199 Let f : R — R’ be a homomorphism of semihyperrings. If U is an n-
dimensional strong fuzzy k-hyperideal of R', then fﬁl(@) is an n-dimensional strong fuzzy k-

hyperideal of R.

Proof. We know that f~1(6)(z) = (8)(f(z)). Let ,y € R and z € & & y, then we have

~ A~ ~

f) e flxey) C f)+ fy),

and since U is an n-dimensional strong fuzzy k-hyperideal of R, it implies, for all z € x B y

Also

Therefore f ~1(%) is an n-dimensional fuzzy hyperideal of R. Now let z € s @y and 2’ € z D y,
thus f(z) € f(z) @ f(y) and f(2') € f(y) ® f(z), then ¥ is an n-dimensional strong fuzzy

k-hyperideal of R’ implies that

Hence proved. m

Proposition 200 Let f : R — R’ be a good homomorphism of semihyperrings. If U is an
n-dimensional weak fuzzy k-hyperideal of R', then f_l(@) is an n-dimensional weak fuzzy k-

hyperideal of R.

Proof. We know that f~1(9)(z) = (9)(f(x)). First we prove that f~1(9) is an n-dimensional
fuzzy hyperideal of R. Let z,y € R and z € x @ y, since ¥ is an n-dimensional weak fuzzy k-

hyperideal of R' and f is a good homomorphism, then for all z € x $ y

~ A~ ~

f) e flzay) = fa)® f(y).
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Then, we have

Also,

Therefore f ~1(9) is an n-dimensional weak fuzzy k-hyperideal of R. As f is a good homomor-
phism, then for all z € z @& y if and only if f(z) € f(x ®y) = f(x) ® f(y) and also ¥ is an

n-dimensional weak fuzzy k-hyperideal of R, we have

o(f@) =1 A @OfEDV A (@OFENIA @) ()
j)ef@oiw) fefweiw)

Now, we prove that f~1() is an n-dimensional fuzzy hyperideal of R. That is,

Hence complete the proof. m

Proposition 201 Let f : R — R’ be a good homomorphism of semihyperrings. If ji is an
n-dimensional weak (resp. strong ) fuzzy k-hyperideal of R and v be a f-invariant, then f(ﬂ)

is an n-dimensional weak (resp. strong ) fuzzy k-hyperideal of R'.

Proof. First we show that f (f1) is an n-dimensional fuzzy hyperideal of R'. Let a,b € R

and ¢ € a + b, we should prove that

We have
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Since [ be a f-invariant, then

Ty € FHB), F(ub)) = iulyo)-

Therefore, f(ZO) = f<$0) = a, f(yO) =b

= f(z0) € f(w0) ® f(y0),

A~

= 20 € £9 D yo (f is a good homomorphism and [ is an n-dimensional fuzzy hyperideal)

Now for the second condition of a fuzzy hyperideal, we have to prove that

~ A~

F('a') e f()() v f(@)(), ¥ ' 2’ € R,
Since f is onto, then r’ = f(r) and 2/ = f(x) for some r and z in R. Thus

f)('e') = Vo p(rz)
re€f-1(r'z’)
= [u(roxo),3ro € f_l(T/),:Uo € f_l(x/), (f1is a f—invariant)
> [(zo) V (ro), (iv is an n-dimensional fuzzy hyperideal of R)

() () v f()() (juis a f-invariant).

I
—,

Therefore, we have
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Now we prove that f (f1) is an n-dimensional weak fuzzy k-hyperideal of R'. Let a, b € R, we
show that

A N N A~

f@@) e [ A Fm)E) V(A F@ENIA f()0), (1)

z€adb z'ebda

Since f is onto and i is f-invariant, then f(i1)(a) = j(zo), f(i)(2) = i(z0), F(2)(2') = f(zh),
F()(b) = fu(yo), where zj € f1(2), 20 € f1(2), zo € fY(a), yo € f~(b). Hence (1) reduced

to the form

A~ A~

F(i)(@o) € [( A F(@)(=0) V(A F(@) ()] A F(@) (o), (2)

z€adb z'ebda

On the other hand from above discussion and f is a good homomorphism z € a + b if and only

if

f(20) € f(w0) @ f(y0) & 20 € 20 D Yo.

Similarly, 2’ € b+ a if and only if 2, € o @ yo. Therefore by (2), it is enough that we prove that

Azo) 2 [(, A M=)V (, A lz0)] A lyo),
20€x0DYo 25€YoDxo

it is clearly from the last statement is true, since [ is an n-dimensional weak fuzzy k-hyperideal
of R. This complete the proof. m
In next part we define the quotient of fuzzy weak (strong) n-dimensional k-hyperideals by

regular relation of semihyperring.

Definition 202 Let R be a semihyperring and p be an equivalence relation on R. Naturally we

can extend p to p to the subsets of R as follow:

For A, B be non-empty subsets of R. Define ApB & Va€ Adbe B:aph,Vbe B 3
a € A:bpa.

An equivalence relation p on R is said to be regular if for all a,b,z € R, we have

(i) apb = (a+ x)p(b+ x) and (x + a)p(z + b),

(ii) apb = (ax)p(bx) and (za)p(xb).
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By R : p we mean the set of all equivalence classes with respect to p, that is
R:p={r,|r e R}

Remark 203 We know that if R is a semihyperring and p is a reqular equivalence relation on

R, then R : p by a hyperoperation” &7 and a binary operation ” -7 1is defined as follow
zp ®yYp ={zpl2 €z DY}

Tp Yp = (my)p

is a semihyperring. For fi € FS(R), define (i1 : p)(z,) = ye\écpﬂ(y). Also we know that the
mapping ¥ : R — R : p define by (a) = a, is a good epimorphism. Now if fi is an n-
dimensional weak fuzzy k-hyperideal of R and i be w-invariant then by proposition 201 it
concludes that ¥(a) = [i: p is an n-dimensional weak fuzzy k-hyperideal of R : p.

Proposition 204 If ji is an n-dimensional weak fuzzy k-hyperideal of R and R has zero, then
i, = {z € R|pu(xz) = @(0)} is an n-dimensional weak k-hyperideal of R.

Proof. First we prove that fi, is an n-dimensional hyperideal of R. For z,y € i, and
z € x +y, then f(z) > fi(z) A fi(y) = 1(0), therefore by Lemma 197 ji(z) = [1(0), hence z € ji,.
Let r € R and z € i,, then we have
f(re) = p(r) vV ju(z)
— )V i0) (@ € 1)
= [1(0) (by Lemma 197)
=TT € [,
Now suppose r +x C i, or x +r C fi, and x € ji,, we show that r € fi,.
Since 1 is an n-dimensional weak fuzzy k-hyperideal of R then we have,

) = [ )Y A AED A i),

Since ji(x) = j1(0) and E/\EB f(z) = 1(0) and /\69 a(2") = [1(0), then fi(r) > f1(0) and then by
zer@x Z'erdx
Lemma 197, ji(r) > f1(0). Therefore is an n-dimensional weak k-hyperideal of R. m
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Proposition 205 If i is an n-dimensional strong fuzzy k-hyperideal of R and R has zero,
then ¥ = {xz € R|(z) = [1(0)} is an n-dimensional strong k-hyperideal of R.

Proof. First we prove that 4 is an n-dimensional hyperideal of R. For x,y € i* and
z € x +y, then fi(z) > fu(z) A ul(y) > 0, thus z € i*.

If r € R and x € ¥, then we have

Ara) > ) v lz) > z) > 0,

= rx € i*. Similarly = xr € i*. Thus 4" is an n-dimensional hyperideal of R.

Nowifr+xz~p*orz+r=p* and z € i*.

By hypothesis for all z € r +z ~ " or 2/ € x +r ~ i* we have

that is € i*and hence i* is an n-dimensional strong k-hyperideal of R. m

Proposition 206 Let R be a semihyperring with zero and x,y € R :

(i) If ju is an n-dimensional weak fuzzy k-hyperideal of R and ji(z) = j(0) = p(2") for all
z€x+y and 2’ € y+ x, then () = p(y).

(i) If [v is an n-dimensional strong fuzzy k-hyperideal of R and ji(u) = 1(0) = fu(v) for all

u€ex+y andv € y+ x, then ju(x) = i(y).

Proof. (i) Since /1 is an n-dimensional weak fuzzy k-hyperideal of R and ji(z) = 1(0) = ju(2’)

forallzex+yand 2/ € y+x,then A f(z) =p(0)= A [a(2'), thus
ZETDY zeydx
lz) 2 [( A, A2) v ( ENIA iy)
= 1(0) A fu(y)
= i(y) (by Lemma 197)

A
Z'eydr

= (@) > iy).
Similarly, we conclude that ji(y) > ji(x). Therefore fi(z) = ji(y).
(ii) Suppose v € z +y and v € y + x, such that j(u) = (o) = fi(o0), since i is an
n-dimensional strong fuzzy k-hyperideal of R, then
fi(y) = (i(u) vV i(v)) A ()
— (0) A f(x)
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= ju(z) (by Lemma 197)
= [i(y) = fu().
Similarly, we obtain fi(xz) > i(y). Therefore ji(z) = fi(y). =

6.5 n-Dimensional («, 3)-fuzzy hyperideals in semihyperrings

We combine the notion of n-dimensional fuzzy set and n-dimensional fuzzy point to introduce a
new notion called n-dimensional («, §)-fuzzy hyperideals in semihyperring. We also introduce
the characterization of n-dimensional («a, 8)-fuzzy hyperideals in semihyperrings by upper level
set. More over we define n-dimensional prime («, 3)-fuzzy hyperideals in semihyperrings. In
what follows, let R denote a semihyperring, and «, 8 denote any one of €,q,€ Vq or € Aq
unless otherwise specified.

An n-dimensional fuzzy subset X of the form

t= (tl,tz, tn) el, ify==z
0=(0,0,...0) ify #

is called an n-dimensional fuzzy point with support z and value t= (t1,t2,...t,) and is denoted
by z;. An n-dimensional fuzzy point x; is said to belong to (resp. quasi-coincident with)
an n-dimensional fuzzy subset A , written Ty € A (resp. xth> if Nz) > Tie, \i(z) >t
for i = 1,2,...n (resp. X(x) +7>11ie, A () +t; > 1, for i = 1,2,...n). To say that
xp € \/qX( resp. € Ag) means that x; € i or xgqi (resp. z; € X and x?q/):) To say that x;&X

means that a:gax does not hold.

Definition 207 An n-dimensional fuzzy subset h) of R is called an n-dimensional (o, 8)-fuzzy

hyperideal of R, where o #€ Aq, if the following conditions satisfy

1. xt@&, ygaX implies z )ﬂX foreach z € x +y

min (?7 s

2. xfax implies (wy);ﬂ/)\\ and (y:):);ﬁx for all z,y €R and ¢, s € I,,.

Fuzzy set is a special case of an n-dimensional fuzzy set as shown in [63]. The concept of

an n-dimensional («, §)-fuzzy hyperideal in a semihyperring a generalization of an («,f)-fuzzy
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hyperideal in a semihyperring so an («,)-fuzzy hyperideal in a semihyperring is a special case

of an n-dimensional («, 3)-fuzzy hyperideal in a semihyperring.

Theorem 208 Let A be a non-zero n-dimensional (v, B)-fuzzy hyperideal of R. Then, the set
o = {x ER:A () > 6} is a hyperideal of R.

Proof. Let z,y € XA. Then, A(z) > 0 and A(y) > 0. Assume that A (z) = 0 for some
z€x+y. lfa € {€, € Vvq}, then 25 e )oz)\ and y5,, )ax but for some z € x+y, (2 )mm( )A®)) BA
for every 8 € {€,q, € Vg, € Aq}, a contradiction. Also, 3¢\ and y3qA but for some z € x + y,
(Z)TBX for every f € {€,q,€ Vg, € Aq}. Hence, for each z € z + y, X(z) > 0, this implies,
zEXU, that is, a:+yCX0

Let z € )\A and y €R. Suppose that A (zy) = 0 and let a € {€, € Vq}. Then, TS )aX but
(z ) ,6’)\ and (yz)s )5)\ for every 8 € {€,q, € Vg, € Aq}, which is a contradiction. Also, a:lq)\
but (x )T B)\ for every 5 € {€,q, € Vg, € Aq}, which contradicts to our hypothesis. Therefore,
P\ (zy) > 0 and so Ty € X@. Similarly, we can prove that yx € Xﬁ. Hence, }‘\6 is a hyperideal of
R. m

Definition 209 An n-dimensional fuzzy subset P\ of R is called an n-dimensional (o, 5)-fuzzy

weak k-hyperideal of R, where o #€ Aq, if the following conditions satisfy

1. ) is an n-dimensional (a, B)-fuzzy weak k-hyperideal of R.

2. Ifforeachuex+yorvexz+y, u;loz/):, v@ax and yggoz/):, then Tyin(max{si, &1, SAB},BX for

all u,v,z,y € R and for all $1, 83, 53, € I,,.

Theorem 210 Let X be a non-zero n-dimensional (o, B)-fuzzy k-hyperideal of R. Then, the set
X@ = {a: ER:A () > 6} is a k-hyperideal of R.

Proof. By Theorem 208 Xﬁ is a hyperideal of R. Next we show that if for y € /):6 and x €R
we have x+y C /):6 orz+y C X@ this implies x € Xﬁ' Let y € Xﬁ and x €R such that x+y C Xﬁ
orx+yC Xﬁ' Then, X(y) >0, infuexwx (u) > 0 and infveerxX (v) > 0. Suppose X( ) =0.

Let a € {€, € vq}. Then, N )aX U3y )ax and U3 )oz/): but x }}BA for every

min{x rnax{)\ u), )\
B € {€,q, € Vq, € Ag}, this is a contradiction to the fact. Also, yAq/\ qu/\ and qu)\ but :L'Aﬂ)\

for every 5 € {€,q, € Vq, € Aq}, this is again contradiction to the fact. Thus, our supposition
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(z) = 0 was wrong. Therefore, A (z) >0 and so z € X@. Hence :\\6 is a weak k-hyperideal of
[

_;U>/)

Theorem 211 Let A be a hyperideal of R and let X be an n-dimensional fuzzy subset of R such

that
0 foralze R\A,

Z(ﬁ)foralleA.

Then, X is an n-dimensional (a, € Vq)-fuzzy hyperideal of R.

Proof. (a) (For a = ¢q) Let x,y €R and ¢,5 € I,, be such that :U;qX and ygqx. Then,
X(#@)+1>1and A(y) +§ > 1. It mean that z,y € A. Since, A is a hyperideal of R, so
by definition, x + y € A. Thus, X(z) > 0.5 for each z € x +y. If min {f, §} < 0.5, then

X(z) > 0.5 > min {%\, 5} for each z € z +y. Hence, (2) } € X for each z € z +y. If

min{aé\
min {7, 5} > 0.5, then X (2) + min {t, 5} > 0.5+0.5 =1 for each z € z+y and so (z)min{ﬂg} )

for each z € x + y. Therefore, (z) ) € V@A for each z € x + y.

min{Z,

Now, let z,y €eR and ¢ € I, suc{h that x;qx, which implies that h\ () +1t > 1. Its mean
that = € A. Since, A is a hyperideal of R, so by definition, zy and yx are in A. It follows that
X(zy) > 0.5 and A (yx) > 0.5. If £ < 0.5, then A(zy) > 0.5 > ¢ and A (yz) > 0.5 > . Hence,
(xy); € X and (yx); € .

If £ > 0.5, then A (zy)+1 > 0.5+0.5 = T and hy (yz)+t > 0.5+0.5 = 1. This implies (:ry);qx
and (y:];);qx. Thus, (zy); € Vg and (yx); € VgA. Hence, A is an n-dimensional (g, € vVq)-fuzzy
hyperideal of R.

(b) (For « =€ ) Let @,y €R and ¢,5 € I,, be such that z; € Xand ys € A. Then, A (z) > 1
and X(y) > 5. Thus, z,y € A. Since, A is a hyperideal of R, so by definition, z +y C A,
that is, X(z) > 0.5 for each 2z € = + y. If min {f, §} < 6:5, then X(z) > 0.5 > min {tA, §}
for each z € = + y. Hence, (Z)min{ﬁfs‘} € \ for each z € x + y. If min {f, §} > 6.\5, then
X (2) + min {t,5} > 05+ 05 =1 and so (z + y)mm{ag} g\ for cach z €  + y. Therefore,
(z)min{?,g} € Vg for each z € z + y. Now, let 2,y €R and t € I,, such that xp € X, which
implies that A (z) > t, that is, z € A. Since, A is a hyperideal of R, so by definition, zy € A
and yz € A, it follows that A (zy) > 0.5 and A (yz) > 0.5. If £ < 0.5, then X(my) > 0.5 >t and
X(yz) > 0.5 > 7. Hence, (xy); € X and (yx); € .

146



If t > 0.5, then A (zy)+£ > 0.5+0.5 =1 and A (yz)+7 > 0.5+0.5 = 1. Thus, (aty);q/): and
(ym);q/)\\. Thus, (zy); € VA and (yx); € VgA. Hence,  is an n-dimensional (€, € Vq)-fuzzy
hyperideal of R.

(c) (For o =€ Vvq ) It follows from (a) and (b). This completes the proof. m

Theorem 212 Let A be a k-hyperideal of R and let X be an n-dimensional fuzzy subset of R

such that
0 for all z € R\A,
>

0.5 for all x € A.

Then, X is an n-dimensional (a0, € Vq)-fuzzy k-hyperideal of R.

Proof. (a) (For a = q) By Theorem 211 \ is an n-dimensional (g, € Vq)-fuzzy hyperideal of
R. Now, for each u € x +y or v € y + x, for u,v,z,y €R and 57, 53, 53 € I,, be such that uaqX
v;zq/)\\and ysgq/):. Then, A (u)+%>1, A (v)+5 > 1 and A (y)+35 > 1. This mean that u,v,y € A,
it follows x € R and y € A such that z+y C A or y+x C A. Since A is a k-hyperideal, so z € A.
Thus A(z) > 0.5. If min{max {5}, 5}, &} < 0.5, then X (z) > 0.5 > min{max {5}, &}, 5}
S0, Tmin{max{si, 5}, &3} € X. If min{max {51, 5}, &} > 0.5, then A (z) + min{max {5}, &},
S3} > 0.5+0.5 =1 and so Tmin{max{si, 5}, sg}q/):. Therefore, Tminfmax{si, &1, &1 € \/qx. Hence,
) is an n-dimensional (q, € Vq)-fuzzy k-hyperideal of R.
(b) (For a« =€, € Vq) Proof is similar to part (a). This completes the proof. m
From the above Theorem it is clear that the n-dimensional characteristic function of (k-hyperideal)

is an n-dimensional (o, € Vq)-fuzzy (k-hyperideal, h-hyperideal) hyperideal of R, where a €

{€,q}.

6.6 n-Dimensional (€, € Vq)-fuzzy hyperideals

In this section we define a special type of n-dimensional fuzzy hyperideal (k-hyperideal) of
semihyperring so called n-dimensional (€, € Vq)-fuzzy hyperideals (k-hyperideals). We will give
some different characterization of n-dimensional (€, € Vq)-fuzzy hyperideals (k-hyperideals) by

their level sets.
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Definition 213 An n-dimensional fuzzy subset P\ of R is called an n-dimensional (€, € Vq)-

fuzzy hyperideal of R, if the following conditions satisfy

1. z; € X, Ys € h) implies Zmin(7, 3) € \/q/)\\ for each z € x + y

2. x;€ X implies (zy); € VA and (yx); € Vg for all 2,y €R and £ € I,,.

The concept of an n-dimensional (€, € Vq)-fuzzy hyperideal in a semihyperring is a gener-
alization of an (€, € Vq)-fuzzy hyperideal in a semihyperring so an (€, € Vq)-fuzzy hyperideal
in a semihyperring is a special case of an n-dimensional (€, € Vq)-fuzzy hyperideal in a semi-

hyperring.

Definition 214 An n-dimensional fuzzy subset P\ of R is called an n-dimensional (€, € Vq)-

fuzzy weak k-hyperideal of R, if the following conditions are satisfied

1. X is an n-dimensional (€, € Vq)-fuzzy weak k-hyperideal of R.

2. Ifforeachu € z+yorv € x4y, ug € X, vsAzaX and yg € 3\\, then & yin(max{si, %}, &) € \/q/):

for all u,v,z,y €R and for all §1, 83, 83, € I,.

Example 215 Consider the semihyperring (N, ®,.) defined by a hyperoperation ” 7 and a

7 on N as follow m & n = {m,n} and mn = mn, ¥V m,n € N. Clearly

binary operation ” -
(N, @, ) is a semihyperring.

Define a 5-dimensional fuzzy set hy of N by

(0.5,0.55,0.6,0.7,0.8) if € (4)
Az) =< (0.7,0.75,0.8,0.85,0.9) if € (2) — (4)
(0.4,0.45,0.5,0.55,0.6) otherwise

One can easily check that X is a 5-dimensional (€,€ Vq) fuzzy left hyperideal of (N, ®,-)
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Example 216 On four elements semihyperring (R, ®,.) defined by the following two tables:

@0 a b
0 {0} {fa} {b} {cf O
a | {a} {a} {b} {c}
b | {by {b} {b} {c}
¢ |{c} e} H{e} {eg ¢

S

IS
o [an) @) @) )
s
=)
IS

Define a 4-dimensional fuzzy set by of R by

(0.8,0.84,0.88, 0.9) ifzea
Az) =< (0.6,0.64,0.68,0.7) ifzcab
(0.2,0.24,0.28,0.3) ifzec

One can easily check that X is a 4-dimensional (€,€ Vq) fuzzy left hyperideal of (R, ®,-).

Theorem 217 Let A\ be an n-dimensional fuzzy subset of R. Then, X is an n-dimensional

(€, €)-fuzzy hyperideal of R if and only zfX is an n-dimensional fuzzy hyperideal of R.

Corollary 218 Let X be an n-dimensional fuzzy subset of a semihyperring R. Then, X is an n-
dimensional fuzzy k-hyperideal of R if and only z'fx is an n-dimensional (€, €)-fuzzy k-hyperideal
of R.

Corollary 219 Let X be an n-dimensional fuzzy subset of a semihyperring R. Then, X is an n-
dimensional fuzzy h-hyperideal of R if and only ifX is an n-dimensional (€, €)-fuzzy h-hyperideal
of R.

Proof. Proof is similar to the proof of Corollary 218. m
The above Theorem and Corollaries show that the concept of n-dimensional (&, €)-fuzzy

(k-hyperideal) hyperideal is the same as n-dimensional fuzzy (k-hyperideal) hyperideal of R.
Lemma 220 Let A be an n-dimensional fuzzy subset of R. Then, the following are equivalent
1. zpys € X implies (Z)min{?, 5) € Vg for each z € x + y.
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2. inficpty X (2) > min {X (z), A (y) ,6\5} for all =,y €R.

Proof. (1) = ( ) Let A be an n-dimensional fuzzy subset of R and z,y €R such that
x), A .5} for some z € z +y. If min{)\(aﬁ) ,X(y)} < 0.5, then A(z) <
} Choose a £ € I, such that A(z+y) < ¢ < min {/)\\(x) ,X(y)}, that is,
t

X (z) < min { (
mm{ ) A (y)
(2); € X and ()
if min { X (), X (y

€ A but (2 )7 € VgA for some z € & 4 y, this is a contradiction to (1). Next,

)} > 0.5, then )\( )<05forsomez€x+y This implies x5 € A but

0.5 Yo
(2)5% € Vg for some z € x + y, again this is a contradiction to (1). Hence, inf,cqyy hy (z) >

min {/): () A (y), 6\5}
(2) = (1) Let xp,y5 € X. Then, A (z) > and A (y) > %. By hypothesis

inf A(z+y) >m1n{3\\(:v),3\\(y),63} Zmin{%\,/\,ﬁ}.

2Exty
Thus,

zEn;JfryX(z) > min {tA,’s\} if min {aé\} <05
and

Zengfry//\\(z) > 0.5 if min {{,7} > 0.5.

Hence, in both case we get (2) 3} € \/q/\ for some z € x + y. This completes the proof. m

mln{t s

Lemma 221 Let \ be an n-dimensional fuzzy subset of R. Then, the following are equivalent
1. zp € X and y €R implies (zy)r € VA
2. X(my) > min (:\\ (x) ,(ﬁ)) .

Proof. (1) = (2) Let z,y €R, and A (z) < 0.5. Assume that A (zy) < A(z). Choose a
T € I, such that A (zy) < £ < A(z). Then, (z )7 € X but (z )Amx which is a contradiction to
(1). Now, let A (z) > 0.5. Assume that A (zy) < 0.5. Then, Ty € A but (z Y5 567\/qx, which
is again a contradiction to (1). Hence, h) (zy) > min ()\ (z) ,0.5).

(2) = (1) Let z; € X,y €R. Then, A (z) > t. By hypothesis

h (zy) > min (X (z) ,6\5) > min (tA, 0/\5> .
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Thus,

and

~ o~ —~

A(zy) > 0.5 if t > 0.5.

Hence, in both cases we get (zy), € VgA. m

Similarly we can show that the following are equivalent:
L. a; € X and y €R implies (yx); € VA
2. X(ya:) > min (X (x) ,6\5) for all ,y €R and t € I,.

Lemma 222 Let \ be an n-dimensional fuzzy subset of R and x,y,u,v €R. Then, for all

51, 89, 83, € I, the following are equivalent

1. If foreachucx+yorvex+y, ug € X, Vg € Aand Ys; € X, then Tminmax{si, %}, &) €

Vg for all u,v,z,y €R and for all 51, 5, 53, € I,
2. A(z) > (infuewryx (uw) Vinfyeyta A (v)) A X (V) A 05 for all z,y,u,v €R.

Proof. Let z,y €R and assume that A () < (infuewryx (a) Vinfyeyis A (v)) AN (v) A 0.5.
Choose a t € I, such that X(as) <1< (infueery/)\\(u) \/infveerwX(v)) A X(v) A05. If
(infuegCer X (u) v infyeyta h) (v)) AX (y) < 0.5, then (w)z, (W), (W), € X for each u € z+y or v €
x+y but (:1:);67\/(]3\\ This gives a contradiction to (1). Now, let (infuegcﬂ/ A (uw) Vinfyeyqs A (v)) A
X(y) > 0.5, then A (z) < 0.5 then (w)gs, (V)gz, W)gs € X for each u € x4y orv € z+y € A but
(7)53 EVg\. Again this gives a contradiction to (1). Hence, A (x) > (infuexﬂ, p () Vinfyeyte h (v)) A
A(v) A0.5 for all z,y,u,v €R.

(2) = (1) Let z,y,u,v €R such that u € x +y and v € y+ . If ug € A, Vg € Aand

Ys € \ for 51,52, 53, € I,, then X(u) > 51, X(v) > 55 and X(y) > 53 by hypothesis

o~

X (z) > ( inf A(u)V inf X@)) AX (V) A05 > min{max {51, &}, 5,05}
ucxr+y VEY+T

Thus

/)\\(:1:) > min {max {$1, $2}, S3} if min {max {31, 3}, S3} < 0.5
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and

o~

X(z) > 05 if min {max {31, &}, &} > 0.5.

Hence, from both cases, we get (m)min{max{ﬁ7 &) &) € \/qX. [ ]

From Lemma 220 and Lemma 221 we deduce that

Theorem 223 An n-dimensional fuzzy subset P\ of R is an n-dimensional (€, € Vq)-fuzzy hy-
perideal of R if and only if

1. infzeeryX (z) > min {3\\ () A (y) ,6\5}
2. A (ry) > min (X (x) ,6\5> and A (ry) > min (/)\\ (y) ,6\5) for all z,y €R.

Proof. The proof is straightforward. m
From Theorem 223 and Lemma 222 we deduce that

Theorem 224 An n-dimensional fuzzy subset P\ of R is an n-dimensional (€, € Vq)-fuzzy k-

hyperideal of R if and only if
1. infocppy A(2) > min {X(x) A (y) 0”5}
2. X(J:y) > min (/)\\ (x) ,0.5) and X(asy) > min (/): (y) ,(ﬁ)) for all =,y €R.
3. X (z) > (infu@ﬂ/X(u) Vinfoeyse A (v)) AX(v) A 05 for all z,y,u, v €R.

Theorem 225 An n-dimensional fuzzy subset h\ of R is an n-dimensional (€, € Vq)-fuzzy hy-
perideal of R if and only if Xg;é  is a hyperideal of R for all 0<£<05.

—~

Proof. Let X be an n-dimensional (€, € Vq)-fuzzy hyperideal of R. Let 0<%<05 and
T,y € Xt. Then, X(:n) > #; and X(y) > #5. Since

eianr A (z) > min {/):(w) Ay) ,O/\5} > min {tAl,tAg,(ﬁ} = min {f1,%>} .
zExT+y

Thus, infzem+yX(z) > min {ﬂ,t}} This implies z € /)\\g for each z € x +y. Hence, x +y C X;.
Now, let z € /):tA, then A (z) > f. Since A (zr), X (rz) > min (X (x) ,6\5> > min {tA, O/\5} =1 for
all » eR. Therefore, xr,rx € /)\\t- This shows that /)‘\? is a hyperideal of R.
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Conversely, let X; be a hyperideal of R for all 0 < t < 0.5. We show that N is an n-
dimensional (€, € Vq)-fuzzy hyperideal of R. If possible, let there exist some z,y €R such that
X(z) < min {/)\\(l‘) ,:\\(y) ,6\5} for some z € x4+ y. Choose a ¢ € I,, such that X(z) <t<
min {X () ,X(y) ,6\5} for some z € x+y, then z,y € X;but z ¢ X? This means that x +y ¢ X;
This gives us a contradiction. Therefore, inf,c; 4, X (2) > min {/): (z), A (y) ,6\5} for all z,y €R.
Similarly, it can be shown that A (zy) > min (X (z) ,()/\5) and A (xy) > min (X (y) ,O/\5) for all

z,y €ER. m

Corollary 226 An n-dimensional fuzzy subset h\ of R is an n-dimensional (€, € Vq)-fuzzy k-
hyperideal of R if and only if 3‘\? is a k-hyperideal of R for all 0<%<05.

Proof. Let A be an n-dimensional (€, € Vq)-fuzzy k-hyperideal of R. Then, by Theorem
225 X; is a hyperideal of R. Next we show that if for y € }‘\? and z €R we have ¢ +y C Xg or
z+yC Xtﬂ this implies = € Xﬁ Now, let z €R and y € 3\\; such that x +y C 3\\? ory—+ax C XtA.

Then, we have A (u) > £, A (v) > and A (y) > ¢ for each u € x4+ y or v € y + . Since

>)
&
v

( inf X(u)\/ inf X(v))/\X(v)A(szmin{max{tA, tA},tA,().E)}

ucT+y VEY+T

Xz) > t

Therefore, x € XtA. Hence, X; is a k-hyperideal of R.
Conversely, let Xt be a k-hyperideal of R for all 0<%<05. By Theorem 225 X is an

n-dimensional (€, € Vq)-fuzzy hyperideal of R. Now, let z,y,u,v €R, if possible let

hY inf A inf A h 0.5
Az) < (uégﬂl)\ (u) v v€12+x)\ (v)) AX(v)AN0.5
Choose a t € I, such that X(az) <t< (infuegHyX(u) v infvngEX(v)) A X(v) A 0.5. This
implies z + y C Xg, y+ax C X; for y € XtA and x €R but z ¢ X;, This gives us a contradiction.
Therefore, A (z) > (infuemﬂ//)\\ (a) Vinf,eyis A (v)) AA(v) A0.5. This completes the proof. m

Theorem 227 Let {/)\\Z 11 € A} be a family of an n-dimensional (€, € Vq)-fuzzy hyperideals of

a semihyperring R. Then, X = N \; is an n-dimensional (€, € Vq)-fuzzy hyperideal of R.
€A
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Proof. Let x,y €R,t1,t2 € I, such that x; ,y, € . Assume that (Z)min{? 3 € \/q/)\\ for
some z € z + v, then A (z) < min {tA, 5} and X (2) + min {f, 5} < 1 for some z € & + y. Thus,
for some z € z +y

X(z) <05 (1)

Let O = {Z € A:infcpyy 3\\1 (z) > min {%\, 3}} and
Qo = {iEA:XZ-(z)—I—min{tA, 5} >Tandxi(z) <min{tA, 5} foreacth:r-{-y}

Then A = Q1 UQ and Q1 N Qs = 0. If Q5 = ), then for each z € z + v, :\\Z (z) > min {tA, §} for
all i € A and so A (z) > min {%\, 5} which is a contradiction. Thus €3 # 0 and hence for each
i € Qy we have \; (z) + min {Z\, 5} > T and A; (z) < min {f, 5} for each z € z + y. It follows
that min {?, §} > 0/.\5, so that /):Z (x) > /):(:c) > t; > min {f, §} > 0.5 for all i € A Similarly
we have \; (y) > 0.5 for all i € A. Now suppose that t = \; (z) < 0.5 for some i € A and for
some z € z +y. Let t/ € 195 be such that t < #, then A; (z) > 0.5 > # and A; (y) > 0.5 >t
that is 2y € A; and yp € A; but A\ (2) = ¢ < ¢ and A; (2) + ¢/ < 1 that is (2)y EVg\; for
some z € ¢ + y. This is a contradiction to Xl is an n-dimensional (€, € Vq) fuzzy hyperideal of
R. Hence, \; (z) > 0.5 for all i € A and thus A (z) > 0.5 this contradicts with (1). Therefore
(z)min{a 5} € \/qx for each z € x + y. Similarly we can show that if =,y €R.t € I,, such that
xp € A then

(zy); and (yx); € VA
This completes the proof. m

Corollary 228 Let {/)\\Z NS A} be a family of n-dimensional (€, € Vq)-fuzzy k-hyperideals of

a semihyperring R. Then, A= N XZ is an n-dimensional (€, € Vq)-fuzzy k-hyperideal of R.
1€EA

Proof. By Theorem 227 N = N /):Z is an n-dimensional (€, € Vq)-fuzzy hyperideal of R.

€A
Remaining part follows from Theorem 227. m

Theorem 229 Let A be an n-dimensional (€, € Vq)-fuzzy hyperideal of R such that X (z) < 0.5

for all x €R. Then, X is an n-dimensional (€, €)-fuzzy hyperideal of R.
Proof. Follows from Theorem 217 and Theorem 223 =
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Corollary 230 Let X be an n-dimensional (€, € Vq)-fuzzy k-hyperideal of R such that h) (z) <
0.5 for all x €R. Then X is an n-dimensional (€, €)-fuzzy k-hyperideal of R.

Proof. The proof follows from Corollary 218 and Theorem 224 m

For any n-dimensional fuzzy subset NofRand? e I,,, we denote Q (X tA> = {:1: ER: quX} XA =
{x €ER:xp € X}, [XLA: {x €ER:xp€ \/q)\} Then it is clear that [ L =Q ()\ t) U )\A The
set XtA is called €-level subset of A. The set Q ()\,%\) is called g¢-level subset of . The set P\LA
is called an (€, € Vq)-level subset of R determined by A and ¢. In Theorem 225 we have shown
that an n-dimensional fuzzy subset X of R is an n-dimensional (€, € Vq)-fuzzy hyperideal of R
if and only if X? # () is a hyperideal of R for all 0 <7< 0.5. Now we show that the following

result for (€, € Vg)-level subset.

Theorem 231 An n-dimensional fuzzy subset hy of R is an n-dimensional (€, € Vq)-fuzzy hy-
perideal of R if and only if [ } is a hyperideal of R for allt € I,,.

Proof. Assume that A is an n-dimensional (€, € Vg)-fuzzy left hyperideal of R and let
t € I,, be such that [ } # @. Let z,y € [A];. Then, Xx@)>TorA(z)+t>Tand A(y) > 7 or
hy (y) +1> 1. We can consider four cases for each € z + y:
i) ()>tand)\() >t
i) Aaz)>fand A(y)+1
iii) A )
w) A

For the first case, by Theorem 223

(
(
( )+¢>1and A(y
(

(z
(x )+t>1andX(y)—|—tA>f
(

a), implies that

~ e S 05 ift
A(z) > min{A (z),A(y),0.5} = min{¢,0.5} =

and so X(z)+tA> 05405 =1, .., (2) (fsv,ﬂ q/):, orx+y C /):tA. Therefore, x4y C A;UQ (X,?) =
[X} . For the case (i), assume that ¢ > 0.5. Then, 1 —¢ < 0.5. If min{x (y),0.5} < hy (x), then
t
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(), then X (2) > X (z) >t. Hence, z +y C \;UQ <)\,tA> = [/\LA for

—1>05. If min{x (2),0.5} < hy (y), then

and if min{\ (y),0.5} >

A
t>0.5. Suppose that ¢ < 0.5. Then, 1

o~

hy (z) > min{X (z),0.5} >t and

2;

and if min{X (z),05} > A(y), then A(2) > A(y) > 1 — 7. Thus, z +y C AUQ (X,f)

for £ < 0.5. We have similar result for the case (iii). For final case, if £ > 0.5, then 1 — £ < 0.5

Hence,
A(z) > min{A (), (y),0.5}
05>1-7 if min{X(x),X(y)}zo/B,
min {X(a;) ,X(y)} >T1-7 if min {X(:p) ,X(y)} <05,
and so (z +y) CQ (X,f) - [)\L“ If £ < 0.5, then 1 — ¢ > 0.5. Thus,
X (2) > min{A (z), X (y),0.5}
05>¢ if min{X(x),/):(y)}ZO/B,
min X(x),X(y)}>I—t if mm{X(:c),X(y)}<(T5,
which implies that z +y C AU Q (X,f) = [/):LA
Now, let = € [A]; and y €R. Then, A (z) >t or X(z) + 1> 1. Assume that A (z)
Theorem 224 (b), implies that
- o o T if £ < 0.5,
A (yz) > min{A (x),0.5} > min{¢,0.5} = L o
05>1-1 iff>05

- P 05>1—7 ift<0.5,
A(yz) > min{A(z),0.5} =< _ .
Azx)>1—t ift>0.5,
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and thus yx € Q (/):,tA) - [X} = Similarly, zy € [/):} = Consequently, [A]>is a hyperideal of R.

Conversely, suppose that \ is an n-dimensional fuzzy set in R such that [X} ?is a hyperideal
of R. Suppose that X is not an n-dimensional (€, € Vq)-fuzzy hyperideal of R. Then, there exist
z,y €R such that

inf A (z) < min{X (z), A (y),0.5}.
z€x+y

Let
~ 1 . - ' R N .
=3 Lé’%ﬁf (2) + min{X (z), A (y) , 0.5} .

Then,
inf A(z) << min{X(z),A(y),0.5}.

zE€x+y

This implies that =,y € [A]; and (z +y) C [/)\\} . Hence, A(z) >t or X(z+y) +£> 1 for each
?
z € x + y, which is a contradiction. Therefore, we have

inf A(2) >min{X (2),A(y),05},
z€x+y

for all z,y €R. Similarly, we can show that
X (zy) > min{A (y),0.5} and X (yz) < max{ia (y),0.5},

for all z,y €R. Hence, \ is an n-dimensional (€, € Vq)-fuzzy hyperideal of R. This completes

the proof. m

Corollary 232 An n-dimensional fuzzy subset P\ of R is an n-dimensional (€, € Vq)-fuzzy k-
hyperideal of R if and only if [XL“ is a k-hyperideal of R for allt € I,,

Proof. Suppose that X is an n-dimensional (€, € Vq)-fuzzy k-hyperideal of R. Then, this
follows from Theorem 231 and Corollary 226 [//\\]A is a hyperideal of R.
7

Conversely, suppose that \ is an n-dimensional fuzzy set of R such that [/):} is a hyperideal

T
of R. Then, by using Theorem 231 and Corollary 226, A is an n-dimensional (€, € Vq)-fuzzy

k-hyperideal of R. m
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6.7 n-Dimensional («, §)-fuzzy prime hyperideals in semihyper-

rings

Definition 233 An n-dimensional (o, 3)-fuzzy hyperideal h) of R is called semiprime if for
all z €R, t € In,w%ax implies that m;ﬁx, where o #€ Nq. An n-dimensional (o, B)-fuzzy
hyperideal P\ of R is called prime if for all x,y €R and t € I,,, (a:y);ozx implies that xtABX or
ytA,BX. An n-dimensional (o, 3)-fuzzy k-hyperideal h\ of R is called prime (semiprime) if it is

prime (semiprime).

We put @ =€ and § =€ Vq in Definition 233, we get the definition of prime (semiprime)
n-dimensional (€, € Vq)-fuzzy hyperideal (k-hyperideal ) X of R.
In Theorem shows the condition of a prime n-dimensional (€, € Vq)-fuzzy hyperideal X of

R.

Theorem 234 An n-dimensional (€, € Vq)-fuzzy hyperideal h) of R s prime if and only if
max (/)\\ (z) A (y)) > min (X (zy) ,6\5> forall z,y €R.

Proof. Let \ be an n-dimensional (€, € Vq)-fuzzy prime hyperideal of R. Let z,y €R, such
that max (X (x) DY (y)) < min (X (zy) ,()/\5) Choose a t € 195 such that

~

max ()\ (z), A (y)) < T < min (X (zy) 0A5) .

Then (zy); € X but xﬁTqX, and yﬁTqX This is a contradiction to our supposition. Hence
max (X (z) A (y)) > min (X (zy) ,6\5)
Conversely, assume that max {X (z) A (y)} > min {X (zy) ,6\5} for all z,y €R. Let (zy); €
. Then,
max {X (x) ,X(y) ,6\5} > min {X (zy) ,O/\5} > min {A, 6\5} .

~

If < 0.5, then max {)\ (z), A (y)} > 1. Thus either A (z) > or A (y) > 7, that is either S A
or yp € X. If £ > 0.5, then max {X(m) ,X(y)} > 0.5. Thus either X(a:) +7>05+05=T1or
P\ (y) + t>05+05=T1. Hence, either z; € \/qX or y; € qu. Therefore A is an n-dimensional

(€, € Vq)-fuzzy prime hyperideal. m
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Corollary 235 An n-dimensional (€, € Vq)-fuzzy k-hyperideal P\ of R is prime if and only if
max {/): (), A (y)} > min {/): (zy) ,(ﬁ} for all x,y €R.

Proof. Proof follows from Theorem 234. m

Proposition 236 An n-dimensional (€, € Vq)-fuzzy hyperideal P\ of R is semiprime if and only
ifX (z) > min {X (1’2) ,0/\5} for all x €R.

Proof. Similar to the proof of the above Theorem 234. =

Corollary 237 An n-dimensional (€, € Vq)-fuzzy k-hyperideal h) of R is semiprime if and only
if A (x) > min (X (z?) ,0/?5> for all z €R.

Theorem 238 An n-dimensional (€, € Vq)-fuzzy hyperideal h) of R s prime if and only if
Xg;é @ is a prime hyperideal of R for all 0<%<05.

Proof. Let A be an n-dimensional (€, € Vq)-fuzzy prime hyperideal of R and t € I,. Then
by Theorem 225 Xt is a hyperideal of R. Let x,y €R, such that zy € Xt. Since \ is an (€,€ Vq)-
fuzzy prime hyperideal, therefore by Proposition 234 max {/): (z) ,X (y)} > min {X (zy) ,6\5} >
min {f, 0/\5} =% s0oA(x) >Tor A(y) > 1 Thus, z € /):tA ory € XtA. Hence /):g is a prime
hyperideal of R.

Conversely: assume that XtA is a prime hyperideal of R for each t € I,,. Then by Theorem
225, A is an n-dimensional (€, € Vq)-fuzzy hyperideal of R. Let ¢ < 0.5 and (xy)r € X. Then
Ty € Xg so either x € /)\\tA ory € /)\\tA that is o7 € X or yp € . If£> 05 and (zy); € . Then
P\ (zy) > 1> 0.5. Thus, Ty € 3‘\0’\.5 and so x € X(ﬁ) ory € X(ﬁ. This implies either xqu or yqu

This shows that A is an n-dimensional (€, € Vq)-fuzzy prime hyperideal of R. m

Corollary 239 An n-dimensional (€, € Vq)-fuzzy k-hyperideal P\ of R is prime if and only if
Xt % @ is a prime k-hyperideal of R for all0 < £ < 0.5.

Theorem 240 An n-dimensional (€, € Vq)-fuzzy hyperideal hy of R is semiprime if and only if
XtA £ is a semiprime hyperideal of R for all 0<7<0.5.

Proof. Similar to the proof of the above Theorem. m
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Corollary 241 An n-dimensional (€, € Vq)-fuzzy k-hyperideal h\ of R is semiprime if and only
if X;;é w is a semiprime k-hyperideal of R for all 0<7<05.

Theorem 242 An non empty subset I of R is a prime hyperideal if and only if X1 is an

n-dimensional (€, € Vq)-fuzzy prime hyperideal of R.

Proof. Let I be a prime hyperideal of R. Then, by Theorem 211, X} is an n-dimensional
(€, € Vq)-fuzzy hyperideal of R. Let (zy); € A7 this implies that X7 (zy) > ? this implies that
xy € I. Since I is a prime hyperideal, so x € I or y € I this implies that Xj(z) = T or
87 (y) = 1.Hence, x; € VqAX] or yp € VqXT.

Conversely: Let X7 be an n-dimensional (€, € Vq)-fuzzy prime hyperideal of R. and xy € I
this implies that X7 (zy) = 1 > 7 this implies (xy); € 61 therefore x; € VgX7 or y; € Vg7 this
implies that X7 (z) > tor X7 (z)+ > 1 or X7 (y) > tor X7 (y)+1t > 1 this implies that Ty € AXp
or y; € X7 this implies that X7 (z) = 1 or X7 (y) = 1. Hence, z € I or y € I, this shows that I

is a prime hyperideal of R. m

Theorem 243 Let {XZ 1€ A} be a family of n-dimensional (€, € Vq)-fuzzy prime hyperideals
of a semihyperring R. Then, A= ﬂ 3\\1 is an n-dimensional (€, € Vq)-fuzzy semi-prime hyper-
ideal of R. e

Proof. By Theorem 227 A= ' XZ is an n-dimensional (€, € Vq)-fuzzy hyperideal of R.
Let 2 €R,t € I,, such that ($2)tA € §A Assume that xmﬁ, then A (z) <t and p (z) +1<T.
Thus

<

Let Oy = {iEA:Xi(:L') 2?} and 9y = {iGA:Xi(x)+Z>/1\and Xz(m) <f} Then A = QU
Qo and Q1 N Oy = (0 if Oy = (), then /):Z(x) >t for all i € A and so /):(x) > ¢ which is a
contradiction to (1). Thus Q2 # 0 and hence for each i € Qy we have i () +t > 1 and
Xi (z) < T. Tt follows that ¢ > 0.5, so A; (z) > A(z) >t > 0.5 for all i € A.

Now suppose that s = N (z) < 0.5 for some i € A. Let s/ € I, be such that 5 < SA/, then we
get A (z) =5 < s/ and i (z) + s/ <1 that is a:;/ediX, This is a contradiction to hypothesis
that A; is an n-dimensional (€, € Vq) fuzzy prime hyperideal of R. Hence, ; (z) > 0.5 for all
i € A and thus A (z) > 0.5 this contradicts (1), therefore Tp € VgA. m
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Corollary 244 Let {Xz s A} be a family of n-dimensional (€, € Vq)-fuzzy prime k-hyperideals

(h-hyperideal) of a semihyperring R, then N = N N is an (€, € Vq)-fuzzy semiprime k-hyperideal
€A

of R.

Theorem 245 A fuzzy subset hy of R is an (€, € Vq)-fuzzy prime hyperideal of R if and only
if [X}A is a prime hyperideal of R, for allt € I,.
7

Proof. Proof follows from Theorem 231. m

Conclusion 246 In this thesis, we have investigate some new characterization of some kinds
of semihyperrings. Semihyperring owe their importance to the fact that so many models aris-
ing in the solutions of specific problems turn out to be semihyperrings. For this reason, the
basic concepts introduced here have exhibited some universality and are applicable in so many
diverse contexts. These concepts are important and effective tools in hyperalgebraic systems,
automata and artificial intelligence. QOur future work on this topic will focus on studying h-
hyperideals, qausi-hyperideals, intuitionistic and their (soft)or interval valued fuzzy hyperideals,

n-dimensional fuzzy k-hyperideals, bi-k-hyperideals and their (o, B)-fuzzy hyperideals etc.
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