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Preface 

Non-Newtonian fluids (polymeric liquids) have remarkable significance in nearly every 

field, industry and technology. Their study is of eclectic interest for many researcher, 

engineers and mathematicians. They form an extensive range of products scilicet 

molten polymers, paints, thermoplastics, starch suspension, and so forth, that do not 

obey Newton's law of viscosity. Before-mentioned fluids obey the power-law model, 

which explains that stress functions nonlinearly with the deformation rate. The 

constitutive equations with the corresponding stress tensor are determined to model 

their viscoelastic conduct. Moreover, the investigation of flows in the stagnation zone 

is another fascinating area of study in fluid mechanics. This is because of the 

superfluous pressure and heat transport in the stagnation region, it is reckoned amongst 

the intriguing intricacies and has multiple applications as well.  

The present study highlights the modification of Homann's problem for the 

viscoelastic fluids adjacent to the stagnation region over a cylindrical disk with a time-

independent free stream. By superposing periodic radial and azimuthal velocity terms 

onto Homann's external potential flow, the potential flow field in the cylindrical 

coordinates system is attained. This directs us to a distinct class of asymmetric flow 

near the stagnation-point, which solely depends upon shear-to-strain rate ratio. 

Furthermore, the impression of non-axisymmetry and magnetohydrodynamic (MHD) 

on Walter’s B liquid and Jeffrey fluid flow is inspected. Additionally, to highlight the 

nanofluid conduct, we employed the Buongiorno model. The outcomes of the pertinent 

parameters on the boundary layer are also scrutinized. The conservation laws are 

remodeled by a similarity transformation. A collocation method, specifically bvp4c is 

employed to numerically compute the solutions. A comparison is made between the 

numerical and their asymptotic outcomes for large values of shear-to-strain rate ratio. 

The outcomes of viscoelasticity and magnetic field on the skin friction and 

displacement thicknesses are also determined by perturbative expansion.   

This thesis is comprised of three Chapters. Chapter 1 addresses the conservation 

laws, definitions, and stress tensors related to the non-Newtonian fluids discussed in 

the succeeding chapters, literature survey, and the procedure to determine the solution 

for the problems. Chapter 2 explores the non-axisymmetric Homann flow of Walter's 

B nanofluid model along with non-linear Rosseland thermal radiation. Chapter 3 



includes the study of Jeffrey's nanofluid in the stagnation-region with an electrically 

conducting flow. For both the problems, it is concluded that when the shear-to-strain-

rate ratio approaches infinity, the coefficient of skin friction along x-direction reaches 

its asymptotic behavior; however, along y-direction it shows contrary results. Further 

conclusions are jotted down at the end of chapters 2 and 3. 
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Chapter 1

Literature Survey and Preliminaries

This chapter aims to address the fundamental laws, definitions related to the non-Newtonian

fluids, literature survey and the procedure to determine the solution for the problems which are

scrutinized in the following chapters.

1.1 Continuum Mechanics and its Branches

Continuum Mechanics deals with the study of kinematics and mechanisms of substances, that

have continuous mass distribution rather than discrete. It has two divisions; solid mechanics

and fluid mechanics. The former explains the behavioral study of solid bodies, particularly

their kinematic and mechanical properties. The latter depicts the kinematics and mechanical

features of remaining states of matter, i.e., liquid, gas, and plasma, which deforms regularly

when a shear force is applied. Fluid mechanics is further subdivided into two branches; fluid

dynamics (the study of moving fluid) and fluid statics (the study of stationary fluid).

1.2 Characteristics of Fluid

Every fluid (liquid, gas and plasma) has some peculiar properties that are slightly the same in

others, particularly, their density, viscosity, pressure, specific heat capacity, shear stress, and so

forth. Some of their significant properties are addressed here.
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1.2.1 Shear Stress

Shear stress τ is the tendency to deform a state of fluid as a result of an applied stress. The

coeffi cient of wall shear stress Cf̆ is also known as skin friction, which is the resistance between

the fluid layers, and given as Cf̆ ∝ τ .

1.2.2 Density

Mass density ρ is a crucial property of any fluid. It specifies either a body placed in a fluid

floats or not, and is interpreted as "the quantity of matter in a space" at a particular value of

temperature or applied force.

1.2.3 Viscosity

Viscosity is the friction or resisting strength against the fluid motion. Under specified con-

ditions, it can be incorporated with the deformation rate of fluid molecules against the force

applied or temperature distribution. It solely depends on the state of matter which is under

consideration, that is for liquid viscosity reduces when the temperature is elevated; however,

in gases, it enhances by raising the temperature of the system. It is divided into two types;

dynamic/absolute µ and kinematic viscosity ν. Former links shear-stress τ with strain-rate γ,

i.e., µ = τ
γ ; whilst, latter associates the relation between absolute viscosity µ and density ρ of

the fluid, given as ν = µ
ρ .

1.3 Classification of Fluids

Fluids are divided into different categories based on their physical and mechanical attributes.

1.3.1 Inviscid Fluids

Fluids having no interfacial or surface tension and viscosity µ = 0 are identified as inviscid or

ideal. Such fluids are also incompressible, i.e., ∇ · V = 0 and irrotational in nature. Under

specific engineering practices, some fluids exhibit no coherence impact and loss of kinetic energy,

thus they are handled as an ideal, e.g., superfluids.
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1.3.2 Real Fluids

Fluids with non-zero viscosity µ 6= 0 and interfacial or surface tension deform in a continuous

manner are termed as real.

1.3.3 Nanofluids

Base-fluids comprising suspended nanometer structured particles are termed as nanofluids,

where base-fluids are mostly comprised of water, some intricate compounds of hydrocarbons

fluids, i.e., Ethylene glycol and crude oil (nano-lubricants).

1.4 Newtonian vs Non-Newtonian Fluid

1.4.1 Newtonian Fluids

Fluids that follows Newton’s viscous law are termed as Newtonian. Such fluids depict the

linearity between the shear stress and the deformation rate, e.g., all viscous and ideal fluids.

τ yx = µ
∂ŭ

∂y
, (1.1)

where ∂ŭ
∂y , µ, and τ yx represent the deformation rate, absolute viscosity, and shear stress,

respectively.

1.4.2 Non-Newtonian Fluids

Fluids with variable viscosity are categorized as non-Newtonian (polymeric liquids). They obey

the power-law model, which explains the non-linearity among the stress and deformation (shear)

rate. Because of their intricate relation between stress and stain, rheological characteristics,

they exhibit Weissenberg effect. They form an extensive range of products, e.g., molten poly-

mers, paints, starch suspension, thermoplastics, and so forth, that do not exhibit Newtonian

properties.

τ yx = κ

(
∂ŭ

∂y

)N
, (1.2)
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where the index κ represents relative consistency and N determine nature of the fluid flow.

Newtonian model given in Eq. (1.1) is retrieved when N = 1 and index of relative consistency

κ is equal to absolute viscosity µ. Such fluids are classified into categories depending upon

their characteristics; time-dependent fluids (Rheopectic and Thixotropic), viscoelastic fluids

(Maxwell fluid, Oldroyd fluid, etc), and time-independent fluids (Dilatant, Bingham-plastic,

and Pseudoplastic).

1.5 Flow and Heat Transfer Analysis

In this section, the boundary layer approximation for the flow analysis and methods of heat

transport are addressed.

1.5.1 Boundary Layer Flow

Ludwig Prandtl did a significant contribution to the subject of fluid flow by introducing the

notion of the boundary layer flow. The assumptions made can lessen the complexity of the

NS equation. The theory addresses such a very thin layer where the influence of viscosity is

noteworthy and is in the adjacent neighborhood of the respective bounding surface called the

frictional/shear/boundary layer (BL). According to his theory, the fluid will not slip but sticks

to the wall of the surface considered. The BL thickness δ̆ is distance from the wall to boundary

where the flow velocity is 99% of free-stream or far-field velocity Ŭ∞. For further analysis scale

is assumed as δ̆ � x ∼ l and δ̆ � y ∼ l with the similar order O for velocity components ŭ

and v̆. Here l is length of a surface under consideration, and the magnitudes of velocities are

equivalent to the velocity at free-stream. The scale along z -direction is assumed to be very

small, whose order is equivalent to δ̆. The assumptions made can be written as:

x = O(1), ŭ = O(1),

y = O(1), v̆ = O(1),

z = O(δ̆), w̆ = O(δ̆),

 (1.3)

where O is a Landau’s symbol which represents growth-rate or order of a function.
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1.5.2 Modes of Heat Transfer

Heat can transport from one body to another by following fundamental methods.

Conduction

The method in which heat is transported without actual motion of the particles, but due to the

vibration of molecules in contact, is known as the diffusion or conduction. It is best examined

in solids and metals such as copper and gold because of their structural advantage have great

conductivity, such elements that have free electrons and are known as conductors, while those

who negate these properties are called insulators. Fourier’s law is generally practiced to compute

the thermal conductivity of any matter.

Convection

The method in which heat is transported from warmer to cooler regions in a fluid is known as

convection. Convection is accurately observed in fluids due to their structural difference with

solids as heat transportation is caused by mass transfer or motion of particles.

Radiation

The method in which heat is transported in a form of waves and doesn’t demand any medium for

transportation is defined as radiation. It is based on Stefan-Boltzmann law. This process does

not depend on any connection among the source of heat or body to be heated. A well-known

example is the emission of heat rays from the sun (in a form of light waves).

1.6 Conservation Laws

1.6.1 Continuity Principle

The equation of continuity is also identified as mass conservation principle, which states that

within an isolated system mass of a body is constant throughout a chemical reaction or physical

conversion, i.e., mass is conserved. For a compressible fluid the differential form of the equation
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is:
∂ρ

∂t
+ div (ρV) = 0. (1.4)

Since density ρ is constant for an incompressible fluid, therefore the above relation is reduced

as:

∇ ·V = 0. (1.5)

This equation expresses the fluid flow, such as blood flow rate in vessels, arteries, and veins.

1.6.2 Momentum Equation

Momentum equation or momentum conservation law stems from principle that the momentum

in an isolated system is unchanged. By acknowledging the impression of Lorentz force as

body force exhibited by the magnetic field, the translational flow is directed by the momentum

conservation law:

ρ
DV

Dt
= ∇ · τ + J×B. (1.6)

Here DDt ≡
∂
∂t +V ·∇, τ = −pI + S and J = (V ×B)σ + Eσ, is the material derivative, the

stress tensor with S the extra/true-stress tensor, and the current density, respectively. The

term (V ×B)σ the magnetic field and Eσ represents the electric field. For E = 0, the Lorentz

force is given as:

J×B = (V ×B)σ ×B. (1.7)

The investigation of such flows is a well-known subject of interest for many researchers named

magnetohydrodynamics (MHD).

1.6.3 Energy Equation

The heat transfer analysis is performed by the energy conservation principle, which is correlated

with the first thermodynamics law. Since the thesis covers the problem modeled for nanofluid

flow studied by adopting Buongiorno model and involving the contributions of non-linear Rosse-
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land radiation, the energy equation is given as:

(ρc)p
DT̆

Dt
= knf∇2T̆ + (ρc)nf

[
DB∇C̆ ·∇T̆ +DT

∇T̆ ·∇T̆
T̆∞

]
−∇ · qT , (1.8)

where cp, T̆ , knf , C̆, DB, DT , T̆∞, and qT represent the specific heat, the fluid temperature,

thermal conductivity parameter, the fluid concentration, the mass or Brownian diffusion coeffi -

cient, the thermophoretic coeffi cient, the ambient fluid temperature, and the thermal heat-flux

(given by Fourier’s law), respectively.

1.6.4 Mass Transport Equation

The mass transport inquiry is done by the nanoparticle concentration conservation law (repre-

sented by Fick’s law). By selecting Buongiorno model for nanofluid, the concentration distrib-

ution is expressed as:
DC̆

Dt
= ∇ ·

[
DB∇C̆ +

DT

T̆∞
∇T̆

]
. (1.9)

1.7 Mathematical Models

1.7.1 Walter’s B Liquid Model

This model explicitly covers the perplexing characteristic of many industrial fluids and their

elastic properties. The system of equations generated by the true-stress tensor is extremely non-

linear in nature. The Cauchy’s tensor τ ab in Cartesian coordinate is stated with the strain-rate

tensor eab as:

τ ab = −pδab + 2µeab − 2k0

[
∂eab
∂t

+ vc
∂eab
∂xc

− eac
∂vb
∂xc
− ecb

∂va
∂xc

]
, (1.10)

where the subscript in Eq. (1.10) are a, b, c ε {1, 2, 3} ⊆ Z+, V = [ŭ, v̆, w̆] is the velocity field,

p the fluid pressure, k0 the elastic coeffi cient, µ the dynamic viscosity, the strain-rate tensor

eab = 1
2

(
∂va
∂xb + ∂vb

∂xa

)
and δab =

 1 when a = b

0 when a 6= b
is Kronecker Delta.
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The components of stress tensor in Cartesian coordinate system for steady are given below.

τ11 = −p+ 2µ
∂ŭ

∂x
− 2k0

[
ŭ
∂2ŭ

∂x2
+ v̆

∂2ŭ

∂x∂y
+ w̆

∂2ŭ

∂x∂z
− 2

(
∂ŭ

∂x

)2

−∂ŭ
∂y

(
∂v̆

∂x
+
∂ŭ

∂y

)
− ∂ŭ

∂z

(
∂w̆

∂x
+
∂ŭ

∂z

)]
, (1.11)

τ22 = −p+ 2µ
∂v̆

∂y
− 2k0

[
ŭ
∂2v̆

∂x∂y
+ v̆

∂2v̆

∂y2
+ w̆

∂2v̆

∂y∂z
− 2

(
∂v̆

∂y

)2

−∂v̆
∂x

(
∂v̆

∂x
+
∂ŭ

∂y

)
− ∂v̆

∂z

(
∂w̆

∂y
+
∂v̆

∂z

)]
, (1.12)

τ33 = −p+ 2µ
∂w̆

∂z
− 2k0

[
ŭ
∂2w̆

∂x∂z
+ v̆

∂2w̆

∂y∂z
+ w̆

∂2w̆

∂z2
− 2

(
∂w̆

∂z

)2

−∂w̆
∂x

(
∂w̆

∂x
+
∂ŭ

∂z

)
− ∂w̆

∂y

(
∂w̆

∂y
+
∂v̆

∂z

)]
, (1.13)

τ12 = µ

(
∂v̆

∂x
+
∂ŭ

∂y

)
− 2k0

[
ŭ

2

(
∂2v̆

∂x2
+

∂2ŭ

∂x∂y

)
+
v̆

2

(
∂2ŭ

∂y2
+

∂2v̆

∂x∂y

)
+
w̆

2

(
∂2ŭ

∂y∂z
+

∂2v̆

∂x∂z

)
− ∂ŭ

∂x

∂v̆

∂x
− 1

2

(
∂v̆

∂x
+
∂ŭ

∂y

)
∂v̆

∂y
− 1

2

(
∂w̆

∂x
+
∂ŭ

∂z

)
∂v̆

∂z

−1

2

(
∂v̆

∂x
+
∂ŭ

∂y

)
∂ŭ

∂x
− ∂v̆

∂y

∂ŭ

∂y
− 1

2

(
∂w̆

∂y
+
∂v̆

∂z

)
∂ŭ

∂z
= τ21, (1.14)

τ13 = µ

(
∂w̆

∂x
+
∂ŭ

∂z

)
− 2k0

[
ŭ

2

(
∂2w̆

∂x2
+

∂2ŭ

∂x∂z

)
+
v̆

2

(
∂2ŭ

∂y∂z
+

∂2w̆

∂x∂y

)
+
w̆

2

(
∂2ŭ

∂z2
+

∂2w̆

∂x∂z

)
− ∂ŭ

∂x

∂w̆

∂x
− 1

2

(
∂v̆

∂x
+
∂ŭ

∂y

)
∂w̆

∂y
− 1

2

(
∂w̆

∂x
+
∂ŭ

∂z

)
∂w̆

∂z

−1

2

(
∂w̆

∂x
+
∂ŭ

∂z

)
∂ŭ

∂x
− ∂w̆

∂z

∂ŭ

∂z
− 1

2

(
∂w̆

∂y
+
∂v̆

∂z

)
∂ŭ

∂z
= τ31, (1.15)
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τ23 = µ

(
∂w̆

∂y
+
∂v̆

∂z

)
− 2k0

[
ŭ

2

(
∂2v̆

∂x∂z
+

∂2w̆

∂y∂z

)
+
v̆

2

(
∂2w̆

∂y2
+

∂2v̆

∂y∂z

)
+
w̆

2

(
∂2v̆

∂z2
+

∂2w̆

∂y∂z

)
− 1

2

(
∂v̆

∂x
+
∂ŭ

∂y

)
∂w̆

∂x
− ∂v̆

∂y

∂w̆

∂y
− 1

2

(
∂w̆

∂y
+
∂v̆

∂z

)
∂w̆

∂z

−1

2

(
∂w̆

∂x
+
∂ŭ

∂z

)
∂v̆

∂x
− 1

2

(
∂w̆

∂y
+
∂v̆

∂z

)
∂v̆

∂y
− ∂w̆

∂z

∂v̆

∂z
= τ32. (1.16)

Here τ11, τ22, and τ33 are the diagonal entries, τ12, τ21, τ13, τ31, τ23, and τ32, are the non-

diagonal entries tensor.

1.7.2 Jeffrey Fluid Model

The Jeffrey fluid model depicts the rheological aspects of polymer liquids by acknowledging the

impact of relaxation-time and retardation-time. Highly non-linear equations are produced by

the extra or true-stress tensor S, expressed as:

τ = −pI+ S, and S =
µ

1 + λ1

[
R1 + λ2

(
∂R1

∂t
+ (V ·∇)R1

)]
, (1.17)

where τ is the Cauchy tensor, V = [ŭ, v̆, w̆] , λ1, and λ2, are the velocity field, the relaxation-to-

retardation times ratio, the retardation time, respectively. R1 is the first-order Rivlin-Ericksen

tensor given as R1 = gradV + (gradV)T . For steady case 3D flow, the extra-stress tensor S

in Cartesian coordinate system in terms of components is given as:

S11 =
µ

1 + λ1

[
2
∂ŭ

∂x
+ λ2

(
ŭ
∂

∂x
+ v̆

∂

∂y
+ w̆

∂

∂z

)(
2
∂ŭ

∂x

)]
, (1.18)

S22 =
µ

1 + λ1

[
2
∂v̆

∂y
+ λ2

(
ŭ
∂

∂x
+ v̆

∂

∂y
+ w̆

∂

∂z

)(
2
∂v̆

∂y

)]
, (1.19)

S33 =
µ

1 + λ1

[
2
∂w̆

∂z
+ λ2

(
ŭ
∂

∂x
+ v̆

∂

∂y
+ w̆

∂

∂z

)(
2
∂w̆

∂z

)]
, (1.20)

S12 =
µ

1 + λ1

[(
∂v̆

∂x
+
∂ŭ

∂y

)
+ λ2

(
ŭ
∂

∂x
+ v̆

∂

∂y
+ w̆

∂

∂z

)(
∂v̆

∂x
+
∂ŭ

∂y

)]
= S12, (1.21)

S13 =
µ

1 + λ1

[(
∂w̆

∂x
+
∂ŭ

∂z

)
+ λ2

(
ŭ
∂

∂x
+ v̆

∂

∂y
+ w̆

∂

∂z

)(
∂w̆

∂x
+
∂ŭ

∂z

)]
= S13, (1.22)

S23 =
µ

1 + λ1

[(
∂v̆

∂z
+
∂w̆

∂y

)
+ λ2

(
ŭ
∂

∂x
+ v̆

∂

∂y
+ w̆

∂

∂z

)(
∂v̆

∂z
+
∂w̆

∂y

)]
= S23. (1.23)
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Here S11, S22, and S33 are the diagonal entries, S12, S21, S13, S31, S23, and S32, are the non-

diagonal entries of the extra-stress tensor S.

1.8 Non-dimensional Quantities

1.8.1 Prandtl Number

It is a non-dimensional quantity, recognized after Ludwig Prandtl. It is the ratio between the

momentum-to-thermal diffusivity, given as:

Pr =
ν

α
. (1.24)

Here ν = µ
ρ , α = k

ρcp
, µ, ρcp, and k are the momentum diffusivity, thermal diffusivity, dynamic

viscosity, the volumetric heat capacity, and thermal conductivity, respectively.

1.8.2 Schmidt Number

It is a non-dimensional quantity, identified after E.H. Wilhelm Schmidt. It is the fraction

between the momentum-to-mass diffusivity, given as:

Sc =
ν

DB
. (1.25)

Here ν = µ
ρ , DB, µ, and ρ are the momentum/kinematic viscosity, the mass diffusivity or

Brownian diffusion coeffi cient, the dynamic viscosity, and the fluid density, respectively.

1.8.3 Viscoelastic Parameter

The property of substances that experiences viscous and elastic qualities during deformation

is described as viscoelasticity. The parameter which depict the before-mentioned conduct of a

fluid is known as viscoelastic parameter, denoted by k. Such polymers are employed as shock

absorbers, to damp noises and confine vibrations, and discharge the energy absorbed as heat.
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1.8.4 Deborah Number

It is a dimensionless quantity, proposed by Mark Reiner and named after the prophetess Debo-

rah. It is utilized in rheology to describe the fluidity of substances under respective conditions.

It is the ratio of the relaxation time taken by a substance to adjust as a result of deformation

and applied stress, given as:

β1 = λ2a. (1.26)

Here λ2 is the retardation time and a the strain rate.

1.9 Solution Approach

In this section, the solution methodology to solve the non-linear system of ODEs is presented.

1.9.1 Collocation Method-bvp4c

To determine the solution to the problem, perturbation expansion is adopted. The numerical

outcomes for the equations obtained are computed by a finite-difference based technique-bvp4c

built-in Matlab
R©
. It is an effective and widely practiced numerical computational method for

solving boundary value problems (BVP). This scheme works on the fundamental principles of

calculus (infinitesimal differences) and utilizes the IIIa Lobatto formula, producing a class C1

or continuously differentiable solutions (smoothness). Basically it is a residual-type scheme,

in which the solution’s residuality selects the mesh and controls the error count. The higher-

ordered equations are converted into a system of first-order ODEs by importing a set of variables

with corresponding boundary conditions, values for the constants involved, and an initial guess.
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The working mechanism of this scheme is presented in the flow diagram below.

Fig. 1 : Flow diagram of bvp4c technique.

1.10 Literature Review

Because of their intricate relation between deformation and stress rate, memory effect and

rheological features, fluids with such characteristics and variable viscosity are categorized as

non-Newtonian (polymeric liquids). They form an extensive range of products scilicet molten

polymers, paints, thermoplastics, starch suspension, and so forth, that do not obey Newton’s

viscous law. Due to their promising applications in nearly every field and industry, their study

is of eclectic interest for many engineers, mathematicians, and physicists. Before-mentioned

fluids obey the power-law model, which explains that stress functions nonlinearly with the

deformation rate. Since the classical theory of Navier-Stokes (NS) was unsuited to suggest

the flow description of the before-mentioned fluids, therefore constitutive equations with the

corresponding stress tensor were obtained to model the viscoelastic conduct of such fluids.

Amongst several models for non-Newtonian fluids, the center of discussion in this thesis are

Walter’s B liquid and Jeffrey fluid model. Walter [1] proposed the viscoelastic model, namely

Walter’s liquid model-B, which accurately incorporated the perplexing behavior of many indus-

trial fluids and their elastic characteristics. The equations generated by the stress tensor are

extremely non-linear in nature, whose solutions are computed by numerous distinct techniques.
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Bari̧s [2] analyzed the impact of heat transport on the channel’s wall for three-dimensional

Walter’s B flow model. The stagnation flow along with slip condition for Walter’s B liquid

was scrutinized by Labropulu et al. [3] past a rigid surface. Tonekaboni et al. [4] examined

Walter’s B flow for Blasius, stagnation region, and Sakiadis flows by using boundary layer ap-

proximation. Mdallal et al. [5] presented heat-mass transport analysis with their applications

of fractional Walter’s B fluid. Mahapatra and Sidui [6] reviewed the modified Homann flow for

Walter’s B liquid past a rigid plate. They computed numerical solutions for the problem and

compared them with their asymptotic results. Jeffrey fluid model is a generalization of the clas-

sical Newton’s viscous model. This model can determine the stress-relaxation and relaxation

time (memory time scale) characteristic of polymeric liquids/physiological fluids. Khadrawi et

al. [7] found semi-analytical solutions and studied velocity and shear-type driving forces for

Couette flow, Poiseuille flow on parallel plates, and wind-driven flow on a finite domain, with

the impact of Jeffrey fluid model. Akbar et al. [8] used Jeffery’s flow model for the bloodstream

with stenosis with a narrowed artery and found an approximate solution by perturbation. Khan

et al. [9] studied the flow under constant applied stress caused by an oscillating and an accel-

erating plate.

Flow in the Stagnation-region (where the fluid flow is stationary) is another fascinating

subject for fluid mechanics enthusiast. Since pressure is greatest when the velocity of a fluid is

zero (Bernoulli’s equations), wherefore, it is evident that pressure is highest in the stagnation

zone, identified as the stagnation pressure. Due to the excessive pressure and heat transport rate

at the stagnation-point, it is counted among the interesting problems and has many industrial

uses as well. Hiemenz [10] in 1911 pioneered and obtained the solution for a planner stagnation

region past a flat surface. He projected that from stagnation-point, the velocities at various

positions are identical. Later on, in 1936, Homann [11] analyzed and determined the solution

for the problem of axisymmetric flow. Howarth [12] in 1951 updated the solution presented by

Hiemenz. While Darvey [13] in 1961 examined Howarth’s equation and presented the saddle

point solution. Garg [14] adopted a numerical approach to evaluate the heat transportation

of a second-ordered fluid in the stagnation zone. Seshadri et al. [15] analyzed the unsteady

viscoelastic flow in the stagnation-point and verified that free stream velocity significantly

affects the results. Wang [16] on a shrinking/stretching sheet, studied the impression of non-
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alignment of stagnation flow. He demonstrated this concept by the example of a balloon.

He concluded that the symmetry was disturbed and flow was obscured by non-alignment and

shrinking/stretching of the sheet. Abbassi et al. [17] surveyed out the heat transport and

computed solution for viscous stagnation flow by practicing potential theory. The formulation of

Homann’s problem for non-axisymmetric viscous flow was done by Weidman. [18]. Additionally,

the Argawal and Homann flow in the stagnation region for the spiraling disk was investigated by

Weidman [19]. The merging impacts of a transpired wall and plate stretchiness on Homann flow

were addressed by Weidman and Ma [20]. They performed stability analysis and determined

the dual and unique solutions. Mahapatra and Sidui [21] performed a thermal transport study

for Homann flow near-stagnation zone. They found the presence of dual solutions, distinguished

the uniqueness of solutions collectively with stability analysis.

The term nanofluid refers to the nanometer structured particles suspended in a base-fluid,

where base-fluids are mostly composed of Dihydrogen oxide (H2O), some intricate compounds

of hydrocarbons, i.e., 1, 2-Dihydroxyethane and crude oil (nano-lubricants). In the recent era,

due to the extensive applications of nanofluids in applied science, automobiles, biomedicine,

combustion of diesel, cooling of nuclear systems, electronics, and engines, energy conservation,

industries, lubrication, nano-cryosurgery, refining of fuel, solar-cells, and welding, they have

gained more attention. Due to the better stability and thermal conductivity of nanofluid, their

utilization in engineering and industries are of exceptional significance to many researchers and

scientists. They can be categorized as heat transfer nanofluids, bio-pharmaceutical nanofluids,

extraction and environmental nanofluids, etc. Heat transfer analysis in a system inspects the

production, exchange, conversion, and utilization of energy, by conduction/diffusion, radiation,

advection, and convection mechanisms. Their applications comprise bio-MEMS, Doppler and

Sympathetic cooling, fire alarm, magnetic refrigeration, smart-meter, thermal transmittance,

thermostat, and so on. In 1995 Choi [22] proposed the term nanofluid for the very first time,

since then, numerable studies have been supervised. Cheng [23] discussed nanofluid heat trans-

fer technologies and the scope of their development in the future. For mathematical modeling

of nanofluid transport, a two-phased model was demonstrated by Buongiorno [24], in which he

depicted that the thermal conduction of nanofluids was boosted as a consequence to the partic-

ipation of the Brownian motion and Ludwig—Soret effect (thermomigration). A single phased
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model for nanofluid flow was given by Tiwari and Das [25] in which they incorporated the

impact of volume fraction. Wong’s [26] work focused mainly on the present and future utiliza-

tion of nanofluids. Fascinated by their work, many researches had been carried out since then

regarding the utility of nanofluids, some of them are [27] & [28] . Sajid and Ali [29] presented

positive and negative aspects related to the applications of nanofluids. They also collated and

inspected different correlations employed for experiments in reviewed studies.

Researches regarding non-linear Rosseland radiation and magnetohydrodynamics (MHD)

are applicable on various mechanisms, such as carbon dating, diagnosis and operation of dis-

eases (PET scan), mining, smoke detectors, conversion of kinetic/thermal energy into electric

energy (MHD generators), induction-conduction machines (MHD thrusters), marine and plasma

propulsion engines (MHD propulsion), and nuclear weaponry, and so forth. Due to solar radi-

ation, the average kinetic energy of a system is boosted, which enhances the chaotic motion of

the particles, affecting the concentration of particles as well as the temperature of the system.

Moreover, owing to the magnetic field, flow experience a resisting force (electromagnetic force)

identified as the Lorentz force, which tapers rapidity of an electrically conducting fluid. How-

ever, heat conduction is enhanced by Joule heating phenomenon driven by MHD effect. Ahmed

et al. [30] conducted an analytical study in which they examined the transference of heat

through convection, including viscous and energy dissipation for a stretching sheet. Shehzad

et al. [31] for a stretching surface presented Jeffrey’s flow with heat generation and radiation.

Farooq et al. [32] in their work investigated effect of MHD on viscoelastic fluid with non-linear

radiation effects and concluded that concentration of nanoparticles decreases with an increment

in Brownian diffusion. Raju et al. [33] gave solutions and analyzed Jeffrey fluid model with

homogeneous-heterogeneous reaction past a stretching/shrinking surface. They deployed the

shooting technique to obtain the outcomes and stated the range of the dual solutions for a par-

ticular extend of the parameters associated. Reddy et al. [34] considered the radiation effect on

the Jeffrey fluid past an inclined vertical plate. They found the reducing relation of the radiation

with the rate of heat transportation. Hussain et al. [35] analyzed the steady incompressible vis-

coelastic nanofluid with radiation. Besthapu et al. [36] for convective stretching surface, studied

radiation and MHD influence in the stagnation zone of non-Newtonian nanofluid. Moreover,

they deduced noteworthy impacts of the Casson fluid parameter on skin friction. Almakki et
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al. [37] presented a generalized representation for the stagnation-point of Jeffrey, Oldroyd-B,

and Maxwell nanofluids flow. They analyzed the entropy production rate in laminar nanofluid

flow and concluded that by increasing Deborah number entropy generation was enhanced.

Chapter 2 explores the non-axisymmetric Homann flow near the stagnation-zone of Walter’s

B nanofluid model along with magnetohydrodynamic (MHD) and non-linear Rosseland thermal

radiation over a cylindrical disk. The impressions of thermo-diffusion and Brownian diffusion

are analyzed by Buongiorno’s model, with a time-independent free stream. The constitutive

equations are determined and transformed into the dimensionless coupled ODEs via germane

conversion functions. The ODEs are later numerically computed by altering the values of

the pertinent parameters. Moreover, the numerical and asymptotic solutions for large values

of shear-to-strain-rate ratio are computed and illustrated in graphs. The observations made

are published in "Applied Mathematics and Mechanics-English Edition, 41, (2020)

725-740".

Chapter 3 includes the study of Jeffrey’s nanofluid flow for non-axisymmetric Homann’s

flow in the stagnation-region with an electrically conducting flow over a cylindrical disk by

Buongiorno’s model. The outcomes of the solar radiation, thermo-migration, and Brownian

diffusion on the concentration and thermal boundary layer are also scrutinized. By similarity

transformation analysis, the conservation laws are turned into highly non-linear ordinary differ-

ential equations ODEs. A comparative study among the numerical and asymptotic solutions for

the parameters of displacement thicknesses and wall-shear stress is executed. The consequence

of Jeffrey’s material parameters and magnetic field on displacement thickness is explained. The

finite difference method is utilized for computations of the flow, energy, displacement thickness,

skin friction force, and concentration distribution.
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Chapter 2

Non-Axisymmetric Homann

Stagnation-point Flow of Walter’s B

Nanofluid over a Cylindrical Disk

In this chapter, the study of non-axisymmetric Homann stagnation-point flow of Walter’s B

nanofluid along with magnetohydrodynamic (MHD) and non-linear Rosseland thermal radia-

tion over a cylindrical disk in the existence of the time-independent free stream is considered.

Moreover, the notable impacts of thermophoresis and Brownian motion are analyzed by Buon-

giorno’s model. The momentum, energy, and concentration equations are converted into the

dimensionless coupled ordinary differential equations via similarity transformations, which are

later numerically solved by altering the values of the pertinent parameters. The numerical and

large valued shear-to-strain ratio γ = b
a asymptotic solutions for the parameters of displace-

ment thicknesses and wall-shear stress are computed by perturbative expansion and analyzed.

Furthermore, the technique bvp4c in Matlab
R©
is deployed as an effi cient method to analyze

the calculations for the non-dimensional velocities, temperature, displacement thickness, and

concentration profiles. It is observed that the two-dimensional displacement thickness parame-

ters are reduced due to the viscoelasticity and magnetic field effects and when shear-to-strain-

rate ratio approaches infinity, displacement thickness parameters along x -axis is closer to its

asymptotic value, but displacement thickness parameters along y-axis and three-dimensional
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displacement thickness parameter show the opposite trend. The outcomes of viscoelasticity and

magnetic field on the skin friction are also determined. It is concluded that coeffi cient of skin-

friction along x -direction reaches its asymptotic behavior when the shear-to-strain-rate ratio

approaches infinity; however, the coeffi cient of skin friction along y-direction shows different

results.

2.1 Problem Formulation

2.1.1 Coordinates Transformation

The 3D viscoelastic stagnation-point flow over a cylindrical disk along is considered. By super-

posing r sin 2ϑ and r cos 2ϑ onto Homann’s external potential flow, the potential flow field in

cylindrical coordinates system (r, ϑ, z) with (ŭr, ŭϑ, ŭz) in terms of strain rate a and shear rate

b, by following Weidman [18] is given as:

ŭr (r, ϑ) = ra+ rb sin 2ϑ, ŭϑ (r, ϑ) = rb cos 2ϑ, ŭz (z) = −2az. (2.1)

Note that Eq. (2.1) satisfies the continuity equation.

To note the impact and signify the importance of the periodic terms in the potential flow

in cylindrical coordinates (r, ϑ, z) at nodal stagnation-zone for viscoelastic fluid, we have trans-

formed the potential function in Cartesian coordinates (x, y, z) with velocity (ŭ, v̆, w̆) , which is

computed by a rotation matrix given as:

ŭ (x, y) = ax+ by, v̆ (x, y) = bx+ ay, w̆ (z) = −2az. (2.2)

To find components along the principal axes (x́, ý, ź), we apply basic concepts of matrix theory

from linear algebra. Firstly, we write the horizontal velocities ŭ and v̆ in matrix representation

as: ŭ
v̆

 = Ă

x
y

 ≡
a b

b a

x
y

 . (2.3)

Then, Eq. (2.3) is diagonalized along the principal axes with the velocities (ŭ́, v̆́),determined
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as: ŭ́
v̆́

 = Λ

x́
ý

 ≡
λ 0

0 λ

x́
ý

 . (2.4)

By practicing characteristics equation det
[
Ă− λI

]
= 0, we determined the eigenvalues λ =

a± b. The exterior potential flow is obtained by rotation along (x́, ý, ź).

ŭ́ (x́, ý) = x́ (a+ b) , v̆́ (x́, ý) = ý (a− b) , w̆́ (ź) = −2aź. (2.5)

The velocity field along the principal axes is V = [ŭ́, v̆́, w̆́]. By considering the flow along

principal axis, we can let go of the prime symbol in Eq. (2.5) , as it does not affect our problem.

This approach is also adopted to transform the coordinates in Chapter 3.

2.1.2 Mathematical Modeling

We thoroughly explored the results of non-linear radiation and MHD for steady, incompressible

Walter’s B nanofluid flow. The center of our attention here is to inspect the outcomes of effects

considered for a viscoelastic nanofluid flow near the stagnation-zone by adopting the Buongiorno

model. We have induced the magnetic field B along the z -direction, as [0, 0, B0] , where B0 is

the magnetic field intensity. Here at cylinder’s wall the fluid temperature is T̆ (x, y, z) = T̆w

with concentration as C̆ (x, y, z) = C̆w. In Fig. 1, the flow diagram is illustrated. By adding

r sin 2ϑ and r cos 2ϑ onto Homann’s external potential flow, we determined it in cylindrical

coordinates system (r, ϑ, z) and modified it into Cartesian coordinates (x, y, z), as presented in

§ 2.1.1.

The potential flow in Cartesian coordinates is:

V = [ŭ, v̆, w̆] = [x (a+ b) , y (a− b) ,−2az] . (2.6)
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Fig. 2.1 : Flow mechanism.

The conservation laws for the problem are given in § 1.6 of Chapter 1. The stress tensor for

Walter’s B-liquid with the strain-rate tensor eab is written in § 1.7.1. By using the components

of stress tensor from § 1.7.1 and BL approximation stated in § 1.5.1 of Chapter 1, the above

conservation equations for incompressible steady flow are reduced as:

∂ŭ

∂x
+
∂v̆

∂y
+
∂w̆

∂z
= 0, (2.7)

ŭ
∂ŭ

∂x
+ v̆

∂ŭ

∂y
+ w̆

∂ŭ

∂z
= −1

ρ

∂p

∂x
+ ν

∂2ŭ

∂z2
− σB2

0 ŭ

ρ

−k0

ρ

[
ŭ
∂3ŭ

∂x∂z2
− 2

∂2ŭ

∂x∂z

∂ũ

∂z
− ∂2ŭ

∂z2

∂ŭ

∂x
− 2

∂2ŭ

∂z2

∂w̆

∂z
+ w̆

∂3ŭ

∂z3
− ∂2w̆

∂z2

∂ŭ

∂z

]
, (2.8)

ŭ
∂v̆

∂x
+ v̆

∂ṽ

∂y
+ w̆

∂v̆

∂z
= −1

ρ

∂p

∂y
+ ν

∂2v̆

∂z2
− σB2

0 v̆

ρ

−k0

ρ

[
v̆
∂3v̆

∂y∂z2
− 2

∂2v̆

∂y∂z

∂v̆

∂z
− ∂2v̆

∂z2

∂v̆

∂y
− 2

∂2v̆

∂z2

∂w̆

∂z
+ w̆

∂3v̆

∂z3
− ∂2w̆

∂z2

∂v̆

∂z

]
, (2.9)

ŭ
∂T̆

∂x
+ v̆

∂T̆

∂y
+ w̆

∂T̆

∂z
= αnf

∂2T̆

∂z2
− 1

(ρc)p

∂qT
∂z

+
(ρc)nf
(ρc)p

DB
∂T̆

∂z

∂C̆

∂z
+
DT

T̆∞

(
∂T̆

∂z

)2
 , (2.10)
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ŭ
∂C̆

∂x
+ v̆

∂C̆

∂y
+ w̆

∂C̆

∂z
= DB

∂2C̆

∂z2
+
DT

T̆∞

(
∂2T̆

∂z2

)
. (2.11)

By adopting Rosseland/diffusion approximation, qT the radiative flux [38] is interpreted as:

qT = −4σ∗

3k∗
∂T̆ 4

∂z
= −16σ∗T̆ 3

3k∗
∂T̆

∂z
, (2.12)

where σ∗ and k∗ denote the Stefan’s constant and the mean absorption coeffi cient, respectively.

Putting Eq. (2.12) in Eq. (2.10), we have

ŭ
∂T̆

∂x
+ v̆

∂T̆

∂y
+ w̆

∂T̆

∂z
= αnf

∂2T̆

∂z2
+

∂

∂z

(
16σ∗T̆ 3

3k∗(ρc)p

∂T̆

∂z

)
+

(ρc)nf
(ρc)p

DB
∂T̆

∂z

∂C̆

∂z
+
DT

T̆∞

(
∂T̆

∂z

)2
 .

(2.13)

In the Eqs. (2.8) and (2.9) , the terms of pressure gradient at free-stream with velocities(
Ŭ∞, V̆∞

)
are given as:

Ŭ∞
σB20
ρ + Ŭ∞

∂Ŭ∞
∂x = −1

ρ
∂p
∂x ,

V̆∞
σB20
ρ + V̆∞

∂V̆∞
∂y = −1

ρ
∂p
∂y .

 (2.14)

2.1.3 Boundary Conditions

Since the problem is modeled with no-slip condition and at the free stream, the boundary

conditions become:

ŭ = 0, v̆ = 0, w̆ = 0, T̆ = T̆w, C = Cw at z = 0, (2.15)

ŭ→ x(a+ b), v̆ → y(a− b), w̆ → −2az, T̆ → T̆∞, C → C∞ as z →∞. (2.16)

2.1.4 Similarity Transformations

Introducing the subsequent conversions to transform the Eqs. (2.11)− (2.14).

ŭ (x, y) = x (a+ b) f̆ ′(η), v̆ (x, y) = y (a− b) ğ′(η),

w̆ (z) = −
√
ν

a

[
(a+ b) f̆(η) + (a− b) ğ(η)

]
, (2.17)

θ (η) =
T̆ − T̆∞
T̆w − T̆∞

, φ (η) =
C̆ − C̆∞
C̆w − C̆∞

, where η =

√
a

ν
z, (2.18)
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where ν the kinematic viscosity, θ (η) and φ (η) denote the fluid temperature and concentration,

respectively. Note that, Eq. (2.17) satisfies the continuity equation. Utilizing the Eqs. (2.17)

and (2.18), we can write the momentum, energy, and concentration equations as:

f̆ ′′′ − (1 + γ)
[
f̆ ′
2 − f̆ f̆ ′′ − 1 + k

(
2f̆ ′f̆ ′′′ − f̆ ′′2 − f̆ f̆ iv

)]
+ (1− γ)

[
ğf̆ ′′ + k

(
ğf̆ iv − f̆ ′′ğ′′ − 2f̆ ′′′ğ′

)]
−M2

(
f̆ ′ − 1

)
= 0, (2.19)

ğ′′′ − (1− γ)
[
ğ′
2 − ğğ′′ − 1 + k

(
2ğ′ğ′′′ − ğ′′2 − ğğiv

)]
+ (1 + γ)

[
f̆ ğ′′ + k

(
f̆ ğiv − ğ′′f̆ ′′ − 2ğ′′′f̆ ′

)]
−M2

(
ğ′ − 1

)
= 0, (2.20)

θ′′ + Pr
[
f̆ (1 + γ) θ′ + ğ (1− γ) θ′ +Nt (θ)′

2

+Nb

(
θ′φ′

)]
+Rd

[
3θ′

2
(1 + θ (θw − 1))2 (θw − 1) + θ′′ (1 + θ (θw − 1))3

]
= 0, (2.21)

φ′′ + Sc
[
f̆ (1 + γ) + ğ (1− γ)

]
φ′ +

Nt

Nb
θ′′ = 0, (2.22)

where the dimensionless parameters M, k, Sc, Rd, P r, Nt, θw, and Nb represent the mag-

netic parameter, the viscoelastic parameter, the Schmidt number, the radiation coeffi cient,

the Prandtl number, the thermophoresis, the temperature-ratio, and the Brownian diffusion

parameter, respectively. The values of these dimensionless parameters are

M =

√
σ

aρ
B0, k =

k0a

ρν
, Sc =

ν

DB
, P r =

ν

αnf
,

Rd =
16σ∗T̆ 3

∞
3k∗knf

, Nt =
DT

(
T̆w − T̆∞

)
(ρc)nf

T̆∞ν (ρc)p
,

θw =
T̆w

T̆∞
, Nb =

DB

(
C̆w − C̆∞

)
(ρc)nf

ν (ρc)p
. (2.23)

Using Eqs. (2.17) & (2.18), we get the boundary conditions.

f̆ (0) = 0, f̆ ′ (0) = 0, ğ (0) = 0, ğ′ (0) = 0, θ (0) = 1, φ (0) = 1, (2.24)
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f̆ ′ (∞) = 1, ğ′ (∞) = 1, θ (∞) = 0, φ (∞) = 0. (2.25)

2.1.5 Shear Stress

Wall shear-stress τ calculated is identical to viscous fluid case (see Weidman [18]).

τ = [(τ13) i+ (τ23) j|z=0 , (2.26)

where

[τ13|z=0 = xf̆ ′′ (0)
µa

3
2 (1 + γ)√

ν
, (2.27)

[τ23|z=0 = yğ′′ (0)
µa

3
2 (1− γ)√

ν
. (2.28)

Eq. (2.26) becomes:

τ =

(
µa

3
2 (1 + γ)√

ν
xf̆ ′′ (0)

)
i+

(
µa

3
2 (1− γ)√

ν
yğ′′ (0)

)
j. (2.29)

2.1.6 Displacement Thicknesses

After calculating the solution, we move forward to determine the 2D boundary layer displace-

ment thicknesses δx and δy. Furthermore, the 3D boundary-layer displacement thickness δ1 is

calculated (see Davey [13] and Lighthill [40])

√
a

ν
δx =

∞∫
0

[
1− ŭ

Ŭ∞

]
dη =

∞∫
0

[
1− f̆ ′ (η)

]
dη, (2.30)

√
a

ν
δy =

∞∫
0

[
1− v̆

V̆∞

]
dη =

∞∫
0

[
1− ğ′ (η)

]
dη, (2.31)

and

δ1 =
(1 + γ)α+ (1− γ)β

2
. (2.32)

It is noted that as γ approaches infinity, δx and δy reaches zero, meanwhile δ1 → −∞. Further

discussion of these parameters is presented in § 2.3.7.
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2.2 Numerical Solutions

To procure the solution to the problem, perturbation expansion is adopted. The numerical

outcomes for the equations determined are computed by a finite-difference based technique-

bvp4c in Matlab
R©
. The high-ordered equations are modified into first-order ODEs by a set of

variables with corresponding boundary conditions, values for the constants associated, and an

initial guess as discussed in § 1.9 of Chapter 1.

2.2.1 Regular Perturbation Expansion

The aim of this section is to calculate the numerical results for the flow field. To get the

solutions of the problem, perturbation expansion is employed. Since, in Eqs. (2.19) and (2.20)

the viscoelastic parameter is non-zero, i.e., k 6= 0, they involve the forth-order differential

equations and boundary conditions are not suffi cient to compute the solution. Thus, we adopt

the approach used by Beard [39], by taking the viscoelastic parameter very small, i.e., k � 1

to calculate the solution as:

f̆ (η) = f̆0 (η) + kf̆1 (η) + k2f̆2 (η) + · · · , (2.33)

ğ (η) = ğ0 (η) + kğ1 (η) + k2ğ2 (η) + · · · . (2.34)

Putting Eqs. (2.33) and (2.34) in Eqs. (2.19) and (2.20) and equating the coeffi cients of k0 and

k1:

f̆ ′′′0 − (1 + γ)
(
f̆ ′
2

0 − f̆0f̆
′′
0 − 1

)
+ (1− γ) ğ0f̆

′′
0 −M2

(
f̆ ′0 − 1

)
= 0, (2.35)

ğ′′′0 − (1− γ)
(
ğ′
2

0 − ğ0ğ
′′
0 − 1

)
+ (1 + γ) f̆0ğ

′′
0 −M2

(
ğ′0 − 1

)
= 0, (2.36)

f̆ ′′′1 − (1 + γ)
(

2f̆ ′0f̆
′
1 − f̆0f̆

′′
1 − f̆1f̆

′′
0 + 2f̆ ′0f̆

′′′
0 − f̆ ′′

2

0 − f̆0f̆
′′′′
0

)
+ (1− γ)

(
ğ0f̃
′′
1 + ğ0f̃

′′′′
0 + ğ1f̃

′′
0 − f̃ ′′0 ğ′′0 − 2f̃ ′′′0 ğ

′
0

)
−M2f̃ ′1 = 0, (2.37)

ğ′′′1 − (1− γ)
(

2ğ′0ğ
′
1 − ğ0ğ

′′
1 − ğ1ğ

′′
0 + 2ğ′0ğ

′′′
0 − ğ′′

2

0 − ğ0ğ
′′′′
0

)
+ (1 + γ)

(
ğ0f̆
′′
1 + f̆0ğ

′′
1 + f̆0ğ

′′′′
0 + f̆1ğ

′′
0 − ğ′′0 f̆ ′′0 − 2ğ′′′0 f̆

′
0

)
−M2ğ′1 = 0. (2.38)
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with boundary conditions

f̆0 (0) = 0, f̆ ′0 (0) = 0, f̆ ′0 (∞) = 1, f̆1 (0) = 0, f̆ ′1 (0) = 0, f̆ ′1 (∞) = 0, (2.39)

ğ0 (0) = 0, ğ′0 (0) = 0, ğ′0 (∞) = 1, ğ1 (0) = 0, ğ′1 (0) = 0, ğ′1 (∞) = 0. (2.40)

Using Eqs. (2.33) and (2.34) in Eqs. (2.30) and (2.31) we get perturbed equations for 2D

displacement thicknesses as:

√
a

ν
δx =

∞∫
0

[
1− f̆ ′0 (η)− kf̆ ′1 (η)

]
dη ≡ α, (2.41)

√
a

ν
δy =

∞∫
0

[
1− ğ′0 (η)− kğ′1 (η)

]
dη ≡ β, (2.42)

where α and β are displacement thickness parameters in 2D.

2.2.2 Asymptotic for γ � 1

By changing variables, the asymptotic conduct of solution is calculated for large-γ as:

f̆ (η) = εF̆ (ξ) , and ğ (η) = εĞ (ξ) , (2.43)

with

ξ = ηε−1, k = ε3, and ε =
1
√
γ
� 1. (2.44)

On the account of above transformations, Eqs. (2.19) and (2.20) are transformed into

F̆ ′′′ −
(
ε2 + 1

) [
F̆ ′

2 − F̆ F̆ ′′ − 1 + ε
(

2F̆ ′F̆ ′′′ − F̆ ′′2 − F̆ F̆ iv
)]

+
(
ε2 − 1

) [
ĞF̆ ′′ + ε

(
ĞF̆ iv − F̆ ′′Ğ′′ − 2F̆ ′′′Ğ′

)]
−M2

(
F̆ ′ − 1

)
= 0, (2.45)

Ğ′′′ −
(
ε2 − 1

) [
Ğ′

2 − ĞĞ′′ − 1 + ε
(

2Ğ′Ğ′′′ − Ğ′′2 − ĞĞiv
)]

+
(
ε2 + 1

) [
F̆ Ğ′′ + ε

(
F̆ Ğiv − Ğ′′F̆ ′′ − 2Ğ′′′F̆ ′

)]
−M2

(
Ğ′ − 1

)
= 0. (2.46)
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By regular perturbation expansion, we can write

F̆ (ξ) = F̆0 (ξ) + εF̆1 (ξ) + ε2F̆2 (ξ) + · · · , (2.47)

Ğ (ξ) = Ğ0 (ξ) + εĞ1 (ξ) + ε2Ğ2 (ξ) + · · · . (2.48)

Utilizing Eqs. (2.47) and (2.48) , the lowest and first order systems are written as:

F̆ ′′′0 − F̆ ′
2

0 + F̆0F̆
′′
0 + 1− Ğ0F̆

′′
0 = 0, (2.49)

Ğ′′′0 + Ğ′
2

0 − Ğ0Ğ
′′
0 − 1 + F̆0Ğ

′′
0 = 0, (2.50)

F̆ ′′′1 − 2F̆ ′0F̆
′
1 + F̆0F̆

′′
1 + F̆1F̆

′′
0 − 2F̆ ′0F̆

′′′
0 + F̆ ′′0

+F̆0F̆
iv
0 − Ğ0F̆

′′
1 − Ğ0F̆

iv
0 − Ğ1F̆

′′
0 + F̆ ′′0 Ğ

′′
0 + 2F̆ ′′′0 Ğ

′
0 = 0, (2.51)

Ğ′′′1 + 2Ğ′0Ğ
′
1 − Ğ0Ğ

′′
1 − Ğ1Ğ

′′
0 + 2Ğ′0Ğ

′′′
0 − G̃′′0

−Ğ0Ğ
iv
0 + F̆0Ğ

′′
1 + F̆0Ğ

iv
0 + F̆1Ğ

′′
0 − F̆ ′′0 Ğ′′0 − 2Ğ′′′0 F̆

′
0 = 0. (2.52)

With boundary conditions:

F̆0 (0) = 0, F̆ ′0 (0) = 0, F̆ ′0 (∞) = 1, F̆1 (0) = 0, F̆ ′1 (0) = 0, F̆ ′1 (∞) = 0, (2.53)

Ğ0 (0) = 0, Ğ′0 (0) = 0, Ğ′0 (∞) = 1, Ğ1 (0) = 0, Ğ′1 (0) = 0, Ğ′1 (∞) = 0. (2.54)

Large-γ Shear Stress

Using Eqs. (2.43) and (2.44) the large-γ skin friction coeffi cients with the impression of magnetic

field are stated as:

f̆ ′′ (0) ∼ √γ
[
F̆ ′′0 (0) + kγF̆ ′′1 (0)

]
, (2.55)

ğ′′ (0) ∼ √γ
[
Ğ′′0 (0) + kγĞ′′1 (0)

]
. (2.56)
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Large-γ Displacement Thicknesses

By utilizing the asymptotic analysis, we can get a comparison between numerical and asymptotic

solutions for displacement thickness parameters. Assume α = εα∗and β = εβ∗, we have

α∗ =

∞∫
0

[
1− F̆ ′0 (ξ)

]
dξ − ε

∞∫
0

F̆ ′1 (ξ) dξ = α∗0 + εα∗1, (2.57)

β∗ =

∞∫
0

[
1− Ğ′0 (ξ)

]
dξ − ε

∞∫
0

Ğ′1 (ξ) dξ = β∗0 + εβ∗1. (2.58)

The large-γ with displacement thicknesses are given as

α ∼ α∗
√
γ
and β ∼ β∗

√
γ
, (2.59)

and

δ∗ ∼ (1 + γ)α∗ + (1− γ)β∗

2
√
γ

. (2.60)

2.2.3 Results Authentication

This section compares the outcomes of our study with the ones in literature. It can be clearly

seen that Eqs. (2.19) and (2.20) are reflexive symmetry, i.e.,

f̆ (η,−γ) = ğ (η, γ) , and ğ (η,−γ) = f̆ (η, γ) . (2.61)

Note that, when γ = M = 0 in Eqs. (2.19) and (2.20) , we can recover the axisymmetric Homann

[11] flow equation, i.e., f̆ (η) = ğ (η). Also, for γ = 1 and M = 0 in Eqs. (2.19) and (2.20) ,

we can recover Hiemenz [10] equation. Moreover, for M = 0 in Eqs. (2.19) and (2.20) and no

heat transport examination we can get Mahapatra and Sidui’s [6] case. Also, using k = 0 and

M = 0 in Eqs. (2.19) and (2.20) , Weidman’s [18] work is recovered. We can also get values of

2D displacement thickness parameters α and β for zeroth order as α∗0 = 0.610, β∗0 = 3.4384 and

first order as α∗1 = −0.9984, β∗1 = −3.9349. The numerical values for asymptotic outcomes are

compared with Refs. [6] and [18] in Table 1. These values are in excellent agreement with Davey

[13] .
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Table 2.1 : Asymptotic behavior of Shear Stress parameters.

Ref . [6] Ref . [18] Present

M = 0 M = k = 0 M = 0

F̆ ′′0 (0) 1.2729 1.2729 1.2729

Ğ′′0 (0) −0.8112 −0.8112 −0.8112

F̆ ′′1 (0) 1.2805 1.2805

Ğ′′1 (0) −0.4435 −0.4435

2.3 Graphical Discussion

The case of Walter’s B nanofluid flow for modified Homann flow in the stagnation region is

examined in this article. We applied a finite difference based method, bvp4c in Matlab
R©

to compute the numerical outcomes. This section aims to address the numerical outcomes

attained related to the flow along x - and y-directions f̆ ′ (η) and ğ′ (η) , respectively, the 2D

and 3D displacement thicknesses δx, δy and δ1, respectively, fluid temperature θ (η) and its

concentration φ (η) field for the involved parameters, i.e., the magnetic parameter M, the

viscoelastic parameter k, the Prandtl number Pr, the temperature-ratio θw, the thermophoresis

Nt, the Schmidt number Sc, radiation parameter Rd, and the Brownian motion parameter Nb.

2.3.1 Impression of the Viscoelastic Parameter

The property of substances that experiences viscous and elastic qualities during deformation is

described as viscoelasticity. Such polymers are employed as shock absorbers, to damp noises,

confine vibrations, and discharge the energy absorbed as heat. Figs. 2.2(a) and 2.2 (b) demon-

strate the influence of viscoelasticity k on the flow. In Fig. 2.2 (a) the velocity component

along x -direction f̆ ′ (η) is varied by increasing the values of k. It is perceived that due to vis-

coelasticity the flow along the x -axis is enhanced for a fixed value of γ = 2 and M = 0.25.

Fig. 2.2(b) displays the behavior of velocity component along y-direction ğ′ (η) with η for

γ = 2.505, 2.5183, 2.5994 and k = 0.0, 0.01, 0.07, respectively. It is seen that reverse flow is ex-

hibited towards the stagnation-point. However, the flow along the y-direction faced resistance

and is reduced by increasing γ from 4 to 6 with k = 0.07, but after that opposite behavior
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is depicted. Figs. 2.2(c) displays that energy is discharged which results in the reduction in

thermal field. Fig. 2.2 (d) shows that the mass transport phenomena is lessened. Figs. 2.2 (e)

and 2.2 (f) depict the impact of γ on thermal and mass transport. It is noted that both of

these fields are reduced by enhancing γ.

2.3.2 Impression of the Magnetic Field

Figs. 2.3 (a) − 2.3(d) highlight the contribution of magnetic field parameter M on the fluid

flow f̆ ′(η) and ğ′ (η) , fluid temperature θ (η) and concentration φ (η) fields. It is noted that

by enhancing magnetic field parameter M, the flow behavior lessened; however, the thermal

conductivity and concentration profile are elevated. This is because the magnetic field generated

a resistance force against the flow, known as Lorentz or electromagnetic force. This opposing

force dissuades the significance of velocity profile, which as a result eventually decayed. In

contrast, the thermal and concentration fields are raised significantly. This behavior magnified

heat transport, and consequently, the boundary layer is expanded.

2.3.3 Impression of the Thermophoresis and Brownian Diffusion

Figs. 2.4 (a)−2.4 (d) illustrate the significance of the thermo-migration Nt and Brownian diffu-

sion Nb parameters on the thermal and mass transports. Due to the interaction of nanoparticles,

molecules undergoes haphazard motion. This is mainly due to the impact of Brownian diffusion,

which enhances the speed and momentum of particles and hence elevates the kinetic energy of

the system. This abrupt rise in kinetic energy originates more irrational collisions of particles

with an increment in temperature field θ (η) as illustrated in Figs. 2.4 (b) ; whereas, the concen-

tration of particles φ (η) dwindles as seen in Fig. 2.4 (d) . The mass transfer rate is intensified

momentarily, and forcing the particles to relocate into a low concentrated zone by causing the

system to endure the thermo-migration/thermophoresis. Here the more massive molecules ex-

perience the positive thermo-diffusion, i.e., they move from a warmer to a colder zone. Hence,

raising the thermal energy and concentration distribution as shown in Figs. 2.4 (a) and 2.4 (c) .
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2.3.4 Impression of the Prandtl and Schmidt Number

The impression of the Prandtl number Pr on the thermal distribution and Schmidt number

Sc on the concentration field is highlighted in Figs. 2.5 (a) and 2.5 (b) . The decline in the

energy is owing to an endorsement in the Pr, which is the momentum diffusivity ν and thermal

diffusivity αnf ratio. Since for 1 < Pr = 0.71, 6.13, 10.0, 20.0, convection (momentum diffusivity

ν) rules over conduction (thermal diffusivity αnf ) the thermal transportation is mainly due

to convection, which causes decay in heat transfer rate. Moreover, by increasing the mass-

momentum diffusion ratio, the mass diffusivity takes over the momentum diffusion, and the

concentration distribution φ (η) is lessened, i.e., it has an inverse relation with the concentration

field as shown in Fig. 2.5 (b).

2.3.5 Impression of the Non-linear Thermal Radiation and Temperature Ra-

tio

Figs. 2.6 (a) and 2.6 (b) presentes the impression of Rosseland’s radiation parameter Rd and

the wall-to-free stream temperature θw ratio. It is observed that with an increment in radiation

coeffi cient Rd and temperature-ratio θw, the thermal transport rate and boundary layer rise.

This is because the radiation generates more heat which raises the energy of the system and

hence temperature correspondingly.

2.3.6 Impression of the Shear Stress

The zeros in shear-stress can be calculated at γ = ±2.505,±2.5182,±2.5994 for M = 0.0

and k = 0.0, 0.01, 0.07, respectively. Furthermore, for k = 0.0, 0.01, 0.07, γ = 0 and M = 0.04,

the values in the graphs are noted to be 1.385469, 1.399778, and 1.485883. Fig. 2.7 verifies that

when the ratio between shear rate b to strain rate a is negative, i.e., γ < 0, for before-mentioned

values of k there is no change in the coeffi cient of skin friction along the x -direction f̆ ′′ (0) .

But for γ > 0, when k increases f̆ ′′ (0) is also increased. It is also observed that when γ < 0,

the coeffi cient of skin friction along the y-direction ğ′′ (0) enhances as k increases; whereas, for

non-negative γ no apparent variation is noted. Note that the dotted lines in Fig. 2.7 represent

their asymptotic behavior. It is evident from Fig. 2.7 that f̆ ′′(0) reaches its asymptotic conduct;

however, ğ′′ (0) does not.
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2.3.7 Impression of the Displacement Thicknesses

The impressions of two-dimensional displacement thicknesses α and β are illustrated in Fig.

2.8(a). Both
√

a
ν δx ≡ α and

√
a
ν δy ≡ β have identical values at γ = 0, M = 0.2, and k =

0.0, 0.04, 0.07 noted as, 0.5041, 0.4524 and 0.4211, respectively. Moreover, by increasing the

viscoelasticity k, α and β decreased for specific values of ratio between shear rate b to strain

rate a. In Fig. 2.8(b), the consequences of 3D displacement thickness parameter δ1 with γ

are determined. It is discovered that for γ = 0 and k = 0.0, 0.04, 0.07, δ1 attains maximum

values, i.e., 0.5432, 0.5077, and 0.4818, respectively. Additionally, we can perceive the behavior

of these parameters for negative and non-negative values of γ.Fig. 2.8 (a) highlights that β

started to increase when −4 ≤ γ ≤ 6; however, γ > ±2.0 we observed that with an increment

in k, δ1 decreased correspondingly as seen in Fig. 8(b). Besides, the dotted lines in Figs. 2.8(a)

and 2.8(b) represent their asymptotic conduct. It is comprehended that the asymptotic value

(dotted lines) of α is quite closer to its numerical value; whereas, β and δ1 manifested contrary

behavior.
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2.4 Concluding Remarks

This article emphasized on the numerical and large-γ asymptotic solutions of non-axisymmetric

Walter’s B nanofluid flow near-stagnation zone. Contributions of the Rosseland non-linear

radiation and MHD were scrutinized as well. Impression of the parameters involved were

investigated for the flow, energy and concentration distribution. The numerical results and their

asymptotic solutions were determined by practicing a built-in technique in Matlab
R©
namely,

bvp4c. Moreover, our acquired outcomes were consistent with the ones in literature. The
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observations made are summarized below.

• The viscoelasticity increased the flow along f̆ ′(η); however, reverse flow was observed for

variation of γ and k with η in ğ′ (η) .

• The significance of viscoelasticity and magnetic field on skin-friction was inspected and it

is revealed that for γ →∞, f̆ ′′(0) reached its asymptotic behavior easily. However, ğ′′ (0)

exhibited the contrary trend.

• The displacement thicknesses decreased with the increment of k for a specific value of the

ratio of shear-to-strain rate. Graphs highlighted that as γ →∞, α reached its asymptotic

value; whereas, same behavior was not depicted by β and δ1.

• Temperature was boosted up for both the Soret impact and Brownian diffusion. However,

fluid concentration was increased for the former and reduced for the latter.

• The role of non-linear thermal radiation on the temperature field was perceived to be

increasing, which happens to thicken the BL.
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Chapter 3

Jeffrey Nanofluid for Homann

Stagnation-region with Solar

Radiation Aspects

In this chapter, the Jeffrey’s nanofluid flow for Homann’s stagnation-point flow is modeled here,

with time-independent free stream over an electrically conducting flow on a cylindrical disk. By

deploying Buongiorno’s model, the outcomes of the thermophoresis, Brownian diffusion, and

solar radiation on the concentration and thermal boundary layer are also scrutinized. By similar

transformation, the conservation equations are remodeled into non-linear ordinary differential

equations. Furthermore, a comparison is made between the numerical and asymptotic solutions

with large values of stress-to-strain-rate ratio, i.e, γ =
(
b
a

)
for the parameters of displacement

thicknesses and wall-shear stress. A finite-difference technique is utilized to numerically evalu-

ate the calculations for the flow, energy, displacement thickness, skin drag, and concentration

profiles. Also, the impact of Jeffrey’s material parameters and magnetic field on displacement

thickness is analyzed. It is discovered that when the shear-to-strain-rate ratio approaches in-

finity, the coeffi cient of skin friction along the x -axis attains its asymptotic behavior; whereas,

along y-axis, it does not. Moreover, the two-dimensional displacement thickness along the x -

axis is closer to get its asymptotic value when the γ approaches infinity, contrarily, for y-axis

and the three-dimensional displacement thickness opposite trend is observed.
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3.1 Mathematical Modeling

We considered the three-dimensional MHD Jeffrey’s nanofluid stagnation-point flow for a cylin-

drical disk, along with the non-linear radiation. For heat transfer analysis of nanofluid we

considered Buongiorno’s model. At the wall of cylinder, fluid temperature with concentration

is constant, i.e., T̆ (x, y, z) = T̆w and C̆ (x, y, z) = C̆w, respectively. By superposing r sin 2ϑ

and r cos 2ϑ onto Homann’s external potential flow, we stated the potential flow field in cylin-

drical coordinates system (r, ϑ, z) and transformed it into Cartesian coordinates (x, y, z). The

potential field flow as obtained in § 2.1.1 of Chapter 2 is given as:

V = [ŭ, v̆, w̆] = [x (a+ b) , y (a− b) ,−2az] . (3.1)

The flow mechanism is given in Fig. 2.1. The conservation laws for steady incompressible flow

are given in § 1.6 of Chapter 1. The Cauchy stress tensor τ with true or extra stress tensor S is

given in § 1.7.2. After determining the components of stress tensors from § 1.7.2 and employing

the BL theory discussed in § 1.5 of Chapter 1 become:

∂ŭ

∂x
+
∂v̆

∂y
+
∂w̆

∂z
= 0, (3.2)

ŭ
∂ŭ

∂x
+ v̆

∂ŭ

∂y
+ w̆

∂ŭ

∂z
= −1

ρ

∂p

∂x
− σB2

0 ŭ

ρ
+

ν

1 + λ1

[
∂2ŭ

∂z2

+λ2

(
ŭ
∂3ŭ

∂x∂z2
+
∂ŭ

∂z

∂2ŭ

∂x∂z
+ v̆

∂3ŭ

∂y∂z2
+
∂v̆

∂z

∂2ŭ

∂y∂z
+ w̆

∂3ŭ

∂z3
+
∂w̆

∂z

∂2ŭ

∂z2

)]
, (3.3)

ŭ
∂v̆

∂x
+ ṽ

∂v̆

∂y
+ w̃

∂v̆

∂z
= −1

ρ

∂p

∂y
− σB2

0 v̆

ρ
+

ν

1 + λ1

[
∂2v̆

∂z2

+λ2

(
ŭ
∂3v̆

∂x∂z2
+
∂ŭ

∂z

∂2v̆

∂x∂z
+ v̆

∂3v̆

∂y∂z2
+
∂v̆

∂z

∂2w̆

∂y∂z
+ w̆

∂3v̆

∂z3
+
∂w̆

∂z

∂2v̆

∂z2

)]
, (3.4)

ŭ
∂T̆

∂x
+ v̆

∂T̆

∂y
+ w̆

∂T̆

∂z
= αnf

∂2T̆

∂z2
− 1

(ρc)p

∂qT
∂z

+
(ρc)nf
(ρc)p

DB
∂T̆

∂z

∂C̆

∂z
+
DT

T̆∞

(
∂T̆

∂z

)2
 , (3.5)
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ŭ
∂C̆

∂x
+ v̆

∂C̆

∂y
+ w̆

∂C̆

∂z
= DB

∂2C̆

∂z2
+
DT

T̆∞

(
∂2T̆

∂z2

)
. (3.6)

The radiative thermal flux qT [38] is evaluated by the diffusion approximation, interpreted as:

qT = −4σ∗

3k∗
∂T̆ 4

∂z
= −16σ∗T̆ 3

3k∗
∂T̆

∂z
. (3.7)

Putting Eq. (3.7) in Eq. (3.5), we have

ŭ
∂T̆

∂x
+ v̆

∂T̆

∂y
+ w̆

∂T̆

∂z
= αnf

∂2T̆

∂z2
+

∂

∂z

(
16σ∗T̆ 3

3k∗ (ρc)p

∂T̆

∂z

)
+

(ρc)nf
(ρc)p

DB
∂T̆

∂z

∂C̆

∂z
+
DT

T̆∞

(
∂T̆

∂z

)2
 ,

(3.8)

where B0, σ, k
∗, ν = µ

ρ , and σ
∗denote the intensity of magnetic field, the electrical conductivity,

the Stefan’s constant, the kinematic viscosity, and the mean absorption coeffi cient, respectively.

The expressions of pressure gradient with velocity at free stream
(
Ŭ∞, V̆∞

)
in Eqs. (3.3)

and (3.4) are calculated by

Ŭ∞
σB20
ρ + Ŭ∞

∂Ŭ∞
∂x = −1

ρ
∂p
∂x ,

V̆∞
σB20
ρ + V̆∞

∂V̆∞
∂y = −1

ρ
∂p
∂y .

 (3.9)

3.1.1 Boundary Conditions

The problem is modeled with the free stream and no-slip condition, as:

ŭ = 0, v̆ = 0, w̆ = 0, T̆ = T̆w, C̆ = C̆w at z = 0, (3.10)

ŭ→ x (a+ b) , v̆ → y (a− b) , w̆ → −2az, T̆ → T̆∞, C̆ → C̆∞ as z →∞. (3.11)

3.1.2 Similarity Transformations

Employing the similarity transformation, used in § 2.1.4 which satisfies Eq. (3.2) . Substituting

these equations we transformed Eqs. (3.4)− (3.6) into:

f̆ ′′′ + (1 + γ)

[
(1 + λ1)

(
f̆ f̆ ′′ −

(
f̆ ′
)2

+ 1

)
+ β1

(
f̆ ′′

2 − f̆ f̆ iv
)]

+ (1− γ)
[
(1 + λ1) ğf̆ ′′ − β1

(
ğ′f̆ ′′′ + ğf̆ iv

)]
−M2

(
f̆ ′ − 1

)
(1 + λ1) = 0, (3.12)
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ğ′′′ + (1− γ)
[
(1 + λ1)

(
ğğ′′ −

(
ğ′
)2

+ 1
)

+ β1

(
ğ′′

2 − ğğiv
)]

+ (1 + γ)
[
(1 + λ1) f̆ ğ′′ − β1

(
f̆ ′ğ′′′ + f̆ ğiv

)]
−M2

(
ğ′ − 1

)
(1 + λ1) = 0, (3.13)

θ′′ + Pr
[
f̆ (1 + γ) θ′ + ğ (1− γ) θ′ +Nt

(
θ′
)2

+Nb

(
θ′φ′

)]
+

Rd

[
3 (1 + θ (θw − 1))2 (θw − 1)

(
θ′
)2

+ (1 + θ (θw − 1))3 θ′′
]

= 0, (3.14)

φ′′ + Sc
[
f̆ (1 + γ) + ğ (1− γ)

]
φ′ +

Nt

Nb
θ′′ = 0, (3.15)

where a prime represents differentiation w.r.t η. The dimensionless parameters M, β1, Pr, Rd,

θw, Nt, Sc, and Nb are the magnetic parameter, the Deborah number, the Prandtl number, the

non-linnear radiation parameter, the wall-to-ambient temperature-ratio, the thermodiffusion,

the Schmidt number, and the Brownian motion coeffi cient, respectively.

M =

√
σB2

0

aρ
, β1 = λ2a, Pr =

ν

αnf
, Rd =

16σ∗T̆ 3
∞

3k∗knf
,

θw =
T̆w

T̆∞
, Nt =

(ρc)nf
(ρc)p

DT
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T̆w − T̆∞

)
νT̆∞

, Sc =
ν

DB
,

Nb =
(ρc)nf
(ρc)p

DB

(
C̆w − C̆∞

)
ν

. (3.16)

Using Eqs. (3.10) and (3.11), we obtain

f̆ (0) = 0, f̆ ′ (0) = 0, ğ (0) = 0, ğ′ (0) = 0, θ (0) = 1, φ (0) = 1, (3.17)

f̆ ′ (∞) = 1, ğ′ (∞) = 1, φ (∞) = 0, θ (∞) = 0. (3.18)

3.1.3 Shear Stress

Wall-shear stress can be computed

τ = [(τxz) i+ (τyz) j|z=0 , (3.19)
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where

[τxz|z=0 =
µa

3
2 ν−

1
2 (1 + γ)x

(1 + λ1)

[
f̆ ′′ (0) + β

{
(1 + γ)

(
f̆ ′ (0) f̆ ′′ (0)− f̆ (0) f̆ ′′′ (0)

)
− (1− γ) ğ (0) f̆ ′′′ (0)

}]
, (3.20)

[τyz|z=0 =
µa

3
2 ν−

1
2 (1− γ) y

(1 + λ1)

[
ğ′′ (0) + β

{
(1− γ)

(
ğ′ (0) ğ′′ (0)− ğ (0) ğ′′′ (0)

)
− (1 + γ) f̆ (0) ğ′′′ (0)

}]
. (3.21)

3.1.4 Displacement Thicknesses

The 2D and 3D displacement thicknesses δx, δy and δ1, respectively, are calculated (see Davey

[13] and Lighthill [40])

√
a

ν
δx =

∞∫
0

[
1− ŭ

Ŭ∞

]
dη =

∞∫
0

[
1− f̆ ′ (η)

]
dη, (3.22)

√
a

ν
δy =

∞∫
0

[
1− v̆

V̆∞

]
dη =

∞∫
0

[
1− ğ′ (η)

]
dη, (3.23)

and

δ1 =
(1 + γ)α+ (1− γ)β

2
. (3.24)

It is perceived that, δx and δy tend to zero as γ proceed towards infinity; however, δ1 goes to

−∞ for the same range of γ. These results can be seen in Figs. 3.9 (a) and 3.9 (b) .

3.2 Numerical Solutions

The numerical outcomes for the equations obtained are computed by a finite-difference based

technique-bvp4c in Matlab
R©
. The high-ordered equations are turned into first-order ODEs

by introducing a set of variables including corresponding boundary conditions, values for the

constants involved, and an initial guess as discussed in § 1.9 of Chapter 1.
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3.2.1 Regular Perturbation Expansion

To determine the solution of the problem, perturbation expansion is adopted. The target of

this section is to calculate the numerical results for the flow. Since Eqs. (3.12) and (3.13) are

the fourth-order differential equations and boundary conditions are not adequate to compute

the solution; therefore, we adopt the approach used by Beard [39] . To obtain the approximate

solution, we take the Deborah number very small, i.e., β1 � 1.

f̆ (η) = f̆0 (η) + β1f̆1 (η) + β2
1f̆2 (η) + · · · , (3.25)

ğ (η) = ğ0 (η) + β1ğ1 (η) + β2
1ğ2 (η) + · · · . (3.26)

Putting Eqs. (3.25) and (3.26) in Eqs. (3.12) and (3.13), β0
1 and β1 coeffi cients are:

f̆ ′′′0 + (1 + λ1)

[
(1 + γ)

(
f̆0f̆
′′
0 −

(
f̆ ′0

)2
+ 1

)
+ (1− γ) ğ0f̆

′′
0 −M2

(
f̆ ′0 − 1

)]
= 0, (3.27)

ğ′′′0 + (1 + λ1)
[
(1− γ)

(
ğ0ğ
′′
0 −

(
ğ′0
)2

+ 1
)

+ (1 + γ) f̆0ğ
′′
0 −M2

(
ğ′0 − 1

)]
= 0, (3.28)

f̆ ′′′1 + (1 + γ)

[(
f̆ ′′0

)2
− f̆0f̆

iv
0 + (1 + λ1)

(
f̆1f̆
′′
0 + f̆0f̆

′′
1 − 2f̆ ′0f̆

′
1

)]
+ (1− γ)

[
−ğ′0f̆ ′′′0 − ğ0f̆

iv
0 + (1 + λ1)

(
ğ0f̆
′′
1 + ğ1f̆

′′
0

)]
−M2 (1 + λ1) f̆ ′1 = 0, (3.29)

ğ′′′1 + (1− γ)
[(
ğ′′0
)2 − ğ0ğ

iv
0 + (1 + λ1)

(
ğ1ğ
′′
0 + ğ0ğ

′′
1 − 2ğ′0ğ

′
1

)]
+ (1 + γ)

[
−f̆ ′0ğ′′′0 − f̆0ğ

iv
0 + (1 + λ1)

(
f̆0ğ
′′
1 + f̆1ğ

′′
0

)]
−M2 (1 + λ1) ğ′1 = 0. (3.30)

The boundary conditions for above equations are

f̆0 (0) = 0, f̆ ′0 (0) = 0, f̆ ′0 (∞) = 1, ğ0 (0) = 0, ğ′0 (0) = 0, ğ′0 (∞) = 1, (3.31)

f̆1 (0) = 0, f̆ ′1 (0) = 0, f̆ ′1 (∞) = 0, ğ1 (0) = 0, ğ′1 (0) = 0, ğ′1 (∞) = 0. (3.32)
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Using Eqs. (3.25) and (3.26) in Eqs. (3.22) and (3.23), we get perturbed equations for 2D

displacement thicknesses.

√
a

ν
δx =

∞∫
0

[
1− f̆ ′0 (η)− β1f̆

′
1 (η)

]
dη ≡ α, (3.33)

√
a

ν
δy =

∞∫
0

[
1− ğ′0 (η)− β1ğ

′
1 (η) dη

]
≡ β. (3.34)

Here α and β denote the 2D displacement thickness parameters.

3.2.2 Asymptotic for γ � 1

By changing variables, the asymptotic conduct of the solution is determined for large shear-to-

strain-rate ratio as:

f̆ (η) = εF̆ (ζ) , and ğ (η) = εĞ (ζ) , (3.35)

with

ζ = ηε−1, β1 = ε3, and ε = γ−
1
2 � 1. (3.36)

From these transformed variables, Eqs. (3.12) and (3.13) become:

F̆ ′′′ +
(
ε2 + 1

) [
(1 + λ1)

(
F̆ F̆ ′′ − F̆ ′2 + 1

)
+ ε
(
F̆ ′′

2 − F̆ F̆ iv
)]

+
(
ε2 − 1

) [
(1 + λ1) ĞF̆ ′′ − ε

(
Ğ′F̆ ′′′ + ĞF̆ iv

)]
− ε2M2(1 + λ1)

(
F̆ ′ − 1

)
= 0, (3.37)

Ğ′′′ +
(
ε2 − 1

) [
(1 + λ1)

(
ĞĞ′′ − Ğ′2 + 1

)
+ ε
(
Ğ′′

2 − ĞĞiv
)]

+
(
ε2 + 1

) [
(1 + λ1) F̆ Ğ′′ − ε

(
F̆ ′Ğ′′′ + F̆ Ğiv

)]
− ε2M2 (1 + λ1)

(
Ğ′ − 1

)
= 0, (3.38)

where a prime in Eqs. (3.37) and (3.38) denote differentiation w.r.t ζ. By using regular

perturbation, we get

F̆ (ζ) = F̆0 (ζ) + εF̆1 (ζ) + ε2F̆2 (ζ) + · · · , (3.39)

Ğ (ζ) = Ğ0 (ζ) + εĞ1 (ζ) + ε2Ğ2 (ζ) + · · · . (3.40)
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Using Eqs. (3.39) and (3.40) in Eqs. (3.37) and (3.38) , and equating ε0 and ε1

F̆ ′′′0 + (1 + λ1)

[(
F̆0 − Ğ0

)
F̆ ′′0 + 1−

(
F̆ ′0

)2
]

= 0, (3.41)

Ğ′′′0 − (1 + λ1)

[(
Ğ0 − F̆0

)
Ğ′′0 + 1−

(
Ğ′0

)2
]

= 0, (3.42)

F̆ ′′′1 + (1 + λ1)
[
F̆0F̆

′′
1 + F̆1F̆

′′
0 − 2F̆ ′0F̆

′
1

+
(
F̆ ′′0

)2
− F̆0F̆

iv
0 + Ğ0F̆

′′
1 − Ğ1F̆

′′
0 − Ğ′0F̆ ′′′0 − Ğ0F̆

iv
0

]
= 0, (3.43)

Ğ′′′1 − (1 + λ1)
[
Ğ0Ğ

′′
1 + Ğ1Ğ

′′
0 − 2Ğ′0Ğ

′
1

+
(
Ğ′′0

)2
− Ğ0Ğ

iv
0 + F̆0Ğ

′′
1 + F̆1Ğ

′′
0 − F̆ ′0Ğ′′′0 − F̆0Ğ

iv
0

]
= 0, (3.44)

with respective boundary conditions

F̆0 (0) = 0, F̆ ′0 (0) = 0, F̆ ′0 (∞) = 1, Ğ0 (0) = 0, Ğ′0 (0) = 0, Ğ′0 (∞) = 1,

F̆1 (0) = 0, F̆ ′1 (0) = 0, F̆ ′1 (∞) = 0, Ğ1 (0) = 0, Ğ′1 (0) = 0, Ğ′1 (∞) = 0. (3.45)

Large-γ Shear Stress

Shear stress parameters for large-γ lower and first-order behaviors with the impression of mag-

netic field are determined by utilizing Eqs. (3.35) and (3.36), given as:

f̆ ′′ (0) ∼
[
F̆ ′′0 (0) + β1γF̆

′′
1 (0)

]
γ
1
2 , (3.46)

ğ′′ (0) ∼
[
Ğ′′0 (0) + β1γĞ

′′
1 (0)

]
γ
1
2 . (3.47)
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Large-γ Displacement Thicknesses

Let α = εα∗and β = εβ∗ be the displacement thickness parameters, we get

α∗ =

∞∫
0

[
1− F̆ ′0 (ζ)

]
dζ − ε

∞∫
0

F̆ ′1 (ζ) dζ = α∗0 + εα∗1, (3.48)

β∗ =

∞∫
0

[
1− Ğ′0 (ζ)

]
dζ − ε

∞∫
0

Ğ′1 (ζ) dζ = β∗0 + εβ∗1. (3.49)

with

α ∼ γ−
1
2α∗ and β ∼ γ−

1
2β∗, (3.50)

and

δ∗ ∼ (1 + γ)α∗ + (1− γ)β∗

2γ
1
2

. (3.51)

3.2.3 Results Authentication

From inspection of Eqs. (3.12) and (3.13) , it is noted that they are reflexive symmetries, i.e.,

f̆ (η,−γ) = ğ (η, γ) , and ğ (η,−γ) = f̆ (η, γ) . (3.52)

Moreover, by using β1 = k and λ1 = M = 0 in Eqs. (3.12) and (3.13) , Walter’s B fluid flow

[6] is retrieved. We can also get values of 2D displacement thickness parameters α and β for

zeroth order as α∗0 = 0.610, β∗0 = 3.4384 and first order as α∗1 = −0.9984, β∗1 = −3.9349.

Putting γ = 1 and λ1 = β1 = M = 0 in Eqs. (3.12) and (3.13) , recovers the Hiemenz [10]

equation. Also, when we substitute γ = λ1 = β1 = M = 0 in Eqs. (3.12) and (3.13) , we can

get the axisymmetric Homann [11] flow equation, i.e., f̆ (η) = ğ (η). When λ1 = β1 = M = 0

in Eqs. (3.12) and (3.13) , the Newtonian model given by Weidman [18] is obtained. The zeroth

ordered values of 2D displacement thicknesses are computed for a special case as α∗0 = 0.610,

β∗0 = 3.4384. The numerical outcomes for asymptotic values are compared with Refs. [6] and

[18] in Table 1.
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Table 3.1 : Asymptotic behavior of Shear Stress parameters.

Ref . [6] Refs. [18] and [13] Present

M = λ1 = 0, β1 = k, M = β1 = λ1 = 0 M = λ1 = 0, β1 = k,

F̆ ′′0 (0) 1.2729 1.2729 1.2729

Ğ′′0 (0) −0.8112 −0.8112 −0.8112

F̆ ′′1 (0) 1.2805 1.2805

Ğ′′1 (0) −0.4435 −0.4435

3.3 Graphical Discussion

The case of Jeffrey’s nanofluid flow for non-axisymmetric Homann flow in the stagnation zone

is studied in this article. To compute and plot the numerical solutions, we applied a finite

difference based method, bvp4c in Matlab
R©
, which utilizes the Lobatto formula as discussed

in § 1.9. The numerical outcomes are calculated for the fluid velocity, displacement thickness,

wall-shear stress, concentration, and temperature fields for the associated parameters, i.e., the

magnetic parameter M , the relaxation-to-retardation time ratio λ1, the Prandtl number Pr,

the Deborah number β1, the Brownian motion parameter Nb, the Schmidt number Sc, the

shear-to-strain rate ratio γ, the temperature-ratio θw, and the thermophoretic parameter Nt.

3.3.1 Impression of the Deborah Number

Figs. 3.1 (a) − 3.1 (d) illustrate the outcomes of the Deborah number β1 on the fluid flow,

temperature, and concentration field. The retardation-time λ2 signifies the delay or obstruction

in response to the stress, and often utilized in the creep test as shown in Fig. 3.1 (a) . In Fig.

3.1 (b) the flow field along y-axis is inclined. It is noted that with an increment in the values

of β1 from 0.0 to 0.8, 1.6 and 2.4, the thermal transport is lessened and the boundary layer is

contracted as shown in Fig. 3.1 (c) . Furthermore, Fig. 3.1 (d) presents the impact of β1 on the

mass tansport rate. It is preceived that φ (η) is declined by enhancing β1 from 0.0 to 0.3.
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3.3.2 Impression of the Magnetic Field

Figs. 3.2 (a) − 3.2 (d) give the contribution of magnetic field on the velocities f̆ ′ (η) , ğ′ (η) ,

fluid temperature θ (η) , and concentration φ (η). It is discerned that by raising the mag-

netic field M, the concentration and temperature fields are elevated. However, owing to

Lorentz/electromagnetic force created due to the magnetic field, the flow experienced a re-

sisting force, and the velocity profile is lessened by enhancing the values of M. Additionally,

the impression on the thermal and mass boundary layer is determined to be thickening.

3.3.3 Impression of the Shear-to-Strain-Rate Ratio

Figs. 3.3 (a)−3.3 (d) visualize the impression of γ on the flow, energy and mass transportation.

By enlarging γ, the shear rate b over rules the strain rate a; whereas decrement in γ raises the

strain rate a. In Fig. 3.3 (a) the flow along x -axis is enhanced; however along y-axis is declined

significantly as shown in Fig. 3.3 (b). It is perceived that the thermal and mass transport

distribution decayed with an increment in γ.

3.3.4 Impression of the Relaxation-to-Retardation Time Ratio

In Figs. 3.4 (a) − 3.4 (d) , variation of the ratio between relaxation to retardation time λ1

with η is shown. Relaxation time reveals time to mitigate stress in polymers under constant

strain. Velocities are enhanced by increasing λ1 as seen in Figs. 3.4 (a) and 3.4 (b) . However,

temperature θ (η) is reduced significantly. The same behavior is noticed for the concentration

profile, given in Figs. 3.4 (c) and 3.4 (d) , repectively.

3.3.5 Impression of the Radiation and Temperature Ratio

In Figs. 3.5 (a) and 3.5 (b) it is shown that with an increment in Rd and θw, the temperature

profile along with the boundary layer is elevated. Since because of the Rosseland approximation

for radiation, more heat and energy is generated due to the greater conductivity of nanofluid,

and it raises the fluid temperature/energy correspondingly as shown in Figs. 3.5 (a) and 3.5 (b) .

52



3.3.6 Impression of Prandtl Number and Schmidt Number

Fig. 3.6 (a) presents the impact of Prandtl number, i.e., the momentum-to-thermal diffusivity

ratio on the temperature field. It is determined that the energy is reduced by enlarging Pr . Fig.

3.6 (b) shows the consequences of Schmidt number on the fluid concentration φ (η). It describes

the mass-momentum transfer rate and has an inverse relation with the concentration profile.

3.3.7 Impression of the Thermophoresis and Brownian Diffusion

Figs. 3.7 (a) and 3.7 (b) determine the contribution of the thermophoresis and Brownian dif-

fusion on the temperature. It is seen that fluid temperature rises for larger values of both Nb

and Nt. The variations of Nb and Nt are presented for concentration field in Figs. 3.7 (c) and

3.7 (d) . For enhancing the value of Nb, the concentration field is depreciated; whereas, for Nt,

fluid concentration enhances significantly. Since the interaction of nanoparticles causes random

motion of the particles, which transpires heat conduction, the kinetic energy of the system is

magnified, which significantly affects the Brownian motion. However, due to thermophoresis,

those molecules which have higher kinetic energy motivates the particles to migrate towards

the region of lower temperature. Therefore, the concentration boundary layer is thickened.

3.3.8 Impression of the Shear Stress

The zeros in shear stress can be determined at γ = ±2.505,±2.5182,±2.5994 for β1 = M =

λ1 = 0. Additionally, for selected values of β1 at γ = 0, λ1 = 0.2, and M = 0.04, the values in

the graphs are noted to be 1.385435, 1.495094, and 1.591860. Fig. 3.8 verified that for different

values of β1, there is no apparent change seen in the coeffi cient of skin friction along the x -

direction f̆ ′′ (0) when γ < 0 (negative). But for non-negative value of ratio between shear

rate b to strain rate a, i.e., 0 < γ ≤ 5 with an increment in β1, f̆
′′ (0) is also enhanced. It

is also observed that when γ is negative, the coeffi cient of skin friction along the y-direction

ğ′′ (0) inclined as values of β1 increased; whereas for 0 < γ ≤ 5, no apparent change is noted.

Moreover, the dotted lines in Fig. 3.8 represent their asymptotic behavior. It is apparent from

Fig. 3.8 that f̆ ′′(0) gains its asymptotic conduct; however, ğ′′ (0) does not.
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3.3.9 Impression of the Displacement Thicknesses

The impressions of
√

a
ν δx ≡ α and

√
a
ν δy ≡ β are illustrated in Fig. 3.9 (a) . Both α and β have

similar values at γ = 0 and β1 = 0.0, 0.02, 0.2 noted as, 0.5251, 0.5032 and 0.4519, respectively.

Furthermore, with an increment in the Deborah number β1, these parameters (α and β) both

are reduced for particular values of shear-to-strain rate ratio γ. In Fig. 3.9 (b) , the impacts

of 3D displacement thickness parameter δ1 with γ are determined. It is discovered that for

γ = 0 and β1 = 0.0, 0.02, 0.2, δ1 attained maximum values, i.e., 0.5251, 0.5032 and 0.4519,

respectively. Furthermore, another way to read these graphs is to note the behavior of these

parameters for negative and non-negative values of γ. For γ > ±2.0, we observed the value of

δ1 correspondingly declined by enhancing β1 as shown in Fig. 3.9 (b) . However, α started to

decline significantly from −4 ≤ γ ≤ 6 as displayed in Fig. 3.9 (a) . Moreover, α closer to its
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asymptotic value (dotted lines); whereas, β and δ1 exhibited opposite behavior.
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3.4 Concluding Remarks

This study focused on the numerical and large-γ asymptotic solutions for Jeffrey’s nanofluid

flow in the stagnation-region over an electrically conducting cylindrical disk. The ramifications

of the parameters involved were investigated on the fluid flow, energy, and mass transport. The
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numerical results and their asymptotic solutions were determined by using a built-in program,

bvp4c on Matlab
R©
. Moreover, our results were consistent with the ones in literature. The

observations made are summarized below.

• The significance of Jeffrey’s material parameters and magnetic field on skin drag was in-

spected. It is perceived that for the coeffi cient of skin friction along x -axis f̆ ′′ (0) somehow

reached its asymptotic value as γ →∞; however, along the y-axis, the coeffi cient of skin

friction ğ′′ (0) exhibited contrasting behavior by decaying significantly.

• The displacement thickness parameters reduced with the increment of the Deborah num-

ber for specific values of the shear-to-strain rate ratio γ. It is seen through graphs that

as γ → ∞,
√

a
ν δx was closer to its asymptotic value; whereas, opposite behavior was

depicted by
√

a
ν δy and δ1.

• The impact of the Lorentz force created by magnetic field caused the decay in velocity

fields, while enhanced the thermal and concentration boundary layer.

• The temperature field was boosted up by the extraordinary thermal conductivity of

nanofluids. However the fluid concentration was increased for the former and reduced

for the latter.

• Due to the Rosseland approximation for solar radiation, the thermal boundary layer was

enhanced.
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