# An application of Rossby wave triads in information security



 $\mathbf{B}\mathbf{y}$ 

# Asif Ali

Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan 2021

# An application of Rossby wave triads in information security



 $\mathbf{B}\mathbf{y}$ 

Asif Ali

Supervised by

Dr. Umar Hayat

Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan 2021

# An application of Rossby wave triads in information

# security



 $\mathbf{B}\mathbf{y}$ 

# Asif Ali

A dissertation submitted in the partial fulfillment of the

requirement for the degree of

Master Of Philosophy

in

Mathematics

Supervised By

Dr. Umar Hayat

Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan 2021

# ACKNOWLEDGEMENTS

All praises to **Almighty Allah**, the creator and sustainer of the universe, Who is the supreme authority, knowing the ultimate realities of universe and source of all knowledge and wisdom. Without His will nothing could be happened. It has been deemed a great favor of **Allah** that, I was bestowed upon the vision, initiative, potential and hope to complete my thesis successfully. All regards to the Holy Prophet **Hazrat Muhammad (SAW)**, Who enables me to recognize my creator and His creations to understand the philosophy of life. Holy Prophet said that, I am the light, whoever follows Me, will never be in the darkness.

I feel great pleasure in expressing my profound and heartiest gratitude to my most respectable supervisor **Dr. Umar Hayat**, Department of Mathematics, Quaid- i-Azam University Islamabad, for his indispensable guidance, deep consideration, affection and active co-operation that made possible this work to meet its end successfully.

I am obligated to provide my respect and gratitude to my **Parents**, my **Brothers** and my **Friends** who have been a continuous source of motivation all along and for providing me the chance to get higher education. My **Mother**, in particular, is a great role model of strength and character for me. Their efforts and limitless prayers flourished me throughout my life. I would never be able to pay back the love and affection showered upon me by them. I cannot forget their kind care and their interest in my success.

Asif Ali.

# Preface

In recent decades, the protection of sensitive data has achieved a lot of attention from cryptographers. The researchers have suggested different types of security informative techniques. The main principle of cryptographic approach is to use kev(s) to transform critical data into an unreadable form. Shannon [30] proved that confusion and diffusion in the data up to a certain level is essential for a secure security system. The diffusion is composed in dispersed the impact of plaintext bits to ciphertext bits to difficult to understand the statistical configuration of the plaintext. Confusion is the process of conversion in which statistics of ciphertext change in line with the alteration of the plaintext information. There are various sort of cryptosystems which are based upon different concepts in mathematics. An S-box is primarily responsible for confusion and diffusion in the input data in many cryptographic techniques. An S-box is said to be good when it can produce high resistance against several cryptographic attacks, which are measured by non-linearity, linear approximation probability, strict avalanche criterion, bit independence criterion, differential approximation probability. In substitution permutation cipher structures S-boxes are used as important nonlinear components that guarantee the confusion property of block ciphers [8, 23, 36].

Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Carl-Gustaf Arvid Rossby. Atmospheric Rossby waves on Earth are giant meanders in highaltitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean. Rossby waves are also a solution of simplified form of the equations governing the dynamics of the atmosphere and oceans. In 2013, Hayat et al. [15] had prove that the Rossby wave triads lie on an elliptic surface. In [33], firstly has used Rossby wave triads in cryptography.

Elliptic curves (EC) are also used in the development of powerful cryptosystems. The notion of elliptic curve was firstly introduced in cryptography in [25]. In addition, a cryptosystem is suggested that's 20% efficient than Diffie-Hellman algorithm. A cryptosystem primarily depends on elliptic curve is shown in [26]. A relation between both the hyper elliptic curve points and the nonlinearity of the S-box is shown in [17]. In [19], the idea of a discrete logarithmic issue is utilized to build a highly safe, fast, and efficient security system. In [1], a comparison between elliptic curve cryptography and RSA is given. It is observed that ECC with a smaller key lengths is more secure as compared to RSA with larger key length. The programs and merits of ECC are mentioned in [34]. In [13, 14], presents a new technique for construction of S-boxes primarily based on points on elliptic curve over a prime field. Consistency of previously used S-boxes experts still hasn't had the most surprising ranking of S-box criteria. In this way, it is necessary to construct another special S-box design with the objective that the corresponding S-box is resistant against different cryptographic attacks.

This thesis comprises of three chapters which are briefly described below. **Chapter 1**, we outlined some concepts related to elliptic curve cryptography and Rossby wave triads. The definitions of elliptic curve, Mordell elliptic curve and isomorphism between two elliptic curves are also discussed. We also study resonant triads, quasi-resonant triads, and a brief introduction of a relation between quasi-resonant triads and two auxiliary parameters has given. **Chapter 2**, represents an image encryption scheme that works on the base of the Mordell elliptic curve and Rossby wave triads. **Chapter 3**, describes the main aim of this thesis, that is, the S-boxes generation scheme using Rossby wave triads.

# Contents

| In       | trod | uction  |                                                            | ii        |
|----------|------|---------|------------------------------------------------------------|-----------|
| 1        | Pre  | limina  | ries                                                       | 1         |
|          | 1.1  | Crypt   | ology                                                      | 1         |
|          |      | 1.1.1   | Cryptography                                               | 2         |
|          |      | 1.1.2   | Types of Cryptography                                      | 2         |
|          |      | 1.1.3   | Cryptanalysis                                              | 4         |
|          | 1.2  | Some    | Elementary Concepts from Group Theory                      | 5         |
|          |      | 1.2.1   | Prime Field [21]                                           | 7         |
|          | 1.3  | Ellipti | ic Curves Cryptography (ECC)                               | 7         |
|          |      | 1.3.1   | Elliptic Curve (EC)                                        | 8         |
|          | 1.4  | Addit   | ion of Points of EC                                        | 10        |
|          |      | 1.4.1   | Group Order                                                | 15        |
|          |      | 1.4.2   | Order a Point of the Elliptic Curve                        | 15        |
|          | 1.5  | Isomo   | rphic Elliptic Curves                                      | 16        |
|          |      | 1.5.1   | J-invariant [37]                                           | 16        |
|          | 1.6  | Morde   | ell Elliptic Curve (MEC)                                   | 17        |
|          | 1.7  | Quadi   | catic Residue in Finite Field $\mathbb{F}_p$               | 17        |
|          |      | 1.7.1   | The Rules for finding Quadratic Residues in $\mathbb{F}_p$ | 17        |
|          | 1.8  | Rossb   | y Wave Triads                                              | 18        |
|          |      | 1.8.1   | A Relation Between Resonant Triads and Elliptic Surface    | 20        |
|          |      | 1.8.2   | New Parameterization                                       | 20        |
| <b>2</b> | Lite | erature | e Review for Image Encryption                              | <b>22</b> |
|          | 2.1  | Encry   | ption Scheme                                               | 22        |

|    | 2.2   | Encry  | ption $\ldots$ | 23 |
|----|-------|--------|-------------------------------------------------------------------------------------------------|----|
|    |       | 2.2.1  | Construction of an S-box $\zeta_E(p, t, S_p)$ Based on MEC                                      | 24 |
|    |       | 2.2.2  | Generation of the Quasi-Resonant Triads                                                         | 24 |
|    |       | 2.2.3  | Generation of the Pseudo Random Sequence $\beta_T(S_p, t)$                                      | 26 |
|    |       | 2.2.4  | Diffusion Process                                                                               | 26 |
|    |       | 2.2.5  | Confusion Proces                                                                                | 26 |
| 3  | Co    | nstruc | tion of Highly Secure S-boxes                                                                   | 32 |
|    | 3.1   | A Rela | ationship between Resonant Triads and MEC                                                       | 32 |
|    | 3.2   | Propo  | sed S-Box Scheme                                                                                | 34 |
|    | 3.3   | Securi | ty Analysis and Comparisons                                                                     | 38 |
|    |       | 3.3.1  | Non-linearity                                                                                   | 38 |
|    |       | 3.3.2  | Linear Approximation Probability (LAP)                                                          | 38 |
|    |       | 3.3.3  | Differential Approximation Probability (DAP)                                                    | 39 |
|    |       | 3.3.4  | Strict Avalanche Criterion (SAC)                                                                | 39 |
|    |       | 3.3.5  | Bit Independence Criterion (BIC)                                                                | 40 |
|    | 3.4   | Conclu | usion                                                                                           | 41 |
| Bi | bliog | graphy |                                                                                                 | 42 |

# List of Figures

| 1.1 | Flowchart of Symmetric Key Cryptography [16]                   | 3  |
|-----|----------------------------------------------------------------|----|
| 1.2 | Flowchart of Asymmetric Key Cryptography [16]                  | 4  |
| 1.3 | Graphical addition of $P_1$ and $P_2$ when $P_1 \neq P_2$ [37] | 12 |
| 1.4 | Graphical addition of $P_1$ and $P_2$ when $P_1 = P_2$ [37].   | 13 |

# List of Tables

| 1.1 | Addition two element of set $\mathbb{F}_6$                          | 6  |
|-----|---------------------------------------------------------------------|----|
| 1.2 | Addition any two elements of set $\mathbb{F}_7$                     | 7  |
| 1.3 | Multiplication any two points of set $\{\mathbb{F}_7 - \{0\}\}$     | 8  |
| 2.1 | Plain image $P$                                                     | 27 |
| 2.2 | Linear ordering of plain image P                                    | 28 |
| 2.3 | Corresponding 64 quasi-resonant triads                              | 29 |
| 2.4 | Pseudo random sequence $\beta_T(10705, 40)$                         | 30 |
| 2.5 | $\zeta_E(1607, 40, 10705)$                                          | 30 |
| 2.6 | Diffusion image $N_P$ of plain image $P$                            | 31 |
| 2.7 | Cipher image $C_p$ of plain image $P$                               | 31 |
| 9.1 |                                                                     | 97 |
| 3.1 | $\zeta_{E(1637,37,644)}$                                            | 57 |
| 3.2 | $\zeta_{E(3917,221,285)}$ · · · · · · · · · · · · · · · · · · ·     | 37 |
| 3.3 | Comparison of our proposed S-boxes with existing S-boxes $\ldots$ . | 40 |

# Chapter 1

# Preliminaries

In this chapter, we recall some basic concepts of elliptic curve cryptography and Rossby wave triads. The aforesaid chapter has been divided into eight sections. In first Section, we discuss cryptology, cryptography, and cryptanalysis in detail. In second Section, we discuss the group over finite field. In third Section, the basic definition of the elliptic curve, singular elliptic curve, and nonsingular elliptic curve are discussed. In fourth Section, we discuss a formula for the addition of two points of elliptic curve. Sections five and six are denoted for the isomorphism of two elliptic curves and Mordell elliptic curves respectively. Section seven is for the definitions of quadratic residue and non-residue over field  $\mathbb{F}_p$ . In Section eight, we discuss the Rossby wave triads and a relation between Rossby wave triads and two auxiliary parameters.

# 1.1 Cryptology

The word cryptology is copied from two Greek words Kryptos means (hidden) and logos means (words) [29]. So cryptology is the science for data communication that is safe and stable. Two fields of study are discussed in cryptology.

- (a) **Cryptography**
- (b) Cryptanalysis

# 1.1.1 Cryptography

Cryptography is the branch of cryptology in which we safely transform our sensitive information in such a way that only, it can be understood by an authorized person. Search for its original meaning is a very complex work for an unknown person during this transformation process. Usually, two characters Alice and Bob, are used in cryptography [32]. Over a public network, Alice ('sender') wants to connect with Bob ('receiver'). Alice does not send Bob the original message, but she converts it into a coded form called ciphertext. The ciphertext is a type of message which is very difficult to understand. That is why at the receiver's end, it has to transform back into plaintext. A key is oversensitive data that is used for the transformation of plaintext into ciphertext and vice versa. A cryptosystem's security relies on the base of a key, so it has to keep secret. Some features of the cryptography are defined below [24].

# Confidentiality

It guarantees that only the sender and receiver have original information, and any unauthorized person can not access secret information.

# Data integrity

It guarantees that the transmitted information is not altering during transmission through an unsecured channel. The receiver can receive the original data, and any other person can not change transmission besides sender and receiver.

# Message Authentication

This property justifies the identity of the sender and receiver. Also it guarantees that their communication is not monitoring by an unauthorized person.

# Certification

Certification describes as information that transmitted by a trusted party or individual.

# 1.1.2 Types of Cryptography

Two types of cryptography are explained below.

- (1) Symmetric key Cryptography
- (2) Asymmetric key Cryptography or Public key Cryptography

# Symmetric key Cryptography

In symmetric key cryptography, a single key (private key) is used for both encryption and decryption [18]. A cryptographic model of the symmetric key is shown in Figure (1.1) [16]. In this cryptosystem, the key should be unknown from the adversary (attacker). Another name of symmetric key cryptography is private or secret key cryptography. Advanced Encryption Standard (AES), Data Encryption Standard (DES), and International Data Encryption Algorithm (IDEA) are examples of this cryptography.

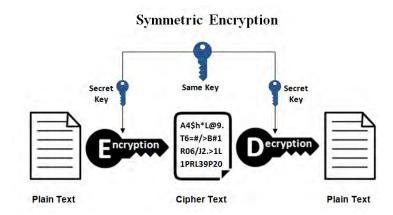
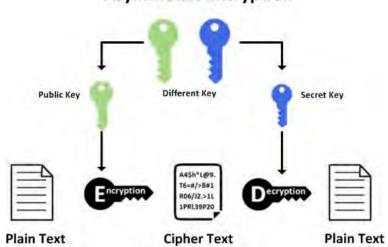


Figure 1.1: Flowchart of Symmetric Key Cryptography [16].

# Asymmetric Key Cryptography

A cryptography class that depends on two keys (one is known to everybody called the *public* key, and the second is kept secret called the *private* key) is called asymmetric key cryptography [18]. The model of asymmetric key cryptography is shown in Figure (1.2) [16]. In this cryptosystem, the public key is used for encryption and the secret key is used for decryption. Anyone can easily access the public key, but the private key is kept secret. The public key is publically published and the message is encrypted by using this key. Only the approved person can understands this encrypted information by using the secret key. In this process, access to private keys with the use of the public key is improbable. Elliptic Curve Cryptography (ECC), Rivest–Shamir–Adleman (RSA) and Data Structures and Algorithms (DSA) are examples of asymmetric key cryptography.



#### Asymmetric Encryption

Figure 1.2: Flowchart of Asymmetric Key Cryptography [16].

# 1.1.3 Cryptanalysis

The word cryptanalysis is derived from two Greek words Kryptos mean (hidden) and analýein, (to analyze). Cryptanalysis is a process for acquiring plaintext from ciphertext without knowing the keys [23]. A person who performs this process is called a cryptanalyst. A cryptanalyst does this work, when any one properties of a cryptosystem such as (Confidentiality, Data integrity, Message authentication, and Non-repudiation) are seen weak. Cryptanalysis is mostly used either to attack a secret communication or to test the cryptosystem's capacity. Below is a discussion of some of the attack's that are used during cryptanalysis.

#### 1 Brute force attack

To obtain the plaintext from the ciphertext, the opponents arbitrarily try all the possible keys under this attack. The strength of a cryptosystem against this attack directly correlates with the key size.

# 2 Chosen plaintext attack

There are several ways to attack a cryptosystem, one of which is the chosen plaintext attack. In this attack, the opponents choose an arbitrary plaintext for encryption and receive ciphertext corresponding. The main aim of this attack is to reduce the security of a cryptosystem.

#### 3 Chosen ciphertext attack

This attack is the same as the chosen plaintext attack. In this attack, opponent chooses arbitrary ciphertext. This attack is used to collected more information about the plaintext.

#### 4 Known plaintext attack

In this attack, the attacker has some information about the plaintext. He uses these information and tries to access the crypto algorithm.

#### 4 Ciphertext attack

In this attack, the cryptanalyst has some information about ciphertext. He uses these information and tries to access the crypto algorithm.

# 1.2 Some Elementary Concepts from Group Theory

**Definition 1.2.1.** [21] (Group): Let  $\mathbb{G}_b$  be a non-empty set, then the set  $\mathbb{G}_b$  with a binary operation \* is called a group if its following axioms are satisfied.

**Closure law**: For all  $\hat{q_{r_1}}$ ,  $\hat{q_{r_2}} \in \mathbb{G}_b$ , then  $\hat{q_{r_1}} * \hat{q_{r_2}} \in \mathbb{G}_b$ .

**Associativity**:  $\hat{q_{r_1}} * (\hat{q_{r_2}} * \hat{q_{r_3}}) = (\hat{q_{r_1}} * \hat{q_{r_2}}) * \hat{q_{r_3}}$  for all  $\hat{q_{r_1}}, \hat{q_{r_2}}, \hat{q_{r_3}} \in \mathbb{G}_b$ .

**Existence an identity**: An element  $\hat{e_r} \in \mathbb{G}_b$ , such that  $\hat{q_r} * \hat{e_r} = \hat{e_r} * \hat{q_r} = \hat{q_r}$ , for all  $\hat{q_r} \in \mathbb{G}_b$ .

**Existence inverses**: For each elements  $\hat{q}_r \in \mathbb{G}_b$ , there exists an element  $\hat{q}r \in \mathbb{G}_b$ such that  $\hat{q}_r * \hat{q}r = \hat{q}r * \hat{q}_r = \hat{e}_r$ .

We denote  $(\mathbb{G}_b, *)$  by  $\mathbb{G}_b$ .  $\mathbb{G}_b$  is called abelian group if it satisfies commutative law, i.e.  $\hat{q}_{r_1} * \hat{q}_{r_2} = \hat{q}_{r_2} * \hat{q}_{r_1}$  for all  $\hat{q}_{r_1}, \hat{q}_{r_2} \in \mathbb{G}_b$ .

**Definition 1.2.2.** [21] (Order of Group): The numbers of elements in  $\mathbb{G}_b$  is called order of  $\mathbb{G}_b$ .

**Remark:** 1.2.3. If number of elements in  $\mathbb{G}_b$  is finite, then  $\mathbb{G}_b$  is called a finite order group, otherwise it is called an infinite order group.

**Example 1.2.4.** Consider  $\mathbb{F}_6 = \{0, 1, 2, 3, 4, 5\}$  to be a set of integers module 6. The Table (1.1) given below defines the addition of any two elements of set  $\mathbb{F}_6$ . Under this addition, the set  $\mathbb{F}_6$  satisfies all properties of group. This is an example of finite order additive group. And order of  $\mathbb{F}_6$  is 6.

| + | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 | 1 | 2 |
| 4 | 4 | 5 | 0 | 1 | 2 | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |

|  | Table $1.1$ : | Addition | two element | of set $\mathbb{F}_6$ . |
|--|---------------|----------|-------------|-------------------------|
|--|---------------|----------|-------------|-------------------------|

**Definition 1.2.5.** [21] (Field): Let  $\mathbb{F}$  be a non empty set with two binary operation, addition (+), and multiplication (•). Then the set  $\mathbb{F}$  is called field if it satisfies following properties.

- i: The set  $(\mathbb{F}, +)$  is an abelian group.
- ii: The set  $(\mathbb{F} \{0\}, \bullet)$  is an abelian group.
- iii: Left and right distributive law holds, i.e.

$$\hat{q_{r_1}} \bullet (\hat{q_{r_2}} + \hat{q_{r_3}}) = \hat{q_{r_1}} \bullet \hat{q_{r_2}} + \hat{q_{r_1}} \bullet \hat{q_{r_3}}$$
$$(\hat{q_{r_1}} + \hat{q_{r_2}}) \bullet \hat{q_{r_3}} = \hat{q_{r_1}} \bullet \hat{q_{r_3}} + \hat{q_{r_2}} \bullet \hat{q_{r_3}}$$

for all  $\hat{q_{r_1}}, \hat{q_{r_2}}, \hat{q_{r_3}} \in \mathbb{F}$ .

**Definition 1.2.6.** [21] (Finite Field): If numbers of elements in  $\mathbb{F}$  is finite, then  $\mathbb{F}$  is called finite field.

#### **Field operations**

Addition (+) and multiplication (•) are two binary operations in a field. The subtraction of field elements is defined in term of addition, for  $\hat{q_{r_1}}$ ,  $\hat{q_{r_2}} \in \mathbb{F}$ , then

$$\hat{q_{r_1}} - \hat{q_{r_2}} = \hat{q_{r_1}} + (-\hat{q_{r_2}}).$$

Where  $-\hat{q_{r_2}}$  is the unique element in field  $\mathbb{F}$  such that  $\hat{q_{r_2}} + (-\hat{q_{r_2}}) = 0$ . Division in a field is define in term of multiplication for  $\hat{q_{r_1}}, \hat{q_{r_2}} \in \mathbb{F}$ , with  $\hat{q_{r_2}}^{-1} \neq 0$  imply that

$$\frac{\hat{q_{r_1}}}{\hat{q_{r_2}}} = \hat{q_{r_1}} \bullet \hat{q_{r_2}}^{-1}$$

where  $\hat{q_{r_2}}^{-1}$  is inverse of  $\hat{q_{r_2}}$  which is unique in field  $\mathbb{F}$ .

# 1.2.1 Prime Field [21]

Let a set  $\mathbb{F}_p = \{0, 1, 2, 3, \dots, p-1\}$  of integers modulo p, where p is a prime. The addition and multiplication under this set performed modulo p is a prime field.

**Example 1.2.7.** Consider the set  $\mathbb{F}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ . The addition of any two elements of set  $\mathbb{F}_7$  under modulo 7 define in table (1.2) and multiplication of any two elements of set  $\{\mathbb{F}_7 - \{0\}\}$  under modulo 7 define in table (1.3).

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |

Table 1.2: Addition any two elements of set  $\mathbb{F}_7$ .

Under given binary operations the set  $\mathbb{F}_7$  is a finite field of order 7. Addition inverse:  $-0 \equiv 0 \pmod{7}, -1 \equiv 6 \pmod{7}, -2 \equiv 5 \pmod{7}, -3 \equiv 4 \pmod{7}, -4 \equiv 3 \pmod{7}, -5 \equiv 2 \pmod{7}, -6 \equiv 1 \pmod{7}.$ Multiplication Inverse :  $1^{-1} \equiv 1 \pmod{7}, 2^{-1} \equiv 4 \pmod{7}, 3^{-1} \equiv 5 \pmod{7}, 4^{-1} \equiv 2 \pmod{7}, 5^{-1} \equiv 3 \pmod{7}, 6^{-1} \equiv 6 \pmod{7}.$ 

# 1.3 Elliptic Curves Cryptography (ECC)

ECC is a type of cryptography that is largely based on the elliptic curve [31]. ECC used the features of the elliptic curve equation. It is an asymmetric key

| • | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 6 | 5 | 4 | 3 | 2 | 1 |

Table 1.3: Multiplication any two points of set  $\{\mathbb{F}_7 - \{0\}\}$ .

cryptography. In 1985, Victor Miller proposed independently the use of elliptic curve in cryptography. Since ECC is suitable over a finite field, therefore we will work over a finite field.

# 1.3.1 Elliptic Curve (EC)

**Definition 1.3.1.** In [37], an EC over a field  $\mathbb{F}$  is given in the long Weierstrass form as,

$$\mathbb{E} : y^{2} + \check{a_{r}}xy + \check{b_{r}}y = x^{3} + \check{c_{r}}x^{2} + \check{d_{r}}x + \check{e_{r}}$$
(1.1)

where  $\check{a_r}, \check{b_r}, \check{c_r}, \check{d_r}, \check{e_r} \in \mathbb{F}$  and the discriminant of  $\mathbb{E}$  is denoted by  $\triangle$  and defined as,

$$\triangle = -w_2^2 w_8 - 8w_4^3 - 27w_6^2 + 9w_2 w_4 w_6,$$

where,

$$w_2 = \check{a_r^2} + 4\check{c_r},$$
$$w_6 = \check{b_r^2} + 4\check{e_r},$$
$$w_4 = 2\check{d_r} + 9\check{b_r},$$

and

$$w_8 = \check{a_r^2} \check{e_r} + 4\check{c_r} \check{e_r} - \check{a_r} \check{b_r} \check{d_r} + \check{c_r} \check{b_r^2} + \check{d_r^2}.$$

A set of points lies on equation (1.1) defined as,

$$\#\mathbb{E}(\mathbb{F}) = \{(x,y) \in \mathbb{F} : y^2 + \check{a_r}xy + \check{b_r}y = x^3 + \check{c_r}x^2 + \check{d_r}x + \check{e_r}\} \cup \{(\infty,\infty)\}.$$

Where  $(\infty, \infty)$  is a point at infinity, and homogenize form of the equation (1.1) is

$$y^{2}z + \check{a_{r}}xyz + \check{b_{r}}yz^{2} = x^{3} + \check{c_{r}}x^{2}z + \check{d_{r}}xz^{2} + \check{e_{r}}z^{3}.$$
 (1.2)

The infinity point in equation (1.2) is define (0:1:0). Suppose that characteristic of  $\mathbb{F}$  is not equal to 2 i.e.  $char(\mathbb{F}) \neq 2$ , then applying some suitable transformation the equation (1.1) transforms an other form of equation called Medium Weierstrass equation, that defined as,

$$y^2 = x^3 + a_2 x^2 + a_4 x + a_6, (1.3)$$

where,

$$a_2 = \check{c}_r + \frac{1}{4}\check{a}_r^2,$$
  

$$a_4 = \check{d}_r + \frac{1}{2}\check{a}_r\check{b}_r,$$
  

$$a_6 = \check{e}_r + \frac{1}{4}\check{b}_r^2.$$

If  $\operatorname{char}(\mathbb{F}) \neq 3$ , then applying some suitable transformation the equation (1.3) transforms into a new form called Short Weierstrass equation, that defined as,

$$y^2 = x^3 + \mathbb{A}x + \mathbb{B},$$

where,

$$\mathbb{A} = \left(\frac{1}{3}a_2^2 - \frac{2}{3}a_2 + a_4\right),$$
$$\mathbb{B} = \left(\frac{1}{27}a - 2^3 + \frac{1}{9}a_2^3 - \frac{1}{3}a_2a_4 + a_6\right),$$

and  $\mathbb{A}$ ,  $\mathbb{B} \in \mathbb{F}$ .

**Definition 1.3.2.** The discriminant of an equation  $y^2 = x^3 + \mathbb{A}x + \mathbb{B}$  is defined as,

$$\triangle = 27\mathbb{B}^2 + 4\mathbb{A}^3$$

# Theorem 1.3.3. [37]

An elliptic curve is non-singular if and only if the discriminant is non-zero i.e.  $\Delta \neq 0.$ 

Definition 1.3.4. Consider an EC

$$\mathbb{E}: y^2 = x^3 + \mathbb{A}x + \mathbb{B},$$

in short Weierstrass form, then the point Q = (x, y) is singular on  $\mathbb{E}$ , if this point lie on equation

$$F(x,y) = x^3 + \mathbb{A}x + \mathbb{B} - y^2.$$

And two equations

$$F(x,y)_x = 3x^2 + \mathbb{A} = 0,$$

and

$$F(x,y)_y = -2y = 0,$$

are satisfied this point.

Corollary 1.3.5. [37]

Consider  $\mathbb{E} : y^2 = x^3 + \mathbb{A}x + \mathbb{B}$  over field  $\mathbb{F}$ , then  $\mathbb{E}$  is singular at point (x,y), if and only if  $\Delta = 0$ .

**Example 1.3.6.** Let  $y^2 = x^3 - 3x + 2$  be an EC. We know that discriminant of general EC  $y^2 = x^3 + \mathbb{A}x + \mathbb{B}$ , is  $\triangle = 27\mathbb{B}^2 + 4\mathbb{A}^3$ , so compare with given curve  $\mathbb{A} = -3$ , and  $\mathbb{B} = 2$ , we have

$$\triangle = 27(2)^2 + 4(-3)^3 = 108 - 108 = 0.$$

Since (1,0) point lies on the given curve, Now we take parital derivative of given curve with respect to x, then

$$F(x,y)_x = 3x^2 - 3.$$

 $F(1,0)_x = 0$ , also

$$F(x, y)_y = -2y,$$

therefore,  $F(1,0)_y = 0$ . Hence (1,0) is a singular point on this curve. But we are not interested in singular EC because in next chapters we will work only over non-singular EC.

# **1.4** Addition of Points of EC

**Remark:** 1.4.1. If  $q_1$ ,  $q_2$ ,  $q_3$  are three roots of a cubic polynomial, where the leading coefficient of polynomial is one. Then  $q_1 + q_2 + q_3 = -(\text{coefficient of } x^2)$ .

In [31], the EC defined over many fields such as rational numbers  $\mathbb{Q}$ , complex numbers  $\mathbb{C}$ , real numbers  $\mathbb{R}$ , and integer modulo p. Let

$$\mathbb{E}: y^2 = x^3 + \mathbb{A}x + \mathbb{B},\tag{1.4}$$

be an EC over field  $\mathbb{F}$ . Let two points  $P_1 = (t_{\hat{r}_1}, s_{\hat{r}_1})$  and  $P_2 = (t_{\hat{r}_2}, s_{\hat{r}_2})$  lie on  $\mathbb{E}$  over field  $\mathbb{F}$ . Then addition of two points  $P_1$ ,  $P_2$  is defined as

$$P_1 \oplus P_2 = P_3.$$

Where  $P_3 = (t_{\hat{r}_3}, s_{\hat{r}_3})$  is a point of reflection across x-axis of third point that lie on secant line L, when this passing through  $P_1$  and  $P_2$ . We find the thrid point  $P_3$  as follows.

**Case(1):** If  $t_{\hat{r}_1} \neq t_{\hat{r}_2}$  and  $s_{\hat{r}_1} \neq s_{\hat{r}_2}$ , then the equation of line *L* through points  $P_1$  and  $P_2$  is defined as

$$y - s_{\hat{r}_1} = \dot{m}(x - t_{\hat{r}_1}), \tag{1.5}$$

where,

$$\dot{m} = \frac{s_{\hat{r}_2} - s_{\hat{r}_1}}{t_{\hat{r}_2} - t_{\hat{r}_1}},$$

is the slop of the line passing through  $P_1$  and  $P_2$ .

Put the value of  $y = \dot{m}(x - t_{\hat{r}_1}) + s_{\hat{r}_1}$  in equation (1.4). Then after simplification, we get

$$x^{3} - \dot{m}^{2}x^{2} + (\mathbb{A} - 2\dot{m}s_{\hat{r}_{1}} + 2\dot{m}^{2}t_{\hat{r}_{1}})x + constant = 0.$$
(1.6)

By using remark (1.4.1),  $t_{\hat{r}_1} + t_{\hat{r}_2} + t_{\hat{r}_3} = \dot{m}^2 \Longrightarrow \dot{t_{r_3}} = \dot{m}^2 - t_{\hat{r}_1} - t_{\hat{r}_2}$ . Put value of  $\dot{t_{r_3}}$  in equation (1.5), we get

$$\dot{s_{r_3}} = \dot{m}(\dot{m}^2 - 2t_{\hat{r}_1} - t_{\hat{r}_2}) + s_{\hat{r}_1}.$$

Since

$$\dot{P} = (\dot{t_{r_3}}, \dot{s_{r_3}}),$$

therefore,

$$P_3 = -P = (t_{r_3}, -s_{r_3}').$$
$$P_1 \oplus P_2 = (t_{r_3}, \dot{m}(t_{\hat{r}_1} - t_{r_3}') - s_{\hat{r}_1}).$$

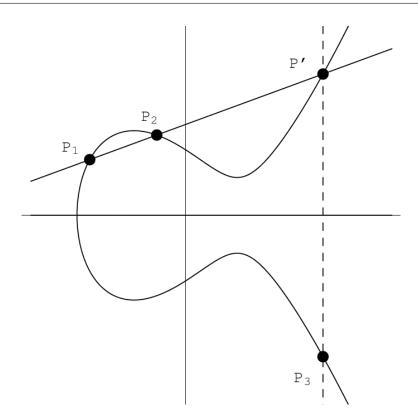


Figure 1.3: Graphical addition of  $P_1$  and  $P_2$  when  $P_1 \neq P_2$  [37].

The graphical representation of this case is shown in Figure (1.3).

**Case(2)**: If  $t_{\hat{r}_1} = t_{\hat{r}_2}$  and  $s_{\hat{r}_1} \neq s_{\hat{r}_2}$ , then the line *L* that passing through points  $P_1$  and  $P_2$  is parallel to the y-axis. So we say that line intersect third point at infinity. Here

$$P_1 \oplus P_2 = O,$$

where  $O = (\infty, \infty)$ .

**Case(3)**: If  $P_1 = P_2$ , then the line *L* is tangent at point  $P_1 = (t_{\hat{r}_1}, s_{\hat{r}_1})$ . Derivative of equation (1.4) with respect to *x*, we get

$$2y\frac{dy}{dx} = 3x^2 + \mathbb{A},$$
$$\implies \frac{dy}{dx} = \frac{3x^2}{2y} + \frac{\mathbb{A}}{2y}$$

 $\mathbf{SO}$ 

$$\dot{m} = \frac{3(t_{\hat{r}_1})^2}{2s_{\hat{r}_1}} + \frac{\mathbb{A}}{2s_{\hat{r}_1}}.$$

If  $s_{\hat{r}_1} = 0$ , then the line is parallel to y-axis, therefore

$$P_1 \oplus P_1 = 2P_1 = O.$$

Otherwise the equation of line is

$$y - s_{\hat{r}_1} = \dot{m}(x - t_{\hat{r}_1}).$$

We get the coordinates of  $P_3$  as

$$t_{\hat{r}_3} = \dot{m}^2 - 2t_{\hat{r}_1}$$

and

$$s_{\hat{r}_3} = \dot{m}(t_{\hat{r}_1} - t_{\hat{r}_3}) - s_{\hat{r}_1}.$$

The graphical representation of this case is shown in Figure (1.4).

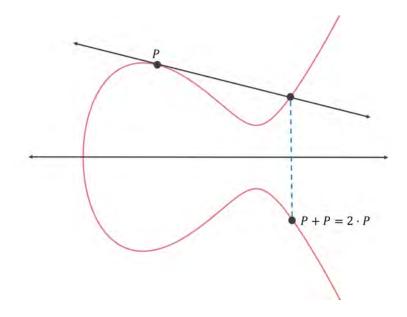


Figure 1.4: Graphical addition of  $P_1$  and  $P_2$  when  $P_1 = P_2$  [37].

**Case(4)**: if  $P_2 = (\infty, \infty)$ . Then

$$P_1 \oplus P_2 = P_1.$$

Under this addition, the points of an EC make an abelian group. In this group, the inverse of the point is a reflection of this point across the x-axis. And the identity element is infinity point of  $\mathbb{E}$ . On an EC when we added three collinear points then their sum will be zero.

**Example 1.4.2.** Consider an EC  $\mathbb{E}$  :  $y^2 = x^3 + 12x + 15$  over finite field  $\mathbb{F}_{17}$ . We know that discriminant of general EC define as

$$\triangle = 4\mathbb{A}^3 + 27\mathbb{B}^3 \pmod{p},$$

by compare the general EC with given EC, then  $\mathbb{A} = 12$  and  $\mathbb{B} = 15$ . However,

$$\triangle = 4(12)^3 + 27(15)^2 \pmod{17}$$
$$\triangle = 16 \pmod{17}.$$

So,

 $\implies$ 

$$\Delta \neq 0 \text{ over } \mathbb{F}_{17},$$

hence curve is non-singular. The points lies on given EC are,

$$(0,7), (4,5), (5,8), (4,12), (2,8), (0,10), (5,9), (7,0), (9,11), (9,6), (10,8),$$
  
 $(2,9), (16,11), (11,4), (11,4), (10,9), (15,0), (12,0), (11,13), (16,6), (\infty, \infty)$ 

For case(1): Since (9,6), (10,8) lies on given curve  $\mathbb{E}$  over  $\mathbb{F}_{17}$ . We know that

$$(9,6) \oplus (10,8) = (t_{\hat{r}_3}, s_{\hat{r}_3}),$$

where

$$t_{\hat{r}_3} = \dot{m}^2 - 9 - 10 \pmod{17},$$
  
 $s_{\hat{r}_3} = \dot{m}(9 - t_{\hat{r}_3}) - 6 \pmod{17},$ 

and

$$\dot{m} = \frac{8-6}{10-9} \pmod{17}.$$

After simplification, we get  $\dot{m} = 2$ ,  $t_{\hat{r}_3} = 2$  and  $s_{\hat{r}_3} = 8$ . Hence  $(9, 6) \oplus (10, 8) = (2, 8)$ .

For case(2): Since (4, 5), (4, 12) lies on given curve  $\mathbb{E}$ , so we know that,

$$(4,5) \oplus (4,12) = (t_{\hat{r}_3}, s_{\hat{r}_3}),$$

where

$$t_{\hat{r}_3} = \dot{m}^2 - 4 - 4 \pmod{17},$$
  
$$s_{\hat{r}_3} = \dot{m}(4 - \dot{y}_3) - 5 \pmod{17},$$

and

$$\dot{m} = \frac{12-5}{4-4} = \infty.$$

Therefore  $t_{\hat{r}_3} = \infty$ ,  $s_{\hat{r}_3} = \infty$ . Hence

 $(4,5) \oplus (4,12) = (\infty,\infty).$ 

For case(3): Since (4, 5) lie on given curve  $\mathbb{E}$ , we know that

$$(4,5) \oplus (4,5) = 2(4,5) = (t_{\hat{r}_3}, s_{\hat{r}_3}),$$

where

$$t_{\hat{r}_3} = \dot{m}^2 - 2(4) \quad (mod \ 17),$$
  
$$s_{\hat{r}_3} = \dot{m}(4 - \dot{x_3}) - 5 \pmod{17}$$

and

$$\dot{m} = \frac{3(4)^2 + 12}{2*5} \pmod{17}$$

After simplification, we get  $\dot{m} = 6$ ,  $t_{\hat{r}_3} = 11$ ,  $s_{\hat{r}_3} = 4$ . So

$$(4,5) \oplus (4,5) = 2(4,5) = (11,4).$$

# 1.4.1 Group Order

The number of points lies on an EC is called the order of EC over field  $\mathbb{F}_p$ .

#### Theorem 1.4.3. [37] (Hasse)

Let  $\mathbb{E}$  be an EC over prime field  $\mathbb{F}_p$ , then the inequality is hold,

$$|\#\mathbb{E}(\mathbb{F}_p) - (p+1)| \le 2\sqrt{p},$$

or

$$p+1-2\sqrt{p} \le \#\mathbb{E}(\mathbb{F}_p) \le p+1+2\sqrt{p}.$$

Where the interval  $[p+1-2\sqrt{p}, p+1+2\sqrt{p}]$  is called Hasse interval.

# 1.4.2 Order a Point of the Elliptic Curve

Let  $P_r$  be a point that lie on an EC  $\mathbb{E}$  over field  $\mathbb{F}$ . A positive integer n is said to be an order of  $P_r$  if  $nP_r = (\infty, \infty)$ . Some types of points that lies on the elliptic curves (ECs) satisfy the following conditions.

- Let P<sub>r</sub> be a point of E, where the y-coordinate of P<sub>r</sub> is zero, then the order of P<sub>r</sub> is two.
- Let  $P_r$  be a point of  $\mathbb{E}$ , where the x-coordinates of points  $P_r$  and  $2P_r$  are same. Then the order of  $P_r$  is three.
- Let  $P_r$  be a point of  $\mathbb{E}$ , where the x-coordinates of the points  $P_r$  and  $nP_r$  are same, and n is least positive integer than the order of the point  $P_r$  is n + 1.

# **1.5** Isomorphic Elliptic Curves

Two ECs

$$\mathbb{E}_1: y^2 = x^3 + \mathbb{A}x + \mathbb{B}$$

and

$$\mathbb{E}_2: y^2 = x^3 + Ax + B$$

defined over same field  $\mathbb{F}$  are called isomorphic, if we can transform each points of  $\mathbb{E}_1$  in  $\mathbb{E}_2$  with a bijective mapping that define as

$$\Psi(x_1, y_1) = (t^2 x_1, t^3 y_1).$$

And  $\Psi(O) = \acute{O}$ , where O is identity in  $\mathbb{E}_1$  and  $\acute{O}$  is identity in  $\mathbb{E}_2$ .

The inverse mapping defined as

$$(\Psi)^{-1}(x_1, y_1) = (\frac{x_1}{t^2}, \frac{y_1}{t^3}),$$

where  $t \in \mathbb{F}$  is called an isomorphism parameter.

# 1.5.1 J-invariant [37]

Let  $\mathbb{E}: y^2 = x^3 + \mathbb{A}x + \mathbb{B}$  be an EC over field  $\mathbb{F}$ , then the J-invariant of  $\mathbb{E}$  is defined as,

$$J(\mathbb{E}) = \frac{1728 * 4\mathbb{A}^3}{27\mathbb{B}^2 + 4\mathbb{A}^3}.$$

# Theorem 1.5.1. [37]

Two ECs  $\mathbb{E}_1 : y^2 = x^3 + \mathbb{A}x + \mathbb{B}$  and  $\mathbb{E}_2 : y^2 = x^3 + Ax + B$  defined over field  $\mathbb{F}$  are isomorphism, then

$$J(\mathbb{E}_1) = J(\mathbb{E}_2).$$

Lemma 1.5.2. deduced from [20].

**Lemma 1.5.2.** The total number of elliptic curves define over field  $\mathbb{F}_p$  are  $p^2 - p$ . **Theorem 1.5.3.** [20] Let  $\mathbb{E} : y^2 = x^3 + \mathbb{A}x + \mathbb{B}$  be an EC over  $\mathbb{F}_p$ , where p > 3 be a prime and  $\mathbb{A}, \mathbb{B}, \in \mathbb{F}_p$ , then the numbers of ECs isomorphism to  $\mathbb{E}$  are

(1) 
$$(p-1)/6$$
, if  $\mathbb{A} = 0$  and  $p = 7$ .

- (2) (p-1)/4, if  $\mathbb{B} = 0$  and p = 5.
- (3) (p-1)/2, otherwise.

# 1.6 Mordell Elliptic Curve (MEC)

Consider the EC  $\mathbb{E}$  :  $y = x^3 + \mathbb{A}x + \mathbb{B}$  over  $\mathbb{F}_p$ , in case when  $\mathbb{A} = 0$  is a special kinds of EC called MEC [37]. In that EC if we select prime of form  $p \equiv 2 \pmod{3}$ , then p + 1 points lie on this curve.

#### **Theorem 1.6.1.** [37]

Let p > 3 be a prime and  $p \equiv 2 \pmod{3}$ , then the MEC over  $\mathbb{F}_p$  lies p + 1 points and y-coordinates of points are unique.

**Remark: 1.6.2.** The total numbers of MEC that defined over prime field  $\mathbb{F}_p$  are p-1.

# 1.7 Quadratic Residue in Finite Field $\mathbb{F}_p$

**Definition 1.7.1.** [28] Suppose non-zero elements  $r \in \mathbb{F}_p$  and  $b \in \mathbb{F}_p$ , then b is said to be an rth power residue in  $\mathbb{F}_p$ , if and only if there exist  $t \in \mathbb{F}_p$ , such that  $t^r \equiv b \pmod{p}$  is solvable. If r = 2 then b is said to be **Quadratic Residue in**  $\mathbb{F}_p$ .

# 1.7.1 The Rules for finding Quadratic Residues in $\mathbb{F}_p$

The prime p is used in form  $p \equiv 3 \pmod{4}$ .

**Corollary 1.7.2.** (Euler criterion): Let p be a odd prime, suppose non-zero integer  $b \in \mathbb{F}_p$ , then b is said to be quadratic residue in  $\mathbb{F}_p$ , if

$$b^{(p-1)/2} \equiv 1 \pmod{p},$$

b is said to be quadratic non residue in  $\mathbb{F}_p$ , if

$$b^{(p-1)/2} \equiv -1 \pmod{p}.$$

*Proof.* See proof in [4, 9].

**Remark:** 1.7.3. In a prime field  $\mathbb{F}_p$ ,  $\left(\frac{p-1}{2}\right)$  elements are quadratic residue and  $\left(\frac{p-1}{2}\right)$  elements are quadratic non residue.

**Example 1.7.4.** Consider the field  $\mathbb{F}_{17} = \{0, 1, 2, ..., 16\}$ , then quadratic residue elements in  $\mathbb{F}_{17}$  are,

and quadratic non residue elements in  $\mathbb{F}_{17}$  are,

# **1.8** Rossby Wave Triads

Consider in the large scale the dynamics of a shallow layer of incompressible fluid on the surface of rotating sphere like (Earth), is called (Beta-plane Approximation). A partial differential equation got from this phenomena is called barotropic vorticity equation that is defined as:

$$\frac{\partial}{\partial t}(\nabla^2 \Psi - F\Psi) + \xi \frac{\partial \Psi}{\partial x} + \left(-\frac{\partial \Psi}{\partial y}\frac{\partial \nabla^2 \Psi}{\partial x} + \frac{\partial \Psi}{\partial x}\frac{\partial \nabla^2 \Psi}{\partial y}\right) = 0.$$
(1.7)

Where  $\Psi$  is a real value function depend on x, y and time t. (Where x, y represents the longitude and latitude, repectively), and parameter F is a non-negative constant defined as  $F = \frac{1}{(R_e)^2}$ , where  $R_e$  represent the deformation radius. The parameter  $\xi$  in the equation (1.7) is a real constant obtaining from the variation of Coriolis force with y. In the literature equation (1.7) is called Charney-Hasegawa-Mima equation  $\{CHM\}$  [7, 10, 11]. In the equation (1.7) the first two terms are linear and thrid term is nonlinear. The linear solutions (linear wave) of the equation (1.7) define in the form  $\Psi(x, y, t) = \Re\{Ae^{i(kx+ly-\omega(k,l)t)}\}$  are called Rossby waves. Where  $\Re$  represent the real part, and  $\omega(k, l)$  is called dispersion relation that defined as,

$$\omega(k,l) = \frac{-\xi k}{k^2 + l^2 + F}$$

And k, l are called zonal and meridional wave vectors respectively. For these solutions the non-linear term of equation (1.7) is identically zero. When the non-linearity in equation (1.7) are considered then the approximation solutions of this equation are called resonant triads solutions. These solutions can be written as a linear combination of three traveling wave of the form,

$$\Psi(x, y, t) = \Re\{A_j e^{i(k_j x + l_j y - \omega(k_j, l_j)t)}\},\$$

for j = 1, 2, 3. The wave vectors  $k_1, k_2, k_3, l_1, l_2, l_3$ , satisfy the diophantine system of equations,

$$k_1 + k_2 - k_3 = 0, (1.8)$$

$$l_1 + l_2 - l_3 = 0, (1.9)$$

$$\omega(k_1, l_1) + \omega(k_2, l_2) - \omega(k_3, l_3) = 0.$$
(1.10)

The sets of wave vectors that satisfy the equations (1.8)-(1.10) are called **resonant** triads.

#### Quasi resonant triads:

If the equations (1.8) and (1.9) are satisfying and the equation (1.10) replaced by inequality  $|\omega_2 + \omega_1 - \omega_3| \leq \frac{1}{\delta}$  for very large value of  $\delta$  then the resonant triads are called **Quasi resonant triads**. And  $\frac{1}{\delta}$  is called the detuning level of quasi resonant triads.

In case if F=0 and  $\xi = -1$ . Then we written the equation (1.10) as,

$$\frac{k_1}{k_1^2 + l_1^2} + \frac{k_2}{k_2^2 + l_2^2} - \frac{k_3}{k_3^2 + l_3^2} = 0.$$
(1.11)

From equation (1.8) and (1.9), we known that

$$k_2 = k_3 - k_1, \quad l_2 = l_3 - l_1.$$

Put the value of  $k_2$ ,  $l_2$  in equation (1.11). Then

$$\begin{aligned} \frac{k_1}{k_1^2 + l_1^2} + \frac{k_3 - k_1}{(k_3 - k_1)^2 + (l_3 - l_1)^2} - \frac{k_3}{k_3^2 + l_3^2} &= 0. \end{aligned}$$

$$\implies \qquad k_1((k_3 - k_1)^2 + (l_3 - l_1)^2)(k_3^2 + l_3^2) + (k_3 - k_1)(k_1^2 + l_1^2)(k_3^2 + l_3^2) \\ - k_3((k_3 - k_1)^2 + (l_3 - l_1)^2)(k_1^2 + l_1^2) &= 0. \end{aligned}$$

$$\implies \qquad k_1(k_3^2 + k_1^2 - 2k_1k_3 + l_1^2 + l_3^2 - 2l_1l_3)(k_3^2 + l_3^2) + (k_3^3k_1^2 + k_3k_1^2l_3^2 + k_3^3l_1^2 + k_3l_1^2l_3^2) \end{aligned}$$

$$-k_{3}^{2}k_{1}^{3} - k_{1}^{3}l_{3}^{2} - k_{1}k_{3}^{2}l_{1}^{2} - k_{1}l_{1}^{2}l_{3}^{2}) - k_{3}(k_{3}^{2} + k_{1}^{2} - 2k_{1}k_{3} + l_{1}^{2} + l_{3}^{2} - 2l_{1}l_{3})(k_{1}^{2} + l_{1}^{2}) = 0.$$

After simplification this equation we obtain an equation,

$$k_3(k_1^2+l_1^2)^2+2k_1(k_1k_3+l_1l_3)(k_3^2+l_3^2) = k_1(k_3^2+l_3^2)^2+2k_3(k_1k_3+l_1l_3)(k_1^2+l_1^2).$$
(1.12)

Since this equation is invariant under the rescaling of the wave vectors. So the solutions of this equation lie in projective space.

# 1.8.1 A Relation Between Resonant Triads and Elliptic Surface

In 2013, Hayat et al. [15] transformed the wave vectors in terms of X, Y, and D with bijective mapping that defined as,

$$\frac{X}{Y^2 + D^2} = \frac{k_1}{k_3},\tag{1.13}$$

$$(\frac{X}{Y})(1 - \frac{D}{Y^2 + D^2}) = \frac{l_1}{k_3},$$
 (1.14)

$$\frac{D-1}{Y} = \frac{l_3}{k_3},\tag{1.15}$$

where X, Y,  $D \in \mathbb{Q}$ . Inverse of this mapping is defined as,

$$X = \frac{k_3 k_1^2 + k_3 l_1^2}{k_1 k_3^2 + k_1 l_3^2},\tag{1.16}$$

$$Y = \frac{k_3^2 l_1 - k_3 k_1 l_3}{k_1 k_3^2 + k_1 l_3^2},$$
(1.17)

and

$$D = \frac{k_3^2 k_1 + k_3 l_1 l_3}{k_1 k_3^2 + k_1 l_3^2},$$
(1.18)

where  $k_1k_3^2 + k_1l_3^2 \neq 0$ . Follows this mapping the equation (1.12) becomes an equation that defines an elliptic surface.

$$Y^{2} + 2DX^{2} + D^{2} = X^{3} + 2DX.$$
(1.19)

# 1.8.2 New Parameterization

In 2018, Hayat et al. [12] converted X, Y, and D in term of auxiliary parameters  $\hat{a}$ ,  $\hat{b}$  that defined as,

$$X = -\frac{-2\hat{b} + 1 + \hat{a}^2 - 3\hat{b}^2}{-2\hat{b} - 1 - \hat{a}^2 + 3\hat{b}^2},$$
(1.20)

$$Y = \frac{(\hat{a}^2 - 3\hat{b}^2 - 1)(-2\hat{b} + 1 + \hat{a}^2 - 3\hat{b}^2)}{(-2\hat{b} - 1 - \hat{a}^2 + 3\hat{b}^2)^2},$$
(1.21)

$$D = 2 \frac{(-\hat{a} + 2\hat{b})(-2\hat{b} + 1 + \hat{a}^2 - 3\hat{b}^2)}{(-2\hat{b} - 1 - \hat{a}^2 + 3\hat{b}^2)^2}.$$
 (1.22)

Using this value of X, Y, and D in equations (1.13), (1.14) and (1.15), then we get the value of  $\frac{k_1}{k_3}$ ,  $\frac{l_1}{k_3}$ , and  $\frac{l_3}{k_3}$  as following,

$$\frac{k_1}{k_3} = \frac{(\hat{a}^2 + \hat{b}(2 - 3\hat{b}) + 1)^3}{(\hat{a}^2 - 3\hat{b}^2 - 2\hat{b} + 1)(2(11 - 3\hat{a}^2)\hat{b}^2 + (\hat{a}^2 + 1)^2 - 16\hat{a}\hat{b} + 9\hat{b}^4)},$$
(1.23)

$$\frac{l_3}{k_3} = \frac{6(\hat{a}^2 + \hat{a} - 1)\hat{b}^2 - (\hat{a} + 1)^2(\hat{a}^2 + 1) + 4\hat{a}\hat{b} - 9\hat{b}^4}{(\hat{a}^2 - 3\hat{b}^2 - 1)(\hat{a}^2 - 3\hat{b}^2 - 2\hat{b} + 1)},$$
(1.24)

$$\frac{l_1}{k_3} = \frac{(\hat{a}^2 + \hat{b}(2 - 3\hat{b}) + 1)}{(\hat{a}^2 - 3\hat{b}^2 - 1)(\hat{a}^2 - 3\hat{b}^2 - 2\hat{b} + 1)(2(11 - 3\hat{a}^2)\hat{b}^2 + (\hat{a}^2 + 1)^2 - 16\hat{a}\hat{b} + 9\hat{b}^4)} \times [\hat{a}^6 + 2\hat{a}^5 + \hat{a}^4(-9\hat{b}^2 - 6\hat{b} + 3) - 4\hat{a}^3(3\hat{b}^2 + 2\hat{b} - 1) + 3\hat{a}^2(3\hat{b}^2 + 2\hat{b} - 1)^2 + (1.25) \\ 2\hat{a}(9\hat{b}^4 + 12\hat{b}^3 + 14\hat{b}^2 - 4\hat{b} + 1) - (3\hat{b}^2 + 1)^2(3\hat{b}^2 + 6\hat{b} - 1)].$$

From this tranformation we make sure the resonant triads depend on the auxiliary parameters  $\hat{a}, \hat{b}$  under these equations. These equations are used in our thesis for finding the values of quasi resonant triads.

# Chapter 2

# Literature Review for Image Encryption

In this chapter, we discuss an image encryption scheme in which a MEC and Rossby wave triads are used. The aforesaid chapter has been divided into two sections. In first Section, we define the ordering of quasi-resonant triads while in second Section, a complete construction of a substitution box (S-box) on the points of MEC describe. Furthermore, we explain the generation of pseudo-random sequences that are used in this encryption scheme. At the end of this chapter, an example of this encryption scheme is given.

# 2.1 Encryption Scheme

This encryption scheme is dependent on S-boxes and pseudo-random numbers. In this scheme, we get substitution boxes by using the points of a MEC over field  $\mathbb{F}_p$ , and pseudo-random sequences are constructed by using the quasi-resonant triads. For getting a high security level, the quasi-resonant triads are ordered as follows.

# **Ordering of Quasi-Resonant Triads**

Let  $\hat{\Delta}$ ,  $\hat{\Delta}$  be two quasi-resonant triads. Where  $(\hat{k}_i, \hat{l}_i)$ ,  $(\hat{k}_i, \hat{l}_i)$  for i = 1, 2, 3, respresent the wave vectors for  $\hat{\Delta}$ ,  $\hat{\Delta}$  respectively, then

$$\hat{\Delta} \leq \hat{\Delta} \text{ if and only if} \begin{cases} either \quad \hat{a} \leq \hat{a}, \\ if \quad \hat{a} = \hat{a}, \text{ then } \hat{b} \leq \hat{b}, \\ if \quad \hat{a} = \hat{a}, \quad \hat{b} = \hat{b}, \text{ then } \hat{k_3} \leq \hat{k_3} \end{cases}$$

where  $\hat{a}$ ,  $\hat{b}$  and  $\hat{a}$ ,  $\hat{b}$  mentions corresponding auxiliary parameters of  $\hat{\Delta}$  and  $\hat{\Delta}$  respectively.

**Remark: 2.1.1.** A set of quasi-resonant triads is total order under this binary relation. See proof in [33].

# 2.2 Encryption

Because this scheme is a form of asymmetric cryptography. Therefore both public and secret keys are used in this scheme. The sender can select public and secret keys in the following methods.

#### Public Keys

The sender can select the public key in the following way.

(1) Select three sets  $\mathring{A}_i = [A_i : B_i]$  for i = 1, 2, 3, of consecutive numbers, with the unknown step sizes. Where first and endpoints of each set are rational numbers.

(2) Ordering the set of quasi-resonant triads with the above-defined ordering.

# Secret Keys

The sender can select the secret keys by using the following steps.

(1) Select a greater positive integer  $\delta$ , where  $\frac{1}{\delta}$  is the detuning level for quasiresonant triads.

(2) Select four random positive integers  $a_1$ ,  $a_2$ ,  $a_3$ , and  $a_4$ . Where  $a_1/a_3$ ,  $a_2/a_4$ , are step sizes of two sets  $\mathring{A}_1$ ,  $\mathring{A}_2$  respectively. Choose a positive integer  $a_5$ . That's the step size of the set  $\mathring{A}_3$ , and this condition hold  $\prod_{i=1}^3 n_i \ge MN$ , where  $n_i$  represent the cardinality of a set  $\mathring{A}_i$ , for i = 1, 2, 3, and MN represent the length of pixel values of a plain image.

(3) Select a positive integer L, in which all the components of quasi-resonant triads satisfy the conditions,  $|k_i| < L$  and  $|l_i| < L$  for i = 1, 2, 3.

(4): Select a positive integer t.

(5): Find a positive integer r by using the parameters t and  $S_p$ , where  $S_p$  is the sum of all pixel elements of a plain image and r is the nearest integer, when  $S_p$  divided by t.

(6): Select a prime number p in the form  $p \equiv 2 \pmod{3}$  and  $p \geq 257$ . By using

parameters p and t, get the positive number b as follows.

$$b \equiv (S_p + t) \pmod{p}.$$

Where the parameters p, t, and  $S_p$  are used for generation of an S-box and the parameters  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ ,  $a_5$ ,  $\delta$ , and L are used to generate the quasi-resonant triads.

# **2.2.1** Construction of an S-box $\zeta_E(p, t, S_p)$ Based on MEC

In this encryption scheme, S-box is used to generate confusion in plain image. Where S-box is generated by using the points of the MEC over  $\mathbb{F}_p$ . The complete construction of an S-box is defined in following steps.

#### Step 1:

Select a prime p of the form  $p \equiv 2 \pmod{3}$  and  $p \geq 257$ , select a MEC  $\mathbb{E}_{(p,b)}$  over  $\mathbb{F}_p$ , where constant parameter b of  $\mathbb{E}_{(p,b)}$  take as  $b = (t + S_p) \pmod{p}$ .

#### **Step 2**:

Over a finite field  $\mathbb{F}_p$ , find all (x, y) that lies on  $\mathbb{E}_{(p,b)}$ .

#### **Step 3**:

Arrange the points of  $\mathbb{E}_{(p,b)}$  in following way. Let  $(x_1, y_1)$  and  $(x_2, y_2)$  be two points on  $\mathbb{E}_{(p,b)}$ , then

$$(x_1, y_1) < (x_2, y_2)$$
 if and only if  $\begin{cases} either & x_1 < x_2, & or \\ x_1 = x_2, & then & y_1 < y_2. \end{cases}$ 

#### **Step 4** :

Let *B* be a set which take *y*-coordinates of points of  $\mathbb{E}_{(p,b)}$ . Arrange the elements of *B* in following way. Let  $y_1, y_2 \in B$  and  $y_1 < y_2$  if and only if  $(x_1, y_1) < (x_2, y_2)$ . Step 5:

At the end, an S-box is constructed by using the points of set B which are between 0 to 255.

# 2.2.2 Generation of the Quasi-Resonant Triads

In this scheme, the quasi-resonant triads are obtained by using parameters  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ ,  $a_5$ ,  $\delta$ , and L. Using these parameters, the MN quasi-resonant triads in the

box of size L are generated, where MN is the dimension of plain image that we have to encrypt. The generation of resonant triads is defined in the following steps. **Step 1:** 

Select three sets  $\mathring{A}_i$ , for i = 1, 2, 3, where the product of numbers of elements in these sets are greater or equal to the length of an input image.

#### Step 2:

Take the auxiliary parameters  $\hat{a}$ ,  $\hat{b}$  in sets  $\mathring{A}_1$  and  $\mathring{A}_2$  respectively, and  $k_3$  component of quasi-resonant triads taken in set  $\mathring{A}_3$ .

#### Step 3:

Using equations (1.23)-(1.25), find the values of  $\frac{k_1}{k_3}$ ,  $\frac{l_3}{k_3}$ , and  $\frac{l_1}{k_3}$  for each parameters  $\hat{a}$ ,  $\hat{b}$  in sets  $\hat{A}_1$  and  $\hat{A}_2$  respectively.

# Step 4:

Suppose  $L_1 = \lfloor \frac{l_1}{k_3} \rceil$ ,  $L_2 = \lfloor \frac{l_2}{k_3} \rceil$ , and  $L_3 = \lfloor \frac{k_1}{k_3} \rceil$ , where  $\lfloor . \rceil$  mean integer that nearest the value of  $\frac{l_1}{k_3}$ ,  $\frac{l_2}{k_3}$  and  $\frac{k_1}{k_3}$ .

## Step 5:

Find the values of wave vectors  $l_1$ ,  $l_3$ , and  $k_1$  by using these mathematical equations,  $l_1 = L_1 \times k_3$ ,  $l_3 = L_2 \times k_3$ ,  $k_1 = L_3 \times k_3$ , for each value of wave vector  $k_3$ in set  $\mathring{A}_3$ .

# Step 6:

Find the values of the other two wave vectors  $k_2$  and  $l_2$  by using equations,  $k_2 = k_3 - k_1, \ l_2 = l_3 - l_1.$ 

### Step 7:

Find the value of dispersion relation  $\omega_i$ , for i = 1, 2, 3, by using equation.

$$\omega_i = \frac{k_i}{k_i^2 + l_i^2}.$$

#### Step 8:

If the dispersion relation  $\omega_i$ , for i = 1, 2, 3, satisfies the inequality,  $|\omega_1 + \omega_2 - \omega_3| \leq \frac{1}{\delta}$ , and corresponding wave vectors satisfying the conditions,  $|l_1| \leq L$ ,  $|l_2| \leq L$ ,  $|l_3| \leq L$ , and  $|k_1| \leq L$ ,  $|k_2| \leq L$ ,  $|k_3| \leq L$ , then corresponding quasi-resonant triads taken in set T. In this process find the first MN triads in set T.

#### Step 9:

Organize the set of quasi-resonant triads T with respect to ordering that described above.

# **2.2.3** Generation of the Pseudo Random Sequence $\beta_T(S_p, t)$

In this scheme, the pseudo-random numbers are generated by using the parameters  $S_p$ , p, t and order set T of quasi-resonant triads. The complete construction of the pseudo-random numbers is given in two steps.

In the first step, the following mathematical equation is used to find the values of set  $T_r$ ,

$$T_r(i) = |rk_{i1} + k_{i2} + l_{i1}|.$$

Where  $r = \lfloor \frac{S_p}{t} \rfloor$  and  $k_{i1}$ ,  $k_{i2}$ , and  $l_{i1}$  are components of *i*-th quasi-resonant triads in ordered set T.

In the second step, find the pseudo-random sequence by using the mathematical equation that given below,

$$\beta_T(S_p, t)(i) = (S_p + T_r(i)) \pmod{256}.$$

(The present sequence of pseudo-random numbers is cryptographically very source. Because this sequence is generated by using the quasi-resonant triads. Also the generation of quasi-resonant triads are very complex due to detuning level  $\delta^{-1}$  and auxiliary parameters  $\hat{a}$ ,  $\hat{b}$ .)

# 2.2.4 Diffusion Process

In this scheme, the diffusion process is performed when we altering all pixel values of plain image by using the pseudo random numbers. Let  $N_p$  denote the diffusion image of a plain image P. Then the diffusion process is performed as,

$$N_p(i) = \beta_T(S_p, t)(i) + P(i) \pmod{256}, \tag{2.1}$$

where P(i) is *i*-th pixel value of plain image P with respect to column-wise linear order.

# 2.2.5 Confusion Proces

In this scheme, the process of confusion is performed by using the substitution box. Replacing each values of diffusion image with the value of an S-box. Let  $C_p$  denotes the cipher image of plain image P, then proform an S-box on P in the following way,

$$C_p(i) = \zeta_E(p, t, S_p) N_p(i). \tag{2.2}$$

Where  $N_p(i)$  is *i*-th value of diffusion image with respect to column-wise linear order.

**Example 2.2.1.** Let R denote the plain image that is a  $lena_{256\times 256}$ , and P be a subimage of R, in which involving intersection of first eight rows and first eight column of R. The subimage P will be encrypted with the help of that scheme. The plain image P and column-wise linearly ordering of P are shown in tables (2.1) and (2.2), respectively.

| 172 | 172 | 29  | 172 | 172 | 229 | 172 | 172 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 172 | 172 | 29  | 172 | 172 | 229 | 172 | 172 |
| 172 | 172 | 29  | 172 | 172 | 229 | 172 | 172 |
| 172 | 172 | 29  | 172 | 172 | 229 | 172 | 172 |
| 172 | 172 | 29  | 172 | 172 | 229 | 172 | 172 |
| 172 | 172 | 176 | 231 | 172 | 229 | 172 | 176 |
| 172 | 172 | 35  | 229 | 172 | 175 | 229 | 94  |
| 172 | 172 | 94  | 231 | 172 | 229 | 231 | 176 |

Table 2.1: Plain image P.

We have  $S_p = 10705$  and MN = 64. Suppose that we take the parameters  $a_1 = 2$ ,  $a_2 = 19$ ,  $a_3 = 1000$ ,  $a_4 = 1000$ ,  $a_5 = 2$ ,  $A_1 = A_2 = -1.0541$ ,  $B_1 = B_2 = -0.8514$ , L = 90000,  $\delta = 1000$ ,  $A_3 = 401$  and  $B_3 = 691$ . Let  $\Delta_i$  denotes *i*-th quasi-resonant triads in box of size L. The corresponding 64 quasi-resonant triads are shown in Table (2.3). We know that  $S_p = 10705$ , we selected t = 40 and p = 1607. It follows that r = 268. A list of pseudo-random numbers are shown in table (2.4). Moreover, an S-box  $\zeta_E(1607, 40, 10705)$  is a mapping from  $\{0, 1, 2, ..., 255\}$  to  $\{0, 1, 2, ..., 255\}$  that given in table (2.5).

| P(1) | P(9)  | P(17) | P(25) | P(33) | P(41) | P(49) | P(57) |
|------|-------|-------|-------|-------|-------|-------|-------|
| P(2) | P(10) |       | P(26) | · · / |       | P(50) | P(58) |
| P(3) | P(11) | P(19) |       |       |       |       | P(59) |
| P(4) | · · / | P(20) | ~ /   | ~ /   | ~ /   | ~ /   | ~ /   |
| P(5) |       | P(21) |       |       |       |       |       |
| P(6) |       | P(22) |       |       |       |       |       |
| P(7) |       |       | P(31) |       |       | P(55) | P(63) |
| P(8) |       | P(24) |       |       |       | P(56) | P(64) |

Table 2.2: Linear ordering of plain image P.

Hence by using the equations (2.1) and (2.2), we received diffusion image  $N_P$ and encrypted image  $C_P$  that are shown in tables (2.6) and (2.7), respectively.

| $\Delta_i$    | $k_1$ | $k_2$ | $k_3$ | $l_1$ | $l_2$ | $l_3$ | $\Delta_i$    | $k_1$ | $k_2$ | $k_3$ | $l_1$ | $l_2$ | $l_3$ |
|---------------|-------|-------|-------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|-------|
| $\Delta_1$    | -1128 | 1529  | 401   | 1152  | 668   | 1820  | $\Delta_{17}$ | -1218 | 1651  | 433   | 1244  | 722   | 1966  |
| $\Delta_2$    | -1133 | 1536  | 403   | 1158  | 671   | 1829  | $\Delta_{18}$ | -1223 | 1658  | 435   | 1250  | 725   | 1975  |
| $\Delta_3$    | -1139 | 1544  | 405   | 1164  | 675   | 1839  | $\Delta_{19}$ | -1229 | 1666  | 437   | 1256  | 728   | 1984  |
| $\Delta_4$    | -1145 | 1552  | 407   | 1169  | 679   | 1848  | $\Delta_{20}$ | -1235 | 1674  | 439   | 1261  | 732   | 1993  |
| $\Delta_5$    | -1150 | 1559  | 409   | 1175  | 682   | 1857  | $\Delta_{21}$ | -1240 | 1681  | 441   | 1267  | 735   | 2002  |
| $\Delta_6$    | -1156 | 1567  | 411   | 1181  | 685   | 1866  | $\Delta_{22}$ | -1246 | 1689  | 443   | 1273  | 738   | 2011  |
| $\Delta_7$    | -1161 | 1574  | 413   | 1187  | 688   | 1875  | $\Delta_{23}$ | -1251 | 1696  | 445   | 1279  | 741   | 2020  |
| $\Delta_8$    | -1167 | 1582  | 415   | 1192  | 692   | 1884  | $\Delta_{24}$ | -1257 | 1704  | 447   | 1284  | 745   | 2029  |
| $\Delta_9$    | -1173 | 1590  | 417   | 1198  | 695   | 1893  | $\Delta_{25}$ | -1263 | 1712  | 449   | 1290  | 748   | 2038  |
| $\Delta_{10}$ | -1178 | 1597  | 419   | 1204  | 698   | 1902  | $\Delta_{26}$ | -1268 | 1719  | 451   | 1296  | 751   | 2047  |
| $\Delta_{11}$ | -1184 | 1605  | 421   | 1210  | 701   | 1911  | $\Delta_{27}$ | -1274 | 1727  | 453   | 1302  | 754   | 2056  |
| $\Delta_{12}$ | -1190 | 1613  | 423   | 1215  | 705   | 1920  | $\Delta_{28}$ | -1280 | 1735  | 455   | 1307  | 759   | 2066  |
| $\Delta_{13}$ | -1195 | 1620  | 425   | 1221  | 708   | 1929  | $\Delta_{29}$ | -1285 | 1742  | 457   | 1313  | 762   | 2075  |
| $\Delta_{14}$ | -1201 | 1628  | 427   | 1227  | 711   | 1938  | $\Delta_{30}$ | -1291 | 1750  | 459   | 1319  | 765   | 2084  |
| $\Delta_{15}$ | -1206 | 1635  | 429   | 1233  | 715   | 1948  | $\Delta_{31}$ | -1296 | 1757  | 461   | 1325  | 768   | 2093  |
| $\Delta_{16}$ | -1212 | 1643  | 431   | 1238  | 719   | 1957  | $\Delta_{32}$ | -1302 | 1765  | 463   | 1330  | 772   | 2102  |
| $\Delta_{33}$ | -1308 | 1773  | 465   | 1336  | 775   | 2111  | $\Delta_{49}$ | -1398 | 1895  | 497   | 1428  | 828   | 2256  |
| $\Delta_{34}$ | -1313 | 1780  | 467   | 1342  | 778   | 2120  | $\Delta_{50}$ | -1403 | 1902  | 499   | 1434  | 831   | 2265  |
| $\Delta_{35}$ | -1319 | 1788  | 469   | 1348  | 781   | 2129  | $\Delta_{51}$ | -1409 | 1910  | 501   | 1440  | 834   | 2274  |
| $\Delta_{36}$ | -1325 | 1796  | 471   | 1353  | 785   | 2138  | $\Delta_{52}$ | -1415 | 1918  | 503   | 1445  | 838   | 2283  |
| $\Delta_{37}$ | -1330 | 1803  | 473   | 1359  | 788   | 2147  | $\Delta_{53}$ | -1420 | 1925  | 505   | 1451  | 842   | 2293  |
| $\Delta_{38}$ | -1336 | 1811  | 475   | 1365  | 791   | 2156  | $\Delta_{54}$ | -1426 | 1933  | 507   | 1457  | 845   | 2302  |
| $\Delta_{39}$ | -1341 | 1818  | 477   | 1371  | 794   | 2165  | $\Delta_{55}$ | -1431 | 1940  | 509   | 1463  | 848   | 2311  |
| $\Delta_{40}$ | -1347 | 1826  | 479   | 1376  | 799   | 2175  | $\Delta_{56}$ | -1437 | 1948  | 511   | 1468  | 852   | 2220  |
| $\Delta_{41}$ | -1353 | 1834  | 481   | 1382  | 802   | 2184  | $\Delta_{57}$ | -1443 | 1956  | 513   | 1474  | 855   | 2329  |
| $\Delta_{42}$ | -1358 | 1841  | 483   | 1388  | 805   | 2193  | $\Delta_{58}$ | -1448 | 1963  | 515   | 1480  | 858   | 2338  |
| $\Delta_{43}$ | -1364 | 1849  | 485   | 1394  | 808   | 2202  | $\Delta_{59}$ | -1454 | 1971  | 517   | 1486  | 861   | 2347  |
| $\Delta_{44}$ | -1370 | 1857  | 487   | 1399  | 812   | 2211  | $\Delta_{60}$ | -1460 | 1979  | 519   | 1491  | 865   | 2356  |
| $\Delta_{45}$ | -1375 | 1864  | 489   | 1405  | 815   | 2220  | $\Delta_{61}$ | -1465 | 1986  | 521   | 1497  | 868   | 2365  |
| $\Delta_{46}$ | -1381 | 1872  | 491   | 1411  | 818   | 2229  | $\Delta_{62}$ | -1471 | 1994  | 523   | 1503  | 871   | 2374  |
| $\Delta_{47}$ | -1386 | 1879  | 493   | 1417  | 821   | 2238  | $\Delta_{63}$ | -1476 | 2001  | 525   | 1509  | 874   | 2383  |
| $\Delta_{48}$ | -1392 | 1887  | 495   | 1422  | 825   | 2247  | $\Delta_{64}$ | -1482 | 2009  | 527   | 1514  | 878   | 2392  |

Table 2.3: Corresponding 64 quasi-resonant triads.

| $\beta_T(S_p, t)(1) = 56$   | $\beta_T(S_p, t)(17) = 154$ | $\beta_T(S_p, t)(33) = 252$ | $\beta_T(S_p, t)(49) = 94$  |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| $\beta_T(S_p, t)(2) = 103$  | $\beta_T(S_p, t)(18) = 201$ | $\beta_T(S_p, t)(34) = 43$  | $\beta_T(S_p, t)(50) = 141$ |
| $\beta_T(S_p, t)(3) = 161$  | $\beta_T(S_p, t)(19) = 3$   | $\beta_T(S_p, t)(35) = 101$ | $\beta_T(S_p, t)(51) = 199$ |
| $\beta_T(S_p, t)(4) = 220$  | $\beta_T(S_p, t)(20) = 62$  | $\beta_T(S_p, t)(36) = 160$ | $\beta_T(S_p, t)(52) = 2$   |
| $\beta_T(S_p, t)(5) = 11$   | $\beta_T(S_p, t)(21) = 109$ | $\beta_T(S_p, t)(37) = 207$ | $\beta_T(S_p, t)(53) = 49$  |
| $\beta_T(S_p, t)(6) = 69$   | $\beta_T(S_p, t)(22) = 167$ | $\beta_T(S_p, t)(38) = 9$   | $\beta_T(S_p, t)(54) = 107$ |
| $\beta_T(S_p, t)(7) = 116$  | $\beta_T(S_p, t)(23) = 214$ | $\beta_T(S_p, t)(39) = 56$  | $\beta_T(S_p, t)(55) = 154$ |
| $\beta_T(S_p, t)(8) = 175$  | $\beta_T(S_p, t)(24) = 17$  | $\beta_T(S_p, t)(40) = 115$ | $\beta_T(S_p, t)(56) = 213$ |
| $\beta_T(S_p, t)(9) = 233$  | $\beta_T(S_p, t)(25) = 75$  | $\beta_T(S_p, t)(41) = 173$ | $\beta_T(S_p, t)(57) = 15$  |
| $\beta_T(S_p, t)(10) = 24$  | $\beta_T(S_p, t)(26) = 122$ | $\beta_T(S_p, t)(42) = 220$ | $\beta_T(S_p, t)(58) = 62$  |
| $\beta_T(S_p, t)(11) = 82$  | $\beta_T(S_p, t)(27) = 180$ | $\beta_T(S_p, t)(43) = 22$  | $\beta_T(S_p, t)(59) = 120$ |
| $\beta_T(S_p, t)(12) = 141$ | $\beta_T(S_p, t)(28) = 239$ | $\beta_T(S_p, t)(44) = 81$  | $\beta_T(S_p, t)(60) = 179$ |
| $\beta_T(S_p, t)(13) = 188$ | $\beta_T(S_p, t)(29) = 30$  | $\beta_T(S_p, t)(45) = 128$ | $\beta_T(S_p, t)(61) = 226$ |
| $\beta_T(S_p, t)(14) = 246$ | $\beta_T(S_p, t)(30) = 88$  | $\beta_T(S_p, t)(46) = 186$ | $\beta_T(S_p, t)(62) = 28$  |
| $\beta_T(S_p, t)(15) = 37$  | $\beta_T(S_p, t)(31) = 135$ | $\beta_T(S_p, t)(47) = 233$ | $\beta_T(S_p, t)(63) = 75$  |
| $\beta_T(S_p, t)(16) = 96$  | $\beta_T(S_p, t)(32) = 194$ | $\beta_T(S_p, t)(48) = 36$  | $\beta_T(S_p, t)(64) = 134$ |
| $\beta_T(S_p, t)(16) = 96$  | $\beta_T(S_p, t)(32) = 194$ | $\beta_T(S_p, t)(48) = 36$  | $\beta_T(S_p, t)(64) = 134$ |

Table 2.4: Pseudo random sequence  $\beta_T(10705, 40)$ .

Table 2.5:  $\zeta_E(1607, 40, 10705)$ .

| 15  | 207 | 130 | 92  | 218 | 119 | 45  | 154 | 32  | 73  | 252 | 212 | 94  | 40  | 115 | 80  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 61  | 9   | 134 | 17  | 36  | 192 | 54  | 142 | 69  | 156 | 209 | 174 | 77  | 103 | 122 | 126 |
| 118 | 165 | 166 | 60  | 114 | 173 | 43  | 141 | 225 | 148 | 86  | 1   | 171 | 35  | 247 | 6   |
| 172 | 195 | 255 | 179 | 188 | 55  | 109 | 199 | 127 | 123 | 187 | 53  | 217 | 87  | 56  | 186 |
| 28  | 137 | 117 | 99  | 16  | 238 | 244 | 2   | 233 | 95  | 107 | 139 | 158 | 138 | 62  | 67  |
| 19  | 184 | 169 | 102 | 101 | 182 | 230 | 10  | 33  | 14  | 24  | 13  | 20  | 241 | 133 | 30  |
| 70  | 167 | 144 | 25  | 71  | 83  | 226 | 249 | 250 | 208 | 5   | 74  | 89  | 42  | 47  | 21  |
| 34  | 235 | 76  | 168 | 206 | 116 | 81  | 159 | 150 | 131 | 90  | 12  | 242 | 176 | 66  | 79  |
| 180 | 3   | 152 | 120 | 222 | 220 | 228 | 57  | 4   | 214 | 183 | 234 | 170 | 164 | 143 | 248 |
| 202 | 121 | 149 | 52  | 39  | 26  | 229 | 224 | 63  | 78  | 245 | 93  | 38  | 29  | 84  | 201 |
| 204 | 46  | 48  | 246 | 51  | 147 | 243 | 85  | 100 | 205 | 96  | 58  | 227 | 194 | 146 | 105 |
| 213 | 185 | 181 | 111 | 8   | 210 | 197 | 98  | 178 | 221 | 106 | 50  | 203 | 236 | 88  | 59  |
| 23  | 22  | 112 | 72  | 27  | 68  | 253 | 49  | 157 | 104 | 211 | 18  | 153 | 128 | 200 | 189 |
| 155 | 231 | 125 | 110 | 223 | 82  | 113 | 135 | 129 | 151 | 75  | 240 | 145 | 11  | 91  | 136 |
| 232 | 251 | 215 | 37  | 31  | 161 | 239 | 193 | 191 | 177 | 140 | 254 | 108 | 44  | 41  | 175 |
| 132 | 237 | 216 | 198 | 163 | 162 | 190 | 64  | 219 | 160 | 7   | 196 | 124 | 97  | 0   | 65  |

| 228 | 149 | 183 | 247 | 168 | 146 | 10  | 187 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 19  | 196 | 230 | 38  | 215 | 193 | 57  | 234 |
| 77  | 254 | 32  | 96  | 17  | 251 | 115 | 36  |
| 136 | 57  | 91  | 155 | 76  | 54  | 174 | 95  |
| 183 | 104 | 138 | 202 | 123 | 101 | 221 | 142 |
| 241 | 162 | 87  | 63  | 181 | 159 | 23  | 204 |
| 32  | 209 | 249 | 108 | 228 | 152 | 127 | 169 |
| 91  | 12  | 111 | 169 | 31  | 9   | 188 | 54  |

Table 2.6: Diffusion image  $N_P$  of plain image P.

Table 2.7: Cipher image  $C_p$  of plain image P.

| 62  | 14  | 12  | 79  | 183 | 148 | 204 | 50  |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 195 | 158 | 47  | 144 | 176 | 77  | 52  | 146 |
| 223 | 175 | 130 | 45  | 9   | 59  | 199 | 117 |
| 4   | 52  | 210 | 221 | 27  | 25  | 140 | 162 |
| 12  | 228 | 100 | 227 | 98  | 230 | 11  | 191 |
| 126 | 86  | 116 | 198 | 13  | 160 | 235 | 153 |
| 130 | 103 | 201 | 253 | 62  | 214 | 64  | 245 |
| 210 | 23  | 190 | 245 | 237 | 202 | 18  | 25  |
|     |     |     |     |     |     |     |     |

# Chapter 3

# Construction of Highly Secure S-boxes

This chapter introduces a scheme of the S-boxes generation in which Rossby wave triads are used. The aforesaid chapter has been divided into three sections. In Section (3.1), we describe a relation between MEC and Rossby wave triads. The Section (3.2), is about the proposed S-box scheme, in which those points are used that have been taken from Rossby wave triads and lies on a MEC over a field  $\mathbb{F}_p$ . Furthermore, complete working rules of the proposed S-box scheme are written and some examples of S-boxes which are generated according to the proposed scheme with different parameters are also given. In Section (3.3), the efficiency of the proposed S-boxes is measured by applying following tests, nonlinearity, bit independence, strict avalanche, linear approximation probability, differential approximation probability. The strength of the proposed S-boxes compared with some other cryptographically S-boxes is also mentioned in this section.

# 3.1 A Relationship between Resonant Triads and MEC

Since the equation of resonant triads is given as,

 $k_3(k_1^2+l_1^2)^2 - 2k_3(k_1^2+l_1^2)(k_1k_3+l_1l_3) - k_1(k_3^2+l_3)^2 + 2k_1(k_3^2+l_3^2)(k_1k_3+l_1l_3) = 0.$ 

In 2013, hayat et al. [15] transform given equation in term of rational variables X, Y and D that defined as,

$$X^3 - 2DX^2 + 2DX - D^2 = Y^2, (3.1)$$

where,

$$X = \frac{k_3}{k_1} \times \frac{k_1^2 + l_1^2}{k_3^2 + l_3^2},$$
$$Y = \frac{k_3}{k_1} \times \frac{k_3 l_1 - k_1 l_3}{k_3^2 + l_3^2},$$

and

$$D = \frac{k_3}{k_1} \times \frac{k_3 k_1 + l_1 l_3}{k_3^2 + l_3^2}.$$

If D constant and X, Y are variables. Then the equation (3.1) is interpreted as an elliptic curve. If we put  $X = \hat{X} + \frac{2}{3}D$  and  $Y = \hat{Y}$  in equation (3.1). Then

$$\hat{Y}^2 = (\hat{X} + \frac{2}{3}D)^3 - 2D(\hat{X} + \frac{2}{3}D)^2 + 2D(\hat{X} + \frac{2}{3}D) - D^2.$$

Imply that,

$$\begin{split} \hat{Y}^2 &= (\hat{X}^3 + \frac{4}{3}D^2\hat{X} + 2D\hat{X}^2 + \frac{8}{27}D^3) - 2D(\hat{X}^2 + \frac{4}{9}D^2 + \frac{4}{3}D\hat{X}) \\ &+ 2D(\hat{X} + \frac{2}{3}D) - D^2. \end{split}$$

Imply that,

$$\begin{split} \hat{Y}^2 &= \hat{X}^3 + \frac{4}{3}D^2\hat{X} + 2D\hat{X}^2 + \frac{8}{27}D^3 - 2D\hat{X}^2 - \frac{8}{9}D^3 - \frac{8}{3}D^2\hat{X} + \\ &\quad 2D\hat{X} + \frac{4}{3}D^2 - D^2. \end{split}$$

Imply that,

$$\hat{Y}^2 = \hat{X}^3 + (\frac{4}{3}D^2 - \frac{8}{3}D^2 + 2D)\hat{X} + (-\frac{8}{9}D^3 + \frac{8}{27}D^3 + \frac{4}{3}D^2 - D^2).$$

Imply that,

$$\hat{Y}^2 = \hat{X}^3 + \left(-\frac{4}{3}D^2 + 2D\right)\hat{X} + \left(-\frac{16}{27}D^3 + \frac{1}{3}D^2\right).$$

Imply that,

$$\hat{Y}^2 = \hat{X}^3 + A\hat{X} + B, \qquad (3.2)$$

where,

$$A = -\frac{4}{3}D^2 + 2D = D(-\frac{4}{3}D + 2),$$

and

$$B = -\frac{16}{27}D^3 + \frac{1}{3}D^2 = D^2(-\frac{16}{27}D + \frac{1}{3}).$$

If we put  $D = \frac{3}{2}$ . Then the value of A = 0, and  $B = -\frac{5}{4}$ . Therefore equation (3.2) become as:

$$\hat{Y^2} = \hat{X}^3 + B$$

This is an equation of MEC. The variables  $\hat{X}$  and  $\hat{Y}$  in term of resonant triads are defined as:

$$\hat{X} = \frac{k_3}{k_1} \times \frac{k_1^2 + l_1^2}{k_3^2 + l_3^2} - 1, \qquad (3.3)$$

$$\hat{Y} = \frac{k_3}{k_1} \times \frac{k_3 l_1 - k_1 l_3}{k_3^2 + l_3^2}.$$
(3.4)

**Remark: 3.1.1.** The total numbers of MECs defined over field  $\mathbb{F}_p$  are p-1. These curves are divided in two classes. In one class  $\frac{p-1}{2}$  these MECs whose constant terms are quadratic residue over a field  $\mathbb{F}_p$ . Other class  $\frac{p-1}{2}$  these MECs whose constant terms are quadratic non residue over a field  $\mathbb{F}_p$ . Each MECs in one class are isomorphic to each other.

### 3.2 Proposed S-Box Scheme

The new S-box scheme we are constructing in this section. We construct an S-box by using the points of MEC. That points satisfy the above-defined relation between quasi-resonant triads and the MEC. In the proposed scheme, the values of two set  $\hat{X}$  and  $\hat{Y}$  are obtained by using equations (3.3) and (3.4) over a field  $\mathbb{F}_p$ . The values of  $\hat{X}$  and  $\hat{Y}$  construct in the following steps.

#### Step 1:

First of all, we choose a prime number p of the form  $p \equiv 2 \pmod{3}$ , select three sets  $\hat{B}_i$  for i = 1, 2, 3, with consecutive numbers and their selection, we impose the condition  $\prod_{i=1}^3 n_i \ge p$ , where  $n_i$  is size of  $\hat{B}_i$ . Choose two positive numbers T and E.

#### **Step 2:**

Find the values of  $\frac{L_3}{k_3}$ ,  $\frac{L_1}{k_3}$ , and  $\frac{K_1}{k_3}$  by using these equations.

$$\frac{K_1}{k_3} = \frac{(\dot{a}^2 + \dot{b}(2 - 3\dot{b}) + 1)^3}{(\dot{a}^2 - 3\dot{b}^2 - 2\dot{b} + 1)(2(11 - 3\dot{a}^2)\dot{b}^2 + (\dot{a}^2 + 1)^2 - 16\dot{a}\dot{b} + 9\dot{b}^4)}$$

$$\frac{L_3}{k_3} = \frac{6(\dot{a}^2 + \dot{a} - 1)\dot{b}^2 - (\dot{a} + 1)^2(\dot{a}^2 + 1) + 4\dot{a}\dot{b} - 9\dot{b}^4}{(\dot{a}^2 - 3\dot{b}^2 - 1)(\dot{a}^2 - 3\dot{b}^2 - 2\dot{b} + 1)}$$

$$\begin{split} \frac{L_1}{k_3} &= \frac{(\dot{a}^2 + b(2 - 3b) + 1)}{(\dot{a}^2 - 3\dot{b}^2 - 1)(\dot{a}^2 - 3\dot{b}^2 - 2\dot{b} + 1)(2(11 - 3\dot{a}^2)\dot{b}^2 + (\dot{a}^2 + 1)^2 - 16\dot{a}\dot{b} + 9\dot{b}^4)} \\ &\times [\dot{a}^6 + 2\dot{a}^5 + \dot{a}^4(-9\dot{b}^2 - 6\dot{b} + 3) - 4\dot{a}^3(3\dot{b}^2 + 2\dot{b} - 1) + 3\dot{a}^2(3\dot{b}^2 + 2\dot{b} - 1)^2 + 2\dot{a}(9\dot{b}^4 + 12\dot{b}^3 + 14\dot{b}^2 - 4\dot{b} + 1) - (3\dot{b}^2 + 1)^2(3\dot{b}^2 + 6\dot{b} - 1)]. \end{split}$$

Where  $\dot{a} \in \hat{B}_1$  and  $\dot{b} \in \hat{B}_2$  are auxiliary parameters and wave vectors depend on these parameters. See complete detail about these equations in [12].

#### Step 3:

Find the value of quasi resonant triads by using these equations,  $k_1 = \lfloor \frac{K_1}{k_3} \rceil \times k_3$ ,  $l_1 = \lfloor \frac{L_1}{k_3} \rceil \times k_3$ ,  $l_3 = \lfloor \frac{L_3}{k_3} \rceil \times k_3$ .

#### Step 4:

Ultimately, find the values of two sets  $\hat{X}$  and  $\hat{Y}$  by using these equations,

$$\hat{X} = \frac{k_3}{k_1} \times \frac{k_1^2 + l_1^2}{k_3^2 + l_3^2} - 1.$$
$$\hat{Y} = \frac{k_3}{k_1} \times \frac{k_3 l_1 - k_1 l_3}{k_3^2 + l_3^2}.$$

Where  $k_1, k_3, l_1, l_3$  are quasi resonant triads.

After finding the values of  $\hat{X}$  and  $\hat{Y}$  over a finite field  $\mathbb{F}_p$ , we construct an S-box  $\zeta_{E(p,t,b)}$  by using points of  $\hat{X}$  and  $\hat{Y}$  which lie on MEC over finite field  $\mathbb{F}_p$ . In the following steps, the complete construction of S-box  $\zeta_{E(p,t,b)}$  is described:

#### Step 1:

First of all, we take a MEC  $\mathbb{E}_{(p,b)}$  over  $\mathbb{F}_p$  and find those points of set  $\hat{X}$  and  $\hat{Y}$  that satisfies the  $\mathbb{E}_{(p,b)}$  over a field  $\mathbb{F}_p$ . Since in MEC if  $p = 2 \pmod{3}$ , then the total points lies on a MEC over a field  $\mathbb{F}_p$  are p + 1 and for each integer from [0,

p-1] y-coordinates of points of MEC are unique. Therefore we select prime  $p \ge 257$ and choose isomorphism parameter t in field  $\mathbb{F}_p$ .

#### **Step 2:**

Find all (x, y) that lie on  $\mathbb{E}_{(p,b)}$ , where  $x \in \hat{X}$  and  $y \in \hat{Y}$ , ordering the points of  $\mathbb{E}_{(p,b)}$  with respect to natural ordering. That defined as, if  $(\dot{x_1}, \dot{y_1}), (\dot{x_2}, \dot{y_2}) \in$  $\#\mathbb{E}_{(p,b)}$ , then

$$(\acute{x_1}, \acute{y_1}) < (\acute{x_2}, \acute{y_2}) \Leftrightarrow \begin{cases} either & \acute{x_1} < \acute{x_2}, \\ if & \acute{x_1} = \acute{x_2} & then & \acute{y_1} < \acute{y_2} \end{cases}$$

#### **Step 3:**

After finding all points (x,y) that lie on  $\mathbb{E}_{(p,b)}$  over a field  $\mathbb{F}_p$ . We transform these points to an other MEC  $\mathbb{E}_{(p,\hat{b})}$  points that is isomorphism with  $\mathbb{E}_{(p,b)}$  over a same field  $\mathbb{F}_p$ . For this transformation, we use mapping  $(x,y) \to (t^2x, t^3y)$ , where  $(x,y) \in \#\mathbb{E}_{(p,b)}$ , and  $(t^2x, t^3y) \in \#\mathbb{E}_{(p,\hat{b})}$ . Given mapping is bijective and its inverse is defined as  $(x,y) \to (t^{-2}x, t^{-3}y)$ , where  $(x,y) \in \#\mathbb{E}_{(p,\hat{b})}$  and  $(t^{-2}x, t^{-3}y) \in$  $\#\mathbb{E}_{(p,b)}$ .

#### Step 4:

Let D be a set which take the *y*-coordinate of points of  $\mathbb{E}_{(p,\hat{b})}$ . Then D is unique and a number of elements in D are p. An S-box is constructed by using the points of set D which are between 0 to 255.

The S-boxes  $\zeta_{E(1637,37,644)}$ ,  $\zeta_{E(3917,221,285)}$  are generated by the proposed scheme which are shown in tables (3.1), (3.2), respectively.

| 70  | 70  | 954 | 20  | 175 | 020 | 202 | 165 | 200 | 4.4 | 99  | 004 | C A | 1   | 100 | E 4 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 78  | 72  | 254 | 28  | 175 | 232 | 202 | 165 | 200 | 44  | 33  | 224 | 64  | 1   | 182 | 54  |
| 181 | 70  | 160 | 218 | 167 | 8   | 125 | 209 | 245 | 126 | 25  | 7   | 105 | 178 | 186 | 63  |
| 161 | 246 | 154 | 141 | 163 | 159 | 29  | 164 | 151 | 111 | 21  | 205 | 230 | 27  | 66  | 216 |
| 23  | 244 | 92  | 155 | 108 | 42  | 219 | 144 | 228 | 145 | 124 | 58  | 88  | 45  | 233 | 47  |
| 136 | 84  | 231 | 101 | 166 | 30  | 206 | 117 | 220 | 118 | 212 | 16  | 18  | 11  | 15  | 142 |
| 26  | 52  | 75  | 49  | 176 | 238 | 152 | 6   | 250 | 77  | 253 | 91  | 0   | 36  | 76  | 71  |
| 177 | 138 | 3   | 248 | 243 | 5   | 53  | 86  | 121 | 12  | 19  | 89  | 143 | 123 | 180 | 172 |
| 81  | 174 | 150 | 195 | 17  | 113 | 213 | 223 | 132 | 192 | 131 | 201 | 31  | 107 | 97  | 73  |
| 194 | 110 | 116 | 104 | 147 | 168 | 239 | 22  | 13  | 34  | 90  | 61  | 229 | 137 | 82  | 20  |
| 235 | 93  | 196 | 237 | 221 | 171 | 94  | 190 | 37  | 56  | 62  | 87  | 139 | 252 | 96  | 156 |
| 170 | 199 | 59  | 204 | 215 | 9   | 43  | 173 | 242 | 114 | 134 | 162 | 158 | 10  | 130 | 128 |
| 106 | 184 | 140 | 48  | 187 | 222 | 69  | 234 | 226 | 41  | 68  | 109 | 169 | 95  | 133 | 67  |
| 51  | 148 | 102 | 207 | 98  | 83  | 198 | 149 | 129 | 79  | 240 | 4   | 99  | 255 | 38  | 14  |
| 208 | 127 | 185 | 80  | 39  | 100 | 122 | 46  | 225 | 115 | 135 | 236 | 119 | 183 | 50  | 210 |
| 120 | 214 | 32  | 57  | 191 | 227 | 40  | 153 | 60  | 112 | 146 | 217 | 65  | 211 | 74  | 249 |
| 241 | 189 | 35  | 193 | 103 | 247 | 188 | 24  | 55  | 157 | 251 | 203 | 2   | 179 | 85  | 197 |

Table 3.1:  $\zeta_{E(1637,37,644)}$ 

Table 3.2:  $\zeta_{E(3917,221,285)}$ 

| 247 | 139 | 180 | 167 | 152 | 23  | 112 | 151 | 98  | 47  | 123 | 1   | 196 | 137 | 6   | 62  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 226 | 77  | 133 | 84  | 170 | 4   | 150 | 17  | 59  | 67  | 78  | 186 | 195 | 213 | 244 | 122 |
| 162 | 208 | 205 | 144 | 199 | 106 | 163 | 171 | 174 | 216 | 105 | 113 | 233 | 102 | 51  | 177 |
| 46  | 157 | 142 | 37  | 166 | 43  | 218 | 201 | 42  | 229 | 191 | 16  | 8   | 236 | 224 | 249 |
| 222 | 184 | 193 | 254 | 66  | 0   | 240 | 29  | 128 | 18  | 48  | 91  | 15  | 182 | 234 | 68  |
| 214 | 248 | 118 | 146 | 235 | 255 | 220 | 143 | 221 | 215 | 2   | 53  | 154 | 176 | 237 | 65  |
| 12  | 155 | 73  | 14  | 149 | 11  | 202 | 178 | 81  | 55  | 190 | 164 | 97  | 125 | 107 | 117 |
| 90  | 110 | 132 | 253 | 239 | 19  | 145 | 114 | 169 | 238 | 99  | 58  | 192 | 232 | 140 | 82  |
| 76  | 197 | 172 | 27  | 21  | 25  | 52  | 173 | 69  | 30  | 231 | 24  | 71  | 60  | 250 | 89  |
| 185 | 148 | 153 | 198 | 212 | 134 | 159 | 119 | 22  | 109 | 40  | 44  | 34  | 31  | 131 | 75  |
| 56  | 175 | 204 | 86  | 160 | 32  | 223 | 85  | 130 | 165 | 70  | 100 | 188 | 187 | 80  | 241 |
| 88  | 141 | 74  | 94  | 136 | 121 | 138 | 210 | 217 | 93  | 115 | 7   | 147 | 245 | 3   | 181 |
| 111 | 219 | 49  | 13  | 79  | 96  | 83  | 251 | 64  | 211 | 39  | 207 | 209 | 168 | 108 | 200 |
| 179 | 246 | 35  | 228 | 243 | 9   | 87  | 156 | 242 | 127 | 189 | 63  | 38  | 227 | 36  | 206 |
| 95  | 28  | 116 | 72  | 126 | 129 | 225 | 194 | 10  | 183 | 92  | 252 | 57  | 203 | 41  | 20  |
| 120 | 61  | 161 | 26  | 5   | 54  | 230 | 104 | 103 | 50  | 101 | 33  | 124 | 135 | 158 | 45  |

### **3.3** Security Analysis and Comparisons

Several basic security efficiency tests are used to evaluate the cryptographic strength of the proposed S-boxes. If an S-box passes these security tests, a cryptosystem is considered strong. The nonlinearity, strict avalanche, bit independence, differential approximation, and linear approximation probability are tests that are used to determine the strength of an S-box. The following tests and proposed S-boxes results which we obtained from these tests are presented in this section.

#### 3.3.1 Non-linearity

To achieve a certain level of security to secure data from unauthorized parties, the S-box must produce enough confusion in the data. The nonlinearity is a property of an S-box used to count the resistance against linear attacks. Mathematically, nonlinearity is a hamming distance from a set of all affine functions to the boolean functions  $T_i$ , defined as

$$T_i: GF(2^8) \to F_2$$
  
 $W_i = T_i(x)$ 

where  $1 \leq i \leq n$ . The nonlinearity of  $T(x) = (T_1(x), T_2(x), \dots, T_8(x))$  is defined as

$$NL_T = min_{\theta, \phi, \varphi} \{ x \in GF(2^8) | \theta \bullet T(x) \neq \varphi \bullet x \oplus \lambda \}$$

where  $\theta \in GF(2^8)$ ,  $\phi \in GF(2^8) - \{0\}$ ,  $\lambda \in Gf(2)$ , and  $\varphi \bullet x$  denotes dot product over GF(2). The upper bound of nonlinearity is defined as

$$N = 2^{n-1} - 2^{n/2 - 1}$$

The maximum value is 120 for n = 8. the nonlinearity of proposed S-boxes are shown in table (3.3). We contrasted the nonlinearity of proposed S-boxes with some cryptographically S-boxes that are constructed some mathematical structures. (see table 3.3)

#### 3.3.2 Linear Approximation Probability (LAP)

Linear approximation probability is an outstanding test that measures the capacity of an S-box against linear attacks. The LAP of an S-box is based on a correlation between input bit and output bit. If an S-box has the lowest LAP then it provides high resistance against linear attacks. Mathematically it is defined as,

$$LAP(T) = max_{\theta, \phi} \left| \frac{\#\{x \in G(2^8) | \theta \bullet x = \phi \bullet T(x)\}}{2^8} - \frac{1}{2} \right|$$

where  $\theta \in GF(2^8), \phi \in GF(2^8) - \{0\}.$ 

The results of the proposed S-boxes using this test are shown in the table (3.3). We analyze the proposed S-boxes and by comparing the results with some cryptographically S-boxes that are shown in table (3.3).

#### 3.3.3 Differential Approximation Probability (DAP)

Differential approximation probability test is used to measure the resistance of an S-box against differential attacks. For an S-box, the smallest value of DAP implies the largest security against different attacks. The probability of differential approximation test is used to determine the probability of a reasonable difference in the input bits with resulting output bits.

Mathematically it is defined as

$$DAP(T) = max_{\Delta \hat{x}, \Delta \hat{y}} \{ \# \{ \hat{x} \in GF(2^8) | T(\hat{x} + \Delta \hat{x}) = T(\hat{x} + \Delta \hat{y}) \} \}$$

The results of the proposed S-boxes using this test are shown in the table (3.3). We analyze the proposed S-boxes and compared the results with some cryptographically S-boxes that are shown in table (3.3).

#### 3.3.4 Strict Avalanche Criterion (SAC)

In 1985, A.F. Webster and S.E. Tavares developed the Strict Avalanche Criteria (SAC). In this test, we search for variations in output bits when a single input bit changes. The 0.5 value in this test ensures that there are no correlations between the input and output combinations. This helps to make the encryption process powerful for a wide range of leakages. Mathematically it is defined as

$$W(i,j) = \{\frac{1}{2^n} [V(T_i(x+\theta_j)+T_i(x))] | \theta_j \in GF(2^n), V(\theta_j) = 1 \text{ and } 1 \le i, j \le n\}$$

where W(i, j) are entries of the dependency matrix.

The numerical results of proposed S-boxes from this test are shown in the table

(3.3). It suggests that our proposed S-box clearly shows better avalanches and satisfies the required requirements. In this test, we ensure that proposed S-boxes results are much better than with other S-boxes result that shown in table (3.3).

#### **3.3.5** Bit Independence Criterion (BIC)

The correlation coefficient is used to investigate this test. Square matrix of dimension  $16 \times 16$  is used in the BIC test of standard S-box. A boolean function  $T: \{0,1\}^8 \rightarrow \{0,1\}^8$  satisfies the criteria of BIC if each pair of output bits changed independently, when a pair of single input bit changed. If the entries of the BIC matrix of an S-box are close to 0.5 then the S-box is said to satisfy the BIC criteria. The numerical results of proposed S-boxes from this test are shown in the table (3.3). It suggests that our proposed S-box clearly shows better avalanches and satisfies the required requirements. In this test, we ensure that our proposed scheme are much better than some schemes that are shows in the table (3.3).

| S-boxes                   | NL  | LAP       | DAP       | SAC-MIN  | SAC-MAX  | BIC-MIN     | BIC-MAX     |
|---------------------------|-----|-----------|-----------|----------|----------|-------------|-------------|
| Ref. [13]                 | 104 | 0.1484375 | 0.0469    | 0.421900 | 0.6094   | 0.4629      | 0.5430      |
| Ref. [38]                 | 104 | 0.1328125 | 0.0234375 | 0.40625  | 0.625    | 0.46679688  | 0.5234375   |
| Ref. [27]                 | 101 | 0.140625  | 0.03125   | 0.421875 | 0.578125 | 0.46679688  | 0.51953125  |
| Ref. [6]                  | 104 | 0.140625  | 0.0234375 | 0.421875 | 0.59375  | 0.4765625   | 0.5390625   |
| Ref. [2]                  | 106 | 0.188     | 0.039     | 0.406    | 0.609    | 0.465       | 0.527       |
| Ref. [5]                  | 100 | 0.140625  | 0.03125   | 0.40625  | 0.609375 | 0.44726563  | 0.53320313  |
| Ref. [22]                 | 102 | 0.140625  | 0.0234375 | 0.421875 | 0.640625 | 0.4765625   | 0.53320313  |
| Ref. [14]                 | 104 | 0.0391    | 0.0391    | 0.3906   | 0.6250   | 0.4707      | 0.53125     |
| Ref. [3]                  | 106 | 0.148     | 0.039     | 0.406    | 0.641    | 0.471       | 0.537       |
| Ref. [35]                 | 104 | 0.0547000 | 0.0391    | 0.4018   | 0.5781   | 0.4667969   | 0.5332031   |
| $\zeta_{E(1637,37,644)}$  | 106 | 0.140625  | 0.046875  | 0.40625  | 0.59375  | 0.45703125  | 0.53515625  |
| $\zeta_{E(3917,221,285)}$ | 106 | 0.1484375 | 0.0390625 | 0.40625  | 0.59375  | 0.478515625 | 0.525390625 |

Table 3.3: Comparison of our proposed S-boxes with existing S-boxes

### 3.4 Conclusion

In this thesis, we introduced a scheme of S-boxes in which the Rossby wave triads and two isomorphic elliptic curves have been used. The proposed S-boxes generated by using those points of MEC that satisfied a relation between MEC and Rossby wave triads over a field  $\mathbb{F}_p$ , where  $p \equiv 2 \pmod{3}$ . To increase the amount of confusion in the points of MEC, we define a mapping  $(x, y) \rightarrow (t^2 x, t^3 y)$ , where  $(t^2 x, t^3 y) \in \#\mathbb{E}_{(p, \acute{b})}$ . We choose the *y*-coordinates in the points of MEC  $\mathbb{E}_{(p, \acute{b})}$ , where  $\acute{b} \in \mathbb{F}_p$ , *p* is prime number and  $p \geq 257$ . The efficiency of the proposed S-boxes was measured by applying the following tests, nonlinearity, bit independence, strict avalanche, linear approximation probability, differential approximation probability. And strength of the proposed S-boxes is compared with some other cryptographically S-boxes.

# Bibliography

- Amara, M., Siad, A. (2011, May). Elliptic curve cryptography and its applications. In International workshop on systems, signal processing and their applications, WOSSPA (pp. 247-250). IEEE.
- [2] Azam, N. A., Hayat, U., Ullah, I. (2018). An injective S-Box design scheme over an ordered isomorphic elliptic curve and its characterization. Security and communication networks, 2018.
- [3] Azam, N. A., Hayat, U., Ullah, I. (2019). Efficient construction of a substitution box based on a Mordell elliptic curve over a finite field. Frontiers of Information Technology & Electronic Engineering, 20(10), 1378-1389.
- [4] Baldoni, M. W., Ciliberto, C., Cattaneo, G. M. P. (2009). Elementary number theory, cryptography and codes (Vol. 2). Berlin: Springer.
- [5] Belazi, A., Abd El-Latif, A. A. (2017). A simple yet efficient S-box method based on chaotic sine map. Optik, 130, 1438-1444.
- [6] Cavusoglu, Ü., Zengin, A., Pehlivan, I., Kaçar, S. (2017). A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear Dynamics, 87(2), 1081-1094.
- [7] Charney, J. G. (1948). On the scale of atmospheric motions, Geophys. Public, 17, 3-17.
- [8] Dawson, M. H., Tavares, S. E. (1991, April). An expanded set of S-box design criteria based on information theory and its relation to differentiallike attacks. In Workshop on the Theory and Application of of Cryptographic Techniques (pp. 352-367). Springer, Berlin, Heidelberg.

- [9] Gazali, W. (2017). An Algorithm to Find Square Root of Quadratic Residues over Finite Fields using Primitive Elements. Proceedia computer science, 116, 198-205.
- [10] Hasegawa, A., Mima, K. (1978). Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. The Physics of Fluids, 21(1), 87-92.
- [11] Harris, J., Connaughton, C., Bustamante, M. D. (2013). Percolation transition in the kinematics of nonlinear resonance broadening in Charney-Hasegawa-Mima model of Rossby wave turbulence. New Journal of Physics, 15(8), 083011.
- [12] Hayat, U., Amanullah, S., Walsh, S., Abdullah, M., Bustamante, M. D. (2019). Discrete resonant Rossby/drift wave triads: Explicit parameterisations and a fast direct numerical search algorithm. Communications in Nonlinear Science and Numerical Simulation, 79, 104896.
- [13] Hayat, U., Azam, N. A. (2019). A novel image encryption scheme based on an elliptic curve. Signal Processing, 155, 391-402.
- [14] Hayat, U., Azam, N. A., Asif, M. (2018). A method of generating 8 × 8 substitution boxes based on elliptic curves. Wireless Personal Communications, 101(1), 439-451.
- [15] Hayat, U., Bustamante, M. D. (2013). Complete classification of discrete resonant Rossby/drift wave triads on periodic domains. Communications in Nonlinear Science and Numerical Simulation, 18(9), 2402-2419.
- [16] Jallouli, O. (2017). Chaos-based security under real-time and energy constraints for the Internet of Things (Doctoral dissertation, UNIVERSITE DE NANTES).
- [17] Jung, H. C., Seongtaek, C., Choonsik, P. (1999). S-boxes with controllable nonlinearity, EUROCRYPT'99. LNCS, 1592, 286-294.
- [18] Kaur, A. (2017). A Review on Symmetric Key Cryptography Algorithms. International Journal of Advanced Research in Computer Science, 8(4).

- [19] Koblitz, N., Menezes, A., Vanstone, S. (2000). The state of elliptic curve cryptography. Designs, codes and cryptography, 19(2), 173-193.
- [20] Lenstra Jr, H. W. (1987). Factoring integers with elliptic curves. Annals of mathematics, 649-673.
- [21] Lidl, R., Niederreiter, H. (1994). Introduction to finite fields and their applications. Cambridge university press.
- [22] Liu, L., Zhang, Y., Wang, X. (2018). A novel method for constructing the S-box based on spatiotemporal chaotic dynamics. Applied Sciences, 8(12), 2650.
- [23] Matsui, M. (1993, May). Linear cryptanalysis method for DES cipher. In Workshop on the Theory and Application of of Cryptographic Techniques (pp. 386-397). Springer, Berlin, Heidelberg.
- [24] Menezes, A. J., Van Oorschot, P. C., Vanstone, S. A. (2018). Handbook of applied cryptography. CRC press.
- [25] Miller, V. S. (1985, August). Use of elliptic curves in cryptography. In Conference on the theory and application of cryptographic techniques (pp. 417-426). Springer, Berlin, Heidelberg.
- [26] Neal, K. (1987). Elliptic curve cryptosystems. Mathematics of computation, 48(177), 203-209.
- [27] Özkaynak, F., Çelik, V., Özer, A. B. (2017). A new S-box construction method based on the fractional-order chaotic Chen system. Signal, Image and Video Processing, 11(4), 659-664.
- [28] Rosen, K. Elementary Number Theory and Its Applications. Addison-Wesley; 2011. ISBN 9780321500311
- [29] Ruohonen, K. (2010). Mathematical cryptology. Lecture Notes, 1(1), 1-138.
- [30] Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell system technical journal, 28(4), 656-715.

- [31] Silverman, J. H. (2006). An introduction to the theory of lattices and applications to cryptography. Computational Number Theory and Applications to Cryptography, University of Wyoming, pp. 1-212.
- [32] Stallings, W. (2003). Cryptography and Network Security: Principles and Practices, Prentice Hall. Upper Saddle River, New Jersey, USA,.
- [33] Ullah, I., Hayat, U., Bustamante, M. D. (2020). Image Encryption Using Elliptic Curves and Rossby/Drift Wave Triads. Entropy, 22(4), 454.
- [34] Vanstone, S. A. (1997). Elliptic curve cryptosystem—the answer to strong, fast public-key cryptography for securing constrained environments. Information Security Technical Report, 2(2), 78-87.
- [35] Wang, X., Çavuşoğlu, Ü., Kacar, S., Akgul, A., Pham, V. T., Jafari, S., Nguyen, X. Q. (2019). S-box based image encryption application using a chaotic system without equilibrium. Applied Sciences, 9(4), 781.
- [36] Wang, X. Y., Yang, L., Liu, R., Kadir, A. (2010). A chaotic image encryption algorithm based on perceptron model. Nonlinear Dynamics, 62(3), 615-621.
- [37] Washington, L. C. (2008). Elliptic curves: number theory and cryptography. CRC press.
- [38] Ye, T., Zhimao, L. (2018). Chaotic S-box: Six-dimensional fractional Lorenz–Duffing chaotic system and O-shaped path scrambling. Nonlinear Dynamics, 94(3), 2115-2126.