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Chapter 1

Preliminaries

In this chapter we provide a brief and compact glance on important definitions and some

basic results used in the succeeding chapters of this dissertation. We attempt to makeup

some background informations regarding to rings, modules and many of their properties.

Details of this literature are provided in [2], [4], [9].

1.1 Rings

Here we shall describe basic definitions of ring, ideal, prime ideal, maximal ideal, quotient

ring, integral domain and their properties with some examples.

Definition 1.1.1.

A set T which is non empty with two binary operations addition ”+” and multiplication ”.”

is known as a ring, if following postulates are true in T given below.
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(1) T under ”+” becomes an abelian group.

(2) Associative law under ”.” holds in T.

f́ .(ǵ.h́) = (f́ .ǵ).h́, ∀ f́ , ǵ, h́ ∈ T.

(3)Distributive laws of multiplication over addition satisfies in T.

f́ .(ǵ + h́) = (f́ .ǵ) + (f́ .h́) (left distributive law of ”.” over ”+”) and

(f́ + ǵ).h́ = (f́ .h́) + (ǵ.h́) (right distributive law of ”.” over ”+”) ∀ f́ , ǵ, h́ ∈ T.

Example 1.1.2.

(Mr(R),+, .) becomes a ring over set of real numbers, where r > 1. We call it as ring of

square matrices having order ”r” over real numbers.

Definition 1.1.3.

If multiplication ”.” is commutative in any ring T and ∃ an element é ∈T for which

f́ .é = f́ = é.f́ , for each f́ ∈T, then T is a commutative ring with unity é.

Example 1.1.4.

(Z,+,.), the ring of integers is a commutative with 1 as unity.

Ring (Q,+,.) of rational numbers is a commutative with unity 1.

Ring (R,+,.) of real numbers is a commutative having unity 1.

Proposition 1.1.5. [4]

Following below statements hold in any ring T.

(i) 0f́ = 0 = f́0, for all f́ ∈T.

(ii) (−ǵ)(h́) = −(h́ǵ) = (f́)(−ǵ), ∀ ǵ, h́ ∈T. (recall −ǵ denotes additive inverse of b́)
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(iii) (−f́)(−ǵ) = f́ ǵ, ∀ f́ , ǵ ∈ T.

(iv) If a ring T contains an identity element say é , then this identity é is unique &−d́ = (−1)d́,

for each d́ ∈ T.

Definition 1.1.6.

An element t∈T is a zero-divisor of T, if

(i) t 6= 0.

(ii) ∃ 06= t′ in T, such that we have tt′ = 0 = t′t.

An element in T is a non zero-divisor if it is not zero-divisor.

Note :

There may be more than one zero-divisors in a ring.

Example 1.1.7.

2 and 3 are both zero-divisors in ring Z6, because 2× 3 = 3× 2 = 6 = 0.

Definition 1.1.8.

In a commutative ring T with unity, if all elements of T are non zero-divisors, then T becomes

an integral domain(I.D).

Example 1.1.9.

Consider Z7 = {0, 1, 2, 3, 4, 5, 6} which is a commutative ring containing identity 1. Now we

see 1× 2 = 2 6= 0
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1× 3 = 3 6= 0

2× 3 = 6 6= 0

2× 4 = 1 6= 0

2× 5 = 3 6= 0

2× 6 = 5 6= 0

3× 4 = 5 6= 0

The otheres possible multiplication of elements with each other can be seen. So, Z7 is an I.D.

Z, the ring of integers is also an I.D.

Note :

Ring Zr = {0, 1, 2, 3, ..., r} of modulo ”r” is an I.D iff ”r” is a prime number.

Definition 1.1.10.

Consider a commutative ring T with unity 1. Then T is called a field, if each element m∈

T has a multiplicative inverse in T i.e for every m′ ∈ T there exists m′′ ∈ T such that

m′m′′ = 1 = m′′m′.

Example 1.1.11.

R (ring of real numbers) is a field.

Corollary 1.1.12. [1]

A finite I.D is a field.

Definition 1.1.13.

Consider T as commutative ring with unity. A non-empty subset B is known an ideal of T,
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if it full fills

(i) ń− ĺ ∈ B, for all ń, ĺ ∈ B.

(ii) tm, mt ∈ B, for all t ∈ T and m ∈ B.

Example 1.1.14.

4Z is ideal in Z.

Definition 1.1.15.

An ideal W becomes a maximal ideal in a ring T, if

(1) W ( T .

(2) There exists no ideal K in T such that W ( K ( T .

Equivalently we can say that

Maximal ideal W of T is that ideal which has the property that if for any ideal K of T such

that W ⊆ K ⊆ T , then either W = K or K = T.

Example 1.1.16.

rZ is a maximal ideal in Z ⇔ r is prime.

Remark 1.1.17.

If T is a field, then {0} is the only maximal ideal of T.

Definition 1.1.18.

A proper ideal A in T is prime if áb́ ∈ A, then either á ∈ A or b́ ∈ A.

Example 1.1.19.

2Z is a prime ideal for ring of integers Z.
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Definition 1.1.20.

An ideal of ring which is generated by single element is called a principle ideal.

Every ideal in ring of integers is principle.

Definition 1.1.21.

Suppose T is a ring and W is ideal of T, then T/W = {i + W : i ∈ T} represents family of

co-sets of ideal W in T. Under the operations of ”+” and ”.” defined below, T/W forms a

ring called quotient ring. Where ”+” and ”.” are given as follows:

(i+W ) + (́i+W ) = (i+ í) +W , for all i, í ∈ T.

(i+W )(́i+W ) = (íi) +W , for all i, í ∈ T .

Example 1.1.22.

Consider Z as the ring of integers and 6Z as its ideal. Then Z/6Z becomes the quotient ring.

Lemma 1.1.23. [2]

Consider T as ring and W is its ideal. Then T/W is an I.D iff W becomes prime ideal of T.

Definition 1.1.24.

The intersection of all maximal ideals in T is known as Jacobson radical in T and denoted as

J(T). For example J(Z/12Z) = 6Z/12Z = 2Z/12Z ∩ 3Z/12Z.

Definition 1.1.25.

T is known as a Notherian if ascending chain condition for ideals holds in T i.e each infinite

ascending chain of ideals W1 ⊂ W2 ⊂ ... ⊂ Wr ⊂ ... stabilizes i.e ∃ natural number r for which

Wm = Wr for every m ≥ r.
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Theorem 1.1.26. [9]

A ring T is Notherian iff each ideal in T is finitely generated.

Example 1.1.27.

1. Z is Notherian because its each ideal is generated by one element.

2. The ring of polynomials R[Y1, Y2, ...Yr] over real numbers is also a Nothrian ring.

3.The ring of polynomials R[Y1, Y2, ...Yr....] over real numbers is not a Nothrian ring.

Definition 1.1.28.

T is called a local ring if T contains only one maximal ideal.

Example 1.1.29.

As 4Z is ideal of Z. The quotient ring Z/4Z is a finite local ring.

Definition 1.1.30.

Consider S and T as rings. A mapping γ : S → T becomes ring homomorphism if it agrees

(1). γ(s∗ + s∗∗) = γ(s∗) u γ(s∗∗).

(2). γ(s∗.s∗∗) = γ(s∗) ◦ γ(s∗∗)

for any s∗, s∗∗ ∈ S.

Example 1.1.31.

The mapping Z→ Zr between ring of integers and modulo ring defined as z → z(modr) is a

ring homomorphism.

Definition 1.1.32.
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A ring homomorphism γ : S → T between rings S and T is called surjective if for each t ∈ T ,

∃ s ∈ S for which γ(s) = t.

Example 1.1.33.

The mapping Z→ Zr between ring of integers and modulo ring defined as z → z(modr) is a

surjective ring homomorphism.

Definition 1.1.34.

A ring homomorphism γ : S → T between rings S and T is called injective if each element of

S has distinct image in T.

Example 1.1.35.

The mapping S → S × T defined by s → (s, 0) between rings S and T is an injective ring

homomorphism, where S × T = {(s∗, t∗) : s∗ ∈ S, t∗ ∈ T} is ring with component wise

multiplication and addition.

Definition 1.1.36.

Let γ : S → T be a ring homomorphism between rings S and T. We define kernal and image

of γ as follows:

ker(γ) = {s ∈ S : γ(s) = 0},

and

Im(γ) = {γ(s) : s ∈ S} = γ(S).
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Example 1.1.37.

1. Kernal of mapping Z→ Zr defined as z → z(modr) is rZ.

2. Image of mapping Z→ Zr defined as z → z(modr) is Zr.

Remark 1.1.38. [12]

Suppose γ : S → T is a ring homomorphism between rings S and T. Then ker(γ) becomes

an ideal of S.

Definition 1.1.39.

Let (S,a) and (T,b) be two local rings. A ring homomorphism β : S → T becomes a local

morphism when β(a) ⊂ b.
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1.2 Modules

In this section we shall describe basic concept of modules, submodules, quotient modules,

category, functor and their basis characteristics with some examples. Details are given in

literature [4], [9], [10], [11], [12].

Definition 1.2.1.

Suppose T is a ring (not necessarily commutative or having unity). A non-empty set F is said

to be a left module over T (Or called T-module), if it satisfies the following postulates .

(a) (F,+) becomes an abelian group.

(b) Defines action of T on F (map; T ×F → F ) which is indicated by tf ′ ∀ t ∈ T and f ′ ∈ F

fullfilling the following conditions:

(i) (t′ + t′′)f́ = t′f́ + t′′f́ , for all t′, t′′ ∈ T and f́ ∈ F .

(ii) t′(f́ + f ′′) = t′f́ + t′f ′′, for any t′ ∈ T and f́ , f ′′ ∈ F .

(iii) (t′t′′)f ′ = t′(t′′f ′), ∀ t′, t′′ ∈ T & f ′ ∈ F .

If a ring has unity say 1, then we define the following condition

(iv) 1f ′ = f ′, ∀ f ′ ∈ F.

Note

For a commutative ring T, if F is a left T-module, then F can be made a right T-module, by

defining multiplication as f ′′t′′ = t′′f ′′, for all f ′′ ∈ F and t′′ ∈ T .

Example 1.2.2.
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(1) Any abelian group Q over Z is module.

(2) Each ring is a module over itself.

(3) Matrices Mi,j(T ) is also a module over T.

Definition 1.2.3.

Suppose E and F are two modules over T, then the map α : E → F becomes a T-module

homomorphism, if the two conditions are fullfilled.

(1) α(0) = 0∗ and α(e2 + e1) = α(e2) + α(e1), for each e1, e2 ∈ E.

(2) α(te) = tα(e), for t ∈ T and e ∈ E.

Example 1.2.4.

(1) Consider ring of integers Z and take module also Z. Then the map ρ : Z→ Z defined as

ρ(c) = 2c is a Z-module homomorphism.

(2) A zero homomorphism always exists between any two T-modules E and F. Zero morphism

is defined as 0(e) = 0F for all e ∈ E.

Definition 1.2.5.

Suppose E and F are two modules over T and α : E → F is T-module homomorphism. Then

kernal and image of α are defined as follows

ker(α) = {w ∈ E : α(w) = 0} and Im(α) = {α(w) : w ∈ E} = α(E).

Remark 1.2.6. [12]

Suppose E and F are two modules over T and α : E → F is T-module homomorphism. Then
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(1) ker(α) is submodule of E.

(2) Im(α) is submodule of F.

Definition 1.2.7.

Suppose F is a module over T. A non empty subset F ∗ of F becomes sub module of F if these

two conditions holds in F ∗.

1. e∗1 − e∗2 ∈ F ∗ for each e∗1 − e∗2 ∈ F ∗.

2. For any t′ ∈ T and e∗ ∈ F ∗ ⇒ t′e∗ ∈ F ∗.

Example 1.2.8.

Z is a commutative ring having unity 1. Then rZ are its sub modules for r ∈ Z.

Definition 1.2.9.

Suppose F is T-module. Also suppose that F ∗ is a sub-module of F, then F/F ∗ = {f + F ∗ :

f ∈ F} is abelian group where addition is given as

(f1 + F ∗) + (f2 + F ∗) = (f1 + f2) + F ∗, for every f1, f2 ∈ F . For every t ∈ T & f ∈ F , define

t(f +F ∗) = tf +F ∗. These operations give us a well defined action of T on F/F ∗ and makes

F/F ∗ a T-module. We call F/F ∗ a quotient module.

Example 1.2.10.

Z/rZ are quotient modules for r ∈ Z.

Proposition 1.2.11. [12]

Suppose F is a module over T. Also consider F1 and F2 as sub modules of F. Then F1 ∩F2 is

a T-sub module of F.
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Remark 1.2.12. [10]

Suppose F is a module over T then F ∗ is a sub module of F⇔ for each x, y ∈ F ∗ and t′, t′′ ∈ T

⇒ t′x+ t′′y ∈ F ∗.

Theorem 1.2.13. [4]

(1) Suppose F is a T-module . Suppose F ∗ and E∗ are sub-modules of F, then

(F ∗ + E∗)/F ∗ ∼= E∗/(F ∗ ∩ E∗).

(2) If F ⊇ E ⊇ G are all T-modules, then we have

(F/G)/(E/G) ∼= F/E.

Definition 1.2.14.

Let F ∗ and E∗ be sub-modules of F. We define sum of F ∗ and E∗ as

F ∗ + E∗ = {f ∗ + e∗ : f ∗ ∈ F ∗, e∗ ∈ E∗}.

Definition 1.2.15.

A module F becomes a finitely generated, if it contains finite number of generators i.e F =

(f1, f2, ..., fr) = f1T + f2T + ...frT , fi ∈ F .

Example 1.2.16.
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(1) A finite dimensional vector space over a field say T is a finitely generated T-module.

(2) An abelian group which contains a finite set of generators is considered as finitely generated

Z-module. In particular, abelian groups of finite orders are finitely generated Z-module.

Definition 1.2.17.

Consider a ring T. The sequence of T-modules and with T-modules homomorphisms

· · ·Fi−1
gi−1−−→ Fi

gi−→ Fi+1 → · · ·

is exact if img(gi−1) = ker(gi) for all i.

Example 1.2.18.

Consider Z and r as a prime number, then sequence

· · ·Zr2
.r−→ Zr2

.r−→ Zr2 → · · ·

is exact because img(.r) = ker(.r) = rZr2 .

Definition 1.2.19.

Let E be a right and F be a left T-modules, then a mapping α : E × F → G∗, where G∗ is

any abelian group under addition, is said to be T-biadditive if

(a) α(e1 + e2, f) = α(e1, f) + α(e2, f).

(b) α(e, f1 + f2) = α(e, f1) + α(e, f2).

(c) α(e.t, f) = α(e, t.f) for all e, e1, e2 ∈ E, f, f1, f2 ∈ F and t ∈ T.
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Definition 1.2.20.

Suppose E is a right and F is a left T-modules. Also G∗ is any abelian group under addition.

Then G∗ with T-biadditive map say α : E×F → G∗ is said to be a tensor product of modules

E and F if for any abelian group A∗ and T-biadditive map say β : E × F → A∗, there exists

a group map β∗ : G∗ → A∗ such that β∗ ◦ α = β. We denote E ⊗ F as tensor product.

Theorem 1.2.21. [11]

Let T be a commutative ring, then E ⊗T F becomes a T-module.

Definition 1.2.22.

Consider F1 → F2 → F3 as exact sequence of modules over T. Then T-module E is called

flat, if the sequence E ⊗T F1 → E ⊗T F2 → E ⊗T F3 remains exact.

Example 1.2.23.

Any vector space over a field is a flat module.

Definition 1.2.24.

A collection of objects and morphisms between objects is called a category C if it satisfies

following axioms

(i) For any A∗, B∗, D∗ ∈ C we have a composition

mor(A∗, B∗)×mor(B∗, D∗)→ mor(A∗, D∗)

(f ∗, g∗)→ g∗ ◦ f ∗
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satisfying associative law i.e

(f ∗ ◦ g∗) ◦ h∗ = f ∗ ◦ (g∗ ◦ h∗) where h∗ ∈ mor(D∗, E∗), where f ∗ ∈ mor(A∗, B∗) and g∗ ∈

mor(B∗, D∗).

(ii) For any A∗ ∈ C, there exists a unique 1A∗ ∈ mor(A∗, A∗) satisfying 1A∗ ◦ f ∗ = f ∗ and also

g∗ ◦ 1A∗ = g∗ where f ∗ ∈ mor(B∗, A∗) and g∗ ∈ mor(D∗, A∗).

Example 1.2.25.

Rings with morphisms as ring maps is an example of category called category of rings.

Definition 1.2.26.

Consider two categories C∗ and C. Then F :̂C∗ → C becomes functor if it full fills following

properties:

(a) For each A∗ ∈ C∗, there exists a unique F (̂A∗) ∈ C.

(b) If α : A∗ → B∗ is any morphism in C∗, then there exists a unique morphism

F (̂α) : F (̂A∗)→ F (̂B∗) in C such that if A∗
α−→ B∗

β−→ D∗ in C∗ then it implies that F (̂A∗)
F (̂α)−−→

F (̂B∗)
F (̂β)−−→ F (̂D∗) with F (̂β) ◦ F (̂α) = F (̂β ◦ α).

(c) F (̂1A∗) = 1F (̂A∗) for all A∗ ∈ C∗.

Example 1.2.27.

E⊗F is a functor(here E is a right and F is a left fixed modules) from category of left modules

to category of abelian groups.

Definition 1.2.28.
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A functor F̂ is an exact functor if exactness of sequence 0 → B1
α−→ B2

β−→ B3 → 0 gives the

exactness of sequence 0→ F (̂B1)
F (̂α)−−→ F (̂B2)

F (̂β)−−→ F (̂B3)→ 0.

Example 1.2.29.

E ⊗ • is a right exact functor for any right module E.

Definition 1.2.30.

Suppose T is a commutative ring having unity. A subset S∗ is said to be a multiplicative set

if following axioms are satisfied.

(a) S∗ contains unity.

(b) S∗ should close under multiplication i.e j∗k∗ ∈ S∗ for each j∗, k∗ ∈ S∗.

Example 1.2.31.

As Z is I.D. Therefore S∗ = Z − {0} is a multiplicative set.

Note [11]

(1) Consider a commutative ring T with unity and ideal P ∗. Then S∗ = T − P ∗ is a

multiplicative set iff P ∗ is prime. In such case S∗−1T = TP ∗ becomes a local ring.

(2) Suppose T is a commutative ring having unity. If F is a T-module, then S∗−1F is an

S∗−1T module. The addition and multiplication of the elements of S∗−1T are discussed in

[11].

Definition 1.2.32.

Suppose F is a T-module. The set {t ∈ T : Tf = 0, wheref ∈ F} is annihilator of F and is

denoted as Ann(F). It is an ideal of T.

17



Definition 1.2.33.

(1) The set of all prime ideals of T is known as Spectrum of T. Mathematically we write

Spec(T ) = {A: A is a prime ideal in T}.

(2) The set of all maximal ideals of T is called Maximum of T. Mathematically Max(T ) = {W:

W is a maximal ideal in T}.

(3) Consider a T-module F. Then Support of F consists of those prime ideals A of T for which

FA 6= 0. It is written as Supp(F ). Note that Supp(F ) ⊂ Spec(T ).

Definition 1.2.34.

Consider A as prime ideal in T. Then A becomes an associated prime of F if ∃ f ∈ F such

that A = Ann(f) and denoted by Ass(F).

Equivalently a prime ideal A ∈ Ass(F ) iff the T-module morphism α : T/A→ F is injective.

Also note that Ass(F ) ⊂ Supp(F ) ([3]).

Example 1.2.35.

Consider module as Z and 2Z a sub module of Z. Then Ass(Z/2Z) = {2Z}.
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1.3 Depth and Regular sequences

In this section we define and explain basic concepts about regular sequences, depth, grade,

height, dimension and projective dimension etc. The details are discussed in literature [3].

Definition 1.3.1.

(1) The dimension of a ring T is the maximum length say r in the chain A1 ⊂ A2 ⊂ ... ⊂ Ar

of prime ideals of T. If there is no upper bound of above chain, then T is infinite dimensional.

We denote dimension of T simply as dim(T ).

Example 1.3.2.

(1)The polynomial ring k∗[Y1, Y2, ...] over the field k∗ is an infinite dimensional because the

chain (Y1) ⊂ (Y1, Y2) ⊂ ... of prime ideals is infinite.

(2)While the dimension of Z is 1.

Definition 1.3.3.

(1) Consider A as prime ideal in T. The height of A is the maximum length say r in the chain

A0 ⊂ A1 ⊂ ... ⊂ Ar = A of prime ideals in T and we represent it as ht(A). In other words we

have ht(A) = dim(TA).

(2) If I∗ is any proper ideal in T. The minimum of the heights of prime ideals A ⊃ I∗ is said

to be height of I∗. Mathematically we can write ht(I∗) = minA⊃I∗ht(A), where A carries

over prime ideals of T.

Example 1.3.4.

19



Consider polynomial ring T = k∗[Y ] over the field k∗. Then I∗ = (Y 2) is a proper ideal in T

and A = (Y ) is the only prime ideal in T such that A ⊃ I∗. So we have ht(I∗) = 1.

Definition 1.3.5.

The dimension of a finitely generated module F is the maximum length of chains of prime ide-

als such that all prime ideals of chains belong to Supp(F ). In particular, we define dimension

of F in two ways dim(F ) = dim(Supp(F )) or dim(F ) = dim(T/AnnF ).

Definition 1.3.6.

Consider a module F over T. An element t ∈ T is an F-regular if for non-zero element f ∈ F

and t.f = 0 implies f = 0 or the map F
t−→ F (multiplication by t) is injective or simply t is

not a zero divisor on F.

Definition 1.3.7.

Consider a T-module F. A finite sequence y = (y1, y2, ...yr) containing the elements of T is

known as an F-regular sequence if it satisfies axioms described below:

(a) yj is not a zero divisor in F/(y1, y2, ...yj−1)F for all j = 1, 2, ..., r.

(b) F/yF 6= 0.

The integer r is length of F-regular sequence.

Example 1.3.8.

(1)In the polynomial ring Z[y] both sequences 4, y and y, y-1 are regulars.

(2) Elements orders in regular sequence matter except in case of commutative Notherian local

ring and finitely generated module. The elements x∗, y∗(1 − x∗), z∗(1 − x∗) form a regular
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sequence in polynomial ring k[x∗, y∗, z∗] over a field k but the elements y∗(1−x∗), z∗(1−x∗), x∗

can not.

Definition 1.3.9.

Consider a module F over Notherian ring T. Also suppose I∗ is proper ideal in T. An F-

regular sequence y = (y1, y2, ...yr) contained in I∗ becomes a maximal F-regular sequence in

I∗ if there does not exist yr+1 ∈ I∗ for which (y1, y2, ...yr+1) becomes an F-regular sequence.

Theorem 1.3.10. [3]

Suppose T is a Notherian ring, F is its finite module and J is its ideal for which JF 6= F .

Then all maximal F-sequences contained in J will have same length.

Definition 1.3.11.

Consider a Notherian ring T, a finite T-module F and I∗ a proper ideal in T such that

I∗F 6= F . The common length of maximal F-regular sequences which is contained in I∗

becomes grade of I∗ on F and is represented by grade(I∗, F ).

We take grade(I∗, F ) =∞ in the case when I∗F = F .

We can also define grade of a non-zero module in terms of Ext functor as follows.

gradeF = min{j ∈ N : ExtjT (F, T ) 6= 0}

We have gradeF =∞, when F = 0. For the definition and properties of Ext functor see [11].

Example 1.3.12.
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(1) Let T=Z=F. Take A=3Z a prime ideal of Z. Then grade(A,F ) ≤ dim(T ) = 1. So

grade(3Z,Z) = 1 because T is an I.D.

We can generalize above as If A = pZ is any ideal of Z, then we have

grade(pZ,Z) = 1.

(2) Consider T = Z[X]. Take A = (X3+X+1, 5) a prime ideal where X3+X+1 is irreducible

in Z5. Also X3 +X+ 1 is irreducible in Z. Therefore X3 +X+ 1 is not a zero divisor of Z[X].

Hence X3 + X + 1 is regular element in Z[X]. Now we show that 5 is not a zero divisor of

Z[X]/(X3 +X + 1)Z[X]. Contrary suppose that 5 is a zero divisor of Z[X]/(X3 +X + 1)Z[X].

This means 5(f + I) = I, where f ∈ Z[X], I = (X3 +X + 1)Z[X] and f 6∈ I. This means

5f + I = I

(5 + I)(f + I) = I.

As f 6∈ I, therefore f + I 6= I. Hence 5 + I = I. Which yields 5 ∈ I, a contradiction. Thus

5 is not a zero divisor of Z[X]/(X3 +X + 1)Z[X] and 5 is regular in Z[X]/(X3 +X + 1)Z[X].

So we have

2 = dim(T ) ≥ grade(A, T ) ≥ 2.

22



This can be generalized as follows: Let p be a prime number and g be an irreducible polynomial

in Zp, ring of modulo p. If A = (g, p) is a prime ideal of T = Z[X]. Then we can have

grade(A, T ) = 2.

Definition 1.3.13.

Consider a Notherian local ring (T, a, k), where a is a maximal ideal of T and k = T/a its

residue field. Also suppose that F is a finite T-module. Then the grade of maximal ideal a on

F becomes the depth of F and is represented by depth(F ). In term of Ext Functor, we have

depthF = inf{j ∈ N : ExtjT (k, F ) 6= 0}.

The value of depth belongs to the set N ∪ {∞}. We have depth(F ) =∞, when F = 0.
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Chapter 2

Introduction To Almost Cohen

Macaulay Module

In this chapter first of all we shall define almost Cohen Macaulay (aCM) module. We shall

also check the properties of aCM module in terms of theorems, corollaries and lemmas.

2.1 Almost Cohen Macaulay Modules

Definition 2.1.1.

Let T be a commutative Noetherian ring having non-zero identity and A be its prime ideal.

Also consider a T-module F. Then F becomes an aCM if for each A ∈ Supp(F ), we have

grade(A,F ) = grade(ATA, FA).

Example 2.1.2.
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Consider T=Z and A=3Z its prime ideal. The length of maximal sequence (0) ⊂ A ⊂ T is

1. We have dim(T ) = 1. Now grade(A, T ) = 1 because T is an I.D. Now we have following

relation

1 = grade(A, T ) ≤ grade(ATA, TA) ≤ dim(TA) ≤ dim(T ) = 1.

This gives the equation

grade(A, T ) = grade(ATA, TA) = 1.

So Z is an aCM.

Note :

The more general result is that Z is an aCM ring if we take its any prime ideal satisfying

definition of aCM ring.

Lemma 2.1.3.

F is an aCM iff for all prime ideals A of T such that A ∈ Supp(F ) and for each F-regular

sequence (y1, y2, ....yn) contained in A, A is associated prime of F/(y1, y2, ....yn)F .

Proof.

Consider A as prime ideal such that A ∈ Supp(F ) and F be an aCM.

Let us take grade(A,F ) = 0. As F is aCM. So we have depth(ATA, FA) = 0 iff ATA ∈

AssTA(FA) = 0 iff A ∈ AssT (F ) for all A ∈ Supp(F ) as required.

Now we consider the case when grade(A, T ) = n ≥ 1 and an F-regular sequence (y1, y2, ....yn)

contained in A, then depth(ATA, FA) = n for all A ∈ Supp(F ). From here we get
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depth(ATA/(y1, y2, ....yn)TA, FA/(y1, y2, ....yn)FA) = 0

Iff ATA/(y1, y2, ....yn)TA ∈ AssTA/(y1,y2,....yn)TA(FA/(y1, y2, ....yn)FA)

Iff A/(y1, y2, ....yn) ∈ AssT/(y1,y2,....yn)T (F/(y1, y2, ....yn)F )

Iff A ∈ AssT (F/(y1, y2, ....yn)F ).

The last relation holds because of [8, (9, A)].

Lemma 2.1.4.

Consider T as a commutative Notherian ring and its T-module F. F is aCM iff for every prime

ideal A such that A ∈ Supp(F ), we have dim(FA) ≤ depth(A,F ) + 1.

Proof.

Suppose contrary that dim(FA) ≥ depth(A,F ) + 1 for some prime ideal A such that A ∈

Supp(F ) and F is an aCM. We have therefore depth(A,M) = depth(ATA, FA) = n, where n

is finite positive number.

Now by Lemma 2.1.3, we can take a maximal F-sequence say (y1, y2, ....yn) contained in A.

Now let B = Ann(F ) + (y1, y2, ....yn), where Ann(F) represents annihilator of F. So A/B ∈

AssTB(F/BF ) by Lemma 2.1.3. Also we have dim(FA) = dim(R/Ann(F ))A≥ n+2. So

ht(A/B) in T/B is at least two. So [7, Theorem 144, page 107] implies that infinitely

many prime ideals in T/B contained in A/B. As F is an aCM and (y1, y2, ....yn) is F-

regular. Now we prove F/(y1, y2, ....yn)F ∼= F/BF is an aCM over T/(y1, y2, ....yn). We

have grade(A/(y1, y2, ....yn), AF/(y1, y2, ....yn)F ) = grade(A,F )− n.

Also grade(A/(y1, y2, ....yn)TA, (AF/(y1, y2, ....yn)F )A) = grade(ATA, FA) − n. Since F is an
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aCM i.e grade(A,F ) = grade(ATA, FA), therefore F/(y1, y2, ....yn)F ∼= F/BF is an aCM. So

all conditions of Lemma 2.1.3 are satisfied for F/BF. Thus AssTB(F/BF ) is not finite. Which

contradicts to the fact that n is finite. Hence F is not aCM. This gives us that if F is an aCM,

then dim(FA) ≤ depth(A,F ) + 1 for all prime ideal A ∈ Supp(F ).

Conversely suppose dim(FA) ≤ depth(A,F ) + 1 for all prime ideal A ∈ Supp(F ) is true. We

prove that F is an aCM. Let (y1, y2, ....yn) be any maximal F-regular sequence contained in

any prime ideal Q ∈ Supp(F ). We only need to show that Q ∈ AssT (F/(y1, y2, ....yn)F ). For

this again suppose B = Ann(F )+(y1, y2, ....yn) and Q/B as prime ideal of T/B. Now we have

depth(Q/B,F/B) = 0 and dim(FQ) ≤ n+ 1. This gives ht(Q/B) ≤ 1 in T/B.

Now if we take ht(Q/B) = 0. This implies that Q/B ∈ AssTB(F/BF ).

Now take ht(Q/B) = 1, there exists prime ideal Q0 ∈ Spec(T ) containing Q and we have

Q0/B ∈ AssTB(F/BF ). Hence depth(Q0, F ) = n and since dim(FQ0) ≤ depth(Q0, F ) + 1

was true. It implies Q0 = Q. Thus Q/B ∈ AssTB(F/BF ). In both cases we obtained that

Q ∈ AssT (F/(y1, y2, ....yn)F ) from [4, (9, A)] and by isomorphism F/(y1, y2, ....yn)F ∼= F/BF .

Thus F is an aCM module by Lemma 2.1.3.

Lemma 2.1.5.

A module F over a local ring (T,Q0) such that dim(F ) ≤ depth(Q0, F ) + 1, then F becomes

an aCM.

Proof.

We apply induction on depth(Q0, F ) − depth(A,F ) to prove dim(FA) ≤ depth(A,F ) + 1 for
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all prime ideal A ∈ Supp(F ).

Firstly if A and Q0 are distinct such that depth(Q0, F ) = depth(A,F ). By using given fact

that dim(F ) ≤ depth(Q0, F ) + 1, we obtain the following relation

dim(FA) ≤ dim(F ) ≤ depth(Q0, F )+1=depth(A,F )+1. Thus F is an aCM by Lemma 2.1.4.

Secondly we consider the case when depth(A,F ) ≤ depth(Q0, F ). So ∃ a prime ideal A0 such

that depth(A0, F ) = depth(A,F ) + 1 and A0 ⊂ A ⊂ Q0 from [7, Theorem 128, page 93]. Also

the inequality dim(FA0) ≤ depth(A0, F ) + 1 holds due to Induction hypothesis. By using all

above facts we get finally dim(FA) ≤ dim(FA0) ≤ depth(A0, F ) + 1 = depth(A,F ) + 2. This

gives us dim(FA) ≤ depth(A,F ) + 1. So F becomes an aCM by Lemma 2.1.4.

Note :

Remember that F over a commutative Notherian ring T is Cohen Macaulay (CM) if

dim(F ) = depth(F ).

Corollary 2.1.6.

A CM module over a local ring (T,Q0) is aCM.

Proof.

Let F be CM module over a local ring (T,Q0), then dim(F ) = depth(Q0, F ).

Now consider dim(F )−depth(Q0, F ) = dim(F )−dim(F ) = 0 ≤ 1. So F is an aCM T-module

from Lemma 2.1.5.

Corollary 2.1.7.
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Let F be a module over a local ring (T,Q0) such that dim(F ) ≤ 1, then F becomes an aCM

T-module.

Proof.

We have a relation depth(F ) ≤ dim(F ) [7]. Also given that dim(F ) ≤ 1. Combining above

inequalities, we get depth(F ) ≤ dim(F ) ≤ 1. This implies that depth(F ) ≤ 1.

Now we also have dim(F )− depth(F ) ≤ 1. Thus from Lemma 2.1.5, T-module F becomes an

aCM.

Lemma 2.1.8.

Consider (T,Q0) as local ring and F a aCM. Also suppose that an element y ∈ T which is

not a zero divisor of F. Then F/yF becomes an aCM T/y-module.

Proof.

Since F is an aCM T-module. So by Lemma 2.1.5, we have dim(F ) ≤ depth(Q0, F ) + 1. Now

dim(F/yF ) = dim(F )− 1. Combining these two relations we get

dim(F/yF ) = dim(F )−1 ≤ depth(Q0, F ) + 1−1 = depth(Q0, F )−1 + 1 = depth(F/yF ) + 1.

This means we have dim(F/yF ) ≤ depth(F/yF ) + 1. Finally by Lemma 2.1.5, F/yF is an

aCM T/y-module.

Lemma 2.1.9.

Almost cohen-macaulayness is preserved by localization.

Proof.

Consider (T,Q0) as local and U ⊂ T as multiplicatively closed set. Also suppose that F is an
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aCM T-module. We have to show that the module U−1F becomes an aCM over U−1T . Since

F is an aCM T-module, So we have from Lemma 2.1.5 dim(F ) ≤ depth(F ) + 1. Also we have

the following inequalities dim(U−1F ) ≤ dim(F ) and depth(F ) ≤ depth(U−1F ). So we obtain

the following relation by combining all these inequalities

dim(U−1F ) ≤ dim(F ) ≤ depth(F ) + 1 ≤ depth(U−1F ) + 1.

Or dim(U−1F ) ≤ depth(U−1F )+1. So U−1F is an aCM over U−1T from Lemma 2.1.5. Hence

almost cohen-macaulayness is preserved by localization.

Lemma 2.1.10.

Suppose F is a module over a commutative Notherian T and A is its any prime ideal. Then

F is an aCM iff FA is an aCM over ATA for all A ∈ Supp(F ).

Proof.

Suppose F is an aCM T-module. So by definition of aCM module, we have

grade(A,F ) = grade(ATA, FA) for all A ∈ Supp(F ). We have to show that FA is an aCM

ATA- module. For this we have to show that grade(ATA, FA) = grade(A(TA)BTA , (FA)BTA)

for all B ∈ Supp(FA). Now we have the following isomorphisms.(TA)BTA
∼= TB and also

(FA)BTA
∼= FB. Therefore we have grade(ATB, FB) = grade(ATA, FA) = grade(A,F ) because

F is aCM. Thus FA becomes an aCM ATA- module.

Conversely suppose that FA is an aCM. So for all B ∈ Supp(FA) and for all A ∈ Supp(F )

we have grade(ATA, FA) = grade(A(TA)BTA , (FA)BTA) and also by Lemma 2.1.4, we have the

following inequality
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dim(FB)ATB ≤ depth(ATA, FA) + 1. Since (FB)AFB
∼= FA. Therefore the above inequality

yields dim(FA) ≤ depth(AT − A,FA) + 1. But depth(A,F ) ≤ depth(ATA, FA). The last two

inequalities yield us dim(FA) ≤ depth(A,F ) + 1. Hence F is an aCM by Lemma 2.1.4.

Lemma 2.1.11.

Suppose F is a module over a commutative Notherian T and A is any prime ideal of T. F is

aCM iff FA is an aCM over ATA for all A ∈ Supp(F ) ∩Max(T ).

Proof.

The almost cohen-macaulayness of F implies the almost cohen-macaulayness of FA for all

A ∈ Supp(F ) ∩Max(T ) by Lemma 2.1.10.

For converse suppose that FA is an aCM for all A ∈ Supp(F ) ∩ Max(T ). Now we can

choose a maximal ideal A such that B ⊂ A for each B ∈ Supp(F ) and depth(B,F ) =

depth(BTA, FA) from [7, Theorem 135, page 96]. Since FA is an aCM. By Lemma 2.1.4, we

have dim(FA)BTA ≤ depth(BTA, FA)+1. Since (FA)BFA
∼= FB. Therefore the above inequality

yields dim(FB) ≤ depth(B,F ) + 1. Hence F is an aCM by Lemma 2.1.4.

Lemma 2.1.12.

Suppose F is a module over a commutative Notherian T. Then FA is an aCM if and only if

dim(FA) ≤ depth(ATA, FA) + 1.

For all A ∈ Supp(F ) ∩Max(T ).

Proof.
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Suppose FA is an aCM. So we have dim(FA)ATA ≤ depth(ATA, FA)+1 by Lemma 2.1.4. Since

(FA)AFA
∼= FA. Therefore above inequality yields us

dim(FA) ≤ depth(ATA, FA) + 1.

The converse is trivial from Lemma 2.1.4.

Remark :

From Lemma 2.1.11 and Lemma 2.1.12 we can conclude that

A module F over a commutative Notherian T is an aCM.

Iff FA is an aCM over ATA for all A ∈ Supp(F ) ∩Max(T ).

Iff dim(FA) ≤ depth(ATA, FA) + 1 for all A ∈ Supp(F ) ∩Max(T ).
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2.2 More results for almost Cohen-Macaulay Module

In this section we prove more results for aCM modules and aCM rings with the help of the

results proved in Section 2.1. We also prove almost cohen-macaulayness of polynomial ring

as well as almost cohen-macaulayness of power series ring.

Theorem 2.2.1.

� 1. Consider a commutative Notherian ring T. T is an aCM if dim(T ) ≤ 1.

� 2. If T is CM, then T becomes an aCM.

� 3. T is an aCM iff for each maximal regular sequence (k1, k2, ...kn) contained in prime

ideal A for all A ∈ Spec(T ), then A ∈ Ass(T/(k1, k2, ...kn)).

Proof.

1. The proof is similar as Corollary 2.1.7 in Section 2.1.

2. The proof is same as Corollary 2.1.6 in Section 2.1.

3.The proof can be done according as Lemma 2.1.3 by just replacing T with F.

Lemma 2.2.2.

Suppose a commutative Notherian ring T and a T-module F. Suppose an element q ∈ T

is in Jrad(T ) and q is non-zero divisor for T and F. Also suppose that if F/qF is an aCM

T/(q)-module, then so is F over T.

Proof.
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Let A ∈ Supp(F )∩Max(T ) be any ideal of T. Now we have dimFA = 1 + dim( F
qF

)A/q. Since

F/qF is an aCM T/(q)-module, by Lemma 2.1.4 we have dim( F
qF

)A/q ≤ depth(A/q, F/qF )+1.

Or dimFA ≤ depth(A/q, F/qF )+2 = depth(A,F )−1+2 = depth(A,F )+1. Thus by Lemma

2.1.12 in Section 2.1, F becomes an aCM over T.

Theorem 2.2.3.

Suppose a commutative Notherian ring T. Then T is an aCM iff T [[Y1, Y2, ..., Yr]] is an aCM

ring for all r ≥ 1.

Proof.

Let T be an aCM. We have to prove that T [[Y1, Y2, ..., Yr]] is an aCM for all r ≥ 1. It is enough

to show that T [[Y1]] is an aCM . Here Y1 is not a zero divisor for T. We have isomorphism

T ∼= T [[Y1]]/(Y1). Since T is an aCM , therefore T [[Y1]]/(Y1) is also an aCM. Thus T [[Y1]] is

an aCM by Lemma 2.2.2.

Conversely let T [[Y1]] be an aCM and Y1 is not a zero divisor for T. By Lemma 2.1.8 in Section

2.1, we have T [[Y1]]/(Y1) is also an aCM. Since T ∼= T [[Y1]]/(Y1) and T [[Y1]]/(Y1) is an aCM.

Therefore T is an aCM .

Thus in general we have a commutative Notherian ring T is an aCM iff T [[Y1, Y2, ..., Yr]], the

power series ring is an aCM for all r ≥ 1.

Theorem 2.2.4.

Consider a flat morphism γ : S → T of commutative Notherian rings. Suppose that AT 6= T

for all A ∈ Spec(S), i.e the mapping γ∗ : Spec(T )→ Spec(S) is a surjective.
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� 1. The almost cohen-macaulayness of T implies the almost cohen-macaulayness of S

and the fibre ring T ⊗S k(A) for all A ∈ Spec(S).

� 2. Suppose S is an aCM and T ⊗S k(A) is a CM for all A ∈ Spec(S), then T becomes

an aCM.

Proof.

(1). For any A ∈ Spec(S) and any prime ideal in T⊗Sk(A), there exists a unique B ∈ Spec(T )

such that B ∩ S = A and BT ⊗S k(A) is a prime ideal in T ⊗S k(A). We have following

relations by [8, (21.A) and (21.B), page 153] dimTB = dimSA + dimTB ⊗S k(A).

Also we have depth(BTB, TB) = depth(ASA, SA) + depth(BTB ⊗S k(A), TB ⊗S k(A)).

Now consider the difference

dimTB − depth(BTB, TB) = dimSA − depth(ASA, SA) + dimTB ⊗S k(A) − depth(BTB ⊗S

k(A), TB⊗Sk(A)) ≤ 1 because of the almost cohen-macaulayness of T. This yields us dimSA−

depth(ASA, SA) ≤ 1 and also dimTB ⊗S k(A) − depth(BTB ⊗S k(A), TB ⊗S k(A)) ≤ 1. So

both S and T ⊗S k(A) are aCM rings for all A ∈ Spec(S).

(2). If S is an aCM and T ⊗S k(A) is CM for all A ∈ Spec(S), then we have dimSA −

depth(ASA, SA) ≤ 1 and dimTB ⊗S k(A) = depth(BTB ⊗S k(A), TB ⊗S k(A)).

Now we have dimTB − depth(BTB, TB) = dimSA − depth(ASA, SA) ≤ 1. Thus T is an aCM.

Theorem 2.2.5.

Consider a commutative Notherian ring T. Then T is an aCM iff T [Y1, Y2, ...Yr], the ring of

polynomials is an aCM for all r ≥ 1.
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Proof.

It is enough to show that T is an aCM iff T [Y1] is an aCM. Suppose that if T is an aCM for

all A ∈ Spec(T ), then the fibre ring T [Y1] ⊗T k(A) is a polynomial ring over the field k(A).

So T [Y1]⊗T k(A)) is CM. Hence T [Y1] is an aCM by part2 of Theorem 2.2.4

Conversely suppose T [Y1] is an aCM. For any A ∈ Spec(T ), we have A[Y1] ∈ Spec(T [Y1]).

Also dimTA ≤ dimT [Y1]A[Y1] and depth(A, T ) ≤ depth(A[Y1], T [Y1]). Since T [Y1] is an aCM,

therefore dimT [Y1]A[Y1] − depth(A[Y1], T [Y1]) ≤ 1. By combining all above facts we obtain

dimTA − depth(A, T ) ≤ dimT [Y1]A[Y1] − depth(A[Y1], T [Y1]) ≤ 1.

Hence T is an aCM.

In general a commutative Notherian ring T is an aCM iff T [Y1, Y2, ...Yr],the ring of polynomials

is an aCM for all r ≥ 1.
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Chapter 3

Basic Results on Almost

Cohen-Macaulay Modules

In this chapter, we will prove more results on aCM module. Furthermore we prove if T is

aCM and F is perfect having finite projective dimension. Then F becomes aCM. Next we

check the nature of aCM modules according with flat morphisms. Also we will provide a

sufficient condition for a T-module F to become an aCM.

3.1 Some Basic Results related to aCM Modules

In this section we define perfect module. We also discuss under what conditions a perfect

module becomes an aCM module.

Note :
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A finitely generated T-module F is called an aCM if for each A ∈ Supp(F ), we have

grade(A,F ) = grade(ATA, FA).

Definition 3.1.1. Consider a non-zero finite module F over a Notherian ring T. Then F is

a perfect if

projdim(F ) = grade(F ).

Lemma 3.1.2.

Suppose F is an aCM T-module over a local ring (T,g) with maximal ideal g. Then

dim(F )− dimT/A ≤ 1.

For each A ∈ Ass(F ).

Proof.

We have the following inequality by [3 , Proposition 1.2.13] depth(F ) ≤ dim(T/A) for each

A∈ Ass(F ). Also we have dim(T/A) ≤ dim(F ). Since F is an aCM. Therefore from

Remark(3), it satisfies dim(F )− depth(F ) ≤ 1. By combining above results we get

dim(F )− dim(T/A) ≤ 1. So the lemma is proved.

Lemma 3.1.3.

Let J be any proper ideal of a local ring (T,g) and F be a T-module. The T-module F is an
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aCM if

grade(J, F ) = grade(JTA, FA).

For any A∈ Supp(F/JF ).

Proof.

The proof is simply obtained by using the definition and properties of grade.

Theorem 3.1.4.

Consider (T,g) as local. Suppose F is aCM T-module. For all ideals b contained in g, we have

dim(F )− dimF/bF ≤ grade(b, F ) + 1.

Proof.

Suppose grade(b, F ) = 0. It means that ∃ A in Ass(F ) such that b is contained in A and we

have dimT/A ≤ dimF/bF . So from lemma(3.1.2), we get dim(F )− dimF/bF ≤ 1. Now we

consider the case when grade(b,F) is greater than zero. So there exists an element y in b and

y is regular on F. We have

grade(b, F/yF ) = grade(b, F )− 1

and also

dimF/yF = dim(F )− 1.
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Hence the result is proved by induction.

Corollary 3.1.5. [1]

Let F be an aCM module over (T,g) with maximal ideal g. Then we have

dim(F )− dim(F/AF ) ≤ dimFA + 1

for every A ∈ Supp(F ).

Proof.

We obtain dim(F )− dimF/AF≤ grade(A,F ) + 1 by using theorem(3.1.4). We also have

grade(A,F ) ≤ ht(A) = dimFA. By combining these inequalities, we can obtain

dim(F )− dim(F/AF ) ≤ dimFA + 1.

Corollary 3.1.6. [2]

Suppose J is a proper ideal in (T,g). If T is an aCM, then we have

ht(J) ≤ dim(T )− dimT/J ≤ ht(J) + 1.

Proof.

As grade(J)≤ht(J). From the definition of height, we have ht(J) ≤ dim(T )− dimT/J . Now
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by Theorem(3.1.4) and above facts yield

ht(J) ≤ dim(T )− dimT/J ≤ ht(J) + 1.

Remark 3.1.7. Suppose T is a Notherian ring. We have already proved in chapter 2.

1.T is an aCM module iff

ht(J) ≤ 1 + depth(J, T ) for every J ∈ Spec(T)

2.For any J ∈ Spec(T), T is an aCM iff TU is an aCM for any U in Max(T)

iff ht(U) ≤ 1 + depth(T, U) for each U ∈ Max(T).

3.Moreover if T is a local, then from 2 we can have T is an aCM

iff dim(T ) ≤ 1 + depth(T ).
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The next theorem is an extension of the result in [13, 1.9].

Theorem 3.1.8.

Consider T as an aCM, and F as perfect T- module whose projective dimension is finite. Then

F becomes an aCM.

Proof.

We have following inequalities for any A ∈ Supp(F)

grade(F ) ≤ gradeFA ≤ pdFA ≤ pd(F ).

As F is perfect i.e pd(F ) = grade(F ). Therefore FA also becomes a perfect TA-module by

above inequality. So we may suppose that T is a local ring. Now by Auslander-Buchsbaum

formula we have pd(F )−depth(F ) = depth(T ). By using Corollary(3.1.6), the given fact that

T is an aCM and Remark 3.1.7(3). We obtain

dim(F )− depth(F ) ≤ dim(T )− depth(T ) ≤ 1.

Hence F becomes an aCM.

The next proposition extends the result in [6, Proposition 2.2].

Proposition 3.1.9.

Consider a local homomorphism γ : (X, a) → (Y, b) of Notherian local rings. Consider E as

finitely-generated X-module and F as an X-flate finitely-generated Y-module.
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� (1) The almost cohen-macaulazness of E ⊗X F as Y-module implies the almost cohen-

macaulazness of E as X-module and F/aF as Y-module.

� (2)Furthermore if E and F are both aCM as X-module and Y-module respectively and

if any one of them is CM. Then E ⊗X F is an aCM Y-module.

Proof.

(1)

We have the following relations from [4, Proposition1.2.16(a) and Theorem A.11(b)]

dimY (E ⊗X F ) = dimX(E) + dimY (F/aF )

and

depthY (E ⊗X F ) = depthX(E) + depthY (F/aF )

Now consider the difference

0 ≤ dimY (E⊗XF )−deptY (E⊗XF ) = dimX(E)−depthX(E)+dimY (F/aF )−depthY (F/aF ) ≤ 1

because due to given fact that E⊗X F over X is an aCM Y-module. The last inequality

implies

dimX(E)− depthX(E) ≤ 1
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as well as

dimY (F/aF )− depthY (F/aF ) ≤ 1.

Thus E as X-module and F as Y-module are aCM.

(2).Now if E and F are both aCM as X-module and Y-module respectively and if we take E as

CM. Then dimX(E) = depthX(E) and almost cohen-macaulayness of F gives dimY (F/aF )−

depthY (F/aF ) ≤ 1. Now the difference given below becomes

dimY (E ⊗X F )− deptY (E ⊗X F ) = dimY (F/aF )− depthY (F/aF ) ≤ 1.

Thus E ⊗X F becomes an aCM Y-module.
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3.2 Almost Cohen-Macaulay modules and Ext Functors

We will establish here a necessary and sufficient condition for a T-module F to become an

aCM with the help of Exact Functors.

Definition 3.2.1.

Suppose (T,g) is a local ring with a maximal ideal g and F is a finite T-module. F is callad

a maximal aCM over T if

depth(F ) = dim(T ).

Remark 3.2.2.

From the above definition we can conclude.

1. A CM module F over a Notherian local ring T is called a maximal CM if

dim(F ) = dim(T )

2. More precisely a CM module F over a Notherian local ring T becomes a maximal CM if

Supp((F ) = Spec(T ).

Definition 3.2.3.

Let (T,g) be a CM local ring having finite dimension q. Then a T-module G is said to be a
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canonical if G is a maximal CM of type 1 with finite injective dimension.

Proposition 3.2.4.

Suppose F is an aCM over a CM local ring (T,g) and G is a canonical module over T. Let

depth(F ) = r and dim(T ) = q. Also if dim(F )− depth(F ) = 1, then we have ExtjT (F,G) 6= 0

only either j=q - r or j=q - r - 1.

Proof.

By [10, Proposition 3.1(b)] we have gradeGF=grade(F). Also from [5,Proposition 1.2(g), (i)]

we have depth(T ) = depth(F ) + sup{j : ExtjT (F,G) 6= 0}. From here we get the equation

sup{j : ExtjT (F,G) 6= 0} = q − r and depth(T ) ≤ dim(F ) + depth(F ) ≤ dim(T ). Since T is

a CM local ring, therefore depth(T ) = dim(T ). So the above inequality yields grade(F ) +

dim(F ) = dim(T ). By using dim(F ) − depth(F ) = 1 and gradeGF = grade(F ). We get

gradeGF = dim(T )− depth(F )− 1 which yields gradeGF = q− r− 1. By definition of grade

we have, inf{j : ExtjT (F,G) 6= 0} = q − r − 1. The proof is completed.

In the next theorem, we will check the necessary and sufficient condition for a module to

become an aCM over a CM local ring with the help of Exact Functor.

Theorem 3.2.5.

Suppose that (T,g) is a CM local ring of dimension q and G is a canonical module over T.

Then a non CM module F over T with depth(F ) = r is an aCM iff ExtjT (F,G) 6= 0 only when

either j=q - r or j=q - r- 1.

Proof.
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Suppose that F over T with depth(F ) = r is an aCM module. Then by Proposition 3.2.4, we

get the required condition.

Conversely suppose that ExtjT (F,G) 6= 0 only when either j=q - r or j=q - r - 1. Which

implies that ExtjT (F,G) 6= 0 when j= q - r and ExtjT (F,G) = 0 for every j greater than q - r.

So we obtain

sup{j : ExtjT (F,G) 6= 0} = q − r. Now from [5, Proposition 1.2(g), (i)] we get the equation

depth(T ) = grade(F ) + sup{j : ExtjT (F,G) 6= 0} which yiels that q = depth(F ) + q− r. From

here we get depth(F ) = r. Also by applying [5, Proposition 1.2(h) and 3.1(b)] we can get the

relation

gradeGF = grade(F ) = inf{j : ExtjT (F,G) 6= 0} = q − r − 1. Now by using [5, Proposition

1.2(i)] and the fact that T is a CM ring i.e dim(T ) = depth(T ), we get the following equation

grade(F ) + dim(F ) = dim(T ). If we use grade(F ) = q − r − 1 and dim(T ) = q. Then the

last equation yields dim(F ) = r + 1 = depth(F ) + 1 which gives

dim(F )− depth(F ) = 1.

Thus F becomes an aCM T-module.
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