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Preface

Cryptography is the science of securing private information. Cryptographers uses

di�erent approaches to secure important and personal data. Di�erent aspects of

data protection strategies are being introduced by cryptographers in order to con-

vert secret data into an unreadable format using keys. Shanon gave the idea that

a cryptosystem is secure if it creates uncertainty in data. In cryptography special

types of curves that contain a group's con�guration are fundamental and very useful

resources. Elliptic curves are thought to be one of the most secure structures to

minimize the risk of computational attacks. Elliptic curve cryptography (ECC) is

a highly secured asymmetric encryption technique that uses the underlying mathe-

matical structures involved in elliptic curve geometry. In cryptography, Koblitz and

Miller independently gave the main example of EC over �nite �elds. When com-

pared to other public key cryptosystems, the ECC has the same level of complexity

while using a smaller key space. Substitution boxes (S-boxes) are the important

non-linear component for security of cryptosystem. S-boxes are capable of creating

confusion in the data that makes cryptosystem highly secured against cryptana-

lytic attacks. Therefore many researchers introduced their own methodoligies for

the construction of S-boxes to create confusion in the data.

In this thesis we propose an e�cient S-box generation scheme based on hyperel-

liptic curves (HEC) over a prime �eld. The �rst chapter contains fundamentals of

cryptography, some basic de�nitions of hyperelliptic curve (HEC), and a detailed de-

scription to the elliptic curves cryptography. In the second chapter we review some

literature that proposed an e�cient method to generate S-boxes that are based

on a class of Mordell elliptic curves (MEC) over �nite �elds. In the third chapter

newly developed technique uses the y-coordinates of hyperlliptic curve is explained

whereas, a total ordering is applied on the points of an hyperelliptic curve to di�use

the y-coordinates. The proposed scheme o�ers high level of security and generates

a large number of distinct cryptographically secure S-boxes. Furthermore, to show

the e�ciency of the proposed method, the suggested S-boxes' security is analyzed

and comparison is made with some already existing S-boxes generated by di�erent

mathematical methods.
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Chapter 1

Cryptography and Elliptic Curves

Introduction

This chapter contains fundamentals of cryptography and a detailed description to

the elliptic curves. The following section will cover fundamental de�nitions and

key concepts. In the �rst portion will go through cryptography theory, its various

branches, and its usefulness in everyday lives. Cryptography is the science of secur-

ing private information.

One of the factor that distinguishes elliptic curves (EC's) is that the points that lie

on them form an abelian group structure. Therefore, in this chapter, we will give

a detailed description to the geometry of EC's in order to understand the group

structure and the usefulness of EC's in modern cryptography.

1.1 Cryptology

The study of procedures for verifying the secrecy or authenticity of data is known

as cryptology. The Greek word cryptology, is a wide term incorporating both cryp-

tography and cryptanalysis [1].

1.1.1 Cryptography

The study of techniques for securing communications and data in the presence of

adversaries is called cryptography. The term "cryptography" comes from a combi-

nation of the words "crypto" means hidden and "graphy", means writing. Those

who are involved in its execution are cryptographers. Basically cryptography is the

method of protecting con�dential information and communications by using codes.
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Only the intended receivers will be able to read and process the message.

Cryptography is thought to have started around 1900 B.C., with the Egyptian

tradition of hieroglyphics. Julius Caesar is credited as being the �rst to utilise a

modern cipher. He devised a technique in which each character (in his message)

was replaced with a character in the Roman alphabet three positions forward of it.

This technique entitled as caesar cipher.

Mathematical concepts are used to develop cryptography techniques. They send

messages in di�cult-to-read formats by using algorithms or rule-based calculations.

A cryptographic key is generated by the algorithms. To preserve the data pri-

vacy, con�dential communications and internet browsing, they have control over

digital signing and veri�cation. These include email, credit card transactions etc.

1.1.2 Objectives of Cryptography

Modren Cryptography has four main standars [2].

1. Con�dentiality

It guarantees that the sent message should be secure, and the information can

only be understood by the intended receiver.

2. Integrity

Nobody can change the data while it is being stored or the message is in

transit between the sender and the intended receiver. The receiver must be

able to detect either the received data is changed or not.

3. Non-repudiation

It is a service in which information sender can never deny their intent in the

information creation and transference in a later stage.

4. Authentication

This ensures that the communication party is authentic where sender and

receiver can con�rm their identi�cation and data sources authenticity.
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1.1.3 Basic Terms in Secure Communication

Modern cryptography is frequently associated with following terminologies,

� Plaintext

The message in its translating ordinary readable form called plaintext.

� Encryption

The process of converting con�dential data into secret codes by using crypto-

graphic techniques is called encryption.

� Ciphertext

Unreadable or encrypted form of con�dential data is called ciphertext.

� Decryption

The method of converting encrypted data back to its ordinary readable form

(plaintext) by using an algorithm is called decryption.

� Secret Key

Secret key is a value or crypto-variable that is used to transmit plaintext into

ciphertext and vise versa. Basically secret key is the input for encryption

algorithm.

� Cryptosystem

A system consisting of a set of algorithms that transforms plaintext into ci-

phertext by using secret key is called cryptosystem.

Figure 1.1: Cryptosystem

Basic Properties of a Secure Cryptosystem

Confusion and di�usion are two characteristics of a secure cryptosystem. Opera-

tion established by Claude Shannon in his classi�ed publication "A Mathematical

Theory of Cryptography" in 1945 [5].
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1. Confusion

Making a relation between the key and the ciphertext as di�cult as feasi-

ble is referred to as confusion. The use of the key is made more di�cult by

the confusion process. In other words the technique assures that the cipher-

text conceals the plaintext, because each bit of ciphertext relies on numerous

key bits altering one bit of key causes the ciphertext to be fully altered and

ciphertext becomes more obscure as a result.

2. Di�usion

In di�usion the output bits should be highly dependent on the input bits

and any correlation between plaintext and ciphertext is preserved. Di�usion's

goal is to conceal the ciphertext's link with the plaintext. It means that

if a single bit of plaintext is modi�ed the ciphertext should change fully in

an unpredictable way and vise versa. The cryptosystem's capacity to create

di�usion makes it more di�cult for an attacker to extract data from plaintext

or ciphertext.

1.1.4 Types of Cryptography

Generally cryptographic techniques are classi�ed into two major types for encryp-

tion of data [6],

1. Symmetric Key Cryptography.

2. Asymmetric Key Cryptography.

1. Symmetric Key Cryptography

Symmetric key cryptography is a method where a single key or same key is

used in the entire enciphering and deciphering phase. This single key is mu-

tually shared among the sender and receiver, and because it is exactly the

same key on both sides so both the sender and receiver must have to keep it

secret from an unauthorized recipient.

Symmetric key cryptography is referred to as secret key cryptography so for

many symmetric key cryptography algorithms have been developed, these are

Data Encryption Standard(DES) and Advanced Encryption Standard (AES)

[2].
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DES

DES is a symmetric key cipher with a 64-bit input block size and a key size

of 56 bits. It was designed by International Business Machines Corporation

(IBM) and it used 8 di�erent 4-bits S-boxes in its construction [3]. The DES

algorithm was thoroughly described by its developers but no information was

provided about the construction of S-boxes being used. For many years the

8 S-boxes were in the spotlight because of this uncommon behaviour. DES

was authoritatively structured in 1976 to satisfy National Bureau Standards

(NBS) requirements for the encryption method.

AES

AES is the most widely used algorithm and has been declared as the standard

of encryption. AES accepts 128-bit data and encrypts it with keys of 128, 192,

and 256 bits [4]. It is one of the most e�ective encryption algorithms developed

by the United States (US) government to improve the security of con�dential

data. The National Institute of Standards and Technology (NIST) introduced

AES in 1997 when DES was no longer considered secure for the security of

top-secret information.

Figure 1.2: Symmetric Key Encryption

2. Asymmetric Key Cryptography

Asymmetric key cryptography is referred to as public key cryptography. In

this method each user uses a pair of keys to encrypt and decrypt data. One

of these key is public key, anyone can gain access to this key. The other key

is one that private key, nobody gets access to private key except for the user.

The private key is the only key that can decrypt data encrypted with public

key. Private key cannot be derived from public key due to increased security
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level of public key it is relatively preferable over secret key.

RSA (Rivest, Shamir, and Adelman) is one of the most popular asymmet-

ric algorithms. Other in list are DSA (Digital Signature Algorithm), ECC

(Elliptic Curve Cryptography) etc [6].

Figure 1.3: Asymmetric Key Encryption

1.1.5 Cryptanaylsis

With the expanding use of cryptographic techniques adversary attacks become a

critical concern. The study of evaluating and cracking secure communication is

known as cryptanalysis. In other words, cryptanalysis is a mathematical technique

for decrypting ciphertext without knowing the key. A cryptanalyst is a person

who performs cryptanalysis. Cryptanalysis is based on identifying a cryptosystem's

mathematical weakness and the cryptosystem can be attacked if any weakness is

found. Cryptanalysis is used to either attack a secret communication or to test the

cryptosystem's vulnerability against the attacks. As a result, cryptanalysis is used

to either attack secret communication or to test the cryptosystem's vulnerability

against the attacks. A few types of cryptanalysis attacks are discussed here [7].

1. Brute-Force Attack

An attacker tries all possible keys under this attack to extract the plaintext

from the ciphertext. To achieve success, 50 percent of all available keys must

be used on average. The size of the key being used is a major factor in this

attack so that if the key space is large enough to investigate all possible key

attempts this attack is ine�ective.
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2. Chosen-Plaintext Attack

A chosen-plaintext attack is one of the mechanisms for attacking a cryptosys-

tem. The cryptanalyst tries to pick out some plaintext data at random to

encode and retrieve the related ciphertext. The goal of this attack is to break

the encryption scheme's security in order to gain access to more information

about the cryptosystem.

3. Known-Plaintext Attack

In this case a cryptanalyst is aware of the plaintext and its associated ci-

phertext. The cryptanalysts used previously collected data to deduce further

relationships between encrypted and decrypted information or to �nd the key.

1.2 Elliptic Curve

In R2, a curve is de�ned by a polynomial equation h(x, y) = 0 with variables x and

y. The curve is a set of points,

C : {(x, y) ∈ R2 |h(x, y) = 0}. (1.2.1)

An elliptic curve E is a cubic curve over a �eld K de�ned by a polynomial equation

as:

E : y2 + ă1xy + ă3y = x3 + ă2x
2 + ă4x

4 + ă6, (1.2.2)

where the coe�cients ă1,ă2,ă3,ă4,ă5,ă6 ∈ K.

1.2.1 Weistrass Normal Form

After doing some simple transformations elliptic curve in equation (1.2.2) can be

reduced to a short form called the Weierstrass normal form. So consider the elliptic

curve E

E : y2 + ă1xy + ă3y = x3 + ă2x
2 + ă4x

4 + ă6. (1.2.3)

Replace y by y = y − ă1x
2
− ă3

2
in the above equation assuming that char(K) 6= 2:

(
y − ă1x

2
− ă3

2

)2

+ ă1x

(
y − ă1x

2
− ă3

2

)
+ ă3

(
y − ă1x

2
− ă3

2

)
= x3 + ă2x

2 + ă4x+ ă6,
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=⇒ y2+
ă2

1x
2

4
+
ă2

3

4
−ă1xy+

ă1ă3x

2
−ă3y+ă1xy−

ă2
1x

2

2
− ă1ă3x

2
+ă3y−

ă1ă3x

2
− ă

2
3

2

= x3 + ă2x
2 + ă4x+ ă6,

=⇒ y2 − ă2
1x

2

4
− ă2

3

4
− ă1ă3x

2
= x3 + ă2x

2 + ă4x+ ă6,

=⇒ y2 = x3 +
ă2

1x
2

4
+ ă2x

2 +
ă1ă3x

2
+ ă4x+

ă2
3

4
+ ă6,

=⇒ y2 = x3 +
( ă2

1

4
+ ă2

)
x2 +

( ă1ă3

2
+ ă4

)
x+

( ă2
3

4
+ ă6

)
,

y2 = x3 + Ăx2 + B̆x+ C̆, (1.2.4)

where Ă ,B̆ and C̆ are:

Ă =
ă2

1

4
+ ă2,

B̆ =
ă1ă3

2
+ ă4,

C̆ =
ă2

3

4
+ ă6.

Now take equation (1.2.4)

y2 = x3 + Ăx2 + B̆x+ C̆,

and replace x by x = x − Ă
3
in this equation, provided that the char(K) 6= 3, we

have:

y2 =
(
x− Ă

3

)3
+ Ă

(
x− Ă

3

)2
+ B̆

(
x− Ă

3

)
+ C̆,

=⇒ y2 = x3 − Ă3

27
− Ăx2 +

xĂ2

3
+ Ăx2 +

Ă3

9
− 2xĂ2

3
+ B̆x− ĂB̆

3
+ C̆,
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=⇒ y2 = x3 +
(
B̆ − Ă2

3

)
x+

(2Ă3

27
− ĂB̆

3
+ C̆

)
,

y2 = x3 + Sx+ V, (1.2.5)

where S and V are:

S =
(
B̆ − Ă2

3

)
,

and

V =
(2Ă3

27
− ĂB̆

3
+ C̆

)
.

The equation (1.2.5) is called the Weierstrass normal form of elliptic curve [8]. The

discriminant is,

∆ = 4S3 + 27V 2.

And the curve is called non-singular if the discriminant ∆ 6= 0.

1.2.2 Elliptic Curves (Over Finite Fields)

Let p be a prime and Fp indicate the �eld of integers modulo p. The elliptic curve

over a prime �eld Fp described by an equation of the form [9]:

E : y2 ≡ x3 + Sx+ V (mod p), (1.2.6)

where S,V ∈ Fp provided the discriminant of the elliptic curve is
(
4S3 + 27V 2

)
6= 0

(mod p). The set of points satisfying the elliptic curve E (1.2.6) with entries in Fp
is de�ned as:

E(Fp) = {(x, y) ∈ Fp × Fp|y2 ≡ x3 + Sx+ V (mod p)} ∪ O, (1.2.7)

where O is the identity element which is often known as the point at in�nity.

1.3 The Group Law on Elliptic Curves

One of the most fundamental aspects of elliptic curves (EC's) is that the points on

the curve form an additive abelian group with in�nity serving as the group's identity
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[10]. Using group law we can add two points lying on the EC. Let P̆1(x̆1, y̆1) and

P̆2(x̆2, y̆2) be two points on EC. There are two ways of the addition of points in

order to �nd third point P̆3(x̆3, y̆3) on the elliptic curve such that P̆1 + P̆2 = P̆3.

Addition of two distinct points: P̆1 6= P̆2 .

Point doubling or addition of same points: P̆1 = P̆2.

(Here ” + ” represent the binary operation).

1.3.1 Addition of Two Distinct Points

Assume that P̆1(x̆1, y̆1) and P̆2(x̆2, y̆2) be the two distinct points lying on an EC

y2 = x3 + Sx+ V . These points are added in the following way.

Firstly, a line (say) l̆ passing through points P̆1 and P̆2 is drawn. The line l̆ intersects

the EC at another point say R, as shown in �gure 1.4. Re�ection of this point

de�nes the sum P̆1 + P̆2 of the points. This sum is denoted by P̆3(x̆3, y̆3) and

mathematically calculated as:

x̆3 = m2 − x̆1 − x̆2 and y3 = m
(
x̆1 − x̆3

)
− y̆1, where m = y̆2−y̆1

x̆2−x̆1 is the slope of the

line l̆ passing through the points.

Figure 1.4: Addition of two distinct points

1.3.2 Point Doubling

Suppose points P̆1 and P̆2 lying on EC y2 = x3 +Sx+V , where P̆1 = P̆2 = P̆ (x̆1, y̆1).

First of all, a tangent line is drawn at point P̆ (x̆1, y̆1) to attain the point P̆+P̆ = 2P̆

on the elliptic curve. This tangent line cuts the elliptic curve at some other point

14



say Q. The point 2P̆ is obtained by re�ecting the point Q about the x-axis as shown

in �gure 1.5. The point is 2P̆ (x̆3, y̆3) mathematically calculated as:

x̆3 = m2 − 2x̆1 and y̆3 = m
(
x̆1 − x̆3

)
− y̆1, where slope m is calculated by using the

formula m =
3x̆21+S

2y̆1
, y̆1 6= 0.

Figure 1.5: Point doubling

1.3.3 Scalar Multiplication of a Point

Let P̆ be any point on elliptic curve y2 = x3 +Sx+V and k be any scalar s.t k ∈ K.

The operation of scalar multiplication of point is carried out by repeated addition

of point P̆ .

kP̆ = P̆ + P̆ + P̆ + ...+ P̆ (k − times)

1.3.4 Some Algebraic Properties of EC's

Points addition on elliptc curve E : y2 = x3 + Sx + V satis�es the following prop-

erties:

1. Commutativity

Suppose P̆1 and P̆2 are two points on an elliptic curve E the commutative

property is de�ned as:

P̆1 + P̆2 = P̆2 + P̆1,

15



for each P̆1, P̆2 ∈ E.

2. Identity Element

Let P̆ be any point on an EC E. Then there exist an identity elememt O s.t:

P̆ +O = P̆ = O + P̆ ,

for any P̆ ∈ E.

3. Inverses

Assume that P̆ be any point on an elliptic curve E then there will be a point

−P̆ on elliptic curve E s.t

P̆ + (−P̆ ) = (−P̆ ) + P̆ ,

for every P̆ ∈ E. This point −P̆ is known as the negative of point P̆ .

4. Associativity

Suppose P̆1 , P̆2 and P̆3 are three points on an elliptic curve then associativity

is de�ned as:

(P̆1 + P̆2) + P̆3 = P̆1 + (P̆2 + P̆3),

for each P̆1 , P̆2 and P̆3 ∈ E.

Hence points on EC E form an abelian group under addition”+”, with in�nity (O)
as identity [10].

1.3.5 Order of Group

Consider E : y2 = x3 +Sx+V be an EC de�ned over �eld Fp. The order of E over

Fp is the total number of points in E(Fp) denoted by #Ep,S,V . To �nd total number

of points on Ep,S,V is not very easy task. However, with the help of Hasse's bound

one can estimate the size #Ep,S,V which is very important for many cryptographic

applications.
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Hasse's Inequality

Hasse's inequality provides tighter bounds for #Ep,S,V [11]. Consider E be an EC

over Fp. An approximation to number of points #Ep,S,V that satis�es elliptic curve

is calculated by using Hasse's inequality:

p+ 1− 2
√
p ≤ #Ep,S,V ≤ p+ 1 + 2

√
p.

This bound is independent of parameters S and V .

1.3.6 Orderings on EC's

It is said to be a total order relation if a ≺ relation de�ned on a set S satis�es the

following properties,

1. Re�exive

x̆ ≺ x̆, ∀ x̆ ∈ S.

2. Transitive

if x̆ ≺ y̆ and y̆ ≺ z̆ then x̆ ≺ z̆, ∀ x̆,y̆,z̆ ∈ S.

3. Antisymmetric

if x̆ ≺ y̆ and y̆ ≺ x̆ then x̆ = y̆, ∀ x̆,y̆ ∈ S.

and every two element being comparable with each other i.e x̆ ≺ y̆ or y̆ ≺ x̆,

for each x̆,y̆ ∈ S.

1.3.7 Mordell Elliptic Curve (MEC)

An elliptic curve E : y2 = x3 + Sx + V , in which if the coe�cient S = 0, is called

as Mordell elliptic curve (MEC) [12].

y2 ≡ x3 + V (mod n) (1.3.1)

The signi�cance of some MEC Ep,0,V lies in the fact that for prime p ≡ 2 (mod 3)

an MEC have exactly p+ 1 di�erent points containing y-coordinates ranging from

[0, p− 1] with no repitition.

1.3.8 Hyperelliptic Curves (HEC)

Hyperelliptic curves (HEC) are special types of algebraic curves that can be thought

of as a generalisation of an elliptic curve (EC) [32]. The equation for a hyperelliptic
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curve H of genus g (g ≥ 1) over a �eld K is:

H : y2 + h(x)y = f(x) in K[x, y], (1.3.2)

where f(x) ∈ K[x] is a monic polynomial of degree 2g + 1 and h(x) ∈ K[x] is a

polynomial with a maximum degree of g. There are no solutions (x, y) ∈ K̄ × K̄
that ful�l the equation y2 + h(x)y = f(x) and partial derivatives 2y + h(x) = 0

h′(x)y = f ′(x) at the same time where K̄ be the algebraic closure of K. The

collection of points along with a point at in�nity can be considered a group for

elliptic curves (EC) (g = 1). This is no longer possible for curves with a genus g

greater than one(g ≥ 1) [13].

1.4 Substitution Boxes (S-box's)

As we know that secret communication has become extremely challenging in today's

world of information and technology and to solve all of these challenges cryptog-

raphy plays an important role. Substitution boxes often known as S-boxes are

considered to be having greatest importance in modern day cryptography. In gen-

eral S-boxes are the important non-linear component for security of cryptosystem

[14]. Several well-known cryptosystems use substitution boxes as its non-linear com-

ponent such as AES. As a result, such cryptosystem's security is determined by the

cryptographic properties of their S-boxes. These S-boxes structures are constructed

by using a variety of methods including pseudo-random approaches, heuristic meth-

ods and algebraic methods.

An m × n S-box is a mapping that takes m-bits of input data and turns it into

n-bits of output data where n is not always the same as m. S-boxes are capable

of creating confusion in the information that makes cryptosystem highly secured

against cryptanalytic attacks.

According to the Shannon (1949) concept of confusion and di�usion S-box is suf-

�ciently secure cryptographically if it passes tests such as: non-linearity (NL), ap-

proximation, strict avalanche criterion (SAC), bit independence criterion (BIC),

and algebraic complexity (AC). This means that cryptosystem's security is also

measured by the security of their S-boxes [15].
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1.4.1 Di�erent Ways of Construction of S-box

AES, DES and pseudo random number generators (PRNGs) are some di�erent ways

that are used by many researchers to construct S-boxes for secure cryptosystem. As

cryptanalytic attacks got more powerful over time, scientists developed a variety of

ways to resist them. To increase the complexity of the cryptosystem, one method is

to use more than one S-box. Therefore, PRNGs are used to provide a large number

of distinct S-boxes. To meet the system's security requirements a secure PRNGs

should have a long enough period to resolve any cryptanalytic issues.

The following properties must be ful�lled for the construction of an S-box:

(1) It must preserve the mathematical structure's properties.

(2) It has to be generated in a short period of time and with low usage of space.

(3) All the security tests must be satis�ed.

1.4.2 Construction of S-boxes Over Elliptic Curves

S-boxes over elliptic curves have been constructed by using various methods. We

will discuss two di�erent approaches of S-boxes construction using elliptic curves.

1. Substitution Box Based on EC's Over Finite Field

The method developed in [16] will be explained here. In this method total

orderings on the points of elliptic curve has been used for S-box generation.

Consider E : y2 = x3 +Sx+V be an elliptic curve. For non negative integers

S,V ∈ Fp and any prime p a total ordering on points of E is de�ned as:

(x̆1, y̆1) ≺ (x̆2, y̆2) ⇐⇒


min{x̆1, y̆1} < min{x̆2, y̆2}; or

min{x̆1, y̆1} = min{x̆2, y̆2}, and y̆1 < y̆2 or

min{x̆1, y̆1} = min{x̆2, y̆2}, y̆1 = y̆2; and x̆1 < x̆2.

First of all, the prime p is chosen so that the elliptic curve E has at least

256 di�erent points. After selecting p, the points of an elliptic curve E are

calculated and the total ordering de�ned above is applied to them and then

x -coordinates of the given points are chosen. After that, mod 256 is applied

on x -coordinates to limit the values in the range of 0 to 255. Finally, an S-box

is formed from the �rst 256 distinct values.
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2. S-box Based on Mordell Elliptic Curve (MEC)

Mordell elliptic curve (MEC) generates points with y-coordinates ranging

from [0, p − 1] with no repetition for a speci�ed type of prime. And for

the construction of S-boxes, this is a useful fact. To generate distinct S-boxes

over the MEC, three typical orderings were used, de�ned in [17]. An S-box

is de�ned as S : [0, 1, ..., 255] 7→ [0, 1, ..., 255] such that S(i) = y̆i, where

(x̆i, y̆i) belongs to the chosen MEC and (x̆i, y̆i) ≺ (x̆i, y̆i). The resultant S-

boxe's calculated non-linearity, approximation, strict avalanche criterion, bit

independence criterion, and algebraic complexity was high enough to resist

powerful cryptanalytic attacks.
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Chapter 2

E�cient S-boxes Construction

Technique Based on Finite Mordell

Elliptic Curve (MEC)

Introduction

When the data is highly correlated, cryptosystem associated with a single substi-

tution box fails to meet the security level [18]. It has also been proved that using

dynamic S-boxes rather than a static S-boxes can increase the security of a cryp-

tosystem [19, 20, 21, 22, 23, 24]. When compared to cryptosystems based on a

static S-box image cryptosystems based on a dynamic S-box give superior security

which are presented in [25, 26, 27, 28].

The goal of this research is to introduce a new and e�cient S-box generating method

based on MEC over �nite �eld. To do so, we de�ne total orders on the MEC's

points and generate S-boxes by using the y-coordinate of a �nite MEC where p ≡ 2

(mod 3). This constructs a secure substitution box that preserves the characteris-

tics of the MEC.

The �rst section of this chapter covers the brief description of proposed substitu-

tion box's. Section 2 explains the orderings that is applied on the points of elliptic

curves and construction scheme of S-boxes. In the last section security analysis of

proposed S-boxes are explained.
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2.1 The Proposed Substitution Box's Description

Our objective is to develop an S-box construction technique based on the MEC to

produce an S-box that:

(i) preserve the mathematical structure's properties of MEC.

(ii) will be generated in a short period of time and with low usage of space.

(iii) having a high level of security i.e, all the security tests must be satis�ed to

avoid adversaries.

The proposed technique takes a MEC Ep≡2,V and construct S-boxes by selecting the

y-coordinate rather than x -coordinate and take y-coordinate so that it preserve the

mathematical structure's of MEC. Therefore, to obtain an S-box on the MEC we

follow the concept of total order. As we know that the MEC has two y values for each

x. Thus, the total ordering on the MEC can be classi�ed into two classi�cations:

�rst ordering where for each x, two values of y appear consecutively while in other

ordering where for each x, two values of y do not appear consecutively. So for the

generation of S-boxes based on MEC Ep≡2,V we recall three types of orderings.

2.2 Orderings on Ep≡2,V

In this section we discuss three di�erent types ordering based on Mordell elliptic

curve (MEC) Ep≡2,V , that are used in the proposed method, for the construction of

S-boxes.

1. Natural Ordering

Depending on the x -coordinate, ≺N a natural ordering on Ep≡2,V is de�ned

as:

(ă1, b̆1) ≺N (ă2, b̆2) ⇐⇒

either ă1 < ă2; or

ă1 = ă2, and b̆1 < b̆2,

where (ă1, b̆1), (ă2, b̆2) ∈ Ep≡2,V . In this ordering arrange the points on Mordell

elliptic curve so that the x -coordinate in ascending order and across each x

value the two y values appear in a sequential order.
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2. Di�usion Ordering

On an MEC Ep≡2,V , this ordering is constructed to di�use the two y values

for every value of x. Consider (ă1, b̆1), (ă2, b̆2) ∈ Ep≡2,V , then ≺D is de�ned

as:

(ă1, b̆1) ≺D (ă2, b̆2) ⇐⇒

either ă1 + b̆1 < ă2 + b̆2; or

ă1 + b̆1 = ă2 + b̆2, and ă1 < ă2.

3. Modulo Di�usion Ordering

Under modulo di�usion ordering ≺M , di�usion is produced in the both coor-

dinates of the points on Ep≡2,V . Consider (ă1, b̆1), (ă2, b̆2) ∈ Ep≡2,V , then ≺M
is de�ned as:

(ă1, b̆1) ≺M (ă2, b̆2) ⇐⇒

either ă1 + b̆1 < ă2 + b̆2 (mod p); or

ă1 + b̆1 ≡ ă2 + b̆2 (mod p), and ă1 < ă2.

Lemma 1: Relation ≺D is total order for any MEC Ep≡2,V .

Proof: Any relation is total order i� it is re�exive, antisymmetric, transitive and

every two elements of set being comparable with each other.

� Re�exive:

As for every (ă1, b̆1) ∈ Ep≡2,V , we have:

ă1 + b̆1 = ă1 + b̆1

=⇒ (ă1, b̆1) ≺D (ă1, b̆1).

Hence ≺D is re�exive.

� Antisymmetric:

Now we have to show that ≺D is antisymmetric. Suppose (ă1, b̆1) ≺D (ă2, b̆2)

and (ă2, b̆2) ≺D (ă1, b̆1) hold, for (ă1, b̆1), (ă2, b̆2) ∈ Ep≡2,V and we have to
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prove (ă1, b̆1) = (ă2, b̆2). Now as (ă1, b̆1) ≺D (ă2, b̆2) then by de�nation of ≺D:

either ă1 + b̆1 < ă2 + b̆2

or ă1 + b̆1 = ă2 + b̆2.

But ă1 + b̆1 < ă2 + b̆2 cannot be true because (ă2, b̆2) ≺D (ă1, b̆1) hold, so this

implies ă1 + b̆1 = ă2 + b̆2. Now let ă1 6= ă2. By the assumption and the fact

that ă1 + b̆1 = ă2 + b̆2, we have

ă1 < ă2 and ă2 < ă1,

=⇒ ă1 = ă2,

which is contradiction to the fact that ă1 6= ă2. So, ă1 + b̆1 = ă2 + b̆2 and

ă1 = ă2 hold.

=⇒ b̆1 = b̆2.

Hence (ă1, b̆1) = (ă2, b̆2).

=⇒ ≺D is Antisymmetric.

� Transitive:

Here we have to show that ≺D is transitive. Suppose (ă1, b̆1) ≺D (ă2, b̆2) and

(ă2, b̆2) ≺D (ă3, b̆3) hold, for (ă1, b̆1), (ă2, b̆2), (ă3, b̆3) ∈ Ep≡2,V and we have to

prove (ă1, b̆1) ≺D (ă3, b̆3). According to the supposition there are four cases.

1.

If ă1 + b̆1 < ă2 + b̆2

and ă2 + b̆2 < ă3 + b̆3

then ă1 + b̆1 < ă3 + b̆3,

=⇒ (ă1, b̆1) ≺D (ă3, b̆3).
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2.

or if ă1 + b̆1 < ă2 + b̆2

and ă2 + b̆2 = ă3 + b̆3, ă2 < ă3

then ă1 + b̆1 < ă3 + b̆3,

=⇒ (ă1, b̆1) ≺D (ă3, b̆3).

3.

or if ă1 + b̆1 = ă2 + b̆2, ă1 < ă2

and ă2 + b̆2 < ă3 + b̆3

then ă1 + b̆1 < ă3 + b̆3,

=⇒ (ă1, b̆1) ≺D (ă3, b̆3).

4.

or if ă1 + b̆1 = ă2 + b̆2, ă1 < ă2

and ă2 + b̆2 = ă3 + b̆3, ă2 < ă3

then ă1 + b̆1 = ă3 + b̆3, ă1 < b̆3,

=⇒ (ă1, b̆1) ≺D (ă3, b̆3).

In the results on all four cases we have (ă1, b̆1) ≺D (ă3, b̆3).

Hence ≺D is Transitive.

Therefore ≺D is total order relation on any MEC Ep≡2,V . �

Lemma 2: Relation ≺M is a total order for any MEC Ep≡2,V .

Fig 2.1, shows the results on y-coordinate of MEC E101≡2,1 w.r.t the orderings

≺N ,≺D,≺M . By plotting their points on the MEC Ep≡2,V in ascending order w.r.t

≺N ,≺D,≺M respectively.
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Figure 2.1: y-coordinate of MEC E101≡2,1 w.r.t the orderings ≺N ,≺D,≺M

2.2.1 Construction of the Proposed Substitution Box

For p ≥ 257, consider Ep≡2,V be an Mordell elliptic curve (MEC). By choosing the

y-coordinate of the MEC Ep≡2,V in the interval [0, 255] and uses function SZp,V :

{0, 1, ..., 255} 7→ {0, 1, ..., 255}, an substitution box SZp,V is constructed, with V ∈
[0, p− 1] and Z = {N,D,M}. The function SZp,V is de�ned as:

SZp,V (j) = yj,

s.t (xj, yj) ∈ Ep≡2,V and (xj−1, yj−1) ≺Z (xj, yj).

Algorithm 1 Construction of the Purposed S-boxes

Input: An MEC Ep,V with total order, where p ≡ 2 (mod 3).
Output: Suggested S-box.
1: Calculate points (x̆, y̆) on selected MEC Ep≡2,V . /* 256 points of MEC with
y̆-coordinate ∈ [0, 255]/*.

2: Sort these points (x̆, y̆) w.r.t the proposed ordering ≺Z .
3: Choose y̆-coordinates as the S-box SZp,V .

The S-boxes constructed by the proposed algorithm shown in table. The ob-

tained S-box SN1667,351 is constructed by using natural ordering.
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Table 2.1: The obtained S-box SN1667,351

154 217 227 110 85 29 199 37 68 21 91 78 208 3 148 40
198 52 54 2 73 7 168 201 229 184 146 6 172 28 44 67
195 53 106 10 204 131 157 185 187 156 206 161 81 103 211 33
96 159 72 134 164 143 140 193 145 231 237 12 221 188 197 116
47 19 129 104 51 236 56 133 55 220 87 1 203 117 210 24
4 174 175 113 34 213 171 255 30 43 130 191 57 137 76 234
247 244 173 223 63 60 230 166 8 190 139 99 49 200 23 245
58 102 226 83 122 70 241 94 127 41 194 233 97 251 107 26
109 61 248 90 192 167 147 82 158 225 36 50 84 92 88 38
74 136 138 232 62 176 128 189 124 118 169 14 228 0 243 181
123 254 20 202 75 149 219 120 160 9 253 39 180 207 114 142
183 93 101 15 238 177 132 212 35 250 239 249 179 17 65 186
11 125 178 45 170 141 121 126 119 64 144 182 112 22 165 222
100 69 252 216 13 27 152 235 80 5 196 59 25 151 79 155
240 77 115 71 31 105 95 86 209 150 98 89 163 246 66 18
162 214 218 42 242 46 111 48 215 224 135 108 153 32 16 205

2.3 Cryptographic Analysis of Proposed S-box

The results of some security test of S-box SM4217,1156 that is constructed by proposed

method, are discussed here.

2.3.1 Non-Linearity (NL)

An S-box is capable of causing a lot of confusion in the data if it has high non-

linearity. The non-linearity of S-box SM4217,1156 is 106. This is large enough to cause

enough confusion in data.

2.3.2 Linear Approximation Probability (LAP)

Any S-box S's resistance against linear approximation attacks is calculated by using

equation:

L(S) =
1

28

{
max
η,µ

{
abs

(∣∣∣∣ {x̆ ∈ GF (28)|η · x̆ = µ · S(x̆)
} ∣∣∣∣− 27

)}}
.

The security of S-box is higher against linear approximation attack if value of L(S)

is smaller, the LAP of S-box SM4217,1156 is 0.1328.
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2.3.3 Di�erential Approximation Probability (DAP)

An S-box S's resistance towards di�erential approximation attacks is computed by

using following formula:

D(S) =
1

28

{
max
∆µ̆,∆ν̆

{∣∣∣∣{µ̆ ∈ GF (28)
∣∣S(µ̆⊕∆µ̆) = S(µ̆)⊕∆ν̆

}∣∣∣∣}} .
The DAP of the S-box SM4217,1156 generated by proposed method is 0.0391. Smaller

value of D(S), shows the security of S-box is higher against di�erential attack.

2.3.4 Bit Independence Criterian (BIC)

Bit independence criterian is an important test, to examine that when an input bit

is complemented how much the output pair is independent of this. It is also used to

examine the di�usion creating ability of S-boxes. An S-box satis�es this criterian if

the BIC value of S-box is close to 0.5. The S-box SM4217,1156 has value of BIC(max)

and BIC(min) are 0.5313 and 0.4766 respectivily.

2.3.5 Strict Avalanche Criterian (SAC)

Whenever a single input bit is changed the strict avalanche criterian of S-box mea-

sured the e�ect of this change on output bits. The SAC is calculated by using

square matrix N(S) = [nj,k], where

nj,k =
1

28

 ∑
x̆∈GF (28)

ω (Sj(x̆⊕ αk)⊕ Sj(x̆))

 .

An S-box satis�es this test if entries of N(S) near to 0.5. The SAC(max) and

SAC(min) values of S-box SM4217,1156 are 0.6094 and 0.3906 respectivily.

2.3.6 Algebraic Complexity (AC)

The AC of an S-box is determined by total number of non-zero terms in linear poly-

nomials of an S-box. The AC of S-box SM4217,1156 constructed by proposed method

is 253, which is a near match to the ideal value 255.
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Chapter 3

Construction of Substitution Boxes

Based on Hyperelliptic Curve Over

Finite Field

Introduction

As we know cryptography is the science of hiding and securing seceret information.

Hyprelliptic curve cryptography (HECC) is a high-e�cient, secure and fast public

key cryptographic technique [29]. Several signi�cant research �elds use hyperelliptic

curves such as coding theory [30], cryptography [31, 32] and pseudo random numbers

generators. In 1988, Neal Koblitz proposed the hyperelliptic curve cryptography,

which is a new higher genus curve for cryptography purposes [29]. Basically every

hyperelliptic curve with genus 1 is called an elliptic curve. Hyperelliptic curves

have a small key size which is its main advantage. Therefore, in order to compare

with an elliptic curve, a hyperelliptic curve (HEC) requires a smaller �nite �eld to

achieve some level of security [33].

In this chapter, a new and e�cient algorithm for the generation of substitution

boxes (S-boxes) based on hyperelliptic curves (HEC) over �nite �eld is explained.

To do this, we de�ne odering on the HEC's points and construct an S-box by using

y-coordinate of a �nite HEC, where p ≡ 1 (mod 11).

The starting section of this chapter provides an overview of the basic concepts

of hyperelliptic curves over �nite �eld. Then we gave an example of HEC, by

taking small prime p = 23. Second section of this chapter explains the ordering

that is afterwards applied on the points of hyperelliptic curve. In section 3 the

construction scheme of proposed S-boxes is being explained. Some generted S-boxes
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and security analysis are elaborated in section 4 and section 5 respectively. In the

last section results are concluded and comparisons are made with some existing

S-boxes generated by di�erent mathematical methods.

3.1 The Arithmatic of Hyperelliptic Curve (HEC)

Let p be a prime, and Fp be a �nite �eld of p elements. A hyperelliptic curve (HEC)

H of (g ≥ 1) genus g, over �nite �eld Fp is the equation:

H : y̆2 + h(x̆)y̆ ≡ f(x̆) (mod p), (3.1.1)

here f(x̆) ∈ Fp[x̆] is a monic polynomial of degree 2g+1, h(x̆) ∈ Fp[x̆] is a polynomial

with a maximum degree of g, and there are no solutions (x̆, y̆) ∈ Fp × Fp that ful�l
the equations of partial derivative 2y̆ + h(x̆) = 0, h′(x̆)y̆ = f ′(x̆) and the equation

y̆2 + h(x̆)y̆ = f(x̆) at the same time. The set of points satisfying the hyperelliptic

curve H (3.1.1) with entries in Fp is de�ned as:

H(Fp) = {(x̆, y̆) ∈ Fp × Fp|y̆2 + h(x̆)y̆ ≡ f(x̆) (mod p)} ∪ {∞}, (3.1.2)

and represented by Hp,f(x̆),h(x̆) for prime p and polynomials f(x̆), h(x̆) ∈ Fp[x̆].

3.1.1 Non-Singular Curve

Any point (x̆, y̆) on the curve H is said to be a singular point if it sati�es equations

of partial derivative 2y̆ + h(x̆) = 0, h′(x̆)y̆ = f ′(x̆) and the erquation y̆2 + h(x̆)y̆ =

f(x̆) simultaniously. But according to the de�nation of HEC there is no point

(x̆, y̆) ∈ Fp×Fp that is singular so, hyperelliptic curve H is the non-singular curve.

3.1.2 Finite Point

Every point P (x̆, y̆) ∈ Fp × Fp other than ∞, that sati�es the equation (3.1.1) of

hyperelliptic curve H is called �nite point.
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3.1.3 Opposite of Point

Consider P (x̆, y̆) be a point on hyperelliptic curve H i.e �nite point, then opposite

of point P is denoted by P̃ and de�ned as:

P̃ = (x̆,−y̆ − h(x̆)),

which is also on the curve H i.e P̃ on the curve H, and ∞̃ =∞.

3.1.4 Special and Ordinary Point

Let P (x̆, y̆) be a �nite point on hyperelliptic curve H then P is said to be a special

point on H if P = P̃ . And if P 6= P̃ then P is said to be the ordinary point [32].

3.1.5 Example of a Hyperelliptic Curve Over the Finite Field

F23

Consider the curve:

H : y̆2 + h(x̆)y̆ ≡ f(x̆) (mod p),

with genus g = 2 and take �nite �eld Fp where prime p = 23. Choose h(x̆) = x̆ and

f(x̆) = x̆5 + 5x̆4 + 6x̆2 + x̆+ 3 then the curve will be:

H : y̆2 + x̆y̆ ≡ x̆5 + 5x̆4 + 6x̆2 + x̆+ 3 (mod 23) (3.1.3)

This curve shows that deg(h(x̆)) = 1 and deg(f(x̆)) = 5, which is a monic polyno-

mial. Now calculate the points that satis�es the curve (3.1.3).

Let x̆ = 2 ∈ F23 and y̆ = 20 ∈ F23,

y̆2 + x̆y̆ ≡ (202 + 2× 20) (mod 23)

≡ (400 + 40) (mod 23) = 9 + 17 = 3,

x̆5 + 5x̆4 + 6x̆2 + x̆+ 3 ≡ (25 + 5× 24 + 6× 22 + 2 + 3) (mod 23)

≡ (32 + 5× 16 + 6× 4 + 5) (mod 23) ≡ (32 + 80 + 24 + 5) (mod 23)

= 9 + 11 + 1 + 5 ≡ 26 (mod 23) = 3.
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Thus the point (2, 20) lies on curve (3.1.3). Similarly we can �nd all other points

that satisfy the curve H over the �nite �eld F23. Hence the points that satis�es the

curve H are:

H(F23) = {(0, 7), (0, 16), (2, 1), (2, 20), (3, 3), (3, 17), (5, 2), (5, 16), (6, 20), (7, 4)

, (7, 12), (8, 19), (11, 14), (11, 21), (12, 14), (12, 20), (22, 4), (22, 20)} ∪ {∞}.

It is proved that curve H has no singular point other than ∞. Since the curve

H satis�es the de�nition hyperelliptic curve. Hence the curve H is a hyperelliptic

curve over the �nite �eld F23. It has two special points (6, 20) and (8, 19) i.e

P (x̆, y̆) = P̃ (x̆,−y̆ − h(x̆)).

P̃ (x̆,−y̆ − h(x̆) = (6,−20− h(6)) = (6, 3− 6) = (6,−3) = (6, 20) = P.

P̃ (x̆,−y̆ − h(x̆) = (8,−19− h(8)) = (8, 4− 8) = (8,−4) = (8, 19) = P.

and all other points are ordinary points.

3.2 Ordering on Points of HEC

We de�ne ordering on the points of hyperelliptic curve (HEC) by using similar

concepts as in [17]. We have following observation:

Observation

For a given prime p, and for any two distinct points (ă1, b̆1) and (ă2, b̆2) on hy-

perelliptic curve Hp,f(x̆),h(x̆) we can de�ne ordering on points of hyperelliptic curve

as:

(ă1, b̆1) ≺ (ă2, b̆2) ⇐⇒

either ă1 + b̆1 < ă2 + b̆2 (mod p), or

ă1 + b̆1 ≡ ă2 + b̆2 (mod p), and ă1 < ă2.

Lemma 1: For any Hyperelliptic curve Hp,f(x̆),h(x̆), the relation ≺ is total order.

Proof: Any relation is total order i� it is re�exive, antisymmetric, transitive and

every two elements of the set being comparable with each other.
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� Re�exive:

As for each (ă1, b̆1) ∈ Hp,f(x̆),h(x̆), we have:

ă1 + b̆1 ≡ ă1 + b̆1 (mod p),

as ă1 ≡ ă1 (mod p) and b̆1 ≡ b̆1 (mod p),

=⇒ (ă1, b̆1) ≺ (ă1, b̆1).

Hence ≺ is re�exive.

� Antisymmetric:

Now we have to show that ≺ is antisymmetric. Suppose (ă1, b̆1) ≺ (ă2, b̆2) and

(ă2, b̆2) ≺ (ă1, b̆1) hold, for (ă1, b̆1), (ă2, b̆2) ∈ Hp,f(x̆),h(x̆) and we have to prove

(ă1, b̆1) = (ă2, b̆2). Now as (ă1, b̆1) ≺ (ă2, b̆2) then by de�nation of ≺ :

either ă1 + b̆1 < ă2 + b̆2 (mod p),

or ă1 + b̆1 = ă2 + b̆2 (mod p).

But ă1 + b̆1 < ă2 + b̆2 (mod p) cannot be true because (ă2, b̆2) ≺ (ă1, b̆1) hold,

so this implies that ă1 + b̆1 ≡ ă2 + b̆2 (mod p). Now by the de�nition of ≺:

(ă1, b̆1) ≺ (ă2, b̆2) −→ ă1 < ă2 and

(ă2, b̆2) ≺ (ă1, b̆1) −→ ă2 < ă1,

=⇒ ă1 ≡ ă2 (mod p).

This implies that:

ă1 + b̆1 ≡ ă2 + b̆2 (mod p),

b̆1 ≡ b̆2 (mod p),

Hence (ă1, b̆1) = (ă2, b̆2).

=⇒ ≺ is Antisymmetric.
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� Transitive:

Here we have to show that ≺ is transitive. Suppose (ă1, b̆1) ≺ (ă2, b̆2) and

(ă2, b̆2) ≺ (ă3, b̆3) hold, for (ă1, b̆1), (ă2, b̆2), (ă3, b̆3) ∈ Hp,f(x̆),h(x̆) and we have

to show that (ă1, b̆1) ≺ (ă3, b̆3). According to the supposition there are four

cases.

1.

If ă1 + b̆1 < ă2 + b̆2 (mod p)

and ă2 + b̆2 < ă3 + b̆3 (mod p)

then ă1 + b̆1 < ă3 + b̆3 (mod p),

=⇒ (ă1, b̆1) ≺ (ă3, b̆3).

2.

or if ă1 + b̆1 < ă2 + b̆2 (mod p)

and ă2 + b̆2 ≡ ă3 + b̆3 (mod p), ă2 < ă3

then ă1 + b̆1 < ă3 + b̆3 (mod p),

=⇒ (ă1, b̆1) ≺ (ă3, b̆3).

3.

or if ă1 + b̆1 ≡ ă2 + b̆2 (mod p), ă1 < ă2

and ă2 + b̆2 < ă3 + b̆3 (mod p)

then ă1 + b̆1 < ă3 + b̆3 (mod p),

=⇒ (ă1, b̆1) ≺ (ă3, b̆3).

4.

or if ă1 + b̆1 ≡ ă2 + b̆2 (mod p), ă1 < ă2

and ă2 + b̆2 ≡ ă3 + b̆3 (mod p), ă2 < ă3

then ă1 + b̆1 ≡ ă3 + b̆3 (mod p), ă1 < ă3,

=⇒ (ă1, b̆1) ≺ (ă3, b̆3).
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Thus as a results of all four cases we have (ă1, b̆1) ≺ (ă3, b̆3).

Hence ≺ is Transitive.

Comparability

Since for any (ă1, b̆1), (ă2, b̆2) ∈ Hp,f(x̆),h(x̆), we must have either

ă1 + b̆1 < ă2 + b̆2 (mod p) or ă1 + b̆1 ≡ ă2 + b̆2 (mod p), ă1 < ă2

=⇒ (ă1, b̆1) ≺ (ă2, b̆2).

or

ă2 + b̆2 < ă1 + b̆1 (mod p) or ă2 + b̆2 ≡ ă1 + b̆1 (mod p), ă2 < ă1

=⇒ (ă2, b̆2) ≺ (ă1, b̆1). This implies that every two elements or points in

Hp,f(x̆),h(x̆) are being comparable with each other which satis�es comparability

property.

Therefore ≺ is a total order relation on any hyperelliptic curve Hp,f(x̆),h(x̆). �

3.3 Construction of the Proposed Substitution Box

In the following section we illustrate the algorithm to construct the S-boxes that

uses the y-coordinate of hyperelliptic curve. Here we use particular form of hyperel-

liptic curve H : y̆2 +h(x̆)y̆ = f(x̆) for which h(x̆) = 0 and f(x̆) = x̆5 + 3x̆3 + 2x̆2 + 3

with genus g = 2.

We take prime p ≥ 1321 such that it must satisfy the condition p ≡ 1(mod 11).

Since we construct S-boxes over GF(28), therefore we take p ≡ 1(mod 11) (for

p ≥ 1321), so that we can have atleast 256 distinct points on y-coordinate of hy-

perelliptic curve Hp≡1,f(x̆) : y̆2 = x̆5 + 3x̆3 + 2x̆2 + 3. Now we give the algorithm of

the proposed generation technique of the S-boxes.

First of all select prime p ≥ 1321 under the condition p ≡ 1(mod 11), for hyperel-

liptic curve Hp≡1,f(x̆) (where f(x̆) = x̆5 + 3x̆3 + 2x̆2 + 3), and follow these steps:

Step 1:

Find all points (ă, b̆) on selected hyperelliptic curve Hp≡1,f(x̆).

Step 2:

Sort the points of hyperelliptic curve with respect to the ordering ≺ which we

already discussed before, in detail.
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Step 3:

Then choose the y-coordinate of ordered points, as an S-box.

By repeating these steps for all p ≥ 1321 such that p ≡ 1(mod 11), we can get an

16× 16 S-box for selected Hp≡1,f(x̆).

Algorithm 2 Generation Technique of the Purposed S-boxes Hp≡1,f(x̆)

�Input: A prime p ≥ 1321 ,where p ≡ 1 (mod 11).
Output: Suggested S-box Sp≡1,≺

f(x̆) .
1: a1 = 1
2: for x = 0, 1, ..., p− 1 do
3: for y = 0, 1, ..., p− 1 do
4: if y2 ≡ x̆5 + 3x̆3 + 2x̆2 + 3 (mod p) then
5: A(a1, :) := ([x, y])
6: a1 = a1 + 1
7: end if
8: end for
9: end for

10: Sort marix A w.r.t the ordering ≺.
11: Select the y-coordinate of A, /* (y-coordinates of the matrix A preserve their

order). */
12: Apply mod 256 on the selected y-coordinate, and use it as an S-box Sp≡1,≺

f(x̆) .

It is not necessarily guaranteed that the generated points will contain all of the

entries from 0 to 255 for an elliptic curve in Weierstrass form. However, in this case

we are certain to obtain an S-box for every p ≡ 1 (mod 11) s.t p ≥ 1321 under the

hyperelliptic curve y2 ≡ x̆5 + 3x̆3 + 2x̆2 + 3 (mod p).
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3.4 Some S-boxes Generated using Proposed Tech-

nique

Here we present some S-boxes that are constructed using the method described

above.

Table 3.1: The obtained S-box S4621,≺
x̆5+3x̆3+2x̆2+3

225 25 177 187 165 173 10 178 252 229 207 210 13 89 119 21
107 220 233 63 38 27 204 58 144 7 164 77 70 215 150 114
44 110 37 1 41 255 167 211 125 6 12 50 42 54 18 146
199 91 235 184 234 192 55 145 43 194 182 154 227 61 251 203
198 202 160 238 105 123 46 72 242 127 73 115 28 208 19 66
148 52 22 39 65 209 223 197 11 60 172 188 241 83 143 236
205 232 228 200 113 68 206 90 170 82 97 81 130 14 126 33
195 2 4 9 237 185 108 162 104 96 69 149 92 224 254 216
121 221 30 246 158 75 161 23 213 240 132 152 231 131 15 53
247 226 176 186 155 93 239 140 133 29 137 117 74 138 159 168
87 79 212 201 179 45 134 129 34 217 244 5 190 157 94 101
111 120 109 214 196 62 135 118 183 230 32 8 253 112 175 122
56 102 47 136 166 141 95 151 86 20 31 189 16 76 84 64
171 36 193 142 243 250 174 88 78 249 163 80 169 71 245 153
106 3 67 128 85 219 35 181 191 49 103 26 100 218 24 116
99 147 139 57 124 48 156 17 40 222 59 0 180 51 248 98

Table 3.2: The obtained S-box S1453,≺
x̆5+3x̆3+2x̆2+3

197 187 47 55 107 156 15 233 206 80 102 40 48 140 127 7
23 111 202 45 96 172 158 196 223 93 239 3 125 201 176 166
43 142 12 135 240 160 56 64 1 242 229 126 188 18 253 220
186 157 37 82 169 66 221 109 78 62 38 246 108 155 179 31
123 174 244 224 25 11 208 189 95 17 52 34 232 21 250 54
65 238 236 117 0 122 72 184 4 27 79 139 76 8 13 92
168 148 199 215 248 51 101 245 14 146 225 77 205 207 227 161
5 247 209 145 165 30 151 231 191 212 204 83 210 222 230 73
46 175 106 167 162 194 22 198 182 132 195 90 61 214 124 100
120 141 216 121 217 235 98 180 104 41 234 254 112 89 49 203
213 159 105 36 28 251 75 249 69 129 144 53 173 84 153 226
128 183 228 243 241 178 114 134 60 44 29 70 118 85 20 255
10 81 200 152 63 181 59 39 113 9 130 163 24 88 192 185
137 190 94 119 138 99 6 136 68 2 19 150 149 35 237 131
67 97 103 219 143 74 115 26 87 171 154 211 16 116 177 42
33 164 218 170 110 32 58 147 86 71 133 91 50 57 252 193
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3.5 Security Analysis

The results of some security tests of S-boxes that are constructed by the proposed

method are discussed here,

3.5.1 Non-Linearity (NL)

To achieve the highest level of security, a safe cryptosystem must be able to induce

high level of confusion and di�usion in the data. The non-linearity test can deter-

mine how e�ective the S-boxes are, to create confusion in the data. For an S-box

over Galois �eld (GF (28)), the non-linearity is calculated as:

NL(S) = min
η,µ,ν

{
x̆ ∈ GF (28) : η · S(x̆) 6= µ · x̆⊕ ν

}
,

where η ∈ GF (28) , µ ∈ GF (28)\{0} , ν ∈ GF (2) and ⊕ is addition over GF (2).

An S-box creates a lot of confusion in the data if it has high non-linearity. The

maximum value of NL that may be reached is 120. However, it is commonly known

that S-boxes with greater NL values do not perform well in the other tests. The non-

linearity of S-boxes S4621,≺
x̆5+3x̆3+2x̆2+3 and S

1453,≺
x̆5+3x̆3+2x̆2+3 generated by proposed method

is 106. This is large enough to cause a lot of confusion in data and will be able to

resist strong cryptanalytic attacks.

3.5.2 Linear Approximation Probability (LAP)

This criterion is utilise to assess the security of a system against linear attacks. It

calculates the probability of linear attacks on the plaintext and parallel ciphertext

sets. Any S-box S's resistance against linear approximation attacks is calculated

by using equation:

L(η, µ) =
1

28

{
max
η,µ

{
abs

(∣∣∣∣ {x̆ ∈ GF (28)|η · x̆ = µ · S(x̆)
} ∣∣∣∣− 27

)}}
,

where η ∈ GF (28) , µ ∈ GF (28)\{0} and ” · ” is a dot product over GF (2). The se-

curity of S-box is higher against linear approximation attack if the value of L(η, µ) is

smaller. The LAP of proposed S-boxes S4621,≺
x̆5+3x̆3+2x̆2+3 and S

1453,≺
x̆5+3x̆3+2x̆2+3 is 0.140625.
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3.5.3 Di�erential Approximation Probability (DAP)

The di�erential approximation probability measures a cryptosystem's resistance

against di�erential attacks. The DAP measures the probability of an exact di�er-

ence between the e�ect of input bits and the resultant output bits. Any S-box S ′s

resistance towards di�erential approximation attacks is computed by using following

formula:

D(S) =
1

28

{
max
∆µ̆,∆ν̆

{∣∣∣∣{µ̆ ∈ GF (28)
∣∣S(µ̆⊕∆µ̆) = S(µ̆)⊕∆ν̆

}∣∣∣∣}} ,
where ∆µ̆,∆ν̆ ∈ GF (28) and overGF (2)⊕ represents the bit-wise addition. Smaller

value of D(S), shows the security of the S-box is higher against di�erential approx-

imation attack.

3.5.4 Strict Avalanche Crieteria (SAC)

The strict avalanche criterion test determines the level of data di�usion that an

S-box may produce. The avalanche e�ect is one of the most basic property that

is used to assess the security of a cryptosystem. Whenever a single input bit is

changed, the strict avalanche criterian of S-box measures the e�ect of this change

on output bits. Here the avalanche e�ect and completeness is used. The term

"completeness" refers to the fact that every single output bit is dependent on all

input bits. The SAC is calculated by using square dependence matrix N(S) = [nj,k].

Each entry nj,k is calculated as:

nj,k =

{
1

28

[
ω

(
Sj(x̆⊕ αk)⊕ Sj(x̆)

)]∣∣∣∣αk ∈ GF (28), ω(αk) = 1 and 1 ≤ j, k ≤ 8

}
,

where ωk is the number of non-zero bits of αk and nj,k are the entries of 8 × 8

dependence matrix. An S-box satis�es this test if entries of N(S) near to 0.5. The

values of SAC(max) and SAC(min) of the proposed S-boxes are listed in the table

(3.3), which are very close to 0.5.

3.5.5 Bit Independence Criteria (BIC)

Bit independence criterian is an important test, to examine that when an input bit

is complemented how much the output pair is independent of this. It is also used to

examine the di�usion creation ability of S-boxes. The BIC of an S-box is computed
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using the dependence matrix M = [mi,j] where each entry mi,j is calculated as:

mi,j =
1

28

 ∑
x̆∈GF (28)

1≤k≤8

ω

(
Si (x̆⊕ αj)⊕ Si (x̆)⊕ (Sk (x̆⊕ αj)⊕ Sk (x̆))

) .

An S-box satis�es this test if if all the non-zero entries of matrix M near to the

value 0.5. The S-boxes S4621,≺
x̆5+3x̆3+2x̆2+3 and S1453,≺

x̆5+3x̆3+2x̆2+3 have value of BIC(max)

0.5332, 0.5234 and BIC(min) 0.4668, 0.4609 respectivily, which are very near to 0.5.

3.5.6 Algebraic Complexity (AC)

The AC of an S-box is determined by the total number of non-zero terms in linear

polynomials of an S-box. The S-box's strength is determined by its AC value.

The higher AC value indicates that S-box is cryptographically safe. The maximum

AC value for an S-box is 255. The AC of S-boxes S4621,≺
x̆5+3x̆3+2x̆2+3 and S1453,≺

x̆5+3x̆3+2x̆2+3

constructed by the proposed method is 254, which is a near match to the ideal value

255. Thus, the AC value is good enough to protect S-boxes from algebraic attacks.

3.6 Performance Comparison of Proposed S-boxes

The following table shows the comparison of cryptographic properties of proposed

S-boxes, with some existing S-boxes.

Table 3.3: Comparison With Some Existing S-boxes

S-boxes NL LAP DAP SAC(Max) SAC(Min) BIC(Max) BIC(Min) AC

[39] 103 0.1328 0.0391 0.5703 0.3984 0.5352 0.4727 255
[17] 106 0.1328 0.0391 0.5938 0.4531 0.5273 0.4648 254
[40] 98 0.0325 0.046 0.5781 0.4453 0.5156 0.4922 256
[37] 100 0.125 0.0391 0.593 0.493 0.476 0.0137 255
[38] 112 0.062 0.0156 0.562 0.453 0.504 0.480 9
[34] 104 0.0391 0.0391 0.625 0.3906 0.5313 0.4707 255
[36] 106 0.0469 0.0391 0.5938 0.4375 0.5313 0.4648 251
[35] 74 0.2109 0.0547 0.6875 0.1094 0.5508 0.4023 253

S4621,≺
x̆5+3x̆3+2x̆2+3 106 0.1406 0.0547 0.6406 0.3906 0.5332 0.4668 254

S1453,≺
x̆5+3x̆3+2x̆2+3 106 0.1406 0.0469 0.6875 0.4063 0.5234 0.4609 254
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3.6.1 Discussion And Comparison

The newly designed S-boxes have a greater non-linearity than the S-boxes shown in

[34, 35, 37, 39, 40]. As a result of this constructed S-boxes become more resistant to

linear attacks. Our proposed S-boxes have a lower LAP than [35] and are compara-

ble to other schemes. This shows how important proposed methods are in creating

confusion and di�usion. The S-box is more resistant to di�erential cryptanalysis

when the DAP is smaller. S-boxes constructed by proposed method, have a smaller

DAP than S-boxes in [35, 40] and are comparable to models in other schemes. This

clearly shows the suggested scheme's �exibility against di�erential cryptanalysis.

The SAC value for our developed S-boxes ranges from 0.4 to 0.6, which is very

close to ideal value 0.5 indicating strong S-boxes. The BIC values for the proposed

scheme show that the output bits have a weak relationship. The algebraic com-

plexity of S-boxes constructed by the proposed method has maximum value of 254

which shows that, the developed scheme has a larger algebraic complexity than

[35, 36, 38].

Conclusion

This thesis introduces an e�cient technique for construction of S-boxes. The pro-

posed method uses y-coordinates of hyperelliptic curve y̆2 = x̆5 + 3x̆3 + 2x̆2 + 3

over prime �eld p ≥ 1321 where p ≡ 1 (mod 11). A new total order is de�ned and

applied to the hyperelliptic curve points to create di�usion and enhance the secu-

rity level of the S-boxes. After applying ordering on hyperelliptic curve points, the

di�used y-coordinates are picked as an S-box. Moreover multiple security analysis

criterion are applied to the generated S-boxes, and it has been observed that the

attained NL, LAP, SAC, BIC, DAP, and AC results are strong enough to resist lin-

ear, di�erential, and algebraic attacks up to a certain level. The suggested scheme

is capable of generating cryptographically strong S-boxes, as evidenced by com-

parisons with certain already existing S-boxes generated using alternative algebraic

structures and techniques.
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