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Abstract

The motive of this thesis is to review generalization of characteristic of lipschitz function over

metric measure spaces. We also review the results in the class of metric-measure spaces which

satisfy version(strong) of doubling condition(Bishop-Gromov regularity)[10].In fact, we set up

a necessary and sufficient condition in the direction that any measurable function that assure

integrability condition is to be essentially Lipschitzian. As well as we review the generalized

version of differentiability property (having derivative zero) of functions [14] and [13], after

that we review about the characterization of constant function [1]
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Chapter 1

PREPARATORY INFORMATION

This chapter is based on some basic definitions,which terms are used in the lemmas and

theorem of chapter 2 and chapter 3.

1.1 Prerequisite

Definition 1.1.1. [6]Metric space
A metric space is a pair (Y ,D) , where Y is a set and D is a metric on Y or distance function
on Y,a function defined on Y × Y such that for all a,b,c ∈ Y we have

i. D is real-valued, finite and nonnegative.

ii. D (e,f)= 0 if and only if e=f.

iii. D(e, f) = D(f,e) (symmetry).

iv. D(e, f) 5 D(e, c)+D(c, f) (Triangle inequality).

Example 1.1.2. [6]Real line R
The set of all real numbers, taken with the usual metric defined by

D(e, f) = |e− f |.

Example 1.1.3. [6]Euclidean plane R2

Let e,f ∈ R2 such that e=(e1, e2) and f=(f1, f2), then the Euclidean metric is defined by

D(e, f) =
√

(e1 − f1)2 + (e2 − f2)2.
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Example 1.1.4. [6]Function space C[u,v]
Let Y be a set with the real valued function e,f,.... which are defined and continuous on closed
interval I=[u,v], then we choose the metric on C[u,v] defined by

D(e, f) = max
t∈I
|e(t)− f(t)|,

where a and b are the functions of independent variable t.

Definition 1.1.5. [7]Open ball
Let (Y ,D) is metric space and a0 ∈ Y and r > 0, then the open ball is defined as

B(e0, r) = {e ∈ Y | d(e, e0) < r}.

Definition 1.1.6. [7]Closed ball
Let (Y ,D) is metric space and e0 ∈ Y and r > 0, then the closed ball is defined as

B(e0, r) = {e ∈ Y | d(e, e0) ≤ r}.

Definition 1.1.7. [7]Sphere
Let (Y ,D) is metric space and e0 ∈ Y and r > 0, then the sphere is defined as

B(e0, r) = {e ∈ Y | d(e, e0) = r},

here in metric space (Y ,D), we designate an open ball with a radius of r > 0 and a centre

at y as B(y, r).

Definition 1.1.8. [16]Algebra
Let Y be a set and A ⊂ P(Y). Then A is called algebra if

i. Ac ∈ A for A ∈ A.

ii.
⋃n
i=1 Ai ∈ A for A1, A2...An ∈ A.

Definition 1.1.9. [16]σ-Algebra
Let Y be a set and A ⊂ P(Y). Then A is called σ- algebra if

i. Ac ∈ A for A ∈ A.

ii.
⋃∞
i=1 Ai ∈ A for A1, A2.... ∈ A, that is closed under countable union.

Note: Every algebra is σ-algebra but converse is not true.
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Definition 1.1.10. [16]Borel σ-Algebra
consider (Y,T) be a topological space and D is the collection of all open sets that is T = D
then the smallest σ- algebra is called Borel σ-algebra on Y, we can denote it by B(Y) or BY .

Definition 1.1.11. [16]Borel set
Let B(Y) is Borel σ- algebra then the members or elements of B(Y) are called Borel sets.

Definition 1.1.12. [16]Measure
consider Y is non empty set and A is the σ-algebra on Y. Then the set function

η : A → [0,∞],

is said to be measure if

i. η(φ)=0,

ii. If {A1,A2,....} is a disjoint sequence in A, then

η

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

η(Ai),

that is η is countably additive.

Example 1.1.13. [2]Measure on R
Consider R be the set of real numbers and BR is the Borel σ-algebra on R, then set function

η : BR → [0,∞],

define the measure by

η(A) = |A| = number of elements in A.

Definition 1.1.14. [2]Finite Measure
Let Y be the non empty set and A is σ-algebra on Y. A measure

η : A → [0,∞],

is said to be finite measure if
η(Y) <∞.

Definition 1.1.15. [2]σ-Finite Measure
Let Y be the non empty set and A is σ-algebra on Y. A measure

η : A → [0,∞],
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is said to be σ-Finite measure if ∃ a sequence {A1,A2,....} in A such that

Y =
∞⋃
i=1

Ai and η(Ai) <∞.

Definition 1.1.16. [2]Measrable space
Let Y be non empty set and σ-algebra on Y is A and η:A → [0,∞] is measure on A. Then
(Y,A) is called measurable space.

Definition 1.1.17. [2]Measure space
Let Y be non empty set and σ-algebra on Y is A and η:A → [0,∞] is measure on A. Then
the triplet (Y,A,η) is called measure space.

Definition 1.1.18. [4]Metric measure space
The triple (Y,D,η) is claimed to be metric measure space, if (Y ,D) is a metric space and η
is (Borel)measure on Y.

Definition 1.1.19. [2]Finite Measure space
The triplet (Y,A,η) be the measure space, it is called Finite measure space if

η : A → [0,∞],

is the finite measure that is η(Y) < ∞.

Definition 1.1.20. [16]σ-Finite measure space
A triplet (Y,A,η) be the measure space, it is called µ-Finite measure space if

η : A → [0,∞],

is the σ-finite measure that is ∃ a sequence {A1,A2,....} in A such that

Y =
∞⋃
i=1

Ai with η(Ai) <∞.

Definition 1.1.21. [16]A-Measurable set
Consider the measurable space (Y,A) then the members of A are called A-Measurable set.

Definition 1.1.22. [16]σ-Finite set
Consider the measure space (Y,A,η), a set A ∈ A is said to be σ-Finite set if ∃ a sequence
{A1,A2,....} in A such that

A =
∞⋃
n=1

An, with η(An) <∞, ∀ n ∈ N.
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Definition 1.1.23. [16]Null set
Consider the triplet (Y,A,η) be the measure space , The subset A of Y is called null set if
η(A)=0.

Example 1.1.24. As η(φ)=0 so φ is null set.

Note: In every measure space φ is null set but a null set need not to be φ. There may be

any other set whose measure is zero.

Definition 1.1.25. [16]Complete σ-algebra
Consider the triplet (Y,A,η) be the measure space.The σ-algebra which is denoted by A is said
to be complete σ-algebra if each subset of null set is the member of A.

Definition 1.1.26. [16]Complete Measure space
Consider the triplet (Y,A,η) be the measure space. It is complete measure space if σ-algebra
A is complete.

Definition 1.1.27. [16]Set of Extended real numbers
If we add the symbols −∞ and ∞ in the set of real numbers R so we call this set of extended
real numbers that is

R = {−∞} ∪ R ∪ {∞}.

Definition 1.1.28. [16]Outer measure
Consider that Y is non empty, a set function

η∗ : P(Y)→ [0,∞],

is said to be outer measure it satisfies these three axioms

i. η∗ (φ)=0.

ii. If Y1,Y2, ∈ P(Y) such that Y1 ⊆ Y2
⇒ η* (Y1) ≤ η∗ (Y2),
that is Property of monotonicity satisfied.

iii. For sequence {Y1,Y2,...} in P(Y) such that

η∗(
∞⋃
i=1

Yi) ≤
∞∑
i

η∗(Yi),

That is η∗ has countably sub additive property.
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Definition 1.1.29. [16]Measureable set
Consider (Y,A) be the measurable space ,G ∈ A. A function

g : G→ R,

is called A-measurable function on G, if

{y ∈ G | g(y) < β} ∈ A,

for every β, where β is real number
Correspondingly if

{y ∈ G | g(y) ∈ [−∞, β)} ∈ A,

OR

g−1([−∞, β)β) ∈ A.

Lemma 1.1.30. Assume measurable space be (Y,A),and function

g : G→ R,

defined on G ∈ A . Then given conditions are alike

a. {y ∈ G | g(y) ≤ β} = g−1([−∞, β]) ∈ A, ∀ β ∈ A,

b. {y ∈ G | g(y) > β} = g−1((β,∞]) ∈ A, ∀ β ∈ A,

c. {y ∈ G | g(y) ≥ β} = g−1([β,∞]) ∈ A, ∀ β ∈ A,

d. {y ∈ G | g(y) < β} = g−1([∞, β)) ∈ A, ∀ β ∈ A.

Definition 1.1.31. Characteristic function
Let Y 6= φ, and H ⊆ Y then the function

χH : Y → {0, 1},

defined as

χH(e) =

{
0 ; if e /∈ H,
1 ; if e ∈ H.

Definition 1.1.32. Almost every where Property
Consider the measure space (Y,A,η). P property holds almost everywhere in Y
iff ∃ set L ∈ A such that η(L)=0 and P satisfies ∀ y ∈ Y \ L.

Definition 1.1.33. [12]Doubling Measure
Consider the Borel regular measure η on metric space (Y ,D) , if each ball in Y possess finite
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and positive measure and ∃ C1 ≥ 1 such that

η(B(e, 2R)) ≤ C1η(B(e, R)),

holds for each e ∈ Y and r > 0, then it is named as doubling measure.Where C1 is doubling
constant.

Definition 1.1.34. [12]Locally doubling space
The triplet (Y,D,η) be the metric-measure space, if for each r > 0 ∃ Cr > 1, and

η(B(e, 2R)) ≤ Crη(B(e, R)),

holds for e ∈ Y and R ≤ r, then we call this space as locally doubling. Where Cr is locally
doubling constant of Y.

Definition 1.1.35. [12]Doubling space
Assume Y is locally doubling space, if there is C1 ≥ 1 so that Cr ≤ C1, ∀ r > 0, then we call
this space is doubling space.

Definition 1.1.36. [12]Locally Bishop-Gromov regular
We call Y is Locally Bishop-Gromov regular space of dimension m,where m > 0 ,
if for each r > 0 ∃ Ur ≥ 1 s.t

η(B(e, S1))

S1
m ≤ Ur

η(B(f,R1))

R1
m ,

∀ 0 < R1 < S1 ≤ r and e,f ∈ Y, and also for D(e, f) ≤ S1.

Definition 1.1.37. [12]Bishop-Gromov regular
Let Y is Locally Bishop-Gromov regular space, if ∃ U ≥ 1 so that

Ur ≤ U,

∀ r > 0 , then we say this space is Bishop-Gromov regular space.

Lemma 1.1.38. If Y is Bishop-Gromov regular space whose dimension is m, then we call Y
be Bishop-Gromov regular space whose dimension is n, in any case n ≥ m.
Similarly
If Y is Locally Bishop-Gromov regular space whose dimension is m, then we call Y is Locally
Bishop-Gromov regular space whose dimension be n, in any case n ≥ m.

Note:If Y be the doubling metric space having constant C1, then we call Y is Bishop-

Gromov regular space having dimension

m = log2C1.
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Similarly

If Y be the locally doubling metric space having constant C1, then we call Y is Locally Bishop-

Gromov regular space having dimension,

m = log2C1.

Definition 1.1.39. [7]Compact set
Let E be the set of real numbers, we say this set is compact, if {yn} is sequence in E. And
{ynk} is subsequence in {yn} such that

limn→∞{ynk} = y ∈ E.

Corospondingly,
E is compact iff it is closed and bounded.

Theorem 1.1.40. [7]Heine-Borel Theorem
Consider E be the set of real numbers it is compact iff each open cover D of E has finite
subcover.

Definition 1.1.41. [7]Locally compact
consider Y be the topological space, if every point has compact neighborhood then we say Y is
locally compact.

Definition 1.1.42. Radon measure
Consider Y be the metric space and η is the Borel-regular measure, we say this measure is
redon measure if

η(W ) <∞ for each compact set W ⊂ Y,

and if

η(V ) = inf{η(U) : V ⊂ U, U ⊂ Y open},

holds and also

η(U) = sup{η(W ) : W ⊂ U,W ⊂ Y Compact},

for each open set U ⊂ Y.

Definition 1.1.43. Geodesic space
Assume metric space is (Y,D), if for each e,f ∈ Y, ∃ a geodesic

γe,f : [0, 1]→ Y ,

8



(having D(e, f) be velocity) from e to f, i.e

D(γe,f (s), γe,f (t)) = |s− t|D(e, f).

Also,

γe,f (0) = e and γe,f (1) = f,

then we say this space is geodesic space.

Definition 1.1.44. [4]Lipschitz function
Assume the function

g : Y → X ,

if ∃ constant C1 such that,

|g(e)− g(f)| ≤ C1|e− f |,

for each e,f ∈ Y and C1 is not depending on e and f,
then we call that function is lipschitz function.

Definition 1.1.45. [4]L-Lipschitz function
Take the function,

g : Y → X ,

where Y and X are metric spaces, if ∃ constant L > 0 so that

DX(g(e), g(f)) ≤ LDY (e, f),

for every e,f ∈ Y, ten we call this function is L-Lipschitz function.

Note:If the function is L-Lipschitz then we say that it is also Lipschitz function.

Definition 1.1.46. [4]Bilipschitz function
Consider the map,

g : Y → X ,

we call the map is bilipschitz and Y and X be bilipschitz equivalent if g−1 is Lipschitz .

Definition 1.1.47. [4]L-bilipschitz function
Consider the map,

g : Y → X ,

we call the map is L-bilipschitz and Y and X be L-bilipschitz equivalent if g−1 is L-Lipschitz.
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Definition 1.1.48. [4]Locally Lipschitz function
Consider the function,

G : Y → X ,

it is called locally Lipschitz if for each point if X ∃ a neighborhood Vε such that
restriction of G to Vε is Lipschitz, we denote it by G|Vε.
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Chapter 2

An integral type charcterization of
constant function

In this chapter we review the generalized version of differentiability property (having derivative

zero) of functions [14] and [13], after that we review about the characterization of constant

function [1]

Definition 2.0.1. Let (Y,D,η) be a metric-measure space. Let Y be a geodesic space.
Take ψ:Y × Y × [0,1] → y is Borel measurable function such that

ψ(e, f, s) = ψ(f, e, 1− s) = γe,f (s)

ψ(e, ψ(e, f, t), s) = ψ(e, f, st) = γe,f (st)

∀ e,f ∈ Y and s,t ∈ [0,1], where γe,f is a geodesic from e to f.We may denote ψ(e, f, s) by
ψs(e, f).

Now, we provide the definition of strongly Bishop-Gromov regular space.

Definition 2.0.2. Strongly Bishop-Gromov regular metric-measure space
Let Y and ψ be same as definition 2.0.1. If for every r > 0 there is xr such that for almost
everywhere e ∈ Y and any Borel measure(open) subset P ⊂ B(e,r), we have

η(c ∈ B(e, r) : ψt(e, c) ∈ P ) ≤ xr
tm
η(P ),

∀ 0<t≤ 1. Then we call Y is Locally Bishop-Gromov regular space of dimension m, for some
positive constant m.
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A locally strongly Bishop-Gromov regular space Y is named to be strongly Bishop-Gromov
regular space, if ∃ x > 0 such that xr ≤ x, ∀ r > 0.

If Y is (locally) strongly Bishop-Gromov regular space of dimension m, then Y is (locally)
strongly Bishop-Gromov regular space of dimension n, in any case of n ≥ m, in addition.

Definition 2.0.3. Y is said to be locally strongly doubling, if the inequality

η(c ∈ B(e, r) : ψt(e, c) ∈ P ) ≤ xr
tm
η(P ),

hold ∀ 1/2 < t ≤ 1.

Every (locally) strongly Bishop-Gromov regular space is (locally) strongly doubling space as
well.

Moreover,if Y is (locally) strongly doubling space, then its also (locally) Bishop-Gromov reg-
ular space of dimension m, for some positive number m.

Definition 2.0.4. Mean value integral
Consider F be measurable set in Y and we have measurable function G : Y → R, here we can
write the mean-value integral of G

-

∫
F
G(f)dη(f) =

1

η(F)

∫
F
G(f)dη(f),

with η(F) is non zero and G is integrable.

Definition 2.0.5. Point of density one for F
Consider F be measurable set in Y and we have measurable function G : Y → R, we can say
that a ∈ F be the point of density one for F , if

lim
R1→0+

η(B(e, R1)) ∩ F
η(B(e, R1))

= 1,

in Y (Doubling space).

Definition 2.0.6. Lebesgue point
For doubling space Y ,For each integrable function G : Y → R, then

lim
R1→0+

-

∫
B(e,R1)

G(f)dη(f) = G(e),

for almost everywhere e ∈ Y, then we can say that Lebesgue point of G and L(G) is e.
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Lemma 2.0.7. Assume triplet (Y ,D, η) is metric-measure space and q > 1. Also Y be the
Bishop-Gromov regular space whose dimension is m, consider the measurable function

G : Y → R,

for e ∈ Y , r > 0, assume ∫
B(e,r)

|G(f)− G(e)|q

Dm+βq(f, e)
dη(f) <∞,

then

lim
R→0+

1

η(F)
-

∫
B(e,R)

|G(f)− G(e)|q

Rβq
dη(f) = lim

R→0+

∫
B(e,R)

|G(f)− G(e)|q

Dm+βq(f, e)
dη(f) = 0,

here
|G(f)− G(e)|q

Dm+βq(f, e)
= 0 for f = e. (2.0.1)

Proof. Assume the decreasing sequence {u1,u2,....} of positive number such that

lim
j→0
{uj} = 0,

as it is decreasing sequence so we have

B(e, u1) ⊃ B(e, u2) ⊃, ...

And

∞⋂
j=1

B(e, uj) = {e},

thus we’ve,

lim
j→∞

∫
B(e,un)

|G(f)− G(e)|q

Dm+βq(f, e)
dη(f) =

∫
{e}

|G(f)− G(e)|q

Dm+βq(f, e)
dη(f) = 0, (2.0.2)
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because we have given in 2.0.1, now for any c ∈ Y assume B(c, r) then,

lim
R→0+

-

∫
B(e,R)

|G(f)− G(e)|q

Rβq
dη(f)

= lim
R→0+

1

η(F)

∫
B(e,R)

|G(f)− G(e)|q

Rβq
dη(f)

≤
(

Urr
m

η(B(c, r))Rm

)
lim
R→0+

∫
B(e,R)

|G(f)− G(e)|q

Rβq
dη(f)

=

(
Urr

m

η(B(c, r))

)
lim
R→0+

∫
B(e,R)

|G(f)− G(e)|q

Rm+βq
dη(f)

≤ lim
R→0+

∫
B(e,R)

|G(f)− G(e)|q

Dm+βq(f, e)
dη(f)

= 0. by using equation 2.0.2

So we have proved the required condition.

Lemma 2.0.8. Assume the triplet (Y,D,η) is the metric-measure space and q ≥ 1. Assume
Y be the Bishop Grom regular space whose dimension is m, consider the measurable function

G : Y → R,

and β > 0. here we have U,V,r are positive numbers and c ∈ Y, also here we have the set F as

F = L(G) ∩
{
e ∈ B(c, U) :

∫
B(e,r)

|G(f)− G(e)|q

Dm+βq(f, e)
dη(b) ≤ V q

}
, (2.0.3)

here we have

|G(f)− G(e)|q

Dm+βq(f, e)
= 0 for f = e,

then,

i. G|F=β-Holder continuous function.

ii. G|F=β-Holder continuous function and its domain is whole Y.

iii. For ε positive, ∃ Gε : Y → R is β-Holder continuous function, and Fε be the subset
which is contained in B(c, U) such that

G = Gε on Fε, η(F/Fε),
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also,

lim sup
f→e

|Gε(f)− Gε(e)|
Dβ(f, e)

≤ λε,

for almost everywhere, e belongs to Fε and here λ be the constant also here we denote
G|F is restriction of G to F .

Proof. i. consider here.

PR(τ) =

∫
B(τ,Rj)

G(c)dη(c),

here τ ∈ Y with R positive.
Assume that Rj= r/2j where j ≥ 0, Let e ∈ Y ,so we have

|PRj(e)− PRj+1
(e)|,

≤ C1 -

∫
B(e,Rj)

-

∫
B(e,Rj)

|G(c)− G(τ)|dη(c)dη(τ)

= C1 -

∫
B(e,Rj)

-

∫
B(e,Rj)

|G(c)− G(τ) + G(e)− G(e)|dη(c)dη(τ)

≤ C1 -

∫
B(e,Rj)

-

∫
B(e,Rj)

|G(c)− G(e)|+ |G(τ)− G(e)|dη(c)dη(τ)

≤ 2C1 -

∫
B(e,Rj)

|G(c)− G(τ)|dη(c)

≤ 2C1

(
-

∫
B(e,Rj)

|G(c)− G(τ)|q
)1/q

dη(c)

≤ 2C1

(
1

η(B(e, Rj))

∫
B(e,Rj)

|G(c)− G(τ)|q
)1/q

dη(c)
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≤ 2C1

(
Urr

m

η(B(d, r))Rm
j

∫
B(a,Rj)

|G(c)− G(τ)|q
)1/q

dη(c)

≤ 2C1

(
Urr

m

η(B(d, r))Rm+qβ−qβ
j

∫
B(e,Rj)

|G(c)− G(τ)|q
)1/q

dη(c)

≤ 2C1

(
Urr

m

η(B(d, r))R−qβj

∫
B(e,Rj)

|G(c)− G(τ)|q

Dm+qβ(c, e)

)
dη(c)

≤ C1V

(
rm

η(B(d, r))

)1/q

Rβ
j .

∀ j ≥ 0 C1 depending upon Ur and m,
then ∀ k > j ≥ 0,

|PRk(e)− PRj(e)| ≤
k−1∑
n=j

|Pn(e)− Pn+1(e)| ≤ C1V

(
rm

η(B(d, r))

)1/q k−1∑
n=j

Rβ
n, (2.0.4)

as e ∈ L (G) so

G(e) = lim
j→∞

PRj(e),

now using 2.0.4 ,for j ≥0 we have,

|G(e)− PRj(e)| ≤ C1V

(
rm

η(B(d, r))

)1/q k−1∑
n=j

Rβ
n. (2.0.5)

Let us consider,for e,f ∈ F and j0 ≥ 0(integer) with

Rj0+1 ≤ D(e, f) ≤ Rj0 ,

then we have,
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|PRj0 (e)− PRj0 (f)| ≤ C1 -

∫
B(e,2Rj0 )

-

∫
B(e,2R0)

|G(c)− G(τ)|dη(c)dη(τ)

= C1 -

∫
B(e,2R0)

-

∫
B(e,2Rj0 )

|G(c)− G(τ) + G(e)− G(e)|dη(c)dη(τ)

≤ C1 -

∫
B(e,2Rj0 )

-

∫
B(e,2Rj0 )

|G(c)− G(e)|+ |G(τ)− G(e)|dη(c)dη(τ)

≤ 2C1 -

∫
B(e,2Rj0 )

|G(c)− G(τ)|dη(c)

≤ 2C1

(
-

∫
B(e,2Rj0 )

|G(c)− G(τ)|q
)1/q

dη(c)

≤ 2C1

(
1

B(e, 2Rj0)

∫
B(e,Rj)

|G(c)− G(τ)|q
)1/q

dη(c)

≤ 2C1

(
Urr

m

η(B(d, r))(2Rj0)
m

∫
B(e,2Rj0 )

|G(c)− G(τ)|q
)1/q

dη(c)

≤ 2C1

(
Urr

m

η(B(d, r))(2Rj0)
m+qβ−qβ

∫
B(e,2Rj0 )

|G(c)− G(τ)|q
)1/q

dη(c)

≤ 2C1

(
Urr

m

η(B(d, r))(2Rj0)
−qβ

∫
B(e,2Rj0 )

|G(c)− G(τ)|q

Dm+qβ(c, e)

)
dη(c)

≤ C1V

(
rm

η(B(d, r))

)1/q

(2Rj0)
β,

so,

|PRj0 (e)− PRj0 (f)| ≤ C1V

(
rm

η(B(d, r))

)1/q

(2Rj0)
β, (2.0.6)

finally, by using (2.0.5) and (2.0.6),we get

|G(e)− G(f)| ≤ 2βC1V

(
rm

η(B(d, r))

)1/q ∞∑
n=j0

Rβ
m, (2.0.7)

as,

r

2j0+1
= Rj0+1 ≤ D(e, f) ≤ Rj0 =

r

2j0
, (2.0.8)

∃ constant Kβ with
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|G(e)− G(f)| ≤ KβC1V

(
rm

η(B(d, r))

)1/q

Dβ(e, f), (2.0.9)

∀ e,f ∈ F when D(e, f) ≤ r/2, hence (i) is proved.

ii. Its the result of the McShane′s Theorem, as in the above part we have proved whose
domain is F so it is also hold for the whole domain Y .

iii. As we see in the Lemma (2.0.7) that,

lim
R→0+

∫
B(e,R)

|G(f)− G(e)|q

Dm+βq(f, e)
dη(f) = 0,

∀ e ∈ F ,here we may consider 0 < ε V,∃ 0 < R0 < r such that

η(F\Fε) < ε,

here we define Fε by

F = L(G) ∩
{
e ∈ B(d, U) :

∫
B(e,r)

|G(f)− G(e)|q

Dm+βq(f, e)
dη(f) ≤ εq

}
,

using (2.0.9), we get ∀ ∈ Fε

lim sup
f→e,f∈Fε

|G(e)− G(f)|
Dβ(e, f)

≤ KβC1

(
rm

η(B(d, r))

)1/q

ε, (2.0.10)

with part (ii), ∃ β-Holder continuous function Gε and its domain is Y so that G|Fε=Gε,
we have to show that for the point of density one for Fε such that,

lim sup
f→e

|Gε(e)− Gε(f)|
Dβ(e, f)

≤ KβC1

(
rm

η(B(d, r))

)1/q

ε, (2.0.11)

assume that ρ is positive and too small,as a is point of density one for Fε,here we have
0 < δ1 < R0 depends upon ρ,so that

η(B(e, R) ∩ F cε )
η(B(e, R))

< ρ,

∀ 0 < R ≤ δ1, as we have given that Y be the Bishop-Gromov regular whose dimension
is m, so ∃ Ur ≥ 1, we got,
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η(B(c, r))

rm
≤ Ur

η(B(τ, R))

Rm

η(B(c, r))

η(B(τ, R))
≤ Ur

(
r

R

)m
U−1r

(
R

r

)m
≤ η(B(τ, R))

η(B(c, r))
,

∀ 0 < R < r and c,τ ∈ Y when D(c, τ) ≤ r.
Now we define δ2 and δ for 0 < ρ < (4Ur)

−1 and 0 < δ1 < R0 such that,

δ2 = (Urρ)1/mδ1 and δ = δ1 − δ2,

then we will show for f ∈ B(e, δ),

B(f, δ2) ∩ Fε 6= φ, (2.0.12)

on contrary we assume thatB(f, δ2) ∩ Fε = φ, then

ρ >
η(B(e, δ1) ∩ F cε )
η(B(e, δ1))

≥ η(B(e, δ2)

η(B(e, δ1))

≥ U−1r

(
δ2
δ1

)m
= U−1r

(
(Urρ)1/m

δ1

)m
= ρ,

so it contradict to our assumptions.
So for each f ∈ Y , ∃ c ∈ B(f, δ2) ∩ Fε so Equation (2.0.12) holds, so we have

|Gε(f)− Gε(e)| ≤ |Gε(f)− Gε(c)|+ |Gε(c)− Gε(e)|
≤ L1Dβ(f, c) + |G(c)− G(e)|
≤ L1δ

β
2 + |G(c)− G(e)|,

here L1 is β-Holder constant, now take ρ→ 0 (2.0.10) implies
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lim sup
f→e

|Gε(e)− Gε(f)|
Dβ(e, f)

≤ KβC1

(
rm

η(B(d, r))

)1/q

ε,

∀ e ∈ Fε whenever e be the point of density one for Fε,as Y be the doubling space hence
we have proved the required result.

Here we provide basic definition which terms are used in next theorems.

Definition 2.0.9. Lebesgue Space
Consider Y denote the open set in R and Consider the lebesgue meaurable function,

h : Y → C.

Then we named Lq is Lebesgue space

Lq = {h ∈ L1(Y) :

∫
Y

|h|q < +∞}.

Definition 2.0.10. Connected set
Consider the set F ⊂ R, it is said to be a connected set if @ two disjoint open set such that

F * C ∪ H and C ∩ H = Φ.

Definition 2.0.11. Convex set
Assume that Y be the convex subset, the function,

h : Y → R,

It is said to be convex function if ∀ s ∈ [0,1] it satisfies

h(sy1 + (1− s)y2) ≤ sh(y1) + (1− s)h(y2), for y1, y2 ∈ Y .

Theorem 2.0.12. Let we take function

h : 0→ R,

which is (Lebesgue) measurable and defined on connected open subset 0 from Rn such that∫
0×0

|h(f)− h(e)|
|f − e|n+1

d(f)d(e) <∞.

Then the function h will be constant almost everywhere.
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Here we will prove the generalization of Theorem 2.0.12

Theorem 2.0.13. Assume that the (Lebesgue) measurable function is

h : 0→ R,

which is defined on connected open subset 0 in Rn

and we have the convex function
% : [0,∞[→ [0,∞[,

such that

%(s) = 0 if and only if s = 0,

also assume that ∫
0×0

%

(
|h(b)− h(a)|
|b− a|

)
d(b)d(a)

|b− a|n
<∞,

then h is constant function almost everywhere.

Proof. We consider without loss of generality that 0 be the open ball.Here we consider the
function

g :]0,∞[→ R,

and it is defined as,

g(u) :=

∫
02(u)

%

(
|h(f)− h(e)|
|f − e|

)
d(f)d(e)

|f − e|n
,

here we consider as

ρ =
e+ f

2
and 02(u) = {(e, f) ∈ 0× 0 : |f − e| < u},

thus we’ve
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g(u) =

∫
02(u)

%

(
|h(f)− h(e)|
|f − e|

)
d(f)d(e)

|f − e|n

=

∫
02(u)

%

(
|h(f)− h(e) + h(ρ)− h(ρ)|

|f − e|

)
d(f)d(e)

|f − e|n

≤
∫
02(u)

%

(
|h(f)− h(ρ)|+ |h(ρ)− h(e)|

|f − e|

)
d(f)d(e)

|f − e|n
∵ Triangular inequality,

=
1

2

∫
02(u)

%

(
2|h(f)− h(ρ)|
|f − e|

)
d(f)d(e)

|f − e|n
+

1

2

∫
02(u)

%

(
2|h(ρ)− h(e)|
|f − e|

)
d(f)d(e)

|f − e|n

=
1

2

∫
02(u)

%

(
2|h(2ρ− e)− h(ρ)|
|2ρ− e− e|

)
d(f)d(e)

|2ρ− e− e|n
+

1

2

∫
02(u)

%

(
2|h(ρ)− h(e)|
|2ρ− e− e|

)
d(e)d(f)

|2ρ− e− e|n

=
1

2

∫
02(u)

%

(
2|2h(ρ)− h(e)− h(ρ)|

|2(ρ− e)|

)
d(f)d(e)

|2(ρ− e)|n
+

1

2

∫
02(u)

%

(
2|h(ρ)− h(e)|
|2(ρ− e)|

)
d(f)d(e)

|2(ρ− e)|n
,

now we use convexity which is h(2ρ − e) ≤ 2h(ρ) − h(e),then we have

g(u) ≤ 1

2

∫
02(u)

%

(
|2h(ρ)− h(e)− h(ρ)|

|(ρ− e)|

)
d(f)d(e)

|2(ρ− e)|n
+

1

2

∫
02(u)

%

(
|h(ρ)− h(e)|
|(ρ− e)|

)
d(f)d(e)

|2(ρ− e)|n

=

∫
02(u)

%

(
|h(ρ)− h(e)|
|(ρ− e)|

)
d(f)d(e)

|2(ρ− e)|n
,

∀ positive u.
Here we have changed the variables as

(e, f)→ (e, ρ),

then we have

{(e, f) ∈ 0× 0 : |2ρ− e− e| < u} = {(e, f) ∈ 0× 0 : |ρ− e| < u

2
} = 02(u/2),

so,

g(u) ≤
∫
02(u/2)

%

(
|h(ρ)− h(e)|
|(ρ− e)|

)
d(f)d(e)

|2(ρ− e)|n
= g(u/2),

which implies that g(u)≤ g(u/2).Similarly in this way we get g(u) ≤ g(u/2j), now if j→ ∞ ∀
u > 0, then g(u)=0
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g(u) :=

∫
02(u)

%

(
|h(f)− h(e)|
|f − e|

)
d(f)d(e)

|f − e|n
= 0

h(f)− h(e) = 0

h(f) = h(e).

Which implies that h is constant function almost everywhere.

23



Chapter 3

An integral type characterization of
Lipschitz functions

In this part we will review about generalised change of variables formula for functions over(locally)

strongly doubling metric-measure spaces, actually we will review that how we extend the char-

acterization of Lipschitz function to general abstract metric-measure space,i.e (Y ,D) be the

matric space with η measure ([2], [5]).At the end we will review results in the class of metric

measure space such that it satisfies the condition of Strongly Bishop-Gromov regularity.

3.1 Generalised change of variables

Definition 3.1.1. Essentially Lipschitzian
Take a measurable function,

ζ : [0, 1]→ R,

It is essentially Lipschitzian iff ∃ L1 > 0 with∫ 1

o

∫ 1

o

exp

[
|ζ(f)− ζ(e)|
L1|f − e|

ln
1

|f − e|

]
d(f)d(e) ≺ ∞.

Theorem 3.1.2. Generalised change of variables: Assume that (Y,D,η) be a locally
strongly Bishop-Gromov Regular Space with dimension m. Let ψ be a Borel measurable func-
tion as in the definition 2.0.1 and

f : Y × Y → [0,∞[,

24



be a measurable function. Then∫
B(y,r)2

f(ψs(e, f), ψt(e, f))dη(f)dη(e) ≤ N

|s− t|m

∫
B(y,r)2

f(c, v)dη(v)dη(c),

where N is constant depending on xr and D(y, r)2=B(y,r)× D(y,r),for almost everywhere
s,t ∈ [0,1].

Proof. Without sacrificing generality, We may consider that ψt : Y × Y → Y, is measurable
function ∀ t ∈ [0,1]. We will prove that for every r > 0, there is x̃r > 0 such that for almost
everywhere y ∈ Y . And any Borel measurable subset Q ⊂ D(y, r)2 , we have

η × η({(e, f) ∈ B(y, r)2 : (ψs(e, f), ψt(e, f)) ∈ Q}) ≤ x̃r
|s− t|m

η × η(Q), (3.1.1)

∀ s,t ∈ [0,1]. We may consider the product measure η × η on Y × Y and the metric is

D((e1, f1), (e2, f2)) := max{D(e1, e2),D(f1, f2)},

It is, in fact, both compulsory and sufficient to demonstrate that the 3.1.1 exist for subset
Q = S × T . Here S and T are Borel measurable subset within B(y, r).

Firstly, consider s = 0, namely, ψs(e, f) ≡ e, so we get that

η × η({(e, f) ∈ B(y, r)2 : (e, ψt(e, f) ∈ S × T})

=

∫
S

η({f ∈ B(e, r) : ψt(e, f) ∈ T})

≤
∫
S

η({f ∈ B(e, 2r) : ψt(e, f) ∈ T}) ∵ B(e, r) ⊆ B(e, 2r)

≤
∫
S

x2r
tm
η(T )dη(e) ∵ Y is locally Bishop-Gromov

=

[ ∫
S

dη(e)

]
x2r
tm
η(T )

= η(S)
x2r
tm
η(T )

=
x2r
tm
η(S)η(T )

=
x2r
tm
η × η(S × T )

=
x2r
tm
η(Q) ∵ S × T = Q,
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thus
For s = 0 and Q = S × T the inequality (3.1.1) holds ,And It is applicable to any Borel
measurable subset Q in B(e, r)2.
Now, For the general case we will prove the inequality (3.1.1).
We may assume Without sacrificing generality that 0 < s < t < 1.
Define

Λ1 := (e, ψt(e, f))

Λ2 := (ψs/t(e, f), f) = (ψ1−s/t(f, e), f),

as

Λ2oΛ1 = (ψs(e, f), ψt(e, f)),

Since

Λ2oΛ1 = Λ2(Λ1(e, f))

= Λ2(e, ψt(e, f))

= (ψs/t(e, ψt(e, f)), ψt(e, f))

= (ψs/t(e, ψ(e, f, t)), ψt(e, f))

= (ψ(e, ψ(e, f, t), s/t), ψt(e, f))

= (ψ(e, f,
s

t
.t), ψt(e, f))

= (ψs(e, f), ψt(e, f)).

Now we prove following containment,

{(a, b) ∈ B(y, r)2 : Λ2oΛ1(a, b) ∈ Q} ⊆ {(a, b) ∈ B(y, r)2 : Λ1(a, b) ∈ Λ−12 (Q)},

let

(a1, b1) ∈ {(a, b) ∈ B(y, r)2 : Λ2oΛ1(a, b) ∈ Q}
⇒ (a1, b1) ∈ B(y, r)2 such that Λ2oΛ1(a, b) ∈ Q
⇒ (a1, b1) ∈ B(y, r)2 such that Λ2(Λ1(a1, b1)) ∈ Q
⇒ (a1, b2) ∈ B(y, r)2 such that Λ1(a1, b1) ∈ Λ−12 (Q).

So the containment holds in any case of Borel measurable subset Q in B(y, r)2. Similarly by
using the above computations, we obtain
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η × η({(a, b) ∈ B(y, r)2 : Λ2oΛ1(a, b) ∈ Q})
≤ η × η({(a, b) ∈ B(y, r)2 : Λ1(a, b) ∈ Λ−12 (Q)})

≤ x2r
tm
η × η(Λ−12 (Q) ∩ B(y, r)2) By using Definition (2.0.2)

≤ x2r
tm

x3r
(1− s/t)m

η × η(Q)

≤ (x2r)(x3r)

|t− s|m
η × η(Q),

in any case of Borel measurable subset Q in B(y, r)×B(y, r). Which completes the proof for
inequality (3.1.1).

Corollary 3.1.3. Assume that assumptions and notation are same as in Theorem (3.1.2).
Then we have the following inequality∫

B(y,r)2
g(ψs(e, f), ψt(e, f))dη(f)dη(e) ≤ N

|s− t|m

∫
B(y,r)2∩∇s,t

g(c, ν)dη(ν)dη(c),

where,

∇s,t = {(c, ν) ∈ Y × Y : D(c, ν) ≤ |t− s|}.

3.2 Results

Theorem 3.2.1. Let (Y,D,η) be the locally strongly BGRS of dimension m, for some positive
number m.Also assume that

g : Y → R,

is a measurable function so that∫
Y×Y

exp

(
|g(f)− g(e)|
D(f, e)

)| lnDm(f, e)|
)
dη(f)dη(e) <∞

Then g is essentially 1-Lipschitz, that is |g(f)− g(e)| ≤ D(f,e), for almost everywhere e,f ∈
Y.

Proof. consider B(y,r) in Y also ϑ > 1, we define the function

ζ :]0,∞[→]0,∞[,
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As

ζ(u) =

∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

| lnDm(f, e)|
)
dη(f)dη(e),

where

Eu = {(e, f) ∈ B(y, r)× B(y, r) : |g(f)− g(e)| ≥ ϑD(f, e), & D(f, e) ≤ u}.

Without loss of generality, now we may assume that

ψt : Y × Y → Y ,

is measurable, for all t ∈ [0,1]. consider positive integer n and e,f ∈ Y ,
set

ei := ψ(e, f, i/p),

we have

ζ(u) =

∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

| lnDm(f, e)|
)
dη(f)dη(e)

=

∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

| lnDm(f, e)− ln pm + lnnm|
)
dη(f)dη(e)

=

∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

| ln D
m(f, e)

pm
+ ln pm|

)
dη(f)dη(e) ∵ ln(e/f) = ln(e)− ln(f)

=

∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

| ln(
D(f, e)

p
)m + ln pm|

)
dη(f)dη(e)

=

∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

| ln(
D(f, e)

p
)m| − ln pm

)
dη(f)dη(e) ∵ n is too large

=

∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

ln

(
D(f, e)

p

)m)
exp

(
|g(f)− g(e)|
D(f, e)

ln p−m
)
dη(f)dη(e),

since ϑ > |g(f)−g(e)|
D(f,e) ,

28



≤
∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

∣∣∣∣ ln(D(f, e)

p

)m∣∣∣∣)eϑ(− ln pm)dη(f)dη(e)

≤
∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

∣∣∣∣ ln(D(f, e)

p

)m∣∣∣∣)eln(n−ϑm)dη(f)dη(e)

= p−mϑ
∫
Eu

exp

(
|g(f)− g(e)|
D(f, e)

∣∣∣∣ ln(D(f, e)

p

)m∣∣∣∣)dη(f)dη(e)

= p−mϑ
∫
Eu

exp

(
|g(f)− g(e)|
n(D(f, e)/p)

∣∣∣∣ ln(D(f, e)

p

)m∣∣∣∣)dη(f)dη(e)

≤ p−mϑ
∫
Eu

exp

( p−1∑
i=0

|g(ei+1)− g(ei)|
n(D(f, e)/p)

∣∣∣∣ ln(D(f, e)

p

)m∣∣∣∣)dη(f)dη(e),

since

ai = ψ(e, f, i/p) = ψi/p(e, f) = γe,f (i/p)

D(ei, ei+1) = D(γe,f (i/p), γe,f ((i+ 1)/p))

=

∣∣∣∣ ip − i+ 1

p

∣∣∣∣D(e, f),

=
1

p
D(e, f),

then

ζ(u) < p−mϑ
∫
Eu

exp

( p−1∑
i=0

|g(ei+1)− g(ei)|
n(D(ei+1, ei)

| lnDm(ei+1, ei)|dη(f)dη(e),

now by using the following inequality

exp(

p−1∑
i=0

αi) ≤
1

p

p−1∑
i=0

exp(pαi),

then we have

ζ(u) ≤ p−mϑ
1

p

p−1∑
i=0

∫
Eu

p
|g(ei+1)− g(ei)|
p(D(ei+1, ei)

| lnDm(ei+1, ei)|dη(f)dη(e),

29



ζ(u) ≤ p−mϑ
1

p

p−1∑
i=0

∫
Eu

|g(ei+1)− g(ei)|
(D(ei+1, ei)

| lnDm(ei+1, ei)|dη(f)dη(e),

As we know that

ei = ψ(e, f, i/p) = ψi/p(e, f),

So the above exponential function is the function of variable ψi/p(e, f) , so by the Lemma
(3.1.2)
Here

s =
i+ 1

p
, t =

i

p
,

So for u ∈ ]0,1], we get

ζ(u) ≤ p−mϑ−1
n−1∑
i=0

N

| i+1
n
− i

n
|m

∫
Y×Y

exp

(
|g(ei+1)− g(ei)|
D(ei+1, ei)

| lnDm(ei+1, ei)|
)
dη(ei+1)dη(ei)

≤ p−mϑ−1
n−1∑
i=0

N

n−m

∫
Y×Y

exp

(
|g(c)− g(ν)|

d(c, ν)
| lnDm(c, ν)|

)
dη(c)dη(ν)

= p−mϑ−1−mN

∫
Y×Y

exp

(
|g(c)− g(ν)|
D(c, ν)

| lnDm(c, ν)|
)
dη(c)dη(ν)

≤ pm(1−ϑ)N

∫
Y×Y

exp

(
|g(c)− g(ν)|
D(c, ν)

| lnDm(c, ν)|
)
dη(c)dη(ν).

For r ∈ ]0,1], and constant N be depends upon xr.
Taking p → ∞ then we have

ζ(u) ≤ 0 for ϑ > 1,

Which implies that h(u) = 0 while u belongs ]0,1] which gives that g is essentially ϑ-
Lipschitz,while taking ϑ > 1 and Y is also geodesic space, so at last if ϑ → 1+ then function
g is essentially 1-Lipschitz.

Corollary 3.2.2. Assume triplet (Y,D,η) is locally strongly doubling space,also assume the
function

g : Y → R,

is measurable and L is greater than zero such that,
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∫
Y×Y

exp

(
|g(f)− g(e)|

LD(f, e)
| lnD(f, e)|

)
dη(f)dη(e) <∞,

then we say g be the essentially lipschitzian.

Proposition 3.2.3. Assume the triplet (Y,D,η) is metric-measure space, and take n > 0, r
> 0,also assume

η(B(e, R)) ≤ DrR
n, (3.2.1)

∀ 0 < R ≤ r and e ∈ Y, Where Dr > 0.
Assume that,

g : Y → R,

be 1-Lipschitz, then∫
B(y,r)×B(y,r)

exp

(
|g(f)− g(e)|
D(f, e)

| lnDp(f, e)|
)
dη(f)dη(e) <∞,

∀ 0 < p < n and y ∈ Y.

Proof. Without loss of generality , suppose that r ≤ 1, let Rl = r/2l .
∀ a ∈ Y ,then

∫
B(e,r)

exp

(
|g(f)− g(e)|
D(f, e)

| lnDp(f, e)|
)
dη(f)

≤
∫
B(e,r)

exp

(
|f − e|
D(f, e)

| lnDp(f, e)|
)
dη(f) (since g is 1-Lipschitz)

=

∫
B(e,r)

exp

(
D(f, e)

D(f, e)
| lnDp(f, e)|

)
dη(f)

=

∫
B(e,r)

exp(| lnDq(f, e)|)dη(f)

≤
∫
B(e,r)

D−q(f, e)dη(b)

≤
∞∑
l=0

∫
B(e,Rl)\B(e,Rl+1)

D−q(f, e)dη(f)

≤
∞∑
l=0

∫
B(e,Rl)\B(e,Rl+1)

1

Rj

dη(f)
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≤
∞∑
l=0

∫
B(e,Rl)\B(e,Rl+1)

1

Rq
l+1

dη(f) ∵ Rl ≥ Rl+1

=
∞∑
l=0

η(B(e, Rl)\B(e, Rl+1))
1

Rq
l+1

=
∞∑
l=0

η(B(e, Rl)\B(e, Rl+1))
2(l+1)q

rq
∵ Rl = r/2j

≤ r−q
∞∑
l=0

η(B(e, Rl))2
(l+1)q

≤ r−q
∞∑
l=0

DRR
n
l 2(l+1)q By using Equation (3.2.1)

≤ r−q
∞∑
l=0

DR

(
r

2l

)n
2(l+1)q

= 2qrn−qDR

∞∑
j=0

2l(q−n).

Since for n � q the series

∞∑
l=0

2l(q−n) = 1 +
1

2n−q
+

1

22(n−q) + ....

is geometric series which converges, hence

2qrn−qDR

∞∑
l=0

2l(q−n) <∞,

finally ∫
B(e,r)

exp

(
|g(f)− g(e)|
D(f, e)

| lnDp(f, e)|
)
dη(f) <∞,

so it is the required result.
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