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Preface 
In 1905, Emanuel Lasker introduced the notion of the primary ideal, which 

corresponds to an irreducible variety and plays a role similar to prime powers in the prime 
decomposition of an integer. He proved the primary decomposition theorem for an ideal of a 
polynomial ring in terms of primary ideals [47]. The decomposition of an ideal into primary 
ideals is a conventional pillar of ideal theory. It provides the algebraic foundation for 
decomposing an algebraic variety into its irreducible components. Primary decomposition 
provides a generalization of the factorization of an integer as a product of prime powers. 
Developing on the findings of Lasker in 1921 Emmy Noether, in her seminal paper [61], 
proved that in a commutative ring satisfying the ascending chain conditions on ideals, every 
ideal is the intersection of finite number of irreducible ideals (an irreducible ideal of a 
Noetherian ring is a primary ideal). She established several intersection decompositions in 
rings. A ring which is characterized by the primary decomposition property of the ideals is 
called "a Laskerian ring" (in the honor of Emanuel Lasker). In the terminology of Bourbaki 
[11], a ring R is Laskerian if each ideal of R is a finite intersection of primary ideals and R is 
strongly Laskerian if each ideal of R is a finite intersection of strongly primary ideals. 

 
  Lasker’s theory of primary decomposition of ideals has influence on the theory of 
Noetherian rings, which are by far the most important class of rings in commutative algebra. 
It is well known that: 
 
            Noetherian⇒Strongly Laskerian⇒Laskerian 
 
  A ring R satisfies ACC on principal ideals (ACCP) if there is no existence of an 
infinite strict ascending chain of principal ideals. Any Noetherian ring, in particular, any 
Dedekind domain satisfies ACCP.  
 For any type of abstract algebra, a generalization is a defined class of such algebra.  Of 
course, a generalization of a concept is an extension of the concept to less specific criteria. 
Generalization plays a vital role in enhancing mathematical concepts and walking around the 
tracks which lead to achieving new goals. 
 

Since the introduction of the concept of Noetherian rings, much progress has been 
made by many researchers in the development of this notion through generalization. 

 
The subject of Laskerian rings continues to generate considerable interest. Laskerian 

rings are known to possess many properties that one finds in a Noetherian ring, regarding 
ideals. However, some rather desirable properties do not carry over; most notably Laskerian 
rings need not satisfy ascending chain condition on ideals. In [31], Heinzer and Ohm proved 
that for a commutative ring R, the ring R[X] is Laskerian if and only if it is a ZD-ring if and 
only if R is Noetherian. In [25] Gilmer and Heinzer proved the equivalence: R[[X]]  is 
Laskerian if and only if R is Noetherian but they gave an example of a non-Noetherian ring 



ii 

 

such that R[[X]] is a ZD ring. They have also proved that a Laskerian ring has a Noetherian 
spectrum. A prime ideal P of a ring R is called MPD (minimal prime divisor) of the ideal I, if 
P is minimal among the prime ideals containing I. If R is Laskerian, then each ideal of R has 
only finitely many minimal prime divisors. A ring with latter property has Noetherian 
spectrum if and only if the ascending chain condition for prime ideals is satisfied in R.  
Barucci and Fontana have studied the transfer of Laskerian and strongly Laskerian properties 
in (D+M) type constructions in [6]. In continuation to [6], Hizem has studied Laskerian rings 
of the form A + XB[X] and A + XB[[X]], where A ⊆ B, in [35]. Recently, in [36] it is 
established that if R is strongly Laskerian, then R[[X]] is strongly Hopfian. 
   Other researchers who studied the properties of Laskerian rings include I. Armeano 
[3] 1977, N. Radu [65] 1980, H. A. Hussain [38] 1980, Heinzer and Ohm [31] 1972, Heinzer 
and Lantz [33] 1986, S.  Visweswaran ([70], [71]) in 1989 and 2007. 
 

In this dissertation, we initiate to create due space for Laskerian rings parallel to 
Noetherian rings. In doing this, in some cases, we generalize some results where Noetherian 
hypothesis is not necessary, and in other cases, we impose extra conditions on Laskerian 
rings and see their impact on the neighboring area. This activity enables us to develop a 
linkage of domains with focus on Laskerian domains. Moreover, taking inspiration from 
rapidly growing research on fuzzy concepts in various areas of ring theory and other 
algebraic structure, it is our intention/goal to contribute to Laskerian settings. 
    

This study comprises two parts. The first part is further subdivided into three parts. In 
first subpart of Section One, we have discussed the overrings, integral closure and complete 
integral closure of an integral domain in Laskerian perspective.  

 
It is well known that Noetherian domains are Laskerian. In Noetherian domains, every 

ascending chain of ideals stabilizes; in particular, Noetherian rings satisfy ACCP. The 
property of ACCP does not carry over to Laskerian ring, for example, a non discrete 
valuation ring is a Laskerian which does not satisfy ACCP. 

 Second part of Section One, mainly deals with a strongly Laskerian domain. We see 
that a strongly Laskerian domain D satisfies ACCP and every non zero ideal of D (strongly 
Laskerian domain) can be uniquely expressed as a product of primary ideals whose radicals 
are all distinct, if D is one dimensional. Furthermore, if each overring (respectively valuation 
overring) of an integral domain D is strongly Laskerian then D has a Dedekind (respectively 
an almost Dedekind) integral closure. Following [24], an ideal A of a domain D is a valuation 
ideal if there exists a valuation ring Dv⊃D and an ideal Av of Dv such that Av

Second section of this study deals with fuzzy concepts. In 1965 L. A. Zadeh [73], 
proposed theory of fuzzy sets, which provides a useful mathematical tool for describing the 

∩D =A.   
 
In third part of Section One, we have characterized the Laskerian domains with the 

property that every primary ideal is a valuation ideal. We conclude first section by 
developing a chart connecting various domains with focus on Laskerian domain. 
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behavior of the multifaceted or distracted systems to admit accurate mathematical analysis by 
classical technique. The study of fuzzy algebraic structure was started by Rosenfeld [66] and 
since then, this concept has been applied to various algebraic structures. Liu introduced the 
concept of a fuzzy ideal of a ring in [49]. The notions of prime fuzzy ideals, maximal fuzzy 
ideals, and primary fuzzy ideals were introduced in [52], [53] and [54]. Malik discussed 
Fuzzy ideals of Artinian rings in [51]. Mukerjee and Sen [56] studied rings with chain 
conditions with the help of fuzzy ideals. They considered Primary fuzzy ideals and radical of 
fuzzy ideals in [57]. The notion of fuzzy quotient ring was introduced by Kumar [45], 
Kuroaka and Kuroki [46]. In [48] K. H. Lee examined some properties of fuzzy quotient 
rings and used them to characterize Artinian and Noetherian rings.  

 
In this study, we discuss strongly irreducible fuzzy ideals in Laskerian rings. 

Moreover, we show that: A ring R is Laskerian (respectively strongly Laskerian) if and only 
if Rµ (quotient ring of R by fuzzy ideal µ) is Laskerian (respectively strongly Laskerian) for 
every fuzzy ideal µ of R. Besides this, we extend the idea of anti-homomorphism of fuzzy 
ideals in rings, property proposed by Sheikabdullah and Jeyaraman in [67], to semiprime, 
strongly primary, irreducible and strongly irreducible fuzzy ideals of a ring. We also prove 
that: For a surjective ring anti-homomorphism f: R→R/, if every fuzzy ideal of R is f-invariant 
and has a fuzzy primary (respectively, strongly primary) decomposition in R, then every 
fuzzy ideal of R/ has a fuzzy primary (respectively, strongly primary) decomposition in R/

D

. 
This dissertation consists of six chapters. 
In Chapter 1, a brief history of Laskerian rings is given and strongly Laskerian rings 

have been discussed. Moreover, some basics of fuzzy concepts have been provided. We have 
also included the fundamental information about these structures which are directly related to 
our study. Whereas in Chapter 2, we have established: For an integral domain D with 
quotient field K and as its integral closure. (1) If D is a one dimensional Laskerian ring 
such that each primary ideal of D is a valuation ideal, then each overring of D is 
Archimedean. (2) If D is not a field, then D is a Dedekind domain if and only if D is a 
Laskerian almost Dedekind domain. (3) D is a one dimensional Laskerian and each primary 
ideal of D is a valuation ideal if and only if D is a one dimensional Prufer and D has 
finite character. In this case D is Laskerian. (4) D is a one dimensional Prufer (respectively 
almost Dedekind) if and only if every valuation ring of K lying over D is Laskerian 
(respectively strongly Laskerian). (5) The complete integral closure of a pseudo-valuation 
domain (D, M) is Laskerian of dimension at the most one. 

 
In Chapter 3, we have explained that a strongly Laskerian domain D satisfies ACCP, 

every non zero ideal of D can be uniquely expressed as a product of primary ideals whose 
radicals are all distinct, if D is one dimensional, D is completely integrally closed if it is a 
QR-domain. Furthermore, if each overring (respectively valuation overring) of an integral 
domain D is strongly Laskerian then integral closure of D is a Dedekind domain (respectively 
an almost Dedekind domain). 
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In Chapter 4, we characterize Laskerian domains with the property that every primary 
ideal is a valuation ideal.  
Following [21], T(I)=Un≥1 (D: In). An integral domain D is said to satisfy trace formula for 
ideals if for all ideals I and J of D, 
 T(IJ)=T(I)+T(J) 
  

It is well known that transform formula holds for finitely generated ideals in Prufer 
domains and all ideals in Dedekind domains. We extend the previous result by weakening the 
Noetherian hypothesis as: If D is a Laskerian domain in which every primary ideal is a 
valuation ideal (of course not Dedekind), then the transform formula holds for all ideals of D. 

 
In Chapter 5, we have developed linkage among domains possessing chain condition 

on ideals, domains having factorization properties and domains having primary 
decomposition on ideals with focus on Laskerian domains. We have presented this linkage in 
the form of a table. 

 
In Chapter 6, we move towards fuzzy concepts. We have divided our work into two 

sections. In Section 1, we have generalized some results which were established for Artinian 
and Noetherian rings in [48]. We have introduced strongly primary fuzzy ideals and strongly 
irreducible fuzzy ideals in a unitary commutative ring and fixed their role in a Laskerian ring. 
We established that: A finite intersection of prime fuzzy ideals (respectively primary fuzzy 
ideals, irreducible fuzzy ideals and strongly irreducible fuzzy ideals) is a prime fuzzy ideal 
(respectively primary fuzzy ideal, irreducible fuzzy ideal and strongly irreducible fuzzy 
ideal). We have also observed that a fuzzy ideal of a ring is a prime if and only if it is 
semiprime and strongly irreducible. Furthermore, we have shown that every nonzero fuzzy 
ideal of a one dimensional Laskerian domain can be uniquely expressed as a product of 
primary fuzzy ideals with distinct radicals. We have characterized Laskerian rings by fuzzy 
quotient rings. In particular, we prove that: a unitary commutative ring is (strongly) Laskerian 
if and only if its localization is (strongly) Laskerian with respect to every fuzzy ideal.  

In section 2, we have investigated anti-homomorphic images and pre images of 
semiprime, strongly primary, irreducible and strongly irreducible fuzzy ideals of a ring. We 
have also proved that: for a surjective ring anti-homomorphism f: R→R/

R

, if every fuzzy ideal 
of R is f-invariant and has a fuzzy primary (respectively strongly primary) decomposition 
in , then every fuzzy ideal of R/ has a fuzzy primary (respectively strongly primary) 
decomposition in R/.  
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Notations 
 
Mostly, symbols and notations used in this dissertation are standard; however some 
repeatedly notations and symbols are listed below 
R represent a (commutative) ring with identity, it is also used for integral domains (we 
mentioned whenever feel necessary). 
D is for integral domain  
D0

D
 nonzero elements of D  

 integral closure of D        
D*complete integral closure of D 
F or K for a field 
 F*or K*

θ

 a field without zero  
I, J for an ideal of a ring  
µ,   and σ are used to represent fuzzy ideals 
A⊆B means B contains A or A=B                         
≥ stands for greater than or equal to, it has also been present a partial ordering (we mentioned 
it in thesis) 
Dv  Represents valuation overring of D 
Av

Z

 Denotes valuation ideal 
dim D represents Krull dimension of D  
dimv D means D has valuative dimension n, defined as: if each valuation overring of D has 

dimension at most n and if there exists a valuation overring of D with dimension n. 
x|y is for x divides y. 
ℂ, ℝ, ℚ, , ℕ, represents the set of complex numbers, the set of real numbers, the set of 
rational numbers, the set of integers and the set of natural numbers respectively. 
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Chapter 1

BRIEF HISTORY AND

PRELIMINARIES

Introduction
This chapter contains some fundamental concepts, basic de�nitions; examples and prelim-

inaries which are related to our study. We have divided this chapter into two sections. In �rst

section, we have provided de�nitions of some basic terms of commutative ring theory which

will be frequently used throughout this tract. In second section of this chapter, we have given

a brief history of fuzzy ideals in rings with some de�nitions.

1.1 Commutative Rings

We begin this section with the fundamentals of ring theory.

A ring is a set R together with two binary operations, addition and multiplication such

that; (R, +) is an abelian group, (R, �) is a semigroup and the multiplication is distributive

over addition. An element say 1 is called identity element if 1 �x = x = x �1 for all x 2 R: The

identity element is also called unity and a ring with 1 is known as ring with unity or unitary

ring. An element x 2 R is said to be invertible (or unit), whenever x posses a two sided

inverse with respect to multiplication i.e., there exist x�1 2 R such that xx�1 = 1 = x�1x:
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The set, U(R) represents units of a ring R: A ring R is commutative if xy = yx for all x,

y 2 R: A nonzero nonunit element p of a commutative ring R is said to be prime (respectively

primary) if whenever p divides xy then p divides x or p divides y (respectively some power

of y); for x; y 2 R: Whereas a nonzero nonunit element q of a unitary commutative ring

R is said to be irreducible (or non-factorable) if there exist any factorization q = yz with

y; z 2 R; then either y is invertible or z is invertible. A nonzero element x of a unitary

commutative ring R is said to be a zero divisor of R, if there exist 0 6= y 2 R such that

xy = 0: A commutative ring with identity 1 6= 0 is said to be an integral domain if it has no

zero divisors. A unitary commutative ring R is said to be a �eld if U(R) = R� f0g:

1.1.1 Subrings and Ideals

Let (R, +, �) be a ring and S � R be a non empty subset of R: If the system (S, +, �)

is itself a ring under the induced operation, then (S, +, �) is said to be a subring of (R,

+, �). Ideals of rings (integral domains) play an important role in their characterization, so

we give a bit introduction about prime ideal, primary ideal, principal ideal and their role in

the determination of an integral domain. A subset I of a commutative ring R is said to be

an ideal if for all x; y 2 I and r 2 R; x � y 2 I and rx 2 I. An ideal P of a unitary

commutative ring R such that P 6= R; is a prime ideal of R if for all x; y 2 R; xy 2 P

then x 2 P or y 2 P . In other words an ideal generated by a prime element is a prime

ideal. The set of all prime ideals in a ring R is called the spectrum of R and is represented

as Spec(R): An ideal Q of a unitary commutative ring R is called primary if for all x; y 2 R;

xy 2 Q =) x 2 Q or yn 2 Q for some positive integer n: In Z primary ideals are precisely

of the form (pe) where p is a prime integer and e 2 Z+: See that a prime ideal is a primary

ideal but the converse is not true. An ideal I of a unitary ring R is principal, if it is generated

by a single element that is I =< x > for some x 2 R . An ideal I of a unitary commutative

ring is said to be maximal if I 6= R and for every ideal J such that I � J � R; either J = R

or J = I: In other words an ideal generated by irreducible element is a maximal ideal. The

set of all maximal ideals of R is represented as Max(R). Note that Max(R) � Spec(R) If

4



we take (Z; +; �) a ring of integers, then the maximal ideals of Z correspond to the prime

numbers. More precisely, the principal ideal (x), x > 1, is maximal if x is prime. For an ideal

I of a unitary commutative ring R; radical of I is denoted by
p
I or Rad(I) and is de�ned

as:

Rad (I)= fr 2 R= rn 2 I for some n 2 Z+g: If D is an integral domain and K its �eld

of fractions, we say that a D-submodule I of K is a fractional ideal of D if I 6= 0, and there

exist a non-zero element x 2 D such that xI � D. Most famous result which classi�es rings

to integral domains and �elds with prime and maximal ideal is: A proper ideal I of the ring

R is a prime (respectively maximal) ideal if and only if the quotient ring R=I is an integral

domain (respectively Field). Furthermore, in a unitary commutative ring R, every maximal

ideal is a prime ideal.

1.1.2 Integral Dependence

Integral dependence is one of the very powerful and useful tools of multiplicative ideal theory.

This concept was introduced by Emmy Noether in [62], and has been investigated over a

period of many years. Here we give de�nitions of some basic terms.

Let S be a ring, R a subring of S (so that 1 2 R). An element x of S is said to be

integral over R if x is a root of a monic polynomial with coe¢ cients in R; that is if x satis�es

an equation of the form

xn+a1x
n�1+:::+ an= 0

where ai are elements of R: Every element of R is integral over itself.

Let the set of integral elements of S over R is denoted by R�: R� is called integral closure

of R in S: If R� = R then R is integrally closed in S: If S is total quotient ring of R; R� is

usually referred as integral closure of R; rather than the integral closure of R in S:

The concept of almost integrality was introduced by Krull in his famous 1932 paper

Allgemeine Bewertungs theorie. Following [12], if K is quotient �eld of an integral domain

5



D and x 2 K, we say that x is "almost integral" over D provided there exists d 2 D such

that d 6= 0 and dxn 2 D for each positive integer n. The set of almost integral elements of

K over D is called complete integral closure of D in K: If the set of almost integral elements

of K over D is equal to D, then D is called "completely integrally closed" in K.

In chapter 2 and 3, we have discussed integral closures and complete integral closure of

domains in Laskerian perspective.

1.1.3 Krull Dimension of a Ring

Following [24, 11.7, Page 105 ], If R is a ring (not necessarily containing an identity), a �nite

chain P1 � P2 � ::: � Pn � Pn+1 of n + 1 proper prime ideals of R will be said to have

length n: Krull dimension of R is de�ned in terms of this concept.

Two cases arise, namely: There is a nonnegative integer n such that R contains a chain

of proper prime ideals of length n but no such chain of length n+1; or no such integer exist.

In the �rst case we say that R has dimension n; and we write dimR = n: In the second

case, we say that R is in�nite dimensional. A �eld has dimension 0; Z has dimension 1; more

generally a PID which is not a �eld has dimension 1: For a �eld K; the polynomial ring

K[X1; :::; Xn] and the power series ring K[[X1; :::; Xn]] are n�dimensional: An important

property of integral dependence is that it preserves dimension.

1.1.4 Valuation Rings

Following [39, Page 12], an integral domain D with quotient �eld K, is said to be a valuation

domain if it satis�es either of the (equivalent) conditions:

(i) For any two elements x; y 2 D, either x divides y or y divides x.

(ii) For any element x 2 K, either x 2 D or x�1 2 D.

A valuation ring is said to be a discrete valuation ring (DV R) if its value group is

isomorphic to Z. A Noetherian valuation ring is a DV R.

Throughout this study all rings are commutative with identity (unless mentioned other-

wise). The letter D denotes an integral domain with quotient �eld K: By an overring of D

6



we mean a ring between D and K: We use D to denote integral closure of D in K; dimD

to represent Krull dimension of D: By [24, Page 360], D is said to have valuative dimension

n; represented as dimvD = n; if each valuation overring of D has dimension at most n and

if there exists a valuation overring of D with dimension n:

1.1.5 Noetherian Rings

A Noetherian ring, named after the famous mathematician Emmy Noether, is a ring in which

every ascending chain of ideals has a maximal element. The class of Noetherian rings has im-

portant role in commutative ring theory and algebraic geometry because Noetherian property

is the ring-theoretic analogue of �niteness in some sense. They are useful in the speci�cation

of the Krull rings (Noetherian and integrally closed).

Let R be a unitary commutative ring. Then R is Noetherian if and only if every prime

ideal of R is �nitely generated. Following are the equivalent conditions for a ring R to be

Noetherian:

(i) Every non-empty set of ideals in R has maximal element.

(ii) Every ascending chain of ideals in R is stationary.

(iii) Every ideal in R is �nitely generated. The well known examples of Noetherian rings

are �elds, PIDs, polynomial extension of �eld over �nite number of indeterminates etc.

According to Hilbert basis theorem, the polynomial extension of a Noetherian ring is again

Noetherian ring. Consequently R[X1; X2; :::; Xn] is Noetherian whenever R is Noetherian.

A Noetherian ring with only one maximal ideal (�nite number of maximal ideals) is known

as a local (semilocal) ring. However non-Noetherian unitary commutative local ring is called

quasi-local (quasi-semilocal) if it has only one maximal ideal (�nite number of maximal ideals).

In chapters, 2, 3, 5 and 6, we have generalized some results, already existed with

Noetherian hypothesis, for Laskerian rings/domains.
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Primary decomposition

One of the most valuable characteristics of a Noetherian ring R is that, in it, every ideal has

a �nite primary decomposition. Which means that every ideal in R can be written as a �nite

intersection of primary ideals.

In Z, we can write primary decomposition of an ideal (n) as:

(n) = \mi=1(peii ) where �1 6= n 2 Z and (peii ) are primary ideals in Z generated by prime

powers.

1.1.6 Laskerian Rings

Emanuel Lasker was a German mathematician. Except chess genius, he is known for his

contributions to commutative algebra. In 1905, Lasker initiated the concept of primary ideal,

which match ups to an irreducible variety and plays a role analogous to prime powers in the

prime decomposition of an integer. He established the primary decomposition theorem for an

ideal of a polynomial ring in terms of primary ideals [47]. On this foundation Emmy Noether

presented the in�uential paper in 1921 [61]. In this paper she established an abstract theory

which developed ring theory into major mathematical topic and provided the foundation of

modern algebraic geometry. She proved that in a commutative ring ful�lling the ascending

chain conditions on ideals, every ideal is the intersection of �nite number of irreducible ideals

(an irreducible ideal is a primary ideal). She established a number of intersection decomposi-

tions.

Rings which are characterized by the property of primary decomposition of ideals are called

Laskerian rings (in the honour of Emanuel Lasker). A commutative ring R with identity is

Laskerian if each ideal of R admits a shortest primary representation; R is strongly Laskerian,

if R is Laskerian and each primary ideal of R contains a power of its radical [24, Page 455].

It is equivalent to say that a commutative ring R with identity is Laskerian (respectively

strongly Laskerian) if every ideal of R can be represented as �nite intersection of primary

ideals (respectively strongly primary ideals). Whereas an ideal Q of R is primary if each zero

divisor of the ring R=Q is nilpotent and Q is strongly primary if Q is primary and satis�es
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(
p
Q)n � Q: Following [20, Page 505], R is a zero divisor ring (ZD ring), if ZR(R=I); the

set of zero divisors of R=I; is a �nite union of prime ideals for all ideals I of R:

In general,

Artenian =) Noetherian =) Strongly Las ker ian =) Las ker ian =) ZD ring

but none of the above implication is reversible.

An integral domain D is said to be a Prüfer domain if DP is a valuation ring for every

prime ideal P of D: By [24, Page 434], a domain D is an almost Dedekind domain if DM

is a Noetherian valuation ring for each maximal ideal M of D and its dimension is at most

one. If D is a Prüfer domain, then D is Laskerian if and only if dim D � 1 and each nonzero

element of D belongs to only a �nitely many maximal ideals of D (see [24, Page 456]). In

chapters, 2, 3 and 4, we continued to develop on Laskerian Prüfer domains.

Some Examples of Laskerian Rings

Example 1 (a) A �nite ring is Laskerian:

(b) A ring R is said to have �nite quotients if for any ideal I 6= 0 in R; R=I is �nite.

A ring with �nite quotients is Laskerian.

Of course examples (a) and (b) are Noetherian:

Easy examples of non-Noetherian Laskerian are hard to �nd. However we present some

examples of non-Noetherian Laskerian rings and domains from [10], [22] and [35].

The following examples anticipate most of the results in the �rst part of the thesis.

Example 2 [6, Example 1] Let X be an indeterminate over a �eld K: Consider R =

K[X]=(X2) = K[2], where 2= X + (X2), and de�ne the canonical surjection ' : R! K ,

mapping 2 to 0. For every subring D of K, we take the subring A = D+ 2 K[2] of K[2].

Keeping the �eld K = C �xed and changing the subring D in the ring A; we get di¤erent

classes of rings. If D = Q, then A is a zero dimensional non Noetherian strongly Laskerian
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ring. However if D = R, then A is a zero dimensional Noetherian ring. In case if D = Z,

then A is a one dimensional non-Laskerian ring. In addition to this, if D = Z(p), then A

is a one dimensional non-Laskerian local ring. However if the �eld K = K(Y ) and subring

D = K; where K is a �eld and Y is an indeterminate over K, then A is a zero dimensional

non-Noetherian ring which is strongly Laskerian. Furthermore this ring is integrally closed in

its total ring of fractions (that is R).

Example 3 [6, Example 2] Let D be a subring of a �eld K and X be an indeterminate over

K:Take R = K[X](X) and de�ne the canonical homomorphism ' : R! K , mapping X to

0. Now consider the ring A = D+XK[X](X). At �rst �x the �eld K = C and make changes

in the subring D and see the corresponding e¤ect on R: If the subring D = Q (the �eld of

rational numbers), then the ring A is a one dimensional non-Noetherian, strongly Laskerian

local integral domain. Furthermore if D = R (the �eld of real numbers), then A is a one

dimensional Noetherian local integral domain. However, if D = Z (the ring of integers), then

A a two dimensional Prüfer domain (of course integrally closed) which is not Laskerian. If

we change the �eld in A as K = Q and D = Z, then in this case A is a two dimensional

non-Laskerian Prüfer domain. In case of D = Z(p), the ring A is a two dimensional valuation

ring which is not Laskerian. If we take K = K(Y ) where K is a �eld and Y an indeterminate

over K and D = K; then A is a 1-dimensional integrally closed non-Noetherian, strongly

Laskerian PV D. W. Krull, has used this example to prove that a one dimensional local

integrally closed domain is not a valuation ring.

Example 4 [22] (Non-Noetherian Laskerian domain). Let K be a �eld and X, Y are

indeterminates over K: Take R as the set equivalence classes of elements of the form

f(X; Y )=g(X; Y ) where f; g 2 K[X; Y ]; X does not divide g (inK[X; Y ]) and f(0; Y )=g(0; Y ) 2

K: Under usual addition and multiplication of rational functions R becomes a ring. It can

be shown that R is a non-Noetherian commutative ring but every ideal of R has a primary

decomposition.

Example 5 [35, Proposition 5.7] Let A � B be an extension of integral domains. Then
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the ring A+XB[X] (respectively A+XB[[X]]) is of Krull dimension 1 if and only if A � B

is an extension of �elds .In this case A+XB[X] and A+XB[[X]] are Laskerian:

Proposition 6 Let R be a Laskerian ring:

(1) If I is any ideal of R, then quotient ring R=I is Laskerian.

(2) If S � R is any multiplicative subset, then localization S�1R is Laskerian.

Proof. Let I; J be ideals of a ring R: Then any ideal of R=I is of the form J=I: Since

R is Laskerian J has �nite primary decomposition, therefore a fortiori J=I has �nite primary

decomposition,so R=I is Laskerian. A very similar argument holds for the localization:

For de�nitions not given in the thesis the reader may refer to [24], [11] and [4].

1.2 Fuzzy Concepts in Rings

1.2.1 A Brief History

In 1965, L. A. Zadeh [73], proposed theory of fuzzy sets, which provides a useful mathematical

tool for describing the behavior of the multifaceted or distracted systems to admit accurate

mathematical analysis by classical technique. The study of fuzzy algebraic structure has

started by Rosenfeld [66] and since then this concept has been applied to various algebraic

structures. Liu introduced the concept of a fuzzy ideal of a ring in [49]. The notions of prime

fuzzy ideals, maximal fuzzy ideals, primary fuzzy ideals were introduced in [52], [53] and [54].

Also, Malik [51], Mukererjee and Sen [56] studied rings with chain conditions with the help

of fuzzy ideals. The notion of fuzzy quotient ring was introduced by Kumar [45], Kuroaka

and Kuroki [46]. In [48] K. H. Lee examined some properties of fuzzy quotient rings and used

them to characterize Artinian and Noetherian rings.

1.2.2 Some Fundamental Concepts

Following [73] a fuzzy subset of a non-empty set X is a function � : X �! [0; 1]: By [72],

the set of all fuzzy subsets of a set X with the relation � � � if �(x) � �(x); 8x 2 X is a
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complete lattice. Whereas for a non empty family f�i : i 2 Ig of fuzzy subsets of X,

supf�i : i 2 Ig : X ! [0; 1]; x 7! supf�i(x) : i 2 Ig;8x 2 X and

inff�i : i 2 Ig : X ! [0; 1]; x 7! inff�i(x) : i 2 Ig

A fuzzy subset � of a ring R is a fuzzy left (respectively right) ideal of R if for every x,

y 2 R;

�(x� y) � min f�(x); �(y)g and �(xy) � �(y) (respectively �(xy) � �(x)).

If � is a fuzzy subset of R, then for t 2 [0; 1] the set �t = fx 2 R : �(x) � tg is

called a level subset of R with respect to �. A fuzzy subset is a fuzzy left ideal if and

only if �(0) � �(x) 8x 2 R and �t is a left ideal of R; 8t 2 [0; �(0)]. We denote

�� = fx 2 R : �(x) = �(0)g. A fuzzy subset � of R is a fuzzy ideal of R if it is a left and

right fuzzy ideal. Following [67], a fuzzy ideal � of a ring R is called a prime fuzzy ideal if

for any two fuzzy ideals � and � of R the condition �� � � implies that � � � or � � �.

According to [53], [54], for a fuzzy ideal � of a ring R; the fuzzy radical of �, denoted by
p
�, is de�ned by

p
� = \f� : � is a fuzzy prime ideal of R; � � �; �� � ��g. In [58], V.

Murali and B. Makaba has discussed concepts of primary decomposition of fuzzy ideals and

the radicals of such ideals over a Noetherian ring.

The operations of intersection, union,sums and products on fuzzy subsets � and � of R

are de�ned as follows:

(� \ �)(x) = (���)(x) = min(�(x) + �(x))

(� [ �)(x) = (� _ �)(x) = max(�(x) + �(x))

(�+ �)(x) =

8<: supx=r+sfminf�(r); �(s)g if x is expressed as x = r + s 2 R

0 otherwise

9=;
(�o�)(x) =

8<: supx=rsfmin (�(r); �(s))g if x can be expressed as x = rs; r; s 2 R

0 otherwise

9=;
(��)(x) =

�
supf�ni=1(�(ri)��(si)) : x =

Pn
i=1 risi; ri; si 2 R; n 2 Ng:

0

�
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Let � be a fuzzy ideal of a ring R and x 2 R. By [48], the fuzzy subset of R de�ned

as ��x(r) = f�(r � x) for all r 2 Rg is termed as the fuzzy coset determined by x and �.

The set of all cosets of � in R is a ring under the binary operations ��x + �
�
y = ��x+yand

��x�
�
y = �

�
xy for all x, y 2 R and it is denoted by R�; and known as fuzzy quotient ring of R

induced by the fuzzy ideal �:

In [48] K. H. Lee has examined some properties of fuzzy quotient rings and utilized them

to characterize Artinian and Noetherian rings. On his foundation, we have characterized

Laskerian and strongly Laskerian rings in chapter 6.

Other important de�nitions and related results will be recalled in due course of time.
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Chapter 2

INTEGRAL DEPENDENCE AND

LASKERIAN RINGS

Introduction
In this chapter we have discussed integral closure of a domain, complete integral closure

of PV D and overrings of a domain in Laskerian perspective. We have proved the necessary

and su¢ cient condition for an almost Dedekind domain to be a Dedekind domain through

Laskerian property. We have divided this chapter in three sections. In �rst section we have

proved that for an integral domain D with quotient �eld K and D as its integral closure: (1)

If D is a one dimensional Laskerian ring such that each primary ideal of D is a valuation ideal,

then each overring of D is Archimedean. (2) If D is not a �eld, then D is a Dedekind domain

if and only if D is Laskerian almost Dedekind domain: (3) D is a one dimensional Laskerian

and each primary ideal of D is a valuation ideal if and only if D is a one dimensional Prüfer

and D has �nite character. In this case D is a Laskerian. In second section we proved that:

D is a one dimensional Prüfer (respectively almost Dedekind) if and only if every valuation

ring of K lying over D is Laskerian (respectively strongly Laskerian). Third section is focused

on complete integral closure of a pseudo-valuation domain.
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2.1 The Case of Laskerian Integral Closure

In this section, we transformed ()) of : �Integral closure D of an integral domain D is a

Dedekind domain () every overring of D satis�es ACCP (or atomic) [19, Theorem 1]�;

as: �If integral closure D of an integral domain D is a one dimensional Laskerian ring such

that each primary ideal of D is a valuation ideal, then each overring of D is Archimedean�.

We have proved that: D is a one dimensional Laskerian and each primary ideal of D is a

valuation ideal if and only if D is a one dimensional Prüfer and D has �nite character. In

this case D is a Laskerian�.

Following [68], an integral domain D is Archimedean in case \n�1Drn = 0 for each

nonunit r 2 D: The most natural examples of Archimedean domains are arbitrary completely

integrally closed domains, arbitrary one dimensional integral domains and arbitrary Noetherian

integral domains. An ideal I of a domain D is a valuation ideal if there exist a valuation ring

Dv � D and an ideal Iv of Dv such that Iv \D = I:

Lemma 7 Let D be an integral domain. If D is Laskerian such that every primary ideal is

a valuation ideal then D is Prüfer.

Proof. Since D is Laskerian, it is clear that each ideal of D has �nitely many minimal

prime divisors. Since a ring with later property has Noetherian spectrum if and only if as-

cending chain condition for prime ideals is satis�ed in D. Therefore by [23, Theorem 3.8], D

is a Prüfer domain.

Proposition 8 Let D be an integral domain such that its integral closure D is a one

dimensional Laskerian ring and each primary ideal of D is a valuation ideal, then each overring

of D is Archimedean.

Proof. If integral closure D of an integral domain D is one dimensional Laskerian ring,

such that each primary ideal of D is a valuation ideal, then by [24, Theorems 36.2 and

Theorem 30.8 ]; dimvD = dimvD = dimD = dimD � 1: So by [63, Corollary 1.4], each

overring of D is Archimedean.
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Remark 9 Each overring of an integral domainD is Noetherian if and only ifD is Noetherian

and dimD � 1 [24, Page 493, Exercise 16]. This cannot be generalized in Laskerian domains.

Because, if D is a non Noetherian Laskerian integral domain such as a one dimensional

valuation ring (the case when Archimedean and Laskerian behave alike), then overrings of D

do not satisfy ACCP [9, Theorem 2.1]:

It is easy to demonstrate that a Dedekind domain is a Laskerian domain. We prove

in the next proposition that an almost Dedekind domain which is not Dedekind is not a

Laskerian domain. This then demonstrates a clear di¤erence between Dedekind domains and

non Noetherian almost Dedekind domain. Here the concept of Laskerian domain is expanded

to provide a way of measuring how close an almost Dedekind domain which is not Dedekind

is to being Dedekind

Proposition 10 In an integral domain D with identity which is not a �eld, the following

conditions are equivalent:

(1) D is a Dedekind domain.

(2) D is Laskerian almost Dedekind domain:

Proof. (1) =) (2): As D is a Dedekind domain) D is Noetherian. If M is a maximal

ideal of D; then DM is a nontrivial Noetherian valuation ring. Therefore by [24, Theorem

17.5] DM is of rank one discrete and D is almost Dedekind.

(2) =) (1): If D is an almost Dedekind then dim(D)= 1: In a one dimensional integral

domain, the Laskerian property in D is equivalent to the condition that each principal ideal of

D is decomposable, which in turn is equivalent to the condition that each non zero element

of D belongs to only �nitely many maximal ideals of D. Hence by [24, Theorem 37.2] D is

Dedekind.

Mori and Nagata have proved that if D is Noetherian and one or two dimensional, then

D is Noetherian [60]. Hence if D is Noetherian and one dimensional, then D is a Dedekind

domain. On the other hand the integral closure D of D is Dedekind, it is not necessary that

D is Noetherian. For example if R = Q + XQ [X] =
�
a0 +

P
aiX

i j a0 2 Q; ai 2 Q
	
;
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where Q is the �eld of rationals and Q is algebraic closure of Q, then R = Q [X] is a PID

but R is not Noetherian. In [12, Lemma 2] it is proved that if integral closure D of an integral

domain D is a Dedekind domain then D is Laskerian. In the next proposition we observe that

D remains Laskerian if integral closure of D is one dimensional Prüfer with �nite character.

Proposition 11 Let D be integral closure of an integral domain D: D is a one dimensional

Laskerian and each primary ideal of D is a valuation ideal () D is a one dimensional

Prüfer and D has �nite character. In this case D is a Laskerian.

Proof. (=)) By Lemma 7, D is Prüfer. Since D is Laskerian (by [25, Theorem 4]) it

has Noetherian spectrum which means that every non zero element of D belongs to �nite

number of maximal ideals of D; that is, D has �nite character.

((=) Since D is one dimensional Prüfer and has �nite character, therefore by [24, Page

456, Exercise 9], D is Laskerian and every primary ideal of D is a valuation ideal [23]. Next

we show that D is Laskerian. By Proposition 8, dim(D)� 1: Proper prime ideals are maximal

in D, then every ideal of D is equal to its kernel [44]. Since every proper ideal in D has a

�nite number of prime divisors, therefore every ideal in D is an intersection of a �nite number

of pairwise comaximal primary ideals in D:

Remark 12 If D is a one dimensional Laskerian and each primary ideal of D is a valuation

ideal, then, D is Laskerian.

2.2 Laskerian Valuation Overrings and Integral Clo-

sure

With the inspiration; �a valuation ring V is a Laskerian ring (respectively a strongly Laskerian

ring) if and only if V has rank at most one (respectively V is discrete of rank at most

one) (see [24, Page 456])�, we established that every valuation ring of K lying over D is

Laskerian (respectively strongly Laskerian) if and only if D is one dimensional Prüfer domain

(respectively an almost Dedekind domain).
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Lemma 13 Let V be a non trivial valuation ring on the �eld K, then V is completely

integrally closed () V is one dimensional () V is Laskerian () V is Archimedean.

Proof. A valuation ring V is completely integrally closed if and only if V is one dimen-

sional (cf. [24, Theorem 17.5]). By [24, Page 456], a valuation ring V is Laskerian if and

only if V has rank at most one. Since all valuation rings are GCD domains. By (cf. [9,

Theorem 3.1]) V is Archimedean if and only if V is completely integrally closed.

Remark 14 A rank 2 valuation ring is not Laskerian (see [11, Page 170, Exercise 19]) and

A = Z(p) +XQ[X](X)

Here A is a 2-dimensional valuation ring which is non-Laskerian ring (see Example 3).

However any valuation ring is Z:D (Zero divisor) ring (see [20, Page 507]).

Theorem 15 Let D be an integral domain with quotient �eld K: Then the integral closure

D of D is a one dimensional Prüfer domain () every valuation ring of K lying over D is

Laskerian.

Proof. Let D be a one dimensional Prüfer domain and let Dv is any valuation overring

of D: So D � Dv � K. Let Pv be centre of Dv in D: Since D is a one dimensional Prüfer

domain, therefore DPv is a rank one valuation ring (and hence maximal ring in K) and hence

DPv = Dv: Since every valuation ring lying over D is rank one, therefore it is Laskerian.

Conversely, suppose that every valuation ring of K lying over D is Laskerian, therefore

by Lemma 13, it is a one dimensional. Hence by [12, Theorem 1] D is a Prüfer domain.

Theorem 16 Every valuation ring of K lying over an integral domain D is strongly

Laskerian () D is an almost Dedekind domain.

Proof. Suppose every valuation ring of K lying over D is strongly Laskerian, therefore

it is discrete and rank one (see [24, Page 456]). By [24, Theorem 36.2], D is an almost

Dedekind domain.
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Conversely, suppose D is an almost Dedekind domain (hence one dimensional) and let

Dv be a valuation overring of D (ring between D and K). Then D � Dv � K. If P is

the centre of Dv in D; then DP � Dv; since DP is discrete and rank one, it follows that

DP = Dv: Therefore every valuation ring of K lying over D is strongly Laskerian (see [24,

Page 456]).

Remark 17 Theorems 15 and 16 respectively generalize [19, Theorem 1] as follows: Let

D be an integral domain. Then the integral closure of D is a Dedekind domain (respec-

tively Prüfer 1-dimensional domain, respectively an almost Dedekind domain) if and only if

every overring of D satis�es ACCP (respectively every valuation overring of D is Laskerian,

respectively every valuation overring of D is strongly Laskerian).

2.3 Complete Integral Closure of a PVD

In this section, we have observed that the complete integral closure D� of a PV D (pseudo-

valuation domain) (D;M) (i.e. in D every prime ideal is strongly prime) is Laskerian of

dimension � 1:

By [30], an integral domain D with quotient �eld K; is said to be a pseudo-valuation

domain (PV D), if whenever P is a prime ideal in D and xy 2 P , where x; y 2 K, then

x 2 P or y 2 P (i.e. in a PVD every prime ideal is strongly prime). Equivalently an integral

domain D with quotient �eld K; is said to be a PV D if for every nonzero x 2 K; either

x 2 D or ax�1 2 D for every nonunit a 2 D: It is well known that a PV D is a local ring. A

valuation domain is a PV D but converse is not true, for example the non integrally closed

domain R+XC[[X]] is a PV D, which is not a valuation domain.

Theorem 18 Let (D;M) be a PV D. The complete integral closure D� of D is a quasilocal

Laskerian ring of dim� 1:

Proof. If (D;M) is a PV D with quotient �eld K, then there is a valuation overring V

of D such that spec(D) = spec(V ), and hence D� is integral closure of V . Thus (i) D� = Vp
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if V has a height-one prime ideal P or (ii) D� = K if V does not have a height one prime

ideal. In both cases D� is Laskerian ring.

In the following we restate theorem [27, Theorem 4] by replacing Archimedean valuation

domain with Laskerian valuation domain.

Theorem 19 Suppose D is an integral domain with quotient �eld K and let L be an

extension �eld of K. If the complete integral closure of D is an intersection of Laskerian

valuation domains on K, then the complete integral closure of D in L is an intersection of

Laskerian valuation domains on L.

Proof. By Lemma 13, a valuation ring is Laskerian if and only if it is Archimedean.

The rest follows from [27, Theorem 4].

20



Chapter 3

ON STRONGLY LASKERIAN

DOMAINS

Introduction
It is well known that Noetherian rings satisfy ACCP: From chapter 2, Lemma 13, one

can see that a one dimensional valuation ring is Laskerian. And one dimensional non discrete

valuation rings don�t satisfy ACCP: This information leads us to conclude that Laskerian

rings don�t satisfy ACCP: However we observed that a strongly Laskerian domain (class of

domains lying between Noetherian and Laskerian domains) D satis�es ACCP . We have

proved that, like a Noetherian domain, every non zero ideal of a strongly Laskerian domain D

can be uniquely expressed as a product of primary ideals whose radicals are all distinct if D

is a one dimensional. In general a strongly Laskerian domain D is not necessarily completely

integrally closed, however we have proved that if we consider D as a QR-domain, then D is

completely integrally closed. Furthermore if each overring (respectively valuation overring) of

an integral domain D is strongly Laskerian then integral closure of D is a Dedekind domain

(respectively an almost Dedekind domain).

Following [68], an integral domain D is Archimedean in case \n�1Drn = 0 for each non

unit r 2 D: The most natural examples of Archimedean domains are completely integrally

closed domains, one dimensional integral domains and Noetherian integral domains.
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3.1 Strongly Laskerian Domain and ACCP

We start this section with a well known lemma.

Lemma 20 Let D is a strongly Laskerian domain and I be an ideal of a ring D: Then for

any sequence (xk) of elements of D the increasing sequence of ideals I : (x1) � I : (x2) �

I : (x3) � ::: stabilizes.

Proposition 21 A strongly Laskerian domain D satis�es ACCP:

Proof. Since D is strongly Laskerian domain therefore every ideal of D can be written

as �nite intersection of strongly primary ideals. If I be an ideal of D then I = \ni=1Pi where

each Pi is strongly primary i:e (
p
Pi)

n � Pi: Suppose D does not have ACC on principal

ideals and there exist non terminating ascending chain (x1) � (x2) � (x3) � :::of principal

ideals of D: There exist non units yi 2 D such that xi = yixi+1 for i = 1; 2; 3; :::thus

x1 = y1:::ynxn+1 for n = 1; 2; 3; :::. Since D is strongly Laskerian, then by Lemma 20

increasing chain (x1) : y1 � (x1) : y1y2 � (x1) : y1y2y3 � ::::terminates. Therefore

(x1) : y1y2:::ym = (x1) : y1y2:::yn for m � n: ) x1 = y1:::ynxn+1 = y1:::ynyn+1xn+2: Thus

xn+2 2 (x1) : y1:y2::::yn+1 = (x1) : y1:y2::::yn: Hence we obtain xn+2y1:y2:::yn 2 (x1): Thus

x1 = y:y:::yn+1xn+2 = yn+1(y1:y2:::ynxn+2) = yn+1dx1; for some d 2 D: ) 1 = yn+1d:

Which is a contradiction because yn+1 is not a unit in D: Thus D has ACC on principal

ideals.

Corollary 22 A strongly Laskerian domain D is Archimedean.

Proof. Assume that D is not Archimedean. Then there exist nonzero x; y 2 D and x

is nonunit such that y 2 \1n=1xnD. For each n = 1; 2; 3; ::: let dn be the unique element of

D such that y = xndn. See that dn = xdn+1 for each n, therefore (d1) � (d2) � (d3) � is

an ascending chain of principal ideals of D. Furthermore, since x is nonunit of D;this chain

is strictly ascending and no dn is zero. This shows that D does not have ACCP . But by

Proposition 21, D has ACCP , a contradiction. Therefore D is Archimedean.

Combination of Proposition 21, and [9, Theorem 2.1] allows us to write:
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Proposition 23 Let D be an integral domain.

(1) D is strongly Laskerian.

(2) D has ACC on principal ideals.

(3) If x; y 2 Do (monoid of non zero elements of domain D) are such that

x; y2; x3; y4:::;divide next and if x j y or y j x, then a and b are associate

in D.

(4) D is Archimedean.

Then (1)) (2)) (3), (4):

Proof. (1)) (2) Follow from Proposition 21.

(2)) (3)() (4) Follows from [9, Theorem 2.1].

Remark 24 (i) (2) ; (1) In [8, Proposition 1.1] it has been shown that the domain

R = A+XB[X], where B is a domain, X is an indeterminate over B, A is a subring of B

that is a �eld, and B is not integral over A ,satis�es ACCP . But by [35, Proposition 5.4

and 5.18], R is not Laskerian.

(ii) (4) ; (1) or (2) One dimensional non discrete valuation domain is Archimedean

(Laskerian). It is neither strongly Laskerian nor satis�es ACCP .

(iii) D = Q+XR[X] is non- Noetherian strongly Laskerian domain, but satis�es ACCP ,

and hence is atomic (i.e. each non zero non unit is a product of �nite number of irreducible

elements (atoms)).

Corollary 25 [9, Lemma 4.2] Let D be a strongly Laskerian domain (by Proposition 21, D

satis�es ACCP ) and S be a saturated multiplicative subset of D generated by set of prime

elements of D and U(D) (unit elements of D) Then

(1) Each a 2 D0(monoid of nonzero elements of D) may be expressed as

a = a0s0; Where s0 2 S and a0 2 D is relatively prime to S (in the sense that

S contains no nonunit factor of a0).

(2) If a0s0 = a1s1 with s0; s1 2 S and 0 6= a0; a1 relatively prime to S, then

Da0 = Da1( and so Ds0 = Ds1):
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(3) If a0 2 D0 is relatively prime to S; then Dsa0 \D = Da0

Following [2] an integral domain D is strongly atomic if for each a, b 2 D0 (non zero

elements of D), we can write a = a1....asc and b = a1::::asd where a1; :::; as 2 D (s � 0) are

irreducible and c; d 2 D satisfy gcd(c; d)= 1. D is a weak GCD domain if for each a; b 2 D0;

there are c; a=; b= 2 D so that a = ca= and b = cb=; where gcd(a=; b=)= 1

Remark 26 D strongly Laskerian =) D satis�es ACCP =) D is atomic =) D is semi

rigid.

) strongly Laskerian GCD domain is a generalization of Krull domains [74, Theorem 5].

Remark 27 A strongly Laskerian GCD domain is UFD. This remark generalizes [69, Corol-

lary 3.4].

Corollary 28 If D is strongly Laskerian domain then D is an atomic weak GCD-domain.

Proof. By proposition 23, D is strongly Laskerian domain =) D satis�es ACCP =)

D[X] satis�es ACCP =) D[X] is atomic =) D is strongly atomic =) D is a weak GCD

domain [2, Theorem 1.3].

Corollary 29 If D is strongly Laskerian domain then D[X] satis�es ACCP:

We have the following implications for a commutative ring:

Noetherian =) strongly Las ker ian =) Las ker ian =) ZD ring

+ +

strongly atomic (= ACCP ACCR =) strongly Hop�an

In fact all the above implications are well known except strongly Laskerian=) ACCP .

For the non irreversibility of above implications we have provided examples in chapter �ve

along with more implications.
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3.1.1 Summary of polynomial extensions

The following table summarizes �ndings of Hilbert, [36], [37], [2, Theorem 1.3] and Corollary

29 for polynomial extensions of some generalizations of Noetherian domains.

Integral domain D Polynomial extension D[X]

Noetherian () Noetherian

Noetherian (=

8>>>>>><>>>>>>:

Strongly Laskerian

Laskerian

ZD

Has ACCR

9>>>>>>=>>>>>>;
Strongly Laskerian =) Satis�es ACCP

Strongly Laskerian =) Strongly Hop�an [36, Proposition 1.12]

Laskerian =) Has Noetherian spectrum

Has Noetherian spectrum () Has Noetherian spectrum

Strongly Hop�an () Strongly Hop�an [37]

Strongly atomic (= Atomic [2, Theorem 1.3]

Remark 30 From the above table we can see that if D is a strongly Laskerian domain

then D[X] is strongly Hop�an with ACCP (atomic strongly Hop�an): Actually this re-

mark sharpens [36, Proposition 1.12] in one way.

Lemma 31 [18, Remark 1.1] Let D be an integral domain then D satis�es ACCP if and

only if for any sequence (an) of non invertible elements of D; \n�1a1:::anD = (0):

Lemma 32 For a strongly Laskerian domainD; any sequence (an) of non invertible elements

of D; \n�1a1:::anD = (0):

Corollary 33 If I is a proper ideal of a strongly Laskerian domain D then by Proposition

21 and [35, Proposition 4.6]:

(1) D +(X1; :::; Xn)I[X1; :::; Xn] satis�es ACCP:

(2) D +(X1; :::; Xn)I[[X1; :::; Xn]] satis�es ACCP:
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Recall that an atomic integral domain D is a half factorial domain (HFD) if for any

irreducible elements a1; :::; an; b1; :::; bm of D with a1:::an = b1:::bm, then m = n: Clearly a

UFD (unique factorization domain) is also an HFD. However the converse is not true.

Remark 34 Let K � B; where K is a �eld and B a domain, then K +XB[X] is

(i) Laskerian HFD if B is integrally closed and Noetherian. It follows from [35, Propo-

sition 5.18] and [13, Theorem 2.1].

(ii) Laskerian HFD if B is a Krull domain. Furthermore if Cl(B) ' Z2, then B is an

HFD:

Lemma 35 (2nd uniqueness theorem) �Let I be a decomposable ideal, let I = \ni=1Qi be a

minimal primary decomposition of I, and let {P11 ; :::; pim} be an isolated set of prime ideals of

I: Then Qi1 \ :::\Qim is independent of decomposition�. In particular �the isolated primary

components (i.e., the primary components Qi corresponding to minimal prime ideals Pi) are

uniquely determined by I:

Lemma 36 If Im and In are coprime ideals (Im + In = (1)) whenever m 6= n; then �Im =

\In:

The following Proposition states that in [4, Proposition 9.1] there is no need to assume

that the domain D is Noetherian. Here in the hypothesis, one can consider domain to be a

Laskerian.

Proposition 37 Let D be a Laskerian domain of dimension 1: Then every non zero ideal I

of D can be uniquely expressed as a product of primary ideals whose radicals are all distinct.

Proof. Let I be a non zero ideal of a Laskerian domain D: Then, I = Q1\Q2\ :::\Qn;

where each Qi is Pi primary ideal of D: The ideals P1;:::; Pn are maximal since they stem from

reduced primary decomposition, they are pairwise di¤erent and therefore pairwise coprime.

Therefore Q1; :::; Qn are pairwise coprime and by Lemma 36 we have �Qi = \Qi: Hence

I = �Qi:
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Conversely, if I = �Qi, the same argument shows that I = \Qi; this is a minimal primary

decomposition of I; in which each Qi is isolated primary component, and by Lemma 35 is

therefore unique.

3.2 A Strongly Laskerian Domain and CIC

De�nition 38 A domain D with the property that each overring of D is a quotient ring of

D is said to have the QR-property. Any QR-domain is a Prüfer domain and, hence, integrally

closed.

Remark 39 [71] If D is a Noetherian domain, then it is well known that D is integrally

closed if and only ifD is completely integrally closed. However there are examples of integrally

closed strongly Laskerian domains which are not completely integrally closed. The domain D

in [71, Example 1.5] is one such example.

Proposition 40 A Strongly Laskerian QR-domain is completely integrally closed.

Proof. Let D be a strongly Laskerian domain. By Proposition 23, D is Archimedean.

Since D has QR-property, therefore by [16, Corollary 2.4]. D is completely integrally closed.

Following [9], a commutative integral domain D satis�es (�) in case, whenever nonzero

elements a and b in D are such that each element in the sequence a; b2; a3; b4; :::divides the

next, then a and b are associates in D (that a = bu for some unit u in D)

Corollary 41 A Strongly Laskerian QR-domain satis�es (�).

Proof. Combine Proposition 40 with [9, Theorem 2.1].

Proposition 42 Let D be Laskerian domain with identity which is not a �eld. Then D is

a Dedekind domain if one of the following equivalent conditions hold in D;
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1) D is almost Dedekind.

2) D is one dimensional and primary ideals of D are

prime powers.

3) The cancellation law for ideals hold in D.

4) D is a one dimensional Prüfer domain and D contains no idempotent

maximal ideal.

Proof. (1) If D is an almost Dedekind then by Proposition 10 D is Dedekind.

(2) Let D be a Laskerian integral domain and I be an ideal of D: Then I = \ni=1Qi;where

each Qi is say Pi primary. Since dimD = 1 each non zero prime ideal of D is maximal,

hence Pi are distinct maximal ideals (since Pi � Qi � I 6= 0), and are therefore pairwise

comaximal. Hence by [4, Proposition 1.16] the Qi are pairwise comaximal . But then by

Chinese Remainder Theorem I = Q1 \ ::: \ Qn = Q1:::Qn . By assumption every primary

ideal of D is a prime power; hence there are natural numbers ei with Qi = P
ei
i : This yields

I = P e1 :P e2 :::P en :

Equivalence of (1), (2), (3) and (4) follow from [24, Theorem 36.4 and 36.5].

3.3 Integral Closure and Complete Integral Closure

In proving the next results we were frequently using techniques that resembled those encoun-

tered in dealing with Archimedean domains.

Proposition 43 Let D be strongly Laskerian domain then,

(1) U(T ) \D = U(D) for each overring T of D which is contained in D�:

(2) U(D�) \D = U(D):

Proof. (1) Let x 2 U(T )\D: As T � D�; x�1 is almost integral over D; it means, there

exist 0 6= d 2 D such that d(x�1)n 2 D for each n � 0: Since d 2 \Dxn (By Proposition

23 D is Archimedean this implies x 2 U(D): Other inclusion is trivial.

(2) Direct application of (1).
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Following [15], an integral domain D is conducive if, for each overring T of D other than

K; the conductor (D : T )= fa 2 K : aT � Dg is non zero. Familiar examples of conducive

integral domains are arbitrary valuations and arbitrary D +M constructions. A valuation

domain is divided and conducive. In [15, Corollary 2.7] it is proved that a Noetherian conducive

integral domain must be local and of dimension at most 1: We generalize this result in the

next proposition by replacing Noetherian hypothesis by weaker, strongly Laskerian, structure.

Proposition 44 A strongly Laskerian conducive domain is quasilocal with dimension at

most 1.

Proof. Assume D is strongly Laskerian. It is su¢ cient to prove that if P is a non zero

prime ideal of D; then DnP = U(D): Since D is conducive, it shares a non zero ideal with

some conducive overring [5, Theorem 4.1], (D : DP ) 6= 0: Thus DP � D� (cf. [24, Lemma

26.5]): Now Proposition 43 yields U(DP ) \ D = U(D): Since U(DP ) \ D = DnP; this

completes the proof:

Proposition 45 Each non trivial overring of conducive strongly Laskerian domain D is

almost integral over D:

Proof. By Proposition 44, D is quasilocal domain of dimension at most 1 therefore D is

a divided domain. By [17, Corollary 2.6], each non trivial overring of D is almost integral

over D:

Lemma 46 The Integral closure D of an integral domain D is Prüfer domain if each proper

valuation overring ofD is strongly Laskerian. In fact, (at least) one of the following conditions

holds:

(a) D is a Laskerian valuation domain.

(b) D is a valuation domain, dimD = 2; and DP is a DVR,where P denotes

height 1 prime ideal of D:

(c) D is an almost Dedekind.
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Proof. By [24, Page 456, Exercise 7], a valuation domain is strongly Laskerian if and

only if it is a one dimensional discrete valuation ring. So, if D is not a valuation domain,

[24, Theorem 26.1] D is an almost Dedekind domain. On the other hand if D is a valuation

domain then by [24, Theorem 26.1], proper overrings of D are the rings DP ; P ranging over

the non maximal primes of D; then either (a) or (b).

By [34] a simple overring of a domain D, we mean a ring of the form D[a
b
], where a; b 2

D such that b 6= 0.

Proposition 47 Let D be an integral domain which is not integrally closed. If each proper

simple overring of D is strongly Laskerian, then integral closure and complete integral closure

of D coincide.

Proof. Indeed D � D�: Conversely if D� * D then there exist x 2 D�nD; and set

T = D[x�1]: We claim that T is a proper overring of D: Otherwise, select y 2 DnD; set

S = D[y]: Since S is strongly Laskerian, by Proposition 43 x�1 2 U(S�) \ S = U(S);

therefore x 2 D; a contradiction.

We conclude the chapter by generalizing the converse of Krull - Akizuki theorem (cf [43,

Page 64, Exercise 20 ]) in the following way.

Theorem 48 A domain whose each overring is strongly Laskerian has Dedekind integral

closure.

Proof. Since each overring of D is strongly Laskerian. By Proposition 23, overrings of

D satisfy ACCP. Therefore by [19, Theorem 1], D is a Dedekind domain.

Remark 49 If each overring of an integral domain D is strongly Laskerian then D is

Laskerian and dimD � 1: Indeed it follows by Theorem 48 and Proposition 11.
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Chapter 4

A NON-NOETHERIAN LASKERIAN

DOMAIN

Introduction
The purpose of this chapter is to characterize the Laskerian domain with the property

that every primary ideal is a valuation ideal. An integral domain D is said to satisfy the

ascending chain condition for prime ideals provided any strictly ascending chain of prime

ideals P1 � P2 � :::stabilizes. This is equivalent to say that every non empty family of prime

ideals contains a maximal element. If spec(D) is Noetherian, then radical ideals of D have

ACC: Here we observe that a Laskerian domain with the property that each primary ideal is

a valuation ideal forms a well behaved sub class of Prüfer domains.

Recall that an ideal I of a domain D is a valuation ideal if there exists a valuation ring

Dv � D and an ideal Iv of Dv such that Iv \D = I: When we want to specify the particular

valuation ring Dv; we shall say I is a v-ideal. If I is a v- ideal, then IDv \D = I: By [24,

Page 304, Exercise 6] if D is a Prüfer domain then each primary ideal of D is a valuation

ideal. Following [24, Page 305, Exercise 7] if D is Noetherian and each primary ideal of D is

a valuation ideal, then D is a Prüfer domain.
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4.1 Laskerian Prüfer Domain

Lemma 50 Let D be a Laskerian integral domain. Then the following are equivalent:

(1) Every primary ideal is a valuation ideal.

(2) D is Prüfer and every proper prime ideal is maximal.

Proof. (2) =) (1): Holds even without hypothesis on D to be Laskerian [24, Page 304,

Exercise 6].

(1) =) (2): Follows from Lemma 7.

De�nition 51 If D is an integral domain with identity, D is an almost Dedekind if DM is a

Noetherian valuation ring for each maximal ideal M of D. An almost Dedekind domain has

dimension at most 1, and is of course, a Prüfer domain.

Corollary 52 Let D be a Laskerian integral domain. If every primary ideal of D is a

valuation ideal then every valuation ideal is primary.

Proof. By Lemma50 dimD � 1: By [24, Page 305, Exercise 9 ], every valuation ideal of

D is a primary ideal.

Corollary 53 Let D be a Laskerian domain. If every primary ideal of D is a valuation

ideal; then prime ideals of D are linearly ordered.

Proof. Since D is Laskerian. D has Noetherian spectrum. D satis�es ACC for prime

ideals. Therefore, by [23, Theorem 3.4] the prime ideals of D are linearly ordered.

Proposition 54 Let D be a Laskerian domain such that each primary ideal of D is a

valuation ideal then following are equivalent:

(1) D is almost Dedekind.

(2) Primary ideals of D are prime powers.

Proof. (1) =) (2): Trivial.

(2) =) (1): By Lemma 50, nonzero proper prime ideals of D are maximal. Apply [23,

Theorem 1].
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Corollary 55 Let D be a Laskerian domain, and suppose every primary ideal of D is a

valuation ideal. Then D is a valuation ring.

Proof. By Lemma 50, D is a Prüfer domain with one maximal ideal M and hence

D = DM :

Lemma 56 Let D be a Laskerian domain. If every primary ideal is a valuation ideal. Then

D is completely integrally closed.

Proof. By Lemma 50, D is Prüfer of dimension at most 1:Therefore by [24, Page 333,

Exercise 23], D is completely integrally closed.

Following [21, Page 1], a fractional ideal I of an integral domain D is a D�submodule

of K where there exist 0 6= d 2 D such that dI � D: A fractional ideal I of D is a divisorial

or v�ideal of D in case I = Iv; and I is an invertible ideal of D provided II�1 = D:

Proposition 57 Let D be a Laskerian domain, and suppose every primary ideal of D is a

valuation ideal, then each non zero ideal of D is divisorial if and only if D is a Dedekind

domain.

Proof. Suppose that each nonzero ideal of D is divisorial. By Lemma 50, D is 1-

dimensional Prüfer, consequently D is CIC. Therefore by [24, Theorem 34.3], divisorial

fractional ideals of D form a group under the operation I � J = (IJ)v with D as an identity

element. For every ideal I of D there exist a fractional ideal J of D such that (IJ)v = D:

But IJ = (IJ)v; so I is invertible. Hence D is Dedekind.

Conversely, in a Dedekind domain each nonzero ideal is invertible therefore divisorial.

Remark 58 Combining Propositions 10 and 57, see that for a Laskerian domain D; with

the property that every primary ideal of D is a valuation ideal, each non zero ideal of D is

divisorial even if D is an almost Dedekind domain.

It is well known that overrings of Prüfer (respectively almost Dedekind, respectively

Dedekind) domains are Prüfer (respectively almost Dedekind, respectively Dedekind). If D is
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a one-dimensional Noetherian Prüfer domain (Dedekind domain) then each overring of D is

1-dimensional Noetherian Prüfer domain (Dedekind domain). We have observed that if D is

a Laskerian Prüfer domain then each overring of D is a one-dimensional Laskerian integrally

closed (Laskerian Prüfer).

Proposition 59 Let D be Laskerian integral domain. If every primary ideal of D is a

valuation ideal then each overring of D is 1-dimensional Laskerian integrally closed.

Proof. By Lemma 50 D is a 1-dimensional Prüfer domain. Therefore each overring of D

is 1-dimensional integrally closed Prüfer. Furthermore by Corollary 55 D is a valuation ring.

This ensures that each overring of D is a valuation ring. Therefore by [24, Exercise 9 ,

Page 456 ], overrings of D are Laskerian.

Remark 60 Since D is a one dimensional Prüfer domain, D is an almost Dedekind if and

only if each non trivial valuation overring of D is strongly Laskerian.

Theorem 61 Assume every primary ideal of a domain D is a valuation ideal, then following

are equivalent:

(1) D is Laskerian.

(2) D is strongly Laskerian.

(3) D is Noetherian.

Proof. (1)) (2): By Corollary 55D is a valuation ring. To proveD is strongly Laskerian

it is su¢ cient to show that every primary ideal P of D is strongly primary. Let a; b 2 K�where

K� is quotient �eld of D and ab 2 P further suppose that a =2 P: Since D is a valuation

domain, if a =2 D then a�1 2 D and we have b = a�1ab 2 P: Hence we may as well assume

that a 2 D: Since a = b�1ab =2 P; it follows that b 2 D: Now since a; b 2 D with P primary,

we have bn 2 P for some n � 1; hence P is strongly primary. Hence D is a strongly Laskerian

domain.

(2)) (3): By [24, Exercise 8, Page 456], in case of valuation ring strongly Laskerian and

Noetherian properties coincide. Since D is a valuation ring, it is obvious.
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(3) ) (2) ) (1) trivial.

Following [21, Page 33] for an integral domain D with quotient �eld K and for nonzero

ideal I we de�ne (I : I) = fx 2 K : xI � Ig and I�1 = (D : I) = fx 2 K : xI � Dg:

Proposition 62 Let D be a Laskerian domain in which every primary ideal is a valuation

ideal, and let I be a non zero ideal of D. Assume I�1 is a ring. The following conditions are

equivalent:

(1) I�1 = (I : I);

(2) I = Rad(I):

The minimal prime ideals of I in (I : I) are all maximal ideals.

Proof. By Lemma 50 D is Laskerian Prüfer domain. The rest follows from [21, Theorem

3.1.12, Page 42].

Proposition 63 Let D be a Laskerian domain such that every primary ideal is a valuation

ideal. Let I be a non zero ideal of D: If I is a primary ideal that is not prime, then I�1 is

not a ring.

Proof. On contrary suppose I�1 is a ring. By 50 and [21, Lemma 3.1.13] I�1 = (I : I);

by [21, Theorem 3.1.12] I =Rad(I). which is a contradiction to the supposition that every

primary ideal is prime. Hence I�1 is not a ring.

4.1.1 The Transform Formula for Ideals

Following [21, Page 33], T (A) = [n�1(D : An): An integral domain D is said to satisfy trace

formula for ideals if for all ideals A and B

T (AB) = T (A) + T (B)

It is well known that transform formula for �nitely generated ideals hold in Prüfer domains

(see [24, Page 331, Exercise 10]) and holds for all ideals in Dedekind domains. We extend

the previous result by weakening the Noetherian hypothesis as:
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If D is a Laskerian domain in which every primary ideal is a valuation ideal (of course not

Dedekind), then the transform formula holds for all ideals of D.

Before proving this we provide alternate proofs of the following well known lemmas.

Lemma 64 Let D be Laskerian domain. Then each prime ideal of D is the radical of a

�nitely generated ideal.

Proof. Assume that P is a non zero prime ideal of a domain D. Since D is a Laskerian

domain, D has ACC on prime ideals. This implies, there exists a prime ideal Q � P such

that each prime ideal of D properly contained in P is contained in Q. Take an element

p 2 PnQ and note that P is minimal over (p). Being Laskerian (p) has only �nitely many

primes. Now by [21, Lemma 4.2.29], P is the radical of a �nitely generated ideal.

Lemma 65 Let D be a Laskerian commutative ring, then radical of each ideal of D is equal

to radical of some �nitely generated ideal.

Proof. On contrary assume there exist an ideal that is not radical of a �nitely generated

ideal of D. Take � as a set of all such ideals in D; then � is inductive: Further suppose that

P is a maximal ideal in �: We aim to prove that P is a prime ideal of D:

If P is not prime ideal of D; then there exist elements x; y 2 DnP such that xy 2 P:

Take I = (P; x) and J = (P; y) and see that I; J =2 �: As Rad(IJ) =Rad(I)Rad(J) note

that IJ =2 �. On the other hand Rad(IJ) =Rad(P ), therefore P =2 �: This contradiction

shows that P is a prime ideal. But by Lemma 64 each prime ideal is radical of some �nitely

generated ideal. This completes the proof.

For the sake of de�niteness we state and prove the following theorem.

Theorem 66 If D is a Laskerian domain in which every primary ideal is a valuation ideal,

then the transform formula holds for all ideals of D.

Proof. Let A be an ideal of D. Since D is Laskerian, D has Noetherian spectrum.

Therefore every ideal of D has �nitely many minimal prime divisors, and hence T (A) =

36



T (Rad(A)). Also by Lemma 65 for ideals A and B of D, there exist �nitely generated ideals

A0 and B0 such that Rad(A) =Rad(A0) and Rad(B) =Rad(B0):

T (AB) = T (Rad(AB)) = T (Rad(A) \ Rad(B)) [4, Exercise 1.13 (iii)]

= T (Rad(A0) \ Rad(B0)) = T (Rad(A0B0))

= T (A0B0) = T (A0) + T (B0) [lemma 50 and ([21, Theorem 4.5.4])]

= T (A) + T (B)

The proof is complete.
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Chapter 5

FACTORIZATION PROPERTIES AND

CHAIN CONDITIONS ON IDEALS: A

LINKAGE

Introduction
The purpose of this study is to �nd relationship among the various domains. In particular,

the domains possessing factorization properties and the domains which hold di¤erent chain

conditions on ideals, some of which have been discussed in earlier chapters 2,3 and 4.

Techniques used in literature to explore di¤erent properties in (unitary) commutative

rings (respectively integral domains) include factorization properties among elements (e.g.,

UFD, FFD, HFD, BFD, Atomic domains, etc.), decomposition of ideals (e.g., Noetherian

domains, (Strongly) Laskerian domains) and chain conditions on ideals (e.g., ACCI, Domains

satisfying ACCP ).

Chain condition on ideals in (unitary) commutative rings plays an important role in com-

mutative algebra. Initially there was two classes of such rings, i.e., Noetherian rings and

Artinian rings which are satisfying ACC (ascending chain condition) and DCC (descending

chain condition) for ideals, respectively. It is known that Artinian rings are Noetherian. Some

of other domains satisfying chain condition on ideals include, domains satisfying ACC on
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principal ideals, Mori domains (ACC on divisorial ideals), Laskerian domains (ACC on prime

ideals), strongly Laskerian domains (ACC on principal ideals) and strongly Hop�an domains

(ACC on ann(a)� ann(a2)� ...).

5.1 Discovering links

The motivating factor behind this study is the work of D. D. Anderson, D. F. Anderson and

M. Zafrullah [2], Kabbaj and Mimouni [40, Figure 1] and Bourbaki [11]. We have combined

the work of [2], [11] and [40] . We have added a few more implications.

An integral domain has ACC on principal ideals if every ascending chain of principal ideals

stabilizes. It is well known that if an integral domain has ACC on principals then it is atomic.

It is not necessary for an atomic domain to satisfy ACCP: For instance if F is a �eld and T

is an additive submonoid of Q+ generated by f1=3; 1=(2:5); : : : ; 1=(2jpj); : : :g, where p0 = 3

and p1 = 5,. . . is the sequence of odd primes. Let R be the monoid domain F [X;T ] and

N = ff 2 R such that f has nonzero constant termg. Then A = F [X;T ]N is an atomic

domain which does not satisfy ACC on principal ideals (see [28]).

By [76], an integral domain D is a Mori domain if it satis�es ACC on v-ideals. Obviously

a Noetherian domain is a Mori domain. A Mori domain has the ascending chain condition on

principal ideals; they are Archimedean (cf. [7, Page 353]).

A (commutative) ring R is Noetherian if every ideal of R is �nitely generated or any

ascending chain of ideals in R is stationary, i.e. R has ACCI (ascending chain condition on

ideals). In the terminology of Bourbaki [11, Ch. 4, Pages 295 and 298] a ring R is Laskerian

if each ideal of R can be written as a �nite intersection of primary ideals. In [61], Emmy

Noether has proved that every ideal in a Noetherian ring is a �nite intersection of primary

ideals. In fact she has proved that every Noetherian ring is Laskerian. However a ring R is

strongly Laskerian if each ideal of R can be written as a �nite intersection of strongly primary

ideals. It is well known that:

Noetherian =) strongly Laskerian =) Laskerian
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The non irreversibility of the above implications can be seen from Examples (2 ,3, and 4).

LetK be a �eld and let Y; Z be indeterminate over K. Let V = K(Z)[Y ])(Y ) = K+M ,

where M is the unique maximal ideal of V . Let D = K +M . Then D is non Noetherian

strongly Laskerian (see [75, Example 1.5]).

Also a non discrete one dimensional valuation ring is a Laskerian ring but not strongly

Laskerian. Notice that this ring does not have ACC on principal ideals.

Following [20], a ring R is a zero divisor ring, ZD-ring, if ZR(R=I) is a �nite union

of prime ideals for all ideals I of R. Further in [20, Proposition 7], Evans has shown that

Laskerian rings are ZD-rings. The converse is false, (see [11, Page 170, Exercise 19]), which

shows that a rank 2 valuation ring is not a Laskerian. Any valuation ring is ZD ring as; any

union of prime ideals is again a prime ideal. Recall [50], that a ring R satis�es the ascending

chain condition on residuals (ACCR) when for each ideal I of R and each element b 2 R

the chain I : b � I : b2 � ::: stabilizes. Following [36], a commutative ring R is said to

be strongly Hop�an if the chain of annihilators ann(a) � ann(a2) � . . . stabilizes for each

a 2 R: Laskerian satisfy ACCR and ACCR imply strongly Hop�an, but the converse is not

true (see [36, Remark 1.17]).

A (commutative) ring R with unity is called an N -ring if for each ideal I of R there exists

a Noetherian ring T containing R as a unitary subring with IT \ R = I (See [26], [32] and

[33]). N -rings are Laskerian [26, Proposition 2.14]. By [1] R is said to be a Q -ring, if every

ideal is a �nite product of primary ideals. By [1, Theorem 13], R is a Q -ring if and only if

R is a Laskerian ring in which every non-maximal prime ideal is quasi-principal. The ring R

is I1 if, given any proper ideal H and any prime P , for some f not in P . The saturations of

H through RnP is the same as the conductor ideal that drives f into H and a ring R is I2

if, given any descending chain of multiplicatively closed sets, and an ideal J , the saturations

of J become constant. I1 and I2 are generalizations of Laskerian rings. By [24, Page 456,

Exercise 7], a valuation ring is Laskerian (respectively strongly Laskerian) if and only if it is

1-dimensional (respectivelyDV R of dimension 1). Following [24, Page 79] an integral domain

D is a Bezout if every �nitely generated ideal of D is principal. By [24, Theorem 17.1] every
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valuation ring is a Bezout domain. It is well known that a Bezout domain is a GCD domain

but a GCD domain is Bezout if and only if it is a Prüfer domain. Any Bezout domain is

QR, in the sense that each of its overrings is localization. Indeed, a Bezout domain may be

characterized as a GCD domain which is QR. An integral domain D is said to be a Prüfer

domain if DM is a valuation ring for each maximal ideal M of D and a domain D with the

property that each overring of D is a quotient ring of D is said to have the QR -property.

A domain which has the QR-property is necessarily Prüfer. (A Prüfer domain need not be

a Bezout domain. Z[
p
(�5)] is a Noetherian Prüfer domain which is not a Bezout domain

(see [24, Page 278]). Pendleton [64, Page 500] has shown that a Prüfer domain D has the

QR- property if and only if the radical of each �nitely generated ideal of D is the radical

of a principal ideal. Recall that a domain D is a QQR -domain if each overring of D is an

intersection of localizations at prime ideals of D. Davis [14] showed that a Prüfer domain

must have the QQR-property.

An integral domain D is an atomic domain if every nonzero nonunit of D can be factored

as a product of irreducible elements of D. Following [2] an integral domain D is strongly

atomic if for each a; b 2 D0 (non zero elements of D), we can write a = a1:::asc and

b = a1:::asd where a1; :::; as 2 D (s � 0 ) are irreducible and c; d 2 D satisfy gcd(c; d) = 1.

An integral domain D (with or without unity) is called a Euclidean domain (ED) if there

is a map d : D0 ! Z+ (where D0 is set of nonzero elements of D) such that

(i) 8 a; b 2 D0, ajb implies that d(a) � d(b) or equivalently, d(x) � d(xy)for all x; y 2

D0.

(ii) Given a 2 D; b 2 D0 there exist q; r 2 D such that a = bq + r with either r = 0 or

else d(r) < d(b).

Recall that a principal ideal domain (PID) is an integral domain such that every ideal can

be generated by a single element (i.e., every ideal is a principal ideal). By [59, Theorem 4.3.1]

every ED is a PID, but the converse is not true because the ring R = Z[(1 + i
p
19)=2] or

the ring of even integers R = 2Z are PIDs which are not EDs. A PID is a UFD but

converse is not true, however if every nontrivial prime ideal is maximal, a UFD is a PID.
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In the terminology of Kaplansky [42] a GCD- domain is an integral domain in which

each pair of elements has a greatest common divisor. A GCD- domain is a generalization of

unique factorization domain (UFD). An integral domain D is a weak GCD domain if for

each a; b 2 D0 (nonzero elements of D) there are c, a= b= 2 D so that a = ca=and b = cb=,

where gcd(a; b) = 1.

In Proposition 21, authors have proved that a strongly Laskerian domain is a weak GCD-

domain. The terminology of half-factorial domain (HFD) was introduced by Zaks in [76] and

[77] as a generalization of unique factorization domain (UFD). An atomic integral domain

D is a half-factorial domain (HFD) if for any irreducible elements a1; :::; an and b1; : : : ; bm

of D with a1:::an = b1 : : : bm, then m = n. Clearly a UFD is also an HFD. Call an integral

domain D a �nite factorization domain (FFD) if every nonzero nonunit element of D is

either irreducible or a product of irreducible elements. FFD is a much weaker concept than

UFD. In [29] Grams and Warner introduced idf �domains (for irreducible-divisor- �nite) as;

a domain D is an idf-domain if every nonzero element of D has at most a �nite number of

non associate irreducible divisors. An idf -domain need not to be atomic. The idf - property

does not imply any other factorization property. Following [2] a domain D is a bounded

factorization domain (BFD) if D is atomic and for each nonzero nonunit of D there is a

bound on length of factorization into product of irreducible elements. The following non

reversible implications are taken from [2, Page 2].

HFD

% # &

UFD ! FFD ! BFD ! ACCP ! Atomic

& # %

idf � domain

A Noetherian domain is BFD (cf. [2, Proposition 2.2]. But converse is not true.

For any pair of �elds K1 � K2, K1+XK2[X] (respectively K1+XK2[[X]] ) are BFDs

but not Noetherian if [K2 : K1] is in�nite (see [2, Page 10]). However a BFD satis�es ACC
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on principal ideals but the converse is not true (cf. [2, Example 2.1]).

In Proposition 21, we have proved that a strongly Laskerian domain satisfy ACCP (re-

spectively. strongly atomic). Following [68], an integral domain D is Archimedean in case

\n�1Drn = 0 for each non unit r 2 D. The most natural examples of Archimedean domains

are arbitrary completely integrally closed domains, arbitrary one dimensional integral domains

and arbitrary Noetherian integral domains. By [9, Theorem 2.1] or by [34, Proposition 2.2] if

a ring satisfy ACCP , then it is Archimedean.

Figures display a diagram of implications summarizing the relations for some well known

integral domains. Note that none of the implications in the diagram is reversible.
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5.2 Table of Implications
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Chapter 6

FUZZY IDEALS IN LASKERIAN

RINGS

Introduction
Taking motivation from swiftly mounting literature on fuzzy concepts in various areas of

ring theory and other algebraic structure, we intended to continue our study in fuzzy settings.

The theory of fuzzy sets, proposed by Zadeh [73], has provided a useful mathematical

device for unfolding the behavior of the systems that are too complex or nonspeci�c to

admit precise mathematical analysis by conventional methods and tools. The study of fuzzy

algebraic structure has started by Rosenfeld [66] and since then this concept has been applied

to a variety of algebraic structures. Liu introduced the concept of a fuzzy ideal of a ring

in [49]. The concepts of prime fuzzy ideals, maximal fuzzy ideals, primary fuzzy ideals were

introduced in [52], [53] and [54]. Also, Malik [51], Mukererjee and Sen [56], studied rings

with chain conditions with the help of fuzzy ideals. The notion of fuzzy quotient ring was

introduced by Kumar [45], Kuroaka and Kuroki [46]. In [48], K. H. Lee examined some

properties of fuzzy quotient rings and used them to characterize Artinian and Noetherian

rings.

This chapter consists of three sections. In the �rst section, we introduced strongly primary

fuzzy ideals and strongly irreducible fuzzy ideals in rings. We examined �nite intersection
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property of some fuzzy ideals in chained rings.

Second section of this chapter deals with fuzzy ideals in Laskerian rings. We have proved

that for a 1-dimensional Laskerian domainD; every non zero fuzzy ideal � of D can be uniquely

expressed as a product of primary fuzzy ideals whose radicals are all distinct. Moreover we

showed that: A ring R is Laskerian (respectively strongly Laskerian) if and only if R� is

Laskerian (respectively strongly Laskerian) for every fuzzy ideal � of R:

In the third section, we have investigated anti- homomorphic images and pre images of

semiprime, strongly primary, irreducible and strongly irreducible fuzzy ideals of a ring. We

also proved that: For a surjective anti-homomorphism f : R! R=; if every fuzzy ideal of R is

f -invariant and has a fuzzy primary (respectively, strongly primary) decomposition in R, then

every fuzzy ideal of R= has a fuzzy primary (respectively, strongly primary) decomposition in

R=:

6.1 Finite Intersection of Fuzzy Ideals

In this section we have proved that for a chained ring (a ring in which any two fuzzy ideals are

comparable), �nite intersection of prime fuzzy ideals, primary fuzzy ideals, irreducible fuzzy

ideals and strongly irreducible fuzzy ideal is prime fuzzy ideal, primary fuzzy ideal, irreducible

fuzzy ideal and strongly irreducible fuzzy ideal respectively.

De�nition 67 Following [55], a fuzzy ideal � of a ring R is a prime fuzzy ideal of R if

(i) � is not a constant function and

(ii) for any fuzzy ideals �1; �2 in R if �1�2 � �; then �1 � � or �2 � �:

Note: �1 � � means �1(x) � �(x) for all x 2 R:

Lemma 68 If �1 and �2 are fuzzy prime (respectively primary, respectively strongly primary)

ideals of a ring R; then �1 \ �2 is a fuzzy prime (respectively primary, respectively strongly

primary) ideal of R if and only if �1 � �2 or �2 � �1:
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Proof. It is obvious from the fact that �1�2 � �1 \ �2:

We initiate with the following proposition.

Proposition 69 If prime fuzzy ideals of a ring form a proper chain, then �nite intersection

of prime fuzzy ideals of a ring is a prime fuzzy ideal.

Proof. Let f�i : 1 � i � ng be a family of prime fuzzy ideals of a ring R and let

�� � �ni=1�i for any two fuzzy ideals � and � of R:This means �� � �i for all 1 � i � n:

Since �i are prime fuzzy ideals, therefore if � * �i for all 1 � i � n; then � � �i; for all

1 � i � n: Similarly, if � * �i for all 1 � i � n; then � � �i; for all 1 � i � n: This implies

that if � * �ni=1�i; then � � �ni=1�i:Hence �ni=1�i is a prime fuzzy ideal of R:

Following [67] a fuzzy ideal � of a ring R is known as a primary fuzzy ideal if for any two

fuzzy ideals � and � of R the conditions �� � � and � * � together imply that � � p�:

Proposition 70 If primary fuzzy ideals of a ring form a proper chain, then �nite intersection

of primary fuzzy ideals of a ring is a primary fuzzy ideal.

Proof. Let f�i : 1 � i � ng be a family of primary fuzzy ideals of a ring R and let

�� � �ni=1�i for any two fuzzy ideals � and �:This implies that �� � �i for all 1 � i � n:

Since �i are primary fuzzy ideals therefore if � * �i for all 1 � i � n then � � p
�i for

all 1 � i � n: So, if � * �ni=1�i for some i then � �
p
�ni=1�i: Consequently �

n
i=1�i is a

primary fuzzy ideal of R:

Remark 71 Every prime fuzzy ideal of a ring is a primary fuzzy ideal.

We give the following de�nition.

De�nition 72 A fuzzy ideal � of a ring R is called strongly primary fuzzy ideal in R if � is

a primary fuzzy ideal and (
p
�)n � � for some n 2 N:

Proposition 73 If strongly primary fuzzy ideals of a ring form a proper chain, then �nite

intersection of strongly primary fuzzy ideals of a ring is a primary fuzzy ideal.
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Proof. It can be proved on the same lines as in Proposition 70.

Following [58, De�nition 4.1] a fuzzy ideal � of a Noetherian ring R is said to be irreducible

if � 6= R and whenever � = �1��2; where �1; �2 are fuzzy ideals of R; then � = �1 or

� = �2: A prime fuzzy ideal is necessarily irreducible; however, the converse is not true (see

[58, Example 4.6]).

In the rest of text instead of a Noetherian ring we consider an arbitrary ring.

We give the following de�nition.

De�nition 74 A proper fuzzy ideal � of a ring R is said to be strongly irreducible if for

each pair of fuzzy ideals � and � of R, if ��� � �; then either � � � or � � �:

Remark 75 A strongly irreducible fuzzy ideal is irreducible.

Proposition 76 If strongly primary fuzzy ideals of a ring form a proper chain, then �nite

intersection of strongly irreducible fuzzy ideals of a ring is a strongly irreducible fuzzy ideal.

Proof. Let f�i : 1 � i � ng be a family of strongly irreducible fuzzy ideals of a ring

R and let ��� � �ni=1�i for any two fuzzy ideals � and �: This means ��� � �i for all

1 � i � n: This implies � � �i or � � �i for all 1 � i � n: Since �i are strongly irreducible

fuzzy ideals, therefore if � � �i or � � �i for all 1 � i � n; then � � �ni=1�i or � � �ni=1�i
for all i: Hence �ni=1�i is a strongly irreducible fuzzy ideal of R:

Recall that a fuzzy ideal � of a ring is known as radical ideal if � =
p
�.

Proposition 77 A strongly irreducible fuzzy ideal in a ring is a prime fuzzy ideal if and only

if it is a radical ideal.

Proof. If � is a prime fuzzy ideal of a ring R, then by [10, Theorem 5.10] � =
p
�.

Conversely assume that � =
p
�: Let �1��2 � �, where �1 and �2 are fuzzy ideals of R.

Then �1�2 � �1��2 �
p
�1��2 =

p
�1�2 �

p
� = � , and since � is a strongly irreducible

fuzzy ideal of R. Hence �1 � � or �2 � �.

Following [41], a fuzzy ideal � of a ring R is called semiprime if �2(x) = �(x) for all

x 2 R:
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Proposition 78 A fuzzy ideal � of a ring R is prime if and only if it is semiprime and

strongly irreducible.

Proof. Suppose � is a fuzzy prime ideal of R: Obviously � is fuzzy semiprime ideal.

Moreover, if � and � are fuzzy ideals of R, satisfying ��� � �, then �� � �; since �� � ���.

This implies � � � or � � �. Hence � is strongly irreducible. Conversely, assume that � is

a strongly irreducible semiprime fuzzy ideal of R: Suppose � and � be two fuzzy ideals of R

with �� � �. Consider (���)2(x) = ((���)(���))(x)

= supf�ni=1((���)(ri)�(���)(si)) : x =
Pn

i=1 risi; ri; si 2 R; n 2 Ng

= supf�ni=1minf(���)(ri); (���)(si)gg : x=
Pn

i=1 risi; ri; si 2 R; n 2 Ng

= supf�ni=1minfminf�(ri); �(ri)g; minf�(si); �(si)ggg : x =
Pn

i=1 risi; ri; si2 R; n 2 Ng

� supf�ni=1minf�(ri); �(si)gg : x =
Pn

i=1 risi; ri; si 2 R; n 2 Ng

= (��)(x):

Therefore (���)2 � �� � �: But, since � is semiprime, this means ��� � �. Hence

� � � or � � �, as � is strongly irreducible.

6.2 Some Fuzzy Ideals in Laskerian Rings

Following [58, De�nition 3.1 and 3.2], if for a collection fvi : i = 1; 2; :::; ng of primary fuzzy

ideals of R and f�i : i = 1; 2; :::; ng a �nite collection of vi-primary fuzzy ideals of R;then,

� = �ni=1�i is called a primary decomposition of �: This decomposition is said to be reduced

or irredundant if

(i) the v1; v2; :::; vn are all distinct and

(ii) �j � �ni=1;i6=j�i; for all j = 1; 2; :::; n:

Every irreducible fuzzy ideal of a Noetherian ring is a primary fuzzy ideal (cf. [58, Proposi-

tion 4.7]). In the following proposition we generalize [58, Proposition 4.7], in case of Laskerian

rings.

Proposition 79 In a Laskerian ring an irreducible fuzzy ideal is a primary fuzzy ideal.
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Proof. By passage to the quotient rings, it is su¢ cient to consider that the (0) ideal is

an irreducible fuzzy ideal and prove that it is primary. So, suppose that �� = 0 and � 6= 0;

where � and � are fuzzy ideals of R. Consider the chain of ideals ann(�) � ann(�2) �

::: � ann(�n)::: . Since R is Laskerian (strongly Hop�an), this chain stabilizes: there exists

a positive integer n such that ann(�n) = ann(�n+k) for all k. It follows that �� �n =

0. Indeed, if a 2 �; then a� = 0, and if a 2 �n; then a = b�n for some b 2 R. Hence

b�n+1 = 0, so b 2 ann(�n+1) = ann(�n). Hence b�n = 0; that is, a = 0: Since the (0)

ideal is irreducible and � 6= 0, we must then have �n = 0, and this shows that (0) is primary.

Proposition 80 If every primary fuzzy ideal of a ring R is a strongly irreducible fuzzy ideal,

then every fuzzy minimal primary decomposition for each fuzzy ideal of R is unique.

Proof. Let a fuzzy ideal � of R has two fuzzy minimal primary decompositions �ni=1�i

and �mi=1�i. For n � m; we have �ni=1�i � �mi=1�i and since �1 is strongly irreducible fuzzy

ideal for some j; 1 � j � n; therefore �j � �1: On the other hand, �mi=1�i � �j: Since �j is

strongly irreducible fuzzy ideal, for some k, 1 � k � m, we have �k � �j � �1: Since �mi=1�i
is a fuzzy minimal primary decomposition, �k = �1 and so k = 1: Hence �1 = �j. Without

loss of generality, let �1 = �1: Similarly we can show that �2 = �t for some t, 1 � t � n,

and since �2 6= �1 �t 6= �1. That is, t 6= 1. Therefore, without loss of generality, we can

assume that �2 = �2. The same argument will show that for each t, 1 � t � m, �i = �i

and n = m.

Two ideals I and J in a ring are said to be coprime (or comaximal) if I + J = (1) [4,

Page 7]:

Proposition 81 Let D be a Laskerian domain of dimension 1: Then every nonzero fuzzy

ideal � of D can be uniquely expressed as a product of primary fuzzy ideals with distinct

radicals.

Proof. Let � be a nonzero fuzzy ideal of a Laskerian domain D: Then � = �ni=1�i;

where each �i is P�primary fuzzy ideal of D: The ideals P1;:::; Pn are maximal since they
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stem from reduced primary decomposition, they are pair-wise di¤erent and therefore pair-wise

coprime. Therefore �1; :::; �n are pair-wise coprime and by [4, Proposition 1.10.], ��i = ��i:

Hence � = ��i:

Conversely, if � = ��i, the same argument shows that � = ��i; this is a minimal primary

decomposition of �; in which each �i is isolated primary component, and by [4, Theorem

4.10], is therefore unique.

The following proposition will help us to �nd the rings for which every primary fuzzy ideal

is a strongly irreducible fuzzy ideal.

Proposition 82 In a ring R, the following are equivalent.

(1) Every fuzzy ideal of R is a strongly irreducible fuzzy ideal.

(2) Every two fuzzy ideals of R are comparable.

Proof. (1) ) (2). Let � and � be two fuzzy ideals of R. Note that ��� is a strongly

irreducible fuzzy ideal, and ��� � ���. So � � ��� � � or � � ��� � �:

(2) ) (1) The proof is obvious.

Let � be a fuzzy ideal of a ring R and x 2 R. By [48] the fuzzy subset of R de�ned

as ��x(r) = f�(r � x) for all r 2 Rg is termed as the fuzzy coset determined by x and �.

The set of all cosets of � in R is a ring under the binary operations ��x + �
�
y = ��x+yand

��x�
�
y = �

�
xy for all x, y 2 R and it is denoted by R�; and known as fuzzy quotient ring of R

induced by the fuzzy ideal �:

In [48] K. H. Lee has characterized Artinian and Noetherian rings, respectively, using fuzzy

quotient rings (see [48, Proposition 3.9 and Proposition 3.10]). In the following proposition

we characterize Laskerian rings by fuzzy quotient ring using the same technique of [48].

Proposition 83 A ring R is strongly Laskerian if and only if R� is strongly Laskerian for

every fuzzy ideal � of R:

Proof. Let � : R� ! [0; 1] be a fuzzy ideal of R�: To show that � has a �nite reduced

strongly primary decomposition, de�ne a map � : R! [0; 1] by �(x) = �(��x) for every x 2 R:
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Then � is a fuzzy ideal of R and it has a �nite reduced strongly primary decomposition. Since

the set of values of � is same to the set of values of � therefore � also has a �nite reduced

strongly primary decomposition. Hence R� is strongly Laskerian.

Conversely, let � be a fuzzy ideal of a ring R: Then the fuzzy ideal � of R� de�ned by

�(��x) = �(x) for every x 2 R has a �nite reduced primary decomposition, so that � also has

�nite reduced strongly primary decomposition. Hence R is strongly Laskerian.

Proposition 84 A ring R is Laskerian if and only if R� is Laskerian for every fuzzy ideal �

of R:

Proof. Let � be a fuzzy ideal of R�: To show that � has a �nite reduced primary

decomposition, de�ne a map � : R ! [0; 1] by �(x) = �(��x) for every x 2 R: Then � is a

fuzzy ideal of R and it has �nite primary decomposition. Since the set of values of � is same

to the set of values of � therefore � also has a �nite reduced primary decomposition. This

implies that R� is Laskerian.

Conversely, let � be a fuzzy ideal of a ring R: Then the fuzzy ideal � of R� de�ned by

�(��x) = �(x) for every x 2 R has a �nite reduced primary decomposition, so that � also has

�nite fuzzy primary decomposition. Hence R is Laskerian.

The following table summarizes �ndings of [48, Proposition 3.9 and Proposition 3.10] and

Propositions ( 83 and 84 ).

R R�

Artinian () Artinian

Noetherian () Noetherian

Strongly Laskerian () Strongly Laskerian

Laskerian () Laskerian

Q-ring =) Laskerian
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6.3 The Anti-homomorphism

A. Sheikabdullah and K. Jeyaraman introduced the property of anti homomorphism in rings

in fuzzy settings (see [67]). According to them:

A mapping f : R! R= is called a fuzzy anti-homomorphism of rings, if

f(�+ �) = f(�) + f(�) and f(��) = f(�)f(�):

where � and � are fuzzy ideals of R:

In this section we tried to observe impact of anti homomorphism on some other classes

of fuzzy ideals.

Following [67], a fuzzy ideal � of a ring R is known as a primary fuzzy ideal if for any two

fuzzy ideals � and � of R the conditions �� � � and � * � together imply that � � p�:

Lemma 85 If � is a primary fuzzy ideal of R, then
p
� is a prime fuzzy ideal of R.

Proof. Let � and � be two fuzzy ideal of R such that �� � p
� and � * p

�. Then

� * � and so � � p�. Hence p� is a prime fuzzy ideal of R:

Remark 86 In a Laskerian ring an irreducible fuzzy ideal is primary (see Proposition 79),

therefore if � is an irreducible fuzzy ideal of a Laskerian ring, then
p
� is a prime fuzzy ideal.

Let X and Y be two non empty sets, f : X ! Y , � and � be fuzzy subsets of X and Y

respectively. Then f(�), the image of � under f is a fuzzy subset of Y denoted by

(f(�))(y) =

8<: supf(x)=y �(x) if f�1(y) 6= �

0 if f�1(y) = �

9=;
f�1(�), the pre image of � under f is a fuzzy subset of X de�ned by (f�1(�))(x) =

�(f(x)) for all x 2 X:
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Proposition 87 Let f : R ! R= be a surjective ring anti-homomorphism, if �= is a fuzzy

primary ideal of R=, then f�1(�=) is a primary fuzzy ideal of R:

Proof. Let � and � be any two fuzzy ideals of R, such that �� � f�1(�=): This implies

that f(��) � ff�1(�=) = �= which means f(�)f(�) � �=: Because �= is a primary fuzzy

ideal of R= therefore, f(�) � �= or f(�) �
p
�=: So f�1(f(�)) � f�1(�=) or f�1(f(�))

� f�1(
p
�=) . That is, � � f�1(�=) or � � f�1(

p
�=) =

p
f�1(�=): As a result f�1(�=) is

a primary fuzzy ideal of R=:

Recall that, a fuzzy ideal � of a ring R is called strongly primary fuzzy ideal of R if � is

a primary fuzzy ideal and (
p
�)n � � for some n 2 N:

For a function f : R! R=, a fuzzy subset � of a ring R is called f -invariant if f(x) = f(y)

implies �(x) = �(y); x; y 2 R: Clearly, if � is f -invariant then f�1(f(�)) = �.

Proposition 88 For a surjective ring anti-homomorphism (homomorphism) f : R ! R=;

if � is an f -invariant strongly primary fuzzy ideal of R; then f(�) is a strongly primary fuzzy

ideal of R=.

Proof. In [67, Proposition 3.5], it is proved that f(�) is a primary fuzzy ideal of R=: We

need to prove that [
p
f(�)]n � f(�) for some n 2 N: By Lemma 85,

p
f(�) is a prime fuzzy

ideal of R=; therefore [
p
f(�)]n � f(�) for some n 2 N: Hence f(�) is a strongly primary

ideal of R=:

Following [41], a fuzzy ideal � of a ring R is called semiprime if �2(x) = �(x) for all

x 2 R:

Proposition 89 For a surjective ring anti-homomorphism (homomorphism) f : R! R=, if

�= is a semiprime fuzzy ideal of R=, then f�1(�=) is a semiprime fuzzy ideal of R.

Proof. If �= is a semiprime fuzzy ideal of R=; then by [67, Proposition 3.2], f�1(�=) is a

fuzzy ideal of R. We only need to show that [f�1(�=)]2 = f�1(�=): For this let f�1(�=) = �

this implies that �= = f(�): Now �= = �=�= = f(�)f(�) = f(��) = f(�2)

) �2 = f�1(�=) = �. Hence proved.
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Proposition 90 Let f : R ! R= be a ring anti-homomorphism (homomorphism). If � is

any f -invariant semiprime fuzzy ideal of R, then f(�) is a semiprime fuzzy ideal of R=.

Proof. If � is an f -invariant semiprime fuzzy ideal of R, then by [67, Proposition 3.1],

f(�) is a fuzzy ideal of R=. We only need to show that [f(�)]2 = f(�): For this consider

[f(�)]2 = f(�)f(�) = f(�2) = f(�):

Following [58, De�nition 4.1], a fuzzy ideal � of a Noetherian ring R is said to be irreducible

if � 6= R and whenever � = �1��2; where �1; �2 are fuzzy ideals of R; then � = �1 or

� = �2: A prime fuzzy ideal is irreducible;

In the rest of text we consider ring to be a Laskerian ring.

Recall that, a proper fuzzy ideal � of a ring R is said to be strongly irreducible if for each

pair of fuzzy ideals � and � of R, if ��� � �; then either � � � or � � �:

Remark 91 A strongly irreducible fuzzy ideal is irreducible.

De�nition 92 An element a of a ring R is called regular element of R if there exists

an element x of R such that a = axa: A ring R is called regular if each element of R is

regular.

Proposition 93 If R is a regular ring, then � � � = �\ �; where � is a fuzzy right ideal

and � is a fuzzy left ideal.

Proof. Since � � � � � \ �. Let a 2 R. This implies there exists an element x 2 R

such that a = axa; since R is regular. Now

(� � �)(a) = _a where a =
nX
i=1

aibif�ni=1f�(ai) ^ �(bi)gg

� �(ax)��(a) � �(a)��(a) = (� \ �)(a)

=) � \ � � � � �

Hence � � � = � \ �:

Note: For Propositions 94, 95 and 98, we consider the rings to be regular.
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Proposition 94 Let f : R ! R= be a surjective ring anti-homomorphism. If �= is an

irreducible fuzzy ideal of R=, then f�1(�=) is an irreducible fuzzy ideal of R.

Proof. Let � and � be any two fuzzy ideals of R, such that ��� = f�1(�=): This implies

that f(���) = ff�1(�=) = �=: Because f is a surjective anti-homomorphism, therefore

f(�)�f(�) = �=. As �= is irreducible fuzzy ideal of R= therefore f(�) = �= or f(�) = �=:

So f�1(f(�)) = f�1(�) or f�1(f(�)) = f�1(�=); this means � = f�1(�=) or � = f�1(�=):

Hence f�1(�=) is a fuzzy irreducible ideal of R=:

Proposition 95 Let f : R! R= be a surjective ring anti-homomorphism. If �= is a strongly

irreducible fuzzy ideal of R=, then f�1(�=) is a strongly irreducible fuzzy ideal of R.

Proof. Let � and � be any two fuzzy ideals of R, such that ��� � f�1(�=): This

implies that f(���) � ff�1(�=) = �=: Because f is a surjective anti-homomorphism

f(�)�f(�) � �=. This means that infff(�); f(�)g � �= so, f(�) � �= or f(�) � �=:

Therefore f�1(f(�)) � f�1(�=) or f�1(f(�)) � f�1(�=); consequently � � f�1(�=) or

� � f�1(�=): Hence f�1(�=) is a strongly irreducible fuzzy ideal of R=:

Proposition 96 For a ring anti-homomorphism f : R! R=; if � is an f -invariant strongly

irreducible fuzzy ideal of R, then f(�) is a strongly irreducible fuzzy ideal of R=.

Proof. Let �= and �= be any two fuzzy ideals of R, such that �=��= � f(�): This implies

that f�1(�=��=) � f�1f(�) = �: therefore f�1(�=)�f�1(�=) � �: Since � is strongly

irreducible fuzzy ideal of R therefore f�1(�=) � � or f�1(�=) � �: So ff�1(�=) � f(�) or

ff�1(�=) � f(�) consequently �= � f(�) or �= � f(�) that is f(�) is strongly irreducible

fuzzy ideal of R=.

Proposition 97 Let f : R ! R= be a ring anti-homomorphism. If � is an f -invariant

irreducible fuzzy ideal of R, then f(�) is an irreducible fuzzy ideal of R=.

Proof. Let �= and �= be any two fuzzy ideals of R, such that �=��= = f(�): This implies

that f�1(�=��=) = f�1f(�) = � = f�1(�=)�f�1(�=): Since � is irreducible fuzzy ideal of
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R; therefore, either f�1(�=) = � or f�1(�=) = �: So ff�1(�=) = f(�) or ff�1(�=) = f(�):

This means �= = f(�) or �= = f(�): Hence f(�) is an irreducible fuzzy ideal of R=.

Proposition 98 For a surjective ring anti-homomorphism f : R! R=; if every fuzzy ideal

ofR is f -invariant and has a fuzzy primary (respectively, strongly primary) decomposition inR,

then every fuzzy ideal of R= has a fuzzy primary (respectively, strongly primary) decomposition

in R=.

Proof. If �= is a fuzzy ideal of R=; then f�1(�=) is a fuzzy ideal of R: Take f�1(�0) =

�ni=1�i where �i are primary (respectively, strongly primary ) fuzzy ideals of R and i =

1; 2; :::; n: This implies that ff�1(�=) = f(�ni=1�i) that is, �
= = �ni=1f(�i) by [67, Proposi-

tion 3.5], f(�i) are primary (respectively, strongly primary (by Proposition 88)) fuzzy ideals for

all i = 1; 2; :::; n: Hence �= has a fuzzy primary (respectively, strongly primary) decomposition

in R=:

The following tables summarizes results proved in chapter 6 and [67]:

Let f : R! R= be a ring anti� homomorphism: If �= is a fuzzy ideal of R=; then f�1(�=) is a fuzzy ideal of R: Furthermore:

if �= is then f�1(�=) is

prime prime

primary primary

semiprime semiprime

irreducible irreducible

strongly irreducible strongly irreducible

Similarly,

Let f : R! R= be a surjective ring anti� homomorphism: If � is an f � invariant fuzzy ideal

of R; then; f(�) is a fuzzy ideal of R=: In addition
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if � is then f(�) is

Pr ime Pr ime

Pr imary Pr imary

Semiprime Semiprime

Irreducible (i) Irreducible

Strongly irreducible (ii) Strongly irreducible

Fuzzy primary decomposible in R (iii) Fuzzy primary decomposable in R=

As mentioned earlier (i), (ii) and (iii) hold for regular rings (at least).
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