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Abstract

An AG-group (also called LA-group) is an AG-groupoid having left identity and

inverses. AG-groups have been originally introduced by M.S. Kamran. This the-

sis concentrates on the study of AG-groups as a special class of quasigroups and

as a general class of abelian groups both from a theoretical and computational

point of view. We investigate several properties of abelian groups which can be

generalized to the non-associative structure of AG-groups. Similarly several prop-

erties of loops are shown to hold in AG-groups. We introduce Bol∗ quasigroups, a

generalization of AG-groups, as well as some interesting subclasses of AG-groups.

We present both a computational and an algebraic enumeration of AG-groups.

Computationally we can enumerate them up to order 11 but algebraically we are

able to count them of any given order.

A further motivation to study AG-groups is that they have two-sided unique

inverses and can therefore be seen as a generalization of two-sided loops. Con-

sequently we provide investigation of two such loops (i) C-loops and (ii) Jordan

loops. This leads to the enumeration of Jordan loops up to order 10 which is

also a part of this thesis. Furthermore, we investigate the application of AG-

groups in geometry and exploit AG-groups to map out the general structure of

AG-groupoids and further explore cancellativity of AG-groupoids.

In spite of a great deal of investigations of AG-groupoids and their subclasses

for nearly four decades no progress had been made in obtaining enumeration

results. In fact, not even the exact number of non-associative AG-groupoids

for the order 3, the smallest possible order, was known up to now. We are

enumerating AG-groupoids up to order 6 for the first time. We then classify our

data and give twenty four new classes of AG-groupoids. The relations between

them to each other have been established. In the end we have collected all our

findings into a GAP package ”AGGROUPOIDS” that contain several functions

that check various characteristics of a given Cayley table of AG-groupoids and

AG-groups.

vii
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Chapter 1

History, Definitions and

Notations

In this chapter we give definitions, notations, history and a short survey of AG-

groupoids which we will use throughout the thesis. This is partly for fixing

terminology, partly to provide a background and partly for setting up notation.

Motivation for studying AG-groups is also given here.

1.1 Background

We first give a brief introduction into the mathematical theory of AG-groupoids

and especially define some of their existing subclasses we are interested in, for

their classification and to which we will add several more subclasses in the thesis.

The structure of AG-groupoid was introduced by Naseeruddin and Kazim in

1972 [27] and was originally called left almost semigroup (LA-semigroup).

It has also been studied under the names right modular groupoid [7] and

left invertive groupoid [23], before Stevanovic and Protic called the structure

Abel-Grassmann groupoid (or AG-groupoid for short) [106], which is the primary

name under which it is known today. AG-groupoids generalize the concept of

commutative semigroups and have an important application within the theory of

flocks [61].

We first recall that a groupoid is defined as a non-empty set S together with

a binary operation ◦ : S×S → S. In the sequel we will generally elide the binary

operation. We now define an AG-groupoid as follows:

Definition 1. A groupoid S is called an AG-groupoid if for all a, b, c ∈ S the

1



2 CHAPTER 1. HISTORY, DEFINITIONS AND NOTATIONS

following identity holds:

(ab)c = (cb)a (1.1)

The identity (1.1) is called left invertive law.

Definition 2. A groupoid S is called medial if S satisfies the medial law, that

for all a, b, c, d ∈ S we have

(ab)(cd) = (ac)(bd). (1.2)

It has been shown in [7], that every AG-groupoid is medial. Observe that

the medial law is a property closely related to commutativity. Consequently,

AG-groupoids can also be viewed as a generalization of commutative semigroups.

We now define a number of properties that give rise to interesting subclasses

of AG-groupoids, which we will identify in our classification later in the thesis.

Definition 3. An AG-groupoid S is called weak associative if it satisfies the

identity (ab)c = b(ac) for all a, b, c ∈ S. We call S an AG∗-groupoid.

Definition 4. An AG-groupoid S is called an AG-monoid if S has a left iden-

tity, i.e., there exists an element e ∈ S such that for all elements a ∈ S we have

ea = a.

Observe that since AG-groupoids are not necessarily associative, the existence

of a left identity does not imply the existence of a general identity.

Definition 5. An AG-groupoid S that satisfies the identity a(bc) = b(ac) for any

a, b, c ∈ S is called a AG∗∗-groupoid.

Definition 6. A groupoid S is called paramedial if S satisfies the paramedial

law, i.e, for all a, b, c, d ∈ S we have (ab)(cd) = (db)(ca).

One can easily verify the following facts that (i) every AG-monoid is an AG∗∗-

groupoid, and that (ii) every AG∗∗-groupoid is paramedial. However, the converse

is generally not true.

Example 1. As example structures we consider the four AG-groupoids of order

5 below, where (i) is an AG-monoid, (ii) is an AG∗-groupoid (iii) is an AG∗∗-

groupoid and therefore also paramedial, while (iv) is a paramedial groupoid which

is not an AG∗∗-groupoid.
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(i) (ii) (iii) (iv)

◦ 0 1 2 3 4

0 0 0 0 0 0

1 0 0 3 0 1

2 0 1 2 3 4

3 0 0 1 0 3

4 0 3 4 1 2

◦ 0 1 2 3 4

0 4 1 1 2 4

1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 2 1

4 4 1 1 1 4

◦ 0 1 2 3 4

0 1 0 4 4 3

1 4 3 1 1 0

2 0 1 2 3 4

3 0 1 3 3 4

4 3 4 0 0 1

◦ 0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 0

2 1 0 4 4 1

3 0 1 4 4 0

4 0 0 0 0 0

Definition 7. Let S be an AG-groupoid. We call S locally associative if for

all a ∈ S the identity a(aa) = (aa)a holds.

Definition 8. An AG-groupoid S is called an AG-2-band or simply AG-band

if for all a ∈ S the identity aa = a is satisfied. In other words, in an AG-band S

every element is idempotent.

Definition 9. An AG-groupoid S is called an AG-3-band if for every a ∈ S we

have a(aa) = (aa)a = a.

Definition 10. An element a of an AG-groupoid S is called left cancellative

if ax = ay ⇒ x = y for all x, y ∈ S. Similarly an element a of an AG-groupoid

S is called right cancellative if xa = ya ⇒ x = y for all x, y ∈ S. An

element a of an AG-groupoid S is called cancellative if it is both left and right

cancellative. S is called (left,right) cancellative if all of its elements are

(left,right) cancellative.

We define AG-groups, an important subclass of AG-groupoids, which gener-

alizes abelian groups. We will focus on AG-groups in the thesis.

Definition 11. An AG-groupoid S is called an AG-group if S has a left identity

e ∈ S and inverses with respect to this identity, i.e., for all elements a ∈ S there

exists an element b ∈ S such that ab = ba = e.

Example 2. As further example structures we give (i) an AG-band, (ii) an AG-

3-band, and (iii) an AG-group below. For the latter we observe that the element

3 is the left identity element and that the structure is indeed not a group as there

is no corresponding right identity.
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(i) (ii) (iii)

◦ 0 1 2 3 4

0 0 3 1 4 1

1 4 1 3 0 3

2 3 0 2 1 4

3 1 4 0 3 0

4 3 0 4 1 4

◦ 0 1 2 3 4

0 0 0 0 0 0

1 0 1 3 4 2

2 0 4 2 1 3

3 0 2 4 3 1

4 0 3 1 2 4

◦ 0 1 2 3 4

0 3 0 1 4 2

1 4 3 0 2 1

2 2 4 3 1 0

3 0 1 2 3 4

4 1 2 4 0 3

Finally we will need the following definitions in the thesis.

Definition 12. A non-empty subset H of an AG-groupoid S is called an AG-

subgroupoid if ab ∈ H for all a, b ∈ H.

Definition 13. A subset I of an AG-groupoid S is called left ideal (right

ideal) if SI ⊆ I(IS ⊆ I). A subset I of an AG-groupoid S is called ideal if it

is both left and right ideal.

Definition 14. An ideal I of an AG-groupoid S is called maximal ideal (right

ideal) if I is not properly contained in any larger ideal of S.

1.2 Survey of AG-groupoids

Here we take a short survey of the forty years history of AG-groupoids in which a

lot of work has been done on this structure. Starting slowly and gradually the last

couple of years saw a rapid research in this area and proved to be an interesting

and productive field for researchers. Many researchers are giving attention to this

field these days. Our survey will provide a guideline to them and will help them

to know how much work has already been done and which aspects has already

been explored. So we want to take a quick review of the last forty years of the

literature. Also there is a bit ambiguity about its name which poses the question

that who is the real pioneer of AG-groupoids? We will put some light on this

question.

1.2.1 Investigation of The Real Pioneer of AG-groupoids

As mentioned earlier it is believed by the AG-groupoids community that the

structure of AG-groupoids was first introduced by Naseeruddin and Kazim in

1972 [27] under the name of left almost semigroup or simply LA-semigroup as

can be easily seen from the literature. Thus M. Naseeruddin and Kazim are known



1.2. SURVEY OF AG-GROUPOIDS 5

as the pioneer of AG-groupoids. But in our opinion the structure of AG-groupoid

has existence earlier than prior to their paper. We agree with Stevanovic and

Protic that they called it Abel Grassmann groupoids (or shortly AG-groupoids)

for the first time by giving reference to a very famous and authentic book [10].

This book was published in 1974. In which very famous identities have been

collected on Pages 58− 60. Among them the identity (22) is of Abel Grassmann

groupoids, that is, groupoids satisfying a(bc) = c(ba) which in [27, Page 48] has

been called a Right Almost semigroup or simply RA-semigroup and which is

the dual of LA-semigroup and that is obviously not material. From this can be

easily comprehended that AG-groupoid had existence before 1972 in the form of

an identity defined by Abel Grassmann. It can be the case that this has also

existence by the name of right modular groupoid because in [7], this has not been

claimed that they are defining right modular groupoids for the first time. It looks

like that perhaps M. Naseeruddin and Kazim were ignorant of it. There is no

doubt that researchers took interest in AG-groupoids when they came to know

that a new interesting structure has been defined by M. Naseeruddin and Kazim.

Indeed the theory of the AG-groupoids began to grow at this very point.

1.2.2 Development of The Theory of AG-groupoids

After [27] Q. Mushtaq was the first who started work on AG-groupoids in his M.

Phil at first then with S. M. Yusuf and later on with his students. Q. Mushtaq and

S. M. Yusuf [57] started basics and proved results such as: an AG-groupoid with

right identity becomes a commutative semigroup, if an element of AG-groupoid

with left identity has a left inverse or right inverse then it becomes inverse, a left

cancellative is also cancellative. They also proved that an AG-groupoid S can be

constructed from a commutative group G via

a ∗ b = b · a−1 ∀a, b ∈ G.

After that they in [58] defined locally associative AG-groupoid S to be an AG-

groupoid which satisfies (aa)a = a(aa) for all a ∈ S and proved in locally associa-

tive AG-groupoid S powers are defined. They also defined a relation ρ on locally

associative AG-groupoid S as:

aρb⇐⇒ abn = bn+1 and ban = an+1 for some positive integer n, where a, b ∈ S.

which they proved to be a separative congruence, that is, ρ is reflexive, symmet-

ric, transitive and abρa2, abρb2 =⇒ aρb, in case S has left identity. In [49] it was
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proved that a locally associative AG-groupoid S with left identity is uniquely

expressible as a semilattice Y of archimedean locally associative AG-groupoids

Sα(α ∈ Y ) with left identity. Further they in [59] reduced the condition of

construction of AG-groupoid S from a commutative group done in [57] into com-

mutative inverse semigroup G. Then using the fact that commutative inverse

semigroup is the union of groups, they discussed certain homomorphisms between

S and these groups.

Kamran in his thesis extended the notion of AG-groupoid to an AG-group

(LA-group). They discussed cosets of an AG-subgroup H of an AG-group G and

proved that quotient G/H is defined for every AG-subgroup H. They also proved

that Lagrange’s Theorem holds for AG-group. Later on the eminent results of [26]

appeared in [51].

In [33], S. M. Yusuf further extended the notion to another non-associative

structure with respect to both binary operations ‘+’ and ‘.’ namely left almost

ring (LA-ring). By a left almost ring we mean a non-empty set R with at least two

elements such that (R,+) is an AG-group and (R, .) is an AG-groupoid and both

left and right distributive laws hold in R. An LA-ring (R,+, .) with left identity

e is called almost field if every nonzero element a of the ring has multiplicative

inverse a−1 in R.

N. Stevanovic, P. V. Protic [106] introduced the concept of inflations in AG-

groupoids and discuss some of their properties. Q. Mushtaq and M. S. Kam-

ran [50] showed that if S is a finite AG-groupoid with left zero then, under

certain conditions, without the left zero element S is a commutative semigroup.

P. V. Protic, N. Stevanovic [74] introduced a few congruence relations on AG-

band and considered decompositions of AG-bands induced by those congruences.

They proved that this give rise to the natural partial order on AG-band. N.

Stevanovic, P. V. Protic [107] introduced the notions of a 3 potent element of

an AG-groupoid of AG–3-band. They devised methods for the construction of

AG-3-band. Q. Mushtaq [48] introduced the notions of zeroids and idempoids in

AG-groupoids. Q. Mushtaq and K. Mahmood [56] characterized division µ-AG-

groupoids by their linear forms as well as by permutations.

From 2006 a new era of AG-groupoids started when Q. Mushtaq and M.

Khan [52] defined ideals in AG-groupoid and especially when AG-groupoids were

fuzzified. This really attracted the researchers to AG-groupoids whose effect we

can see in 2010 and 2011 that numerous papers were submitted for publication

and some of them exist on arXiv. Ideals in particular subclasses such as AG-

band and AG∗-groupoid of AG-groupoids were discussed in [54]. They studied
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decomposition of a locally associative AG**-groupoid in [53].

The structure of union of groups within the variety of AG-groupoids was ex-

plored in [46] and in [47] he further proved that within the variety AG-groupoids

the collection of all groupoids whose power groupoid is a band [generalized infla-

tion of a band; a union of groups] determines an inclusion class of AG groupoids.

He also proved that any groupoid anti-isomorphic to a finite or countable anti-

rectangular AG-band G is isomorphic to G. He further proved that within iso-

morphism there is only one countable anti-rectangular AG-band and that it is

isomorphic to a proper subset of itself. The concept of AG-groupoids was ex-

tended to Γ -AG-groupoids in T. Shah and I. Rehman [98] and [97] . T. Shah

and I. Rehman started to apply LA-rings in [99]. Ideals in generalized LA-ring

were studied in [95] LA-modules were studied in [96]. AG-groupoids were fuzzified

in [34] and then different subclasses of AG-groupoids, Γ-AG-groupoids and differ-

ent types of ideals were characterized by means of fuzzification in [29, 30, 31, 32]

and which is still continued.

1.3 Quasigroups and Loops

We will first introduce a number of definitions about loops that are needed in

this thesis.

Definition 15. A set (Q, ·) is a quasigroup if and only if in the equation x·y = z,

any two of the symbols x, y, z are assigned as elements of Q, the third is uniquely

determined as an element of Q.

The following table lists the names of some identities, which we will refer to

throughout this thesis.

Definition 16. A loop is a quasigroup with neutral element. In other words a

quasigroup (Q, ·) is called loop if there exists an element 1 of Q with the property

x · 1 = 1 · x = x∀x ∈ Q.

Some identities related to quasigroups and loops have been listed in Table 1.1.

Definition 17. Let L be a loop. The set

Nλ = {x ∈ L;x(yz) = (xy)z ∀y, z ∈ L}

is called the left nucleus. Similarly, the set

Nµ = {x ∈ L; y(xz) = (yx)z ∀y, z ∈ L}
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is called the middle nucleus and the set

Nρ = {x ∈ L; y(zx) = (yz)x∀y, z ∈ L}

is called the right nucleus. The nucleus

N = Nλ ∩Nµ ∩Nρof L is a subgroup of L.

Furthermore we define;

Definition 18. The commutant of a loop L as the set C(L) = {c ∈ L : cx = xc

for every x ∈ L} and the centre of a loop L as Z(L) = C(L) ∩N .

1.4 Motivation

There are several species of loops which have unique inverses. Such loops are

called invertible loops. C-loops, Jordan loops and Bol loops are examples of

invertible loops. Due to the unique inverses these loops have many properties

which loops not having unique inverses do not have. That is why invertible

loops have been investigated by loop theorists extensively. On the other hand,

quasigroups having unique inverses have never received much attention. This

motivated us to study such quasigroups. For this purpose we select a special

species of quasigroups called AG-groups. We made a choice of AG-groups because

since their introduction by Kamran [26], they remained uninvestigated for long.

This class of quasigroups has versatile character and can be studied in many

ways. This characteristic of AG-groups motivated us to study them.

1.5 Notations

We will use the following terminology from group theory for AG-groups.

Definition 19. An arbitrary non-empty subset of a group G is called a complex

in G.

We will use these notations in the thesis. By a | b we mean a divides b and

by a - b we mean a does not divide b. Also to avoid excessive parenthesization,

we will use the usual juxtaposition conventions , e.g., ab · c = (a · b) · c.
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Identity Name

x(xy) = (xx)y left alternative

x(yy) = (xy)y, right alternative

x(yx) = (xy)x, flexible

(xx)(yz) = ((xx)y)z left nuclear square

x((yy)z) = (x(yy))z middle nuclear square

x(y(zz)) = (xy)(zz) right nuclear square

x(y(xz)) = (x(yx))z left Bol

x((yz)y) = ((xy)z)y right Bol

(xy)(zx) = (x(yz))x, Moufang

x(y(yz)) = ((xy)y)z Central identity or C-identity

x(y(zx)) = ((xy)z)x extra identity

x−1(xy) = y left inverse property

(yx)x−1 = y right inverse property

x(xx) = (xx)x 3−power associativity or local associativity

Table 1.1: Some identities.
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Chapter 2

Jordan Loops and C-Loops

2.1 Introduction

As invertible loops motivated us to study AG-groups. So we begin by studying

two species of invertible loops namely (1) Jordan loops and (2) C-loops. In Section

1 we study Jordan loops. According to [42], Jordan loops have not received

sufficient attention from loop theorists so we decided to study them here a little

bit. By doing so we are therefore partly motivated to draw folks to their study.

In that spirit we establish a few interesting properties of these loops such as every

commutative alternative loop is a Jordan loop and alternative Jordan loops of

odd order have no subloop of even order. Thus the nucleus of an alternative

Jordan loop is always of odd order Corollary 2. We provide a construction for an

infinite family of non-associative Jordan loops. We also provide a count of the

isomorphism classes of small Jordan loops by exhaustive enumeration up to order

9, and give a lower bound for order 10.

In Section 2 we study C-loops. C-loops are loops satisfying the identity

x(y(yz)) = ((xy)y)z. The nature of the identity, where unlike in other Bol-

Moufang identities the repeated variable is not separated by either of the other

variables, makes them a difficult target of study. Nevertheless they have been

investigated in [2, 3, 18, 19, 35, 37, 36, 73, 71, 72, 76].

We extend some results of [73], in particular [73, Proposition 3.1] that states

that only even order nonassociative C-loops exist. Investigating this result further

using the order of nuclei of C-loops, we prove that (1) all nonassociative C-loops

of order 2p, where p is prime, are Steiner loops, (2) all nonassociative C-loops

of order 3n are non-simple and non-Steiner, (3) there exists no nonassociative

C-loop of order 2 · 3t, t ≥ 1, and (4) if C(L) is the commutant of a C-loop L and

11



12 CHAPTER 2. JORDAN LOOPS AND C-LOOPS

every element of C(L) is of odd order, then C(L) is a subloop of L.

2.2 On Jordan Loops

[39] makes a number of important observations regarding Jordan loops. For

example, it introduces the notion of powers of Jordan loops, and give a proof

that a non-associative Jordan loop of order n exists if and only if n ≥ 6 and

n 6= 9 [39, Theorem 1.1]. It also gives a Cayley table for the smallest non-

associative Jordan loop. That loop, of order 6 with a nucleus is of size 1, appears

as follows.

Example 3. Smallest non-associative Jordan loop:

· 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 3 4 5 2

2 2 3 0 5 1 4

3 3 4 5 0 2 1

4 4 5 1 2 0 3

5 5 2 4 1 3 0

2.2.1 A Few Properties of Jordan Loops

We begin by the following simple fact.

Theorem 1. Every commutative left nuclear square loop is a Jordan loop. Hence,

every commutative C-loop is Jordan loop.

Theorem 2. Every flexible left alternative loop L satisfies the Jordan identity

x2(yx) = (x2y)x.

Proof. By applications of flexible law, (xy)x = x(yx), and left alternative laws,

x(xy) = (xx)y, we have (x2y)x = (x(xy))x = x((xy)x) = x2(yx).

Corollary 1. Every commutative alternative loop is Jordan loop.

The converse of the Corollary 1 is not true. The Jordan loop in Example 3 is

neither left nor right alternative.

We now prove that [78, Theorem 1] also holds for alternative loops.

Theorem 3. Let L be any invertible left alternative loop then order of L is even

iff L has an element of order 2, i.e. an element a such that a 6= e but a2 = e.
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Proof. The direct part is trivial. We see that the inverse operation is of period 2

so the set of elements of L which are not fixed points must be of even cardinality.

If the order of L is even then there must also be an even number of self inverse

elements, so e cannot be the only such element. For the converse suppose a is self

inverse and distinct from e. Let the operation La is defined on L by La(x) = ax

then La is of period 2, as La(La(x)) = a(ax) = a2x = ex = x, since L is left

alternative. Moreover La has no fixed point, as if La(x) = x then ax = x so a = e

contrary to the supposition of the theorem. Therefore La partitions into pairs L,

so order of L is even.

Remark 1. It can easily be seen that Theorem 3 also holds for right alternative

loop.

Corollary 2. Alternative Jordan loops of odd order have no subloop of even order

and hence have nuclei of odd order always.

The Square Property

A groupoid has the square property iff (xy)2 = x2y2 for all x and y. A group

is commutative iff it has square property. This is not true for a Jordan loop.

Every Jordan loop is commutative but does not satisfy the square property.

Example 4. A non-associative Jordan loop of order 10:

· 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 0 3 2 5 4 8 9 6 7

2 2 3 0 1 6 7 4 5 9 8

3 3 2 1 0 8 9 7 6 4 5

4 4 5 6 8 1 0 9 2 7 3

5 5 4 7 9 0 1 2 8 3 6

6 6 8 4 7 9 2 3 0 5 1

7 7 9 5 6 2 8 0 3 1 4

8 8 6 9 4 7 3 5 1 2 0

9 9 7 8 5 3 6 1 4 0 2

This is an example of a Jordan loop in which square property does not hold

as 0 = (7 · 8)2 6= 72 · 82 = 1. So we ask.

Question: On what condition square property will hold in Jordan loops?

A conjecture that might be one answer to this question is given below. It can
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easily be observed that for commutative loops and hence for Jordan loops, Nλ =

Nρ. The following example shows that for Jordan loops, it is not necessary that

Nλ = Nρ = Nµ.

Example 5. A non-associative Jordan loop of order 8:

· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 6 1 7 4 5

3 3 2 6 0 7 1 5 4

4 4 5 1 7 0 6 3 2

5 5 4 7 1 6 0 2 3

6 6 7 4 5 3 2 1 0

7 7 6 5 4 2 3 0 1

Here Nλ and Nρ are of size 1 while Nµ is of size 2.

Conjecture 1. If a Jordan loop is such that Nλ = Nρ = Nµ then square property

holds.

2.2.2 Construction of Jordan Loops

We now construct an infinite family of non-associative Jordan loops via extension

of loop whose smallest member is a loop of order 12. We adopt the same procedure

as done for the construction of non-associative and non-commutative C-loops in

[73].

Let G be a multiplicative group with neutral element 1, and A an abelian group

written additively with neutral element 0. Any map µ : G×G→ A satisfying

µ(1, g) = µ(g, 1) = 0∀g ∈ G is called a factor set. When µ : G×G→ A is a

factor set, we can define multiplication on G× A by

(g, a)(h, b) = (gh, a+ b+ µ(g, h)) (1)

The resulting groupoid is clearly a loop with neutral element (1, 0). We denote

it by (G,A, µ). Additional properties of (G,A, µ) can be enforced by additional

requirements on µ.
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Lemma 1. Let µ : G×G→ A be a factor set. Then (G,A, µ) is a Jordan loop

iff

µ(g, h) + µ(g2, gh) = µ(g2, h) + µ(g2h, g) (2)

and

µ(g, h) = µ(h, g) for every g, h ∈ G (3)

The loop (G,A, µ) is a Jordan loop iff [(g, a)(g, a)][(h, b)(g, a)] = [{(g, a) (g, a)}
(h, b)](g, a) and (g, a)(h, b) = (h, b)(g, a) hold∀g, h ∈ G and every a, b ∈ A

straightforward calculation with (1) shows that this happens iff (2) and (3) are

satisfied.

We call a factor set µ satisfies (2) and (3) a J-factor set. When G is an

elementary abelian 2-group, then equation (2) reduces to equation (3). We now

use a particular J-factor set to construct the above-mentioned family of Jordan

loops.

Proposition 2.2.1. Let A be an abelian group of order n where n > 2, and

α ∈ A be an element of order greater than 2. Denote by G = {1, u, v, w} the

Klein group with neutral element 1. Define µ : G×G→ A by

µ(x, y) =


α, if (x, y) = (u, v), (v, u);

−α, if (x, y) = (w, v), (v, w);

0, otherwise.

Then (G,A, µ) is a non-alternative (hence non-associative) Jordan loop with N =

{(1, a); a ∈ A}.

Proof. The map µ is clearly a factor set depicted as follows:

µ 1 u v w

1 0 0 0 0

u 0 0 α 0

v 0 α 0 −α
w 0 0 −α 0

To show that J = (G,A, µ) is a Jordan loop, we have to verify only equation

(3). Since µ is a factor set, there is nothing to prove when g = 1 or h = 1. Assume

that g = u, h = v or g = v, h = u then both sides of this equation (3) are equal
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to α. Assume that g = w, h = v or g = v, h = w then both sides of this equation

(3) are equal to −α. For all other values of g and h both sides of equation (3)

are equal to 0. Hence equation (3) is satisfied and therefore J = (G,A, µ) is a

Jordan loop.

Let a ∈ A, since α 6= −α, we have (u, a)((w, a)(w, a)) = (u, 3a) 6= (u, 3a−α) =

((u, a)(w, a))(w, a). This shows that: (i) J is not alternative and thus not associa-

tive (ii) (u, a), (w, a) /∈ Nλ. Similarly (v, a)((w, a)(w, a)) = (v, 3a) 6= (v, 3a−α) =

((v, a)(w, a))(w, a) shows that(v, a) /∈ Nλ. Finally, for (g, h) ∈ G and b, c ∈ A we

have ((1, a)(g, b))(h, c) = (g, a + b + µ(1, g))(h, c) = (gh, a + b + c + µ(g, h)) and

(1, a)((g, b)(h, c)) = (1, a)(gh, b+c+µ(g, h)) = (gh, a+b+c+µ(g, h)+µ(1, µ(g, h)))

= (gh, a+b+c+µ(g, h)) and thus ((1, a)(g, b))(h, c) = (1, a)((g, b)(h, c)). Similarly

it can be shown that (g, b)((1, a)(h, c)) = ((g, b)(1, a))(h, c) and ((g, b)(h, c))(1, a) =

(g, b)((h, c)(1, a)) =⇒ (1, a) ∈ N . Hence the result follows.

Corollary 3. For every natural number n there exists a non-associative Jordan

loop having nucleus of order n.

Proof. It remains to prove that there are non-associative Jordan loops with nuclei

of orders 1 and 2. But this is true by Example 3 and by Example 2.2.2.

Example 2.2.2. A non-associative Jordan loop of order 8:

· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 1 0 6 7 4 5

3 3 2 0 1 7 6 5 4

4 4 5 6 7 1 0 3 2

5 5 4 7 6 0 1 2 3

6 6 7 4 5 3 2 1 0

7 7 6 5 4 2 3 0 1

Here nucleus is 2.

Example 2.2.3. The 3-element cyclic group {0, 1, 2} is the smallest group A

which satisfies the assumptions of Proposition 2.2.1. The construction given in

Proposition 2.2.1 with α = 2 yields the following non-associative Jordan loop of

order 12.
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· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11

1 1 2 0 4 5 3 7 8 6 10 11 9

2 2 0 1 5 3 4 8 6 7 11 9 10

3 3 4 5 0 1 2 11 9 10 6 7 8

4 4 5 3 1 2 0 9 10 11 7 8 6

5 5 3 1 2 0 9 10 11 9 8 6 7

6 6 7 8 11 9 10 0 1 2 4 5 3

7 7 8 6 9 10 11 1 2 0 5 3 4

8 8 6 7 10 11 9 2 0 1 3 4 5

9 9 10 11 6 7 8 4 5 3 0 1 2

10 10 11 9 7 8 6 5 3 4 1 2 0

11 11 9 10 8 6 7 3 4 5 2 0 1

We enumerated Jordan loops in Chapter 6. Our enumeration yields all Cayley

tables explicitly. We can therefore validate the generated Jordan loops, and test

support for conjectures in that data using the GAP [20] computer algebra sys-

tem. Because there was no functionality present in the GAP loops package [60]

to test whether a Cayley table is a Jordan loop or not, we have implemented our

own function that performs this test. A listing for that function is given in Algo-

rithm 1. The results of our enumeration were validated using that GAP function.

Using GAP, we also verified that our data supports the following conjecture.

Conjecture 2. A Jordan loop is nilpotent if and only if it is strongly nilpotent.

One should note that the definition of nilpotency for a loop is the same as in

group theory. A loop L is said to be strongly nilpotent if its multiplication group

is nilpotent. GAP commands for testing the nilpotency of Cayley tables are:

IsNilpotent( L ) and IsStronglyNilpotent( L ). Using those GAP procedures

we have verified that all the tables generated for our enumeration satisfy the

condition of Conjecture 2.

Algorithm 1. GAP function for testing if L is a Jordan loop

InstallMethod( IsJordanLoop, "for Loop",

[IsLoop],

function( L )

local x, y;

if not IsCommutative(L) then

return false;
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fi;

for x in L do

for y in L do

if not (x ∗ x) ∗ (y ∗ x) = ((x ∗ x) ∗ y) ∗ x then

return false;

fi;

od;

od;

return true;

end );

2.3 Nuclei and Commutant of C-Loops

We start our considerations with a corollary to [73, Proposition 3.1].

Corollary 4. Let L be a nonassociative C-loop of order n with nucleus N of

order m. Then

(i) n/m ≡ 1(mod3) or n/m ≡ 2(mod3),

(ii) (n/2)/m is an integer of the form 3k − 1 or 3k + 1,

(iii) (n/m)2 ≡ 4(mod6) or n/m ≡ 4(mod6),

(iv) n/m is of the form 2(3k − 1) or (n/m)2 is of the form 2(3k − 1).

Proof. (i) and (iii) are straightforward.

(ii) We have

n/m ≡ 2(mod6) or n/m ≡ 4(mod6)

n/m = 6k + 2 or n/m = 6k + 4 for some positive integer k

n/m = 2(3k + 1) or n/m = 2(3k + 2)

n/2m = 3k + 1 or n/2m = 3k + 2

(n/2)/m = 3k + 1 or (n/2)/m = 3k + 2. But every integer of the

form 3k + 2 is also of the form 3k − 1.

Thus (n/2)/m = 3k + 1 or (n/2)/m = 3k − 1.
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(iv) By part (iii), we have

(n/m)2 ≡ 4(mod6) or n/m ≡ 4(mod6)

(n/m)2 = 6k + 4 or n/m = 6k + 4 for some positive integer k

(n/m)2 = 2(3k + 2) or n/m = 2(3k + 2)

(n/m)2 = 2(3k − 1) or n/m = 2(3k − 1).

Proposition 1. A nonassociative C-loop L of order 3n is non-simple and non-

Steiner.

Proof. L/N(L) is Steiner, hence 3n/m is congruent to 2 or 4 mod 6. So 3n/m is

not divisible by 3, thus m is divisible by 3. Therefore, N(L) is a group containing

an element of order 3 and hence L is not Steiner. Since N(L) is nontrivial and

since N(L) is normal in L by [73], it follows that L is not simple.

The following example illustrates the above proposition.

Example 6. A nonassociative, noncommutative, non-Steiner non-simple C-loop

of order 12 (size of nucleus = 3) is given in table 2.1.

· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11

1 1 2 0 4 5 3 7 8 6 10 11 9

2 2 0 1 5 3 4 8 6 7 11 9 10

3 3 4 5 0 1 2 9 10 11 6 7 8

4 4 5 3 1 2 0 10 11 9 7 8 6

5 5 3 4 2 0 1 11 9 10 8 6 7

6 6 7 8 10 11 9 0 1 2 5 3 4

7 7 8 6 11 9 10 1 2 0 3 4 5

8 8 6 7 9 10 11 2 0 1 4 5 3

9 9 10 11 8 6 7 3 4 5 2 0 1

10 10 11 9 6 7 8 4 5 3 0 1 2

11 11 9 10 7 8 6 5 3 4 1 2 0

Table 2.1: Example 38.

· 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 0 3 2 5 4 9 8 7 6

2 2 3 0 1 6 8 4 9 5 7

3 3 2 1 0 7 9 8 4 6 5

4 4 5 6 7 0 1 2 3 9 8

5 5 4 8 9 1 0 7 6 2 3

6 6 9 4 8 2 7 0 5 3 1

7 7 8 9 4 3 6 5 0 1 2

8 8 7 5 6 9 2 3 1 0 4

9 9 6 7 5 8 3 1 2 4 0

Table 2.2: Example 39.

Corollary 5. Let L be a nonassociative C-loop of order n with nucleus N of

order m, then if for some positive integer t, 3t divides n, then 3t also divides m.

The next proposition confirms that there are indeed some even orders for

which no nonassociative C-loop exists.
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Proposition 2. There is no nonassociative C-loop of order 2 · 3t for t ≥ 1.

Proof. n/m is not divisible by 3, hence L/N(L) is of index at most 2, which is

impossible by [73].

The following proposition states that there exist orders for which all nonas-

sociative C-loops will be Steiner.

Proposition 3. A nonassociative C-loop L of order 2p with p prime, is Steiner.

Proof. Since L is nonassociative, p > 2. Let m be the order of N(L). Since

N(L) is normal in L by [73], m divides 2p. If m = 2p, L = N(L) is a group. If

m = p then N(L) is of index 2 in L, which is impossible by [73]. Similarly, by [73]

L/N(L) is Steiner. If m = 2 then L/N(L) is Steiner of order p, which again is

impossible. Thus m = 1 and L is Steiner.

Example 7. The smallest nonassociative C-loop (size of nucleus = 1) is given

in table 2.2. Since its order is n = 10 = 2 · 5, it is also Steiner.

It is well known that there are two nonassociative C-loops of order 14. Being

of order of the form 2p both are Steiner with nucleus of order 1.

Remark 2. Exploiting the results of propositions 1,2, and 3 can speed up au-

tomatic enumeration of C-loops. For example, we know by 1 that there is no

nonassociative C-loop of order 18 , by 3 that C-loops of order 24 are all non-

Steiner and by 2 that C-loops of order 22 are all Steiner.

Next we give the general forms of the nuclei of the nonassociative C-loops.

Here p is an odd prime other than 3.

Order of C-loop Admissible order of nucleus

2 · 3kp, k ≥ 1 3k

2p 1

2l, l ≥ 4 1, 2, 22, ..2l−2

2l · 3k, l ≥ 1, k ≥ 1 2h · 3k, 0 ≤ h ≤ l − 2

22p 1, 2, p

2p2 1, p

2kp, k > 2 2h, 2lp, 0 ≤ h ≤ k − 1, 0 ≤ l ≤ k − 2

2pk, k > 2 pl, 0 ≤ l ≤ k − 1

22p2 1, 2, p, p2, 2p

22 · 3 · p 3, 6, 3p
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As application of the above table we can give the orders of C-loops and the

admissible orders of their corresponding nuclei in the following table.

C-loop Nucleus

10 1

12 3

14 1

16 1, 2, 4

20 1, 2, 5

22 1

24 3, 6

26 1

28 1, 2, 7

30 3

32 1, 2, 4, 8

34 1

36 9

38 1

40 1, 2, 4, 5, 10

C-loop Nucleus

42 3

44 1, 2, 11

46 1

48 3, 6, 12

50 1, 5

52 1, 2, 13

56 1, 2, 4, 7, 14

58 1

60 3, 6, 15

62 1

64 1, 2, 4, 8, 16

66 3

68 1, 2, 7

70 1, 5, 7

72 9, 18

C-loop Nucleus

74 1

76 1, 2, 19

78 3

80 1, 2, 4, 5, 8, 10, 20

82 1

84 3, 6, 21

86 1

88 1, 2, 4, 11

90 9, 18, 45

92 1, 2, 23

94 1

96 3, 6, 12

98 1, 7

100 1, 2, 5

2.3.1 Commutant of C-Loops

The commutant of a loop is also known as the centrum, Moufang center or semi-

center [38]. As discussed in [38], in a group, or even a Moufang loop, the com-

mutant is a subloop, but this does not need to be the case in general. In [38],

it has been proved that the commutant of a Bol loop of odd order is a subloop.

In the following we discuss a special case for the commutant of C-loops, which is

not necessarily a subloop as the following example demonstrates:

Example 8. Consider the following nonassociative flexible C-loop of order 20,

whose commutant is {0, 1, 2, 3, 4, 5} that is not a subloop.



22 CHAPTER 2. JORDAN LOOPS AND C-LOOPS

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18

2 2 3 1 0 6 7 5 4 10 11 9 8 18 19 16 17 15 14 13 12

3 3 2 0 1 7 6 4 5 11 10 8 9 19 18 17 16 14 15 12 13

4 4 5 6 7 1 0 3 2 12 13 16 17 9 8 18 19 11 10 15 14

5 5 4 7 6 0 1 2 3 13 12 17 16 8 9 19 18 10 11 14 15

6 6 7 5 4 3 2 0 1 14 15 18 19 16 17 8 9 12 13 10 11

7 7 6 4 5 2 3 1 0 15 14 19 18 17 16 9 8 13 12 11 10

8 8 9 10 11 12 13 15 14 0 1 2 3 4 5 7 6 18 19 16 17

9 9 8 11 10 13 12 14 15 1 0 3 2 5 4 6 7 19 18 17 16

10 10 11 9 8 16 17 19 18 2 3 1 0 15 14 12 13 5 4 6 7

11 11 10 8 9 17 16 18 19 3 2 0 1 14 15 13 12 4 5 7 6

12 12 13 18 19 9 8 17 16 4 5 14 15 1 0 11 10 6 7 3 2

13 13 12 19 18 8 9 16 17 5 4 15 14 0 1 10 11 7 6 2 3

14 14 15 16 17 18 19 9 8 6 7 13 12 10 11 1 0 3 2 5 4

15 15 14 17 16 19 18 8 9 7 6 12 13 11 10 0 1 2 3 4 5

16 16 17 15 14 11 10 13 12 18 19 5 4 7 6 3 2 0 1 8 9

17 17 16 14 15 10 11 12 13 19 18 4 5 6 7 2 3 1 0 9 8

18 18 19 13 12 15 14 11 10 16 17 7 6 3 2 5 4 8 9 0 1

19 19 18 12 13 14 15 10 11 17 16 6 7 2 3 4 5 9 8 1 0

We now investigate a condition under which the commutant of C-loop will be

a subloop.

Proposition 4. Let C(L) be the commutator of a C-loop L. If every element in

C(L) has odd order then C(L) is a subloop of L.

Proof. Since C(L) is has odd order by [73], then in fact, C(L) = Z(L). By [73]

L is power-alternative, thus C(L) is closed under powers. Now, let a, b ∈ C(L)

with |a| = 2k + 1. Then a = a2k+2 is a square, hence in N(L) again by [73]. The

rest of the proof is clear from this observation.



Chapter 3

Enumeration of AG-Groupoids

3.1 Introduction

Enumeration and classification of mathematical entities is an important part of

mathematical research in particular in finite algebra. For algebraic structures

that are more general than groups this task is often only feasible by use of com-

puters due to the sheer number of structures that have to be considered. The

classification of mathematical structures is an important branch of research in

pure mathematics. In particular, in abstract algebra the classification of alge-

braic structures is an important pre-requisite for their goal-directed construction

to make them amenable in practical applications. For example, the classification

of finite simple groups — which was described as one of the major intellectual

achievements of the twentieth century [24] — not only allows to immediately

compute the number of non-isomorphic, simple groups of a particular finite order

but also gives a concrete recipe how to construct a representant for each class.

While full classification of structures is usually the goal, an important first step

towards this goal is often the enumeration of structures with particular properties.

Enumeration results can be obtained by a variety of means, depending on the

domain, for example by combinatorial or algebraic considerations. However, in

algebraic domains where the objects under consideration exhibit little in way

of internal structure, exhaustive generation is often the most reliable means of

obtaining useful enumeration results. As a consequence, a number of projects

have been concerned with automatic enumeration of algebraic structures that are

more general than groups.

Quasigroups and loops — two types of non-associative structures with Latin

square property — have been enumerated up to size 11 using a mixture of com-

23
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binatorial considerations and bespoke exhaustive generation software [45, 44].

In other approaches general purpose automated reasoning technology has been

employed. For instance the model generator FINDER (Finite Domain Enumer-

ator) [101] has been used for obtaining novel enumeration results, most recently

for IP-loops up to size 13 [1], but also has been successfully employed to solve

open questions in quasigroup theory. Going beyond pure enumeration is the gen-

eration of classification theorems that provide discriminating algebraic properties

for different isomorphism and isotopism classes of quasigroups and loops up to

size 7 using a combination of theorem proving, model generation, satisfiability

solving and computer algebra [105]. For the case of associative structures, more

general than groups, the number of semigroups and monoids have been counted

up to order 9 and 10, respectively, using a combination of constraint satisfaction

techniques implemented in the Minion constraint solver with bespoke symmetry

breaking provided by the computer algebra system GAP [11, 12, 13].

Here we consider the algebraic structures of finite Abel Grassmann Groupoids

(AG-groupoids for short). AG-groupoids were first introduced by Naseeruddin

and Kazim in 1972 [27] and have applications for example in the physics theory

of flocks. They are generally considered midway between a groupoid and a com-

mutative semigroup, that is, every commutative semigroup is an AG-groupoid

but not vice versa. Thus AG-groupoids can also be non-associative, however

they do not necessarily have the Latin square property. As a consequence nei-

ther of the enumeration techniques developed for quasigroups and loops or for

semigroups and monoids can be employed directly. Our approach is based on the

constraint solving technique developed for the enumeration of monoids and semi-

groups presented in [13]. However, since the original work explicitly exploited the

associativity property for symmetry breaking we now present its novel adaptation

to deal with our domain. Furthermore, we go beyond simple enumeration of the

structures by the constraint solver and obtain a further division of the domain into

interesting subclasses of AG-groupoids using the computer algebra system GAP.

We have currently obtained enumeration results for AG-groupoids up to size 6

together with enumeration of some of the relevant subclasses. In addition, unlike

in enumeration approaches using combinatorial techniques or algebraic counting,

our enumeration also produces all multiplication tables for the structures found.

These can be used both for further, more specialised, classification as well as be

included into a library for GAP system in the future.

As no enumeration of AG-groupoids had been attempted before we present

novel mathematical results, which are important as they give a first indication on
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the domain size of AG-groupoids as well as on the growth rate for the classes for

increasing size of structures. This information can potentially be exploited when

developing applications involving AG-groupoids. Our results also help to chart

further the landscape of algebraic structures more general than groups.

The work is organised as follows: in the next section we give an introduction

to the mathematical theory of AG-groupoids. We then present an overview of the

constraint solving techniques that we have used to enumerate AG-groupoids in

Sec. 3.2, with a particular emphasis on their adaptations to the new domain and

how symmetries are broken using the computer algebra system GAP. We then

discuss the classification results in Sec. 3.3 before concluding in Sec. 3.4.

3.2 Constructing AG-groupoids

To obtain all AG-groupoids up to isomorphism we adapt a method which was

introduced in [12] and [13] in the search for monoids. The idea is to combine

the advantages of a constraint solver for a fast search with that of a computer

algebra system to efficiently rule out isomorphic copies. We will give a brief

overview of the used technique. More detailed explanations and applications for

various subclasses of semigroups can also be found in [11, Chapters 4, 5].

There are a number of important differences in the approach presented here to

the one developed for enumerating semigroups and monoids. Instead of one search

for each order, several independent searches were performed in [12, 11, 13], and for

many of them it became far easier to avoid isomorphic solutions. These case splits

were often based on structural knowledge about monoids and semigroups which

also lead to a more efficient search in the remaining difficult, but more specific,

cases. The enumeration of monoids and semigroups also benefit hugely from the

fact that not all such objects needed to be counted. For semigroups there exists

a formula for the majority of such objects [11, Section 2.3], while most monoids

were constructed using semigroups and groups of lower order. For AG-groupoids

we performed only one search for each order, as attempts to accelerate the search

using a case split were not successful. This might change in the future, when the

mathematical understanding of AG-groupoids has deepened further.

3.2.1 CSP and Minion

Constraint Programming is a powerful technique for solving large-scale combina-

torial problems. To get an overview of this area the reader might want to start
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with [77]. Here we provide just basic definitions meeting our needs.

Definition 20. A constraint satisfaction problem (CSP) is a triple (V,D,C),

consisting of a finite set V of variables, a finite set D, called the domain, of

values, and a set C containing subsets of DV (that is, all functions from V to D)

called constraints.

In practice, constraints, instead of being subsets of DV , are usually formulated

as conditions uniquely defining such subsets. Intuitively it is clear that one is

looking for assignments of values in the domain of a CSP to all variables such

that no constraint is violated. This is formalised in the next definition.

Definition 21. Let L = (V,D,C) be a CSP. A partial function f : V → D is an

instantiation. An instantiation f satisfies a constraint if there exists a function

F in the constraint, such that F (x) = f(x) for all x ∈ V on which f is defined.

An instantiation is valid if it satisfies all the constraints in C. An instantiation

defined on all variables is a total instantiation. A valid, total instantiation is a

solution to L.

The class of CSPs is a generalization of propositional satisfiability (SAT), and

is therefore NP-complete. Solving problems using CSPs proceeds in two steps:

modeling and solving. Solvers typically proceed by building a search tree, in

which the nodes are assignments of values to variables and the edges lead to

assignment choices for the next variable. If at any node a constraint is violated,

then search backtracks. If a leaf is reached, then no constraints are violated, and

the assignments provide a solution.

For our purposes we rely on Minion [21] as solver which offers fast, scalable

constraint solving. A major feature of modern SAT solvers is their optimised use

of modern computer architecture. Using this approach, Minion has been designed

to minimise memory usage.

3.2.2 Symmetry Breaking and GAP

CSPs are often highly symmetric. Given any solution, there can be others which

are equivalent in terms of the underlying problem. Symmetries may be inherent

in the problem, or be created in the process of representing the problem as a

CSP. Without symmetry breaking (henceforth SB), many symmetrically equiv-

alent solutions may be found and, often more importantly, many symmetrically

equivalent parts of the search tree will be explored by the solver. An SB method

aims to avoid both of these problems.
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Definition 22. Let L = (V,D,C) be a CSP.

(i) Elements in the set V × D are called literals. Literals are denoted in the

form (x = k) with x ∈ V and k ∈ D.

(ii) Let χ denote the set of all literals of L. A permutation π ∈ Sχ is a symmetry

of L if, under the induced action on subsets of χ, instantiations are mapped

to instantiations and solutions to solutions.

(iii) A variable-value symmetry is a symmetry π ∈ Sχ such that there exists an

element (τ, δ) in SV × SD with (x = k)π = (xτ = kδ) for all (x = k) ∈ χ.

The given definition of symmetry of a CSP is relatively strong. On the other

hand all symmetries are variable-value symmetries in our case and as such will

always send instantiations to instantiations. For more information on symmetries

in CSPs, including different definitions see [77, Chapter 10].

There is a general technique, called lex-leader, for generating constraints that

break symmetries [8]. The idea of lex-leader is to order solutions by defining

an order on the literals of the CSP. This allows one to define the canonical

representative in each set of symmetric solutions to be the solution which is

smallest (or largest) with respect to the order. To define an order on solutions

of a CSP L, first fix an ordering (χ1, χ2, . . . , χ|V ||D|) of the literals χ = V × D.

Given the fixed ordering of the literals, an instantiation can be represented as a

bit vector of length |V ||D|. The bit in the i-th position is 1 if χi is contained in the

instantiation and otherwise the bit is 0. The bit vector for the instantiation I ⊆ χ

corresponding to the ordering of the literals (χ1, χ2, . . . , χ|V ||D|) will be denoted

by (χ1, χ2, . . . , χ|V ||D|)|I . Of all bit vectors corresponding to a set of symmetric

solutions of L, one is the lexicographic maximal, which shall be the property

identifying the canonical solution. If ≥lex denotes the standard lexicographic

order on vectors, extend L by adding for all symmetries π the constraint

(χ1, χ2, . . . , χ|V ||D|)|I ≥lex (χπ1 , χ
π
2 , . . . , χ

π
|V ||D|)|I . (3.1)

Then, from each set of symmetric solutions in L, exactly those with lexicographic

greatest bit vector are solutions of the extended CSP.

To generate the constraints for symmetry breaking we use specialist software

that provides robust, efficient and extensive implementations of algorithms in

abstract algebra. GAP [20] (Groups, Algorithms and Programming) is a system

for computational discrete algebra with particular emphasis on, but not restricted

to, computational group theory. GAP provides a large library of functions that

implement algebraic algorithms.
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3.2.3 Search

We first formulate a CSP to search for all different AG-groupoids on the set

{1, 2, . . . , n} for a positive integer n, and will subsequently add symmetry break-

ing to it.

CSP 1. For a positive integer n define a CSP Ln = (Vn, Dn, Cn). The set Vn

consists of n2 variables {Ai,j | 1 ≤ i, j ≤ n}, one for each position in an (n× n)-

multiplication table, having domain Dn = {1, 2, . . . , n}. The constraints in Cn

are

AAi,j ,k = AAk,j ,i for all i, j, k ∈ {1, 2, . . . , n}, (3.2)

reflecting the left-invertive law.

In Minion the constraint (3.2) is enforced using element constraints. The

constraint element(vector, i, val) specifies that, in any solution, vector[i] = val.

We add a new variable Ta,b,c for each triple (a, b, c). The pair of constraints

element(column(c), Aa,b, Ta,b,c) and element(column(a), Ac,b, Ta,b,c)

then enforces (3.2) for the triple.

As mentioned in Section 3.2.2, modeling a problem often introduces symme-

tries. In our case this happens by introducing identifiers, 1 up to n, for the

n elements, even though we want them to be initially indistinguishable. The

symmetries are the isomorphism between AG-groupoids, hence elements in Sn.

To find a single representative from every equivalence class we have to break

these introduced symmetries. We want to use the lex-leader method described in

Section 3.2.2 and therefore define an ordering of the literals. We use

(A1,1, A1,2, . . . , A1,n, A2,1, . . . , A2,n, . . . , An,1, . . . , An,n) (3.3)

as variable order and define for the literals (Ai,j = k) ≤lex (Ar,s = t) if either Ai,j

comes earlier than Ar,s in (3.3) or k ≤ t. The canonical table in every isomorphism

class is then defined by having the lex-largest bit vector with respect to this

ordering of literals, which corresponds to the lex-smallest table with respect to

standard row-by-row ordering. By adding for each π ∈ Sn constraint (3.1) to Ln

we obtain a CSP Ln which has AG-groupoids of order n up to isomorphism as

solutions.

The data from running the instances Ln and Ln for 1 ≤ n ≤ 6 is summarised

in Table 3.1. Further classification for non-isomorphic AG-groupoids is presented
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Table 3.1: Solutions and timings for Ln and Ln
Order n 1 2 3 4 5 6

Ln, solutions 1 6 105 7 336 3 756 645 28 812 382 776

–, solve time ε ε ε ε 25 s 104 245 s

Ln, solutions 1 3 20 331 31 913 40 104 513

–, solve time ε ε ε ε ε 121 s

The times are rounded to seconds. They were obtained using version 0.11 of

Minion on a machine with 2.80 GHz Intel X-5560 processor. The symbol ε stands

for a time less than 0.5 s.

in the following section. A computation solving L7 to enumerate AG-groupoids

of order 7 up to isomorphism is currently running and counted already more than

3 · 1011 solutions in two weeks.

3.3 Classification of AG-groupoids

To obtain our classification results we have used Minion as discussed in the previ-

ous section to enumerate the entire space of non-isomorphic AG-groupoids as well

as to produce the multiplication tables for all structures. This data is then further

exploited to perform more fine-grained division into subclasses of AG-groupoids

with respect to the properties presented in Sec. 1.1. This classification task is

performed in GAP using functionality built on top of GAP’s Loops library [60].

Although for large data sets (e.g, in the case of the classification of AG-groupoids

of order 6) we use some parallelisation, this is fairly trivial and we will not present

details here.

Table 3.2 presents our main result, the enumeration of the total number of

Order 3 4 5 6

Total 20 331 31913 40104513

Associative & commutative 12 58 325 2143

Associative & non-commutative 0 4 121 5367

Non-associative & non-commutative 8 269 31467 40097003

Table 3.2: General classification result for AG-groupoids of orders 3–6.
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Order 3 4 5 6

Total 8 269 31467 40097003

AG-monoids 1 6 29 188

AG∗-groupoid 0 0 0 9

AG∗∗-groupoid 4 39 526 13497

Locally Associative 3 78 4482 1818828

AG-band 0 1 3 8

AG-3-band 0 1 3 10

Paramedial 8 264 31006 39963244

Cancellative 1 4 4 1

AG-groups 1 2 1 1

Table 3.3: Classification of non-associative AG-groupoids.

AG-groupoids of orders 3 to 6, which have not been known to date. These

numbers are further broken down with respect to associativity and commutativity

properties of the AG-groupoids. Observe that we only consider three classes here

as it can be easily shown that every AG-groupoid that is non-associative is also

non-commutative.

Tables 3.3, 3.4 and 3.5 then present the results of our further classification

into subclasses. Observe that the structures in Table 3.5 are all commutative

semigroups, which is the type of structure generalized by the notion of AG-

groupoid. As a consequence some of the classification results are expected to be

trivial as it is known that some of the properties are exhibited by all structures

in that class. For example, every associative structure is also locally associative,

and every semigroup is paramedial.

Similarly, in Table 3.4 it was to be expected that some of the rows would be

empty or contain all structures in the class. However, it should be pointed out

that it was assumed that all semigroups would also be AG∗- and AG∗∗-groupoids.

Yet the result of our classification clearly shows that for order 6 there has to

exist a further class of non-commutative semigroups that are neither AG∗- nor

AG∗∗-groupoids. This is a novel, non-trivial result from our classification which

will lead to a new class of structures to be investigated in the future.

A further minimal example, which was not known before, appears in Table 3.3.

We see that there are two non-associative AG-3-bands of order 6 which are not

AG-bands. This is of particular interest since it concerns AG-groupoids which
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are not semigroups.

Regarding the correctness of our results we are very confident that there are

no errors. We only utilized established and well-tested functionality in GAP

and Minion, and a more involved version of our approach has successfully been

used before [11, 12, 13]. Moreover, most of the results were verified using other

means. For AG-monoids we compared the numbers with a purely algebraic way

of counting which we will give in chapter 11. In the case of associative AG-

groupoids, that is for all results presented in Tables 3.4 and 3.5, we obtained

identical numbers from experiments with the GAP package Smallsemi [14], which

contains a database of all semigroups up to order 8. Finally, all numbers less

than one million in Tables 3.2 to 3.5 were verified by one of the reviewers using

Mace4 and Isofilter (parts of the Prover9/LADR package) [43].

3.4 Conclusions

We have presented novel classification results for the algebraic domain of AG-

groupoids. We have produced both enumeration results for orders up to 6 and

a partial classification of the domain using additional algebraic properties. To

obtain these results we have employed a combination of the constraint solver

Minion and the computer algebra system GAP. Thereby GAP is used on the one

hand to perform symmetry breaking during the constraint solving process and

on the other hand to perform the subsequent subclassification. While Minion

has been previously applied in the classification of Semigroups and Monoids, the

adaptation to our new application domain as discussed in Sec. 3.2 are both novel

and non-trivial.

One of the advantages of our classification approach over techniques that use

combinatorial or algebraic considerations for enumeration, is that it allows us to

produce the multiplication tables of the structures under consideration. These can

be further used to produce more fine-grained subclassifications as we have done in

the case of AG-groupoids via a two step approach: firstly separating with respect

to associativity and commutativity properties followed by a second refinement

step using more specialised properties. While these were primarily motivated by

mathematical considerations, the obtained results have already stimulated further

investigations into other properties that could help to further subdivide the do-

main and lead to interesting, distinct classes of algebraic structures. For example

our classification results of order 6 AG-groupoids have already yielded a hereto-
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fore unknown subclass of non-commutative semigroups that are neither AG∗- nor

AG∗∗-groupoids as well as a new subclass of non-associative AG-groupoids that

are AG-3-bands but not AG-bands. We hope to obtain more evidence on these

new classes once our classification of order 7 has concluded and will then start

its theoretical investigation.

In general, we see the work presented here as an important stepping stone for a

further more fine-grained charting for algebraic structures that are more general

than groups. Having the computational means to obtain reliable, non-trivial

classification results will play a crucial role in this endeavour. As a consequence

we intend to collate both our data and the functionality we have implemented in

the process of our investigations into a GAP package to be published shortly. For

more details about the package see chapter 12.
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Order 3 4 5 6

Total 0 4 121 5367

AG-monoids 0 0 0 0

AG∗-groupoid 0 4 121 5360

AG∗∗-groupoid 0 4 121 5360

Locally Associative 0 4 121 5367

AG-band 0 0 0 0

AG-3-band 0 0 0 0

Paramedial 0 4 121 5367

Cancellative 0 0 0 0

AG-groups 0 0 0 0

Table 3.4: Classification of associative, non-commutative AG-groupoids.

Order 3 4 5 6

Total 12 58 325 2143

AG-monoids 5 19 78 421

AG∗-groupoid 12 58 325 2143

AG∗∗-groupoid 12 58 325 2143

Locally Associative 12 58 325 2143

AG-band 2 5 15 53

AG-3-band 4 13 41 162

Paramedial 12 58 325 2143

Cancellative 1 2 1 1

AG-groups 1 2 1 1

Table 3.5: Classification of associative, commutative AG-groupoids.
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Chapter 4

Discovery of New Classes of

AG-groupoids

4.1 Introduction

We presented enumeration of AG-groupoids up to order 6 in Chapter 3 and

also we are constructing a GAP package AGGROUPOIDS for working with

AG-groupoids see Chapter 12 for more details about the package. Using AG-

GROUPOIDS and the Cayley tables obtained in enumeration we partially clas-

sified AG-groupoids in Chapter 3. We further investigated those Cayley tables

and thus we came across twenty new and interesting subclasses of AG-groupoids,

one new class of groupoid and one new class which is AG-groupoid as well as

semigroup. We are presenting all this new stuff in this chapter.

We prove the existence of a new class of groupoids which we call Bol∗-groupoid.

A groupoid is called Bol∗-groupoid if it satisfies the identity (ab · c)d = a ·
(bc · d). We call it Bol star groupoid because by taking d = b it becomes the

famous right Bol Identity. By a construction we prove that Bol star groupoids

are obtainable from semigroups through endomorphisms of semigroups. Due

to the unavailability of all the endomorphisms of semigroups we are unable to

confirm that we get all Bol∗-groupoids from semigroups. We found a new class

of semigroups and AG-groupoids which we call AG-groupoid semigroup, that

is a groupoid which satisfies left invertive law as well as associative law. This

class contain all commutative semigroups. However we study non-commutative

AG-groupoid semigroups because they are more interesting. This class has quite

different properties from the already known famous subclasses of semigroups.

We add the following nineteen new subclasses of AG-groupoids to the above

35
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mentioned classes of AG-groupoids: paramedial AG-groupoid, anti-commutative

AG-groupoid, transitively commutative AG-groupoid, self-dual AG-groupoid, Bol∗-

AG-groupoid, unipotent AG-groupoid, left alternative AG-groupoid, right al-

ternative AG-groupoid, alternative AG-groupoid, flexible AG-groupoid, quasi-

cancellative AG-groupoid, T 1-AG-groupoid, T 2-AG-groupoid, T 3
l -AG-groupoid,

T 3
r -AG-groupoid, T 3-AG-groupoid, T 4

f -AG-groupoid, T 4
f -AG-groupoid, T 4-AG-

groupoid.

We prove the existence of the above classes by providing their Cayley tables.

All our examples are non-associative except if otherwise necessary as in case of

AG-groupoid semigroup. We give their counting up to order 6. Relations between

them and to other classes are also discussed. Further we prove the existence of

zero-AG-groupoid, zero-AG-group. The chapter consists of a table and ten sec-

tions. Table 1 provides the counting of the new found classes of AG-groupoids for

the non-associative AG-groupoids. In Section 4.2 we discuss quasi-cancellative

AG-groupoids. Here we prove that every AG-band is quasi-cancellative and also

prove the famous Burmistrovich’s theorem for AG-groupoids. It states that “an

AG∗∗-groupoid S is a quasi-cancellative iff S is a semilattice of cancellative AG∗∗-

groupoids”. Section 4.3 is about anti-commutative AG-groupoids and transi-

tively commutative AG-groupoids. Here we prove that every anti-commutative

AG-groupoid and every cancellative AG∗∗-groupoid S is transitively commuta-

tive. Also the equivalence of AG-band locally associativity is proved for anti-

commutative AG-groupoid. In Section 4.4 we construct Bol∗-groupoids from

semigroups through endomorphisms of semigroups. The main results of Section

4.5 are of proving that Bol∗-AG-groupoid is the generalization of AG∗∗-groupoid

and a special kind of paramedial AG-groupoid and proving the in-existence of

non-associative paramedial AG-3-band. We emphasis on non-commutative AG-

groupoid semigroup in Section 4.6 that it does not lie in the known classes of

semigroups and provides an example of such semigroups in which the product

of idempotents is always an idempotent. It cannot contain left identity as well

as right identity and always satisfies paramedial property. In Section 4.7 we

introduce the concept of alternativity and flexibility from loop theory into AG-

groupoids. Here we prove two basic facts that every AG-3-band is flexible and that

in a right alternative AG-groupoid, square of every element commute with every

element. Section 4.8 is about the existence of self-dual AG-groupoid and unipo-

tent AG-groupoids. Here we prove that a self-dual AG-groupoid with left identity

becomes commutative monoid and also that in a left alternative self dual AG-

groupoid, square of every element commutes with every element. In Section 4.9



4.2. QUASI-CANCELLATIVITY OF AG-GROUPOIDS 37

we introduce 8 more AG-groupoids which we call types and are mentioned above.

Thus we prove that Every AG-3-band, T 1-AG-groupoid and T 2-AG-groupoid is

T 3-AG-groupoid and every T 2-AG-groupoid is Bol∗-AG-groupoid. For T 1-AG-

groupoid we prove that square of every element is idempotent and if it has left

identity also then it becomes a unitary AG-group.

As in semigroup theory the concept of zero-semigroup and zero-group exists,

we find a similar concept for zero-AG-groupoid and zero-AG-group in Section

4.10.

Table 4.1 presents the counting of the new subclasses of AG-groupoids. Note

that except from non-commutative AG-groupiod Semigroup only the number of

non-associative AG-groupoids is shown.

4.2 Quasi-cancellativity of AG-groupoids

In this section we introduce the notion of quasi-cancellativity from semigroup

into AG-groupoids. Quasi-cancellativity is the generalization of cancellativity.

We will consider cancellativity of AG-groupoids in Chapter 5.

Definition 23. An AG-groupoid S is quasi-cancellative if for any x, y ∈ S,

(i) x2 = xy and y2 = yx imply that x = y,

(ii) x2 = yx and y2 = xy imply that x = y.

Using our under construction package AGGROUPOIDS the two parts of the

above definition are equivalent for AG-groupoids up to order 6. Thus:

Conjecture 3. Conditions (i) and (ii) of Definition 23 are equivalent for AG-

groupoids.
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Order 3 4 5 6

Total 20 331 31913 40104513

Paramedial AG-groupoids 8 264 31006 39963244

Anti-commutative AG-groupoids 1 2 4 0

Transitively commutative AG-groupoids 3 61 2937 1239717

Self-dual AG-groupoids 0 8 133 4396

Bol∗-AG-groupoids 4 58 2706 1357494

Quasi-cancellative AG-groupoids 1 6 18 66

Non-commutative AG-groupiod semigroup 0 4 121 5367

Left alternative AG-groupoids 0 5 171 12029

Right alternative AG-groupoids 2 33 997 139225

Alternative AG-groupoids 0 2 59 4447

Flexible AG-groupoids 1 19 447 32770

T 1-AG-groupoids 2 14 101 783

T 2-AG-groupoids 1 3 8 16

T 3
l -AG-groupoids 2 17 135 1272

T 3
r -AG-groupoids 3 36 374 5150

T 3-AG-groupoids 2 16 111 870

T 4
f -AG-groupoids 1 13 90 784

T 4
b -AG-groupoids 0 1 6 11

T 4-AG-groupoids 0 1 3 7

Unipotent AG-groupoids 5 74 3946 1739186

Left nuclear square AG-groupoids 8 265 31127 40009235

Right nuclear square AG-groupoids 2 32 1083 169152

Middle nuclear square AG-groupoids 3 56 3131 1494920

Nuclear square AG-groupoids 2 32 1077 168431

Table 4.1: Classification and enumeration results for new subclasses of AG-

groupoids of orders 3–6.
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Example 9. A quasi-cancellative AG∗∗-groupoid of order 5.

· 1 2 3 4 5

1 1 1 1 1 1

2 1 2 2 4 5

3 1 2 3 4 5

4 1 5 5 2 4

5 1 4 4 5 2

Proposition 5. Every AG-band is quasi-cancellative.

Proof. Let S, be an AG-band such that for any x, y ∈ S we have

(i) x2 = xy and y2 = yx which by definition of AG-band become x = xy and

y = yx. Now x = xy = xy · y = y2x = yx = y.

(ii) x2 = yx and y2 = xy which by definition of AG-band become x = yx and

y = xy. Now x = yx = y2x = xy · y = y2 = y. Hence S is quasi-cancellative.

Conjecture 4. Every AG-3-band is quasi-cancellative.

Lemma 2. In a quasi-cancellative paramedial AG-groupoid S, for any x, y, a, b ∈
S the following statements hold

(i) xa = xb iff ax = bx;

(ii) x2a = x2b implies that xa = xb;

(iii) (xy)a = (xy)b implies that(yx)a = (yx)b.

Proof. (i) if xa = xb, then (xa)(xa) = (xb)(xa) and (xa)(xb) = (xb)(xb) so

that (ax)2 = (ax)(bx) and (bx)2 = (bx)(ax) which by Definition 23 implies

that ax = bx. The opposite implication follows by symmetry.

(ii) If x2a = x2b, then (x2a)a = (x2b)a and (x2a)b = (x2b)b which implies that

a2x2 = (ab)x2 or (ax)2 = (ax)(bx) (1)

and

(ba)x2 = b2x2 or (bx)2 = (bx)(ax) (2)

Thus from (1) and (2) by Definition 23(i) we have ax = bx. But then by

(i), also xa = xb
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(iii)

Let (xy)a = (xy)b then

a2(xy) = (ab)(xy)

(xy)2a2 = (xy)2(ab)

(yx)2a2 = (yx)2(ab)

Thus

[a(yx)]2 = [b(yx)][a(yx)] (3)

similarly (xy)a = (xy)b then

(ba)(xy) = b2(xy)

(xy)2(ba) = (xy)2b2

(yx)2b2 = (yx)2(ba)

[b(yx)]2 = (ab)(yx)2

This implies that

[b(yx)]2 = [a(yx)][b(yx)] (4)

from (3) and (4) by Definition 23(ii) we have a(yx) = (yx)b.

Burmistrovich’s theorem for AG-groupoids:

Here We prove the version of the famous Burmistrovich’s theorem of semi-

groups [4] for AG-groupoids. For AG-groupoids it will become as follows.

Theorem 4. An AG∗∗-groupoid S is quasi-cancellative iff S is a semilattice of

cancellative AG∗∗-groupoids.

Proof. Necessity: On S define the relation σ by xσy if for any a, b ∈ S ,xa = xb

if and only if ya = yb. It is clear that σ is an equivalence relation. Let xσy and

z ∈ S. If

(xz)a = (xz)b

=⇒ (az)x = (bz)x by left invertible law

=⇒ x(az) = x(bz) by Lemma 2(i)

=⇒ y(az) = y(bz) by hypothesis

=⇒ a(yz) = b(yz) by definition of AG∗∗-groupoid

=⇒ (yz)a = (yz)b by Lemma 2 (i)



4.3. ANTI-COMMUTATIVITY AND TRANSITIVELY COMMUTATIVITY41

By symmetry (yz)a = (yz)b implies that (xz)a = (xz)b thus it follows that xzσyz.

Now if

(zx)a = (zx)b

⇒ (xz)a = (xz)b by Lemma 2 (iii)

⇒ (yz)a = (yz)b as above

⇒ (zy)a = (zy)b by Lemma 2 (iii)

By symmetry (zy)a = (zy)b implies that (zx)a = (zx)b. Thus it follows that

zxσzy and hence σ is congruence. Further, Lemma 2(i) & Lemma 2(ii) imply

that S/σ is an AG-band and while Lemma 2(iii) implies that S/σ is commutative.

Therefore σ is a semilattice congruence. Suppose that zx = zy and xσz and yσz.

Since xσz, zx = zy implies that x2 = xy and since yσz , it implies that yx = y2.

But then Definition 23(i) yields x = y. If xz = yz with xσz and yσz then by

Lemma 2(i) zx = zy, and this reduces to the case just considered. Hence each

σ-class is cancellative.

Sufficiency : Suppose S is a semilattice of cancellative AG∗∗-groupoids. Let

x and y be elements such that x2 = xy and y2 = yx. Let β be the component of

S that contains xy. Since S is commutative being semilattice we have yx ∈ β as

well. Thus x2, y2 ∈ β. Since β is an AG∗∗-groupoid so by the closure property in

β, we have x, y ∈ β. But β is cancellative, and therefore the equality xx = xy

implies x = y. A similar argument applies if x2 = yx and y2 = xy.

Let us verify this by an example. Consider the Example 9. Since S =

{1, 2, 3, 4, 5} is quasi-cancellative AG∗∗-groupoid. So we can write S = {A =

{1} , B = {3} , C = {2, 4, 5}}. Here A,B and C are cancellative AG∗∗-groupoids

such that they commute with each other and A2 = A,B2 = B,C2 = C. We re-

mark that there are 1, 4, 12 non-associative quasi-cancellative AG∗∗-groupoids of

order 3, 4, 5 respectively and we have verified them all manually for this theorem.

4.3 Anti-commutativity and Transitively

Commutativity of AG-groupoids

Actually the notion of anti-commutativity and transitively commutativity had

been defined for AG-bands in [74] which is a very small class of AG-groupoids.

We make these definitions global for the whole AG-groupoids and prove their

existence in Examples 10 and 11.
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Definition 24. An AG-groupoid S is called anti-commutative if for all a, b ∈
S, ab = ba implies that a = b.

Definition 25. An AG-groupoid S is called transitively commutative if for

all a, b, c ∈ S, ab = ba and bc = cb implies that ac = ca.

Example 10. An anti-commutative AG-groupoid

· 1 2 3 4

1 1 3 4 2

2 4 2 1 3

3 2 4 3 1

4 3 1 2 4

Example 11. A transitively commutative AG-groupoid (a non-anti-commutative

AG-groupoid)

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 2 2 2 1

Theorem 5. Every cancellative AG∗∗-groupoid S is transitively commutative.

Proof. Let a, b, c ∈ S such that ab = ba, bc = cb. Then consider

b (ac) = a (bc) = a (cb) = c (ab) = c (ba) = b (ca)

which by left cancellativity implies that ac = ca.

Corollary 6. Every AG-group is transitively commutative.

Theorem 6. Every anti-commutative AG-groupoid S is transitively commutative.

Proof. Let S be an anti-commutative AG-groupoid and let a, b, c ∈ S such that

ab = ba, bc = cb. Then by definition of anti-commutativity, this implies that

a = b, b = c. But this implies that a = c and which further implies that ac = ca.

Hence S is transitively commutative.

Conjecture 5. Every anti-commutative AG-groupoid S is cancellative but con-

verse is not true.

Theorem 7. Let S be an anti-commutative AG-groupoid. Then the following are

equivalent.
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(i) S is AG-band;

(ii) S is locally associative.

Proof. (i) =⇒ (ii) is always true.

(ii) =⇒ (i). By definition of locally associativity and anti-commutativity, for

every a ∈ S we have

aa2 = a2a =⇒ a2 = a

4.4 Construction of Bol∗-groupoid from Semi-

groups

In the following we prove that from a given Bol∗-groupoid (S, ·) we can obtain

a semigroup and from a semigroup we can obtain a Bol∗-groupoid by defining a

new operation ∗ on S by

x ∗ y = (xp)y ∀x, y ∈ S.

Proposition 6. Let (S, ·) be a Bol∗-groupoid Define ∗ : S × S → S via

(x, y) 7→ xp · y where p is any fixed element. Then (S, ∗) is a semigroup.

Proof. Let x, y, z ∈ S. The set (S, ∗) is closed since xp · y is an element of S. To

check associativity

(x ∗ y) ∗ z = (((xp)y)p)z = (xp)((yp)z) = x ∗ (y ∗ z).

That is, (x ∗ y) ∗ z = x ∗ (y ∗ z)∀x, y, z ∈ S.
Thus (S, ∗) is a semigroup.

Example 12. A Bol∗-groupoid which is not Bol∗-AG-groupoid.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 3 4

For illustration of the Proposition 6 the following example is provided.

Example 13.
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Given the above Bol∗-groupoid (S, ·) in Example 12 then using Proposition 6

and taking p = 1 fixed, we get the semigroup (S, ∗) as in the following table.

∗ 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

Theorem 8. Let (S, ◦) be a semigroup. Let α, β ∈ End(S) such that α3 =

α, α2β = βα2, βαβ = αβ, β2 = β. Define x · y = α(x) ◦ β(y)∀x, y ∈ S then (S, ·)
is a Bol∗-groupoid.

Proof. Let a, b, c, d ∈ S. Then by definition, we have

((a ·b) ·c)) ·d = α(α(α(a)◦β(b))◦β(c))◦β(d) = α3(a)◦α2β(b))◦αβ(c))◦β(d) (5)

On the other hand, by definition and by using associativity, we have

a ·((b ·c) ·d) = α(a)◦((βα2(b)◦βαβ(c))◦β2(d) = ((α(a)◦βα2(b))◦βαβ(c))◦β2(d)

(6)

From (5) and (6), we can say that (S, ·) is a Bol∗-groupoid if α3 = α, α2β =

βα2, βαβ = αβ, β2 = β.

Remark 3. Note that if β is identity endomorphism I then (S, ·) is a Bol∗-

groupoid if α3 = α and if α is identity endomorphism I then (S, ·) is a Bol∗-

groupoid if β2 = β.

Unfortunately since all the endomorphisms are not available so we cannot

confirm that whether this construction will give us all the Bol∗-groupoids from

a semigroup. As a special case of this in [89] all Bol*-quasigroups have been

obtained from groups through involutive automorphisms because groups of large

orders are available along with their automorphisms. We have implemented this

in AGGROUPOIDS which gives all Bol*- quasigroups of order n. We have also

implemented the method for Bol∗-groupoids through involutive automorphisms

of semigroups which gives many examples of Bol∗-groupoids up to order 8 but

obviously not all.
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4.5 Paramedial AG-groupoids and

Bol∗-AG-groupoids

Some immediate observations from the definition of paramedial AG-groupoid S

are (i) Square of elements commute with each other and therefore an AG-band

which is also paramedial AG-groupoid must be commutative semigroup (ii) The

identity (ab)2 = (ba)2 holds (iii) The identity (ab)(cd) = (dc)(ba) holds (iv) Every

paramedial groupoid with left identity becomes an AG-groupoid.

Example 14. A Paramedial AG-groupoid.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 2

4 1 1 1 4

Example 15. A Bol∗-AG-groupoid.

· 1 2 3

1 1 1 1

2 1 1 1

3 1 2 2

Theorem 9. Non-associative paramedial AG-3-band does not exist.

Proof. Let S be a paramedial AG-3-band. Let a, b ∈ S. Now ab = a3b3 =

(ab)(a2b2) = (b2a2)(ba) = b3a3 = ba. Thus commutative semigroup .

Definition 26. An AG-groupoid S satisfying the identity

a(bc · d) = (ab · c)d (7)

is called Bol∗-AG-groupoid.

Lemma 3. Every AG∗∗-groupoid S is Bol∗-AG-groupoid.

Proof. Let a, b, c, d ∈ S.

(ab · c)d = (dc)(ab) by left invertive law

= a(dc · b) by a(bc) = b(ac)

= a(bc · d)

Thus S is an Bol∗-AG-groupoid.
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Lemma 4. Every Bol∗-AG-groupoid is paramedial AG-groupoid.

Proof. Let a, b, c, d ∈ S.

ab · cd = (cd · b)a by left invertive law

= (bd · c)a by left invertive law

= b(dc · a) by (7)

= b(ac · d) by left invertive law

= (ba · c)d by (7)

= (ca · b)d by left invertive law

= db · ca by left invertive law

Hence S is paramedial AG-groupoid.

By the above two lemmas Bol∗-AG-groupoid is the generalization of AG∗∗-

groupoid and a special kind of paramedial AG-groupoid.

Lemma 5. Every Bol∗-groupoid G with right identity e is a semigroup.

Proof. Take d = e in (7).

As Example 12 shows a Bol∗-groupoid not necessarily has left identity. But

it can have it without becoming semigroup as the following shows:

Example 16. A non-associative Bol∗-groupoid of order 5.

· 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1 4

4 1 1 1 1 3

5 1 2 3 4 5

Lemma 6. Let S be a Bol∗-groupoid having left identity e. Then,

(i) a(bc) = (ae · b)c;

(ii) (ab · e)c = a(be · c).

Proof. (i) Taking b = e in (7) and re-naming.

(ii) Taking c = e in (7) and re-naming.
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A left identity is left cancellative by its definition but not necessarily right

cancellative as Example 16 shows. But if the left identity is also right cancellative

as in the following example then it can enjoy more properties as in the lemma

following the example.

Example 17.

· 1 2 3 4

1 1 2 3 4

2 2 1 3 4

3 4 3 3 4

4 3 4 3 4

Lemma 7. Let S be a Bol∗-groupoid having left identity e such that e is cancella-

tive. Then,

(i) xe · e = x∀x ∈ S, where e is left identity in S;

(ii) (ae · be)e = ab;

(iii) (ab)e = (ae)(be).

Proof. (i) Taking b = c = e in Lemma 6 Part (i) and then using right cancella-

tivity of e.

(ii) Taking b = be and c = e in Lemma 6 Part (i) and then using (i).

(iii) Taking a = ae and b = be in Lemma 6 Part (ii) and then using (i).

Remark 4. In Example 17, 1 and 2 are both cancellative so here one might guess

that a right cancellative might be cancellative as in the case of AG-groupoids [88].

The following example shows that this is not so.

Example 18. A Bol∗-groupoid of order 4.

· 1 2 3 4

1 1 2 1 1

2 2 1 2 2

3 1 2 4 4

4 1 2 3 3

Here 4 is right cancellative but not left cancellative.
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4.6 AG-groupoid Semigroups

This class can be considered as a subclass of both semigroups and AG-groupoids.

Further this class trivially contains all commutative semigroups because they sat-

isfy both associative law and invertive law. Also this is easy to see that this class

is contained in the class of Bol∗-AG-groupoids. The interesting subclass of this

is the non-commutative AG-groupoid semigroups. Thus this class lies between

commutative semigroups and Bol∗-AG-groupoids. This new class of semigroups

is different from the other well-known subclasses of semigroups altogether as we

will prove. So we consider only the non-trivial case, that is, non-commutative

AG-groupoid semigroups. The existence of this class has been shown in Example

19. We emphasis that this class is very interesting and useful as every member

of this class enjoy at the same time the characteristics of semigroups as well as

AG-groupoids and thus can produce many new results. Also since the structure

of semigroups is very well-known and well studied at one hand and on the other

hand the structure of AG-groupoids is relatively a new structure and now re-

searchers have taken interest in that so they are bringing different notions from

semigroups into AG-groupoids. So this class can be used as a criterion for those

concepts. The new notion should be defined in a way that when those new no-

tions are applied to this class should not conflict with each other rather those

should coincide when come to this class. So this class can be used as tools for

the correctness of such definitions. The previously produced such work and the

upcoming both should be checked by researchers for the justification of new def-

initions. We check some quick and interesting results in the following. We also

give some conjectures whose counterexamples do not exist at least up to order 6

and suggest the detailed study of this class as a future work.

Example 19. A non-commutative AG-groupoid Semigroup.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 2

4 1 1 1 2

Recall that an AG-groupoid with right identity is a commutative monoid

which we do not consider here but can contain left identity as in Example 1 (i),

2 is left identity and hence is an AG-monoid. Also a semigroup can contain both
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left identity and right identity but the class we are considering can contain neither

as the following simple result shows.

Theorem 10. An AG-groupoid semigroup with left identity becomes commutative

monoid.

Proof. Let S be an AG-groupoid semigroup with left identity e. Let x be an

arbitrary element in S. Then

x = ex = (ee)x = (xe)e = x(ee) = xe.

Thus e is also the right identity and hence S is a commutative monoid.

Recall that a band in semigroups is called an AG-band in AG-groupoids.

The following shows that a band or AG-band does not exist for AG-groupoid

semigroups.

Theorem 11. An AG-groupoid semigroup S is paramedial AG-groupoid.

Proof. Let a, b, c, d ∈ S. Then by repeated use of associative, invertive and medial

laws, we have

ab · cd = (ab · c)d = dc · ab = (dc · a)b = ba · dc
= bd · ac = (bd · a)c = ca · bd = (ca · b)d = db · ca.

Thus S is paramedial AG-groupoid.

Corollary 7. An AG-groupoid semigroup is commutative semigroup if it is an

AG-band .

Corollary 8. An AG-groupoid semigroup S cannot be a rectangular semigroup.

Also the medial property of AG-groupoids shows that this class is closed under

idempotents.

Theorem 12. An AG-groupoid semigroup S is closed under idempotents.

Proof. Let a, b ∈ S such that a2 = a, b2 = b Then

ab = a2b2 = (ab)2.

Thus S is closed under idempotents.

From the above theorem this also follows that non-idempotent elements of

an AG-groupoid cannot be expressed as the product of idempotent elements.

Thus
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Corollary 9. An AG-groupoid semigroup S cannot be idempotent generated.

Theorem 13. An AG-groupoid semigroup S is commutative semigroup if S is

an inverse semigroup.

Proof. Let S be AG-groupoid semigroup such that S is also an inverse semigroup

Let a, b ∈ S. Then by definition aba = a, bab = b. Now by repeated use of asso-

ciative, invertive laws, we have

ab = (aba) (bab) = (aba) (ba · b) = ((aba)ba))b = (b · ba)(aba) = (b · (ba)a)(ba) =

(b · a2b)(ba) = (ba)(ab)(ba) = ba.

Thus S is commutative semigroup.

Corollary 10. A non-commutative AG-groupoid semigroup cannot be an inverse

semigroup and hence cannot be a Brandt semigroup.

Theorem 14. An AG-groupoid semigroup S is commutative semigroup if S is a

regular semigroup.

Proof. Let S be AG-groupoid semigroup such that S is also a regular semigroup.

Let a, b ∈ S. Then by definition for every x in S there exists y in S such that

xyx = x. Now by repeated use of associative, invertive laws, we have

xyx = x =⇒ xy = xyxy = (xy)2 and also xyx = x =⇒ yx = yxyx = (yx)2 .

Since in S, (xy)2 = (yx)2 and hence xy = yx. Thus S is commutative semi-

group.

Corollary 11. A non-commutative AG-groupoid semigroup cannot be regular and

hence cannot be a Clifford semigroup or an orthodox semigroup.

Our data of non-commutative AG-groupoid semigroups up to order 6 indicates

that they are not simple, that is, they have a proper ideal so we have the following:

Conjecture 6. Every non-commutative AG-groupoid semigroup is non-simple.

4.7 Alternative and Flexible AG-groupoids

In an attempt to bring AG-groupoids a bit closer to quasigroups and loops, the

concept of nucleus of AG-groupoids was introduced in [91] and by doing so six

new classes of AG-groupoids were defined. Here we introduce the concept of

flexibility and alternativity from loops. This will give us four more classes of

AG-groupoids.
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Definition 27. An AG-groupoid is called flexible if it satisfies the identity

xy · x = x · yx

Definition 28. An AG-groupoid is called left alternative if it satisfies the

identity

xx · y = x · xy

Definition 29. An AG-groupoid is called right alternative if it satisfies the

identity

xy · y = x · yy

Definition 30. An AG-groupoid is called alternative if it is both left alternative

and right alternative.

Example 20. A left alternative AG-groupoid of order 4.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 2

4 1 1 1 4

Example 21. A right alternative AG-groupoid of order 3.

· 1 2 3

1 1 1 1

2 1 1 1

3 1 2 1

Example 22. An alternative AG-groupoid of order 4.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 2

4 1 3 1 1

Proposition 7. Every AG-3-band is flexible.

Proof. Let S be an AG-3-band and x, y ∈ S. Then

x · yx = xx2 · yx = xy · x2x = xy · x

Hence S is flexible.
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Proposition 8. In a right alternative AG-groupoid, square of every element com-

mute with every element.

Proof. Let S be an AG-groupoid and x, y ∈ S. Then

x2y = yx · x = yx2

The following now easily follows.

Corollary 12. (i) Every right alternative AG-groupoid is locally associative.

(ii) A right alternative AG-monoid is commutative monoid.

Though a non-associative left alternative can be AG-monoid (see the following

Example) but then it cannot contain inverses because a left alternative AG-group

is abelian group [94].

Example 23. A left alternative AG-monoid of order 4.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 3

3 1 1 1 2

4 1 2 3 4

4.8 Self-dual AG-groupoids and Unipotent AG-

groupoids

Here we introduce the notion of self-duality from semigroup into AG-groupoids.

(Left) AG-groupoid and right AG-groupoid can be easily seen the dual of each

other. Thus the transpose of the multiplication table of an AG-groupoid becomes

right AG-groupoid. There are AG-groupoids whose transpose is also an AG-

groupoid. In this section we discuss such AG-groupoids.

Definition 31. An AG-groupoid is called self-dual if it is also a right AG-

groupoid.

Remark 5. Though not studied but the existence of the above class can be found

in the literature by the name almost semigroup.
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It is easy to prove that:

Corollary 13. A self-dual AG-groupoid with left identity becomes commutative

monoid.

Definition 32. An AG-groupoid S is called unipotent if for every a, b ∈ S, we

have a2 = b2.

Example 24. A self-dual AG-groupoid which is also unipotent.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 2

4 1 3 1 1

Theorem 15. In a left alternative self dual AG-groupoid, square of every element

commutes with every element.

Proof. Let S be an AG-groupoid and x, y ∈ S. Then

x2y = x · xy = yx2.

4.9 Type 1, Type 2, Type 3 and Type 4 AG-

groupoids

Definition 33. An AG-groupoid S is called a Type 1 AG-groupoid denoted

by T 1-AG-groupoid if for all a, b, c, d ∈ S,

ab = cd =⇒ ba = dc.

The following is an obvious fact.

Corollary 14. Let S be an AG-groupoid. Then the following are equivalent.

(i) ab = cd =⇒ ac = bd for all a, b, c, d ∈ S;

(ii) ab = cd =⇒ ca = db for all a, b, c, d ∈ S.
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Definition 34. An AG-groupoid S is called a Type 2 AG-groupoid denoted

by T 2-AG-groupoid if for all a, b, c, d ∈ S,

ab = cd =⇒ ac = bd.

Definition 35. An AG-groupoid S is called a Left Type 3 AG-groupoid de-

noted by T 3
l -AG-groupoid if for all a, b, c ∈ S,

ab = ac =⇒ ba = ca.

Definition 36. An AG-groupoid S is called a Right Type 3 AG-groupoid

denoted by T 3
r -AG-groupoid if for all a, b, c ∈ S,

ba = ca =⇒ ab = ac.

Definition 37. An AG-groupoid S is called a Type 3 AG-groupoid denoted

by T 3-AG-groupoid if it is both T 3
l -AG-groupoid and T 3

r -AG-groupoid.

Definition 38. An AG-groupoid S is called a Forward Type 4 AG-groupoid

denoted by T 4
f -AG-groupoid if for all a, b, c, d ∈ S,

ab = cd =⇒ ad = cb.

Definition 39. An AG-groupoid S is called a Backward Type 4 AG-groupoid

denoted by T 4
b -AG-groupoid if for all a, b, c, d ∈ S,

ab = cd =⇒ da = bc.

Definition 40. An AG-groupoid S is called a Type 4 AG-groupoid denoted

by T 4-AG-groupoid if it is both T 4
f -AG-groupoid and T 4

b -AG-groupoid.

Corollary 15. Let S be an AG-groupoid. Then S is a commutative semigroup if

any of the following holds.

(i) ab = cd =⇒ ad = bc for all a, b, c, d ∈ S;

(ii) ab = cd =⇒ da = cb for all a, b, c, d ∈ S.

Proof. Since ∀a, b ∈ S the equation ab = ab trivially holds. Now an application of

either of (i) and (ii) proves commutativity in S and thus becomes commutative

semigroup.
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There are some other cases but either they become semigroups or are equiv-

alent to the cases that we have already discussed.

The following are examples or counterexamples of some contained of the above

types.

Example 25. A T 3-AG-groupoid of order 3.

· 1 2 3

1 1 2 3

2 3 1 2

3 2 3 1

Example 26. A T 4-AG-groupoid of order 4 which is not T 2-AG-groupoid..

· 1 2 3 4

1 1 2 3 4

2 2 1 4 3

3 4 3 2 1

4 3 4 1 2

Example 27. A T 2-AG-groupoid of order 4 which is not T 4-AG-groupoid.

· 1 2 3 4

1 1 1 3 4

2 1 1 3 4

3 4 4 1 3

4 3 3 4 1

Example 28. A T 1-AG-groupoid of order 4 which is neither T 2-AG-groupoid nor

T 4-AG-groupoid.

· 1 2 3 4

1 1 1 3 3

2 1 1 3 3

3 3 3 1 1

4 3 3 1 2

Let us first put the previous known facts involving these types into the new

formate. Thus [57, Theorem 2.7, Page 68] now becomes:
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Theorem 16. Every AG-monoid is T 1-AG-groupoid.

Two generalizations of the above theorem were done in [91] which now read

in the new scenario as

Theorem 17. Let S be an AG∗∗-groupoid. Then S is a T 1-AG-groupoid if S has

a cancellative element.

More generally,

Theorem 18. Let S be an AG-groupoid. Then S is a T 1-AG-groupoid if S has

a left invertive left cancellative element.

Regarding T 3-AG-groupoid the following fact is known.

Theorem 19. Every AG-band is T 3-AG-groupoid.

The following theorem generalizes it to AG-3-band.

Theorem 20. [74] Every AG-3-band S is T 3-AG-groupoid.

Proof. Let a, b, c ∈ S. To prove S to be T 3
l -AG-groupoid, suppose ab = ac. Then

ba = b2b · a = ab · b2 = ac · b2 = ab · cb = ac · cb = (aa2)c · cb = (ca2)a · cb =

(ca2)c · ab = (ca2)c · ac = (ca2)a · c2 = ac · c2 = ca. Now to prove S to be

T 3
r−AG-groupoid, suppose ba = ca. Then ab = a2a · b = ba ·a2 = ca ·a2 = ac.

Theorem 21. Let S be a T 4-AG-groupoid. Then

(i) Square of every element of S is idempotent;

(ii) If S is an AG-monoid then S is a unitary AG-group.

( An AG-group is said to be a unitary if square of every element is equal to left

identity [88])

Proof. (i) Obviously the identity (aa)a = (aa)a holds trivially for every AG-

groupoid. Since S is a T 4−AG-groupoid, it becomes (aa)a = a(aa). Hence

S is locally associative.

(ii) Let S has left identity e then for all a in S we trivially have ae · e = ae · e,
which by the property of T 4−AG-groupoid implies that ae · ae = ee, which

by medial law implies a2e = ee, which then by cancellativity of e implies

that a2 = e. Hence the result.
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Theorem 22. Every T 1-AG-groupoid is Bol∗-AG-groupoid.

Proof. Let S be a T 1-AG-groupoid and a, b, c, d ∈ S. Then

(ab · c)d = dc · ab, by left invertive law

⇒ d(ab · c) = ab · dc, by definition of T 1-AG-groupoid

⇒ d(ab · c) = (dc · b)a, by left invertive law

⇒ d(ab · c) = (bc · d)a, by left invertive law

⇒ (ab · c)d = a(bc · d), by definition of T 1-AG-groupoid

Hence the result.

Remark 6. The converse is not true as the Bol∗-AG-groupoid given in Example

15 is not T 1-AG-groupoid.

From Table 4.1 this is obvious that right Type-3-AG-groupoid is not necessar-

ily left Type-3-AG-groupoid but one might gets the impression that the converse

may be true. The following example shows that the converse is also false.

Example 29. A T 3
l −AG-groupoid of order 4 which is not T 3

r−AG-groupoid.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 2

4 1 1 3 2

Theorem 23. The following facts always hold,

(i) A T 2-AG-groupoid is T 1-AG-groupoid;

(ii) A T 4−AG-groupoid is T 1-AG-groupoid;

(iii) A T 1-AG-groupoid is,

(a) T 3
l −AG-groupoid;

(b) T 3
r−AG-groupoid;

(c) T 3-AG-groupoid.

Proof. (i) Let a, b, c, d ∈ S and let ab = cd which by definition of T 2-AG-

groupoid implies that ac = bd. But then obviously bd = ac. Applying

definition again we have ba = dc. Hence S is T 1-AG-groupoid.
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(ii) Let a, b, c, d ∈ S and let ab = cd which by definition of T 4
f -AG-groupoid

implies that ad = cb. Now applying definition of T 4
b -AG-groupoid we have

ba = dc. Hence S is T 1-AG-groupoid.

(iii) (a) Apply definition of T 1-AG-groupoid with a = c, (b) is similar to (a) and

(c) follows from (a) and (b).

Corollary 16. The following facts always hold,

(i) A T 2-AG-groupoid is,

(a) T 3
l −AG-groupoid;

(b) T 3
r−AG-groupoid;

(c) T 3-AG-groupoid,

(ii) A T 4−AG-groupoid is,

(a) T 3
l −AG-groupoid;

(b) T 3
r−AG-groupoid;

(c) T 3-AG-groupoid.

4.10 Zero-AG-groupoid, Zero-AG-group

As in case of semigroups, there exist a zero-semigroup and zero-group, we prove

the existence of zero-AG-groupoid and zero-AG-group. and the most interesting

zero-AG-groupoid semigroup. Their definitions and examples are given in the

following.

Definition 41. An AG-groupoid S is called a zero-AG-groupoid if there exists

an element z in S such that S without z is an AG-groupoid and for all x in S we

have that xz = zx = z.

Definition 42. An AG-groupoid S is called a zero-AG-group if there exists an

element z in S such that S without z is an AG-group and for all x in S we have

that xz = zx = z.

Example 30. A zero-AG-groupoid of order 4.
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· 1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 2 2 2

4 1 3 3 3

Example 31. A zero-AG-group of order 4.

· 1 2 3 4

1 1 1 1 1

2 1 2 3 4

3 1 4 2 3

4 1 3 4 2

Theorem 24. Let G be an AG-group. Then Ga = aG = G∀a ∈ G.

Proof. (i) Ga ⊆ GG ⊆ G. Conversely, let g ∈ G and let e be the left identity

of G then

g = eg = aa−1 · g = ga−1 · a ∈ Ga.

Therefore, G ⊆ Ga. Hence Ga = G.

(ii) aG ⊆ GG ⊆ G. Conversely, let g ∈ G and consider

g = ee · g = ge · e = ge · aa−1 = a(ge · a−1) ∈ aG.

Therefore G ⊆ aG. Hence aG = G.

Corollary 17. [51] Let G be an AG-group having left identity e. Then G =

eG = Ge.

Corollary 18. Let G be an AG-group. Then for all a, b ∈ G, there exist x, y ∈ G
such that

ax = b, ya = b

Proposition 9. If an AG-groupoid S with zero is a zero-AG-groupoid-AG-group

then ∀a ∈ S\ {0} , Sa = aS = S.
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Proof. S = G ∪ {0} is a zero-AG-groupoid-AG-group. Here G = S\ {0}. Let

a ∈ S\ {0} =⇒ a ∈ G = S\ {0}. As G is an AG-group, so by Theorem 24

aG = Ga = G. Now

aS = aG ∪ {0} = G ∪ {0} = S, and

Sa = Ga ∪ {0} = G ∪ {0} = S.

Hence Sa = aS = S.



Chapter 5

On The Cancellativity of

AG-groupoids

5.1 Introduction

In this chapter we study some structural properties of AG-groupoids with respect

to the cancellativity. We prove that cancellative and non-cancellative elements

of an AG-groupoid S partition S and the two classes are AG-subgroupoids of S

if S has left identity e. Cancellativity and invertibility coincide in a finite AG-

groupoid S with left identity e. For a finite AG-groupoid S with left identity e

having at least one non-cancellative element, the set of non-cancellative elements

form a maximal ideal. We also prove that for an AG-groupoid S, the conditions

(i) S is left cancellative (ii) S is right cancellative (iii) S is cancellative, are

equivalent.

5.2 Cancellativity of AG-groupoids

In [57, Theorem 2.6], this has been proved that every left cancellative AG-

groupoid S is cancellative while without having a counterexample this has been

believed in the literature that the converse is not true in general but true only

if S has left identity. We prove that this is incorrect. The converse is also true

in general and does not require the existence of left identity. That is, every right

cancellative AG-groupoid S is also left cancellative. So we begin by the following

theorem.

Theorem 25. The following conditions are equivalent for an AG-groupoid S.

61
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(i) S is left cancellative;

(ii) S is right cancellative;

(iii) S is cancellative.

Proof. (1) ⇒ (2) Let S be left cancellative. Let a be an arbitrary element of S

and let xa = ya for all x, y ∈ S. Suppose k is any element of S. Then (ka)x =

(xa)k = (ya)k = (ka)y which by left cancellativity implies that x = y. Thus S

is right cancellative (2)⇒ (3) Let S be right cancellative and let ax = ay for all

x, y ∈ S. Suppose k is any element of S. Then ((xk)a)a = (aa)(xk) = (ax)(ak) =

(ay)(ak) = (aa)(yk) = ((yk)a)a which by repeated use of right cancellativity

implies that x = y. Thus S is left cancellative (3)⇒ (1) Obvious.

Corollary 19. The following conditions are equivalent for an AG-groupoid S.

(i) S is left quasigroup;

(ii) S is right quasigroup;

(iii) S is quasigroup.

The previous discussion was about the whole left cancellativity or right can-

cellativity of the AG-groupoid. In what follows we focus on the cancellativity

of an individual element of an AG-groupoid when the whole AG-groupoid is not

necessarily left cancellative or right cancellative. But first observe that an AG-

groupoid can have all, some or none of its elements as cancellative. For example

all the elements of the following AG-groupoid are cancellative.

Example 32. A cancellative AG-groupoid with left identity 0:

· 0 1 2 3 4

0 0 1 2 3 4

1 4 0 1 2 3

2 3 4 0 1 2

3 2 3 4 0 1

4 1 2 3 4 0

The following AG-groupoid has two cancellative elements which are the left

identity 0 and 3.

Example 33. An AG-groupoid with left identity 0:
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· 0 1 2 3 4

0 0 1 2 3 4

1 4 2 2 4 4

2 2 2 2 2 2

3 3 1 2 0 4

4 1 1 2 1 2

The following AG-groupoid has four cancellative elements and one non-cancel-

lative.

Example 34. An AG-groupoid with {0, 1, 2, 3} as cancellative elements and only

{4} as non-cancellative.

· 0 1 2 3 4

0 0 2 3 1 4

1 3 1 0 2 4

2 1 3 2 0 4

3 2 0 1 3 4

4 4 4 4 4 4

The following AG-groupoid has no cancellative element.

Example 35. An AG-groupoid without left identity and without any cancellative

element:

· 0 1 2 3 4

0 2 2 2 2 2

1 2 0 2 2 4

2 2 2 2 2 2

3 0 0 2 4 4

4 2 2 2 2 2

Theorem 26. Every right cancellative element of an AG-groupoid S is (left)

cancellative.

Proof. Let S be an AG-groupoid. Let a be an arbitrary right cancellative element

of S. Suppose ax = ay for all x, y ∈ S. Then ((xa)a)a = (aa)(xa) = (ax)(aa) =

(ay)(aa) = (aa)(ya) = ((ya)a)a which by repeated use of right cancellativity

implies x = y. Thus a is left cancellative. Hence every right cancellative element

of S is left cancellative.
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Next we need the following theorem from [57].

Theorem 27. In an AG-groupoid S with left identity e, ab = cd ⇒ ba = dc for

all a, b, c, d ∈ S.

Theorem 28. Let S be an AG-groupoid with left identity e. Then every left

cancellative element is also right cancellative.

Proof. Let a be an arbitrary left cancellative element of S. Suppose xa = ya for

all x, y ∈ S. Then by Theorem 27, we have ax = ay. Which by left cancellativity

implies x = y. Thus a is right cancellative. Hence every left cancellative element

of S is right cancellative.

Remark 7. From Theorem 27, this is clear that if the AG-groupoid S has left

identity e then e will always be cancellative because e by its definition is left

cancellative.

Next we prove that the set of cancellative elements and the set of non-

cancellative elements of an AG-groupoid S form a partition of S.

Theorem 29. Let S be an AG-groupoid and let a, b, c ∈ S. Define on S the

relation ∼ as, a ∼ b ⇔ a and b are both cancellative or non-cancellative. Then

∼ is an equivalence relation.

Proof. Since a, a are both cancellative or non-cancellative. Therefore a ∼ a. Thus

∼ is reflexive. Suppose now a ∼ b then a and b are both cancellative or non-

cancellative. Which implies that b and a are both cancellative or non-cancellative.

Which implies that b ∼ a. Thus ∼ is symmetric. Next suppose that a ∼ b and

b ∼ c then a and b are both cancellative or non-cancellative and b and c are both

cancellative or non-cancellative. Which implies that a and c are both cancellative

or non-cancellative and so a ∼ c. Thus ∼ is transitive. Hence ∼ is an equivalence

relation.

Corollary 20. Cancellative and non-cancellative elements of an AG-groupoid S

partition S.

Next we prove that the two classes will be AG-subgroupoids of S, if S has left

identity.

Lemma 8. The set of cancellative elements of an AG-groupoid S with left identity

e is an AG-subgroupoid of S.
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Proof. Let H = {a ∈ S: a is cancellative}. Clearly H is non-empty as e ∈ H by

Remark 7. Now let a1, a2 ∈ H and let a = a1a2. We show that a is cancellative.

Suppose ax = ay for all x, y ∈ S. Then (xa2)a1 = (a1a2)x = ax = ay =

(a1a2)y = (ya2)a1 which by cancellativity of a1 and a2 implies x = y. Thus a

is left cancellative and hence cancellative by Theorem 28. This implies a ∈ H.
Hence H is an AG-subgroupoid of S.

In Example 32, H = S, in Example 33, H = {0, 3}, in Example 34, H =

{0, 1, 2, 3} that can be easily seen as an AG-subgroupoid of S.

Remark 8. Computer search shows the smallest non-associative AG-groupoid to

be of order 3. But how many non-isomorphic AG-groupoids of order 3 or higher

order exist, no one has counted yet, neither computationally nor algebraically. So

we suggest this as a future problem.

Example 36. A non-associative AG-groupoid of order 3 :

· 0 1 2

0 2 2 2

1 0 2 2

2 2 2 2

Lemma 9. Every cancellative element of an AG-subgroupoid S with left identity

e is the product of two cancellative elements of S.

Proof. By Remark 7, e is cancellative and e = ee. Let a be an arbitrary non-trivial

cancellative element of S. Let a = a1a2. We show that a1, a2 are both cancellative.

Suppose xa2 = ya2 for all x, y ∈ S. Then ax = (a1a2)x = (xa2)a1 = (ya2)a1 =

(a1a2)y = ay which implies that x = y since a is cancellative. Thus a2 is right

cancellative and hence cancellative by Theorem 26. Now suppose a1x = a1y.

Then

a(xa2) = (a1a2)(xa2)

= (a1x)(a2a2) = (a1y)(a2a2)

= (a1a2)(ya2) = a(ya2),

which by cancellativity of a and a2 implies that x = y. Thus a1 is left cancellative

and hence cancellative by Theorem 28.
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Note that Lemma 9 does not hold for a non-cancellative element. A non-

cancellative element can be expressed as the product of a cancellative element and

a non-cancellative element or as the product of two non-cancellative elements as

in Example 33, 2 = 0·2 or 2 = 2·2, where 0 is cancellative and 2 is non-cancellative

elements of S.

Corollary 21. In an AG-subgroupoid S with left identity e the product of two

non-cancellative elements or one cancellative and one non-cancellative is always

non-cancellative, that is, if a or b is non-cancellative then ab is non-cancellative.

Lemma 10. The set of all non-cancellative elements of an AG-groupoid S with

left identity e is either empty or an AG-subgroupoid of S.

Proof. Let K = {a ∈ S: a is non-cancellative}. Clearly K is empty if S is can-

cellative. Suppose S is not cancellative. Then e /∈ K since e is always cancellative.

Now let a1, a2 ∈ K and let a = a1a2. We show that a is non-cancellative,that is,

a ∈ K. Suppose a /∈ K then a is cancellative and consequently a1, a2 are can-

cellative by Lemma 9 and thus a1, a2 /∈ K, which is a contradiction. Therefore

a ∈ K. Thus K is an AG-subgroupoid of S.

In Example 32, K = φ, in Example 33, K = {1, 2, 4}, in Example 34, K = {4}
and in Example 35, K = S that can easily be seen as an AG-subgroupoid of S

in the non-empty case.

Thus from Corollary 20, Lemma 8 and Lemma 10, it follows that:

Theorem 30. Cancellative and non-cancellative elements of an AG-groupoid S

with left identity e partition S into two AG-subgroupoids of S.

As an application of our theory to the ideal theory of AG-groupoids, we have

the following:

Corollary 22. A proper (left,right) ideal I of an AG-groupoid S with left identity

e cannot be a subset of H.

Proof. Since the product of the non-cancellative elements of S with the elements

of H cannot be contained in H by Lemma 9. So a proper (left,right) ideal of S

cannot be a subset of H.

Next we show that none of the elements of the proper (left,right) ideal can lie

in H at least in finite case.
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Corollary 23. A proper (left,right) ideal of a finite AG-groupoid S with left

identity e is a subset of K.

Proof. Let S = {s1, s2, . . . sn} and let I be a proper left ideal of S. Let a ∈ I be

such that a ∈ H. Then since a is cancellative therefore s1a, s2a, . . . sna ∈ I are all

distinct. This implies that I and S have the same number of elements which is a

contradiction. So a /∈ H. Therefore I ⊆ K. Other cases are similar.

Corollary 24. For an AG-groupoid S with left identity e having at least one

non-cancellative element, K is always a maximal ideal.

Proof. It follows from Corollary 21 and 23.

Next we prove that cancellativity and invertibility coincide in a finite AG-

groupoid S with left identity e.

Lemma 11. Every invertible element of an AG-groupoid with left identity e is

cancellative.

Proof. Suppose a is an invertible element then there exists a−1 ∈ S such that

aa−1 = a−1a = e. Suppose xa = ya then x = ex = (a−1a)x = (xa)a−1 =

(ya)a−1 = (a−1a)y = ey = y. Thus a is right cancellative and hence cancellative.

Corollary 25. An AG-group G is cancellative [51].

Lemma 12. Every cancellative element of a finite AG-groupoid S with left iden-

tity e is invertible.

Proof. Let S = {s1, s2, . . . sn} and let a be an arbitrary cancellative element of

S. Then clearly as1, as2, . . . asn are all distinct. Since S is finite therefore there

must exists a positive integer i ∈ {1, 2, . . . n} such that asi = e but then sia = e

follows by Theorem 27. Hence a is invertible.

Now the following theorem follows.

Theorem 31. Let S be a finite AG-groupoid with left identity e then a is invertible

⇔ a is cancellative.

In Example 32, all elements are cancellative as well as invertible, in Example

33, 0 and 3 are cancellative as well as invertible elements, in Example 34, the

elements 0, 1, 2, 3 are both cancellative and invertible and in Example 35, there

is no cancellative and no invertible element.
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Remark 9. If the AG-groupoid S does not have left identity, then Theorem 31

does not hold as the following example shows:

Example 37. A cancellative AG-groupoid without left identity:

· 0 1 2 3 4

0 2 1 0 4 3

1 0 4 3 2 1

2 3 2 1 0 4

3 1 0 4 3 2

4 4 3 2 1 0

Corollary 26. A finite cancellative AG-groupoid with left identity e is an AG-

group.

The AG-groupoid in Example 32 is an AG-group.

Theorem 32. The direct product S1 × S2 of two cancellative AG-groupoids S1

and S2 is cancellative.

Proof. Suppose the AG-groupoids S1 and S2 are cancellative. Then S1 × S2 is

also an AG-groupoid by [55, Page 462]. Now let a, x1, y1 ∈ S1 and b, x2, y2 ∈ S2

then consider (a, b)(x1, y1) = (a, b)(x2, y2), which implies (ax1, by1) = (ax2, by2),

from this we get that ax1 = ax2, by1 = by2, which by cancellativity of S1 and S2

implies that x1 = x2 and y1 = y2. Thus S1 × S2 is cancellative.

Finally let us apply the concept of cancellativity in the proof of the Theorem

27 which has been proved in [57] without this. The proof becomes a bit easier.

Proof. (ba)e = (ea)b = ab = cd = (ec)d = (dc)e⇒ ba = dc, since e is cancellative.

Conclusion: In this section we have proved that a right cancellative element

of an AG-groupoid S (not necessarily having left identity) is left cancellative.

This has also been shown that a left cancellative element of an AG-groupoid S

is right cancellative if either S is cancellative or if S has left identity. But if

S is not cancellative or S does not have a left identity then we are unable to

prove that a left cancellative element is also right cancellative. Thus we had to

take an AG-groupoid S with left identity e. This requires further investigation to

remove this condition. If this could be proved then most of our results will hold

in general. So we suggest it as an open problem:
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Problem 1. Prove or disprove that every left cancellative element is also right

cancellative of an AG-groupoid S without left identity.

5.3 Partial Solution to The Open Problem

In this section we partially resolve positively the open problem that was posed

in the previous section. We also introduce the notion of nucleus from quasi-

groups to the AG-groupoids and derive a number of useful consequences of this

for AG∗∗-groupoids. Moreover we generalize a couple of the most well-known

results. In the end we prove the in-existence of AG-3-bands (and AG-bands) for

the non-associative AG∗∗-groupoids and AG∗-groupoids and also the equivalence

of commutativity and associativity for AG-3-bands.

Recall from Section 1 that every right cancellative element of an AG-groupoid

S is left cancellative. It was then posed as an open problem that whether the

converse also holds or not. To answer this problem in negative, we need a coun-

terexample, that is, all we need a Cayley table of an AG-groupoid which is not

AG-monoid whose nth row is duplicate free but nth column is not.

Order 3 4 5 6

Total 20 331 31913 40104513

Associative and commutative 12 58 325 2143

Associative and non-commutative 0 4 121 5367

Non-associative 8 269 31467 40097003

Also we are preparing a GAP package “AGGROUPOIDS” for AG-groupoids

which will be published shortly. The package AGGROUPOIDS has many func-

tions for working with AG-groupoids. Thus using AGGROUPOIDS we have

checked all of our data of Non-associative AG-groupoids presented in Table 3.2

and thus concluded that there is no counterexample up to order 6.

This is also worth mentioning that there exist non-AG-groupoid semigroups

even of small order 3 which has the required property. Example of one such

semigroup of order 3 is given in the following table.

· 1 2 3

1 1 1 1

2 1 1 1

3 1 2 3

We partially answer this problem in positive here. We prove that if a is a

left cancellative element of an AG-groupoid S then a is also right cancellative
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at least in the cases (i) If a2 is left cancellative (ii) If a is idempotent (iii) If

there exists a left nuclear left cancellative element in S (Theorem 35) (iv) If a is

the unique left cancellative element in S (Corollary 30) (v) If S is an AG-band

(Corollary 27) (vi) If S is AG∗-groupoid (Theorem 37) (vii) If S is AG∗-groupoid

(Theorem 39). Then using the cancellativity of AG∗-groupoid and introducing

the concept of nucleus from quasigroups and loops into AG-groupoids we prove

that (i) Every AG∗∗-groupoid S is left nuclear square (Lemma 13) (ii) Left nu-

cleus is a semigroup for AG∗∗-groupoid S (Theorem 40) (iii) If middle nucleus

or right nucleus of AG∗∗-groupoid S contains a cancellative element then S be-

comes commutative semigroup (Theorem 41 and Theorem 42) and consequently

we have that the middle and right nuclei of a cancellative non-associative AG∗∗-

groupoid are always empty (Corollary 31 and Corollary 32). Further from the

aspect of the cancellativity of AG-groupoids we have proved a number of results

such as (i) Every left cancellative element of an AG-groupoid S is the product

of a left cancellative element and a right cancellative element of S in this order

and the product of two right cancellative elements is left cancellative (Theorem

36 and Lemma 14). A cancellative idempotent element of an AG∗-groupoid S is

left identity (Theorem 44). If k is a cancellative and locally associative element

of an AG∗∗-groupoid S then k is left nuclear (Theorem 46). The centre of a

cancellative and non-associative AG∗∗-groupoid is empty (Corollary 37). More-

over we generalize one of the most well-known result Mushtaq and Yusuf [57,

Theorem 2.7, Page 68] for AG-monoids to AG∗∗-groupoid and as well as to AG-

groupoids. The result states “Let S be an AG-groupoid with left identity e. Then

ab = cd ⇒ ba = dc for every a, b, c, d ∈ S”. Our generalizations are: (i) Let S

be an AG∗∗-groupoid. Let a, b, c, d ∈ S. Then ab = cd ⇒ ba = dc if there exists

a right cancellative in S and (ii) Let S be an AG-groupoid. Let a, b, c, d ∈ S.

Then ab = cd ⇒ ba = dc if there exists a left nuclear left cancellative element

in S (Theorem 38 and Theorem 34). Some other generalizations can be found

in (Theorem 43 and Corollary 37). Examples from [15] are provided whenever

needed which we have checked by AGGROUPOIDS.

Definition 43. Let S be an AG-groupoid. Then the set

Nλ = {x ∈ S;x(yz) = (xy)z for every y, z ∈ S}

is called the left nucleus. Similarly, the set

Nµ = {x ∈ S; y(xz) = (yx)z for every y, z ∈ S}
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is called the middle nucleus and the set

Nρ = {x ∈ L; y(zx) = (yz)x for every y, z ∈ S}

is called the right nucleus of S.

Definition 44. Let S be an AG-groupoid. Then a ∈ S is called left nuclear if

a ∈ Nλ, middle nuclear if a ∈ Nµ, right nuclear if a ∈ Nρ. Similarly a ∈ S is

called left nuclear square if a2 ∈ Nλ, middle nuclear square if a2 ∈ Nµ, right

square nuclear if a2 ∈ Nρ. S is called left nuclear square if a2 ∈ Nλ, middle

nuclear square if a2 ∈ Nµ, right nuclear square if a2 ∈ Nρ ∀a ∈ S.

Before we embark on the open problem we generalize the following theorem

from [57, Theorem 2.7, Page 68] which was claimed only for AG-monoids.

Theorem 33. Let S be an AG-groupoid with left identity e. Then ab = cd ⇒
ba = dc for every a, b, c, d ∈ S.

In the following theorem, We generalize it to any AG-groupoid.

Theorem 34. Let S be an AG-groupoid. Let a, b, c, d ∈ S. Then ab = cd⇒ ba =

dc if there exists a left nuclear left cancellative element in S.

Proof. Let k be a left nuclear and left cancellative element in S. Let ab =

cd. consider k(ba) = (kb)a = (ab)k = (cd)k = (kd)c = k(dc) which by left

cancellation of k implies that ba = dc.

Remark 10. If S has left identity e then since e is always left nuclear and left

cancellative so taking k = e, Theorem 34 becomes Theorem 33.

The following theorem claims that the problem is resolved if at least one of

the condition is met.

Theorem 35. Let S be an AG-groupoid. Let a be a left cancellative element.

Then a is also right cancellative if any of the following holds.

(i) a2 is left cancellative

(ii) a is idempotent

(iii) There exists a left nuclear left cancellative element in S.

Proof. (i) Let xa = ya for all x, y ∈ S. Then a2x = (xa)a = (ya)a = a2y ⇒
x = y by left cancellativity of a2. Hence a is also right cancellative.
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(ii) Let xa = ya for all x, y ∈ S. Then ax = a2x = (xa)a = (ya)a = a2y = ay.

This implies that x = y by left cancellativity of a. Hence a is also right

cancellative.

(iii) By using Theorem 34 and left cancellativity, we have x = y. Hence a is also

right cancellative.

There may or may not be other situations in which the problem holds in

general. Now we look at some special subclasses of AG-groupoids for which the

problem holds. From Theorem 35 (ii), the problem solves for AG-bands as the

following corollary claims:

Corollary 27. In an AG-band every left cancellative element is also right can-

cellative and hence cancellative.

From the following theorem we will derive two more situations in which the

problem holds.

Theorem 36. Every left cancellative element of an AG-groupoid S is the product

of a left cancellative element and a right cancellative element of S in this order.

Proof. Let a be an arbitrary left cancellative element of S. Let a = a1a2. We

show that a1 is left cancellative and a2 is right cancellative. Suppose xa2 = ya2

for all x, y ∈ S. Then ax = (a1a2)x = (xa2)a1 = (ya2)a1 = (a1a2)y = ay which

implies x = y by the left cancellativity of a. Thus a is right cancellative. Now

suppose a1x = a1y for all x, y ∈ S. Then a(xa2) = (a1a2)(xa2) = (a1x)(a2a2) =

(a1y)(a2a2) = (a1a2)(ya2) = a(ya2) which by left cancellativity of a and right

cancellativity of a2 implies x = y thus a1 is left cancellative.

Since a right cancellative element is left cancellative. Thus:

Corollary 28. Every left cancellative element of an AG-groupoid S is the product

of two left cancellative elements of S.

Remark 11. From Corollary 27 the converse, that is, the product of two left

cancellative elements of an AG-groupoid S is left cancellative does not follow.

In the light of Corollary 27 and Theorem 35 Part (i), the open problem now

reduces to :

Problem 2. Prove or disprove that the product of two left cancellative elements

of S is left cancellative.
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The following is another useful conclusion from Theorem 36.

Corollary 29. If an AG-groupoid S has a unique left cancellative element then

it must be idempotent.

Proof. Let a be an arbitrary left cancellative element of S. Then by Corollary

27, a = a1a2 where a1, a2 are left cancellative and by uniqueness a = a1 = a2.

Therefore a = a2. Hence a is idempotent.

From Corollary 28 and Theorem 35 Part(ii) the open problem resolves par-

tially as the following corollary.

Corollary 30. If an AG-groupoid S has a unique left cancellative element then

it must be cancellative.

Now we prove the problem holds for AG∗-groupoids.

Theorem 37. Let S be an AG∗-groupoid. Let a be a left cancellative element.

Then a is also right cancellative.

Proof. Let a be a left cancellative element of S.

Let xa = ya, for all x, y ∈ S.
Then a2x = (xa)a = (ya)a = a2y

⇒ a(ax) = a(ay) by definition of AG∗-groupoid

⇒ x = y, by using twice the left cancellativity of a.

Hence a is also right cancellative.

In what follows we resolve completely the open problem for AG∗∗-groupoids

which is a huge subclass of AG-groupoids. In fact it contains all AG-monoids. In

this case every left cancellative element becomes right cancellative. But before

proving that, we will prove the version of Theorem 34 for AG∗∗-groupoid as a

special case.

Lemma 13. Every AG∗∗-groupoid S is left nuclear square.

Proof. Suppose a is arbitrary element of S. Using definition of AG∗∗-groupoid,

left invertive law and medial law, we have for all x, y ∈ S
a2(xy) = x(a2y) = x[(ya)a)] = (ya)(xa) = (yx)a2 = (a2x)y ⇒ a2 ∈ Nλ.

Hence S is a left nuclear square.
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Lemma 14. Let S be an AG-groupoid. Then the product of two right cancellative

elements is left cancellative.

Proof. Let a1, a2 ∈ S are right cancellative elements and let a = a1a2. We show

that a is left cancellative. Suppose ax = ay then (xa2)a1 = (a1a2)x = ax = ay =

(a1a2)y = (ya2)a1 which by right cancellativity of a1 and a2 implies x = y. Thus

a is left cancellative.

Remark 12. Lemma 14 does not conflict with Corollary 27 because a right

cancellative element is left cancellative [88].

Theorem 38. Let S be an AG∗∗-groupoid. Let a, b, c, d ∈ S. Then ab = cd ⇒
ba = dc if there exists a right cancellative in S.

Proof. Let k be a right cancellative element in S. Then k2 is left cancellative by

Lemma 14 and k2 ∈ Nλ by Lemma 13 and thus by Theorem 34, ab = cd⇒ ba =

dc.

Now we are ready to attack on the open problem for AG∗∗-groupoids.

Theorem 39. Every left cancellative element of AG∗∗-groupoid S is also right

cancellative.

Proof. Let a be an arbitrary left cancellative element of S. Suppose xa = ya for

all x, y ∈ S. Since a is a left cancellative so there exist a left cancellative element

l and a right cancellative element r such that a = lr by Theorem 36. Thus by

Theorem 38, we have ax = ay which by left cancellativity of a implies x = y.

Hence a is right cancellative. Thus for AG∗∗-groupoid left cancellativity and right

cancellativity coincide.

In the following we derive some consequences for AG∗∗-groupoids which we

predict as much useful for further work on AG∗∗-groupoids .

Theorem 40. Nλ is semigroup for AG∗∗-groupoid S.

Proof. Clearly Nλ is non-empty as square of every element belongs to Nλ by

Lemma 13. Let a, b ∈ Nλ ∀y, z ∈ S. Now

(ab)(yz) = a[b(yz)] since a ∈ Nλ

= a[(by)z] since b ∈ Nλ

= [a(by)]z since a ∈ Nλ

= [(ab)y]z since a ∈ Nλ

=⇒ ab ∈ Nλ.
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Thus Nλ is an AG∗∗-subgroupoid of S. Associativity follows by definition of Nλ.

Hence Nλ is a semigroup.

Theorem 41. If Nρ of AG∗-groupoid S contains a cancellative element. Then S

is commutative semigroup.

Proof. Let a ∈ Nρ such that a is cancellative then

(yz)a = y(za) for all y, z ∈ S
⇒ (yz)a = z(ya) by definition of AG∗-groupoid

⇒ (yz)a = (zy)a since a ∈ Nρ

⇒ yz = zy, by cancellativity of a

⇒ S is commutative. Therefore S is commutative semigroup.

Corollary 31. For a cancellative non-associative AG∗-groupoid Nρ = φ.

Theorem 42. If Nµ of AG∗-groupoid S contains a cancellative element. Then S

is commutative semigroup.

Proof. Let a ∈ Nµ such that a is cancellative then

(ya)z = y(az) for all y, z ∈ S
(ya)z = a(yz) by definition of AG∗-groupoid

z(ya) = (yz)a by Theorem 37

y(za) = (yz)a by definition of AG∗-groupoid

=⇒ a ∈ Nρ

which by Theorem 41 implies that S is commutative semigroup.

Corollary 32. For a cancellative non-associative AG∗∗-groupoid Nµ = φ.

It can easily be verified that in an AG∗∗-groupoid S, (ab)(cd) = (dc)(ba) and

(ab)2 = (ba)2 for all a, b, c, d ∈ S.

Lemma 15. If an AG∗∗-groupoid S is also an AG-band then it becomes commu-

tative semigroup.

Proof. Let a, b ∈ S. Then (ab) = (ab)2 = (ba)2 = (ba). Hence S is commutative

semigroup.
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The following is a generalization of [78, Theorem 6, Page 1665].

Theorem 43. A cancellative locally associative AG∗∗-groupoid S is commutative

semigroup.

Proof. Let S be a cancellative locally associative AG∗∗-groupoid. Then for all

a, b ∈ S by using medial law and local associativity of S, we have

(ab)(ab)2 = (ab)(a2b2) = (aa2)(bb2) = (a2a)(b2b) = (a2b2)(ab)

= (ba)(b2a2) = (ba)(ba)2 = (ba)

Since (ab)2 = (ba)2 so by cancellativity ab = ba. Thus S is commutative.

and hence commutative semigroup.

Theorem 44. A cancellative idempotent element of an AG∗∗-groupoid S is left

identity.

Proof. Let x be an arbitrary element of S. By idempotency of a and Lemma 13,

we have a(ax) = a2(ax) = (a2a)x = ax. Which by cancellativity of a implies that

ax = x for all x ∈ S. Which then implies that a is left identity of S.

Corollary 33. A cancellative AG∗∗-groupoid can have at most one idempotent.

Proof. Because in AG-groupoid left identity is unique .

Corollary 34. A cancellative AG-monoid has exactly one idempotent which is

the left identity.

From this we recover [78, Theorem 7, Page 1666].

Corollary 35. An AG-group has exactly one idempotent which is the left identity.

Theorem 45. Let S be an AG∗-groupoid. Let k be a cancellative element of S

such that ka = ak, kb = bk where a, b ∈ S. Then ab = ba.

Proof. k(ab) = a(kb) = a(bk) = b(ak) = b(ka) = k(ba). Which by cancellativity

of k implies that ab = ba.

Corollary 36. Let S be an AG∗∗-groupoid. If the centre of S contains a can-

cellative element. Then S is commutative semigroup.

Corollary 37. The centre of a cancellative and non-associative AG∗∗-groupoid

is empty.
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The following problem applies Theorem 45.

Problem 3. Prove without using medial and paramedial laws that in AG-monoid

S all squares commute with each other.

Solution 1. Since the left identity is always cancellative and commutes with every

square. So by Theorem 45 all squares commute with each other.

Theorem 46. Let S be an AG∗∗-groupoid and k be a cancellative and locally

associative element of S. Then k is left nuclear.

Proof. We have for all a, b ∈ S

(ka.b)k2 = (ba.k)k2 = k2k · ba = ab · kk2 = ab · k2k = k2(ab · k) = k2(kb · a) = (a · kb)k2

= (k · ab)k2.

Since k is cancellative so is k2 by [88] and therefore by right cancellation, we

have ka.b = k · ab which proves that k is left nuclear.

Lemma 16. An AG-band is AG-3-band.

Proof. Obvious.

The converse of Lemma 16 is not true as the following example shows.

Example 38. An AG-3-band of order 6 which is not an AG-band.

· 1 2 3 4 5 6

1 1 1 1 1 1 6

2 1 2 4 5 3 6

3 1 5 3 2 4 6

4 1 3 5 4 2 6

5 1 4 2 3 5 6

6 6 6 6 6 6 1

Remark 13. The above AG-groupoid is the smallest having this property.

This is easy to prove that every commutative AG-groupoid is also associative

but the converse is not true (the counterexample is following) but for AG-3-band

the converse is also true (Theorem 47).
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Example 39. An associative and non-commutative AG-groupoid of order 4.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 2 1

In the following theorem we prove that commutativity and associativity imply

each other in AG-3-band.

Theorem 47. For an AG-3-band S the following are equivalent.

(i) S is commutative;

(ii) S is associative.

Proof. (i) =⇒ (ii). This is always true for an AG-groupoid. (ii) =⇒ (i)

ab = [(ab) (ab)] (ab) by definition of AG-3-band

= [(ab) a] [b (ab)] by associativity

= [(ab) b] [a (ab)] by medial law

= [(bb) a] [b(aa)] by left invertive law and associativity

= [(bb)b][a(aa)] by medial law

= ba by definition of AG-3-band



Chapter 6

Enumerating AG-groups

We present the first enumeration result for AG-groups up to order 11 and give

a lower bound for order 12. The counting is performed with the finite domain

enumerator FINDER using bespoke symmetry breaking techniques. We have a

few observations obtained from our results, some of which inspired us to examine

and discuss Smarandache AG-group structures.

6.1 Introduction

In the study of small algebraic structures more general than groups, many inter-

esting questions, such as open existence, classification, and counting problems,

have been solved by software tools that enable efficient enumeration of structures.

Typically this task involves identifying and exploiting symmetries in the prob-

lem at hand. Loops with inverse property (IP-loops) up to order 13 have been

counted with model generators using hand crafted symmetry breaking constraints

and post-hoc processing [102]. Monoids up to order 10 and semigroups up to order

9 have been enumerated [13] with off-the-shelf constraint satisfaction software by

employing lexicographic symmetry breaking constraints computed using a GAP

implementation of the methods described in [41]. A similar approach was more

recently used for counting AG-groupoids — groupoids that are left invertive, in

the sense (ab)c = (cb)a — up to order 6 [15]. Finally, also related is the enu-

meration of quasigroups and loops up to size 11 using a mixture of combinatorial

considerations and bespoke exhaustive generation software [44]. In Sec. 6.2 we

first count the number of non-isomorphic AG-groups of order up to 11 and give

a lower bound for order 12. We then discuss some of the observations we have

made when examining the results (Sec. 6.3) and in particular develop and study

79
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a new type of AG-group structure, Smarandache AG-groups (Sec. 6.4).

6.2 Counting AG-groups up to Isomorphism

We counted AG-groups by exhaustive enumeration using the FINDER system.

Our starting point is the approach developed for counting IP-loops up to isomor-

phism in [1, 78]. Here, as in that work, FINDER generates a set of candidate ta-

bles which contains one table for each minimal element given by a lex(icographic)

order over each isomorphism class. A post-processing step — post-hoc processing

— is used to reject tables that are not minimal in their isomorphism class.1 In

order to prevent FINDER from generating an impractical number of candidate

tables, further symmetry breaking constraints are posed. Moreover, the valid-

ity of post-hoc processing is dependent on these constraints being satisfied. In

our work we have had to modify those constraints. A summary of the constraints

from [102] in their reduced form for AG-groups is given in the following definition.

Definition 6.2.1. (Symmetry Breaking Constraints) Let N be the order of

the AG-group, with elements x, y ∈ {0 . . . , N − 1} and left identity e. Let f(x)

abbreviate (e+ 1)(e+x) and let FLAG be a boolean variable that is set if the first

six elements of the AG-group are self-inverse and (e+1)(e+2) is not self-inverse.

We then define the following 10 constraints:

(i) e ≤ x, (ii) x−1 < (x+ 2),

(iii) (x−1 = x ∧ x < y)⇒ y−1 = y.

For odd values of N :

(iv) f(1) < (e+ 4), (v) (x > 1 ∧ 2x < N)⇒ f(x) < (e+ 2x).

For even values of N

(vi) f(1) = e,

(vii) (−FLAG ∧ 0 < x < N
2

)⇒ f(x) < (e+ 2x+ 1),

(viii) (FLAG)⇒ (e+ 5)−1 = (e+ 5),

(ix) (FLAG ∧ x > 1 ∧ (e+ x)−1 = (e+ x))⇒ (f(x)−1) 6= f(x),

(x) (FLAG ∧ 1 < x < y ∧ (e+ y)−1 = (e+ y))⇒ f(x) < f(y).

The constraints imply that the Cayley table of the AG-group will be filled in

an ascending order, where e is always the lexicographical minimal element (i.e.,

0). They also have that elements which are self-inverse are ordered first, and

otherwise that an element is adjacent to its inverse in the ordering. We have

1We consider it an important item for future work to develop lex-leader constraints that

capture the symmetry breaking that is carried out during this post-hoc step.
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omitted the constraint x−1 = x ⇔ x = e from [102], because this is an invalid

symmetry breaker for AG-group counting.

Our enumeration yields all Cayley tables explicitly. We can therefore validate

the generated AG-groups using the GAP [20] computer algebra system. Because

there was no functionality present in the GAP loops package [60] to test whether

a Cayley table is an AG-group or not, we have implemented our own function

that performs this test. The results of our enumeration were validated using our

GAP function.2 The algorithm is a straightforward implementation, testing that

(1) the Cayley table is a Latin square; i.e., all elements occur exactly once in

every row and every column, (2) the identity (xy)z = (zy)x holds, and (3) there

exists a left identity.

Our validated results are given in Table 6.1. We report the number of non-

isomorphic AG-groups having order up to 11, and give a lower bound for order

12. In Table 6.1, for each order we give the total number of AG-groups up to

isomorphism, which is further broken down into associative and non-associative

AG-groups. Note, associative AG-groups are abelian groups. For each order we

also give the total number of CPU-seconds required to enumerate all groups and

the number of tables generated by FINDER that were tested for lex-minimality

in post-hoc processing. All counting was carried out on an Intel quad core CPU

Q9650 with 4GB of memory. It should be noted that our counting procedure uses

negligible computer memory resources.

In the remainder of the chapter we discuss some of the observations we made

using our enumeration results and, in particular, propose a new interesting class

of AG-groups.

6.3 AG-group of Smallest Order

The smallest AG-group which is not a group is of order 3. The Cayley table for

that is given in Example 6.3.1.

Example 6.3.1. Smallest AG-group of order 3 :

· 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0

2Please contact the authors by email for either the GAP source code, or a copy of the

enumerated tables.
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Order AG-groups Assoc Non-Assoc CPU-Time post-hoc tests

1 1 1 0 < .01 0

2 1 1 0 < .01 1

3 2 1 1 < .01 2

4 4 2 2 < .01 6

5 2 1 1 < .01 7

6 2 1 1 < .01 46

7 2 1 1 .47 97

8 10 3 7 8.44 796

9 5 2 3 102.37 3599

10 2 1 1 1, 735.25 16144

11 2 1 1 15, 206.26 86406

12 ≥ 7 ≥ 2 ≥ 5 NA NA

Table 6.1: Results of AG-group enumeration.

Clearly every abelian group is an AG-group, however the converse is certainly

not always true. We now note a number of contrasts between groups and AG-

groups. In particular, we establish the existence of non-associative AG-groups —

i.e. non-abelian groups — of order p and p2 where p is a prime. In detail, our

observations are:

(i) Every group of order p is abelian. We find that non-associative AG-groups

of order p exist. The AG-group of order 3 in Example 6.3.1 is not an abelian

group.

(ii) Every group of order p2 is abelian. We also have that non-associative AG-

groups of order p2 exist. The AG-group in Example 6.4.3 is not an abelian

group.

(iii) Every group which satisfies the squaring property (ab)2 = a2b2 is abelian.

Although every AG-group clearly satisfies the squaring property, an AG-

group is not necessarily abelian.

6.4 Smarandache AG-groups

In [69] Padilla Raul introduced the notion of a Smarandache semigroup, here writ-

ten S-semigroup. An S-semigroup is a semigroup A such that a proper subset of A
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is a group with respect to the same induced operation [103]. Similarly a Smaran-

dache ring, written S-ring, is defined to be a ring A, such that a proper subset

of A is a field with respect to the operations induced. Many other Smarandache

structures have also appeared in the literature. The general concept of Smaran-

dache structures is that, if a special structure happens to be a substructure of

a general structure, then that general structure is called Smarandache. In that

spirit we propose Smarandache AG-groups here and study them with the help of

examples generated during the enumeration given in Sec. 6.2.

Definition 6.4.1. Let G be an AG-group. G is said to be a Smarandache

AG-group (S-AG-group) if G has a proper subset P such that P is an abelian

group under the operation of G.

The AG-groups G in Examples 6.4.3 and 6.4.4 are S-AG-groups, whereas the

AG-group G in Examples 6.3.1 and 6.4.6 are not.

The following theorem guarantees that an AG-group having a unique nontriv-

ial element of order 2 is always an S-AG-group.

Theorem 6.4.2. If there is a unique nontrivial element a of order 2 in an

AG-group G then {e, a} is an abelian subgroup of G.

Proof. Take a ∈ G satisfying a2 = e. Now we have to identify an element for the

’?’ cell in the following table:

· e a

e e a

a ? e

Taking y = ae and using the paramedial law we have y2 = (ae)2 = e2a2 = a2 = e.

Thus, y has order 2. Since G has a single element of order 2, we have y = ae = a.

Thus, a is the required element, and our table can now be completed:

· e a

e e a

a a e

Here {e, a} is an AG-subgroup of G of order 2, and is therefore an abelian group,

hence G is an S-AG-group.

We illustrate Theorem 6.4.2, by considering the following example.

Example 6.4.3. An AG-group of order 8:
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· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 6 7 4 5

2 2 3 1 0 5 6 7 4

3 3 2 0 1 7 4 5 6

4 6 4 7 5 3 0 2 1

5 7 5 4 6 0 2 1 3

6 4 6 5 7 2 1 3 0

7 5 7 6 4 1 3 0 2

Here 1 has order 2, and 1 is the unique such element of G. Hence {0, 1} is an

abelian subgroup of G.

The converse of Theorem 6.4.2 is not true. That is, if an AG-group G has an

abelian subgroup, then it is not necessary that G will have a unique non-trivial

element of order 2. This can be observed with the following example:

Example 6.4.4. An AG-group of order 9:

· 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 2 0 1 5 6 7 8 3 4

2 1 2 0 7 8 3 4 5 6

3 5 3 7 8 0 4 2 6 1

4 6 4 8 0 7 2 3 1 5

5 3 7 5 6 1 8 0 4 2

6 4 8 6 1 5 0 7 2 3

7 7 5 3 4 2 6 1 8 0

8 8 6 4 2 3 1 5 0 7

The AG-group in Example 6.4.4 has {0, 7, 8} as abelian subgroup and hence

is a Smarandache AG-group. However, the element of order 2 is not unique. In

fact, there are two nontrivial elements of order 2, namely {1, 2}.

Remark 6.4.5. Since AG-groups satisfy Lagrange’s Theorem, the unique el-

ement of order 2 can exist in AG-groups of even order only.

However, if G has more than one element of order 2, then it is not necessary

that G will have an abelian subgroup. In Example 6.4.6 all non-trivial elements

of G are of order 2, however we also see that G has no abelian subgroup. Note

that G has four proper AG-subgroups, namely {0, 1, 2} , {0, 3, 7} , {0, 4, 6} , and

{0, 5, 8}. None of those is commutative.
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Example 6.4.6. An AG-group order of 9:

· 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 2 0 1 4 5 3 7 8 6

2 1 2 0 5 3 4 8 6 7

3 7 6 8 0 2 1 5 3 4

4 6 8 7 1 0 2 4 5 3

5 8 7 6 2 1 0 3 4 5

6 4 3 5 8 6 7 0 2 1

7 3 5 4 7 8 6 1 0 2

8 5 4 3 6 7 8 2 1 0

AG-groups satisfy Lagrange’s Theorem, so AG-groups of prime order cannot

have a proper AG-subgroup, hence cannot have a proper abelian subgroup. We

record this fact as the following theorem.

Theorem 6.4.7. An AG-group G of prime order cannot be an S-AG-group.

The notion of S-AG-group can be generalized to S-AG-groupoid as follows.

Definition 6.4.8. Let S be an AG-groupoid. S is said to be a Smarandache

AG-groupoid (S-AG-groupoid) if S has a proper subset P such that P is a com-

mutative semigroup under the operation of S.

The examples given in the case of AG-groups can also be considered for S-

AG-groupoids. We now provide two further examples to show that this notion

holds generally.

Example 6.4.9. An AG-groupoid of order 4.

· 0 1 2 3

0 0 0 2 3

1 0 1 2 3

2 3 3 0 2

3 2 2 3 0

Example 6.4.10. An AG-groupoid of order 4.
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· 0 1 2 3

0 1 2 0 3

1 3 0 2 1

2 2 1 3 0

3 0 3 1 2

The AG-groupoid S in Example 6.4.9 has a proper subset {0, 1} which is a

commutative semigroup, and therefore S is an S-AG-groupoid. Although some-

what tedious, one can check manually that the AG-groupoid S in Example 6.4.10

has no proper subset having the desired property, and therefore we have S is not

a S-AG-groupoid.



Chapter 7

A Study of AG-Groups as

Generalization of Abelian Groups

This chapter has two sections. In Section 1 we develop some structural properties

of AG-groups. In Section 2 we study AG-groups as generalization of abelian

groups.

7.1 Some Structural Properties of AG-groups

An AG-group (AG-groupoid with left identity and inverses) is a non-associative

structure in general and is a generalization of abelian group. In this section we

discuss some structural properties of AG-groups. We prove that for an AG-group

associativity and commutativity imply each other. Non-associative AG-groups

can never be power associative. The duality between left AG-groups and right

AG-groups is discussed. [26] and [51] started the study of the corresponding

properties of groups in AG-groups. The present work provides a continuation

and further development of that. The structure of AG-group is one of the most

interesting structures. There is no commutativity or associativity in general. But

unlike groups and other structures, commutativity and associativity imply each

other in AG-groups and thus AG-group becomes abelian group if any one of them

is allowed (Theorem 48). The order of elements cannot be defined in AG-group.

That is AG-group cannot be locally associative otherwise it becomes abelian

group (Theorem 53). The duality between left AG-groups and right AG-groups

has been shown in Theorem 50.

Example 40. Left AG-group of order 3 :

87
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· 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0

Example 41. Right AG-group of order 3 :

· 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

Example 42. Every abelian group (G, ·) is an AG-group. This is the trivial case.

Every abelian group(G, ·) can be converted to an AG-group (G, ∗) if ∗ is

defined as a ∗ b = a−1 · b or b ∗ a−1, by [26, Theorem 4.4, Page 46].

Example 43. The set Z of integers, is an AG-group under ∗ defined as a ∗ b =

b− a see [26, Example 4.2, Page 45].

The only known examples of infinite AG-groups are of such type.

7.1.1 Basic Properties of AG-groups

The following lemma presents some fundamental results for AG-groups; these

facts will be used frequently and normally we shall make no reference to this

lemma.

Lemma 17. Let G be an AG-group G. Let a, b, c, d ∈ G and e is the left identity

in G. Then the following conditions hold in G.

(i) (ab)(cd) = (ac)(bd) medial law, [7, Lemma 1.1 (i)];

(ii) ab = cd⇒ ba = dc, [57, Theorem 2.7, Page 68];

(iii) a · bc = b · ac, [58, Lemma 4, Page 58];

(iv) (ab)(cd) = (db)(ca) paramedial law, [7];

(v) (ab)(cd) = (dc)(ba), (we are unable to find reference);

(vi) ab = cd⇒ d−1b = ca−1;
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(vii) If e the right identity in G then it becomes left identity in G, i.e, ae = a⇒
ea = a, [57, Theorem 2.3, Page 67];

(viii) ab = e⇒ ba = e;

(ix) (ab)−1 = a−1b−1[26, Remark 4.6, Page 47];

(x) a(b · cd) = a(c · bd) = b(a · cd) = b(c · ad) = c(a · bd) = c(b · ad);

(xi) a(bc · d) = c(ba · d);

(xii) (a · bc)d = (a · dc)b;

(xiii) (ab · c)d = a(bc · d).

Proof. (i) see [7, Lemma 1.1(i)].

(ii) ba · e = ea · b = ab = cd = ec · d = dc · e⇒ ba = dc since e is cancellative.

(iii) Since G satisfies bc · a = ac · b so by (ii), we get a · bc = b · ac.

(iv) By applications of (i) and (ii), we have (ab)(cd) = (ac)(bd) ⇒ (cd)(ab) =

(bd)(ac) ⇒ (cd)(ab) = (ba)(dc). ⇒ (ab)(cd) = (dc)(ba) = (db)(ca) ⇒
(ab)(cd) = (db)(ca).

(v) By consecutive applications of (i) and (iv).

(vi) ab = cd⇒ ab · d−1 = c⇒ d−1b · a = c⇒ d−1b = ca−1.

(vii) Using (iii) and then hypothesis a = ae = a · ee = e · ae = ea.

(viii) ab = e = ee now apply (ii).

(ix) (a−1b−1)(ab) = (a−1a)(b−1b) = e⇒ (ab)−1 = a−1b−1.

(x) By repeated use of Lemma 17 Part (iii).

(xi) Using Part (iii) and medial law,

a(b · cd) = (bc)(ad) = (ba)(cd) = c(ba · d).

(xii) Using Part (iii) and invertive law,

(a · bc)d = (b · ac)d = (d · ac)b = (a · dc)b.
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(xiii) (ab · c)d = (dc)(ab) = a(dc · b) = a(bc · d).

The first 9 parts of the above lemma are already proved in scattered papers

on AG-groupoid given in the references. We only claim that our proofs are new

and more standard while the last four parts are new.

Theorem 48. In AG-monoid and hence in AG-group the following are equivalent.

(i) Associativity.

(ii) Commutativity.

Proof. (i) =⇒ (ii) Suppose (G, ·) be an AG-groupoid with the left identity e. Let

G be associative and a, b ∈ G. Then

ab = e · ab = ea · b = ba · e
= b · ae = (eb)(ae) = (ea)(be)

= a · be = ab · e = eb · a = ba.

Thus G is commutative. (ii) =⇒ (i) is easy.

Theorem 49. An AG-group G with right identity e is abelian group.

Proof. Let a, b ∈ G. Since ab = ab · e = eb · a = ba. Now apply Theorem 48.

7.1.2 Duality Between Left AG-groups and Right AG-

groups

Here we prove that left AG-groups and right AG-groups are equivalent. We shall

prove that left AG-group and right AG-group are the opposite of each other.

Theorem 50. Let (G, ·) be a left AG-group. Define the operation a ∗ b = ba for

every a, b ∈ G. Then (G, ∗) is a right AG-group.

Proof. Let (G, ·) be a left AG-group. Define a ∗ b = ba for all a, b ∈ (G, ·). Let

a, b, c ∈ G.

a ∗ (b ∗ c) = a ∗ (cb)

= (cb)a = (ab)c = c ∗ (ab) = c ∗ (b ∗ a).
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Hence (G, ∗) is a right AG-groupoid. If e is the left identity of (G, ·) then a ∗ e =

ea = a. Hence e is the right identity of the right AG-groupoid (G, ∗). It is clear

that the inverses in (G, ∗) remain the same as in (G, ·). Hence (G, ∗) is a right

AG-group.

From now onward we will consider only left AG-group and will call it simply

AG-group.

7.1.3 Power Associativity of AG-groups

Lemma 18. In an AG-groupoid S with left identity e the following holds

(ab)2 = (ba)2 for all a, b ∈ S.

Proof. Let (S, ·) be an AG-groupoid S with left identity e. Then for all a, b ∈
S. By using medial and paramedial laws, we have (ab)2 = (ab)(ab) = b2a2 =

(ba)2.

Theorem 51. If every element of a locally associative AG-groupoid S with left

identity e is of order 2 then S is an abelian group.

Proof. Let (S, ·) be a locally associative AG-groupoid with the left identity e such

that a2 = e for all a ∈ S.

If a, b ∈ S then a2 = b2 = e. Also ab ∈ S which implies that (ab)2 = e, which

further implies (ba)2 = e by Lemma 18. Now by using medial and paramedial

laws and local associativity, we have

ab = e(ab) = (ab)2(ab)

= (a2b2)(ab) = (a2a)(b2b)

= (aa2)(bb2) = (b2a2)(ba)

= (ba)2(ba) = e(ba) = ba.

Thus S is commutative. Hence S is commutative monoid. But every element

of S is its own inverse and therefore S is an abelian group.

Next we need the following theorem from [51] or [88].

Theorem 52. An AG-group G is cancellative.

Theorem 53. An AG-group G with local associativity is abelian group.
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Proof. Let (G, ·) be a locally associative AG-group. Then for all a, b ∈ G by using

medial and paramedial laws and local associativity of S, we have (ab)(ab)2 =

(ab)(a2b2) = (aa2)(bb2) = (a2a)(b2b) = (ba)(b2a2)

= (ba)(ba)2, which by Lemma 18 and cancellativity implies ab = ba. Thus G is

commutative. So the left identity becomes the right identity. Thus by Theorem

49 G is abelian group.

Theorem 53 ensures that in a non-associative AG-group orders of elements

cannot be defined due to lack of local associativity. However we can speak of the

order of an element up to 2.

Definition 45. An element a of order 2 of an AG-group G is called involution.

For example in Example 40 all elements are involutions. But this is not

necessary that all elements of an AG-group must be involutions as the elements

4, 5, 6, 7 are not involutions in the AG-group given in the following example.

Example 44. An AG-group of order 8.

· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 3 0 1 2 6 7 5 4

2 2 3 0 1 5 4 7 6

3 1 2 3 0 7 6 4 5

4 6 4 7 5 2 0 1 3

5 7 5 6 4 0 2 3 1

6 4 7 5 6 3 1 2 0

7 5 6 4 7 1 3 0 2

7.1.4 General Properties of AG-groups

Theorem 54. An AG-group G has exactly one idempotent element, which is the

left identity.

Proof. Suppose a is an arbitrary element ofG such that aa = a. Then ea = a = aa

which implies a = e by right cancellation. Thus the left identity e is the only

idempotent element of G.

Theorem 55. A subset containing all the involutions of an AG-groupoid S with

the left identity e is an AG-group contained in S.
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Proof. Let (S, ·) be an AG-groupoid with the left identity e. Let H = {a ∈ S—

a2 = e}. H is non-empty since ee = e⇒ e ∈ H. If f, g ∈ H then f 2 = g2 = e. Now

(fg)2 = f 2g2 = ee = e. This implies fg ∈ H. Thus H is an AG-subgroupoid of S.

Also since every element in H is its own inverse. Hence H is an AG-group.

7.2 AG-groups as Generalization of Abelian

Groups

In this section we now study AG-groups as generalization of abelian groups as

suggested in [83].

We therefore will lift many of the standard concepts in group theory to

AG-groups and investigate similarities and differences between the two theories.

We will start our investigations by studying complexes (i.e., arbitrary subsets)

and AG-subgroups together with cosets in detail, which were already introduced

in [26] and [51];(§7.2.1). The main results show that while similar to group the-

ory the union of two AG-subgroups is an AG-subgroup if and only if either one

contains the other, contrary to group theory the product of two AG-subgroups is

always an AG-subgroup.

We then study conjugate elements of AG-groups in Section 7.3) and establish

some results such as (i) the relation of conjugacy between the elements of an AG-

group is an equivalence relation; (ii) in an AG-group of prime order all elements

are conjugate to each other; (iii) the conjugacy class of the left identity of an

AG-group is an AG-subgroup; and (iv) most surprisingly, the centre of a non-

associative AG-group is always empty.

We then define and study the concepts of normality, normalizer and commu-

tator (§7.3.1—§7.3.3). We observe that although we can quotient an AG-group

by any of its AG-subgroup without the requirement of normality, defining nor-

mality is beneficial in its own right. We can, for example, show that the quotient

of an AG-group by a normal subgroup yields an abelian group. Similarly, we can

demonstrate that the normalizer of an arbitrary subset of an AG-group is not

necessarily an AG-subgroup.

Finally we consider direct products of AG-groups (§7.3.4) and define actions of

AG-groups on sets (§7.3.5). Here again we observe that while some of the theory

can be developed analogously to group theory, we can also demonstrate that, for

instance, some natural groups actions can not simply be lifted to AG-groups. We

now recall the definition of AG-subgroup, as presented in [26, 51].
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Definition 46. Let G be an AG-group and let H be a non-empty subset of G.

We call H an AG-subgroup of G, written as H ≤ G, if H is itself an AG-group

with respect to the operation on G.

The following results are easy to establish:

Theorem 56. If H is a non-empty subset of an AG-group G then H ≤ G if and

only if ab−1 ∈ H for all a, b ∈ H. see [51, Theorem 3.3]

One can easily establish the equivalence of the following condition for a subset

H to be an AG-subgroup with that given in Theorem 56.

Theorem 57. A non-empty subset H of an AG-group G is an AG-subgroup of

G if and only if for any pair a, b ∈ H, ab ∈ H and for each a ∈ H, a−1 ∈ H.

Proofs of the following theorems are group theoretic.

Theorem 58. Let Ω be a collection of AG-subgroups of an AG-group G. Then

the intersection ∩Ω of the members of Ω is an AG-subgroup of G.

Theorem 59. Let H,K be AG-subgroups of an AG-group G of order m,n, re-

spectively, and (m,n) = 1. Then HK = {hk|h ∈ H, k ∈ K} has exactly mn

elements.

7.2.1 Complexes

Following [22] we call an arbitrary non-empty subset X of an AG-group G a

complex in G. For two complexes X and Y in G we define their product as a

complex XY and inverse of X as a complex X−1 given by XY = {xy|x ∈ X, y ∈
Y } and X−1 = {x−1 | x ∈ X}, respectively.

These definitions allow us to restate Theorem 56 and Theorem 57 in terms of

complexes as follows:

Theorem 60. A non-empty complex H of the AG-group G is an AG-subgroup

of G if HH−1 ⊆ H.

Theorem 61. A non-empty complex H of an AG-group G is an AG-subgroup of

G if (i) H2 = H and (ii) H−1 = H.

If the complexes H and K in a group G are subgroups of G then the product

HK of H and K need not be a subgroup of G. However the product HK of H

and K is a subgroup of G if and only if H and K are permutable. In contrast

the product of two AG-subgroups of the AG-group is always an AG-subgroup of

G as the following theorem proves:
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Theorem 62. Let H and K be AG-subgroups of an AG-group G. Then the

product HK is also an AG-subgroup of G.

Proof. Let H,K ≤ G ⇒ H2 = H,H−1 = H and K2 = K,K−1 = K. We then

have (HK)2 = H2K2 = HK, by medial law. Also by Theorem 61 we have

(HK)−1 = H−1K−1 = HK ⇒ HK ≤ G.

This theorem can now be used to establish the second part of the following

general result for complexes of an AG-group.

Theorem 63. Let ζ be the collection of all complexes of an AG-group G and let

σ be the collection of all AG-subgroups of G. Then

(i) ζ is an AG-monoid, an

(ii) σ is an AG-subgroupoid of ζ.

Proof. Let ζ = {A | A ⊂ G,A 6= ∅}

(i) Let A,B ∈ ζ. Then AB = {ab | a ∈ A, b ∈ B} ⊂ G. Clearly AB 6= ∅ as

A,B ∈ ζ, thus AB ∈ ζ.

Let A,B,C ∈ ζ. Then (ab)c = (cb)a for all a ∈ A, b ∈ B, c ∈ C. Hence

(AB)C = (CB)A.

Since E = {e} ∈ ζ where e is the left identity in G such that EA = A, for

all A ∈ ζ. Therefore ζ has left identity.

Therefore ζ is an AG-monoid.

(ii) Let σ = {A ∈ ζ | A is an AG-subgroup of G}. Let A,B ∈ σ then AB ∈ σ
by Theorem 62. Thus σ is an AG-subgroupoid of ζ. Also E = {e} ∈ σ.

Thus σ is an AG-subgroupoid of ζ with left identity.

The union of any two AG-subgroups of an AG-group G is not necessarily an

AG-subgroup.

Example 45. As example we consider the following AG-group of order 8
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· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 3 0 1 2 5 6 7 4

2 2 3 0 1 6 7 4 5

3 1 2 3 0 7 4 5 6

4 6 5 4 7 0 3 2 1

5 5 4 7 6 1 0 3 2

6 4 7 6 5 2 1 0 3

7 7 6 5 4 3 2 1 0

Here {0, 2}, {0, 7} are AG-subgroups but {0, 2} ∪ {0, 7} = {0, 2, 7} is not an AG-

subgroup.

The following is the necessary and sufficient condition for the union of two

AG-subgroups to be an AG-subgroup.

Theorem 64. Let H1and H2 be the AG-subgroups of an AG-group G. Then

H1 ∪H2 is an AG-subgroups of G⇔ H1 ⊆ H2 or H2 ⊆ H1.

Proof. Let H1 and H2 be AG-subgroups of an AG−group G. Suppose that either

H1∪H2 = H1 or H1∪H2 = H2 then H1∪H2 is an AG-subgroup of an AG-group

G.

Conversely suppose that H1 * H2 and H2 * H1. Let a ∈ H1\H2 and b ∈
H2\H1 then ab ∈ H1 ∪ H2 because H1 ∪ H2 is an AG-subgroup of G. So either

ab ∈ H1 or ab ∈ H2.

If ab ∈ H1 then b = eb = (a−1a)b = (ba)a−1 = (ba)(ea−1) = (a−1e)(ab) ∈ H1

since H1 is an AG−subgroup, which is a contradiction. Similarly if a = ea =

(b−1b)a = (ab)b−1 ∈ H2, is a contradiction.

Thus H2\H1 = ∅ or H1\H2 = ∅ and therefore either H1 ⊆ H2 or H2 ⊆ H1.

Definition 47. Let H be an AG-subgroup of an AG-group G, and let a ∈ G. The

left coset aH of H is the set {ah | h ∈ H}. Similarly right coset Ha is defined as

{ha | h ∈ H}.

We define (Ha)−1 by

(Ha)−1 =
{

(ha)−1, h ∈ H
}

=
{
h−1a−1, h ∈ H

}
Then (Ha)−1 = Ha−1 = H(ea−1) = (a−1e)H. The mapping

Ha −→ (Ha)−1 = (a−1e)H, where a ∈ G
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is a one-one correspondence between the collection of right and left cosets. It

shows that the right and left cosets of H in an AG-group G are equal in number.

Lemma 19. Suppose G is an AG-group and H ≤ G. Let x, y ∈ G then we have

(i) Hx = H if and only if x ∈ H.

(ii) xH = H if and only if x ∈ H.

(iii) Hx = Hy if and only if y−1x ∈ H.

(iv) xH = {g|xH = Hg}.

(v) x ∈ Hx.

(vi) (xy)H = H(yx).

(vii) (Hx)y = H(xy).

Proof. (i) If Hx = H, then x = ex ∈ Hx = H so x ∈ H. Conversely, if

x ∈ H then Hx ⊆ H because it is closed under multiplication. It remains

to show that H ⊆ Hx. Choose any h ∈ H, then h = (hx−1)x ∈ Hx because

h, x−1 ∈ H. Thus H ⊆ Hx and so Hx = H.

(ii) xH = H if and only if Hx = He = H by Lemma 17 (ii) if and only if x ∈ H
by (i).

(iii) Hx = Hy ⇔ (Hx)y−1 = (Hy)y−1 ⇔ (y−1x)H = (y−1y)H ⇔ (y−1x)H =

eH ⇔ H(y−1x) = He⇔ H(y−1x) = H ⇔ y−1x ∈ H.

(iv) If g ∈ xH, then g = xh for some h ∈ H, so Hg = H(xh) = x(Hh) = xH.

Therefore xH ⊆ {g|xH = Hg}. Conversely if xH = Hg then g = eg ∈
Hg = xH so {g|xH = Hg} ⊆ xH.

(v) This is trivial, since x = ex ∈ Hx.

(vi) See [51, Lemma 3.4(2)].

(vii) (Hx)y = (yx)H = H(xy) by (vi).

In Lemma 19 (i), if Hx = H then x can be determined as follows:

Since Hx = H then for some h ∈ H, there is an h′ ∈ H such that hx = h′.

This implies that xh = h′e by Lemma 17 (ii). Thus x = ex = (h−1h)x =

(xh)h−1 = (h′e)h−1.
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Lemma 20. Suppose that H is an AG-subgroup of an AG-group G and x, y ∈ G.

It follows that either Hx = Hy or Hx ∩Hy = ∅.

Proof. Either Hx∩Hy = ∅ or there exist z ∈ Hx∩Hy in which case zx−1, zy−1 ∈
H. Thus y−1x = (zy−1)(z−1x) = (zy−1)(zx−1)−1 ∈ H. Thus by Lemma 19(iii),

we have Hx = Hy.

An AG-group may or may not have an abelian group as its AG-subgroup.

For instance the AG-group G in Example 46 has {0, 1, 2, 3} as its AG-subgroup

which is an abelian group while the AG-group G in Example 45 has none.

Thus we can state Lagrange’s Theorem for AG-subgroups:

Theorem 65. If H is an AG-subgroup of a finite AG-group G then the order of

H divides the order of G see [51, Theorem 3.7].

7.3 Conjugacy Relations in AG-groups

Let G be an AG-group. For any a ∈ G, the element (ga)g−1, g ∈ G is called the

conjugate or transform of a by G. Two elements a, b ∈ G are said to be conjugate

if and only if there exist an element g ∈ G such that (ga)g−1 = b. We frequently

abbreviate the conjugate of a ∈ G by ag = (ga)g−1, g ∈ G.

Theorem 66. The relation of conjugacy between the elements of an AG-group is

an equivalence relation.

Proof. Let us denote the relation of conjugacy between the elements of an AG-

group by R. Then

(i) R is reflexive that is a R a because ∃ a−1 ∈ G and a = (aa)a−1, by left

invertive law.

(ii) R is symmetric because if a R b for a, b ∈ G, then there exist g ∈ G such

that b = (ga)g−1 ⇒ bg = ga ⇒ gb = ag ⇒ (gb)g−1 = a ⇒ a = (gb)g−1.

Thus b R a.

(iii) R is transitive: Let a R b and b R c, then there exist g1,g2 ∈ G such that

b = (g1a)g−11 , c = (g2b)g
−1
2 . Hence

c = (g2b)g
−1
2 = [g2{(g1a)g−11 }]g−12 = [g−12 {(g1a)g−11 }]g2

= [(g1a)(g−12 g−11 )]g2 = [g2(g
−1
2 g−11 )](g1a) = (g2g1)[(g

−1
2 g−11 )a]

= (g2g1)
−1[(g2g1)a]
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Thus ce = [(g2g1)a](g2g1)
−1, which implies that a R ce. But by reflexive

property, ce R ce. So by the above argument from a R ce and ce R ce, we

have a R (ce)e. That is a R c. Thus R is transitive.

Hence R is an equivalence relation.

In any AG-group G the relation of conjugacy between the elements of G, being

an equivalence relation, partitions G into equivalence classes. Each equivalence

class consist of elements which are conjugate to each other. An equivalence class

determined by the conjugacy relation between the elements in G is called a class

of conjugate elements or simply a conjugacy class. A conjugacy class consisting

of elements conjugate to an element a of G will be denoted by Ca.

Example 46. Consider the following AG-group G of order 4:

· 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 3 2 1 0

3 2 3 0 1

The AG-group G has two conjugacy classes namely C0 = {0, 1} and C2 = {2, 3}.

Lemma 21. Let G be an AG-group and let a, b ∈ G. Let k be any fixed element

of G such that ak = ka and bk = kb. Then a, b commute with each other.

Proof. Consider k(ab) = a(kb) = a(bk) = b(ak) = b(ka) = k(ba) implies ab = ba

by left cancellation.

Theorem 67. If there is any self-conjugate element in an AG-group G then G

is an abelian group.

Proof. Suppose a ∈ G such that a = (ga)g−1 ∀g ∈ G. This means that ag =

ga∀g ∈ G which implies that every g commutes with a. Therefore all elements

of G commute with each other and by Lemma 21 this implies G is an abelian

group.

From Theorem 67 follows that in a non-associative AG-group no element can

be self-conjugate.

Corollary 38. Let G be a non-associative AG-group. Then the centre of G is

empty, i.e., Z(G) = ∅. Similarly the set of all self-conjugate elements of G is

empty.
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Theorem 68. Let G be an AG-group where e is the left identity of G. Then Ce,

the conjugacy class of e, is an AG-subgroup of G.

Proof. Ce 6= ∅ because e ∈ Ce. From Theorem 67 follows Ce 6= {e}. So let

a, b ∈ Ce with a R e and b R e. Thus there exist g1, g2 ∈ G such that a =

(g1e)g
−1
1 , b = (g2e)g

−1
2 . We first consider ab:

ab = {(g1e)g−11 }{(g2e)g−12 }
= {(g−11 e)g1}{(g2e)g−12 }
= {(g−11 e)(g2e)}(g1g−12 )

= {(g−11 g2)e)}(g−11 g2)
−1

Thus we have ab R e and therefore ab ∈ Ce.
Now consider a−1:

a−1 = [(g1e)g
−1
1 ]−1 = (g−11 e)g1

= (g1e)g
−1
1

Thus we have a−1 R e and therefore a−1 ∈ Ce.
Hence Ce is an AG-subgroup of G.

Theorem 69. In an AG-group of prime order all elements are conjugate to each

other. That is Ce = G.

Proof. This follows by Lagrange’s Theorem and by Theorem 68.

Example 47. Consider the AG-group G of order 5:

· 0 1 2 3 4

0 0 1 2 3 4

1 4 0 1 2 3

2 3 4 0 1 2

3 2 3 4 0 1

4 1 2 3 4 0

In G we have C0 = {0, 1, 2, 3, 4}.

Theorem 70. Let G be an AG-group and a, b, c ∈ G. Then

(i) (ac)(bc) = (ab)c
2

(ii) (a2)b = aab.
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Proof. 1.

(ac)(bc) = {(ca)c−1}{(cb)c−1}
= {(ca)(cb)}(c−1c−1)
= {c2(ab)}(c2)−1

= (ab)c
2

2.

(a2)b = (ba2)b−1

= (ba2)[(b−1a)a−1]

= (b−1a)[(ba2)a−1]

= (b−1a)[a−1a2.b]

= (b−1a)(ab)

= a[(b−1a)b]

= a[(ba)b−1]

= aab

7.3.1 Normality in AG-groups

Although we can quotient by any AG-subgroup without the need of normality,

we can still define a concept of normality in AG-groups.

Definition 48. Let H be an AG-subgroup of G. H is said to be normal AG-

subgroup of G if it coincides with all of its conjugate AG-subgroups of G. Thus

H is normal in G if and only if (gH)g−1 = H, for all g ∈ G.

We first note that (gH)g−1 = (g−1H)g, for all g ∈ G by left invertive law in

the AG-group G.

Theorem 71. The following statements about AG-subgroup H of an AG-group

G are equivalent:

(i) H is normal AG-subgroup of G.

(ii) The normalizer of H in G is the whole of G. That is NG(H) = G.
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(iii) Any left coset gH of H is equal to the right coset Hg for all g ∈ G. That is

gH = Hg for all g ∈ G.

(iv) For each h ∈ H and any g ∈ G, (gh)g−1 ∈ H, that is H contains the whole

class of conjugates of each of its elements.

Proof. We shall show (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i):

(i)⇒ (ii) Assume that H is a normal AG-subgroup of G then (gH)g−1 = H

for all g ∈ G. Hence gH = Hg for all g ∈ G so that every g ∈ G is in

the normalizer NG(H). Therefore G ⊆ NG(H). But NG(H) is an AG-

subgroups of G and therefore contained in G. Thus NG(H) = G and hence

(ii) is true.

(ii)⇒ (iii) Suppose that NG(H) = G holds, that is NG(H) = {g ∈ G | gH =

Hg} = G. Then gH = Hg for all g ∈ G. Thus (iii) holds.

(iii)⇒ (iv) Suppose that gH = Hg for all g ∈ G. Then given an h ∈ H ∃ an

h′ ∈ H such that gh = h′g for all g ∈ G. Hence (gh)g−1 = h′ ∈ H for all

g ∈ G. Thus G contains, together with any h ∈ H all its conjugates namely

the elements (gh)g−1, g ∈ G. Therefore (iv) is true.

(iv)⇒ (i) Suppose that for each h ∈ H and g ∈ G, (gh)g−1 = h′ ∈ H. Hence

(gH)g−1 = {(gh)g−1;h ∈ H} ⊆ H for all g ∈ G. Also for any h ∈ H and

h = (g((gh)g−1))g−1 ∈ (gH)g−1 because (gh)g−1 ∈ H. Thus H ⊆ (gH)g−1

and therefore (gH)g−1 = H, for all g ∈ G. Hence H is a normal AG-

subgroup of G and we have (i).

From the above theorem it follows that each one of the statement (ii), (iii),

and (iv) can be taken as a definition of normal AG-subgroups.

While the conjugate of a subgroup of a group is again a subgroup, the con-

jugate of an AG-subgroup may not be an AG-subgroup as the following example

shows:

Example 48. Consider the AG-group of order 12:
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· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 3 2 6 7 4 5 10 11 8 9

2 3 2 1 0 8 11 10 9 4 7 6 5

3 2 3 0 1 10 9 8 11 6 5 4 7

4 6 4 8 10 9 0 11 1 7 2 5 3

5 7 5 11 9 0 8 1 10 3 6 2 4

6 4 6 10 8 11 1 9 0 5 3 7 2

7 5 7 9 11 1 10 0 8 2 4 3 6

8 8 10 6 4 5 2 7 3 11 0 9 1

9 9 11 5 7 3 4 2 6 0 10 1 8

10 10 8 4 6 7 3 5 2 9 1 11 0

11 11 9 7 5 2 6 3 4 1 8 0 10

The AG-group G has AG-subgroups H1 = {0, 10, 11}, H2 = {0, 1, 2, 3}. While H2

is normal AG-subgroup and H1 is not. (gH2)g
−1 is an AG-subgroup for all g ∈ G

but (gH1)g
−1 is not an AG-subgroup of G for g = 2.

From the above example we see that if G is an AG-group and H is a normal

AG-subgroup of G then for each g ∈ G, (gH)g−1 is an AG-subgroup. We now

want to investigate if this also holds for other cases of AG-subgroups.

Theorem 72. Let G be an AG-group and H be the AG-subgroup of G of index

2. Then H is normal in G.

Theorem 73. The intersection of any collection of normal AG-subgroups of an

AG-group is a normal AG-subgroups.

Proof. Proof is group theoretic.

Similar to groups normality is not transitive in AG-groups, which can be

demonstrated with the following example.

Example 49. Consider an AG-group of order 8:
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· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 7 6 4 5 1 0 3 2

5 5 4 7 6 0 1 2 3

6 4 7 6 5 3 2 1 0

7 7 6 5 4 2 3 0 1

Let H1 = {0, 1, 2, 3}, H2 = {0, 1}. Both H1 and H2 are AG-subgroups of G. H1

being of index 2 in G is normal in G and H2 being of index 2 in H1 is normal in

H1, but H2 4 G since 6 ∈ G, 0 ∈ H2 but (6 · 0) 6−1 = 4 · 7 = 2 /∈ H2.

Theorem 74. Let G be an AG-group and H ≤ G,N E G. Then H ∩N E H.

Proof. Clearly H ∩ N ≤ H. Let x ∈ H ∩ N, h ∈ H. Thus x ∈ H and x ∈ N .

Now x ∈ H implies that (hx)h−1 ∈ H (since H ≤ G), and x ∈ N and N E G,

so (hx)h−1 ∈ N . Thus (hx)h−1 ∈ H ∩ N for all x ∈ H ∩ N and h ∈ H. Hence

H ∩N E H.

Theorem 75. Let G be an AG-group and H,N E G. If any one of H and N is

normal in G then HN E G.

Proof. By Theorem 62 HN ≤ G. Let H ≤ G,N E G. Now let g ∈ G, then we

have

g(HN) = H(gN)

= H(Ng), since N E G

= (HN)g, since H ≤ G

Hence HN E G. Similarly if H E G and N ≤ G Then HN E G.

Definition 49. An AG-group G is called simple if G has no proper normal

AG-subgroup.

Now by Lagrange’s theorem, it follows that:

Corollary 39. Every AG-group of prime order is simple.
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Theorem 76. If H is a normal AG-subgroup of an AG-group G then the following

holds for all x, y of G:

(i) y(xH) = (yx)H

(ii) y(Hx) = (yH)x

(iii) (yx)H = (xy)H

(iv) H(yx) = H(xy).

Proof. (i) Using Lemma 17(iii), Theorem 71(iii), [83, Lemma 5(vi)] and left

invertive law, we have

y(xH) = x(yH) = x(Hy) = H(xy) = (Hx)y = (yx)H

(ii) Using Lemma 17(iii),[83, Lemma 5(vi)] and Theorem 71(iii), we have

y(Hx) = H(yx) = (Hy)x = (yH)x

(iii) Using (i),Lemma 17(iii) and Theorem 71(iii), we have

(yx)H = y(xH) = x(yH) = (xy)H

(iv) It follows from (iii) by using [83, Lemma 5(v)].

Theorem 77. If G is an AG-group and H ≤ G. Then G/H = {Ha | a ∈ G} is

an AG-group [51, Theorem 3.8].

Theorem 77 guarantees that we can quotient by any AG-subgroup without

the need for normality.

Theorem 78. Let G be an AG-group and let H be a normal AG-subgroup of G

then G/H is an abelian group.

Proof. Let xH, yH ∈ G/H then by Theorem 77, G/H is an AG-group under the

binary operation xH · yH = (xy)H for all x, y of G. Now by Theorem 76(iii), we

have

xH · yH = (xy)H = (yx)H = yH · xH

Hence by [83, Theorem 1], G/H is an abelian group.
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7.3.2 Normalizer of an AG-subgroup of an AG-group

Given the concept of normal AG-subgroups we can now also define normalizers,

similar to the same concept in group theory.

Definition 50. Let G be an AG-group and X a non-empty subset of G. Then

the set NG(X) = {g ∈ G | gX = Xg} is called normalizer of X in G.

Observe, that the normalizer of merely a subset of an AG-group is not neces-

sarily an AG-subgroup.

Example 50. AG-group of order 5:

· 0 1 2 3 4

0 0 1 2 3 4

1 4 0 1 2 3

2 3 4 0 1 2

3 2 3 4 0 1

4 1 2 3 4 0

NG(4) = {4} which is not an AG-subgroup.

However, the normalizer of the AG-subgroup of an AG-group is an AG-

subgroup itself, as the following theorem shows.

Theorem 79. Let G be an AG-group and let X ≤ G. Then NG(X) ≤ G.

Proof. Since e ∈ X and eX = Xe we have e ∈ NG(X) and thus NG(X) 6= ∅. Now

let a ∈ NG(X), then aX = Xa. Using Lemma 19(vii) we get and (aX)a−1 =

(Xa)a−1 = X(aa−1) = Xe = X and with the AG-groupoid property we have

(aX)a−1 = (a−1X)a = X. With ((a−1X)a)a−1 = Xa−1 and ((a−1X)a)a−1 =

(a−1a)(a−1X) = a−1X we get Xa−1 = a−1X and therefore a−1 ∈ NG(X).

Now let a, b ∈ NG(X), then aX = Xa, bX = Xb. Using Lemma 17(iii), it

follows that X(ab) = a(Xb) = a(bX) = b(Xa) = X(ba) = (ab)X and therefore

ab ∈ NG(X). Hence NG(X) ≤ G.

Theorem 80. Let A be an AG-subgroup of an AG-group G and let Cl(A) denote

the class of conjugate subgroups of A in G. Then

[G : NG(A)] = |Cl(A)|.

where [G : NG(A)] is the index of the normalizer of A in G.
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Proof. If x, y ∈ G, then

Ax = Ay ⇐⇒ (xA)x−1 = (yA)y−1

⇐⇒ [(xA)x−1]y = yA

⇐⇒ [
(
yx−1

)
(xA)] = yA

⇐⇒ x[
(
yx−1

)
A] = yA

⇐⇒ [
(
yx−1

)
A]x = Ay

⇐⇒ [
(
yx−1

)
A] = (Ay)x−1

⇐⇒
(
yx−1

)
A = (x−1y)A

⇐⇒
(
yx−1

)
A = A(yx−1) by Lemma 19 (vi)

⇐⇒ yx−1 ∈ NG(A)

⇐⇒ y−1x ∈ NG(A)

⇐⇒ NG(A)x = NG(A)y

Thus the assertion follows.

7.3.3 Commutators in AG-group

We now study the notion of commutators in AG-groups, that is quite different

from the one found in group theory. For example if we multiply the left identity

e on right side then a and b commutes. That is, ab = ba · a. Thus e works as

right commutator for every two elements a, b of the AG-group G. This is not so

for groups in general but true for abelian groups. Thus we can generalize this

property of abelian group so the non-asssociative structure of AG-group. The

concept of commutators in AG-groups is interesting for left commutators which

we will call just commutators.From here onward we develop this concept.

Definition 51. Let G be an AG-group. Then for a, b ∈ G the commutator

[a, b] is defined as

[a, b] = (ab)(b−1a−1)

This definition is only one possible way to define commutators. The following

lemma illustrates that there is a number of equivalent definitions.

Lemma 22. Let G be an AG-group and let a, b ∈ G with commutator [a, b]. Then

the following holds

[a, b] = [a, b]−1 = [a−1, b] = [a, b−1] = [a−1, b−1]
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Proof.

[a, b]−1 = {(ab)(b−1a−1)}−1

= {(a−1b−1)(b−1a−1)−1}
= (a−1b−1)(ba) = (ab)(b−1a−1) = [a, b], by paramedial law.

[a−1, b] = (a−1b)(b−1a) = (ab)(b−1a−1) = [a, b], by paramedial law.

[a, b−1] = (ab−1)(ba−1) = (ab)(b−1a−1) = [a, b], by medial law.

[a−1, b−1] = (a−1b−1)(ba) = (ab)(b−1a−1) = [a, b].

This allows us to show a number of more general equalities for commutators.

Theorem 81. In an AG-group G, the following identities hold.

(i) [a, b][c, d] = [ac, bd]

(ii) [ab, c] = [cb, a]

(iii) [a, bc] = [b, ac]

(iv) [ag, bg] = [b, a]

(v) [a, b]a = [b, e]

(vi) [a, b]b = [b, ba]

(vii) [a, b]g = [g, ba]

(viii) (ab)c = (ab)(b−1)c = [b, c]a

(ix) abc = a[c, b]

(x) abac = a2[c, b].

Proof.

[a, b][c, d] = {(ab)(b−1a−1)}{(cd)(d−1c−1)}
= {(ab)(cd)}{(b−1a−1)(d−1c−1)}
= {(ac)(bd)}{(b−1d−1)(a−1c−1)}
= [ac, bd]

(i)
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Both steps follow with the medial law.

[ab, c] = {(ab)c}{c−1(a−1b−1)}
= {(cb)a}{a−1(c−1b−1)}
= [cb, a]

(ii)

[a, bc] = {a(bc)}{(b−1c−1)a−1}
= {b(ac)}{(a−1c−1)b−1}
= [b, ac]

(iii)

[ag, bg] = [(ga)g−1, (gb)g−1]

= (((ga)g−1)((gb)g−1))(((gb)g−1)−1((ga)g−1)−1)

= (((ga)g−1)((gb)g−1))((g−1b−1)g)((g−1a−1)g)

= (((g−1a)g)((gb)g−1))((gb−1)g−1)((g−1a−1)g)

= (((g−1a)g)((gb)g−1))((gb−1)g−1)((g−1a−1)g)

= ((g−1g)(ab)e)((gg−1)(b−1a−1)e)

= ((ab)e)((b−1a−1)e) = (b−1a−1)(ab)

= (ba)(a−1b−1)

= [b, a].

(iv)

[a, b]a = (a[a, b])a−1

= (a{(ab)(b−1a−1)})a−1

= ((ab){a(b−1a−1)})a−1

= ((ab){b−1(aa−1)})a−1

= ((ab){b−1(e)})a−1

= (b−1{(ab)e})a−1

= (b−1(ba))a−1

= (a−1(ba))b−1

= (b(a−1a))b−1

= (b(e))b−1

= (be)(e−1b−1)

= [b, e]

(v)
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[a, b]b = (b[a, b])b−1

= (b{(ab)(b−1a−1)})b−1

= ((ab){b(b−1a−1)})b−1

= {((b−1a−1)b)(ba)}b−1

= (b−1(ba))((b−1a−1)b)

= (b(ba))((b−1a−1)b−1)

= [b, ba]

(vi)

[a, b]g = (g[a, b])g−1

= (g{(ab)(b−1a−1)})g−1

= ((ab){g−1(b−1a−1)})g
= {((b−1a−1)g−1)(ba)}g
= (g(ba))((b−1a−1)g−1)

= [g, ba].

(vii)

(ab)c = {(ba)b−1}c

= [c{(ba)b−1}]c−1

= [(ba)(cb−1)]c−1

= {c−1(cb−1)}(ba)

= (ab){(cb−1)c−1}
= (ab)(b−1)c

(viii)

Second part

(ab)c = [c{(ba)b−1}]c−1

= [(ba)(cb−1)]c−1

= {c−1(cb−1)}(ba)

= [c(c−1b−1)](ba)

= (cb){(c−1b−1)a}
= [(acc−1b−1)](bc)

= [(bc)(c−1b−1)]a

= [b, c]a
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abc = {(bc)a}(b−1c−1)
= (c−1b−1){a(bc)}
= a{(c−1b−1)(bc)}
= a{(cb)(b−1c−1)}
= a[c, b]

(ix)

abac = {(ba)b−1}{(ca)c−1}
= {(ba)(ca)}(b−1c−1)
= {(bc)a2}(b−1c−1)
= {a2(cb)}(b−1c−1)
= a2[(cb)(b−1c−1)]

= a2[c, b]

(x)

Note that (v) and (vi) can be obtained from (vii).

Theorem 82. The set of all commutators of an AG-group G forms an AG-

subgroup of G.

Proof. Let G′ = {[a, b], a, b ∈ G}. Clearly G′ 6= ∅ as [e, e] = e ∈ G′. Now

let [a, b], [c, d] ∈ G′ then by Theorem 81(i), [a, b][c, d] = [ac, bd] ∈ G′ and by

Lemma 22, [a, b]−1 = [a, b] ∈ G′. Thus G′ is an AG-subgroup of G.

The AG-subgroup G′ obtained in the above theorem is called derived AG-

subgroup.

Theorem 83. An AG-subgroup of G is an abelian group if and only if G′ = e.

Proof. LetG be an abelian group then for any a, b ∈ G we have [a, b] = (ab)(b−1a−1) =

(ba)(b−1a−1) = (bb−1)(aa−1) = e. Hence G′ = e.

Conversely, let G′ = e and let a, b ∈ G with [a, b] ∈ G′. Then we get [a, b] =

e ⇒ (ab)(b−1a−1) = e ⇒ (ab)(ba)−1 = e ⇒ ab = ba. Therefore G is an abelian

group.

Theorem 84. Let G be an AG-group and K ≤ G, then

(i) G/G′ is an abelian group.

(ii) G/K is an abelian group implies G′ ⊆ K.



112 CHAPTER 7. GENERALIZATION OF ABELIAN GROUPS

Proof. (i) Let G′a,G′b ∈ G/G′ then

[G′a,G′b] = {(G′a)(G′b)}{(G′b−1)(G′a−1)} = G′{(ab)(b−1a−1)}
= G′[a, b] = G′.

Therefore G/G′ is an abelian group by Theorem 83.

(ii) Let G/K be an abelian group. Then (Kb)(Ka) = (Ka)(Kb) and

K = {{(Ka)(Kb)}(Ka−1)}Kb−1

= (Kb−1)(Ka−1)((Ka)(Kb))

= K((b−1a−1)(ab))

= K((ba)(a−1b−1))

= K[b, a]

Thus [b, a] ∈ K. Since [b, a] ∈ G′ we have G′ ⊆ K.

Theorem 85. If a non-associative AG-group is simple then every nontrivial el-

ement is of order 2.

Proof. Let G′ be the derived AG-subgroup of G then if G′ = e then G is an

abelian group which is a contradiction, since G is simple. Thus G′ = G. But

then every element of G′ is its own inverse, which implies that every non trivial

element of G is of order 2.

The AG-group of order 8 given in Example 49 is simple. However, the converse

of Theorem 85 is not true as the following example shows:

Example 51. Consider the AG-group G of order 6:

· 0 1 2 3 4 5

0 0 1 2 3 4 5

1 5 0 1 2 3 4

2 4 5 0 1 2 3

3 3 4 5 0 1 2

4 2 3 4 5 0 1

5 1 2 3 4 5 0

In G every nontrivial element is of order 2. Nevertheless G is not simple as

{0, 4, 2} ( G is an AG-subgroup of order 3.
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7.3.4 Direct Products of AG-groups

We now investigate direct products of AG-groups. Let A and B be AG-groups

with left identities e and e′ respectively. The set

P = {(a, b) | a ∈ A, b ∈ B}

under the multiplication defined by

(a, b)(a′, b′) = (aa′, bb′)

is called the direct product of the AG-groups A and B and is denoted by A×B.

We say that A and B are the direct factors of A×B.

Clearly P is an AG-group with (e, e′) as the identity and (a−1, b−1) as the

inverse of (a, b) ∈ P . Similarly, the left invertive law in P follows from the left

invertive laws in A and B.

Theorem 86. Let A×B be the direct product of the AG-groups A and B. Then

the set

Ā = {(ae, e′); a ∈ A} , B̄ = {(e, b); b ∈ B}

are normal AG-subgroups of A × B isomorphic to A and B, respectively, and

Ā ∩ B̄ = {(e, e′)}.

Proof. Let ā = (ae, e′), ā1 = (a1e, e
′) ∈ Ā. Then

āā−11 = (ae, e′)(a1e, e
′)−1

= (ae, e′)(a
−1

1 e, e
′)

= ((ae)(a
−1

1 e), e
′)

= ((aa
−1

1 )e, e′)

= (a
−1

1 a, e
′) ∈ Ā.

Thus Ā is an AG-subgroup A×B.

Now let b̄ = (e, b) and b̄1 = (e, b1). Then

b̄b̄−11 = (e, b)(e, b1)
−1

= (e, b)(e, b−11 )

= (e, bb−11 ) ∈ B̄.

Thus B̄ is an AG-subgroup of A×B.
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Next, to establish an isomorphism between A and Ā we define a mapping

φ : A→ Ā by

φ(a) = (ae, e′), a ∈ A.

Then φ is obviously a bijective mapping. Moreover, we have

φ(aa′) = ((aa′)e, e′)

= ((aa′)(ee), e′)

= ((ae)(a′e), e′)

= (ae, e′)(a′e, e′)

= φ(a) · φ(a′)

Hence φ is an isomorphism between A and Ā.

Similarly, to establish an isomorphism between B and B̄ we define a mapping

ψ : B → B̄ by

ψ(b) = (e, b), b ∈ B.

Then ψ is obviously a bijective mapping. And moreover we have

ψ(bb′) = (e, bb′)

= (e, b)(e, b′)

= ψ(b) · ψ(b′).

Hence ψ is an isomorphism between B and B̄.

Finally to show that Ā ∩ B̄ = {(e, e′)}, let (a, b) ∈ Ā ∩ B̄, (a, b) ∈ Ā, and

(a, b) ∈ B̄. This implies b = e′ and a = e, respectively.

Hence (a, b) = (e, e′). Thus Ā ∩ B̄ = {(e, e′)}, the identity AG-subgroup of

A×B.

With the above theorem, the AG-groups A, Ā and B, B̄ are respectively iso-

morphic and therefore structurally the same. Identifying Ā with A and B̄ with

B, we can write a for (ae, e′) and b for (e, b).

With this convention, every element of G can be expressed as ab, with a ∈ A
and b ∈ B because

(a, b) = ((ae)e, e′b) = (ae, e′)(e, b) = ab.

The multiplication rule in A×B then becomes

ab.a′b′ = aa′ · bb′.
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Theorem 87. An AG-group G is the direct product of its AG-subgroups A and

B if and only if every element of g of G is uniquely expressed as g = ab with

a ∈ A and b ∈ B.

Proof. Suppose that G is the direct product of its AG-subgroups A and B. So

by definition each g ∈ G can be expressed as g = ab with a ∈ A, b ∈ B.

To see that this expression is unique, we assume there exist a, a′ ∈ A and

b, b′ ∈ B such that g = ab = a′b′. We then have

(ab)b′−1 = a′

(b′−1b)a = a′

b′−1b = a′a−1 ∈ A ∩B = {e}

Hence a = a′ and b = b′ and thus the expression is unique.

Conversely, suppose every element of G is uniquely expressible as g = ab with

a ∈ A and b ∈ B. It only remains to show that A ∩ B = {e}. For this, let

x ∈ A ∩ B then x ∈ A and x ∈ B. Since e ∈ A and e ∈ B and since G is a

quasigroup we have x = ae for some a ∈ A and x = eb for some b ∈ B. Thus x

has two expressions and one therefore must have a = e and b = e by hypothesis.

Hence A∩B = {e} and G is the direct product of its AG-subgroups A and B.

Theorem 88. Suppose G is an AG-group and let G = A×B. Then G′ = A′×B′

where G′, A′, B′ are the derived subgroups of G,A and B.

Proof. Let [g, g1] ∈ G′ then there exist a, a1 ∈ A and b, b1 ∈ B such that g =

(a, b), g1 = (a1, b1). Then we have

[g, g1] = [(a, b), (a1, b1)]

= {(a, b), (a1, b1)}{(a1, b1)−1(a, b)−1}
= {(a, b), (a1, b1)}{(a−11 , b−11 )(a−1, b−1)}
= (aa1, bb1)(a

−1
1 a−1, b−11 b−1)

= ((aa1)(a
−1
1 a−1), (bb1)(b

−1
1 b−1))

= ([a, a1], [b, b1]) ∈ A′ ×B′.

Hence G′ = A′ ×B′.

7.3.5 AG-group Actions

We conclude our study by investigating actions of AG-groups that are defined as

follows:
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Definition 52. Let G be an AG-group and X be a set, then a (right) AG-group

action of G on X is defined as

(i) (xg)h = x(gh) for all g, h ∈ G and x ∈ X,

(ii) xe = x for all x ∈ X.

Theorem 89. Let G be an AG-group and H ⊆ G. Then for all g, h ∈ G

(i) (Hg)h = [g, h]H,

(ii) Hgh = H[h, g].

Proof. Let g, h ∈ G. Then consider

(Hg)h = [h{(gH)g−1}]h−1

= [(gH)(hg−1)]h−1

= [(gh)(Hg−1)]h−1 by medial law

= [h−1(Hg−1)](gh) by left invertive law

= [H(h−1g−1)](gh)

= [(gh)(h−1g−1)]H

= [g, h]H

(i)

Hgh = {(gh)H}(gh)−1

= {H(gh)}(g−1h−1)
= {(gh)g−1}(Hh−1)
= H[{(gh)g−1}h−1]
= H[(h−1g−1)(gh)]

= H[(hg)(g−1h−1)]

= H[h, g]

(ii)

Theorem 90. Let G be an AG-group and H ≤ G. Then for all g, h ∈ G

Hgh = [g, h]H.
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Proof. Let g, h ∈ G. Then consider

Hgh = {(gh)H}(gh)−1

= {H(hg)}(g−1h−1)
= {(g−1h−1)(hg)}H
= {(gh)(h−1g−1)}H
= [g, h]H

Corollary 40. Let G be an AG-group and H ≤ G. Then G acts on H by

conjugation.

Proof. By Theorem 89 and Theorem 90 we have (Hg)h = Hgh. Furthermore with

H ≤ G we have

He = (eH)e−1 = He = H

Theorem 91. Let G be an AG-group and H ≤ G. Then G acts on H on the

right.

Proof. Let x, y ∈ G then

(Hx)y = (Hx)y = (Hx)y = H(xy) = Hxy

and

He = He = H.

For the following we define the coset space of G with respect to an AG-

subgroup H as cos(G : H) = {Hx|x ∈ G}.

Theorem 92. If H E G then G acts on coset space cos(G : H) on the right

transitively.
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Proof. Let Hx ∈ cos(G : H) and g, h ∈ G. Then we have

{(Hx)g}h = {(Hx)g}h
= H{(xg)h}
= H{(hg)x}
= (hg)(Hx)

= (xH)(gh)

= (Hx)(gh), since H EG

= (Hx)gh

We also have that

(Hx)e = (Hx)e = (ex)H = xH = Hx.

Now to show cos(G : H) is transitive G-space. For this let Hx,Hy ∈ cos(G : H).

Then there exits yx−1 ∈ G such that

(Hx)yx
−1

= (Hx)(yx−1) = H{x(yx−1)} = H(ye) = yH = Hy

Hence the coset space is transitive.

AG-group actions generally behave differently to group actions. For example

the following three natural group actions given in [104, Page 106, Example 3.26]

are not necessarily AG-group actions. Let G be an AG-group, let Ω = G and let

actions ωg with ω ∈ Ω be defined as:

(i) ωg = ωg: Then (ωg)h = (ωg)h = (hg)ω 6= (ω) gh = ωgh.

(ii) ωg = g−1ω: Then (ωg)h = h−1 (g−1ω) 6= (g−1h−1)ω = (gh)−1 ω = ωgh.

(iii) ωg = (gω)g−1: Then

(ωg)h =
[
h
{

(gω)g−1
}]
h−1 =

[
(gω)(hg−1)

]
h−1 =

[
h−1(hg−1)

]
(gω)

=
[
h(h−1g−1)

]
(gω) = (hg)

[
(h−1g−1)ω

]
= (h−1g−1) [(hg)ω]

6= [(hg)ω] (h−1g−1) = [(hg)ω] (h−1g−1) = [(hg)ω] (hg)−1 = ωgh.

Thus neither case satisfies condition (i) of Definition 52.

Definition 53. Let X be a G-set and let x ∈ X. The AG-subgroup Gx = {g ∈
G|xg = x} is called isotopy AG-subgroup of x or stabilizer AG-subgroup

of x.
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We now investigate the isotopy AG-subgroup Gx for the AG-group actions.

Theorem 93. Let X be a G-set. Then Gx is an AG-subgroup of G for each

x ∈ X.

Proof. Let x ∈ X and let g1, g2 ∈ Gx. Then xg1 = x and xg2 = x. Consequently,

x(g1g2) = (xg1)g2 = xg2 = x. So g1g2 ∈ Gx, and Gx is closed under the induced

operation of G. Of course xe = x, so e ∈ Gx.

If g ∈ Gx then xg = x, so x = xe = x(gg−1) = (xg)g−1 = xg−1, and

consequently g−1 ∈ Gx. Thus Gx is an AG-subgroup of G.

Theorem 94. Let X be a G-set. Then Gx EG.

Proof. By Theorem 93, Gx ≤ G. let g1 ∈ G and g ∈ Gx then

x[(g1g)g−11 ] = [x(g1g)]g−11

= [(xg1)g]g−11

= (xg1)g
−1
1

= x(g1g
−1
1 )

= xe

= x, for all x ∈ X.

Therefore we have (g1g)g−11 ∈ Gx and hence Gx EG.

Corollary 41. Let X be a G-set. Then G/Gx is abelian group.

Proof. It follows from Theorem 94 and Theorem 78.

So far all the AG-group actions given in this chapter are right actions and

indeed we are not able to find any left actions yet. This motivates the next

research question whether there even exist any left AG-group actions.
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Chapter 8

A Study of AG-groups as

Quasigroups

8.1 Introduction

In this chapter we study AG-group as a special quasigroup, a quasigroup which

is also an AG-groupoid having left identity and unique inverses. We see that

AG-groups have many properties which other quasigroups do not have and there

are several concepts of loops that can be generalized to AG-groups. For exam-

ple we usually do not assume commutativity and associativity in AG-groups.

In [83] it has been proved that commutativity and associativity are equivalent

for AG-groups. Also it is easy to see that a non-associative AG-group cannot be

idempotent. We also give an infinite family of AG-groups whose members have

order of the form 3n, n ≥ 2.

8.2 AG-groups as Invertible Quasigroups

According to [6] a quasigroup is an algebraic structure having a binary multipli-

cation operation x ·y usually written xy which satisfies the conditions for any a, b

in the quasigroup the equations

ax = b and ya = b

have unique solutions for x and y lying in the quasigroup. A loop is a quasigroup

with a nullary operation e called the identity with respect to multiplication, i.e.

ex = x and xe = x for all x.

121
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Since AG-groups are always cancellative (see [26] or for another proof see [88]),

by [70, Theorem 1.1.3] we can define a finite AG-group as a quasigroup having a

nullary operation e with respect to multiplication, called the left identity element,

as follows:

ex = x for all x.

Thus the concept of a finite AG-group is a generalization of abelian group and

a special case of quasigroup. In Theorem 95, we prove that in fact an AG-group

is a quasigroup in the infinite case, too. It follows from the above discussion that

in the non-associative case (i.e., in cases other than abelian groups) an AG-group

cannot be idempotent, a Steiner quasigroup, or a semi-symmetric quasigroup.

However, an AG-group is always a medial quasigroup by Lemma 17 Part(i).

Some interesting results are proved such as that for an AG-group G of order n

the LS is an abelian group of order n and its multiplication group is a non-abelian

group of order 2n. The inner mapping group of an AG-group is always a cyclic

group of order 2 no matter what its order is.

We recall the axiomatic definition of AG-group. A groupoid G is an AG-group

if

(i) (xy)z = (zy)x for all x, y, z ∈ G,
(ii) There exists left identity e ∈ G (that is ex = x for all x ∈ G),

(iii) For all x ∈ G there exists x
−1 ∈ G such that x

−1
x = xx

−1
= e. x and x

−1
are

called inverses of each other.

8.2.1 Main Results

We will now present the main results of our study.

Theorem 95. An AG-group G is a quasigroup.

Proof. The axiomatic definition is given in the introduction. It only remains to

show that for any a, b ∈ G the equations

ax = b and ya = b

have unique solutions for x and y lying in G. Let us consider the first equation

ax = b. This can be written as ax = eb, where e is the left identity in G.

From this by Lemma 17 Part(ii), we get xa = be. This now by inverses and by

Theorem 98 Part(i) implies that x = (be)a−1 ∈ G. Let x1 be another solution

then ax1 = b = ax, which by left cancellativity implies that x = x1. The second
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equation without the application of Lemma 17 Part(ii) implies the unique solution

for y similarly.

Theorem 96. Let G be an AG-group. Then G is an abelian group if any one of

the following holds:

(i) G is flexible.

(ii) G is left alternative.

(iii) G is right alternative.

Proof. (i) Suppose ab·a = a·ba ∀ a, b ∈ G. Put b = e. Then ae·a = a·ea = a·a.

By right cancellation, we have ae = a⇒ e is the right identity in G. Thus

G is an abelian group.

(ii) Suppose aa · b = a · ab ∀ a, b ∈ G. Put b = e. Then aa · e = a · ae⇒ ea · a =

a · ae⇒ a · a = a · ae. By left cancellation, we have a = ae⇒ e is the right

identity in G. Thus G is an abelian group.

(iii) Suppose ab·b = a·bb ∀ a, b ∈ G. Put b = e. Then ae·e = a·ee⇒ ae·e = a·e.
By right cancellation, we have ae = a⇒ e is the right identity in G. Thus

G is abelian group.

Corollary 42. An AG-group satisfying the left Bol identity is an abelian group.

Proof. Proof is similar to the previous discussion.

Theorem 97. Let G be an AG-group. Then

(i) Every AG-group G is left nuclear square quasigroup.

(ii) Every right nuclear square AG-group G is an abelian group.

(iii) Every middle nuclear square AG-group G is an abelian group.

Proof. Let G be an AG-group and let x, y, z ∈ G:

(i) By Lemma 17 Part (xiii), (xx)(yz) = (zy)(xx) = (xx · y)z. Thus G is left

nuclear square.
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(ii) Let G be a right nuclear square AG-group. Then by definition, x(y · zz) =

(xy)(zz). Put y = e. Then x(e · zz) = (xe)(zz) ⇒ x(zz) = (zz)(ex) ⇒
x(zz) = (zz)x ⇒ x(zz) = (xz)z. Thus G is right alternative. This by

Theorem 96 Part(iii) implies that G is abelian group.

(iii) Let G be a middle nuclear square AG-group. Then by definition, x(yy ·z) =

(x · yy)z. Put z = e. Then x(yy · e) = (x · yy)e⇒ x(ey · y) = (e · yy)x

⇒ x(yy) = (yy)x ⇒ x(yy) = (xy)y. Thus G is right alternative, which by

Theorem 96 Part(iii) implies that G is an abelian group.

Corollary 43. Every AG-group G satisfies the Jordan identity.

Proof. By Theorem 97 (i) we have x2 ·yx = x2y ·x∀ x, y ∈ G which is the Jordan

identity.

Theorem 98. Let G be an AG-group, then

(i) G always satisfies the right inverse property, and

(ii) if G satisfies the left inverse property then G is an abelian group.

Proof. (i) Let G be an AG-group and let x, y ∈ G. Then

(xy)y−1 = (y−1y)x = ex = x.

(ii) Let an AG-group G satisfies left inverse property. Then

y−1(yx) = x ∀x, y ∈ G.
=⇒ (yx)y−1 = xe by Lemma 17 Part(ii)

=⇒ yx = (xe)y by right inverse property

=⇒ yx = (ye)x by left invertive law

=⇒ y = ye by right cancellation

Hence G is an abelian group.

Corollary 44. An AG-group G that satisfies the Moufang identity, the C-

identity, or the extra identity is an abelian group.
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According to [22], a quasigroup can have the inverse property. On the other

hand, AG-groups are examples of quasigroups that always have the right inverse

property but can never have the left inverse property if it is non-associative.

We now discuss left central (LC) and right central (RC) identities for loops.

We thereby concentrate on the following 8 LC- and RC-identities (4 each) that

have been collected in [25] and were studied by Fenyves [18, 19] and Philips and

Vojtěchovský [73, 71, 72]. We follow the ordering of the identities as given in [25]:

xx · yz = (x · xy)z left central identity(1)

(x · xy)z = x(x · yz) left central identity(2)

(xx · y)z = x(x · yz) left central identity(3)

yz · xx = y(zx · x) right central identity(4)

(yz · x)x = y(zx · x) right central identity(5)

(yz · x)x = y(z · xx) right central identity(6)

(y · xx)z = y(x · xz) left central identity(7)

(yx · x)z = y(xx · z) right central identity(8)

Consider an AG-group G with one of the above identities. Taking y = e in

equations (3)–(8) yields one of the identities from Theorem 96 and hence G is an

abelian group. In equation (1) taking y = e and then applying cancellation laws

shows that e is also a right identity and therefore G is an abelian group.

All the LC-identities and all the RC-identities are equivalent among them-

selves for loops. But for AG-groups (and hence for quasigroups) they are not

equivalent because an AG-group G satisfying equation (2) does automatically

become an abelian group. The following examples demonstrate that we can have

(a) non-associative AG-groups that satisfy equation (2), (b) non-associative AG-

groups that do not satisfy (2), as well as (c) non-associative quasigroups that

satisfy (2) but are not necessarily AG-groups.

Example 52. A non-associative AG-group of order 4 satisfying (2):

· 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 3 2 0 1

3 2 3 1 0
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Example 53. A non-associative AG-group of order 5 not satisfying (2):

· 0 1 2 3 4

0 0 1 2 3 4

1 2 0 4 1 3

2 1 3 0 4 2

3 4 2 3 0 1

4 3 4 1 2 0

Example 54. A non-associative quasigroup of order 6 satisfying (2) that is not

an AG-group:

· 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 0 4 5 3

2 2 0 1 5 3 4

3 4 5 3 1 2 0

4 5 3 4 2 0 1

5 3 4 5 0 1 2

Theorem 99. (i) The left nucleus N of an AG-group G is an abelian group.

(ii) The right nucleus of a non-associative AG-group G is empty.

(iii) The middle nucleus of a non-associative AG-group G is empty.

Proof. (i) Clearly Nλ 6= ∅ as e ∈ Nλ since e(yz) = (ey)z = yz. Let a ∈ Nλ ⇒
a(yz) = (ay)z ∀y, z ∈ G.

Consider

a−1(yz) = [(a−1a−1)a](yz) by right inverse property

= (a−1a−1)[a(yz)] by left nuclear square property

= (a−1a−1)[(ay)z] since a ∈ Nλ

= [(a−1a−1)(ay)z] by left nuclear square property

= [((a−1a−1)a)y]z

= (a−1y)z by right inverse property

⇒ a−1 ∈ Nλ.
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Now let a, b ∈ Nλ. Then consider

(ab)(yz) = a[b(yz)] since a ∈ Nλ

= a[(by)z since b ∈ Nλ

= [a(by)]z since a ∈ Nλ

= [(ab)y]z since a ∈ Nλ

=⇒ ab ∈ Nλ.

Thus Nλ is an AG-Subgroup of G.

Now let a, b, c ∈ Nλ then clearly a(bc) = (ab)c. Since in AG-groups associa-

tivity implies commutativity we conclude that Nλ is an abelian group.

(ii) Suppose Nρ 6= ∅. Let a ∈ Nρ then

(yz)a = y(za) ∀y, z ∈ G
⇒ (yz)a = z(ya) by Lemma 17 Part(xiii)

⇒ (yz)a = (zy)a since a ∈ Nρ

⇒ yz = zy by cancellation

⇒ G is an abelian group which is a contradiction.

Hence Nρ = ∅.

(iii) Suppose Nµ 6= ∅. Let a ∈ Nµ then

(ya)z = y(az) ∀y, z ∈ G
⇒ (ya)z = a(yz) by Lemma 17 Part(xiii)

⇒ z(ya) = (yz)a by Lemma 17 Part(ii)

⇒ [z(ya)]a−1 = [(yz)a]a−1

⇒ [a−1(ya)]z = yz by left invertive law and right inverse property

⇒ [y(a−1a)]z = yz by Lemma 17 Part(xiii)

⇒ (ye)z = yz

⇒ ye = y by right cancellation.

⇒ G is an abelian group, which is a contradiction.

Hence Nµ = ∅.

In the following theorem we prove that an AG-group G is Right Conjugacy

Closed but not Left Conjugacy Closed. For this we are using the definitions given

in [5], however adapted to our notation.
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Definition 54. Let G be a groupoid and let x, y, z ∈ G, then we say G is

Left Conjugacy Closed (LCC)if [x(yx−1)](xz) = x(yz), and

Right Conjugacy Closed (RCC)if (xz)[(z−1y)z] = (xy)z.

Theorem 100. An AG-group G is RCC but not LCC.

Proof. Let G be an AG-group and x, y, z ∈ G, then

(i) (xz)[(z−1y)z] = [z(z−1y)](zx) by Lemma 17 Part(v)

= z2[(z−1y)x] by Lemma 17 Part(i)

= [(z2z−1)y)]x by twice use of Theorem 97 Part(i)

= (zy)x

= (xy)z

Thus G is RCC.

(ii) [x(yx−1)](xz) = x2[(yx−1)z] by Lemma 17 Part(i)

= [(xy)e]z by Lemma 17 Part(i)

= (yx)z by left invertive law

6= x(yz)

Thus G is not LCC.

Theorem 101. Let G be an AG-group. Then

(i) a ∈ G =⇒ ae = a if a(aa) = (aa)a.

(ii) The set H = {a ∈ G : a(aa) = (aa)a} forms an abelian group.

Proof. (i) Let a(aa) = (aa)a. Then consider (ae)a2 = (a2e)a = a2a = aa2

which by right cancellation implies that ae = a.

(ii) Clearly H 6= ∅ as e ∈ H. Let a ∈ H. Then a(aa) = (aa)a. Taking inverses

on both sides and applying Lemma 17 Part(ix), we get that a−1 ∈ H. Now

let a, b ∈ H then using Lemma 17 Part(i) consider (ab)2(ab) = (a2a)(b2b) =

(aa2)(bb2) = (ab)(ab)2 which implies that ab ∈ H. Thus H is an AG-

subgroup of G. Now by (i), H is an abelian group.

Corollary 45. A 3-power associative (and hence power associative) AG-group is

an abelian group.

This corollary can be considered as a second proof of [83, Theorem 6].
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Theorem 102. An AG-group G satisfying the Bruck identity is an abelian group.

Proof. Let x, y ∈ G. By the Bruck identity, xy · xy = x(y · yx). Put x = e, we

get y · y = y · ye which by left cancellation implies that y = ye. Hence G is an

abelian group.

Since the commutant C(G) (centre in the sense of groups) of non-associative

AG-group G is always empty (see [93]), therefore Z(G) (in sense of loops) is also

always empty.

8.2.2 Constructing a Family of AG-groups via Quasigroup

Extension

Here we present an infinite family of AG-groups. This is obtained through exten-

sion of quasigroups. The smallest member of this family is an AG-group of order

6. Let G be a multiplicative AG-group with left identity 1, and A an abelian

group written additively with neutral element 0. We call any map µ : G×G→ A

satisfying µ(1, g) = 0 for every g ∈ G a factor set. When µ : G × G → A is a

factor set, we can define multiplication on G× A by

(g, a)(h, b) = (gh, a+ b+ µ(g, h)) (A)

It is clear that the resulting groupoid is a quasigroup with left identity (1, 0).

We will denote this by (G,A, µ). Additional properties of (G,A, µ) can be en-

forced by additional requirements on µ.

Lemma 23. Let µ : G×G→ A be a factor set. Then (G,A, µ) is an AG-group

iff

µ(g, h) + µ(gh, k) = µ(k, h) + µ(kh, g) for every g, h ∈ G. (B)

Proof. The loop (G,A, µ) is an AG-group iff

((g, a)(h, b))(k, c) = ((k, c)(h, b))(g, a)

holds for every g, h ∈ G and every a, b ∈ A. Easy calculation with (A) shows

that this happens iff (B) is satisfied.
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We call a factor set µ satisfying (A) and (B) an AG-factor set. We now use a

particular AG-factor set to obtain the construction of the above-mentioned family

of AG-groups.

Proposition 10. Let n > 1 be an integer. Let A be an abelian group of order n,

and α ∈ A an element of order 2. Let G = {1, u, v} be the AG-group with left

identity 1. Define µ : G×G→ A by

µ(x, y) =

α if (x, y) = (u, 1) or (v, 1) or (v, u),

0 otherwise

then (G,A, µ) is a AG-group with left nucleus Nλ = {(1, a) : a ∈ A}.

Proof. The map µ is clearly a factor set. It can be depicted as follows:

µ 1 u v

1 0 0 0

u α 0 0

v α α 0

The Cayley table of the AG-group G is

· 1 u v

1 1 u v

u v 1 u

v u v 1

To show that (G,A, µ) is an AG-group, we verify (B). Since µ is a factor set,

therefore when g = 1 then (B) becomes µ(h, k) + µ(k, h) = µ(kh, 1). If k = 1,

then both sides of this equation are equal, regardless of the value of h. If k = u

then both sides of this equation are equal to α if h = 1, v and to zero when h = u.

If k = v then both sides of this equation are equal to α if h = 1, u and to 0 when

h = v.

When g = u then (B) becomes µ(u, h) + µ(uh, k) = µ(k, h) + µ(kh, u). If

k = 1, then µ(u, h) +µ(uh, 1) = µ(h, u) and both sides of this equation are equal

to 0 if h = 1 or h = u and equal to α if h = v. If k = u, then µ(u, h) +µ(uh, u) =

µ(u, h)+µ(uh, u) and both sides of this equation are equal regardless of the value

of h. If k = v, then µ(u, h) + µ(uh, v) = µ(v, h) + µ(vh, u) and both sides of

this equation are equal to 0 if h = u or h = v and equal to α if h = 1. When

g = v then (B) becomes µ(v, h) + µ(vh, k) = µ(k, h) + µ(kh, v). If k = 1, then
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µ(v, h)+µ(vh, 1) = µ(1, h)+µ(h, v) and both sides of this equation are equal to 0

regardless of the value of h. If k = u, then µ(v, h) +µ(vh, u) = µ(u, h) +µ(uh, v)

and both sides of this equation are equal to 0 if h = u or h = v and equal to α

if h = 1. If k = v, then µ(v, h) + µ(vh, v) = µ(v, h) + µ(vh, v) and both sides

of this equation are equal, regardless of the value of h. Hence (B) is satisfied

and therefore (G,A, µ) is an AG-group. Since from the definition it is clear that

(G,A, µ) is non-commutative and hence (G,A, µ) is non-associative, we now have

that ((u, a)(u, a)) · (v, a) 6= (v, a) 6= (1, a) = (u, a)((u, a) · (v, a)). This implies

that (u, a) /∈ Nλ. Similarly (v, a) /∈ Nλ. Also we have that (1, a)((h, b)(g, c)) =

((1, a)(h, b))(g, c) for all h, g ∈ G and a, b, c ∈ A. This implies that (1, a) belongs

to left nucleus Nλ. Thus Nλ = {(1, a); a ∈ A} is the left nucleus of the loop

(G,A, µ).

Corollary 46. For every natural number n there exists a non-associative AG-

group having left nucleus of order n.

Proof. It is sufficient to show that there is a non-associative AG-group with left

nucleus of size 1. But this is true by Example 55.

Example 55. An AG-group of order 3 (with Nλ = {0}) :

· 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0

Example 56. The smallest group A satisfying assumptions of Proposition 10 is

the 2-element cyclic group {0, 1}. Following the construction given in Proposi-

tion 10 and taking α = 1, we get the following non-associative AG-group of order

6.

· 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 0 3 2 5 4

2 4 5 0 1 2 3

3 5 4 1 0 3 2

4 2 3 4 5 0 1

5 3 2 5 4 1 0
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8.2.3 A Word about Applications of AG-groups

It has been referenced in the literature ( for example see [34]) that AG-groupoids

have applications in flock theory initiated by M. Naseeruddin [61]. So AG-groups

being AG-groupoids should have more applications than mere AG-groupoids.

The following theorem indicates another application of AG-groups.

Theorem 103. Every AG-group G is a right Bol quasigroup.

Proof. By Lemma 17 Part (xiii), we have x((yz)y) = ((xy)z)y ∀ x, y, z ∈ G.

Hence G is right Bol quasi group.

Bol loops and Bol quasigroups have found applications in differential geometry

so AG-groups being the subclass of Bol quasigroups should have applications in

that area too. Also AG-groups are medial quasigroups, which have applications

in geometry see [109, 115, 75] and [92]. All these applications of AG-groups

should be explored in more detail in future. And as we are currently only at

the beginning of studying AG-groups we envision that once their theory develops

more applications for AG-groups are encountered, similar to those of groups,

quasigroups, and loops.

8.3 Multiplication Group of an AG-group

Multiplication group and innermapping group of a loop have been investigated

in a number of papers for example [16, 65, 28, 66, 67, 63, 62, 64, 9]. This has

always been remained the most interesting topic of group theorists in loop the-

ory. Quasigroup does not have innermapping group because it does not have an

identity element unless it is not a loop. But an AG-group though not a loop

but it has a left identity so it has multiplication group as well as innermapping

group. We will prove here some interesting results about the multiplication group

and innermapping group of an AG-group that do not hold in case of a loop. For

example for an AG-group G of order n the LS is an abelian group of order n. Its

multiplication group is a nonabelian group of order 2n. The innermapping group

of an AG-group is always a cyclic group of order 2 regardless of its order. Let G

be an AG-group and a ∈ G an arbitrary element. Mapping La : G → G defined

by La(x) = ax is called left translation on G and mapping Ra : G → G defined

by Ra(x) = xa is called right translation on G.
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Lemma 24. Let G be an AG-group. Let a, b ∈ G and e is left identity in G.

Then

(i) LaRb = Rab.

(ii) RaRb = Lab.

(iii) LaLb = R(ae)Rb.

(iv) LaLb = L(ae)b = L(be)a.

(v) RaLb = R(ae)b.

(vi) LaLb = LbLa.

(vii) RaLb = RbLa.

Proof. (i) LaRb(x) = La(xb) = a(xb) = x(ab) = Rab(x). ⇒ LaRb = Rab.

(ii) RaRb(x) = Ra(xb) = (xb)a = (ab)x = Lab(x). ⇒ RaRb = Lab.

(iii) LaLb(x) = La(bx) = a(bx) = (ea)(bx) = (xb)(ae) = R(ae)(xb) = R(ae)Rb(x)⇒
LaLb = R(ae)Rb.

(iv) By (ii) and (iii) and left invertive law.

(v) RaLb(x) = Ra(bx) = (bx)a = (bx)(ea) = (ae)(xb) = Lae(xb) = LaeRb(x) ⇒
RaLb = LaeRb ⇒ RaLb = R(ae)b by (i).

(vi) LaLb = L(be)a by (iv) ⇒ LaLb = LbLa again by (iv).

(vii) RaLb = R(ae)b by (v). = R(be)a by left invertive law. = RbLa again by (v).

Remark 14. From Lemma 24 we note that if G is an AG-group, then the left

translation La and the right translation Ra behave like an even permutation and

an odd permutation respectively, that is;

LaLa = La, RaRa = La, LaRa = Ra, RaLa = Ra.

Definition 55. Let G be an AG-group. Then the set LS = {La : La(x) = ax ∀
x ∈ G} is called left section of G and the set RS = {Ra : Ra(x) = xa ∀ x ∈ G}
is called right section of G.
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Theorem 104. Let G be an AG-group of order n. Then LS is an abelian group

of order n.

Proof. By definition LS = {La : La(x) = ax∀ x ∈ G}. Let La, Lb ∈ LS for some

a, b ∈ G. Then by Lemma 24 Part(iv), we have LaLb = L(ae)b ∈ LS ⇒ LS is an

AG-groupiod. LeLa = L(ee)a = La and LaLe = L(ae)e = L(ee)a = La. Therefore Le

is the identity in LS.

Let La, Lb, Lc ∈ LS. Consider (LaLb)Lc = L(ae)bLc = L[{(ae)b}e]c = L(ce)((ae)b) =

L(ce)((be)a) = L(ae)((be)c)

= LaL(be)c = La(LbLc).

Let La ∈ LS ⇒ a ∈ G⇒ a−1 ∈ G⇒ a−1e ∈ G. Let a−1e = b then Lb ∈ LS.
Now LaLb = L(ae)b = L(ae)(a−1e) = Le = LbLa ⇒ Lb is the inverse of La. Thus

LS is a group. Since from Lemma 24, we have LaLb = LbLa. Therefore LS is an

abelian group.

Example 57. An AG-group of order 3 :

· 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0

The Multiplication group of the AG-group given in Example 57 is isomorphic

to S3, the symmetric group of degree 3.

· L0 L1 L2 R0 R1 R2

L0 L0 L1 L2 R0 R1 R2

L1 L1 L2 L0 R2 R0 R1

L2 L2 L0 L1 R1 R2 R0

R0 R0 R1 R2 L0 L1 L2

R1 R1 R2 R0 L2 L0 L1

R2 R2 R0 R1 L1 L2 L0

Here LS = {L0, L1, L2} which is an abelian group as the following table shows:

· L0 L1 L2

L0 L0 L1 L2

L1 L1 L2 L0

L2 L2 L0 L1
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But RS = {R0, R1, R2} does not form an AG-group as the following table

shows:

· R0 R1 R2

R0 L0 L1 L2

R1 L2 L0 L1

R2 L1 L2 L0

Remark 15. Right section does not form even an AG-groupoid.

Definition 56. Let G be an AG-group. The set 〈La, Ra : a ∈ G〉 forms a group

which is called multiplication group of the AG-group G and is denoted by M(G)

i.e M(G) = 〈La, Ra : a ∈ G〉.

Lemma 24 guarantees that for an AG-group G, M(G) = 〈La, Ra : a ∈ G〉 =

{La, Ra : a ∈ G}

Theorem 105. Let G be an AG-group of order n. The set {La, Ra : a ∈ G}
forms a non-abelian group of order 2n which is called multiplication group of the

AG-group G and is denoted by M(G) i.e M(G) = {La, Ra : a ∈ G}.

Proof. From Lemma 24, it is clear that M(G) is closed. Le plays the role of

identity as LaLe = LeLa = La.

RaLe = R(ae)e = R(ee)a = Ra = Rea = LeRa.

Let La ∈M(G)⇒ a ∈ G⇒ a−1 ∈ G⇒ Ra−1 ∈M(G) and RaRa−1 = Laa−1 =

Le = La−1a = Ra−1Ra. Therefore Ra−1 of Ra is in M(G). Associativity in M(G)

follows from the associativity of mappings. Thus M(G) is a group. Note that

M(G) is non-abelian because RaRb 6= RbRa.

The multiplication group of the AG-group given in Example 57 is isomorphic

to S3, the symmetric group of degree 3.

To make things a bit more clearer we consider the following example.

Example 58. An AG-group of order 4.

· 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 3 2 1 0

3 2 3 0 1
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Its multiplication group is:

· L0 L1 L2 L3 R0 R1 R2 R3

L0 L0 L1 L2 L3 R0 R1 R2 R3

L1 L1 L2 L3 L0 R3 R0 R1 R2

L2 L2 L3 L0 L1 R2 R3 R0 R1

L3 L3 L0 L1 L2 R1 R2 R3 R0

R0 R0 R1 R2 R3 L0 L1 L2 L3

R1 R1 R2 R3 R0 L3 L0 L1 L2

R2 R2 R3 R0 R1 L1 L2 L3 L0

R3 R3 R0 R1 R2 L2 L3 L0 L1

From Example 58 we observe that: (1) The multiplication group of an AG-group

is not necessarily dihedral. For example, (L1 · R3)
2 = R2

2 = L3 6= L0. So here

M(G) is not D4. From Examples 57 and 58 we observe that: (2) The left sections

in both the examples are C3 and C4 respectively.

Theorem 106. Let G be an AG-group. Let a be an element of G distinct from

e. Then a is self-inverse ⇐⇒ R−1a = Ra is self-inverse.

Proof. Suppose a is self-inverse. Since Ra(x) = xa, then Ra is of order 2 ,

as Ra(Ra(x)) = (xa)a = (xa)a−1 = x =⇒ R2
a = Le =⇒ R−1a = Ra.

Conversely let R2
a = Le then R2

a(x) = Le(x)∀x ∈ G =⇒ (xa)a = ex = x.

Now by left invertive law, a2x = x. This by right cancellation implies a2 = e or

a−1 = a.

Remark 16. Ra cannot fix all the elements of AG-group G. For if we suppose

that Ra fixes all the elements. That is;Ra(x) = x ∀x ∈ G =⇒ xa = x∀x ∈ G =⇒
a is the right identity and hence G is abelian.

Theorem 107. The inner mapping group of every AG-group G is Inn(G) =

{L0, R0} ∼= C2.

Proof. As Ra(0) = 0a = a. This implies that only R0 maps 0 on 0. On the other

hand L0(0) = 0 and no other La can map 0 on 0. Because let La(0) = 0 where

a 6= 0. Then a0 = 0. This implies R0(a) = 0. But R0(0) = 0. This implies that R0

is not a permutation which is a contradiction. Hence Inn(G) = {L0, R0} ≡ C2.

The following table verifies the claim.
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· L0 R0

L0 L0 R0

R0 R0 L0

Hence the proof.

Again the following are some quick observations:

(i) The Inn(G) is not necessarily normal in M(G) for example consider the

multiplication group of the AG-group given in 58. Here L1 {L0, R0} =

{L1, R3} 6= {L1, R1} = {L0, R0}L1.

(ii) For every AG-group G, LS being of index 2 is normal in M(G) and hence

M(G)/LS ≡ C2.

(iii) For every AG-group G, left multiplication group of G coincides with LS and

right multiplication group of G coincides with M(G).

A non-associative quasigroup can be left distributive as well as right distribu-

tive but a non-associative AG-group can neither be left distributive nor right

distributive as the following theorem shows.

Theorem 108. Every left distributive AG-group and every right distributive AG-

group is abelian group.

Proof. Let G be a left distributive AG-group. Then ∀ a, b, c ∈ G, we have

a(bc) = (ab)(ac)

= (aa)(bc) by Lemma 17 Part(i)

which implies that a = aa by right cancellation.

This further implies that G is an abelian group. The second part is similar. A

non-associative quasigroup can be left distributive as well as right distributive but

a non-associative AG-group can neither be left distributive nor right distributive

as the following theorem shows.

Theorem 109. If G is an AG-group then the M(G) cannot be the group of

automorphisms of G.
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Proof. Assume that the M(G) is the group of automorphisms of G. It means

that every element of M(G) is an automorphism of G. Since La, Ra ∈M(G) for

all a ∈ G. Thus La and Ra are both automorphisms of G. So we can write

(xy)La = (x)La · (y)La ∵ La is homomorphism

⇒ a(xy) = (ax)(ay) for all x, y ∈ G
⇒ G is left distributive

Similarly

(xy)Ra = (x)Ra · (y)Ra ∵ Ra is homomorphism

⇒ (xy)a = (xa)(ya) for all x, y ∈ G
⇒ G is right distributive

and hence G is distributive which is a contradiction to Theorem 108. Hence

our supposition was wrong and it is proved that the M(G) of an AG-group G

cannot be the group of automorphisms of G.

Lemma 25. Let G be an AG-group and M(G) its multiplication group. Let

x, y ∈ G and e is the identity element in G. Then

(i) R−1x = Rx−1 ;

(ii) L−1x = Lx−1e.

Proof. (i) Since G satisfies right inverse property. Therefore

(yx)x−1 = y

⇒ Rx−1Rx(y) = y = Le(y)∀x, y ∈ G
⇒ Rx−1Rx = Le

⇒ R−1x = Rx−1 .

(ii) By Lemma 24 Part(iv)

LxLx−1e = L(xe)(x−1e) = L(xx−1)e = Le

⇒ L−1x = Lx−1e.



Chapter 9

A Study of AG-groups as a

Parallelogram Space

9.1 Introduction

AG-groups were first identified in [51] as an important subclass of Abel Grass-

mann Groupoids. They generalize the concept of abelian groups. They can also

be studied in the context of quasigroup and loop theory [94]. In fact, AG-groups

can be considered as a special type of quasigroup as proved in the previous chap-

ter.

Recall that a quasigroup is a groupoid (Q, ·) such that for any a, b in G the

equations

a · x = b, y · a = b

have unique solutions for x and y lying in G. x · y is usually written xy. The

unique solutions x and y are sometimes denoted by left division and right division

as x = a\b and y = b/a, respectively.

A quasigroup Q is called medial quasigroup if the identity ab · cd = ac · bd
holds. If the additional identity aa = a holds then it is called IM-quasigroup

(idempotent medial quasigroups) [111]. By Lemma 17, given below, it is clear

that every AG-group is medial. So all the geometric concepts that have been

introduced for a medial quasigroup in [109, 115, 75] certainly hold for AG-groups

as well. It can be easily verified that an idempotent AG-group is an abelian group

and therefore a non-associative AG-group cannot be idempotent and hence cannot

be a hexagonal quasigroup [112], GS-quasigroup [110], Steiner quasigroup [69], or

quadratical quasigroup [113]. Thus AG-groups are altogether a different subclass

of medial quasigroups in contrast to those subclasses of medial quasigroups, in

139
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which the concept of geometry has been considered previously.

We first show that if G is an AG-group then given any three points a, b, c ∈ G
there exists a unique d ∈ G such that a, b, c, d form a parallelogram. In [109] it

has been shown that a medial quasigroup Q is a parallelogram space. We give

a direct proof in Theorem 111 of this fact for AG-groups using the definition of

parallelogram space from [68].

For various types of quasigroups, explicit formulae have been given to express

the fourth vertex of a parallelogram as a function of the other three (see [40, 110,

114, 115]). We provide such a formula for AG-groups in Theorem 110 together

with an efficient way to compute it.

For some other classes of quasigroup one can provide methods to compute

the points of a parallelogram if at least two points are known. In our final result

we go beyond this by giving some methods of finding the remaining points of a

parallelogram if only one non-trivial point is known.

9.2 Parallelograms

Let Q be a quasigroup. We shall say a, b, c, d ∈ Q form a parallelogram, denoted

by Par(a, b, c, d), if there are points p, q ∈ Q such that pa = qb and pd = qc.

Theorem 110. Let G be an AG-group and a, b, c, d ∈ G. Then Par(a, b, c, d)

holds iff there are x, y ∈ G such that xb = a, by = c and b · xy = d.

Proof. Let x, y ∈ G be elements satisfying xb = a, by = c and b(xy) = d. Let e

denotes the left identity in G. By taking p = e and q = x, we see that pa = qb

and by Lemma 17 Part(xiii) pd = b(xy) = x(by) = qc, i.e., par(a, b, c, d) holds.

Now suppose par(a, b, c, d) holds and denote x = a/b, y = b\c then xb = a and

by = c. According to [3, Corollary 5], for any p ∈ G there is a unique q ∈ G such

that pa = qb and pd = qc. Specially, for p = e we see that a = qb ⇒ q = x and

d = qc = xc = x.by = b.xy.

In [109], it has been proved that if Q is medial quasigroup then this quaternary

relation satisfies the following properties of parallelogram space.

(i) For any three points a, b, c there is one and only one point d such that

Par(a, b, c, d).

(ii) If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or of (d, c, b, a), then

Par(a, b, c, d) implies Par(e, f, g, h).
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(iii) From Par(a, b, c, d) and Par(c, d, e, f) it follows Par(a, b, f, e).

Definition 57. [68] A parallelogram space is a nonempty set Q with quaternary

relation P ⊆ Q4 such that the following conditions are satisfied:

(P1) If Par(a, b, c, d) holds then Par(a, c, b, d) holds for all a, b, c, d ∈ Q.

(P2) If Par(a, b, c, d) holds then Par(c, d, a, b) holds for all a, b, c, d ∈ Q.

(P3) If Par(a, b, f, g) and Par(f, g, c, d) hold then Par(a, b, c, d) holds for all

a, b, c, d, f, g ∈ Q.

(P4) For any three points a, b, c there is one and only one point d such that

Par(a, b, c, d) holds.

Again in [109], it has been shown that if Q is medial quasigroup then the

structure (Q,Par) is a special case of Desargues systems in the terminology of

D. Vakarelov [108] and (Q,P) is a parallelogram space in the terminology of F.

Ostermann and T. Schmit [68], where

P (a, b, c, d)⇔ Par(a, b, d, c) (8)

. (Q,Par) is also called the parallelogram space for the sake of simplicity.

For an AG-group G, using definition 57 and (8) we give a direct proof that

(G,Par) is a parallelogram space. But first we prove the following lemma.

Lemma 26. (i) If Par(a, b, c, d) holds then Par(c, d, a, b) holds for all a, b, c, d ∈
G.

(ii) For any three points a, b, c there is one and only one point d such that

Par(a, b, c, d) holds.

Proof. (i) Let Par(a, b, c, d) holds then there exist p, q ∈ G such that the fol-

lowing holds:

pa = qb and pd = qc =⇒ qc = pd and qb = pa

=⇒ Par(c, d, a, b)

(ii) (a) Taking d = cb−1 · a, we prove that Par(a, b, c, d) holds. So let p, q ∈ G
such that pa = qb. Now

pd = p(cb−1 · a) = cb−1 · pa = cb−1 · qb = q(cb−1 · b) = qc.

Thus Par(a, c, b, d) holds.
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(b) For uniqueness, let d1, d2 ∈ G be such that pa = qb and pd1 = qc, pd2 =

qc. From last two equations, by left cancellation we have d1 = d2.

Theorem 111. An AG-group G is a parallelogram space.

Proof. (P1) Let P (a, b, c, d) holds therefore Par(a, b, d, c) holds. Then by Theo-

rem 110 there exist x1, y1 ∈ G such that

x1b = a, by1 = d, b · x1y1 = c⇒ x1d = c.

Taking x2 = ac−1, y2 = de · c−1, we have x2c = a, cy2 = d, and c · x2y2 = x2 ·
cy2 = x2d = ac−1 · d = dc−1 · a

= dc−1 · x1b = dx1 · c−1b = ce · c−1b = bc−1 · c = b.

Thus Par(a, c, d, b) holds and hence P (a, c, b, d) holds.

(P2) Let P (a, b, c, d) holds. That is, Par(a, b, d, c) holds. Then there exist p, q ∈
G such that the following holds:

pa = qb and pc = qd ⇒ pc = qd and pa = qb

Thus Par(c, d, b, a) holds and hence P (c, d, a, b) holds.

(P3) Let P (a, b, f, g) and P (f, g, c, d) hold. That is, Par(a, b, g, f) and Par(f, g, d, c)

hold. Then by Theorem 110 there exist x1, y1, x2, y2 ∈ G such that

x1b = a, by1 = g, b·x1y1 = f ⇒ x1g = f and x2g = f, gy2 = d, g·x2y2 = c⇒ x2d = c.

Taking x3 = x1 = x2, y3 = de · b−1, we have x3b = a, by3 = d, and

b · x3y3 = x3b{y3 = x3d = x2d = c.

Thus again by Theorem 110 we have proved that Par(a, b, d, c) holds and

hence P (a, b, c, d) holds.

(P4) The proof is similar to Lemma 26(ii) with interchanging p = q.

Hence (G,Par) is a parallelogram space.

Corollary 47. Let G be an AG-group and let Par(a, b, c, d) holds for some p, q ∈
G. Then

ab−1 = p−1q
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Proof. First we prove that Par(a, b, c, cq · p−1) holds. Let pa = qb for some

p, q ∈ G. Now

p(cq · p−1) = cq · e = qc.

Thus Par(a, b, c, cq · p−1) holds. Now by Theorem 111 (P4), we have

cb−1 · a = cq · p−1 =⇒ ab−1 · c = p−1q · c

Hence by right cancellation, we have proved the claim.

The above corollary provides us with a method of finding p, q ∈ G if we know

that Par(a, c, b, d) holds. Since G is a quasigroup so for a, b ∈ G we can find

p−1q. Then we can find p−1 by fixing q arbitrarily and finally we have p as the

inverses of p−1. The illustration is done in the following example.

Example 59. Consider the following AG-group of order 12:

· 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 3 2 6 7 4 5 10 11 8 9

2 3 2 1 0 8 11 10 9 4 7 6 5

3 2 3 0 1 10 9 8 11 6 5 4 7

4 6 4 8 10 9 0 11 1 7 2 5 3

5 7 5 11 9 0 8 1 10 3 6 2 4

6 4 6 10 8 11 1 9 0 5 3 7 2

7 5 7 9 11 1 10 0 8 2 4 3 6

8 8 10 6 4 5 2 7 3 11 0 9 1

9 9 11 5 7 3 4 2 6 0 10 1 8

10 10 8 4 6 7 3 5 2 9 1 11 0

11 11 9 7 5 2 6 3 4 1 8 0 10

Let us take a = 3, b = 7, then by Theorem 110 we have that Par(3, 7, 2, 6)

holds. Now we want that for this parallelogram what p, q actually are. So by

using Corollary 47, we can do that in the following way.

We have 3 · 7−1 = p−1q which implies that 8 = p−1q. Now take q = 10 (say).

So we have 8 = p−1 · 10. this implies that p−1 = 1. This finally gives that

p = 1−1 = 1. we can check them to be correct as 2 = 1 · 3 = 10 · 7 = 2 and

4 = 1 · 6 = 10 · 2 = 4. Had we taken q = 4, we would have gotten p = 3.

Theorem 111 (P4) provides the fourth point or element d, for any three points

elements a, b, c of G to form a parallelogram. The following theorems describes

how to form a parallelogram if any two points are given.
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Theorem 112. Let G be an AG-group and a, b, p ∈ G. Then Par(a, b, pb, pa)

holds.

Proof. Let c = pb, d = pa. Take q ∈ G such that pa = qb. Now qc = q(pb) =

p(qb) = q(pa) = pd. Hence Par(a, b, pa, pb) holds.

The following is a diagrammatic depiction of the result of Theorem 112:

pa pb

ba

Let us also illustrate the above theorem by an example.

Example 60. Take arbitrarily a = 2, b = 7, p = 9 in Example 59. Then we can

find q = 1 such that Par(2, 7, 6, 5) holds. Note that p = 9 is already understood.

Theorem 113. Let G be an AG-group. Then Par(a, b, a−1, (ab)−1a) holds.

Proof. Let p, q ∈ G such that pa = qb.

Now qa−1 = [(b−1a)p]a−1

= (a−1p)(b−1a)by invertive law

= (a−1b−1)(pa) by Lemma 17 Part(i)

= p[(a−1b−1)a] by Lemma 17 Part(iii)

= p[(ab)−1a] by Lemma 17 Part(ix)

Hence Par(a, b, a−1, (ab)−1a) holds.

Again we will illustrate the above theorem by a diagrammatic depiction and

then by an example.

(ab)  a −1

e

ba

−1(ab)  

ab

a−1
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Example 61. Take arbitrarily a = 3, b = 8 in Example 59. Then Par(3, 8, 2, 11)

holds. Here p = 1 and q = 7.

Theorem 114. Let G be an AG-group and let a, b ∈ G such that e 6= a. Then

Par(a, ab, (ae)a−1, b) holds

Proof. Let p, q ∈ G such that pa = q(ab). Now

pa = a(qb) by Lemma 17 Part(xiii)

ap = (qb)a by Lemma 17 Part(ii)

qb = (ap)a−1by right inverse property

qb = (ap)(ea−1)

qb = (a−1e)(pa) by Lemma 17 Part(iv)

qb = p((a−1e)a) by Lemma 17 Part(iii)

qb = p((ae)a−1).

Hence Par(a, ab, (ae)a−1, b) holds.

Let us consider the following example.

Example 62. Take arbitrarily a = 5, b = 2 in Example 59. Then Par(5, 11, 1, 2)

holds. Here p = 10 and q = 4.

The following corollary provides a fast method to compute the parallelogram

space for any one non-trivial element of an AG-group G.

Corollary 48. Let G be an AG-group and let a ∈ G such that e 6= a. Then

Par(a, ae, (ae)a−1, e) holds.

Observe that since e is the left unit element in the AG-group, the element ae

is in generally different from a and thus Par(a, ae, (ae)a−1, e) is non-trivial. We

again illustrate the corollary with a diagram followed by a concrete example.

e

aea

a−1

(ae)a−1
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Example 63. Take arbitrarily a = 6 in Example 59. Then Par(6, 4, 1, 0) holds.

Here p = 3 and q = 2.

Theorem 115. Let G be an AG-group, if Par(a1, b1, c1, d1) and Par(a2, b2, c2, d2)

then Par(a1a2, b1b2, c1c2, d1d2) also holds.

Proof. Since Par(a1, b1, c1, d1) and Par(a2, b2, c2, d2) hold, by Theorem 110 there

exist x1, y1, x2, y2 ∈ G such that

x1a1 = b1, b1y1 = c1, b1 · x1y1 = d1, x2a2 = b2, b2y2 = c2, b2 · x2y2 = d2

Taking x3 = x1x2, y3 = c2b
−1
1 · c1b−12 , we have x3 · a1a2, b1b2 · y3 = c1c2. Now

b1b2 · x3y3 = (b1b2){(x1x2)(c2b−11 · c1b−12 )}
= (b1b2){(x1x2)(c2c1 · b−11 b−12 )}
= (x1x2){(c2c1)(b1b2 · b−11 b−12 )}
= (x1x2)(c2c1 · e)
= x1x2 · c1c2
= x1c1 · x2c2
= (b1 · x1y1) · (b2 · x2y2)
= d1d2

Hence by Theorem 110 we are done.

Theorem 116. Let G be an AG-group then the parallelogram space (G,Par) is

again an AG-group.

Proof. Define a binary operation @ on (G,Par) by

Par(a1, b1, c1, d1)@Par(a2, b2, c2, d2) = Par(a1a2, b1b2, c1c2, d1d2)

for all a1, b1, c1, d1,a2, b2, c2, d2 ∈ G

By Theorem 115 (G,Par) is closed under @.

Let x = Par(a1, b1, c1, d1), y = Par(a2, b2, c2, d2), z = Par(a3, b3, c3, d3)∈(G,Par)
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then

(x@y)@z = [Par(a1, b1, c1, d1)@Par(a2, b2, c2, d2)]@Par(a3, b3, c3, d3)

= Par(a1a2, b1b2, c1c2, d1d2)@Par(a3, b3, c3, d3)

= Par(a1a2 · a3, b1b2 · b3, c1c2 · c3, d1d2 · d3)
= Par(a3a2 · a1, b3b2 · b1, c3c2 · c1, d3d2 · d1)
= Par(a3a2, b3b2, c3c2, d3d2)@Par(a1, b1, c1, d1)

= [Par(a3, b3, c3, d3)@Par(a2, b2, c2, d2)]@Par(a1, b1, c1, d1)

= (z@y)@x

Thus (G,Par) is an AG-groupoid under @.

Par(e, e, e, e) ∈ (G,Par) plays the role of left identity as for all Par(a, b, c, d) ∈
(G,Par), we have

Par(e, e, e, e)@Par(a, b, c, d) = Par(ea, eb, ec, ed) = Par(a, b, c, d)

Every element Par(a, b, c, d) in (G,Par) has an inverse Par(a−1, c, b, d) as

Par(a, b, c, d)@Par(a−1, b−1, c−1, d−1) = Par(e, e, e, e) and

Par(a−1, b−1, c−1, d−1)@Par(a, b, c, d) = Par(e, e, e, e)

Hence (G,Par,@) is an AG-group.

Corollary 49. Let G be an abelian group, then (G,Par,@) is an abelian group.

We can now generalize the above results to the following theorem.

Theorem 117. Let G be a medial quasigroup, then (G,Par,@) is also a medial

quasigroup.

The proof of this theorem is analogous to that of Theorem 116.
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Chapter 10

AG-groups and Other Classes of

Right Bol Quasigroups

10.1 Introduction

By a result of Sharma, right Bol quasigroups are obtainable from right Bol loops

via an involutive automorphism. We prove that the class of AG-groups, intro-

duced by Kamran, is obtained via the same construction from abelian groups. We

further introduce a new class of Bol∗ quasigroups, which turns out to correspond,

as above, to the class of groups.

Sharma’s correspondence allows an efficient implementation and we present

some enumeration results for the above three classes. It was noticed in [94]

that AG-groups belong to the class of right Bol quasigroups. It is well known

that right Bol quasigroups and right Bol loops have applications in differential

geometry [78]. In [83] enumeration of AG-groups was proposed as an interesting

problem. In [86] the enumeration was carried out computationally up to order 12.

Here we completely classify AG-groups by showing that every AG-group arises

from an abelian group via an involutive automorphism.

Theorem 118. Suppose G is an abelian group and α ∈ Aut(G) satisfying α2 = 1.

Define a new binary operation on G by a · b = α(a) + b. Then Gα = (G, ·) is an

AG-group. Furthermore, every AG-group is obtainable in this way. Finally, the

AG-groups Gα and Hβ are isomorphic if and only if the abelian groups G and H

are isomorphic and automorphisms α and β are conjugate.

This description of the class of AG-groups allows us to classify various sub-

classes of them. For example, it easily follows from Theorem 118 that the AG-

149
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Order 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Group 1 2 1 1 1 3 2 1 1 2 1 1 1 5 1 2 1 2

Other 1 2 1 1 1 7 3 1 1 6 1 1 3 24 1 3 1 6

Total 2 4 2 2 2 10 4 2 2 8 2 2 4 29 2 5 2 8

Table 10.1: Number of AG-groups of order n, 3 ≤ n ≤ 20

group Gα is a group if and only if α is the identity automorphism of the abelian

group G. In the similar spirit let an AG-group be called involutory if its every

element is an involution, that is, it satisfies a2 = e, where e is the (left) identity

element. The following is a corollary of Theorem 118.

Theorem 119. An AG-group Gα is involutory if and only if α is the minus

identity automorphism that is α(g) = −g for all g ∈ G. In particular, there is a

natural bijection between abelian groups and involutory AG-groups.

The groups of order one and two are the only cyclic groups for which the

identity automorphism is the same as minus identity. In particular, for all orders

n > 2 there exists a non-associative AG-group.

There have been a lot of publications (see for example, [17]) about the mul-

tiplication groups of loops and quasigroups. By definition, the multiplication

group M(Q) of a quasigroup Q is the subgroup of Sym(Q) generated by all left

and right translations. The multiplication group of an AG-group was studied

in [90] where it was established that for a non-associative AG-group of order n

its multiplication group is non-abelian of order 2n and, correspondingly, the so

called inner mapping group has order two. Based on Theorem 118, we can give

a more precise description of the multiplication group.

Theorem 120. Suppose Gα is a non-associative AG-group, that is, α is non-

identity. Then M(Gα) is isomorphic to the semidirect product G : 〈α〉. Note

also that the order two group 〈α〉 is the inner mapping group I(Gα), that is, the

stabilizer in M(Gα) of the identity element.

The construction of the AG-groups from the abelian groups, as described in

Theorem 118, can easily be implemented in a computer algebra system. In fact,

we implemented it in GAP [60] and were able to enumerate AG-groups for very

large orders n. As just a sample of the computation, we provide here (see Table

10.1) the information about the number of AG-groups up to order 20.
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The correspondence between the classes of abelian groups and AG-groups is

very simple, so naturally, we were wondering whether a similar construction had

been known. And indeed, we found a paper by Sharma [100] establishing a

correspondence between the classes of left Bol loops and left Bol quasigroups.

By duality, there is a similar correspondence between right Bol loops and right

Bol quasigroups. This dual correspondence is essentially the same as our cor-

respondence. Clearly, the class of abelian groups is a subclass of the class of

right Bol loops. It is not so immediately clear, but still can be shown that the

class of AG-groups is a subclass of the class of right Bol quasigroups. Hence our

correspondence is simply a special case of Sharma’s correspondence adjusted for

the case of right Bol loops. In this sense, our Theorem 118 shows that the class

of AG-groups is the counterpart of the class of abelian groups under Sharma’s

correspondence. On the other hand since the class of AG-groups is a subclass

of medial quasigroups so our Theorem 118 turned out to be a special case of

Bruck-Toyoda theorem for a special class of medial quasigroups. We consider it

an interesting problem to determine which classes of quasigroups are the coun-

terparts of other subclasses of right Bol loops, such as say, the class of groups

or the class of Moufang loops. In this chapter we give an answer to the first

of these questions, namely, we provide the axioms for the class of quasigroups

corresponding to the class of groups.

Definition 58. A right Bol∗ quasigroup is a quasigroup satisfying

a(bc · d) = (ab · c)d

for all elements a, b, c, d.

Note that the substitution d = b turns the above equality into the right Bol

law, which shows that the class of the right Bol∗ quasigroups is a subclass of right

Bol quasigroups. In the future we will just speak of Bol quasigroups and Bol∗

quasigroups, skipping ‘right’.

Theorem 121. Suppose G is a group and α ∈ Aut(G) satisfying α2 = 1. Define

a new binary operation on G by a ∗ b = α(a)b. Then Gα = (G, ∗) is a Bol∗ quasi-

group. Furthermore, every Bol∗ quasigroup is obtainable in this way. Finally, the

Bol∗ quasigroups Gα and Hβ are isomorphic if and only if the groups G and H

are isomorphic and automorphisms α and β are conjugate.
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10.2 Preliminaries

The following property of AG-groups was established in [83].

Lemma 27. Every AG-group satisfies the identity (ab · c)d = a(bc · d). In other

words, every AG-group is a Bol∗ quasigroup.

We now embark on proving Theorem 118. We start with the first claim in

that theorem.

Proposition 11. Let G be an abelian group under addition and let α ∈ Aut(G)

be such that α2 = 1. Define x · y = α(x) + y for all x, y ∈ G. Then Gα = (G, ·)
is an AG-group with left identity e = 0.

Proof. We start by checking the left invertive law in Gα. Let x, y, z ∈ G. Then

xy ·z = α(α(x)+y)+z = α2(x)+α(y)+z = x+α(y)+z, since α2 = 1. Similarly,

zy · x = z + α(y) + x, and so zy · x = z + α(y) + x = x+ α(y) + z = xy · z.

It is easy to see that 0 is the left identity in Gα. Indeed, 0x = α(0)+x = 0+x,

for all x ∈ G. Finally, we claim that α(−x) is the left inverse of x. Indeed,

α(−x)x = α(α(−x)) + x = −x+ x = 0.

This shows that Gα is an AG-group.

We next need to show that every AG-group can be obtained as above. Let

G be an AG-group with a left identity e. We first show how to build an abelian

group from G.

Proposition 12. Consider the set G together with the new operation + defined

as follows:

x+ y = xe · y,

for all x, y ∈ G. Then (G,+) is an abelian group. The zero element of this

group is e and, for every x ∈ G, the inverse −x is equal to x−1e.

Proof. We start by checking associativity of addition. Let x, y, z ∈ G. Then

(x+ y) + z = (xe · y)e · z. Using Lemma 27 with a = xe, b = y, c = e, and d = z,

we get that (xe·y)e·z = xe·(ye·z) = x+(y+z). Therefore, (x+y)+z = x+(y+z),

proving associativity.

Commutativity of addition follows essentially by the definition. Indeed, x +

y = xe · y = ye · x = y + x by the left invertive law. Similarly, e + x =

ee · x = ex = x. Now by commutativity e is the zero element of (G,+). Finally,
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x−1e+x = (x−1e)e ·x = ((ee)x−1)x = ex−1 ·x = x−1x = e. Again, commutativity

shows that x−1e is the inverse −x.

We remark that in place of the identity e we could use any fixed element

c ∈ G. Namely, if we define addition via: x ⊕ y = xc · y then we again get an

abelian group, whose zero element is c and where the inverses are computed as

follows: 	x = x−1c. The proof is essentially the same. Furthermore, the groups

obtained for different elements c are all isomorphic. Namely, the isomorphism

between (G,+) and (G,⊕) is given by x 7→ x ∗ c.
Our next step is to prove that the mapping α : G → G defined by g 7→ ge is

an involutive automorphism of the abelian group (G,+).

Proposition 13. For all x, y ∈ G, we have α(x+ y) = α(x) +α(y) and, further-

more, α2 = 1. Therefore, α is an involutive automorphism of (G,+).

Proof. We first note that by the left invertive law α2(x) = xe · e = ee · x =

ex = x for all x ∈ G. Therefore, α2 = 1, the identity mapping on G. By

Lemma 27, α(x + y) = α(xe · y) = (xe · y)e = x(ey · e) = x(ye). On the

other hand, α(x) + α(y) = (xe)e · ye. We saw above that xe · e = x, hence

α(x) +α(y) = x(ye), which we have shown to be equal to α(x+ y). Therefore, α

is an automorphism.

The last two results show that every AG-group G canonically defines an

abelian group (G,+) and its involutive automorphism α. It remains to see that

the AG-group G can be recovered from (G,+) and α as in Proposition 11.

Proposition 14. Suppose G is an AG-group and let (G,+) and α be the corre-

sponding abelian group and its involutive automorphism. Then for all x, y ∈ G
we have xy = α(x) + y. That is, G = Gα.

Proof. This is clear: indeed, α(x) + y = (xe · e)y = xy. We used the identity

xe · e = x, which we showed before.

We now turn to homomorphisms between AG-groups.

Proposition 15. Suppose G and H are abelian groups and let α ∈ Aut(G) with

α2 = 1 and β ∈ Aut(H) with β2 = 1. Then the set of homomorphisms between

AG-groups Gα and Hβ coincides with the set of group homomorphisms π : G→ H

satisfying πα = βπ.
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Proof. Suppose π : Gα → Hβ is a homomorphism of AG-groups, that is, it is

a mapping G → H such that π(gh) = π(g)π(h). By cancellativity, π sends the

left identity of Gα to the left identity of Hβ. Therefore, for x, y ∈ G, we have

π(x+ y) = π(xe · y) = π(xe)π(y) = π(x)π(e) · π(y) = π(x)e · π(y) = π(x) + π(y).

This shows that π is a homomorphism of abelian groups. Next, let x ∈ G. Then

πα(x) = π(xe) = π(x)e = βπ(x). Since x ∈ G is arbitrary, we conclude that

πα = βπ.

For the converse, suppose that π : G → H is a homomorphism of abelian

groups and that π satisfies πα = βπ. Then, for x, y ∈ G, we have π(xy) =

π(α(x) + y) = πα(x) + π(y) = βπ(x) + π(y) = π(x)π(y). Hence π is a homomor-

phism of AG-groups.

This allows to complete the proof of Theorem 118.

Corollary 50. Two AG-groups Gα and Hβ are isomorphic if and only if there

is an isomorphism π between G and H, satisfying παπ−1 = β.

Proof. Immediately follows from Proposition 15. Indeed, if π is bijective then the

condition πα = βπ is equivalent to παπ−1 = β.

We record here a further corollary of Proposition 15, which describes the full

automorphism group of the AG-group Gα.

Corollary 51. The automorphism group of the AG-group Gα coincides with

CAut(G)(α), the centralizer in Aut(G) of the involution α.

Proof. If Gα = Hβ (and so G = H and α = β) then the condition πα = βπ = απ

means simply that π ∈ Aut(G) must commute with α.

It is interesting that the involutory twist construction can be used repeatedly.

Proposition 16. Let (G, ◦) be an AG-group with a left identity e. Let α ∈
Aut(G) such that α2 = 1. Define x · y = α(x) ◦ y for all x, y ∈ G. Then (G, ·) is

again an AG-group.

Proof. Initially this had an independent proof. However, with all the theory that

we have developed, this result follows easily. Indeed, by Theorem 118, the AG-

group (G, ◦) must be equal to Gβ, for an abelian group G and its involutory

automorphism β.

Note that this means that x ◦ y = β(x) + y, where, as usual, plus indicates

addition in the abelian group G. According to Corollary 51, α is an automorphism
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of the group G commuting with β. In particular, γ = βα is again an involutory

automorphism of G.

We now notice that x · y = α(x) ◦ y = β(α(x)) + y = γ(x) + y. This means

that (G, ·) is simply the AG-group Gγ.

10.3 Particular Classes of AG-groups

It is natural to ask when the AG-group Gα is associative, that is, a group. It was

shown in [83] that for AG-groups associativity is equivalent to commutativity

and also to the property that the left identity e is a two-sided identity. We can

show that, in fact, Gα is never a group, when α 6= 1.

Proposition 17. Suppose G is an abelian group and α ∈ Aut(G) with α2 = 1.

Then Gα is a group if and only if α = 1.

Proof. If α = 1 then α(x)+y = x+y, hence Gα is simply the group G. Conversely,

assume that Gα is a group. Note that e = 0 is the left identity of Gα, since

0 · x = α(0) + x = 0 + x = x. However, in a group the left identity is the same

as the right identity. Therefore, for all x ∈ G, we must have x · 0 = x. However,

x · 0 = α(x) + 0 = α(x). Hence, α(x) = x for all x ∈ G, which means that

α = 1.

This proof already verifies that Gα is a group whenever it has a two-sided

identity. Quite similarly, if Gα is commutative then for every x ∈ G we have

x · 0 = 0 · x = x. On the other hand, x · 0 = α(x) + 0 = α(x). Hence we must

have that α(x) = x for all x ∈ G, and so Gα = G is a group. This shows that

indeed commutativity is also equivalent to associativity.

The second interesting class of AG-groups is the class of involutary AG-groups.

Recall from the introduction that an AG-group G is called involutory if its every

nontrivial element is an involution, i.e., x2 = e for all x ∈ G where e is the left

identity of G.

Proposition 18. Suppose G is an abelian group and α ∈ Aut(G) with α2 = 1.

Then Gα is an involutory if and only if α = −1. (This means that α(x) = −x
for all x ∈ G.)

Proof. Recall that x · x = α(x) + x, so x · x = e = 0 if and only if α(x) + x = 0,

that is, α(x) = −x, so Gα is involutory if and only if α(x) = −x for all x.

As a consequence, we get the following.
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Corollary 52. For every order n ≥ 3 there exists a non-associative AG-group of

order n.

Proof. Indeed, we can take G = Cn, the cyclic group of order n, and α = −1.

When n ≥ 3, we have α 6= 1, which means that Gα is non-associative by Propo-

sition 17.

Since for every prime order n = p > 2 there exists exactly one abelian group,

the cyclic group Cp, and since Aut(Cp) ∼= Cp−1, which has a unique element of

order two, we have the following result.

Corollary 53. For every prime order n = p ≥ 3, there is only one non-

associative AG-group of order n.

10.4 Some Examples

For illustration of some our results we provide some examples. The case of the

prime order has been dealt with in the preceding section.

Example 64. For order 6, we have only one abelian group, namely C6. Since

Aut(C6) has only one nontrivial involution, there are exactly two AG-groups of

order 6, one associative, C6, and one non-associative, namely, (C6)α, where α =

−1.

The same is true for all orders 2p, where p is an odd prime. So this case is

similar to the case of the odd prime order.

Example 65. For order 12, there are exactly two abelian groups, namely C12 and

C6×C2. In the first case, Aut(C12) is an elementary abelian group of order four.

Hence its every element can be used to construct a new AG-group. This gives us

four AG-groups (one associative, one non-associative involutory, and two further

non-associative non-involutory). In the second case, Aut(C6 ×C2) is isomorphic

to C2 × Sym(3), and so is non-abelian of order 12. In addition to the identity

element, this group has three conjugacy classes of involutions. Hence, in this

case, too, we get four different AG-groups.

In total, we obtain eight AG-groups of order 12, out of which six are non-

associative.

Example 66. Let us consider the order 2009 = 72 · 41. Again, there are two

abelian groups of this order, C2009 and C287 × C7. In the first case the auto-

morphism group is abelian, containing three involutions. Hence this group leads
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to four AG-groups. The automorphism group of C287 × C7 is isomorphic to

C40 × GL(2, 7). This group has five conjugacy classes on involutions in addi-

tion to the identity element, hence in this case we obtain six different AG-groups.

In total, there are 10 different AG-groups of order 2009, out of which eight

are non-associative.

10.5 Re-visiting Multiplication Group of an AG-

group

The concept of the multiplication group of a loop and, more generally, a quasi-

group is well known. In a quasigroup Q, multiplication on the left (or right) by

an element x ∈ Q is a permutation Lx (respectively, Rx) of Q called the left (re-

spectively, right) translation by x. The set of all left translations is called the left

section, and similarly, the set of right translations is called the right section of Q.

We will write LS and RS for the left and right sections, respectively. Therefore,

LS = {Lx | x ∈ Q} and RS = {Rx | x ∈ Q}.
The multiplication group M(Q) is the subgroup of the symmetric group

Sym(Q) generated by LS ∪ RS. If Q is a loop, the stabilizer in M(Q) of the

identity is called the inner mapping group and is denoted by Inn(Q).

Since every AG-group Gα is a quasigroup we can consider its multiplication

group M(Gα). Since Gα has a left identity 0, we can generalize the concept of

the inner mapping group to the class of AG-groups by setting Inn(Gα) to be the

stabilizer of 0 in M(Gα).

Proposition 19. Let G be an abelian group and α ∈ Aut(G) with α2 = 1. Then

the following hold:

(1) M(Gα) = LS ∪RS;

(2) Inn(Gα) = 〈α〉;

(3) LS is a normal subgroup of M(Gα) and it is naturally isomorphic to G;

(4) RS = αLS; and

(5) M(Gα) is isomorphic to the semidirect product of G with the cyclic group

〈α〉.
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Proof. First note that the mapping ψ : x 7→ Lx is a homomorphism from G to

Sym(G). Indeed, Lx+y(z) = (x + y) · z = α(x + y) + z = α(x) + α(y) + z =

x·(α(y)+z) = x·(y ·z) = Lx(Ly(z)) for all z ∈ G. This means that Lx+y is indeed

the product of Lx and Ly. Since ψ is a homomorphism, its image LS is a subgroup

of Sym(G). Furthermore, if Lx(z) = z for some z ∈ G then α(x) + z = z, which

implies that x = 0. Therefore, ψ is injective and so it is an isomorphism from G

onto LS.

Next, note that α(z) = α(z)+0 = z ·0 = R0(z). This means that α = R0 is an

element of RS. Furthermore, Rx(z) = α(z)+x = α(z)+α2(x) = α(α(x))+α(z) =

α(α(x) + z) = (αLx)(z). This means that Rx = αLx for all x ∈ G, that is, RS is

the coset of LS containing α.

We now turn to Part (1). We claim that α normalizes LS. Indeed, (αLxα)(z)

= αLx(α(z)) = α(α(x) + α(z)) = x + z = α(α(x)) + z = Lα(x)(z). Thus,

αLxα = Lα(x), proving that α normalizes the subgroup LS. Since RS = αLS, we

conclude that every element of RS normalizes LS, which means that LS is normal

in M(Gα). Also, it means that M(Gα) = 〈LS, α〉, which implies that LS has

index at most two in M(Gα). (This proves (1).) To be more precise, the index

is two if and only if α 6∈ LS. Clearly, α fixes 0 and, as we have already seen, the

only element of LS fixing 0 is L0, the identity element of LS. Hence LS has index

two in M(Gα) if and only if α 6= 1.

From the above, we also have that |Inn(Gα)| = |α|, since LS is regular on G

and so |Inn(Gα)| is equal to the index of LS in M(Gα). Since α fixes 0, we have

α ∈ Inn(Gα), which implies (2). Parts (3) and (4) have already been proven.

Finally, since α 6∈ LS and M(Gα) = 〈LS, α〉, (5) follows as well.

As an example of how the multiplication group can be used to identify the

AG-group, we present the following result.

Theorem 122. Suppose M = M(Gα) for a non-associative AG-group Gα and

M ∼= D2n. Then either G is the Klein four-group (and so n = 4) or G ∼= Cn is

cyclic. In the latter case α = −1, and hence Gα is involutory.

Proof. First of all, since Gα is non-associative, α is a nontrivial automorphism of

G and so n = |G| ≥ 3. By Proposition 19, the abelian group G is isomorphic to

an index two subgroup of M . From this, it immediately follows that either n = 4

and G is the Klein four-group, or n ≥ 3 is arbitrary and G is cyclic. Finally, in

the cyclic case, since M(Gα) is isomorphic to the semidirect product of G and

〈α〉, we conclude that α inverts every element of G and so α = −1.
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We also give a general characterization of all groups that arise as multiplication

group of an AG-group.

Theorem 123. A non-abelian group M is isomorphic to a multiplication group

of some non-associative AG-group if and only if M ∼= T o R where T is abelian

and |R| = 2.

Proof. If M = M(Gα) then M = Go 〈α〉 and so all the claimed properties hold.

Conversely, suppose M = T oR where T is abelian and |R| = 2. Let α ∈ Aut(T )

be the automorphism induced by the generator of R on T . Then M ∼= M(Tα) by

Proposition 19 (5).

10.6 Sharma’s Correspondence

In his paper [100] from 1976 Sharma proved the following theorem. We recall

that the identity (ab · c)b = a(bc · b) is known as the right Bol identity. The loops

(respectively, quasigroups) satisfying this identity are called the right Bol loops

(respectively, right Bol quasigroups).

Theorem 124. Suppose G is a right Bol loop and α ∈ Aut(G) satisfying α2 = 1.

Define a new binary operation on G by a ∗ b = α(a)b. Then Gα = (G, ∗) is a

right Bol quasigroup. Furthermore, every right Bol quasigroup is obtainable in

this way. Finally, the right Bol quasigroups Gα and Hβ are isomorphic if and

only if the right Bol loops G and H are isomorphic and the automorphisms α and

β are conjugate.

In reality Sharma proved the “left” version of this theorem, but we switched

to the above, “right” version because it matches better our own results.

In particular, Sharma’s theorem implies that every right Bol quasigroup au-

tomatically has a left identity element.

We note that Sharma’s construction is essentially the same as ours, except it is

done for a different, larger class of objects, the Bol loops instead of abelian groups.

In other words, what we proved in Theorem 118 means simply that the class of

AG-groups is the counterpart of the subclass of abelian groups under Sharma’s

correspondence. It would be interesting to ask what are the counterparts of

other subclasses of Bol loops, such as, say, groups or Moufang loops. We leave

the Moufang loops case as an open question, but we have an answer for the class

of groups.



160 CHAPTER 10. CLASSES OF RIGHT BOL QUASIGROUPS

Recall from the introduction that by a Bol∗ quasigroup we mean a quasigroup

satisfying

a(bc · d) = (ab · c)d

for all a, b, c, d. Note that this is clearly a subclass of Bol quasigroups. In partic-

ular, every Bol∗ quasigroup automatically has a left identity element.

Theorem 125. Suppose G is a group and α ∈ Aut(G) satisfying α2 = 1. Define

a new binary operation on G by a ∗ b = α(a)b. Then Gα = (G, ∗) is a Bol∗ quasi-

group. Furthermore, every Bol∗ quasigroup is obtainable in this way. Finally, the

Bol∗ quasigroups Gα and Hβ are isomorphic if and only if the groups G and H

are isomorphic and the automorphisms α and β are conjugate.

Proof. Let us first see that Gα as above satisfies the identity

a ∗ ((b ∗ c) ∗ d) = ((a ∗ b) ∗ c) ∗ d.

Indeed, a∗((b∗c)∗d) = α(a)(α(α(b)c)d) = α(a)α2(b)α(c)d = α(a)bα(c)d, since

α2 = 1. Similarly, ((a∗b)∗c)∗d = α(α(α(a)b)c)d = α3(a)α2(b)α(c)d = α(a)bα(c)d.

So the identity holds, proving that Gα is a Bol∗ quasigroup.

Conversely, assume that (G, ∗) is a Bol∗ quasigroup with left identity e. For

x ∈ G, define α(x) = x ∗ e and also, for x, y ∈ G, define xy = α(x)y. We need

to see that (1) G with this new product is a group; (2) α is an automorphism of

this group of order two; and (3) (G, ∗) = Gα.

First of all, for x, y, z ∈ G, x(yz) = α(x) ∗ (α(y) ∗ z) = (x ∗ e) ∗ ((y ∗ e) ∗ z).

By the identity, the latter is equal to (((x ∗ e) ∗ y) ∗ e) ∗ z and this is equal to

(x∗((e∗y)∗e)∗z. On the other hand, (xy)z = α(α(x)∗y)∗z = (((x∗e)∗y)∗e)∗z,

so we have x(yz) = (xy)z for all x, y, z ∈ G, proving that the new operation is

associative. Cancellativity is clear, so we have an associative quasigroup, hence

a group. Note that e is the identity element of the group, since ex = α(e) ∗ x =

(e ∗ e) ∗ x = e ∗ x = x.

For (2), we first need to show that α is a permutation of order two: α2(x)∗z =

((x ∗ e) ∗ e) ∗ z = x ∗ ((e ∗ e) ∗ z) = x ∗ z, and so by cancellativity, α2(x) = x.

Thus, α2 = 1. To show that α is an automorphism, we compute: α(xy) =

(xy) ∗ e = (α(x) ∗ y) ∗ e = ((x ∗ e) ∗ y) ∗ e = x ∗ ((e ∗ y) ∗ e) = x ∗ (y ∗ e) and

α(x)α(y) = α(α(x)) ∗ α(y) = x ∗ (y ∗ e). Thus, α(xy) = α(x)α(y). Finally, (3)

is clear since x ∗ y = α2(x) ∗ y = α(x)y. Hence x ∗ y = α(x)y, which means that

(G, ∗) = Gα.
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Order 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Group 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1 5

Non-group 1 2 1 2 1 12 3 2 1 14 1 2 3 88 1 9 1 13

Total 2 4 2 4 2 17 5 4 2 19 2 4 4 102 2 14 2 18

Table 10.2: Number of Bol∗ quasigroups of order n, 3 ≤ n ≤ 20

Order 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bol loop 1 2 1 1 1 3 1 1 1 2 1 1 1 5

Other 1 2 1 1 1 7 3 1 1 6 1 1 3 24

Total 2 4 2 4 2 41 5 4 2 23 2 4 10 16581

Order 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bol loop 1 2 1 1 1 3 1 1 1 2 1 1 1 5

Other 1 2 1 1 1 7 3 1 1 6 1 1 3 24

Total 2 16 2 30 12 4 2 ≥ 713 5 4 36 28 2 ≥ 22

Table 10.3: Number of Bol quasigroups of order n, 3 ≤ n ≤ 30

For the final claim in the theorem, we note that the proofs of Proposition 15

and Corollary 51 depend neither on commutativity of the group operation, nor

on the left invertive identity, so they fully apply in our present case.

The package AGGROUPOIDS mentioned above also contains functions enu-

merating Bol∗ quasigroups and Bol quasigroups based on Theorem 125 and

Sharma’s Theorem 124. In Tables 10.2 and 10.3 we provide the counting for

the Bol∗ quasigroups and Bol quasigroups up to order 20 and 30, respectively.

It might be worth mentioning that we can enumerate Bol∗ quasigroups for

much larger orders, as long as the list of groups of that order is available. For Bol

quasigroups, we can only go up to the order 31, as the list of Bol loops of order

32 is an open problem.
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Chapter 11

AG-monoids from Commutative

Monoids

In this chapter we provide the rigorous foundation for the counting of AG-

monoids. It is based on the following result.

Theorem 126. Suppose (S,+) is a commutative monoid and suppose α ∈ Aut(S)

satisfies α2 = 1. Let the product be defined on S by a · b = α(a) + b. Then (S, ·)
is an AG-monoid. Furthermore, every AG-monoid can be obtained in this way

from a unique pair (S, α).

Proof. First, suppose that (S,+) is a commutative monoid and α ∈ Aut(S) with

α2 = 1. Let us check that the new product · satisfies the left invertive law.

Let x, y, z ∈ S. Then (x·y)·z = α(α(x)+y)+z = α2(x)+α(y)+z = x+α(y)+z,

since α2 = 1. Since also (z ·y) ·x = z+α(y)+x = x+α(y)+z by commutativity,

we conclude that (x · y) · z = (z · y) · x. In order to show that (S, ·) is an

AG-monoid it remains to check that 0 is a left identity. Taking x ∈ S, we get

0 · x = α(0) + x = 0 + x = x, and the first claim is proven.

For the second claim we need to show that, given an arbitrary AG-monoid

(S, ·) (where the left identity is denoted by 0), we can recover from it a suitable

commutative monoid (S,+) and an involutive automorphism α.

Define α : S → S by α(x) = x · e. Furthermore, define addition on S by

x+ y := α(x) · y. We need to see that (S,+) is a commutative monoid and that

α is an automorphism of it, as above.

We start by showing that + satisfies commutativity. Using left invertive law,

we have x + y = α(x) · y = (x · 0) · y = (y · 0) · x = α(y) · x = y + x. For

associativity, recall that AG-monoids (being an AG-groupoid) satisfy the medial
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law (a · b) · (c · d) = (a · c) · (b · d), which implies, together with the left identity

property, that a · (b · c) = b · (a · c) for all a, b, c ∈ S.

Now, using left invertive law and a · (b · c) = b · (a · c), we get (x + y) + z =

((x · 0) · y) + z = (((x · 0) · y) · 0) · z = (z · 0) · ((x · 0) · y) = (x · 0) · ((z · 0) · y) =

(x · 0) · ((y · 0) · z) = x+ ((y · 0) · z) = x+ (y + z). Hence (S,+) is associative. It

remains to see that 0 is the identity of (S,+). Indeed, 0+x = (0 ·0) ·x = 0 ·x = x,

since 0 is the left identity of (S, ·). Thus, by commutativity of addition we have

x+ 0 = 0 + x = x. We have shown that (S,+) is a commutative monoid.

Turning to α, notice that α2(x) = (x · 0) · 0 = (0 · 0) · x = 0 · x = x for every

x ∈ S. Therefore, α2 = 1, which in particular means that α is bijective. Also,

α(x+ y) = (x+ y) · 0 = ((x · 0) · y) · 0. By the left invertive law, the latter is equal

to (0 ·y) · (x ·0) = y · (x ·0). On the other hand, α(x)+α(y) = ((x ·0) ·0) · (y ·0) =

((y · 0) · 0) · (x · 0) = ((0 · 0) · y) · (x · 0) = (0 · y) · (x · 0) = y · (x · 0). Thus,

α(x + y) = α(x + α(y)), which shows that α is an involutive automorphism of

(S,+).

Finally, x · y = α2(x) · y = α(x) + y. This shows that (S, ·) can be recovered

from (S,+) in the prescribed way. Clearly, both (S,+) and α were recovered

from (S, ·) in a canonical way, which means that this pair is unique for (S, ·).

We now illustrate our construction with an example.

Example 67. We start with the following commutative monoid S:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 5 2 3 4 0

2 2 2 2 3 3 2

3 3 3 3 3 3 3

4 4 4 3 3 4 4

5 5 0 2 3 4 1

It can be checked that the permutation α = (1, 5)(2, 4) is an automorphism of

this commutative monoid, and it clearly has order two. Applying this α to (S,+)

we get the following non-associative AG-monoid.
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Example 68.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 5 0 2 3 4 1

2 4 4 3 3 4 4

3 3 3 3 3 3 3

4 2 2 2 3 3 2

5 1 5 2 3 4 0

In order to be able to count the number of non-isomorphic AG-monoids we

need to make the uniqueness claim in Theorem 126 even more precise, as follows.

Theorem 127. Suppose (S,+) and (S ′,+) are two commutative monoids and let

α ∈ Aut(S), α′ ∈ Aut(S ′) be their involutive automorphisms. Finally, let (S, ·)
(respectively, (S ′, ·)) be the AG-monoid derived from S and α (respectively, S ′ and

α′). Then a mapping φ : S → S ′ is an isomorphism of (S, ·) onto (S ′, ·) if and

only if φ is an isomorphism of (S,+) onto (S ′,+) and, furthermore, φα = α′φ.

Proof. We first assume that φ is an isomorphism from (S, ·) onto (S ′, ·). Then, for

x, y ∈ S, we have φ(x)+φ(y) = (φ(x) ·0′) ·φ(y), where 0′ is the left identity in S ′.

Note that the left invertive law implies that every AG-monoid has a unique left

identity, which means that 0′ = φ(0), where 0 is the left identity of S. Therefore,

(φ(x) · 0′) · φ(y) = (φ(x) · φ(0)) · φ(y) = φ((x · 0) · y) = φ(x+ y). We have shown

that φ is an isomorphism of (S,+) onto (S ′,+).

Also, φ(α(x)) = φ(x · 0) = φ(x) ·φ(0) = φ(x) · 0′ = α′(φ(x)). Since this is true

for all x ∈ S, we conclude that φα = α′φ, as claimed.

Conversely, suppose that φ is an isomorphism of (S,+) onto (S ′,+) satisfying

φα = α′φ. Then, first of all, φ(0) = 0′, as these are the unique identity elements

in the respective commutative monoids. Thus, φ(x ·y) = φ(α(x)+y) = φ(α(x))+

φ(y) = α′(φ(x)) + φ(y) = φ(x) · φ(y), proving that φ is an isomorphism of (S, ·)
onto (S ′, ·).

As a consequence, we immediately get the following.

Corollary 54. Suppose (S,+) is a commutative monoid and α, α′ ∈ Aut(S)

satisfy α2 = 1 = (α′)2. Then the AG-monoids obtained from S and α, and from

S and α′ are isomorphic if and only if α and α′ are conjugate in Aut(S).
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We omit the proof. It is easy to see that an AG-group is associative if and

only if it is commutative and if and only if the left identity in it is a two sided

identity. A further equivalent condition is that α = 1. In particular, the num-

ber of non-associative AG-monoids obtainable from a particular commutative

monoid S is equal to the number of conjugacy classes of involutive (nonidentity)

automorphisms in Aut(S).

The number of non-isomorphic commutative monoids is known up to order

10. The list up to order 8 is available in the SMALLSEMI package under GAP.

Using functions from the package AGGROUPOIDS we were able to apply the

above method to all those commutative monoids which resulted in Table 11.

Order 3 4 5 6 7 8

Commutative monoids 5 19 78 421 2637 20486

Non-associative AG-monoids 1 6 29 188 1359 11386

Total 6 25 107 609 3996 31872

Table 11.1: Number of AG-monoids of order n, 3 ≤ n ≤ 8



Chapter 12

AG-GROUPOIDS: A GAP

Package

In this chapter we describe some of the commands of our under construction

GAP package AG-GROUPOIDS. We hope that the entire package (not limited

to these functions) will shortly be available from the GAP repository.

12.1 Testing Cayley Tables

• IsAGGroupoidTable(M)

Returns true if M is a Cayley table of AG-groupoid and returns false oth-

erwise.

Remark 12.1.1. The first eight types are those which already exist. The

remaining types are those which have been defined in this thesis.

The following commands return true if the AG-groupoid table M is a specific type

of AG-groupoid and returns false otherwise.

• IsCancellativeAGGroupoidTable(M)

• IsAGMonoidTable(M)

• IsAGGroupTable(M)

• IsAGBandTable(M)

• IsAG3BandTable(M)

• IsLocallyAssociativeAGGroupoidTable(M)

• IsStarAGGroupoidTable(M)

• Is2StarAGGroupoidTable(M)

• IsLeftNuclearSquareAGGroupoidTable(M)
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• IsRightNuclearSquareAGGroupoidTable(M)

• IsMiddleNuclearSquareAGGroupoidTable(M)

• IsNuclearSquareAGGroupoidTable(M)

• IsT1AGGroupoidTable(M)

• IsT2AGGroupoidTable(M)

• IsT3LAGGroupoidTable(M)

• IsT3RAGGroupoidTable(M)

• IsT3AGGroupoidTable(M)

• IsT4FAGGroupoidTable(M)

• IsT4BAGGroupoidTable(M)

• IsT4AGGroupoidTable(M)

• IsT5FAGGroupoidTable(M)

• IsT5BAGGroupoidTable(M)

• IsT5AGGroupoidTable(M)

• IsT6AGGroupoidTable(M)

• IsUnipotentAGGroupoidTable(M)

• IsAntirectangularAGbandTable(M)

• IsLeftAlternativeAGGroupoidTable(M)

• IsRightAlternativeAGGroupoidTable(M)

• IsAlternativeAGGroupoidTable(M)

• IsFlexibleAGGroupoidTable(M)

• IsRequiredAGGroupoidTable(M)

• IsAntirectangularAGBandTable(M)

• IsAnticommutativeAGGroupoidTable(M)

• IsTransitivelycommutativeAGGroupoidTable(M)

• IsParamedialAGGroupoidTable(M)

• IsAGGroupoidSemigroupTable(M)

• IsBolStarGroupoidTable(M)

Returns true if M is a Cayley table of Bol∗ groupoid and returns false

otherwise.

• IsBolStarQuasigroupTable(M)

Returns true if M is a Cayley table of Bol∗ quasigroup and returns false

otherwise.

• IsParamedialTable(M)

Returns true if M is a Cayley table of Paramedial groupoid and returns

false otherwise.
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• IsAssociativeTable(M)

Returns true if the Cayley table M has associativity and returns false oth-

erwise.

• IsCommutativeTable(M)

Returns true if the Cayley table M has commutativity and returns false

otherwise.

The following commands return true if the AG-groupoid table M has left zero,

right zero, zero respectively and return false otherwise.

• IsLeftZeroAGGroupoidTable(M)

• IsRightZeroAGGroupoidTable(M)

• IsZeroAGGroupoidTable(M)

12.2 Testing Magma

• IsAGGroupoid(M)

Returns true if the magma M is an AG-groupoid and returns false otherwise.

• LeftIdentity(M)

Returns the left identity if the magma M is an AG-groupoid and has left

identity and returns fail otherwise.

The following commands correspond to those given in the above section for the

case of the magma M.

• IsCancellativeAGGroupoid(M)

• IsAGMonoid(M)

• IsAGGroup(M)

• IsAGBand(M)

• IsAG3Band(M)

• IsLocallyAssociativeAGGroupoid(M)

• IsStarAGGroupoid(M)

• Is2StarAGGroupoid(M)

• IsLeftNuclearAGGroupoid(M)

• IsRightNuclearAGGroupoid(M)

• IsMiddleNuclearAGGroupoid(M)

• IsParamedial(M)

• IsParamedialAGGroupoid(M)
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• IsAGGroupoidSemigroup(M)

• IsIsBolStarGroupoid(M)

• IsT1AGGroupoid(M)

• IsT2AGGroupoid(M)

• IsT3LAGGroupoid(M)

• IsT3RAGGroupoid(M)

• IsT3AGGroupoid(M)

• IsT4FAGGroupoid(M)

• IsT4BAGGroupoid(M)

• IsT4AGGroupoid(M)

• IsT5FAGGroupoid(M)

• IsT5BAGGroupoid(M)

• IsT5AGGroupoid(M)

• IsT6AGGroupoid(M)

• IsUnipotentAGGroupoid(M)

• IsLeftAlternativeAGGroupoid(M)

• IsRightAlternativeAGGroupoid(M)

• IsAlternativeAGGroupoid(M)

• IsFlexibleAGGroupoid(M)

• IsAGGroupoidWithLeftZero(M)

• IsAGGroupoidWithRightZero(M)

• IsAGGroupoidWithZero(M)

The following three commands check (left,right) quasi-cancellativity of the AG-

groupoid M and return true if it has that property and return false otherwise.

• IsLeftQuasicancellativeAGGroupoid(M)

• IsRightQuasicancellativeAGGroupoid(M)

• IsQuasicancellativeAGGroupoid(M)

12.3 Some Useful Operations

The following three commands return all the left zeros, right zeros, zeros respec-

tively of an AG-groupoid M.

• AllLeftZerosOfAGGroupoid(M)

• AllRightZerosOfAGGroupoid(M)

• AllZerosOfAGGroupoid(M)
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• AllLocallyAssociativeElementsOfAGGroupoid(M)

Returns all the locally associative elements of an AG-groupoid M.

• All3BandElementsOfAGGroupoid(M)

Returns all the 3 band elements of an AG-groupoid M.

The following three commands return all the left nuclear, right nuclear, nuclear

elements respectively of an AG-groupoid M.

• AllLeftNuclearElementsOfAGGroupoid(M)

• AllRightNuclearElementsOfAGGroupoid(M)

• AllMiddleNuclearElementsOfAGGroupoid(M)

• IsSAGGroup(M)

Returns true if the AG-group M is a Smarandache AG-group and returns

false otherwise.

• IsRightBolQuasigroup(M)

Returns true if the quasigroup M is right Bol quasigroup and returns false

otherwise.

• IsLeftBolQuasigroup(M)

Returns true if the quasigroup M is left Bol quasigroup and returns false

otherwise.

12.4 Some Counting Operations

The following commands are the results of the constructions developed in this

thesis. We describe them one by one.

• NrAllSmallnon-associativeAGGroups(n)

Returns the total number of non-associative AG-groups of order n. Since

all abelian groups of a given order are easy to construct. This function uses

that construction.

• AllSmallNonassociativeAGGroups(n)

Returns the list of all non-associative AG-groups of the given order. Each

AG-group is represented as a GAP quasigroup.

• NrAllSmallNonassociativeAGGroupsFromAnAbelianGroup(G)

Returns the total number of non-associative AG-groups that can be ob-

tained from the abelian group G. This is equal to the number of conjugacy

classes of involutions in Aut(G).

• The function AllSmallNonassociativeAGGroupsFromAnAbelianGroup(G)

Returns the list of non-associative AG-groups obtainable from G, again as
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GAP quasigroups.

• NrAllSmallNonassociativeLeftBolQuasigroups(n)

Returns the total number of non-associative left Bol quasigroups of order n

provided that the SmallGroups library contains the list of groups of order

n.

• AllSmallNonassociativeLeftBolQuasigroups(n)

Returns the list of all non-associative left Bol quasigroups of the given order

n provided that the SmallGroups library contains the list of groups of order

n.

• NrAllSmallNonassociativeLeftBolQuasigroupsFromOneGroup(G)

Returns the total number of non-associative left Bol quasigroups that can

be obtained from the group G.

• AllSmallNonassociativeLeftBolQuasigroupsFromOneGroup(G)

Returns the list of all non-associative left Bol quasigroups that can be ob-

tained from from the group G.

• NrAllSmallNonassociativeLeftBolQuasigroupsFromOneLeftBolLoop(G)

Returns the total number of non-associative left Bol quasigroups that can

be obtained from from the left Bol loop G.

• AllSmallNonassociativeLeftBolQuasigroupsFromOneLeftBolLoop(G)

Returns the list of all non-associative left Bol quasigroups that can be ob-

tained from the left Bol loop G.

• NrAllSmallNonassociativeBolStarQuasigroups(n)

Returns the total number of non-associative Bol∗ quasigroups of order n.

Since all abelian groups of a given order are easy to construct. This function

uses that construction.

• AllSmallNonassociativeBolStarQuasigroups(n)

Returns the list of all non-associative Bol∗ quasigroups of the given order.

• NrAllSmallNonassociativeBolStarQuasigroupsFromAnAbelianGroup(G)

Returns the total number of non-associative Bol∗ quasigroups that can be

obtained from the abelian group G. This is equal to the number of conju-

gacy classes of involutions in Aut(G).

• AllSmallNonassociativeBolStarQuasigroupsFromAnAbelianGroup(G)

Returns the list of non-associative Bol∗ quasigroups obtainable from G.

• NrAllSmallNonassociativeAGMonoids(n)

Returns the total number of non-associative AG-monoids of order n, n ≤ 8.

• AllSmallNonassociativeAGMonoids(n)

Returns the list of all non-associative AG-monoids of the given order n, n ≤
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8.

• NrAllSmallNonassociativeAGMonoidsFromACommutativeMonoid(G)

Returns the total number of non-associative AG-monoids that can be ob-

tained from the commutative monoid G.

• The function AllSmallNonassociativeAGMonoidsACommutativeMonoid(G)

Returns the list of non-associative AG-monoids obtainable from G.

• AllSubAGGroups(M)

Returns all the AG-subgroups of an AG-group M.
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Chapter 13

Conclusion

In this chapter we briefly discuss what we have achieved in the thesis. We also

suggest some future directions.

• We have proved that an AG-group G of order n has its multiplication group

as a non-abelian group of order 2n and its LS is an abelian group of order

n. It is now an interesting question like loops that which non-abelian group

can occur as a multiplication group of an AG-group G which cannot and

which abelian group can occur as its left section and which cannot.

• We have defined about 24 new classes and also have discussed some basic

results about them but every class needs investigation on its own. Spe-

cially the class of semigroup as we discovered in this thesis and which we

call non-commutative AG-groupoid semigroup wants a thorough study and

full exploration. More particularly using our under construction package

AGGROUPOIDS and SMALLSEMI we have found that there are non-

commutative AG-groupoid semigroups that can occur as a multiplicative

semigroup of near-ring. One such non-commutative AG-groupoid semi-

group is being given in the following table.

Example 69. A non-commutative AG-groupoid semigroup of order 4.

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 2 2

We expect such multiplicative semigroup will cause many results to near-

rings which need to be explored. Thus we suggest the study of such near-

rings as an interesting future problem.
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• We have begun characterizing S-AG-groups here, however that notion re-

quires significant further study.

• We have given the following open problem in the thesis.

Problem 4. Prove or disprove that every left cancellative element is also

right cancellative of an AG-groupoid S without left identity.

We then partially answered this problem in positive in the thesis. Thus we

proved that if a is a left cancellative element of an AG-groupoid S then a

is also right cancellative at least in the following cases

(i) If a2 is left cancellative,

(ii) If a is idempotent,

(iii) If there exists a left nuclear left cancellative element in S,

(iv) If a is the unique left cancellative element in S,

(v) If S is an AG-band,

(vi) If S is AG∗-groupoid,

(vii) If S is AG∗∗-groupoid.

(i) Thus for other than the above mentioned cases the problem is still open.

• Naseeruddin has found application of AG-groupoids within the theory of

flocks [61]. We have discussed some application of AG-groups in geometry.

But finding more application of AG-groupoids and AG-groups is the need

of the day.

• We got enumeration of AG-groupoids up to order 6. We suggest enumera-

tion of AG-groupoids of order 7 as interesting future problem.
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