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To solve complicated problems in economics, engineering and environment sciences, the classical 
methods cannot be successfully used due to various uncertainties for those  problems. There are 
theories  viz, theory of probability, theory of fuzzy sets ,  theory of intuitionistic fuzzy sets , theory of 
vague sets,  theory of interval mathematics  and theory of rough sets  which can be considered as 
mathematical tools for dealing with uncertainties but all these theories have their inherent difficulties.  
Molodtsov  [10] initiated the concept of soft set as mathematical tool for dealing with uncertainties 
which is free from above difficulties. Maji et al. [16] defined some operations on soft sets. Ali et 
al.introduced several new operations of soft sets. The theory has also seen a wide-ranging applications 
in the mean of algebraic structures such as groups, semirings, rings, BCK/BCI-algebras , nearrings and 
soft substructures and union soft substructures. 

Abstract: 

 The fundamental concept of fuzzy set was introduced by Zadeh [27] in 1965. Rosenfeld  inspired the 
fuzzification of algebraic structures and introduced the notions of fuzzy subgroups. Das [7] characterized 
fuzzy subgroups by their level subgroups.  W. Liu [8]  studied fuzzy ideals of rings.Abou-Zaid introduced 
the notion of a fuzzy subnearring and studied fuzzy ideals of a nearring.The concept of fuzzy subnearring 
and fuzzy ideal was discussed further by many researchers. Davvaz  for a complete lattice L, introduced 
interval-valued L-fuzzy ideal (prime ideal) of a nearring which is an extended notion of a fuzzy ideal 
(prime ideal) of a nearring. 

  This dissertation  is devoted to the discussion of algebraic structures of L-fuzzy soft sets and basic 
concepts of lattices and L-fuzzy sets. This dissertation consists of three chapters. Chapter one consists of 
some basic definitions and examples of Nearrings and basic concept of soft sets, fuzzy sets and L-fuzzy 
soft sets. In Chapter two, We initiated the study  of L-fuzzy soft ideals along with L-fuzzy soft nearrings. 
In Chapter  three, We introduced L-fuzzy soft prime and semiprime ideals . Moreover, We have done the 
characterization of nearrings by the properties of their  L-fuzzy soft ideals. We have characterized those 
nearrings for which each L-fuzzy soft ideal is Prime and also those nearrings for which each L-fuzzy soft 
ideal is idempotent. 
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Chapter 1

Fundamental Concepts

The aim of this chapter is to present a brief summary of basic de�nitions and preliminary results

which will be of value for later pursuits. First we start with the basic de�nitions and examples

of nearrings. For terms and notations which are not de�ned here, we refer to [13].

1.1 Nearrings: Basic De�nitions and Examples

De�nition 1 A nearring is a non-empty set N together with two binary operations �+� and

���such that

(i) (N;+) is a group (not necessarily abelian).

(ii) (N; �) is a semigroup.

(iii) For all n1; n2; n3 2 N : n1 (n2 + n3) = n1n2 + n1n3 (left distributive law).

Remark 2 In view of (iii), one speaks more precisely of a �left nearring�, postulating (iii)
0

for all n1; n2; n3 2 N : (n1 + n2)n3 = n1n3 + n2n3 instead of (iii), one gets � right nearring �.

The theory runs completely parallel in both cases. In this dissertation we will use left nearring.

By N we shall mean a left nearring unless explicitly mentioned.

Example 3 Let (G;+) be a group (not necessarily abelian). Then the setM(G) = ff j f : G! Gg

= GG of all mappings (functions) from G into G is a right nearring under pointwise addition

and composition of functions if we write image of x 2 G under f 2M (G) as f (x) and is a left

nearring if we write image of x 2 G under f 2M (G) as (x) f .
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Example 4 Let D (R) be the set of all di¤erentiable functions on R (the set of real numbers).

De�ne (f + g) (x) = f (x) + g (x) and (f � g) (x) = f (g (x)). Then

(i) (D (R) ;+) is an abelian group.

(ii) (D (R) ; �) is a semigroup.

(iii) h � (f + g) 6= h � f + h � g but (f + g) � h = f � h+ g � h.

Thus (D (R) ;+; �) is a right nearring but not a left nearring and hence not a ring.

Example 5 Let (G;+) be a group (not necessarily abelian). Then

(i) (G;+; �) with g1 � g2 = 0 for all g1; g2 2 G is both a left and a right nearring.

(ii) (G;+;~) with g1~g2 = g1 for all g1; g2 2 G is a right nearring but not a left nearring.

Note that n0 = 0 and n
�
�n=

�
= �nn= but in general 0n 6= 0 and n

�
�n=

�
= �nn= for

n; n= 2 N .

Example 6 Every ring is a nearring.

De�nition 7 N� = fn 2 N : 0n = 0g is called the Zero Symmetric part of N .

Nc = fn 2 N : 0n = ng is called the constant part of N .

N� and Nc both are nearrings.

De�nition 8 A nearring N is called Zero Symmetric (Constant) nearring if

N = N� (N = Nc).

De�nition 9 An element d 2 N is called distributive if for all n1; n2 2 N , d (n1 + n2) =

dn1 + dn2.

De�nition 10 Let Nd = fd 2 N : d is distributiveg. A nearring N is called distributively gen-

erated (d.g.) if there is a semigroup D of (Nd; �) which generates (N;+).

De�nition 11 Let N be a nearring. If (N;+) is an abelian group, we call N an abelian

nearring.

De�nition 12 If (N; �) is commutative, we call N a commutative nearring. If N = Nd, N is

said to be distributive.
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De�nition 13 If all non-zero elements of N are left ( right) cancellable, we say that N ful�lls

the left (right) cancellation laws. N is integral if N has no non-zero divisors of zero. If

N? = Nn f0g is a group, N is called a near-�eld.

1.2 Ideals in Nearrings

De�nition 14 Let N be a nearring. A subgroup (M;+) of (N;+) is called a subnearring of N

if m1m2 2M for all m1;m2 2M .

De�nition 15 Let N be a nearring. A normal subgroup I of (N;+) is called an ideal of N if

(i) NI � I, that is ni 2 I for all i 2 I and n 2 N .

(ii) For all n; n2 2 N and i 2 I : (n1 + i)n2 � n1n2 2 I.

Normal subgroup I of (N;+) with (i) is called left ideal of N while normal subgroup I of

(N;+) with (ii) is called right ideal of N .

Proposition 16 The intersection of any family of (left, right) ideals of a nearring N is a (left,

right) ideal of N .

Theorem 17 Let fIkg be a family of ideals of a nearring N . Then the following sets are

equivalent:

(i) The set of all �nite sums of elements of I�ks;

(ii) The set of all �nite sums of elements of di¤erent I�ks;

(iii) The sum of normal subgroups (Ik;+) ;

(iv) The subgroup of (N;+) generated by [
k2K

Ik;

(v) The normal subgroup of (N;+) generated by [
k2K

Ik;

(vi) The ideal of (N;+) generated by [
k2K

Ik.

De�nition 18 The set (i)� (vi) above is called the sum of the ideals Ik(k 2 K) and is denoted

by
P
k2K

Ik.

The sum of ideals of N is again an ideal of N .
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1.3 Prime and Semiprime Ideals

If A and B are non-empty subsets of a nearring N , then the product of A and B, AB is de�ned

by AB = fab : a 2 A and b 2 Bg.

Clearly, If A;B;C are non-empty subsets of a nearring N then A(BC) = (AB)C. Note

that AB has no particular structure in general. Even if A;B are ideals then AB is not even

subsemigroup of (N;+). If A is a non-empty subset of a nearring N then the smallest ideal of

N containing A is denoted by < A > and is called the ideal generated by A. If A = fng ; then

the ideal generated by A is denoted by < n > instead of < fng >.

De�nition 19 An ideal P of a nearring N is called Prime if for all ideals I; J of N : IJ � P

implies that either I � P or J � P .

Proposition 20 Let P be an ideal of a nearring N . Then the following are equivalent:

(a) P is a prime ideal.

(b) For all ideals I; J of N : < IJ >� P =) I � P or J � P .

(c) For all i; j in N , i =2 P and j =2 P =) < i >< j >* P .

(d) For all ideals I; J of N such that I � P and J � P ) IJ * P .

(e) For all ideals I; J of N such that I * P and J * P =) IJ * P .

Proposition 21 Let fP�g be a family of prime ideals of a nearring N , totally ordered by

inclusion. Then \P� = P is a prime ideal of N .

De�nition 22 An ideal S of a nearring N is called semiprime if for all ideals I of N , I2 �

S =) I � S.

Each prime ideal of a nearring N is a Semiprime ideal of N .

Proposition 23 For an ideal S of a nearring N , the following conditions are equivalent:

(a) S is Semiprime.

(b) For all ideals I of N , < I2 >� S =) I � S.

(c) For all n 2 N , < n >2� S =) n 2 S.

(d) For all ideals I of N , I � S =) I2 � S.

(e) For all ideals I of N , I * S =) I2 * S.
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De�nition 24 An ideal I of a nearring N is called Completely Prime if ab 2 I =) a 2 I or

b 2 I.

De�nition 25 An ideal J of a nearring N is called irreducible (resp. strongly irreducible) if

A \B = J =) A = J or B = J (resp. A \B � J =) A � J or B � J) for all ideals A;B of

N .

De�nition 26 If A and B are ideals of a nearring N then generally AB * A\B. However if

N is Zero Symmetric, then AB � A \B.

Proposition 27 For a zero symmetric nearring N , every prime ideal is strongly irreducible.

Proof. Let P be a prime ideal of N and A \ B � P for ideals A and B of N . As N is

zerosymmetric, we have AB � A\B � P . Since P is a prime ideal, so either A � P or B � P .

Thus P is strongly irreducible.

Proposition 28 Every strongly irreducible ideal is irreducible.

1.4 Fully Idempotent Nearrings

A ring N is fully idempotent if each ideal I of N is idempotent, that is if I = I2 [1]. J. Ahsan

and G. Mason examined the nearring analogue of fully idempotent rings. In this section, N

denotes the zerosymmeric nearring. All the results given in this section are from [1].

De�nition 29 A nearring N is fully idempotent if each ideal I of N is the ideal generated by

I2 that is if I =< I2 >.

Proposition 30 The follwing assertions for a nearring N are equivalent:

(1) N is fully idempotent.

(2) For each pair of ideals I; J of N , I \ J =< IJ >.

(3) The set of ideals LN of N (ordered by inclusion) forms a lattice (LN ;_;^) with I _ J =

I + J and I ^ J =< IJ > for each pair of ideals I; J of N .

Proof. (1) =) (2)
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For each pair of ideals I; J of N , we always have IJ � I \ J . Hence < IJ >� I \ J . For

the reverse inclusion, let a 2 I \ J and let < a > be the (two-sided) ideal of N generated by a.

Then a 2< a >=<< a >< a >>�< IJ >. Thus I \ J �< IJ >. Hence I \ J =< IJ >.

(2) =) (3)

The set of ideals of a nearring N ordered by inclusion forms a lattice under the sum and

intersection of ideals [13]. Thus for each pair of ideals I; J of N , I_J = I+J and by assumption,

I ^ J = I \ J =< IJ >.

(3) =) (2)

For each pair of ideals I; J of N , I \ J =< IJ >.

(2) =) (1)

Taking I = J in the hypothesis, we have I =< I2 > for each ideal I of N . Hence N is fully

idempotent.

Lemma 31 If I is an ideal of a nearring N and a =2 I, then there exists an irreducible ideal K

of N such that I � K and a =2 K.

Proof. Let A = fL : L is an ideal of N , I � L and a =2 Lg. Then A is non-empty because

I 2 A. A is a partially ordered set by inclusion. If fL�g is a chain in A, then [L� is an ideal

of N containing I but not containing a. Hence by Zorn�s Lemma, A has a maximal element.

Let K be such one. Let K = B \C, where B and C are ideals of N . If both B and C properly

contain I, then by maximality of K they both contain a. But a 2 B \C = K, a contradiction.

Hence K is an irreducible ideal.

Corollary 32 Every proper ideal of a nearring N is contained in a proper irreducible ideal of

N .

Proposition 33 Let N be a fully idempotent nearring and let P be an ideal of N . Then the

following assertions are equivalent:

(1) P is irreducible.

(2) P is strongly irreducible.

(3) P is prime.

7



Proof. (3) =) (2) =) (1) is clear. It su¢ ces to show that (1) =) (3). Suppose IJ � P

for ideals I; J of N . Since N is fully idempotent, I \ J =< IJ >. On the other hand, IJ � P ,

implies that (I\J)+P = P . Since N is fully idempotent, so the ideal lattice of N is distributive.

Hence P = (I \ J) + P = (I + P ) \ (J + P ). Since P is irreducible, we have I + P = P or

J + P = P . This implies that I � P or J � P . Hence P is a prime ideal.

Theorem 34 The following are equivalent for a nearring N :

(1) N is fully idempotent.

(2) Every proper ideal of N is the intersection of all prime ideals of N containing it.

Proof. (1) =) (2)

First note that if N is fully idempotent then every ideal is contained in some prime ideal.

Let fP�g be the family of prime ideals of N containing I, so I � \P�. For reverse inclusion

let a =2 I. Then there exists a prime ideal P with I � P and a =2 P . Hence \P� � I. Thus

I = \P�.

(2) =) (1)

Let I be an ideal of N . If < I2 >= N . Then < I2 >= I. If < I2 >6= N , then I2 �< I2 >=

\�P� � P�; so I � P� for all �. Thus I � \P� =< I2 >. Since < I2 >� I, we are done.

Corollary 35 N is fully idempotent if and only if each ideal of N is semiprime [13].

1.5 Soft Sets

De�nition 36 [4, ?] A soft set fA of a set N over U is a function de�ned by fA : N �! P (U)

such that fA (x) = ; if x =2 A, where A � N . The set of all soft sets of a set N over U is

denoted by S(U).

De�nition 37 [4] Let fA; fB 2 S(U). Then fA is called a soft subset of fB, denoted by

fA
s
� fB; if fA (x) � fB (x) for all x 2 N .

De�nition 38 [4] Let fA; fB 2 S(U). Then the union of fA and fB, denoted by fA
s
[ fB, is

de�ned as fA
s
[ fB = fA[B, where (fA [ fB) (x) = fA (x) [ fB (x) for all x 2 N .
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De�nition 39 [4] Let fA; fB 2 S(U). Then the intersection of fA and fB, denoted by fA
s
\fB,

is de�ned as fA
s
\ fB = fA\B, where (fA \ fB) (x) = fA (x) \ fB (x) for all x 2 N .

De�nition 40 [4] Let fA; fB 2 S(U). Then fA^fB, is de�ned as fA^B (x; y) = fA (x)^fB (y)

for all (x; y) 2 N �N .

1.6 Fuzzy set

Let X be a non-empty set. By a fuzzy subset f of X, we mean a membership function f : X !

[0; 1] which associates with each element in X a real number from the unit closed interval [0; 1],

the value f (x) represents the �grade of membership�of x in f .

A fuzzy subset f : X ! [0; 1] is called non-empty if f is not a constant map which assumes

the value 0. For any fuzzy subsets f; g of X, f 6 g means that for all x 2 X, f (x) 6 g (x).

The fuzzy subsets f ^ g and f _ g will mean the following fuzzy subsets of X:

(f ^ g) (x) = f (x) ^ g (x)

(f _ g) (x) = f (x) _ g (x)

for all x 2 X.

More generally, if f(f)i : i 2 Ig is a family of fuzzy subsets of X, then ^
i2I
fi and _

i2I
fi are

de�ned by �
^
i2I
fi

�
(x) = ^

i2I
(fi (x));�

_
i2I
fi

�
(x) = _

i2I
(fi (x))

respectively.

1.7 Fuzzy Ideals of Nearrings

Let f and g be two fuzzy subsets of a nearring N .

Then the product fog is de�ned by

9



(fog) (x) =

8><>:
_

x=yz
(f (y) ^ g (z)) if x is expressible as x = yz

0 otherwise

A fuzzy subset f of a nearring N is called a fuzzy subnearring of N if

(1) f (x� y) > f (x) ^ f (y)

(2) f (xy) > f (x) ^ f (y) ; for all x; y 2 N .

A fuzzy subset f of a nearring N is called a fuzzy ideal of N if f is a subnearrng of N and

(3) f (x) = f (y + x� y)

(4) f (xy) > f (y)

(5) f ((x+ i) y � xy) > f (i) ; for any x; y; i 2 N .

f is a fuzzy left ideal of N if it satis�es (1) ; (3) and (4) ; f is a fuzzy right ideal of N if

it satis�es (1) ; (2) ; (3) and (5).

Example 41 Let N = fa; b; c; dg be a nearring with the following two binary operations:

+ a b c d

a a b c d

b b a d c

c c d b a

d d c a b

� a b c d

a a a a a

b a a a a

c a a a b

d a a a b

De�ne a fuzzy subset f : N ! [0; 1] by f (c) = f (d) < f (b) < f (a). Then f is a fuzzy

ideal of N .

1.8 L-fuzzy set

A partially ordered set (poset) (L;�) is called

1) a lattice, if a _ b 2 L, a ^ b 2 L for any a; b 2 L.

2) a complete lattice, if _N 2 L, ^N 2 L for any N � L.

3) a lattice is called distributive, if a_ (b^ c) = (a_ b)^ (a_ c); a^ (b_ c) = (a^ b)_ (a^ c)

for any a; b; c 2 L.

De�nition 42 Let L be a lattice with top element 1L and bottom element 0L and let a; b 2 L.

10



Then b is called a complement of a, if a _ b = 1L and a ^ b = 0L. If a 2 L has a complement,

then it is unique. It is denoted by a0.

De�nition 43 A lattice L is called a Boolean lattice, if

(i) L is distributive,

(ii) L has 0L and 1L,

(iii) each a 2 L has the complement a0 2 L.

De�nition 44 [7] Let U be a set and L be a complete distributive lattice with 1L and 0L. An L-

fuzzy set A in U is a map A : U ! L. We denote the family of all L-fuzzy sets in U by LU . For

A;B 2 LX , A � B if A (x) � B (x) for every x 2 U . For L-fuzzy sets A and B, new L-fuzzy

sets can be constructed as follows: (A \B) (x) = A (x)\B (x) ; (A [B) (x) = A (x)[B (x) for

all x 2 U .
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Chapter 2

L-fuzzy Soft Ideals

In this chapter we de�ne L-fuzzy soft subnearring, L-fuzzy soft left (right) ideal, L-fuzzy soft

N -subgroup over a universe U . We study some of their properties.

2.1 L-fuzzy Soft sets

In this section we de�ne sum and product of L-fuzzy soft subsets of a nearring over a universe

U and study some properties of these operations.

An L- fuzzy set A in a nonempty set X is a function A : X ! L, where L is a complete

distributive lattice with 1 and 0. We denote by LX the set of all L-fuzzy sets in X.

Let A;B 2 LX . Then their union and intersection are L-fuzzy sets in X, de�ned as

(A [B)(x) = A(x) _B(x) and (A \B)(x) = A(x) ^B(x) for all x 2 X.

A � B if and only if A(x) � B(x) for all x 2 X.

The L-fuzzy sets e0 and e1 of X are de�ned as e0(x) = 0 and e1 (x) = 1 for all x 2 X. Obviouslye0 � A � e1 for all A 2 LX .
De�nition 45 [12] A pair (F;E) is called a soft set (over U) if F is a mapping of E into

the power set of U , that is

F : E �! P (U). In other words, the soft set is a parametrized family of subsets of the set

U .

De�nition 46 [8] Let E be a set of parameters, U be an initial universe, L be a complete

12



dstributive bounded lattice and A � E. An L-fuzzy soft set fA over U is a mapping de�ned by

fA : E �! L (U), such that fA (x) = e0 if x =2 A.

The following operations on L-fuzzy soft sets are de�ned as

1) Let fA and gB be two L-fuzzy soft sets over U . Then fA is contained in gB denoted by

fA e� gB if fA (e) � gB(e) for all e 2 E, that is (fA(e))(u) � (gB(e))(u) for all u 2 U .

Two L-fuzzy soft sets fA and gB over U are said to be equal, denoted by fA e=gB if fA e�
gB and gB e� fA.

2) Let fA and gB be two L-fuzzy soft sets over U . Then their union fAe[gB e=hA[B, where
hA[B (e) = fA(e) [ gB(e) for all e 2 E.

3) Let fA and gB be two L-fuzzy soft sets over U . Then their intersection fAe\gB e=hA\B,
where hA\B(e) = fA(e) \ gB(e) for all e 2 E.

Proposition 47 Let A;B;C � E and fA; gB; hC be three L-fuzzy soft sets over U . Then

(1) fAe[fAe=fA
(2) fAe[gB e=gBe[fA
(3)

�
fAe[gB� e[hC e=fAe[ �gBe[hC�.

Proposition 48 Let A;B;C � E and let fA; gB; hC be three L-fuzzy soft sets over X. Then

(1) fAe\fAe=fA
(2) fAe\gB e=gBe\fA
(3)

�
fAe\gB� e\hC e=fAe\ �gBe\hC�.

In the next de�nition E = N , a nearring. We call an L-fuzzy soft set over U as an L-fuzzy

soft set of N over U .

De�nition 49 Let fA and gB be two L-fuzzy soft sets of a nearring N over the common

universe U . Then the soft product fA � gB is an L-fuzzy soft set of N over U de�ned by

(fA � gB) (x) =

8><>:
[

x=yz
fA (y) \ gB (z) if 9 y; z 2 N such that x = yz

e0 otherwise
8x 2 N .

We next show that if fA; gB are L-fuzzy soft sets of N over U , then fA � gB 6= gB � fA.
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Example 50 Let N = f0; x; y; zg be a nearring with the binary operations as de�ned below:

+ 0 x y z

0 0 x y z

x x 0 z y

y y z 0 x

z z y x 0

� 0 x y z

0 0 0 0 0

x 0 x 0 x

y 0 0 0 0

z 0 z 0 z

Consider a complete bounded distributive lattice L = f1; a; b; c; d; 0g. Let U = fp; qg and

A = B = fx; y; zg.

Let fA and gB be two L-fuzzy soft sets of N over U as follows:

p q

fA (x) b d

fA (y) a c

fA (z) a b

p q

gB (x) 1 0

gB (y) 1 c

gB (z) 0 b

14



Now, for x 2 N ,

(fA � gB) (x) = [
x=yz

ffA (y) \ gB (z)g

= [
x=yz

ffA (x) \ gB (x) ; fA (x) \ gB (z)g = f(b d) \ (1 0)g [ f(b d) \ (0 b)g

= (b 0) [ (0 d) = (b d) .

And,

(gB � fA) (x) = [
x=yz

gB (y) \ fA (z)

= [
x=yz

fgB (x) \ fA (x) ; gB (x) \ fA (z)g = f(1 0) \ (b d)g [ f(1 0) \ (a b)g

= (b 0) [ (a 0) = (a 0) .

Hence,

fA � gB 6= gB � fA:

Proposition 51 Let fA; gB; hC 2 S (U), where S(U) is the collection of all L-fuzzy soft sets

of a nearring N over U . Then

(i) (fA � gB)� hC e=fA � (gB � hC).
(ii) fAe�gB ) (fA � hC) e� (gB � hC) and (hC � fA) e� (hC � gB).
(iii) fA �

�
gBe[hC� e=(fA � gB) e[ (fA � hC) and �fA e[ gB�� hC e=(fA � hC) e[ (gB � hC).

(iv) fA �
�
gBe\hC� e� (fA � gB) e\ (fA � hC) and �fAe\gB�� hC e� (fA � hC) e\ (gB � hC)).

Proof. (i) Let x 2 N . Then

((fA � gB)� hC) (x) = [
x=yz

f(fA � gB) (y) \ hC (z)g

= [
x=yz

ff [
y=st

(gB (s) \ fA (t))g \ hC (z)g = [
x=yz

[
y=st

f(gB (s) \ fA (t)) \ hC (z)g

= [
x=(st)z

f(fA (s) \ gB (t)) \ hC (z)g

= [
x=s(tz)

ffA (s) \ (gB (t) \ hC (z))g � [
x=sp

ffA (s) \ (gB � hC) (p)g

= [
x=sp

f(fA � (gB � hC)) (x) .
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This implies .

(fA � gB)� hC e�fA � (gB � hC)
Similarly, we can show that

fA � (gB � hC) e� (fA � gB)� hC :
Hence ,

(fA � gB)� hC = fA � (gB � hC)

(ii) As

fAe�gB ) fA (y) e�gB (y)
for all y 2 N .

Let x 2 N . If x 6= yz for all y; z 2 N then

(fA � hC) (x) = 0 = (gB � hC) (x) .

Otherwise

(fA � gB) (x) = [
x=yz

ffA (y) \ hC (z)g � [
x=yz

fgB (y) \ hC (z)g = (gB � hC) (x) .

Hence,

fAe�gB ) (fA � hC) e� (gB � hC) .
(iii) Let x 2 N . If x is not expressible as x = yz for all y; z 2 N , then

(fA � (gBe[hC) (x) = e0 = (fA � gB) (x) [ (fA � hC) (x) .
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Otherwise

(fA � (gBe[hC) (x) = [
x=yz

ffA (y) \
�
gBe[hC� (z)

= [
x=yz

ffA (y) \ (gB (z) [ hC (z)g = [
x=yz

f(fA (y) \ (gB (z)) [ (fA (y) \ (hC (z)

= f [
x=yz

(fA (y) \ (gB (z))g [ f [
x=yz

(fA (y) \ (hC (z))g

= (fA � gB) (x) [ (fA � hC) (x) .

This implies that

fA �
�
gB e[ hC� = (fA � gB) e[ (fA � hC) .

Hence,

fA �
�
gBe[hC� = (fA � gB) e[ (fA � hC) .

(iv) Let x 2 N . If x is not expressible as x = yz for all y; z 2 N , then

(fA � (gBe\hC) (x) = e0 = (fA � gB) (x) e\ (fA � hC) (x) .
Otherwise

(fA � (gBe\hC) (x) = [
x=yz

ffA (y) \
�
gBe\hC� (z)

= [
x=yz

ffA (y) \ (gB (z) \ hC (z)g = [
x=yz

f(fA (y) \ (gB (z)) \ (fA (y) \ (hC (z)g

� f [
x=yz

(fA (y) \ (gB (z))g \ f [
x=yz

(fA (y) \ (hC (z))g

= (fA � gB) (x) \ (fA � hC) (x) :

This implies that

fA �
�
gBe\hC� e� (fA � gB) e\ (fA � hC)

Similarly, we can prove that

�
fAe\gB�� hC e� (fA � hC) e\ (gB � hC)
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Equality does not hold in (iv) which is shown in the following example.

Example 52 Let N = f0; x; y; zg be the nearring with binary operations as de�ned below:

+ 0 x y z

0 0 x y z

x x 0 z y

y y z 0 x

z z y x 0

� 0 x y z

0 0 0 0 0

x 0 x 0 x

y 0 0 0 0

z 0 z 0 z

Consider a complete bounded distributive lattice L = f1; a; b; c; d; 0g and U = fp; qg ; A =

B = C = fx; y; zg

De�ne fA; gB and hC be the L-fuzzy soft sets of N over U as follows:

p q

fA (x) a d

fA (y) a b

fA (z) c a

p q

gB (x) b 0

gB (y) 1 b

gB (z) c b

p q

hC (x) 0 1

hC (y) 1 0

hC (z) 0 d
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Now

(fA � (gBe\hC) (z) = [
z=xy

ffA (x) \
�
gBe\hC� (y) = [

z=xy
ffA (x) \ ((gB (y) \ hC (y))g

= [
z=xy

ffA (z) \ ((gB (x) \ hC (x)); fA (z) \ ((gB (z) \ hC (z))g

= ((c a) \ ((b 0) \ (0 1))) [ ((c a) \ ((c b) \ (0 d)))

= ((c a) \ (0 0)) [ ((c a) \ (0 d)) = (0 0) [ (0 d) = (0 d)

And

(fA � gB) (z) e\ (fA � hC) (z) = ((fA (z) \ gB (x)) [ (fA (z) \ gB (z))) \ ((fA (z) \ hC (x)) [ (fA (z) \ hC (z)))

= (((c a) \ b 0) [ ((c a) \ (c b))) \ (((c a) \ (0 1)) [ ((c a) \ (0 d)))

= ((0 0) [ (c b)) \ ((0 a) [ (0 d)) = (c b) \ (0 a) = (0 b) :

Hence .

fA �
�
gBe\hC� e� (fA � gB) e\ (fA � hC)

De�nition 53 Let fA and gB be soft sets of a nearring N over the common universe U . Then

the soft sum fA � gB is de�ned by

(fA � gB) (x) = [
x=y+z

fA (y) \ gB (z) 8x 2 N .

Next we show that fA � gB 6= gB � fA for L-fuzzy soft sets fA; gB of a nearring N over U .

Example 54 Consider S3 = f1; a; b; a2; ab; a2bg with the binary operations addition and mul-

tiplication as de�ned below:

� 1 a a2 b ab a2b

1 1 a a2 b ab a2b

a a a2 1 ab a2b b

a2 a2 1 a a2b b ab

b b a2b ab 1 a2 a

ab ab b a2b a 1 a2

a2b a2b ab b a2 a 1

� 1 a a2 b ab a2b

1 1 1 1 1 1 1

a 1 1 1 1 1 1

a2 1 1 1 1 1 1

b 1 1 1 1 1 1

ab 1 1 1 1 1 1

a2b 1 1 1 1 1 1
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Then (S3;�;�) is a left nearring. Consider the complete bounded distributive lattice L =

f1; a; b; c; d; 0g and U = fp; qg ; A = B = S3

De�ne two L-fuzzy soft sets fA and gB of N over U as follows:

p q

fA (1) 1 b

fA (a) c d

fA
�
a2
�

a 1

fA (b) d c

fA (ab) b 1

fA
�
a2b
�

0 a

p q

gB (1) 1 a

gB (a) b 0

gB
�
a2
�

d b

gB (b) 0 c

gB (ab) c d

gB
�
a2b
�

a 1

Then

(fA � gB) (a) = [
a=x+y

ffA (x) \ gB (y)

= [ffA (1) \ gB (a) ; fA (a) \ gB (1) ; fA
�
a2
�
\ gB

�
a2
�
;

fA (b) \ gB
�
a2b
�
; fA (ab) \ gB (b) ; fA

�
a2b
�
\ gB (ab)g

= [

8<: (1 b) \ (b 0) ; (c d) \ (1 a) ; (a 1) \ (d b) ;

(d c) \ (a 1) ; (b 1) \ (0 c) ; (0 a) \ (c d)

9=;
= f(b 0) [ (c d) [ (d b) [ (d c) [ (0 c) [ (0 d)g = (a 1)

Similarly,
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(gB � fA) (a) = [
a=x+y

fgB (x) \ fA (y)g

= [fgB (1) \ fA (a) ; gB (a) \ fA (1) ; gB
�
a2
�
\ fA

�
a2
�
; gB (b) \ fA

�
a2b
�
; gB (ab) \ fA (b) ; gB

�
a2b
�
\ fA (ab)g

= [f(1 a) \ (c d) ; (b 0) \ (1 b) ; (c d) \ (b 1) ; (d b) \ (0 a) ; (0 c) \ (a 1) ; (a 1) \ (d c)g

= f(c d) [ (b 0) [ (d d) [ (0 b) [ (0 c) [ (d c)g = (a a) :

Hence,

fA � gB 6= gB � fA

because (a 1) 6= (a a) :

Proposition 55 Let fA; gB; hC 2 S (U). Then

(i) (fA � gB)� hC e= fA � (gB � hC).

(ii) fAe� gB ) (fA � hC) e� (gB � hC).
(iii) fA �

�
gBe[hC� e=(fA � gB) e[ (fA � hC) and �fAe[gB�� hC = (fA � hC) e[ (gB � hC).

(iv) fA �
�
gBe\hC� e� (fA � gB) e\ (fA � hC) and �fAe\gB�� hC e� (fA � hC) e\ (gB � hC)).

Proof. (i) Let x 2 N . Then

((fA � gB)� hC) (x) = [
x=y+z

f(fA � gB) (y) \ hC (z)g

= [
x=y+z

ff [
y=s+t

(gB (s) \ fA (t))g \ hC (z)g

= [
x=y+z

[
y=s+t

(gB (s) \ fA (t))g \ hC (z)g

= [
x=(s+t)+z

f(fA (s) \ gB (t)) \ hC (z)g

� [
x=s+(t+z)

ffA (s) \ (gB (t) \ hC (z))g

� [
x=s+p

ffA (s) \ (gB � hC) (p)g

= [
x=s+p

f(fA � (gB � hC)) (x)g:

This implies

(fA � gB)� hC e�fA � (gB � hC) .
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Similarly, we can show that

fA � (gB � hC) e� (fA � gB)� hC .
Hence

(fA � gB)� hC e=fA � (gB � hC) .
(ii) As fAe� gB ) fA (y) e� gB (y) for all y 2 N .
Let x 2 N . Then

(fA � gB) (x) = [
x=y+z

ffA (y) \ hC (z)g � [
x=y+z

fgB (y) \ hC (z)g = (gB � hC) (x) .

Hence,

fAe�gB ) (fA � hC) e� (gB � hC) .
(iii) Let x 2 N . Then

(fA � (gBe[hC) (x) = [
x=y+z

ffA (y) \
�
gBe[hC� (z)

= [
x=y+z

ffA (y) \ (gB (z) [ hC (z)g

= [
x=y+z

f(fA (y) \ (gB (z)) [ (fA (y) \ (hC (z)g

= f [
x=y+z

(fA (y) \ (gB (z))g [ f [
x=y+z

(fA (y) \ (hC (z))g

= (fA � gB) (x) [ (fA � hC) (x) .

This implies that

fA �
�
gB e[ hC� e=(fA � gB) e[ (fA � hC) .

Similarly, we can show that

�
fA e[ gB�� hC = (fA � hC) e[ (gB � hC) .

(iv) Let x 2 N . Then
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(fA � (gBe\hC) (x) = [
x=yz

ffA (y) \
�
gBe\hC� (z)

= [
x=yz

ffA (y) \ (gB (z) \ hC (z)g

= [
x=yz

f(fA (y) \ (gB (z)) \ (fA (y) \ (hC (z)g

� f [
x=yz

(fA (y) \ (gB (z))g \ f [
x=yz

(fA (y) \ (hC (z))g

= (fA � gB) (x) \ (fA � hC) (x) .

This implies that .

fA �
�
gB e\ hC� e� (fA � gB) e\ (fA � hC) .

Similarly, we can show that

�
fA e\ gB�� hC e� (fA � hC) e\ (gB � hC) .

Next we show that equality does not hold in (iv).

Example 56 Let N = f0; x; y; zg be the nearring with the binary operations as de�ned below:

+ 0 x y z

0 0 x y z

x x 0 z y

y y z 0 x

z z y x 0

� 0 x y z

0 0 0 0 0

x 0 x 0 x

y 0 0 0 0

z 0 z 0 z

Consider a complete bounded distributive lattice L = f1; a; b; c; d; 0g ; U = fp; qg and A =

B = C = f0; x; y; zg.
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De�ne fA; gB and hC the L-fuzzy soft sets of N over U as follows:

p q

fA (0) 1 1

fA (x) b d

fA (y) a b

fA (z) c a

p q

gB (0) 1 0

gB (x) b 1

gB (y) 0 b

gB (z) 0 b

p q

hC (0) a 1

hC (x) 0 1

hC (y) b 0

hC (z) 0 d

Now

(fA � (gBe\hC) (z) = [
z=x+y

ffA (x) \
�
gBe\hC� (y) = [

z=x+y
ffA (x) \ ((gB (y) \ hC (y))g

= [
z=x+y

ffA (0) \ ((gB (x) \ hC (x)); fA (x) \ ((gB (0) \ hC (0));

fA (y) \ ((gB (z) \ hC (z)); fA (z) \ ((gB (y) \ hC (y))g

= [

8<: (1 1) \ ((b 1) \ (0 1)) ; (b d) \ ((1 0) \ (a 1)) ;

(a b) \ ((0 b) \ (0 d)) ; (c a) \ ((0 b) \ (b 0))

9=;

= [

8<: ((1 1) \ (0 1)) ; ((b d) \ (b 0)) ;

((a b) \ (0 b)) ; ((c a) \ (0 0))

9=;
= (0 1) [ (b 0) [ (0 b) [ (0 0) = (b 1) :
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Now,

f(fA � gB) e\ (fA � hC)g (z) = (fA � gB) (z) \ (fA � hC) (z)

= f [
z=x+y

((fA (y) \ (gB (z))g \ f [
z=x+y

(fA (y) \ (hC (z))g

= f [(
z=x+y

(fA (0) \ (gB (x)); (fA (x) \ (gB (0)); (fA (y) \ (gB (z)); (fA (z) \ (gB (y)))g

\f [(
z=x+y

(fA (0) \ (hC (x)) ; (fA (x) \ (hC (0)) ; (fA (y) \ (hC (z)) ; (fA (z) \ (hC (y)))g

= f[

8<: ((1 1) \ (b 1)) ; ((b d) \ (1 0)) ;

((a b) \ (0 b)) ; ((c a) \ (0 b))

9=;g
\

8<:[
8<: ((1 1) \ (0 1)) ; ((b d) \ (a 1)) ;

((a b) \ (0 d)) ; ((c a) \ (b 0))

9=;
9=;

= f(b 1) [ (b 0) [ (0 b) [ (0 b)g \ f(0 1) [ (b d) [ (0 d) [ (0 0)g

= (b 1) \ (b 1) = (b 1) .

Hence,

fA �
�
gB e\ hC� e� (fA � gB) e\ (fA � hC) :

2.2 L-fuzzy Soft Sub-nearring and L-fuzzy soft Ideals

In this section we de�ne L-fuzzy soft sub-nearring and L-fuzzy soft ideal of a nearring N over

U and prove some related results.

De�nition 57 An L-fuzzy soft subset fA of a nearring N over U is called an L-fuzzy soft

subnearring of N if

(1) fA (x� y) � fA (x) \ fA (y)

(2) fA (xy) � fA (x) \ fA (y) ; for all x; y 2 N; where A � N .

De�nition 58 An L-fuzzy soft subset fA of a nearring N over U is called an L- fuzzy soft ideal

of N if fA is an L-fuzzy subnearring of N and

(3) fA (x) = fA (y + x� y)
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(4) fA (xy) � fA (y)

(5) fA ((x+ i) y � xy) � fA (i) ; for any x; y; i 2 N , where A � N .

fA is an L- fuzzy soft left ideal of N if it satis�es (1) ; (3) and (4) ; fA is an L- fuzzy soft

right ideal of N if it satis�es (1) ; (2) ; (3) and (5).

Example 59 Let N = f0; x; y; zg be the nearring with binary operations as de�ned below:

+ 0 x y z

0 0 x y z

x x 0 z y

y y z 0 x

z z y x 0

� 0 x y z

0 0 0 0 0

x 0 x 0 x

y 0 0 0 0

z 0 z 0 z

Consider the complete bounded distributive lattice L = f0; a; b; c; d; e; f; 1g and U = fj; kg;

A = N:

De�ne an L-fuzzy soft set fA of N over U as follows:

j k

fA (0) 1 a

fA (x) b f

fA (y) c 0

fA (z) a e
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Simple calculations show that fA is an L-fuzzy soft subnearring of N over U but fA (xz) �

fA (z) because (b f) � (a e) and fA ((x+ z)x� xx) + fA (z) because (b f) � (a e). Thus it is

neither an L-fuzzy soft left ideal nor an L-fuzzy soft right ideal of N and hence not an L-fuzzy

soft ideal of N .

Example 60 Let N = f0; x; y; zg be the nearring with binary operations as de�ned below:

+ 0 x y z

0 0 x y z

x x 0 z y

y y z 0 x

z z y x 0

� 0 x y z

0 0 0 0 0

x 0 x 0 x

y 0 0 0 0

z 0 z 0 z

Consider the complete Boolean lattice L = f0; a; b; c; d; e; f; 1g and U = fj; kg; A = N .

De�ne an L-fuzzy soft set fA of N over U as follows:

j k

fA (0) 1 f

fA (x) a 0

fA (y) a 0

fA (z) 1 f

Simple calculations show that fA is an L-fuzzy soft subnearring of N over U and an L-fuzzy
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soft left ideal but fA ((x+ z)x� xx) + fA (z) because (a 0) � (1 f). Thus it is not an L-fuzzy

soft right ideal and hence not an L-fuzzy soft ideal of N .

Example 61 Let N = f0; x; y; zg be the nearring with binary operations as de�ned below:

+ 0 x y z

0 0 x y z

x x 0 z y

y y z x 0

z z y 0 x

� 0 x y z

0 0 0 0 0

x 0 0 0 0

y 0 0 0 0

z 0 0 x x

Consider the complete Boolean lattice L = f0; a; b; c; d; e; f; 1g and U = fj; kg; A = N .

De�ne an L-fuzzy soft set fA of N over U as follows:

j k

fA (0) 1 1

fA (x) a b

fA (y) a e

fA (z) a e

Simple calculations show that fA is an L-fuzzy soft subnearring of N over U , an L-fuzzy

soft left ideal, an L-fuzzy soft right ideal and hence an L-fuzzy soft ideal of N .

Example 62 Let N = f0; x; y; zg be the nearring with binary operations as de�ned below:
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+ 0 x y z

0 0 x y z

x x 0 z y

y y z x 0

z z y 0 x

� 0 x y z

0 0 0 0 0

x 0 0 0 0

y 0 0 0 0

z 0 0 x x

Consider the complete Boolean lattice L = f0; a; b; c; d; e; f; 1g and U = fj; kg; A = N .

De�ne an L-fuzzy soft set gB of N over U as follows:

j k

gB (0) 1 1

gB (x) e d

gB (y) e 0

gB (z) e 0

Simple calculations show that gB is an L-fuzzy soft subnearring of N over U , an L-fuzzy

soft left ideal, an L-fuzzy soft right ideal and hence an L-fuzzy soft ideal of N .

Lemma 63 The intersection of two L-fuzzy soft (left, right) ideals of a nearring N over U is

again an L-fuzzy soft (left, right) ideal of N over U .

Proof. Let fA and gB be two L-fuzzy soft ideals of a nearring N over U and x; y 2 N .

Then
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(1)

(fAe\gB) (x� y) = fA (x� y) \ gB (x� y)
� ffA (x) \ fA (y)g \ fgB (x) \ gB (y)g

= ffA (x) \ gB (x)g \ ffA (y) \ gB (y)g

= f(fAe\gB) (x)g \ f(fAe\gB) (y)g.
Hence,

(fAe\gB) (x� y) � f(fAe\gB) (x)g \ f(fAe\gB) (y)g:
(2)

(fAe\gB) (xy) = fA (xy) \ gB (xy)
� ffA (x) \ fA (y)g \ fgB (x) \ gB (y)g

= ffA (x) \ gB (x)g \ ffA (y) \ gB (y)g

= f(fAe\gB) (x)g \ f(fAe\gB) (y)g.
Hence,

(fAe\gB) (xy) � f(fAe\gB) (x)g \ f(fAe\gB) (y)g.
(3)

(fAe\gB) (y + x� y) = fA (y + x� y) \ gB (y + x� y)
� fA (x) \ gB (x) = (fAe\gB) (x) .

Hence,

(fAe\gB) (y + x� y) � (fAe\gB) (x) .
(4)

(fAe\gB) (xy) = fA (xy) \ gB (xy) � fA (x) \ gB (y) = (fAe\gB) (y) .
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Hence,

(fAe\gB) (xy) � (fAe\gB) (y) .
(5)

(fAe\gB) ((x+ i) y � xy) = fA ((x+ i) y � xy) \ gB ((x+ i) y � xy)
� fA (i) \ gB (i) = (fAe\gB) (i) .

Hence,

(fAe\gB) ((x+ i) y � xy) � (fAe\gB) (i) .
for all x; y; i 2 N .

Consequently, (fAe\gB) is an L-fuzzy soft ideal of N .
Next we show that the union of two L-fuzzy soft ideals of a nearring N is not necessarily

an L-fuzzy soft ideal of N .

Example 64 Let N = f0; x; y; zg be the nearring with binary operations as de�ned below:

+ 0 x y z

0 0 x y z

x x 0 z y

y y z x 0

z z y 0 x

� 0 x y z

0 0 0 0 0

x 0 0 0 0

y 0 0 0 0

z 0 0 x x

Consider the complete Boolean lattice L = f0; a; b; c; d; e; f; 1g and U = fj; kg; A = B = N .
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Let fA and gB be two L-fuzzy soft ideals (left, right ) of a nearring N over U .

j k

fA (0) 1 1

fA (x) a b

fA (y) a e

fA (z) a e

j k

gB (0) 1 1

gB (x) e d

gB (y) e 0

gB (z) e 0

Simple calculations show that fA and gB are L-fuzzy soft ideals of N over U . Now

�
fAe[gB� (y � x) = (a e)

and �
fAe[gB� (y) \ �fAe[gB� (x) = (a e ) \ (a b) = (a b)

and e � b. Hence, �
fAe[gB� (y � x) + �fAe[gB� (y) \ �fAe[gB� (x) .

Hence, fAe[gB is not an L-fuzzy ideal of N over U .

De�nition 65 Let fA be an L- fuzzy soft subset of a nearring N over U . For � 2 LU , the set

f�A = fx 2 N : fA (x) � �g is called a level subset of fA.

Theorem 66 Let N be a nearring and fA be an L- fuzzy soft subset of N over U . Then fA

is an L- fuzzy soft subnearing (ideal) of N over U if and only if the level subset f�A 6= ; is a

subnearring (ideal) of N for all � 2 LU .

Proof. Let fA be an L-fuzzy soft left ideal of N . Let x; y 2 f�A. Then fA (x) � � and

fA (y) � �. Now, as

fA (x� y) � fA (x) \ fA (y) � � \ � = �) fA (x� y) � �) x� y 2 f�A.

Now, let x 2 f�A and y 2 N . Then fA (x) � �. As

fA (x) = fA (y + x� y) � �) y + x� y 2 f�A.
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Finally let y 2 f�A and x 2 N . Then fA (y) � �. As

fA (xy) � fA (y) � �) xy 2 f�A.

Hence, f�A is a left ideal of N .

Conversely, suppose that f�A is a left ideal of N . Let x; y 2 N be such that fA (x� y) �

fA (x) \ fA (y). Then there exists an � 2 LU such that

fA (x� y) � � � fA (x) \ fA (y)) fA (x) \ fA (y) � �) fA (x) � �

and fA (y) � �) x 2 f�A and y 2 f�A but x� y =2 f�A, which is a contradiction. Hence,

fA (x� y) � fA (x) \ fA (y)

for all x; y 2 N .

Again assume that there exist x; y 2 N such that

fA (y + x� y) � fA (x) ,

so there exists � 2 LU such that

fA (y + x� y) � � � fA (x)) fA (x) � �) x 2 f�A,

but y + x� y =2 f�A, which is a contradiction. Hence,

fA (y + x� y) � fA (x) .

Finally suppose that there exist x; y 2 N such that fA (xy) � fA (y), so there exists � 2 LU

such that

fA (xy) � � � fA (y)) fA (y) � �) y 2 f�A,
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but xy =2 f�A, which is a contradiction. Hence,

fA (xy) � fA (y)

. Hence, fA an L-fuzzy soft left ideal of N .

Lemma 67 If an L-fuzzy soft set fA of a nearring N over U satis�es the property fA (x� y) �

fA (x) \ fA (y) for all x; y 2 N , then

(i) fA (0N ) � fA (x)

(ii) fA (�x) = fA (x) for all x; y 2 N .

Proof. (i) For any x 2 N ,

fA (0N ) = fA (x� x) � fA (x) \ fA (x) = fA (x) .

Hence, fA (0N ) � fA (x).

(ii) For all x 2 N ,

fA (�x) = fA (0N � x) � fA (0N ) \ fA (x) = fA (x) .

Since x is arbitrary, we conclude that

fA (�x) = fA (x) .

Proposition 68 Let fA be an L-fuzzy soft ideal of of a nearring N over U . If fA (x� y) =

fA (0N ), then fA (x) = fA (y) for all x; y 2 N:

Proof. Assume that

fA (x� y) = fA (0N )

for all x; y 2 N . Then

fA (x) = fA (x� y + y) � fA (x� y) \ fA (y) = fA (0N ) \ fA (y) = fA (y)
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Similarly, using

fA (y � x) = fA (x� y) = fA (0N )

we have

fA (y) � fA (x) :

Hence,

fA (x) = fA (y) :

Theorem 69 Let I be a left (right) ideal of a nearring N . Then for any � 2 L(U), there exists

an L-fuzzy soft left (right) ideal fA of N such that f�A = I.

Proof. Let fA : N ! L(U) be an L- fuzzy soft set of N over U de�ned by fA (x) =8<: � if x 2 Ie0 if x =2 I
where e0 is the zero L-fuzzy set and � is a �xed L-fuzzy set in L(U). Then clearly f�A = I.

By Theorem 79 fA is an L-fuzzy soft ideal of N over U .

De�nition 70 Let I be a non-empty subset of a nearring N . De�ne an L-fuzzy soft subset �I

of N over U as following:

�I (x) =

8<: e1 if x 2 Ie0 if x =2 I
This is called an L-fuzzy soft characteristic function of I.

Theorem 71 The characteristic function �I of I is an L-fuzzy soft left (right) ideal of N over

U if and only if I is a left (right) ideal of N .

Proof. Assume that �I is an L-fuzzy soft ideal of N . Let x; y 2 I. Then �I (x) = e1 and
�I (y) = e1. Now,

�I (x� y) � �I (x) \ �I (y) = e1 \ e1 = e1,
so

�I (x� y) � e1.
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This means that x� y 2 I. Also

�I (xy) � �I (x) \ �I (y) = e1 \ e1 = e1,
so

�I (xy) � e1.
This means that

xy 2 I.

Now, let x 2 N and y 2 I. Then

�I (xy) � �I (y) = e1) �I (xy) � e1,
that is

�I (xy) = e1) xy 2 I:

Also,

�I (y + x� y) � �I (x) = e1) �I (y + x� y) = e1) y + x� y 2 I.

And �nally, assume that x; y 2 N and i 2 I, then

�I ((x+ i) y � xy) � �I (i) = e1,
implies (x+ i) y � xy 2 I. Hence I is an ideal of N .

Conversely, suppose that I is an ideal of N . Let x; y 2 I. Then

x� y 2 I.

Thus

�I (x) = e1 = �I (y) = �I (x� y) .
Hence,

�I (x� y) = �I (x) \ �I (y)

36



If one of x; y is not in I then

�I (x) \ �I (y) = e0:
So

�I (x� y) � �I (x) \ �I (y)

Let x; y 2 I. Then

xy 2 I.

Thus �I (x) = e1 = �I (y) = �I (xy). Hence,
�I (xy) = �I (x) \ �I (y)

If one of x; y is not in I then

�I (x) \ �I (y) = e0
So

�I (xy) � �I (x) \ �I (y) .

Now, let x 2 I and y 2 N . Then

y + x� y 2 I

Thus

�I (y + x� y) = e1 = �I (x) .
If x =2 I then

�I (x) = e0:
So

�I (y + x� y) � �I (x) .

Finally, if i 2 I then

(x+ i) y � xy 2 I.

Thus

�I ((x+ i) y � xy) = e1 = �I (i) .
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Now, if i =2 I. Then

�I (x) = e0.
Thus

�I ((x+ i) y � xy) � �I (i)

. Hence, the characteristic function of I is an L-fuzzy soft ideal of N . This completes the

proof.
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Chapter 3

Prime and Semiprime ideals

In this chapter we de�ne L-fuzzy prime and semiprime soft ideals of a nearring. We also

characterize those nearrings for which each L-fuzzy soft ideal is prime.

3.1 Product of L-fuzzy soft sets

De�nition 72 Let fA and gB be two L-fuzzy soft sets of a nearring N over the common

universe U . Then the soft product fA � gB is an L-fuzzy soft set of N over U de�ned by

(fA � gB) (x) =

8><>:
[

x=yz
fA (y) \ gB (z) if 9 y; z 2 N such that x = yz

e0 otherwise

for all x 2 N .

Proposition 73 Let A;B be non-empty subsets of a nearring N . Then �A � �B = �AB.

Proof. Let x 2 N . If x 2 AB then there exist a 2 A and b 2 B such that x = ab. In this

case

(�A � �B) (x) = [
x=yz

�A (y) \ �B (z)

� �A (a) \ �B (b)

= e1 \ e1 = e1.
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Hence (�A � �B) (x) = e1 = �AB (x). If x =2 AB then there do not exist a 2 A and b 2 B

such that x = ab. Hence

�AB (x) = e0
= e0 \ e0
= (�A � �B) (x) .

This shows that �A � �B = �AB.

De�nition 74 An L-fuzzy soft ideal fA of a nearring N over U is called prime if fA is not a

constant function and for any L-fuzzy soft ideals gB; hC of N over U ,

gB � hC e�fA ) gB e�fA or hC e�fA.
Theorem 75 An ideal P of a nearring N is prime if and only if �P is an L-fuzzy prime soft

ideal of N over U .

Proof. Suppose that the characteristic function �P of P is an L-fuzzy prime soft ideal of

N over U . Then P is an ideal of N . Let A;B be any ideals of N such that AB � P . Then �A
and �B are L-fuzzy soft ideals of N and �A�B e� �P . Since �P is prime, so �Ae��P or �B e��P .
This implies A � P or B � P .

Conversely, assume that P is a prime ideal of N . Then by Theorem 74, �P is an L-fuzzy soft

ideal of N overU . Let gB; hC be L-fuzzy soft ideals of N such that gB�hC e� �P . Suppose gB *
�P and hC * �P . Then there exist x; y 2 N and u 2 U such that (gB (x)) (u) � (�P (x)) (u)

and (hC (y)) (u) � (�P (y)) (u). Now (�P (x)) (u) \ (�P (y)) (u) � (gB (x)) (u) \ (hC (y)) (u),

this implies �P (xy) + gB (x) \ hC (y), which is a contradiction. Hence gB � �P or hC � �P .

De�nition 76 An L-fuzzy soft ideal fA of a nearring N over U is called semiprime if fA is

not a constant function and for any L-fuzzy soft ideal gB of N , gB � gB e�fA implies gB e�fA .
Theorem 77 An ideal P of a nearring N is semiprime if and only if �P is an L-fuzzy soft

semiprime ideal of N over U .
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Proof. Suppose that the characteristic function �P of P is an L-fuzzy soft semiprime ideal

of N over U . Then P is an ideal of N . Let A be any ideals of N such that AA � P . Then

by Theorem 74, �A is an L-fuzzy soft ideals of N and �A�Ae��P . Since �P is semiprime, so
�Ae��P . This implies A � P .

Conversely, assume that P is a semiprime ideal of N . Then �P is an L-fuzzy soft ideal of

N over U . Let gB be an L-fuzzy soft ideal of N such that

gB � gB e��P .
Suppose gB * �P . Then there exist x 2 N and u 2 U such that

(gB (x)) (u) � (�P (x)) (u) .

Now

(�P (x)) (u) = (�P (x)) (u) \ (�P (y)) (u) � (gB (x)) (u) \ (gB (x)) (u) ,

this implies

�P (x) + gB (x) \ gB (x) ,

which is a contradiction. Hence

gB e��P .

3.2 Characterization of nearrings by the properties of their L-

fuzzy soft ideals

In this section, we characterize those nearrings for which each L-fuzzy soft ideal is prime and

also those nearrings for which each L-fuzzy soft ideal is idempotent.

De�nition 78 Let fA and gB be two L-fuzzy soft sets of a nearring N over the common

universe U . The L-fuzzy soft subset fA � gB of N is de�ned as
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(fA � gB) (x) = Sup
x=y+z

ffA (y) \ gB (z)g where y; z 2 N such that x = y + z.

Proposition 79 Let fA and gB be two L-fuzzy soft ideals of a nearring N . Then fA � gB is

the smallest L-fuzzy soft ideal of N containing both fA and gB.

Proof. For any x; y 2 N ,

(fA � gB) (x) \ (fA � gB) (y) =

�
[

x=a+b
[fA (a) \ gB (b)]

�
\
�
[

y=c+d
[fA (c) \ gB (d)]

�
= [

x=a+b
y=c+d

[[fA (a) \ gB (b)] \ [fA (c) \ gB (d)]]

= [
x=a+b
y=c+d

[[fA (a) \ fA (c)] \ [gB (b) \ gB (d)]]

0BBB@
Since x� y = a+ b� (c+ d) = a+ b� d� c = a� c+ (c+ b� c) + (c� d� c)

and gB(c+ b� c) = gB(b),

gB(c� d� c) = gB(�d) = gB(d) we have

1CCCA

= [
x=a+b
y=c+d

[[fA (a) \ fA (c)] \ [gB (c+ b� c) \ gB (c� d� c)]]

� [
x�y=e+f

[fA (e) \ gB (f) = (fA � gB) (x� y) .

Thus, (fA � gB) (x� y) � (fA � gB) (x) \ (fA � gB) (y).

Now,

(fA � gB) (y) = [
y=a+b

[fA (a) \ gB (b)]

� [
y=a+b

[fA (xa) \ gB (xb)

� [
xy=c+d

[fA (c) \ gB (d) = (fA � gB) (xy) .

Thus, (fA � gB) (xy) � (fA � gB) (y).

Hence, (fA � gB) (xy) � (fA � gB) (x) \ (fA � gB) (y).
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Now,

(fA � gB) (x) = [
x=a+b

[fA (a) \ gB (b)]

= [
x=a+b

[fA (y + a� y) \ gB (y + b� y)]

= [
y+x�y=c+d

[fA (c) \ gB (d)]

0@ Because for each x = a+ b, we have y + x� y = y + a� y + y + b� y = (y + a� y) + (y + b� y)

and for each y + x� y = c+ d, we have x = �y + c+ d+ y = (�y + c+ y) + (�y + d+ y).

1A
= (fA � gB) (y + x� y) .

Hence, (fA � gB) (x) = (fA � gB) (y + x� y).

Let i = a+ b. Then i = a+ b = b� b+ a+ b and gB (�b+ a+ b) = gB (a). Hence whenever

fA (a) \ gB (b) is present,

then fA (b) \ gB (a) is also present. Now

(x+ i) y � xy = (x+ (a+ b)) y � xy = (x+ (a+ b)) y � (x+ a)y + (x+ a)y � xy.

Thus fA (b) � fA ((x+ a)y + b)� (x+ a)y).

Now,

(fA � gB) (i) = [
i=a+b

[fA (a) \ gB (b)

= [
i=a+b

[fA (b) \ gB (a)

� [
i=a+b

[fA ((x+ (a+ b)) y � (x+ a)y) \ gB ((x+ a)y � xy)

� [
(x+i)y�xy=c+d

[fA (c) \ gB (d)]

= (fA � gB) ((x+ i) y � xy) .

Hence, fA � gB is an L-fuzzy soft ideal of N .
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Now, (fA � gB) (x) = [
x=a+b

[fA (a) \ gB (b)]

As x = x+ 0 and x = 0 + x, so (fA � gB) (x) � fA (x) and also (fA � gB) (x) � gB (x). If

hC is an L-fuzzy soft ideal of N such that hC (x) � gB (x) and hC (x) � fA (x) for all x 2 N ,

then

(fA � gB) (x) = [
x=a+b

[fA (a) \ gB (b)]

� [
x=a+b

[hC (a) \ hC (b)]

= [
x=a+b

[hC (a) \ hC (�b)]

� [
x=a+b

hC (a+ b) = hC (x) .

Thus, fA � gB e�hC .
Proposition 80 Let N be a zero-symmetric nearring and fA and gB be L-fuzzy soft ideals

of N over U . Then fA � gB e�fA \ gB.
Proof. Let fA and gB be L-fuzzy soft ideals of N and x 2 N . Then

(fA � gB) (x) =

8><>:
[

x=yz
fA (y) \ gB (z) if 9 y; z 2 N such that x = yz

e0 otherwise
.

As fA is an L-fuzzy soft ideal, so fA (z) � fA (yz) = fA (x). As N is a zerosymmetric

nearring, so yz = (0 + y) z � 0z. Hence, gB (x) = gB (yz) = gB ((0 + y) z � 0z) � gB (y). Thus,

(fA � gB) (x) =

8><>:
[

x=yz
fA (yz) \ gB (yz) if 9 y; z 2 N such that x = yz

e0 otherwise

� (fA \ gB) (x) .

Let N be a nearring. Let F (N) denote the set of all L-fuzzy soft subsets of N over U . Let

F ?(N) be the set of all L-fuzzy soft ideals of N . Let fA 2 F (N). Then the L-fuzzy soft ideal

generated by fA, denoted by < fA >, is the intersection of all L-fuzzy soft ideals of N which
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contain fA. Now, onwards N will denote a zerosymmetric left nearring.

De�nition 81 A nearring N is called fully L-fuzzy soft idempotent if for each L-fuzzy soft

ideal fA of N; fAe= < f2A >.
Proposition 82 The following assertions for a nearring N are equivalent:

(i) N is fully L-fuzzy soft idempotent.

(ii) For each pair of L-fuzzy soft ideals fA; gB of N , fA \ gB e= < fA � gB >.
(iii) The set of L-fuzzy soft ideals of N form a lattice (F ?(N);[;\) with fA [ gB e=fA� gB

and fAe\gB e= < fA � gB > for each pair of L-fuzzy soft ideals fA; gB of N .

Proof. (i)) (ii) For each pair of L-fuzzy soft ideals fA; gB of N

fA � gB e�fA \ gB,
thus

< fA � gB > e�fA \ gB.
For reverse inclusion, as fAe\gB is an L-fuzzy soft ideal and

fAe\gB e�fA
and

fAe\gB e�gB; we have (fAe\gB)2e�fA � gB,
This implies

fAe\gB e= < (fAe\gB)2 > e� < fA � gB > .
Thus,

fAe\gB e= < fA � gB > .
(ii) ) (iii) The set of all L-fuzzy soft ideals of a nearring N ordered by inclusion forms a

lattice under the sum and intersection of L-fuzzy soft ideals. Thus for each pair of L-fuzzy soft

ideals fA; gB of N ,

fAe[gB e=fA � gB
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and

fAe\gB e= < fA � gB > .
(iii)) (i) By assumption

fAe\gB e= < fA � gB > .
Now taking fAe=gB; we have

fAe= < fA � fA > e= < (fA)2 > .
Hence, N is fully L-fuzzy soft idempotent.

Theorem 83 The set of all L-fuzzy soft ideals of a zerosymmetric fully L-fuzzy soft idempotent

nearring N (ordered by inclusion) forms a distributive lattice under the sum and intersection

of ideals.

Proof. Straight forward.

3.3 Fully L-fuzzy soft Prime nearrings

De�nition 84 An L-fuzzy soft ideal fA of a nearring N is an L-fuzzy soft irreducible (resp.

L-fuzzy soft strongly irreducible) ideal if for any L-fuzzy soft ideals gB; hC of N , if gBe\hC e=fA
implies gB e=fA or hC e=fA.(resp. gBe\hC e�fA implies gB e�fA or hC e�fA).
Proposition 85 An L-fuzzy soft prime ideal of a zerosymmetric nearring N is L-fuzzy soft

semiprime and strongly irreducible.

Proof. Let fA be an L-fuzzy soft prime ideal of N and gB; hC be any L-fuzzy soft ideals of

N . Clearly, fA is an L-fuzzy soft semiprime ideal of N . Let gBe\hC e�fA. As gB � hC e�gBe\hC ,
we have gB � hC e�fA. As fA is an L-fuzzy soft prime ideal so either gB e�fA or hC e�fA.
Lemma 86 ?? If fA is an L-fuzzy soft ideal of a nearring N and fA (a) e=� where a is any
element of N and � 2 L(U). Then there exists an L-fuzzy soft irreducible ideal hC of N such

that fAe�hC and hC (a) = �.
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Proof. Let � =
n
gB : gB is an L-fuzzy soft ideal of N , gB (a) = � and fAe�gBo. Then

� 6= ' because fA 2 �.

Let � be a totally ordered subset of �, say � = f(fA)i : i 2 Ig. We will show that [
i2I
(fA)i

is an L-fuzzy soft ideal of N . Let x; y 2 N . Then

�f[
i2I
(fA)i

�
(x� y) = [

i2I
((fA)i (x� y))

� [
i2I
((fA)i (x) \ (fA)i (y))

�
� e[
i2I
(fA)i

�
(x) \

� e[
i2I
(fA)i

�
(y)

And,

� e[
i2I
(fA)i

�
(xy) = [

i2I
((fA)i (xy))

� [
i2I
((fA)i (x) \ (fA)i (y))

�
� e[
i2I
(fA)i

�
(x) \

� e[
i2I
(fA)i

�
(y) .

Now,

� e[
i2I
(fA)i

�
(x) = [

i2I
((fA)i (x))e= [
i2I
((fA)i (y + x� y))

=

�f[
i2I
(fA)i

�
(y + x� y) .

And,

�f[
i2I
(fA)i

�
(xy) = [

i2I
((fA)i (xy))

� [
i2I
((fA)i x) =

� e[
i2I
(fA)i

�
(x)
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Also,

� e[
i2I
(fA)i

�
((x+ a) y � xy) = [

i2I
((fA)i ((x+ a) y � xy))

� [
i2I
((fA)i (a) =

�f[
i2I
(fA)i

�
(a)

for any x; y; a 2 N .

Hence, [
i2I
(fA)i is an L-fuzzy soft ideal of N . As each (fA)i satis�es (fA)i (a) = �, so we

have � e[
i2I
(fA)i

�
(a) = [

i2I
((fA)i (a)) = [

i2I
� = �:

Also, as fAe� (fA)i for each i, so fAe� [
i2I
(fA)i. Hence, � is bounded above. Thus, by Zorn�s

lemma, there exists an L-fuzzy soft ideal hC of N which is maximal in �. We now show that

hC is an L-fuzzy irreducible ideal of N .

Let (hC)1 and (hC)2 be two L-fuzzy soft ideals of N such that hC e=(hC)1 e\ (hC)2. This
implies that hC e� (hC)1 and hC e� (hC)2. We claim that either hC e=(hC)1 or hC e=(hC)2. Sup-
pose on contrary that hC 6= (hC)1 and hC 6= (hC)2. Since hC is maximal with respect to the

property that hC (a) = � and hC e* (hC)1 and hC e* (hC)2, it follows that (hC)1 (a) 6= � and

(hC)2 (a) 6= �.

Hence, � = hC (a) = ((hC)1 \ (hC)2) (a) = (hC)1 (a) e\ (hC)2 (a) 6= � which is impossible.

Hence, either hC e=(hC)1 or hC e=(hC)2. Thus, hC is an irreducible L-fuzzy soft ideal of N .
Proposition 87 Every proper L-fuzzy soft ideal of N is the intersection of all those L-fuzzy

soft irreducible ideals of N which contain it.

Proof. Let fA be an L-fuzzy soft proper ideal of N and let A = f(fA)� : � 2 
g be a

family of L-fuzzy soft irreducible ideals of N which contains fA. where A is a non-empty set.

Obviously fAe� \
�2


(fA)�. We now show that \
�2


(fA)�
e� fA. Let a be an element of N . Then

there exists an L-fuzzy soft irreducible ideal (fA)� of N such that (fA)� (a) = fA (a) and fA �

(fA)�. Thus, (fA)� 2 A. Hence, e\
�2


(fA)�
e� (fA)� . So \

�2

(fA)� (a) � (fA)� (a) = fA (a) )e\

�2

(fA)�

e�fA. Hence, e\
�2


(fA)� e=fA.
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Proposition 88 Let N be a fully idempotent zerosymmetric nearring and fA be an L-fuzzy

soft ideal of N . Then the following assertions are equivalent:

(i) fA is L-fuzzy soft prime.

(ii) fA is L-fuzzy soft strongly irreducible.

(iii) fA is L-fuzzy soft irreducible.

Proof. (i) ) (ii) Suppose fA is an L-fuzzy soft prime ideal of N and gB; hC are L-fuzzy

soft ideals of N such that gBe\hC e�fA. As
gB � hC e�gBe\hC e�fA,

and fA is an L-fuzzy soft prime ideal, so gB e�fA or hC e�fA. Thus, fA is an L-fuzzy soft strongly
irreducible ideal.

(ii)) (iii) Suppose fA is an L-fuzzy soft strongly irreducible ideal and gB; hC are L-fuzzy

soft ideals of N such that gBe\hC e=fA. Then as fA is an L-fuzzy soft strongly irreducible, so
gB e�fA or hC e�fA. But fAe�gB and fAe�hC so either fAe=gB or fAe=hC that is fA is an L-fuzzy
soft irreducible ideal of N .

(iii)) (i) Suppose fA is an L-fuzzy soft irreducible ideal of N and gB; hC are L-fuzzy soft

ideals of N such that

gB � hC e�fA )< gB � hC > e�fA ) gBe\hC e�fA.
Since the set of all L-fuzzy soft ideals of N forms a distributive lattice under the sum and

intersection of L-fuzzy soft ideals, we have

(gB \ hC)� fAe=fA ) (gB � fA) \ (hC � fA) e=fA.
Since fA is an L-fuzzy soft irreducible so gB � fAe=fA or hC � fAe=fA ) gB e�fA or hC e�fA.
Hence, fA is an L-fuzzy soft prime.

Theorem 89 Let N be a zerosymmetric nearring. Then the following assertions are equivalent:

(i) N is fully L-fuzzy soft idempotent nearring.

49



(ii) Each L-fuzzy soft ideal of N is the intersection of those L-fuzzy soft prime ideals of N

which contain it.

(iii) Each L-fuzzy soft ideal of N is L-fuzzy soft semiprime.

Proof. (i)) (ii)The concept of irreducibility and primeness for L-fuzzy soft ideals coincide

in a fully L-fuzzy soft idempotent nearring. By Proposition 87, every proper L-fuzzy soft ideal

of N is the intersection of all those L-fuzzy soft irreducible ideals of N which contain it. Hence

every ideal is the intersection of L-fuzzy soft prime ideals of N which contain it.

(ii) ) (iii) Since the intersection of L-fuzzy soft prime ideals of N is an L-fuzzy soft

semiprime ideal, so each L-fuzzy soft ideal of N is an L-fuzzy soft semiprime ideal.

(iii)) (i) Let fA be an L-fuzzy soft ideal of N . As (fA)
2 e� < (fA)2 >. By (iii), < (fA)2 >

is semiprime so fAe� < (fA)2 >. But < (fA)2 > e�fA always. Hence, (fA) e= < (fA)2 > :
Theorem 90 Let N be a zerosymmetric nearring. Then the following assertions are equivalent:

(i) N is fully L-fuzzy soft idempotent and the set of all L-fuzzy soft ideals of N is totally

ordered.

(ii) N is fully L-fuzzy soft prime that is every L-fuzzy soft ideal of N is prime.

Proof. (i)) (ii) Let fA; gB; hC be L-fuzzy soft ideals of N such that

fA � gB e�hC )< fA � gB > e�hC . Since N is fully L-fuzzy soft idempotent, so

fAe\gB e= < fA � gB > e�hC .
Since the set of L-fuzzy soft ideals of N is totally ordered, so either fAe�gB or gB e�fA that is
either fAe=fAe\gB or gB e=fAe\gB.

Thus, either fAe�hC or gB e�hC .
(ii)) (i) Suppose each L-fuzzy soft ideal of N is prime. Let fA be an L-fuzzy soft ideal of

N . As (fA)
2 e� < (fA)2 > this implies that fAe� < (fA)2 >, but < (fA)2 > e�fA always. Hence,

fAe= < (fA)2 > that is each L-fuzzy soft ideal is idempotent.
Let gB; hC be L-fuzzy soft ideals of N . As gB \ hC is an L-fuzzy soft ideal of N and

gB � hC e�gBe\hC . Thus , either gB e�gBe\hC or hC e�gBe\hC ) gB e�hC or hC e�gB. Hence, the
set of L-fuzzy soft ideals of N is totally ordered.
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