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Abstract

Fast ions in various toroidal devices, such as in tokamaks, play a vital role in bringing

and sustaining a thermonuclear fusion process. They can transfer their (excessive) energy

to the bulk plasma particles via various collisional processes, for example, the so-called

slowing-down process. Here we have considered the slowing-down of energetic ions gen-

erated by neutral beam injection in a tokamak plasma has been studied. The kinetic theory

of plasmas, which involves the time evolution of various species’ phase-space distribution

function, has been employed. First, we have presented a detailed derivation of kinetic equa-

tions and introduced the concept of Fokker-Planck collisional effects.

The injection of fast neutral atoms is the most exciting method for auxiliary heating,

via the transfer of collisional energy from the fast ions formed in the limited orbits of the

fusion plasmas’ plasma particles. Particles and energy losses due to charge exchange with

the energy transferred to plasma ions, electrons, and background neutrals are calculated.

Since the losses of energy transfer and charge exchange depend strictly on the neutral den-

sity and the electron temperature, the allowance of arbitrary profiles for n˙0=n˙e and T˙e

and the fast ion accumulation are also included.

The energy transferred to plasmas can be severely affected by charge exchange between

fast ions and neutral background particles. Coulomb scattering is mainly used to find the

velocity distribution of fast ion populations. The transport of high-speed ions is generally

much slower than thermal transport, except during MHD events. Intensified populations of

fast ions drive collective instabilities.



Chapter 1

Introduction

The understanding of fast (or energetic) ions behavior in various fusion devices is an es-

sential need for a successful energy producing reactor. Since these particles have an impor-

tance in future burning plasmas. Undoubtedly, these can provide a prime source of heating

to continue the condition of self-ignition. Thus, for an ignited fusion reactor, it is necessary

to have a satisfactory confinement of the fast ions [1-5]. If the alpha particles, born due

to D-T reaction, are considerably lost from the plasma due to some reasons, the condition

of self-ignition is surely abolished. The localized heat load is faced by the plasma facing

components of reactors and can appear as a source of compelling vaporization and melt-

ing of various components facing plasma. Due to this, realization of the physics problems

relevant to fast ions is a central in the struggle to accomplish secure utilization of a fusion

reactor for energy production.

The principle subjects of fusion plasma theory and experiment are the confinement,

thermalization and diffusion of the beam of fast ions injected neutrally [6]. Studying the

process of slowing down of the fast ions injected via neutral beam relevant to both thermal

background plasma and the confinement of the fast ions are therefore critical and is signifi-

cant. The beam ions are defined in the following way. The ions which have the velocity vb

greater than the thermal velocity of the background plasma ions vi and less than the thermal

velocity of the background plasma electrons ve, i.e., vi� vb� ve, are known as the beam

ions. The other condition is on the density of the fast ions. The density of the fast ions nb

is less than the density of the background plasma n in tokamak plasma, i.e., nb� n which
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is known as weak-beam approximation. As a result, these neutral beam injected (NBI)

fast ions can play the role of test particles that are slowed down and diverted because of

numerous Coulomb collision with the background plasma. By the study of the classical

transport theory, we can understand the above mentioned process [7-9]. In a fusion plasma

which is restrained magnetically, the rate of slowing down of the NBI fast ions actually

provides the rate of heating and the transferred energy from the NBI to the background

plasma [10]. Different techniques are used to limit plasma to the volume of the reaction

at a certain temperature. One of them is the fusion reactor, Tokamak, which works on the

concept of magnetic captivity [11]. In this scheme, magnetic fields are employed to com-

mand the orbital motion of the plasma components. The word Tokmak comes from the

Russian language and it stands for ”toridal’naya room s magnetanimi katushkami” which

means toridal chamber with a magnetic coil used in toridal incarceration. Tokamak was

developed by Soviet plasma physicists in the 1960s [12] and is considered the most ad-

vanced and well-studied fusion concept. The most recent of that is the well-known Interna-

tional Thermonuclear Experimental Reactor (ITER) which is under construction in France

[13,14]. For the more technical and academic details about ITER we refer the reader to

www.iter.org.

1.1 Effect of different perturbations on fast ions losses

Unless the plasma is heated to a certain temperature, it is unimaginable to obtain a nuclear

fusion reaction such that the thermal energy overcomes the corresponding Coulomb barrier

among positive nuclei. In the center of tokamak, through radio frequency (RF) heating

and fusion-generated alpha particles, it is essential to capture high-energy ions produced

by NBI [15]. Fast ions such as alpha particles, which are formed in fusion reactions, have

the steady velocity vector at 3.5 MeV [16]. However, fast ions formed by NBI and ion

cyclotron resonance heating (ICRH) contain only specific directed vectors. Whereas, the

energetic ions having velocity vectors normal to B are produced via ICRH mechanism. It

is a technique in which plasma ions are speed up by electromagnetic waves to a certain

limit of many hundred keV at their corresponding gyro frequency. In NBI (the process in
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which plasma heating is by injection of a plasma beam), the velocity vector is dependent on

the geometry of the NBI and the change in its velocity. Since there is no affect of electric

and magnetic fields on neutral particles, thus, the NBI cannot be affected by such fields of

tokamak. Fast ions play a very important role in achieving an easy state of plasma burning,

however, the loss of energetic ions is caused by various mechanisms, e.g. first orbit losses,

scattering, collective plasma instability and diverse transport modes [17,18].

The lost portion of energetic ions can be assessed adapting different kinetic approaches

via evaluating the transport coefficients out of which coefficient for radial diffusion (per-

pendicular to the flux surfaces in which the magnetic field lies) is an essential one. To

calculate the radial diffusion accurately, the exact knowledge of the particles trajectories is

necessary. For which different numerical methods are employed to evaluate the trajecto-

ries, followed by the transport coefficients of fast ions as affected by tokamak perturbations

[19].

In order to analyze the conduction of high-energy ions in current (e.g. JET) and future

(e.g. ITER) tokamaks, it is extremely important to have complete knowledge of fast ion

orbital motion and losses [20-22]. As a conclusion of theoretical and experimental obser-

vations, it turns out that alpha particles generated via axisymmetric magnetic field model

of high-current tokamak D-T reactor, can be confined, and, thus, play an important part to

provide the heat required to take the tokamak plasma (self-heating effect) to the tempera-

tures necessary for fusion [23,24]. Nevertheless, specific, intermittent and otherwise, such

as toroidal field (TF) waves and magnetic hydrodynamics (MHD) methods, these pertur-

bations may cause fast ion loss from tokamak [25]. These losses occur through various

resonance interactions, e.g. there can be resonance loss of banana (trapped particles due to

mirror effect in tokamak magnetic field, executing a periodic motion) particles due to TF

ripple periodicity. Likewise Alfven waves (having almost the same velocity as fusion born

alphas) can resonantly interact with these particles thus contributing in the loss of these fast

ions. The fast ions, which have a relatively low energy, can also interact resonantly with

low frequency MHD modes, e.g. neoclassical tearing modes. The resonance condition is

ωD′ f = ω . The particles with energy E f ′/Ti′ ≈ 2R′/rp′, where rp′ is the length of the cor-

responding thermal ion pressure gradient, are able to satisfy the condition of ωD′ f = ωi′.
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Here ωi′ is the diamagnetic frequency of the thermal ion. In present day experiments, the

energy range of a fast ion of this regime is 100 keV, which is a typical value of NBI ions.

Thus, the resonant interaction of fast ions with low frequency MHD modes can be the

source of destabilization of internal kink modes [26,27]. It is thought that the physical

phenomenon of fishbone instability [22] occurs due to this resonant destabilization. The

name, fishbone instability, comes out from the characteristic experimental trace of the re-

lated magnetic fluctuation bursts. The phenomenon of resonant interaction of fast ions is

prominent not only when the energy of fast ions is in the range of 100 keV, but also when

the density of fast ions have a value above a critical threshold. Above this critical threshold

a new continuum Alfven mode becomes unstable. When this happens, the rate with which

energy is transferred from the fast ions to the different modes is also enhanced [27]. It is ob-

served that the rate of energy transfer becomes larger than the damping rate of background

continuum.

1.2 Interaction between energetic fast ions and sawtooth

oscillations

For a D-T born alpha particles’ radial redistribution due to sawteeth is studied on TFTR

tokamak with the pellet charge exchange diagnostic [28,29] and alpha-CHERS [30]. It is

observed that the loss of alpha particles due to sawtooth collision is very small. The NBI

and D-D tritons both appear to be reorganized due to sawteeth in JET [31]. Nowadays

it is thought that the particles with higher energy have lesser chance of disturbance due

to sawteeth, and effect of sawteeth on the fast energetic particle depends on the type of

sawteeth. We can find a lot of theoretical explanations of the redistribution of the fast

energetic particles which show up because of a sawtooth collision [32,33].

The transport of alpha particle can be enhanced due to interaction between sawteeth

and many other single-particle alpha effects. As an example we can quote the significant

reorganization of alpha particles which occurs in ITER from the inside to the outside of the
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inversion radius at r′/a′ ≈ 0.5 due to a sawtooth. This leads to a considerable enhancement

in toroidal field ripple-caused alpha particle heat loss onto the wall. Even though the reor-

ganization of a large number of alpha particles due to a considerable sawtooth collision is

predicted in ITER, it is possible that the ignition will sustain because the time required for

the alpha particles’ relaxation (∼ 1sec) is less than the rate of loss of plasma energy (∼ 5

sec). With the help of TRANSP code [34], simulations have been done to study the effects

of TF ripples sawtooth on alpha particles in ITER. In ITER, the biggest fast ion losses in

toroidal Alfven eigen-mode activity were predicted [35].

On the contrary, for a definite period of confinement, the energetic fast ions are able to

suppress the sawtooth oscillations. The sawtooth-free period being definite by the exten-

sion of the locality where q < 1, up to the point where q = 1. Here q denotes the safety

factor [36]. At q = 1, approximately half of the minor radius of plasma is approached.

These long lasting ”monster sawteeth” are defined by the congestion of the temperature

and pressure portrait well before the sawtooth collision happens. It shows that the internal

kink instability threshold is approached as a result of the current density’s transformation.

In case of JET, the sawtooth-free period of between one to five seconds have been achieved

in discharges with intensified ICRH. A very few number of ions approach energy in the

range of MeV [37]. Same results are have been achieved in TFTR and other tokamaks. A

little sawtooth stabilization is also observed in many other tokamak discharges with NBI

fast energetic ions. Even though it is challenging to get a huge prolonging of the sawtooth

duration NBI heating in present day experiments. Th results obtained of theses experiments

shows a good agreement with theoretical predictions of internal kink stabilization via fast

energetic ions .

If ignition is observed in ITER, alpha particles obtained through fusion are supposed

to abolish sawteeth transiently. It can happen for periods that are high enough on the

energy confinement time scale. In case of supposition that the sawtooth-free period in

ITER is defined with the help of extension of the q profile as in JET. With the extrapolation

of the results obtained from the JET shows that the long-lasting monster sawteeth with

periods of the order of 100 s are achievable in ignited ITER discharges. This judgment can

be justified with the help of simulations. There are many numerical MHD codes, which
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incorporate the kinetic effects of the fast energetic particles as well as those of thermal ions

[38]. Nonetheless, this suppression of the sawtooth transient can be useful in granting for

peaked profiles and an enhanced limit of ignition, the considerable crashes related with the

elongated period of time are a point of interest.

1.3 The fast ion Dα diagnostic: An application of fast ions

In most of magnetic fusion experiments hydrogenic superthermal energetic ions are a part.

These energetic ions are introduced via neutral beams or via wave heating process. Various

aspects of the nature of plasma are difficult to understand without the prior knowledge of

the distribution function of the fast ions.

Nowadays a new mechanism has developed as a persuasive diagnostic of the distribu-

tion function of the fast ions. This mechanism, namely, fast ion Dα (FIDA), takes advantage

of visible light given off by energetic deuterium ions as they move forward through a neu-

tral beam. An analogous analysis of energetic helium ions was done in 1990s. A FIDA

measurement is known as an application of a phenomenon, namely, charge exchange re-

combination spectroscopy [39]. The process through which this measurement is carried out

is as follows. The act of charge exchange takes place when a deuterium ion orbits through

a neutral beam. Due to this event the fast ion is neutralized. As their is no charge on a

neutral ion, so it will follow a straight line trajectory. Generally the energetic fast ion exist

in an excited atomic state. As it moves, its atomic sate is changed due to collision with the

plasma or it shows a radiative decay. We know that a transition between n = 3 to n = 2

level is known as a Balmer-α transition, for which a visible Dα photon is emitted.

The light emitted as a result of Balmer-α transition shows a huge Doppler shift. This

spectral shift is utilized to discriminate the FIDA emission from the remaining luminous

light sources of Dα . The central technical problem is the background’s subtraction. It is

observed that a diagnostic which is done through spectroscopy commonly accomplished

temporal, energy, and transverse spatial resolution of approximately 1ms, 10 keV, and 2

cm, respectively. Those installations which use narrow band filters attain immense spatial

and temporal resolution at the price of spectral knowledge. In order to achieve high spectral
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resolution, the bandpass-filtered light passes straight through a photomultiplier. It allows

the detection of about∼ 50 kHz vibrations in FIDA signal. To achieve a 2D spatial portrait,

it is suggested that the bandpass-filtered light should pass through a charge-coupled device

camera. In this way we will be able to get comprehensive images of fast ion reorganization

which occurs at instabilities [40].

The FIDA signals, which are measured with the help of qualitative and quantitative

models, are compared with the distribution function of fast ions. A good agreement be-

tween theory and experiment is obtained in beam heated MHD-quiescent plasmas in our

first quantitative testings. It is interesting to know that FIDA diagnostics are nowadays

functional at magnetic fusion sites around the globe. They are utilized to understand accel-

eration of fast ions via ion-cyclotron heating, to measure the transport of fast ions via MHD

modes and microturbulance. They are also used to analyze instabilities which are driven

by fast ions.

1.4 Slowing-down of energetic fast particles

To achieve the purpose of additional heating in today’s tokamak plasmas, one of the most

auspicious and well proven technique is the injection of fast neutral atoms. There occur

collisions between the fast ions borne on confined trajectories and the plasma particles.

These collisions are the source of energy transfer from fast ions to the plasma particles.

Because of this collisional energy transfer a heating effect is produced in the tokamak. As

a result slowing-down of fast ions takes place. The experimental results of the slowing

-down process are in good agreement with classical neutral beam injection (NBI). The

process of energy transfer is vigorously distressed due to charge exchange phenomenon

between fast ions and background plasma’s neutral particles.

The formulae given in chapter 3 are used to describe the time of rapid ions deple-

tion from their initial energy to thermal energy [41]. At the critical energy, the exchange

of differential energies in ions is equal to that of electrons. For a plasma which has

only one dominant species and not too much high Ze f f belongs to the following: Z =

(1/ne)∑ j niZ2
j (Ai/A j) ' 1. This means that the level of impurity in plasma does not have
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too much affect on the critical energy and slowing down time. In all numerical calculations,

thus, Z = 1 is supposed.

Since we are associated with the energy dependence of fast ion numbers, it must be

understood that the equations we will use are summed over the pulse of a neutral beam.

N0 = N(E0) gives the number of fast ions with initial energy E0 produced during a pulse

period. To obtain the value of N(E), the number of fast ions that are always available at

energy E (E0 > E > T ), it is supposed that, firstly all fast neutrals produced by charge

exchange processes will leave the plasma and, secondly that it is the only loss mechanism

for the fast ions.

Plasma-escaping fast charge exchange neutrals represent a source of impurities enter-

ing the plasma after forming heavily impure atoms on the walls. It is supposed that the

equations for slowing down velocity and for the particle loss rate also hold for all energies

down to the ion temperature. As long as E0� Ti, deviating from these assumptions does

not play a vital role.

The change in the total energy of high speed ions, passing the energy interval dE, is

due to two reasons, energy transfer in the background plasma and energy losses associated

with particle losses. There are also energy-related losses from the charge exchange process

during slowing down time.

The main objective of this work is to compute the related energy losses due to the

collision between the species mentioned above. In our calculations for slowing down of

fast ions, we assume a Maxwellian background plasma.
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Chapter 2

Derivation of kinetic equation

In this chapter we shall review one of the most important plasma approach, namely, the

kinetic theory. In this regard a step by step derivation is provided. We start with a general

statistical N-body distribution function and, by proper integrations, derive the one particle

distribution function.

2.1 The statistical point of view

In plasma, there are a large number of charged particles that are important for long and short

distance forces and give rise to the cumulative behavior of particular complicated systems.

For analytical explanations, the combined effect of these time-dependent electromagnetic

forces is extremely complicated, therefore many other methods have been proposed to deal

with the microscopic features associated with these systems.

Let us assume that N identical particles are in motion in a plasma and each particle is

characterize by its corresponding Newtonian equation, i.e. for i = 1,2,3, ...N then we can

write

mR̈i(t) = Fi(t) (2.1)

⇒ R̈i(t) =
Fi(t)

m
, (2.2)

considering that m is the mass of the particle, Ri(t) is the position vector of the ith particle,
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and Fi(t) is the force experienced by the particle at any time t. The interaction of ith particle

with all other particles present in the system is included in Eq. (2.1). The solution of such

N equations is obtained by integration such that

Ṙi(t) = Ṙi(0)+
1
m

∫ t

0
Fi(t′)dt′ (2.3)

and

Ri(t) = Ri(0)+
1
m

∫ t

0
dt′
∫ t′

0
Fi(t′′)dt′′. (2.4)

The equations above give the behavior of a particle in plasma, nevertheless, it is not

practical to integrate these for each particle interacting with all other particles. Generally,

Fi contains velocities and positions of all plasma particles. Even though the forces through

which the particles are interacting are not complicated and integration is executable, but

still it is difficult to solve for N-particles.

The motion of the particles is described by the Eq. (2.1). Due to large number of

particles and less information about the initial conditions, solution of Eq. (2.1) for each

particle is a difficult job. With the help of super-computers that have large computational

power, and using the codes like particle in a cell (PIC), the number of particles that can be

followed is still well below the actual value of N [42]. The dynamics of the particles can

be described statistically for which the kinetic description is used and is also known as the

Transport theory. The transport equation is a probabilistic description which includes the

collisional effects, the distribution function of the particles, and the source term, if any. In

such an approach the identity of individual particle is not important and we are interested

in an average behavior of the system.

2.2 The distribution function

The distribution function f (r,v, t) of the particles is the main element in kinetic theory. It

is known as the density of phase space, that is, the number of particles per unit volume

of phase space. By using the statistical approach, we can study the dynamics of a system
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which consists of N particles at any time t, with velocities vi and position vectors ri. To

define the probability function, we need the distribution function of the particles. The exact

distribution function of above mentioned system can be written as

f (~r,~v, t) = f ex
N (r1,v1,r2,v2, ...rN ,vN , t). (2.5)

It describes that the particle which have the velocity v1 lies at position r1, the particle which

have the velocity v2 lies at position r2, and same holds for the remaining N−2 particles with

their corresponding velocity and position coordinates. Therefore, the distribution function

of 6N dimensions can be written by using exact positions and velocities via Dirac delta

function as follows [43]

f ex
N (r1,v1,r2,v2, ...rN ,vN , t) =

N

∏
i=1

δ

[
ri−Ri(t)

]
δ

[
vi− Ṙi(t)

]
. (2.6)

The phase space consists of 3N spatial coordinates and 3N velocity coordinates, meaning

a 6N dimensional phase space denoted as the Γ - space.

To keep the things simple, we introduce the following notations

(x1,x2, ...xN) = X , (2.7)

(v1,v2, ...vN) =V, (2.8)

with

(Xi,Vi) = ri, (2.9)[
Xi(t),Vi(t)

]
= Ri(t). (2.10)

These abbreviations are used to simplify the expression of the distribution function.
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2.2.1 Time evolution of the distribution function

The distribution function, after using the above definitions comes out to be

f ex
N (r1,v1,r2,v2, ...rN ,vN , t) = f ex

N (r, t). (2.11)

Using the Eq. (2.11) in Eq. (2.6) and taking the partial derivative of the resultant equation

with respect to t yields

∂ f ex
N

∂ t
=

∂

∂ t

N

∏
i=1

δ

[
ri−Ri(t)

]
δ

[
vi− Ṙi(t)

]
, (2.12)

=−
N

∑
i=1

[
Ri

∂ f ex
N

∂Ri
+ R̈i

∂ f ex
N

∂Ri

]
. (2.13)

Using

∂

∂Ri
=

∂

∂ ri
, (2.14)

and

∂

∂ Ṙi
=

∂

∂vi
(2.15)

in Eq. (2.13), we have

∂ f ex
N

∂ t
=−

N

∑
i=1

[
Ṙi

∂ f ex
N

∂ ri
+ R̈i

∂ f ex
N

∂ ṙi

]
, (2.16)

=−
N

∑
i=1

[
vi

∂ f ex
N

∂ ri
+ R̈i

∂ f ex
N

∂vi

]
. (2.17)

We can also write Eq. (2.17) as

∂ f ex
N

∂ t
+

N

∑
i=1

[
vi

∂ f ex
N

∂ ri
+

Fi

m
∂ f ex

N
∂vi

]
= 0, (2.18)

12



where R̈i = Fi/m. The above Eq. (2.18) is responsible for the motion of all the particles

present in the plasma.

As we have no information regarding the initial conditions of the system, therefore, it

is essential to talk about the system in terms of probability. We presume that at t=0, if

the distribution function approaches to zero at each point in phase space other than one

point (smoother function), it means we are considering an ensemble average over many

unknown initial points. Each point in phase space can find a new position after time t that

can be determined by studying the dynamics of the system.

2.3 Liouville equation

Consider a 1D analogue of a 6N dimensional phase space. The particles which are in

small phase space volume dxdv moves from A to B . Due to smallness of dxdv, all the

particles are subjected to same forces. Thus, all of them moves from one point to the

other, and the distribution function is changed to the case in which there are no collisions.

During the motion of particles they are unable to cross the surface, i.e. volume of the phase

space remains constant. This incompressibility of the phase space volume is recognized as

Liouville equation [44].

By denoting the exact distribution function f ex
N by fN , Eq. (2.18) can be written as

ŁN fN = 0, (2.19)

whereas LN has the following form

LN =
∂

∂ t
+

N

∑
i=1

[
vi

∂

∂ ri
+

Fi

m
∂

∂vi

]
. (2.20)

Equation (2.20) is the mathematical form of the Liouville operator. To understand the

statistics of a system consists of more than one particles, the Liouville equation is the

13



beginning with the following mathematical form for a classical system

∂ fN

∂ t
+[ fN ,H] = 0. (2.21)

In the above equation, H is representing the Hamiltonian of the system under consideration.

We define the Poisson bracket, used in Eq. (2.21), as

[ fN ,H] =
N

∑
i=1

[
∂ fN

∂qi

∂H
∂ pi
− ∂ fN

∂ pi

∂H
∂qi

]
, (2.22)

where pi and qi are the conjugate momenta and the generalized coordinates, respectively.

2.4 S-particle distribution function

We can reduce the number of particles to a manageable level from N (very high) to S, such

that S� N. Consequently, the distribution function has the following form

fN(r1,v1,r2,v2, ...rN ,vN , t)→ fs(r1,v1,r2,v2, ...rs,vs, t). (2.23)

If the number of particles produced is equal to the number of particles destroyed, it means

there is no source or sink. Consider the Liouville operator again

LN =
∂

∂ t
+

N

∑
i=1

[
ṙi

∂

∂ ri
+ai

∂

∂vi

]
, (2.24)

which can also be written as

LN =
∂

∂ t
+

N

∑
i=1

ωi
∂

∂Ri
. (2.25)

By defining

r = (X ,V ), (2.26)

and

14



Dr
Dt

= (v,a) = ω, (2.27)

Liouville operator turns out to be

LN =
∂

∂ t
+ω

∂

∂ t
. (2.28)

We can also modify Eq. (2.18) as

∂ fs

∂ t
+

S

∑
i=1

vi
∂ fs

∂ ri
+

N

∑
i=1

1
m

[
Fext

i +
S

∑
j=1, j 6=i

Fi j

]
∂ fs

∂vi
= 0, (2.29)

∂ fs

∂ t
+

S

∑
i=1

vi
∂ fs

∂ ri
−

S

∑
i=1

∫
d6rs+1

Fs+1

m
∂ fs+1

∂vi
= 0. (2.30)

In phase space configuration, to obtain the reduced distribution function we have to inte-

grate the distribution function upon the rest of the variables, i.e. over S+1 to N. Thus, we

are left with

fs(r1,v1,r2,v2, ...rs,vs, t) =
N!

(N−S)!

∫
fN

N

∏
i=S+1

dri. (2.31)

It means that the total number of possible ways of choosing S particles out of N are

N!/(N−S)!, thus we have a corresponding normalization constant in Eq. (2.31). There is

a specific distribution function corresponding to unit normalization constant. It is possible

that we do not know the exact initial point in the phase space. Therefore, f ex
N is changed

by fN , at any later time, the corresponding distribution function fN(t) can be evaluated

by using distribution function at starting point f (t = 0). The distribution function fN is

always consistent with the information extracted about the plasma. This extracted micro-

scopic information leads to the ambiguity in fN as it includes limited (only one or two)

space velocity coordinates. The uncertainty in fN can be taken out by integration over the

phase space coordinates. In the following subsection we provide a detailed analysis of the

integration over S variables.
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2.4.1 BBGKY-Heirarchy

Let us integrate Eq. (2.29) from S+ 1 to N to obtain S-particle distribution function as

follows

As

∫
...
∫ N

∏
j=s+1

d6r j

[
∂ fN

∂ t
+

N

∑
i=1

(
vi

∂ fN

∂ ri
+ai

∂ fN

∂vi

)]
= 0, (2.32)

whereas As = N!/(N−S)! is the corresponding normalization constant, and let us consider

first term

Ia′ = As

∫
...
∫ N

∏
j=s+1

d6r j
∂ fN

∂ t
, (2.33)

=
∂

∂ t

[
As

∫
...
∫ N

∏
j=s+1

fNd6r j

]
, (2.34)

=
∂ fs

∂ t
. (2.35)

The second term of Eq. (2.32) can be written as

Ib′ = As

∫
...
∫ N

∏
j=s+1

d6r j

( S

∑
i=1

+
N

∑
i=s+1

)[
vi

∂ fN

∂ ri

]
, (2.36)

=
S

∑
i=1

[
vi

∂ fs

∂ ri

]
+As

N

∑
i=s+1

∫
...
∫ N

∏
j=s+1, j 6=i

d6r j

∫
vid3vi

∫
∂ fN

∂ ri
d3ri, (2.37)

=
S

∑
i

∂ fs

∂ ri
. (2.38)

In the same way we have

Ic′ = As

∫
...
∫ N

∏
j=s+1

d6r j

N

∑
i=1

Fi

m
∂ fN

∂vi
, (2.39)

= As

∫
...
∫ N

∏
j=s+1

d6r j
Fi

m
∂ fN

∂vi
+As

N

∑
i=s+1

∫
...
∫ N

∏
j=s+1, j 6=i

d6r j

∫
d3ri

∫ d3vi

m

[
ZeE(r, t)Ze(v×B)+mg(r, t)

]
∂ fN

∂vi
.

(2.40)
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Next, we consider the last term and applying Gauss’s theorem to write

Id′ =
∫

d3via(r,v, t)
∂ fN

∂vi
, (2.41)

=
∫

d3vi

[
∂ (ai fN)

∂vi
− fN

∂ai

∂vi

]
, (2.42)∮

v→∞

d3vi(a0 fN) = 0. (2.43)

Here we have used the condition that fN vanishes at the boundaries of phase space Γ. Thus,

we have Eq. (2.32) in the following form

∂ fs

∂ t
+

S

∑
i=1

vi
∂ fs

∂ ri
+As

∫
...
∫ N

∏
i=s+1

d6r j
Fi

m
∂ fN

∂vi
= 0. (2.44)

Now we decompose the force Fi into two parts, the force exerted due to the externally

applied fields, and the second is due to the all internal interactions occurring between the

plasma particles present in the system, i.e.

Fi = Fext
i +F int

i , (2.45)

= Fext
i +

N

∑
j=1, j 6=i

Fi j. (2.46)

While

Fext
i = Fext

i (ri, t), (2.47)

and

F int
i = F int

i (r1,r2,r3, ...rN). (2.48)
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The external force part from Eq. (2.47) yields

Ie′ =
S

∑
i=1

As

∫
...
∫ N

∏
j=s+1

d6r j
Fext

i (ri, t)
m

∂ fN

∂vi
(r1, ...ri, ...rs,rs+1, ...rN), (2.49)

=
1
m

S

∑
i=1

Fext
i

∂

∂vi

∫
N−S

...
∫ N

∏
j=s+1

fNd6r j, (2.50)

=
S

∑
i=1

Fext
i
m

∂ fN

∂vi
. (2.51)

Similarly, one can find

I f ′ =
S

∑
i=1

As

∫
...
∫ N

∏
j=s+1

1
m

d6r j

[ s

∑
k=1

Fik(vi,vk)+
N

∑
k=s+1

Fik(ri,vk)

]
∂ fN

∂vi
. (2.52)

Hence, Eq. (2.52) can be written as

I f ′ = I f1′+ I f2′, (2.53)

where

I f1′ =
As

m

S

∑
i=1

S

∑
k=1

Fik
∂

∂vi

∫
N−S

...
∫ N

∏
j=s+1

fNd6r j, (2.54)

=
S

∑
i=1

S

∑
j=1

Fi j

m
∂ fs

∂vi
, (2.55)

and

I f2′ =
As

m

S

∑
i=1

S

∑
k=s+1

∫
Fikd6rk

∂

∂vi

∫
...
∫ N

∏
j=s+1, j 6=k

fNd6r j, (2.56)

=
As

m

S

∑
i=1

S

∑
k=s+1

∫
Fik(ri,rk)d6rk

∂

∂vi
fs+1(r1, ...rs, ...rk, t). (2.57)

This integral will be same for any k such that

S+1≤ k ≤ N,
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which means that there are N−S possible ways for k = N−S integrals. Therefore, we have

k for S+1 times and can easily remove the second summation in I f2′ to write

I f2′ =
As

mAs+1

S

∑
i=1

(N−S)
∫

Fi,s+1d6rs+1
∂

∂vi
fs+1(r1, ...rs, ...rs+1, t). (2.58)

Since we have the normalization constant given by

As =
N!

(N−S)!
,

which provides the following expression

As(N−S)
As+1

=
(N−S−1)!(N−S)

(N−S)!
= 1.

Thus, the conclusive expression for fs comes out to be

∂ fs

∂ t
+

S

∑
i=1

vi
∂ fs

∂ t
+

S

∑
i=1

1
m

[
Fext

i +
S

∑
j=1, j 6=i

Fi j

]
∂ fs

∂vi
=−

S

∑
i=1

∫
d6rs+1

Fi,s+1

m
∂ fs

∂vi
. (2.59)

The interaction term is shown on the right hand side of the above Eq. (2.59). We need a

physical approximation in the above equation because fs contain fs+1 terms. In other words

we can say that to get a solution of fs, we need a prior solution of fs+1. This is known as

the Bogolyubov, Born Green, Kirkwood, and Yvon (BBGKY) hierarchy [45].

We have achieved no simplification in the sense that we need fs+1 to get the result of

fs. To get rid of this complexity, we made some approximation, e.g. cluster expansion. In

this equation the function f2, ... fs are used, leaving a single particle distribution function

f1. It means that we remove S− 1 equations out of S equations. The S-particle Liouville

equation will be read as following

∂ f1

∂ t
+ v1

∂ f1

∂ ri
+

[
Fext

i
m

∂ f1

∂v1

]
=−

∫
d2r2

F12

m
∂ f1

∂v1
. (2.60)

Now, let us learn about the approximation, namely, a cluster expansion, to deal with

BBGKY hierarchy.
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2.5 Cluster expansion

The distribution function f1 = f1(r1,v1, t) can be used to evaluate the probability of finding

the particle 1 at position r1 with velocity v1 at any time t. Similarly, a two-particle distri-

bution function f2 = f2(r1,v1,r2,v2, t) is employed to obtain the probability of finding the

particle 1 at position r1 with velocity v1 at any time t and at the same time particle 2 at

position r2 with velocity v2. This two-particle distribution function gives information only

about the two particles. Consider the two functions f1 and f2, a third function f3 can be

defined by using these two functions. In this new function, we may introduce an expansion

that is known as cluster expansion. As f1(r1,v1, t) is the distribution function of a single

particle, f2(r1,v1,r2,v2, t) is the two particle distribution function, and F12(r1,v1,r2,v2, t)

is the force exerted on particle 1 by the particle 2.

Let us introduce some new notations for mathematical convenience

f1(r1,v1, t) = f1(1), (2.61)

and

f2(r1,v1,r2,v2, t) = f2(1,2). (2.62)

In terms of the cluster expansion, we can write the relation between two particle distribution

function in terms of one particle distribution function as

f2(1,2) = f1(r1,v1, t) f1(r2,v2, t)+ p(r1,v1,r2,v2, t), (2.63)

and, in more simplified form

f2(1,2) = f1 f2 + p(1,2), (2.64)

where p(1,2) is a pair correlation function. Similarly, a three-particle distribution function

in the form of cluster expansion
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f3(r1,v1,r2,v2,r3,v3, t) = f (r1,v1, t) f (r2,v2, t) f (r3,v3, t)+ f (r1,v1, t)p(r2,v2,r3,v3, t)+

f (r2,v2, t)p(r1,v1,r3,v3, t)+ f (r3,v3, t)p(r1,v1,r2,v2, t)+

T (r1,v1,r2,v2,r3,v3, t).

(2.65)

Equation (2.65) can also be written in a more compact form as

f3(1,2,3) = f (1) f (2) f (3)+ f (1) f (2,3)+ f (2) f (1,3)+ f (3) f (1,2)+T (1,2,3). (2.66)

The basic idea of the cluster expansion is that the probability to find the electron can be

obtained by multiplying f (1) and f (2). If the particle 1 and particle 2 are not dependent on

each other. Thus, p(1,2) function be viewed as the variation between the function f2 and

f (1) f (2) which employs that the particle 1 and 2 are interacting and dependent. Therefore,

we say that the function f (1,2) and p(1,2) is a pair correlation and likewise T (1,2,3) is a

tri-correlation function.

For the special case of two particles to be at the same position, i.e.

|r1− r2|= 0,

we must have

f2(1,2) = 0. (2.67)

And thus for the above-mentioned case one finds

p(1,2) =− f (1) f (2), (2.68)

where the reason for a negative sign is that the both f1 and f2 are positive. Next, we

consider the case in which the distance between the two particles is very large, i.e. they are
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infinite apart, namely

|r1− r2|= ∞

then p(1,2) = 0. It means f2(1,2) = f1 f2. In this case, the particles are not correlated by

any means.

By using Eqs. (2.61) and (2.64) in Eq. (2.60), we find

∂ f (1)
∂ t

+ v1
∂ f (1)

∂ r1
+

[
aext

1
∂ f (1)
∂v1

]
=−

∫
d6r2a12

∂

∂v

[
f (1) f (2)+ p(1,2)

]
, (2.69)

which can also be written as

∂ f (1)
∂ t

+ v1
∂ f (1)

∂ r1
+

1
m

[
F(1)ext +

∫
d6r2 f (2)F12(1,2)

]
∂ f (1)
∂v1

=−
∫

d6r2a12
∂ p(1,2)

∂v1
,

(2.70)

where external force is denoted by F(1)ext and the integral
∫

d6r2 f (2)F12(1,2) is the self-

consistent force. The sum of external force and the self-consistent force is known as the

macroscopic force, which corresponds to the acceleration as given by

amac =
1
m

[
F(1)ext +

∫
d6r2 f (2)F12(1,2)

]
. (2.71)

Here we average over v and r hence the final form of the generalized kinetic equation reads

∂ f (1)
∂ t

+ v1
∂ f (1)

∂ r1
+amac ∂ f (1)

∂v1
=−

∫
d6r2a12

∂ p(1,2)
∂v1

. (2.72)

The above Eq. (2.72) can be understood in the way that when electric force is experi-

enced by particle 1 due to particle 2, for computing this force we assume that the particles

are not correlated. The correlation of particle 1 with particle 2 is not considered when

we are taking the average over entire velocities and positions of particle 2 and vice versa.

This result deduced from the right hand side of the above equation. The right hand side is

actually the part of self-consistent field, contributed by the particles.

We have a = F/m which includes the affect of all the fields and external forces. The
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function f (r,v, t) is the one particle distribution function that represents one of the parti-

cles out of many particle system of specific nature. Therefore, the information obtained

from this distribution function is not helpful to distinguish the kinetic behavior of a single

particle.

However, we do not specify which single particle it is. Thus, actually f (r,v, t) is the

one special distribution function such that when integrated over velocity, it provides the

number density of the corresponding species.
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Chapter 3

Slowing down by small angle Coulomb

collisions

Let us consider the case in which n(r,v, t)d3rd3v is the number of particles anticipated at

time t in d3r about r and in d3v about v. The transport equation for a single-particle’s

density distribution function n(r,v, t) can be written as

∂n(r,v, t)
∂ t

+v.∆rn+Ze/m[E+v×B].∆vn =

(
∂n
∂ t

)
c(collisions)

+

(
∂n
∂ t

)
s(sources or sinks)

(3.1)

with the very well known relation

∫ +∞

−∞

d3vn(r,v, t) = n(r, t), (3.2)

which represents the density of particles at r. In order to determine a source/sink term by

outside sources or the kinematics of reactions which deliver the strength density S(r,v, t)

of source/sink, one is needed to specify the collision term via theoretical means utilizing

valid approximations or statistical approaches.

If
(

∂n
∂ t

)
c
= 0, it means there are no collisions or we have a “collision free” case. in

other words we say that there is no change in n due to collisions, but changes are taking
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place due to internal and external fields. As a result we get Boltzmann distribution function.

(
∂n
∂ t

)
c
= 0 ⇒ Vlasov equation

As the collisions are taking place in the plasma, the distribution function will change. To

take care of these collisions we introduce a new function P(r,v,∆v). This newly introduced

function provides the probability of a particle moving at position r with velocity v to alter

its velocity due to collisions from v to v+∆v in an interval of time ∆t. We must know

that P(0) 6= P(t). It means that the probability for change in velocity due to collision does

not depend on what happens before the collision. Those processes for which the above

mentioned condition holds are known as Markov processes. Obviously, the normalization

condition

∫ +∞

−∞

d3
∆vP(r,v,∆v) = 1, (3.3)

holds.

Now by using P(r,v,∆v) we can write the distribution function n(r,v, t) with the help

of distribution function before collision as follows

n(r,v, t) =
∫ +∞

−∞

d3
∆vP(r,v−∆v,∆v)n(r,v−∆v, t−∆t), (3.4)

valid for ∆t→ 0 that means r≈ constant.

We suppose that the major effects of collision are because of Coulomb interaction. In

Coulomb interactions small angle scatterings dominates the large angle scattering events

by a factor of 100. The change in velocity ∆v can be considered small enough for small ∆t.

Therefore the above expression can be expanded via a Taylor series for small values of ∆v
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and ∆t to have

n(r,v, t) =
∫ +∞

−∞

d3
∆v
{

n(r,v, t)P(r,v,∆v)−∆tP(r,v,∆v)
∂n(r,v, t)

∂ t
−∆v.∇v[n(r,v, t)P(r,v,∆v)]+

1
2 ∑

m
∑
n

∆vm∆vn
∂ 2

∂vm∂vn
[n(r,v, t)P(r,v,∆v)]+

O(∆t∆t)+O(∆t∆v)+O(∆t∆t∆v)+O(∆t∆v∆v)+ ...

}
.

(3.5)

We realize that the number density distribution function is independent of ∆v so the series

is terminated after order O(∆t∆v∆v). By the use of normalization condition P(r,v,∆v) = 1,

we can see that the LHS term gets cancel with the first term on the RHS and we left with

∆t
∂n(r,v, t)

∂ t
= −∑

m

∂

∂vm
n(r,v, t)

∫ +∞

−∞

d3(∆v)∆vmP(r,v,∆v)

1
2 ∑

m
∑
n

∆vm∆vn
∂ 2

∂vm∂vn
n(r,v, t)

∫ +∞

−∞

d3(∆v)∆vm∆vnP(r,v,∆v).
(3.6)

As it is presumed that the changes occur due to collision will be incorporated only, the

changes occur in the number density distribution function with respect to time is certainly

the term
(

∂n(r,v,t)
∂ t

)
c

as calculated above and we are going to give it the superscript FP

for recognition as Fokker-Planck collision term. Furthermore, it can be understood that the

above integrals are actually the mean values of 〈∆v〉 and 〈∆vm∆vn〉.

By Fokker-Planck equation, the kinetics of charged particle is described as, for a spe-

cific particle species i

(
∂ni(r,vi, t)

∂ t

)FP

c
= −∑

m

∂

∂vi,m

{
ni(r,vi, t)

< ∆vi,m >

∆t

}
+

1
2

∑
m

∑
n

∂ 2

∂vi,m∂vi,n

{
ni(r,vi, t)

< ∆vi,m∆vi,n >

∆t
,

(3.7)

where the term <∆vi,m>
∆t is the mean rate of collisional vibration in the single velocity. This

is also known as dynamical friction or drag in the velocity space. The term <∆vi,m∆vi,n>
∆t

gives the collisional change of the distribution of the velocity and is the so-called velocity
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diffusion.

The average value of any arbitrary function Z of ∆vi can be written as following integral

< Z(∆vi)>=
∫ +∞

−∞

Z(∆vi)P(r,vi;∆vi)d3vi =
∫

4π

Z(Ω)ω(r,vi;Ω)d2
Ω, (3.8)

where ω(r,vi;Ω) gives the probability of changing the relative velocity by the solid angle

Ω. The relative velocity vr of a particle i moving with velocity vi is changed due to its

elastic collision with particles j having all possible velocities and is at position represented

by r. The new relative velocity v′r corresponds to the collisional change of angle Ω+d2Ω

with respect to the initial relative velocity vr. In order to find ω(r,vi;Ω), let us integrate

over all scattering reactions which involve particle i with velocity vi and particles j of all

velocities, which bring about a unique scattering angle Ω(vr′,vr):

ω(r,vi;Ω) = ∆t
∫ +∞

−∞

σi j(|vi− v j|,Ω)|vi− v j|n j(r,v j, t)d3v j. (3.9)

The mean rate of change of single velocity, in other words the dynamical friction, can be

calculated as

< ∆vi >

∆t
=

1
∆t

∫
4π

∆viω(r,vi;Ω)d2
Ω =

∫ +∞

−∞

d3v j

∫
4π

)d2
Ω∆vin j(r,v j, t)σi j(vr,Ω)vr,

(3.10)

with the following relation satisfied

∆vi =
mr

mi
∆vi =

mr

mi
vr


−2sin2(θ)

sin(θ)cos(ε)

sin(θ)sin(ε)

 . (3.11)

The above value of ∆vi is according to the scheme shown in Fig. (3.1). The function

σi j(vr,Ω) in Eq. (3.10) represents the Coulomb’s reaction cross section and is given by
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Figure 3.1: Scheme for ∆vi in terms of relative velocities vr and v′r.

[46]

σi j(vr,Ω) = σ
Cou.
i j (vr,Ω) =

1
2π

σ
Cou.
i j (vr,θ(CM)) =

(ZiZ je2/4πε0)
2

8πm2
r v4

r
sin−4

(
θ

2

)
. (3.12)

After some straightforward calculations, we find the following

< ∆vi >

∆t
≈
〈

∆vi

∆t

〉
=

(ZiZ je2)2

(4πε0)2 8πm2
r

∫ +∞

−∞

d3v jn j(r,v j, t)
vr

v4
r

∫
π

0
dθ

sin(θ)
sin4(θ/2)

∫ 2π

0
dε

mr

mi
vr


−2sin2(θ)

sin(θ)cos(ε)

sin(θ)sin(ε)


=

(ZiZ je2)2

(4πε0)2 8πmrmi

∫ +∞

−∞

d3v jn j(r,v j, t)
1
v2

r

∫
π

0
dθ

sin(θ)
sin4(θ/2)

∫ 2π

0
dε

mr

mi
vr


−4π sin2(θ)

0

0


=−

(ZiZ je2)2

(4πε0)2 2mrmi

∫ +∞

−∞

d3v jn j(r,v j, t)
1
v2

r

∫
π

0
dθ

sin(θ)
sin2(θ/2)

e˙1,

(3.13)
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where e1 =
vr
vr

is the corresponding unit vector.

To get rid of the divergence of the integral
∫

π

0 dθ
sin(θ)

sin2(θ/2)
=4
∫ π/2

0 cot(θ/2)d(θ/2), i.e., not

responsible for insignificant Coulomb collisions but taking into account most significant

one. The lower limit of the integral is actually a cut off at a scattering angle which is

minimum and effective. Its value is [47]

θmin/2 = tan−1
(

ZiZ je2

4πε0mrv2
r
.
1
b

)
. (3.14)

Here b is the corresponding impact parameter and is given as

b≈ λD =

√
ε0kT
ne2 , (3.15)

the above relation taken into account the chance of interaction outside this impact parame-

ter’s range, which is minimum due to charge shielding. This is adequate for λD� λBroglie,

otherwise a quantum-mechanical treatment is necessary. Therefore, we have

θmin/2 = tan−1
(

ZiZ je2

4πε0mrv2
r
.

1
λD

)
. (3.16)

We may define

∫
π/2

θmin/2
cot(θ/2)d(θ/2) = ln{sin(x)}|π/2

θmin/2=− ln{sin(θmin/2)}

=: ln
(
Λi j
)
=: CoulombLogrithmus,

(3.17)

to get the final result of
〈

∆vi
∆t

〉
, one can write

〈
∆vi

∆t

〉
=−

2(ZiZ je2)2

(4πε0)2mrmi

∫ +∞

−∞

d3v j lnΛi j
vr

v3
r

n j(r,v j, t). (3.18)

Upon using the same analogy we may write for diffusion term

〈
∆vi,m∆vi,n

∆t

〉
=+

2(ZiZ je2)2

(4πε0)2m2
i

∫ +∞

−∞

d3v j lnΛi j
∂ 2vr

∂vi,m∂vi,n

vr

v3
r

n j(r,v j, t). (3.19)
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Using Eqs. (3.18) and (3.19) into the Fokker-Planck collision term and introducing the

latter into the transport equation gives us the Fokker-Planck equation.

Now we are going to find the energy variation of a highly energetic particle slowing

down due to collisions with the particles of a thermal background plasma, for that we find

the mean rate of energy transfer in Coulomb collisions,
〈

∆Ei
∆t

〉
. Let us first calculate

∆Ei =
mi

2

[
(vi +∆ vi)

2−v2
i

]
=

mi

2

[
(v2

i +2vi.∆vi)+(∆vi)
2−v2

i

]
=

mi

2

[
2vi.∆vi +(

mr

mi
∆vr)

2
] , (3.20)

where

2vi.∆vi = 2(vCM
mr

mi
∆vr).

mr

mi
∆vr = 2

mr

mi

[
vCM.∆vr +

mr

mi
vr.∆vr

]
. (3.21)

As, for an elastic collision, the magnitude of the relative velocity remains same, thus we

can use the following relation

∆(vr)
2 = 0 =

[
(vr +∆ vr)

2−v2
r

]
=
[
2vr.∆vr +(∆vr)

2
]
, (3.22)

to write

(∆vr)
2 =−2vr.∆vr. (3.23)

By using these expressions in Eq. (3.20)

∆Ei = mrvCM.∆vr, (3.24)

is easily found with constant value for vCM.
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By using our earlier definitions, we can write〈
∆Ei

∆t

〉
=
∫ +∞

−∞

d3v j

∫
4π

d2
Ωn j(r,v j, t)σi j(vr,Ω)vr∆Ei(∆vr(Ω))

=
∫ +∞

−∞

d3v j

∫
π

0→θmin

dθ sin(θ)
∫ 2π

0
dεn j(r,v j, t)vr

1
2π

σ
Cou.
i j (vr,θ)×mr{

vCM(−2vr sin2(θ/2)).
vr

vr
+ vr

[
(vCM.e2)cos(ε)+(vCM.e3)sin(ε)

]
sin(θ)

}
,

(3.25)

where the unit vectors e2 and e3, used above, are perpendicular to e1 =
vr
vr

. The integration

of the terms containing cos(ε) and sin(ε) vanishes over the full period of ε . Therefore, we

have

∫ 2π

0
dε∆Ei =−4πmr(vCM.vr)sin2(θ/2), (3.26)

to write a final expression as

〈
∆Ei

∆t

〉
i→ j

= −
(ZiZ je2)2

(4πε0)2 2mr

∫ +∞

−∞

d3v jn j(r,v j, t)(vCM.vr)
vr

v4
r

∫
π

0→θmin

dθ sin(θ)
sin2(θ/2)
sin4(θ/2)

,

=−
2(ZiZ je2)2

(4πε0)2 mr

∫ +∞

−∞

d3v jn j(r,v j, t) lnΛi j
(vCM.vr)

vr
.

(3.27)

Above relation provides the mean rate of energy transfer from particle i to j in Coulomb

collisions. As the dependence of lnΛ on vr is weak (of 2nd order), therefore the Coulomb

logarithm can be placed in front of the integral. If the constituents of plasma, with which

the particle-i collides, are more than one, then the mean energy loss or the stopping power

is obtained by superposition over all such particles, namely

〈
∆Ei

∆t

〉
= ∑

j

〈
∆Ei

∆t

〉
i→ j

. (3.28)

The mean energy loss is also given the name of gain rate by collisions [46].
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The above expression to find the stopping power is applicable for continuous slowing

down. The continuous slowing down occurs if the leading deceleration tool are small angle

Coulomb collisions, i.e., small angle collisions are taken to be more frequent.

If the velocity distribution is isotropic of the particles j, the Fokker-Planck equation can

be re-written in the energy variable as

(
∂ni(r,Ei, t)

∂ t

)FP

c
=

∂

∂ t

{∣∣∣∣〈∆Ei

∆t

〉∣∣∣∣ni(r,Ei, t)
}
+

1
2

∂ 2

∂E2
i

(
Di(r,Ei)ni(r,Ei, t)

)
, (3.29)

where Di is the energy diffusion rate and is given by

Di ≈
〈(

∆Ei

∆t

)2〉
−
〈

∆Ei

∆t

〉2

. (3.30)

We know that the derivation of the Fokker-Planck equation is based on the assumption

of small energy transfer collisions. These collisions are certainly the scattering events

which occurs more frequently in fusion plasmas. Undoubtedly, this depiction of energy

transition cannot be applied to collisions with discrete, large energy transfer. Such events

require discrete analysis of energy transitions as provided by binary collision model of the

Boltzmann description [48].

3.1 Slowing down of fast ions

Let us define a function given in the form of integral as

G j(x j) =

√
m j

2kTj

∫ +∞

−∞

d3v j f j(v j)
∣∣vb−v j

∣∣, (3.31)

with n j(r) f j(j) = n j(r,v j) and

x j =
vb

v j,thermal
=

vb√
2kTj/m j

. (3.32)

Upon introducing the function define above in Eqs. (3.18) and (3.19), we are able to get

an expansion of the Fokker-Planck collision term. These collision are taking place among
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a test particle b (i.e. beam injected) with the constituents j of background plasma, whereas

j is denoting electrons, bulk ions etc. Thus, we consider beam-plasma system with corre-

sponding equation as given by

(
∂nb(r,vb, t)

∂ t

)
= ∑

j

(
ZbZ je2

4πε0

)2 2πn j(r) lnΛb, j

m2
b

∂

∂vb,m

[
∂nb

∂vb,n

(
∂ 2vb

∂vb,mvb,n
G′ j(x j)+

vb,mvb,n

v3
b

x jG′′ j(x j)

)
+2

mb

m j
nb(r,v, t)

vb,m

v3
b

(
G′ j(x j)− x jG′′ j(x j)−

x2
j

2
G′′′ j(x j)

)]
.

(3.33)

We consider a system for which the background plasma components have an isotropic

Maxwellian distribution, namely

f j(v j) =

(
m j

2πkTj

)3/2

exp

(
−

m jv2
j

2kTj

)
. (3.34)

Moreover, the function G j(x j) can be written in terms of error function [49]

G j(x j) =

(
x j +

1
2x j

)
erf(x j)+

1
2

d
dx j

erf(x j), (3.35)

where

erf(x j) =
2

π1/2

∫ x j

0
e−ζ 2

dζ .

Furthermore, we assume that the energetic test particles have the velocity range as given

below

vbulk ions,thermal � vb<(<) ve,thermal
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Therefore, we can apply the following asymptotic approximation of G j(x j)

Gbulk ions(xi) = xi +
1
xi
− e−x2

i

2
√

πx4
i

(
1− 3

x2
i
+ ...

)
f or bulk ions (xi� 1)

and, respectively

Ge(xe) =
2

π1/2

(
1+

x2
e

3
− x4

e
30

+ ...

)
f or plasma electrons (xe << 1).

These approximations are valid to get exceptional results in fusion plasmas, where such

scenarios are found quite often. For example the ions generated by Neutral beam injection

(NBI) and Ion cyclotron resonance heating (ICRH) as well as for charged fusion products.

The Eq. (3.33) which is the Fokker-Planck collision term can now be simplified to the form

(
∂nb(r,vb, t)

∂ t

)
= ∑

i∈(bulk ions)

(
ZbZie2

4πε0

)2 2πni(r) lnΛb,i

m2
b

{
2mb

mi

1
v2

b

∂nb

∂vb
+

v2
i,thermal

v3
b

∂ 2nb

∂v2
b

}
+

(
Zbe2

4πε0

)2 2πne(r) lnΛb,e

m2
b

4
3
√

πve,thermal

{
2mb

mev2
e,thermal

[
3nb + vb

∂nb

∂vb

]
+

∂ 2nb

∂v2
b

}
.

(3.36)

From the above relation we can see that for an isotropic background plasma system the

collisions show no effect on any other change in the distribution of slowing down except

the change in speed vb. Another simplification can be employed, which gives the defini-

tion of two distinctive parameters. One is the Spitzer-slowing down time which has the

mathematical form [50]

τ ′s :=
(

4πε0

Zbe2

)2 3mbmev3
e,thermal

16
√

πne lnΛb,e
=

(
4πε0

Zbe2

)2 3mb(2kTe)
3/2

16
√

πmene lnΛb,e
, (3.37)

and the other one is the critical velocity which is given by

v′c,i :=
(

3
√

π

4
me

mi

niZ2
i lnΛb,i

ne lnΛb,e

)3/2

ve,thermal. (3.38)
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Using these two definitions into the Fokker-Planck equation for Coulomb collisions with

an isotropic Maxwellian background plasma, we find(
∂nb(r,vb, t)

∂ t

)
=

1
τs′v2

b

∂

∂vb

[{
v3

b + ∑
i∈(bulk ions)

v3
e,i

}
nb

]
+

1
2τs′v3

b

[
me

mb
v2

e,thermalv
3
b+

∑
i∈(bulk ions)

mi

mb
v2

i,thermalvc,i′3
]

∂ 2nb

∂v2
b
.

(3.39)

The first term of the above equation is known as the dynamical friction or drag and the

second term is known as the velocity diffusion term.

The deceleration’s time constant of the mean speed of the test particle is actually the

Spitzer-slowing down time, i.e.

d < vb >

dt
=−< vb >

τs′
. (3.40)

The cause of deceleration are the collisions of the test particle with the background plasma.

If

vb >
(
∑

i
vc,i′3

)3/2
,

it means that the leading deceleration mechanism is clearly the friction on the electrons.

The slowing down on ions becomes notable for [50]

vb 6
(
∑

i
vc,i′3

)3/2
,

and this occurs at a time constant which is completely different from the Spitzer-slowing

down time (τ ′s).
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3.2 Another derivation for mean rate of energy transfer

There is also an alternate way through which one can also derive the loss of mean energy

of a suprathermal test particle as caused by the Coulomb collision. For this calculation, the

same condition of an isotropic Maxwellian background plasma is used. The mean rate of

energy transfer from fast ions b′ to the bulk plasma species j′ can be written as [51]:〈
∆Ei

∆t

〉
b′→ j′

=

〈
dEi

dt

〉
b′→ j′

(Eb′,Tj′)

=−
Zb′2Z j′2e4

4πε2
0

n j′
m j′

√
mb′
2Eb′

lnΛb′, j′F j′

(√
m j′Eb′
mb′kTj′

,
m j′
mb′

)
,

(3.41)

where

F(x′,β ′) = erf(x′)− (1+β ′)x′ d
dx′

erf(x′) = 2√
π

∫ x′

0
e−ζ ′2dζ ′− (1+β ′) 2x′√

π
e−x′2. (3.42)

Now we use the asymptotic approximations for small and large values of arguments of

F(x′,β ′) [52]

F(x′,β ′)≈ 2√
π

[
−βx′+

(
2
3
+β ′

)
x′3 + ...

]
, i f x� 1, explicitly f or Eb′ � kTe

mb′
me

,

and

F(x′,β ′)≈ 2√
π

[√
π

2
− ...

]
= 1, i f x� 1, explicitly f or Eb > (>)kTimb′/mi ,

which provides

〈
dE
dt

〉
b′→e

=− Zb′2e4

3
√

2π3ε2
0

√
me

mb′
ne lnΛb→e(kTe)

−3/2Eb(t), (3.43)

and, respectively

〈
dE
dt

〉
b′→bulk ions

=−Zb′2e4√mb′
4π
√

2ε2
0

∑
i∈(bulk ions)

niZ2
i lnΛb′→i

mi
Eb′−1/2(t). (3.44)
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Thus, we obtain the same results for the degradation of the mean energy of a test particle

due to Coulomb collision in a Maxwellian distribution of background plasma.

3.3 Energy transfer (from zero to maximum)

The zero energy transfer between a test particle and a bulk particle can be studied by simply

considering

F′ j

(√
m′ j

2kT ′ j
,

m′ j
m′b

)
= F(x′ j,β ′ j) = 0.

Figure 3.2: Graph for zero and maximum energy transfer.

〈
dE′b

dt

〉
b↔ j

= 0→ F(x′0,β ′ j) = 0→ 1+β ′ j =
ex′20

x′0

∫ x′0

0
e−ζ ′2dζ ′ ⇒ x′0 (3.45)

If we take v′b = v0 = x′0
√

2kT ′ j
m′ j , there is almost zero energy transfer between the test

particle b and remaining particles j. For v′b > v0, the test particle transfers energy to the

particles j. Finally, if v′b < v0, the fast particle b gains energy from the background plasma

particles j in collisions.
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The condition for which energy transfer is maximum is ∂

∂x j

F(x j,β j)
x j

= 0

⇒ 1+2x2
m(1+β j) =

ex2
m

xm

∫ xm

0
e−ζ 2

dζ . (3.46)

To get some insight, we make the following three cases of β ′ j, namely

β j =
m j

mb


� 1

≈ 1 :

>> 1

Case A: β j� 1, interaction among fast ions b with background electrons→ x2
0 =

3
2β j;

⇒ xm ≈ xm(β j = 0)+
xm(β j = 0)

2[x2
m(β j = 0)−1]

β j + ...

= 1, 52+0, 580β j−0, 458β
2
j +0, 57β

3
j + ...

(3.47)

Case B: β j� 1, beam of electrons is injected into the plasma,

→ x2
0 ≈ lnA+ 1

2 ln
(

lnA+ 1
2 ln lnA

)
;

⇒ x2
m ≈ ln(2A)+

3
2

ln
(

ln(2A)+
3
2

ln ln(2A)
)
, (3.48)

where

A =
2√
π
(1+β j). (3.49)

As an example we have the case of interaction of energetic electrons with plasma deuterons,

for which case x0 = 3.0 , 7.0 and xm = 3.0, 58.0.
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Case C: β j ≈ 1, interaction between beam of ions and ions,→ x0 ≈ 1;

⇒ v0 ≈

√
2kTj

m j
; xm ≈ 1.0, 85.0, (3.50)

⇒ E0 =
mv2

0
2

=
x2

0
β j

kTj; Em =
mv2

m
2

=
x2

m
β j

kTj. (3.51)

Before having a chance to look into it carefully, it seems like an ambiguity that here E0 6=
3
2kTj. Only the case A, in which β j � 1, there is zero energy transfer. In this case, E0

approaches the value 3
2kTj. In the remaining two cases E0 <

3
2kTj. The logic behind E0 <

3
2kTj is the assumption that we made. In this assumption we have only considered the

collisional interaction of a monoenergetic ion beam. For such a beam, the rate of energy

transfer at Eb =
3
2kTj does not vanish. There is only one condition which results in E0 =

3
2kTj. According to this condition, both the interacting species should have the isotropic

Maxwellian distribution of the velocities with equal temperature.

3.4 Time of Thermalization

The time required for fast particle to get slow down from its birth energy Ebirth to thermal

energy can be calculated straightforwardly by the relation [53]

τ ′thermal =
∫

τ ′thermal

0
dt =

∫ Ecut o f f

Ebirth

dt
dEb

dEb ≈
∫ Ebirth

3kT

∣∣∣∣〈dE
dt

(Eb)

〉∣∣∣∣−1

dEb, (3.52)

whereas Ecut o f f ≈ (1, 2.5)Ethermal ≈ 3kTi(e). From Eq. (3.52) time of thermalization can

be evaluated as

τ ′thermal =
τ ′s
3

ln
[

1+(Ebirth/Ec)
3/2

1+(Ecut o f f /Ec)3/2

]
, (3.53)

where Ec represents the critical energy, at which the Coulomb drag on the interacting elec-

trons and bulk plasma ions becomes equal. It is very simple to calculate the value of Ec,
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we presume that

mb

mi
kTi� Ec ≤

mb

me
kTe.

The above-mentioned assumption decreases the value of denominator in the logarithm term

of Eq. (3.53) approximately to unity. As a result we get the following expression fo Ec

Ec = 1.2
mb

me
kTe

(me

ne
∑

i

niZ2
i

mi

)2/3
. (3.54)

The exclusion of energy diffusion in this model, of slowing down of particles, introduces

some errors of the order of kTi(e)/E0. This can be neglected without any loss while doing

the calculations when the below given approximation is used

Eb

Em
≥ 3kTi

2mi
.

It is made clear by using examples in the figures which exhibit that the the portion of

injected beam power, yI , and, respectively, of the power discharged with fusion alphas, yC

that are transmitted to electrons.

40



Figure 3.3: Table showing the behavior of x0, xm,
E0
kTj

, and Em
kTj

for different values of β j =
m j
m0

It can be seen that that by increasing the value of β j from 0 to 20 in different steps

x0 and xm goes on increasing and the values of E0
kTj

and Em
kTj

goes on decreasing. As soon
as we increase the value of β j from 30 to 10,000, the numerical values of x0 and xm start
decreasing, and the values of E0

kTj
and Em

kTj
keep decreasing. By taking highly energetic ions

into consideration created by, for example NBI, it can be observed that
〈

dE
dt

〉
b→e

surpasses〈
dE
dt

〉
b→bulk ions

by far.
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3.5 Equilibrium temperature of a two-component plasma

In a plasma having two components the equilibrium temperature can be obtained as follows:

One of the components is bulk plasma particles and the other one is test particles. The

bulk plasma particles have a Maxwellian distribution at temperature Tj with mass m j and

charge Z j. The test particles also follow the Maxwellian distribution at temperature Tk with

mass mk and charge Zk, respectively. Our purpose is to find the mean rate of energy transfer

from a test particle to all the bulk particles j.

The mean rate of energy transfer can be calculated by averaging as

Pk→ j =

∣∣∣∣∣
〈

dEk

dt

〉
k→ j

∣∣∣∣∣= Z2
k Z2

j e
4

4πε2
0

n j

m j

√
mk

2Ek
lnΛk jF j

(√
m jEk

mkkTj
,
m j

mk

)

=
Z2

k Z2
j e

4

4πε2
0

n j

m j

1
vk

lnΛk jF j

(
vk

√
m j

2kTj
,
m j

mk

)
,

(3.55)

over the distribution function of the test particle denoted as fDT (vk). In simple words our

main goal is to get the Maxwellian average

〈Pk→ j〉DT =
∫

Pk→ j fDT (vk)d3vk. (3.56)

The above expression, in more simplified form, can be written as

〈
F j

vk

〉
DT

= 〈
erf(vkb j)

vk
〉DT −K〈e−b2

j v
2
k〉DT , (3.57)

whereas b j =
√

m j
2kTj

and K is a constant which is self-explanatory.

3.6 Results and Discussion

Now we are going to plot some of the equations derived above and discuss the results.

Figure (3.4) explains the relative part of energy of injected particles transferred to electrons

and ions respectively, and the absolute value of energy received by the ions. The break even

point between absorption of two species can be observed at 44 keV. We must know that for
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higher injection energies, even though the part of energy taken by the electrons decreases,

the full amount of energy transferring to the ions enhances till it asymptotes about 0.07

MeV. Thus, it shows an optimum injection energy. Figure (3.5) shows the behavior of alpha

Figure 3.4: The curves in color red and blue show the fraction of injected ion energy which
is transferred to electrons and ions in a tokamak-like plasma vs injection energy. (Use LHS
scale.) The absolute value of injected particle energy transferred to the ions of plasma is
shown by the curve color black. (Use RHS scale.) (n = 5× 1013cm−3 , Te = 1 keV, and
Ti = 0.5 keV.)

particle which transfers the relative quantity of energy to electrons and ions respectively in

a tokamak-like plasma with electron temperature on x-axis. At Te = 45 keV, there lies the

point, namely, break even point between the two species (electron and ion) absorption. As

43



cooling on one specie (electron) means a robust sink of energy for the other specie (ions),

thus, enhancing the Te above 45 keV is advantageous. The energy required to heat up the

electrons can be regained from the enhanced fusion energy outcome.

Figure 3.5: The curve color red shows the fraction of electrons and the curve color blue
shows the fraction of ions receiving the energy of the alpha particle vs the temperature of
electrons in a common deuterium-tritium plasma with Ti = Te.

The temperature required for an alpha particle to relax in a tokamak is much less than

the ion temperature as compared to a mirror machine. Explicitly, it is calculated for n =

1014cm−3, Te = 7 keV, Ti = 5 keV and quantity of deuterium and tritium is equal. It is

measured that an alpha particle takes 250 msec to decrease its energy from 3.5 MeV to

0.012 MeV. The energy’s 87 % is taken by electrons and the remaining 13% is taken by
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ions. This numerical value for the thermalization time is greater than the present plasma

lifetimes. It can be noted that the ions are still getting an energy of 0.4 MeV which is

the hundred times of their mean energy. Moreover, concluding remarks on alpha particles

heating of tokamaks cannot be given unless trustworthy buildup and loss models have been

given. For tokamak heating via injection of energetic neutral particles, the slowing-down

of a proton is calculated.

In fig.(3.6) τ0 = f (E0) is plotted against E0 for many numerical values of the electron

temperature (Te). These results are obtained by presuming hydrogen ion injection into a

hydrogen plasma. It can be seen that by increasing the value of electron temperature the

slowing down time increase. Because by increasing the temperature, number of collisions

also increases. Thus, the time required to slow down the particles increases. Moreover,

with increasing values of E0 the slowing down time becomes constant.

Figure 3.6: In a hydrogen plasma, slowing-down time of hydrogen ions is plotted with
respect to energy of ion at different values of the electron temperature (Te).
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In fig.(3.7) the slowing-down velocity dE
dt is plotted against E0 for many numerical val-

ues of the electron temperature (Te). These results are obtained by assuming hydrogen

ion injection into a hydrogen plasma. It can be seen that by increasing the value of elec-

tron temperature the slowing down velocity dE
dt decreases. With increasing values of E0

the slowing down velocity approaches a constant value. At lowest electron temperature

Te = 0.5 keV, there is a sudden rise in the slowing down velocity. It happens because of

decrease in number of collisions with decreasing temperature. Also, the slowing down

velocity is directly proportional to the number density of the particles. The minimum of

slowing down velocity occurs at E = 1/(2)2/3Ec. In terms of electron temperature, the

value of energy at which this minimum appears is E ' 10Te. In Fig. (3.8) it is shown that

Figure 3.7: In a hydrogen plasma, slowing-down velocity of hydrogen ions is plotted with
respect to energy of ion at different values of the electron temperature (Te).

how the relative particle losses depend on ratio of the number density of the particles for

many values of electron temperature Te and energy E0. It is assumed that the hydrogen ions

are injected into the hydrogen plasma with A = Ai = 1. To keep the things simple, for each
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case Ti = 1 keV is chosen. It is estimated that the values of neutral background densities

n0 in current tokamaks is about 10−8 cm−3 [54]. It means that the ratio of the densities is

in the range 10−5, if the plasma densities ne included are not high enough. In this regard,

however, the curves in Fig. (3.8) are actively show an enhancing behavior. Thus, particle

losses and its correlated effects (energy losses etc.) cannot be ignored.

The above results are also valid for cases where hydrogen isotopes are injected into the

plasma containing (mainly) hydrogen isotopes. To do this, the parameters n0/ne, Te, E0 and

Ti must be properly re-defined. The results shown in the figure. (3.8) can be modified for

any combination of A 6= 1 and/or Ai 6= 1 by replacing the abscissa and curve parameters.

These modifications are also valid if the plasma contains a mixture of two or more hydrogen

isotopes. But only one isotope must maintain dominance, Z ' ZH ' 1. For example, we

might consider deuterium injection into deuterium plasma. Particle deficits are equivalent

to the case of hydrogen ion injection into hydrogen plasma if the following conditions are

met: (n0/ne)D = 0.25(n0/ne)H , TeD = 22/3TeH , E0D = 2E0H and TiD = 2TiH . In case of

E0� Ti, the Ti dependency can be ignored. It is fascinating to understand that in order to

obtain the same particle losses, it is necessary to reduce the neutral density by a factor of 4.

Figure 3.8: In a hydrogen plasma with hydrogen ions injected, the behavior of relative
particle loss (Lp) against the ratio of neutral background density to plasma density n0/ne is
shown for many numerical values of energies and electron temperatures.
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Figure (3.9) shows some graphs for relative energy losses as a function of the ratio of

number density of the particles. These graphs are plotted according to the assumptions

A = Ai = 1 and hydrogen ion injection into a hydrogen plasma. All other parameters are

same as in Fig. (3.8). It can be seen that the relative energy losses for E0 = 60 keV are

somewhat lower as compared to E0 = 20 keV. This behavior can be understood from the

fact that the slowing down velocity actively reduces with enhancing energy if the condition

E & 20 keV. Therefore, highly energetic ions are basically lost to plasma particles after

giving them most of their energy.

Figure 3.9: In a hydrogen plasma with hydrogen ions injected, the behavior of relative
energy losses against the ratio of neutral background density to plasma density is shown
for many numerical values of energies and electron temperatures.
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