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List of Notations and Abbreviations

QED - Quantum Electrodynamics
SM-Standard Model

CLFV- Charge leptop flavor violation
Z- Atomic number

a- Fine structure constant

e =0.01

b=0.99

me-mass of electron

m,,-mass of muon

grand, go-Coupling constants

9 - Minkowski metric

p (Roman style) - 4-vectors

p (Bold face) - 3-vectors

p = |p| (Ttalic style) - scalars

P = puY" - Operators contracted with gamma matrices
= (7°,4) - Dirac matrices

a=1 Lr;z

Indices:

Latin letters (i, j) run over 1,2,3

Greek letters (i, v) run over 0,1,2, 3.



Abstract

Like an electron, the muon can be localized under the central potential of a nuclei to
form a muonic atom. Its decay into an electron gives continuous as well as the discrete
energy spectrum. To study muon decay, a lot of experiments have been performed to find
the possible new physics, also known as physics beyond the SM. In this dissertation, we
studied bound muon dec‘-ytfday to a bound electron and neutrinos and calculated the
branching ratio for different values of Z . We have also studied neutrino-less conversion
of bound muon into a bound electron by taking a scalar Majoron instead of neutrinos.

We hope that the present work is useful to hunt for the CLFV in muon decays.



Part 1

Introduction

The muon is an elementary particle, similar to an electron in many respects, but its mass
is 207 times greater than an electron, therefore, having small Bohr radius (it is inversely
proportional to mass r « %) and has a finite lifetime (about 2.2us). It was first discovered
in cosmic-ray interactions in 1937, the study of its characteristics and decay rate contributed
a vital role to developed and test the SM. A muonic atom can be formed by bombarding a
high-energy muon beam on an atom. The atom captures muons, which fall into a 15 state
because of heavy weight, ejecting all electrons in the atom. Within SM the muon decay into

electron as

w—e+v,+ e,

where v, and 7, are neutrino and antineutrino of muon and electron, respectively, which
are considered to be mass less. The SM is not complete yet. The nature of the flavors
of elementary particles is mysterious, their characteristics and structure let us think and
research beyond the SM. Experiments are conducted at Fermi lab [1] and Coherent Muon
to Electron Transition (COMET) [2] to find physics beyond SM. Both experiments focus
on studying muon to electron conversion without emission of neutrinos, which led to occur
CLFV. To explain the CLFV, neutrino oscillation is considered, which states that, while
propagating in space the neutrino beam no longer contains initial charge flavor (v, v,,v,)
i.e., it continuously converts from one flavor to another flavor. It means the neutrinos masses
are non-zero and distinct, the flavor of neutrino is determined as a superposition of so-called
mass eigenstates. Suppose the mass eigenstates are vy, 15 and v3 then the neutrinos flavor is

expressed as:

Ve = Qe1V1 1 QeaVo + Q33
Vy = a1 + aueVs + au3ls

Vr = Qr1V1 + QrolV2 + Qr3l3.

In above expressions aj,as and ag represent normalization constants. However, even consid-
ering the neutrino oscillation the predicted branching ratio of CLF'V processes are less than
1075 3] which is beyond the sensitivity of any ongoing or future experiments. However, if
we find the experimental signatures CLFV, it would be a hint of a new physics.

The purpose of this work is to study the SM decay rate of a bound muon into a bound



electron in position space. First of all we will focus on the SM decay (Zpn) — (Ze)v, Ve, where
(Zu) and (Ze) correspond to the bound muon and bound electron, respectively. Later we
find the branching ratio of bound muon decaying to a bound electron with emission of scalar
Majoron (J), i.e., (Zu) — (Ze)J, which is purely a lepton flavor violating decay. In both
decays, we considered the nucleus to be spin-less and there is only a muon in the 15 state.

This dissertation is organized as follows: In Chapter 2 we find the exact solutions for a
bound muon and electron [4] , comprising of solving Dirac equation in the presence of central
potential. We derived wave-function in the point nucleus approximation by considering the
Coulomb potential V(r) = —Z¢, and obtained wave functions for the 15 state.

Chapter 3 is based on detailed calculation of bound muon decay into a bound elec-
tron, neutrino and antineutrino: (Zp) — (Ze)v,7. in position space. We use the standard
Casimir’s trick based method [5], to find the transition amplitude. In order to find the de-
pendence of the decay rate on Za, we consider the equal muon and electron mass. Later, by
considering the actual masses of these particles, we will calculate the dependence of decay
rate on the Za.

Chapter 4 comprises of complete calculation of decay rate of (Zu) — (Ze)J decay. We
followed the same method as we developed in Chapter 3, except by changing the the coupling
at pt — e vertex, which in this case is just 1 —~°. We find that in the equal muon to electron
mass limit, the branching ratio goes as the third power of v = 4/1 — (Za)2 , which is quite
different from the (Zp) — (Ze)v,v.. The main findings of the work are concluded in the
Chapter 5.



Chapter 11
Dirac Equation in External

Electromagnetic Field

In order to study bound muon decay, first of all, we have to obtain relativistic wave
function of an initial state of muon and final state of electron. Therefore, we solve Dirac

equation in central field, which can be solved analytically for Coulomb potential [4].

1 Central Field Dirac Equation for Relativistic Electron

The total angular momentum for an electron moving in a spherically symmetric field is
given by
J=L+S, (1.1)

where
L=rxp, (1.2)

is the orbital momentum and spherical harmonics are its eigen functions Y, (r):

LY (8) = L1+ 1) V" (8). (1.3)
LY () = m¥;" (£). (1.4)
The operator
1

is the spin momentum whose eigen functions are two-component spinors 7,
1/1 3
S%p =- (=41 = — 1.6
Um 5 (2 + ) Y 477m (1.6)

Sz??u = MMy, (1-7)

where © = j:%. In the presence of an electromagnetic field, the stationary Dirac equation can
be defined as
[/7“ (pu - eAu) - m] ¢ =0. (18)

Using this equation we have derived the Dirac-Coulomb Hamiltonian H p¢ (r) which satisfies



the following equation given below
Hpe (r) @ (r) = EQ (r),

where )
e“Z

HDC(r):a-p—W+m6. (1.9)

The wave function ® in the component form is

du : (3
) (I‘) _ L (I‘) _ :gE]l (T) XM (I‘A) 7 (110)
o (r) ifeji (1) Xjin (T)
where the quantum number [ defines the orbital angular momentum and [ will be defined
below. The functions ggj (r) and fg; (r) are the radial wave functions corresponding to
upper and lower components, respectively. The two-component functions x ;s (T) have only

the angular dependence. As Hpc commutes with both operators J? and .J,, so wave function

® (r), or their angular parts x s (T), must be their eigen function as well:

J? = JPo(r)=5(+1)d
(Hpc (r),J.] =0 J®(r)=M®(r)
The angular wave functions x ;s (T) satisfy the set of relations (1.11)
I (8) = 5 (5 + 1) X (F)
X (B) = Mxgim (F),
(1.12)

therefore, the functions x ;s (F) can be described as a linear combination of the spherical

harmonics Y, (1) and two-component spinor 7,

A~ i M m /o
Xjim () = ZC{m%#Y} () 1, (1.13)
mp
Here C’jf:nl jom, are the Clebsch-Gordan coeflicient for which the following identities are sat-
isfied
1= Jol <5 < it (1.14)



The spherical spinors form a complete set of ortho-normalized wave functions
/ dQ (xjine) Xgwaer = 8550w Oasnr. (1.15)
Thus using Eq. (1.13) in Egs. (1.3) and (1.6), we get
L2leM (r) = Z CjM [LQYm (A)] um

—zz+1 ZCJM Y™ (8)m, =1+ 1) xjr (B), (1.16)

mu
S*\juu (¢ qufu [S*Y,™ (2)]
3 . 3 .
= lequ Y E) 10 = X (). (1.17)

mp

The quantum number [ appearing in Eq. (1.10) represents the orbital momentum of the
particle along with its parity. Now take the space inversion P : r — —r in the Dirac equation
(1.8). Such transformation will directly act on the position space on which the wave function
(1.10) is defined as

o (t,r) — @ (t,Pr) = PP (t,r), (1.18)

where P is the linear operator which should preserve the invariance of the Dirac equation
P [ (p, —eA,) —m]®' (t,Pr) = 0. (1.19)
Thus

Py (pu —eAy) —m] P (t,r)
= [P {’YO (po — eV)} —P{y-(p—e€A) - m}] PO (t,r)
=" (po—€eV)+~-(p—eA)—m]PP(tr)=0. (1.20)

Since the last expression can be expressed as [y (p, — eA,) —m] ® (t,r) = 0, it means that
VP =PA% 4P = —P~, (1.21)
and we can satisfy Eq. (1.21) if we choose

P =, (1.22)



where ¢, is some c-number, which actually depends on the particle’s intrinsic parity. Now

~

Pd (t,Pr) = ¢,)°® (t, —1) = ¢, ( _ijj; %?;éM (il) ) . (1.23)

The space inversion only affects the spherical harmonics Y;™ (r) = Y™ (6, ¢) in the spherical

polar coordinates in the following manner

0 .y
P { ¢::+¢ = PY" (0,¢) = (1) Y;" (6, 6). (1.24)
Therefore,
Xjor (—8) =) c;;iéuylm (=) 1, = (=) xjor () - (1.25)
mp

Using the above result in Eq. (1.23) we get

_ gt (r) (=1) Xjias (F)
Pe(Pr)=c ( ot () (1) g () ) ’ (1:20)

where the components of this wave function should have the same parity as they have in Eq.
(1.10). It follows that
[=1+1. (1.27)

From the system of two equations for the upper and lower components of the bispinor (for

detailed derivation see Appendix A of [4]), it follows

(E+m)®* (p)=(o-p)®“(p), (1.28)
(£ —m)®"(p)=(o-p)®(p). (1.29)

After substituting the explicit form of upper and lower components of equation (1.10) in Eq.
(1.28), it becomes

(E+m)ifeu(r) X (&) =p(o-t) ge () X (T) . (1.30)

Under the spatial rotation (o.p) acts in a similar way as (o.7). Thus

(o 1) xjum (F) = exy () - (1.31)

10



the constant becomes

’
mm

Using orthogonality condition [ d§ (XﬂM)T Xjrtrmr = 05506y

e = [ X ) 0+ 5) i () 2 (1.3
To evaluate this integral it will be useful to define unit vectors in terms of spherical coordinates

fX - 2?7? ()/1_1 - Yil) )

2
By =iy /?” (it vy, (1.33)
t, :2\/5/10,

3

= rsi — r4i i — -1 _ 1 /3 ,—idgj 1 1 /3 idg
wherex =rsinfcos ¢, y =rsinflsing, z=rcosfand Yy " = 54 /5-e“sinf, Y] = —5,/5-€"sinf

2

Y = %\/g cos . Then use the formula for the integration of three spherical harmonics

Mm%\ Mo/ M (2l2 + ]') (2l3 + 1) lim1 110
/dQ}/El }/22 }/23 *= \/ 47T (211 + 1) Clgmgl;gmgclzolg,o' (134)

Also the Pauli matrices act on spinors in a following manner

n,ltlo-xnu2 :5u1,—u2» (135)

nllaynuz = (_1)17/“ 5#1,—#27 (136)
1_

77;510'277”2 = (_1)2 & 5#17112' (137)

Inserting everything in Eq. (1.32), we obtain the coefficient ¢ that is equal to —1. Thus, Eq.

(1.31) can be rewritten as

Xjin(t) = = (0.1) Xjup (F).
Substitute these result into the set of equations (1.28) and (1.29) with Coulomb Potential

(E—eV —m)d"(p) — (o-p)® (p) =

’ (1.38)
(E—eV +m)d* (p)—(o-p) P (p)

0
0,

11



we get the following equation for the lower component of the Dirac bispinor

(0-p) @ (p) =i(o-p) fu (r) X () = —i(o-p) (0 -7) fou (r) Xz (£) . (1.39)

Using Pauli matrices identity (o -p)(o.r) = (p.r) +io.[p Xr|, and t = %, Eq. (1.39)

becomes
(0 p)@ ()= —{i(p-r) oo xa} 2y o)
= - {(V ‘) —iji &) _ o-[pxr1] —ijé (x) } Xjinr (T)
=— {rv (ij; (r)) + iji &) div(r) + (o - L) ijé (x) } v (T) . (1.40)

With the differential calculus identity

V.(fA)=f(V.A)+ A.(Vf),

Eq. (1.40) leads to

(V.r) fea) _ o (ijl (1“)> N ijé (@) 40 ).

T

1 deJ (I')

As we know div (r) = 3, V. () = —1, hence Eq. (1.41) becomes

(V) L2 ) _ o) o fen () dfpn() 2 () + Afpj (x)
r r r dr r dr
2 dfgq (r 1 .
(J.p) Qpl (p) = — {?ijl (I‘) + M;—lr() + ? (O’L) ijl (l")} XﬂM(I‘). (142)
Now consider the operator identity
J=(L+8)°’=L>4+28-L+8*=28S-L=0-L=J>-1L%-8% (1.43)

12



which upon acting on a spherical spinor y s () gives

(L) xguar (8) = (3% — T2 = ) s (8) = |5 G+ 1) — L1+ 1) — | xounr (B).

4
= — (L4 550) X (F), (1.44)
where the quantum number x;; can be defined as
. 1
Ifj=1- % then
1 1 1 9 , 1 1
0= o - —== — - — - = 1.4
kjp=1(+1) (l 2)(l+2> 1 F+1 l+4 1 [ (1.46)

andifj:l—l—%

1 3 1 3 1
/ileZ(l—i-l)—(l—f-E) <l+§)—Z=l2+l—l2—2l—1—4—1:_(l+1)- (1.47)

To sum up

l if j =1—1 4L ifj=1—1
K/jl: 7 : j 2 , O Hjl: j+.27 1 1. j 21 ) (148)
—(+1),ifj=1+14 G+, ifj=1+1

and

Kji = — Kjf, (1.49)
[=l—1. (1.50)

Now Eq. (1.42) can be expressed in terms of the newly defined quantum number x;

(o)t ) = { Pl BEL 2

fmﬂﬂ}XhM@%

(o -p)®(p) =— {deC]ilr(r) N 1 _r,{ﬂ

fo <r>} ot (B). (151)

Similarly, for the upper component of the Dirac bispinor

13



(0-p)®“(p) = (0 -P)gej (v) Xjuu (t) = — (o -p)(0-T) 9E+(I‘)leM (r)
JEq! (r) XjiM (f')

= —{~i(V 1) +io-[px1]}

=—{—i(V.r)—ioL} gEjé ) X (P) X (F) -

(0)0 (9) = i{ 2 ) + 20 - OB ) 0)

(1 + kﬂ)

>

om0 (o) =i {

I 9Eji (1")} ij‘M( )- (1.52)

Using the above results in Eq. (1.38) and after simplifying we get

- (1.53)
&t ) fe (1) + (B — eV —m) ggy (v)

T

E% + 1+rw§ 9Eji (r) — (£ —eV +m) fEji (r) =0,
=0.

2 Electron in Coulomb Field of Point Nucleus

Now we will derive wave functions in the point nucleus approximation, which is valid only
for Za < 1. Consider the Coulomb potential V (r) = —Z¢ for the set of equations (1.53). In
the limit r — 0 the set of equations (1.53) reduces to the following form

L et () + (1= k) Fia () 41 (B = eV = m) gy (1)) =0, (2.1)
r%gm (r) + (1 + k) gpjo (1) =1 (B — €V +m) fr (r) =0, (2:2)
o T )+ Fo () = 2 0 0) + (B4 25— ) Goma ) =0, (29
rd%gEjl (r) + g (r) + % (rgmj (1)) — (E + ZTez + m) (rfpj1 (r)) = 0. (2.4)

14



Now the terms proportional to & &+ m will be neglected, giving
Ze2
Ze? . 0,

As we know a = ;—i, we will make following change of variable and indices are dropped here

for brevity
G(r) =rgp (r), F(r) =1fpu (), (2.6)

(F+5)G@)—-2F (@)

Tr

(£ —5)F(r) +22G (v)

T

07
0 (2.7)

In Eq. (2.7) the terms proportional to E+m were neglected. Let’s consider that the solutions
of Egs. (2.7) are of the form

G (r) = Gor?, F(r) = Fpr. (2.8)
Upon substitution in Eq. (2.7), we have

Foyr' ™t — kEgr" ™t + ZaGor' 1 = 0,

2.9
Goyr" L + kGor' ™! — ZaFyr' ! = 0. (2:9)
As 1771 £ 0, we get
G — FyZa=0
o (y+r) = FoZa=0, (2.10)
GoZa+ Fy(y— k) = 0.
This system has non-trivial solutions only when
-7
(v + %) C =022 =k (Za). (2.11)
Za  (y—K)
2.1 Solution For Radial Equation:
Let the solutions for the radial wave functions in Eq. (1.53) be of the form
g(z) = Vm+ Ee 227" [Wy (z) + W, (2)], (2.12)

15



where the indices £ were dropped and some variables were redefined as

d d
=2\r, A\ = 2R = — =2\—. 2.14
v " " ’ dr dr (214)

Now we will express Eq. (1.53) in terms of Eq. (2.14), as follows

2)\<d (14 k)

) g0 - w0 - 222

X

f(z)=0. (2.15)

Using the radial functions given in Eq. (2.12) and Eq. (2.13) in above equation, it becomes

2 (4 + ) g0 - B +m f o) - 22227 o,
2\ (% + (11‘]{)) (\/mi—l—Ee_ﬂx7 LWy (2) + W, (:E)])

Vi ¥ Ee 5 W (2) + Wa (2)) K—l) + 0= 1)}

te M E de (Wi () + W () +

X

Wy (2) + W <x>]}

a

Vm — Ee 757 Wy (z) — Wa (2)} {% (E+m)+ %} = 0.

As v/m + Ee~3%27~1 £ 0, after simplifications we get

—=

1 (r=1), (L+hk)
[2 x * x

|+ W @)+ 093 )+ W o)

(@) oy g Wi (z) = W (@)] + W1 (2) = W ()] @;E — 0,

- F
m—+ F

T d T
|:—§+’Y+k:| [W1+W2]+x%[W1+W2}+ (5"‘20&

Rearrangement of Eq. (2.16) gives

d m—FE
ZE%(Wl—f—WQ)—f-(’Y—f-R)(Wl—f—WQ)—C(]Wg—l—ZOé m—l—E

(Wi — W) =0.  (2.17)

Following the same procedure for the second equation of (1.53), as a first step we get

16



2AZ o

2/\<i+¥)f(m)+(]:7—m)g(x)+ g(z)=0.

dx
Again using the radial functions defined in Eq. (2.12) and Eq. (2.13), we obtain

2\ ( d 1=k > Vm = Ee 557 Wy (z) — Wa (2))]

dx T

- (E _m4 22 O‘) Vm + Be 5 07  [W (x) + Wa ()] = 0,
Vm = Ee™ 22"~ W (x) — Wa (2)} K—%) + O — 1)}

eV [ 0 @) - Wate) +

1 1 Z
Vi + Ee” 2" " {W, (2) + Wa (2)} [ﬁ (m—FE) - _Oé} -
x
After some simplification, it will lead to
(W) — Wh) (7—k—£> oL — W)+ E v+ W) — Zay ) E vy 4w = 0
2 dz 2 m—FE ’
d E

Adding Eqs. (2.17) and (2.18), we have

/m /m+E
—I—E ZOfWQ

m — E m+ F
+E m—F

=0,

d
2 ZB—Wl + ’7W1 + kW2:|
dx

d ZaW; 2F ZaWs?2m
.’L'%Wl—F’YWl—FkWQ—'— 9 |:—T:| - 5 T —0,
AWy ZoF Zoam
- R = 0. 2.1

And in case of subtraction of Eq. (2.17) and Eq. (2.18), we are left with

17



m+ B m—F

ZaW: -
+ 4l m—F m-+ FE

d —F E
2 l’—WQ—F’}/WQ—Fle —xW21 + ZaW; [\/m + m + :O’
x m+ E

d m—F

d
x—Wg—i‘”)/Wz—i‘le—l’Wg—i‘ W1+ Wg :0,
dx A A

d YATD A
$Z2+<fy+%—x)wg+(n+ am)Wl—O. (2.20)

From Eq. (2.19), W5 is given by

W, = [(ZLAE — 7) Wy — xdwl] {m - Zo‘—m} _1. (2.21)

Differentiate W5 with respect to = gives

dx dx?

- (2.22)

AW, [(ZaE >dw1 d?WlH Zam]_l
= 3 —v—-1 T .

Putting these expression into Eq. (2.20), gives

ZaE daw, W, Zam] ™
z||l————7—-1 - k—
dx dx?

18



2w, dw,
2
dz? e dx

(=2y —1+4+2x)+

dx?

It could be notices that

Zam\” ZaE\? Za\?
k:2—( c;m) _72+<%) :kZ_(Ta) (m2—E2)—72.

Substituting the values of A\ and -, we can see that

Zam\> ZaFE\?
2 2 el
K ( 5 ) V + ( 5 ) 0. (2.23)
Thus d>W- dW ZoF
1 1 «
2 1-— — —— | Wy =0. 2.24
T T BN (7 X ) ! (224
Using Eq. (2.20), W; can be defined as
AW, ZaFE Zam] ™!
S 20 2.2
Wi {x T +(’y+ 3 37)ng| |:/€+ 3 } , (2.25)

and after differentiating it with respect to =, we get

dw, AW, d2W, ZaE AW, Zam] ™!
— L= i - . 2.2
e {dm T +(7+ A m) dr WQ} {“ ) } (2.26)
Now substitute the value of W; and 2% in Eq. (2.19), gives
AW, d2W, ZaE AW, Zam] ™
- o - k
x[d:p +xdx2+(7+ A x) i R

ZaE AW, ZaE Zam] ™ Zam

19
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dW- d2W- ZaFE dW. — ZeEN T aw. ZoE
2+ 2+<7+a ) 2—I/I/Z]Jr(7 *)[x 2+(fy+a )WQ}

2 ”7
Wo AWy
2~y — 1
+(2y—z+1) o

x
dx?

+

Using the definition of v and ), it becomes

d2W2 dW2 YA
2y — 1 — 11 ——— | Wy =0. 2.27
T + (2v $+)dm (+7 3 ) 2 (2.27)

As we can see that Eq. (2.24) and Eq. (2.27) are of the form of the Kummer’s equation [6]

d*w dw
et (b—=2) 5, Taw= 0, (2.28)

which contains a confluent hyper-geometric function

1 2
Flobz)=1+52 et Dz

ala+ V2 2.2
b TR 2 (229)

as their solution. Therefore W; and W5 can be expressed as confluent hyper-geometric

functions
ZaF
Wi (z) = aoF (7 — %, 27+ 1; a:) ) (2.30)
ZaF
Ws (z) = BoF <1+7—%,27+1;:v). (2.31)

Using them in Eq. (2.19) and setting x = 0 gives the condition for coefficient oy and Sy

(/{ _ ZT") B = — (7 _ @) . (2.32)

It follows that from explicit form of hyper-geometric functions given in Eq. (2.29) the function
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Wy and W5 will go to infinity for limit z — oo. Therefore, we will impose certain condition

to make the series convergent

Zo 0,1,2,...if k <0 (2.33)
— —V— = Ny, r — . )
TN 1,2,3,...ifk > 0
From the continuity equation
e
O (x) _ 0, (2.34)
ox,

the normalization for the stationary bound states can be done as
/ o (r) dr / & (1) @ (r) dr = 1, (2.35)
and radial functions are therefore normalized as
/dr r* [¢7 (r) + [ (1)] = 1. (2.36)

Using this condition together with Eq. (2.32) gives explicit expression for radial wave func-
tions.

Finally, the Dirac-Coulomb wave function can be expressed as,

B (r) = ( It (1) X101 (T) ) | (2.37)

ifnlj(r)Xl’jM(f)

where [ = 2j — [ = [ 4 1 and the radial wave functions

@i [+ B)T @yt + 1)
n Fn In T T n—l —Anr
s (1) = (@)t
2y, +1) AN, (N, — kn) n,!
X {(Ny, — £n) F (—np, 2795 + 1;20,1) — 0 F (1 — ny, 295, + 1;20,1) ) (2.38)
5 1
—2M\)2 | (1=E)T (29, +n, +1) |7 IR
fnlj(r) — ( ) ( m) ( ) (2)\1")%1 1 e An
2y, +1) AN, (N, — Kn) ny!
X {(Np — kn) F (=10, 29, 4+ 1;20,1) + 0 F (1 — 0y, 27, + 1;20,1) } (2.39)

Here n is the principle quantum number and the energy levels are determined using Som-

merfeld’s formula [7]

1 1
E,=+\/m?— )2, )\RZW, a=——, Ny =N — Ky, (2.40)

Zam
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N, = /12 =20, (|6n| — ) Y = \/K2 — (Za)®. (2.41)

n

The quantum number k,, is defined by

[ =11
Ko = ’ J 2 (2.42)
_ ( 1), j= %
and the spherical spinors

Xjum (F) = ZCfqum(A)m
mp

=) Ty ( !

J .
M ) Y™ (2)n,. (2.43)

7; N |+

3 1S Wave Functions

In our work, we will confine ourselves only to the wave-function in 1.5 state. They can
be obtained from Eq. (2.38) and Eq. (2.39) by setting the following values of the quantum

numbers: n=1,1=0, j = %, and

b l, ifj=1-3
—(l+1), ifj=1+3
correspondingly

1
ne=0,7v=7=1/1—(Za)> , Ny=1,E =my, a = ——.
Zam

Thus we have

g5, (1) =g (r) = 2;: 11 [ (1+ ’Y 2’7 ‘f‘)!l + O)} (1) te s,
i) r)=g()= (%) h %exp (—2) A (3.1)

Similarly for

v+3
sy w=ro=-2)""\ ey
fis, 0= 1) ==/ 1= zgls% . (32




The spherical spinors with the spin-up (M = %) are

D ) yoe (L) - L
_%>Yo<r>(0>— —, (33)

N= D=

1 cos
- , . 3.4
L% ( sin fe'® ) (3:4)

Therefore, the ground state wave function for the bound state in position space can be
expressed as

915, (1)x101(F)
2

P(r)=1{ | )
ifisy (T)x111(F)
1
(QmZoz)wr% I+y 0
= " rexp(—mZar . 3.5
VAT 2 (1 + 27) Pl ) %COS@ (8:5)
=) gin eid

Zao
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Chapter 111
Bound Muon Decay into Electron And

Neutrinos

This chapter discuss the detailed study of bound muon decay into bound electron, neutrino
and antineutrino in position space. We have used the standard Casimir’s trick method [5] to
find decay rate. Moreover, we have discussed two cases namely equal masses (m. ~ m,,) and

general cases (considering actual masses). The decay rate for the bound muon is define as

[4]

_ [ Pa e
r_/(%)3 A2 (3.6)

In BEq. (3.6) |A]” is an invariant amplitude, which can be written as
2 1 af
AF =3 > T Neg. (3.7)

In above expression N, is neutrino current and J°P is the particle current tensor, which can

be express as
JoP = Je(t, g = /d3r<f>e(r)<13u(r) exp(—tq.r). (3.8)
But if we take nearly equal masses of electron and muon, the neutrino momentum ¢ = 0,
giving
Je E/dST(T)e(T')(I)M(T).

Now let’s consider the ground state wave function for the bound state in the position space

as

1
(2mZa)3/? 1+ - 0
= Wp=1,5= 797 = 2 Za)? - Z
(b(T) 'l/} 1,5 1/2,T<T (b) \/E 2F(1 + 27>( mr Oé) eXp( mr Oé) L(lz—ay) cos 0
% sin f exp (1)
(3.9)

We can write Eq. (3.9) in a more convenient form
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_ (2mZa)? 1+~ i
o(r) = Nz T+ 2) (2mrZa)?’™" exp(—mrZa)

Here in Eq. (3.10).

0

Ut = L(1-7)
( Z—Jcosﬁ

12;07) sin 0 exp (1)

and

(2mZa)3/? 1+
Jir  \[2T(1+29)

fr) =

Using spherical coordinates

1
0

t(1—)
Z—a’Y cos 6

{029 sin 6 exp (1)

Za

x =rsinfcosy,y =rsinfsinp, z = rcosb,

We can write a position unit vector as

T

=Sy

Let’s introduce Pauli spin matrices

0 1 0 —¢ 1
Og = y Oy = y Oz =
10 ¢t 0 0

and inner product of Eq. (3.12) and Eq. (3.13) gives.

25

= sin f cos gpf—k sin 6 sin gp} + cos Ok.

(2mrZa)" texp(—mrZa).

(3.10)

(3.11)

(3.12)

(3.13)



0.7 = 0, sinf cos p + o, sinfsinp + o, cos b,

( cos 0 sin exp(—Lgb))

sin 0 exp(t9) —cosf

1 0
o () o () o

Using Eq. (3.14) and Eq. (3.15) we can write Eq. (3.11) as

D+
u+ - (L(1—7)5.7¢+ . (316)

Za

(3.14)

Let’s define

To check our result, let us calculate

o ( cos 6 sin 6 exp(—Lgb)) (O)
U.T¢+ =
sin 0 exp(t9) —cos 6 1

(s (3.17)
sin 6 exp 1o

Thus, we can see that Using Eq. (3.16) and Eq. (3.17) the expression of u, is retrieved. In

Dirac representation Gamma matrices are express as

0 g; 1 0 0 ag;
O = » Yo= s Yi=Yo = ,
o 0) o —1) 7T —o; 0

Therefore, we can write

Uy =

P+ 1= (¢
()0
_ ¢0+> _ /(%) (3.18)



(1=)
Zao

In the above expression p* = (p°, p)= (1, ¢ 7), and

(3.19)

Remember, we need to take the conjugate of p’ also and in above equation it is

1 7).
= (Lﬂ( Zoj)rl)

where, we have already taken the complex conjugate of the elements. Hence we can write

1 100 0

_ Oy ( 0 0100
wyiiy = 0) 4/ = (1000)s= . (320
++ﬂ<0 P+ //ﬂo /ﬂOOOO/ (3.20)

0 00 00

Now for ground state wave function for spin-down is
gb(r) = ¢n=1,j=1/2,¢(7’7 0, ¢)
0
(2mZa)®/? 1+ . 1
= 2mrZa)’” exp(—mrZa
VA 2I'(1 + 2v) ( ) p( ) L(IZ;J) sin 0 exp (—¢9)
L(lz;wcosﬁ

Following the same line of action

¢n=1,j=1/2,¢(7’v 0,0) = f(rju-
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where f(r) is define above, and

0
1

U==1 0-

“——Lsinfexp—t¢p

Za

t(1—7)
Z—C;’ cos 6

0
with ¢_ = <1> in the last expression. Thus

We can find

and

sin 6 exp (—Lgb))

S cos 0
oTrp_ =
(sin 0 exp (1) cos 6

_ (sin 0 exp —L¢>

—cosf

28
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Thus

(010 0)/

N
‘2|
I
A
7
o =
~__—
~—
hé
(@]
~
SO
|
A
o o o ~= O

s (3.21)

o O = O
o O o O
o O o O

Hence, making sum over the spins, we have

Zuﬂ =UpUp T UU_ = g

spin

o o o =
o o~ o
o o o o
©c o o o
o

which in a convenient 2 X 2 notation can be written as

soew=e|(g )+ )
(10
~\o o/’

Now, let us evaluate the particle current tensor J*?, we have already defined Eq. (3.8). In

the case of equal masses of electron and muon i.e., § = 0,
J, = /d?’r(fe(r)vaL(I)M(r), (3.22)

where ¢(r) is defined above and ¢(r) is its complex conjugate. Upon substituting the expres-
sion of ®,(r) and ®,(r) into Eq. (3.22) we will get

J, = /d?’rfﬂ(r)fe(r)ae’ya[/uu,

1-7s
2

where [ = . To calculate tensor J* we have to multiply J* with (J?)" and separate
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radial part

Jop = 1/2ZﬁevaLu#(ﬂeygLu#)T

spin

= 1/2ZﬁevaLu#ﬂH75Lue

spin

= 1/2Tr [ueteyo L, t,vsL]

— 1/2Tr [p(l z%) I vaLp, (1 z%)me] , (3.23)

where

o= 1y — 1 gy ana g = (1, -y —

A o}
We can solve trace of the above equation using Mathematica.Remember the three components
of p and p; are same except the sign and the situation is same for p’ and p|. However, the

zeroth component of all of them is same.

4 Equal mass case

In this case we have considered mass of electron is equal to mass of muon, therefore neutrino
momentum ¢ is nearly equal to zero. We collect all non zero terms arises corresponding to
¢2 and ¢%and the terms linear in vectors vanishes.

TERMS CORRESPONDING TO ¢

In the results below we will use g = ar, p’ = ar’, where a = L%

—8pp% +32(p'5 ) (p'P) + 8p*+8p™ + 24

32
= —8a*+ 3@4 + 8a? + 8a% 4 24

8
= §a4 + 16a® + 24

1
=8 {§a4+2a2 +3}

o Sij
3 -

In the above equation we have used 7;7; = 7

CORRESPONDING TO ¢

N
sz -

§ 2409 = 3250 ) (7)) — 8p*—8p% — 8|,
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32 32 32
=7 [24(14 ?a‘l ga‘l 3@4 16a*> + =a* - 8|,
="¢° @a4—@a2—8
9 3
7 10

Contracting neutrino tensor [4]

NP = 3—;(q ¢® — ¢*n*?) (4.1)

with the angular part of J,z gives invariant amplitude

|"4|2 = %Z JaﬁNaﬂ
GL [, 1, ) 0 7 4 )
= [qo(ga + 2a” + 3) + |4 (§a — =a? = V)| [{fo(r) fu(r))]?

Now we can calculate decay rate, using

d3q 2
I = / (27T)3 |A\

0= [ 2L (2 Laagat + 20t 9) + i (ot - o = 0 b A0

Integrating over the ¢ leads to

r= [ U L agat 20t 43+ Gt~ o~ 1} 1000

G2 [ 3 1 5 7 10
~ o2 [t + 20 3) + (Gt = 20— 1) (Ao )
Gt -mg L 4 2 |‘-715 T4 10 5 - 2
= o [ ge2(sat + 202 4 3) + 1D (Fat — St = )| LA )
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Here in the nearly equal mass limit gy = |¢] = eym,, therefore, above equation becomes

7, 10

= 2
127r3 ( at + a—|—3) E

[ e e A
=

G2 €5V5mi 1 € 75m75m
9 3

12
2 ] ACTAGHS

= evm

(1=v)

and a =1 i)

giving

G? (1 (1 —~)2
F_5.5,5 ( ”Y)

n 1} (P ()]

~ 1ppsC T e _5(1+7)2
:ﬁiﬁ%@ﬁ Q%§l+%1+w1<l+wﬂgxmhwm

G% s 55 _(1"‘7"‘72)} 4

= ¢ LSl T
iﬁ 3 3 2 (A

_GF 55 5|1t HY

BT AL R ]

The decay rate of free muon decay is [4]

1927r3

Lo =

In order to find decay ratio, divide Eq. (4.2)and Eq. (4.3), which gives

r 6455[1+7+72]
= —€c¢y |[—F].

Ty 5 3

(ot~ g2 _ 1>] PV L) P

(4.2)

(4.4)

We can evaluate branching ratio for different values of Z using Eq. (4.4). For nearly equal

masses case, the numerical value calculated by this equation is same as found by Alchemy’s

formalism [9] where the rate is calculated in the momentum space instead of the position

space.

Alchemy’s formalism | Eq. (4.4)

Z =10 1.25 x 1079 1.26 x 1079
Z =280 3.85 x 10719 3.80 x 10710
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5 General Case

In this case we have considered the actual mass of muon and electron, therefore the expo-

nential factor exp(—tq.r) takes part in muon to electron current, i.e.,

Jo = /d3r§>e(r)7aL<I>M(r)exp(—ch.F). (5.1)

Just following the method devised in the last section, we can write J,g an calculate the trace
using Mathematics. Just like the previous case, we will solve different terms one by one.
Corresponding to ¢3
First we will gather the terms that we have collected for equal muon and electron masses.
Then we will add the term which are not zero in the general case. In the results below we

will use p'= ar, o = ar’,where a = L% as we did above. Taking

—857% + 32(F 7)) (5.7 + 8pT8p2 + 24. (5.2)

Let us solve it term by term. In the exponential factors exp(—tg.7") and exp(—tq.7"), ¢ is the
neutrinos momentum and we can take it along the z—axis. Hence, the angular integration

gives

/

il _a4/d9/ exp(aqrcosﬁ’)fz/dQexp@qrcos@)?’2

= (4m)%a*jo(qr)jo(qr) (5.3)

In the above expression jy(gr) is Spherical Bessel function of order zero. Upon substituting

72 = #2 = 1 and after angular integration we have taken # = #'. Considering the term
(pp)p 7)) =at / d2'd2 exp(—uqr cos 0) exp(uqr cos 0)Fi7 ;77
=gt / 2 exp(—uqr cos )7/, / d$2 exp(1qr cos 0)7;7;. (5.4)

Here we can see that there is a summation on ¢ and j indices, and for each value of i there
are three value of j, and vice a verse. But only same values of ¢ and j term survive due to ¢

integration. Let us consider ¢ =1 and j run from 1,..., 3,
/ de' exp(—uqr cos 9’)72'?} / df2 exp(uqr cos )77
= /d_Q/ exp(tqr cos 6) / d2 exp(Lqr cos 0) (P P7) + F17o Py + Fi7sr ' 7y) .
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Remember

/ df2 exp(tqr cos 0)r17y = /dQ exp(tqr cos 0)ri73 = 0,

and

/ dS2 exp(tqr cos 0)ri7 = / d$2 exp(—uqr cos 0)ry '

:/dQexp(Lq'rcosﬁ)SinZQCosZ(b
by 2

= /d@exp@qrcos@)Sz’n%/d(bcos?gb

0 0

jl((;?“) _ 4?” [j2(qr) + jo(qr)] -

Similarly

/ d2 exp(1qr cos )fory = / d$2 exp(—uqr cos 0')r' 7

gilgr) _ 4m [72(qr) + Jo(qr)],

=4
T qr 3

and

/ dS2 exp(iqr cos 0)r3r3 = / A2 exp(1qr cos 0 )17

le(qr)
qr

= _8 + 4mjo(qr).

Thus, we can write

/ d$2" exp(—uqr cos 0)r'7 / d2 exp(tqr cos 0)7;7;
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_ 4y |2 nlar) aan) ) ey o)y Gy 2f1<qr')>}

T gr g G e
= (an? (62D ryitan' — 2intar) 220 — 2y 21
= (4)* _g (2(gr) + Jo(gr)) 2jo(qr)iolqr) — %JO(QT) (J1(gr) + jo(qr))}
= (4)* g(jz(qr)jz(qr) + Jo(gr)jolar) + 2jo(qr)iz(qr) + Jo(gr)jo(qr) — gjo(qr)(jz(qr) - gjo(qr)jo(qr))
= (am)? | itariatar) + (5 +1 3 )doarhitar) + (5 = 3 ) doaritar)
= (17 | Sinlar)iar) + gin(ar)ifar)

Therefore, Eq. (5.4) becomes

2

PN = (et |2 alar)inar) + giolaria(ar)| 5:5)

Finally

pP=p=a / d2 exp(tqr cos6) /dQ exp(tgr cos )
= (47)%a*jo(qr)jo(qr) (5.6)

Substituting Eq. (5.3), Eq. (5.5) and Eq. (5.6) in Eq. (5.2), we get

—8pp" +32(p.5 ) (p'P) + 8p*+8p™ + 24

= (4m)* [—804j0(q7")j0(q7“) + %ad‘(?b(qr)h(q?“) + jolqr)jo(qr) + 164”50 (qr)jo(qr) + 24j0(qr)jo(qr)

= (4m)%a* {8(%& +2a* + 3)j0(qr)jo(qr) + %a4(2jg(qr)j2(qr) : (5.7)
In the above expression j;(gr) is Spherical Bessel function of order i. Here we would like
to point out that we have started with the expression of the amplitude, prior to angular
integration that are derived for the equal mass. In those expressions we put the odd terms
in 7,7 to be zero. However, it is not the case when we consider actual masses. of electron
and muon. Therefore, the remaining term we are going to calculate below.

Corresponding to ¢2, the term, which otherwise was zero for equal mass is —64¢2p.7. In

this case, it gives
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—64q§ / d exp(—tqr cos 0') / d2exp(tqrcosf) = — 64a2q§(47r)2 (¢j1(qr) — tji(qr))

= — 64a’q3(47)%1(qr) 1 (qr)

Hence altogether, the term corresponding to g2 is

(4m)? {8(%614 +2a% + 3)jo(qr)jo(qr) + %a“(?jz(qr)jz(q?“) — 64a2qg(47r)2j1(qr)j1(qr)} -

3
(5.8)
Corresponding to ¢?
Again we have collected the terms that we have calculated for equal muon and electron
masses. Then we will add the terms which were zero in that case but not in general case.

The non zero terms are

q[24pp% — 32(027) (') — 8p*—8p2 — §]

—
/

—320%(4.0)(q.9) + 32(4.0)(q.0) (P.p7) — 32(T.9)(T.F) (5.9)

The first line terms gives

C2470° = 3277 (00) — 8p*=8p" — §]

= ¢ (4m)°[a*(24 - %)jo(qr)jo(qr) - %a‘*jQ(qr)jz(qr) — 16a*jo(gr)o(ar) — 8jo(ar)jo(qr)]
= @2(47T)2[a4%j((]7“)jo(q7“) - %a4jz(q7’)12(q7“) —16a”5o(qr)jo(qr) — 8jo(ar)jo(ar)]  (5.10)

Now consider the term
ﬁg(q*ﬁ’)(q*ﬁ) = @452723723

and its angular integration over df2 and df2'gives

[ 4t expiuarcost) [ aszexplear cos 0@ @) = natinar) {220 o)}

36



— nPat i) |5 alar) + ofar) + ifar)|

Famfatilar) |~ Siaan) + gintar)| (5.1)

Similarly,
/(gfp_')( 7)ds2 exp(—uqr cos 6) / df2 exp(tqr cos )

(4m)*a?jo(qr) {—2(ja(qr) + jo(qr)}

{—
(47)%a?jo(qr {—§ qr +—j0(q7”)}- (5.12)

|

Let’s look at the term

/((j’ﬁ)((j’p)(ﬁﬁ')dﬂl exp(—tqr cos 0’)/d(2 exp(tqr cos 0)

=@a? | #4r4(5.5)dS2 exp(—uqr cos ') / d2 exp(uqr cos 0)
=’ / cosOcost d2 exp(—uqr cos 6') / d2 exp(tqr cos )

ds2? exp(—iqr cos ') cos® 0 / cos? 0d$2 exp(uqr cos 0)
1qr) . 1(qr) | .
AL +Jo(q7”)> (—2]1((]—3) +J0(q7“>>

=qa"(4m)? o
:—2a4(47r>2 _§j2(qr) + éjo(qr)) (—;jg((ﬂ‘) + %jg(qr))

= a" (4m)? = (=272(qr) + jo(qr)) (=22(qr) + Jo(gr))

>—‘@|I—‘/—\/—\

252@4(4W)2§ (472(qr)j2(qr) — 4jo(qr)ja(qr) + jo(gr)jolar)) - (5.13)

Thus we have

—320%(3.0)(4.0) + 32(Z.0)(@.0)(7.p7) — 32(.7)(G.7")
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6 32 128 128 32 )

= ¢a’ (47)? gjz(qr)jo(qr) - gjo(qr)jo(qr) + sz(qr)h(qr) - Tjo(qr)jz(qr) + gjo(qr)jo(qr)

3 3

ntar)itar) — i) + "5 nar)itar) )
4

(
+aan)? (Satar)intar) — Zlaritar)
(

9 9

i) = S ilar)) (5.14)

Combing Egs. ((5.9)- (5.14)), we have

@ 2457 = 3257 (57 — 897807 — 8| =32P (T AT ) +32T 7@ (7.1 ~32.7) (@ F)

= 2 (m)la* L olar)io(ar) — % atin(ar)jalar) — 160 ofario(ar) ~ Sjolar)jolar)

S iar)iolar) — 5 abolariiolar) + —ooaialar)ia(ar) + 5 a%alarjolar) — S ajo(ar)jolar)]
56 64 64

= 472(47T)2[§a4j0(qr)j0(qr) - §a4jg(qr)jg(q7’) + 3614]'0(617“)%((]7“)

~ Sainlaryiotar) + 5 @ia(ar)iolar) — Siolar)iofar)]

= am? {8 (a = 5 = 1) doariintar) = Satitarin(ar) + 5 (a + 30 lar) ) |

Now the term which was zero in equal masses case corresponding to ¢? is 32¢%0.p+32(q.p) (cfp7)

Solving it

32/d(2/ exp(—Lqrcosﬁl)/dQexp(Lqrcosé’) <§Qﬁﬁ+ (Jﬁ)(d’ﬁ))

=64¢%a® / ds2 exp(—iqrcos @) / df2 exp(tqr cos )

—64a2q? (47)% 51 (qr) ja (qr).
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Hence altogether, the terms corresponding to ¢* are

64

(47)? [8 (7a4 _105, 1) Jolar)io(ar) — Saia(ar)ialar) + &

9 3 9 5 (a" +30%) Jolgr)ja(ar)

+ 64a2(47r)2j1(q7“)j1(q7“)]

Therefore the corresponding invariant amplitude becomes (factor of (47)? cancel out with

the spin part of 15 wave function of electron and muon)

2
| |2 = %qé <(36L +2a® + 3) <jo(q7’)fefu> 3a4 <2j2(qr)fefu>2 — 8a? <2j1(qr)fefu>2>
2
# S0 (a0 = 1) Ulan) o = St Galar) 1,
+ 2 (a* +3a®) Golar) fefu) Galar) fefu) +8a (a(ar) fefu)* |- (5.15)

Substitute Eq. (5.15) in Eq. (3.6) the decay rate becomes

1
r= [ dlae A’

GF 5
- 12w3/d‘@|q

+q <(g ‘- %a — 1) Go(gr) fofu)? — §a4 (a(qr) fe fu)

qg ((%CL4 + 2&2 + 3) <j0(qr)fefu>2 + §&4 <2j2(q7n)fefu>2 - 8@2 <2j1(q7a)fefu>2)

3

45 (0" +30%) Golar) fofu) Golar) fofy) + Sa <j1(q7")fefu>2)]

The ratio of bound to free muon decay is
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r 16

= [l [ (<§a4+2a2+3> Golar) £, + a* @ia(qr)f.f,) - 8a° <2j1(qr)fefu>2)

3

I

i ((5 -5 = D Golan) ) = Gt Ualar) )

+ g (a* +3a®) (jo(gr) fefu) (2(ar) fe ) + 8a (jl(qr)fefu>2>] : (5.16)

In the last expression jo(qr), ji(gr) and ja(gr) are the Spherical Bessel function of zero,
first and second kind respectively. After some simplification, we can find the decay ratio for
different values of Z. In Eq. (5.16), we can see that it is quite complicated and to be sure if

it is correct, it will be worthy to check if in the equal mass limit, we can retrieve the result
derived in Eq. (4.4). To see this, let us write a = 1, /=2

14y

r 16 1 7 10
L d 4 942 2L Yooy 2
£ [ ame {aGat+ 2 w3+ (o - Gt —1) Hh)

16 1 F (7. 10a2 ,
- {3q(2) (§a4+2a2+3) +€(§CL4— 3 ) <fefu> )

where, in equal masses limit gy = |¢] = eym,,, giving

(P () S (o

- S (+ BV O (1 ) Hj (1-3) v e

16 4 (1—-7v) 4 9
= mue575mz {1—5 (1 i 7)2 + 5} <fef#> (518)
_ 16 (1—7)?+3(1+7) 2
= 365")/54 < 3<1 +’Y)2 ) <fefu>
:?65’)/5(%<1—’}/) (1+7) )}127 1—2/%}
16 5 &

= 2o (- a4ap)

64 1 2
= 36575#. (5.19)

We can see that the result matches with Eq. (4.4).
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Chapter IV
Bound Muon Decay To Bound Electron
And Scalar Majoron

In the previous chapter, we have discussed the method to solve bound muon decay in
position space. We have considered the situations in which bound muon decay into a bound
electron, muon neutrino and electron antineutrino. In this section, we consider a scalar
massless Majoron (.J) instead of neutrinos, and the rest of the method is the same as we used
previously.

The interaction Lagrangian £ for Majoron emission in decay u — eJ is [10]

L = pglPreJ + [ig2PreJ. (5.20)

Here Pr = 1?5 , P = # and ¢g; and g, are dimensionless coupling constants. The
particles current becomes

J = /d?’rfu(r)fe(r)ﬂe(glpR + 92Pp)uy,. (5.21)

To calculate tensor (JJT ), we have to multiple Eq. (5.21) with (J)' and neglecting radial

part for brevity. We get in the last expression

()Y =T = 1%2 [e(g1Pr + 92P1)uy {391 P + g2Pr ), |

spin

)

spin

= éZ [e {911 +9°) + 92(1 = 7°) }up (@ { (911 + ) + 92(1 =) } )]

spin

= %Z [Ge {(g1 + g2) + (91 = 92)7° } wuTu { (91 + g2) + (91 — 92)7° } ue]
éTr [uetic { (g1 + 92) + (g1 — 92)7° } wuti { (g1 + g2) + (91 — 92)7° }]

8 2 2

(5.22)
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/ (1 —7). - o1l —) .
o= (1 iy — (1 and o1 = -0 — 1),

Again we will consider the two cases.

6 Equal mass case

The trace of Eq. (5.22) is evaluated with the Mathematica. We collected all the non-
zero terms and dropping all the terms corresponding to Levi Civita. Remember, we have
considered the masses of muon and electron to be nearly equal so the momentum of Majoron

must approach zero.

1-)
(1+7)

In the result below p'= a7, p’ = ar’'m where a = . This gives

1 / RG] —
lon+ 92)° [1 + 0°p% + pPp? } +2(q1 — g2)Pp
1
= 5(9? +¢3) [1+ a* + a® + a®] +2g192 [0]

= (g 92 [1 420 4 o]

2
1 42
= (g1 4+ ¢2)*———.
2
/‘)/
=2(gl + ¢2)* ———
Here, we have used 7;7j = 7#i 1, = % Finally the expression of invariant amplitude becomes
iT 3
2 s 2
|Al" = 2(g1 + g2) (e [ fe(r) fu(r)] - (6.1)
The corresponding decay rate is define as
r 4
(B, — E)|AP. (6.2)

Lo mu(g? + g3)

To evaluate decay ratio, let us substitute the expression of amplitude in Eq. (6.2). This gives

r # B 2

Ty mu(g] +9§)<E“ Ee) 4l
B Bl 4 2P ) ()
mu(g3 +g3) " (1+7)? S
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where, (E, — E.) = v(1 — b)m,, and b = 0.99, gives

r (g1 + g2)? 2
— 9 M- TI8) —b)m 7
Ly my(Ql +92 +’Y W

(91 + g2)?
— zmy (1—b) (6.3)

Finally, considering case when g; = go = 1 Eq. (6.3), calculated decay ratio for Z = 10 and

Z =80 is

r
— =3.96809 x 1072, Z = 10.
Lo

r
— =2.14081 x 1072, Z = 80.
[o

7 General case

In the general case, we considered the actual masses of muon and electron, so exponential
factor take part in angular integration over d€2 and df2’. Let us evaluated it step by step as

follows

JZ%TF [ﬂ(1+270>/((91+gz)+(91—gz)v ) /i (H%)ﬂl ((g1+g2) + (91 = 92)7°)

The trace of above expression is already obtained.

Terms Corresponding to (g1 + ¢2)°
[1 + R+ p5+p5’} . (7.1)
We have

p?=p?=d / d$2 exp(1qrcosd') / df2 exp(tqr cos )

(4m)%a*jo(qr)do(qr), (7.2)

/

PPt =at / d$2 exp(iqr cos ) / d2 exp(tqr cos )

= (4m)%a"jo(qr)jo(qr), (7.3)
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and

(p.7) = /dQ/ eXp<Lq7‘COS8/)/dQeXp(LC]T‘COSQ)

= (4m)%a*(1jr(qr)) (—eia(qr))
= (4m)*a’ja(q7)j(qr). (7.4)
Using Eq. (7.2) and (7.3) in Eq. (7.1), give

L+ 72+ | = [<4w>2jo<qr>jo<qr> + (@matjolar)olar) + (4% jolar) jolar)

+ (47)2a*50(qr)jo(qr)

= (4m)” [[jo(qr)jo(qr) +ajo(qr)jo(ar) +2a%jo(qr)jo(qr) | -
= (4m)*{1 + 2a” + a" }jo(ar)jo(ar) (7.5)
Corresponding to (g1 — g)2
(9:7)" = (4m)a®ji(gr)jr (ar). (7.6)

Combining Eq. (7.5) and Eq. (7.6) leads to

1

5 (91 + 92)" (4m)*{1 + 20° + a" Yo (qr)io(ar) — 2 (91 — 92)” (4m)*a®ju (qr)in (ar).

Remember, jy(gr) and j,(gr) are Spherical Bessel function of 0** and 1% kind, respectively.
The factor of (47)? cancels out with the spin part in the 1.5 wave function of electron and

muon. Collecting all the terms gives the invariant amplitude to be

A = (914 92)° (1+2a% + a*) Golgr) fo(r) £u(r))* —2(g1— g2)a® (jr(qr) fe(r) fu(r))? . (7.7)

The corresponding decay ratio is

== (B, — Eo) |AP. (7.8)
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In order to evaluate decay ratio put the Eq. (7.7) into Eq. (7.8), giving

r 4 (g1 + ¢2)?
= =—">(Bu—E)——F—
F0 mu(gl + 92) 2

{14+2a°+a"} Golar) fe(r) fu(r))* —2(g1—92)*a’ (jl(CIT)fe(T)fu(T»QI :

After putting a = ¢ 8;:3 and (E, — E.) = v(m, —m.), in the last expression, we will get

L_ Y(mu —me) [ (g1 +92)* (Y E ()£ ()2 - L(1—7)?
Iy _4mu(g%+g%) |: 2 ( ) <JO(q )fe( )f#( )> +2(91 92) —(1+7)2

_ (mu_me) (91+92) ’Y . . 9 B 27(1_7)2 o . ; ,
= e e oL BLY G ) 00 + 2o = T Gl ) )

<j1<qr>fe<r>fu<r>>2]

(7.9)

Using the numerical values of the electron and muon masses, and by considering Z = 10 and

Z = 80, the numerical values of the branching ratio are

r
— =4.73457x 1077, Z = 10
[y

r
=2.35375 x 107%, Z = 80.
To

If we would like to reproduce the result of equal mass, we need to put jo(qr) — 1,j1(¢r) = 0
and (E, — E.) = v(1 — b)m,, in Eq. (7.9), which gives

I _ -y 2 S
£ = I Lot + g s ]
2v3(1 = b) 4
NCEY) (91 + g2)° Z W]
o lgitge)? s
=Pt

This result is the same as given in Eq. (6.3).

Chapter V

Conclusion

In this work, we have calculated decay rates of two types of decay mode of u — e
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conversion using Casimir’s trick in position space. As a first step we have calculated the
decay rate of bound muon decay into bound electron and neutrinos (Zp) — (Ze)v,v.. In
order to find it, we have have evaluated Dirac wave-functions for Coulomb potential and
using them we have calculated invariant amplitude. Using it we have computed the value of
the decay rate for different values of Z and in equal mass limit we find that the value of the
bound to free muon decay rate is equal to the one calculated in Alchemy’s formalism [9].

In the second part, we have studied a neutrino-less conversion of a bound muon into
bound electron. Here, we have calculated decay ratio of u — eJ, where J is a Majoron by
using the same method as we did for (Zp) — (Ze)v,v. decay, where instead of neutrinos we
have consider mass-less scalar Majoron (J). We find that the value of decay branching ratio
in this case is of the order of 10~7and 107% for Z =10 and Z = 80, respectively. We hope
that the present study is useful for the future CLFV experiments such as Mu2e and COMET
at JPARC.
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Chapter VI

Appendix

8

A:Integration over position space

Let’s evaluate integration of position part of Dirac wave function.
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27 2v+1 . v—1 1
(2Za)77 (memy) it /dr3.r2'y_2 exp[—(me + my,)rZal

[ 101840 = = (11 2)
— (QZO‘)QVJr;(?TmemM)W_l 2F(111727) /7“2 sin 0dOd¢dr.r*'~* exp|—(m, + my,)rZal
_ (2204)2v+;(7rmemp)7—1 2P(111727) /dr.rw exp|—(me + my,)rZal /07T sin 6d6 /027r do
- R A2 [ expl (o, + ) Zalim
1+ I'(1+29)

— (27 2v+1 . v—1
(2Za) mem,) SR A 23) [ime + my) Za] ™

2v+1
2 ) e (122
me +my, K 2

(1 —€e)my,in Eq (8.1) we will get

Upon substituting m.

/f(?“)efu(r) = ((1 - E)ﬂiu . mu>27+1 (1— E)mi)7—1/2 (HT’Y>
(i)
()

9 B:Evaluation Of angular integration

Let’s evaluate one by one the angular integration over df2 and df2’ we used above.

pg’:*pQ = a2 / d$2 exp(1qrcos0') / df2 exp(tqr cos )
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Thus.

/ df2 exp(Lqr cos 6) / sin 8dOd¢ exp(tqr cos 6)

o\

2m
sin 0 exp(tqr cos 0)do / do
0

exp(tqrcos )1 9
—|———| 27
Lqr 0

_ o {exp(—bqr) B exp(bqr)}

Lqr Lqr
2m
= Lq_T [exp(iqr) — exp(—gr)]
_Am [exp(igr) — exp(—uqr)
i
dr .
= q—TSzn(qr) =4 Jo(qr)z
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and
/ dS2 exp(1qr cos 0)ri7 = / d$2 exp(1qr cos #) sin® f cos® ¢
= / sin 0dfde exp(tqr cos #) sin? § cos? ¢

= / sin® @ exp(1qr cos 0)do / cos” ¢da

= /sin2 6. sin 0 exp(tqr cos )dl.w

[, . . dsin? 6
=7 |sin“ @ | sinfexp(wgr cos)dl — sin @ exp(tqr cos 6)d6. 7 do

— x |sin20 {_M} _ / {_M} Qsingcosgde}

I Lqr Lqr

[ 0 2

= | —sin? GM + — / exp(wgr cos @) sin 6. cos Hdﬁl

I Lqr Lqr

_ [_ Gin? eexp(Lqr cos ) L2 2
Lqr Lq

_//exp(bqrcos@ sin&d@.di;;edﬁ}]

:W[_smzew+ 2 {_QM

{cos 0 / exp(wgr cos @) sin 0do
-

qr wqr qr

_/ exp(tqr cos0) sm@d@}]
Lqr

= [ sin gexp 1qr cos 0) 4 2 {_ COSHGXP(LC]T cosf) exp(qur ;os 0) H
qr Lgr Lgr q-r
0 0 2 9 ™
=7 |—sin eexp tqr cos 6) 2coseexp(bqr cos)  2exp(igrcosb)
7’ q2r2 ng’r"?’ .

o sin2 g SR %), _exp(—aqr) B exp(tqr)
Lqr 2r2 2r2

B 2{exp(—bqr) _exp(eqr) ]

/,q37”3 Lq3T3

- [_ ACos(ar) | 4Sin(q7’)]

2r? ¢
. _ Cos(gr) N Sin(qr). :47TJ1(QT)
2r? P qr
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Similarly for 7o7y and 7sfs.

/dQexp(LquOSQ)fgfg = /dQeXp(LqTCOSH).COS20

/C’os%Sin@exp@quos@)d@/dqf)

/COSQH.SinG exp(tqrCosh)df.2m

2
— o1 {00329./Sin@exp@qu’os@)d@—//Sin@exp@qu’os@)dé’.dC;; edé’}

o {00529 {—M} _ / {—M} _ QCoseSinQdH}

gr gr

T [00329 {_M} _ / {M} QSiHGOOSQdQ}

Lqr Lqr

T {—Cos GeXp(LqTCOSQ — %/ p(tgrCosh)Sind. Cos@d@]

o2 SXpliarCost) eXp(LQTCOSQ 2

=T

{Cos@ / exp(tqrCosh)Sinfdo

Lqr

_//exp(&quosQ)Sz’n@d@.dodzsedﬁ}]

exp(igrCost) 2 {_Coseexp(aqu’OSQ) _exp(grCost) }}

Lqr Lqr Lqr q3r?

=27 [—00529

exp(tqrCosh)

=27 {—00326’ - QCOSHGXP(“]TCOSH) B 2€Xp(bq7“0039)}
0

Lqr q°r? Lg3r3

_ [% B {exp(—bqr) B eXp(—Lqr)} _2 {_eXp(_Lqr) B eXp(bqr)}

Lqr Lqr q°r? q°r?

9 exp(—uqr)  exp(qr)
L33 133

_ o [ySinlgr)  ,Cosar) _, Sin(ar)
o [2 y ) }

qr 2r? Brd
_ 47TSin(qr) N 8Cos(qr) B 8Sin(qr)
qr 2r? $rd
Jalgr)

= 4mjo(qr) — 8w
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