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List of Notations and Abbreviations

QED - Quantum Electrodynamics

SM-Standard Model

CLFV- Charge leptop �avor violation

Z- Atomic number

α- Fine structure constant

ε = 0.01

b=0.99

me-mass of electron

mµ-mass of muon

g1and, g2-Coupling constants

gµν - Minkowski metric

p (Roman style) - 4-vectors

p (Bold face) - 3-vectors

p = |p| (Italic style) - scalars

�p = pµγ
µ - Operators contracted with gamma matrices

γµ = (γ0,γ) - Dirac matrices

a = ι
√

1−γ
1+γ

Indices:

Latin letters (i, j) run over 1, 2, 3

Greek letters (µ, ν) run over 0, 1, 2, 3.

3



Abstract

Like an electron, the muon can be localized under the central potential of a nuclei to

form a muonic atom. Its decay into an electron gives continuous as well as the discrete

energy spectrum. To study muon decay, a lot of experiments have been performed to �nd

the possible new physics, also known as physics beyond the SM. In this dissertation, we

studied bound muon dec`-ytfday to a bound electron and neutrinos and calculated the

branching ratio for di�erent values of Z . We have also studied neutrino-less conversion

of bound muon into a bound electron by taking a scalar Majoron instead of neutrinos.

We hope that the present work is useful to hunt for the CLFV in muon decays.

b
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Part I

Introduction

The muon is an elementary particle, similar to an electron in many respects, but its mass

is 207 times greater than an electron, therefore, having small Bohr radius (it is inversely

proportional to mass r v 1
m
) and has a �nite lifetime (about 2.2µs). It was �rst discovered

in cosmic-ray interactions in 1937, the study of its characteristics and decay rate contributed

a vital role to developed and test the SM. A muonic atom can be formed by bombarding a

high-energy muon beam on an atom. The atom captures muons, which fall into a 1S state

because of heavy weight, ejecting all electrons in the atom. Within SM the muon decay into

electron as

µ→ e+ νµ + ν̄e,

where νµ and ν̄e are neutrino and antineutrino of muon and electron, respectively, which

are considered to be mass less. The SM is not complete yet. The nature of the �avors

of elementary particles is mysterious, their characteristics and structure let us think and

research beyond the SM. Experiments are conducted at Fermi lab [1] and Coherent Muon

to Electron Transition (COMET) [2] to �nd physics beyond SM. Both experiments focus

on studying muon to electron conversion without emission of neutrinos, which led to occur

CLFV. To explain the CLFV, neutrino oscillation is considered, which states that, while

propagating in space the neutrino beam no longer contains initial charge �avor (νe, νµ,ντ )

i.e., it continuously converts from one �avor to another �avor. It means the neutrinos masses

are non-zero and distinct, the �avor of neutrino is determined as a superposition of so-called

mass eigenstates. Suppose the mass eigenstates are ν1, ν2 and ν3 then the neutrinos �avor is

expressed as:

νe = ae1ν1 + ae2ν2 + ae3ν3

νµ = aµ1ν1 + aµ2ν2 + aµ3ν3

ντ = aτ1ν1 + aτ2ν2 + aτ3ν3.

In above expressions a1,a2 and a3 represent normalization constants. However, even consid-

ering the neutrino oscillation the predicted branching ratio of CLFV processes are less than

10−50 [3] which is beyond the sensitivity of any ongoing or future experiments. However, if

we �nd the experimental signatures CLFV, it would be a hint of a new physics.

The purpose of this work is to study the SM decay rate of a bound muon into a bound
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electron in position space. First of all we will focus on the SM decay (Zµ)→ (Ze)νµν̄e, where

(Zµ) and (Ze) correspond to the bound muon and bound electron, respectively. Later we

�nd the branching ratio of bound muon decaying to a bound electron with emission of scalar

Majoron (J), i.e., (Zµ) → (Ze)J , which is purely a lepton �avor violating decay. In both

decays, we considered the nucleus to be spin-less and there is only a muon in the 1S state.

This dissertation is organized as follows: In Chapter 2 we �nd the exact solutions for a

bound muon and electron [4] , comprising of solving Dirac equation in the presence of central

potential. We derived wave-function in the point nucleus approximation by considering the

Coulomb potential V (r) = −Ze
r
, and obtained wave functions for the 1S state.

Chapter 3 is based on detailed calculation of bound muon decay into a bound elec-

tron, neutrino and antineutrino: (Zµ) → (Ze)νµν̄e in position space. We use the standard

Casimir's trick based method [5], to �nd the transition amplitude. In order to �nd the de-

pendence of the decay rate on Zα, we consider the equal muon and electron mass. Later, by

considering the actual masses of these particles, we will calculate the dependence of decay

rate on the Zα.

Chapter 4 comprises of complete calculation of decay rate of (Zµ) → (Ze)J decay. We

followed the same method as we developed in Chapter 3, except by changing the the coupling

at µ→ e vertex, which in this case is just 1− γ5. We �nd that in the equal muon to electron

mass limit, the branching ratio goes as the third power of γ =
√

1− (Zα)2 , which is quite

di�erent from the (Zµ) → (Ze)νµν̄e. The main �ndings of the work are concluded in the

Chapter 5.
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Chapter II

Dirac Equation in External

Electromagnetic Field

In order to study bound muon decay, �rst of all, we have to obtain relativistic wave

function of an initial state of muon and �nal state of electron. Therefore, we solve Dirac

equation in central �eld, which can be solved analytically for Coulomb potential [4].

1 Central Field Dirac Equation for Relativistic Electron

The total angular momentum for an electron moving in a spherically symmetric �eld is

given by

J = L + S, (1.1)

where

L = r× p, (1.2)

is the orbital momentum and spherical harmonics are its eigen functions Y m
l (r̂):

L2Y m
l (r̂) = l (l + 1)Y m

l (r̂) , (1.3)

LzY
m
l (r̂) = mY m

l (r̂) . (1.4)

The operator

S =
1

2
σ, (1.5)

is the spin momentum whose eigen functions are two-component spinors ηµ

S2ηµ =
1

2

(
1

2
+ 1

)
ηµ =

3

4
ηµ, (1.6)

Szηµ = µηµ, (1.7)

where µ = ±1
2
. In the presence of an electromagnetic �eld, the stationary Dirac equation can

be de�ned as

[γµ (pµ − eAµ)−m] Φ = 0. (1.8)

Using this equation we have derived the Dirac-Coulomb Hamiltonian HDC (r) which satis�es
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the following equation given below

HDC (r) Φ (r) = EΦ (r) ,

where

HDC (r) = α · p− e2Z

|r|
+mβ. (1.9)

The wave function Φ in the component form is

Φ (r) =

(
Φu (r)

Φι (r)

)
=

(
gEjl (r)χjlM (r̂)

ifEjl (r)χjl̄M (r̂)

)
, (1.10)

where the quantum number l de�nes the orbital angular momentum and l̄ will be de�ned

below. The functions gEjl (r) and fEjl (r) are the radial wave functions corresponding to

upper and lower components, respectively. The two-component functions χjlM (r̂) have only

the angular dependence. As HDC commutes with both operators J2 and Jz, so wave function

Φ (r), or their angular parts χjlM (r̂) , must be their eigen function as well:{
[HDC (r) ,J2] = 0

[HDC (r) , Jz] = 0
⇒

{
J2Φ (r) = j (j + 1) Φ (r)

JzΦ (r) = MΦ (r)
. (1.11)

The angular wave functions χjlM (r̂) satisfy the set of relations (1.11)

J2χjlM (r̂) = j (j + 1)χjlM (r̂)

χjlM (r̂) = MχjlM (r̂) ,

. (1.12)

therefore, the functions χjlM (r̂) can be described as a linear combination of the spherical

harmonics Y m
l (r̂) and two-component spinor ηµ

χjlM (r̂) =
∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ. (1.13)

Here Cjm
j1m1j2m2

are the Clebsch-Gordan coe�cient for which the following identities are sat-

is�ed

|j1 − j2| ≤ j ≤ j1 + j2. (1.14)
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The spherical spinors form a complete set of ortho-normalized wave functions

�
dΩ (χjlM)† χj′l′M ′ = δjj′δll′δMM ′ . (1.15)

Thus using Eq. (1.13) in Eqs. (1.3) and (1.6), we get

L2χjlM (r̂) =
∑
mµ

CjM

lm 1
2
µ

[
L2Y m

l (r̂)
]
ηµ

= l (l + 1)
∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ = l (l + 1)χjlM (r̂) , (1.16)

S2χjlM (r̂) =
∑
mµ

CjM

lm 1
2
µ

[
S2Y m

l (r̂)
]
ηµ

=
3

4

∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ =

3

4
χjlM (r̂) . (1.17)

The quantum number l appearing in Eq. (1.10) represents the orbital momentum of the

particle along with its parity. Now take the space inversion P : r→ −r in the Dirac equation

(1.8). Such transformation will directly act on the position space on which the wave function

(1.10) is de�ned as

Φ (t, r)→ Φ′ (t,Pr) = PΦ (t, r) , (1.18)

where P is the linear operator which should preserve the invariance of the Dirac equation

P [γµ (pµ − eAµ)−m] Φ′ (t,Pr) = 0. (1.19)

Thus

P [γµ (pµ − eAµ)−m]PΦ (t, r)

=
[
P
{
γ0 (p0 − eV )

}
−P {γ · (p− eA)−m}

]
PΦ (t, r)

=
[
γ0 (p0 − eV ) + γ · (p− eA)−m

]
PΦ (t, r) = 0. (1.20)

Since the last expression can be expressed as [γµ (pµ − eAµ)−m] Φ (t, r) = 0, it means that

γ0P = Pγ0, γP = −Pγ, (1.21)

and we can satisfy Eq. (1.21) if we choose

P = cpγ
0, (1.22)
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where cp is some c-number, which actually depends on the particle's intrinsic parity. Now

PΦ (t,Pr) = cpγ
0Φ (t,−r) = cp

(
gEjl (r)χjlM (−r̂)
−ifEjl (r)χjl̄M (−r̂)

)
. (1.23)

The space inversion only a�ects the spherical harmonics Y m
l (r̂) = Y m

l (θ, φ) in the spherical

polar coordinates in the following manner

P :

{
θ → π − θ
φ→ π + φ

⇒ PY m
l (θ, φ) = (−1)l Y m

l (θ, φ) . (1.24)

Therefore,

χjlM (−r̂) =
∑
mµ

CjM

lm 1
2
µ
Y m
l (−r̂) ηµ = (−1)l χjlM (r̂) . (1.25)

Using the above result in Eq. (1.23) we get

PΦ (t,Pr) = cp

(
gEjl (r) (−1)l χjlM (r̂)

ifEjl (r) (−1)l̄+1 χjl̄M (r̂)

)
, (1.26)

where the components of this wave function should have the same parity as they have in Eq.

(1.10). It follows that

l = l̄ + 1. (1.27)

From the system of two equations for the upper and lower components of the bispinor (for

detailed derivation see Appendix A of [4]), it follows

(E +m) Φι (p) = (σ · p) Φu (p) , (1.28)

(E −m) Φu (p) = (σ · p) Φι (p) . (1.29)

After substituting the explicit form of upper and lower components of equation (1.10) in Eq.

(1.28), it becomes

(E +m) ifEjl (r)χjl̄M (r̂) = p (σ · r̂) gEjl (r)χjlM (r̂) . (1.30)

Under the spatial rotation (σ.p) acts in a similar way as (σ.r̂). Thus

(σ · r̂)χjlM (r̂) = cχjl̄M (r̂) . (1.31)
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Using orthogonality condition
�
dΩ (XjlM)†Xj′l′m′ = δjj′δll′δmm′ , the constant becomes

c =

�
χ†
jl̄M

(r̂) (σ · r̂)χjlM (r̂) dΩ. (1.32)

To evaluate this integral it will be useful to de�ne unit vectors in terms of spherical coordinates

r̂x =

√
2π

3

(
Y −1

1 − Y 1
1

)
,

r̂y =i

√
2π

3

(
Y −1

1 + Y 1
1

)
, (1.33)

r̂z =2

√
π

3
Y 0

1 ,

where x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ and Y −1
1 = 1

2

√
3

2π
e−iφ sin θ, Y 1

1 = −1
2

√
3

2π
eiφ sin θ

,Y 0
1 = 1

2

√
3
π

cos θ. Then use the formula for the integration of three spherical harmonics

�
dΩY m1∗

l1
Y m2
l2
Y m3
l3

=

√
(2l2 + 1) (2l3 + 1)

4π (2l1 + 1)
C l1m1
l2m2l3m3

C l10
l20l30. (1.34)

Also the Pauli matrices act on spinors in a following manner

η†µ1σ
xηµ2 =δµ1,−µ2 , (1.35)

η†µ1σ
yηµ2 = (−1)1−µ1 δµ1,−µ2 , (1.36)

η†µ1σ
zηµ2 = (−1)

1
2
−µ1 δµ1,µ2 . (1.37)

Inserting everything in Eq. (1.32), we obtain the coe�cient c that is equal to −1. Thus, Eq.

(1.31) can be rewritten as

Xjl̄M(r̂) =− (σ.r̂)XjlM(r̂).

Substitute these result into the set of equations (1.28) and (1.29) with Coulomb Potential

(E − eV −m) Φu (p)− (σ · p) Φι (p) = 0,

(E − eV +m) Φι (p)− (σ · p) Φu (p) = 0,
(1.38)
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we get the following equation for the lower component of the Dirac bispinor

(σ · p) Φι (p) = i (σ · p) fEjl (r)χjl̄M (r̂) = −i (σ · p) (σ · r̂) fEjl (r)χjlM (r̂) . (1.39)

Using Pauli matrices identity (σ · p) (σ.r) = (p.r) + iσ. [p× r], and r̂ = ~r
|r| , Eq. (1.39)

becomes

(σ · p) Φι (p) = −{i (p · r)− σ · [p× r]} fEjl (r)
r

χjlM (r̂)

= −
{

(∇ · r) fEjl (r)
r
− σ · [p× r]

fEjl (r)

r

}
χjlM (r̂)

= −
{
r∇
(
fEjl (r)

r

)
+
fEjl (r)

r
div (r) + (σ · L)

fEjl (r)

r

}
χjlM (r̂) . (1.40)

With the di�erential calculus identity

∇. (fA) = f (∇.A) +A. (∇f) ,

Eq. (1.40) leads to

(∇.r) fEjl (r)
r

= r∇.
(
fEjl (r)

r

)
+
fEjl (r)

r
div (r) ,

(∇.r) fEjl (r)
r

= r∇.
(

1

r

)
fEjl (r) +

dfEjl (r)

dr
. (1.41)

As we know div (r) = 3, r∇.
(

1
r

)
= −1

r
, hence Eq. (1.41) becomes

(∇.r) fEjl (r)
r

= −fEjl (r)
r

+ 3
fEjl (r)

r
+
dfEjl (r)

dr
=

2

r
fEjl (r) +

dfEjl (r)

dr
,

(σ.p)Φl (p) = −
{

2

r
fEjl (r) +

dfEjl (r)

dr
+

1

r
(σ.L) fEjl (r)

}
XjlM(r̂). (1.42)

Now consider the operator identity

J2 = (L + S)2 = L2 + 2S · L + S2 ⇒ 2S · L = σ · L = J2 − L2 − S2, (1.43)
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which upon acting on a spherical spinor χjlM (r̂) gives

(σ · L)χjlM (r̂) =
(
J2 − L2 − S2

)
χjlM (r̂) =

[
j (j + 1)− l (l + 1)− 3

4

]
χjlM (r̂) ,

≡ − (1 + κjl)χjlM (r̂) , (1.44)

where the quantum number κjl can be de�ned as

κjl = l (l + 1)− j (j + 1)− 1

4
. (1.45)

If j = l − 1
2
then

κjl = l (l + 1)−
(
l − 1

2

)(
l +

1

2

)
− 1

4
= l2 + l − l2 +

1

4
− 1

4
= l (1.46)

and if j = l + 1
2

κjl = l (l + 1)−
(
l +

1

2

)(
l +

3

2

)
− 1

4
= l2 + l − l2 − 2l − 3

4
− 1

4
= − (l + 1) . (1.47)

To sum up

κjl =

{
l, if j = l − 1

2

− (l + 1) , if j = l + 1
2

, or κjl =

{
j + 1

2
, if j = l − 1

2

−
(
j + 1

2

)
, if j = l + 1

2

, (1.48)

and

κjl =− κjl̄, (1.49)

l̄ =l − 1. (1.50)

Now Eq. (1.42) can be expressed in terms of the newly de�ned quantum number κjl

(σ.p)Φl (p) =−
{
dfEjl (r)

dr
+

(2− 1− kjl)
r

fEjl (r)

}
XjlM(r̂),

(σ · p) Φι (p) = −
{
dfEjl (r)

dr
+

1− κjl
r

fEjl (r)

}
χjlM (r̂) . (1.51)

Similarly, for the upper component of the Dirac bispinor
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(σ · p) Φu (p) = (σ · p) gEjl (r)χjlM (r̂) = − (σ · p) (σ · r) gEjl (r)
r

χjl̄M (r̂)

= −{−i (∇ · r) + iσ · [p× r]} gEjl (r)
r

χjl̄M (r̂)

= −{−i (∇.r)− iσ.L} gEjl (r)
r

Xjl̄M(r̂)χjl̄M (r̂) .

using kjl = −kj l̄

(σ.p)Φu (p) = i

{
(∇ · r) gEjl (r)

r
− (1− kjl)

r
gEjl

}
Xjl̄M(r̂),

(σ.p)Φu (p) = i

{
2

r
gEjl (r) +

dgEjl (r)

dr
− (1− kjl)

r
gEjl (r)

}
Xjl̄M(r̂),

(σ.p)Φu (p) = i

{
dgEjl (r)

dr
+

(1 + kjl)

r
gEjl (r)

}
Xjl̄M(r̂). (1.52)

Using the above results in Eq. (1.38) and after simplifying we get(
d
dr

+
1+κjl

r

)
gEjl (r)− (E − eV +m) fEjl (r) = 0,(

d
dr

+
1−κjl

r

)
fEjl (r) + (E − eV −m) gEjl (r) = 0.

(1.53)

2 Electron in Coulomb Field of Point Nucleus

Now we will derive wave functions in the point nucleus approximation, which is valid only

for Zα� 1. Consider the Coulomb potential V (r) = −Ze
r
for the set of equations (1.53). In

the limit r→ 0 the set of equations (1.53) reduces to the following form

r
d

dr
fEjl (r) + (1− kjl) fEjl (r) + r (E − eV −m) gEjl (r) = 0, (2.1)

r
d

dr
gEjl (r) + (1 + kjl) gEjl (r)− r (E − eV +m) fEjl (r) = 0, (2.2)

r
d

dr
fEjl (r) + fEjl (r)−

kjl
r

(rfEjl (r)) +

(
E +

Ze2

r
−m

)
(rgEjl (r)) = 0, (2.3)

r
d

dr
gEjl (r) + gEjl (r) +

kjl
r

(rgEjl (r))−
(
E +

Ze2

r
+m

)
(rfEjl (r)) = 0. (2.4)
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Now the terms proportional to E ±m will be neglected, giving

d
dr

(rfEjl (r))− k
r

(rfEjl (r)) + Ze2

r
(rgEjl (r)) = 0,

d
dr

(rgEjl (r)) + k
r

(rgEjl (r))− Ze2

r
(rfEjl (r)) = 0.

(2.5)

As we know α = e2

~c , we will make following change of variable and indices are dropped here

for brevity

G (r) = rgEjl (r) , F (r) = rfEjl (r) , (2.6)

(
d
dr

+ κ
r

)
G (r)− Zα

r
F (r) = 0,(

d
dr
− κ

r

)
F (r) + Zα

r
G (r) = 0.

(2.7)

In Eq. (2.7) the terms proportional to E±m were neglected. Let's consider that the solutions

of Eqs. (2.7) are of the form

G (r) = G0rγ, F (r) = F0rγ. (2.8)

Upon substitution in Eq. (2.7), we have

F0γrγ−1 − kF0rγ−1 + ZαG0rγ−1 = 0,

G0γrγ−1 + kG0rγ−1 − ZαF0rγ−1 = 0.
(2.9)

As rγ−1 6= 0, we get

G0 (γ + κ)− F0Zα = 0,

G0Zα + F0 (γ − κ) = 0.
(2.10)

This system has non-trivial solutions only when∣∣∣∣∣ (γ + κ) −Zα
Zα (γ − κ)

∣∣∣∣∣ = 0⇒ γ2 = κ2 − (Zα)2 . (2.11)

2.1 Solution For Radial Equation:

Let the solutions for the radial wave functions in Eq. (1.53) be of the form

g (x) =
√
m+ Ee−

1
2
xxγ−1 [W1 (x) +W2 (x)] , (2.12)

f (x) = −
√
m− Ee−

1
2
xxγ−1 [W1 (x)−W2 (x)] , (2.13)
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where the indices Ejl were dropped and some variables were rede�ned as

x = 2λr, λ =
√
m2 − E2,=⇒ d

dr
= 2λ

d

dx
. (2.14)

Now we will express Eq. (1.53) in terms of Eq. (2.14), as follows

2λ

(
d

dx
+

(1 + k)

x

)
g (x)− (E +m) f (x)− 2Zλα

x
f (x) = 0. (2.15)

Using the radial functions given in Eq. (2.12) and Eq. (2.13) in above equation, it becomes

2λ

(
d

dx
+

1 + κ

x

)
g (x)− (E +m) f (x)− 2Zαλ

x
f = 0,

2λ

(
d

dx
+

(1 + k)

x

)(√
m+ Ee−

1
2
xxγ−1 [W1 (x) +W2 (x)]

)
−
(
E +m+

2Zλα

x

)(
−
√
m− Ee−

1
2
xxγ−1 [W1 (x)−W2 (x)]

)
= 0,

√
m+ Ee−

1
2
xxγ−1 {W1 (x) +W2 (x)}

[(
−1

2

)
+

(γ − 1)

x

]
+ e−

1
2
xxγ−1

√
m+ E

[
d

dx
(W1 (x) +W2 (x)) +

(1 + k)

x
[W1 (x) +W2 (x)]

]
√
m− Ee−

1
2
xxγ−1 {W1 (x)−W2 (x)}

[
1

2λ
(E +m) +

Zα

x

]
= 0.

As
√
m+ Ee−

1
2
xxγ−1 6= 0, after simpli�cations we get

[
−1

2
+

(γ − 1)

x
+

(1 + k)

x

]
[W1 (x) +W2 (x)] +

d

dx
(W1 (x) +W2 (x))(

Zα

x

)√
m− E
m+ E

[W1 (x)−W2 (x)] + [W1 (x)−W2 (x)]

√
m2 − E2

2λ
= 0,

[
−x

2
+ γ + k

]
[W1 +W2] + x

d

dx
[W1 +W2] +

(
x

2
+ Zα

√
m− E
m+ E

)
[W1 −W2] = 0. (2.16)

Rearrangement of Eq. (2.16) gives

x
d

dx
(W1 +W2) + (γ + κ) (W1 +W2)− xW2 + Zα

√
m− E
m+ E

(W1 −W2) = 0. (2.17)

Following the same procedure for the second equation of (1.53), as a �rst step we get
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2λ

(
d

dx
+

1− k
x

)
f (x) + (E −m) g (x) +

2λZα

x
g (x) = 0.

Again using the radial functions de�ned in Eq. (2.12) and Eq. (2.13), we obtain

2λ

(
d

dx
+

1− k
x

)√
m− Ee−

1
2
xxγ−1 [W1 (x)−W2 (x)]

−
(
E −m+

2λZα

x

)√
m+ Ee−

1
2
xxγ−1 [W1 (x) +W2 (x)] = 0,

√
m− Ee−

1
2
xxγ−1 {W1 (x)−W2 (x)}

[(
−1

2

)
+

(γ − 1)

x

]
+ e−

1
2
xxγ−1

√
m− E

[
d

dx
(W1 (x)−W2 (x)) +

(1− k)

x
[W1 (x)−W2 (x)]

]
√
m+ Ee−

1
2
xxγ−1 {W1 (x) +W2 (x)}

[
1

2λ
(m− E)− Zα

x

]
= 0.

After some simpli�cation, it will lead to

(W1 −W2)
(
γ − k − x

2

)
+ x

d

dx
(W1 −W2) +

x

2
(W1 +W2)− Zα

√
m+ E

m− E
(W1 +W2) = 0,

x
d

dx
(W1 −W2) + (γ − κ) (W1 −W2) + xW2 − Zα

√
m+ E

m− E
(W1 +W2) = 0. (2.18)

Adding Eqs. (2.17) and (2.18), we have

2

[
x
d

dx
W1 + γW1 + kW2

]
+(Zα)W1

[√
m− E
m+ E

−
√
m+ E

m− E

]
−ZαW2

[√
m− E
m+ E

+

√
m+ E

m− E

]
= 0,

x
d

dx
W1 + γW1 + kW2 +

ZαW1

2

[
−2E

λ

]
− ZαW2

2

2m

λ
= 0,

x
dW1

dx
+

(
γ − ZαE

λ

)
W1 +

(
κ− Zαm

λ

)
W2 = 0. (2.19)

And in case of subtraction of Eq. (2.17) and Eq. (2.18), we are left with
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2

[
x
d

dx
W2 + γW2 + kW1 − xW2

]
+ ZαW1

[√
m− E
m+ E

+

√
m+ E

m− E

]
+ ZαW2

[√
m+ E

m− E
−
√
m− E
m+ E

]
= 0,

x
d

dx
W2 + γW2 + kW1 − xW2 +

Zαm

λ
W1 +

ZαE

λ
W2 = 0,

x
dW2

dx
+

(
γ +

ZαE

λ
− x
)
W2 +

(
κ+

Zαm

λ

)
W1 = 0. (2.20)

From Eq. (2.19), W2 is given by

W2 =

[(
ZαE

λ
− γ
)
W1 − x

dW1

dx

] [
κ− Zαm

λ

]−1

. (2.21)

Di�erentiate W2 with respect to x gives

dW2

dx
=

[(
ZαE

λ
− γ − 1

)
dW1

dx
− xd

2W1

dx2

] [
κ− Zαm

λ

]−1

. (2.22)

Putting these expression into Eq. (2.20), gives

x

[(
ZαE

λ
− γ − 1

)
dW1

dx
− xd

2W1

dx2

] [
k − Zαm

λ

]−1

+

(
γ − x+

ZαE

λ

)[(
ZαE

λ
− γ
)
W1 − x

dW1

dx

] [
k − Zαm

λ

]−1

+

(
k +

Zαm

λ

)
W1 = 0,

x

[(
ZαE

λ
− γ − 1

)
dW1

dx
− xd

2W1

dx2

]
+

(
γ − x+

ZαE

λ

)[(
ZαE

λ
− γ
)
W1 − x

dW1

dx

]
[
k2 −

(
Zαm

λ

)2
]
W1 = 0,
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−x2d
2W1

dx2
+x

dW1

dx
(−2γ − 1 + x)+

[
k2 − γ2 − x

(
ZαE

λ
− γ
)

+

(
ZαE

λ

)2

−
(
Zαm

λ

)2
]
W1 = 0,

x
d2W1

dx2
+ (2γ + 1− x)

dW1

dx
−

[
k2 − γ2 − x

(
ZαE

λ
− γ
)

+

(
ZαE

λ

)2

−
(
Zαm

λ

)2
]
W1

x
= 0.

It could be notices that

k2 −
(
Zαm

λ

)2

− γ2 +

(
ZαE

λ

)2

= k2 −
(
Zα

λ

)2 (
m2 − E2

)
− γ2.

Substituting the values of λ and γ, we can see that

κ2 −
(
Zαm

λ

)2

− γ2 +

(
ZαE

λ

)2

= 0. (2.23)

Thus

x
d2W1

dx2
+ (2γ + 1− x)

dW1

dx
−
(
γ − ZαE

λ

)
W1 = 0. (2.24)

Using Eq. (2.20), W1 can be de�ned as

W1 = −
[
x
dW2

dx
+

(
γ +

ZαE

λ
− x
)
W2

] [
κ+

Zαm

λ

]−1

, (2.25)

and after di�erentiating it with respect to x, we get

dW1

dx
= −

[
dW2

dx
+ x

d2W2

dx2
+

(
γ +

ZαE

λ
− x
)
dW2

dx
−W2

] [
κ+

Zαm

λ

]−1

. (2.26)

Now substitute the value of W1 and
dW1

dx
in Eq. (2.19), gives

−x
[
dW2

dx
+ x

d2W2

dx2
+

(
γ +

ZαE

λ
− x
)
dW2

dx
−W2

] [
k +

Zαm

λ

]−1

−
(
γ − ZαE

λ

)[
x
dW2

dx
+

(
γ +

ZαE

λ
− x
)
W2

] [
k +

Zαm

λ

]−1

+

(
k − Zαm

λ

)
W2 = 0,
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[
dW2

dx
+ x

d2W2

dx2
+

(
γ +

ZαE

λ
− x
)
dW2

dx
−W2

]
+

(
γ − ZαE

λ

)
x

[
x
dW2

dx
+

(
γ +

ZαE

λ
− x
)
W2

]

(
k − Zαm

λ

)
W2

x
= 0,

x
d2W2

dx2
+ (2γ − x+ 1)

dW2

dx
+

[
−1 +

1

x

(
γ2 − γx−

(
ZαE

λ

)2

+
ZαEx

λ
− k2 +

(
Zαm

λ

)2
)]

W2 = 0.

Using the de�nition of γ and λ, it becomes

x
d2W2

dx2
+ (2γ − x+ 1)

dW2

dx
−
(

1 + γ − ZαE

λ

)
W2 = 0. (2.27)

As we can see that Eq. (2.24) and Eq. (2.27) are of the form of the Kummer's equation [6]

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0, (2.28)

which contains a con�uent hyper-geometric function

F (a, b; z) = 1 +
a

b

z

1!
+
a (a+ 1)

b (b+ 1)

z2

2!
+ ... (2.29)

as their solution. Therefore W1 and W2 can be expressed as con�uent hyper-geometric

functions

W1 (x) = α0F

(
γ − ZαE

λ
, 2γ + 1;x

)
, (2.30)

W2 (x) = β0F

(
1 + γ − ZαE

λ
, 2γ + 1;x

)
. (2.31)

Using them in Eq. (2.19) and setting x = 0 gives the condition for coe�cient α0 and β0(
κ− Zαm

λ

)
β0 = −

(
γ − ZαE

λ

)
α0. (2.32)

It follows that from explicit form of hyper-geometric functions given in Eq. (2.29) the function
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W1 and W2 will go to in�nity for limit x→∞. Therefore, we will impose certain condition

to make the series convergent

γ − Zα

λ
= −nr, nr =

{
0, 1, 2, ... if κ < 0

1, 2, 3, ... if κ > 0
. (2.33)

From the continuity equation
∂jµ (x)

∂xµ
= 0, (2.34)

the normalization for the stationary bound states can be done as

�
ρ (r) d3r =

�
Φ† (r) Φ (r) d3r = 1, (2.35)

and radial functions are therefore normalized as

�
dr r2

[
g2 (r) + f 2 (r)

]
= 1. (2.36)

Using this condition together with Eq. (2.32) gives explicit expression for radial wave func-

tions.

Finally, the Dirac-Coulomb wave function can be expressed as,

Φ (r) =

(
gnlj(r)χljM(r̂)

ifnlj(r)χl̄jM(r̂)

)
, (2.37)

where l̄ = 2j − l = l ± 1 and the radial wave functions

gnlj(r) =
(2λn)

3
2

Γ (2γn + 1)

[(
1 + En

m

)
Γ (2γn + nr + 1)

4Nn (Nn − κn)nr!

] 1
2

(2λr)γn−1 e−λnr

×{(Nn − κn)F (−nr, 2γn + 1; 2λnr)− nrF (1− nr, 2γn + 1; 2λnr)} , (2.38)

fnlj(r) =
− (2λn)

3
2

Γ (2γn + 1)

[(
1− En

m

)
Γ (2γn + nr + 1)

4Nn (Nn − κn)nr!

] 1
2

(2λr)γn−1 e−λnr

×{(Nn − κn)F (−nr, 2γn + 1; 2λnr) + nrF (1− nr, 2γn + 1; 2λnr)} . (2.39)

Here n is the principle quantum number and the energy levels are determined using Som-

merfeld's formula [7]

En =
√
m2 − λ2

n, λn =
1

aNn

, a =
1

Zαm
, nr = n− κn, (2.40)
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Nn =
√
n2 − 2nr (|κn| − γn), γn =

√
κ2
n − (Zα)2. (2.41)

The quantum number κn is de�ned by

κn =

{
l,

− (l + 1) ,

j = l − 1
2

j = l + 1
2

. (2.42)

and the spherical spinors

χjlM(r̂) =
∑
mµ

CjM

lm 1
2
µ
Y m
l (r̂) ηµ

= (−1) −l+
1
2
−M
√

2j + 1
∑
mµ

(
l 1

2
j

m µ −M

)
Y m
l (r̂)ηµ. (2.43)

3 1S Wave Functions

In our work, we will con�ne ourselves only to the wave-function in 1S state. They can

be obtained from Eq. (2.38) and Eq. (2.39) by setting the following values of the quantum

numbers: n = 1, l = 0, j = 1
2
, and

kn =

{
l, if j = l − 1

2

− (l + 1) , if j = l + 1
2

,

correspondingly

nr = 0, γ = γ1 =

√
1− (Zα)2, N1 = 1, E = mγ, a =

1

Zαm
.

Thus we have

g1S 1
2

(r) ≡ g (r) =

(
2
a

) 3
2

+γ−1

Γ (2γ + 1)

[
(1 + γ) Γ (2γ + 1 + 0)

4 (1) 2 (0)!

] 1
2

(r)γ−1 e−
r
a ,

g1S 1
2

(r) ≡ g (r) =

(
2

a

)γ+ 1
2

√
1 + γ

2Γ (2γ + 1)
exp

(
− r

a

)
rγ−1. (3.1)

Similarly for

f1S 1
2

(r) ≡ f (r) = −
(

2

a

)γ+ 1
2

√
1− γ

2Γ (2γ + 1)
exp

(
− r

a

)
(r)γ−1 ,

f1S 1
2

(r) ≡ f (r) = −
√

1− γ
1 + γ

g1S 1
2

(r) . (3.2)
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The spherical spinors with the spin-up
(
M = 1

2

)
are

χ 1
2

0 1
2

(r̂) = (−1)
1
2
− 1

2

√
2

(
0 1

2
1
2

0 1
2
−1

2

)
Y 0

0 (r̂)

(
1

0

)
=

1√
4π
, (3.3)

χ 1
2

1 1
2

(r̂) = −
∑
0, 1

2

C
1
2

1
2

10 1
2

1
2

Y 0
1 (r̂)

(
1

0

)
+
∑
1,− 1

2

C
1
2

1
2

11 1
2
− 1

2

Y 1
1 (r̂)

(
0

1

)
,

=

(
− 1√

3

)(
1

2

√
3

π
cos θ

)
+

(√
2

3

)(
−1

2
eiφ
√

3

2π
sin θ

)
,

= − 1√
4π

(
cos θ

sin θeiφ

)
. (3.4)

Therefore, the ground state wave function for the bound state in position space can be

expressed as

Φ (r) =

 g1S 1
2

(r)χ 1
2

0 1
2
(r̂)

if1S 1
2

(r)χ 1
2

1 1
2
(r̂)



=
(2mZα)γ+ 1

2

√
4π

√
1 + γ

2Γ (1 + 2γ)
rγ−1 exp (−mZαr)


1

0
i(1−γ)
Zα

cos θ
i(1−γ)
Zα

sin θeiφ

 . (3.5)
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Chapter III

Bound Muon Decay into Electron And

Neutrinos

This chapter discuss the detailed study of bound muon decay into bound electron, neutrino

and antineutrino in position space. We have used the standard Casimir's trick method [5] to

�nd decay rate. Moreover, we have discussed two cases namely equal masses (me ' mµ) and

general cases (considering actual masses). The decay rate for the bound muon is de�ne as

[4]

Γ =

�
d3q

(2π)3
|A|2 . (3.6)

In Eq. (3.6) |A|2 is an invariant amplitude, which can be written as

|A|2 =
1

2

∑
JαβNαβ. (3.7)

In above expression Nαβ is neutrino current and J
αβ is the particle current tensor, which can

be express as

Jαβ = Jα(jβ)†, Jα ≡
�
d3rΦ̄e(r)Φµ(r) exp(−ιq.r). (3.8)

But if we take nearly equal masses of electron and muon, the neutrino momentum q ≈ 0,

giving

Jα ≡
�
d3rΦ̄e(r)Φµ(r).

Now let's consider the ground state wave function for the bound state in the position space

as

φ(r) = ψn=1,j=1/2,↑(r, θ, φ) =
(2mZα)3/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(2mrZα)γ−1 exp(−mrZα)


1

0
ι(1−γ)
Zα

cos θ
ι(1−γ)
Zα

sin θ exp (ιφ)

 .

(3.9)

We can write Eq. (3.9) in a more convenient form
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φ(r) =
(2mZα)3/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(2mrZα)γ−1 exp(−mrZα)


1

0
ι(1−γ)
Zα

cos θ
ι(1−γ)
Zα

sin θ exp (ιφ)

 ,

φ(r) = f(r)u+. (3.10)

Here in Eq. (3.10).

u+ =


1

0
ι(1−γ)
Zα

cos θ
ι(1−γ)
Zα

sin θ exp (ιφ)

 , (3.11)

and

f(r) =
(2mZα)3/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(2mrZα)γ−1 exp(−mrZα).

Using spherical coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

We can write a position unit vector as

r̂ =
~r

r
= sin θ cosϕ~i+ sin θ sinϕ~j + cos θ~k. (3.12)

Let's introduce Pauli spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −ι
ι 0

)
, σz =

(
1 0

0 −1

)
, (3.13)

and inner product of Eq. (3.12) and Eq. (3.13) gives.
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~σ.~r = σx sin θ cosϕ+ σy sin θ sinϕ+ σz cos θ,

=

(
cos θ sin θ exp(−ιφ)

sin θ exp(ιφ) − cos θ

)
. (3.14)

Let's de�ne

φ+ =

(
1

0

)
and φ− =

(
0

1

)
. (3.15)

Using Eq. (3.14) and Eq. (3.15) we can write Eq. (3.11) as

u+ =

(
φ+

ι(1−γ)~σ.~rφ+
Zα

)
. (3.16)

To check our result, let us calculate

~σ.~rφ+ =

(
cos θ sin θ exp(−ιφ)

sin θ exp(ιφ) − cos θ

)(
0

1

)

=

(
sin θ

sin θ exp ιφ

)
. (3.17)

Thus, we can see that Using Eq. (3.16) and Eq. (3.17) the expression of u+ is retrieved. In

Dirac representation Gamma matrices are express as

αi =

(
0 σi

σi 0

)
, γ0=

(
1 0

0 −1

)
, γi=γ0αi =

(
0 σi

−σi 0

)
,

Therefore, we can write

u+ =

(
φ+

0

)
− ι(1− γ)

Zα
r̂.

(
0 σi

−σi 0

)(
φ+

0

)

=

(
φ+

0

)
− ι(1− γ)

Zα

(
0 ~r.σi

−~r.σi 0

)(
φ+

0

)

=

(
φ+

0

)
− ι(1− γ)

Zα
~r.~γ

(
φ+

0

)

= ρµγµ

(
φ+

0

)
= ��ρ

′

(
φ+

0

)
(3.18)
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In the above expression ρµ = (ρ0, ~ρ)= (1, ι (1−γ)
Zα

r̂), and

u†+ =

[
ρµγµ

(
φ+

0

)]†
u†+ =

(
φ+ 0

)
��ρ
′†

u†+γ0 =
(
φ+ 0

)
ρ†γ0

u+ =
(
φ+ 0

)
γ0γ0ρ

†γ0

u+ =
(
φ+ 0

)(1 0

0 −1

)
ρ

′

u+ =
(
φ+ 0

)
�
�ρ
′
. (3.19)

Remember, we need to take the conjugate of ρ′ also and in above equation it is

ρ′µ =

(
1,−ι(1− γ)

Zα
r̂′
)

where, we have already taken the complex conjugate of the elements. Hence we can write

u+ū+ = �ρ

(
φ+

0

)(
φ+ 0

)
��ρ
′ = �ρ


1

0

0

0


(

1 0 0 0
)
��ρ
′ = �ρ


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

��ρ′. (3.20)

Now for ground state wave function for spin-down is

φ(r) = ψn=1,j=1/2,↓(r, θ, φ)

=
(2mZα)3/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(2mrZα)γ−1 exp(−mrZα)


0

1
ι(1−γ)
Zα

sin θ exp (−ιφ)
ι(1−γ)
Zα

cos θ


Following the same line of action

ψn=1,j=1/2,↓(r, θ, φ) = f(r)u−
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where f(r) is de�ne above, and

u− =


0

1
ι(1−γ)
Zα

sin θ exp−ιφ
ι(1−γ)
Zα

cos θ

 ∼=
(

φ−
ι(1−γ)~σ.~r

Zα
φ−

)
,

with φ− =

(
0

1

)
in the last expression. Thus

~σ.~rφ− =

(
cos θ sin θ exp (−ιφ)

sin θ exp (ιφ) cos θ

)

=

(
sin θ exp−ιφ
− cos θ

)
.

We can �nd

u− =

(
φ−

0

)
− ι(1− γ)

Zα
r̂.

(
0 ~σ

−~σ 0

)(
φ−

0

)

=

(
φ−

0

)
− ι(1− γ)

Zα

(
0 r̂.~σ

−r̂.~σ 0

)(
φ−

0

)

=

(
φ−

0

)
− ι(1− γ)

Zα
r̂.~γ

(
φ−

0

)

= ρµγµ

(
φ−

0

)
= �ρ

(
φ−

0

)
,

and

u†− =
(
φ†− 0

)
�ρ

u†−γ0 =
(
φ− 0

)
ρ†γ0

ū− =
(
φ− 0

)
�
�ρ
′
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Thus

u−ū− = �ρ

(
φ−

0

)(
φ− 0

)
�
�ρ
′
= �ρ


0

1

0

0

0


(

0 1 0 0
)
�
�ρ
′

= �ρ


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ��ρ′
. (3.21)

Hence, making sum over the spins, we have

∑
spin

uū = u+ū+ + u−ū− = �ρ


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ��ρ′
.

which in a convenient 2× 2 notation can be written as

1

2
(1 + γ0) = 1/2

[(
1 0

0 1

)
+

(
1 0

0 −1

)]

=

(
1 0

0 0

)
.

Now, let us evaluate the particle current tensor Jαβ, we have already de�ned Eq. (3.8). In

the case of equal masses of electron and muon i.e., ~q = 0,

Jα ≡
�
d3rΦ̄e(r)γαLΦµ(r), (3.22)

where φ(r) is de�ned above and φ̄(r) is its complex conjugate. Upon substituting the expres-

sion of Φ̄e(r) and Φµ(r) into Eq. (3.22) we will get

Jα ≡
�
d3rfµ(r)fe(r)ūeγαLuµ,

where L = 1−γ5
2

. To calculate tensor Jαβ we have to multiply Jα with (Jβ)† and separate
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radial part

Jαβ ≡ 1/2
∑
spin

ūeγαLuµ(ūeγβLuµ)†

≡ 1/2
∑
spin

ūeγαLuµūµγβLue

= 1/2Tr [ueūeγαLuµūµγβL]

= 1/2Tr

[
�ρ

(
1 + γ0

2

)
�
�ρ
′
γαL�ρ

′

1

(
1 + γ0

2

)
�ρ1γβL

]
, (3.23)

where

ρ
′

1 = (1,
ι(1− γ)

Zα
r̂′) = (1,−~ρ′) and ρ1 = (1,−ι(1− γ)

Zα
r̂) = (1,−~ρ)

We can solve trace of the above equation using Mathematica.Remember the three components

of ρ and ρ1 are same except the sign and the situation is same for ρ′ and ρ′1. However, the

zeroth component of all of them is same.

4 Equal mass case

In this case we have considered mass of electron is equal to mass of muon, therefore neutrino

momentum q is nearly equal to zero. We collect all non zero terms arises corresponding to

q2
0 and ~q2and the terms linear in vectors vanishes.

TERMS CORRESPONDING TO q2
0

In the results below we will use ~ρ = ar̂, ~ρ′ = ar̂′, where a = ι (1−γ)
Zα

−8~ρ~ρ2′ + 32(~ρ.~ρ
′
)(~ρ.~ρ

′
) + 8 ~ρ2+8 ~ρ′2 + 24

= −8a4 +
32

3
a4 + 8a2 + 8a2 + 24

=
8

3
a4 + 16a2 + 24

= 8

[
1

3
a4 + 2a2 + 3

]
In the above equation we have used r̂ir̂j = r̂′ir̂

′
j =

δij
3
.

CORRESPONDING TO ~q2

~q2
[
24~ρ~ρ2′ − 32(~ρ.~ρ

′
)(~ρ.~ρ

′
)− 8 ~ρ2−8 ~ρ′2 − 8

]
,
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−32~ρ2(~q.~ρ)(~q.~ρ) + 32(~q.~ρ)(~q.~ρ′)(~ρ.~ρ′)− 32(~q.~ρ′)(~q.~ρ′),

= ~q2

[
24a4 − 32

3
a4 − 32

3
a4 +

32

9
a4 − 16a2 +

32

3
a2 − 8

]
,

~= q2

[
56

9
a4 − 80

3
a2 − 8

]
= ~q2

[
7

9
a4 − 10

3
a2 − 1

]
.

Contracting neutrino tensor [4]

Nαβ =
2G2

F

3π
(qαqβ − q2ηαβ) (4.1)

with the angular part of Jαβ gives invariant amplitude

|A|2 =
1

2

∑
JαβN

αβ

=
G2
F

6π

[
q2

0(
1

3
a4 + 2a2 + 3) + |~q|2 (

7

9
a4 − 10

3
a2 − 1)

]
|〈fe(r)fµ(r)〉|2 .

Now we can calculate decay rate, using

Γ =

�
d3q

(2π)3
|A|2

Γ =

�
d3q

(2π)3

[
G2
F

6π

{
q02(

1

3
a4 + 2a2 + 3) + |~q|2 (

7

9
a4 − 10

3
a2 − 1)

}]
|〈fe(r)fµ(r)〉|2

Integrating over the q leads to

Γ =

�
d |~q| (4π) |~q|2

(2π)3

[
G2
F

6π

{
q02(

1

3
a4 + 2a2 + 3) + ~q2(

7

9
a4 − 10

3
a2 − 1)

}]
|〈fe(r)fµ(r)〉|2

=
G2
F

12π3

[
|~q|3

3
q02(

1

3
a4 + 2a2 + 3) +

|~q|5

5
(
7

9
a4 − 10

3
a2 − 1)

]
|〈fe(r)fµ(r)〉|2

=
G2
F

12π3

[
|~q|3

3
q02(

1

3
a4 + 2a2 + 3) +

|~q|5

5
(
7

9
a4 − 10

3
a2 − 1)

]
|〈fe(r)fµ(r)〉|2 .
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Here in the nearly equal mass limit q0 = |~q| = εγmµ therefore, above equation becomes

Γ =
G2
F

12π3

[
ε5γ5m5

µ

3
(
1

3
a4 + 2a2 + 3) +

ε5γ5m5
mu

5
(
7

9
a4 − 10

3
a2 − 1)

]
|〈fe(r)fµ(r)〉|2

=
G2
F

12π3
ε5γ5m5

µ

[
(
1

9
+

7

45
)a4 + (

�
�
�2

3
−
�
�
�10

15
)a2 + (1− 1

5
)

]
|〈fe(r)fµ(r)〉|2

=
G2
F

12π3
ε5γ5m5

µ

[
12

45
a4 +

4

5

]
|〈fe(r)fµ(r)〉|2

and a = ι
√

(1−γ)
(1+γ)

, giving

Γ =
G2
F

15π3
ε5γ5m5

µ

[
1

3

(1− γ)2

(1 + γ)2
+ 1

]
|〈fe(r)fµ(r)〉|

=
G2
F

15π3
ε5γ5m5

µ

[
(1− γ)2

3
+ (1 + γ)2

]
1

(1 + γ)2
|〈fe(r)fµ(r)〉|

=
G2
F

15π3
ε5γ5m5

µ

[
(1 + γ + γ2)

3

]
�
�
�
��4

(1 + γ)2((
(((

((|〈fe(r)fµ(r)〉|

=
G2
F

15π3
ε5γ5m5

µ

[
1 + γ + γ2

3

]
(4.2)

The decay rate of free muon decay is [4]

Γ0 =
G2
F

192π3
m5
µ. (4.3)

In order to �nd decay ratio, divide Eq. (4.2)and Eq. (4.3), which gives

Γ

Γ0

=
64

5
ε5γ5

[
1 + γ + γ2

3

]
. (4.4)

We can evaluate branching ratio for di�erent values of Z using Eq. (4.4). For nearly equal

masses case, the numerical value calculated by this equation is same as found by Alchemy's

formalism [9] where the rate is calculated in the momentum space instead of the position

space.

Alchemy's formalism Eq. (4.4)

Z = 10 1.25× 10−9 1.26× 10−9

Z = 80 3.85× 10−10 3.80× 10−10
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5 General Case

In this case we have considered the actual mass of muon and electron, therefore the expo-

nential factor exp(−ιq.r) takes part in muon to electron current, i.e.,

Jα =

�
d3rΦ̄e(r)γαLΦµ(r) exp(−ι~q.~r). (5.1)

Just following the method devised in the last section, we can write Jαβ an calculate the trace

using Mathematics. Just like the previous case, we will solve di�erent terms one by one.

Corresponding to q2
0

First we will gather the terms that we have collected for equal muon and electron masses.

Then we will add the term which are not zero in the general case. In the results below we

will use ~ρ = ar̂, ~ρ′ = ar̂′,where a = ι (1−γ)
Zα

as we did above. Taking

−8~ρ~ρ2′ + 32(~ρ.~ρ
′
)(~ρ.~ρ

′
) + 8 ~ρ2+8 ~ρ′2 + 24. (5.2)

Let us solve it term by term. In the exponential factors exp(−ι~q.~r) and exp(−ι~q.~r′), ~q is the
neutrinos momentum and we can take it along the z−axis. Hence, the angular integration

gives

~ρ2~ρ2′ = a4

�
dΩ

′
exp(ιqr cos θ,)r̂2

�
dΩ exp(ιqr cos θ)̂′′2

= (4π)2a2j0(qr)j0(qr) (5.3)

In the above expression j0(qr) is Spherical Bessel function of order zero. Upon substituting

r̂2 = r̂′2 = 1 and after angular integration we have taken r̂ = r̂′. Considering the term

(~ρ.~ρ
′
)(~ρ.~ρ

′
) = a4

�
dΩ

′
dΩ exp(−ιqr cos θ,) exp(ιqr cos θ)r̂ir̂j r̂i

′r̂′j

= a4

�
dΩ

′
exp(−ιqr cos θ,)r̂i

′r̂′j

�
dΩ exp(ιqr cos θ)r̂ir̂j. (5.4)

Here we can see that there is a summation on i and j indices, and for each value of i there

are three value of j, and vice a verse. But only same values of i and j term survive due to φ

integration. Let us consider i = 1 and j run from 1,..., 3,

�
dΩ

′
exp(−ιqr cos θ,)r̂i

′r̂′j

�
dΩ exp(ιqr cos θ)r̂ir̂j

=

�
dΩ

′
exp(ιqr cos θ,)

�
dΩ exp(ιqr cos θ) (r̂1r̂1r̂

′
1r̂
′
1 + r̂1r̂2

′r̂′2 + r̂1r̂3r̂1
′r̂′3) .
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Remember �
dΩ exp(ιqr cos θ)r̂1r̂2 =

�
dΩ exp(ιqr cos θ)r̂1r̂3 = 0,

and

�
dΩ exp(ιqr cos θ)r̂1r̂1 =

�
dΩ

′
exp(−ιqr cos θ,)r̂1

′r̂′1

=

�
dΩ exp(ιqr cos θ)Sin2θCos2φ

=

π�

0

dθ exp(ιqr cos θ)Sin3θ

2π�

0

dφ cos2 φ

= 4π
j1(qr)

qr
=

4π

3
[j2(qr) + j0(qr)] .

Similarly

�
dΩ exp(ιqr cos θ)r̂2r̂2 =

�
dΩ

′
exp(−ιqr cos θ′)r̂2

′r̂′2

= 4π
j1(qr)

qr
=

4π

3
[j2(qr) + j0(qr)] ,

and

�
dΩ exp(ιqr cos θ)r̂3r̂3 =

�
dΩ

′
exp(ιqr cos θ′)r̂3

′r̂′3

= −8π
j1(qr)

qr
+ 4πj0(qr).

Thus, we can write

�
dΩ

′
exp(−ιqr cos θ,)r̂i

′r̂′j

�
dΩ exp(ιqr cos θ)r̂ir̂j
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= (4π)2

[
j1(qr)

qr

j1(qr′)

qr′
+
j1(qr)

qr

j1(qr′)

qr′
+ (j0(qr)− 2

j1(qr)

qr
)(j0(qr′)− 2

j1(qr′)

qr′
)

]
= (4π)2

[
6
j1(qr)

qr

j1(qr′)

qr′
+ j0(qr)j0(qr′)− 2j0(qr)

j1(qr′)

qr′
− 2j0(qr′)

j1(qr)

qr
)

]
= (4π)2

[
6

9
(j2(qr) + j0(qr)) 2j0(qr)j0(qr)− 4

3
j0(qr) (j1(qr) + j0(qr))

]
= (4π)2

[
6

9
(j2(qr)j2(qr) + j0(qr)j0(qr) + 2j0(qr)j2(qr) + j0(qr)j0(qr)− 4

3
j0(qr)(j2(qr)− 4

3
j0(qr)j0(qr))

]
= (4π)2

[
2

3
j2(qr)j2(qr) +

(
2

3
+ 1− 4

3

)
j0(qr)j0(qr) +

(
4

3
− 4

3

)
j0(qr)j2(qr)

]
= (4π)2

[
2

3
j2(qr)j2(qr) +

1

3
j0(qr)j0(qr)

]
Therefore, Eq. (5.4) becomes

(~ρ.~ρ
′
)(~ρ.~ρ

′
) = (4π)2a4

[
2

3
j2(qr)j2(qr) +

1

3
j0(qr)j0(qr)

]
. (5.5)

Finally

~ρ′2 = ~ρ2 = a2

�
dΩ exp(ιqr cos θ)

�
dΩ exp(ιqr cos θ)

= (4π)2a2j0(qr)j0(qr) (5.6)

Substituting Eq. (5.3), Eq. (5.5) and Eq. (5.6) in Eq. (5.2), we get

−8~ρ~ρ2′ + 32(~ρ.~ρ
′
)(~ρ.~ρ

′
) + 8 ~ρ2+8 ~ρ′2 + 24

= (4π)2

[
−8a4j0(qr)j0(qr) +

32

3
a4(2j2(qr)j2(qr) + j0(qr)j0(qr) + 16a2j0(qr)j0(qr) + 24j0(qr)j0(qr)

]
= (4π)2a4

[
8(

1

3
a4 + 2a2 + 3)j0(qr)j0(qr) +

64

3
a4(2j2(qr)j2(qr)

]
. (5.7)

In the above expression ji(qr) is Spherical Bessel function of order i. Here we would like

to point out that we have started with the expression of the amplitude, prior to angular

integration that are derived for the equal mass. In those expressions we put the odd terms

in r̂, r̂′ to be zero. However, it is not the case when we consider actual masses. of electron

and muon. Therefore, the remaining term we are going to calculate below.

Corresponding to q2
0, the term, which otherwise was zero for equal mass is −64q2

0~ρ.~ρ. In

this case, it gives
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−64q2
0

�
dΩ

′
exp(−ιqr cos θ,)

�
dΩ exp(ιqr cos θ) =− 64a2q2

0(4π)2 (ιj1(qr)− ιj1(qr))

=− 64a2q2
0(4π)2j1(qr)j1(qr)

Hence altogether, the term corresponding to q2
0 is

(4π)2

{
8(

1

3
a4 + 2a2 + 3)j0(qr)j0(qr) +

64

3
a4(2j2(qr)j2(qr)− 64a2q2

0(4π)2j1(qr)j1(qr)

}
.

(5.8)

Corresponding to ~q2

Again we have collected the terms that we have calculated for equal muon and electron

masses. Then we will add the terms which were zero in that case but not in general case.

The non zero terms are

~q2[24~ρ~ρ2′ − 32(~ρ.~ρ
′
)(~ρ.~ρ

′
)− 8 ~ρ2−8 ~ρ′2 − 8]

−32~ρ2(~q.~ρ)(~q.~ρ) + 32(~q.~ρ)(~q.~ρ′)(~ρ.~ρ′)− 32(~q.~ρ′)(~q.~ρ′) (5.9)

The �rst line terms gives

~q2[24~ρ~ρ2′ − 32(~ρ.~ρ
′
)(~ρ.~ρ

′
)− 8 ~ρ2−8 ~ρ′2 − 8]

= ~q2(4π)2[a4(24− 32

3
)j0(qr)j0(qr)− 64

3
a4j2(qr)j2(qr)− 16a2j0(qr)j0(qr)− 8j0(qr)j0(qr)]

= ~q2(4π)2[a4 40

3
j(qr)j0(qr)− 64

3
a4j2(qr)j2(qr)− 16a2j0(qr)j0(qr)− 8j0(qr)j0(qr)] (5.10)

Now consider the term

~ρ2(~q.~ρ)(~q.~ρ) = a4~q2r̂3r̂3

and its angular integration over dΩ and dΩ′gives

�
dΩ

′
exp(−ιqr cos θ,)

�
dΩ exp(ιqr cos θ)~ρ2(~q.~ρ)(~q.~ρ) = ~q2(4π)2a4j0(qr)

{
−2

j1(qr)

qr
+ j0(qr)

}
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= ~q2(4π)2a4j0(qr)

[
−2

3
(j2(qr) + j0(qr)) + j0(qr)

]
= ~q2(4π)2a4j0(qr)

[
−2

3
j2(qr) +

1

3
j0(qr)

]
. (5.11)

Similarly, �
(~q.~ρ′)(~q.~ρ′)dΩ

′
exp(−ιqr cos θ,)

�
dΩ exp(ιqr cos θ)

= ~q2(4π)2a2j0(qr) {−2(j2(qr) + j0(qr)}

= ~q2(4π)2a2j0(qr)

{
−2

3
j2(qr) +

1

3
j0(qr)

}
. (5.12)

Let's look at the term

�
(~q.~ρ)(~q.~ρ′)(~ρ.~ρ′)dΩ

′
exp(−ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

=~q2a2

�
r̂3r̂′3(~ρ.~ρ)dΩ

′
exp(−ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

=~q2a4

�
cosθcosθ′dΩ

′
exp(−ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

=~q2a4

�
dΩ′ exp(−ιqr cos θ′) cos2 θ′

�
cos2 θdΩ exp(ιqr cos θ)

=~q2a4(4π)2

(
−2

j1(qr)

qr
+ j0(qr)

)(
−2

j1(qr)

qr
+ j0(qr)

)
=~q2a4(4π)2

(
−2

3
j2(qr) +

1

3
j0(qr)

)(
−2

3
j2(qr) +

1

3
j0(qr)

)
=~q2a4(4π)2 1

9
(−2j2(qr) + j0(qr)) (−2j2(qr) + j0(qr))

=~q2a4(4π)2 1

9
(4j2(qr)j2(qr)− 4j0(qr)j2(qr) + j0(qr)j0(qr)) . (5.13)

Thus we have

−32~ρ2(~q.~ρ)(~q.~ρ) + 32(~q.~ρ)(~q.~ρ′)(~ρ.~ρ′)− 32(~q.~ρ′)(~q.~ρ′)
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= ~q2a4(4π)2

(
64

3
j2(qr)j0(qr)− 32

3
j0(qr)j0(qr) +

128

9
j2(qr)j2(qr)− 128

9
j0(qr)j2(qr) +

32

3
j0(qr)j0(qr)

)
+ ~q2a2(4π)2

(
64

3
j2(qr)j0(qr)− 32

3
j0(qr)j0(qr)

)
= ~q2a4(4π)2

(
64

9
j2(qr)j0(qr)− 64

9
j0(qr)j0(qr) +

128

9
j2(qr)j2(qr)

)
+ ~q2a2(4π)2

(
64

3
j2(qr)j0(qr)− 32

3
j0(qr)j0(qr)

)
(5.14)

Combing Eqs. ((5.9)- (5.14)), we have

~q2
[
24~ρ~ρ2′ − 32(~ρ.~ρ

′
)(~ρ.~ρ

′
)− 8 ~ρ2−8 ~ρ′2 − 8

]
−32~ρ2(~q.~ρ)(~q.~ρ)+32(~q.~ρ)(~q.~ρ′)(~ρ.~ρ′)−32(~q.~ρ′)(~q.~ρ′)

= ~q2(4π)2[a4 40

3
j0(qr)j0(qr)− 64

3
a4j2(qr)j2(qr)− 16a2j0(qr)j0(qr)− 8j0(qr)j0(qr)

+
64

9
a4j2(qr)j0(qr)− 64

9
a4j0(qr)j0(qr) +

128

9
a4j2(qr)j2(qr) +

64

3
a2j2(qr)j0(qr)− 32

3
a2j0(qr)j0(qr)]

= ~q2(4π)2[
56

9
a4j0(qr)j0(qr)− 64

9
a4j2(qr)j2(qr) +

64

9
a4j0(qr)j2(qr)

− 80

3
a2j0(qr)j0(qr) +

64

3
a2j2(qr)j0(qr)− 8j0(qr)j0(qr)]

= ~q2(4π)2

{
8

(
7

9
a4 − 10

3
− 1

)
j0(qr)j0(qr)− 64

9
a4j2(qr)j2(qr) +

64

9

(
a4 + 3a2

)
j0(qr)j2(qr)

}
.

Now the term which was zero in equal masses case corresponding to ~q2 is 32~q2~ρ.~ρ+32(~q.~ρ)(~q.~ρ′).

Solving it

32

�
dΩ

′
exp(−ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

(
~q2~ρ.~ρ+ (~q.~ρ)(~q.~ρ′)

)

=64~q2a2

�
dΩ

′
exp(−ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

=64a2 ~q2(4π)2j1(qr)j1(qr).
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Hence altogether, the terms corresponding to ~q2 are

(4π)2

[
8

(
7

9
a4 − 10

3
a2 − 1

)
j0(qr)j0(qr)− 64

9
a4j2(qr)j2(qr) +

64

9

(
a4 + 3a2

)
j0(qr)j2(qr)

+ 64a2(4π)2j1(qr)j1(qr)

]

Therefore the corresponding invariant amplitude becomes (factor of (4π)2 cancel out with

the spin part of 1S wave function of electron and muon)

|A|2 =
G2
F

6π
q2

0

(
(
1

3
a4 + 2a2 + 3) 〈j0(qr)fefµ〉2 +

8

3
a4 〈2j2(qr)fefµ〉2 − 8a2 〈2j1(qr)fefµ〉2

)
+
G2
F

6π
~q2

[(
7

9
a4 − 10

3
a2 − 1

)
〈j0(qr)fefµ〉2 −

8

9
a4 〈j2(qr)fefµ〉2

+
8

9

(
a4 + 3a2

)
〈j0(qr)fefµ〉 〈j2(qr)fefµ〉+ 8a 〈j1(qr)fefµ〉2

]
. (5.15)

Substitute Eq. (5.15) in Eq. (3.6) the decay rate becomes

Γ =
1

2π2

�
d |~q| ~q2 |A|2

=
G2
F

12π3

�
d |~q| ~q2

[
q2

0

(
(
1

3
a4 + 2a2 + 3) 〈j0(qr)fefµ〉2 +

8

3
a4 〈2j2(qr)fefµ〉2 − 8a2 〈2j1(qr)fefµ〉2

)

+ ~q2

(
(
7

9
a4 − 10

3
a2 − 1) 〈j0(qr)fefµ〉2 −

8

9
a4 〈j2(qr)fefµ〉2

+
8

9

(
a4 + 3a2

)
〈j0(qr)fefµ〉 〈j2(qr)fefµ〉+ 8a 〈j1(qr)fefµ〉2

)]

The ratio of bound to free muon decay is
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Γ

Γ0

=
16

mµ

�
d |~q| ~q2

[
q2

0

(
(
1

3
a4 + 2a2 + 3) 〈j0(qr)fefµ〉2 +

8

3
a4 〈2j2(qr)fefµ〉2 − 8a2 〈2j1(qr)fefµ〉2

)

+ ~q2

(
(
7

9
a4 − 10

3
a2 − 1) 〈j0(qr)fefµ〉2 −

8

9
a4 〈j2(qr)fefµ〉2

+
8

9

(
a4 + 3a2

)
〈j0(qr)fefµ〉 〈j2(qr)fefµ〉+ 8a 〈j1(qr)fefµ〉2

)]
. (5.16)

In the last expression j0(qr), j1(qr) and j2(qr) are the Spherical Bessel function of zero,

�rst and second kind respectively. After some simpli�cation, we can �nd the decay ratio for

di�erent values of Z. In Eq. (5.16), we can see that it is quite complicated and to be sure if

it is correct, it will be worthy to check if in the equal mass limit, we can retrieve the result

derived in Eq. (4.4). To see this, let us write a = ι
√

1−γ
1+γ

Γ

Γ0

=
16

mµ

�
d |~q| ~q2

{
q2

0(
1

3
a4 + 2a2 + 3) + ~q2

(
7

9
a4 − 10

3
a2 − 1

)}
〈fefµ〉2

=
16

mµ

{
~q3

3
q2

0

(
1

3
a4 + 2a2 + 3

)
+
~q5

5

(
7

9
a4 − 10a2

3
− 1

)
〈fefµ〉2

}
,

where, in equal masses limit q0 = |~q| = εγmµ, giving

Γ

Γ0

=
16

mµ

{
ε5γ5m5

µ

3

(
1

3

(1− γ)2

(1 + γ)2
− 2

(1− γ)

(1 + γ)
+ 3

)
+
ε5γ5m5

µ

5

(
7

9

(1− γ)2

(1 + γ)2
+

10

3

(1− γ)

(1 + γ)
− 1

)}
〈fefµ〉2

=
16

mµ

ε5γ5m5
µ

{(
1

9
+

7

45

)
(1− γ)2

(1 + γ)2
+

(
�
�
�2

3
+
�
�
�10

15

)
(1− γ)

(1 + γ)
+

(
1− 1

5

)}
〈fefµ〉2 (5.17)

=
16

mµ

ε5γ5m5
µ

{
4

15

(1− γ)2

(1 + γ)2
+

4

5

}
〈fefµ〉2 (5.18)

=
16

5
ε5γ54

(
(1− γ)2 + 3(1 + γ)2

3(1 + γ)2

)
〈fefµ〉2

=
16

5
ε5γ5

(
1

3
(1− γ)2 + (1 + γ)2

)
�
�
�
��4

(1 + γ)2�
��
��(1 + γ)2

4

=
16

5
ε5γ5

(
1

3
(1− γ)2 + (1 + γ)2

)
=

64

5
ε5γ5 1 + γ + γ2

3
. (5.19)

We can see that the result matches with Eq. (4.4).
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Chapter IV

Bound Muon Decay To Bound Electron

And Scalar Majoron

In the previous chapter, we have discussed the method to solve bound muon decay in

position space. We have considered the situations in which bound muon decay into a bound

electron, muon neutrino and electron antineutrino. In this section, we consider a scalar

massless Majoron (J) instead of neutrinos, and the rest of the method is the same as we used

previously.

The interaction Lagrangian L for Majoron emission in decay µ→ eJ is [10]

L = µ̄g1PReJ + µ̄g2PLeJ. (5.20)

Here PR = 1+γ5

2
, PL = 1−γ5

2
and g1 and g2 are dimensionless coupling constants. The

particles current becomes

J ≡
�
d3rfµ(r)fe(r)ūe(g1PR + g2PL)uµ. (5.21)

To calculate tensor (JJ† ), we have to multiple Eq. (5.21) with (J)† and neglecting radial

part for brevity. We get in the last expression

(J)(J)† = J̄ = 1
1

2

∑
spin

[
ūe(g1PR + g2PL)uµ {ūe(g1PR + g2PL)uµ}†

]
=

1

2

∑
spin

[
ūe

{
g1(

1 + γ5

2
) + g2(

1− γ5

2
)

}
uµ

(
ūe

{
(g1(

1 + γ5)

2
+ g2(

1− γ5

2
)

}
uµ

)†]

=
1

8

∑
spin

[
ūe
{
g1(1 + γ5) + g2(1− γ5)

}
uµ
(
ūµ
{

(g1(1 + γ5) + g2(1− γ)
}
ue
)]

=
1

8

∑
spin

[
ūe
{

(g1 + g2) + (g1 − g2)γ5
}
uµūµ

{
(g1 + g2) + (g1 − g2)γ5

}
ue
]

=
1

8
Tr
[
ueūe

{
(g1 + g2) + (g1 − g2)γ5

}
uµūµ

{
(g1 + g2) + (g1 − g2)γ5

}]
=

1

8
Tr

[
�ρ

(
1 + γ0

2

)
�
�ρ
′ (

(g1 + g2) + (g1 − g2)γ5
)
�ρ

′

1

(
1 + γ0

2

)
�ρ1

(
(g1 + g2) + (g1 − g2)γ5

)]
(5.22)
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ρ
′

1 = (1,
ι(1− γ)

Zα
r̂′) = (1,−~ρ′), and, ρ1 = (1,−ι(1− γ)

Zα
r̂) = (1,−~ρ).

Again we will consider the two cases.

6 Equal mass case

The trace of Eq. (5.22) is evaluated with the Mathematica. We collected all the non-

zero terms and dropping all the terms corresponding to Levi Civita. Remember, we have

considered the masses of muon and electron to be nearly equal so the momentum of Majoron

must approach zero.

In the result below ~ρ = ar̂, ~ρ′ = ar̂′m where a =
√

(1−γ)
(1+γ)

. This gives

1

2
(g1 + g2)2

[
1 + ~ρ2~ρ2′ + ~ρ2+ ~ρ2′

]
+ 2(g1 − g2)~ρ.~ρ

′

=
1

2
(g2

1 + g2
2)
[
1 + a4 + a2 + a2

]
+ 2g1g2 [0]

=
1

2
(g1 + g2)2

[
1 + 2a2 + a4

]
=

1

2
(g1 + g2)2 4γ2

(1 + γ)2
.

= 2(g1 + g2)2 γ2

(1 + γ)2

Here, we have used r̂ir̂j = r̂i
′
r̂
′
j =

δij
3
. Finally the expression of invariant amplitude becomes

|A|2 = 2(g1 + g2)2 γ2

(1 + γ)2
|fe(r)fµ(r)| .2 (6.1)

The corresponding decay rate is de�ne as

Γ

Γ0

=
4

mµ(g2
1 + g2

2)
(Eµ − Ee) |A|2 . (6.2)

To evaluate decay ratio, let us substitute the expression of amplitude in Eq. (6.2). This gives

Γ

Γ0

=
4

mµ(g2
1 + g2

2)
(Eµ − Ee) |A|2

=
4

mµ(g2
1 + g2

2)
(Eµ − Ee)[(g1 + g2)2 2γ2

(1 + γ)2
|fe(r)fµ(r)|2 ,

42



where, (Eµ − Ee) = γ(1− b)mµ and b = 0.99, gives

Γ

Γ0

= 2
(g1 + g2)2

mµ(g2
1 + g2

2)
γ3(1− b)mµ

�
�
�
��4

(1 + γ)2��
��
���|fe(r)fµ(r)|2

= 2
(g1 + g2)2

(g2
1 + g2

2)
γ3(1− b) (6.3)

Finally, considering case when g1 = g2 = 1 Eq. (6.3), calculated decay ratio for Z = 10 and

Z = 80 is

Γ

Γ0

= 3.96809× 10−2, Z = 10.

Γ

Γ0

= 2.14081× 10−2, Z = 80.

7 General case

In the general case, we considered the actual masses of muon and electron, so exponential

factor take part in angular integration over dΩ and dΩ′. Let us evaluated it step by step as

follows

J̄ =
1

8
Tr

[
�ρ

(
1 + γ0

2

)
�
�ρ
′ (

(g1 + g2) + (g1 − g2)γ5
)
�ρ

′

1

(
1 + γ0

2

)
�ρ1

(
(g1 + g2) + (g1 − g2)γ5

)]
.

The trace of above expression is already obtained.

Terms Corresponding to (g1 + g2)2

[
1 + ~ρ2~ρ2′ + ~ρ2+ ~ρ2′

]
. (7.1)

We have

~ρ2′ ~= ρ2 = a2

�
dΩ

′
exp(ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

= (4π)2a2j0(qr)j0(qr), (7.2)

~ρ2~ρ2′ = a4

�
dΩ

′
exp(ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

= (4π)2a4j0(qr)j0(qr), (7.3)
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and

(~ρ.~ρ
′
) =

�
dΩ

′
exp(ιqr cos θ′)

�
dΩ exp(ιqr cos θ)

= (4π)2a2(ιj1(qr))(−ιj1(qr))

= (4π)2a2j1(qr)j(qr). (7.4)

Using Eq. (7.2) and (7.3) in Eq. (7.1), give

[
1 + ~ρ2~ρ2′ + ~ρ2+ ~ρ2′

]
=

[
(4π)2j0(qr)j0(qr) + (4π)2a4j0(qr)j0(qr) + (4π)2a2j0(qr)j0(qr)

+ (4π)2a2j0(qr)j0(qr)

]

= (4π)2

[
[j0(qr)j0(qr) + a4j0(qr)j0(qr) + 2a2j0(qr)j0(qr)

]
.

= (4π)2{1 + 2a2 + a4}j0(qr)j0(qr) (7.5)

Corresponding to (g1 − g2)2

(~ρ.~ρ)
′
= (4π)2a2j1(qr)j1(qr). (7.6)

Combining Eq. (7.5) and Eq. (7.6) leads to

1

2
(g1 + g2)2 (4π)2{1 + 2a2 + a4}j0(qr)j0(qr)− 2 (g1 − g2)2 (4π)2a2j1(qr)j1(qr).

Remember, j0(qr) and j1(qr) are Spherical Bessel function of 0th and 1st kind, respectively.

The factor of (4π)2 cancels out with the spin part in the 1S wave function of electron and

muon. Collecting all the terms gives the invariant amplitude to be

|A|2 =
(g1 + g2)2

2

(
1 + 2a2 + a4

)
〈j0(qr)fe(r)fµ(r)〉2−2(g1−g2)2a2 〈j1(qr)fe(r)fµ(r)〉2 . (7.7)

The corresponding decay ratio is

Γ

Γ0

=
4

mµ(g2
1 + g2

2)
(Eµ − Ee) |A|2 . (7.8)
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In order to evaluate decay ratio put the Eq. (7.7) into Eq. (7.8), giving

Γ

Γ0

=
4

mµ(g2
1 + g2

2)
(Eµ−Ee)

(g1 + g2)2

2

[
{1+2a2+a4} 〈j0(qr)fe(r)fµ(r)〉2−2(g1−g2)2a2 〈j1(qr)fe(r)fµ(r)〉2

]
.

After putting a = ι
√

(1−γ)
(1+γ)

and (Eµ − Ee) = γ(mµ −me), in the last expression, we will get

Γ

Γ0

= 4
γ(mµ −me)

mµ(g2
1 + g2

2)

[
4

(g1 + g2)2

2

γ2

(1 + γ)2
〈j0(qr)fe(r)fµ(r)〉2 + 2(g1 − g2)2 (1− γ)2

(1 + γ)2
〈j1(qr)fe(r)fµ(r)〉2

]
= 4

(mµ −me)

mµ(g2
1 + g2

2)

[
2

(g1 + g2)2γ3

(1 + γ)2
〈j0(qr)fe(r)fµ(r)〉2 + 2(g1 − g2)2γ(1− γ)2

(1 + γ)2
〈j1(qr)fe(r)fµ(r)〉2

]
(7.9)

Using the numerical values of the electron and muon masses, and by considering Z = 10 and

Z = 80, the numerical values of the branching ratio are

Γ

Γ0

= 4.73457× 10−7, Z = 10

Γ

Γ0

= 2.35375× 10−6, Z = 80.

If we would like to reproduce the result of equal mass, we need to put j0(qr)→ 1,j1(qr)→ 0

and (Eµ − Ee) = γ(1− b)mµ in Eq. (7.9), which gives

Γ

Γ0

=
4γ(1− b)��mµ

��mµ(g2
1 + g2

2)

[
2(g1 + g2)2 γ2

(1 + γ)2
〈f(r)efµ(r)〉2

]
=

2γ3(1− b)
(g2

1 + g2
2)

[
(g1 + g2)2

�
�
�
��4

(1 + γ)2���
���

�
〈f(r)efµ(r)〉2

]

= 2
(g1 + g2)2

(g2
1 + g2

2)
(1− b)γ3.

This result is the same as given in Eq. (6.3).

Chapter V

Conclusion

In this work, we have calculated decay rates of two types of decay mode of µ → e
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conversion using Casimir's trick in position space. As a �rst step we have calculated the

decay rate of bound muon decay into bound electron and neutrinos (Zµ) → (Ze)νµν̄e. In

order to �nd it, we have have evaluated Dirac wave-functions for Coulomb potential and

using them we have calculated invariant amplitude. Using it we have computed the value of

the decay rate for di�erent values of Z and in equal mass limit we �nd that the value of the

bound to free muon decay rate is equal to the one calculated in Alchemy's formalism [9].

In the second part, we have studied a neutrino-less conversion of a bound muon into

bound electron. Here, we have calculated decay ratio of µ → eJ , where J is a Majoron by

using the same method as we did for (Zµ)→ (Ze)νµν̄e decay, where instead of neutrinos we

have consider mass-less scalar Majoron (J). We �nd that the value of decay branching ratio

in this case is of the order of 10−7and 10−6 for Z =10 and Z = 80, respectively. We hope

that the present study is useful for the future CLFV experiments such as Mu2e and COMET

at JPARC.
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Chapter VI

Appendix

8 A:Integration over position space

Let's evaluate integration of position part of Dirac wave function.
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�
f(r)efµ(r) =

(2Zα)2γ+1(memµ)γ−1

4π

1 + γ

2Γ(1 + 2γ)

�
dr3.r2γ−2 exp[−(me +mµ)rZα]

=
(2Zα)2γ+1(memµ)γ−1

4π

1 + γ

2Γ(1 + 2γ)

�
r2 sin θdθdφdr.r2γ−2 exp[−(me +mµ)rZα]

=
(2Zα)2γ+1(memµ)γ−1

4π

1 + γ

2Γ(1 + 2γ)

�
dr.r2γ exp[−(me +mµ)rZα]

� π

0

sin θdθ

� 2π

0

dφ

=
(2Zα)2γ+1(memµ)γ−1

��4π

1 + γ

2Γ(1 + 2γ)

�
dr.r2γ exp[−(me +mµ)rZα]��4π

= (2Zα)2γ+1(memµ)γ−1 1 + γ

2Γ(1 + 2γ)

Γ(1 + 2γ)

[(me +mµ)Zα]1+2γ

=

(
2

me +mµ

)2γ+1

(memµ)γ−1/2

(
1 + γ

2

)
(8.1)

Upon substituting me = (1− ε)mµin Eq (8.1) we will get

�
f(r)efµ(r) =

(
2

(1− ε)mµ +mµ

)2γ+1

((1− ε)m2
µ)γ−1/2

(
1 + γ

2

)
=

(
1 + γ

2

){
(1− ε)γ+1/2(
1− ε

2

)2γ+1

}

≈
(

1 + γ

2

)

9 B:Evaluation Of angular integration

Let's evaluate one by one the angular integration over dΩ and dΩ′ we used above.

~ρ2′ ~= ρ2 = a2

�
dΩ

′
exp(ιqr cos θ′)

�
dΩ exp(ιqr cos θ)
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Thus.

�
dΩ exp(ιqr cos θ) =

�
sin θdθdφ exp(ιqr cos θ)

=

π�

0

sin θ exp(ιqr cos θ)dθ

2π�

0

dφ

= −
[

exp(ιqr cos θ)

ιqr

]π
0

.2π

= −2π

[
exp(−ιqr)

ιqr
− exp(ιqr)

ιqr

]
=

2π

ιqr
[exp(ιqr)− exp(−ιqr)]

=
4π

qr

[
exp(ιqr)− exp(−ιqr)

2ι

]
=

4π

qr
Sin(qr) = 4πJ0(qr)x

49



and

�
dΩ exp(ιqr cos θ)r̂1r̂1 =

�
dΩ exp(ιqr cos θ) sin2 θ cos2 φ

=

�
sin θdθdφ exp(ιqr cos θ) sin2 θ cos2 φ

=

�
sin3 θ exp(ιqr cos θ)dθ

�
cos2 φdφ

=

�
sin2 θ. sin θ exp(ιqr cos θ)dθ.π

= π

[
sin2 θ

�
sin θ exp(ιqr cos θ)dθ −

� �
sin θ exp(ιqr cos θ)dθ.

d sin2 θ

dθ
dθ

]
= π

[
sin2 θ

{
−exp(ιqr cos θ)

ιqr

}
−
� {
−exp(ιqr cos θ)

ιqr

}
2 sin θ cos θdθ

]
= π

[
− sin2 θ

exp(ιqr cos θ)

ιqr
+

2

ιqr

�
exp(ιqr cos θ) sin θ. cos θdθ

]
= π

[
− sin2 θ

exp(ιqr cos θ)

ιqr
+

2

ιqr

{
cos θ

�
exp(ιqr cos θ) sin θdθ

−
� �

exp(ιqr cos θ) sin θdθ.
d cos θ

dθ
dθ

}]

= π

[
− sin2 θ

exp(ιqr cos θ)

ιqr
+

2

ιqr

{
− cos θ

exp(ιqr cos θ)

ιqr

−
�
−exp(ιqr cos θ)

ιqr
− sin θdθ

}]

= π

[
− sin2 θ

exp(ιqr cos θ)

ιqr
+

2

ιqr

{
− cos θ

exp(ιqr cos θ)

ιqr
− exp(ιqr cos θ)

q2r2

}]
= π

[
− sin2 θ

exp(ιqr cos θ)

ιqr
− 2 cos θ

exp(ιqr cos θ)

q2r2
− 2 exp(ιqr cos θ)

ιq3r3

]π
0

=

[
π
��
���

���
���

�

−π sin2 θ
exp(ιqrCosθ)

ιqr
− 2

{
−exp(−ιqr)

q2r2
− exp(ιqr)

q2r2

}

− 2

{
exp(−ιqr)
ιq3r3

− exp(ιqr)

ιq3r3

}]

= π

[
−4Cos(qr)

q2r2
+

4Sin(qr)

q3r3

]
= 4π

[
−Cos(qr)

q2r2
+
Sin(qr)

q3r3
.

]
= 4π

J1(qr)

qr
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Similarly for r̂2r̂2 and r̂3r̂3.

�
dΩ exp(ιqrCosθ)r̂3r̂3 =

�
dΩ exp(ιqrCosθ).Cos2θ

=

�
Cos2θSinθ exp(ιqrCosθ)dθ

�
dφ

=

�
Cos2θ.Sinθ exp(ιqrCosθ)dθ.2π

= 2π

[
Cos2θ.

�
Sinθ exp(ιqrCosθ)dθ −

� �
Sinθ exp(ιqrCosθ)dθ.

dCos2θ

dθ
dθ

]
= 2π

[
Cos2θ

{
−exp(ιqrCosθ)

ιqr

}
−
� {
−exp(ιqrCosθ)

ιqr

}
− 2CosθSinθdθ

]
= π

[
Cos2θ

{
−exp(ιqrCosθ)

ιqr

}
−
� {

exp(ιqrCosθ)

ιqr

}
2SinθCosθdθ

]
= π

[
−Cos2θ

exp(ιqrCosθ)

ιqr
− 2

ιqr

�
exp(ιqrCosθ)Sinθ.Cosθdθ

]
= π

[
−Cos2θ

exp(ιqrCosθ)

ιqr
− 2

ιqr

{
Cosθ

�
exp(ιqrCosθ)Sinθdθ

−
� �

exp(ιqrCosθ)Sinθdθ.
dCosθ

dθ
dθ

}]

= 2π

[
−Cos2θ

exp(ιqrCosθ)

ιqr
− 2

ιqr

{
−Cosθexp(ιqrCosθ)

ιqr
− exp(ιqrCosθ)

q2r2

}]
= 2π

[
−Cos2θ

exp(ιqrCosθ)

ιqr
− 2Cosθ

exp(ιqrCosθ)

q2r2
− 2 exp(ιqrCosθ)

ιq3r3

]π
0

=

[
2π −

{
exp(−ιqr)

ιqr
− exp(−ιqr)

ιqr

}
− 2

{
−exp(−ιqr)

q2r2
− exp(ιqr)

q2r2

}

− 2

{
exp(−ιqr)
ιq3r3

− exp(ιqr)

ιq3r3

}]

= 2π

[
2
Sin(qr)

qr
+ 4

Cos(qr)

q2r2
− 4

Sin(qr)

q3r3

]
= 4π

Sin(qr)

qr
+ 8

Cos(qr)

q2r2
− 8

Sin(qr)

q3r3

= 4πj0(qr)− 8π
j1(qr)

qr
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