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Abstract

As a natural phenomenon, regression to the mean (RTM) happens when extreme observa-

tions are picked at the initial measurement and get closer to the mean throughout the

subsequent measurements. Regression to the mean is a potential problem in data analysis

that could lead to incorrect conclusions. Identifying and accounting for the RTM effect is

an essential objective in any statistical study. RTM expressions for the Normal, Poisson

and Binomial distributions are accessible in the literature. RTM expression is not available

when the pre and post-variables are distributed according to the bivariate lognormal

distribution. The RTM effect becomes more severe when the correlation between the

two variables becomes weaker. Based on the correlation function, our derivations showed

that a bivariate lognormal distribution behaved like a bivariate normal distribution. In

pre-post experiments, the RTM impact decreases linearly as the correlation between

variables increases. In a lognormal distribution, the RTM for the left and right cut-off

points decrease differently with correlation. The proposed formulation for the RTM effect

under bivariate lognormal distribution is substantially more satisfying than the Edgeworth

series and Saddlepoint approximation. We conducted a simulation analysis to compare our

suggested RTM expression to previously published approaches for non-normal populations.

The RTM effect was assessed for 56 cyclosporin test pairs at various cut-off values. The

study included blood samples from organ transplant patients. We get parameter estimates

using maximum likelihood. It is unreasonable to assess cyclosporin’s real efficacy without

considering the RTM effect. The RTM effect becomes increasingly noticeable as the cut-off

point approaches the tail of the distribution.
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Chapter 1

Introduction

1.1 Background

Despite being remembered by Sir Francis Galton as early as 1886, regression toward

the mean has gained much attention lately. Galton first observed regression to the

mean (RTM) when he noticed that parents taller than the average population height

had children shorter than their parents’ height, but closer to the average population

height. On the other hand, parents shorter than the average population height had taller

children than them and more closer to the average population height. The phenomenon

is that a subsequent measurements on a random variable that was extreme on its first

observation appear to regress toward the distribution’s center. In biological studies,

regression toward the mean is commonly used to account for the statistical evaluation of a

treatment/intervention effect (Ibrahim, 2015). Researchers are also interested in analyzing

the effect of a treatment on a group of respondents who have an exceptionally high or low

quantitative characteristic (Shahane et al., 1995).

RTM could take place due to the individual observation when observed with random

error (variation). In Figure 1.1, the hypothetical heights of individuals are depicted which

is normally distributed with a mean of 170 cm and a standard deviation of 10 cm. The

Figure 1.2 shows an observed value of 190 cm which is extremely high, let us call it

parent’s height. Upon measuring the height of his child, it would be less than 190 cm

and closer to the true population mean. In the Figure 1.3, the measured value of child is

given which is closed to the true population mean, 170 cm (Barnett et al., 2005).
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Chapter 1. Introduction

There is as well the possibility of the occurrence of RTM at the group level. Assume the

height of participants follows a normal distribution with a mean of 170 cm and a standard

deviation of 10 cm. Based on the initial readings, we choose a group of individuals with

an extreme height greater than 180 cm from the population. Due to the random variation,

there would be more participants in the group whose height greater or below 180 cm. The

group?s mean height value will decline on follow-up measurements, the participants with

highly extreme initial height are due to the random variation are closer to the population

mean 170 cm (Barnett et al., 2005).

Figure 1.1: Height of Participants with an extreme height in the right at 190 cm of a
parent

Figure 1.2: Height of Participants

2



Chapter 1. Introduction

Figure 1.3: Height of Participants with height of an individual whose parent’s height was
initially extreme

Researchers are also interested in identifying the treatment effect on a group of

individuals with quantitative characteristics, for example the estimation of the drug’s

impact on subjects with high blood pressure. A typical analysis that ignores regression

towards the mean will leads to fallacy estimates of treatment effect. Also, subjects from

a ”high risk” category, defined as those with a value of the characteristic of interest

greater than a cut-off value (such as diastolic blood pressure greater than 90 mmHg) or

a value greater than a pre-selected population percentile, are included in some medical

and biologic studies (such as greater than the 95th percentile). For example, such type

situations occur in selecting hypertensive or hypercholesterolemic patients. Occasionally,

the characteristic of interest can only be observed with significant error and the design of a

reliable selection procedure becomes a serious issue. The design leads to obtaining subjects

with the desired characteristics as well as regression towards the mean (McMAHAN, 1982).

In psychological studies the researchers mostly use repeated measurements due to this

there is a high possibility that an RTM effect could bias the conclusion of an intervention

study. For example, Yu and Chen (2015) showed evidence in favor of the efficiency of social

conformity and unrealistic optimism effects, however, there is not a significant effect after

controlling the effect of RTM. Burke et al. (2014) studied the HealthMPower program’s for

the prevention of childhood obesity through a holistic three years program in elementary

school, HealthMPower program has a significant effect to reduce the risk of childhood

obesity. Skinner et al. (2015) clarified that HealthMPower causes a favorable change in

3



Chapter 1. Introduction

body composition is erroneous because the finding obtained are most likely due to the RTM

effect. Another study in literature by Moores et al. (2018) conclude that the Parenting,

Eating, and Activity for child health (PEACH), an investigative program was significant

in the reduction of standardized BMI and waist scores. (Hannon et al., 2018) claimed that

the finding was incorrect since the reported reduction was most likely caused by RTM effect.

Random fluctuations or measurement errors in a subject increase the effect of regression

to the mean. RTM is a common problem in data analysis since data without random

errors are rare in real life. Further, the effect of RTM is proportional to the measure of

the dispersion of the random error component (Shahane et al., 1995). RTM can also occur

when subjects with a particular attribute are chosen for study based on their baseline

measurements at the extreme of a distribution (Shahane et al., 1995; Johnson and George,

1991).

1.2 Historical Background

Galton (1886) first studied phenomena of the RTM about a century ago. It was discovered

in pea growth experiments that offspring from tall plants were shorter than either of

the parent plants. Likewise, the offspring of two shorter plants were to be taller than

any of their parents on avearge. According to Galton this phenomenon is referred to as

?regression towards mediocrity?.

James (1973) derived a formula for RTM to accurately estimate the effect of true

treatment and RTM effects for the case of a bivariate normal distribution which has been

truncated on the basis of baseline measurements. The results demonstrates that if the

correlation between before and after treatment is small then the regression effect will be

large. Also, the method of moments is used for parameter estimation in the by assuming

the fraction in the trancated portion to be known.

Davis (1976) extended the derivation of RTM expression when numerous measurements

were collected before giving treatment to patients and highlighted how these techniques

were beneficial in minimizing the RTM effect.

4
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Johnson and George (1991) proposed a model to estimate the RTM effect in the

presence of correlated within-subject variability and independent random error.

Barnett et al. (2005) introduced the RTM problem and illustrate practical approaches

to deal with the problem during the design and analysis stages. The results suggested

that the influence of RTM in a sample become more evident when measurement error

increases and when follow-up measurements are only preferred on a sub-sample selected

using a baseline value

Khan and Olivier (2018) studied the effect of regression to the mean in the case of

both homogenous and inhomogeneous Poisson processes. The expression to quantify the

effect of regression to the mean for bivariate Poisson distribution for both cases has been

derived. Through the method of the maximum likelihood, the estimator of the RTM effect

is derived and these estimators were shown to be consistent, unbiased, and approximately

normal. The result also suggested that for both cases the effect of RTM is different due

to the equality of mean and variance of the distribution.

Similarly, for the case of binary data, Khan and Olivier (2019) derived the effect of

regression to the mean for the bivariate binomial distribution. The results suggested

that the RTM is severe, whenever there is a negative correlation coefficient, whereas

the correlation coefficient is always positive in normal and Poisson distribution. Results

show that the change in the number of nonconforming cardboards is due to RTM which

couldn?t be due to the intervention effect. The treatment effect obtained by subtracting

the RTM effect from the total observed effect was biased due to the dependency of the

true and random error component.

Müller et al. (2003) derived the generalization of regression to the mean paradigm in

the nonparametric situation, where both population distribution of the given observa-

tion and also the contaminating errors are unknown. The method of the emergence of

nonparametric in regression to the mean with data shrinkage idea also used to find the

mode of the distribution. Results suggested that plug-in approaches were used for the

estimation of smoothing parameters.

5
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Beath and Dobson, 1991 studied the estimation of the effect of RTM in non-normal

distribution based on Edge-worth series and saddle point approximation. Results con-

cluded that Edge-worth series approximation to estimates the effect of RTM is considered

accurate as compare to Gram-Charlie approximation. From the results, it is clear that

saddle-point approximation is more accurate but is computationally difficult.

The lognormal distribution is an important continuous distribution in statistics. The

distribution has a wide range of uses in biological and medical sciences. A lognormal

distribution is widely used to characterize financial asset distributions, such as share and

stock prices. Since asset value can’t be negative lognormal distribution is well suited for

this purpose. Also, the lognormal distribution finds the widest variety of applications in

ecology. Modern ecological science focuses on the consequences of most species on the

planet’s great capacity for growth (Crow and Shimizu, 1987). There are many real-life sit-

uations which fallows bivariate lognormal distribution. Some of them are briefly discussed

below.

Yue (2000) used the multivariate lognormal probabilistic model for the prediction of

flood-frequency analysis. It has been examined that lognormal distribution is often a

possible choice for flood frequency analysis. The pair of mutually correlated variables

used for the flood-frencey analysis are the peak volume and duration.

Yue (2002) has also used the bivariate lognormal as a probabilistic model for the prediction

of storm events, such events are characterized by their peak and the total amount which

are mutually correlated.

Yerel and Konuk (2009) have model impurities in magnesite ore deposits through bivariate

lognormal distribution. The impurities in the magnesite ore deposits with a higher grade

than the cut-off grade are considered for the plant process.

Dehghani and Fadaee (2020) used the bivariate lognormal distribution as a probabilistic

model for earthquake prediction purposes. The pair of correlated variables were earthquake

magnitude and recurrence time, respectively.

6
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1.3 Objectives

The objectives of this thesis are:

1. Derivation of formula for quantifying the Total, RTM, and treatment effect for the

BLD.

2. Estimation of the Total, RTM, and treatment effects using the method of Maximum

liklihood estimation.

3. Comparison with some existing methods using simulation.

7



Chapter 2

Literature

In bivariate distribution regression to the mean effect is accounted for to accurately

estimate the treatment effect. Researchers have developed several measures to extract

the RTM effect in various distributions. In this chapter, some of the work related to

quantifying the RTM effect in literature has been discussed.

2.1 RTM under the bivariate normal distribution

The literature below focused on pre and post variable which fallows bivariate normal

distribution and the variable must be positively correlated and also fulfilled the assumption

of stationary.

2.1.1 James (1973)

Suppose the random variable X and Y represent measurements of the before and after

treatment of a patient. Both X and Y are normally distributed N(µ, σ2). Only patients

with above truncation point x0 are considered for treatment and the treatment effect is

measured by comparing the pre-post mean. The density function of truncated bivariate

standardized normal distribution is,

f(x, y) =
[1− Φ(x0)]−1

2π
√

1− ρ2
exp

[(
−1

2(1− ρ2)

)((
x− µx
σx

)2

+

(
y − µy
σy

)2

−2ρ

(
x− µx
σx

)(
y − µy
σy

))]
(2.1)
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Chapter 2. Literature

The mean and variance of the variable representing the pre-treatment are, respectively,

given by

E(X | X ≥ x0) = µ+
φ(z0)

1− Φ(z0)
σ,

V ar(X | X ≥ x0) = σ2

[
φ(z0)

1− Φ(z0)

(
z0 −

φ(z0)

1− Φ(z0)

)
+ 1

]
.

Similarly, the mean and variance of post-treatment are

E(Y | X ≥ x0) = µ+
φ(z0)

1− Φ(z0)
ρσ,

V ar(Y | X ≥ x0) = σ2

[
ρ2 φ(z0)

1− Φ(z0)

(
z0 −

φ(z0)

1− Φ(z0)

)
+ 1

]
.

The effect of regression to mean (RTM) was derived by James (1973) as

E(Y −X | X ≥ x0) =
φ(z0)

1− Φ(z0)
σ(ρ− 1)

where, µ and σ are the unconditional mean and standard deviation of random variable X

and Y and φ(·) and Φ(·) are the respective density and distribution functions of the the

random variable X.

Usign the sample conditional means (x, y) and variances (S2
x, S

2
y), and the sample

regression coefficient byx, James (1973) estimated the parameters (µ, σ2, ρ, γ) of the model

through the method of moments, and are given below.

µ̂ = x− φ(z0)

1− Φ(z0)
σ̂

σ̂2 =
S2
x[

φ(z0)

1− Φ(z0)

(
x0 −

φ(z0)

1− Φ(z0)

)
+ 1

]
ρ̂ =

[
b2

(
φ(z0)

1− Φ(z0)
(x0 −

φ(z0)

1− Φ(z0)

)
+ 1)−

S2
y

σ̂2
+ 1

] 1
2

γ̂ =
b

ρ̂
,

where (µ, σ2, ρ, γ) are the mean, variance, correlation coefficient, and treatment parameters.

9
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2.1.2 Davis (1976)

Davis (1976) introduced various methods to mitigate the regression to the mean effect.

Let yi be the measure of variable of interest the cutoff point is k. Assume that variable of

interest yi is normally distributed N(µ, σ), and ρij is the correlation coefficient between

ith and jth measure.Then

E(Y1 | y1 > k1) = µ+ c1σ

where, c1 = φ(Z1)
1−Φ(Z1)

and Z = y−µ
σ

.

Similarly, the mean of y2 given that y1 exceeds k1 of the distribution is given below.

E(Y2 | y1 > k1) = µ+ ρc1σ

The effect of Regression to the mean is,

RTM = E(Y1 | y1 > k1)− E(Y2/y1 > k1)

= c1σ(1− ρ)

Davis (1976) propose a model-based multiple measurement method, through the use of

two or even more observations on the same subject. Multiple measurements on the same

individual prior to performing an intervention can substantially decrease the quantity of

RTM.

By the RTM equation we determine that if the ρ value is unity than there may be no

regression to the mean impact. And as ρ end up smaller the impact of regression to the

mean become significant.The result also shows that regression had a sizable effect which

leads to fallacious conclusions concerning treatment effects.

2.1.3 Gardner and Heady (1973)

Gardner and Heady (1973) adress the impact of within-person variability, which is the

variability of repeated observations of the same variable on the same individual at various

times. Consider a basic model in which the component to be evaluated is expected to be

subject to an additive error, or deviation from the true’ value. let,

Yi = Y0 + ε

10
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where Y0 is the actual level of the variable for a specific participant and Y is the empirical

observation. Assume that the ε is N(0, δ2
0) , and also independent of the true value of y.

And, Y0 is distributed N(µ, σ2) with variance λ2 = σ2 + δ2
0 and correlation corr(Y, Y0) =

σ/
√
σ2 + δ2. The truncated distribution of observed values within a certain range is,

f(Y | Y > L) =
f(y)φ(Y−µ

λ
)

1− Φ(L−µ
λ

)

where φ(u) is the standardized normal PDF and Φ(u) is the CDF at an specific point u.

That is

φ(u) =
exp(−u

2

2
)

√
2π

Φ(u) =
∫ u
−∞ φ(t)dt

A truncated Normal curve with no observations below YL = l is,

v(u) =
φ(u)

1− Φ(u)
,

The expected value of Y given L in the truncated distribution is,

E(Y | Y > L) = µ+ εv(
L− µ
λ

).

Similarly, the function of y is given

f(y | Y > L) =

∫∞
L
f(y, Y )dX∫∞
L
f(y)dy

=
φ(y−µ

σ
)[1− Φ(

L− y
δ0

)]

1− Φ(L−µ
λ

)

It is useful for comparative purposes to write (1) and (2) respectively as

E(y | Y > L) = µ+
σ2

λ
v(
L− µ
λ

)

E(Y | Y > L) = µ+
λ

σ
vσ(

L− µ
λ

)

It has been observed that the mean of the observed values is beyond the mean of true

value y, since λ > σ except where δ0 is zero. This is the RTM effect.

11



Chapter 2. Literature

2.1.4 Shahane et al. (1995)

Shahane et al. (1995) discussed two more scenarios: sampling from a truncated bivariate

normal distribution based on (i) at least one variable surpasses the threshold or cut-off

point (ii) a linear combination of the two variables that exceeds a certain threshold. Under

the measurement error of Gardner and Heady ( 1993 ) and the subject effect model of

Johnson and George ( 1991 ), the author derived the expected regression effects for both

scenarios.

Gardner and Heady (1973) describe that X and Y can be defined as the sum of the two

components.

Xi = U1 + e1i and Yi = U2 + e2i

The effect of regression towards the mean is,

R(X2 | T ) =
σ2
e1φ(α)Φ(A)

σxP (T )

R(Y2 | T ) =
σ2
e2φ(β)Φ(B)

σyP (T )

T = (X1 > k1UY1 > k2)

where, α = k1−µ1
σx

, β = k2−µ2
σy

, A = (β−ρα)√
1−ρ2

and B = (α−ρβ)√
1−ρ2

The Johnson and George (1991) model regression effect can be minimized by taking

replicated measurements. Assume we identify the subjects for eligibility using the mean

of X and Y of n replication measurements.

R(X(n+1) | Tn) =
σ2
e1φ(α)Φ(A)

nP (A)σx

R(Y(n+1) | Tn) =
σ2
e2φ(β)Φ(A)

nP (B)σY

Johnson and George (1991) introduced a model, where an additional component the effect

of ”within subject” variability is defined, namely Sij the subject effect also assumed to

lead to regression to the mean. For this the model we have,

Xij = U1 + S1i + e1ij

Yij = U2 + S2i + e2ij

12
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The regression effect we have

Rx = R(X(mn+1)) | Tmn =
nσ2

s1(1− ρs1) + σ2
e1

mnσx

[
φ(α)Φ(A)

P (Tmn)

]
Rx = R(Y(mn+1)) | Tmn =

nσ2
s2(1− ρs2) + σ2

e2

mnσy

[
φ(β)Φ(B)

P (Tmn)

]

The RTM effect due to measurement error can be reduced by increasing m and n number

of replicates but the RTM effect in case of within subject variability is only reduced by

increasing m.

Under the model of linear function of the bivariate response (Xi, Yi) with the known

constants a and b such as

Zi = aXi + bYi i=1,2

Under Gardner and Heady model (1973), the expected regression effect on Z2, conditioned

on the truncation point T = (Z1 > k1)

R(Z2 | T ) =
a2σ2

e1 + b2σ2
e2√

a2(σ2
u + σ2

e1) + b2(σ2
v + σ2

e2) + 2abρuvσuσv

[
φ(α)

Q(c)

]

From the results, we conclude that the correlation between the subject effect increases

and the effect of regression towards mean becomes smaller and vice versa.

2.2 RTM for non-normal population

2.2.1 Das and Mulder (1983)

Das and Mulder (1983) introduced a simple generic formula to estimate the effect of

RTM for an arbitrary random variable of the stationary population of subjects. The

most necessary assumption here is that the within-subject variance (the disturbance) is

normally distributed. Suppose X is a continuous random variable which is measured twice

on the individual subjects of a population. The subjects of stationary population both X1

and X2 are considered to have a common distribution with identical mean µx, variance

σ2
x and the correlation coefficient ρ. The quantify effect of regression to the mean of a

normally distributed variable is,

E(X1 −X2 | X1 = x1) = (1− ρ)(x− µx)

13
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In case of without time effect stationary measurement model. In this model, the length of

time between the two measurements X1 and X2 is considered to have no influence.

Xj = W + Ej j = 1, 2

Where W is the true mean and an error term E. So, the effect of regression to the mean is,

R(x) = −(1− ρ)σ2
x

1

g(x)

dg(x)

dx

In the case of a unimodal density g, it is more acceptable to refer to regression to the

mode instead of regressions to the mean. In the normality of density function g(x), the

regression effect reduced in linear form, so the mode equal to mean.

In case of with time effect stationary measurement model. In this model, the length of

time between the two measurements X1 and X2 is considered to have a significant effect.

ρT = ρ+ (1− ρ)γT

The effect of regression to the mean is,

RT (x) = −(1− ρT )σ2
x

d

dx
ln [g(x)]

= −(1− ρ)(1− γT )σ2
x

d

dx
ln [g(x)]

Where γT represent the correlation coefficient between the disturbance term E1 and E2

with limT→∞ γT = 0 and ρ = σ2
w

σ2
x

= limT→∞ ρT .

2.2.2 Beath and Dobson (1991)

Beath and Dobson (1991) have quantified the regression to the mean of non-normal

distributions using Edgeworth series and saddlepoint approximation. Consider random

variables X1 and X2 that represent consecutive measurements on the identical respondents.

It is determined that X1 = M + e1 and X2 = M + e2, where M is the random variable

reflecting the individual’s ’actual’ value and e1 and e2 are random variables reflecting

measurement mistakes or within-subject variability, where M, e1 and e2 are assumed

to be mutually independent. The random variable M had arbitrary probability density

14
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function f(m) with mean µ and variance θ2 = ρσ2 and the variable e1 and e2 are normally

distributed with mean 0 and ∆2, where δ2 = (1− ρ)σ2, then X1 and X2 are also normally

distributed N(µ, σ2).

Assume the individuals are picked on the basis that the initial measurement X1, was more

than truncated point XL. Then the use of the technique of Das and Mulder (1983) the

regression to the mean are,

R(xL) = E(X1 −X2 | X1 > xL) =
(1− ρ)σ2g(xL)

1−G(xL)

where g(x) is the PDF of random variable X1 and X2 given by,

g(x) =
1

∆

∫ ∞
−∞

f(m)φ

(
x−m

∆

)
dm

From Edgeworth approximation method the feasible estimates of g(xL) the PDF and

G(xL) the distribution funcation is,

g(xL) =
1

σ
φ

(
xL − µ
σ

)∑
j

(
θ

σ

)j
Hj

(
xL − µ
σ

)

G(xL) =
∑
j≥0

cj

(
θ

σ

)j ∫ (xL−µ)
σ

−∞
φ(v)Hj(v)dv

= Φ

(
xL − µ
σ

)
− φ

(
xL − µ
σ

)∑
j≥0

cj

(
θ

σ

)j
Hj−1

(
xL − µ
σ

)

The Edgeworth series give sometime negative values of multimodel approximation for

some specific values of skewness and kurtosis. In this case the feasible estimation of

R(xL) through saddlepoint method, which provides an better fit to the probability density

funcation. The approximation of measurement distribution g(x) through saddlepoint

method is,

V (x) =
exp {k(t0)− t0x}
{2πk”(t0)}

1
2

Where K(t0) is the cumulative generating function and K ′(t0) = x.

The methods presented in the literature are not applicable if the underlying distribution

is nonnormal. In this case, the approximation methods described in this paper provides
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feasible results.

2.2.3 John and Jawad (2010)

As previously stated, the Das and Mulder (1983) approach can’t be applied to evaluate

the RTM effect in case of an empirical distribution. The John and Jawad (2010) decided

to utilize the method proposed by Das and Mulder (1983) data adaptive through kernel

density estimation and kernel estimation algorithms for the hazard rate function. The

term for assessing the mean regression for high initial levels subjects as suggested by Das

and Mulder is,

R(XL) = E((X1 −X2) | X1 > xL) =
(1− ρ)σ2g(xL)

1−G(xL)
(1)

Kernel density estimations have been thoroughly researched and applied in a variety of

applications across the literature. For a given set of starting values of X1i, the probability

density estimator kernel function g is provided.

ĝs(x) = n−1
∑

Ks(x−X1i)

Ks(.) =
1

h
K(./h)

where ”s” represents the smoothing parameter and ks(.) is the kernal funcation. The

mean integrated square error (MISE) is a popular method of determining the estimated

error of ĝh(x) is,

MISE(s) = E
∫

(ĝh − g)2

And the Asymptotic mean integrated square error (AMISE) is given

AMISE(s) = R(K)/ns+ s4R(g′′)(

∫ ∞
−∞

x2K(x)dx/2)2

It is the optimal value of hAMISE that minimises the AMISE(s) and also effectively

approximates the optimum value of hMISE, which results in the optimal value of MISE
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(s) and can be calculated as

hAMISE =

(
R(K)

nR(g′′)(
∫∞
−∞ x

2K(x)dx/2)2

)1/5

.

2.2.4 Khan and Olivier (2018)

Khan and Olivier (2018) focused to quantify the expression for the effect of RTM in

of bivariate Poisson distribution for both cases of Poisson process homogeneous and

inhomogeneous.

The RTM effect for the bivariate Poisson assuming a right cut-off point

Rr(y0; θ) = θ1

1− F
(
y0−1|θ0+θ1

)
1− F

(
y0|θ0+θ1

) − θ2

The RTM effect for the bivariate Poisson assuming a left cut-off point

Rl(y0; θ) = θ2 − θ1

1− F
(
y0−1|θ0+θ1

)
1− F

(
y0|θ0+θ1

)
Moreover, the expression for intervention/treatment effect has been derived,

δ(θ) = θ1 − θ2

In case of the null intervention effect meaning the pre and post observations are identically

distributed, the authors obtained the RTM effect by putting θ2 = θ1

Rr(y0; θ) = θ1

1− F
(
y0−1|θ0+θ1

)
1− F

(
y0|θ0+θ1

) − θ1

Finally, the total effect has been derived as following,

T (y0; θ) = Rr(y0 + δ(θ)

T (y0; θ) =

[
θ1

1− F
(
y0−1|θ0+θ1

)
1− F

(
y0|θ0+θ1

) − θ1

]
+ [θ1 − θ2]

The simulation results suggested that the maximum likelihood estimator of RTM is

consistent, unbiased and also approximately normally distributed. The results also

show that the RTM effect for the homogenous Poisson process is different from the
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inhomogeneous Poisson process due to the equality of mean and variance of the distribution.

2.3 Designing studies to mitigate the RTM problem

In intervention studies, the study design can assist to reduce the RTM effect (Yudkin,

1996). The subsection that follow explain some well-known study designs and their

possible impact on RTM.

2.3.1 Controlled trials with randomization

If subjects are randomly allocated to treatment and control groups, this could help in

reducing the RTM effect in the sense that any change in the control group is considered

as the RTM effect. This effect upon subtraction from the total change in the treatment

group can help in separating the treatment effect. However, due to ethical constraints the

randomization process is not always achievable Khan (2019).

2.3.2 Two measurements approach of Ederer (1972)

Ederer (1972) has proposed two measurement approaches for mitigating the effect of RTM.

The initial measurement is used to select participants, and the second measurement is

used as a baseline against which the treatment impact is measured. The RTM is assumed

to occur between the first and second measurements, so the intervention effect is evaluated

as the mean change from baseline.
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Derivation of the Total/RTM effects

The normal distribution is considered as the backbone of statistical inference due to its

applications in diverse research areas. Likewise, the log normal distribution is also an

important continuous distribution and has a wide range of uses in biological and medical

sciences, financial asset financial asset distributions and stock prices etc (Kenton, 2020).

In the field of radiation protection, the lognormal distribution has is frequently used (Gale,

1967). Lognormal distribution has also applications in quality control, in cases when the

conventional quality control process failed, the modified quality control method led to a

relatively correct interpretation of the data (Morrison, 1958). Using lognormal control

instead of normal control is recommended for skewed data (Morrison, 1958). Similarly, in

radiological and environmental studies, it’s known that radiological data are positive and

significantly skewed and can be modeled by the lognormal distribution (Blackwood, 1992).

The expression of RTM under the bivariate lognormal distribution is missing in literature.

To derive its expression, consider the density function of bivariate lognormal distribution

as

f (x, y) =
1

2πσxσy
√

1− ρ2

1

xy
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))
.

(3.2)
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Usually, the intervention is applied to subjects on a baseline criterion which could be in

the right or left tail of a distribution, thereby leading to a truncated distribution. Let the

pre post observations be X and Y , then the truncated bivariate lognormal distribution of

X and Y is given by

f (x, y) =
1

2πσxσy
√

1− ρ2

x−1y−1

1− Φ(x0)
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
(3.3)

where, FX(x) = Φ(x0) is the cumulative density function (CDF) of standard normal

distribution.

In general the Total effect is quantified as the difference between the conditional

expectation of X and Y, denoted by Tr(x0, α) and given by

Tr(x0, θ) = E(X − Y | X > x0) = E(X | X > x0)− E(Y | X > x0). (3.4)

Similarly, the expression for RTM for a right cut-off point is given by Rr(x0, α) and given

by

Rr(x0, θ) = E(X − Y | X > x0, E(X) = E(Y )), (3.5)

where E(X) and E(Y ) are the unconditional means of the bivariate lognormal distribution.

This can be interpreted as the total effect under identically distributed pre-post variables,

i.e., µx = µy and σx = σy.

As the lognormal distribution is skewed one, so the behaviour of RTM would be

different for the left and right cut-off points. Both cases are separately considered.
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3.1 Case 1: Right cut-off point

Assume that an intervention or treatment group is determined on the basis of the variable

X greater than the threshold point x0, then the conditional expectation of X is,

E(X | X > x0) =
[1− Φ(x0)]−1

2πσxσy
√

1− ρ2

∫ ∞
x0

∫ ∞
0

1

y
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
dxdy

=
1

2π
√

1− ρ2

1

1− Φ
(

log(x0)−µx
σx

) ∫ ∞
log(x0)−µx

σx

∫ ∞
−∞

exp (µx + zσx)

exp

(
−1

2(1− ρ2)

)(
z2 + p2 − 2ρzp

)
dpdz

This can be simplified to the following expression

E(X | X > x0) =
exp(µx)

√
2π
[
1− Φ

(
logx0−µx

σx

)] ∫ ∞
log(x0)−µx

σx

exp

(
−1

2

(
z2 + 2zσx ± σ2

x

))
dz

After further simplification the conditional expectation of X we have,

E(X | X > x0) = E(X)
1− Φ (z0 − σx)

1− Φ (z0)
(3.6)

where, E(X) = exp
(
µx + σ2

x

2

)
Similarly, solving the conditional expectation of E(Y |X > x0) by using the same procedure

E (Y | X > x0) =
[1− Φ(x0)]−1

2πσxσy
√

1− ρ2

∫ ∞
xo

∫ ∞
0

1

x
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
dxdy

=

[
1− Φ

(
log(x0)−µx

σx

)]−1

2π
√

1− ρ2

∫ ∞
log(x0)−µx

σx

∫ ∞
−∞

exp (µy + pσy)

exp

(
−1

2(1− ρ2)

(
z2 + p2 − 2ρzp± ρ2z2

)
dp

)
dz
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After simplification the preceding expression can be shown to be given by

E (Y | | X > x0) = E(Y )
1− Φ (zo− ρσx)

1− Φ(zo)
(3.7)

where, E(Y ) = exp
(
µy +

σ2
y

2

)
.

We get the total effect of bivariate lognormal for a right cut-off point by substituting

Equation (3.5) and (3.6) in (3.4) is given

Tr(x0, θ) = E(X)

[
1− Φ(z0 − σx)

1− Φ(z0)

]
− E(Y )

[
1− Φ(z0 − ρσx)

1− Φ(z0)

]
(3.8)

where the expectations of X and Y are the unconditional means of the respective uni-

variate lognormal distributions of X and Y as E(X) = exp (µx + σ2
x/2) and E(Y ) =

exp
(
µy + σ2

y/2
)
, and

θ = (µx, µy, σx, σy, ρxy) .

3.2 Case 2: Left cut-off point

Assume that an intervention or treatment group is formed on the basis of the variable X

less than the threshold point x0, then the conditional expectation of X is

E(X | X < x0) =
[Φ(x0)]−1

2πσxσy
√

1− ρ2

∫ x0

0

∫ ∞
0

1

y
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
dxdy

=
1

2π
√

1− ρ2

1

Φ
(
µx−log(x0)

σx

) ∫ µx−log(x0)
σx

−∞

∫ ∞
−∞

exp (µx + zσx)

exp

(
− (z2 + p2 − 2ρzp)

2(1− ρ2)

)
dpdz

After simplification the expression of conditional mean of X, we get

E(X | X < x0) = E(X)
[Φ(−z0 − σx)]

[Φ(−z0)]
(3.9)
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Similarly, solving the conditional expectation of E(Y |X < x0) and following the same

steps we get

E (Y | X < x0) =
[Φ(x0)]−1

2πσxσy
√

1− ρ2

∫ x0

0

∫ ∞
0

1

x
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
dxdy

=
exp(µy)

2π
√

1− ρ2Φ
(
µx−log(x0)

σx

) ∫ µx−log(x0)
σx

−∞
exp

(
−z2

2

)
(∫ ∞
−∞

exp(pσy) exp

{
−(p− zρ)2

2(1− ρ2)

}
dp

)
dz

After simplification the preceding expression of conditional mean of Y reduces to

E (Y | X < x0) = E(Y )
Φ (−z0 − ρσx)

Φ(−z0)
(3.10)

Following the similar steps for left cut-off point, and using the definition of the total effect,

we get the resulting expression of the total effect for the left cut-off point as

Tl(x0, θ) = E(X)

[
Φ(−z0 − σx)

Φ(−z0)

]
− E(Y )

[
Φ(−z0 − ρσx)

Φ(−z0)

]
(3.11)

3.2.1 Expression for RTM

The expressions of RTM for both left and right cut-off point can be obtained by substituting

µx = µy and σx = σy in the respective equations (3.8) and (3.11).

The expression of RTM effect for right cut-off point is

Rr(x0, θ) = E(X)

[
1− Φ(z0 − σx)

1− Φ(z0)

]
− E(X)

[
1− Φ(z0 − ρσx)

1− Φ(z0)

]
. (3.12)

Likewise, the RTM effect of left cut-off point is

Rl(x0, θ) = E(X)

[
Φ(−z0 − σx)

Φ(−z0)

]
− E(X)

[
Φ(−z0 − ρσx)

Φ(−z0)

]
. (3.13)
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3.3 Expressions for Variances

In this section we derive expressions for the variances of the total and RTM effects. Details

are given in the following subsections.

3.3.1 Variance of the total effect

The variance of the total effect in case of right cut-off point Tr(x0, θ) and Rr(x0, θ) can be

calculate by merging the V ar(X|X > x0), V ar(Y |X > x0) and Cov(XY |X > x0) as

V ar(X − Y | X > x0) = V ar(X | X > x0) + V ar(Y | X > x0)− 2Cov(XY |X > x0).

(3.14)

Some important results required to evaluate the variance of the total effect, are given

below. The E(X2|X > x0) for right cut-off point is

E(X2|X > x0) =
[1− Φ(xo)]

−1

2πσxσy
√

1− ρ2

∫ ∞
xo

∫ ∞
0

x

y
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
dxdy

=

[
1− Φ

(
log(x0)−µx

σx

)]−1

2π
√

1− ρ2

∫ ∞
logx0−µx

σx

∫ ∞
−∞

exp(2µx + 4σx) exp

(
−(z2 + p2 − 2ρzp)2

2(1− ρ2)

)
dpdz

After simplifying the formula for E(X2|X > x0), we obtained

E(X2 | X > x0) = exp(2(µx + σ2
x))

1− Φ(z0 − 2σx)

1− Φ(z0)
(3.15)

Now, we obtain V ar(X|X > x0) by using equations (3.5) and (3.12)

V ar (X | X > x0) = E(X2 | X > x0)− (E(X | X > x0))2

=
1

1− Φ(z0)

[
exp(2(µx + σ2

x))(1− Φ(z0 − 2σx))

− exp(2µx + σ2
x)

(1− Φ(z0 − σx))2

1− Φ(z0)

]
(3.16)

24



Chapter 3. Derivation of the Total/RTM effects

Likewise, to find the V ar(Y |X > x0) we also need some results. The E(Y 2|X > x0) for

right cut-off point is

E(Y 2 | X > x0) =
[1− Φ(xo)]

−1

2πσxσy
√

1− ρ2

∫ ∞
xo

∫ ∞
0

y

x
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
dxdy

=

[
1− Φ

(
log(x)0−µx

σx

)]−1

2π
√

1− ρ2

∫ ∞
log(x)0−µx

σx

∫ ∞
−∞

exp(2µy + 2ρσy) exp

(
−(z2 + p2 − 2ρzp)

2(1− ρ2)

)
dpdz

After simplifying the formula for E(Y 2|Xx0), we obtain

E(Y 2 | X > x0) = exp(2(µy + σ2
y))

Φ(z0 − 2ρσy)

Φ(z0)
(3.17)

V ar(Y | X > x0) = E(Y 2 | X > x0)− [E(Y | X > x0)]2

=
1

1− Φ(z0)

[
exp(2(µy + σ2

y))(1− Φ(z0 − 2ρσx))

− exp(2µy + σ2
y)

(1− Φ(z0 − ρσx))2

1− Φ(z0)

]
, (3.18)

and the Cov(X, Y | X > x0) for right cut-off point is

Cov(X, Y | X > x0) = E(XY | X > x0)− E(X | X > x0)E(Y | X > x0)

= exp

(
µy + σ2

y + ρσxσy −
ρ2σ2

y

2

)
[1− Φ(z0 − σx − ρσy)]

[1− Φz0]

− E(Y )
[1− Φ(z0 − σx)] [1− Φ)z0 − ρσx]

[1− Φ(z0)]2
(3.19)

Putting equation (3.11), (3.12) and (3.13) in (3.10), we get the variance of Total effect for

right cut-off point

V ar(X − Y | X > x0) =
1

1− Φ(z0)

[
exp

(
2(µx + σ2

x)
)

(1− Φ(z0 − 2σx))− exp(2µx − σ2
x)

(1− Φ(z0 − σx))2

(1− Φ(z0))
+ exp(2µy + 2σ2

y) (1− Φ(z0 − 2ρσx))

− exp(2µy + σ2
y)

(1− Φ(z0 − ρσx))2

(1− Φ(z0))
− 2 exp

(
µy + σ2

y + ρσxσy −
ρ2σ2

y

2

)
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−E(Y ) (1− Φ(z0 − σx − ρσy))
(1− Φ(z0 − σx)) (1− Φ(z0 − ρσx))

(1− Φ(z0))

]
(3.20)

Similarly, the variance of Total effect for left cut-off point can be calculated through the

same procedure

V ar(X − Y | X < x0) = V ar(X | X < x0) + V ar(Y | X < x0)− 2Cov(XY | X < x0)

(3.21)

To evaluate the variance of the Total effect for the left cut-off point, we need some

additional results given below. So the conditional variance of X is

V ar (X | X < x0) = E(X2 | X < x0)− (E(X | X < x0))2

=
1

Φ(−z0)

[
exp(2(µx + σ2

x))(Φ(−z0 − 2σx))− exp(2µx + σ2
x)

(Φ(−z0 − σx))2

Φ(−z0)

]
(3.22)

Moreover, the conditional variance of Y for the left cut-off point is

V ar(Y | X < x0) = E(Y 2 | X < x0)− [E(Y | X < x0)]2

=
1

Φ(−z0)

[
exp(2(µy + σ2

y))(Φ(−z0 − 2ρσx))− exp(2µy + σ2
y)

(Φ(−z0 − ρσx))2

Φ(−z0)

]
(3.23)

and the Cov(X, Y | X < x0) for left cut-off point is

Cov(X, Y | X < x0) = E(XY | X < x0)− E(X | X < x0)E(Y |X < x0)

= exp

(
µy + σ2

y + ρσxσy −
ρ2σ2

y

2

)
Φ(−z0 − σx − ρσy)

Φ(−z0)

− E(y)
Φ(−z0 − σx)Φ(−z0 − ρσx)

[Φ(−z0)]2
(3.24)

By putting the equation (3.16), (3.17) and (3.18) in (3.15) we get the variance of Total

for left cut-off point

V ar(X − Y | X < x0) =
1

Φ(−z0)

[
exp

(
2(µx + σ2

x)
)

Φ(−z0 − 2σx)− exp(2µx − σ2
x)

(Φ(−z0 − σx))2

Φ(−z0)
+ exp(2µy + 2σ2

y)Φ(−z0 − 2ρσx)
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− exp(2µy + σ2
y)

(Φ(−z0 − ρσx))2

Φ(−z0)
− 2 exp

(
µy + σ2

y + ρσxσy −
ρ2σ2

y

2

)
−E(Y )Φ(−z0 − σx − ρσy)

Φ(−z0 − σx) (Φ(−z0 − ρσx))
Φ(−z0)

]
(3.25)

3.3.2 Variance of RTM

The variance of RTM can be obtained by assuming the pre-post variables as stationary,

i.e., µ1 = µ2, σ1 = σ2 and substituting these values in the equations (3.17) and (3.22).

The following expressions are deduced.

The variance of RTM for right cut-off point is

V ar(X − Y | X > x0) =
1

1− Φ(z0)

[
exp

(
2(µx + σ2

x)
)

(1− Φ(z0 − 2σx))− exp(2µx − σ2
x)

(1− Φ(z0 − σx))2

(1− Φ(z0))
+ exp(2µy + 2σ2

x) (1− Φ(z0 − 2ρσx))

− exp(2µx + σ2
x)

(1− Φ(z0 − ρσx))2

(1− Φ(z0))
− 2 exp

(
µx + σ2

x + ρσ2
x −

ρ2σ2
x

2

)
−E(X) (1− Φ(z0 − σx − ρσx))

(1− Φ(z0 − σx)) (1− Φ(z0 − ρσx))
(1− Φ(z0))

]
(3.26)

Similarly, the variance of RTM effect for left cut-off point is

V ar(X − Y | X < x0) =
1

Φ(−z0)

[
exp

(
2(µx + σ2

x)
)

Φ(−z0 − 2σx)− exp(2µx − σ2
x)

(Φ(−z0 − σx))2

Φ(−z0)
+ exp(2µx + 2σ2

x)Φ(−z0 − 2ρσx)

− exp(2µx + σ2
x)

(Φ(−z0 − ρσx))2

Φ(−z0)
− 2 exp

(
µx + σ2

x + ρσ2
x −

ρ2σ2
x

2

)
−E(X)Φ(−z0 − σx − ρσx)

Φ(−z0 − σx) (Φ(−z0 − ρσx))
Φ(−z0)

]
(3.27)

3.4 RTM as a function of cut-off point z0

To see the effect of cut-off point on the RTM effect we plot RTM as a function of cut-off

point x0. By using the RTM expressions in equation (3.12) and (3.13), the graph for

various cut-off values is shown in Figure 3.1. The parameters µx = 2, µy = 2, σx = 1.5,

σy = 1.5 and ρxy = 0.6 are used for explanation purposes. The graph shows that the RTM

effect is at the maximum for the extreme cut-off point at both ends. When the cut-off
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value x0 increases, the probability P (X > x0) falls, thereby the related RTM increases. In

the case of left cut-off points, as the cut-off value X0 increases, the probability P (X < x0)

also increases, and corresponding RTM decreases.

−0.5 0.0 0.5 1.0

0
10

20
30

40
50

z0

R
(x

0, 
θ)

Right cut−off
Left cut−off

Figure 3.1: Graph showing the RTM effect generated on the basis of the derived formula
for points more than or less than a cut-off point, when the underlying distribution is
bivariate lognormal with parameter µx = 2, µy = 2, σx = 1.5, σy = 1.5 and ρxy = 0.6

.

3.5 RTM is a function of correlation ρ0

To see the effect of correlation coefficient on the RTM effect we plot RTM as a function of

correlation coefficient ρ0. By using the RTM expressions in equation (3.12) and (3.13), the

graph for various values of correlation coefficient is shown in Figure 3.2. We have fixed the

cut-off point x0 = 12 and the parameters µx = 2, µy = 2, σx = 1.5 and σy = 1.5 are used

for explanation purposes.The graph shows that as the correlation ρ value between variable

X and Y decreases, the RTM effect rises. When the correlation ρ between the variables

increases, the RTM effect approaches zero. Also, in the case of perfect correlation, there

is no RTM effect. Hence, in data analysis, the pre-post variables are highly correlated

then the expected RTM effect will be minimum, whereas it would be maximum when
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they are independent.
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Left cut−off

Figure 3.2: The graph shows RTM effect for distinct points of ρ and predetermined cut-off
point x0 = 12, when the underlying distribution is bivariate lognormal with parameter
µx = 2, µy = 2, σx = 1.5 and σy = 1.5

.
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3.6 Comparison of RTM under Lognormal and Nor-

mal distributions

According to the general rule of thumb, when µ > 6σ the lognormal distribution could be

approximated by the normal distribution. However, in the case of RTM, this approximation

does not work for approximating the RTM effect. Figure 3.3 shows that when the rule

of thumb holds, the RTM under the assumption of the bivariate lognormal distribution

increases exponentially, while that based on the normality assumption stays flat. From

the graph, we can infer that the approximation should not be used while dealing with

RTM when the data follows the bivairate lognormal distribution.

0.0 0.2 0.4 0.6 0.8 1.0
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Normal

Figure 3.3: The graph shows the comparison of RTM under the lognormal and normal
distributions for different cut-off points. The bivariate lognormal/normal parameters are
µx = 6, µy = 6, σx = 0.1, σy = 0.1 and ρ = 0.6

.
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Chapter 4

Estimation of Total and RTM Effects

This chapter discusses the estimation of the total, RTM, and intervention effects. This

objective can be achieved by estimating the parameters of the truncated bivariate lognormal

distribution with the probability density function given by

f (x, y) =
1

2πσxσy
√

1− ρ2

x−1y−1

1− Φ(x0)
exp

[
−1

2(1− ρ2)

((
log(x)− µx

σx

)2

+

(
log(y)− µy

σy

)2

−2ρ

(
log(x)− µx

σx

)(
log(y)− µy

σy

))]
(4.1)

To find the maximum likelihood estimates of the bivariate lognormal distribution, we use

the method developed by (Cohen Jr, 1955). For this purpose, the probability density

function can be written as the product of the marginal frequency function of X and the

conditional frequency function of Y , without loss of generality. Following Cohen (1955),

equation (4.1) becomes

f(x, y) =

(
1− Φ

(
log(x0)−µx

σx

))−1

2πσx
√
σ

exp

(
−1

2

(
log(x)− µx

σx

))
(4.2)

exp

(
−1

2σ

(
log(y)− α− β

(
log(x)− log(x)

)))
.

where β = ρσy
σx

, α = µy − β
(
µx − log(x

)
and σ2 = σy (1− ρ2)

Let (x11, y21), (x12, y22,...,(x1n, y2n) be the pairs of independently distributed observation

of size n from the bivariate lognormal distribution. The expressions of likelihood and log
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likelihood functions are given below

L(x, y; θ) =

(
1− Φ

(
log0−µx

σx

))−n
2πσx

√
σ2

n∏
i=1

x−1
i y−1

i exp
−1

2

n∑
i=1

(
log(x)− µx

σx

)2

exp
−1

2σ2

(
log(y)− α− β(log(x)− log(x)

)
and

`(x, y; θ) = −n log(2π)− n log(σ2)− n

2
log(σ2)− n log

[
1− Φ

(
log(x)− µx

σx

)]
−

n∑
i=1

xi

−
n∑
i=1

yi −
1

2

n∑
i=1

(
log(x)− µx

σx

)2
1

2σ2

n∑
i=1

(
log(y)− α− β(log(x)− log(x))

)
(4.3)

Differentiating the equation (4.3) with respect to µx and then equating to zero,we get

−nφ
(

log(x)−µx
σx

)
σx

(
1− Φ

(
log(x)−µx

σx

)) +

∑n
i=1 (log(x)− µx)

σ2
x

= 0

−nφ(z0′)
σx (1− Φ(z0′))

+

∑n
i=1 (log(x)− µx)

σ2
x

= 0 (4.4)

where z0′ = log(x)−µx
σx

. After simplifying equation (4.4), we get

µ̂x = log(x)− σx
φ(z0′)

1− Φ(z0′)
. (4.5)

Differentiating the log likelihood function with respect to σx and then equating to zero,

we get

−n
σx
−

nφ
(

log(x)−µx
σx

)
1− Φ

(
log(x)−µx

σx

) ( log(x)− µx
σ2
x

)
+

2

σ3
x

n∑
i=1

(
log(x)− µx

)2

= 0

−n

[
1

σx
+

nz0′φ(z0′)
σx (1− Φ(z0′))

− 1

nσ3
x

n∑
i=1

(log(x)− µx)2

]
= 0 (4.6)

Rearranging terms, and using c(z0′) = φ(z0′)
1−Φ(z0′) , it can be shown that

σ̂2
x =

S2
x

1 + z0′c(z0′)
, (4.7)
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where S2
x = 1

n

∑n
i=1 (log(x1)− µ̂x)2.

Now, differentiating the `(x, y; θ) with respect to α and then setting the equation to zero,

we get

1

σ2

n∑
i=1

(
log(y)− α− β(log(x)− log(x))

)
= 0

n∑
i=1

log(y)− nα− β
n∑
i=1

(
log(x)− log(x)

)
= 0 (4.8)

By simplification of equation (4.8), we have

α̂ = log(y). (4.9)

Similarly, differentiating `(x, y; θ) with respect to β and then equating to zero, we get

1

σ2

n∑
i=1

(
log(y)− α− β(log(x)− log(x))

)
(log(x)− log(x)) = 0

n∑
i=1

log(y)(log(x)− log(x))− α
n∑
i=1

(log(x)− log(x)) = β
n∑
i=1

(log(x)− log(x))2

It can be simplified to

β̂ =

∑n
i=1(log(x)− log(x))(log(y)− ¯log(y))∑n

i=1(log(x)− log(x))2

and

β̂ =
r̄Sy
Sx

(4.10)

where r̄ =
∑n
i=1(logx1− ¯logx1)(logx2− ¯logx2)

nSxSy
and S2

y = 1
n

∑n
i=1 (logx2 − µ̂y)2

Differentiating the log likelihood function with respect to σ and then equating to zero,we

get

−n
σ

+

∑n
i=1

(
log(y)− α− β(log(x)− log(x))

)2

σ3
= 0 (4.11)
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The equation (4.11) can be further simplified to

σ =
1

n

n∑
i=1

(
log(y)− log(y)− β(log(x)− log(x))

)2

=
1

n

(
n∑
i=1

(log(y)− log(y))2 + β2

n∑
i=1

(log(x)− log(x))2

−2β
n∑
i=1

(log(x)− log(x))(log(y)− logx2)

)

and

σ̂ = Sy
√

1− r̄2 (4.12)

Now the MLE’s of truncated bivariate lognormal distribution is respectively given

µ̂x = log(x)− σ̂x
φ(z0)

1− Φ(z0)
(4.13)

σ̂2
x =

S2
x

[1 + z0c(z0)]
(4.14)

µ̂y = α̂ + β̂
(

log(x)− µ̂x
)

(4.15)

σ̂y =

√
σ̂2 + σ̂2

xβ̂
2 (4.16)

ρ̂ =
σ̂2
xβ̂

2√
σ̂2 + σ̂2

xβ̂
2

(4.17)

The MLE of Tr(x0, θ) is

T̂r(x0, x) = E(X)

[
1− Φ(z0 − σ̂x)

1− Φ(z0)

]
− E(Y )

[
1− Φ(z0 − ρ̂σ̂x)

1− Φ(z0)

]
(4.18)

By putting E(Y ) = E(X), we get the R̂r(x0, x) from equation (4.18)

R̂r(x0, x) = E(X)

[
1− Φ(z0 − σ̂x)

1− Φ(z0)
− 1− Φ(z0 − ρ̂σ̂x)

1− Φ(z0)

]
(4.19)

Where the expectation of X and Y are the unconditional means of the sample, the

expressions are E(X) = exp
(
µ̂x + σ̂2

x

2

)
and E(Y ) = exp

(
µ̂y +

σ̂2
y

2

)
.
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Similarly, the MLE of Tl(x0, θ)

T̂l(x0, x) = E(X)

[
Φ(−z0 − σ̂x)

Φ(−z0)

]
− E(Y )

[
Φ(−z0 − ρ̂σ̂x)

Φ(−z0)

]
(4.20)

To obtain the MLE of R̂l(x0, x) by putting E(Y ) = E(X) in equation (4.20)

R̂l(x0, x) = E(X)

[
Φ(−z0 − σ̂x)

Φ(−z0)
− Φ(−z0 − ρ̂σ̂x)

Φ(−z0)

]
(4.21)

4.1 Simulation Analysis of RTM Effect

A simulation study was carried out to estimate the RTM effect and empirically evaluate

its characteristics. The method of Aitchison and Egozcue (2005) was used to generate

sample observations from bivariate lognormal distribution for different parameters using

R package. The corresponding probability P (X > x0) is relatively small if a cut-off point

is chosen far in the tail on either side. Therefore, the number of observations above/below

a cut-off would be very small in the generated sample. To have engough observation

above/below a certain threshold say, x0 = 14, samples sizes of n1 = 50000 were generated

from the bivariate lognormal distribution for different permutations of the parameters.

The first n observations greater than x0 along with the associated Y were considered as

the bivariate random samples from a truncated bivariate lognormal distribution. The

sampling method was performed i = 1000 times, and the RTM and intervantion effects

were estimated by using the maximum likelihood for each sample.

4.2 Comparison of methods

In literature Beath and Dobson (1991) estimates the RTM effect for empirical nonnormal

distribution by adopting the Edgeworth series and Saddlepoint approximations. In this

section, we graphically compare the estimated RTM and intervvention effects by the

proposed, the Edgeworth series, and Saddlepoint approximation methods for a nonnormal

population.

4.2.1 Comparison the RTM effect

This subsection compares the estimated RTM by the proposed method with the estimatd

RTM by the Edgeworth series and Saddlepoint approximation for different parameters.
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Figure 4.1: RTM at correlation coefficient
ρ=0.4
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Figure 4.2: RTM at correlation coefficient
ρ=0.6

In Figure 4.1, the parameters were fixed at µ1 = 2, µ2 = 2, σ1 = 1.5, σ2 = 1.5

and ρ = 0.4. The resulting true RTM was 20. The estimated RTM based on lognormal

distribution is close to its true value, suggesting unbiasedness of the estimator, whereas the

estimated RTM based on Edgeworth series and Saddle-point approximation underestimated

the RTM effect by more than half in error of its true value. And in Figure 4.2, the

parameters were fixed at µ1 = 2, µ2 = 2, σ2
1 = 1.5, σ2

2 = 1.5 and ρ = 0.6, and the value

of the true RTM effect is near 10. As expected, the RTM decreased with increasing

value of the correlation coefficient. Here, also the Edgeworth and Saddlepoint methods

underestimated the true RTM, in contrast to the method based on lognormal distribution

which unbiasedly estimated the true RTM.
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Figure 4.3: RTM at correlation coefficient
ρ=0.4 and µ1=2.1
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Figure 4.4: RTM at correlation coefficient
ρ=0.6 and µ1=2.1
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In Figure 4.3, the parameters were fixed at µ1 = 2.1, µ2 = 2, σ1 = 1.5, σ2 = 1.5 and

ρ = 0.4. As we changed the parameter µ1 = 2 to µ1 = 2.1 the true RTM slightly decreased.

The estimated RTM based on lognormal distribution is close to its true value, indicating

that the estimator is unbiased. However, the estimated RTM based on the Edgeworth

series and Saddle-point approximation underestimated the RTM effect by more than half

in the error of its true value, indicating that the estimator is not reliable. And in Figure

4.4, the correlation was increased from ρ = 0.4 ρ = 0.6. The RTM effect declined with

the value of the new correlation coefficient. In this case, the Edgeworth and Saddlepoint

techniques again underestimated the true RTM, but the method based on lognormal

accurately estimated the true RTM.
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Figure 4.5: RTM at correlation coefficient
ρ=0.4 and σ1 = 1.6
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Figure 4.6: RTM at correlation coefficient
ρ=0.6 and σ1 = 1.6

In Figure 4.5, we allowed the variables to have different variances and the parameters

were fixed at µ1 = 2, µ2 = 2, σ1 = 1.6, σ2 = 1.5 and ρ = 0.4. As the parameter σ1

increased the true RTM rose marginally. The RTM based on the lognormal is close to its

true value. According to the estimated RTM based on the Edgeworth series and the

Saddle-point approximation, the RTM impact was underestimated by more than half in

the inaccuracy of its true value, demonstrating the unreliability of the estimator. In

Figure 4.6, the only parameter changed was ρ = 0.6. Similar pattern appeared again.

In Figure 4.7, the case σ1 < σ2 was considered to see its effect on the true RTM and

estimation of the parameters. The parameters were fixed at µ1 = 2, µ2 = 2, σ1 = 1.5,

σ2 = 1.6 and ρ = 0.4. As we increased the parameter σ2, the resulting true RTM was 20.

The estimated RTM based on lognormal distribution is close to its true value, suggesting
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Figure 4.7: RTM at correlation coefficient
ρ=0.4 and σ2 = 1.6
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Figure 4.8: RTM at correlation coefficient
ρ=0.6 and σ2 = 1.6

unbiasedness of the estimator, while the estimated RTM based on Edgeworth series and

Saddle-point approximation underestimated the RTM effect with an error of more than

10 in absolute value with the later even worse. In Figure 4.8, the parameters were fixed

at µ1 = 2, µ2 = 2, σ1 = 1.5, σ2 = 1.6 and ρ = 0.6, and the value of the true RTM effect

is near 10. As expected, the RTM decreased with increasing value of the correlation

coefficient. The pattern of estimation of the two methods remained the same.
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Figure 4.9: RTM at correlation coefficient
ρ=0.4 and µ2=2.1
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Figure 4.10: RTM at correlation coefficient
ρ=0.6 and µ2=2.1

The last case µ1 < µ2 was also considered. In Figure 4.9, the parameters were fixed

at µ1 = 2, µ2 = 2.1, σ1 = 1.5, σ2 = 1.5 and ρ = 0.4, as we increased the parameter

µ2 the true RTM is 20. The RTM based on the lognormal was close to its true value.
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The estimated RTM based on the Edgeworth series and the Saddle-point approximation

underestimated the true RTM. Similarly, in Figure 4.10, as usual the parameters ρ = 0.6

was increased, and the value of the true RTM effect was near 10. As expected, the RTM

decreased with increasing value of the correlation coefficient. Here, also the Edgeworth

and Saddlepoint methods underestimated the true RTM, in contrast to the method based

on lognormal distribution.

4.2.2 Comparison of the estimating methods for treatment ef-

fect

This section discusses the graphical comparison of the estimated treatment effect by the

proposed method based on the lognormal distribution and the Edgeworth series and

Saddlepoint approximation for a different choices of the population parameters.

Firstly, we consider the case of the stationary variables where the distribution of the

pre-post variables are identical. In this case the intervention/treatment effect is zero, i.e.,

δµ = 0. In Figure 4.11, the choices of parameters were fixed at µ1 = 2, µ2 = 2, σ1 = 1.5,

σ2 = 1.5 and ρ = 0.4. The estimated treatment effect based on the lognormal distribution

is zero which coincides with the true treatment effect indicating the unbiasedness of

estimator. But, the lines of the estimated treatment effect based on the Edgeworth series

and Saddlepoint approximation is close to 10 which overestimates the true treatment

effect. This could lead to inaccurate conclusion if not taken care off. To see the effect of

correlation on the treatment effect, the correlation was increased to ρ = 0.6 In Figure 4.12

with other parameters unchanged. Here, also the Edgeworth and Saddlepoint methods

overestimated the true treatment, whereas the method based on lognormal unbiasedly

estimated the true treatment.

Secondly, the case of non-stationary pre-post variables with µ1 > µ2 was considered.

This allowed the treatment effect to be greater than zero, i.e., δµ > 0. In Figure 4.13,

the parameters were fixed at µ1 = 2.1, µ2 = 2, σ1 = 1.5, σ2 = 1.5 and ρ = 0.4. With

these choices of the parameters, the true treatment is around 8, and the green line of the

estimated treatment effect for different sample sizes by the proposed method coincides

with the true line. On the other hand, the estimated treatment by Edgeworth series and

Saddlepoint approximation is well above the true treatment. Figure 4.14 depicted similar
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Figure 4.11: Treatment at correlation coef-
ficient ρ=0.6
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Figure 4.12: Treatment at correlation coef-
ficient ρ=0.4

behaviour for ρ = 0.6. The Edgeworth and Saddlepoint methods overestimated the true

treatment by more than double of its true value.
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Figure 4.13: Treatment at correlation coef-
ficient ρ=0.6 and µ1=2.1
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Figure 4.14: Treatment at correlation coef-
ficient ρ=0.4 and µ1=2.1

Thirdly, the case of σ1 > σ2 was considered. As the mean of the lognormal distribution

is also a function of the dispersion parameter σ, so the treatment effect is non-zero here

as well, particularly in this case, δ(µ) > 0. For this purpose, the choices of the parameters

were µ1 = 2.1, µ2 = 2, σ1 = 1.6, σ2 = 1.5 and ρ = 0.4 and the result is depicted in Figure

4.15. By increasing the parameter from σ1 = 1.5 to σ1 = 1.6, the lines of the estimated

treatment effect by the proposed method and the true treatment are flat and close to 4,

which indicates that the estimator is unbiased. But the estimated treatment effect by the
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Figure 4.15: Treatment at correlation coef-
ficient ρ=0.6 and σ1=1.6

−
20

−
10

0
10

20
30

40

σ1=1.6, σ2=1.5, µ1=2, µ2=2, ρ=0.4, x0=14

Sample size

E
ffe

ct
s

200 500 1000 1500

Edgeworth

δ̂r(y)
SaddlePoint

δ̂r(y)
Lognormal

δ̂r(y)

δ r
(µ

)

Figure 4.16: Treatment at correlation coef-
ficient ρ=0.4 and σ1=1.6

Edgeworth series and Saddlepoint approximation overestimated the true treatment. In

Figure 4.16 the parameters were fixed at µ1 = 2.1, µ2 = 2, σ1 = 1.6, σ2 = 1.5, ρ = 0.6,

and the true treatment effect remained around the same value. The performance of the

Edgeworth and Saddlepoint methods further deteriorated, whereas the proposed method

unbiasedly estimated the true treatment effect.

Lastly, we considered the case σ1 < σ2. Here, the treatment effect is negative, i.e.,

δ(µ) < 0. In Figure 4.17, the parameters were fixed at µ1 = 2, µ2 = 2, σ1 = 1.5, σ2 = 1.6

and ρ = 0.4. By increasing the parameter from σ2 = 1.5 to σ2 = 1.6, the true treatment

is around δ(µ) = −3. The estimated treatment effect by the proposed method is almost

equal the true value for different sample sizes. However, the estimated treatment by the

Edgeworth series and Saddlepoint approximation overestimated the true treatment and

the later estimated it by more the three fold of its true value. In another permutation of

the parameters, the results of the simulation are given in Figure 4.18. Here only correlation

coefficient was changed ρ = 0.6. The performance of the Edgeworth sereis and Saddlepoint

further deteriorated from estimation point of view.
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Figure 4.17: Treatment at correlation coef-
ficient ρ=0.6 and σ2=1.6

−
20

−
10

0
10

20
30

σ1=1.5, σ2=1.6, µ1=2, µ2=2, ρ=0.4, x0=14

Sample size

E
ffe

ct
s

200 500 1000 1500

Edgeworth

δ̂r(y)
SaddlePoint

δ̂r(y)
Lognormal

δ̂r(y)

δ r
(µ

)

Figure 4.18: Treatment at correlation coef-
ficient ρ=0.4 and σ2=1.6

4.3 Data Example: the Cyclosporin Study

The data set encompassing n = 56 cyclosporin assay pairs in this manuscript was obtained

from a previously published paper (Gupta et al., 2013). Cyclosporine is a calcineurin

inhibitor used as an immunosuppressant medication. Cyclosporine is given with other

medications to prevent transplant rejection in people who have received kidney, liver, and

heart transplants. It is usually used along with other medications to allow your new organ

to function normally. It works by weakening the immune system by stoping white blood

cells from attacking a transplanted organ. Cyclosporine is a potent immunomodulatory

agent with an increasing number of clinical applications.

The method of maximum likelihood method was used for estimating the parameters

of the bivariate lognormal distribution. As there was no information about the baseline

criterion, so the data were assumed to be coming from un-truncated bivariate lognormal

distribution. The estimated parameter were µ̂x = 4.88, µ̂y = 4.96, σ̂x = 0.92, σ̂y = 0.81

and ρ̂xy = 0.96. The estimated treatment effect here is δ̂(µ) = 3.02 which is independent

of the cut-off point. To see how RTM exaggerate the treatment effect, we assume different

cut-off points for the data example under study. From Figure 4.19, it is evident that

as the cut-off point increases the RTM effect (the red line) increases which ultimately

increases the total effect (the green dotted line). If RTM is not accounted for then the

total effect would be mistakenly associated with the estimated treatment effect which is
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3.02 and this would bias the conclusion of this study as the total effect is at least 15.
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Figure 4.19: Graph shows that the total, RTM, and treatment effects generated on the
basis of the derived formula for points more than a cut-off value for µ̂x = 4.88, µ̂y = 4.96,
σ̂x = 0.92, σ̂y = 0.81 and ρ̂xy = 0.96

.
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Discussion

Regression to the mean is a serious problem in data analysis that can lead to incorrect

conclusions if overlooked, for this reason, RTM need to be addressed. Due to moral

limitations, random allocation procedures or numerous baseline measurements intended

to mitigate the RTM effect are not always viable. Thus, quantifying and accounting for

the RTM effect is an important objective in an intervention study. RTM expressions for

the Normal, Poisson and Binomial distributions are accessible in the literature. RTM

expressions are not available when the pre and post-variables are distributed according to

the bivariate lognormal distribution.

According to the literature, the RTM effect decreases when the correlations between

pre and post variables increases and the pattern depends on the underlying bivariate

distribution. Our derivations suggested that a bivariate lognormal distribution behaves

similarly to the bivariate normal distribution based on the correlation function. The RTM

impact reduces linearly for the normal distribution when the correlation between variables

increase in pre/post studies. Likewise, in lognormal distribution, RTM for the left and

the right cut-off point also increases as the correlation increase.The RTM effect becomes

more severe when the correlation between the two variables becomes weaker. Similarly, as

the subjects for an intervention are selected far in the tail of a distribution, the effect of

RTM would be more adverse.

RTM is more likely to occur in a pre/post research design when intervention or therapy

is administered to subjects who have been selected based on particular thresholds. As

the cut-off point moves further into the tail of the baseline distribution, the severity of
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RTM grows proportionally. By splitting the total effect, the treatment and RTM can be

determined.

A simulation study was conducted to compare estimation of the RTM under the

bivariate lognormal distribution to previously published approaches for nonnormal popu-

lations, such as the Edgeworth series and Saddlepoint approximation. According to our

simulation results, the proposed formulation for the RTM effect under bivariate lognormal

distribution is substantially more satisfying than the Edgeworth series and Saddlepoint

approximation.

The RTM effect was evaluated for different cut-off points for the data set containing

56 cyclosporin assay pairs. The study’s findings are based on 56 blood samples collected

from organ transplant patients. Utilizing the maximum likelihood method, we obtain the

estimates of parameters. It is inaccurate to examine cyclosporin’s actual effectiveness

without taking into account the RTM effect.

We conclude from the results that the RTM effect needs to be accounted for using the

derived method in this thesis when the pre-post variable follows the bivariate lognormal

distributions. As other existing methods would underestimate the RTM effect, thereby

overestimating the intervention effect that would lead to erroneous conclusions.
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