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Preface 
Fluid flow over stretching surface has gained wide interest among the researchers due to its 

various applications in industrial and engineering processesfor example in manufacturing and 

extraction of polymer and rubber sheets, drawing of plastic films and wires, glass fiber and paper 

production, manufacture of foods, crystal growing, liquid films in condensation process etc. The 

convective heat transfer through nanoparticles over stretching sheet has been the current topic of 

extensive research. Nanofluids are formed by adding nanoparticles into conventional fluids like 

water, engine oil and ethylene glycol. The use of additive is a process which enhances the heat 

transfer performance of base fluids. Cooling is one of the technical challenges faced in many 

industries. Use of nanofluids as coolants allow for smaller size and better positioning of the 

radiators which eventually consumes less energy for overcoming resistance on the road. 

Nanoparticles in refrigerant/lubricant mixtures could enable a cost effective technology for 

improving the efficiency of chillers that cool buildings. Rate of heat cooling has key role in 

improving the desired characteristics of end product in such applications. The nanomaterials are 

more effective in micro-/nano-electro-mechanical devices, advanced cooling systems, large scale 

thermal management systems via evaporators, heat exchangers and industrial cooling 

applications. The MHD nanofluids are further important in hyperthermia, cancer therapy and 

safer surgery by cooling sink float separation, magnetic cell separation and contrast enhancement 

in magnetic resonance imaging. Motivated by all such facts we structure the present thesis as 

follows: 

Literature review about nanofluid flow over stretched surface and description of solution 

procedure are given in chapter one.Chapter two addresses the effects of magnetodydrodynamics 

(MHD) in boundary layer flow of nanofluid over a permeable stretching sheet by using 

Buongiorno’s model. Convective type boundary conditions are employed in modeling the heat 

and mass transfer process. Transformation method has been employed to reduce the nonlinear 

partial differential equations into the nonlinear ordinary differential equations. The resulting 

nonlinear system is solved for the series solutions. Convergence of derived series solution is 

shown explicitly. Physical interpretation of different parameters through graphs and numerical 

values of local skin friction coefficient and Nusselt number are discussed. The results of this 

chapter are published in“Thermal Science (2014) DOI: 10.2298/TSCI140819139H”. 



The purpose of chapter three is to investigate the flow of viscous nanofluidby a permeable 

exponentially stretching sheet in the presence of magnetic field. An incompressible fluid fills the 

porous space. A comparative study is made for the nanoparticles namely copper (Cu), silver 

(Ag), alumina (Al2O3) and titanium oxide (TiO2

Chapter four deals with the effects of homogeneous-heterogeneous reactions in MHD boundary 

layer flow of nanofluidover a surface with velocity slip. Flow is caused by a stretching surface in 

a porous medium. Water is treated as base fluid and copper and silver as the nanoparticles. The 

relevant equations are first modeled and then solved by homotopy analysis method (HAM). The 

dimensionless expressions of velocity, concentration and wall shear stress are calculated and 

discussed. The contents of this chapter are published in“Thermal Science (2015) 

). Heat transfer analysis is formulated through 

convective boundary condition. The ordinary differential equations are solved for the convergent 

series solutions of velocity and temperature. Skin friction coefficient and local Nusselt number 

are analyzed through numerical values. The results of this problemarepublished in “Chinese 

Physics B 23 (5) (2014) 054701”. 

DOI: 

10.2298/TSCI140922067H”

Chapter five addresses the steady three-dimensional flow of viscous nanofluid induced by a 

permeable stretching sheet with homogeneous-heterogeneous reactions and second order 

velocity slip. Fluid is electrically conducting in the presence of an applied magnetic field. An 

incompressible fluid fills the porous space. Here copper is treated as nanoparticle with water as 

base fluid. The developed nonlinear problems have been solved for the series solutions. The 

convergence of the series solutions is carefully analyzed. The behaviors of various physical 

parameters are examined through graphical results of velocity and concentration distributions. 

The research presented in this chapter is published in “

. 

Journal of Magnetism and Magnetic 

Materials

Chapter six is devoted to examine the boundary layer flow of ferrofluid due to a rotating disk. 

Homogeneous-heterogeneous reactions are also accounted. Magnetite-Fe

395 (2015) 294–302”. 

3O4 in water are treated 

as ferrofluid. Fluid is electrically conducting in the presence of magnetic field. Energy equation 

in the presence of viscous dissipation is considered. Resulting nonlinear problemis formulated 

first and then solved for the convergent series solutions. The series solutionsare constructed by 

homotopic procedure. Contributions of involved parameters on the flow, temperature and 

concentration are examined. Skin friction coefficient and Nusselt number are computed and 



analyzed.The contents of this chapter are published in“Journal of Molecular Liquids216 

(2016) 845-85

Chapter seven considered the steadymagnetohydrodynamic (MHD)two-dimensional flow of Cu-
water nanofluid past a stretching sheet. Mathematical analysis is performed in the presence of 
viscous dissipation, Joule heating and non-uniform melting heat transfer. An incompressible 
fluid fills the porous space. The relevant boundary layer equations are reduced into ordinary 
differential equations by suitable transformations. The dimensionless mathematical problems are 
solved. Graphical results display the influence of interesting parameters. Numerical values of 
skin friction coefficient and local Nusselt number are computed and analyzed. This research 
isPublished in“Advanced Powder Technology 
(2016)http://dx.doi.org/10.1016/j.apt.2016.04.024”. 

”. 

Two-dimensional unsteady flow of nanofluid by an inclined stretching sheet with thermal and 

solutal stratification is studied in chapter eight. In addition effects of magnetic field, thermal 

radiation and viscous dissipation are accounted. Unsteadiness in the flow is due to the time-

dependence of the stretching velocity, stratified temperature and concentration. The developed 

nonlinear partial differential equations are reduced into the ordinary differential equations by 

suitable transformations. The governing equations are solved for the series solutions. The 

convergence of the series solutions for velocity, temperature and concentration fields is carefully 

analyzed. The effects of various physical parameters are analyzed through graphical and 

numerical results. These observations have been published in“International Journal of Heat 

and Mass Transfer92 (2016) 100-109”. 

Effects of heat and mass transfer in the stagnation point flow of Jeffreynanofluid over a 

stretching sheet are discussed in chapter nine. Problems formulation and relevant analysis are 

given in the presence of Newtonian heating. The nonlinear partial differential equations are 

simplified using boundary layer approximations. The resultant nonlinear ordinary differential 

equations are solved for the series solutions. Effects of various physical parameters on the 

velocity, temperature and concentration fields are studied. Numerical values of local skin friction 

coefficient, Nusselt and Sherwood numbers are computed and analyzed.The contents of this 

chapter have been published in“Journal of Aerospace Engineering 10.1061/(ASCE)AS.1943-

5525.0000568  (2015) 04015063”. 

Chapter ten discloses the three-dimensional magnetohydrodynamic (MHD) flow of nanofluid 

induced by a permeable linear stretching sheetwith velocity slip. Water is treated as base fluid 

and alumina as a nanoparticle. Entire different concept of nonlinear thermal radiation is utilized 



in the heat transfer process.Appropriate transformations reduce the nonlinear partial differential 

system to ordinary differential system. Series solutions for the velocity and temperature fields are 

computed and examined by the graphical illustrations. The observations of conducted analysis 

are published in “Journal of Magnetism and Magnetic Materials 396 (2015) 31-37”. 

Chapter eleven is concerned with the three-dimensional flow of copper-water nanofluidinduced 

by a permeable shrinking surface in a porous medium. The present work addresses this concept 

in the presence of magnetic field, velocity and thermal slip effects. The relevant equations are 

first simplified under boundary layer assumptions and then transformed into ordinary differential 

equations by suitable transformations. The transformed ordinary differential equations are 

computed for the series solutions of velocity and temperature. Convergence analysis is shown 

explicitly. Velocity, temperature, wall shear stress and heat transfer rate at wall are discussed for 

different physical parameters through graphs and numerical values. These observations are 

published in“Journal of Aerospace Engineering 10.106 /(ASCE)AS.1943-5525.0000533, 

(2015) 04015035”. 

Chapter twelve examines three-dimensional flow of nanofluid by a permeable shrinking sheet. 

Analysis is performed in the presence of applied uniform magnetic field. Copper is treated as 

nanoparticle with water as base fluid. An incompressible fluid fills the porous space. Convective 

boundary condition is used for the analysis of thermal boundary layer. Dimensionless 

mathematical equations are solved for the convergent series solution. Influences of embedded 

flow parameters on the velocity and temperature are displayed through graphs and discussed in 

detail. The main results of this chapter have been published in“Journal of Molecular Liquids 

212 (2015) 203-208”. 
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Chapter 1

Literature review and governing

equations

This chapter contains the literature review related to the nanofluid, magnetohydrodynamics,

stretching surface, rotating disk, slip flows and homogeneous-heterogeneous reactions. Equa-

tions governing nanofluids flow for Buongiorno and two phase flow model are presented.

1.1 Background

Convective heat transfer through nanoparticles is a popular area of research at present. The

nanoparticles (nanometer sized particles) are made up of metals, carbides, oxides or carbon

nanotubes. The nanofluids are formed by adding nanoparticles into many conventional fluids

like water, ethylene glycol and engine oil. The use of additive is a process which enhances

the heat transfer performance of base fluids. Choi [1] experimentally found that addition of

nanoparticles in conventional/base fluid appreciably enhances the thermal conductivity of the

fluid. Eastman et al. [2] and Choi et al. [3] pointed out that a small amount ( 1% volume

fraction) of Cu nanoparticles or carbon nanotubes dispersed in ethylene glycol or oil remark-

ably enhanced the thermal conductivity of a fluid by 40% and 50% respectively. Thus the

nanomaterials are recognized more effective in micro/nano electromechanical devices, advanced

cooling systems, large scale thermal management systems via evaporators, heat exchangers and

industrial cooling applications. Use of nanofluids as coolants allow for smaller size and better

6



positioning of the radiators which eventually consumes less energy for overcoming resistance

on the road. Nanoparticles in refrigerant/lubricant mixtures could enable a cost effective tech-

nology for improving the efficiency of chillers that cool buildings. Tiwari and Das [4] studied

heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing

nanofluids. At present, the literature on theoretical and experimental attempts about nanoflu-

ids is quite extensive. The comprehensive review on nanofluids can be found in the book [5]

and refs. [6 − 11]. Detailed review on this topic up to 2012 has been made by Mohammed et
al.[12] and Dalkilic et al. [13]. Besides these a comprehensive survey of convective transport

in nanofluids is presented by Buongiorno [14]. He developed a non-homogeneous equilibrium

model for convective transport to describe the heat transfer enhancement of nanofluids. He

concluded that abnormal increase in thermal conductivity occurs due to the presence of two

main velocity-slip effects, namely, the Brownian diffusion and the thermophoretic diffusion of

the nanoparticles. Later Buongiorno et al. [15] conducted novel investigations which show no

anomalous thermal conductivity enhancement in the considered fluids. Niu et al. [16] studied

slip flow of a non-Newtonian nanofluid in a microtube. Effects of heat generation/absorption on

stagnation point flow of nanofluid towards a surface with convective boundary conditions have

been analyzed by Alsaedi et al. [17]. Xu et al. [18] examined unsteady flow in a nano-liquid film

over a stretching surface. Imtiaz et al. [19] presented mixed convection flow of nanofluid with

Newtonian heating. Khalili et al. [20] considered unsteady convective heat and mass transfer

in flow of pseudoplastic nanofluid.

Magnetic nanofluids are more useful in the sense that their physical properties are tun-

able through the external magnetic field. Many equipments such as MHD generators, pumps,

bearings and boundary layer control are affected by the interaction between the electrically

conducting fluid and a magnetic field. The behavior of flow strongly depends on the orienta-

tion and intensity of the applied magnetic field. The exerted magnetic field manipulates the

suspended particles and rearranges their concentration in the fluid which strongly changes heat

transfer characteristics of the flow. A magnetic nanofluid has both the liquid and magnetic

characteristics. Such materials have fascinating applications in optical modulators, magneto-

optical wavelength filters, nonlinear optical materials, optical switches, optical gratings etc.

Magnetic particles have pivotal role in the construction of loud speakers as sealing materials
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and in sink float separation. Magneto nanofluids are useful to guide the particles up the blood

stream to a tumor with magnets. This is due to the fact that the magnetic nanoparticles are

regarded more adhesive to tumor cells than non-malignant cells. Such particles absorb more

power than microparticles in alternating current magnetic fields tolerable in humans i.e. for

cancer therapy. Numerous applications involving magnetic nanofluids include drug delivery,

hyperthermia, contrast enhancement in magnetic resonance imaging and magnetic cell separa-

tion. Motivated by all the aforementioned facts, various scientists and engineers are engaged

in the discussion of flows of nanofluids via different aspects. Rashidi et al. [21] analyzed en-

tropy generation in MHD flow due to rotating porous disk in a nanofluid. Sheikholeslami et

al. [22] investigated MHD nanofluid flow in a semi-porous channel. Khalili et al. [23] discussed

unsteady MHD nanofluid flow over a stretching/shrinking sheet in porous medium filled with a

nanofluid. Rashidi et al. [24] reported buoyancy effect on MHD stretched flow of nanofluid in

presence of thermal radiation. Effect of thermal radiation on magnetohydrodynamic nanofluid

flow and heat transfer by means of two phase model has been studied by Sheikholeslami et

al. [25]. Numerical simulation of two phase unsteady nanofluid flow between parallel plates in

presence of time dependent magnetic field has been investigated by Sheikholeslami et al. [26].

Lin et al. [27] analyzed MHD pseudoplastic nanofluid flow in a finite thin film over stretching

surface. They also considered heat transfer analysis with internal heat generation. Melting heat

transfer on MHD convective flow of a nanofluid with viscous dissipation and second order slip

has been presented by Mabood and Mastroberardino [28]. Hayat et al. [29] explored 3D MHD

flow of viscoelastic nanofluid with nonlinear thermal radiation. Hayat et al. [30] also examined

interaction of magnetic field in flow of Maxwell nanofluid with convective effect.

The fluid flow over stretching surface has gained the attention of researchers due to its

important applications in engineering processes namely polymer extrusion, drawing of plastic

films and wires, glass fiber and paper production, manufacture of foods, crystal growing, liquid

films in condensation process, etc. Crane [31] studied the flow caused by the stretching of

a sheet. Most of the available literature dealt with the study of boundary layer flow over a

stretching surface where the velocity of the stretching sheet is assumed linearly proportional

to the distance from the fixed origin. However realistically stretching of plastic sheet may not

necessarily be linear. Flow and heat transfer characteristics past an exponentially stretching
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sheet has a wider applications in technology. For example, in case of annealing and thinning

of copper wires, the final product depends on the rate of heat transfer at the surface with

exponential variations of stretching velocity. During such processes, both the kinematics of

stretching and the simultaneous heating or cooling have a decisive influence on the quality of

the final product. Specific example in this direction can be mentioned through process in plastic

industry. Gupta and Gupta [32] discussed heat and mass transfer on a stretching sheet with

suction or blowing. Afzal et al. [33] studied momentum and heat transfer on a continuous flat

surface moving in a parallel stream. Magyari and Keller [34] focused on heat and mass transfer

in boundary layer flow due to an exponentially stretching sheet. Cortell [35] found the solutions

for moving fluid over a flat surface. Zheng et al. [36] reported MHD flow and heat transfer

over a porous shrinking surface with velocity slip and temperature jump. MHD stagnation

point flow and heat transfer due to nanofluid towards a stretching sheet have been addressed

by Ibrahim et al. [37]. Mukhopadhyay [38] investigated slip effects in MHD boundary layer

flow by an exponentially stretching sheet with suction/blowing and thermal radiation. Exact

solutions over stretching or shrinking sheet in an electrically conducting quiescent couple stress

fluid have been computed by Turkyilmazoglu [39]. Malvandi et al. [40] presented slip effects on

unsteady stagnation point flow of nanofluid over a stretching sheet. Casson fluid flow and heat

transfer past an exponentially porous stretching surface in presence of thermal radiation been

provided by Pramanik [41]. Three dimensional flow of viscoelastic fluid by an exponentially

stretching surface with mass transfer has been obtained by Alhuthali et al. [42]. Rosca and

Pop [43] studied Powell—Eyring fluid flow over a shrinking surface in a parallel free stream.

Nandy and Pop [44] explored effects of magnetic field and thermal radiation on stagnation

flow and heat transfer of nanofluid over a shrinking surface. Nandy [45] considered unsteady

flow of Maxwell fluid in the presence of nanoparticles toward a permeable shrinking surface

with Navier slip. Weidman and Ishak [46] computed multiple solutions of two-dimensional and

three-dimensional flows induced by a stretching flat surface. Effects of viscous dissipation and

heat source on unsteady MHD flow over a stretching sheet have been examined by Reddy et al.

[47]. Chen et al. [48] discussed boundary layer flow of Maxwell fluid over an unsteady stretching

surface. Mustafa et al. [49] analyzed radiation effects in flow by a bi-directional exponentially

stretching sheet. Effects of convective heat and mass transfer in flow of Powell-Eyring fluid past

9



an exponentially stretching sheet have been examined by Hayat et al. [50].

Fluid flow by a rotating disk is important in engineering and geophysical applications such

as flows in spin coating, manufacturing and use of computer disks, rotational viscometer, cen-

trifugal machinery, pumping of liquid metals at high melting point, crystal growth from molten

silicon, turbo-machinery etc. Karman [51] investigated the classical problem of a rotating disk.

Erdogan [52] analyzed unsteady viscous fluid flow by non-coaxial rotations of disk and a fluid

at infinity. A note on porous rotating disk is presented by Kelson and Desseaux [53]. Flow

due to a rotating porous disk in presence of nanoparticles is analyzed by Bachok et al. [54].

Rashidi et al. [55] developed approximate solutions for steady flow due to a rotating disk. Here

porous medium and heat transfer are also considered. Turkyilmazoglu [56] studied nanofluid

flow and heat transfer due to a rotating disk. Hayat et al. [57] analyzed MHD flow of Cu-water

nanofluid due to a rotating disk with partial slip.

The formation and use of micro devices have attracted the attention of recent scientists.

The small size as well as high efficiency of micro-devices-such as microsensors, microvalves and

micropumps are some of the advantages of using MEMS and NEMS (Micro and Nano Electro

Mechanical Systems). Many attempts addressing the flow and heat transfer have been pre-

sented to guarantee the performance of such devices. The surface effects at micro scale level

lead to change in the classical conditions. Thus no-slip condition is inadequate for the fluid

flows in MEMS and NEMS. No slip conditions show unrealistic behavior for the cases like

the extrusion of polymer melts from a capillary tube, corner flow and spreading of liquid on

a solid substrate [58]. The flow analysis with heat transfer at micro-scale is encountered in

micro-electro-mechanical systems (MEMS). Such systems have association with consideration

of velocity slip and temperature jump. Khare et al. [59] presented relationship between velocity

and thermal slip. Wu [60] derived a slip model for rarefied gas flows at arbitrary Knudsen num-

ber. Fang and Aziz [61] considered viscous flow with second-order slip velocity over a stretching

sheet. Heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow

regimes has been investigated by Akbarinia et al. [62]. Mahmoud and Waheed [63] examined

stretched flow of a micropolar fluid with heat generation (absorption) and slip velocity. Ibrahim

and Shankar [64] presented MHD boundary layer flow and heat transfer of a nanofluid past a

permeable stretching sheet with velocity, thermal and solutal slip boundary condition. Khan
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et al. [65] analyzed hydrodynamic and thermal slip effect in double-diffusive free convective

boundary layer flow of a nanofluid. Extension of a second order velocity slip/temperature jump

boundary condition to simulate high speed micro/nanoflows has been given by Rooholghdos

and Roohi [66]. Malvandi and Ganji [67] considered Brownian motion and thermophoresis -

effects on slip flow of alumina/water nanofluid inside a circular microchannel. Second order

slip flow of Cu-water nanofluid over a stretching sheet with heat transfer has been investigated

by Sharma and Ishak [68]. Rashidi et al. [69] investigated entropy generation in MHD flow

over a rotating porous disk with variable properties and slip condition. Karimipour et al. [70]

analyzed the simulation of copper-water nanofluid in a microchannel with slip flow effect. Here

the lattice Boltzman method is used for the simulation. Megahed [71] studied MHD Casson

fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable

stretching sheet. Hakeem et al. [72] presented magnetic field effect in second order slip flow of

nanofluid over a radiative stretching/shrinking sheet.

Homogeneous-heterogeneous reactions occur in many chemically reacting systems such as

in combustion, catalysis and biochemical systems. Some of the reactions have the ability to

proceed very slowly or not at all, except in the presence of a catalyst. The interaction between

the homogeneous and heterogeneous reactions is very complex. It is involved in the produc-

tion and consumption of reactant species at different rates both within the fluid and on the

catalytic surfaces. Especially chemical reaction effects are quite significant in food processing,

hydrometallurgical industry, manufacturing of ceramics and polymer production, fog formation

and dispersion, chemical processing equipment design, crops damage via freezing, cooling tow-

ers and temperature distribution and moisture over agricultural fields and groves of fruit trees.

A model for isothermal homogeneous-heterogeneous reactions in boundary layer flow of viscous

fluid past a flat plate is studied by Merkin [73]. He presented the homogeneous reaction by

cubic autocatalysis and the heterogeneous reaction with a first order process. It is shown that

the surface reaction is the dominant mechanism near the leading edge of the plate. Chaudhary

and Merkin [74] studied the homogenous-heterogeneous reactions in boundary layer flow of vis-

cous fluid. They found the numerical solution near the leading edge of a flat plate. Khan and

Pop [75] studied two-dimensional stagnation-point flow with homogeneous—heterogeneous reac-

tion. Bachok et al. [76] focused on the stagnation-point flow towards a stretching sheet with
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homogeneous—heterogeneous reaction effects. Effects of homogeneous-heterogeneous reactions

in the flow of viscoelastic fluid towards a stretching sheet are investigated by Khan and Pop [77].

Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or

shrinking sheet in a porous medium have been studied by Shaw et al. [78]. Kameswaran et

al. [79] extended the work of Khan and Pop [77] for nanofluid over a porous stretching sheet.

Hayat et al. [80] analyzed homogeneous-heterogeneous reactions in the stagnation point flow of

carbon nanotubes towards a stretching surface with Newtonian heating. Effect of homogeneous-

heterogeneous reactions in flow of Powell-Eyring fluid is examined by Hayat et al. [81]. Abbasi

et al. [82] investigated stagnation-point flow of viscous fluid towards stretching/shrinking sheet

in the presence of homogeneous—heterogeneous reactions.

1.2 Fundamental laws for Buongiorno’s model

1.2.1 Law of conservation of mass

In absence of sources or sinks we can write equation of continuity as follows:




+∇ · (V) = 0 (1.1)

in which  is fluid density,  is time and V is fluid velocity. The above equation for an incom-

pressible fluid takes the form

∇ ·V = 0 (1.2)

1.2.2 Law of conservation of linear momentum

Generalized equation of motion is


V


=∇ · τ + b (1.3)

in which the left hand side represents an inertial force, the first term on right hand side is

the surface force and the second term on right hand side is body force. For an incompressible

viscous fluid τ = − I+ A1 is the Cauchy stress tensor,  the pressue, I the identity tensor,

A1 = ∇V+(∇V) the first Rivlin-Erickson tensor, b the body force and  the material
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time derivative.

1.2.3 Law of conservation of energy

The energy equation for a nanofluid can be written as





= −div q̃+ ∇ ·

−→
j  (1.4)

where  is specific heat of nanofluid,  is the temperature,  is the specific enthalpy for

nanoparticles,  is the energy flux and
−→
j  is the nanoparticles diffusion mass flux. Energy flux

 and nanoparticles diffusion mass flux
−→
j  are given by

q̃ = −∇ + 
−→
j  (1.5)

−→
j  = −∇ − 

∇
∞

 (1.6)

in which  the thermal conductivity,  is the nanoparticle mass density,  the Brownian

motion parameter,  the thermophoretic diffusion coefficient and  the nanoparticles volume

fraction. Now Eq. (1.4) takes the form





= ∇2 + 

∙
∇ ·∇ +

∇ ·∇
∞

¸
 (1.7)

which is the energy equation for nanofluids.

1.2.4 Law of conservation of concentration

The concentration equation for nanofluids is




+V ·∇ = − 1


∇ ·−→j  (1.8)

After utilizing Eq. (16), we get




+V∇ = ∇2 +

∇2
∞

 (1.9)
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1.3 Basic laws for two phase flow model

1.3.1 Law of conservation of linear momentum

Generalized equation of motion is


V


= −∇ · τ + b (1.10)

where the effective nanofluid density  is taken as follows [4]:

 =  (1− ) +  (1.11)

Here  is the solid volume fraction,  in subscript is for nano-solid-particles and  in subscript

is for base fluid.

1.3.2 Law of conservation of energy

The energy equation for a nanofluid in the presence of viscous dissipation and thermal radiation

can be written as

()



= τ · L+ ∇2 −∇ · q (1.12)

where τ = − I + A1 is the Cauchy stress tensor and q is the radiative heat flux. The

effective nanofluid heat capacity () is [4]:

() = () (1− ) + () (1.13)

The dynamic viscosity of nanofluid  is [98]:

 =


(1− )25
 (1.14)

and the effective thermal conductivity of nanofluid  by Maxwell-Garnett model is given by

[99]:




=

 + 2 − 2( − )

 + 2 + ( − )
 (1.15)
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1.4 Solution procedure

Flow equations occuring in the field of science and engineering are highly nonlinear in general.

Therefore it is very difficult to find the exact solution of such equations. Usually perturbation,

Adomian decomposion and homotopy perturbation methods are used to find the solution of non-

linear equations. But these methods have some drawback through involvement of large/small

parameters in the equations and convergence. Homotopy analysis method (HAM) [83− 97] is
one while is independent of small/large parameters. This method also gives us a way to adjust

and control the convergence region (i.e. by plotting h-curve). It also provides exemption to

choose different sets of base functions. We have used this technique in the subsequent chapters

to get the convergent series solutions.
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Chapter 2

MHD flow of nanofluid over

permeable stretching sheet with

convective boundary conditions

This chapter addresses the magnetohydrodynamic (MHD) boundary layer flow of nanofluid.

Flow is induced by a permeable stretching sheet. Convective type boundary conditions are

employed in modeling the heat and mass transfer process. Appropriate transformations reduce

the nonlinear partial differential equations to ordinary differential equations. The convergent

series solutions are constructed. Graphical results of different parameters are discussed. The

behaviors of Brownian motion and thermophoretic diffusion of nanoparticles have been exam-

ined. The dimensionless expressions of local Nusselt and local Sherwood numbers have been

evaluated and discussed.

2.1 Problem formulation

We consider the two-dimensional flow of nanofluid bounded by a permeable stretching sheet.

The −axis is taken along the stretching surface in the direction of motion and −axis is
perpendicular to it. A uniform magnetic field of strength 0 is applied parallel to the −axis. It
is assumed that the effects of induced magnetic and electric fields are negligible. Salient features

of Brownian motion and thermophoresis are present. The temperature  and the nanoparticle
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fraction  at the surface have constant values  and  respectively. The ambient values of 

and  attained as  tends to infinity are denoted by ∞ and ∞ respectively. The conservation

of mass, momentum, energy and nanoparticles equations for nanofluids are:




+




= 0 (2.1)





+ 




= 

2

2
− 20


 (2.2)





+ 




= 

2

2
+ 

"









+



∞

µ




¶2#
 (2.3)





+ 




= 

2

2
+



∞
2

2
 (2.4)

where  and  are the velocity components along  and − directions respectively,  the

kinematic viscosity,  the fluid density  the electrical conductivity of the base fluid,  the

thermal diffusivity,  = ()() is the ratio between the effective heat capacity of the

nanoparticle material and heat capacity of the fluid,  is the Brownian diffusion coefficient

and  is the thermophoretic diffusion coefficient.

The boundary conditions are prescribed as follows:

 = () =   =  − 



= ( −  ) −




= ( − ) at  = 0

 = 0  → ∞  → ∞ as  →∞ (2.5)

in which  is the wall mass transfer velocity,  is the thermal conductivity of fluid,  is the

convective heat transfer coefficient,  is the heated fluid temperature,  is the molecular

diffusivity of the species concentration,  is the wall mass transfer coefficient and  is the

heated fluid concentration. Using the transformations

 =

r



  =  0()  = −√() () =  − ∞

 − ∞
 Φ() =

 − ∞
 − ∞

 (2.6)

equation (21) is satisfied automatically and Eqs. (22− 25) take the following forms

 000 −  02 +  00 − 0 = 0 (2.7)
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1

Pr
00 + 0 +Φ

00 +
02 = 0 (2.8)

Φ00 + Φ0 +




00 = 0 (2.9)

(0) =   0(0) = 1 0(0) = −1[1− (0)] Φ0(0) = −2[1−Φ(0)]

 0(∞) = 0 (∞) = 0Φ(∞) = 0 (2.10)

where prime indicates the differentiation with respect to  Moreover the Hartman number  ,

the Prandtl number Pr, the Brownian motion parameter , the thermophoresis parameter 

the Schmidt number , the mass transfer parameter  with   0 for suction and   0 for

injection, the thermal Biot number 1 and the concentration Biot number 2 are defined by

the following definitions:

 =
20


 Pr =



  =

() ( − ∞)
() 

 =
() ( − ∞)

() ∞


 =



  = − √


 1 =





r



 2 =





r



 (2.11)

The local Nusselt number  and Sherwood number  are

 =


 ( − ∞)
;  = −



¯̄̄̄
=0

 (2.12)

 =


 ( − ∞)
;  = −



¯̄̄̄
=0

 (2.13)

in which  and  denote the wall heat and mass fluxes respectively. In dimensionless form

Re−12 = −0(0) Re−12 = −Φ0(0) (2.14)

where Re = () is the local Reynolds number.
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2.2 Homotopic solutions

2.2.1 Zeroth-order deformation problems

We choose initial guesses 0(), 0() and Φ0() and linear operators L , L and LΦ in the
forms

0() =  + 1− exp(−) (2.15)

0() =
1

1 + 1
exp(−) (2.16)

Φ0() =
2

1 + 2
exp(−) (2.17)

L () =  000 −  0 (2.18)

L() = 00 −  (2.19)

LΦ(Φ) = Φ00 −Φ (2.20)

together with the properties

L [1 + 2 exp() + 3 exp(−)] = 0 (2.21)

L [4 exp() + 5 exp(−)] = 0 (2.22)

LΦ [6 exp() + 7 exp(−)] = 0 (2.23)

where 1 − 7 are the constants. If  ∈ [0 1] denotes an embedding parameter and }  } and
}Φ represent the non-zero auxiliary parameters then the zeroth order deformation problems are

defined as follows:

(1− )L
h
̂(; )− 0()

i
= }N [̂(; )] (2.24)

(1− )L
h
̂(; )− 0()

i
= }N[̂(; ) ̂(; ) Φ̂(; )] (2.25)

(1− )LΦ
h
Φ̂(; )−Φ0()

i
= }ΦNΦ[Φ̂(; ) ̂(; ) ̂(; )] (2.26)

̂(0; ) =  ̂ 0(0; ) = 1 ̂ 0(∞; ) = 0

̂
0
(0; ) = −1[1− ̂(0; )] ̂(∞; ) = 0
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Φ̂0(0; ) = −2[1− Φ̂(0; )] Φ̂(∞; ) = 0 (2.27)

where N  N and NΦ are the nonlinear operators defined in the forms:

N

h
̂(; )

i
=

3̂(; )

3
+ ̂(; )

2̂(; )

2
−
Ã
̂(; )



!2
−

̂(; )


 (2.28)

N[̂(; ) ̂(; ) Φ̂(; )] =
1

Pr

2̂(; )

2
+ ̂(; )

̂(; )


+

Ã
̂(; )



!2

+
Φ̂(; )



̂(; )


 (2.29)

N[Φ̂(; ) ̂(; ) ̂(; )] =
2Φ̂(; )

2
+ ̂(; )

Φ̂(; )


+





2̂(; )

2
 (2.30)

For  = 0 and  = 1 we have

̂(; 0) = 0() ̂(; 1) = ()

̂(; 0) = 0() ̂(; 1) = ()

Φ̂(; 0) = Φ0() Φ̂(; 1) = Φ() (2.31)

Note that 0() 0() and Φ0() approach () () and Φ() respectively, when  has variation

from 0 to 1. According to Taylor series we have

̂(; ) = 0() +

∞X
=1

()
 () =

1

!

̂(; )



¯̄̄̄
¯
=0



̂(; ) = 0() +

∞X
=1

()
 () =

1

!

̂(; )



¯̄̄̄
¯
=0



Φ̂(; ) = Φ0() +

∞X
=1

Φ()
 Φ() =

1

!

Φ̂(; )



¯̄̄̄
¯
=0

 (2.32)
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where the convergence depends upon }  } and }Φ. By proper choice of }  } and }Φ the

series (232) converge for  = 1 and so

() = 0() +

∞X
=1

()

() = 0() +

∞X
=1

()

Φ() = Φ0() +

∞X
=1

Φ() (2.33)

2.2.2 m order deformation problems

The m order deformation problems are given by

L [()− −1()] = }R() (2.34)

L [()− −1()] = }R() (2.35)

LΦ [Φ()− Φ−1()] = }ΦRΦ() (2.36)

(0) =  0(0) =  0(∞) = 0(0)− 1(0) = (∞) = Φ0(0)− 2Φ(0) = Φ(∞) = 0
(2.37)

χ=

⎧⎨⎩ 0  ≤ 1
1   1

 (2.38)

R () =  000−1 +
−1X
=0

(−1− 00 −  0−1−
0
)− 0−1 (2.39)

R() =
1

Pr
00−1 +

−1P
=0

(0−1− +Φ−1−0 +
0
−1−

0
) (2.40)

RΦ() = Φ
00
−1 + 

−1P
=0

Φ0−1− +




00−1 (2.41)

The general solutions can be expressed as follows:

() = ∗() + 1 + 2
 + 3

− (2.42)
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() = ∗() + 4
 + 5

− (2.43)

Φ() = Φ
∗
() + 6

 + 7
− (2.44)

in which ∗ 
∗
 and Φ∗ denote the particular solutions and the constants  ( = 1 − 7) can

be determined by the boundary conditions (237). They are given by

3 =
∗()


¯̄̄̄
=0

 1 = −3 − ∗(0) 5 =
1

1 + 1

"
∗()


¯̄̄̄
=0

− 1
∗(0)

#


2 = 4 = 6 = 0 7 =
1

1 + 2

"
Φ∗()


¯̄̄̄
=0

− 2Φ
∗(0)

#
 (2.45)

2.3 Analysis of series solutions

The solution of problems consisting of Eqs. (27) − (210) is computed employing homotopy
analysis method. The convergence region and rate of approximations for the functions  ,  and

Φ can be controlled and adjusted through the auxiliary parameters } , } and }Φ. The }−curves
are sketched at 14−order of approximations to obtain valid ranges of these parameters (see
Fig. 2.1). Permissible values of the auxiliary parameters are −15 ≤ } ≤ −04 −15 ≤
} ≤ −05 and −14 ≤ }Φ ≤ −07. Further, the series solutions converge in the whole region of
 (0    ∞) when } = } = }Φ = −12 Table 21 displays the convergence of homotopy
solutions for different orders of approximations.
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Fig. 21: ~−curves for velocity, temperature and concentration fields.
Table 2.1: Convergence of HAM solutions for different order of approximations when

 =  = 04  = 03  = Pr = 1 = 1  = 05 and 2 = 09

Order of approximations − 00(0) −0(0) −Φ0(0)
1 154000 0441053 0344668

5 145883 0431349 0319776

10 145934 0430920 0318765

15 145934 0430912 0318750

20 145934 0430912 0318750

25 145934 0430912 0318750

30 145934 0430912 0318750

35 145934 0430912 0318750

40 145934 0430912 0318750

50 145934 0430912 0318750

60 145934 0430912 0318750
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2.4 Results and discussion

In this section, the effects of various involved parameters on the velocity, temperature and

concentration profiles are discussed. Figs. (22−23) are plotted to show the effects of Hartman
number  and mass transfer parameter  on the velocity profile  0 Fig. 2.2 shows the effects

of  on  0 Application of magnetic field has the tendency to slow down the movement of the

fluid particles and consequently the velocity decreases. Fig. 2.3 displays the effect of  on  0. In

this Fig. the velocity field  0 decreases when  increases. In fact applying suction leads to draw

the amount of fluid particles into the wall and hence the velocity boundary layer decreases.

Effects of the Brownian motion parameter , thermophoresis parameter , Schmidt num-

ber , Prandtl number Pr Hartman number  , mass transfer parameter , thermal Biot

number 1 and concentration Biot number 2 on the temperature profile  and the concentra-

tion profile  are shown in the Figs. (24− 218). It is noted that an increase in the Brownian
motion parameter  thermophoresis parameter  and Schmidt number  increase the tem-

perature profile  as shown in Figs. (24 − 26). The effects of Prandtl number Pr on the
temperature profile are depicted in Fig. 27 This graph shows that the temperature profile

 decreases when Pr increases. In fact the thermal diffusivity decreases by increasing Pr and

thus the heat diffused away slowly from the heated surface. Fig. 2.8 illustrates the effects

of Hartman number  on temperature profile . The Lorentz force is a resistive force which

opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary layer

thickness increases. Further, the temperature profile  decreases when  is increased (see Fig.

2.9). Also the temperature profile  increases when the thermal Biot number 1 increases (see

Fig. 2.10). Fig. 2.11 illustrates the effects of  on Φ. The concentration profile Φ decreases by

increasing the Brownian motion parameter . Influence of  on Φ can be seen in Fig. 212

There is an increase in Φ when  is increased. Figs. (213− 216) display the effects of , Pr
,  and  on the concentration profile Φ It is observed that concentration profile Φ decreases

by increasing these parameters. It is observed from Fig. 217 that the mass fraction field in-

creases when thermal Biot number 1 is increased. Also the concentration profile increases by

increasing concentration Biot number 2 as depicted in Fig. 2.18.

Numerical values of local Nusselt number and local Sherwood number for different emerging

parameters are presented in Table 2. It is noticed that local Nusselt number (Re)
− 1
2
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decreases for larger values of  ,  and  However it increases for larger values of  and

Pr. The magnitude of local Sherwood number (Re)
− 1
2 decreases for larger values of , Pr

and  however it increases for larger values of  and 

Figs. 2.19 and 2.20 describe the variations of the Nusselt number (Re)
−12 for Brownian

motion parameter  thermophoresis parameter  and Schmidt number . It is noticed that

heat transfer rate decreases as  and  increase for . Fig. 2.21 shows the effects of thermal

Biot number 1 and mass transfer parameter  on the Nusselt number (Re)
−12. In this

figure, heat transfer rate increases as 1 enhances for  Figs. 2.22 and 2.23 illustrate the

variation in dimensionless mass transfer rate (Re)
−12 vs Brownian motion parameter 

and thermophoresis parameter  Here the mass transfer rate increases for larger  and it

decreases with an increase in  Effects of concentration Biot number 2 and mass transfer

parameter  on the Sherwood number (Re)
−12 are displayed in Fig. 2.24. It is noted that

mass transfer rate increases for higher 2

Fig. 2.2: Influence of  on  0()
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Fig. 23: Influence of  on  0()

Fig. 24: Influence of  on ()
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Fig. 25: Influence of  on ()

Fig. 26: Influence of  on ()
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Fig. 27: Influence of Pr on ()

Fig. 28: Influence of  on ()
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Fig. 29: Influence of  on ()

Fig. 210: Influence of 1 on ()
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Fig. 211: Influence of  on Φ()

Fig. 2.12: Influence of  on Φ()
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Fig. 2.13: Influence of  on Φ()

Fig. 2.14: Influence of Pr on Φ()
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Fig. 2.15: Influence of  on Φ()

Fig. 2.16: Influence of  on Φ()
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Fig. 2.17: Influence of 1 on Φ()

Fig. 2.18: Influence of 2 on Φ()
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Fig. 2.19: Influences of  and  on −0(0)

Fig. 2.20: Influences of  and  on −0(0)
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Fig. 2.21: Influences of 1 and  on −0(0)

Fig. 2.22: Influences of  and  on −Φ0(0)
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Fig. 2.23: Influences of  and  on −Φ0(0)

Fig. 2.24: Influences of 2 and  on −Φ0(0)
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2.5 Main points

The flow of nanofluid generated by a permeable stretching sheet is studied. Effects of different

parameters on the velocity, temperature and concentration distributions are explored. The

following observations are worthmentioning.

• The effects of Hartman number and mass transfer parameter are similar on the velocity
profile.

• Increase in Brownian motion parameter, thermopherosis parameter, Schmidt number,
Hartman number and thermal Biot number enhances the temperature profile.

• There is enhancement of concentration for increasing thermophoresis parameter, thermal
and concentration Biot numbers.

• Local Nusselt number increases by larger thermal Biot number.

• Local Sherwood number is an increasing function of Brownian motion parameter and
concentration Biot number.
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Chapter 3

MHD flow of nanofluids due to

convectively exponential stretching

sheet in a porous medium

This chapter concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid.

The flow is caused by a permeable exponentially stretching surface. An incompressible fluid fills

the porous space. A comparative study is made for the nanoparticles namely copper (Cu), silver

(Ag), alumina (Al2O3) and titanium oxide (TiO2). Water is treated as a base fluid. Convective

type boundary conditions are employed in modeling the heat transfer process. The non-linear

partial differential equations governing the flow are reduced to the ordinary differential equation

by similarity transformations. The obtained equations are then solved for the development of

series solutions. Convergence of the obtained series solutions is explicitly discussed. Effects of

different parameters on the velocity and temperature profiles are shown and analyzed through

graphs.

3.1 Mathematical formulation

Here we investigate the steady two-dimensional flow of an incompressible nanofluid induced by

an exponentially stretching surface in a porous medium with permeability . The −axis is
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taken along the stretching surface in the direction of motion and −axis is perpendicular to it.

Fig. 3.1: Geometry of the problem.

A uniform transverse magnetic field of strength 0 is applied parallel to the −axis. It is
assumed that the induced magnetic field and the electric field effects are negligible. Further,

the surface exhibits convective type boundary conditions (see Fig. 3.1). The boundary layer

flow in the present analysis is governed by the following equations:




+




= 0 (3.1)



µ




+ 





¶
= 

2

2
− 


− 

2
0 (3.2)





+ 




=



()

2

2
 (3.3)

where  and  are the velocity components along the − and − directions respectively. The
effective nanofluid density  and heat capacity () are taken as follows [4]:

 =  (1− ) +  (3.4)
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() = () (1− ) + () (3.5)

The dynamic viscosity of nanofluid  given by Brinkmann is [98]:

 =


(1− )25
 (3.6)

The effective thermal conductivity of nanofluid  by Maxwell-Garnett model is given by [99]:




=

 + 2 − 2( − )

 + 2 + ( − )
 (3.7)

and the electric conductivity  of nanofluid is [100]:




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (3.8)

Here  is the solid volume fraction,  in subscript is for nano-solid-particles and  in subscript

is for base fluid. The subjected boundary conditions are

 =  = 0

   =  − 




= ( −  ) at  = 0

 → 0  → ∞ as  →∞ (3.9)

Introducing

 = 

s
0

2



2   = 0


  0()  = −

r
0

2



2

£
() +  0()

¤
 () =

 − ∞
 − ∞



(3.10)

Eq. (31) is satisfied automatically and Eqs. (32) (33) and (39) after using Eq. (310) can

be reduced as follows:

1
000 +  00 − 2 02 − 1

0 − (1− )251



 0 = 0 (3.11)

1

Pr




00 +

µ
(1− ) +

()

()


¶
0 = 0 (3.12)
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 0(0) = 1 (0) =  0(0) = −1[1− (0)]

 0(∞) = 0 (∞) = 0 (3.13)

in which prime indicates the differentiation with respect to  and the value of 1 is

1 =
1µ

(1− ) +






¶
(1− )25

 (3.14)

Moreover the porosity parameter  the Hartman number , the Prandtl number Pr the mass

transfer parameter  with   0 for suction and   0 for injection and the thermal Biot

number 1 are defined as follows:

 =
2

0
−


   =

2
2
0

0
−


  Pr =

 ()


  = −

r
2

0
−


2, 1 =





r





(3.15)

Local skin-friction coefficient  and local Nusselt number  are given by

 =


1
2
20 

2


  =


 ( − ∞)
 (3.16)

where the surface shear stress  and wall heat flux  are

 = 




¯̄̄̄
=0

  = − 



¯̄̄̄
=0

 (3.17)

Dimensionless forms of skin friction coefficient  and local Nusselt number  can be repre-

sented by the relations



r
Re

2
=

1

(1− )25
 00(0) Re−12

r
2


= −


0(0) (3.18)

in which Re = 0

 denotes the local Reynolds number.
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3.2 Homotopy analysis solutions

Employing the methodology of homotopy analysis solutions the initial approximations 0()

and 0() and auxiliary linear operators L and L are given by

0() = 1 +  − exp(−) 0() = 1
1 + 1

exp(−) (3.19)

L () =  000 −  0 L() = 00 −  (3.20)

together with the properties

L [1 + 2 exp() + 3 exp(−)] = 0

L [4 exp() + 5 exp(−)] = 0 (3.21)

where 1− 5 are the constants. If  ∈ [0 1] indicates the embedding parameter then the zeroth
order deformation problems are constructed as follows:

(1− )L
h
̂(; )− 0()

i
= }N [̂(; )] (3.22)

(1− )L
h
̂(; )− 0()

i
= }N[̂(; ) ̂(; )] (3.23)

̂ 0(0; ) = 1 ̂(0; ) =  ̂ 0(∞; ) = 0

̂
0
(0; ) = −1[1− ̂(0; )] ̂(∞; ) = 0 (3.24)

where } and } are the nonzero auxiliary parameters. With Eqs. (311) and (312), the

definitions of operators N and N can be written as

N

h
̂(; )

i
= 1

3̂(; )

3
+ ̂(; )

2̂(; )

2
− 2

Ã
̂(; )



!2

−1̂(; )


− (1− )251




̂(; )


 (3.25)
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N[̂(; ) ̂(; )] =
1

Pr





2̂(; )

2
+

µ
(1− ) +

()

()


¶
̂(; )

̂(; )


 (3.26)

The resulting problems at m order are given by

L [()− −1()] = }R() (3.27)

L [()− −1()] = }R() (3.28)

(0) =  0(0) =  0(∞) = 0(0)− 1(0) = (∞) = 0 (3.29)

χ=

⎧⎨⎩ 0  ≤ 1
1   1

 (3.30)

R () = 1
000
−1+

−1X
=0

£
−1− 00 − 2 0−1− 0

¤−1 0−1−(1−)251



 0−1 (3.31)

R() =
1

Pr




00−1 +

µ
(1− ) +

()

()


¶
−1P
=0

0−1− (3.32)

where the general solutions are

() = ∗() + 1 + 2
 + 3

−

() = ∗() + 4
 + 5

− (3.33)

in which ∗ and ∗ denote the special solutions.

3.3 Convergence of the homotopy solutions

Now the solutions of Eqs. (311) and (312) subject to the boundary conditions (313) is

computed by means of homotopy analysis method. We choose auxiliary parameters } and

} for the functions  and  respectively. The convergence of obtained series and rate of the

approximation for HAM strongly depend upon the values of the auxiliary parameters. For

ranges of admissible values of } and } the }−curves for 12−order of approximations are
plotted in the Fig. 32. We can see that the permissible values for } and } are −07 ≤ } ≤
−04 and −06 ≤ } ≤ −045 Further, the series solutions converge in the whole region of 
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(0   ∞) when } = } = −06

Fig. 3.2: ~−curves for velocity and temperature fields.
Table 3.1: Convergence of HAM solutions for different order of approximations when

Pr = 62  = 003  = 05 1 = 07  = 01 and  = 09

Order of approximations − 00(0) −0(0)
1 1761 04432

5 2144 05421

10 2154 06139

16 2154 06336

20 2154 06271

30 2154 06184

35 2154 06241

40 2154 06241

3.4 Discussion

In this section we discuss the influences of various parameters on the velocity  0() and tem-

perature fields (). Figs. (33− 36) are plotted to analyze the effects of volume fraction of
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nanoparticles  mass transfer parameter , Hartman number  and porosity parameter  on

the velocity field  0. Effects of volume fraction of nanoparticles  on the velocity profile  0

can be seen from Fig. 3.3. Here the values of  0 and boundary layer thickness decrease when

volume fraction for the nanoparticles increases. The effects of mass transfer parameter  on

the velocity  0 are depicted in Fig. 3.4 This graph shows that the value of velocity function

 0 and the boundary layer thickness decrease by increasing . Because applying suction leads

to draw the amount of fluid particles into the wall and consequently the velocity boundary

layer decreases. Influence of Hartman number  and parameter  on the velocity field  0 is

similar to that of . As application of a magnetic field has the tendency to slow down the

movement of the fluid, causing its velocity to decrease. Also by increasing porosity parameter

 the resistance to the fluid motion also increases. This causes the fluid velocity to decrease.

Effects of volume fraction of nanoparticles  mass transfer paramter , Hartman number

 , porosity parameter  and Biot number 1 on the temperature profile  are shown in the

Figs. (37 − 311). Effect of  on the temperature is analyzed in Fig. 3.7 It is observed
that increasing the volume fraction of nanoparticles  increases the thermal conductivity of

nanofluid and consequently the thermal boundary layer thickness increases. The behavior of 

on the temperature profile is similar to that of velocity profile (see Fig. 3.8). Fig. 3.9 illustrates

the effects of on temperature profile . As Lorentz force is a resistive force which opposes the

fluid motion. So heat is produced and as a result thermal boundary layer thickness increases.

Variations of  on temperature profile  can be seen in the Fig. 310. There is a decrease in

temperature  when porosity parameter  is increased. Fig. 3.11 represents the effect of Biot

number 1 on temperature profile . Temperature profile  increases for larger 1.

In Fig. 3.12 we observe that boundary layer thickness is maximum when Titanium oxide

is chosen as nanoparticle. Fig. 3.13 shows the effects of nanoparticle volume fraction , mass

transfer parameter  and porosity parameter  on skin friction coefficient in case of −water.
It is noticed that magnitude of skin friction coefficient increases when we increase  for both

 and  Fig. 3.14 describes the variation of Nusselt number for nanoparticle volume fraction

, mass transfer parameter  and porosity parameter . In this Fig. the heat transfer rates

increase as  increases for both  and 

Table 3.1 shows the convergence of the series solutions. In Table 3.2 some thermophysical
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properties of water and nanoparticles are given. Table 3.3 shows the effects of nanoparticle

volume fraction  for different types of nanofluids on skin friction coefficient when  = 05

 = 01 and  = 09 Table 3.4 shows the effects of nanoparticle volume fraction  for different

types of nanofluids on Nusselt number when  = 05 Pr = 62 1 = 07  = 01 and  = 09

These tables show that the shear stress and heat transfer rate change when we use different

types of nanoparticles.

Fig. 3.3: Influence of  on  0().
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Fig. 3.4: Influence of  on  0()

Fig. 3.5: Influence of  on  0()
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Fig. 3.6: Influence of  on  0()

Fig. 3.7: Influence of  on ()
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Fig. 3.8: Influence of  on ()

Fig. 3.9: Influence of  on ()
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Fig. 3.10: Influence of  on ()

Fig. 3.11: Influence of 1 on ()
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(a)

(b)

Fig. 3.12: (a) Velocity and (b) temperature profiles for different types of nanoparticles.
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(a)

(b)

Fig. 3.13: Effects of nanoparticle volume fraction , (a) mass transfer parameter  and (b)

porosity parameter  on the skin friction coefficient when  = 01.
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(a)

Fig. 3.14: Effects of nanoparticle volume fraction , (a) mass transfer parameter  and (b)

porosity parameter  on the Nusselt number when  = 01 Pr = 62 and 1 = 07.
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Table 3.2: Thermophysical properties of water and nanoparticles [21].

(3) () ()  × 105(−1) (Ω)−1

Pure water 9971 4179 0613 21 005

Copper() 8933 385 401 167 596× 107

Silver() 10500 235 429 189 36× 107

Alumina(23) 3970 765 40 085 1× 10−10

Titanium Oxide(2) 4250 6862 89538 09 1× 10−12

Table 3.3: Effect of  for different types of nanofluids on skin friction coefficient when

 = 05  = 01 and  = 09

   23 2

001 −205387 −207036 −200143 −200439
003 −215426 −220071 −200558 −201404
005 −223960 −231255 −200535 −201873

Table 3.4: Effect of  for different types of nanofluids on Nusselt number when  = 05

Pr = 62 1 = 07  = 01 and  = 09

   23 2

001 0436981 0436452 0437649 0438380

003 0423311 0421702 0425326 0427566

005 0409403 0406691 0412767 0416582

3.5 Concluding remarks

Here MHD flow of nanofluid by an exponentially permeable stretching sheet is studied. Ef-

fects of different parameters on the velocity and temperature profiles are shown. Convergent

approximate solution is constructed. The following observations are made

• An increase in the values of  ,  and  have similar effects on the velocity profile in

a qualitative sense.

• Temperature profile enhances by increasing   and 1 while it decreases when  and

 are increased.
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• Magnitude of skin friction coefficient is higher for increasing values of 

• Higher values of  correspond to larger values of Nusselt number.
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Chapter 4

MHD flow of nanofluid with

homogeneous-heterogeneous

reactions and velocity slip

Present chapter focuses on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid.

The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. An in-

compressible fluid fills the porous space. Copper-water and silver-water nanofluids are investi-

gated in this study. Transformation method reduces the nonlinear partial differential equations

governing the flow into the ordinary differential equation by similarity transformations. The

obtained equations are then solved for the development of series solutions. Convergence of the

obtained series solutions is explicitly discussed. Effects of different parameters on the velocity,

concentration and skin friction coefficient are shown and analyzed through graphs.

4.1 Mathematical formulation

We consider the steady two-dimensional flow of an incompressible nanofluid over a stretching

surface in porous medium with permeability . The −axis is taken along the stretching
surface in the direction of motion and −axis is perpendicular to it. A uniform transverse

magnetic field of strength 0 is applied parallel to the −axis. It is assumed that the induced
magnetic and electric fields effects are negligible (see Fig. 4.1). Nanoparticles such as copper
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() and silver () are considered. Water is treated as a base fluid.

Fig. 4.1: Geometry of the problem.

We have taken a simple homogeneous-heterogeneous reaction model in the following form [73]:

+ 2 → 3 rate = 
2 (4.1)

while on the catalyst surface we have the single, isothermal, first order reaction

→  rate =  (4.2)

where  and  are the concentrations of the chemical species  and  and  and  denote

the rate constants. We assume that both reaction processes are isothermal. Under these

assumptions, the relevant boundary layer equations are




+




= 0 (4.3)



µ




+ 





¶
= 

2

2
− 


− 

2
0 (4.4)
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



+ 




= 

2

2
− 

2 (4.5)





+ 




= 

2

2
+ 

2 (4.6)

The subjected boundary conditions are

 = +
2− 


0





¯̄̄̄
=0

  = 0 



=  




= − at  = 0

→ 0 → 0 → 0 as  →∞ (4.7)

where  and  are the velocity components along the − and − directions respectively,  and

 are the respective diffusion species coefficients of  and ,  the tangential momentum

accommodation coefficient and 0 the molecular mean free path. The effective density  , the

dynamic viscosity   the electrical conductivity  , the heat capacitance () and the

thermal conductivity  of the nanofluid are given by

 =  (1− ) +  (4.8)

 =


(1− )25
 (4.9)




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (4.10)

Here  is the nanoparticle volume fraction,  in subscript is for nano-solid-particles and 

in subscript is for base fluid. Denoting 0 (a constant) and () and () the dimensionless

concentration and defining

 =

r



  =  0()  = −√()  = 0()  = 0() (4.11)

equation (43) is satisfied automatically and Eqs. (44− 47) reduce to

1
000 +  00 −  02 − 1

0 − (1− )251



 0 = 0 (4.12)
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1


00 + 0 − 1

2 = 0 (4.13)




00 + 0 + 1

2 = 0 (4.14)

 0(0) = 1 +  00(0) (0) = 0  0(∞)→ 0

0(0) = 2(0) (∞)→ 1

0(0) = −2(0) (∞)→ 0 (4.15)

in which prime indicates the differentiation with respect to . Moreover the non-dimensional

constants in Eqs. (412 − 417) are the porosity parameter  the Hartman number  , the

Schmidt number  the measure of the strength of the homogeneous reaction 1, the measure

of the strength of the heterogeneous reaction 2, the ratio of the diffusion coefficient  and the

velocity slip parameter  These are defined as follows:

 =



  =


2
0


  =




 1 =


2
0


 2 =





r



  =




  =

2− 


0

r





(4.16)

where

1 =
1

(1− )25
³
1− + 




´  (4.17)

The diffusion coefficients of chemical species  and  are expected to be of a comparable size.

This leads to make a further assumption that the diffusion coefficients  and  are equal,

i.e. to take  = 1 [73]. In this case we have from Eqs. (415)

() + () = 1 (4.18)

Thus Eqs. (413) and (414) become

1


00 + 0 − 1(1− )2 = 0 (4.19)

subject to the boundary conditions

0(0) = 2(0) (∞)→ 1 (4.20)
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The physical quantity of interest is the skin-friction coefficient   It characterizes the surface

drag. The shearing stress at the surface of the wall  is given by

 = −




¯̄̄̄
=0

= − 1

(1− )25

q


3 00(0) (4.21)

The skin friction coefficient is defined as

 =


1
2


2


 (4.22)



p
Re = − 2

(1− )25
 00(0) (4.23)

in which Re =  denotes the local Reynolds number.

4.2 Solutions derivation

We choose the initial guesses 0() and 0() and the linear operators L and L in the forms

0() =
1

1 + 
(1− −) 0() = 1−

1

2
−2 (4.24)

L () =  000 −  0 L() = 00 −  (4.25)

together with the properties

L
£
1 + 2

 + 3
−¤ = 0

L
£
4

 + 5
−¤ = 0 (4.26)

where 1 − 5 are the constants.

We construct the zeroth order problems as follows:

(1− )L
h
̂(; )− 0()

i
= }N [̂(; )] (4.27)

(1− )L
h
̂(; )− 0()

i
= }N[̂(; ) ̂(; )] (4.28)
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̂ 0(0; ) = 1 + ̂ 00(0; ) ̂(0; ) = 0 ̂ 0(∞; ) = 0

̂
0
(0; ) = 2̂(0; ) ̂(∞; ) = 1 (4.29)

where  ∈ [0 1] denotes an embedding parameter and } and } are the nonzero auxiliary
parameters. With Eqs. (412) and (419), the definitions of operators N and N are

N

h
̂(; )

i
= 1

3̂(; )

3
+ ̂(; )

2̂(; )

2
−
Ã
̂(; )



!2

−1̂(; )


− (1− )251




̂(; )


 (4.30)

N[̂(; ) ̂(; )] =
1



2̂(; )

2
+ ̂(; )

̂(; )


− 1

³
̂(; )

´3
−1̂(; ) + 21(̂(; ))2 (4.31)

The resulting problems at m order are given by

L [()− −1()] = }R() (4.32)

L
£
()− −1()

¤
= }R() (4.33)

(0) =  0(0)−  00(0) =  0(∞) = 0(0)− 2(0) = (∞) = 0 (4.34)

χ=

⎧⎨⎩ 0  ≤ 1
1   1

 (4.35)

R () = 1
000
−1 +

−1X
=0

£
−1− 00 −  0−1−

0


¤− 1
0
−1 − (1− )251




 0−1 (4.36)

R() =
1


00−1 +

−1P
=0

"
0−1− − 1−1−

P
=0

− + 21−1−

#
− 1−1 (4.37)
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where the general solutions are

() = ∗() + 1 + 2
 + 3

−

() = ∗() + 4
 + 5

− (4.38)

in which ∗ and ∗ denote the special solutions. constants  ( = 1 − 5) can be determined
by the boundary conditions (434). They are given by

3 =
1

1 + 

∙
∗()


− 
2∗()
2

¸
=0

 1 = −3 − ∗(0)

2 = 4 = 0 5 =
1

1 + 2

"
∗()


¯̄̄̄
=0

− ∗2(0)

#
 (4.39)

4.3 Convergence of the homotopy solutions

Now the solutions of Eqs. (412) and (419) subject to the boundary conditions (415) and

(420) are computed by means of homotopy analysis method. We choose auxiliary parameters

} and } for the functions  and  respectively. The convergence of obtained series and rate

of the approximation for HAM strongly depend upon the values of the auxiliary parameters.

For ranges of admissible values of } and } the }−curves for 13−order of approximations
are plotted in the Figs. (42 and 43). We can see that the permissible values of } and }

for −water are −16 ≤ } ≤ −05 and −12 ≤ } ≤ −03 and for −water are −16 ≤
} ≤ −06 and −1 ≤ } ≤ −01 Further, the series solutions converge in the whole region of 
(0   ∞) when } = } = −1
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Fig. 4.2: ~−curves of  00(0) and 0(0) for Cu-water when  = 02  = 04 1 = 2 = 03

 =  = 05 and  = 1

Fig. 4.3: ~−curves of  00(0) and 0(0) for Ag-water when  = 02  = 04 1 = 2 = 03

 =  = 05 and  = 1
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Table 4.1: Convergence of HAM solutions for different order of approximations when

 = 02  = 04 1 = 2 = 03  =  = 05 and  = 1

Order of approximations − 00(0) 0(0)

1 05455 004916

5 05564 004835

10 05588 004788

15 05596 004755

17 05594 004736

20 05594 004736

25 05594 004736

4.4 Results and discussion

The effects of different parameters on the dimensionless flow and concentration profiles are

investigated and presented graphically in this section.

4.4.1 Dimensionless velocity profiles

Figs. (44− 47) exhibit the dimensionless velocity profiles for different values of nanoparticle
volume fraction , Hartman number  velocity slip parameter  and porosity parameter .

Effects of volume fraction of nanoparticles ( and ) on the velocity profile  0 can be seen

from Fig. 44. Here the velocity profile and boundary layer thickness decrease when volume

fraction for the nanoparticles increases. The effects of Hartman number  on the velocity

 0 are depicted in Fig. 45 We analyzed that the velocity is reduced when we increase the

values of Hartman number. In fact applied magnetic field has the tendency to slow down the

movement of the fluid which leads to a decrease in the velocity and momentum boundary layer

thickness. Variations of velocity slip parameter  on velocity profile  0 can be seen in the Fig.

46. There is a decrease in velocity when velocity slip parameter  is increased. From Fig. 47,

we have seen that larger values of porosity parameter  correspond to the less velocity. Porosity

parameter depends on the permeability parameter  Increase in porosity parameter leads to

the lower permeability parameter. This lower permeability parameter causes a reduction in the

fluid velocity.
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Fig. 4.4. Influence of  on velocity field.

Fig. 4.5. Influence of  on velocity field.
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Fig. 4.6. Influence of  on velocity field.

Fig. 4.7. Influence of  on velocity field.
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4.4.2 Dimensionless concentration profiles

Effects of the measure of strength of the homogeneous reaction 1, the measure of the strength

of the heterogeneous reaction 2 and the Schmidt number  on the concentration profile  are

shown in the Figs. (48− 410). Effect of 1 on the concentration is analyzed in Fig. 48 It is
observed that increasing the measure of the strength of the homogeneous reaction 1 decreases

the thermal boundary layer thickness. Fig. 49 illustrates the effects of 2 on concentration

profile . There is an increase in concentration  when the measure of the strength of the

heterogeneous reaction 2 is increased. The behavior of Schmidt number  on the concentration

profile is similar to that of 2 (see Fig. 410).

Fig. 4.8. Influence of 1 on concentration field.
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Fig. 4.9. Influence of 2 on concentration field.

Fig. 4.10. Influence of  on concentration field.
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4.4.3 Skin friction coefficient and surface concentration

Fig. 4.11 shows the skin friction coefficient  00(0) as a function of nanoparticle volume fraction

 The skin friction coefficient enhances with increasing values of . The results of the skin

friction coefficient are examined for both types of nanofluids. We observe that the −water
nanofluid gives a higher drag force opposite to the flow when compared with the −water
nanofluid.

The variation of dimensionless concentration for different values of 1 and 2 are shown

in Figs. 4.12 and 413 respectively. From Fig. 4.12 it is observed that concentration at the

surface decreases as the strength of the heterogeneous reaction increases for different types of

nanofluids. One can see from Fig. 4.13 that (0) decreases with the increase of homogeneous

reaction strength 1 Influence of  on (0) for two different types of nanoparticles is shown

in Fig. 4.14. It is clear that the concentration decreases with an increase of Schmidt number.

In Table 4.3 some numerical values of skin friction coefficient are given for copper and silver

nanoparticles. Tabular values show that skin friction coefficient enhances by increasing  and

 while it decreases for larger . Table 4.4 shows that surface concentration decreases by

increasing 1 2  and .

Fig. 4.11. Influence of  on skin friction coefficient.
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Fig. 4.12: Influence of 2 on surface concentration.

Fig. 4.13: Influence of 1 on surface concentration.
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Fig. 4.14: Influence of  on surface concentration.

Table 4.2: Thermophysical properties of water and nanoparticles [21].

(3) () ()  × 105(−1) (Ω)−1

Pure water 9971 4179 0613 21 005

Copper() 8933 385 401 167 596× 107

Silver() 10500 235 429 189 36× 107

Alumina(23) 3970 765 40 085 1× 10−10

Titanium Oxide(2) 4250 6862 89538 09 1× 10−12
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Table 4.3: Numerical values of skin friction coefficient for copper and silver when  = 04

   

√
Re for  

√
Re for 

005 05 1278 1284

01 1465 1475

02 1955 1973

02 01 1897 1917

03 1928 1945

07 1981 1996

05 01 4542 4672

05 2827 2865

09 2079 2098

Table 4.4: Numerical values of surface concentration for copper and silver when  = 02

 = 04 and  = 05

1 2   (0) for  (0) for 

05 04407 04413

1 04087 03997

15 03645 03761

03 05 04169 04173

1 03274 03321

15 02856 02741

05 04 04726 04675

07 04703 04561

1 04675 04532

05 01 04618 04619

05 04583 04537

09 04565 04502

4.5 Final remarks

This chapter investigates the MHD flow of nanofluid by a stretching sheet with homogeneous-

heterogeneous reactions. Convergent approximate solution is constructed. The following obser-
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vations are made:

• An increase in the values of    and  has similar effects on the velocity in a qualitative

sense.

• Concentration profile increases for larger 2 and  while it decreases when 1 is increased.

• The values of skin friction coefficient are higher for −water when  enhances.

• Higher values of 1 2 and  correspond to smaller values of dimensionless surface

concentration.
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Chapter 5

Impact of magnetohydrodynamics in

bidirectional flow of nanofluid

subject to second order slip velocity

and homogeneous-heterogeneous

reactions

This chapter addresses the steady three-dimensional boundary layer flow of viscous nanofluid.

The flow is caused by a permeable stretching surface with second order velocity slip and

homogeneous-heterogeneous reactions. Water is treated as base fluid and copper as nanoparti-

cle. An incompressible fluid fills the porous space. The fluid is electrically conducting in the

presence of an applied magnetic field. A system of ordinary differential equations is obtained

by using suitable transformations. Convergent series solutions are derived. Impact of various

pertinent parameters on the velocity, concentration and skin friction coefficient is discussed.

Analysis of the obtained results shows that the flow field is influenced appreciably by the pres-

ence of velocity slip parameters. Also concentration distribution decreases for larger values of

strength of homogeneous reaction parameter while it increases for strength of heterogeneous

reaction parameter.
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5.1 Model development

We consider the steady three-dimensional incompressible flow of nanofluid saturating porous

medium with permeability . The porous medium features have been characterized by using

Darcy’s law. Material is water based nanofluid consisting of copper (Cu) as nanoparticle.

Flow is induced by a permeable stretching sheet at  = 0 An incompressible fluid occupies

  0 It is assumed that the sheet is stretched with velocities  =  and  = , where

   0 are the stretching rates. A uniform magnetic field of strength 0 is applied in the

−direction. Electric and induced magnetic fields are omitted. Flow analysis is carried out

with homogeneous-heterogeneous reactions. The homogeneous reaction for cubic autocatalysis

can be expressed as follows [73]:

+ 2 → 3 rate = 
2 (5.1)

while first-order isothermal reaction on the catalyst surface is presented in the form

→  rate =  (5.2)

where  and  are the concentrations of the chemical species  and  and  and  are the

rate constants. We assume that both reaction processes are isothermal. Using the nanofluid

model as proposed by Tiwari and Das [4], the boundary layer equations governing the flow can

be written as follows:




+




+




= 0 (5.3)


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+ 
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= 

2

2
− 


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2
0 (5.4)
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



+ 




+ 




= 

2

2
− 

2 (5.6)





+ 




+ 




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2

2
+ 

2 (5.7)
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The subjected boundary conditions are put into the form

 =  +   =  +   = 0 at  = 0





=  




= − at  = 0

→ 0  → 0 → 0 → 0 as  →∞ (5.8)

in which   and  are velocity components along − − and − directions respectively, 0
is suction (0  0) or injection (0  0) velocity,  and  are diffusion species coefficients

of  and  and 0 is positive dimensional constant. Effective density  , dynamic viscosity

 and electrical conductivity  of nanofluid are given by

 =  (1− ) +  (5.9)

 =


(1− )25
 (5.10)
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3
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´
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³
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− 1
´

 (5.11)

Here  is the solid volume fraction,  in subscript is for nano-solid-particles and  in subscript

is for base fluid. Also  is the slip velocity at the wall. The Wu’s slip velocity model (valid

for arbitrary Knudsen number,  ) is employed here as follows [60]:
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 (5.12)

where  = min
£
1


 1
¤
,  is momentum accommodation coefficient with 0 ≤  ≤ 1, Λ is

molecular mean free path and  is Knudsen number defined as mean free path Λ divided by

a characteristic length for the flow. Based on the definition of , it is seen that for any given
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value of  we have 0 ≤  ≤ 1. The molecular mean free path is always positive. Thus we
know that 2 4  0 and 1 3 are positive numbers.

Making use of the following similarity transformations

 =  0()  = 0()  = −√ [() + ()] 

 =

r



  = 0()  = 0() (5.13)

the continuity equation is satisfied automatically and Eqs. (54− 58) are reduced to

1
000 −  02 + ( + ) 00 −  0 − 1(1− )25




 0 = 0 (5.14)

1
000 − 02 + ( + )00 − 0 − 1(1− )25




0 = 0 (5.15)

1


00 + ( + )0 − 1

2 = 0 (5.16)




00 + ( + )0 + 1

2 = 0 (5.17)

 0(0) = 1 + 1
00(0) + 2

000(0) 0(0) =  + 3
00(0) + 4

000(0)

(0) + (0) =   0(∞)→ 0 0(∞)→ 0

0(0) = 2(0) 
0(0) = −2(0) (∞)→ 1 (∞)→ 0 (5.18)

where  is the porosity parameter,  is the Hartman number,  is the ratio of the stretching

rate along the − direction to the stretching rate along the − direction, 1 and 3 are the first
order slip velocity parameters, 2 and 4 ( 0) are the second order slip velocity parameters, 

is the suction/injection velocity parameter,  is the Schmidt number, 1 is the measure of the

strength of homogeneous reaction,  is the ratio of diffusion coefficient and 2 is the measure of
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the strength of the heterogeneous reaction. These quantities are defined as follows:
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It is noticed that for  = 0 and  = 1 the two-dimensional and axisymmetric flows are respec-

tively noticed. Here it is assumed that diffusion coefficients of chemical species  and  to be

of a comparable size. This leads to make a further assumption that the diffusion coefficients

 and  are equal, i.e.  = 1 [73] and thus

() + () = 1 (5.20)

Now Eqs. (5.16) and (5.17) yield

1


00 + ( + )0 − 1(1− )2 = 0 (5.21)

with the boundary conditions

0(0) = 2(0) (∞)→ 1 (5.22)

Skin friction coefficients along the − and − directions are defined as follows:

 =



2


  =



2


 (5.23)

where the surface shear stresses  and  along the − and − directions are given by

 = 




¯̄̄̄
=0

  = 




¯̄̄̄
=0

 (5.24)
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Dimensionless skin friction coefficients are

(Re)
12 =

1

(1− )25
 00(0) (Re)

12 =
1

32(1− )25
00(0) (5.25)

where (Re)
12 = 

p
 and (Re)

12 = 
p
 denotes the local Reynolds number.

5.2 Homotopic solutions

The initial approximations 0() 0() and 0() and auxiliary linear operators L  L and L
are taken as follows:

0() = +
1

1 + 1 − 2

¡
1− −

¢
 0() =



1 + 3 − 4
(1−−) 0() = 1−

1

2
−2 (5.26)

L =  000 −  0 L = 000 − 0 L = 00 −  (5.27)

L
£
1 + 2

 + 3
−¤ = 0

L
£
4 + 5

 + 6
−¤ = 0

L
£
7

 + 8
−¤ = 0 (5.28)

in which  ( = 1− 8) are the constants.
If  ∈ [0 1] indicates the embedding parameter and }  } and } the non-zero auxiliary

parameters then the zeroth order deformation problems are constructed as follows:

(1− )L
h
̂(; )− 0()

i
= }N [̂(; ) ̂(; )] (5.29)

(1− )L [̂(; )− 0()] = }N[̂(; ) ̂(; )] (5.30)

(1− )L
h
̂(; )− 0()

i
= }N[̂(; ) ̂(; ) ̂(; )] (5.31)

̂ 0(0; ) = 1 + 1̂
00(0; ) + 2̂

000(0; ) ̂(0; ) =  ̂ 0(∞; ) = 0 (5.32)

̂0(0; ) =  + 3̂
00(0; ) + 4̂

000(0; ) ̂(0; ) = 0 ̂0(∞; ) = 0 (5.33)

̂
0
(0; ) = 2̂(0; ) ̂(∞; ) = 1 (5.34)
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where the nonlinear differential operators N  N and N are given by

N

h
̂(; ) ̂(; )

i
= 1

3̂(; )

3
−
Ã
̂(; )



!2
+ ̂(; )

2̂(; )

2
+ ̂(; )

2̂(; )

2

−
µ
+ 1(1− )25





¶
̂(; )


 (5.35)

N

h
̂(; ) ̂(; )

i
= 1

3̂(; )

3
−
µ
̂(; )



¶2
+ ̂(; )

2̂(; )

2
+ ̂(; )

2̂(; )

2

−
µ
+ 1(1− )25





¶
̂(; )


 (5.36)

N

h
̂(; ) ̂(; ) ̂(; )

i
=

1



2̂(; )

2
+ ̂(; )

̂(; )


+ ̂(; )

̂(; )



−1
µ
̂(; )− 2

³
̂(; )

´2
+
³
̂(; )

´3¶
 (5.37)

Here m order deformation equations can be written in the forms

L [()− −1()] = }R() (5.38)

L [()− −1()] = }R() (5.39)

L
£
()− −1()

¤
= }R() (5.40)

with

 0(0)− 1
00
(0)− 2

000
(0) = (0) =  0(∞) = 0

0(0)− 3
00
(0)− 4

000
(0) = (0) = 0(∞) = 0

0(0)− 2(0) = (∞) = 0 (5.41)

R () = 1
000
−1+

−1X
=0

£
−1− 00 −  0−1−

0
 + −1− 00

¤−µ+ 1(1− )25




¶
 0−1

(5.42)
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R () = 1
000
−1+

−1X
=0

£
−1−00 − 0−1−

0
 + −1−00

¤−µ+ 1(1− )25




¶
0−1

(5.43)

R() =
1


00−1 − 1−1 +

−1P
=0

h
0−1− + 0−1−

−1
Ã
−1−

P
=0

− + 2−1−

!#
 (5.44)

=

⎧⎨⎩ 0  ≤ 1
1   1

 (5.45)

The general solutions (  ) comprising the special solutions (
∗
 

∗
 

∗
) are

() = ∗() + 1 + 2
 + 3

−

() = ∗() + 4 + 5
 + 6

−

() = ∗() + 7
 + 8

− (5.46)

where the constants  ( = 1 2  8) through the boundary conditions (5.41) have the values

2 = 5 = 7 = 0 1 = −3 − ∗(0) 4 = −6 − ∗(0)

3 =
1

1 + 1 − 2

µ
∗()


− 1
2∗()
2

− 2
3∗()
3

¶¯̄̄̄
=0



6 =
1

1 + 3 − 4

µ
∗()


− 3
2∗()
2

− 4
3∗()
3

¶¯̄̄̄
=0



8 =
1

1 + 2

Ã
∗()


¯̄̄̄
=0

− 2
∗
(0)

!
 (5.47)

5.3 Convergence analysis

Homotopy analysis technique provides us great freedom and an easy way to adjust and control

the convergence region of the series solutions. The auxiliary parameters }  } and } play

an important role for the convergence of the series solutions. Therefore, we have sketched the

}−curves at 10−order of approximations (see Fig. 5.1). The admissible ranges of the auxiliary
parameters are −14 ≤ } ≤ −02 −15 ≤ } ≤ −02 and −19 ≤ } ≤ −08 Also the HAM
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solutions converge in the whole region of  (0    ∞) when } = } = −1 and } = −12
Table 5.1 shows the convergence of series solutions of momentum and concentration equations.

It is noted that 14 order of approximations are sufficient for the convergence of functions

 00(0) 00(0) and 0(0)

Fig. 5.1: ~−curves for  00(0) 00(0) and 0(0) when  =  = 05  = 2 =  = 03

 = 1 =  = 09 1 = 2 = 07 3 = −03 and 4 = −02
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Table 51: Convergence of HAM solutions for different order of approximations when

 = = 05  = 2 =  = 03  = 1 =  = 09 1 = 2 = 07 3 = −03 and 4 = −02

Order of approximations − 00(0) −00(0) 0(0)

1 0507202 0200061 0364126

5 0491527 0198039 0395551

10 0491387 0197965 0396517

14 0491389 0197965 0396476

20 0491389 0197965 0396476

26 0491389 0197965 0396476

30 0491389 0197965 0396476

35 0491389 0197965 0396476

40 0491389 0197965 0396476

45 0491389 0197965 0396476

5.4 Results and discussion

This section presents the behavior of various involved parameters on the velocities along −
and − directions and concentration in the form of graphical and tabulated results (see Figs.

(52− 515) and Tables (52− 55)).

5.4.1 Dimensionless velocity profiles

The effects of nanoparticle volume fraction  on both the − and − components of velocity  0

and 0 are depicted in Fig. 52. It is observed that velocity profiles decrease when  is increased.

Behaviors of porosity parameter  on velocity profiles  0 and 0 are displayed in Fig. 53. An

increase in the porosity parameter leads to the lower permeability parameter which decreases

the fluid motion. Hence velocity profiles decreases. Fig. 54 displays the velocity profiles for

different values of  The applied magnetic field has the tendency to slow down the movement

of the fluid which decreases the velocities and momentum boundary layer thickness. Influence

of suction/injection velocity parameter  on  0 and 0 can be visualized in the Fig. 55. It is

obvious that an increase in  reduces the velocity fields. Here applying suction leads to draw

the amount of the fluid particles into the wall and consequently the velocity fields decrease.

83



From Figs. (56 − 59) we have seen that larger values of first order slip velocity parameters
and magnitude of second order slip velocity parameters correspond to lower velocity. With an

increase in slip velocity parameter, stretching velocity is partially transferred to the fluid so

velocity profile decreases. Fig. 510 illustrates the impact of stretching rates ratio  on the

velocity fields. Increasing values of  indicates higher rate of stretching along the − direction
in comparison to − direction. Therefore the velocity along − direction  0 decreases and

velocity along − direction 0 increases when stretching rates ratio is increased.

Fig. 5.2: Variation of  on  0() and 0()
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Fig. 53: Variation of  on  0() and 0().

Fig. 54: Variation of  on  0() and 0().
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Fig. 55: Variation of  on  0() and 0().

Fig. 56: Variation of 1 on  0() and 0().
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Fig. 57: Variation of 2 on  0() and 0().

Fig. 58: Variation of 3 on  0() and 0().
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Fig. 59: Variation of 4 on  0() and 0().

Fig. 510: Variation of  on  0() and 0().
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5.4.2 Dimensionless concentration profiles

Figs. (511−513) exhibit the dimensionless concentration profile for different values of measure
of the strength of homogeneous reaction 1, measure of the strength of heterogeneous reaction

2 and Schmidt number  Effect of the strength of the homogeneous reaction 1 on the

concentration is analyzed in Fig. 511 There is a decrease in concentration when 1 is increased.

Fig. 512 illustrates the variation of measure of the strength of heterogeneous reaction 2 on

concentration field . Here concentration profile enhances with an increase in 2 Effect of

Schmidt number  on concentration profile is shown in Fig. 513. Increasing behavior of

concentration profile is noted for larger Schmidt number. In fact Schmidt number is the ratio

of momentum diffusivity to mass diffusivity, so higher values of Schmidt number correspond to

small mass diffusivity. Therefore concentration profile increases.

Fig. 511: Variation of 1 on ().
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Fig. 512: Variation of 2 on ().

Fig. 513: Variation of  on ().
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5.4.3 Surface concentration and skin friction coefficient

The variation of dimensionless wall concentration (0) for different values of the strength of het-

erogeneous reaction parameter 2, strength of homogeneous reaction parameter 1 and Schmidt

number  are shown in Figs. 5.14 and 5.15 respectively. One can see from these Figs. that

(0) decreases with the increase of the parameters 1 and 2. Some thermophysical proper-

ties of water and nanoparticles are given in Table 5.2. Effects of nanoparticle volume fraction

for different types of nanofluids on skin friction coefficient along − and − directions are

presented in Tables 5.3 and 5.4. Here we see that magnitude of skin friction coefficient in-

creases with the increase in  Numerical values of skin friction coefficient for different values

of first and second order slip velocity parameters, porosity parameter, Hartman number and

suction/injection parameter are presented in Table 5.5. It is noted that the skin friction coef-

ficients decrease for increasing values of first order slip velocity parameters and magnitude of

second order slip velocity parameters while it increases for larger porosity parameter, Hartman

number and suction/injection parameter.

Fig. 514: Variations of 1 and  on (0).
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Fig. 515: Variations of 2 and  on (0).

Table 52: Thermophysical properties of water and nanoparticles [21].

(3) () ()  × 105(−1) (Ω)−1

Pure water 9971 4179 0613 21 005

Copper() 8933 385 401 167 596× 107

Silver() 10500 235 429 189 36× 107

Alumina(23) 3970 765 40 085 1× 10−10

Titanium Oxide(2) 4250 6862 89538 09 1× 10−12

Table 53: Effects of the nanoparticle volume fraction for different types of nanofluids on

skin friction coefficient along −direction when = 3 = 05  =  = 03  = 1 =  = 09

1 = 2 = 07 2 = −03 and 4 = −02.

   23 2

01 −06555 −06543 −06516 −06521
02 −08795 −08757 −08684 −08703
03 −1229 −1226 −1191 −1195
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Table 54: Effects of the nanoparticle volume fraction for different types of nanofluids on

skin friction coefficient along −direction when = 3 = 05  =  = 03  = 1 =  = 09

1 = 2 = 07 2 = −03 and 4 = −02

   23 2

01 −1704 −1714 −1645 −1650
02 −2296 −2310 −2164 −2176
03 −3184 −3215 −2906 −2931
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Table 55: Numerical values of skin friction coefficient for different values of 1 2, 3

4   and 

1 2 3 4    −(Re)
12 −(Re)

12

03 −03 05 −02 03 05 09 3979 6896

05 3477 6863

07 3089 6837

09 −01 3203 6844

−02 2974 6829

−03 2779 6815

−03 01 2789 9314

04 2781 7306

07 2776 6008

05 −01 2781 7403

−03 2777 619

−05 2774 5526

−02 01 2748 6641

04 2791 6887

05 2802 6949

03 03 2774 6784

07 2784 6845

09 2789 6871

05 02 2592 5906

04 2656 6199

07 2737 6691

5.5 Conclusions

Here flow of Cu-water nanofluid induced by bidirectional stretching surface is investigated. The

effects of homogeneous-heterogeneous reactions and second order velocity slip are also taken

into account. The key points are summarized as follows:
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• Velocity profiles  0 and 0 are decreasing functions of velocity slip parameters and nanopar-
ticle volume fraction.

• The velocity component  0 decreases while 0 increases for larger stretching rates ratio.

• Concentration of the reactants decreases for higher values of strength of homogeneous
reaction parameter.

• Strength of heterogeneous reaction parameter results in the enhancement of concentration
profile.

• There is an enhancement in concentration profile when Schmidt number increases.

• Concentration at the surface decreases for increasing values of the strengths of homoge-
neous and heterogeneous reaction parameters.

• Skin friction coefficients decrease for increasing values of first and second order velocity
slip parameters.
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Chapter 6

Effects of

homogeneous-heterogeneous

reactions in flow of magnetite-Fe3O4

nanoparticles by a rotating disk

This chapter investigates the flow of ferrofluid due to a rotating disk in the presence of homogeneous-

heterogeneous reactions. Water is used as base fluid while magnetite-Fe3O4 as nanoparticle.

Fluid is electrically conducting in the presence of applied magnetic field. Effects of viscous

dissipation are also considered. Appropriate transformations reduce the nonlinear partial dif-

ferential system to ordinary differential system. Convergent series solutions are computed for

the resulting nonlinear problems. Effects of different parameters on the velocity, temperature

and concentration profiles are shown and analyzed. Computations for skin friction coefficient

and Nusselt number are presented and examined for the influences of pertinent parameters. It

is noted that concentration distribution decreases for larger values of strength of homogeneous

reaction parameter while it increases for strength of heterogeneous reaction parameter. Skin

friction coefficient and rate of heat transfer are enhanced when the strength of magnetic field

is increased.
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6.1 Model development

Here we consider an incompressible flow of ferrofluid induced by a rotating disk at  = 0.

Magnetite−Fe3O4 nanoparticles in water are known as ferrofluid. The disk rotates with constant
angular velocity Ω about the −axis. Components of flow velocity are (, , ) in the direction
of increasing (, Θ, ), respectively. A uniform magnetic field of strength 0 is applied parallel

to the −axis. It is assumed that the induced magnetic field and the electric field effects are
negligible. Effects of viscous dissipation are taken into account. The disk is kept at uniform

temperature  while temperature far away from the disk is ∞ In view of the rotational

symmetry, the derivatives in the azimuthal direction are neglected. Flow analysis is carried out

with homogeneous-heterogeneous reactions of two chemical species  and . The homogeneous

reaction for cubic autocatalysis can be expressed as follows [73]:

+ 2 → 3 rate = 
2 (6.1)

while first-order isothermal reaction on the catalyst surface is presented in the form

→  rate =  (6.2)

where  and  are the concentrations of the chemical species  and  and  and  are the rate

constants. We assume that both reaction processes are isothermal. Under these assumptions

the relevant mass, momentum, energy and concentration equations are




+




+




= 0 (6.3)



µ




− 2


+ 





¶
= −


+ 

µ
2

2
+
1






− 

2
+

2

2

¶
− 

2
0 (6.4)



µ




+




+ 





¶
= 

µ
2

2
+
1






− 

2
+

2

2

¶
− 

2
0 (6.5)



µ




+ 





¶
= −


+ 

µ
2

2
+
1






+

2

2

¶
 (6.6)
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



+ 




= 

µ
2

2
+
1






+

2

2

¶
+



()

"
2

(µ




¶2
+
³


´2
+

µ




¶2)

+

µ





³


´¶2
+

µ




¶2
+

µ



+





¶2#
 (6.7)





+ 




= 

µ
2

2
+
1






+

2

2

¶
− 

2 (6.8)





+ 




= 

µ
2

2
+
1






+

2

2

¶
+ 

2 (6.9)

with boundary conditions

 = 0  = Ω  = 0  =  



=  




= − at  = 0

→ 0  → 0  → ∞ → 0 → 0 as  →∞ (6.10)

where  is the pressure,  is the temperature,  = () is the thermal diffusivity and

0 is the positive dimensional constant. The effective nanofluid dynamic viscosity   density

 , heat capacity ()  thermal conductivity  and electric conductivity  are taken as

follows:

 =


(1− )25
 (6.11)

 = (1− ) +  (6.12)

() = (1− )() + () (6.13)




=
( + 2 )− 2( − )

( + 2 ) + ( − )
 (6.14)




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (6.15)
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where  denotes the solid volume fraction of nanoparticles,  in subscript is for nano-solid-

particles and  in subscript is for base fluid. We now consider transformations

 = Ω()  = Ω()  =
p
Ω(),  =

s
Ω


  − ∞ = Ω̃ ()

() =
 − ∞
 − ∞

  = 0()  = 0() (6.16)

Equations (63)− (610) after using Eq. (616) can be reduced as follows:

 0 + 2 = 0 (6.17)

1

(1− )25
³
1− + 




´ 00 − 0 − 2 + 2 −
Ã 



1− + 



!
 = 0 (6.18)

1

(1− )25
³
1− + 




´00 −0 − 2 −
Ã 



1− + 



!
 = 0 (6.19)

1

Pr




00 −

µ
1− + 

()

()

¶
0 +



(1− )25

µ
 02 + 02 +

1

Re
(42 + 2 02)

¶
= 0 (6.20)

1


00 −0 − 1

2 = 0 (6.21)




00 −0 + 1

2 = 0 (6.22)

(0) = 0 (0) = 0 (0) = 1 (0) = 1 0(0) = 2(0) 
0(0) = −2(0)

(∞) → 0 (∞)→ 0 (∞)→ 0 (∞)→ 1 (∞)→ 0 (6.23)

where  = 
2
0Ω is the Hartman number, Pr =  is the Prandtl number,  =

(Ω)2(−∞)() is the local Eckert number, Re = 2Ω is the local Reynolds number,

 =  is the Schmidt number, 1 = 20Ω is the measure of strength of homogeneous

reaction,  =  is the ratio of diffusion coefficient and 2 = 
√


√
Ω is the measure

of strength of the heterogeneous reaction.

Here it is assumed that diffusion coefficients of chemical species  and  to be of a compa-

rable size. This leads to make a further assumption that the diffusion coefficients  and 
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are equal, i.e.  = 1 and thus

() + () = 1 (6.24)

Now Eqs. (6.21) and (6.22) yield

1


00 −0 − 1(1− )2 = 0 (6.25)

with the boundary conditions

0(0) = 2(0) (∞)→ 1 (6.26)

The important physical quantities of interest in this problem are the local skin-friction coefficient

 and Nusselt number  which are given by

 =

q
2 + 2

(Ω)2
  =



 ( − ∞)
 (6.27)

where the surface radial stress  , tangential stress Θ and heat flux  are given by

  = 




¯̄̄̄
=0

 Θ = 




¯̄̄̄
=0

  = − 




¯̄̄̄
=0

 (6.28)

In dimensionless form the local skin friction coefficient  and Nusselt number  can be

written as follows:

 (Re)
12 =

1

(1− )25

q
[ 0(0)]2 + [0(0)]2 (Re)

−12 = −


0(0) (6.29)

6.2 Solutions procedure

Initial approximations 0() 0() 0() 0() and 0() and auxiliary linear operators L 
L , L, L and L are taken in the forms

0() = 0 0() = − 0() = − 0() = − 0() = 1−
1

2
−2 (6.30)

L =  0 L =  00 −  L = 00 −  L = 00 −  L = 00 −  (6.31)
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subject to the properties

L [1] = 0

L [2 + 3
−] = 0

L[4 + 5
−] = 0

L[6 + 7
−] = 0

L[8 + 9
−] = 0 (6.32)

in which  ( = 1− 9) are the constants.
If  ∈ [0 1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:

(1− )L [̂( )−0()] = }N [̂( ) ̂( ) ̂( )] (6.33)

(1− )L [̂( )− 0()] = }N [̂( ) ̂( ) ̂( )] (6.34)

(1− )L[̂( )− 0()] = }N[̂( ) ̂( ) ̂( )] (6.35)

(1− )L[̂( )− 0()] = }N[̂( ) ̂( ) ̂( ) ̂( )] (6.36)

(1− )L[̂( )− 0()] = }N[̂( ) ̂( ) ̂( ) ̂( )] (6.37)

̂(0 ) = 0 ̂(0 ) = 0 ̂(0 ) = 1 ̂(0 ) = 1 ̂
0
(0 ) = 2̂(0 )

̂(∞ ) = 0 ̂(∞ ) = 0 ̂(∞ ) = 0 ̂(∞ ) = 1 (6.38)

where } , }  }, } and } are the nonzero auxiliary parameters and the nonlinear operators

N  N  N N and N are given by

N =
̂( )


+ 2̂( ) (6.39)
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N =
1

(1− )25
³
1− + 




´ 2̂( )
2

− ̂( )
̂( )


−
³
̂( )

´2

+(̂( ))2 −
Ã 



1− + 



!
̂( ) (6.40)

N =
1

(1− )25
³
1− + 




´ 2̂( )
2

− ̂( )
̂( )


− 2̂( )̂( )

−
Ã 



1− + 



!
̂( ) (6.41)

N =
1

Pr





2̂( )

2
−
µ
1− + 

()

()

¶
̂( )

̂( )


+



(1− )25

⎡⎣Ã̂( )



!2

+

µ
̂( )



¶2
+
1

Re

⎛⎝4³̂( )´2 + 2Ã̂( )



!2⎞⎠⎤⎦  (6.42)

N =
1



2̂( )

2
− ̂( )

̂( )


− 1̂( )

³
1− ̂( )

´2
 (6.43)

The resulting problems at m order can be presented in the following forms

L [()− −1()] = }R() (6.44)

L [()− −1()] = }R() (6.45)

L [()− −1()] = }R() (6.46)

L [()− −1()] = }R() (6.47)

L
£
()− −1()

¤
= }R() (6.48)

(0) = (0) = (∞) = (0) = (∞) = (0) = (∞) = 0(0)−2(0) = (∞) = 0
(6.49)

R () =  0
−1 + 2−1 (6.50)
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R () =
1

(1− )25
³
1− + 




´ 00−1 − −1X
=0

£
−1− 0 + −1− − −1−

¤

−
Ã 



1− + 



!
−1 (6.51)

R () =
1

(1− )25
³
1− + 




´00−1 − −1X
=0

£
−1−0 + 2−1−

¤
−
Ã 



1− + 



!
−1 (6.52)

R() =
1

Pr




00−1 −

µ
1− + 

()

()

¶
−1P
=0

−1−0 +


(1− )25

−1P
=0

h
 0−1−

0


+0−1−
0
 +

1

Re

¡
4−1− + 2 0

−1−
0


¢¸
 (6.53)

R() =
1


00−1 −

−1P
=0

"
 0
−1− − 1

Ã
−1−

P
=0

− − 2−1−
!#
− 1−1

(6.54)

χ=

⎧⎨⎩ 0  ≤ 1
1   1

 (6.55)

The general solutions (  ,  ) comprising the special solutions (
∗
 

∗
 

∗
, 

∗


∗) are

() = ∗
() + 1

() = ∗() + 2
 + 3

−

() = ∗() + 4
 + 5

−

() = ∗() + 6
 + 7

−

() = ∗() + 8
 + 9

− (6.56)

103



where the constants  ( = 1− 9) through the boundary conditions (6.49) have the values

1 = −∗
(0) 2 = 4 = 6 = 8 = 0 3 = −∗(0) 5 = −∗(0)

7 = ∗(0) 9 =
1

1 + 2

"
∗()


¯̄̄̄
=0

− 2
∗
(0)

#
 (6.57)

6.3 Convergence of series solutions

The auxiliary parameters } , }  }, } and } play an important role for convergence of

series solutions. The }−curves are sketched at 10−order of approximations to obtain valid
ranges of these parameters (see Fig. 6.1). Permissible values of the auxiliary parameters

are −11 ≤ } ≤ −07, −11 ≤ } ≤ −06 −12 ≤ } ≤ −06, −11 ≤ } ≤ −1 and
−15 ≤ } ≤ −05. Further the series solutions converge in the whole region of  (0   ∞)
when } = } = −07 and } = } = } = −1 Also Table 6.1 ensures that the series solutions
are convergent up to four decimal places.

Fig. 6.1: The }−curves for  00(0)  0(0) 0(0) 0(0) and 0(0) when  = 1 = 2 = 03

 = 02 Pr = 62  = 07 and Re =  = 09
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Table 61: Convergence of HAM solutions for different order of approximations when

 = 1 = 2 = 03  = 02 Pr = 62  = 07 and Re =  = 09

Order of approximations − 00(0)  0(0) −0(0) 0(0) 0(0)

1 1400 04754 09230 01656 01349

5 08466 04276 07790 1343 01260

10 08832 04420 07672 1660 01208

15 08863 04434 07680 1797 01194

20 08858 04429 07683 1830 01190

26 08858 04429 07683 1839 01193

30 08858 04429 07683 1839 01193

35 08858 04429 07683 1839 01193

6.4 Discussion

The effects of different parameters on the dimensionless velocity, temperature and concentration

are examined graphically in this section. Effects of Hartman number  on the axial velocity

profile () can be seen from Fig. 6.2. Here negative values of () indicate downward flow

in the vertical direction. As the magnetic field has the tendency to slow down the movement

of the fluid which leads to a decrease in the velocity and momentum boundary layer thickness.

Fig. 6.3 illustrates the behavior of  on the radial component of velocity () There is a

decrease in velocity and associated boundary layer thickness when  is increased. Also flow

distribution is parabolic and positive values of () indicate radially outward flow. Fig. 6.4

depicts the distribution of azimuthal velocity () at various values of  It is observed that

() is decreasing function of Hartman number  .

Influence of Hartman number  on the temperature profile () is analyzed in Fig. 6.5

Since Lorentz force is a resistive force which opposes the fluid motion therefore heat is produced

and consequently thermal boundary layer thickness increases. Fig. 6.6 shows that temperature

is an increasing function of nanoparticle volume fraction . It is because of the fact that

when the volume fraction of nanoparticles increases, the thermal conductivity enhances and

consequently thermal boundary layer thickness increases. Variations of Eckert number  on

temperature profile () can be seen in Fig. 6.7. When  is increased the temperature profile
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first rises to a maximum value and then it asymptotically approaches to zero. It reveals that

"Sparrow-Gregg type Hill" phenomenon exists in the presence of viscous dissipation. Fig. 6.8

represents the effect of rotational Reynolds number Re on temperature profile (). Here the

temperature profile and thermal boundary layer thickness decrease when Re is increased.

Fig. 6.9 shows the impact of strength of homogeneous reaction parameter 1 on the concen-

tration profile () Concentration decreases since the reactants are consumed during homoge-

neous reaction. Influence of strength of heterogeneous reaction parameter 2 on the concentra-

tion distribution is analyzed in Fig. 6.10. It is noted that for higher values of 2 the diffusion

reduces and less diffused particles enhance the concentration. Influence of Schmidt number 

on concentration profile () is shown in Fig. 6.11. Increasing behavior of concentration profile

is noted for larger Schmidt number. In fact Schmidt number is the ratio of viscous diffusion rate

to molecular diffusion rate. Therefore higher values of Schmidt number correspond to higher

viscous diffusion rate which in turn increases the fluid concentration.

Fig. 6.12 presents the skin friction coefficient  (Re)
12 as a function of nanoparticles

volume fraction  for different values of Hartman number When  increases the magnitude

of  (Re)
12 grows in nonlinear way. Also magnitude of  (Re)

12 is directly proportional

to  Fig. 6.13 shows local Nusselt number (Re)
−12 as a function of  at different values

of Re. There is an increase in the magnitude of (Re)
−12 when  is increased. While

magnitude of (Re)
−12 has inverse relationship with Re.

Variations of surface concentration (0) via nanoparticles volume fraction  for different

values of the strength of homogeneous reaction parameter 1 and strength of heterogeneous

reaction parameter 2 are shown in the Figs. 6.14 and 6.15. One can see from these Figs. that

(0) decreases with the increase of 1 and 2. It is in view of the fact that surface concentration

reduces due to the consumption of reactants during homogeneous-heterogeneous reactions.

Some thermophysical properties of water and magnetite Fe3O4 are given in Table 6.2. In

Table 6.3 we compared the results of  0(0) 0(0), (∞) and 0(0) with existing literature in

limiting sense. Obtained results are in good agreement. Table 6.4 includes the values of local

Nusselt number (Re)
−12 for different values of   and . It is noted that heat transfer

rate enhances by increasing (Re)
−12 for different values of   and 
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Fig. 6.2: Influence of  on ().

Fig. 63: Influence of  on ()
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Fig. 64: Influence of  on ()

Fig. 65: Influence of  on ()
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Fig. 66: Influence of  on ()

Fig. 67: Influence of  on ()
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Fig. 68: Influence of Re on ()

Fig. 69: Influence of 1 on ()
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Fig. 610: Influence of 2 on ()

Fig. 611: Influence of  on ()
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Fig. 612. Influence of  on  (Re)
12

Fig. 613: Influence of Re on (Re)
−12
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Fig. 6.14: Influence of 1 on (0)

Fig. 615: Influence of 2 on (0)
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Table 6.2: Thermophysical properties of water and magnetite Fe3O4

(3) () () (Ω)−1

Water 9971 4179 0613 005

Fe3O4 5180 670 97 25000

Table 6.3: Comparison of present results with previously published works when  =  =

 = 0.

Kelson and Desseaux [53] Bachok et al. [54] Turkyilmazoglu [56] Present

 0(0) 0.510233 0.5101 0.51023262 0.5102

−0(0) 0.615922 0.6158 0.61592201 0.6160

−(∞) 0.884474 –– 0.88447411 0.8843

−0(0) –– 0.9337 0.93387794 0.9335

Table 6.4: Numerical values of Nusselt number (Re)
−12 for different values of  

and  when Pr = 62 and Re = 09

   −


0(0)

0 03 07 −1189
005 −1532
01 −1847
02 05 −2853

07 −3065
1 −3391
03 04 −1229

06 −2327
08 −3549

6.5 Main points

Here flow of ferrofluid induced by a rotating disk is investigated. Effects of homogeneous—

heterogeneous reactions and viscous dissipation are also taken into account. The following

observations are made.
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• The axial, radial and azimuthal velocity profiles are decreasing functions of Hartman
number.

• Opposite behavior of homogeneous and heterogeneous reaction parameters are seen on
the concentration profiles.

• Surface drag force has direct relationship with the strength of magnetic field.

• Heat transfer rate rises for increasing values of nanoparticles volume fraction, Hartman
number and Eckert number.

• Surface concentration decreases for both the strength of homogeneous reaction and het-
erogeneous reaction parameters.

• There is an excellent agreement between present and previously published results in lim-
iting case when  =  =  = 0.
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Chapter 7

Melting heat transfer in the MHD

flow of Cu-water nanofluid with

viscous dissipation and Joule heating

An analysis has been carried out in this chapter for the characteristics of non-uniform melting

heat transfer in the boundary layer flow of nanofluid past a stretching sheet. Water is treated

as a base fluid and copper as nanoparticle. An incompressible fluid saturates the porous space.

Effects of viscous dissipation and Joule heating are also examined. Fluid is electrically conduct-

ing in the presence of applied magnetic field. Appropriate transformations reduce the nonlinear

partial differential system to ordinary differential system. Convergent series solutions are com-

puted for the velocity and temperature. Effects of different parameters on the velocity and

temperature profiles are shown and analyzed. It is revealed that an increase in the melting

parameter increases the velocity and decreases the temperature. Impact of different parameters

on skin friction coefficient and Nusselt number are computed through numerical values. It is

concluded that temperature gradient at the surface increases for higher Hartman number and

nanoparticle volume fraction.
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7.1 Problem development

We consider the steady two-dimensional incompressible flow of nanofluid past a stretching

sheet situated at  = 0. We have taken − and − axes along and perpendicular to the sheet
respectively. Flow is confined to  ≥ 0 It is assumed that the velocity of the stretching sheet is
() =  where  is a positive constant. We have chosen ∞   where  = ∞ − ̃2 is

the non-uniform temperature of the melting surface and ∞ is the ambient temperature. Also a

uniform magnetic field of intensity 0 acts in the −direction. The magnetic Reynolds number
is assumed to be small so that the induced magnetic field is negligible in comparison with the

applied magnetic field. We incorporate the Joule heating and viscous dissipation effects in the

energy equation. The continuity, momentum and energy equations which govern such type of

flow are written as:




+




= 0 (7.1)





+ 




= 

2

2
− 


− 

2
0


 (7.2)





+ 




= 

2

2
+



()

µ




¶2
+


2
0

()
2 (7.3)

The subjected boundary conditions are

 =  =   = 0  =  at  = 0

 → 0  → ∞ as  →∞ (7.4)

and



µ




¶
=0

=  [Γ+ ( − 0)( 0)]  (7.5)

where  and  are the velocity components along the − and − directions respectively,  is the

permeabilty of porous medium,  is the stretching constant, Γ = Γ0
2 is the non-uniform latent

heat of the fluid and  is the heat capacity of the solid surface. The boundary condition (7.5)

shows that the heat conducted to the melting surface is equal to the heat of melting plus the

sensible heat required to raise the solid temperature 0 =  − ̃2 to its melting temperature

.
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The effective nanofluid dynamic viscosity   density   thermal diffusivity   heat

capacitance ()  thermal conductivity  and electrical conductivity  are

 =


(1− )25
 (7.6)

 =  (1− ) +  (7.7)

 =


()
 (7.8)

() = () (1− ) + () (7.9)




=

 + 2 − 2( − )

 + 2 + 2( − )
 (7.10)




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (7.11)

where  denotes the solid volume fraction of nanoparticles. Here the subscripts  represents

the thermophysical properties of the nanofluid,  explains base fluid and  is defined as nano

solid particles. We now introduce the following similarity transformations

 =  0()  = −√()  =
r




 () =

 − 

∞ − 
 (7.12)

Now Eq. (71) is satisfied automatically and substituting Eq. (7.12) into Eqs. (72) and (73)

we get the following ordinary differential equations:

1
¡
 000 −  0

¢−  02 +  00 −1 (1− )25



 0 = 0 (7.13)

1

Pr




2 (1− )25 00 + 0 − 2 0 + 2 0 + 2 (1− )25




 02 + 2

002 = 0 (7.14)

where prime indicates the differentiation with respect to   is the porosity parameter,  is

the Hartman number, Pr is the Prandtl number and  is the Eckert number. These quantities

are defined as

 =



  =


2
0


 Pr =




  =


2


() (∞ − )
=


2

() ̃
 (7.15)
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The boundary conditions (7.4) and (75) become

 0(0) = 1 3 Pr (0) +



0(0) = 0 (0) = 0

 0(∞) → 0 (∞)→ 1 (7.16)

where  is the dimensionless melting parameter

 =
 (∞ − )

Γ+ ( − 0)
=

 ̃

Γ0 + ̃
 (7.17)

which is a combination of the Stefan numbers  (∞−)Γ and (−0)Γ for the liquid

and solid phases, respectively. When  = 0 we obtain the governing equations for a viscous

fluid. Also

1 =
1

(1− )25
³
1− +




´  2 = 1

(1− )25
³
1− +

()
()


´  3 = 1− +




 (7.18)

Local skin friction coefficient  and Nusselt number  are given by

 =


2
  =



 (∞ − )
 (7.19)

where the surface shear stress  and wall heat flux  are given by

 = 




¯̄̄̄
=0

  = − 




¯̄̄̄
=0

 (7.20)

By using the above equations we get

 (Re)
12 =

1

(1− )25
 00(0) (Re)

−12 = −


0(0) (7.21)

where Re = 
p
 is the local Reynolds number.
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7.2 Homotopic solutions

The initial approximations 0() and 0() and auxiliary linear operators L and L are taken
as follows:

0() = 1− − − 

3 Pr
 0() = 1− − (7.22)

L =  000 −  0 L = 00 −  (7.23)

with

L
£
1 + 2

 + 3
−¤ = 0

L
£
4

 + 5
−¤ = 0 (7.24)

in which  ( = 1− 5) are the constants.
If  ∈ [0 1] indicates the embedding parameter then the zeroth order deformation problems

are established as follows:

(1− )L
h
̂(; )− 0()

i
= }N [̂(; )] (7.25)

(1− )L
h
̂( )− 0()

i
= }N[̂(; ) ̂(; )] (7.26)

̂ 0(0; ) = 1 3 Pr ̂(0; ) +



̂
0
(0; ) = 0 ̂ 0(∞; ) = 0 (7.27)

̂(0; ) = 0 ̂(∞; ) = 1 (7.28)

where nonzero auxiliary parameters are represented as } and } and the nonlinear operators

N and N are

N

h
̂(; )

i
= 1

Ã
3̂(; )

3
− 

̂(; )



!
−
Ã
̂(; )



!2
+ ̂(; )

2̂(; )

2

−1 (1− )25




̂(; )


 (7.29)
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N

h
̂(; ) ̂(; )

i
=

1

Pr




2 (1− )25

2̂(; )

2
+ ̂(; )

̂(; )



+2

Ã
2̂(; )

2

!2
− 2̂(; )


̂(; ) + 2

̂(; )



+2 (1− )25




Ã
̂(; )



!2
 (7.30)

The m order deformation problems can be written as follows

L [()− −1()] = }R() (7.31)

L [()− −1()] = }R() (7.32)

 0(0) = 3 Pr (0) +



0(0) =  0(∞) = (0) = (∞) = 0 (7.33)

R () = 1
¡
 000−1 −  0−1

¢
+

−1X
=0

£
−1− 00 −  0−1−

0


¤−1 (1− )25



 0−1

(7.34)

R() =
1

Pr




2 (1− )25 00−1 +

−1P
=0

−1−0 + 2
−1P
=0

 00−1−
00


+2 (1− )25




−1P
=0

 0−1−
0
 (7.35)

=

⎧⎨⎩ 0  ≤ 1
1   1

 (7.36)

The general solutions ( ) comprising the special solutions (
∗
 

∗
) are

() = ∗() + 1 + 2
 + 3

−

() = ∗() + 4
 + 5

− (7.37)
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7.3 Convergence of homotopic solutions

Homotopy analysis method is employed to obtain the solutions of Eqs. (713) and (714) along

with the boundary conditions (716). The auxiliary parameters } and } play an important

role for the convergence of the series solutions. Here }−curves are sketched at 14−order of
approximations to get valid ranges of these parameters (see Fig. 71). The permissible values

of auxiliary parameters are −15 ≤ } ≤ −085 and −12 ≤ } ≤ −1 The residual errors are
calculated for momentum and energy equations by the expressions

∆
 =

Z 1

0

h

 ( } )

i2


∆
 =

Z 1

0

h

 ( })

i2
 (7.38)

In Figs. (72− 73), the ~−curves for residual error of  and  are sketched in order to get the

admissible range for } It is noted that correct result up to 4th decimal place is obtained by

choosing the values of } from this range. Also, the HAM solutions converge in the whole region

of  (0   ∞) when } = −15 and } = −1 Table 7.1 is prepared to check the convergence
of obtained HAM solutions. Tablular values show that convergence is attained for the functions

 00(0) and 0(0) at 24 and 40 order of approximations respectively.
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Fig. 7.1: Combined ~−curves for velocity and temperature when  = 07  = 03

 =  = 05 and  = 01

Fig. 7.2: }−curve for the residual error ∆

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Fig. 7.3: }−curve for the residual error ∆


Table 7.1: Convergence of HAM solutions for different order of approximations when

 = 07  = 03  =  = 05 and  = 01

Order of approximations − 00(0) 0(0)

1 1225 3215

5 1286 3433

10 1296 3467

15 1300 3475

20 1302 3479

25 1303 3481

32 1304 3483

40 1309 3484

50 1309 3484
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7.4 Results and discussion

This section presents the effects of various parameters on the velocity, temperature, skin friction

coefficient and Nusselt number in the form of graphical and tabulated results (see Figs. (74−
717) and Table 7.2).

7.4.1 Dimensionless velocity field

Fig. (74− 77) exhibit the dimensionless velocity profiles for different values of porosity para-
meter , Hartman number  , nanoparticle volume fraction  and melting parameter . Fig.

7.4 displays the velocity profiles for different values of porosity parameter . The porosity para-

meter depends on the permeability parameter . An increase in the porosity parameter leads

to the lower permeablity parameter. This lower permeability parameter causes a reduction in

the fluid velocity. Fig. 7.5 illustrates the influence of Hartman number on the velocity  0().

As the applied magnetic field is a resistive force which reduces the fluid motion, so the velocity

field decreases. The effects of nanoparticle volume fraction  on the velocity field  0() are

depicted in the Fig. 7.6. It is evident that an increase in the values of nanoparticle volume

fraction corresponds to a decrease in the velocity profile  0(). The effect of melting parameter

 is seen in Fig. 7.7. It is quite obvious from the Fig. that larger values of  increase the velocity

profile. It is because of the fact that an increase in melting causes an increase in the molecular

motion which enhances the flow.

7.4.2 Dimensionless temperature field

Effects of Eckert number , Hartman number  nanoparticle volume fraction  and melting

parameter  on the temperature profile  are shown in the Figs. (78− 711). Fig. 7.8 depicts
that temperature is an increasing function of the Eckert number . Eckert number is defined

as the ratio of kinetic energy to enthalpy. With the increase in , kinetic energy increases

which consequently enhances temperature. Effect of Hartman number  on the temperature

is analyzed in Fig. 7.9 As the Lorentz force opposes the fluid motion, so heat is produced and

as a result the thermal boundary layer thickness increases. Fig. 7.10 illustrates the variation of

nanoparticle volume fraction  on temperature field . Here temperature profile  increases for
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an increase in  Since there is enhancement in thermal conductivity by increasing the volume

fraction of nanoparticles so thermal boundary layer thickness enhances. Fig. 7.11 shows the

variations of melting parameter  on temperature profile. It is noted that temperature profile

decreases for larger values of melting parameter due to the fact that temperature difference

increases between ambient and melting surface which reduces the temperature of the fluid.

Further the thermal boundary layer thickness increases when melting parameter is increased.

7.4.3 Skin friction coefficient and Nusselt number

Figs. (712 − 714) represent variation of skin friction coefficient for larger values of porosity
parameter, nanoparticles volume fraction and melting parameter. It is observed that  and 

are increasing functions of  00(0) whereas with the increase of  it decreases. The variation of

heat transfer rate for ,  and  is shown in Figs. (715− 717). It is found that the Nusselt
number decreases with the increase of  while it increases by increasing  and .

Some thermophysical properties of water and copper are given in Table 7.2. CPU time in

seconds is given for different order of approximations in Table 7.3. Table 7.4 presents some

numerical values of − (Re)
12 and −(Re)

−12 for different parameters. It is noted here

that magnitude of skin friction coefficient increases for higher −nanoparticles volume fraction
, Hartman number and porosity parameter . However it decreases when Eckert number 

and melting parameter  are increased. The increase in the values of −nanoparticles volume
fraction , Hartman number  , porosity parameter  and Eckert number  enhances the

magnitude of local Nusselt number. Furthermore rate of heat transfer decreases when melting

parameter  is increased.
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Fig. 74: Influence of  on velocity field.

Fig. 75: Influence of  on velocity field.
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Fig. 76: Influence of  on velocity field.

Fig. 77: Influence of  on velocity field.
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Fig. 78: Influence of  on temperature field.

Fig. 79: Influence of  on temperature field.
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Fig. 710: Influence of  on temperature field.

Fig. 711: Influence of  on temperature field.
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Fig. 712: Influences of  and  on skin friction coefficient.

Fig. 7.13: Influences of  and  on skin friction coefficient.
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Fig. 7.14: Influences of  and  on skin friction coefficient.

Fig. 7.15: Influences of  and  on Nusselt number.
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Fig. 7.16: Influences of  and  on Nusselt number.

Fig. 7.17: Influences of  and  on Nusselt number.
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Table 7.2: Thermophysical properties of water and copper [21].

(3) () ()  × 105(−1) (Ω)−1

Pure water 9971 4179 0613 21 005

Copper() 8933 385 401 167 596× 107

Table 7.3: CPU time (seconds) used by HAM for different order of approximations.

Order of approximations CPU time (sec)

2 0387022

4 0932053

6 199511

8 384522

10 646637

12 103336

14 156849

16 206332

18 270535

20 35221
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Table 7.4: Numerical values of skin friction coefficient and Nusselt number for different

parameters.

     − (Re)
12 −(Re)

−12

001 07 03 05 05 13065 39187

005 14749 42285

01 16971 46398

01 01 14543 41486

04 15798 44009

09 17713 47915

07 01 16151 45939

02 16565 46167

04 17369 46615

03 01 17645 35463

02 17459 38347

03 17292 41119

05 01 19215 58563

04 17420 48745

07 16204 42512

7.5 Concluding remarks

Influence of MHD flow of −water nanofluid over a stretching sheet is presented in this
article. Melting heat transfer and effects of viscous dissipation are also considered. HAM is

used to obtain semi-analytic solutions. It is observed that velocity profile is decreasing function

of Eckert number, Hartman number and nanoparticle volume fraction. Melting parameter

enhances the velocity and reduces the temperature field. Temperature profile increases when

volume fraction of copper nanoparticles is increased. Higher values of Cu-nanoparticles volume

fraction, Hartman number and porosity parameter correspond to larger values of skin friction

coefficient and local Nusselt number. Temperature gradient at the surface decreases for larger

values of melting parameter.
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Chapter 8

Unsteady flow of nanofluid with

double stratification and

magnetohydrodynamics

This chapter aims to examine the unsteady flow of viscous nanofluid caused by an inclined

stretching sheet. Effects of thermal radiation, viscous dissipation and stratification process

due to temperature and concentration are analyzed. Fluid is electrically conducting in the

presence of applied magnetic field. The flow consideration is subjected to small magnetic

Reynolds number. Induced magnetic field is absent. Appropriate transformations reduce the

nonlinear partial differential system to ordinary differential system. Convergent solutions are

computed. Interval of convergence is determined. Effects of different parameters on the velocity,

temperature and concentration profiles are shown and analyzed. It is concluded that thermal

and solutal stratification parameters reduce the velocity distribution. It is also observed that

velocity is decreasing function of Hartman number.

8.1 Flow equations

Consider an unsteady two-dimensional incompressible flow of nanofluid past a stretching sheet.

The sheet makes an angle Ψ with the horizontal direction. The − and −axes are perpendic-
ular to each other. Thermal and concentration buoyancy forces are applied to the fluid with
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double stratified phenomena due to temperature and concentration. The sheet is maintained

at temperature  = 0 + ∗(1 − ∗) and concentration  = 0 + ∗(1 − ∗) The

temperature and mass concentration of the ambient fluid are assumed to be stratified in the

form ∞ = 0 +∗(1− ∗) and ∞ = 0 +∗(1− ∗) respectively (see Fig. 81).

Fig. 8.1: Geometry of the problem.

It is assumed that a uniform magnetic field of intensity 0 acts in the −direction. The
magnetic Reynolds number is assumed small and the induced magnetic field is negligible in com-

parison with the applied magnetic field. In addition the effects of thermal radiation and viscous

dissipation are considered. The continuity, momentum, energy and concentration equations

yield




+




= 0 (8.1)




+ 




+ 




= 

2

2
+  sinΨ

∙
 ( − ∞)(1− ∞) +

(∗ − )


( − ∞)

¸
−

2
0


 (8.2)
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


+ 




+ 




= 

2

2
+ 

"









+



∞

µ




¶2#
+



()

µ




¶2
+
16∗ 3∞
3∗()

2

2
 (8.3)




+ 




+ 




= 

2

2
+



∞
2

2
 (8.4)

The boundary conditions are

 =  =


1− ∗
  = 0  =  = 0 +

∗
1− ∗

  =  = 0 +
∗
1− ∗

at  = 0

 → 0  → ∞ = 0 +
∗
1− ∗

  → ∞ = 0 +
∗
1− ∗

as  →∞ (8.5)

where  and  are the velocity components along the − and − directions respectively, 

 and  are the kinematic viscosity, density and electrical conductivity of the fluid,  is the

gravitational acceleration,  is the coefficient of thermal expansion,  ∞,  and ∞ are the

fluid temperature, ambient fluid temperature, fluid concentration and ambient fluid concentra-

tion,  = () is the thermal diffusivity,  = ()() is the ratio between the effective

heat capacity of the nanoparticle material and heat capacity of the fluid,  is the Brownian

diffusion coefficient,  is the thermophoretic diffusion coefficient, 
∗ is the mean absorption

coefficient, ∗ is the Stefan-Boltzmann constant,  is the thermal conductivity,  and ∗ are

positive constants having dimension −1 ∗, ∗ ∗ and ∗ are the dimensional constants

having dimension −1and 0 and 0 are the reference temperature and concentration.

We now introduce the following similarity transformations

 =


1− ∗
 0()  = −

r


1− ∗
()  =

r


(1− ∗)


() =
 − ∞
 − 0

 Φ() =
 − ∞
 − 0

 (8.6)

Now Eq. (81) is satisfied automatically and Eqs. (82) − (85) after using Eq. (86) can be
reduced as follows:

 000 −  02 +  00 − ∗
µ
 0 +

1

2
 00

¶
+ sinΨ[ +Φ]− 0 = 0 (8.7)
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1

Pr

µ
1 +

4

3


¶
00+0− 0− 0− ∗

µ
 +  +

1

2
0
¶
+

0Φ0+
02+ 002 = 0 (8.8)

Φ00 + (Φ0 −  0Φ)− 
0 − ∗

µ
 +Φ+

1

2
Φ0

¶
+





00 = 0 (8.9)

 0(0) = 1 (0) = 0 (0) = 1−  Φ(0) = 1− 

 0(∞) = 0 (∞) = 0 Φ(∞) = 0 (8.10)

where prime indicates the differentiation with respect to Moreover the unsteady parameter ∗,

mixed convection parameter , Buoyancy ratio , Hartman number  , Prandtl number Pr,

radiation parameter  thermal stratification parameter  Brownian motion parameter ,

thermophoresis parameter , Eckert number  Schmidt number  and solutal stratification

parameter  are defined by the following definitions:

∗ =
∗


  =

(1− ∗)2
2

(1− ∞)( − 0)  =
(∗ − )( −0)

 ( − 0)(1− ∞)


 =
20(1− ∗)


 Pr =




  =

4∗ 3∞
3∗

  =
∗

∗
  =

( −0)




 =
 ( − 0)

∞
  =

2

() ( − 0)
  =




  =

∗

∗
 (8.11)

The important physical quantities of interest in this problem are the local skin friction coefficient

 , Nusselt number  and Sherwood number . These are given by

 =

1
2
2

  =


 ( − ∞)
  =



( − ∞)
 (8.12)

where the surface shear stress , wall heat flux  and wall mass flux  are given by

 = 




¯̄̄̄
=0

  = −
µ
 +

16∗ 3∞
3∗

¶




¯̄̄̄
=0

  = − 




¯̄̄̄
=0

 (8.13)
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By using the above equations we get



µ
Re

2

¶12
=  00(0) (Re)

−12 = −
µ
1 +

4

3


¶µ
1

1− 

¶
0(0)

(Re)
−12 = −

µ
1

1− 

¶
Φ0(0) (8.14)

where Re =  is the local Reynolds number.

8.2 Homotopy analysis solutions

Initial approximations 0() 0() and Φ0() auxiliary linear operators L , L and LΦ and
auxiliary functions H , H and HΦ are taken in the forms

0() = 1− − 0() = (1− )
− Φ0() = (1− )

− (8.15)

L =  000 −  0 L = 00 −  LΦ = Φ00 −Φ (8.16)

H = − H = − HΦ = − (8.17)

with

L
£
1 + 2

 + 3
−¤ = 0

L
£
4

 + 5
−¤ = 0

LΦ
£
6

 + 7
−¤ = 0 (8.18)

in which  ( = 1− 7) are the constants.
If  ∈ [0 1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:

(1− )L
h
̂(; )− 0()

i
= }HN [̂(; ) ̂(; ) Φ̂(; )] (8.19)

(1− )L
h
̂(; )− 0()

i
= }HN[̂(; ) ̂(; ) Φ̂(; )] (8.20)

(1− )LΦ
h
Φ̂(; )−Φ0()

i
= }ΦHΦNΦ[Φ̂(; ) ̂(; ) ̂(; )] (8.21)
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̂ 0(0; ) = 1 ̂(0; ) = 0 ̂ 0(∞; ) = 0

̂(0; ) = 1−  ̂(∞; ) = 0

Φ̂(0; ) = 1−  Φ̂(∞; ) = 0 (8.22)

where } , } and } are the nonzero auxiliary parameters and the nonlinear operators N  N

and N are given by

N

h
̂(; ) ̂(; ) Φ̂(; )

i
=

3̂(; )

3
−
Ã
̂(; )



!2
+ ̂(; )

2̂(; )

2

−∗
Ã
̂(; )


+
1

2

2̂(; )

2

!
+ sinΨ[̂(; )

+Φ̂(; )]−
̂(; )


 (8.23)

N

h
̂(; ) ̂(; ) Φ̂(; )

i
=

1

Pr

µ
1 +

4

3


¶
2̂(; )

2
+ ̂(; )

̂(; )


− ̂(; )

̂(; )



−̂(; )


− ∗
Ã
 + ̂(; ) +

1

2

̂(; )



!
+

Ã
̂(; )



!2

+
̂(; )



Φ̂(; )


+

Ã
2̂(; )

2

!2
 (8.24)

NΦ

h
Φ̂(; ) ̂(; ) ̂(; )

i
=

2Φ̂(; )

2
+ 

Ã
̂(; )

Φ̂(; )


− Φ̂(; )̂(; )



!

−̂(; )


− ∗

Ã
 + Φ̂(; ) +

1

2

Φ̂(; )



!

+




2̂(; )

2
 (8.25)

The resulting problems at m order can be presented in the following forms

L [()− −1()] = }R() (8.26)
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L [()− −1()] = }R() (8.27)

LΦ [Φ()− Φ−1()] = }ΦRΦ() (8.28)

 0(0) = (0) =  0(∞) = (0) = (∞) = Φ(0) = Φ(∞) = 0 (8.29)

R () =  000−1+
−1X
=0

£
−1− 00 −  0−1−

0


¤−∗µ 0−1 + 12 00−1
¶
+ sinΨ[−1+Φ−1]− 0−1

(8.30)

R() =
1

Pr

µ
1 +

4

3


¶
00−1 +

−1P
=0

(−1−0 − −1− 0)− 
0
−1 − ∗

µ
 + −1 +

1

2


0
−1

¶
+

−1P
=0

(
0
−1−Φ

0
 +

0
−1−

0
 + 00−1−

00
 ) (8.31)

RΦ() = Φ
00
−1+

−1P
=0

(−1−Φ0−Φ−1− 0)− 0−1−∗
µ
 +Φ−1 +

1

2
Φ

0
−1

¶
+




00−1

(8.32)

=

⎧⎨⎩ 0  ≤ 1
1   1

 (8.33)

The general solutions ( Φ) subject to the special solutions (
∗
 

∗
Φ

∗
) are

() = ∗() + 1 + 2
 + 3

−

() = ∗() + 4
 + 5

−

Φ() = Φ∗() + 6
 + 7

− (8.34)

where the constants  ( = 1 2  7) through the boundary conditions (8.29) have the values

2 = 4 = 6 = 0 1 = −3 − ∗(0) 3 =
∗()


¯̄̄̄
=0



5 = −∗(0) 7 = −Φ∗(0) (8.35)

8.3 Convergence of the homotopy solutions

Now the solutions of Eqs. (87− 89) subject to the boundary conditions (810) are computed
by means of homotopy analysis method. The convergence of the series solutions is highly
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dependent upon the auxiliary parameters } , } and }Φ. For valid ranges of these parameters,

we have sketched the }−curves at 15−order of approximations (see Fig. 82). We can see
that the admissible values of } , } and }Φ are −15 ≤ } ≤ −07, −13 ≤ } ≤ −04 and
−12 ≤ }Φ ≤ −04 The residual errors are calculated for momentum, energy and concentration
equations by the expressions

∆
 =

Z 1

0

h

 ( } )

i2


∆
 =

Z 1

0

h

 ( })

i2


∆Φ
 =

Z 1

0

£
Φ
 ( }Φ)

¤2
 (8.36)

In Figs. (83− 85), the }−curves for residual error of   and Φ are sketched in order to get
the admissible range for } It is noted that correct result up to 4th decimal place is obtained

by choosing the values of } from this range. Further the series solutions converge in the whole

region of  (0   ∞) when } = −12 } = −11 and }Φ = −09

Fig. 8.2. ~− curves for  00(0) 0(0) and Φ0(0).
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Fig. 8.3: }−curve for the residual error ∆


Fig. 8.4: }−curve for the residual error ∆

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Fig. 8.5: }Φ−curve for the residual error ∆Φ


Table 8.1: Convergence of HAM solutions for different order of approximations when

 = 07  =  = 04  = 03 Ψ = 4 Pr = 12  = 02 ∗ =  = 05  = 01

 = 09,  = 06 and  = 01

Order of approximations − 00(0) −0(0) −0(0)
1 1358 07193 09608

5 1341 06832 09856

10 1342 06839 09815

14 1343 06855 09810

20 1343 06868 09808

25 1343 06876 09809

29 1343 06880 09810

35 1343 06887 09810

40 1343 06887 09810

45 1343 06887 09810
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8.4 Interpretation of results

The effects of different parameters on the velocity, temperature and concentration fields are

investigated through plots in this section. Figs. (86− 812) exhibit the dimensionless velocity
profiles for different values of inclination angle Ψ, unsteady parameter ∗, Hartman number

 mixed convection parameter , buoyancy ratio , thermal stratification parameter 

and solutal stratification parameter . Variation in velocity with an increase in angle of

inclination Ψ can be seen from Fig. 8.6. It is noticed that with an increase in Ψ i.e. when

the sheet moves from horizontal to vertical direction, the strength of buoyancy force increases

and consequently the velocity and boundary layer thickness increase. Influence of unsteady

parameter ∗ on the velocity profile  0 can be seen in Fig. 8.7. Increasing values of ∗ indicate

smaller stretching rate in the − direction which eventually decrease the velocity and boundary
layer thickness. The effects of Hartman number  are displayed in Fig. 8.8, which shows that

an increase in  reduces the velocity profile. It is because of the reason that Lorentz force acts

as a retarding force. Such retarding force enhances the frictional resistance opposing the fluid

motion in the momentum boundary layer thickness. Fig. 8.9 elucidates the behavior of mixed

convection parameter  on the velocity profile. This Fig. shows that the values of velocity

function  0 and the boundary layer thickness increase by increasing . This is because a larger

value of  accompanies a stronger buoyancy force which leads to an increase in velocity. The

effects of buoyancy ratio  on the velocity profile are depicted in Fig. 8.10. This Fig. shows

that velocity profile enhances when  increases.  is the ratio of concentration to thermal

buoyancy forces. With an increase in buoyancy ratio parameter, concentration buoyancy force

increases which results in higher velocity profile. Fig. 8.11 is plotted to show the influence of

thermal stratification parameter  on the velocity profile 
0(). With an increase in thermal

stratification parameter the density of fluid in the lower region is high than the upper region.

So thermal stratification reduces the convective flow between the sheet and ambient fluid.

Therefore velocity profile decreases. Behavior of solutal stratification parameter  on velocity

profile is sketched in Fig. 8.12. It is depicted that velocity and boundary layer thickness

decrease with an increase in solutal stratification parameter.

Effects of Prandtl number Pr, unsteady parameter ∗, Brownian motion parameter 

thermophoresis parameter  thermal stratification parameter  radiation parameter  and
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Eckert number  on the temperature profile  are shown in the Figs. (813− 819). Fig. 8.13
indicates that temperature profile  is a decreasing function of Pr. In fact thermal diffusivity

decreases by increasing Pr and thus heat diffuses away slowly from the heated surface. Effect

of unsteady parameter ∗ on the temperature is analyzed in Fig. 8.14 It is observed that the

temperature and thermal boundary layer thickness are decreasing function of ∗. Fig. 8.15

illustrates the effects of Brownian motion parameter  on temperature profile . When 

increases, random motion of nanoparticles increases. Therefore collision of particles increases

and kinetic energy converted to heat energy. Hence temperature profile  increases for an

increase in  The behavior of  on the temperature profile is similar to that of  (see

Fig. 8.16). Also the temperature profile  and thermal boundary layer thickness decrease

when the thermal stratification parameter  increases (see Fig. 8.17). Because temperature

difference gradually decreases between the sheet and ambient fluid which causes a reduction

in the temperature profile. Radiation effects on the temperature profile are displayed in Fig.

8.18. An increase in  enhances the heat flux from the sheet which gives rise to the fluid’s

temperature. Therefore the temperature profile and thermal boundary layer increase with an

increase in  Fig. 8.19 depicts that temperature is an increasing function of the Eckert number

. Eckert number is defined as the ratio of kinetic energy to enthalpy. With the increase in

, kinetic energy increases which consequently enhances temperature.

Figs. (820 − 824) illustrate the effects of Schmidt number , unsteady parameter ∗
Brownian motion parameter  thermophoresis parameter  and concentration stratification

number  on the dimensionless nanoparticle volume fraction profile Φ It is observed that the

mass fraction Φ and the associated boundary layer decrease for an increase in Schmidt number

 (see Fig. 8.20) It is due to the fact that an increase in  reduces the molecular diffusivity.

Fig. 8.21 indicates that an increase in the unsteady parameter ∗ decreases the concentration

profile. The effects of Brownian motion parameter  on the concentration profile are depicted

in Fig. 8.22. This Fig. shows that Φ decreases when  increases. Also the concentration

profile Φ increases when thermophoresis parameter  is increased (see Fig. 8.23). Variations

of solutal stratification parameter  on the dimensionless nanoparticle volume fraction profile

Φ can be seen in Fig. 8.24 It is noted that there is a decrease in concentration profile when 

is increased. Infact an increase in  decreases the concentration difference between the sheet
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and ambient fluid.

Table 8.1 shows the convergence of the series solutions. It is observed that convergence for

velocity, temperature and concentration is achieved at 14, 35 and 29 order of approxima-

tions respectively. Table 8.2 shows the comparison of the present results with the numerical

solution of Ibrahim and Shankar [64] in limiting case. It is found that our solution has good

agreement with the limiting numerical solution. In Table 8.3 some numerical values of skin

friction coefficient are given. Tabular values show that skin friction coefficient decreases by

increasing Ψ  and  while it increases for larger values of  , 
∗  and . Numerical

values of local Nusselt and Sherwood numbers for different emerging parameters are presented

in Table 8.4. It is noted that local Nusselt number increases for larger values of ,  and Pr.

However it decreases for larger values of   and  It is noted that local Sherwood number

decreases by increasing   and Pr and it increases for larger values of   and 

Fig. 8.6: Influence of Ψ on  0()
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Fig. 8.7: Influence of ∗ on  0()

Fig. 8.8: Influence of  on  0()
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Fig. 8.9: Influence of  on  0()

Fig. 8.10: Influence of  on  0()
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Fig. 8.11: Influence of  on  0()

Fig. 8.12: Influence of  on  0()
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Fig. 8.13: Influence of Pr on ()

Fig. 8.14: Influence of ∗ on ()
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Fig. 8.15: Influence of  on ()

Fig. 8.16: Influence of  on ()
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Fig. 8.17: Influence of  on ()

Fig. 8.18: Influence of  on ()
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Fig. 8.19: Influence of  on ()

Fig. 8.20: Influence of  on Φ()
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Fig. 8.21: Influence of ∗ on Φ()

Fig. 8.22: Influence of  on Φ()
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Fig. 8.23: Influence of  on Φ()

Fig. 8.24: Influence of  on Φ()
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Table 8.2: Comparison of skin friction coefficient with Ibrahim and Shankar [64] when

 =  =  = Ψ = Pr =  = ∗ =  =  =  =  =  = 0

 Ibrahim and Shankar [64] Present results

0 12808 12808

1 14142 14142

5 24494 24494

Table 8.3: Numerical values of skin friction coefficient for different parameters when  =

09  = 02 Pr = 12  = 09  = 04 and  = 06

Ψ       − 00(0)
6 07 04 03 06 01 01 1365

3 1294

2 1269

4 05 1252

06 1289

08 1360

07 01 1428

03 1359

05 1291

04 05 1306

06 1297

07 1287

03 01 1169

02 1203

03 1235

06 01 1325

02 1342

03 1359

01 02 1330

03 1336

04 1341
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Table 8.4: Numerical values of Nusselt and Sherwood numbers for different parameters

when  = 07  = 04  = 03 Ψ = 4  = 04 
∗ = 06 and  = 06

    Pr  − ¡1 + 4
3


¢ ³
1

1−

´
0(0) −

³
1

1−

´
0(0)

01 01 09 02 12 09 1078 1197

02 1190 1193

03 1334 1189

01 02 1080 1333

03 1082 1511

04 1083 1746

01 05 1209 1157

07 1142 1183

10 1047 1201

09 01 1078 1197

03 1047 1142

05 1017 1093

02 15 1215 1187

17 1294 1183

20 1398 1177

12 05 1141 08375

07 1105 1028

10 1066 1275

8.5 Concluding remarks

MHD unsteady flow of viscous nanofluid due to an inclined stretching sheet has been stud-

ied. Effects of different parameters on the velocity, temperature and concentration profiles are

analyzed. The following observations are worthmentioning.

• Angle of inclination enhances the velocity.

• Velocity profile decreases with an increase in thermal and solutal stratification parameters.
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• Increase in the mixed convection parameter enhances the velocity profile.

• Thermal stratification parameter reduces the temperature field.

• Concentration profile decreases with the increase in solutal stratification parameter.

• Impact of thermophoresis parameter and Schmidt number on the concentration profile is
opposite.

• Higher values of solutal stratification parameter correspond to larger values of local Nus-
selt and Sherwood numbers.
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Chapter 9

Magnetohydrodynamic stagnation

point flow of Jeffrey nanofluid with

Newtonian heating

The purpose of present chapter is to explore the stagnation point flow of Jeffrey nanofluid

towards a stretching surface with Newtonian heating. Fluid is electrically conducting in the

presence of applied magnetic field. Governing nonlinear ordinary differential system is computed

for the convergent solutions. Results of velocity, temperature and concentration fields are

calculated in series forms. Effects of different parameters on the velocity, temperature and

concentration profiles are shown and analyzed. Skin friction coefficient, Nusselt and Sherwood

numbers are also computed and examined.

9.1 Flow equations

The extra stress tensor for Jeffrey fluid is

S =


1 + 1

∙
A1 + 2

A1



¸
 (9.1)

In above expressions  is the dynamic viscosity, 1 is the ratio of relaxation to retardation

times, 2 is the retardation time, A1 is the first Rivlin-Erickson tensor,  is the material
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derivative defined as




=




+ (V5) (9.2)

Eq. (91) reduces to a Newtonian fluid when 1 = 2 = 0.

9.2 Problem formulation

Let us consider the steady two-dimensional stagnation point flow of Jeffrey nanofluid towards a

stretching surface-. The −axis is taken along the stretching surface in the direction of motion
and −axis is perpendicular to it. A uniform transverse magnetic field of strength 0 is applied
parallel to the −axis. It is assumed that the induced magnetic field and the electric field
effects are negligible. Effects of Brownian motion and thermophoresis are presented. Further,

the surface exhibits Newtonian heating boundary condition. The boundary layer flow problems

are




+




= 0 (9.3)





+ 




=



1 + 1

∙
2

2
+ 2

µ




2


+ 

3

2
− 



2

2
+ 

3

3

¶¸
+∞

∞


+
20

(∞ − ) (9.4)





+ 




= 

2

2
+ 

"









+



∞

µ




¶2#
 (9.5)





+ 




= 

2

2
+



∞
2

2
 (9.6)

 = () =   = 0



= −  =  at  = 0

 →   → ∞  → ∞ as  →∞ (9.7)

where  and  are the velocity components along the − and − directions respectively, 

 and  are the dynamic viscosity, density and electrical conductivity of the fluid, 1 is the

ratio of relaxation to retardation times, 2 is the retardation time, ∞ is the free stream
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velocity,  ∞,  and ∞ are the fluid temperature, ambient fluid temperature, constant

wall concentration and ambient fluid concentration,  = ()() is the ratio between the

effective heat capacity of the nanoparticle material and heat capacity of the fluid,  is the

Brownian diffusion coefficient,  is the thermophoretic diffusion coefficient,  = () is

the thermal diffusivity and  is the heat transfer parameter.

We now use the following similarity transformations

 =  0()  = −√()  =
r




 () =

 − ∞
∞

 Φ() =
 −∞
 −∞

 (9.8)

Eq. (93) is satisfied automatically and Eqs. (94 − 97) after using Eq. (98) can be reduced
as follows:

 000 + (1 + 1)(
00 −  02) + ∗( 002 −  ) + (1 + 1)(

2 +( −  0)) = 0 (9.9)

1

Pr
00 + 0 +

0Φ0 +
02 = 0 (9.10)

Φ00 + Φ0 +




00 = 0 (9.11)

 0(0) = 1 (0) = 0 0(0) = −∗[1 + (0)] Φ(0) = 1

 0(∞) → 


=  (∞)→ 0 Φ(∞)→ 0 (9.12)

where ∗ = 2 is the Deborah number,  = 20 is the Hartman number, Pr =  is the

Prandtl number,  = ( − ∞) is the Brownian motion parameter,  =  is

the thermophoresis parameter, ∗ = 
p
 is the conjugate parameter for Newtonian heating,

 is the ratio of rates and  =  is the Schmidt number.

The important physical quantities of interest in this problem are the local skin-friction

coefficient  , local Nusselt number  and the local Sherwood number  which are given

by

 =

1
2
2

  =


 ( − ∞)
  =



( −∞)
 (9.13)
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where the surface shear stress , wall heat flux  and wall mass flux  are given by

 = 




¯̄̄̄
=0

  = − 




¯̄̄̄
=0

  = − 




¯̄̄̄
=0

 (9.14)

By using the above equations, we get

 (Re)
12 =  00(0) (Re)

−12 = ∗
∙
1 +

1

(0)

¸
 (Re)

−12 = −Φ0(0) (9.15)

where Re = 2 is the local Reynolds number.

9.3 Series solutions

Initial approximations 0() 0() and Φ0() and auxiliary linear operators L , L and LΦ are
taken in the forms

0() =  + (1− )(1− −) 0() =
∗

1− ∗
− Φ0() = − (9.16)

L =  000 +  00 L = 00 −  LΦ = Φ00 −Φ (9.17)

subject to the properties

L [1 + 2 + 3
−] = 0

L[4 + 5
−] = 0

LΦ[6 + 7
−] = 0 (9.18)

in which  ( = 1− 7) are the constants.
If  ∈ [0 1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:

(1− )L [̂(; )− 0()] = }N [̂(; )] (9.19)

(1− )L[̂(; )− 0()] = }N[̂(; ) ̂(; ) Φ̂(; )] (9.20)
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(1− )LΦ[Φ̂(; )−Φ0()] = }ΦNΦ[Φ̂(; ) ̂(; ) ̂(; )] (9.21)

̂ 0(0; ) = 1 ̂(0; ) = 0 ̂ 0(∞; ) = 

̂
0
(0; ) = −∗[1 + ̂(0; )] ̂(∞; ) = 0

Φ̂(0; ) = 1 Φ̂(∞; ) = 0 (9.22)

where } , } and }Φ are the nonzero auxiliary parameters and the nonlinear operators N  N

and NΦ are given by

N

h
̂(; )

i
=

3̂(; )

3
+ (1 + 1)

⎡⎣̂(; )2̂(; )
2

−
Ã
̂(; )



!2⎤⎦
+∗

⎡⎣Ã2̂(; )

2

!2
− ̂(; )

4̂(; )

4

⎤⎦+ (1 + 1)
£
2

+

Ã
 − ̂(; )



!#
 (9.23)

N

h
̂(; ) ̂(; ) Φ̂(; )

i
=

1

Pr

2̂(; )

2
+ ̂(; )

̂(; )


+

̂(; )



Φ̂(; )



+

Ã
̂(; )



!2
 (9.24)

NΦ

h
Φ̂(; ) ̂(; ) ̂(; )

i
=

2Φ̂(; )

2
+ ̂(; )

Φ̂(; )


+





2̂(; )

2
 (9.25)

The m order deformation equations can be presented in the following forms

L [()− −1()] = }R() (9.26)

L [()− −1()] = }R() (9.27)

LΦ [Φ()− Φ−1()] = }ΦRΦ() (9.28)

(0) =  0(0) =  0(∞) = 0(0) + ∗(0) = (∞) = Φ(0) = Φ(∞) = 0 (9.29)
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R () =  000−1 + (1 + 1)

−1X
=0

£
−1− 00 −  0−1−

0


¤
+ ∗[ 00−1−

00
 − −1−  ]

+(1 + 1)[
2 +( −  0−1)] (9.30)

R() =
1

Pr
00−1 +

−1P
=0

[−1−0 +
0
−1−Φ

0
 +

0
−1−

0
] (9.31)

RΦ() = Φ
00
−1 + 

−1P
=0

−1−Φ0 +




00−1 (9.32)

χ=

⎧⎨⎩ 0  ≤ 1
1   1

 (9.33)

The general solutions ( Φ) comprising the special solutions (
∗
 

∗
 Φ

∗
) are

() = ∗() + 1 + 2 + 3
−

() = ∗() + 4
 + 5

−

Φ() = Φ
∗
() + 6

 + 7
− (9.34)

9.4 Convergence analysis

Now the solutions of Eqs. (99− 911) subject to the boundary conditions (912) is computed
by means of homotopy analysis method. The convergence of the series solutions is highly

dependent upon the auxiliary parameters } , } and }Φ. For valid ranges of these parameters,

we have sketched the }−curves at 15−order of approximations (see Figs. 91− 93). We can
see that the admissible values of } , } and }Φ are −13 ≤ } ≤ −02, −13 ≤ } ≤ −02 and
−15 ≤ }Φ ≤ −07 Further, the series solutions converge in the whole region of  (0   ∞)
when } = −1 } = −11 and }Φ = −13
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Fig. 9.1: }− curve for the velocity field.

Fig. 9.2: }− curve for the temperature field.
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Fig. 93: }− curve for the concentration field.
Table 9.1: Convergence of HAM solutions for different order of approximations when 1 = 02

Pr = 15 ∗ =  = =  =  = ∗ = 01 and  = 08

Order of approximations − 00(0) −0(0) −Φ0(0)
1 108225 0113764 0459778

5 105658 0116260 0433609

8 105648 0116289 0428189

15 105648 0116273 0427542

18 105648 0116273 0427544

20 105648 0116273 0427544

25 105648 0116273 0427544

30 105648 0116273 0427544

35 105648 0116273 0427544

9.5 Results and discussion

The effects of different parameters on the dimensionless flow and heat and mass transfer rates

are investigated and presented graphically in this section. Figs. (94− 97) exhibit the di-
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mensionless velocity profiles for different values of ratio of relaxation to retardation times 1,

Hartman number  Deborah number ∗ and ratio parameter . Effects of 1 on the veloc-

ity profile  0 can be seen from Fig. 9.4. Here the values of  0 and boundary layer thickness

decrease when 1 increases. Effects of Hartman number  on the velocity  0 are depicted

in Fig. 9.5 The graph shows that the values of velocity  0 and the boundary layer thickness

decrease by increasing  . As the magnetic field has the tendency to slow down the movement

of the fluid which leads to a decrease in the velocity and momentum boundary layer thickness.

Fig. 9.6 shows that larger values of Deborah number ∗ correspond to higher velocity. Fig. 9.7

illustrates the influence of ratio parameter  on the velocity profile  0. There is an increase in

velocity field  0 and boundary layer thickness when the velocity of the stretching sheet exceeds

the free stream velocity (  1).

Effects of ratio of relaxation to retardation times 1, Hartman number Deborah number

∗, ratio parameter  Prandtl number Pr Brownian motion parameter  thermophoresis

parameter , Schmidt number  and Newtonian heating parameter 
∗ on the temperature

profile  are shown in the Figs. (98−916). Effect of 1 on the temperature is analyzed in Fig.
9.8 It is observed that the temperature and the thermal boundary layer thickness are increasing

function of 1. Fig. 9.9 illustrates the effects of  on temperature profile . As Lorentz force

is a resistive force that opposes the fluid motion. So heat is produced and as a result thermal

boundary layer thickness increases. Variations of ∗  and Pr on temperature profile  can be

seen in the Figs. (910 − 912). There is a decrease in temperature  when Deborah number
∗ ratio parameter  and Prandtl number Pr are increased. In fact the thermal diffusivity

decreases by increasing Pr and thus the heat diffused away slowly from the heated surface.

Fig. 9.13 represents the effect of Brownian motion parameter  on temperature profile .

Temperature profile  increases for an increase in  The behavior of  on the temperature

profile is similar to that of  (see Fig. 9.14). Also the temperature profile  and thermal

boundary layer thickness decrease when the Schmidt number  increases. This is due to the

fact that an increase in  reduces the molecular diffusivity. Fig. 9.16 displays the effect of

Newtonian heating parameter  on temperature field . The temperature field  is found to

increase when  increases.

Figs. (917 − 925) illustrate the effects of ratio of relaxation to retardation times 1,
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Hartman number  Deborah number ∗, ratio parameter  Brownian motion parameter 

Schmidt number  Prandtl number Pr thermophoresis parameter  and Newtonian heating

parameter ∗ on the dimensionless nanoparticle volume fraction profile Φ It is observed that

the mass fraction Φ and the associated boundary layer decrease when the values of 1  ∗,

  and  are increased and these quantities increase for higher Pr  and ∗.

Table 9.1 shows the convergence of the series solutions. It is observed that convergence is

achieved at 18 order of approximations. In Table 9.2 some numerical values of skin friction

coefficient are given. Tabulated values depict that skin friction coefficient decreases by increas-

ing 1 and  while it increases for larger values of ∗ and  Table 9.3 includes the values of

local Nusselt and Sherwood numbers. It is noted that Nusselt number decreases by increasing

   and ∗ while Sherwood number increases for higher  and it decreases for larger

vales of   and ∗

Fig. 94: Influence of 1 on  0()
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Fig. 95: Influence of  on  0()

Fig. 96: Influence of ∗ on  0()
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Fig. 97: Influence of  on  0()

Fig. 98: Influence of 1 on ()
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Fig. 99: Influence of  on ()

Fig. 910: Influence of ∗ on ()
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Fig. 911: Influence of  on ()

Fig. 912: Influence of Pr on ()
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Fig. 913: Influence of  on ()

Fig. 914: Influence of  on ()
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Fig. 915: Influence of  on ()

Fig. 916: Influence of ∗ on ()
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Fig. 917: Influence of 1 on Φ()

Fig. 918: Influence of  on Φ()
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Fig. 919: Influence of ∗ on Φ()

Fig. 9.20: Influence of  on Φ()
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Fig. 921: Influence of  on Φ()

Fig. 922: Influence of  on Φ()
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Fig. 923: Influence of Pr on Φ()

Fig. 924: Influence of  on Φ()
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Fig. 925: Influence of ∗ on Φ()
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Table 9.2: Numerical values of skin friction coefficient for different values of 1  ∗ and



1  ∗   (Re)
12

01 01 01 01 −105648
03 −109962
04 −114114
05 −118116
02 015 −103400

02 −109737
03 −113684
04 −117502
01 015 −103399

02 −101290
025 −0993061
03 −0974349
01 001 −109255

003 −108605
005 −107866
007 −107040
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Table 9.3: Numerical values of local Nusselt and Sherwood numbers when 1 = 02

∗ =  = 01 Pr = 15 and  = 08

   ∗ ∗
³
1 + 1

(0)

´
−Φ0(0)

01 01 01 01 0714516 0427544

02 0673145 0468469

03 0633230 0482122

05 0557819 0493069

01 02 0710164 0346337

03 0705776 0265221

04 0701351 0184186

05 0696886 0103238

01 02 0708029 0421407

025 0704905 0418477

03 0701856 0415635

04 0695969 0410193

01 015 0711763 0376091

02 0708442 0314421

025 0704340 0238845

03 0699108 0143430

9.6 Conclusions

Here MHD stagnation point flow of Jeffrey nanofluid towards a stretching sheet is studied.

Effects of different parameters on the velocity, temperature and concentration profiles are ana-

lyzed. The following observations are made.

• Velocity profile decreases by increasing 1 and  while it increases when ∗ and  are

increased.

• An increase in the values of 1,  ,  and 
∗ have similar effects on the temperature

() in a qualitative sense.
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• Temperature profile decreases by increasing ∗  and 

• An increase in Prandtl number Pr reduces the temperature and thermal boundary layer
thickness.

• Concentration profile Φ() decreases by increasing 1,  ∗,   and .

• The values of skin friction coefficient are higher for increasing values of ∗ and .

• Higher values of   and ∗ correspond to smaller values of local Nusselt and Sherwood

numbers.
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Chapter 10

MHD three-dimensional flow of

nanofluid with velocity slip and

nonlinear thermal radiation

An analysis has been carried out in this chapter to investigate three-dimensional flow of viscous

nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by

a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparti-

cle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different

concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from

the previous literature, the nonlinear system for temperature distribution is solved and ana-

lyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary

differential system. Convergent series solutions are computed for the velocity and temperature.

Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt

number are computed and examined. It is concluded that heat transfer rate increases when

temperature and radiation parameters are increased.

10.1 Flow description

Consider the steady three-dimensional nanofluid flow over a stretching sheet situated at  = 0.

Let (  ) be the velocity components along the (  ) directions, respectively. A constant
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magnetic field of strength 0 is applied in the −direction. The governing boundary layer
equations can be written as




+




= 0 (10.1)





+ 




+ 




= 

2

2
− 

2
0


 (10.2)





+ 




+ 




= 

2

2
− 

2
0


 (10.3)

with the boundary conditions given by

 = +
2− 


0




  =  +

2− 


0




  = − at  = 0

 → 0  → 0 as  →∞ (10.4)

where  and  are stretching rate constants,  ( 0) is the suction velocity,  is the tangential

momentum accommodation coefficient and 0 is the molecular mean free path. The effective

nanofluid dynamic viscosity   density   thermal diffusivity   heat capacitance () 

thermal conductivity  and electrical conductivity  are given by

 =  (1− ) +  (10.5)

 =


(1− )25
 (10.6)

() = () (1− ) + () (10.7)




=

 + 2 − 2( − )

 + 2 + 2( − )
 (10.8)




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (10.9)

Here  is the nanoparticle volume fraction,  and  are the densities of the fluid and of the

solid fractions, respectively,  and  are the thermal conductivities of the fluid and of the

solid fractions, respectively, and  and  are the electrical conductivity of the fluid and of

the solid fractions, respectively.
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Making use of the following transformations

 =  0()  = 0()  = −√( + )  =

r



 (10.10)

equation (101) is identically satisfied and Eqs. (102− 104) become

1

(1− )25[1− +


]
 000 −  02 + ( + ) 00 − 

1− +







 0 = 0 (10.11)

1

(1− )25[1− +


]
000 − 02 + ( + )00 − 

1− +







0 = 0 (10.12)

 0 (0) = 1 +  00(0) 0 (0) =  + 00(0) (0) + (0) = 

 0 (∞)→ 0 0(∞)→ 0 (10.13)

where prime denotes the differentiation with respect to ,  is the Hartman number,  is

the velocity slip parameter,  is the ratio of stretching rates and  is the suction/injection

parameter. These quantities are defined by

 =


2
0


  =

2− 



r



0  =




  =

√


 (10.14)

10.2 Heat transfer analysis

The boundary layer energy equation in the presence of thermal radiation effects is given by





+ 




+ 




= 

2

2
− 1

()




 (10.15)

where  is the temperature,  is the nanofluid thermal diffusivity,  is the specific heat at

constant pressure and  is the radiative heat flux. Using Rosseland approximation for thermal

radiation, the radiative heat flux is simplified as follows:

 = −4
∗

3∗
 4


= −16

∗

3∗
 3




 (10.16)
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in which ∗ and ∗ are the Stefan-Boltzmann constant and the mean absorption coefficient,

respectively. Now Eq. (1015) can be written in the form





+ 




+ 




= 

2

2
+

16∗

3∗()




µ
 3





¶
 (10.17)

It is worthmentioning to note that for thermal radiation effect in the existing literature,  4 in

Eq. (1016) was expanded about the ambient temperature ∞ However in the present case

this has been avoided to get more meaningful results. Therefore in present analysis the energy

equation is nonlinear.

The boundary conditions are

 =  at  = 0  → ∞ as  →∞ (10.18)

where  and ∞ are the sheet and ambient fluid temperatures respectively. We define the

non-dimensional temperature by

() =
 − ∞
 − ∞

 (10.19)

or

 = ∞(1 + ( − 1)) (10.20)

where  = ∞ is the temperature parameter. Using Eq. (1020), Eq. (1017) takes the

form

1

Pr

µ



+

¶
00 +



Pr

h
( − 1)3(3202 + 300) + 3( − 1)2(202 + 200)

+ 3( − 1)(02 + 00)
i
+

µ
1− +

()

()


¶
0( + ) = 0 (10.21)

where Prandtl number Pr and radiation parameter  are defined by

Pr =
 ()


  =

16∗ 3∞
3∗

 (10.22)

with the boundary conditions

(0) = 1 (∞)→ 0 (10.23)
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Surface shear stresses  and  along the x and y directions are given by

 = 




¯̄̄̄
=0

  = 




¯̄̄̄
=0

 (10.24)

The heat transfer rate at the sheet is defined as follows:

 = −
µ




¶
=0

+ () = −( − ∞)
r
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¡
1 +

3


¢
0(0) (10.25)

Local skin friction coefficients along the  and  directions and Nusselt number for the problem

are given by

(Re)
1
2  =

1

(1− )25
 00(0) (Re)

1
2  =

1


3
2 (1− )25

00(0),

√
Re

= − ¡1 +
3


¢
0(0) (10.26)

in which (Re)
1
2 = 

p
 and (Re)

1
2 = 

p
 denote the local Reynolds number.

10.3 Analytical solutions

Employing the homotopy analysis method the initial approximations and auxiliary linear op-

erators are given by

0 () =  +
1

1 + 
(1− −) 0() =



1 + 
(1− −) 0() = − (10.27)

L () = 3

3
− 


 L () = 3

3
− 


 L () = 2

2
−  (10.28)

with

L [1 + 2 exp() + 3 exp(−)] = 0 (10.29)

L [4 + 5 exp() + 6 exp(−)] = 0 (10.30)

L [7 exp() + 8 exp(−)] = 0 (10.31)
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in which  ( = 1− 8) are the arbitrary constants. If  ∈ [0 1] indicates the embedding para-
meter then the zeroth order deformation problems are constructed as follows:

(1− )L
h
̂ (; )− 0 ()

i
= }N

h
̂ (; )  ̂ (; )

i
 (10.32)

(1− )L [̂ (; )− 0 ()] = }N

h
̂ (; )  ̂ (; )

i
 (10.33)

(1− )L
h
̂ (; )− 0 ()

i
= }N

h
̂ (; )  ̂ (; )  ̂ (; )

i
 (10.34)

̂ (0; ) = , ̂ 0 (0; ) = 1 + ̂ 00 (0; )  ̂ 0 (∞; ) = 0 (10.35)

̂ (0; ) = 0, ̂0 (0; ) =  + ̂00 (0; )  ̂0 (∞; ) = 0 (10.36)

̂ (0; ) = 1 ̂ (∞; ) = 0 (10.37)

where } , } and } are the nonzero auxiliary parameters and the nonlinear operators N  N

and N are given by

N

h
̂ (; )  ̂ (; )

i
=

1
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3
−
Ã
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+̂ (; )
2̂ (; )

2
+ ̂ (; )

2̂ (; )

2

− 

1− +

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





̂ (; )


 (10.38)

N

h
̂ (; )  ̂ (; )

i
=

1
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
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 (10.39)
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 (10.40)

The m order deformation problems are

L [ ()− −1 ()] = }R ()  (10.41)

L [ ()− −1 ()] = }R ()  (10.42)

L [ ()− −1 ()] = }R ()  (10.43)

 (0) =  0 (0)−  00 (0) =  0 (∞) = 0 (10.44)

 (0) = 0 (0)− 00 (0) = 0 (∞) = 0 (10.45)

(0) =  (∞) = 0 (10.46)

R () =
1

(1− )25[1− +


]
 000−1 () +

−1X
=0

¡
−1− 00 + −1− 00 −  0−1−

0


¢
−





1− +



 0−1 (10.47)

R () =
1

(1− )25[1− +


]
000−1 () +

−1X
=0

¡
−1−00 + −1−00 − 0−1−

0


¢
−





1− +



0−1 (10.48)
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¡
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¢
 (10.49)

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (10.50)

The general solutions in terms of particular solutions ∗ ∗ and ∗ are

 () = ∗ () + 1 + 2
 + 3

− (10.51)

 () = ∗ () + 4 + 5
 + 6

− (10.52)

 () = ∗ () + 7
 + 8

− (10.53)

10.4 Convergence of the developed solutions

The convergence of the series solutions is highly dependent upon auxiliary parameters }  }

and } For valid ranges of these parameters, we have sketched the }−curves at 10th-order of
approximations (see Fig. 10.1). This Fig. shows that the admissible values of }  } and } are

−2 ≤ } ≤ −02 −2 ≤ } ≤ −02 and −16 ≤ } ≤ −13 Further Table 101 ensures that when
} = } = −11 and } = −13 the series solutions are convergent up to six decimal places.
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Fig. 10.1: Combined }−curves for  00(0) 00(0) and 0(0) when Pr = 62  = 05  = 003

 = 1  = = 01  = 11 and  = 03

Table 10.1: Convergence of HAM solutions for different order of approximations when

Pr = 62,  = 05,  = 003,  = 1  = = 01  = 11 and  = 03 and } = } = −11
and } = −13.

Order of approximation − 00(0) −00(0) −0(0)
5 0501136 0238561 218655

9 0501129 0238543 234913

15 0501129 0238543 241402

20 0501129 0238543 240545

25 0501129 0238543 239321

30 0501129 0238543 239321

35 0501129 0238543 239321

40 0501129 0238543 239321
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10.5 Discussion

This section presents the effects of various parameters on the velocity, temperature, skin friction

coefficient and Nusselt number in the form of graphical and tabulated results.

10.5.1 Dimensionless velocity profiles

Figs. (102− 106) display the dimensionless velocity profiles for different values of Hartman
number , velocity slip parameter  nanoparticle volume fraction , suction/injection velocity

parameter  and stretching parameter . Fig. 10.2 plots the velocity profiles  0 and 0 for

various values of Hartman number  . It is observed that velocity fields  0 and 0 decrease

when  increases. The application of an applied magnetic field has the tendency to slow down

the movement of the fluid, which leads to a decrease in the velocity and momentum boundary

layer thickness. Fig. 10.3 shows the effects of velocity slip parameter . This Fig. shows

that by increasing the values of velocity slip parameter , there is a gradual decrease in the

velocity profiles. The effects of nanoparticle volume fraction  on velocity profile are presented

in the Fig. 10.4 It is noted that an increase in the values of  decreases the velocity profiles

 0 and 0. Effect of suction/injection velocity parameter  on  0 and 0 can be visualized in

the Fig. 10.5. It is obvious that an increase in  reduces the velocity fields  0 and 0 Because

applying suction leads to draw the amount of fluid particles into the wall and consequently the

velocity boundary layer decreases. Also suction is an agent which causes a reduction in the

fluid velocity. Influence of stretching parameter  on the velocity profiles is displayed in the

Fig. 10.6. It is observed that velocity field  0 decreases with an increase in  while 0 increases

when  is enhanced.

10.5.2 Dimensionless temperature profiles

Effects of Hartman number  nanoparticle volume fraction , temperature parameter  and

radiation parameter  on the temperature profile  are shown in the Figs. (107− 1010). To
capture the effects of Hartman number  on the temperature  Fig. 10.7 is displayed. It is

depicted that temperature is an increasing function of  . As the Lorentz force is a resistive

force which opposes the fluid motion so heat is produced and as a result the thermal boundary
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layer thickness increases. Fig. 10.8 portrays the influence of  on  It is found that temperature

increases when values of nanoparticle volume fraction  are increased. It is because of the fact

that by increasing the volume fraction of nanoparticles, the thermal conductivity and thermal

boundary layer are increased. Figs. 10.9 and 10.10 indicate that temperature increases by

increasing values of temperature parameter  and radiation parameter  Physically this is

due to the fact that with the increase in radiation parameter, the mean absorption coefficient

decreases. Hence the rate of radiative heat transfer to the fluid increases.

10.5.3 Skin friction coefficient and Nusselt number

In Table 10.2 the thermophysical properties of water and nanoparticles are given. Tables

10.3 and 10.4 show the effects of nanoparticle volume fraction  on skin friction coefficient

for different types of nanofluids in the  and −directions. Effects of the nanoparticle volume
fraction  on Nusselt number are presented in Table 10.5. These values of skin friction coefficient

and Nusselt number change for different nanofluids. It means that by using different types of

nanofluid, the shear stress and rate of heat transfer alter. Numerical values of local Nusselt

number for different emerging parameters are presented in Table 10.6. It is noticed that local

Nusselt number (Re)
− 1
2 increases for larger values of  and . However it decreases by

increasing  .
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Fig. 102: Effect of  on  0 and 0

Fig. 103: Effect of  on  0 and 0
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Fig. 104: Effect of  on  0 and 0

Fig. 105: Effect of  on  0 and 0
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Fig. 106: Effect of  on  0 and 0

Fig. 107: Effect of  on ()
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Fig. 108: Effect of  on ()

Fig. 109: Effect of  on ()

199



Fig. 1010: Effect of  on ()

Table 10.2: Thermophysical properties of water and nanoparticles [21].

(3) () ()  × 105(−1) (Ω)−1

Pure water 9971 4179 0613 21 005

Copper() 8933 385 401 167 596× 107

Silver() 10500 235 429 189 36× 107

Alumina(23) 3970 765 40 085 1× 10−10

Titanium Oxide(2) 4250 6862 89538 09 1× 10−12

Table 10.3: Effects of the nanoparticle volume fraction for different types of nanofluids on

skin friction coefficient along −direction when  = 01  = 1 Pr = 62  = 03  = 05

 = 01 and  = 11.

   23 2

001 −0519383 −0521081 −0513864 −0514181
003 −0556763 −0561468 −0540779 −0541729
005 −0595136 −0602496 −0569204 −0570789
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Table 10.4: Effects of the nanoparticle volume fraction for different types of nanofluids on

skin friction coefficient along −direction when  = 01  = 1 Pr = 62  = 03  = 05

 = 01 and  = 11.

   23 2

001 −0699999 −0702450 −0692049 −0692506
003 −0751194 −0758029 −0728085 −0729453
005 −0803691 −0814440 −0766089 −0768375

Table 10.5: Effects of the nanoparticle volume fraction for different types of nanofluids on

Nusselt number when  = 01  = 1 Pr = 62  = 03  = 05  = 01 and  = 11.

   23 2

001 −0726911 −0723181 −0733826 −0732487
003 −0720997 −0710335 −0740837 −0736838
005 −0716675 −0699623 −0748444 −0741798

Table 10.6: Values of (Re)
−1
2 when  = 003  = 1  = 03 and  = 05

   − ¡1 +
3


¢
0(0)

01 11 01 074084

03 070977

05 068279

01 12 074410

13 074775

14 075180

11 005 073328

015 074802

02 075482

10.6 Concluding remarks

Three-dimensional flow of Al2O3 nanofluid over a permeable stretching surface with partial slip

and nonlinear thermal radiation is studied. The outcomes are mentioned below.
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• Increasing values of Hartman number, velocity slip parameter and suction/injection ve-
locity parameter decrease the velocity profiles.

• The velocity profiles  0 and 0 decrease by Increasing nanoparticle volume fraction

• Effects of stretching parameter on the velocity profiles and momentum boundary layers

are opposite.

• The temperature and thermal boundary layer thickness increase via larger nanoparticle
volume fraction.

• Increasing values of temperature and radiation parameters show enhancement in the tem-
perature and thermal boundary layer thickness.

• Temperature gradient at the surface increases for higher temperature and radiation pa-
rameters.

• The governing equations for viscous fluid are obtained when  = 0.
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Chapter 11

Magnetohydrodynamic

three-dimensional flow of nanofluid

over a porous shrinking surface

This chapter investigates the steady three-dimensional flow of viscous nanofluid past a perme-

able shrinking surface with velocity slip and temperature jump. An incompressible fluid fills

the porous space. The fluid is electrically conducting in the presence of an applied magnetic

field. The governing nonlinear partial differential equations are reduced to ordinary differential

equations by similarity transformations. The series solutions are presented by the homotopy

analysis method. Convergence of the obtained series solutions is explicitly discussed. The ve-

locity and temperature profiles are shown and analyzed for different emerging parameters of

interest. It is observed that by increasing the volume of copper nanoparticles, the thermal con-

ductivity increases and the boundary layer thickness decreases. The velocity profile increases

and temperature profile decreases for the larger velocity slip parameter. Temperature is a de-

creasing function of the thermal slip parameter. Hence less heat is transferred to the fluid from

the sheet
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11.1 Problem formulation

Let us consider steady three-dimensional flow of viscous nanofluid over a shrinking surface. A

Cartesian coordinate system is used with (  ) as the velocity components in the (  )

directions. An incompressible nanofluid occupies   0, where  is the coordinate measured

normal to the shrinking surface (see Fig. 11.1). The fluid is water based nanofluid consisting

of nanoparticles like copper (), sliver (), alumina (23), titanium oxide (2) and

copper oxide ().

Fig. 11.1: Physical model of the problem.

Further the fluid is subjected to a uniform magnetic field with strength 0 in the transverse

direction to flow. Here induced magnetic field is taken small in comparison to the applied

magnetic field and thus neglected. Under the aforementioned assumptions the equations of

continuity, momentum and thermal energy can be expressed in the forms
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


  = (− 1) + 2− 


0




  = −

 =  +
2− 



µ
2̃

̃ + 1

¶
0

Pr




at  = 0

→ 0  → 0  → ∞ as  →∞ (11.6)

In the above equations  denotes the effective density of the nanofluid,  the effective kine-

matic viscosity of the nanofluid,  the effective dynamic viscosity,  the effective electrical

conductivity,  the pressure,  the permeability of porous medium,   0 the suction ve-

locity,   0 the shrinking rate,  the temperature of nanofluid,  the tangential momentum

accommodation coefficient,  the thermal accommodation coefficient, 0 the molecular mean

free path, ̃ the specific heat ratio and sheet shrinks only in the −direction when  = 1. The

sheet shrinks asymmetrically for  = 2.

The effective dynamic viscosity of the nanofluid is

 =


(1− )25
 (11.7)

where  is the solid volume fraction of nanoparticles and the effective density of nanofluids is

given by

 = (1− ) +  (11.8)

The thermal diffusivity of the nanofluid is

 =


()
 (11.9)
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where the heat capacitance of nanofluid is given by

() = (1− )() + () (11.10)

For spherical nanoparticles, the thermal conductivity of the nanofluid is




=

 + 2 − 2( − )

 + 2 + 2( − )
 (11.11)

The effective electrical conductivity is




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (11.12)

Here the subscripts  represents the thermophysical properties of the nanofluid,  explains

base fluid and  is defined as nano solid particles.

In order to attain similarity solution, the following transformations can be posited:

 =  0()  = (− 1) 0()  = −√ 0()  =
r




 () =

 − ∞
 − ∞

 (11.13)

Continuity equation (111) is automatically satisfied and the other equations and conditions

give

1
000 − 1

∙
2(1− )25




+ 

¸
 0 −  0

2

+  00 = 0 (11.14)





1

Pr
00 +

µ
1− + 

()

()

¶
0 = 0 (11.15)

 0(0) =  +  00(0) (0) =  (0) = 1 + ̃0(0)

 0(∞) → 0 (∞)→ 0 (11.16)

where 2 is the Hartman number, Pr the Prandtl number  the mass suction parameter,

  0 the shrinking parameter,  the velocity slip parameter,  the porosity parameter and ̃
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the temperature jump parameter. These parameters are defined by

2 =
20


 Pr =




  =

√


  =



  =

2− 


0

r





 =



 ̃ =

2− 



µ
2̃

̃ + 1

¶
0

Pr

r



 (11.17)

where 1 is defined by

1 =
1

(1− )25
h
1− + 

³



´i  (11.18)

with  as nano-solid particle density and  as base fluid density.

The important physical quantities of interest are local skin friction coefficient  and

Nusselt number  which are given by

 =
|=0
1
2
2

  =


 ( − ∞)
 (11.19)

where the surface shear stress  and surface heat flux  satisfiy

 = −




¯̄̄̄
=0

  = − 



¯̄̄̄
=0

 (11.20)

Dimensionless forms of local skin friction coefficient and Nusselt number are



r
Re

2
=

1

(1− )25
 00(0) Re

− 1
2

 = −


0(0) (11.21)

in which Re =  denotes the local Reynolds number.

11.2 Homotopy analysis solutions

The initial guesses 0() and 0() and the linear operators L and L are selected in the
following forms

0() =  +


1 + 
− 

1 + 
exp(−) 0() = 1

1 + ̃
exp(−) (11.22)
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L () = 3

3
− 


 L() = 2

2
−  (11.23)

with the properties mentioned below

L
£
1 + 2 + 3

−¤ = 0

L
£
4 + 5

−¤ = 0 (11.24)

and 1 − 5 are the constants. With Eqs. (1114) and (1115), the definitions of operators N

and N can be introduced as follows:

N

h
̂(; )

i
= 1

3̂(; )

3
− 1

∙
2(1− )25




+ 

¸
̂(; )



−
Ã
̂(; )



!2
+ 

̂(; )



2̂(; )

2
 (11.25)

N

h
̂(; ) ̂(; )

i
=





1

Pr

2̂(; )

2
++

µ
1− + 

()

()

¶
̂(; )

̂(; )


 (11.26)

The problems subjected to zeroth order deformation can be written as follows:

(1− )L
h
̂(; )− 0()

i
= }N [̂(; )] (11.27)

(1− )L
h
̂(; )− 0()

i
= }N[̂(; ) ̂(; )] (11.28)

̂(0; ) = 
̂(0; )


=  + 

2̂(0; )

2

̂(∞; )


= 0

̂(0; ) = 1 + ̃
̂(0; )


 ̂(∞; ) = 0 (11.29)

in which } and } are the nonzero auxiliary parameters.

The corresponding problems at m order satisfy the following expressions

L [ ()− −1 ()] = }R ()  (11.30)

L [ ()− −1 ()] = }R ()  (11.31)
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(0) =  0(0)− 
00
(0) =  0(∞) = (0)− ̂0(0) = (∞) = 0 (11.32)

R () = 1
000
−1 ()− 1

∙
2(1− )25




+ 

¸
 0−1 () +

−1X
=0

[−1− 00 −  0−1−
0
]

(11.33)

R () =




1

Pr
00−1 () + +

µ
1− + 

()

()

¶


−1X
=0

−1−0 (11.34)

and

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (11.35)

If ∗ and ∗ denote the special solutions then the general solutions are

() = ∗() + 1 + 2 + 3
−

() = ∗() + 4 + 5
− (11.36)

11.3 Convergence analysis

We note that the computed series solutions depend upon the auxiliary parameters. The conver-

gence region and rate of approximations for the functions  and  can be controlled and adjusted

through the auxiliary parameters } and }. For admissible values of } and }, the }−curves
of  00(0) and 0(0) for 17−order of approximations are displayed. Figs. 11.1 and 11.2 depict
that the range of admissible values of } and } are −15 ≤ } ≤ −01 and −14 ≤ } ≤ −06 It
is found that the series solutions converge in the whole region of  (0   ∞) when } = −07
and } = −09
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Fig. 112: ~−curves of  00(0) and 0(0)

Table 11.1: Convergence of HAM solutions for different order of approximations when

 = −01 ̃ =  = = 1  = 2  =  = 03 and  = 05

Order of approximations  00(0) −0(0)
1 00661678 0532809

5 00700218 0589974

10 00700198 0594100

15 00700198 0593038

20 00700198 0593149

25 00700198 0593162

28 00700198 0593155

35 00700198 0593155

40 00700198 0593155

45 00700198 0593155
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11.4 Results and discussion

This section is prepared to examine the impact of pertinent parameters on the velocity and

temperature. This objective has been achieved by plots of Figs. (11.3 − 1114) Here Figs
(113−118) have been plotted for the effects of (Hartman number)  (porosity parameter)

 (mass suction parameter),  (velocity slip parameter),  (nanoparticles volume fraction) on

the velocity  0 and  (shrinking parameter). The behavior of Hartman number  for the

boundary layer is shown in Fig. 11.3. There is decrease in thickness of boundary layer due to

an increase inThis is because of the reason that Lorentz force acts as a retarding force. Such

retarding force enhances the frictional resistance opposing the fluid motion in the momentum

boundary layer. Fig. 11.4 depicts that the velocity is increased when porosity parameter 

increases. As noted in Fig. 11.5 the associated boundary layer thickness decays when mass

suction parameter  increases. Because applying suction leads to draw the amount of fluid

particles into the wall and consequently the velocity boundary layer decreases. Also suction is

an agent which causes a reduction in the fluid velocity. Fig. 11.6 shows that velocity rises when

values of velocity slip parameter  are enhanced. However velocity is a decreasing function

of  (see Fig. 11.7). This is because of the fact that by increasing the volume of copper

nanoparticles, the thermal conductivity increases and the boundary layer thickness decreases.

Fig. 11.8 portrays the influence of  on  0 It is found that velocity increases when values of 

are increased. Figs. 119− 1114 depict the effects of Hartman number  , porosity parameter
, mass suction parameter , velocity slip parameter  temperature jump parameter ̃ and

shrinking parameter  on temperature profile  Effect of  on the temperature is analyzed

in Fig. 11.9. As Lorentz force is a resistive force which opposes the fluid motion. So heat

is produced and as a result thermal boundary layer thickness increases. It is observed that

increasing the porosity parameter  decreases the thermal boundary layer thickness. Variations

of  and  on temperature profile  can be seen in the Figs. (1111−1112). There is a decrease
in temperature when mass suction parameter  and velocity slip parameter  are increased.

Fig. 11.13 indicates that the surface temperature and thermal boundary layer decrease by

increasing value of temperature jump ̃ With the increase of thermal slip parameter, less

heat is transferred to the fluid from the sheet and so temperature is found to decrease. Fig.

11.14 represents the effect of shrinking parameter  on temperature profile. It is observed that
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temperature profile decreases for an increase in .

Table 11.1 is prepared for the convergence of series solutions. It is observed that convergence

for velocity is achieved at 10 order of approximation and for temperature convergence is

achieved at 28 order of approximation. The values of shear stress at the surface are compared

with previous published results in Table 11.2. Here it is seen that the obtained solutions agree

well with results of Zheng et al. [36]. Numerical values of the local Nusselt number for different

emerging parameters are presented in Table 11.3. It is noted that the local Nusselt number

increases for larger values of  ,  and . However it decreases for larger values of ̃.

Fig. 11.3: Influence of  on  0().
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Fig. 11.4: Influence of  on  0().

Fig. 11.5: Influence of  on  0().

213



Fig. 11.6: Influence of  on  0().

Fig. 11.7: Influence of  on  0().
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Fig. 11.8: Influence of  on  0().

Fig. 11.9: Influence of  on ()
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Fig. 11.10: Influence of  on ()

Fig. 11.11: Influence of  on ()
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Fig. 11.12: Influence of  on ()

Fig. 11.13: Influence of ̃ on ()
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Fig. 11.14: Influence of  on ().

Table 11.2: Comparison of values of  00(0) when  = 0  = 0  = −1 and  = 0

   Zheng et al. [36] Present results

2 2 18 421671330 420406130

2 2 1 289187352 289160464

2 2 02 184296593 184287335

2
√
5 2 475696326 474614023

2
√
5 3 654909894 653871573

1 2 18 285192213 285192199

1 2 1 230277564 230277376

1 2 02 183493516 183493413
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Table 11.3: Numerical values of Nusselt number  for different values of  ,   and

̃

    ̃ −


0(0)

025 −01 05 1 1 197478

03 235243

04 343831

03 −04 230085

−03 231914

−02 233626

−01 03 182586

04 212684

07 266889

05 05 234389

07 234821

09 235123

1 03 402267

05 334427

07 286169

11.5 Concluding remarks

Three-dimensional flow of viscous nanofluid due to porous shrinking surface is discussed. Atten-

tion is focused to the development of series solutions. The following observations are important.

• The velocity has similar pattern with respect to Hartman number, porosity parameter,
mass suction parameter and velocity slip parameter.

• The shrinking parameter has reverse effect on the velocity and temperature profiles.

• Role of velocity slip, temperature jump and suction parameters on the temperature are
similar in a qualitative sense.
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• There is an increase in the temperature and thermal boundary layer when Hartman
number increases.
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Chapter 12

MHD three-dimensional flow of

nanofluid in presence of convective

conditions

This chapter deals with the boundary layer magnetohydrodynamic (MHD) flow of viscous

nanofluid saturating porous medium. The flow is induced by a convectively heated permeable

shrinking surface. Appropriate transformations reduce the nonlinear partial differential system

to ordinary differential system. Flow and heat transfer characteristics are computed by ho-

motopic procedure. The results of velocity, temperature and Nusselt number are analyzed for

various parameters of interest. It is noted that higher nanoparticle volume fraction decreases

the velocity field. Also temperature and heat transfer rate are enhanced for larger values of

Biot number.

12.1 Model development

Let us consider the steady three-dimensional flow of an incompressible nanofluid over a shrinking

surface. The fluid fills the porous medium. A uniform transverse magnetic field of strength 0

is applied parallel to the −axis. It is assumed that the induced magnetic and electric field
effects are negligible. The convective boundary conditions are employed in the heat transfer
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process. The governing equations are given by




+




+




= 0 (12.1)





+ 




+ 




= 

2

2
− 

2
0


− 


 (12.2)





+ 




+




= 

2

2
− 

2
0


− 


 (12.3)





+ 




+




= 

2

2
 (12.4)

where ( ,) are the velocity components along the (  ) directions respectively and  the

permeability of porous medium. The effective density  , the effective dynamic viscosity  

the effective thermal diffusivity   the heat capacitance () , the thermal conductivity 

and the electrical conductivity  of the nanofluid are given by

 =  (1− ) +  (12.5)

 =


(1− )25
 (12.6)

 =


()
 (12.7)

() = () (1− ) + () (12.8)




=

 + 2 − 2( − )

 + 2 + ( − )
 (12.9)




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (12.10)

Here  is the solid volume fraction,  in subscript is for nano-solid-particles and  in subscript

is for base fluid. The boundary conditions are

 =   = (− 1)  = − − 



= ( −  ) at  = 0

 → 0  → 0  → ∞ as  →∞ (12.11)
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where   0 is the shrinking constant,  is the suction velocity and  is the convective heat

transfer coefficient. We observe that when  = 1 the sheet shrinks in −direction only and the
sheet shrinks axisymmetrically for  = 2. Employing

 =  0()  = (− 1) 0()  = −√()  =
r




  () =

 − ∞
 − ∞

 (12.12)

equation (121) is satisfied automatically and Eqs. (122− 124) are reduced as follows:

1
000 −  02 +  00 −1(1− )25




 0 − 1

0 = 0 (12.13)

2(1− )25

Pr




00 + 0 = 0 (12.14)

(0) =   0(0) =  0(0) = −1[1− (0)]

 0(∞) → 0 (∞)→ 0 (12.15)

Here   0 and the porosity parameter  the Hartman number  , the Prandtl number Pr

the mass transfer parameter   0 holds for suction and   0 for injection, the shrinking

parameter  and the thermal Biot number 1 are defined as follows:

 =



  =

20


 Pr =
 ()


  =

√


,  =



 1 =





r



 (12.16)

in which 1 and 2 are constants relating to the properties of nanofluid defined by

1 =
1

(1− )25[1− + 


]
 (12.17)

2 =
1

(1− )25[1− + 
()
()

]
 (12.18)

Local Nusselt number  is

 =


 ( − ∞)
 (12.19)
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where the surface heat flux  satisfies

 = − 



¯̄̄̄
=0

 (12.20)

Using Eqs. (1212) and (1220), we obtain

Re
−1
2

 = −


0(0) (12.21)

in which Re =  denotes the local Reynolds number.

12.2 Homotopy analysis solutions

We choose initial guesses 0() and 0() and auxiliary linear operators L and L of the forms

0() =  + [1− exp(−)] 0() = 1
1 + 1

exp(−) (12.22)

L () =  000 −  0 L() = 00 −  (12.23)

with

L [1 + 2 exp() + 3 exp(−)] = 0

L [4 exp() + 5 exp(−)] = 0 (12.24)

in which 1 − 5 are the constants.

The zeroth and m order problems are

(1− )L
h
̂(; )− 0()

i
= }N [̂(; )] (12.25)

(1− )L
h
̂(; )− 0()

i
= }N[̂( ) ̂(; )] (12.26)

̂(0; ) =  ̂ 0(0; ) =  ̂ 0(∞; ) = 0

̂
0
(0; ) = −1[1− ̂(0; )] ̂(∞; ) = 0 (12.27)
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N

h
̂(; )

i
= 1

3̂(; )

3
−
Ã
̂(; )



!2
+ ̂(; )

2̂(; )

2

−1(1− )25




̂(; )


− 1

̂(; )


 (12.28)

N[̂(; ) ̂(; )] =
2

Pr




(1− )25

2̂(; )

2
+ ̂(; )

̂(; )


 (12.29)

L [()− −1()] = }R() (12.30)

L [()− −1()] = }R() (12.31)

(0) =  0(0) =  0(∞) = 0(0)− 1(0) = (∞) = 0 (12.32)

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (12.33)

R () = 1
000
−1−

−1X
=0

£
 0−1−

0
 − −1− 00

¤−1(1−)25


 0−1−1 0−1 (12.34)

R() =
2

Pr




(1− )2500−1 + 

−1P
=0

0−1− (12.35)

The general solutions ( ) in terms of the special solutions (
∗
,

∗
) are

() = ∗() + 1 + 2
 + 3

−

() = ∗() + 4
 + 5

− (12.36)

where the constants  ( = 1− 5) through the boundary conditions (12.32) have the values

1 = −3 − ∗(0) 2 = 4 = 0 3 =
∗()


¯̄̄̄
=0



5 =
1

1 + 1

"
∗()


¯̄̄̄
=0

− 1
∗
(0)

#
 (12.37)
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12.3 Convergence of the series solutions

The series solutions of Eqs. (1230) and (1231) contain the non-zero auxiliary parameters }

and } which can adjust and control the convergence of the series solutions. In order to see

the range of admissible values of } and } of the functions  00(0) and 0(0) the }−curves for
14−order of approximations are displayed. Figs. (121) and (122) show that the range for
the admissible values of } and } are −1 ≤ } ≤ −05 and −1 ≤ } ≤ −01 Further, the series
solutions converge in the whole region of  (0   ∞) when } = −06 and } = −05

Fig. 121: ~− curve for the velocity field.
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Fig. 122: ~− curve for the temperature field.
Table 12.1: Convergence of HAM solutions for different order of approximations when

 = 1 = 01  = 2  = 08 Pr = 62  = 02  = 5 and  = −01

Order of approximations  00(0) −0(0)
1 0192992 00936255

5 0304420 00996007

10 0316424 00991102

15 0317116 00990997

24 0317159 00985958

30 0317159 00982642

35 0317159 00982642

40 0317159 00982642

50 0317159 00982642

12.4 Discussion

In this section, Figs. (123− 1213) are plotted to analyze the effects of mass transfer parameter
, Hartman number , shrinking parameter , porosity parameter  and nanoparticles volume
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fraction  on the velocity  0 and temperature  profiles. Effects of mass transfer parameter 

on the velocity profile  0 can be seen from Fig. 12.3. Here the magnitude of velocity profile

 0 decreases when mass transfer parameter  increases. Because applying suction leads to

draw the amount of fluid particles into the wall and consequently the velocity boundary layer

decreases. Fig. 12.4 displays the effect of Hartman number on  0. The magnitude of velocity

field  0 is found to decrease when  increases. The application of an applied magnetic field

has the tendency to slow down the movement of the fluid. It leads to a decrease in the velocity

and momentum boundary layer thickness. Influence of shrinking parameter  and porosity

parameter  on the velocity field  0 is similar to that of  (see Figs. 12.5 and 12.6). The

behavior of nanoparticle volume fraction  on  0 is shown in Fig. 12.7 This graph shows that

magnitude of  0 increases when nanoparticle volume fraction  increases.

Fig. 12.8 illustrates the effects of mass transfer parameter  on temperature profile .

Temperature  decreases by increasing the mass transfer parameter . Fig. 12.9 illustrates the

effects of Hartman number  on temperature profile . The Lorentz force is a resistive force

which opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary

layer thickness increases. Influence of shrinking parameter  and porosity parameter  on

temperature profile  can be seen in the Figs. (1210−1211). It is observed that the temperature
profile  decreases when the shrinking parameter  and porosity parameter  are increased. Fig.

12.12 represents the effect of nanoparticle volume fraction  on temperature field . It is noted

that the temperature profile  increases for increasing values of nanoparticle volume fraction .

It is because of the fact that by increasing the volume fraction of nanoparticles, the thermal

conductivity increases. The behavior of thermal Biot number 1 on temperature profile  is

similar to that of nanoparticle volume fraction 

Table 12.1 shows the convergence of the series solutions. Some thermophysical properties

of water and nanoparticles are given in Table 12.2. Numerical values of local Nusselt number

for different emerging parameters are presented in Table 12.3. It is noticed that local Nusselt

number (Re)
− 1
2 increases for larger values of Hartman number  nanoparticle volume

fraction  and thermal Biot number 1.
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Fig. 12.3: Influence of  on  0()

Fig. 12.4: Influence of  on  0()
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Fig. 12.5: Influence of  on  0()

Fig. 12.6: Influence of  on  0()
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Fig. 12.7: Influence of  on  0()

Fig. 12.8: Influence of  on ()
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Fig. 12.9: Influence of  on ()

Fig. 12.10: Influence of  on ()
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Fig. 12.11: Influence of  on ()

Fig. 12.12: Influence of  on ()
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Fig. 12.13: Influence of 1 on ()

Table 12.2: Thermo physical properties of water and nanoparticles[21].

(3) () ()  × 105(−1) (Ω)−1

Pure water 9971 4179 0613 21 005

Copper() 8933 385 401 167 596× 107

Silver() 10500 235 429 189 36× 107

Alumina(23) 3970 765 40 085 1× 10−10

Titanium Oxide(2) 4250 6862 89538 09 1× 10−12
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Table 12.3: Values of (Re)
−1
2 when  = 2 Pr = 62  = 05  = 08 and  = −01

  1 −


0(0)

05 005 03 0336178

07 0336187

10 0336201

20 0336996

02 001 0301109

005 0334288

007 0355500

01 0379977

005 01 0113946

03 0332611

05 0537019

07 0767305

12.5 Final remarks

MHD flow of nanofluid over a permeable shrinking sheet with convective condition is studied.

The main results can be mentioned as follows:

• Effects of mass transfer parameter , Hartman number  , shrinking parameter  and
porosity parameter  are similar on the velocity profile  0.

• An increase in nanoparticle volume fraction  reduces the velocity profile  0.

• There is a decrease in temperature profile  for larger values of mass transfer parameter
 shrinking parameter  and porosity parameter .

• An increase in nanoparticle volume fraction  and thermal Biot number 1 enhances the

temperature profile 
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This article concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by
a permeable exponentially stretching surface. An incompressible fluid fills the porous space. A comparative study is made
for the nanoparticles namely Copper (Cu), Silver (Ag), Alumina (Al2O3) and Titanium Oxide (TiO2). Water is treated as a
base fluid. Convective type boundary conditions are employed in modeling the heat transfer process. The non-linear partial
differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations. The
obtained equations are then solved for the development of series solutions. Convergence of the obtained series solutions is
explicitly discussed. The effects of different parameters on the velocity and temperature profiles are shown and analyzed
through graphs.

Keywords: MHD nanofluid, exponentially stretching sheet, porous medium, convective boundary conditions
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1. Introduction

The boundary layer flow and heat transfer over a stretch-
ing sheet have momentous aspects not only from a theoretical
point of view but also regarding their practical applications in
the polymer industry, paper production, food processing, crys-
tal growing etc. The rate of heat transfer between the stretch-
ing surface and fluid flow is important for the end product’s de-
sired quality. The boundary layer flow generated by a stretch-
ing sheet was first studied by Crane.[1] He constructed an ex-
act solution for the arising problem. Afterwards, the boundary
layer flows by linear and nonlinear stretching surfaces have at-
tracted a great deal of attention of the researchers.[2–5] Some
investigations in the past dealt with the flow induced by an
exponentially stretching surface. Magyari and Keller[6] dis-
cussed the steady boundary layer flow by an exponentially
stretching surface with an exponential temperature distribu-
tion. The effect of viscous dissipation in the mixed convection
flow due to an exponentially stretching sheet has been exam-
ined by Partha et al.[7] Sajid and Hayat[8] studied the thermal
radiation effects on the flow due to an exponentially stretch-
ing sheet. They developed the analytic solution for the re-
sulting problem. A numerical solution for the same problem
was given by Bidin and Nazar.[9] MHD boundary layer flow
due to an exponentially stretching sheet with a radiation effect
has been obtained by Anuar Ishak.[10] Bachok et al.[11] stud-
ied the boundary layer stagnation-point flow and heat transfer
over an exponentially stretching/shrinking sheet. The bound-
ary layer flow over an exponentially stretching porous sheet
with heat flux in a porous medium has been obtained by Man-

dal and Mukhopadhyay.[12] Bhattacharyya[13] discussed the
steady boundary layer flow and reactive mass transfer past an
exponentially stretching surface in an exponentially moving
free stream. Elbashbeshy[14] studied the effects of thermal ra-
diation and magnetic field on unsteady mixed convection flow
and heat transfer over an exponentially stretching surface with
suction in the presence of internal heat generation/absorption.
Boundary layer flow and heat transfer over an exponentially
shrinking vertical sheet with suction was analyzed by Azizah
Mohd Rohni.[15] Mukhopadhyay[16] studied the MHD bound-
ary layer flow and heat transfer over an exponentially stretch-
ing sheet embedded in a thermally stratified medium.

As oil, water and ethylene glycol mixtures are poor heat
transfer fluids, they therefore have low thermal conductivities.
Since the thermal conductivity of fluids plays an important role
in the heat transfer coefficient, so many methods have been
used to enhance the thermal conductivity of fluids. However,
it is observed that enhancement of the thermal conductivity
of poor heat transfer fluids is possible in view of the addition
of nanoparticles in the base fluids. The nano particles can be
found in metals such as (Cu, Ag), oxides (Al2O3), carbides
(SiC), nitrides (AlN, SiN) or nonmetals (graphite, carbon nan-
otubes). Nanofluids have novel properties that make them
potentially useful in many applications in heat transfer in-
cluding microelectronics, fuel cells, pharmaceutical processes
and hybrid-powered engines. Nanoparticles provide a bridge
between bulk materials and molecular structure. The term
“nanofluid” was first introduced by Choi.[17] Recently many
investigations regarding nanofluids have been reported[18–21]

Narayana and Sibanda[22] studied the effects of laminar flow
†Corresponding author. E-mail: pensy t@yahoo.com
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of a nanoliquid film over an unsteady stretching sheet. Ther-
mophysical properties of nanofluids such as thermal conduc-
tivity, diffusivity and viscosity have been studied by Kang et
al.,[23] Velagapudi et al.[24] and Rudyak et al.[25] Boundary
layer flow of nanofluid past a stretching sheet with convec-
tive boundary condition was studied by Makinde and Aziz.[26]

Alsaedi et al.[27] studied the effects of heat generation/ ab-
sorption in stagnation point flow of a nanofluid over a lin-
early stretching surface with convective boundary conditions.
Recently, Kandasamy[28] investigated the unsteady Hiemenz
flow of Cu-nanofluid over a porous wedge in the presence
of thermal stratification. Kameswaran et al.[29] examined
the homogeneous–heterogeneous reactions in a nanofluid flow
due to a porous stretching sheet. Mustafa et al.[30] addressed
the stagnation point flow of a viscous nanofluid towards a lin-
ear stretching sheet. Nandy and Mahapatra[31] studied the
effects of slip and heat generation/absorption in MHD stag-
nation point flow of a nanofluid past a stretching/shrinking
surface with convective boundary conditions. Ibrahim[32] an-
alyzed the MHD stagnation point flow and heat transfer in
a nanofluid towards a stretching sheet. Makinde[33] exam-
ined the buoyancy effects on MHD stagnation point flow and
heat transfer of a nanofluid past a convectively heated stretch-
ing/shrinking sheet. MHD boundary layer flow and heat trans-
fer of a nanofluid past a permeable stretching sheet with veloc-
ity, thermal and solutal slip boundary conditions has been an-
alyzed by Ibrahim.[34] Zheng et al.[35] studied the flow and ra-
diation heat transfer of a nanofluid over a stretching sheet with
velocity slip and temperature jump in a porous medium. The
effects of a magnetic field on the radiative flow of a nanofluid
past a stretching sheet have been examined by Khan.[36]

The magnetic nanofluids are important to guide the par-
ticles up the bloodstream to a tumor with magnets. In fact,
magnetic nanoparticles are more adhesive to tumor cells than
nano-malignant cells and therefore absorb much more power
than microparticles in alternating current magnetic fields tol-
erable in humans. No doubt, the magnetic nanoparticles have
broad interest in medicine, in sink float separation and the con-
struction of loudspeakers. Besides this, the heat transfer in a
porous medium is significant in geothermal reservoirs, thermal
insulation, nuclear reactors, underground energy transport etc.
Hence, the present article is arranged to investigate the bound-
ary layer flow of a magneto nanofluid in a porous medium.
Exponentially permeable stretched surfaces possess the con-
vective type boundary conditions. In fact, the nanoparticles
are used to enhance the thermal conductivity of the fluid. On
the other hand, the convective boundary condition in dimen-
sionless form appears as a Biot number. An increase in the
Biot number raises the temperature. An increase in tempera-
ture corresponds to an enhancement in the thermal conductiv-
ity. So the nanofluid with a convective boundary condition is a

more appropriate model in comparison to the constant surface
temperature conditions. This article is structured as follows.

Section 2 consists of the problem formulation. Sections
3 and 4 develop the analysis for the series solutions by the
homotopy analysis method (HAM)[37–40] and related conver-
gence domains. Discussion to various influential parameters is
also made in Section 4. The conclusions are given in Section 5.

2. Model development
Let us consider the steady and two-dimensional flow of an

incompressible nanofluid induced by an exponentially stretch-
ing surface in a porous medium with permeability K (Fig. 1).
The x axis is taken along the stretching surface in the direction
of motion and the y axis is perpendicular to it.

y

xo

u/uw ↩kf↼∂T/∂y↽/h↼Tw↩T↽

Bo

T∞

Fig. 1. Geometry of the problem.

A uniform transverse magnetic field of strength Bo is ap-
plied parallel to the y axis. It is assumed that the induced mag-
netic field and the electric field effects are negligible. Further,
the surface exhibits convective type boundary conditions. The
boundary layer flow in the present analysis is governed by the
following equations:

∂u
∂x

+
∂v
∂y

= 0, (1)

ρn f

(
u

∂u
∂x

+ v
∂u
∂y

)
= µn f

∂ 2u
∂y2 −

µn f

K
u−σB2

ou, (2)

u
∂T
∂x

+ v
∂T
∂y

=
kn f

(ρCp)n f

∂ 2T
∂y2 , (3)

where u and v are the velocity components along the x and
y directions respectively, and σ is the electrical conductivity
of the fluid. The effective density ρn f , the effective dynamic
viscosity µn f , the heat capacitance (ρCp)n f and the thermal
conductivity kn f of the nanofluid are given by

ρn f = ρ f (1−φ)+ρsφ , (4)

µn f =
µ f

(1−φ)2.5 , (5)

(ρCp)n f = (ρCp) f (1−φ)+(ρCp)sφ , (6)
kn f

k f
=

ks +2k f −2φ(k f − ks)

ks +2k f +2φ(k f − ks)
. (7)
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Here φ is the solid volume fraction, subscript s is for nano-
solid-particles, and subscript f is for base fluid. Graphically,
the present consideration of nanofluid model is significant for
a comparative study of different nanoparticles. The present
model is useful for a comparative study of different nanopar-
ticles. In the present model, the preference can be tackled
through Eqs. (4)–(7). The nanoparticles are assumed to have
uniform shape and size. The subjected boundary conditions
are

u = uw =Uo ex/L, v = vw,

−k f
∂T
∂y

= h(Tw −T ), as y = 0,

u → 0, T → T∞, as y → ∞. (8)

Introducing

η = y

√
Uo

2ν f L
ex/2L, u =Uo ex/L f ′(η),

v =−
√

ν fUo

2L
ex/2L [ f (η)+η f ′(η)

]
,

θ(η) =
T −T∞

Tf −T∞

. (9)

Equation (1) is satisfied automatically and equations (2) and
(3) after using Eqs. (4)–(7) can be reduced as follows:

f ′′′+A1(1−φ)2.5( f f ′′−2 f ′2)

−λ f ′− (1−φ)2.5M f ′ = 0, (10)
1

Pr
θ
′′+

A2

A3
f θ

′ = 0, (11)

f ′(0) = 1, f (0) = α, θ
′(0) =−γ[1−θ(0)],

f ′(∞) = 0, θ(∞) = 0, (12)

in which prime indicates the differentiation with respect to η

and the values of Ai (i = 1,2,3) are

A1 =
ρn f

ρ f
= (1−φ)+

ρs

ρ f

φ , (13)

A2 =
(ρCp)n f

(ρCp) f
= (1−φ)+

(ρCp)s

(ρCp) f
φ , (14)

A3 =
kn f

k f
=

ks +2k f −2φ(k f − ks)

ks +2k f +2φ(k f − ks)
. (15)

Moreover the porosity parameter λ , the Hartman number M,
the Prandtl number Pr, the mass transfer parameter with α > 0
for suction on and α < 0 for injection and the Biot number γ

are defined as follows:

λ =
ν f L
KUo

e−x/L, M =
2σB2

oL
ρ fUo

e−x/L, Pr =
ν f (ρCP) f

k f
,

α =−
√

2L
νUo

e−x/2Lvw, γ =
h
k f

√
ν f

a
. (16)

Local skin-friction coefficient C f and local Nusselt number Nu
are given by

C f =
2τw|y=0

ρU2
0 e

2x
L
, Nu =− x

(Tw −T∞)

∂T
∂y

∣∣∣∣
y=0

, (17)

C f

√
Rex

2
= f ′′(0), NuRe−1/2

x

√
2L
x

=−θ
′(0), (18)

in which Rex = U0 ex/Lx/ν denotes the local Reynolds num-
ber.

3. Solutions derivation
3.1. Zeroth-order deformation problems

We choose the initial guesses fo(η) and θo(η) and the
linear operators ℒ1 and ℒ2 in the forms

fo(η) = 1+α − exp(−η),

θo(η) =
γ

1+ γ
exp(−η), (19)

ℒ1( f ) = f ′′′− f ′, ℒ2(θ) = θ
′′−θ , (20)

together with the properties

ℒ1 [C1 +C2 exp(η)+C3 exp(−η)] = 0,

ℒ2 [C4 exp(η)+C5 exp(−η)] = 0, (21)

where C1 −C5 are the constants. With Eqs. (10) and (11), the
definitions of operators 𝒩 f and 𝒩θ can be written as

𝒩 f
[

f̂ (η ; p), θ̂(η ; p)
]

=
∂ 3 f̂ (η , p)

∂η3 +A1(1−φ)2.5

×

(
f̂ (η , p)

∂ 2 f̂ (η , p)
∂η2 −2

(
∂ f̂ (η , p)

∂η

)2)

−λ
∂ f̂ (η , p)

∂η
− (1−φ)2.5M

∂ f̂ (η , p)
∂η

, (22)

𝒩θ [θ̂(η , p), f̂ (η , p)]

=
1

Pr
∂ 2θ̂(η , p)

∂η2 +
A2

A3
f̂ (η , p)

∂ θ̂(η , p)
∂η

. (23)

We construct the zeroth order problems as follows:

(1− p)ℒ1
[

f̂ (η , p)− fo(η)
]
= ph f𝒩 f [ f̂ (η , p)], (24)

(1− p)ℒ2
[
θ̂(η , p)−θo(η)

]
= phθ𝒩θ [θ̂(η , p)], (25)

f̂ ′(0, p) = 1, f̂ (0, p) = α, f̂ ′(∞, p) = 0,

θ̂
′(0, p) =−γ[1− θ̂(0, p)], θ̂(∞, p) = 0, (26)

where h f and hθ are the nonzero auxiliary parameters and for
p = 0 and p = 1 we have

f̂ (η ,0) = fo(η), f̂ (η ,1) = f (η),

θ̂(η ,0) = θo(η), θ̂(η ,1) = θ(η). (27)
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Note that fo(η) and θo(η) approach f (η) and θ(η) respec-
tively, when p has variation from 0 to 1. According to the
Taylor series we have

f̂ (η , p) = fo(η)+
∞

∑
m=1

fm(η)pm,

fm(η) =
1

m!
∂ m f̂ (η , p)

∂ pm

∣∣∣∣
p=0

,

θ̂(η , p) = θo(η)+
∞

∑
m=1

θm(η)pm,

θm(η) =
1

m!
∂ mθ̂(η , p)

∂ pm

∣∣∣∣∣
p=0

, (28)

where the convergence depends upon h f and hθ . By proper
choice of h f and hθ , the series (28) converge for p = 1 and so

f (η) = fo(η)+
∞

∑
m=1

fm(η),

θ(η) = θo(η)+
∞

∑
m=1

θm(η). (29)

3.2. m-th order deformation problems

The resulting problems at this order are given by

ℒ1 [ fm(η , p)−χm fm−1(η)] = h fℛ f ,m(η), (30)

ℒ2 [θm(η , p)−χmθm−1(η)] = hθℛθ ,m(η), (31)

fm(0) = f ′m(0) = f ′m(∞) = θ
′
m(0)− γθm(0) = θm(∞) = 0,(32)

χm=

{
0, m ≤ 1,
1, m > 1, (33)

ℛ f ,m (η) = f ′′′m−1 +A1(1−φ)2.5
m−1

∑
k=0

[
2 f ′m−1−k f ′k − fm−1−k f ′′k

]
−λ f ′m−1 − (1−φ)2.5M f ′m−1, (34)

ℛθ ,m(η) =
1

Pr
θ
′′
m−1 +

A2

A3

m−1

∑
k=0

θ
′
m−1−k fk, (35)

where the general solutions are

fm(η) = f *m(η)+C1 +C2 eη +C3 e−η , (36)

θm(η) = θ
*
m(η)+C4 eη +C5 e−η , (37)

in which f *m and φ *
m denote the special solutions.

4. Analysis of the results
4.1. Convergence of the derived series solutions

Now the solutions of Eqs. (10) and (11) subject to the
boundary conditions (12) are computed by means of a homo-
topy analysis method. We choose auxiliary parameters h̄ f and
h̄θ for the functions f and θ respectively. The convergence
of the obtained series and the rate of the approximation for
HAM strongly depend upon the values of the auxiliary param-
eters. For ranges of admissible values of h̄ f and h̄θ , the h̄

curves for 12th-order of approximations are plotted in Figs. 2
and 3. We can see that the permissible values for h̄ f and h̄θ are
−0.7≤ h̄ f ≤−0.4 and −0.85≤ h̄θ ≤−0.3. Further, the series
solutions converge in the whole region of η (0< η <∞) when
h̄ f = h̄θ =−0.6.

-0.8 -0.6 -0.4 -0.2 0

-2.4

-2.2

-2.0

-1.8

hf

f
′′
↼
↽

Fig. 2. The h̄ curve for f . M = 0.1, Pr = 1, φ = 0.03, γ = 0.7, α = 0.9,
and λ = 0.5.

hθ

θ
′↼

↽

-1.0 -0.6 -0.2 0.2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Fig. 3. The h̄ curve for θ . M = 0.1, Pr = 1, φ = 0.03, γ = 0.7, α = 0.9,
and λ = 0.5.

4.2. Results and discussion

In this section, we discuss the influence of various pa-
rameters on the velocity f ′(η) and temperature fields θ(η).
Figures 4–7 are plotted to analyze the effects of volume frac-
tion of nanoparticles (Cu), mass transfer parameter α , Hart-
man number M and porosity parameter λ on the velocity field
f ′. Effects of volume fraction of nanoparticles (Cu) on the ve-
locity profile f ′ can be seen from Fig. 3. Here the values of f ′

and the boundary layer thickness decrease when the volume
fraction for the nanoparticles increases. This is because of the
fact that by increasing the volume of copper nanoparticles, the
thermal conductivity increases and the boundary layer thick-
ness decreases. The effects of the mass transfer parameter α

on the velocity function f ′ are depicted in Fig. 4. This graph
shows that the value of velocity function f ′ and the boundary
layer thickness decrease by increasing α . Because applying
suction leads to draw the amount of fluid particles into the
wall and consequently the velocity boundary layer decreases.
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Also suction is an agent which causes a reduction in the fluid
velocity. Figure 5 shows the influence of Hartman number M
on the velocity. Here we analyzed that the velocity is reduced
when we increase the values of Hartman number. The appli-
cation of an applied magnetic field has the tendency to slow
down the movement of the fluid, which leads to a decrease in
the velocity and momentum boundary layer thickness. From
Fig. 6, we can see that higher values of porosity parameter
λ correspond to the lower velocity. The porosity parameter
depends on the permeability parameter K. An increase in the
porosity parameter leads to the lower permeability parameter.
This lower permeability parameter causes a reduction in the
fluid velocity.

f
′↼
η
↽

0 0.5 1.0 1.5 2.0 2.5 3.0

η

0

0.2

0.4

0.6

0.8

1.0

φ=0.05

φ=0.04

φ=0.03

φ=0.01

Cu water

Fig. 4. Effects of φ on f ′. λ = 0.5, Pr = 1, M = 0.1, α = 0.9, h =−0.6.

f
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η
↽

η
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α=0.1

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1.0
Cu water

Fig. 5. Effects of α on f ′. λ = 0.5, Pr = 1, M = 0.1, φ = 0.03, and
h =−0.6.
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Cu water

Fig. 6. Effects of M on f ′. λ = 0.5, Pr = 1, α = 0.9, φ = 0.03, and
h =−0.6.
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Fig. 7. Effects of λ on f ′. α = 0.9, Pr = 1, M = 0.1, φ = 0.03, and
λ = 0.5.
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φ=0.1
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Fig. 8. Effects of φ on θ . λ = 0.5, Pr = 1, γ = 0.7, α = 0.9, M = 0.1,
h =−0.6.
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Fig. 9. Effects of α on θ . λ = 0.5, Pr = 1, γ = 0.7, M = 0.1, φ = 0.03,
and h =−0.6.

The effects of volume fraction of nanoparticles (Cu),
mass transfer parameter α , Hartman number M, porosity pa-
rameter λ , Prandtl number Pr and Biot number γ on the tem-
perature profile θ are shown in Figs. 8–13. Effect of φ on
the temperature is analyzed in Fig. 7. It is observed that in-
creasing the volume fraction of nanoparticles φ , increases the
thermal conductivity of nanofluids and consequently the ther-
mal boundary layer thickness increases. The behavior of α on
the temperature profile is similar to that of the velocity profile
(see Fig. 9). Figure 10 illustrates the effects of M on tempera-
ture profile θ . As the Lorentz force is a resistive force which
opposes the fluid motion, so heat is produced and as a result,
the thermal boundary layer thickness increases. Variations of
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λ and Pr on temperature profile θ can be seen in Figs. 11–12.
There is a decrease in temperature θ when porosity parame-
ter λ and Prandtl number Pr are increased. In fact, the ther-
mal diffusivity decreases by increasing Pr and thus the heat
diffuses away slowly from the heated surface. Figure 13 rep-
resents the effect of Biot number γ on temperature profile θ .
Temperature profile θ increases for an increase in γ. The Biot
number involves the heat transfer coefficient. Higher values of
the Biot number implies an enhancement in the heat transfer
coefficient. This enhancement in the heat transfer coefficient
give rise to the temperature and thermal boundary layer thick-
ness.

θ
↼η
↽

Cu water

0 1 2 3 4

η

0

0.1

0.2

0.3

0.4

M/2.0

M/1.0

M/0.5

M/0.1

Fig. 10. Effects of M on θ . λ = 0.5, Pr = 1, γ = 0.7, α = 0.9, φ = 0.03,
and h =−0.6.
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λ=2.0

Fig. 11. Effects of λ on θ . φ = 0.03, Pr = 1, γ = 0.7, α = 0.9, M = 0.1,
and h =−0.6.
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Fig. 12. Effects of Pr on θ . φ = 0.03, λ = 0.5, γ = 0.7, α = 0.9,
M = 0.1, and h =−0.6.

In Figs. 14(a) and 14(b) we observe that boundary
layer thickness is maximum when Alumina is chosen as the

nanoparticle. Figures 15(a) and 15(b) show the effects of
nanoparticle volume fraction φ , mass transfer parameter α and
porosity parameter λ on the skin friction coefficient in the case
of Cu-water. It is noticed that the skin friction coefficient de-
creases when we increase φ for both α and λ . Figures 16(a)
and (16(b) describe the variation of the Nusselt number for
nanoparticle volume fraction φ , mass transfer parameter α and
porosity parameter λ . In this figure, heat transfer rates de-
crease as φ increases for both α and λ .
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Cu water
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η

0

0.2
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0.6

0.8

γ=5.0

γ=1.0

γ=0.1

γ=0.05

Fig. 13. Effects of γ on θ . φ = 0.03, λ = 0.5, Pr = 1, α = 0.9, M = 0.1,
and h =−0.6.
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Fig. 14. (a) Velocity and (b) temperature profiles for different types of
nanofluids.

Table 1 shows the convergence of the series solutions. It
is observed that convergence is achieved at the 17-th order
of approximations. In Table 2, some thermophysical prop-
erties of water and nanoparticles are given. Table 3 shows
the effects of the nanoparticle volume fraction φ for differ-
ent types of nanofluids on the skin friction coefficient when
λ = 0.5, M = 0.1, and α = 0.9. Table 4 shows the effects of the
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nanoparticle volume fraction φ for different types of nanoflu-
ids on the Nusselt number when λ = 0.5, Pr = 1, γ = 0.7,
M = 0.1, and α = 0.9. These tables show that the shear stress
and heat transfer rate change when we use different types of
nanoparticles.
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↽

ƒ
′′
↼0
↽
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(b)
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Cu water

φ=0.10

φ=0.05

φ=0
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Fig. 15. (a) Effect of nanoparticle volume fraction φ , mass transfer pa-
rameter α and (b) porosity parameter λ on the skin friction coefficient
when M = 0.1.
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Fig. 16. Effect of nanoparticle volume fraction φ , (a) mass transfer pa-
rameter α and (b) porosity parameter λ on the Nusselt number when
M = 0.1, Pr = 1, and γ = 0.7.

Table 1. Convergence of HAM solutions for different order of approxi-
mations when Pr = 1, φ = 0.03, λ = 0.5, γ = 0.7, M = 0.1, and α = 0.9.

Order − f ′′(0) −θ ′(0)
1 1.76172 0.416270
5 2.14446 0.422428
10 2.15409 0.423256
17 2.15426 0.423311
20 2.15426 0.423311
25 2.15426 0.423311
30 2.15426 0.423311
35 2.15426 0.423311
40 2.15426 0.423311

Table 2. Thermophysical properties of water and nanoparticles.

ρ/kg·m−3 Cp/j·kg−1·k k/W·m−1·k β ×105/K−1

Pure water 997.1 4179 0.613 21
Copper (Cu) 8933 385 401 1.67
Silver (Ag) 10500 235 429 1.89
Alumina (Al2O3) 3970 765 40 0.85
Titanium Oxide (TiO2) 4250 686.2 8.9538 0.9

Table 3. Effect of φ for different types of nanofluids on the skin friction
coefficient when λ = 0.5, M = 0.1, and α = 0.9.

φ Cu Ag Al2O3 TiO2

0.01 −2.05387 −2.07036 −2.00143 −2.00439
0.03 −2.15426 −2.20071 −2.00558 −2.01404
0.05 −2.23960 −2.31255 −2.00535 −2.01873

Table 4. Effect of φ for different types of nanofluids on the Nusselt
number when λ = 0.5, Pr = 1, γ = 0.7, M = 0.1, and α = 0.9.

φ Cu Ag Al2O3 TiO2

0.01 0.436981 0.436452 0.437649 0.438380
0.03 0.423311 0.421702 0.425326 0.427566
0.05 0.409403 0.406691 0.412767 0.416582

5. Concluding remarks

Here MHD flow of nanofluid by an exponentially perme-
able stretching sheet is studied. The effects of different pa-
rameters on the velocity and temperature profiles are shown.
A convergent approximate solution is constructed. The fol-
lowing observations are made.

(i) An increase in the values of φ , α , M and λ have similar
effects on the velocity f ′(η) in a qualitative sense.

(ii) The temperature profile increases by increasing φ , M
and γ while it decreases when α and λ are increased.

(iii) An increase in Prandtl number Pr reduces the tem-
perature and the thermal boundary layer thickness.

(iv) The values of the skin friction coefficient are higher
for increasing values of φ .

(v) Higher values of φ correspond to smaller values of the
Nusselt number.
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