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Preface

Fluid flow over stretching surface has gained wide interest among the researchers due to its
various applications in industrial and engineering processesfor example in manufacturing and
extraction of polymer and rubber sheets, drawing of plastic films and wires, glass fiber and paper
production, manufacture of foods, crystal growing, liquid films in condensation process etc. The
convective heat transfer through nanoparticles over stretching sheet has been the current topic of
extensive research. Nanofluids are formed by adding nanoparticles into conventional fluids like
water, engine oil and ethylene glycol. The use of additive is a process which enhances the heat
transfer performance of base fluids. Cooling is one of the technical challenges faced in many
industries. Use of nanofluids as coolants alow for smaller size and better positioning of the
radiators which eventually consumes less energy for overcoming resistance on the road.
Nanoparticles in refrigerant/lubricant mixtures could enable a cost effective technology for
improving the efficiency of chillers that cool buildings. Rate of heat cooling has key role in
improving the desired characteristics of end product in such applications. The nanomaterias are
more effective in micro-/nano-electro-mechanica devices, advanced cooling systems, large scale
thermal management systems via evaporators, heat exchangers and industrial cooling
applications. The MHD nanofluids are further important in hyperthermia, cancer therapy and
safer surgery by cooling sink float separation, magnetic cell separation and contrast enhancement
in magnetic resonance imaging. Motivated by all such facts we structure the present thesis as
follows:

Literature review about nanofluid flow over stretched surface and description of solution
procedure are given in chapter one.Chapter two addresses the effects of magnetodydrodynamics
(MHD) in boundary layer flow of nanofluid over a permeable stretching sheet by using
Buongiorno’s model. Convective type boundary conditions are employed in modeling the heat
and mass transfer process. Transformation method has been employed to reduce the nonlinear
partial differential equations into the nonlinear ordinary differential equations. The resulting
nonlinear system is solved for the series solutions. Convergence of derived series solution is
shown explicitly. Physical interpretation of different parameters through graphs and numerical
values of loca skin friction coefficient and Nusselt number are discussed. The results of this
chapter are published in“Thermal Science (2014) DOI: 10.2298/TSCI1140819139H".



The purpose of chapter three is to investigate the flow of viscous nanofluidby a permeable
exponentially stretching sheet in the presence of magnetic field. An incompressible fluid fills the
porous space. A comparative study is made for the nanoparticles namely copper (Cu), silver
(Ag), dumina (Al,03) and titanium oxide (TiO,). Heat transfer analysis is formulated through
convective boundary condition. The ordinary differential equations are solved for the convergent
series solutions of velocity and temperature. Skin friction coefficient and local Nusselt number
are analyzed through numerical values. The results of this problemarepublished in “Chinese
Physics B 23 (5) (2014) 054701".

Chapter four deals with the effects of homogeneous-heterogeneous reactions in MHD boundary
layer flow of nanofluidover a surface with velocity dlip. Flow is caused by a stretching surface in
a porous medium. Water is treated as base fluid and copper and silver as the nanoparticles. The
relevant equations are first modeled and then solved by homotopy analysis method (HAM). The
dimensionless expressions of velocity, concentration and wall shear stress are calculated and
discussed. The contents of this chapter are published in“Thermal Science (2015) DOI:
10.2298/TSC1140922067H".

Chapter five addresses the steady three-dimensiona flow of viscous nanofluid induced by a
permeable stretching sheet with homogeneous-heterogeneous reactions and second order
velocity dlip. Fluid is electrically conducting in the presence of an applied magnetic field. An
incompressible fluid fills the porous space. Here copper is treated as nanoparticle with water as
base fluid. The developed nonlinear problems have been solved for the series solutions. The
convergence of the series solutions is carefully analyzed. The behaviors of various physica
parameters are examined through graphical results of velocity and concentration distributions.
The research presented in this chapter is published in “Journal of Magnetism and Magnetic
Materials395 (2015) 294-302”.

Chapter six is devoted to examine the boundary layer flow of ferrofluid due to a rotating disk.
Homogeneous-heterogeneous reactions are also accounted. Magnetite-Fe;O,4 in water are treated
as ferrofluid. Fluid is electrically conducting in the presence of magnetic field. Energy equation
in the presence of viscous dissipation is considered. Resulting nonlinear problemis formulated
first and then solved for the convergent series solutions. The series solutionsare constructed by
homotopic procedure. Contributions of involved parameters on the flow, temperature and

concentration are examined. Skin friction coefficient and Nusselt number are computed and



analyzed.The contents of this chapter are published in“Journal of Molecular Liquids216
(2016) 845-85".

Chapter seven considered the steadymagnetohydrodynamic (MHD)two-dimensional flow of Cu-
water nanofluid past a stretching sheet. Mathematical analysis is performed in the presence of
viscous dissipation, Joule heating and non-uniform melting heat transfer. An incompressible
fluid fills the porous space. The relevant boundary layer equations are reduced into ordinary
differential equations by suitable transformations. The dimensionless mathematical problems are
solved. Graphical results display the influence of interesting parameters. Numerical values of
skin friction coefficient and local Nusselt number are computed and analyzed. This research
isPublished in“Advanced Powder Technology
(2016)http://dx.doi.org/10.1016/j.apt.2016.04.024”.

Two-dimensiona unsteady flow of nanofluid by an inclined stretching sheet with thermal and
solutal stratification is studied in chapter eight. In addition effects of magnetic field, thermal
radiation and viscous dissipation are accounted. Unsteadiness in the flow is due to the time-
dependence of the stretching velocity, stratified temperature and concentration. The developed
nonlinear partial differentia equations are reduced into the ordinary differentia equations by
suitable transformations. The governing equations are solved for the series solutions. The
convergence of the series solutions for velocity, temperature and concentration fields is carefully
analyzed. The effects of various physical parameters are analyzed through graphica and
numerical results. These observations have been published in“International Journal of Heat
and Mass Transfer92 (2016) 100-109”.

Effects of heat and mass transfer in the stagnation point flow of Jeffreynanofluid over a
stretching sheet are discussed in chapter nine. Problems formulation and relevant analysis are
given in the presence of Newtonian heating. The nonlinear partial differential equations are
simplified using boundary layer approximations. The resultant nonlinear ordinary differential
equations are solved for the series solutions. Effects of various physica parameters on the
velocity, temperature and concentration fields are studied. Numerical values of local skin friction
coefficient, Nusselt and Sherwood numbers are computed and analyzed.The contents of this
chapter have been published in“Journal of Aerospace Engineering 10.1061/(ASCE)AS.1943-
5525.0000568 (2015) 04015063”.

Chapter ten discloses the three-dimensional magnetohydrodynamic (MHD) flow of nanofluid
induced by a permeable linear stretching sheetwith velocity slip. Water is treated as base fluid

and alumina as a nanoparticle. Entire different concept of nonlinear thermal radiation is utilized



in the heat transfer process.Appropriate transformations reduce the nonlinear partial differential
system to ordinary differential system. Series solutions for the velocity and temperature fields are
computed and examined by the graphical illustrations. The observations of conducted anaysis
are published in “Journal of Magnetism and Magnetic Materials 396 (2015) 31-37".

Chapter eleven is concerned with the three-dimensional flow of copper-water nanofluidinduced
by a permeable shrinking surface in a porous medium. The present work addresses this concept
in the presence of magnetic field, velocity and thermal dlip effects. The relevant equations are
first smplified under boundary layer assumptions and then transformed into ordinary differential
equations by suitable transformations. The transformed ordinary differential equations are
computed for the series solutions of velocity and temperature. Convergence analysis is shown
explicitly. Velocity, temperature, wall shear stress and heat transfer rate at wall are discussed for
different physical parameters through graphs and numerical values. These observations are
published in“Journal of Aerospace Engineering 10.106 /(ASCE)AS.1943-5525.0000533,
(2015) 04015035,

Chapter twelve examines three-dimensional flow of nanofluid by a permeable shrinking sheet.
Analysis is performed in the presence of applied uniform magnetic field. Copper is treated as
nanoparticle with water as base fluid. An incompressible fluid fills the porous space. Convective
boundary condition is used for the analysis of thermal boundary layer. Dimensionless
mathematical equations are solved for the convergent series solution. Influences of embedded
flow parameters on the velocity and temperature are displayed through graphs and discussed in
detail. The main results of this chapter have been published in“Journal of Molecular Liquids
212 (2015) 203-208".
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Chapter 1

Literature review and governing

equations

This chapter contains the literature review related to the nanofluid, magnetohydrodynamics,
stretching surface, rotating disk, slip flows and homogeneous-heterogeneous reactions. Equa-

tions governing nanofluids flow for Buongiorno and two phase flow model are presented.

1.1 Background

Convective heat transfer through nanoparticles is a popular area of research at present. The
nanoparticles (nanometer sized particles) are made up of metals, carbides, oxides or carbon
nanotubes. The nanofluids are formed by adding nanoparticles into many conventional fluids
like water, ethylene glycol and engine oil. The use of additive is a process which enhances
the heat transfer performance of base fluids. Choi [1] experimentally found that addition of
nanoparticles in conventional/base fluid appreciably enhances the thermal conductivity of the
fluid. Eastman et al. [2] and Choi et al. [3] pointed out that a small amount (< 1% volume
fraction) of Cu nanoparticles or carbon nanotubes dispersed in ethylene glycol or oil remark-
ably enhanced the thermal conductivity of a fluid by 40% and 50% respectively. Thus the
nanomaterials are recognized more effective in micro/nano electromechanical devices, advanced
cooling systems, large scale thermal management systems via evaporators, heat exchangers and

industrial cooling applications. Use of nanofluids as coolants allow for smaller size and better



positioning of the radiators which eventually consumes less energy for overcoming resistance
on the road. Nanoparticles in refrigerant /lubricant mixtures could enable a cost effective tech-
nology for improving the efficiency of chillers that cool buildings. Tiwari and Das [4] studied
heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing
nanofluids. At present, the literature on theoretical and experimental attempts about nanoflu-
ids is quite extensive. The comprehensive review on nanofluids can be found in the book [5]
and refs. [6 — 11]. Detailed review on this topic up to 2012 has been made by Mohammed et
al.[12] and Dalkilic et al. [13]. Besides these a comprehensive survey of convective transport
in nanofluids is presented by Buongiorno [14]. He developed a non-homogeneous equilibrium
model for convective transport to describe the heat transfer enhancement of nanofluids. He
concluded that abnormal increase in thermal conductivity occurs due to the presence of two
main velocity-slip effects, namely, the Brownian diffusion and the thermophoretic diffusion of
the nanoparticles. Later Buongiorno et al. [15] conducted novel investigations which show no
anomalous thermal conductivity enhancement in the considered fluids. Niu et al. [16] studied
slip flow of a non-Newtonian nanofluid in a microtube. Effects of heat generation/absorption on
stagnation point flow of nanofluid towards a surface with convective boundary conditions have
been analyzed by Alsaedi et al. [17]. Xu et al. [18] examined unsteady flow in a nano-liquid film
over a stretching surface. Imtiaz et al. [19] presented mixed convection flow of nanofluid with
Newtonian heating. Khalili et al. [20] considered unsteady convective heat and mass transfer
in flow of pseudoplastic nanofluid.

Magnetic nanofluids are more useful in the sense that their physical properties are tun-
able through the external magnetic field. Many equipments such as MHD generators, pumps,
bearings and boundary layer control are affected by the interaction between the electrically
conducting fluid and a magnetic field. The behavior of flow strongly depends on the orienta-
tion and intensity of the applied magnetic field. The exerted magnetic field manipulates the
suspended particles and rearranges their concentration in the fluid which strongly changes heat
transfer characteristics of the flow. A magnetic nanofluid has both the liquid and magnetic
characteristics. Such materials have fascinating applications in optical modulators, magneto-
optical wavelength filters, nonlinear optical materials, optical switches, optical gratings etc.

Magnetic particles have pivotal role in the construction of loud speakers as sealing materials



and in sink float separation. Magneto nanofluids are useful to guide the particles up the blood
stream to a tumor with magnets. This is due to the fact that the magnetic nanoparticles are
regarded more adhesive to tumor cells than non-malignant cells. Such particles absorb more
power than microparticles in alternating current magnetic fields tolerable in humans i.e. for
cancer therapy. Numerous applications involving magnetic nanofluids include drug delivery,
hyperthermia, contrast enhancement in magnetic resonance imaging and magnetic cell separa-
tion. Motivated by all the aforementioned facts, various scientists and engineers are engaged
in the discussion of flows of nanofluids via different aspects. Rashidi et al. [21] analyzed en-
tropy generation in MHD flow due to rotating porous disk in a nanofluid. Sheikholeslami et
al. [22] investigated MHD nanofluid flow in a semi-porous channel. Khalili et al. [23] discussed
unsteady MHD nanofluid flow over a stretching/shrinking sheet in porous medium filled with a
nanofluid. Rashidi et al. [24] reported buoyancy effect on MHD stretched flow of nanofluid in
presence of thermal radiation. Effect of thermal radiation on magnetohydrodynamic nanofluid
flow and heat transfer by means of two phase model has been studied by Sheikholeslami et
al. [25]. Numerical simulation of two phase unsteady nanofluid flow between parallel plates in
presence of time dependent magnetic field has been investigated by Sheikholeslami et al. [26].
Lin et al. [27] analyzed MHD pseudoplastic nanofluid flow in a finite thin film over stretching
surface. They also considered heat transfer analysis with internal heat generation. Melting heat
transfer on MHD convective flow of a nanofluid with viscous dissipation and second order slip
has been presented by Mabood and Mastroberardino [28]. Hayat et al. [29] explored 3D MHD
flow of viscoelastic nanofluid with nonlinear thermal radiation. Hayat et al. [30] also examined
interaction of magnetic field in flow of Maxwell nanofluid with convective effect.

The fluid flow over stretching surface has gained the attention of researchers due to its
important applications in engineering processes namely polymer extrusion, drawing of plastic
films and wires, glass fiber and paper production, manufacture of foods, crystal growing, liquid
films in condensation process, etc. Crane [31] studied the flow caused by the stretching of
a sheet. Most of the available literature dealt with the study of boundary layer flow over a
stretching surface where the velocity of the stretching sheet is assumed linearly proportional
to the distance from the fixed origin. However realistically stretching of plastic sheet may not

necessarily be linear. Flow and heat transfer characteristics past an exponentially stretching



sheet has a wider applications in technology. For example, in case of annealing and thinning
of copper wires, the final product depends on the rate of heat transfer at the surface with
exponential variations of stretching velocity. During such processes, both the kinematics of
stretching and the simultaneous heating or cooling have a decisive influence on the quality of
the final product. Specific example in this direction can be mentioned through process in plastic
industry. Gupta and Gupta [32] discussed heat and mass transfer on a stretching sheet with
suction or blowing. Afzal et al. [33] studied momentum and heat transfer on a continuous flat
surface moving in a parallel stream. Magyari and Keller [34] focused on heat and mass transfer
in boundary layer flow due to an exponentially stretching sheet. Cortell [35] found the solutions
for moving fluid over a flat surface. Zheng et al. [36] reported MHD flow and heat transfer
over a porous shrinking surface with velocity slip and temperature jump. MHD stagnation
point flow and heat transfer due to nanofluid towards a stretching sheet have been addressed
by Ibrahim et al. [37]. Mukhopadhyay [38] investigated slip effects in MHD boundary layer
flow by an exponentially stretching sheet with suction/blowing and thermal radiation. Exact
solutions over stretching or shrinking sheet in an electrically conducting quiescent couple stress
fluid have been computed by Turkyilmazoglu [39]. Malvandi et al. [40] presented slip effects on
unsteady stagnation point flow of nanofluid over a stretching sheet. Casson fluid flow and heat
transfer past an exponentially porous stretching surface in presence of thermal radiation been
provided by Pramanik [41]. Three dimensional flow of viscoelastic fluid by an exponentially
stretching surface with mass transfer has been obtained by Alhuthali et al. [42]. Rosca and
Pop [43] studied Powell-Eyring fluid flow over a shrinking surface in a parallel free stream.
Nandy and Pop [44] explored effects of magnetic field and thermal radiation on stagnation
flow and heat transfer of nanofluid over a shrinking surface. Nandy [45] considered unsteady
flow of Maxwell fluid in the presence of nanoparticles toward a permeable shrinking surface
with Navier slip. Weidman and Ishak [46] computed multiple solutions of two-dimensional and
three-dimensional flows induced by a stretching flat surface. Effects of viscous dissipation and
heat source on unsteady MHD flow over a stretching sheet have been examined by Reddy et al.
[47]. Chen et al. [48] discussed boundary layer flow of Maxwell fluid over an unsteady stretching
surface. Mustafa et al. [49] analyzed radiation effects in flow by a bi-directional exponentially

stretching sheet. Effects of convective heat and mass transfer in flow of Powell-Eyring fluid past



an exponentially stretching sheet have been examined by Hayat et al. [50].

Fluid flow by a rotating disk is important in engineering and geophysical applications such
as flows in spin coating, manufacturing and use of computer disks, rotational viscometer, cen-
trifugal machinery, pumping of liquid metals at high melting point, crystal growth from molten
silicon, turbo-machinery etc. Karman [51] investigated the classical problem of a rotating disk.
Erdogan [52] analyzed unsteady viscous fluid flow by non-coaxial rotations of disk and a fluid
at infinity. A note on porous rotating disk is presented by Kelson and Desseaux [53]. Flow
due to a rotating porous disk in presence of nanoparticles is analyzed by Bachok et al. [54].
Rashidi et al. [55] developed approximate solutions for steady flow due to a rotating disk. Here
porous medium and heat transfer are also considered. Turkyilmazoglu [56] studied nanofluid
flow and heat transfer due to a rotating disk. Hayat et al. [57] analyzed MHD flow of Cu-water
nanofluid due to a rotating disk with partial slip.

The formation and use of micro devices have attracted the attention of recent scientists.
The small size as well as high efficiency of micro-devices-such as microsensors, microvalves and
micropumps are some of the advantages of using MEMS and NEMS (Micro and Nano Electro
Mechanical Systems). Many attempts addressing the flow and heat transfer have been pre-
sented to guarantee the performance of such devices. The surface effects at micro scale level
lead to change in the classical conditions. Thus no-slip condition is inadequate for the fluid
flows in MEMS and NEMS. No slip conditions show unrealistic behavior for the cases like
the extrusion of polymer melts from a capillary tube, corner flow and spreading of liquid on
a solid substrate [58]. The flow analysis with heat transfer at micro-scale is encountered in
micro-electro-mechanical systems (MEMS). Such systems have association with consideration
of velocity slip and temperature jump. Khare et al. [59] presented relationship between velocity
and thermal slip. Wu [60] derived a slip model for rarefied gas flows at arbitrary Knudsen num-
ber. Fang and Aziz [61] considered viscous flow with second-order slip velocity over a stretching
sheet. Heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow
regimes has been investigated by Akbarinia et al. [62]. Mahmoud and Waheed [63] examined
stretched flow of a micropolar fluid with heat generation (absorption) and slip velocity. Ibrahim
and Shankar [64] presented MHD boundary layer flow and heat transfer of a nanofluid past a

permeable stretching sheet with velocity, thermal and solutal slip boundary condition. Khan
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et al. [65] analyzed hydrodynamic and thermal slip effect in double-diffusive free convective
boundary layer flow of a nanofluid. Extension of a second order velocity slip/temperature jump
boundary condition to simulate high speed micro/nanoflows has been given by Rooholghdos
and Roohi [66]. Malvandi and Ganji [67] considered Brownian motion and thermophoresis -
effects on slip flow of alumina/water nanofluid inside a circular microchannel. Second order
slip flow of Cu-water nanofluid over a stretching sheet with heat transfer has been investigated
by Sharma and Ishak [68]. Rashidi et al. [69] investigated entropy generation in MHD flow
over a rotating porous disk with variable properties and slip condition. Karimipour et al. [70]
analyzed the simulation of copper-water nanofluid in a microchannel with slip flow effect. Here
the lattice Boltzman method is used for the simulation. Megahed [71] studied MHD Casson
fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable
stretching sheet. Hakeem et al. [72] presented magnetic field effect in second order slip flow of
nanofluid over a radiative stretching/shrinking sheet.

Homogeneous-heterogeneous reactions occur in many chemically reacting systems such as
in combustion, catalysis and biochemical systems. Some of the reactions have the ability to
proceed very slowly or not at all, except in the presence of a catalyst. The interaction between
the homogeneous and heterogeneous reactions is very complex. It is involved in the produc-
tion and consumption of reactant species at different rates both within the fluid and on the
catalytic surfaces. Especially chemical reaction effects are quite significant in food processing,
hydrometallurgical industry, manufacturing of ceramics and polymer production, fog formation
and dispersion, chemical processing equipment design, crops damage via freezing, cooling tow-
ers and temperature distribution and moisture over agricultural fields and groves of fruit trees.
A model for isothermal homogeneous-heterogeneous reactions in boundary layer flow of viscous
fluid past a flat plate is studied by Merkin [73]. He presented the homogeneous reaction by
cubic autocatalysis and the heterogeneous reaction with a first order process. It is shown that
the surface reaction is the dominant mechanism near the leading edge of the plate. Chaudhary
and Merkin [74] studied the homogenous-heterogeneous reactions in boundary layer flow of vis-
cous fluid. They found the numerical solution near the leading edge of a flat plate. Khan and
Pop [75] studied two-dimensional stagnation-point flow with homogeneous—heterogeneous reac-

tion. Bachok et al. [76] focused on the stagnation-point flow towards a stretching sheet with
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homogeneous—heterogeneous reaction effects. Effects of homogeneous-heterogeneous reactions
in the flow of viscoelastic fluid towards a stretching sheet are investigated by Khan and Pop [77].
Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or
shrinking sheet in a porous medium have been studied by Shaw et al. [78]. Kameswaran et
al. [79] extended the work of Khan and Pop [77] for nanofluid over a porous stretching sheet.
Hayat et al. [80] analyzed homogeneous-heterogeneous reactions in the stagnation point flow of
carbon nanotubes towards a stretching surface with Newtonian heating. Effect of homogeneous-
heterogeneous reactions in flow of Powell-Eyring fluid is examined by Hayat et al. [81]. Abbasi
et al. [82] investigated stagnation-point flow of viscous fluid towards stretching/shrinking sheet

in the presence of homogeneous—heterogeneous reactions.

1.2 Fundamental laws for Buongiorno’s model

1.2.1 Law of conservation of mass

In absence of sources or sinks we can write equation of continuity as follows:

op B
5 V- (0V) =0. (1.1)

in which p is fluid density, ¢ is time and V is fluid velocity. The above equation for an incom-
pressible fluid takes the form
V-V=0. (1.2)

1.2.2 Law of conservation of linear momentum

Generalized equation of motion is

dVv
— —_ V.- 1.
7 V -1+ pb, (1.3)

in which the left hand side represents an inertial force, the first term on right hand side is
the surface force and the second term on right hand side is body force. For an incompressible
viscous fluid 7 = —PI 4+ pA; is the Cauchy stress tensor, P the pressue, I the identity tensor,
A} = VV+(VV)" the first Rivlin-Erickson tensor, b the body force and d/dt the material

12



time derivative.

1.2.3 Law of conservation of energy

The energy equation for a nanofluid can be written as

ar o~ -
Pep—r =~ divg+h,V - jp, (1.4)
where ¢, is specific heat of nanofluid, 7" is the temperature, h, is the specific enthalpy for
é
nanoparticles, ¢ is the energy flux and j , is the nanoparticles diffusion mass flux. Energy flux

—
¢ and nanoparticles diffusion mass flux j , are given by

~ ry

qQ=—kVT +hyj,, (1.5)
— vT
Jp: _ppDBVC_ppDTT ) (16)

in which k£ the thermal conductivity, p, is the nanoparticle mass density, Dp the Brownian
motion parameter, D the thermophoretic diffusion coefficient and C' the nanoparticles volume

fraction. Now Eq. (1.4) takes the form

dT T-VT
pcp— = kV*T + p,c, |DpVC - VT + DTu , (1.7)
dt p Two
which is the energy equation for nanofluids.
1.2.4 Law of conservation of concentration
The concentration equation for nanofluids is
oC 1 -
—+V.-VC=—-——V_.]j 1.8
ot + oy J p ( )
After utilizing Eq. (1.6), we get
oC VAT
o tV.VC= DpV?C + Dr T (1.9)
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1.3 Basic laws for two phase flow model

1.3.1 Law of conservation of linear momentum

Generalized equation of motion is

av
Prf gy =~V T+ Puyb, (1.10)

where the effective nanofluid density p,,; is taken as follows [4]:

Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript

is for base fluid.

1.3.2 Law of conservation of energy

The energy equation for a nanofluid in the presence of viscous dissipation and thermal radiation
can be written as

dT
(peplny—r =7 Lt ks VT =V -, (1.12)

where 7 = —PI + p, ;A is the Cauchy stress tensor and q, is the radiative heat flux. The
effective nanofluid heat capacity (pcp)ny is [4]:

(pcp)nf = (pcp)f<1 —¢)+ (Pcp)s¢‘ (1.13)

The dynamic viscosity of nanofluid p,,; is [98]:

7
/j“nf = (1 — ;)2_57 (114.)

and the effective thermal conductivity of nanofluid k,; by Maxwell-Garnett model is given by

[99]:
w _ ks + 2k — 2¢(kf — ks) (1.15)
ky ks+2/€f+¢<kf—ks) ' '
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1.4 Solution procedure

Flow equations occuring in the field of science and engineering are highly nonlinear in general.
Therefore it is very difficult to find the exact solution of such equations. Usually perturbation,
Adomian decomposion and homotopy perturbation methods are used to find the solution of non-
linear equations. But these methods have some drawback through involvement of large/small
parameters in the equations and convergence. Homotopy analysis method (HAM) [83 — 97] is
one while is independent of small/large parameters. This method also gives us a way to adjust
and control the convergence region (i.e. by plotting h-curve). It also provides exemption to
choose different sets of base functions. We have used this technique in the subsequent chapters

to get the convergent series solutions.
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Chapter 2

MHD flow of nanofluid over
permeable stretching sheet with

convective boundary conditions

This chapter addresses the magnetohydrodynamic (MHD) boundary layer flow of nanofluid.
Flow is induced by a permeable stretching sheet. Convective type boundary conditions are
employed in modeling the heat and mass transfer process. Appropriate transformations reduce
the nonlinear partial differential equations to ordinary differential equations. The convergent
series solutions are constructed. Graphical results of different parameters are discussed. The
behaviors of Brownian motion and thermophoretic diffusion of nanoparticles have been exam-
ined. The dimensionless expressions of local Nusselt and local Sherwood numbers have been

evaluated and discussed.

2.1 Problem formulation

We consider the two-dimensional flow of nanofluid bounded by a permeable stretching sheet.
The x—axis is taken along the stretching surface in the direction of motion and y—axis is
perpendicular to it. A uniform magnetic field of strength By is applied parallel to the y—axis. It
is assumed that the effects of induced magnetic and electric fields are negligible. Salient features

of Brownian motion and thermophoresis are present. The temperature T and the nanoparticle
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fraction C' at the surface have constant values T, and C,, respectively. The ambient values of T’
and C attained as y tends to infinity are denoted by T, and C, respectively. The conservation

of mass, momentum, energy and nanoparticles equations for nanofluids are:

ou Ov
— = 2.1
ox Oy 0, (2.1)

du du  Pu  oBju

P oy o2 T | TPy oy T T \oy) |7 '
2 2
W€ 100 _ p ¢ DroT (2.4)

or "oy TP aR T 0y
where u and v are the velocity components along x and y— directions respectively, v the
kinematic viscosity, p the fluid density, o the electrical conductivity of the base fluid, « the
thermal diffusivity, 7 = (pc),/(pc)s is the ratio between the effective heat capacity of the
nanoparticle material and heat capacity of the fluid, Dp is the Brownian diffusion coefficient
and Dy is the thermophoretic diffusion coefficient.

The boundary conditions are prescribed as follows:

oT oC
u=uy(x)=cr, v="V, -— ka_y =h(Ty-T), — Dma_y =kn(Cy—C) at y=0,

u=0,T—>Tyx, C—Cx as y— oo, (2.5)

in which V,, is the wall mass transfer velocity, k is the thermal conductivity of fluid, h is the
convective heat transfer coefficient, T’ is the heated fluid temperature, D, is the molecular
diffusivity of the species concentration, ky, is the wall mass transfer coefficient and C} is the

heated fluid concentration. Using the transformations

=y u=caf _ _T-Tx _C-Cx
0= S ol o= T, ) = L B = S (20
equation (2.1) is satisfied automatically and Egs. (2.2 — 2.5) take the following forms
F - f2 o FE - MF =0, 27)
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1
ﬁe" + f0' + N,@'0' + N0 = 0, (2.8)

N,
" + Scfd + 0" =0, (2.9)
Ny

f(0) =S, f(0)=1, 0'(0) = =7, [1 = 0(0)], @'(0) = —7,[1 — 2(0)],
F(00) = 0, 8(c0) = 0,B(c0) = 0, (2.10)

where prime indicates the differentiation with respect to n. Moreover the Hartman number M,
the Prandtl number Pr, the Brownian motion parameter N, the thermophoresis parameter N,
the Schmidt number Sc¢, the mass transfer parameter S with S > 0 for suction and S < 0 for
injection, the thermal Biot number v; and the concentration Biot number 74 are defined by

the following definitions:
v (pe), D (Cf = Cx) (pe), Dr (T = To)

s No = Nt = ;
b pcfy (pc); Toov

(67
v Vw

M = , Pr=

TQu oT
Nu=-——" . — | 2.12
KT -1 T My, (212)
Tqm oC
Sh=—om .. _pZl | 9.13
Dp (Cr = Cx) A |, (2.13)

in which ¢, and g, denote the wall heat and mass fluxes respectively. In dimensionless form
NuRe; /2 = —0'(0), ShRe; Y2 = —&'(0), (2.14)

where Re; = uy(x)z/v is the local Reynolds number.
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2.2 Homotopic solutions

2.2.1 Zeroth-order deformation problems

We choose initial guesses fo(n), 0o(n) and ®o(n) and linear operators L, Ly and L in the

forms
fo(n) =S+ 1 —exp(—n), (2.15)
__n _
Oo(n) = 7 o exp(—1), (2.16)
__ _
Qo(n) = 7 7 exp(—1), (2.17)
Ly(f)=f"~-F1, (2.18)
Lo(0) =0" -0, (2.19)
Lo(®) =" — @, (2.20)
together with the properties
Ly [c1 + caexp(n) + czexp(—n)] =0, (2.21)
Lo [caexp(n) + c5 exp(—n)] =0, (2.22)
Ly [ceexp(n) + crexp(—n)] =0, (2.23)

where ¢ — ¢7 are the constants. If p € [0,1] denotes an embedding parameter and fg, hy and
ha represent the non-zero auxiliary parameters then the zeroth order deformation problems are

defined as follows:

(L= p)Ls [Fn:) = folm)] = pheNGLF (), (2:24)
(1= p)Lo |0(n: p) = bo(m)| = PhaNsl0(n: p), f (m: p), Do) (2.25)
(1= p)La |&(n;p) — Do(n)| = phaNal®(rip), f05:p), 0(n; D), (2.26)

f(0;p) =S, f/(0;p) =1, f'(c0;p) =0,
0'(0;p) = —y1[1 — 0(0; p)], B(oo;p) =0,
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o' (0;p) = —y,[1 — ©(0;p)], ®(o0;p) =0, (2.27)

where Ny, Ny and Ng are the nonlinear operators defined in the forms:

. 3 £l R 2 £ £l 2 £l
Ny [f(n;p)] = %:;p) +f(n;p)a ggp) - <6fgz7’p)> - M%Z’p), (2.28)
. R R 20 (1. . . Aoy 2
NolO(n;p), f(n;p), ®(m;p)] = %a 98(7;72’2)) +f(n;p)%7z7’p) + N, (aeg;,m)
0% (; p) 90(n; p)
NS (2.29)
2 (1 R B (- 20 (-
Natb ). £ 00 = 0 ) 2D MIULD)
For p =0 and p = 1 we have
Fm;0) = folm), f(n;1) = f(n),
0(n;0) = 0o(n), 0(n; 1) = 0(n),
O(n;0) = Do(n), ©(n;1) = (n). (2.31)

Note that fo(n), 6o(n) and ®o(n) approach f(n), 8(n) and ®(n) respectively, when p has variation

from 0 to 1. According to Taylor series we have

o

~ om £l

Fmip) = fo) + > fn(mp™, fn(n) = %# ;
m=1 ) p=0

A o 8m9 .

00 8) = 000) + 3 O™ Oo) = - LD
m=1 ) p=0

Bp) = Do) + D B, () = TSI (2.32)

m=1 ) p=0
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where the convergence depends upon Ay, hy and he. By proper choice of A, hg and he the

series (2.32) converge for p =1 and so

F) = fotn) + > fm(n),

0(n) = 00(n) + D Om(n),
m=1

O(n) = Do(n) + Y Pm(n). (2.33)
m=1

2.2.2 m'" order deformation problems

The m*" order deformation problems are given by

L fm) = X Fmo1(0)] = BfRpm(n), (2.34)
Lo [0m (1) = XimOm—1(n)] = hoRo,m(n), (2.35)
Lo [P (1) = XmPm—1(n)] = haRa,m(n), (2.36)

fm(o) = frln(o) = fvln(oo) = 9;71(0) - ’Ylem(o) = Qm(OO) = (I);n(o) - 72(1)771(0) = (I)m(oo) =0,

(2.37)
0, m<1
Xm= 5 (2.38)
1, m>1
m—1
Rim (1) = f1+ > (1=t = Fnaft) = Mfly 1, (2.39)
k=0
1 m—1
Ré,m(n) = EHZH + ];0 (9%—1—kfk + Nb@m,1,k9§€ + Nt@in—l—ke;c)v (2.40)
" et / Ny "
R<I>,m(77) = (I)m—l + Se Z q)m—l—kfk + ﬁ m—1- (241)
k=0 b
The general solutions can be expressed as follows:
fm() = fu(n) + c1 + c2e” + cze™, (2.42)
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Om(n) = 05, (n) + cae” + c5e™, (2.43)
D (1) = @73,(n) + cge” + cre”, (2.44)

in which f, 0, and ®}, denote the particular solutions and the constants ¢; (i =1 —7) can

be determined by the boundary conditions (2.37). They are given by

of* . 1 06* .
3 = faén) , a0 =—cg— f*(0), 5 = T+~ 87(777) -0 (0)] )
n=0 1 n=0
_ 1 9P*(n) .
o = au=c=0, cr T+ |y — 7, ® (0)] . (2.45)

2.3 Analysis of series solutions

The solution of problems consisting of Egs. (2.7) — (2.10) is computed employing homotopy
analysis method. The convergence region and rate of approximations for the functions f, # and
® can be controlled and adjusted through the auxiliary parameters iy, iy and hig. The i—curves
are sketched at 14**—order of approximations to obtain valid ranges of these parameters (see
Fig. 2.1). Permissible values of the auxiliary parameters are —1.5 < hy < —04, =15 <
hy < —0.5 and —1.4 < hg < —0.7. Further, the series solutions converge in the whole region of
n (0 < n < oo) when hy = hg = hg = —1.2. Table 2.1 displays the convergence of homotopy

solutions for different orders of approximations.
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-0.5¢
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25 220 -15  -10  —05 00 05

Tig, hg, Tig

Fig. 2.1: h—curves for velocity, temperature and concentration fields.
Table 2.1: Convergence of HAM solutions for different order of approximations when

M=N,=04, N,=03, Sce=Pr=~,=1,5 =0.5 and v, = 0.9.

Order of approximations —f”(0)  —6'(0) —9'(0)
1 1.54000 0.441053 0.344668
) 1.45883 0.431349 0.319776
10 1.45934 0.430920 0.318765
15 1.45934 0.430912 0.318750
20 1.45934 0.430912 0.318750
25 1.45934 0.430912 0.318750
30 1.45934 0.430912 0.318750
35 1.45934 0.430912 0.318750
40 1.45934 0.430912 0.318750
50 1.45934 0.430912 0.318750
60 1.45934 0.430912 0.318750
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2.4 Results and discussion

In this section, the effects of various involved parameters on the velocity, temperature and
concentration profiles are discussed. Figs. (2.2—2.3) are plotted to show the effects of Hartman
number M and mass transfer parameter S on the velocity profile f’. Fig. 2.2 shows the effects
of M on f’. Application of magnetic field has the tendency to slow down the movement of the
fluid particles and consequently the velocity decreases. Fig. 2.3 displays the effect of S on f’. In
this Fig. the velocity field f’ decreases when S increases. In fact applying suction leads to draw
the amount of fluid particles into the wall and hence the velocity boundary layer decreases.

Effects of the Brownian motion parameter Ny, thermophoresis parameter Ny, Schmidt num-
ber Sc¢, Prandtl number Pr, Hartman number M, mass transfer parameter S, thermal Biot
number v, and concentration Biot number 5 on the temperature profile # and the concentra-
tion profile ¢ are shown in the Figs. (2.4 —2.18). It is noted that an increase in the Brownian
motion parameter N, thermophoresis parameter N; and Schmidt number Sc increase the tem-
perature profile § as shown in Figs. (2.4 — 2.6). The effects of Prandtl number Pr on the
temperature profile are depicted in Fig. 2.7. This graph shows that the temperature profile
f decreases when Pr increases. In fact the thermal diffusivity decreases by increasing Pr and
thus the heat diffused away slowly from the heated surface. Fig. 2.8 illustrates the effects
of Hartman number M on temperature profile §. The Lorentz force is a resistive force which
opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary layer
thickness increases. Further, the temperature profile # decreases when S is increased (see Fig.
2.9). Also the temperature profile 6 increases when the thermal Biot number ; increases (see
Fig. 2.10). Fig. 2.11 illustrates the effects of N, on ®. The concentration profile ® decreases by
increasing the Brownian motion parameter N,. Influence of N; on ® can be seen in Fig. 2.12.
There is an increase in ® when V; is increased. Figs. (2.13 —2.16) display the effects of Sc, Pr
, M and S on the concentration profile ®. It is observed that concentration profile ® decreases
by increasing these parameters. It is observed from Fig. 2.17 that the mass fraction field in-
creases when thermal Biot number v, is increased. Also the concentration profile increases by
increasing concentration Biot number v, as depicted in Fig. 2.18.

Numerical values of local Nusselt number and local Sherwood number for different emerging

parameters are presented in Table 2. It is noticed that local Nusselt number N u(Rem)_%
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decreases for larger values of Dy, N, and ;. However it increases for larger values of S, and
Pr. The magnitude of local Sherwood number S h(Rex)_% decreases for larger values of S, Pr
and IV; however it increases for larger values of Dy and IV,.

Figs. 2.19 and 2.20 describe the variations of the Nusselt number Nu(Re,)~'/2 for Brownian
motion parameter Ny, thermophoresis parameter Ny and Schmidt number Sc. It is noticed that
heat transfer rate decreases as Ny, and V; increase for Sc. Fig. 2.21 shows the effects of thermal
Biot number v; and mass transfer parameter S on the Nusselt number Nu(Re,)~*/2. In this
figure, heat transfer rate increases as y; enhances for S. Figs. 2.22 and 2.23 illustrate the
variation in dimensionless mass transfer rate Sh(Re;)~ /2 vs Brownian motion parameter N,
and thermophoresis parameter N;. Here the mass transfer rate increases for larger Ny and it
decreases with an increase in N;. Effects of concentration Biot number v, and mass transfer
parameter S on the Sherwood number Sh(Rem)*l/ 2 are displayed in Fig. 2.24. It is noted that

mass transfer rate increases for higher ~,.

f'(n)
1.0

0.8}
0.6}

0.4?

1 2 3 4 5

Fig. 2.2: Influence of M on f'(n).
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0.2t
T 2 3 4
Fig. 2.3: Influence of S on f’(n).
e(n)
0.8¢

S=05,N=03,8=Pr=y9=1,9=09,M=04

Fig. 2.4: Influence of N on 6(n).
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Fig. 2.5: Influence of NV; on (7).

S=05,N=M=04,N,=03,Pr=9=1,%=0.9
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0.3¢

0.2t
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Fig. 2.6: Influence of Sc on 6(n).
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Fig. 2.7: Influence of Pr on 6(n).
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Fig. 2.8: Influence of M on 6(n).
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Fig. 2.9: Influence of S on 6(n).

a(n)

030F\ S=05,N,=M=04,N,=03,8c=Pr=1,9%,=0.9
0.25}
0.20}
y;=0.1,0.2,0.3,0.4
0.15}
0.10}

0.05¢

Fig. 2.10: Influence of v, on 6(n).
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Fig. 2.11: Influence of N, on ®(n).
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Fig. 2.12: Influence of N; on ®(n).
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Fig. 2.13: Influence of Sc on ®(n).
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Fig. 2.14: Influence of Pr on ®(n).
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Fig. 2.15: Influence of M on ®(n).
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Fig. 2.16: Influence of S on ®(n).
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Fig. 2.17: Influence of v; on ®(n).
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Fig. 2.18: Influence of v, on ®(n).
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Fig. 2.19: Influences of N, and Sc on —6'(0).
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Fig. 2.20: Influences of Ny and Sc on —6'(0).
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Fig. 2.21: Influences of v; and S on —6'(0).

0.3 - N,=0.5,0.65009,1.5

0.4}

0.3

0.2

0.1}

Fig. 2.22: Influences of N, and Sc on —®'(0).
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Fig. 2.23: Influences of N; and Sc on —®'(0).

0.5

v =0.7,09,12,1.5

0.4

0.3¢

0.2

0.1t

00 02 04 06 08 10 12 14

Fig. 2.24: Influences of v, and S on —®’(0).
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2.5 Main points

The flow of nanofluid generated by a permeable stretching sheet is studied. Effects of different
parameters on the velocity, temperature and concentration distributions are explored. The

following observations are worthmentioning.

e The effects of Hartman number and mass transfer parameter are similar on the velocity

profile.

e Increase in Brownian motion parameter, thermopherosis parameter, Schmidt number,

Hartman number and thermal Biot number enhances the temperature profile.

e There is enhancement of concentration for increasing thermophoresis parameter, thermal

and concentration Biot numbers.
e Local Nusselt number increases by larger thermal Biot number.

e Local Sherwood number is an increasing function of Brownian motion parameter and

concentration Biot number.
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Chapter 3

MHD flow of nanofluids due to
convectively exponential stretching

sheet in a porous medium

This chapter concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid.
The flow is caused by a permeable exponentially stretching surface. An incompressible fluid fills
the porous space. A comparative study is made for the nanoparticles namely copper (Cu), silver
(Ag), alumina (Al;O3) and titanium oxide (TiO2). Water is treated as a base fluid. Convective
type boundary conditions are employed in modeling the heat transfer process. The non-linear
partial differential equations governing the flow are reduced to the ordinary differential equation
by similarity transformations. The obtained equations are then solved for the development of
series solutions. Convergence of the obtained series solutions is explicitly discussed. Effects of
different parameters on the velocity and temperature profiles are shown and analyzed through

graphs.

3.1 Mathematical formulation

Here we investigate the steady two-dimensional flow of an incompressible nanofluid induced by

an exponentially stretching surface in a porous medium with permeability K. The z—axis is
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taken along the stretching surface in the direction of motion and y—axis is perpendicular to it.

Fig. 3.1: Geometry of the problem.

A uniform transverse magnetic field of strength By is applied parallel to the y—axis. It is
assumed that the induced magnetic field and the electric field effects are negligible. Further,
the surface exhibits convective type boundary conditions (see Fig. 3.1). The boundary layer

flow in the present analysis is governed by the following equations:

ou Ov
ou ou Pu iy,

Or Oy (pcp)ny Oy*’

(3.3)

where v and v are the velocity components along the x— and y— directions respectively. The

effective nanofluid density p,,; and heat capacity (pcp)ns are taken as follows [4]:
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(Pcp)ng = (pcp) s (1 — @) + (pcp) s (3.5)

The dynamic viscosity of nanofluid f,,; given by Brinkmann is [98]:

Fy

Hof = T = g)25” (3.6)

The effective thermal conductivity of nanofluid &, s by Maxwell-Garnett model is given by [99]:

kng ks + 2k; — 20(k; — ky)

— = . 3.7
ky ks+2/€f+¢<kf—ks) (3.7)
and the electric conductivity o, of nanofluid is [100]:
Onf _ 3 (F; B 1) 4
=1+ . (3.8)
o as _(es _
(B (e

Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript

is for base fluid. The subjected boundary conditions are

or

u = uy=UpeL, v="V,, —kfa—:h(Tf—T) at y =0,
Y
u — 0, T—Ty, asy— oo. (3.9)
Introducing
Yo ez vl = , T Ty
1=\ 5,16 u=UgeT f'(n), v= o7 2 L) +nf' ()], 0(n) = T T

(3.10)
Eq. (3.1) is satisfied automatically and Eqgs. (3.2), (3.3) and (3.9) after using Eq. (3.10) can

be reduced as follows:

euf" + [ =207 = derf = (1= 9 Mar L =0, (3.11)
f
1 knf " (pC )S /
o+ (-0 + {£22) gor o, (3.12)
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f10) = 1, f(0) =S5, 6'(0) = =y [1 — 6(0)],
f'(0) = 0, () =0, (3.13)

in which prime indicates the differentiation with respect to 1 and the value of ;1 is

1
(-0 £0)a-ops

g1 = (3.14)

Moreover the porosity parameter )\, the Hartman number M, the Prandtl number Pr, the mass
transfer parameter S with S > 0 for suction and S < 0 for injection and the thermal Biot

number v, are defined as follows:

2VfL =z ZUfBgL = Vf(ﬂCp)f 2L = h vy
>\ — M = —— L P — S = — [ LV s J— —
KU, © ol ¢ T ke Vote® " T eV e
(3.15)
Local skin-friction coefficient C,y and local Nusselt number Nu are given by
T Ty
Cyp=——_— Ny=-—"__ 3.16
*f %pUgeZTl ki (Tw — Too) ( )
where the surface shear stress 7, and wall heat flux q,, are
ou oT
— - = —k o — . 3.17
Tw Mnf ay =0 y Qu nf ay o ( )

Dimensionless forms of skin friction coefficient Cs; and local Nusselt number Nu can be repre-

sented by the relations

Rex 1 1 71/2 2L knf /
= = 1
Co\| 5 = gyl (O NuRes 2[5 =~ (0) (3.18)

in which Re, = UpeTx /v denotes the local Reynolds number.
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3.2 Homotopy analysis solutions

Employing the methodology of homotopy analysis solutions the initial approximations fo(n)

and 6o(n) and auxiliary linear operators £L; and Ly are given by

o) =1+ 8 = exp(=n), Boln) = T exp(-) (3.19)
Ly(f)=rf"—=F Lo(6) =0" -0, (3.20)

together with the properties

Lyler+caexp(n) +ezexp(-n)] = 0,

Ly [csexp(n) +csexp(-n)] = 0, (3.21)

where ¢ — ¢5 are the constants. If p € [0, 1] indicates the embedding parameter then the zeroth

order deformation problems are constructed as follows:
(1= p)&s [Fm0) = fol)] = phyNGlF ), (3.22)

(1= p)La |0(ni ) — Bo(n)| = phaNolB(n; p). Fr: ) (3.23)

F(0;p) = 1, f(0;p) =S, f'(c0;p) =0,

6'(0;p) = —m[l—8(0;p)], B(o0;p) =0, (3.24)

where iy and fy are the nonzero auxiliary parameters. With Eqgs. (3.11) and (3.12), the

definitions of operators Ny and Ny can be written as

on

0 (n;p) 25y 7. Onf Of (m;p)
—AﬁlTn - (]. - QZS) MElO_—an, (325)

. 3 L0 R 2P s 2
N [f(n;p)} = 51%7;73’79) +f(n;p)%r72’p) _9 <5f(77,p)>
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Nolb(n; p), f(m; p)] = %%8298(—;2@ + <(1 —¢)+ %qb) f(n;p)M- (3.26)

The resulting problems at m** order are given by

Ly [fm(n) = X fm—1 ()] = Ty R . (1), (3.27)

Lo [0m(n) = XinOm-1(n)] = ﬁaRa,m(ﬁ)» (3.28)

fm(0) = f1,(0) = f7,(00) = 07,,(0) = ¥10m(0) = O (00) =0, (3.29)
0, m<1

Xin= : (3.30)
1, m>1

m—1
on
Rim(n) =erfi 1+ fm—l—kf/c'—Qﬂn_l_kfﬁ—A€1f1§171—(1—¢)2‘5M€1—Ufff£%1’ (3.31)
k=0

1 knf /" (pep)s \ ™=t
Rom(n) = e 1+ ((1=0)+ £226) & 01,1 o (3.32)
where the general solutions are
fm() = fu(n) + 1+ coe” + cze™,
Om(n) = 6;,(n)+ cae + cse” ", (3.33)

in which f and 6}, denote the special solutions.

3.3 Convergence of the homotopy solutions

Now the solutions of Egs. (3.11) and (3.12) subject to the boundary conditions (3.13) is
computed by means of homotopy analysis method. We choose auxiliary parameters iy and
hy for the functions f and @ respectively. The convergence of obtained series and rate of the
approximation for HAM strongly depend upon the values of the auxiliary parameters. For

ranges of admissible values of iy and fig, the hi—curves for 12th

—order of approximations are
plotted in the Fig. 3.2. We can see that the permissible values for fif and iy are —0.7 < iy <

—0.4 and —0.6 < hy < —0.45. Further, the series solutions converge in the whole region of 7
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(O <n< OO) when ﬁf = hg = —0.6.

05— . .
0.0} —/"(0) .
PO R s 6'(0)
S -05F .| . '
S S S —
= -10!
™ _is)
—2.0}
0.5 0.0
iy, Tig

Table 3.1: Convergence of HAM solutions for different order of approximations when

Fig. 3.2: h—curves for velocity and temperature fields.

Pr=6.2,¢ =003, A=05 v, =0.7, M=0.1and S =0.9.

3.4 Discussion

Order of approximations —f”(0) —6'(0)
1 1.761  0.4432
) 2.144  0.5421
10 2.1564  0.6139
16 2.1564  0.6336
20 2.154  0.6271
30 2.1564  0.6184
35 2.154  0.6241
40 2.154  0.6241

In this section we discuss the influences of various parameters on the velocity f’(n) and tem-

perature fields 6(n). Figs. (3.3 — 3.6) are plotted to analyze the effects of volume fraction of
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nanoparticles ¢, mass transfer parameter S, Hartman number M and porosity parameter A on
the velocity field f’. Effects of volume fraction of nanoparticles ¢ on the velocity profile f’
can be seen from Fig. 3.3. Here the values of f’ and boundary layer thickness decrease when
volume fraction for the nanoparticles increases. The effects of mass transfer parameter S on
the velocity f’ are depicted in Fig. 3.4. This graph shows that the value of velocity function
/" and the boundary layer thickness decrease by increasing S. Because applying suction leads
to draw the amount of fluid particles into the wall and consequently the velocity boundary
layer decreases. Influence of Hartman number M and parameter A on the velocity field f’ is
similar to that of S. As application of a magnetic field has the tendency to slow down the
movement of the fluid, causing its velocity to decrease. Also by increasing porosity parameter
A, the resistance to the fluid motion also increases. This causes the fluid velocity to decrease.

Effects of volume fraction of nanoparticles ¢, mass transfer paramter S, Hartman number
M, porosity parameter A\ and Biot number ~; on the temperature profile § are shown in the
Figs. (3.7 — 3.11). Effect of ¢ on the temperature is analyzed in Fig. 3.7. It is observed
that increasing the volume fraction of nanoparticles ¢, increases the thermal conductivity of
nanofluid and consequently the thermal boundary layer thickness increases. The behavior of S
on the temperature profile is similar to that of velocity profile (see Fig. 3.8). Fig. 3.9 illustrates
the effects of M on temperature profile . As Lorentz force is a resistive force which opposes the
fluid motion. So heat is produced and as a result thermal boundary layer thickness increases.
Variations of A on temperature profile § can be seen in the Fig. 3.10. There is a decrease in
temperature 6 when porosity parameter A is increased. Fig. 3.11 represents the effect of Biot
number v, on temperature profile §. Temperature profile 6 increases for larger ;.

In Fig. 3.12 we observe that boundary layer thickness is maximum when Titanium oxide
is chosen as nanoparticle. Fig. 3.13 shows the effects of nanoparticle volume fraction ¢, mass
transfer parameter S and porosity parameter A on skin friction coefficient in case of C'u—water.
It is noticed that magnitude of skin friction coefficient increases when we increase ¢ for both
S and A. Fig. 3.14 describes the variation of Nusselt number for nanoparticle volume fraction
¢, mass transfer parameter S and porosity parameter A. In this Fig. the heat transfer rates
increase as ¢ increases for both S and .

Table 3.1 shows the convergence of the series solutions. In Table 3.2 some thermophysical
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properties of water and nanoparticles are given. Table 3.3 shows the effects of nanoparticle
volume fraction ¢ for different types of nanofluids on skin friction coefficient when A = 0.5,
M = 0.1 and S = 0.9. Table 3.4 shows the effects of nanoparticle volume fraction ¢ for different
types of nanofluids on Nusselt number when A = 0.5, Pr = 6.2, v; = 0.7, M = 0.1 and S = 0.9.
These tables show that the shear stress and heat transfer rate change when we use different

types of nanoparticles.

f'(n)
1.0

- Cu-water
0.8

A=05M=0.1,8=0.9

0.6
¢=0.01, 0.03,0.04,0.05

0.4

L]
| -]
T

Fig. 3.3: Influence of ¢ on f'(n).
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Z A=05M=0.1,6=0.03
0.6}

I $=0.1,0.5,009, 1.5
0.4}
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1 2 3 1
Fig. 3.4: Influence of S on f'(n).

f'(n)
1.0

Cu-water
; 1=0.5,8=0.9, ¢=0.03

0.6}

M=0.1,0.3,0.5, 0.7

0.4}
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1 2 3 4

Fig. 3.5: Influence of M on f'(n).
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Fig. 3.6: Influence of A on f’(n).
6(n)
0.4
Cu-water
0.3} M=0.1,1=05,8=09,Pr=62,y, =07
0.2r $=0.01,0.03,0.1,0.2
0.1}
-

Fig. 3.7: Influence of ¢ on 6(n).
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Fig. 3.8: Influence of S on 6(n).

Cu-water

M=0.1,0.5,009, 2

$=0.9,1=05,6=0.03,Pr=62, 9, =0.7

Fig. 3.9: Influence of M on 6(n).
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Fig. 3.10: Influence of A on 6(n).
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Fig. 3.11: Influence of v, on 6(n).
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Fig. 3.12: (a) Velocity and (b) temperature profiles for different types of nanoparticles.
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Fig. 3.13: Effects of nanoparticle volume fraction ¢, (a) mass transfer parameter S and (b)

porosity parameter A on the skin friction coefficient when M = 0.1.
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Fig. 3.14: Effects of nanoparticle volume fraction ¢, (a) mass transfer parameter S and (b)

porosity parameter A on the Nusselt number when M = 0.1, Pr = 6.2 and ~; = 0.7.
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Table 3.2: Thermophysical properties of water and nanoparticles [21].

plkg/m?)  cp(j/kgk) k(W/m.k) Bx10°(K™Y) o(Qm)~!

Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver(Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Al,O3) 3970 765 40 0.85 1x 10710
Titanium Oxide(Ti05) 4250 686.2 8.9538 0.9 1x 10712

Table 3.3: Effect of ¢ for different types of nanofluids on skin friction coefficient when
A=05 M=0.1and S=0.9.

10} Cu Ag AlyO3 Ti0O9
0.01 —2.05387 —2.07036 —2.00143 —2.00439
0.03 —2.15426 —2.20071 —2.00558 —2.01404
0.05 —2.23960 —2.31255 —2.00535 —2.01873

Table 3.4: Effect of ¢ for different types of nanofluids on Nusselt number when A\ = 0.5,
Pr=6.2,v,=0.7, M =0.1 and S = 0.9.

¢ Cu Ag AlyO5 TiO4
0.01 0.436981 0.436452 0.437649 0.438380
0.03 0.423311 0.421702 0.425326 0.427566
0.05 0.409403 0.406691 0.412767 0.416582

3.5 Concluding remarks

Here MHD flow of nanofluid by an exponentially permeable stretching sheet is studied. Ef-
fects of different parameters on the velocity and temperature profiles are shown. Convergent

approximate solution is constructed. The following observations are made

e An increase in the values of ¢, S, M and A have similar effects on the velocity profile in

a qualitative sense.

e Temperature profile enhances by increasing ¢, M and 7; while it decreases when S and

A are increased.
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e Magnitude of skin friction coefficient is higher for increasing values of ¢.

e Higher values of ¢ correspond to larger values of Nusselt number.
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Chapter 4

MHD flow of nanofluid with
homogeneous-heterogeneous

reactions and velocity slip

Present chapter focuses on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid.
The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. An in-
compressible fluid fills the porous space. Copper-water and silver-water nanofluids are investi-
gated in this study. Transformation method reduces the nonlinear partial differential equations
governing the flow into the ordinary differential equation by similarity transformations. The
obtained equations are then solved for the development of series solutions. Convergence of the
obtained series solutions is explicitly discussed. Effects of different parameters on the velocity,

concentration and skin friction coefficient are shown and analyzed through graphs.

4.1 Mathematical formulation

We consider the steady two-dimensional flow of an incompressible nanofluid over a stretching
surface in porous medium with permeability K. The x—axis is taken along the stretching
surface in the direction of motion and y—axis is perpendicular to it. A uniform transverse
magnetic field of strength By is applied parallel to the y—axis. It is assumed that the induced

magnetic and electric fields effects are negligible (see Fig. 4.1). Nanoparticles such as copper
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(Cu) and silver (Ag) are considered. Water is treated as a base fluid.

~
4
x

A
N

2—-0o, Su
H = Cx +

ez oy

v

Fig. 4.1: Geometry of the problem.

We have taken a simple homogeneous-heterogeneous reaction model in the following form [73]:
A+2B — 3B, rate = k.ab?, (4.1)

while on the catalyst surface we have the single, isothermal, first order reaction
A — B, rate = ksa, (4.2)

where a and b are the concentrations of the chemical species A and B and k. and ks denote
the rate constants. We assume that both reaction processes are isothermal. Under these

assumptions, the relevant boundary layer equations are

ou Ov
7 "oy = (4.3)
ou ou Pu iy,

o7



Oa Oa 5%a

— +v— = Da— — k.ab? 4.
u8x+vf)y A8y2 ab”, (4.5)
ob b 0%
— +v— = D= + keab®. 4.6
u81:+U8y Bay2 +iea (4.6)
The subjected boundary conditions are
2 — b
u = cxr+ UUAO@ , v=0, DA@:ksa, DBa—:—ksa at y =0,
oy Y |,—o Jy dy
u—0, a—ay, b—0 asy— oo, (4.7)

where u and v are the velocity components along the x— and y— directions respectively, D4 and
Dp are the respective diffusion species coefficients of A and B, o, the tangential momentum
accommodation coefficient and A the molecular mean free path. The effective density p,,r, the
dynamic viscosity j,, the electrical conductivity o,r, the heat capacitance (pCp)ny and the

thermal conductivity k¢ of the nanofluid are given by

P = Py(L =) +ps9, (4.8)
s = [T g (49)

Inf _ 3(2-1)0
oy _H(?—;Jr?)f—(?—;—l)éf)’ (4.10)

Here ¢ is the nanoparticle volume fraction, s in subscript is for nano-solid-particles and f
in subscript is for base fluid. Denoting ay (a constant) and £(n) and h(n) the dimensionless

concentration and defining

n = \/%y, u=cxf'(n), v=—\/ewrf(n), a=apf(n), b=aoh(n), (4.11)

equation (4.3) is satisfied automatically and Egs. (4.4 — 4.7) reduce to

i f” + ff 2= derf - (1- ¢>2~5Mel‘;—’;ff’ =0, (4.12)
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S €~ lah? =0, (4.13)

%h” + fH 4+ ki€h?* = 0, (4.14)

f1(0) =1+ 5f"(0), f(0) =0, f'(c0)—0,
€'(0) = k26(0), &(c0) — 1,
SH(0) = —kq£(0), h(co) — 0, (4.15)

in which prime indicates the differentiation with respect to 7. Moreover the non-dimensional
constants in Eqgs. (4.12 — 4.17) are the porosity parameter A, the Hartman number M, the
Schmidt number Sc, the measure of the strength of the homogeneous reaction k1, the measure
of the strength of the heterogeneous reaction ko, the ratio of the diffusion coefficient ¢ and the

velocity slip parameter 8. These are defined as follows:

A:ﬁ’MzafB(%?SC:i’ kl:kc_ag7k —_— ks ﬁ, _&7 :2 O-UAO i?
cK cpy Dy c DaV ¢ Dy O vy
(4.16)
where
1
€1 = (4.17)

_ )25 (1 ps)’
(1-6)2% (1 -6+ o)
The diffusion coefficients of chemical species A and B are expected to be of a comparable size.

This leads to make a further assumption that the diffusion coefficients D4 and Dpg are equal,

i.e. to take § = 1 [73]. In this case we have from Egs. (4.15)

§(n) + h(n) =1 (4.18)
Thus Eqgs. (4.13) and (4.14) become
L / 2 _
S8 f€ — g1 - €)* =0, (4.19)
subject to the boundary conditions
€'(0) = k2£(0), &(o0) — 1. (4.20)
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The physical quantity of interest is the skin-friction coefficient C,y. It characterizes the surface

drag. The shearing stress at the surface of the wall 7, is given by

ou 1
= — —_— e 3. gl
v Hni By =0 (1—¢)25V prppczf(0). (4.21)

The skin friction coefficient is defined as

Cor = Topd (4.22)
2 w
2 1/
Cspv/Reg = —mf (0), (4.23)

in which Re, = wyx/v ¢ denotes the local Reynolds number.

4.2 Solutions derivation

We choose the initial guesses fo(n) and £y(n) and the linear operators £; and L¢ in the forms

1 1
— = (1 _ M — 1 _ Z,—ken
fol) = 5 (1= €, ol = 1= 3¢, (1.21)
Li(f)=1" =1 Le(§) =¢" =€, (4.25)
together with the properties
Ly [01 + o€ + 036_’7] = 0,
Le [cae” +c5e7] = 0, (4.26)

where ¢; — ¢5 are the constants.

We construct the zeroth order problems as follows:
(1L =)Ly [F0) = foln)| = phyNy[Fni )], (4.27)

(1= p)Le [£01p) — &oln)| = PheNelECnip), fm: ), (4:28)
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F(0:p) = 14+Bf"(0;p), f(0;p) =0, f'(c03p) =0,
E(0;p) = ka(0:p), E(ooip) =1, (4.29)

where p € [0,1] denotes an embedding parameter and Ay and he are the nonzero auxiliary

parameters. With Egs. (4.12) and (4.19), the definitions of operators Ny and N are

N [fmm)| = elagéﬂm) + f(n;p) 82];5;72;]9) - (afgz;p))2
—)\51%?;]9) (- ¢)2'5M51(;—7;f%2;m, (4.30)
Nelétnp) Forp) = oS iy KO ()
—k1&(;p) + 2k (€05 p))*. (4.31)
The resulting problems at m™ order are given by
Ly [fm(m) = X fm—-1(m)] = iy R .m(n), (4.32)
Le [€m() = Xm&m—1(0)] = heRem (), (4.33)

fm(0) = £1,(0) = Bf(0) = fr,(00) = £5,(0) — k2, (0) = &, (00) = 0, (4.34)

0, m<1
Xm™= ) (4.35)
1, m>1

m—1
On
Rfm (n —51f7/;{ 1t E fm 1- lfz m 1— zfz} )\51f7/nf1—(1—¢)2‘5M51—0fff1/nf1a (4.36)
1=0

1 !
Rem(n) = %é.;ln 1T E Em_1-1ft = k1&m_1 Zoﬁzfjﬁj +2k18,, 18| — k1€, (4.37)
‘7:
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where the general solutions are

fm(m) = fi(n) +c1+ c2e” +cze”,

Em(n) = En(n) +cae” +cse™, (4.38)

in which f;¥ and &, denote the special solutions. constants ¢; (i = 1 —5) can be determined

by the boundary conditions (4.34). They are given by

L [of*(n)  ,0%f*(n) _ ;
C3 1+ ﬁ |: 877 - 5 8772 :|,,]_0’ Cl = —C3 — f (O)a
_ R T R0 .
Cyg — C4— (), Cy — 1+ k‘g 377 o ka(O)] . (439)

4.3 Convergence of the homotopy solutions

Now the solutions of Egs. (4.12) and (4.19) subject to the boundary conditions (4.15) and
(4.20) are computed by means of homotopy analysis method. We choose auxiliary parameters
hy and he for the functions f and £ respectively. The convergence of obtained series and rate
of the approximation for HAM strongly depend upon the values of the auxiliary parameters.
For ranges of admissible values of iy and hg, the A—curves for 13t —order of approximations
are plotted in the Figs. (4.2 and 4.3). We can see that the permissible values of hy and h¢
for Cu—water are —1.6 < iy < —0.5 and —1.2 < g < —0.3 and for Ag—water are —1.6 <
hy < —0.6 and —1 < e < —0.1. Further, the series solutions converge in the whole region of 7

(0 <7m < o0) when hy = he = —1.
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Fig. 4.2: hi—curves of f”(0) and £'(0) for Cu-water when ¢ = 0.2, A = 0.4, ky = ko = 0.3,
M =Sc=05and g =1.
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Fig. 4.3: h—curves of f”(0) and £'(0) for Ag-water when ¢ = 0.2, A = 0.4, k; = ko = 0.3,

M =S8c=05and g=1.
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Table 4.1: Convergence of HAM solutions for different order of approximations when

¢=02,A=04, ki =ko =03, M = Sc=0.5and 8 = 1.

Order of approximations —f”(0)  ¢'(0)

1 0.5455 0.04916
5 0.5564 0.04835
10 0.5588  0.04788
15 0.5596  0.04755
17 0.5594 0.04736
20 0.5594 0.04736
25 0.5594 0.04736

4.4 Results and discussion

The effects of different parameters on the dimensionless flow and concentration profiles are

investigated and presented graphically in this section.

4.4.1 Dimensionless velocity profiles

Figs. (4.4 —4.7) exhibit the dimensionless velocity profiles for different values of nanoparticle
volume fraction ¢, Hartman number M, velocity slip parameter 8 and porosity parameter A.
Effects of volume fraction of nanoparticles (Cu and Ag) on the velocity profile f’ can be seen
from Fig. 4.4. Here the velocity profile and boundary layer thickness decrease when volume
fraction for the nanoparticles increases. The effects of Hartman number M on the velocity
f are depicted in Fig. 4.5. We analyzed that the velocity is reduced when we increase the
values of Hartman number. In fact applied magnetic field has the tendency to slow down the
movement of the fluid which leads to a decrease in the velocity and momentum boundary layer
thickness. Variations of velocity slip parameter 8 on velocity profile f’ can be seen in the Fig.
4.6. There is a decrease in velocity when velocity slip parameter 3 is increased. From Fig. 4.7,
we have seen that larger values of porosity parameter A correspond to the less velocity. Porosity
parameter depends on the permeability parameter K. Increase in porosity parameter leads to
the lower permeability parameter. This lower permeability parameter causes a reduction in the

fluid velocity.
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Fig. 4.4. Influence of ¢ on velocity field.
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Fig. 4.5. Influence of M on velocity field.
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Fig. 4.7. Influence of A on velocity field.




4.4.2 Dimensionless concentration profiles

Effects of the measure of strength of the homogeneous reaction k1, the measure of the strength
of the heterogeneous reaction ko and the Schmidt number Sc on the concentration profile £ are
shown in the Figs. (4.8 —4.10). Effect of k; on the concentration is analyzed in Fig. 4.8. It is
observed that increasing the measure of the strength of the homogeneous reaction k; decreases
the thermal boundary layer thickness. Fig. 4.9 illustrates the effects of ko on concentration
profile £&. There is an increase in concentration £ when the measure of the strength of the
heterogeneous reaction ks is increased. The behavior of Schmidt number Sc on the concentration

profile is similar to that of ky (see Fig. 4.10).

k1=0.3,05,0.7,0.9

0.7} / $=02,1=04,M=058=1,k=03,8c=0.5
/

0.6L / Solid line : Cu-water
% Dashed line : Ag-water
05
T2 4 6 8 10 1z 1 T

Fig. 4.8. Influence of k; on concentration field.
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Fig. 4.9. Influence of k2 on concentration field.
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0.9+
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Fig. 4.10. Influence of Sc on concentration field.
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4.4.3 Skin friction coefficient and surface concentration

Fig. 4.11 shows the skin friction coefficient f”(0) as a function of nanoparticle volume fraction
¢. The skin friction coefficient enhances with increasing values of ¢. The results of the skin
friction coefficient are examined for both types of nanofluids. We observe that the Ag—water
nanofluid gives a higher drag force opposite to the flow when compared with the Cu—water
nanofluid.

The variation of dimensionless concentration for different values of k1 and k9 are shown
in Figs. 4.12 and 4.13 respectively. From Fig. 4.12 it is observed that concentration at the
surface decreases as the strength of the heterogeneous reaction increases for different types of
nanofluids. One can see from Fig. 4.13 that £(0) decreases with the increase of homogeneous
reaction strength k;. Influence of Sc on £(0) for two different types of nanoparticles is shown
in Fig. 4.14. It is clear that the concentration decreases with an increase of Schmidt number.

In Table 4.3 some numerical values of skin friction coefficient are given for copper and silver
nanoparticles. Tabular values show that skin friction coefficient enhances by increasing ¢ and
M while it decreases for larger 5. Table 4.4 shows that surface concentration decreases by

increasing ki, ks, Sc and (5.

"(_D.}

24

: Solid line : Cu-water /
2.1 Dashed line : Ag-water /
2.0 &

: ¢=10.02,0.05,0.1 P 2

: il e /
1.6} — _ ~
1.4f -
1.2

: — : =)
0 4 5

Fig. 4.11. Influence of ¢ on skin friction coefficient.
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Fig. 4.12: Influence of k3 on surface concentration.
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Fig. 4.13: Influence of k1 on surface concentration.
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Fig. 4.14: Influence of Sc on surface concentration.

Table 4.2: Thermophysical properties of water and nanoparticles [21].

plkg/m?)  cp(j/kgk) k(W/m.k) Bx10°(K™Y) o(Qm)"!

Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver(Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Al203) 3970 765 40 0.85 1x10710
Titanium Oxide(7702) 4250 686.2 8.9538 0.9 1x 10712
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Table 4.3: Numerical values of skin friction coefficient for copper and silver when A = 0.4.

¢ M B Cspv/Rep for Cu  Csp/Re, for Ag

0.05 0.5 1.278 1.284
0.1 1.465 1.475
0.2 1.955 1.973
0.2 0.1 1.897 1.917
0.3 1.928 1.945

0.7 1.981 1.996

0.5 0.1 4.542 4.672

0.5 2.827 2.865

0.9 2.079 2.098

Table 4.4: Numerical values of surface concentration for copper and silver when ¢ = 0.2,

A=0.4and M =0.5.

ki ka Se B &) for Cu £(0) for Ag

0.5 0.4407 0.4413
1 0.4087 0.3997
1.5 0.3645 0.3761
0.3 0.5 0.4169 0.4173
1 0.3274 0.3321

1.5 0.2856 0.2741

0.5 04 0.4726 0.4675

0.7 0.4703 0.4561

1 0.4675 0.4532

0.5 0.1 0.4618 0.4619

0.5 0.4583 0.4537

0.9 0.4565 0.4502

4.5 Final remarks

This chapter investigates the MHD flow of nanofluid by a stretching sheet with homogeneous-

heterogeneous reactions. Convergent approximate solution is constructed. The following obser-
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vations are made:

e An increase in the values of ¢, M, 5 and X has similar effects on the velocity in a qualitative

sense.
e Concentration profile increases for larger k2 and Sc while it decreases when ky is increased.
e The values of skin friction coefficient are higher for Ag—water when ¢ enhances.

e Higher values of ki, k2 and Sc correspond to smaller values of dimensionless surface

concentration.
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Chapter 5

Impact of magnetohydrodynamics in
bidirectional flow of nanofluid
subject to second order slip velocity
and homogeneous-heterogeneous

reactions

This chapter addresses the steady three-dimensional boundary layer flow of viscous nanofluid.
The flow is caused by a permeable stretching surface with second order velocity slip and
homogeneous-heterogeneous reactions. Water is treated as base fluid and copper as nanoparti-
cle. An incompressible fluid fills the porous space. The fluid is electrically conducting in the
presence of an applied magnetic field. A system of ordinary differential equations is obtained
by using suitable transformations. Convergent series solutions are derived. Impact of various
pertinent parameters on the velocity, concentration and skin friction coefficient is discussed.
Analysis of the obtained results shows that the flow field is influenced appreciably by the pres-
ence of velocity slip parameters. Also concentration distribution decreases for larger values of
strength of homogeneous reaction parameter while it increases for strength of heterogeneous

reaction parameter.
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5.1 Model development

We consider the steady three-dimensional incompressible flow of nanofluid saturating porous
medium with permeability K. The porous medium features have been characterized by using
Darcy’s law. Material is water based nanofluid consisting of copper (Cu) as nanoparticle.
Flow is induced by a permeable stretching sheet at z = 0. An incompressible fluid occupies
z > 0. It is assumed that the sheet is stretched with velocities uw,, = cx and v,, = dy, where
¢, d > 0 are the stretching rates. A uniform magnetic field of strength By is applied in the
z—direction. Electric and induced magnetic fields are omitted. Flow analysis is carried out
with homogeneous-heterogeneous reactions. The homogeneous reaction for cubic autocatalysis

can be expressed as follows [73]:
A+2B — 3B, rate = keab?, (5.1)
while first-order isothermal reaction on the catalyst surface is presented in the form
A— B, rate = kga, (5.2)

where a and b are the concentrations of the chemical species A and B and k. and k; are the
rate constants. We assume that both reaction processes are isothermal. Using the nanofluid
model as proposed by Tiwari and Das [4], the boundary layer equations governing the flow can

be written as follows:

%Jrg—ZJr%—Z:O, (5.3)

Pnf <u% + vg—Z + w%) = ,unf% - %u — oy Bu, (5.4)
Prf <u% + vg—z + w%) = unf% - %v — onyBiv, (5.5)
u% v% w% = DAg2§ — keab?, (5.6)

u% + US_Z + w% = DBZ—ZZ + keab®. (5.7)
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The subjected boundary conditions are put into the form

U = Uy + Uslip, V= Uy + Vslip, W =wp, at z =70,

Oda ob
D—: D—:— —
A5 ksa, B ksa at z =0,
u—0,v—0, a—ay, b—0 asz— oo, (5.8)

in which u, v and w are velocity components along x—, y— and z— directions respectively, wg
is suction (wg < 0) or injection (wg > 0) velocity, D4 and Dp are diffusion species coefficients
of A and B and ag is positive dimensional constant. Effective density p,,r, dynamic viscosity

pnp and electrical conductivity o, ¢ of nanofluid are given by

png = ps(L—0) + pso, (5.9)
tng = T g (5.10)

Inf _ 3(2-1)¢
! 1+(;—;+2)f_(g_;_1)¢‘ (5.11)

Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript
is for base fluid. Also ug;yp is the slip velocity at the wall. The Wu’s slip velocity model (valid

for arbitrary Knudsen number, Kn ) is employed here as follows [60]:

— g3 —J2 2
P 2(3 kI° 31 I)Aﬁu 1<I4+ 2 (1—[2)>A2@

3 k2 Kn 0z 4 Kn2 922
= NI%—FNQ%,
- N?’%JFN‘*%’ (5.12)

where I = min [Kin,l], Kk is momentum accommodation coefficient with 0 < k < 1, A is
molecular mean free path and Kn is Knudsen number defined as mean free path A divided by

a characteristic length for the flow. Based on the definition of I, it is seen that for any given
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value of Kn we have 0 < I < 1. The molecular mean free path is always positive. Thus we

know that N, Ny < 0 and N7, N3 are positive numbers.

Making use of the following similarity transformations

u = cxf'(n), v=rcygd (), w=—Vev[f(n) +gmn)l,

n = \/gzv a:aog(n)v b:aoh(n)v

the continuity equation is satisfied automatically and Egs. (5.4 — 5.8) are reduced to
€1f”/ o f/2 + (f +g)f// o )\f/ o 51(1 o ¢)2.5M%f/ — O7
f
Elg”l . g/2 + (f +g)g// _ )\g/ _ 81(1 _ ¢)2.5M%g/ — 0,
f

ié” +(f +9)¢ = ki&h® =0,

S K4 (F+ g+ agh? =0,

f1(0) =1+ B1£"(0) + B2f"(0), ¢'(0) = v+ B39"(0) + Bag™ (0),
f(0) +g(0) =S, f'(c0) =0, ¢'(00) =0,

5/(0) = k2§(0)a 5h/(0) = _k2€(0)7 é(oo) - 17 h(OO) - Oa

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

where A is the porosity parameter, M is the Hartman number, ~ is the ratio of the stretching

rate along the y— direction to the stretching rate along the z— direction, 5, and (33 are the first

order slip velocity parameters, 35 and 8, (< 0) are the second order slip velocity parameters, S

is the suction/injection velocity parameter, Sc is the Schmidt number, k; is the measure of the

strength of homogeneous reaction, ¢ is the ratio of diffusion coefficient and ks is the measure of
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the strength of the heterogeneous reaction. These quantities are defined as follows:

o 1 Nz _O‘fBg _d
b (1—¢>2~5<1—¢+&¢>’ K T ey T
B = Nl,/ , By = N21/ 53—1\73,/ ﬁ4—N4,/
k D ks
S = - Sc = go bt 5 Ds oy ﬁ (5.19)
1/cu]e DA c Dy’ Dy

It is noticed that for § = 0 and 8 = 1 the two-dimensional and axisymmetric flows are respec-
tively noticed. Here it is assumed that diffusion coefficients of chemical species A and B to be
of a comparable size. This leads to make a further assumption that the diffusion coefficients

D4 and Dp are equal, i.e. 6 =1 [73] and thus

£(n) + hin) = 1. (5.20)
Now Egs. (5.16) and (5.17) yield
€4 ([ + ) — kgl - =0, (5.21)
with the boundary conditions
€'(0) = k2£(0), &(00) — 1. (5.22)

Skin friction coefficients along the x— and y— directions are defined as follows:
Cip = M’ Cpy = Twy (5.23)

where the surface shear stresses 7., and 7, along the x— and y— directions are given by

ou ov

Twr = /_Lnfg O, T’wy = ﬂnf& . (524)
z= zZ=
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Dimensionless skin friction coefficients are

1 1
Cro(Rey)'/? = 551"(0), Cry(Rey)'/? = 7 —=4"(0), (5.25)

(1-9¢)* (1-9¢)*

where (Re;)'/2 = z./c/v; and (Rey)'/? = y\/c/v; denotes the local Reynolds number.

5.2 Homotopic solutions

The initial approximations fy(n), go(n) and &y(n) and auxiliary linear operators L, £, and L¢

are taken as follows:

1

Y
+—
L+ By — By

(1—=e™), go(n) = m(l —e ), &o(n) =1- %67’@77 (5.26)

Jo(n) =S
Li=f"—f, Lyg=9g"—4¢, Le=E" ¢, (5.27)

Ly [e1+ coe 4 c3e7] =0,

Ly [04 + cs5e + 066_’7] =0,

Le [cre" + cse”] =0, (5.28)

in which ¢; (i = 1 — 8) are the constants.
If p € [0,1] indicates the embedding parameter and ff, hy and he the non-zero auxiliary

parameters then the zeroth order deformation problems are constructed as follows:

(L= p)Ls [f:p) = folm)] = NG F ). 5] (5.29)

(1= p)Ly [3(1:0) — go(m)] = phgNy[g(n;p), f(1: p)], (5.30)

(1= p)Le [E0p) = Soln)| = PheNelECrsp), F(m: ). 3 ), (5.31)
F1(0;p) = 1+ B1f"(0;p) + B2f"(05p), f(05p) = S, f'(00sp) =0, (5.32)
9'(0;p) = v+ B39"(0;p) + 843" (0;p), §(03p) =0, §'(00;p) =0, (5.33)
£(0;p) = kaf(0;p), E(00ip) = 1, (5.34)
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where the nonlinear differential operators Ny, Ny and N¢ are given by

BN 0 f (n; ofmn)\ s Pfip) 8 fn
Ny f(n;p),g(n;p)} = g J;E;;p)—( fg;”) + f(n;p) J;E:zp)%-g(n;p) f;;p)
n 8A )
- ()\ te(l- ¢)2‘5M(;—;> %, (5.35)

~ 83A . aA . 2 . aQA . 82A )
Ny f](n;p),f(n;p)} = & 98(77773’2)) —( gg;’p)) + f(n;p) 98(7;7271’) + il p) 98(77772,19)
257, 9nf \ 99(1; D)
— ()\ +e1(1—¢) MU_f) Tn, (5.36)
p; A 1 02 (n; . ¢ (n; X OE(n:
Ne [é0mp). o patnp)] = 5o 4 f ) 0L g p) L)

b (&) 2 () + (E0)”) . 30

Here m*" order deformation equations can be written in the forms

Ly [fmn(n) = XmSm-1(0)] = hfRpm(n), (5.38)
Ly [9m (1) = Xmgm-1(m)] = hgRgm(n), (5.39)
EE [fm(”) - Xmgm—l(n)] = ﬁ{Rﬁ,m(n)v (540)

with

fm(0) = B (0) = Baf(0) = fm(0) = f,(00) =0
Im(0) = B39 (0) = Bagm(0) = gm(0) = gy,(00) =0

Em(0) = k& (0) = &(00) =0, (5.41)

m—1
On
Riam (1) = e1fy1+ Y [Fnr-kfl = Fnor—pfi+ gm-1-x ]~ (A +e1(1— ¢)2‘5M0—ff> St
k=0

(5.42)

80



m—1

g
Ry () = ergm_1+ Y [fm-1-k0K = Tn1-49k + Gm-1-kGH] — <)\ +e1(1— ¢)2'5M0_Lff> Im—15
k=0

(5.43)
L oon R /
Rem(n) = S—fm—l — ki1t 2 |:£mflflfl +Em—1-191
¢ 1=0
l
—ky <§m1l Zoﬁzfjfj + 2§m1z§l>] ; (5.44)
J:
0, m <1
Xim= . (5.45)
1, m > 1
The general solutions (fy,, gm,&,,) comprising the special solutions (£, g% &) are
fmm) = fo(n) +c1+ c2e” + cze7,
gm(n) = gm(n) + s+ cse” + cge™,
Em(m) = &un) +core’ +cge™, (5.46)

where the constants ¢; (i = 1,2,...,8) through the boundary conditions (5.41) have the values

cg = c5=¢c=0, c1=—c3— f':m(o)a C4 = —Cg — 9;(0)7
o 1 (W;Z(n) 5 & fr(n) 5 83f;2(77)>
P Is -G\ o e o )|
o 1 (89;(77) 5 Pgn(n) 5 839%(?7))
0 1+ B3 — B4 n 5 on? oo =0 7
1 & (n) .
(&3 11 kQ ( 877 o - kggm(0)> . (5.47)

5.3 Convergence analysis

Homotopy analysis technique provides us great freedom and an easy way to adjust and control
the convergence region of the series solutions. The auxiliary parameters fiy, iy and he play
an important role for the convergence of the series solutions. Therefore, we have sketched the

Oth

h—curves at 10" —order of approximations (see Fig. 5.1). The admissible ranges of the auxiliary

parameters are —1.4 < iy < —0.2, —1.5 < Ay < —0.2 and —1.9 < fg < —0.8. Also the HAM
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solutions converge in the whole region of 7 (0 < 1 < 00) when Ay = iy = —1 and he = —1.2.
Table 5.1 shows the convergence of series solutions of momentum and concentration equations.

It is noted that 14" order of approximations are sufficient for the convergence of functions

f"(0), ¢"(0) and 6"(0).

| — ")

@ 1.0} T N gll (0) I:
E\J‘- AR (R B 1 0 ’,'
= 05] \ §'(0) :
S e
=DI]I . 1~‘
e 00f N
e . S N
~_psf

—1.00L . .

225 -20 -15 -10 -05 00 05 L0
iy, g

Fig. 5.1: h—curves for f”(0), ¢”(0) and ¢'(0) when ¢ = M = 0.5, A = 5 = v = 0.3,
S = 51 = Sc= 09, k:l = k:Q = 07, 53 = —0.3 and 164 = —-0.2.
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Table 5.1: Convergence of HAM solutions for different order of approximations when

dp=M=05A=By=~v=03,5=p8,=Sc=0.9, ki =k, =0.7, B3 = —0.3 and 3, = —0.2.

Order of approximations —f"(0)  —¢"(0) £ (0)

1 0.507202 0.200061 0.364126
b} 0.491527 0.198039 0.395551
10 0.491387 0.197965 0.396517
14 0.491389 0.197965 0.396476
20 0.491389 0.197965 0.396476
26 0.491389 0.197965 0.396476
30 0.491389 0.197965 0.396476
35 0.491389 0.197965 0.396476
40 0.491389 0.197965 0.396476
45 0.491389 0.197965 0.396476

5.4 Results and discussion

This section presents the behavior of various involved parameters on the velocities along x—
and y— directions and concentration in the form of graphical and tabulated results (see Figs.

(5.2 — 5.15) and Tables (5.2 — 5.5)).

5.4.1 Dimensionless velocity profiles

The effects of nanoparticle volume fraction ¢ on both the z— and y— components of velocity f’
and ¢’ are depicted in Fig. 5.2. It is observed that velocity profiles decrease when ¢ is increased.
Behaviors of porosity parameter A\ on velocity profiles f' and ¢’ are displayed in Fig. 5.3. An
increase in the porosity parameter leads to the lower permeability parameter which decreases
the fluid motion. Hence velocity profiles decreases. Fig. 5.4 displays the velocity profiles for
different values of M. The applied magnetic field has the tendency to slow down the movement
of the fluid which decreases the velocities and momentum boundary layer thickness. Influence
of suction/injection velocity parameter S on f’ and ¢’ can be visualized in the Fig. 5.5. It is
obvious that an increase in S reduces the velocity fields. Here applying suction leads to draw

the amount of the fluid particles into the wall and consequently the velocity fields decrease.
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From Figs. (5.6 —5.9), we have seen that larger values of first order slip velocity parameters
and magnitude of second order slip velocity parameters correspond to lower velocity. With an
increase in slip velocity parameter, stretching velocity is partially transferred to the fluid so
velocity profile decreases. Fig. 5.10 illustrates the impact of stretching rates ratio v on the
velocity fields. Increasing values of v indicates higher rate of stretching along the y— direction
in comparison to z— direction. Therefore the velocity along z— direction f’ decreases and

velocity along y— direction ¢’ increases when stretching rates ratio is increased.

04 M=[;=0.5.8=8=8c=009, 8, =-0.3,

.l='}-‘= U.S, ﬁ4 = -U.Z, kl =kg =0.7

£'(77).2'(37)

Fig. 5.2: Variation of ¢ on f'(n) and ¢'(n).
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Fig. 5.3: Variation of A on f'(n) and ¢'(n).
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Fig. 5.4: Variation of M on f’(n) and ¢'(n).
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Fig. 5.6: Variation of 8, on f’(n) and ¢'(n).
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5.4.2 Dimensionless concentration profiles

Figs. (5.11—5.13) exhibit the dimensionless concentration profile for different values of measure
of the strength of homogeneous reaction k1, measure of the strength of heterogeneous reaction
ko and Schmidt number Sec. Effect of the strength of the homogeneous reaction ki on the
concentration is analyzed in Fig. 5.11. There is a decrease in concentration when k7 is increased.
Fig. 5.12 illustrates the variation of measure of the strength of heterogeneous reaction ko on
concentration field £&. Here concentration profile enhances with an increase in ko. Effect of
Schmidt number Sc¢ on concentration profile is shown in Fig. 5.13. Increasing behavior of
concentration profile is noted for larger Schmidt number. In fact Schmidt number is the ratio
of momentum diffusivity to mass diffusivity, so higher values of Schmidt number correspond to

small mass diffusivity. Therefore concentration profile increases.

1.0

0.9}

0.8

&)

0.7}

06l /) 6=M=p3=05,8,=5=5c=09, f,=-03, |
)] A=y=03,B83=-02.k =07 ]
0.5 :

o 1 2 3 4 56
n

Fig. 5.11: Variation of k; on £(n).
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Fig. 5.13: Variation of Sc on £(n).
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5.4.3 Surface concentration and skin friction coefficient

The variation of dimensionless wall concentration £(0) for different values of the strength of het-
erogeneous reaction parameter ko, strength of homogeneous reaction parameter k; and Schmidt
number Sc are shown in Figs. 5.14 and 5.15 respectively. One can see from these Figs. that
£(0) decreases with the increase of the parameters k; and ko. Some thermophysical proper-
ties of water and nanoparticles are given in Table 5.2. Effects of nanoparticle volume fraction
for different types of nanofluids on skin friction coefficient along x— and y— directions are
presented in Tables 5.3 and 5.4. Here we see that magnitude of skin friction coefficient in-
creases with the increase in ¢. Numerical values of skin friction coefficient for different values
of first and second order slip velocity parameters, porosity parameter, Hartman number and
suction/injection parameter are presented in Table 5.5. It is noted that the skin friction coef-
ficients decrease for increasing values of first order slip velocity parameters and magnitude of
second order slip velocity parameters while it increases for larger porosity parameter, Hartman

number and suction/injection parameter.

0.3} k,=03,0.6,09,1.5 :

0o 1 2 3 4 5 6
Se

Fig. 5.14: Variations of k1 and Sc on £(0).

91



=
L=
T

=
n
T

=
=
T

E:l
| ]
T

=
[a—
T

00 05 10 15 20 25 30

Sc
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Table 5.2: Thermophysical properties of water and nanoparticles [21].

p(kg/m?)  cp(j/kgk) k(W/m.k) Bx10°(K™') o(Qm)~!

Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver(Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Al,03) 3970 765 40 0.85 1x 10710
Titanium Oxide(Ti05) 4250 686.2 8.9538 0.9 1x 10712

Table 5.3: Effects of the nanoparticle volume fraction for different types of nanofluids on
skin friction coefficient along z—direction when M = 3 =0.5, A =7 =0.3, 5 = 3; = Sc = 0.9,
k1 =ke=0.7, By = —0.3 and 5, = —0.2.

¢ Cu Ag Al>O3 Ti0

0.1 —0.6555 —0.6543 —0.6516 —0.6521
0.2 —-0.8795 —0.8757 —0.8684 —0.8703
03 —1.229 —1.226 —1.191 —1.195
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Table 5.4: Effects of the nanoparticle volume fraction for different types of nanofluids on
skin friction coefficient along y—direction when M = 3 =05, A=7=0.3, S = 3; = Sc = 0.9,
kl = kQ = 07, 52 = —0.3 and /64 =—0.2.

¢ Cu Ag AlQOg T’iOg

0.1 —-1.704 —-1.714 -1.645 —1.650
0.2 —-2296 -—-2310 -2.164 —2.176
0.3 —-3.184 -—-3.215 -2.906 —-2.931
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Table 5.5: Numerical values of skin friction coefficient for different values of 5, 85, 53,

B4y A, M and S.

B Ba B3 B4 A M S _Cffc(Rex)l/2 _ny(Rey)l/2

03 -03 05 -02 03 05 09 3.979 6.896
0.5 3.477 6.863
0.7 3.089 6.837
0.9 -0.1 3.203 6.844
—0.2 2.974 6.829
-0.3 2.779 6.815
-0.3 0.1 2.789 9.314

0.4 2.781 7.306

0.7 2.776 6.008

05 —-0.1 2.781 7.403

-0.3 2777 6.19

-0.5 2.774 5.526

—-0.2 0.1 2.748 6.641

0.4 2.791 6.887

0.5 2.802 6.949

0.3 0.3 2.774 6.784

0.7 2.784 6.845

0.9 2.789 6.871

05 0.2 2.592 5.906

0.4 2.656 6.199

0.7 2.737 6.691

5.5 Conclusions

Here flow of Cu-water nanofluid induced by bidirectional stretching surface is investigated. The
effects of homogeneous-heterogeneous reactions and second order velocity slip are also taken

into account. The key points are summarized as follows:
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Velocity profiles f” and ¢’ are decreasing functions of velocity slip parameters and nanopar-

ticle volume fraction.
The velocity component f’ decreases while ¢’ increases for larger stretching rates ratio.

Concentration of the reactants decreases for higher values of strength of homogeneous

reaction parameter.

Strength of heterogeneous reaction parameter results in the enhancement of concentration

profile.
There is an enhancement in concentration profile when Schmidt number increases.

Concentration at the surface decreases for increasing values of the strengths of homoge-

neous and heterogeneous reaction parameters.

Skin friction coefficients decrease for increasing values of first and second order velocity

slip parameters.
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Chapter 6

Effects of
homogeneous-heterogeneous
reactions in flow of magnetite-Fe3;0O,

nanoparticles by a rotating disk

This chapter investigates the flow of ferrofluid due to a rotating disk in the presence of homogeneous-
heterogeneous reactions. Water is used as base fluid while magnetite-Fe3O4 as nanoparticle.
Fluid is electrically conducting in the presence of applied magnetic field. Effects of viscous
dissipation are also considered. Appropriate transformations reduce the nonlinear partial dif-
ferential system to ordinary differential system. Convergent series solutions are computed for
the resulting nonlinear problems. Effects of different parameters on the velocity, temperature
and concentration profiles are shown and analyzed. Computations for skin friction coefficient
and Nusselt number are presented and examined for the influences of pertinent parameters. It
is noted that concentration distribution decreases for larger values of strength of homogeneous
reaction parameter while it increases for strength of heterogeneous reaction parameter. Skin
friction coefficient and rate of heat transfer are enhanced when the strength of magnetic field

is increased.
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6.1 Model development

Here we consider an incompressible flow of ferrofluid induced by a rotating disk at z = 0.
Magnetite—Fe3O4 nanoparticles in water are known as ferrofluid. The disk rotates with constant
angular velocity Q about the z—axis. Components of flow velocity are (u, v, w) in the direction
of increasing (r, O, z), respectively. A uniform magnetic field of strength By is applied parallel
to the z—axis. It is assumed that the induced magnetic field and the electric field effects are
negligible. Effects of viscous dissipation are taken into account. The disk is kept at uniform
temperature T;, while temperature far away from the disk is T. In view of the rotational
symmetry, the derivatives in the azimuthal direction are neglected. Flow analysis is carried out
with homogeneous-heterogeneous reactions of two chemical species A and B. The homogeneous

reaction for cubic autocatalysis can be expressed as follows [73]:
A+2B — 3B, rate = k.ab?, (6.1)
while first-order isothermal reaction on the catalyst surface is presented in the form
A— B, rate= ksa, (6.2)

where a and b are the concentrations of the chemical species A and B and k. and k, are the rate
constants. We assume that both reaction processes are isothermal. Under these assumptions

the relevant mass, momentum, energy and concentration equations are

ou u Ow

%_ﬁ % —_8_P+ @4_1@_& @ _ 32 (64)
Prf\"er ~ 7 T2 ) T Tar T\ Trer T 2 T 922 Tnf 20t '
ov  wv ov v 10v v 9
P <“a_ i “@) = Hns (ﬁ e ¢ m) “onsBov, - (65)
8_w+ 8_w —_a_P+ 82_w+18_w+82_w (66)
Prf\"ar "oz )T "oz Tt \ G Ty T2 ) '
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or . or _ PT 10T TN  py |y [ (0u Z(E)Z o
Yor TV T M\ T rer T 9.2 (pcp)nf or r 0z
d ro\\? v\ > ou  ow\?
+<7E (;>> +<a—> +<&+E> ] (6.7)

2 2
u@ma—z =Dy <@+1@+%> — keab?, (6.8)

or 0 orz  ror 022
8b b 9% 10b 0%
Z D — 4= cab? :
Up +Wo B(8r2+r8r+82>+kab (6.9)
with boundary conditions
b
u=0,v=rQ, w=0, T ="T,, DA@:ksa, Dga—:—ksaatz:O,
0z 0z
u—0,v—0 T—Ty, a—ag, b— 0asz— oo, (6.10)

where P is the pressure, T is the temperature, ayf = kpf/(pc)n s is the thermal diffusivity and
ag is the positive dimensional constant. The effective nanofluid dynamic viscosity p,, ¢, density

P> heat capacity (pcp)nt, thermal conductivity k,¢ and electric conductivity o, are taken as

follows:
I

I W, (6.11)
Png = (1 =)oy + dps, (6.12)
(Pcp)nf =(1- ¢)(pcp)f + ¢(Pcp)87 (6.13)

kg (ks +2ky) — 2¢(ky — k)
kp (ke t 2kp) T 6(ky — k) (6.14)

3(2 -1

Il 14 <Uf ) ’ (6.15)

o (Eme)-(Ee
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where ¢ denotes the solid volume fraction of nanoparticles, s in subscript is for nano-solid-

particles and f in subscript is for base fluid. We now consider transformations

0 ~
u=rQf(n), v=rQg(n), w=\/viQH(n),n= \/V—fz, P — Py = psrsQP(n),

T-Tw

=T T

, a=ap&(n), b=aph(n). (6.16)
Equations (6.3) — (6.10) after using Eq. (6.16) can be reduced as follows:

H' +2f =0, (6.17)

1
(1=¢)> (1-6+0L

Inf
" f2 2_[— %7 \Mf=0 6.18

1
(1= (1- 0 +02

Inf
" ! gf

¢ —Hg —2fg— | —2L— | Mg =0, 6.19
) (1—¢+¢—i§f> (6.19)

L kg <1 PSP C”)S> HO + —EC (f’2 +g%+ %(W + 2H’2)) =0, (6.20)

ek s ) 1T TP :
1 1 !/ _
Lo me—nai-o (6.21)
J " / 2
o 1" = HI + kagh? = 0, (6.22)
H(0) = 0, f(0)=0, g(0) =1, 6(0) =1, £'(0) = k2£(0), dh'(0) = —k2h(0),
f(oo) — 0, g(co) — 0, O(c0) — 0, £(c0) — 1, h(o0) — 0, (6.23)

where M = afBg/pr is the Hartman number, Pr = v¢/ay is the Prandtl number, Fc =
(r0)?/(Ty — To)(cp) 5 is the local Eckert number, Re, = r2Q/v; is the local Reynolds number,
Sc =vy¢/Dy is the Schmidt number, k; = a%kc /€ is the measure of strength of homogeneous
reaction, 0 = Dp/D 4 is the ratio of diffusion coefficient and kg = ks\/VF /D 4V Q is the measure
of strength of the heterogeneous reaction.

Here it is assumed that diffusion coefficients of chemical species A and B to be of a compa-

rable size. This leads to make a further assumption that the diffusion coefficients D4 and Dpg
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are equal, i.e. 4 = 1 and thus

§(n) + h(n) = 1. (6.24)
Now Egs. (6.21) and (6.22) yield
1, / 2
o8 T HE —kg(l - §)” =0, (6.25)
with the boundary conditions
£(0) = k2t (0), €(o0) — 1. (6.26)

The important physical quantities of interest in this problem are the local skin-friction coefficient

Csy and Nusselt number Nu which are given by
2 2
VTr T 7o rq
Coyp=~———, Nu=——""— . 6.27
Ty by (T — To) (627
where the surface radial stress 7,, tangential stress 7¢ and heat flux ¢, are given by

ou
Ty = /Lnf%

ov
Teo = ﬂnf&

or

= . 2
"ozl (6.28)

Qw:_k

Y Y
z=0 2=0

In dimensionless form the local skin friction coefficient C,; and Nusselt number Nu can be

written as follows:

L PO g OF Nu®e) 2= Flg0)  (629)

1/2 _
Cos(Rer) " = (1—-9¢) ky

6.2 Solutions procedure

Initial approximations Ho(n), fo(n), go(n), 6o(n) and £y(n) and auxiliary linear operators L,
Ly, Ly, Lo and L¢ are taken in the forms

Ho(n) =0, fo(n) =ne™", go(n) =e™", Oo(n) =€, {5(n) =1 - %e‘kz”, (6.30)

EH:Hla Ef:f”_f7 Egzg,/_% £9:6”—9, E,E:g”_f, (631)
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subject to the properties

Lglen] = 0
Lilcoe +c3e”] = 0,
Lylcae" +cse”] = 0,
Loylcge + cre™] = 0,
Lelcge™ +cge™] = 0, (6.32)

in which ¢; (i =1 —9) are the constants.
If p € [0, 1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:

(1 —p)LuH(n,p) — Ho(n)] = phaNu[H(n,p), f(n,p), §(n,p)], (6.33)
(1 —p)Ls[f(n,p) — fo(n)] = phyNy(f (n,p), H(n,p). §(n, )], (6.34)
(1= p)Lyld(n, ) — go(m)] = PligNy[g(n,p), f(n,p), H(n,p)], (6.35)

(1 = p)Lol0(n, p) — 6o(n)] = pheNal0(n, p), H(n,p), f (1, ), §(n, p)], (6.36)
(1= p)Lel€(np) — &o(m)] = PheNe[E(n, ), H (n,p), f(n, ), §(n, p), (6.37)

H(O,p) = 0, f(0,p) =0, §(0,p) =1, 6(0,p) =1, £ (0,p) = ka(0, p),

f(oo,p) = 0, g(oo,p) =0, B(c0,p) =0, &(c0,p) =1, (6.38)

where fig, hiy, hy, hg and he are the nonzero auxiliary parameters and the nonlinear operators

N, Ny, Ny, Ny and N¢ are given by

R (6:39)
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1 2f(n,p) 4 f(m.p)  (; 2
N = - H ) - a5 )
! (1— )25 (1 o+ ¢%;) on2 (n,p) on <f(77 p))
Tng
+(g(n,p))* — (J—f> M f(n,p), (6.40)
L—¢+ o5
1 g(n.p) 4 99(n,p) 2 .
N = - H ) —_— -2 ) )
g 1 ope <1 Ton ¢Z—f> on? (n,p) n f(n,p)g(n,p)

= (—_ ) Mg(n,p), (6.41)

of
1—¢+o5

~ ~ ~ 2
1 kg 9%0(n,p) (pcp)s \ 7 99(n, p) Ec af(n,p)
No = Bk, o <1 ot ¢(PCZ)f> HOLD) =5, =+ T =g [( o )

- 2 ] 2
(2 L ( () +2(202) )] , 612

02¢ . 9¢ . )
Ne= % %S;?ép) B H(”’p)$ — k1€(n, p) (1 - é(n,p)>2- (6.43)

The resulting problems at m*” order can be presented in the following forms

L [Hn(M) = XmHm—1(n)] = AaRem(n), (6.44)
Li[fm(M) = XmSm—1(0)] = hyRpm(n), (6.45)
Ly [gm(n) = Xmgm—-1(n)] = hyRg.m(n), (6.46)
Ly [0m(n) = XinOm—1(n)] = hgRo.m(n), (6.47)
Le [£0(1) = Xm€m—1(n)] = MeRe m(n), (6.48)

RH,m (77) = H;nfl + 2fm—17
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=

m

1

Rym (n) . fomn1 — [Hp—1—ift + fr—1—kSk — 9m—1-k0k)
(1-6)2% (1- 0+ 02) ]
Onf
— | —Z— | M frns (6.51)
& m )
(1 —¢F (bpf )
Rgm (1) ! Im—1— 5 [Hyp—1-k9% + 2fm—1-k9k]
g.m m— m—1— m—1—
(1= (1— 0 +02) 0
Inf
| —Z— | Mgy (6.52)
ps m )
(1_¢+¢E)
1 knf " < (pcp)8> ml / Ec m=l / /
R,m = 5.7 Um_1— 1_¢+¢— Hm——9+ fmfff
0 (Tl) Pr kf 1 (pCp)f kz::() 1-kVg (1 _¢)2_5 kZ::[) |: 1-kJk
1
+m-1-k9k + g (fm-r-nfi + 2H;n1kH,;)] : (6.53)
1, m-l) l
R&m(n) = §§m71 = > | Homo1-1€e — k1 | S Z §l-j€j — 281104 — k1€t
k=0 7=0
(6.54)
0, m <1
Xm= : (6.55)
1, m>1

The general solutions (Hy,, fm, 9m, Om, &,,) comprising the special solutions (HY,, f, g%, 05,

&) are

Hy(n) = Hy,(n) + c1,
fm(m) = fru(n) + c2e™ + cze™,
gm() = g (n) + cae” +cse””,
Om(n) = 05, (n) + coe” + cre™,

Em(m) = &n(n) + cse” + coe™, (6.56)

103



where the constants ¢; (¢ = 1 — 9) through the boundary conditions (6.49) have the values

co = —H)0), o=ca=ce=cs=0, cg=—f(0), c5s =—g,(0),
o L og,(m) .
Ccr = Qm(O), Cg = 1+ /{72 877 o kggm(()) . (6.57)

6.3 Convergence of series solutions

The auxiliary parameters hy, hy, hy, hy and h¢ play an important role for convergence of

series solutions. The hA—curves are sketched at 10*—order of approximations to obtain valid

ranges of these parameters (see Fig. 6.1). Permissible values of the auxiliary parameters

are —1.1 < hy < —0.7, —=1.1 < Ay < —06, 1.2 < Ay < —0.6, —1.1 < hy < —1 and
—1.5 < he < —0.5. Further the series solutions converge in the whole region of 1 (0 < 7 < 00)
when hy = hy = —0.7 and hy = hy = he = —1. Also Table 6.1 ensures that the series solutions

are convergent up to four decimal places.
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Fig. 6.1: The hi—curves for H”(0), f/(0), ¢’(0), ¢’(0) and £'(0) when M = ky = kg = 0.3,
¢=0.2,Pr=6.2, Ec=0.7 and Re, = Sc =0.9.
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Table 6.1: Convergence of HAM solutions for different order of approximations when

M=k =ky=03,¢90=0.2, Pr=6.2, Ec= 0.7 and Re, = Sc=0.9.

Order of approximations —H"”(0) f'(0) —g4'(0) €(0)  £(0)

1 1.400  0.4754 0.9230 0.1656 0.1349
5 0.8466  0.4276 0.7790 1.343 0.1260
10 0.8832  0.4420 0.7672 1.660 0.1208
15 0.8863 0.4434 0.7680 1.797 0.1194
20 0.8858 0.4429 0.7683 1.830 0.1190
26 0.8858 0.4429 0.7683 1.839 0.1193
30 0.8858 0.4429 0.7683 1.839 0.1193
35 0.8858 0.4429 0.7683 1.839 0.1193

6.4 Discussion

The effects of different parameters on the dimensionless velocity, temperature and concentration
are examined graphically in this section. Effects of Hartman number M on the axial velocity
profile H(n) can be seen from Fig. 6.2. Here negative values of H(n) indicate downward flow
in the vertical direction. As the magnetic field has the tendency to slow down the movement
of the fluid which leads to a decrease in the velocity and momentum boundary layer thickness.
Fig. 6.3 illustrates the behavior of M on the radial component of velocity f(n). There is a
decrease in velocity and associated boundary layer thickness when M is increased. Also flow
distribution is parabolic and positive values of f(n) indicate radially outward flow. Fig. 6.4
depicts the distribution of azimuthal velocity g(n) at various values of M. It is observed that
g(n) is decreasing function of Hartman number M.

Influence of Hartman number M on the temperature profile 6(n) is analyzed in Fig. 6.5.
Since Lorentz force is a resistive force which opposes the fluid motion therefore heat is produced
and consequently thermal boundary layer thickness increases. Fig. 6.6 shows that temperature
is an increasing function of nanoparticle volume fraction ¢. It is because of the fact that
when the volume fraction of nanoparticles increases, the thermal conductivity enhances and
consequently thermal boundary layer thickness increases. Variations of Eckert number Fc¢ on

temperature profile (7)) can be seen in Fig. 6.7. When FEc is increased the temperature profile
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first rises to a maximum value and then it asymptotically approaches to zero. It reveals that
"Sparrow-Gregg type Hill" phenomenon exists in the presence of viscous dissipation. Fig. 6.8
represents the effect of rotational Reynolds number Re, on temperature profile 6(n). Here the
temperature profile and thermal boundary layer thickness decrease when Re, is increased.

Fig. 6.9 shows the impact of strength of homogeneous reaction parameter k; on the concen-
tration profile £(n). Concentration decreases since the reactants are consumed during homoge-
neous reaction. Influence of strength of heterogeneous reaction parameter ko on the concentra-
tion distribution is analyzed in Fig. 6.10. It is noted that for higher values of ks the diffusion
reduces and less diffused particles enhance the concentration. Influence of Schmidt number Sc
on concentration profile £(n) is shown in Fig. 6.11. Increasing behavior of concentration profile
is noted for larger Schmidt number. In fact Schmidt number is the ratio of viscous diffusion rate
to molecular diffusion rate. Therefore higher values of Schmidt number correspond to higher
viscous diffusion rate which in turn increases the fluid concentration.

Fig. 6.12 presents the skin friction coefficient C; f(ReT)l/ 2 as a function of nanoparticles
volume fraction ¢ for different values of Hartman number M. When ¢ increases the magnitude

of Csf(Re,)'/? grows in nonlinear way. Also magnitude of Cyf(Re;)"/?

is directly proportional
to M. Fig. 6.13 shows local Nusselt number Nu(Re,)~'/2 as a function of ¢ at different values
of Re,. There is an increase in the magnitude of Nu(Re,)" /2 when ¢ is increased. While
magnitude of Nu(Re,)"'/? has inverse relationship with Re,..

Variations of surface concentration £(0) via nanoparticles volume fraction ¢ for different
values of the strength of homogeneous reaction parameter k; and strength of heterogeneous
reaction parameter kp are shown in the Figs. 6.14 and 6.15. One can see from these Figs. that
€(0) decreases with the increase of k1 and kg. It is in view of the fact that surface concentration
reduces due to the consumption of reactants during homogeneous-heterogeneous reactions.

Some thermophysical properties of water and magnetite FesO4 are given in Table 6.2. In
Table 6.3 we compared the results of f/(0), ¢’(0), H(co) and 6'(0) with existing literature in
limiting sense. Obtained results are in good agreement. Table 6.4 includes the values of local
Nusselt number Nu(Re,)~/? for different values of ¢, M and Ec. It is noted that heat transfer

rate enhances by increasing N u(Rer)_l/ 2 for different values of ¢, M and Ec.
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Table 6.2: Thermophysical properties of water and magnetite FezOy.

p(kg/m® ¢, (J/kgK) k(W/mK) o(Qm)!
Water 997.1 4179 0.613 0.05
Fe3O4 5180 670 9.7 25000

Table 6.3: Comparison of present results with previously published works when M = ¢ =

Ec=0.
Kelson and Desseaux [53] Bachok et al. [54] Turkyilmazoglu [56] Present
1(0) 0.510233 0.5101 0.51023262 0.5102
—4'(0) 0.615922 0.6158 0.61592201 0.6160
—H () 0.884474 — 0.88447411 0.8843
—6'(0) — 0.9337 0.93387794 0.9335

Table 6.4: Numerical values of Nusselt number Nu(Re,)~/2 for different values of ¢, M
and Fc when Pr = 6.2 and Re, = 0.9.

¢ M Ec —%L0(0)
0 03 07 —1.189
0.05 —1.532
0.1 —1.847
02 0.5 —2.853
0.7 —3.065

1 —3.391

0.3 04 —1.229

0.6 —2.327

0.8  —3.549

6.5 Main points

Here flow of ferrofluid induced by a rotating disk is investigated. Effects of homogeneous—
heterogeneous reactions and viscous dissipation are also taken into account. The following

observations are made.
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The axial, radial and azimuthal velocity profiles are decreasing functions of Hartman

number.

Opposite behavior of homogeneous and heterogeneous reaction parameters are seen on

the concentration profiles.
Surface drag force has direct relationship with the strength of magnetic field.

Heat transfer rate rises for increasing values of nanoparticles volume fraction, Hartman

number and Eckert number.

Surface concentration decreases for both the strength of homogeneous reaction and het-

erogeneous reaction parameters.

There is an excellent agreement between present and previously published results in lim-

iting case when M = ¢ = Fc= 0.
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Chapter 7

Melting heat transfer in the MHD
flow of Cu-water nanofluid with

viscous dissipation and Joule heating

An analysis has been carried out in this chapter for the characteristics of non-uniform melting
heat transfer in the boundary layer flow of nanofluid past a stretching sheet. Water is treated
as a base fluid and copper as nanoparticle. An incompressible fluid saturates the porous space.
Effects of viscous dissipation and Joule heating are also examined. Fluid is electrically conduct-
ing in the presence of applied magnetic field. Appropriate transformations reduce the nonlinear
partial differential system to ordinary differential system. Convergent series solutions are com-
puted for the velocity and temperature. Effects of different parameters on the velocity and
temperature profiles are shown and analyzed. It is revealed that an increase in the melting
parameter increases the velocity and decreases the temperature. Impact of different parameters
on skin friction coefficient and Nusselt number are computed through numerical values. It is
concluded that temperature gradient at the surface increases for higher Hartman number and

nanoparticle volume fraction.
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7.1 Problem development

We consider the steady two-dimensional incompressible flow of nanofluid past a stretching
sheet situated at y = 0. We have taken x— and y— axes along and perpendicular to the sheet
respectively. Flow is confined to y > 0. It is assumed that the velocity of the stretching sheet is
uy(x) = cx, where ¢ is a positive constant. We have chosen To, > T), where T,;, = Too — ax? is
the non-uniform temperature of the melting surface and Ty, is the ambient temperature. Also a
uniform magnetic field of intensity By acts in the y—direction. The magnetic Reynolds number
is assumed to be small so that the induced magnetic field is negligible in comparison with the
applied magnetic field. We incorporate the Joule heating and viscous dissipation effects in the
energy equation. The continuity, momentum and energy equations which govern such type of

flow are written as:

ou Ov
—+=—=0 7.1
ou ou 9%u Ung anfBg
— — = Upfe—s — —UuU — ——u, 7.2
Yoz Vg ToE T K oo " (7.2)
or AT PT g <8u>2 onfB3
U— +v— = Qpf—= + — ——u”. 7.3
R T R S AT B (73)
The subjected boundary conditions are
u = uUy=cx,v=0 T=T, at y=0,
u — 0, T—Tsx asy— 00, (7.4)
and
oT
knp | = = ppy U+ cs(Tin — To)v(z, 0)] (7.5)
oy y=0

where v and v are the velocity components along the x— and y— directions respectively, K is the
permeabilty of porous medium, c is the stretching constant, I' = I'gz? is the non-uniform latent
heat of the fluid and ¢ is the heat capacity of the solid surface. The boundary condition (7.5)
shows that the heat conducted to the melting surface is equal to the heat of melting plus the
sensible heat required to raise the solid temperature Ty = T, — ba? to its melting temperature

T,
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The effective nanofluid dynamic viscosity p,,r, density p,,r, thermal diffusivity a,y, heat

capacitance (pcp)ns, thermal conductivity k,y and electrical conductivity o,y are

Yoy = (1}% (7.6)

Png = Pl = @)+ pso, (7.7)

g = 7 plzz;nf, (7.8)

(pep)ng = (pcp) (1 — @) + (pcp)sd (7.9)
o= T § (710)

3(2-1)0
7 (= +2)f (2-1)0 i

where ¢ denotes the solid volume fraction of nanoparticles. Here the subscripts nf represents

the thermophysical properties of the nanofluid, f explains base fluid and s is defined as nano

solid particles. We now introduce the following similarity transformations

T—-T,
u=cxf'(n —vvref(n) \/gy» 0n) = 77— (7.12)

Now Eq. (7.1) is satisfied automatically and substituting Eq. (7.12) into Egs. (7.2) and (7.3),

we get the following ordinary differential equations:
S (7= A) = R = Me (1= 9> 2 =, (7.13)
!

1k, n
ﬁk_f@ (1—¢)250" + fO0' —2f'0 4+ 2f + g EcM (1 — ¢)*° %f’z +exFcf =0, (7.14)
[ f

where prime indicates the differentiation with respect to n, A is the porosity parameter, M is
the Hartman number, Pr is the Prandtl number and E'c is the Eckert number. These quantities

are defined as

2 2
vy 07 Bo v PfUw psc
A=—L M= pPr=—"L Ec= = 7.15
K Py o (pep)f(Too = Tm) — (pep)sa (719
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The boundary conditions (7.4) and (7.5) become

F0) = 1, e3Prf(0)+ =Legr0) = 0, 6(0) = 0,

fl(0) = 0, 6(c0) — 1, (7.16)

where € is the dimensionless melting parameter

Cf(Too — Tm) Cfa,
€ = = =,
I'+c(Tm —To) T+ csh

(7.17)

which is a combination of the Stefan numbers c¢(To — T)/I" and cs(T,, — Tp) /T for the liquid
and solid phases, respectively. When ¢ = 0 we obtain the governing equations for a viscous

fluid. Also

1 B 1
(1—¢)2-5(1—¢+§Tj¢)’ 2T (1—¢)2'5<1—¢ %}% >

£ = Les=1—0+ 20 (718
Py

Local skin friction coefficient Cy and Nusselt number Nu are given by

Tw Tqw
Ciyg=—— Nu=—"" 7.19

where the surface shear stress 7, and wall heat flux ¢, are given by

ou or
T = ae Qo = — kpp— ) 7.20
Ky f 8y y—0 f 8y 40 ( )
By using the above equations we get
Cyf(Rey)Y? = 1 £7(0), Nu(Re,)~Y/2 = —@9’(0) (7.21)
(1— ¢)25 ’ ks )

where Re, = x+/a/vy is the local Reynolds number.
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7.2 Homotopic solutions

The initial approximations fo(n) and 0g(n) and auxiliary linear operators Ly and Ly are taken

as follows:
Jolm) =1—¢""— s fo(n) =1—e™" (7.22)
k:f63 Pr’ ’
;Cf — f/// _ j:'/7 £0 — 9// _ 9’ (723)
with
Ly [01 + o€ + 036_’7] = 0,
Ly [046” + 056_’7] = 0, (7.24)

in which ¢; (i =1 — 5) are the constants.
If p € [0, 1] indicates the embedding parameter then the zeroth order deformation problems

are established as follows:

(L =p)L;s [Fn:p) = folm)| = phyNG1FGri)) (7.25)
(1—p)Lo [9(77>p) - 90(77)] = phoNy[0(n; p). f (n: )], (7.26)
F0:p) = 1, ePrf0ip) + Ll 0:) = 0, locip) =0 (7.27)
0(0;p) =0, B(co;p) =1, (7.28)

where nonzero auxiliary parameters are represented as iy and 7ip and the nonlinear operators

Ny and Ny are

R 3700 po BN i
il = o (P2l (0800 Pl

—Mei (1—-¢)>° i—’f%ﬁm, (7.29)
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X . 1 kn d?0(n; 00
No [00n;p), f(msp)| = ﬁk—ffsz (1—¢)*° % + f(m@%
. 2 . .
0% f(n:p) of (m;p) ; 9f(n;p)
. 2
YesEeM (1 — ¢)25 2L <M> . (7.30)
oy on
The m*" order deformation problems can be written as follows
Ly [fm(n) = XnSm—1(0)] = By Rym(n), (7.31)
Lo [0m (1) = XmOm-1(n)] = hoRo,m(n), (7.32)
kn / /

fm(0) =3 Pr fr(0) + k—;Ce@m(O) = fm(00) = 01m(0) = Om(o0) = 0, (7.33)

m—1
Un
R () =1 (fiis = Mipo1) + 3 morwff = Faoafi] = Mer (1= 9)>* L g7,
k=0

of
(7.34)
1k -1
Rom(n) = ﬁkiff@(l — )0, 1 + Z fm-1-k0), + e2Ec Z fon—fr;
tegEeM (1— ¢)25 20 Z I (7.35)
Of k=0
0, m<l1
Xin= . (7.36)
1, m>1
The general solutions (fy,, ) comprising the special solutions (f;,, 6;,) are
fm(m) = fr(n)+c1+cee” 4+ cze7,
em(n) = (9;” (77) + cae + cse” . (737)
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7.3 Convergence of homotopic solutions

Homotopy analysis method is employed to obtain the solutions of Eqgs. (7.13) and (7.14) along
with the boundary conditions (7.16). The auxiliary parameters hy and fy play an important

4th _order of

role for the convergence of the series solutions. Here h—curves are sketched at 1
approximations to get valid ranges of these parameters (see Fig. 7.1). The permissible values
of auxiliary parameters are —1.5 < iy < —0.85 and —1.2 < iy < —1. The residual errors are

calculated for momentum and energy equations by the expressions

s = [ [R o) an

A = /0 (R (1] (7.38)

In Figs. (7.2 —7.3), the i—curves for residual error of f and 6 are sketched in order to get the
admissible range for f. It is noted that correct result up to 4th decimal place is obtained by
choosing the values of # from this range. Also, the HAM solutions converge in the whole region
of n (0 <1 < oo) when hy = —1.5 and hy = —1. Table 7.1 is prepared to check the convergence
of obtained HAM solutions. Tablular values show that convergence is attained for the functions

f"(0) and #'(0) at 24" and 40" order of approximations respectively.
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Fig. 7.1: Combined A—curves for velocity and temperature when M = 0.7, A = 0.3,
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Fig. 7.2: hy—curve for the residual error AL
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Table 7.1: Convergence of HAM solutions for different order of approximations when

M=07,A=03, Ec=¢=0.5 and ¢ = 0.1.

Order of approximations —f”(0) 6'(0)

1 1.225  3.215
S 1.286  3.433
10 1.296  3.467
15 1.300  3.475
20 1.302  3.479
25 1.303  3.481
32 1.304 3.483
40 1.309 3.484
50 1.309  3.484
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7.4 Results and discussion

This section presents the effects of various parameters on the velocity, temperature, skin friction
coefficient and Nusselt number in the form of graphical and tabulated results (see Figs. (7.4 —

7.17) and Table 7.2).

7.4.1 Dimensionless velocity field

Fig. (7.4 — 7.7) exhibit the dimensionless velocity profiles for different values of porosity para-
meter A, Hartman number M, nanoparticle volume fraction ¢ and melting parameter e¢. Fig.
7.4 displays the velocity profiles for different values of porosity parameter A. The porosity para-
meter depends on the permeability parameter K. An increase in the porosity parameter leads
to the lower permeablity parameter. This lower permeability parameter causes a reduction in
the fluid velocity. Fig. 7.5 illustrates the influence of Hartman number M on the velocity f'(n).
As the applied magnetic field is a resistive force which reduces the fluid motion, so the velocity
field decreases. The effects of nanoparticle volume fraction ¢ on the velocity field f'(n) are
depicted in the Fig. 7.6. It is evident that an increase in the values of nanoparticle volume
fraction corresponds to a decrease in the velocity profile f'(n). The effect of melting parameter
€ is seen in Fig. 7.7. It is quite obvious from the Fig. that larger values of € increase the velocity
profile. It is because of the fact that an increase in melting causes an increase in the molecular

motion which enhances the flow.

7.4.2 Dimensionless temperature field

Effects of Eckert number F¢, Hartman number M, nanoparticle volume fraction ¢ and melting
parameter € on the temperature profile # are shown in the Figs. (7.8 — 7.11). Fig. 7.8 depicts
that temperature is an increasing function of the Eckert number Ec. Eckert number is defined
as the ratio of kinetic energy to enthalpy. With the increase in Fe¢, kinetic energy increases
which consequently enhances temperature. Effect of Hartman number M on the temperature
is analyzed in Fig. 7.9. As the Lorentz force opposes the fluid motion, so heat is produced and
as a result the thermal boundary layer thickness increases. Fig. 7.10 illustrates the variation of

nanoparticle volume fraction ¢ on temperature field 6. Here temperature profile 6 increases for
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an increase in ¢. Since there is enhancement in thermal conductivity by increasing the volume
fraction of nanoparticles so thermal boundary layer thickness enhances. Fig. 7.11 shows the
variations of melting parameter € on temperature profile. It is noted that temperature profile
decreases for larger values of melting parameter due to the fact that temperature difference
increases between ambient and melting surface which reduces the temperature of the fluid.

Further the thermal boundary layer thickness increases when melting parameter is increased.

7.4.3 Skin friction coefficient and Nusselt number

Figs. (7.12 — 7.14) represent variation of skin friction coefficient for larger values of porosity
parameter, nanoparticles volume fraction and melting parameter. It is observed that A and ¢
are increasing functions of f”(0) whereas with the increase of € it decreases. The variation of
heat transfer rate for Fe, € and ¢ is shown in Figs. (7.15 — 7.17). It is found that the Nusselt
number decreases with the increase of € while it increases by increasing Ec¢ and ¢.

Some thermophysical properties of water and copper are given in Table 7.2. CPU time in
seconds is given for different order of approximations in Table 7.3. Table 7.4 presents some
numerical values of —Cy(Re;)"/? and — Nu(Re,)~'/? for different parameters. It is noted here
that magnitude of skin friction coefficient increases for higher Cu—nanoparticles volume fraction
¢, Hartman number M and porosity parameter A\. However it decreases when Eckert number Ec
and melting parameter € are increased. The increase in the values of Cu—nanoparticles volume
fraction ¢, Hartman number M, porosity parameter A and Eckert number Ec¢ enhances the
magnitude of local Nusselt number. Furthermore rate of heat transfer decreases when melting

parameter € is increased.
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Fig. 7.5: Influence of M on velocity field.
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7.12: Influences of A and M on skin friction coefficient.
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Fig. 7.13: Influences of ¢ and A on skin friction coefficient.
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Fig. 7.15: Influences of Fc and M on Nusselt number.
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Fig. 7.17: Influences of ¢ and A on Nusselt number.
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Table 7.2: Thermophysical properties of water and copper [21].

plkg/m?)  cp(j/kgk) k(W/m.k) Bx10°(K~') o(Qm)~!
Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107

Table 7.3: CPU time (seconds) used by HAM for different order of approximations.

Order of approximations CPU time (sec)

2 0.387022
4 0.932053
6 1.99511

8 3.84522

10 6.46637
12 10.3336
14 15.6849
16 20.6332
18 27.0535
20 35.221
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Table 7.4: Numerical values of skin friction coefficient and Nusselt number for different

parameters.

¢ M A Ec ¢ —Cy(Re)Y? —Nu(Re,) V2

0.01 0.7 03 05 0.5 1.3065 3.9187

0.05 1.4749 4.2285

0.1 1.6971 4.6398

0.1 0.1 1.4543 4.1486

0.4 1.5798 4.4009

0.9 1.7713 4.7915

0.7 0.1 1.6151 4.5939

0.2 1.6565 4.6167

0.4 1.7369 4.6615

0.3 0.1 1.7645 3.5463

0.2 1.7459 3.8347

0.3 1.7292 4.1119

0.5 0.1 1.9215 5.8563

0.4 1.7420 4.8745

0.7 1.6204 4.2512

7.5 Concluding remarks

Influence of MHD flow of Cu—water nanofluid over a stretching sheet is presented in this
article. Melting heat transfer and effects of viscous dissipation are also considered. HAM is
used to obtain semi-analytic solutions. It is observed that velocity profile is decreasing function
of Eckert number, Hartman number and nanoparticle volume fraction. Melting parameter
enhances the velocity and reduces the temperature field. Temperature profile increases when
volume fraction of copper nanoparticles is increased. Higher values of Cu-nanoparticles volume
fraction, Hartman number and porosity parameter correspond to larger values of skin friction
coefficient and local Nusselt number. Temperature gradient at the surface decreases for larger

values of melting parameter.
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Chapter 8

Unsteady flow of nanofluid with
double stratification and

magnetohydrodynamics

This chapter aims to examine the unsteady flow of viscous nanofluid caused by an inclined
stretching sheet. Effects of thermal radiation, viscous dissipation and stratification process
due to temperature and concentration are analyzed. Fluid is electrically conducting in the
presence of applied magnetic field. The flow consideration is subjected to small magnetic
Reynolds number. Induced magnetic field is absent. Appropriate transformations reduce the
nonlinear partial differential system to ordinary differential system. Convergent solutions are
computed. Interval of convergence is determined. Effects of different parameters on the velocity,
temperature and concentration profiles are shown and analyzed. It is concluded that thermal
and solutal stratification parameters reduce the velocity distribution. It is also observed that

velocity is decreasing function of Hartman number.

8.1 Flow equations

Consider an unsteady two-dimensional incompressible flow of nanofluid past a stretching sheet.
The sheet makes an angle ¥ with the horizontal direction. The z— and y—axes are perpendic-

ular to each other. Thermal and concentration buoyancy forces are applied to the fluid with
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double stratified phenomena due to temperature and concentration. The sheet is maintained

at temperature Tp, = Ty + A*z/(1 — a*t) and concentration C,, = Cy + D*z/(1 — a*t). The

temperature and mass concentration of the ambient fluid are assumed to be stratified in the

form T, = Ty + B*x/(1 — a*t) and Co = Cy + E*z/(1 — a*t) respectively (see Fig. 8.1).

Fig. 8.1: Geometry of the problem.

It is assumed that a uniform magnetic field of intensity By acts in the y—direction. The

magnetic Reynolds number is assumed small and the induced magnetic field is negligible in com-

parison with the applied magnetic field. In addition the effects of thermal radiation and viscous

dissipation are considered.

yield

— tu— v~ =

The continuity, momentum, energy and concentration equations

ou Ov
B + 8_y =0, (8.1)
2 * _
Va—yg—l—gsinlll ﬂT(T—TOO)(l—COO)—i—(p—pp)(C—COO)
oB2u
- ) 8.2
g (8.2)
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or  or - or T 0T OC Dy (9T 2 Lm0 2
or . et vt ol ot Dr (0L ou
ot ow oy 012 Poy oy " Tue \ 0y (pep)s \ Dy
160*T3. 0T
e —— 8.3
3k*(pep) s Oy (83)
oCc  aC  aC 92C Drp 9T
— tu— 4 v—=Dp—s + == 8.4
ot "or Ty T B2 T T 0y (84)
The boundary conditions are
b= U= 0 T=Ty=To+ 2% 0y = o+ -2 at y—0
- _1—a*t’ — Y, — dw — 40 1—0/*157 — Lw — L0 1 — a*t y=.,
B* *
u — O,T—>TOO:T0+—x,C—>C’OO:CO+ as y — 00, (8.5)
1—a*t 1 —a*t

where u and v are the velocity components along the z— and y— directions respectively, v,
p and o are the kinematic viscosity, density and electrical conductivity of the fluid, ¢ is the
gravitational acceleration, S is the coefficient of thermal expansion, T, T\, C' and C, are the
fluid temperature, ambient fluid temperature, fluid concentration and ambient fluid concentra-
tion, o = k/(pcp) s is the thermal diffusivity, 7 = (pc),/(pc) s is the ratio between the effective
heat capacity of the nanoparticle material and heat capacity of the fluid, Dp is the Brownian
diffusion coefficient, D is the thermophoretic diffusion coefficient, k* is the mean absorption
coefficient, o* is the Stefan-Boltzmann constant, k£ is the thermal conductivity, ¢ and a* are
positive constants having dimension 7!, A* B* D* and E* are the dimensional constants
having dimension L~'and T and Cj are the reference temperature and concentration.

We now introduce the following similarity transformations

o CT / _ vc _ C
u = 1—a*tf (n)’ V= 1_a*tf(77)7 77 V(l—a*t)y’
T — T O -

Now Eq. (8.1) is satisfied automatically and Eqgs. (8.2) — (8.5) after using Eq. (8.6) can be

reduced as follows:

"= P ff -6 (f’ + %nf”) + N.sin¥[0 + N, ®] — M f' =0, (8.7)
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1 4 1
B (1 + ng> 0"+ f0' — f'0— S, f' —6* <St +6+ 5179’) + Ny’ ® + N0 + Ecf"? =0, (8.8)

" + Sc(fd — f'®) — SScf —6*Se <Sm + o+ %n@’) + %9” =0, (8.9)
b

f(0) = 1, f(0)=0, 0(0) =1—5;, ®0)=1- S,
/(<) = 0, 6(cx) =0, ®(cx) =0, (8.10)

where prime indicates the differentiation with respect to n. Moreover the unsteady parameter §*,
mixed convection parameter N., Buoyancy ratio N,, Hartman number M, Prandtl number Pr,
radiation parameter R4, thermal stratification parameter S;, Brownian motion parameter N,
thermophoresis parameter Ny, Eckert number Fe¢, Schmidt number Sc and solutal stratification

parameter S, are defined by the following definitions:

) a* g(1 — a*t)*Br (p* = p)(Cw = Co)
0 = — N="————"-(1- T, —T1o), N, =
c 9 c 02117 ( COO)( w 0)7 T p/BT(Tw . T[))(]. o 000)7
oB3(1 — a*t) v 40*T3 B* TDp(Cy — Cp)
M = =9 "7 pr=_ = =— Ny=—2"v -
pc 3 T Oé, Rd 3kk* ) St A*’ b v ;
D7 (T — Tp) pU? v E*
Ny, = ——— Fc= = — = —. 11
t I/TOO 9 & (pcp)f(Tw IR TO) 9 SC DB Y Sm D* (8 )

The important physical quantities of interest in this problem are the local skin friction coefficient

Csf, Nusselt number Nu and Sherwood number Sh. These are given by

Tw TGy Tqdm
Csr = , Nu = ————F—, Sh=——"F"—F7"——, 8.12
d %,OUQ ! k(Ty —Tw) Dp(Cyw — Cx) ( )
where the surface shear stress 7,,, wall heat flux ¢,, and wall mass flux ¢,, are given by
ou 160*T3 ) orT oC
ro= st == (k=) S0 g =—DpSl| (313

139



By using the above equations we get

1/2
Csf <R§x> _ f//(o)7 NU(R6$)71/2 = — <1 + %Rd> (1 _1515) 9/(0)7

Sh(Re,)"Y? = —(1_15 ><I>’(0), (8.14)

where Re, = Uz /v is the local Reynolds number.

8.2 Homotopy analysis solutions

Initial approximations fo(n), 6o(n) and ®g(n), auxiliary linear operators L, Ly and Lo and

auxiliary functions Hy, Hy and Hg are taken in the forms

fom)=1—¢", 0o(n) = (1 = St)e™, ®o(n) = (1 — Sp)e™", (8.15)
Li=f"—Ff, Ly=0"—0, Lo =" -, (8.16)
Hi=e€e", Hp=e€", Ho=¢", (8.17)
with
Ly [cl + coe” + 636777] = 0,
Lo [cae” +c5e7] = 0,
Lo [Cﬁen + 676777] = 0, (818)

in which ¢; (i =1 — 7) are the constants.
If p € [0, 1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:
{ —PﬁfoNf[f(n;p)ﬁ(n;p), o (n; p)], (8.19)

o |0(m;p) — —pﬁmwe[é< p), f(n;p), ®(n; p)], (8.20)

—
>

(1-p)Ls [(f(n;p) —~ @0(77): = phoHaNa[®(n; p), f(1;p), 0(n; p)], (8.21)

140



F1(0;p) =1, f(0;p) =0, f'(c0;p) =0,
0(0;p) =18, 6(c0;p) =0,
(0;p) =1 — Sy, P(o0;p) =0, (8.22)

where hi¢, hy and hy are the nonzero auxiliary parameters and the nonlinear operators N¢, Ny

and N are given by

: Fln: 2 2700,
N |Fi), 0 p), (i p) | = o _<afg777’p)> iU

R R . 20( o R Y . £l
No 9(77;p),f(n;p),<1>(n;p)} = % (1 + ng> 0 ?9(:2’]9) +f(n;p)%7z7’p) —ﬂmﬁw

~ ~ ~ 2
_Staf(n;p) 5 (St+9(n;p) N %7789(87;;19)) LN, (59(8737;19))

on
+Np 89(8737, ) 8<i>g777; r) + Ec (%ﬁ) 2 , (8.24)
Na |®(n;p), f(m:p),0(m;p)| = %ﬂ@p) + Se (f(n;p)a(i)g;;p) - i’(n;p)%)
—Smsc%z;p) — §*Se (Sm +®(n;p) + %n%@gp))
*% 82?9(7;72; 2 (8.25)
The resulting problems at m*” order can be presented in the following forms
L Lfm() = X fm-1(0)] = Iy R g.m(n), (8.26)
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Ly [0m(1n) = XinOm—1(n)] = heRo,m(n), (8.27)
Lo [Prn(0) = X Pm-1(n)] = haRa m(n), (8.28)

f;n(o) = fm(o) = f'r,n(oo) = em(o) = Hm(OO) = (I)m(O) = qu(oo) =0, (829)

m—1
" 1 / .
Rf,m (77) = f1/1/1/71+z [fm—l—kf]/g/ - f;n—l—kfl::] —0 <f1/nl + §nf1/nl> +N¢sin \I’[em—l"i_Nr(I)m—l]_Mf;nfla
k=0
(8.30)

1 4 m=1 . 1
Rom(n) = Pr <1 + ng> 0,1+ > (f—1-k0% — Om—1-kf1) — Stfrp_1 — 0 <St + 01 + 5770771—1>
=0

m—1
+ kZ (Noby 11 @ + Nebpp 1 405 + Ecfin 1 4 fi), (8.31)
=0
" m=l / !/ / * 1 / Nt 7
Raom(n) = Pp1+5¢ 30 (fm-1-kPp=Pm—1-kf1) —SmScfp_1—6"Sc ( Sm + Prm_1 + 577(1%—1 +Fb m—1s
k=0
(8.32)
0, m<l1
Xim= . (8.33)
1, m>1
The general solutions (fy,, Om, ®m) subject to the special solutions (f, 0y, ®* ) are
fm(n) = f;%(n) +c1 + coe + cze
Om(n) = 0n,(n) +cae’ +cse™,
Pp(n) = () +cee” +cre, (8.34)

where the constants ¢; (i =1,2,...,7) through the boundary conditions (8.29) have the values

. fm
c2 = ca=c=0, c1 =—c3— f,(0), c3= —f8 (1) :
n o

s = —0%(0), c7 = —@7 (0). (8.35)

8.3 Convergence of the homotopy solutions

Now the solutions of Egs. (8.7 — 8.9) subject to the boundary conditions (8.10) are computed

by means of homotopy analysis method. The convergence of the series solutions is highly
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dependent upon the auxiliary parameters /iy, hg and he. For valid ranges of these parameters,

we have sketched the hi—curves at 15" —order of approximations (see Fig. 8.2). We can see
that the admissible values of A, fip and g are —1.5 < hy < —0.7, —1.3 < hy < —0.4 and
—1.2 < hg < —0.4. The residual errors are calculated for momentum, energy and concentration

equations by the expressions

o= (&L ()],
0

A, = /1 [an(n,ﬁo)rdn,
0

An = /0 1 [RE, (n,18)]” dn. (8.36)

In Figs. (8.3 — 8.5), the h—curves for residual error of f, § and ® are sketched in order to get
the admissible range for h. It is noted that correct result up to 4th decimal place is obtained
by choosing the values of A from this range. Further the series solutions converge in the whole

region of 7 (0 <7 < 0o) when hy = —1.2, hy = —1.1 and he = —0.9.

00 %
S 0
= 0.5}
= .
= —1.0!
=
~

_1.5_

20 -15 10  —05 00
hy, Tig, Tig

Fig. 8.2. hi— curves for f”(0), 6'(0) and ®'(0).
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Fig. 8.3: hy—curve for the residual error AL
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Fig. 8.4: hy—curve for the residual error AY,.
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Fig. 8.5: hg—curve for the residual error AL .
Table 8.1: Convergence of HAM solutions for different order of approximations when
M =07 N,=Ryg=04, N, =03, ¥ = 7/4, Pr = 12,8, = 0.2, 6* = N, = 0.5, N; = 0.1,
Sc=0.9, Ec=0.6 and S,,, = 0.1.

Order of approximations —f”(0) —6(0) —¢'(0)

1 1.358  0.7193 0.9608
) 1.341  0.6832 0.9856
10 1.342  0.6839 0.9815
14 1.343  0.6855 0.9810
20 1.343  0.6868 0.9808
25 1.343  0.6876 0.9809
29 1.343  0.6880 0.9810
35 1.343  0.6887 0.9810
40 1.343  0.6887 0.9810
45 1.343  0.6887 0.9810
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8.4 Interpretation of results

The effects of different parameters on the velocity, temperature and concentration fields are
investigated through plots in this section. Figs. (8.6 — 8.12) exhibit the dimensionless velocity
profiles for different values of inclination angle ¥, unsteady parameter ¢*, Hartman number
M, mixed convection parameter N., buoyancy ratio N,, thermal stratification parameter .S;
and solutal stratification parameter S,,. Variation in velocity with an increase in angle of
inclination ¥ can be seen from Fig. 8.6. It is noticed that with an increase in ¥ i.e. when
the sheet moves from horizontal to vertical direction, the strength of buoyancy force increases
and consequently the velocity and boundary layer thickness increase. Influence of unsteady
parameter 6* on the velocity profile f’ can be seen in Fig. 8.7. Increasing values of §* indicate
smaller stretching rate in the x— direction which eventually decrease the velocity and boundary
layer thickness. The effects of Hartman number M are displayed in Fig. 8.8, which shows that
an increase in M reduces the velocity profile. It is because of the reason that Lorentz force acts
as a retarding force. Such retarding force enhances the frictional resistance opposing the fluid
motion in the momentum boundary layer thickness. Fig. 8.9 elucidates the behavior of mixed
convection parameter N, on the velocity profile. This Fig. shows that the values of velocity
function f’ and the boundary layer thickness increase by increasing N.. This is because a larger
value of N, accompanies a stronger buoyancy force which leads to an increase in velocity. The
effects of buoyancy ratio N, on the velocity profile are depicted in Fig. 8.10. This Fig. shows
that velocity profile enhances when N, increases. NN, is the ratio of concentration to thermal
buoyancy forces. With an increase in buoyancy ratio parameter, concentration buoyancy force
increases which results in higher velocity profile. Fig. 8.11 is plotted to show the influence of
thermal stratification parameter S; on the velocity profile f/(n). With an increase in thermal
stratification parameter the density of fluid in the lower region is high than the upper region.
So thermal stratification reduces the convective flow between the sheet and ambient fluid.
Therefore velocity profile decreases. Behavior of solutal stratification parameter S, on velocity
profile is sketched in Fig. 8.12. Tt is depicted that velocity and boundary layer thickness
decrease with an increase in solutal stratification parameter.

Effects of Prandtl number Pr, unsteady parameter §*, Brownian motion parameter N,

thermophoresis parameter Ny, thermal stratification parameter S, radiation parameter R; and
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Eckert number Fc on the temperature profile § are shown in the Figs. (8.13 —8.19). Fig. 8.13
indicates that temperature profile # is a decreasing function of Pr. In fact thermal diffusivity
decreases by increasing Pr and thus heat diffuses away slowly from the heated surface. Effect
of unsteady parameter §* on the temperature is analyzed in Fig. 8.14. It is observed that the
temperature and thermal boundary layer thickness are decreasing function of ¢*. Fig. 8.15
illustrates the effects of Brownian motion parameter N, on temperature profile #. When N,
increases, random motion of nanoparticles increases. Therefore collision of particles increases
and kinetic energy converted to heat energy. Hence temperature profile 6 increases for an
increase in Np. The behavior of N; on the temperature profile is similar to that of N (see
Fig. 8.16). Also the temperature profile  and thermal boundary layer thickness decrease
when the thermal stratification parameter S; increases (see Fig. 8.17). Because temperature
difference gradually decreases between the sheet and ambient fluid which causes a reduction
in the temperature profile. Radiation effects on the temperature profile are displayed in Fig.
8.18. An increase in Ry enhances the heat flux from the sheet which gives rise to the fluid’s
temperature. Therefore the temperature profile and thermal boundary layer increase with an
increase in Ry. Fig. 8.19 depicts that temperature is an increasing function of the Eckert number
FEc. Eckert number is defined as the ratio of kinetic energy to enthalpy. With the increase in
Ec, kinetic energy increases which consequently enhances temperature.

Figs. (8.20 — 8.24) illustrate the effects of Schmidt number Se¢, unsteady parameter 6%,
Brownian motion parameter N, thermophoresis parameter N; and concentration stratification
number S,, on the dimensionless nanoparticle volume fraction profile ®. It is observed that the
mass fraction ® and the associated boundary layer decrease for an increase in Schmidt number
Sc (see Fig. 8.20). It is due to the fact that an increase in Sc reduces the molecular diffusivity.
Fig. 8.21 indicates that an increase in the unsteady parameter §* decreases the concentration
profile. The effects of Brownian motion parameter NV, on the concentration profile are depicted
in Fig. 8.22. This Fig. shows that ® decreases when N, increases. Also the concentration
profile ® increases when thermophoresis parameter Ny is increased (see Fig. 8.23). Variations
of solutal stratification parameter S, on the dimensionless nanoparticle volume fraction profile
® can be seen in Fig. 8.24. It is noted that there is a decrease in concentration profile when Sy,

is increased. Infact an increase in 5, decreases the concentration difference between the sheet
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and ambient fluid.

Table 8.1 shows the convergence of the series solutions. It is observed that convergence for
velocity, temperature and concentration is achieved at 14", 35" and 29t" order of approxima-
tions respectively. Table 8.2 shows the comparison of the present results with the numerical
solution of Ibrahim and Shankar [64] in limiting case. It is found that our solution has good
agreement with the limiting numerical solution. In Table 8.3 some numerical values of skin
friction coefficient are given. Tabular values show that skin friction coefficient decreases by
increasing ¥, N, and N, while it increases for larger values of M, §*, S; and S,,. Numerical
values of local Nusselt and Sherwood numbers for different emerging parameters are presented
in Table 8.4. Tt is noted that local Nusselt number increases for larger values of S, S, and Pr.
However it decreases for larger values of N, Ny and Sc. It is noted that local Sherwood number

decreases by increasing N, S; and Pr and it increases for larger values of Ny, Sy, and Sec.

f'(n)
1.0

M=0.7, N.=R; =04, N, =0.3,Pr=1.2,5,=0.2,
0.8r\ & =N;=N,=05,Ec=0.6,8¢=0.9,5,=0.1

0.6|

V=nr/10, n/6, 7/4, 7/3

Fig. 8.6: Influence of ¥ on f'(7n).
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f'(n)

1.0
M=0.7,N,=R; =04, N,=03,Pr=12,¥=r/4,

§:=02,N; =N;=0.5,Ec=0.6,8c=0.9,5,=0.1

0.8}

0.6}

: 0°=0.1,0.5,09,1.5
0.4r

0.2}
1 2 3 4 5 6
Fig. 8.7: Influence of §* on f'(n).
f'(n)
1.0

\ N.=R;=04,N,=03,¥=n/4,Pr=12,5,=02,
0.8F\ 6 =N,=N,=05,Ec=0.6,8c=09,S,=0.1

0.6]

M=0.1,02,03,04

0.4}

0.2r

Fig. 8.8: Influence of M on f/(n).
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£'(m)

1.0t
M=0.7,R;=04,N,=0.3,¥Y=n/4,Pr=12,5,=0.2,
0.8t% 0"=N,=N,=0.5,Ec=0.6,8=09,5,=0.1
0.6r
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0.4
0.2t
6
Fig. 8.9: Influence of N, on f'(n).
£'(m)
1.0

\ M=07.N,=R;=04,¥=n/4,Pr=12,5=02,
08' 6= f‘vrb = ﬁ'rf = US, Ec= 06, Sc= 09! Sm =0.1

Fig. 8.10: Influence of N, on f'(n).
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0" =Ny=N;=0.5,Ec=06,8¢=09, 5, =0.1
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Fig. 8.11: Influence of S; on f'(n).
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Fig. 8.12: Influence of S, on f'(n).
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Fig. 8.13: Influence of Pr on 0(n).
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Fig. 8.14: Influence of §* on 6(n).
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Fig. 8.15: Influence of NV, on 6(n).
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Fig. 8.16: Influence of N; on 6(n).
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Fig. 8.17: Influence of S; on (7).
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Fig. 8.18: Influence of Ry on 6(n).
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Fig. 8.19: Influence of Ec on 6(n).
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Fig. 8.20: Influence of Sc on ®(n).

155



&(n)

M=07,N,=R;=04,¥=7/4,Pr=12, N, =03,
Ny=N,=05,Ec=06,5¢=09,5=02,5,=0.1

0.8}

0.6}

0.4} 0*=0.1,0.3,0.5,0.7
0.2}
i 2 3 4 5 6
Fig. 8.21: Influence of §* on ®(n).
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Fig. 8.22: Influence of N, on ®(n).
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Fig. 8.23: Influence of N; on ®(n).
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Fig. 8.24: Influence of S, on ®(n).
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Table 8.2: Comparison of skin friction coefficient with Ibrahim and Shankar [64] when
Ne=Ryj=N, =V =Pr=85,=6"=N,=N,=Sc=Ec=S5,=0.

M  TIbrahim and Shankar [64] Present results

0 1.2808 1.2808
1 1.4142 1.4142
5 2.4494 2.4494

Table 8.3: Numerical values of skin friction coefficient for different parameters when N, =

0.9, N; = 0.2, Pr=1.2, Sc = 0.9, Ry = 0.4 and Ec = 0.6.

v M X N, & S Sm —f'(0)
/6 0.7 04 03 06 01 0.1 1.365
/3 1.294
/2 1.269
/4 0.5 1.252
0.6 1.289

0.8 1.360

0.7 0.1 1.428

0.3 1.359

0.5 1.291

04 05 1.306

0.6 1.297

0.7 1.287

0.3 0.1 1.169

0.2 1.203

0.3 1.235

0.6 0.1 1.325

0.2 1.342

0.3 1.359

01 02 1.330

0.3 1.336

0.4 1.341

158



Table 8.4: Numerical values of Nusselt and Sherwood numbers for different parameters

when M = 0.7, N, = 0.4, N, = 0.3, U = /4, Ry = 0.4, 6* = 0.6 and FEc = 0.6.

St Sm Ny Ni ProSc —(1+3R) ()00 — ()@ 0)

01 0.1 09 02 1.2 09 1.078 1.197
0.2 1.190 1.193
0.3 1.334 1.189
0.1 0.2 1.080 1.333
0.3 1.082 1.611
0.4 1.083 1.746
0.1 0.5 1.209 1.157
0.7 1.142 1.183

1.0 1.047 1.201

0.9 0.1 1.078 1.197

0.3 1.047 1.142

0.5 1.017 1.093

0.2 1.5 1.215 1.187

1.7 1.294 1.183

2.0 1.398 1.177

1.2 0.5 1.141 0.8375

0.7 1.105 1.028

1.0 1.066 1.275

8.5 Concluding remarks

MHD unsteady flow of viscous nanofluid due to an inclined stretching sheet has been stud-
ied. Effects of different parameters on the velocity, temperature and concentration profiles are

analyzed. The following observations are worthmentioning,.

e Angle of inclination enhances the velocity.

e Velocity profile decreases with an increase in thermal and solutal stratification parameters.
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Increase in the mixed convection parameter enhances the velocity profile.
Thermal stratification parameter reduces the temperature field.
Concentration profile decreases with the increase in solutal stratification parameter.

Impact of thermophoresis parameter and Schmidt number on the concentration profile is

opposite.

Higher values of solutal stratification parameter correspond to larger values of local Nus-

selt and Sherwood numbers.
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Chapter 9

Magnetohydrodynamic stagnation
point flow of Jeffrey nanofluid with

Newtonian heating

The purpose of present chapter is to explore the stagnation point flow of Jeffrey nanofluid
towards a stretching surface with Newtonian heating. Fluid is electrically conducting in the
presence of applied magnetic field. Governing nonlinear ordinary differential system is computed
for the convergent solutions. Results of velocity, temperature and concentration fields are
calculated in series forms. Effects of different parameters on the velocity, temperature and
concentration profiles are shown and analyzed. Skin friction coefficient, Nusselt and Sherwood

numbers are also computed and examined.

9.1 Flow equations

The extra stress tensor for Jeffrey fluid is

S

{Al + A2@] | (9.1)

__H
1+ X\ dt

In above expressions g is the dynamic viscosity, A1 is the ratio of relaxation to retardation

times, Ag is the retardation time, A; is the first Rivlin-Erickson tensor, d/dt is the material

161



derivative defined as

d 0
oo (V.v). (9:2)

Eq. (9.1) reduces to a Newtonian fluid when A; = A2 = 0.

9.2 Problem formulation

Let us consider the steady two-dimensional stagnation point flow of Jeffrey nanofluid towards a
stretching surface-. The x—axis is taken along the stretching surface in the direction of motion
and y—axis is perpendicular to it. A uniform transverse magnetic field of strength By is applied
parallel to the y—axis. It is assumed that the induced magnetic field and the electric field
effects are negligible. Effects of Brownian motion and thermophoresis are presented. Further,

the surface exhibits Newtonian heating boundary condition. The boundary layer flow problems

are
ou Ov
B + 8_y =0, (9.3)
Ox oy 14X |0y? >\ 0y 9z0y 0xdy?  Ox Oy? oy3
OUs aBg
+Uoo—8$ + T(Uoo - u), (9-4)
8_T 8_T — 82_T + a_Ta_C + & a_T ’ (9 5)
Yor "oy T Yoy T TPy oy T T \Oy) |7 '
oC oC 0?C  Drpo*T
"o Ty PP T T 89)
u = uy(x)=-ce, v=0, ?)_Z__hsT’ C=Cyat y=0,
u — dr, T — Ty, C —Cyx asy— 0. (9.7)

where v and v are the velocity components along the x— and y— directions respectively, p,
p and o are the dynamic viscosity, density and electrical conductivity of the fluid, A; is the

ratio of relaxation to retardation times, Ao is the retardation time, U, is the free stream
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velocity, T, Teo, Cy and Cy are the fluid temperature, ambient fluid temperature, constant
wall concentration and ambient fluid concentration, 7 = (pc),/(pc)s is the ratio between the
effective heat capacity of the nanoparticle material and heat capacity of the fluid, Dp is the
Brownian diffusion coefficient, D is the thermophoretic diffusion coefficient, o = k/(pc)y is
the thermal diffusivity and h; is the heat transfer parameter.

We now use the following similarity transformations

w=caf(n), v= —TEf), n= \ﬁy oy = Lot gy = C=C gy

Eq. (9.3) is satisfied automatically and Eqs. (9.4 — 9.7) after using Eq. (9.8) can be reduced

as follows:

" QM) = 2+ B2 = )+ A+ M)+ My =) =0, (9.9)

%9” + f0' + Npyo'®' + N,0”% = 0, (9.10)
¢ + Scfd’ + &9” =0, (9.11)
Ny
f100) = 1, f(0)=0, 6'(0) = —7*[1 +6(0)], ®(0) =1
f'(c0) — %l =7, 6(c0) — 0, ®(c0) — 0, (9.12)

where * = c)g is the Deborah number, M = o B2/pc is the Hartman number, Pr = v/« is the
Prandtl number, N, = 71Dp(C,, — Cx)/v is the Brownian motion parameter, Ny = 7Dr /v is
the thermophoresis parameter, v* = hs\/u_/c is the conjugate parameter for Newtonian heating,
~v is the ratio of rates and Sc¢ = v/Dp is the Schmidt number.

The important physical quantities of interest in this problem are the local skin-friction
coefficient Cjy, local Nusselt number Nu and the local Sherwood number Sh which are given
by
Lw

Tw
Y Ny=—"2%__ Sh=
T2’ T R(T—Tw)

Ldm

Csf: DB(Cw—Coo)7

(9.13)
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where the surface shear stress 7,,, wall heat flux ¢,, and wall mass flux ¢,, are given by

T
Tw = :U’@ ’ Qw:_ka_ ) qm:_-DBa_C (914.)
ay y=0 8y y=0 ay y=0
By using the above equations, we get
Cuf(Rep)'? = £7(0), Nu(Re,) /% =+ [1 + Wlo)] . Sh(Rey) V2 = —/(0),  (9.15)

where Re, = cz?/v is the local Reynolds number.

9.3 Series solutions

Initial approximations fo(n), 89(n) and ®o(n) and auxiliary linear operators L, Ly and L are

taken in the forms

*

_ Y _ _
fon) =m+ (1 =71 —e™), bo(n) = 7= —_ 7, ®o(n) =€, (9.16)
Lr=f"+f" Lo=0"—0, L& =" — O, (9.17)
subject to the properties
Lfler +can+cze” = 0,
Lolcae” + cse” ] = 0,
Lacge” + cre™] = 0, (9.18)

in which ¢; (i =1 —7) are the constants.
If p € [0, 1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:
(1 —p)Ls[f(m;p) — fo(n)] = phy Ny f(n;p)], (9.19)

(1 = p)Lo[0(n; p) — Oo(n)] = pheNa[0(n; p), f(1; 1), @(m; p)], (9.20)
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(1= p)La[®(n;p) — Po(n)] = phaNa[®(n;p), f(n; p), 0(n; p), (9.21)

F0p) = 1, f(0;p) =0, f'(c0sp) =1,
0(0;p) = —y*[1+6(0;p)], O(co;p) =0,

~

®(0;p) = 1, ®(o0;p) =0, (9.22)

where iy, By and he are the nonzero auxiliary parameters and the nonlinear operators Ny, Ny

and Ny are given by

3 (. A 90 F © 0\ 2
Ny [f(n;p)] _ TImD) gy [f(ﬁ;p)a f(n27p) ~ (W(mp)) ]

on? an on
*fmp)\’ 9*f(n; p) 2
+p ( 8772 > _f( ) ) 8774 +(1+)‘1) [’Y
0 (n; p)
+ M (’y— on )] , (9.23)
) ; . 1 9*0(n; p) 00(n;p) |+, 90(n;p) 92(n; p)
No |0(n;p), f(n;p), ‘1>(n;p)} = B ap f(n;p)a—77 + Ny o o
. 2
90(n; p)
+ Ny ( n ) , (9.24)
s a1 P0(yp) s 0(nip) | N 0%0(n;p)
No [@(n,p),f(n,p)ﬁ(n,p)] =T + 56f(?77p)6,—77 A oz (9.25)
The m*” order deformation equations can be presented in the following forms

Ly [fm() = X fm—1 ()] = Ty R . (1), (9.26)
Lo [0m(n) = XmOm-1(n)] = ﬁGRG,m(m» (9.27)
Le [Prn(n) = X Pm-1(n)] = haRam(n), (9.28)

fm(o) = f7,n(0) = frln(oo) = le(O) + ’Y*gm(o) = em(oo) = q)m(o) = (I)m(oo) =0, (9'29)
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[asy

m—

Ry (1) = S+ U+ A) D [Fmrifd = fracaoifi] + B U mrifi = Fnrn i)

k=0
H+ M)+ My = frod))s (9.30)
1 m—1
Rom(n) = ﬁ‘%q + kZ_:O (10 + NobOy, 1 Pp + Niby, g1 0%], (9.31)
m—1 Nt ”
Ram(n) = g +S¢ 3 frn1-6® + 01, (9.32)
7 }=0 Ny
0, m<l1
1, m>1

The general solutions (fy,, 0m, ®r,) comprising the special solutions (f%,, 05, ®F ) are
fm(n) = fr(n) + 1+ con+ cze™,

Om(n) = 07,(n) + cae” + cse™,

P (1) = 1, (n) + coe” + cre™ (9.34)

9.4 Convergence analysis

Now the solutions of Egs. (9.9 — 9.11) subject to the boundary conditions (9.12) is computed
by means of homotopy analysis method. The convergence of the series solutions is highly
dependent upon the auxiliary parameters Ay, hg and he. For valid ranges of these parameters,
we have sketched the i—curves at 15" —order of approximations (see Figs. 9.1 — 9.3). We can
see that the admissible values of fif, iy and he are —1.3 < hy < 0.2, —1.3 < hp < —0.2 and
—1.5 < hg < —0.7. Further, the series solutions converge in the whole region of n (0 < 1 < c0)
when iy = —1, hy = —1.1 and he = —1.3.
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~0.8;
: M=pB=y=N=N,=y"=0.1,
—0.9} 1 =02,Pr=158c=08
-1.0}
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~1.3}
14
20 15 10 —0s 0.0
Fig. 9.1: A— curve for the velocity field.
&'(0)
—0.6;
M=p =y=N=N;=v"=0.1,
= F., = =
_osl 1;=02,Pr=15,8=08
-1.0}
-1.2}
1.4}
20 15 10 —05 0.0

Fig. 9.2: A— curve for the temperature field.
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-0.2;
M=f"=y=N=N; =y =01,

_03l A1 =02,Pr=158c=08
—0.4¢

-0.5}

—0.6t

~0.7}

-2.0 -15 -1.0 -0.5 0.0

fig

Fig. 9.3: h— curve for the concentration field.

Table 9.1: Convergence of HAM solutions for different order of approximations when A; = 0.2,

Pr=15,8"=y=M =N, =N, =~"=0.1 and Sc =0.8.

Order of approximations —f”(0)  —6'(0) —9'(0)
1 1.08225 0.113764 0.459778
) 1.05658 0.116260 0.433609
8 1.05648 0.116289 0.428189
15 1.05648 0.116273 0.427542
18 1.05648 0.116273 0.427544
20 1.05648 0.116273 0.427544
25 1.05648 0.116273 0.427544
30 1.05648 0.116273 0.427544
35 1.05648 0.116273 0.427544

9.5 Results and discussion

The effects of different parameters on the dimensionless flow and heat and mass transfer rates

are investigated and presented graphically in this section. Figs. (9.4 —9.7) exhibit the di-
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mensionless velocity profiles for different values of ratio of relaxation to retardation times Aq,
Hartman number M, Deborah number * and ratio parameter . Effects of A\; on the veloc-
ity profile f’ can be seen from Fig. 9.4. Here the values of f’ and boundary layer thickness
decrease when \; increases. Effects of Hartman number M on the velocity f’ are depicted
in Fig. 9.5. The graph shows that the values of velocity f’ and the boundary layer thickness
decrease by increasing M. As the magnetic field has the tendency to slow down the movement
of the fluid which leads to a decrease in the velocity and momentum boundary layer thickness.
Fig. 9.6 shows that larger values of Deborah number * correspond to higher velocity. Fig. 9.7
illustrates the influence of ratio parameter v on the velocity profile f’. There is an increase in
velocity field f’ and boundary layer thickness when the velocity of the stretching sheet exceeds
the free stream velocity (v < 1).

Effects of ratio of relaxation to retardation times A1, Hartman number M, Deborah number
B*, ratio parameter v, Prandtl number Pr, Brownian motion parameter N, thermophoresis
parameter N, Schmidt number Sc¢ and Newtonian heating parameter v* on the temperature
profile 6 are shown in the Figs. (9.8 —9.16). Effect of A\; on the temperature is analyzed in Fig.
9.8. It is observed that the temperature and the thermal boundary layer thickness are increasing
function of A;. Fig. 9.9 illustrates the effects of M on temperature profile 8. As Lorentz force
is a resistive force that opposes the fluid motion. So heat is produced and as a result thermal
boundary layer thickness increases. Variations of 8*, v and Pr on temperature profile # can be
seen in the Figs. (9.10 — 9.12). There is a decrease in temperature § when Deborah number
[£*, ratio parameter v and Prandtl number Pr are increased. In fact the thermal diffusivity
decreases by increasing Pr and thus the heat diffused away slowly from the heated surface.
Fig. 9.13 represents the effect of Brownian motion parameter N, on temperature profile 6.
Temperature profile 6 increases for an increase in Np. The behavior of N; on the temperature
profile is similar to that of N, (see Fig. 9.14). Also the temperature profile § and thermal
boundary layer thickness decrease when the Schmidt number Sc increases. This is due to the
fact that an increase in Sc reduces the molecular diffusivity. Fig. 9.16 displays the effect of
Newtonian heating parameter v on temperature field 8. The temperature field 6 is found to
increase when ~ increases.

Figs. (9.17 — 9.25) illustrate the effects of ratio of relaxation to retardation times Ap,
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Hartman number M, Deborah number %, ratio parameter v, Brownian motion parameter Ny,
Schmidt number Sc¢, Prandtl number Pr, thermophoresis parameter IV; and Newtonian heating
parameter v* on the dimensionless nanoparticle volume fraction profile ®. It is observed that
the mass fraction ® and the associated boundary layer decrease when the values of \;, M, 8%,
v, Ny and Sc are increased and these quantities increase for higher Pr, N; and ~*.

Table 9.1 shows the convergence of the series solutions. It is observed that convergence is
achieved at 18" order of approximations. In Table 9.2 some numerical values of skin friction
coefficient are given. Tabulated values depict that skin friction coefficient decreases by increas-
ing A1 and M while it increases for larger values of 5* and ~. Table 9.3 includes the values of
local Nusselt and Sherwood numbers. It is noted that Nusselt number decreases by increasing
Np, Ny, M and ~+* while Sherwood number increases for higher N, and it decreases for larger

vales of V¢, M and ~*.

f'(n)
1.0(3?'

; M= =y=0.1
0.8\
D.G:—

0.4}

Fig. 9.4: Influence of A1 on f'(n).
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Fig. 9.5: Influence of M on f'(n).

f'(n)
1.0
1, =02, M=y=0.1
0.8]
0.6
p=0.1,03,0.5,0.7
0.4
02|
0 T EE 4

Fig. 9.6: Influence of 5* on f'(n).
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Fig. 9.7: Influence of v on f’(n).
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Fig. 9.8: Influence of A\; on 6(n).
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Fig. 9.9: Influence of M on 6(n).
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Fig. 9.10: Influence of 5* on 6(n).
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Fig. 9.11: Influence of v on 6(n).
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Fig. 9.12: Influence of Pr on 0(n).
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Fig. 9.13: Influence of NV, on 6(n).
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Fig. 9.14: Influence of N; on 6(n).
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Fig. 9.15: Influence of Sc on 6(n).
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Fig. 9.16: Influence of v* on 6(n).
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Fig. 9.18: Influence of M on ®(n).
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Fig. 9.19: Influence of 5* on ®(n).

o(n)

1.0

08l L =02,M=p8=N, =N,=y"=0.1,
; Pr=15,8c=08

0.6}
[ y=0.1,0.2,0.3,0.4

0.4f

0.2}

Fig. 9.20: Influence of v on ®(n).
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Fig. 9.22: Influence of Sc on ®(n).
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Fig. 9.24: Influence of N; on ®(n).

180



P(1)

1.0
N =02,M=p"=y=N; =N, =0.1,
0.8 Pr=15,Sc=038
0.6
y*=0.1,02,03, 0.4
0.4}
0.2}
0 2 4 6

Fig. 9.25: Influence of v* on ®(n).
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Table 9.2: Numerical values of skin friction coefficient for different values of A1, M, 5* and

A1 M 5* v Csf(Rex)1/2

01 01 01 01 —1.05648
0.3 —1.09962
0.4 —1.14114
0.5 —1.18116
0.2 0.15 —1.03400
0.2 —1.09737

0.3 —1.13684

0.4 —1.17502

0.1 0.15 —1.03399

0.2 —1.01290

0.25 —0.993061

0.3 —0.974349

0.1 0.01 —1.09255
0.03  —1.08605
0.06 —1.07866
0.07  —1.07040
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Table 9.3: Numerical values of local Nusselt and Sherwood numbers when Aq

8" =~=0.1, Pr=1.5 and Sc = 0.8.

Ny N My (Ltgy)  —@(0)
0.1 0.1 0.1 0.1 0.714516 0.427544
0.2 0.673145 0.468469
0.3 0.633230 0.482122
0.5 0.557819 0.493069
0.1 0.2 0.710164 0.346337
0.3 0.705776 0.265221
0.4 0.701351 0.184186
0.5 0.696886 0.103238
0.1 0.2 0.708029 0.421407
0.25 0.704905 0.418477

0.3 0.701856 0.415635

0.4 0.695969 0.410193

0.1 0.15 0.711763 0.376091

0.2 0.708442 0.314421

0.25 0.704340 0.238845

0.3 0.699108 0.143430

9.6 Conclusions

0.2,

Here MHD stagnation point flow of Jeffrey nanofluid towards a stretching sheet is studied.

Effects of different parameters on the velocity, temperature and concentration profiles are ana-

lyzed. The following observations are made.

e Velocity profile decreases by increasing A1 and M while it increases when $* and ~ are

increased.

e An increase in the values of A\, M, Ny, V; and +* have similar effects on the temperature

6(n) in a qualitative sense.
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Temperature profile decreases by increasing 5*, v and Sec.

An increase in Prandtl number Pr reduces the temperature and thermal boundary layer

thickness.
Concentration profile ®(n) decreases by increasing A1, M, 5*, v, N and Sc.
The values of skin friction coefficient are higher for increasing values of 5* and ~.

Higher values of Ny, M and «* correspond to smaller values of local Nusselt and Sherwood

numbers.
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Chapter 10

MHD three-dimensional flow of
nanofluid with velocity slip and

nonlinear thermal radiation

An analysis has been carried out in this chapter to investigate three-dimensional flow of viscous
nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by
a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparti-
cle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different
concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from
the previous literature, the nonlinear system for temperature distribution is solved and ana-
lyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary
differential system. Convergent series solutions are computed for the velocity and temperature.
Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt
number are computed and examined. It is concluded that heat transfer rate increases when

temperature and radiation parameters are increased.

10.1 Flow description

Consider the steady three-dimensional nanofluid flow over a stretching sheet situated at z = 0.

Let (u,v,w) be the velocity components along the (x,y, z) directions, respectively. A constant
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magnetic field of strength By is applied in the z—direction. The governing boundary layer

equations can be written as

ou Ov
— 4+ =—=0 10.1
ou ou ou O*u  onrBiu
- - - — - 10.2
u8x+v8y +w8z V"fazQ Puf ) ( )
ov ov ov 0*v  onpBRv
- - A - — 10.3
uam—i-vay—kwaz I/nf822 Puf ) ( )
with the boundary conditions given by
2 — 2 —
u = cx+ JV)\O%, v=dy+ UV)\O@, w=-W atz=0,
Oy 0z oy 0z
u — 0, v—0 asz— oo, (10.4)

where ¢ and d are stretching rate constants, W (> 0) is the suction velocity, o, is the tangential
momentum accommodation coefficient and A\g is the molecular mean free path. The effective
nanofluid dynamic viscosity f,,r, density p,,¢, thermal diffusivity a;,f, heat capacitance (pcp)nfs

thermal conductivity &,y and electrical conductivity o, are given by

g = JW (10.6)
(pcp)ng = (pep) s (1 — @) + (pcp)sds (10.7)

/Cnf - ks + Qkf — Q(b(kf — /CS)

K ks + 2k + 20(ks — ky)’ (10.8)
Onf _ 3(2-1)0
af =i (%;.4_2)1 (%;__1)(;5 (10.9)

Here ¢ is the nanoparticle volume fraction, py and p, are the densities of the fluid and of the
solid fractions, respectively, ky and ks are the thermal conductivities of the fluid and of the
solid fractions, respectively, and oy and o, are the electrical conductivity of the fluid and of

the solid fractions, respectively.
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Making use of the following transformations

c
wcaf o). v = cug (). w =~ TS +). = | [ (10.10)
equation (10.1) is identically satisfied and Egs. (10.2 — 10.4) become

1

n g2 /s
(1_¢)2.5[1_¢+%}¢]f [P+ (f+9)f

M Onf 4
— =0, 10.11
1—¢+%¢ of ( )

1
(=951~ 6+ 2]

g" — g%+ (f+9)g" — —————1¢' =0, (10.12)

f1(0) =1+ 81"(0), ¢' (0) =~ + Bg"(0), £(0)+g(0) =5,

f'(00) =0, g'(00) =0, (10.13)

where prime denotes the differentiation with respect to n, M is the Hartman number, 5 is
the velocity slip parameter, v is the ratio of stretching rates and S is the suction/injection

parameter. These quantities are defined by

B? 2—0,
mM=220 g_2"0% /iAomz‘l’g: W (10.14)
pr Oy vy C VVfcC

10.2 Heat transfer analysis

The boundary layer energy equation in the presence of thermal radiation effects is given by

or  oT oT o*T 1 Oqg

U—— +v— +w— :anfﬁ—mg,

i (10.15)

where T is the temperature, a;,, is the nanofluid thermal diffusivity, ¢, is the specific heat at
constant pressure and ¢, is the radiative heat flux. Using Rosseland approximation for thermal
radiation, the radiative heat flux is simplified as follows:

AR
3k* 9z  3k* 0z’

g = (10.16)
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in which ¢* and k* are the Stefan-Boltzmann constant and the mean absorption coefficient,

respectively. Now Eq. (10.15) can be written in the form

— Ml * 3k*(pcp)nf$

2 *
oT 9T 9T  PT 160 8<T38_T>' 10.17)

u$ + Ua—y w$ 92

It is worthmentioning to note that for thermal radiation effect in the existing literature, 74 in
Eq. (10.16) was expanded about the ambient temperature T5,. However in the present case
this has been avoided to get more meaningful results. Therefore in present analysis the energy
equation is nonlinear.

The boundary conditions are
T=Ty,atz=0,T — Ty as z — 00, (10.18)

where T, and T, are the sheet and ambient fluid temperatures respectively. We define the

non-dimensional temperature by

T—-Tw
0(n) = T T (10.19)
or
T = Too(1+ (0 — 1)0), (10.20)

where 0, = T,,/Tw is the temperature parameter. Using Eq. (10.20), Eq. (10.17) takes the

form
i ka " & _ 1)\3(2p2n'2 3 _1)2 2 2
Pr<kf+Rd>9 + 5 [(ew 1)3(30202 + 030") + 3(0y — 1)2(200"% + 620"
_ /2 % _ (pcp)s / _
+3(0, —1)(0°+00")| + | 1 ¢+(pc) ¢ )0 (f+9)=0 (10.21)
p)f

where Prandtl number Pr and radiation parameter R, are defined by

vi(pep) s 160*T3,
Pr= 1% = 10.22
r kf , Ra 3kk* ( 0 )
with the boundary conditions
6(0) =1, 6(c0) — 0. (10.23)
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Surface shear stresses 7., and 7., along the x and y directions are given by

ou ov
Twz = Bnf 72 y Twy = Mpf 77 ) (1024')
d 9z z=0 ! d 0z z=0
The heat transfer rate at the sheet is defined as follows:
oT /
Quw = —knf (—) + (qr)w =—(Ty — Too) < (1 + Rdei) 9/(0). (10.25)
8Z 2=0 I/f

Local skin friction coefficients along the x and y directions and Nusselt number for the problem

are given by

1 1 " % . 1 "
(Rez)2 Cpz = Wf (0), (Rey) ny—wg (0),
NTZ:E = — (1+ Ry03) 0'(0), (10.26)

in which (Rex)% =xy/c/vy and (Rey)% = yy/c/vs denote the local Reynolds number.

10.3 Analytical solutions

Employing the homotopy analysis method the initial approximations and auxiliary linear op-

erators are given by

faln) =S+ 51— 7). goln) = 7251 €, ola) =7 (10.27)
Ly (f)—%—;l—{?, Eg(g)—%g—j—f], Lo(e)—jinz_e, (10.28)
with
Ly [c1 + caexp(n) + czexp(—n)] =0, (10.29)
Ly [ca + csexp(n) + ce exp(—n)] = 0, (10.30)
Ly [er exp(n) + cg exp(—n)] = 0, (10.31)
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in which ¢; (i =1 — 8) are the arbitrary constants. If p € [0, 1] indicates the embedding para-

meter then the zeroth order deformation problems are constructed as follows:

(L=p) L5 |F (np) = fo ()] = Py |F ()19 (i) (10.32)

(1 =) L9 14 0r2) — 90 ()] = PhN; [3 (i) . f ()] (10.33)
(1= p) L4 [0 (i) = 00 ()] = PhaNG [0 () f (i) g (mi)] (10.34)
F(05p) =5, f'(0:p) = 1+ BF" (0:p), f' (o05p) =0, (10.35)
9(0;p) =0, 4 (0;p) = v+ B3" (0;p), §' (c03p) =0, (10.36)

0 (0;p) =1, 6 (co;p) =0, (10.37)

where hy, hy and hy are the nonzero auxiliary parameters and the nonlinear operators Ny, N

and Ny are given by

A ) 1 Bf(y;p)  (Of (n;p)>2
Nyl f(mp),g(mp)| = -
! 1= 1 -o+2¢] P o
A 270, 92 f (n:
+f (n;p) 97 m:p) J;(Z’ D) + g (n;p) —J(;S; D)
M Unf 8f (77 p)
— qub e (10.38)
A ) 1
N g(m;p), f(mp)| = (1_¢)2,5[1_¢+&¢ 877 ( >
A 0°g 2
+f (n;p) # +9(n;p) ‘%(772 ?)
M Onf 09 (77;]9) (10‘39)

_1—¢+§—;¢0_f an

190



~ ~ 2A
Np 9(n;p),f(n;p),§(n;p)} = %(erRd)%;’p)Jr%[(@w—lf

R 2 0
(3 (9 (n;p)> (%ﬁ) + (é (n;p)>3 9 9857772,19))
+3(9w - 1)2 (2@ (n;p) <89—> ( )2 829 )
+3(0, — 1) ((89é?;;p)> )]

* (1 —o+ gﬁgﬁ;fcé) (f Grsp) + g p)) = P) - (10.40)

The m*" order deformation problems are

Ls[fmn (1) = X Sm—1 (0)] = BgRpm (0) , (10.41)
Ly [gm (1) = Xm9m-1 ()] = hgRpm (0) (10.42)
Lo [0 (1) — XmOm—1 (1)) = hoRom (1), (10.43)
Jm (0) = f7,(0) = Bfpm (0) = [y, (00) =0, (10.44)
9m (0) = gp, (0) = By, (0) = gy, (00) =0, (10.45)
0,,(0) = B, (00) = 0, (10.46)
1 n =
Rim(m) = (1_¢)2_5[1_¢+%¢]fm71 (n) + kX:(:) (fm 1k S+ Gm1-kfE — 1 lcfk)
_ Onf M ,
P ey _¢+4¢fm " (10.47)
1 m—1
Rg,m (77) = (1 — ¢)25[1 — ¢ I &(ﬁ] gvlv/;fl (?7) + et (fmflfkgg + gmflfkgg - g;n—l—kgl/c)
_ Onf M

o mgm 1 (10.48)
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1 (kyy Ry~
Romi) = o (4Rt + 32 Y |0
k=0

k l
= 1) Otk 3 Okt Y (307405 + 0,_507)
=0 s=0

k
+3(0w — 1)%0m-1-% Y _(204_10] + 0k 167) + 3(6w — 1)(0}, 110 + Orm—1-107)
=0

m—1
<1 -9 + ;¢> D (Y Ay
-0

0, m<l1
Xm =
1, m>1

The general solutions in terms of particular solutions f¥, ¢, and 0, are

Jm () = fim (n) +c1 + cae +cze™,

gm (M) = gy, (n) + ca + cse” + cee™ 7,

Om (1) = 0y, () + cre” +cge™,

10.4 Convergence of the developed solutions

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

The convergence of the series solutions is highly dependent upon auxiliary parameters Ay, Ay

and hy. For valid ranges of these parameters, we have sketched the A—curves at 10th-order of

approximations (see Fig. 10.1). This Fig. shows that the admissible values of iz, iy and hy are

—2< Ny <-0.2,-2<hy; < -0.2and —1.6 < Iy < —1.3. Further Table 10.1 ensures that when

hy =hy = —1.1 and hp = —1.3 the series solutions are convergent up to six decimal places.
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Fig. 10.1: Combined fi—curves for f”(0), ¢”(0) and #'(0) when Pr = 6.2, v = 0.5, ¢ = 0.03,
6=1R;=M=0.1,0,=1.1and S =0.3.
Table 10.1: Convergence of HAM solutions for different order of approximations when

Pr=62~v=05¢=003 =1 Rg=M=0.1,0,=11and S = 0.3 and hiy = fi; = —1.1

and hy = —1.3.
Order of approximation ——f”(0)  —¢”(0)  —6'(0)
) 0.501136 0.238561 2.18655
9 0.501129 0.238543 2.34913
15 0.501129 0.238543 2.41402
20 0.501129 0.238543 2.40545
25 0.501129 0.238543 2.39321
30 0.501129 0.238543 2.39321
35 0.501129 0.238543 2.39321
40 0.501129 0.238543 2.39321
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10.5 Discussion

This section presents the effects of various parameters on the velocity, temperature, skin friction

coefficient and Nusselt number in the form of graphical and tabulated results.

10.5.1 Dimensionless velocity profiles

Figs. (10.2 —10.6) display the dimensionless velocity profiles for different values of Hartman
number M, velocity slip parameter /3, nanoparticle volume fraction ¢, suction/injection velocity
parameter S and stretching parameter v. Fig. 10.2 plots the velocity profiles f’ and ¢’ for
various values of Hartman number M. It is observed that velocity fields f/ and ¢’ decrease
when M increases. The application of an applied magnetic field has the tendency to slow down
the movement of the fluid, which leads to a decrease in the velocity and momentum boundary
layer thickness. Fig. 10.3 shows the effects of velocity slip parameter 3. This Fig. shows
that by increasing the values of velocity slip parameter 3, there is a gradual decrease in the
velocity profiles. The effects of nanoparticle volume fraction ¢ on velocity profile are presented
in the Fig. 10.4. It is noted that an increase in the values of ¢ decreases the velocity profiles
f" and ¢'. Effect of suction/injection velocity parameter S on f’ and ¢’ can be visualized in
the Fig. 10.5. It is obvious that an increase in S reduces the velocity fields f’ and ¢’. Because
applying suction leads to draw the amount of fluid particles into the wall and consequently the
velocity boundary layer decreases. Also suction is an agent which causes a reduction in the
fluid velocity. Influence of stretching parameter + on the velocity profiles is displayed in the
Fig. 10.6. It is observed that velocity field f’ decreases with an increase in  while ¢’ increases

when ~ is enhanced.

10.5.2 Dimensionless temperature profiles

Effects of Hartman number M, nanoparticle volume fraction ¢, temperature parameter 6,, and
radiation parameter Ry on the temperature profile 6 are shown in the Figs. (10.7 — 10.10). To
capture the effects of Hartman number M on the temperature 6, Fig. 10.7 is displayed. It is
depicted that temperature is an increasing function of M. As the Lorentz force is a resistive

force which opposes the fluid motion so heat is produced and as a result the thermal boundary
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layer thickness increases. Fig. 10.8 portrays the influence of ¢ on 6. It is found that temperature
increases when values of nanoparticle volume fraction ¢ are increased. It is because of the fact
that by increasing the volume fraction of nanoparticles, the thermal conductivity and thermal
boundary layer are increased. Figs. 10.9 and 10.10 indicate that temperature increases by
increasing values of temperature parameter 6,, and radiation parameter R4. Physically this is
due to the fact that with the increase in radiation parameter, the mean absorption coefficient

decreases. Hence the rate of radiative heat transfer to the fluid increases.

10.5.3 Skin friction coefficient and Nusselt number

In Table 10.2 the thermophysical properties of water and nanoparticles are given. Tables
10.3 and 10.4 show the effects of nanoparticle volume fraction ¢ on skin friction coefficient
for different types of nanofluids in the x and y—directions. Effects of the nanoparticle volume
fraction ¢ on Nusselt number are presented in Table 10.5. These values of skin friction coefficient
and Nusselt number change for different nanofluids. It means that by using different types of
nanofluid, the shear stress and rate of heat transfer alter. Numerical values of local Nusselt
number for different emerging parameters are presented in Table 10.6. It is noticed that local
Nusselt number NV u(Rex)_% increases for larger values of 6, and 4. However it decreases by

increasing M.
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Al O; — water

p=1,6=0.03,y=0.5,8=0.3

Fig. 10.2: Effect of M on f’ and ¢'.
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Fig. 10.3: Effect of 5 on f" and ¢'.
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£'(n), g'(n)

Al, Oy — water

B=1,y=05M=0.1,8=0.3

Fig. 10.4: Effect of ¢ on f' and ¢'.

f'(m), £'(m)
0.5 Al O; — water
04 ﬁ:1,¢20.03,M:U.1,T:U.3

0.3+

$=0.1,03,0.5,0.7

Fig. 10.5: Effect of S on f’ and ¢'.
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Fig. 10.6: Effect of v on f’ and ¢'.

Al O; — water
B=1,6=003,R;=0.1,8S=0.3,
Pr=62,0,=1.01,y=05

M=0.1,05,1,2

Fig. 10.7: Effect of M on 6(n).
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2 4 6
Fig. 10.8: Effect of ¢ on 6(n).
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Pr=62,R;=0.1,y=0.5
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Fig. 10.9: Effect of 6,, on 6(n).
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Pr=6.2,6,=1.01,y=0.5
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Fig. 10.10: Effect of R4 on 6(n).

Table 10.2: Thermophysical properties of water and nanoparticles [21].

plkg/m?®)  cp(j/kgk) k(W/mk) Bx10°(K~") o(Qm)”!

Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver(Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Al,03) 3970 765 40 0.85 1x 10710
Titanium Oxide(Ti05) 4250 686.2 8.9538 0.9 1x 10712

Table 10.3: Effects of the nanoparticle volume fraction for different types of nanofluids on

skin friction coefficient along x—direction when M = 0.1, 3 =1, Pr=6.2, § = 0.3, v = 0.5,

R;=0.1and 0, =1.1.

o) Cu Ag AlyO3 Ti09

0.01 —0.519383 —0.521081 —0.513864 —0.514181
0.03 —0.556763 —0.561468 —0.540779 —0.541729
0.06 —0.595136 —0.602496 —0.569204 —0.570789
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Table 10.4: Effects of the nanoparticle volume fraction for different types of nanofluids on
skin friction coefficient along y—direction when M = 0.1, 6 =1, Pr =6.2, S = 0.3, v = 0.5,
R;=0.1and 0, = 1.1.

10) Cu Ag AlsO3 Ti04
0.01 —0.699999 —0.702450 —0.692049 —0.692506
0.03 —0.751194 —0.758029 —0.728085 —0.729453
0.05 —0.803691 —0.814440 —0.766089 —0.768375

Table 10.5: Effects of the nanoparticle volume fraction for different types of nanofluids on

Nusselt number when M =0.1, =1, Pr=6.2, §5=0.3, y=0.5, Rg =0.1 and 6,, = 1.1.

¢ Cu Ag AlyO3 TiO4
0.01 —-0.726911 —0.723181 —0.733826 —0.732487
0.03 —0.720997 —0.710335 —0.740837 —0.736838
0.05 —0.716675 —0.699623 —0.748444 —0.741798

Table 10.6: Values of Nu(Rex)_% when ¢ =0.03, =1, S =0.3 and v = 0.5.

M 60, Rqg —(1+R403)0(0)

0.1 1.1 0.1 0.74084
0.3 0.70977
0.5 0.68279
0.1 1.2 0.74410
1.3 0.74775

1.4 0.75180

1.1 0.05 0.73328

0.15 0.74802

0.2 0.75482

10.6 Concluding remarks

Three-dimensional flow of AloOg nanofluid over a permeable stretching surface with partial slip

and nonlinear thermal radiation is studied. The outcomes are mentioned below.
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Increasing values of Hartman number, velocity slip parameter and suction/injection ve-

locity parameter decrease the velocity profiles.
The velocity profiles f' and ¢’ decrease by Increasing nanoparticle volume fraction.

Effects of stretching parameter on the velocity profiles and momentum boundary layers

are opposite.

The temperature and thermal boundary layer thickness increase via larger nanoparticle

volume fraction.

Increasing values of temperature and radiation parameters show enhancement in the tem-

perature and thermal boundary layer thickness.

Temperature gradient at the surface increases for higher temperature and radiation pa-

rameters.

The governing equations for viscous fluid are obtained when ¢ = 0.
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Chapter 11

Magnetohydrodynamic
three-dimensional flow of nanofluid

over a porous shrinking surface

This chapter investigates the steady three-dimensional flow of viscous nanofluid past a perme-
able shrinking surface with velocity slip and temperature jump. An incompressible fluid fills
the porous space. The fluid is electrically conducting in the presence of an applied magnetic
field. The governing nonlinear partial differential equations are reduced to ordinary differential
equations by similarity transformations. The series solutions are presented by the homotopy
analysis method. Convergence of the obtained series solutions is explicitly discussed. The ve-
locity and temperature profiles are shown and analyzed for different emerging parameters of
interest. It is observed that by increasing the volume of copper nanoparticles, the thermal con-
ductivity increases and the boundary layer thickness decreases. The velocity profile increases
and temperature profile decreases for the larger velocity slip parameter. Temperature is a de-
creasing function of the thermal slip parameter. Hence less heat is transferred to the fluid from

the sheet
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11.1 Problem formulation

Let us consider steady three-dimensional flow of viscous nanofluid over a shrinking surface. A
Cartesian coordinate system is used with (u,v,w) as the velocity components in the (z,y, 2)
directions. An incompressible nanofluid occupies z > 0, where z is the coordinate measured
normal to the shrinking surface (see Fig. 11.1). The fluid is water based nanofluid consisting
of nanoparticles like copper (Cu), sliver (Ag), alumina (Al2Os3), titanium oxide (7903) and

copper oxide (CuQ).

Fig. 11.1: Physical model of the problem.

Further the fluid is subjected to a uniform magnetic field with strength By in the transverse
direction to flow. Here induced magnetic field is taken small in comparison to the applied
magnetic field and thus neglected. Under the aforementioned assumptions the equations of

continuity, momentum and thermal energy can be expressed in the forms

ou Ov Ow
e T T, 11.1
Ox + oy + 0z 0, (1L.1)

2 2 2 2
ou  Ou Ou _ Vs (8 uw  O0%u 0 u> 1 0P onsBju Yngt (11.2)

Yor oy T 02 "0 T 92) T psor ey K
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u@—i-v@—i-w@—y
oxr oy 9z M

82v+820+820 1 0P O'nfBgU Unfv
0z?  Oy? 022 Pnf Oy Pnf K’

ow ow Ow , (8210 d*w 82w> 1 OP

“or "'y TV 927 "oy 022 ) T o 07

(11.3)

(11.4)

2 2 2
or  oT 8T:anf(8T o°T 8T>’ (11.5)

u% +Ua—y —|—w$ 2 + 8y2 + 922
with
2—0,. Ou 2—0,. Ov
2, = 1 -
o >\0 9z’ v d(n )y + ou >\0 92’
2—or 27 ﬁﬁ_T
or 7+1) Proz

u=dzx+

w=—-W,

T=T,+

at z =0,
u—0,v—0, T — T, as z — 00. (11.6)

In the above equations p,,; denotes the effective density of the nanofluid, v,,s the effective kine-
matic viscosity of the nanofluid, u,,; the effective dynamic viscosity, 0,5 the effective electrical
conductivity, P the pressure, K the permeability of porous medium, W > 0 the suction ve-
locity, d < 0 the shrinking rate, T the temperature of nanofluid, ¢, the tangential momentum
accommodation coefficient, o the thermal accommodation coefficient, A\g the molecular mean
free path, 7 the specific heat ratio and sheet shrinks only in the x—direction when n = 1. The
sheet shrinks asymmetrically for n = 2.

The effective dynamic viscosity of the nanofluid is

7
/j“nf = (1 — ;)2.57 (117)

where ¢ is the solid volume fraction of nanoparticles and the effective density of nanofluids is
given by

Pnp = (1= @)ps + dps. (11.8)

The thermal diffusivity of the nanofluid is

kg
pcp)nf

s = 7 , (11.9)
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where the heat capacitance of nanofluid is given by

(pep)ng = (1= &)(pcp) + d(pcp)- (11.10)

For spherical nanoparticles, the thermal conductivity of the nanofluid is

/Cnf - ks + Qkf — Q(b(kf — /CS)

-y . 11.11
k‘f k‘s+2k‘f+2¢(kf—ks) ( )
The effective electrical conductivity is
3(2-1)0
Inf 14 ! . (11.12)
ZM TR Rz

Here the subscripts nf represents the thermophysical properties of the nanofluid, f explains
base fluid and s is defined as nano solid particles.

In order to attain similarity solution, the following transformations can be posited:

T—-Tw

=2 (111
77 (13

w=caf (n), v=cln—Dyf'(n), w=— /e (n), n= \/:f 0(n) =

Continuity equation (11.1) is automatically satisfied and the other equations and conditions

give
erf” — e [M2(1 - ¢)2-5% + A] =1 +nf"f=o0, (11.14)
f
knf 1 (pC)s /_
k_fﬁg + <1—¢+¢>@> nfo’ =0, (11.15)

£10) = ~y+8£70), f(0)=S5, 6(0) =1+ 36(0),
f/(oo) — 0, 6(c0) — 0, (11.16)

where M? is the Hartman number, Pr the Prandtl number, S the mass suction parameter,

~v < 0 the shrinking parameter, 8 the velocity slip parameter, A the porosity parameter and B
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the temperature jump parameter. These parameters are defined by

B} 2

o= U U s =S 20y, O
psc o cun c o vy
vy ~ 2—UT 2r )\0 C

N o= Mo 20 jC 11.17
cK’ or (f—i—l) Pr\/ vy’ ( )
where ¢ is defined by
1

€1 = (11.18)

_ o251 — e\’
(=opet-o+o (%))
with p, as nano-solid particle density and p; as base fluid density.

The important physical quantities of interest are local skin friction coefficient Csy and

Nusselt number Nu which are given by

T | = TGw
Oy = =220 Ny = 40 (11.19)
o $pu, ke (Ty — Tio)

where the surface shear stress 7, and surface heat flux g, satisfiy

ou oT
= — — = —k,r — . 11.20
Tw Ko g 2 o y Quw nf Ep - ( )
Dimensionless forms of local skin friction coefficient and Nusselt number are
Re, 1 ” _1 kn f o
= 0), NuRe;? = ——=6'(0 11.21
Csf 2 (1 . ¢)2'5f ( )7 U Ney kf ( )7 ( )

in which Re; = u,x /v denotes the local Reynolds number.

11.2 Homotopy analysis solutions

The initial guesses fo(n) and 6p(n) and the linear operators Ly and Ly are selected in the

following forms

€)= 5 + 75 ~ T o). o(n) = 1 exp(-), (11.22)
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Bf  of 020
_ZJ_ Y ) ==— —¢ 11.2
with the properties mentioned below
Lflei+eam+ee™ = 0,
Lolea+ese™ = 0, (11.24)

and ¢; — ¢5 are the constants. With Egs. (11.14) and (11.15), the definitions of operators Ny

and Ny can be introduced as follows:

~ 3L/ o :
Ny [f(n;p)} = 51%:3’1’) g {M2(1 _ ¢)2.5U_ff +A} afg; D)
o 2 R .
9f(n;p) df (n;p) 9*f(n;p)
- ( on ) tn on o2 (11.25)

kng 1 9%0(n;p)

kp Pr on? ++<1—¢+¢%> nf(n;p)M. (11.26)

(pc)y on

The problems subjected to zeroth order deformation can be written as follows:

N [9(77;29),12(77;29)} =

(1= p)Ls [F0) = folm)] = pENF 1), (11.27)
(1= p)La |0(ni p) = Bo(n)| = phaNolB(n; p). F 1)) (11.28)
. O 2 £(0- F (o0
fop) = 5 200 o (2ICm) 210GR)
0(0;p) = 1+BM 0(c0;p) =0, (11.29)

in which 7y and gy are the nonzero auxiliary parameters.

The corresponding problems at m* order satisfy the following expressions

L [fm (1) = X Sm—1 ()] = hgRpm (1), (11.30)

L [0 (1) = XmOm—1 ()] = HgRo.m (1), (11.31)
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Fm(0) = f1.(0) = Bf1 (0) = f (00) = 0, (0) — 36", (0) = O, (00) = 0, (11.32)
m—1
o
Rim () =e1fm_1(n) —e1 [MQ(l — ¢)2'50Lff + A} )+ > [nfme1k i = o wfh)
k=0
(11.33)
knf 1 "
Rom () = k_fﬁ m-1(m) ++{1- Z fm—1-k0%, (11.34)
and
0, m<l1
Xm = (11.35)
1, m>1
If f and 60, denote the special solutions then the general solutions are
fm(m) = fu(n) +c1 4+ can + cze™,
Om(n) = 05, (n) + ca+cse” . (11.36)

11.3 Convergence analysis

We note that the computed series solutions depend upon the auxiliary parameters. The conver-

gence region and rate of approximations for the functions f and 6 can be controlled and adjusted

through the auxiliary parameters fiy and hy. For admissible values of 7y and hy, the h—curves

of f”(0) and ¢'(0) for 17*"—order of approximations are displayed. Figs. 11.1 and 11.2 depict

that the range of admissible values of /iy and fig are —1.5 < Ay < —0.1 and —1.4 < hy < —0.6. It

is found that the series solutions converge in the whole region of n (0 < 7 < co) when Ay = —0.7

and iy = —0.9.
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J"(0), 8'(0)

220 -15 -10 03
. i
Fig. 11.2: hi—curves of f”(0) and 6'(0).
Table 11.1: Convergence of HAM solutions for different order of approximations when

y=-01,8=8=M=1,n=2 A=¢=03and S =0.5.

Order of approximations 17(0) —6'(0)
1 0.0661678  0.532809
) 0.0700218 0.589974
10 0.0700198 0.594100
15 0.0700198 0.593038
20 0.0700198 0.593149
25 0.0700198 0.593162
28 0.0700198 0.593155
35 0.0700198 0.593155
40 0.0700198 0.593155
45 0.0700198 0.593155
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11.4 Results and discussion

This section is prepared to examine the impact of pertinent parameters on the velocity and
temperature. This objective has been achieved by plots of Figs. (11.3 — 11.14). Here Figs
(11.3—11.8) have been plotted for the effects of M (Hartman number), A (porosity parameter),
S (mass suction parameter), 8 (velocity slip parameter), ¢ (nanoparticles volume fraction) on
the velocity f’ and v (shrinking parameter). The behavior of Hartman number M for the
boundary layer is shown in Fig. 11.3. There is decrease in thickness of boundary layer due to
an increase in M. This is because of the reason that Lorentz force acts as a retarding force. Such
retarding force enhances the frictional resistance opposing the fluid motion in the momentum
boundary layer. Fig. 11.4 depicts that the velocity is increased when porosity parameter A
increases. As noted in Fig. 11.5 the associated boundary layer thickness decays when mass
suction parameter S increases. Because applying suction leads to draw the amount of fluid
particles into the wall and consequently the velocity boundary layer decreases. Also suction is
an agent which causes a reduction in the fluid velocity. Fig. 11.6 shows that velocity rises when
values of velocity slip parameter 8 are enhanced. However velocity is a decreasing function
of ¢ (see Fig. 11.7). This is because of the fact that by increasing the volume of copper
nanoparticles, the thermal conductivity increases and the boundary layer thickness decreases.
Fig. 11.8 portrays the influence of v on f’. It is found that velocity increases when values of
are increased. Figs. 11.9 — 11.14 depict the effects of Hartman number M, porosity parameter
A, mass suction parameter S, velocity slip parameter 3, temperature jump parameter B and
shrinking parameter v on temperature profile 6. Effect of M on the temperature is analyzed
in Fig. 11.9. As Lorentz force is a resistive force which opposes the fluid motion. So heat
is produced and as a result thermal boundary layer thickness increases. It is observed that
increasing the porosity parameter \ decreases the thermal boundary layer thickness. Variations
of S and (3 on temperature profile f can be seen in the Figs. (11.11—11.12). There is a decrease
in temperature when mass suction parameter S and velocity slip parameter 8 are increased.
Fig. 11.13 indicates that the surface temperature and thermal boundary layer decrease by
increasing value of temperature jump 3. With the increase of thermal slip parameter, less
heat is transferred to the fluid from the sheet and so temperature is found to decrease. Fig.

11.14 represents the effect of shrinking parameter « on temperature profile. It is observed that
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temperature profile decreases for an increase in +.

Table 11.1 is prepared for the convergence of series solutions. It is observed that convergence
for velocity is achieved at 10" order of approximation and for temperature convergence is
achieved at 28" order of approximation. The values of shear stress at the surface are compared
with previous published results in Table 11.2. Here it is seen that the obtained solutions agree
well with results of Zheng et al. [36]. Numerical values of the local Nusselt number for different
emerging parameters are presented in Table 11.3. It is noted that the local Nusselt number

increases for larger values of ¢, v, S and 8. However it decreases for larger values of 3.

Cu-water

M=0,03,0.6, 1

1=8=1,8=03,6=0.11n=2,y=-1

Fig. 11.3: Influence of M on f'(n).
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£'(n)
0.0

—0.1F
—02¢
—03L

—04[

Cu-water

1=0,051,15

M=2,8=1,8=03,6=01,n=2,y=-1

_04l

—0.8}

1 2 3 5 5

Fig. 11.4: Influence of A on f'(n).

Cu-water

5=0,0.1,02,03

M=2,1=0.7,8=03,6=0.1,n=2,y=-1

> 4 6

Fig. 11.5: Influence of S on f'(n).
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f'(n)

0.0
—01l

Cu-water
—02L
£=0.4,0.5,0.6,0.7
03l
-0.4 M=2,1=8=1,6=01,n=2,y=-1
-0.5
1 2 3 4
Fig. 11.6: Influence of 5 on f'(n).

£'(n)

0.1F

0.0F

Cu-water
—D.].'
0.2k ¢=0.1,0.3,04,0.5
—0.3'
M=2,1=8=1,=03,n=2,y=-1

-0.4
-0.5

- 12 3 4 5 6 71

Fig. 11.7: Influence of ¢ on f'(n).
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f'(m)

0.0t
021 Cu-water
—047 y=-1,-0.9,-0.8, -0.7
-0.67 M=2,1=8=1,8=0.1,0=2,6=0.1
-0.8
0.5 1.0 1.5 2.0 2.5 3.0 35
Fig. 11.8: Influence of v on f'(n).
6(m)
1.0
Cu-water
0.8 )
A=8=p=1,8=6=01,n=2y=-1
0.6+
M=1,14,2,24
0.4r
0.2r
6 8 10

Fig. 11.9: Influence of M on 0(n).
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o(n)
0.6

0.5¢

0.4f |

Cu-water

S=pB=1,M=2,=6=0.1,n=2,y=-1

03[ 1=0.1,0.7,2.4
0.2}
0.1}
2 4 6 g 10 7
Fig. 11.10: Influence of A on 0(n).
é(n)
I Cu-water
0.85
' A=B=1,M=2,8=¢=0.1,n=2,y=-1
0.6
: §$=0.1,02,0.3,04
0.4]
0.2l
4 6 3 107

Fig. 11.11: Influence of S on 6(n).
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Cu-water
§S=1=f=1,M=2,6=0.1,n=2,y=-1

0.3} £=03,0.7,1.1,23

0.2F

0.1¢

2 4 6 g

Fig. 11.12: Influence of 5 on 6(n).

Cu-water
S=A=1.M=2,=6=0.1,n=2,y=-1

£=02,05,09,1.3

0.4L

0.2l

Fig. 11.13: Influence of 3 on 6(n).
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Cu-water

S=1=8=1,M=2,=¢=0.1,n=2

A
b

-1.1,-0.9,-0.5,-0.1

Table 11.2: Comparison of values of f”(0) when A=0, 3 =0,v=—1 and ¢ = 0.

| S

Fig. 11.14: Influence of v on 6(n).

M S Zheng et al. [36]

Present results

— [\) [\ \) [\] [\ 3

NN NN
e

1.8
1
0.2
2
3
1.8
1
0.2

4.21671330
2.89187352
1.84296593
4.75696326
6.54909894
2.85192213
2.30277564
1.83493516

4.20406130
2.89160464
1.84287335
4.74614023
6.53871573
2.85192199
2.30277376
1.83493413
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Table 11.3: Numerical values of Nusselt number Nu for different values of ¢, v, S, 5 and

6 7 S B B -0
025 —-0.1 05 1 1 1.97478
0.3 2.35243
0.4 3.43831
03 -04 2.30085
—-0.3 2.31914
—0.2 2.33626
—-0.1 0.3 1.82586

0.4 2.12684

0.7 2.66889

0.5 0.5 2.34389

0.7 2.34821

0.9 2.35123

1 03 4.02267

0.5  3.34427

0.7 2.86169

11.5 Concluding remarks

Three-dimensional flow of viscous nanofluid due to porous shrinking surface is discussed. Atten-

tion is focused to the development of series solutions. The following observations are important.

e The velocity has similar pattern with respect to Hartman number, porosity parameter,

mass suction parameter and velocity slip parameter.
e The shrinking parameter has reverse effect on the velocity and temperature profiles.

e Role of velocity slip, temperature jump and suction parameters on the temperature are

similar in a qualitative sense.
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e There is an increase in the temperature and thermal boundary layer when Hartman

number increases.
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Chapter 12

MHD three-dimensional flow of
nanofluid in presence of convective

conditions

This chapter deals with the boundary layer magnetohydrodynamic (MHD) flow of viscous
nanofluid saturating porous medium. The flow is induced by a convectively heated permeable
shrinking surface. Appropriate transformations reduce the nonlinear partial differential system
to ordinary differential system. Flow and heat transfer characteristics are computed by ho-
motopic procedure. The results of velocity, temperature and Nusselt number are analyzed for
various parameters of interest. It is noted that higher nanoparticle volume fraction decreases
the velocity field. Also temperature and heat transfer rate are enhanced for larger values of

Biot number.

12.1 Model development

Let us consider the steady three-dimensional flow of an incompressible nanofluid over a shrinking
surface. The fluid fills the porous medium. A uniform transverse magnetic field of strength By
is applied parallel to the z—axis. It is assumed that the induced magnetic and electric field

effects are negligible. The convective boundary conditions are employed in the heat transfer
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process. The governing equations are given by

ou Ov Ow
7 oyt (12.1)
ou ou ou 9%y JnfBgu Unf
e e P . e e 12.2
Yor +U8y +w8z Ynl g2 Pnf K" (12.2)
ov ov ov 0% onfBiv  vpgs
u% + ’Ua—y +w$ = l/nfw — p—nf — ?U, (123)
or  or or 0T

U— +Vv—— +w—— = (12.4)

oz oy Yoz T a2
where (u,v,w) are the velocity components along the (z,y, z) directions respectively and K the
permeability of porous medium. The effective density p,, s, the effective dynamic viscosity f,,,
the effective thermal diffusivity c, ¢, the heat capacitance (pcy), s, the thermal conductivity k¢

and the electrical conductivity o, of the nanofluid are given by

Pnf = Pyl — @)+ pso, (12.5)
Fnf = (1_“% (12.6)
_ kg
Qnf = (pcp)nf, (12.7)
(pcp)nf = (pcp)f<1 —¢) + (P%)s@ (12.8)

kny o ks + 2ky — 2¢(k’f — ky)

Ty ket 2ky + olky — Ky (12.9)
Inf _ 3(2-1)¢
o 7 (g_;H)f_ (=-1)o (12.10)

Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript
is for base fluid. The boundary conditions are
oT
u = dr,v=dn-1)y, w=-W, —kfa—:h(Tf—T) at z =0,
z

u — 0, v—0,T—Tyx, asz— 00, (12.11)
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where d < 0 is the shrinking constant, W is the suction velocity and h is the convective heat
transfer coefficient. We observe that when n = 1, the sheet shrinks in z—direction only and the

sheet shrinks axisymmetrically for n = 2. Employing

w=enf o), v = cln= Vs ), w=—@nfln). n= [z 00) = =, (1212

equation (12.1) is satisfied automatically and Egs. (12.2 — 12.4) are reduced as follows:
eif" — 24 nff" — Me(1 - ¢)2~5%f’ —derf =0, (12.13)
f

52(1 — ¢)2'5 knf " ;
Pr ki 0" +nfé =0, (12.14)

f(0) = S, f'(0) =7, 0'(0) = —,[1 - 0(0)],
f'(0) — 0, 6(co) — 0. (12.15)

Here a > 0 and the porosity parameter A\, the Hartman number M, the Prandtl number Pr,
the mass transfer parameter S > 0 holds for suction and S < 0 for injection, the shrinking

parameter v and the thermal Biot number v, are defined as follows:

B? 1% d h
PN VA R 4V ) e P Ly ¢ (12.16)
cK psC ky Jern c kY oc

in which € and €5 are constants relating to the properties of nanofluid defined by

1
£ = , 12.17
S (e Yy (217
. ! (12.18)
2 = . .
(1= 0)23[1 — ¢ + o3
Local Nusselt number Nu is
TGw
Ny=——>"" 12.19
B (T; —Too) (12.19)

223



where the surface heat flux ¢, satisfies

or

w = —Knt — . 12.20
q nf Oz 0 ( )
Using Egs. (12.12) and (12.20), we obtain
1k,
NuRe, ? = _k—fe’(o), (12.21)
f

in which Re, = u,,x/v; denotes the local Reynolds number.

12.2 Homotopy analysis solutions

We choose initial guesses fo(n) and 6y(n) and auxiliary linear operators Ly and Ly of the forms

foln) = § + 11 = exp(=n)], bo(n) = T exp(=), (12.22)
Li(f)=f"—Ff' Lo(0)=0"—9, (12.23)
with
Lyle1+ czexp(n) +czexp(—n)] = 0,
Lo [caexp(n) + csexp(—n)] = 0, (12.24)

in which ¢; — ¢5 are the constants.

The zeroth and m** order problems are
(1= p)Ly [Fnip) = foln)| = Pyl F rs)) (12:25)

(1= p)Lo [0m:p) = Oo(m)| = PHONG[B(n, ). f(1:P), (12.26)

fO;p) = S, f(0;p) =7, f(c0ip) =0,
0'(0;p) = —m[1—0(0;p)], B(o0;p) =0, (12.27)
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. 3 F (. o N2 .
Ny |f)] = 518];(772’p)—<af(87z7’p)> + f(n,p)%

250ns Of(mp) )\Elaf(n;p)

—Mei(1 - ¢) = o (12.28)
) b 2 kap o 0500mip) oo 06(n:p)
Nolb(n: p), f(m:p)] = 5 s (1-9¢) o +nf(n;p) o (12.29)
L [fm() = X Sm—1(1)] = AR pm(n), (12.30)
Lo [0m (1) = XmOm-1(n)] = hoRg,m(n), (12.31)
fn(0) = f1(0) = f,(00) = 6,,(0) = 710n(0) = On(o0) = 0, (12.32)
0, m<1
Xom = { "= (12.33)
1, m>1
m—1
Rim (1) = €1fm—1 Z 1Sk — ”fm—l—kflg]_M51(1—¢)2‘5U(}_—7?f1/n1—)\€1f1/n17 (12.34)
k=0
€2 kny 2.5t =t
Rom(n) =5 7 (L= &) 0y +n 3 Oy fi- (12.35)
v kg k=0
The general solutions (fy,,#,,) in terms of the special solutions (f},07,) are
fmn(n) = fra(n) + c1 + coe” +cze™,
Om(n) = 07, (n) + cae + cse™, (12.36)

where the constants ¢; (¢ = 1 — 5) through the boundary conditions (12.32) have the values

8 *
ca = —3—fr(0), 2=ca=0, 3= fgl(n) 7
o
1| 965,(n) .
¢ —N0n(0)] . 12.37
’ L+ om0 710m( )] ( )
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12.3 Convergence of the series solutions

The series solutions of Eqs. (12.30) and (12.31) contain the non-zero auxiliary parameters /s
and hy which can adjust and control the convergence of the series solutions. In order to see
the range of admissible values of iy and fy of the functions f”(0) and 6'(0), the A—curves for
14" —order of approximations are displayed. Figs. (12.1) and (12.2) show that the range for
the admissible values of /iy and fig are —1 < hy < —0.5 and —1 < hip < —0.1. Further, the series

solutions converge in the whole region of (0 < 7 < 0o) when Ay = —0.6 and hy = —0.5.

fll(D}
0.6,
6=91=0.1,0=2,8=08,Pr=6.2,

051 M=0.2,1=0.5, y=-0.1

0.4}

0.3}

0.2}

0.1}

~15 1.0 -0.5 0.0

Fig. 12.1: h— curve for the velocity field.
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g(0)
1.0;
6=y,=01,n=2,8=08,Pr=6.2,

M=02,1=0.5,y=-0.1
0.5¢

20 -15 -10 -05 00 05 10

Fig. 12.2: h— curve for the temperature field.
Table 12.1: Convergence of HAM solutions for different order of approximations when

¢p=7=01,n=2 5=08 Pr=62, M =02, A\ =5 and v = —0.1.

Order of approximations  f”(0) —6'(0)

1 0.192992  0.0936255
) 0.304420 0.0996007
10 0.316424 0.0991102
15 0.317116  0.0990997
24 0.317159 0.0985958
30 0.317159  0.0982642
35 0.317159 0.0982642
40 0.317159 0.0982642
50 0.317159  0.0982642

12.4 Discussion

In this section, Figs. (12.3 — 12.13) are plotted to analyze the effects of mass transfer parameter

S, Hartman number M, shrinking parameter ~, porosity parameter A\ and nanoparticles volume
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fraction ¢ on the velocity f’ and temperature 6 profiles. Effects of mass transfer parameter S
on the velocity profile f’ can be seen from Fig. 12.3. Here the magnitude of velocity profile
f' decreases when mass transfer parameter S increases. Because applying suction leads to
draw the amount of fluid particles into the wall and consequently the velocity boundary layer
decreases. Fig. 12.4 displays the effect of Hartman number M on f’. The magnitude of velocity
field f’ is found to decrease when M increases. The application of an applied magnetic field
has the tendency to slow down the movement of the fluid. It leads to a decrease in the velocity
and momentum boundary layer thickness. Influence of shrinking parameter v and porosity
parameter A on the velocity field f’ is similar to that of M (see Figs. 12.5 and 12.6). The
behavior of nanoparticle volume fraction ¢ on f is shown in Fig. 12.7. This graph shows that
magnitude of f’ increases when nanoparticle volume fraction ¢ increases.

Fig. 12.8 illustrates the effects of mass transfer parameter S on temperature profile 6.
Temperature 6 decreases by increasing the mass transfer parameter S. Fig. 12.9 illustrates the
effects of Hartman number M on temperature profile 8. The Lorentz force is a resistive force
which opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary
layer thickness increases. Influence of shrinking parameter v and porosity parameter A on
temperature profile  can be seen in the Figs. (12.10—12.11). It is observed that the temperature
profile 6 decreases when the shrinking parameter v and porosity parameter A are increased. Fig.
12.12 represents the effect of nanoparticle volume fraction ¢ on temperature field 6. It is noted
that the temperature profile 6 increases for increasing values of nanoparticle volume fraction ¢.
It is because of the fact that by increasing the volume fraction of nanoparticles, the thermal
conductivity increases. The behavior of thermal Biot number v; on temperature profile € is
similar to that of nanoparticle volume fraction ¢.

Table 12.1 shows the convergence of the series solutions. Some thermophysical properties
of water and nanoparticles are given in Table 12.2. Numerical values of local Nusselt number
for different emerging parameters are presented in Table 12.3. It is noticed that local Nusselt
number N u(Rem)_% increases for larger values of Hartman number M, nanoparticle volume

fraction ¢ and thermal Biot number 7.
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0.00}

-0.02¢
—-0.04+
—0.06+

—-0.08¢

§=0.1,03,0.5,0.7

M=02,y=-0.1,n=2,¢6=0.1,Pr=6.2,1=0.5

£'(n)
0.00}

-0.02[
—0.04]
—~0.06}

~0.08}

0.5 1.0 L5 2.0 25

Fig. 12.3: Influence of S on f/(n).

M=0.1,0.3,05,1

S=08,y=-0.1,n=2,¢6=01,Pr=62,1=05

1 2 3 4 5 6

Fig. 12.4: Influence of M on f'(n).
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0.0r =
—0.2¢
—0.4Ff y=-1,-0.8,-0.5,-0.1
_0_6_
S=08M=02,n=2,6=0.1,Pr=62,1=0.35
-0.8
123456
Fig. 12.5: Influence of v on f'(n).
£'(n)
0.00 —
-0.02}
_0.04l 1=0.1,0.5,1,15
—-0.06}
W S=08,M=02,y=-01,n=2,¢6=0.1,Pr=6.2
—0.08_-

Fig. 12.6: Influence of A on f'(n).
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£'(m)
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~0.02¢
~0.044 ¢=0.01,0.05,0.1,0.2
~0.06}
- [/S=08,M=02,9=-0.1,0=2,Pr=62,1=0.5
-0.08}
1 2 3 a1
Fig. 12.7: Influence of ¢ on f'(n).
a(n)

M=02,y=-0.1,n=2,9,=6=01,Pr=62,1=0.5

0.08
0.061
5=0.1,0.3,05,1

0.04¢

0.02¢

Fig. 12.8: Influence of S on 0(n).
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$=08,y=-0.1,n=2,9,=6=0.1,Pr=62,1=0.5

M=0.2,04,05,0.7

0.061 )

0.04¢

0.02}

T 2 3 4 5

Fig. 12.9: Influence of M on 0(n).

| M=02,8=08,n=2,9,=6=0.1,Pr=62,1=0.5

y=-0.8,-0.6,-0.4,-0.1

1 2 3 4 5

Fig. 12.10: Influence of v on 0(n).
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M=02,y=-01,n=2,9,=¢=0.1,Pr=62,5S=0.8

A=0.1,05,1,2

0.02r
1 2 3 4 57
Fig. 12.11: Influence of A on 0(n).

6(n)
0.08
M=02,y=-0.1,n=2,%=01,8=0.8,Pr=62,1=05
0.06}
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Fig. 12.12: Influence of ¢ on 6(n).
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M=02,9=-01,n=2.¢6=0.1,8S=0.8Pr=62,1=05

y,=0.1,03,0.5, 1

1 2 3 4 ;

Fig. 12.13: Influence of v, on 6(n).

Table 12.2: Thermo physical properties of water and nanoparticles|[21].

plkg/m?)  cp(j/kgk) k(W/m.k) Bx10°(K™Y) o(Qm)~

Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver(Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Al,03) 3970 765 40 0.85 1x 10710
Titanium Oxide(Ti05) 4250 686.2 8.9538 0.9 1x 10712
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Table 12.3: Values of Nu(Rex)fé whenn =2, Pr=6.2, A=0.5, S =0.8 and v = —0.1.

kr
M ¢ 71 —k—ffel(o)
0.5 0.05 0.3 0.336178

0.7 0.336187
1.0 0.336201
2.0 0.336996
0.2 0.01 0.301109
0.05 0.334288

0.07 0.355500

0.1 0.379977

0.05 0.1 0.113946

0.3 0.332611

0.5 0.537019

0.7 0.767305

12.5 Final remarks

MHD flow of nanofluid over a permeable shrinking sheet with convective condition is studied.

The main results can be mentioned as follows:

e Effects of mass transfer parameter S, Hartman number M, shrinking parameter v and

porosity parameter A are similar on the velocity profile f.
e An increase in nanoparticle volume fraction ¢ reduces the velocity profile f’.

e There is a decrease in temperature profile 8 for larger values of mass transfer parameter

S, shrinking parameter v and porosity parameter .

e An increase in nanoparticle volume fraction ¢ and thermal Biot number 7, enhances the

temperature profile 6.
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This article concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by
a permeable exponentially stretching surface. An incompressible fluid fills the porous space. A comparative study is made
for the nanoparticles namely Copper (Cu), Silver (Ag), Alumina (Al,O3) and Titanium Oxide (TiO,). Water is treated as a
base fluid. Convective type boundary conditions are employed in modeling the heat transfer process. The non-linear partial
differential equations governing the flow are reduced to an ordinary differential equation by similarity transformations. The
obtained equations are then solved for the development of series solutions. Convergence of the obtained series solutions is
explicitly discussed. The effects of different parameters on the velocity and temperature profiles are shown and analyzed

through graphs.

Keywords: MHD nanofluid, exponentially stretching sheet, porous medium, convective boundary conditions

PACS: 47.15.—x, 47.65.—d

1. Introduction

The boundary layer flow and heat transfer over a stretch-
ing sheet have momentous aspects not only from a theoretical
point of view but also regarding their practical applications in
the polymer industry, paper production, food processing, crys-
tal growing etc. The rate of heat transfer between the stretch-
ing surface and fluid flow is important for the end product’s de-
sired quality. The boundary layer flow generated by a stretch-
ing sheet was first studied by Crane.!!! He constructed an ex-
act solution for the arising problem. Afterwards, the boundary
layer flows by linear and nonlinear stretching surfaces have at-
tracted a great deal of attention of the researchers.>-5] Some
investigations in the past dealt with the flow induced by an
exponentially stretching surface. Magyari and Keller!®! dis-
cussed the steady boundary layer flow by an exponentially
stretching surface with an exponential temperature distribu-
tion. The effect of viscous dissipation in the mixed convection
flow due to an exponentially stretching sheet has been exam-
ined by Partha e al.'’! Sajid and Hayat!®! studied the thermal
radiation effects on the flow due to an exponentially stretch-
ing sheet. They developed the analytic solution for the re-
sulting problem. A numerical solution for the same problem
was given by Bidin and Nazar.”! MHD boundary layer flow
due to an exponentially stretching sheet with a radiation effect
has been obtained by Anuar Ishak.'%) Bachok et al.l'!l stud-
ied the boundary layer stagnation-point flow and heat transfer
over an exponentially stretching/shrinking sheet. The bound-
ary layer flow over an exponentially stretching porous sheet
with heat flux in a porous medium has been obtained by Man-

fCorresponding author. E-mail: pensy_t@yahoo.com
© 2014 Chinese Physical Society and IOP Publishing Ltd

DOI: 10.1088/1674-1056/23/5/054701

dal and Mukhopadhyay.[!?! Bhattacharyya!'®! discussed the
steady boundary layer flow and reactive mass transfer past an
exponentially stretching surface in an exponentially moving
free stream. Elbashbeshy!!'# studied the effects of thermal ra-
diation and magnetic field on unsteady mixed convection flow
and heat transfer over an exponentially stretching surface with
suction in the presence of internal heat generation/absorption.
Boundary layer flow and heat transfer over an exponentially
shrinking vertical sheet with suction was analyzed by Azizah
Mohd Rohni. '3 Mukhopadhyay!'®! studied the MHD bound-
ary layer flow and heat transfer over an exponentially stretch-
ing sheet embedded in a thermally stratified medium.

As oil, water and ethylene glycol mixtures are poor heat
transfer fluids, they therefore have low thermal conductivities.
Since the thermal conductivity of fluids plays an important role
in the heat transfer coefficient, so many methods have been
used to enhance the thermal conductivity of fluids. However,
it is observed that enhancement of the thermal conductivity
of poor heat transfer fluids is possible in view of the addition
of nanoparticles in the base fluids. The nano particles can be
found in metals such as (Cu, Ag), oxides (Al,O3), carbides
(SiC), nitrides (AIN, SiN) or nonmetals (graphite, carbon nan-
otubes). Nanofluids have novel properties that make them
potentially useful in many applications in heat transfer in-
cluding microelectronics, fuel cells, pharmaceutical processes
and hybrid-powered engines. Nanoparticles provide a bridge

between bulk materials and molecular structure. The term

i.l!7] Recently many
18-21]

“nanofluid” was first introduced by Cho
investigations regarding nanofluids have been reported!
Narayana and Sibanda??! studied the effects of laminar flow

http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn
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of a nanoliquid film over an unsteady stretching sheet. Ther-
mophysical properties of nanofluids such as thermal conduc-
tivity, diffusivity and viscosity have been studied by Kang et
al.,'! Velagapudi et al.>* and Rudyak er al.”>! Boundary
layer flow of nanofluid past a stretching sheet with convec-
tive boundary condition was studied by Makinde and Aziz. %]
Alsaedi er al.'>”) studied the effects of heat generation/ ab-
sorption in stagnation point flow of a nanofluid over a lin-
early stretching surface with convective boundary conditions.
Recently, Kandasamy!?8! investigated the unsteady Hiemenz
flow of Cu-nanofluid over a porous wedge in the presence
of thermal stratification. Kameswaran et al.!*’! examined
the homogeneous—heterogeneous reactions in a nanofluid flow
due to a porous stretching sheet. Mustafa et al.’"! addressed
the stagnation point flow of a viscous nanofluid towards a lin-
ear stretching sheet. Nandy and Mahapatral3!! studied the
effects of slip and heat generation/absorption in MHD stag-
nation point flow of a nanofluid past a stretching/shrinking
surface with convective boundary conditions. Ibrahim!*? an-
alyzed the MHD stagnation point flow and heat transfer in
a nanofluid towards a stretching sheet. Makinde*3 exam-
ined the buoyancy effects on MHD stagnation point flow and
heat transfer of a nanofluid past a convectively heated stretch-
ing/shrinking sheet. MHD boundary layer flow and heat trans-
fer of a nanofluid past a permeable stretching sheet with veloc-
ity, thermal and solutal slip boundary conditions has been an-
alyzed by Ibrahim. ¥ Zheng et al.3! studied the flow and ra-
diation heat transfer of a nanofluid over a stretching sheet with
velocity slip and temperature jump in a porous medium. The
effects of a magnetic field on the radiative flow of a nanofluid
past a stretching sheet have been examined by Khan. 36!

The magnetic nanofluids are important to guide the par-
ticles up the bloodstream to a tumor with magnets. In fact,
magnetic nanoparticles are more adhesive to tumor cells than
nano-malignant cells and therefore absorb much more power
than microparticles in alternating current magnetic fields tol-
erable in humans. No doubt, the magnetic nanoparticles have
broad interest in medicine, in sink float separation and the con-
struction of loudspeakers. Besides this, the heat transfer in a
porous medium is significant in geothermal reservoirs, thermal
insulation, nuclear reactors, underground energy transport etc.
Hence, the present article is arranged to investigate the bound-
ary layer flow of a magneto nanofluid in a porous medium.
Exponentially permeable stretched surfaces possess the con-
vective type boundary conditions. In fact, the nanoparticles
are used to enhance the thermal conductivity of the fluid. On
the other hand, the convective boundary condition in dimen-
sionless form appears as a Biot number. An increase in the
Biot number raises the temperature. An increase in tempera-
ture corresponds to an enhancement in the thermal conductiv-
ity. So the nanofluid with a convective boundary condition is a

more appropriate model in comparison to the constant surface

temperature conditions. This article is structured as follows.
Section 2 consists of the problem formulation. Sections

3 and 4 develop the analysis for the series solutions by the

)137-401 and related conver-

homotopy analysis method (HAM
gence domains. Discussion to various influential parameters is

also made in Section 4. The conclusions are given in Section 5.

2. Model development

Let us consider the steady and two-dimensional flow of an
incompressible nanofluid induced by an exponentially stretch-
ing surface in a porous medium with permeability K (Fig. 1).
The x axis is taken along the stretching surface in the direction
of motion and the y axis is perpendicular to it.

Fig. 1. Geometry of the problem.

A uniform transverse magnetic field of strength B, is ap-
plied parallel to the y axis. It is assumed that the induced mag-
netic field and the electric field effects are negligible. Further,
the surface exhibits convective type boundary conditions. The
boundary layer flow in the present analysis is governed by the
following equations:

du Jv
e =0 (1)
du  du %u  Uny )
Pnf (Max +Vay) = ‘unnyZ - K u— O'BOM, )
oT = T kyy O°T

U—=—+v—=—= —-—, 3
dx dy  (pCp)ny 9y* ®

where u and v are the velocity components along the x and
y directions respectively, and o is the electrical conductivity
of the fluid. The effective density p,, the effective dynamic
viscosity Uy, the heat capacitance (pCp)ns and the thermal
conductivity k¢ of the nanofluid are given by

P = Pr(1—9)+pso, 4)

Hop = T 5)
(1-9)*°

(PColns = (PCp) (1 —9)+ (pCp)s9, (6)

n _ ks 2Ky — 20 (ky — k) o

kp ko4 2ks+20 (ks —ks)”
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Here ¢ is the solid volume fraction, subscript s is for nano-
solid-particles, and subscript f is for base fluid. Graphically,
the present consideration of nanofluid model is significant for
a comparative study of different nanoparticles. The present
model is useful for a comparative study of different nanopar-
ticles. In the present model, the preference can be tackled
through Eqgs. (4)—(7). The nanoparticles are assumed to have

uniform shape and size. The subjected boundary conditions

are

U=y =Uet, v=ny,

—kf(;i =h(Ty—T), as y=0,

u—0, T—-T., as y-— oo. ®)
Introducing

x/2L M:erx/Lf/(n),

L2 2L [f(n)+nf'(n)],

oo

U,
ZVfL
[VeU
2L
T-T.

n=y
0(n)=

T ©)

Equation (1) is satisfied automatically and equations (2) and
(3) after using Eqgs. (4)—(7) can be reduced as follows:

f/// —l—Al(l o ¢)2.5(ff// _ 2f/2)
“Af = (1-9)*Mf =0, (10)
1 " Ar r
Pre +A3f6 =0, 1D
f0)=1, f(0) = a, 6(0) = —y[1 - 6(0)],
f'(e2) =0, 8(x0) =0, 12)
in which prime indicates the differentiation with respect to 0
and the values of A; (i = 1,2,3) are

4 =2t :(1—¢)+&¢, (13)
pr
(pCp)nf ( )
Ay = ——— = (11— 14
? (PCo)s (=) (PCp) » (4

ky  ks+2ky +2¢(kf - ks)

Moreover the porosity parameter A, the Hartman number M,
the Prandtl number Pr, the mass transfer parameter with @ > 0
for suction on and o < 0 for injection and the Biot number y
are defined as follows:

2
), = 7va e*x/Lj M= 7ZGBOL67X/L7 Pr= 7Vf(pCP)f’
KU, pUs ky
2L h |v
_ —x/2L _ " 7f
o= — = . 16
VU, € Vw, Y kf a (16)

Local skin-friction coefficient Cy and local Nusselt number Nu
are given by

2T | oT

Cr= W|y;f, Nu=——"_2"1 a7
pUeT (Tw—T) 9y |y
R L 2L

/5= 11(0), Nue;'*\[ =2 = ~0'(0), (18)

x/L

in which Re, = Upe*/“x/v denotes the local Reynolds num-

ber.

3. Solutions derivation
3.1. Zeroth-order deformation problems

We choose the initial guesses fo(1) and 6,(n) and the
linear operators £ and £ in the forms
fo(n) =1+ —exp(—n),

60(n) = - exp(— 1), (19)

Li(f)=f"~f, L2(6)=0"-0, (20)

together with the properties

L1[C1+Crexp(n) +C3exp(—n)] =0,
L [Caexp(n) +Csexp(—n)] =0, 1)

where C; — Cs are the constants. With Egs. (10) and (11), the

definitions of operators Ny and Ny can be written as

Ny [f(n:p),0(n:p)]
3
_ 9 /.p) g(n";p) +AL(1—9)>
2o Pmp) (i)Y
9f(7771’) 2.5 9f(77»l7)
A= (L) M=, 22)
No[6(n,p), f(n,p)]
_ 1929(71 ) Ay 99(71,17)
We construct the zeroth order problems as follows:
(1=p)L1 [f(n,p) = fo(m)] = phypNy[F(n,p)], (24)
(1=p)L2[6(n,p) —65(n)] = phoNo[6(n,p)], (25)
F0.p)=1, f0.p)=a, ['(=p)=0,
6'(0,p) = —¥{1-6(0,p)], 6(c,p) =0, (26)

where /s and hg are the nonzero auxiliary parameters and for
p=0and p=1 we have

(n,1) = 6(n). 27)
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Note that f,(n) and 6,(n) approach f(n) and 6(n) respec-
tively, when p has variation from O to 1. According to the

Taylor series we have

Fp) = folm)+ Y fu(m)p",
m=1

1 9"f(n,p)
fm(N) = mopn p207
(n.p) = +29
1 9"6(n,
() = m,agl”) , (28)
! -

where the convergence depends upon iy and hg. By proper
choice of iy and hg, the series (28) converge for p = 1 and so

£ = fol)) + Y ful)
m=1

6(1) = 6o(m)+ Y. Ou(n)

(29)
m=1
3.2. m-th order deformation problems
The resulting problems at this order are given by
L1 [fm(nap)_memfl(n)} :thf,m(n)v (30)
£2[9m(nap)_1m6mfl(n)] :hGRG,m(n)» (31)
In(0) = £,(0) = £ () = 6,,(0) = ¥6,,(0) = O (o0) = 0,(32)
0, m<1,
Xm:{l me 1 (33)
Rim(M) = fu1+A1(1—¢ 252 2w fi = Fn1-1S7 ]
~ A 1—( —¢>2'5Mfm,1, (34)
l
Rom(n) = 5-6, Z 1 (35)
where the general solutions are
fu(M) = fu(M)+Cr+Cel +Cie ™, (36)
On(n) = 6,(1n)+Cae" +Cse™™, (37)

in which f;} and ¢, denote the special solutions.

4. Analysis of the results
4.1. Convergence of the derived series solutions

Now the solutions of Egs. (10) and (11) subject to the
boundary conditions (12) are computed by means of a homo-
topy analysis method. We choose auxiliary parameters /iy and
hg for the functions f and O respectively. The convergence
of the obtained series and the rate of the approximation for
HAM strongly depend upon the values of the auxiliary param-

eters. For ranges of admissible values of 7 and g, the &

curves for 12th-order of approximations are plotted in Figs. 2
and 3. We can see that the permissible values for /iy and 719 are
—0.7<hy < —0.4 and —0.85 < g < —0.3. Further, the series
solutions converge in the whole region of 1) (0 < 1 < =) when
hy =hg =—0.6.

—1.8
—2.0
S
=
—2.2
—2.4

—0.8 —0.6 —0.4

hy

—0.2 0

Fig. 2. The #i curve for f. M =0.1, Pr=1,¢ =0.03, y=0.7, x =0.9,
and A =0.5.

—-0.1

—-0.2

—-0.3

9'(0)

—-0.4

—-0.5

—0.6

—1.0 —-0.6

e

—0.2 0.2

Fig. 3. The ficurve for 6. M =0.1, Pr=1, ¢ =0.03,y=0.7, « = 0.9,
and A =0.5.

4.2. Results and discussion

In this section, we discuss the influence of various pa-
rameters on the velocity f/(1) and temperature fields 6(n).
Figures 4-7 are plotted to analyze the effects of volume frac-
tion of nanoparticles (Cu), mass transfer parameter o, Hart-
man number M and porosity parameter A on the velocity field
f'. Effects of volume fraction of nanoparticles (Cu) on the ve-
locity profile f/ can be seen from Fig. 3. Here the values of f’
and the boundary layer thickness decrease when the volume
fraction for the nanoparticles increases. This is because of the
fact that by increasing the volume of copper nanoparticles, the
thermal conductivity increases and the boundary layer thick-
ness decreases. The effects of the mass transfer parameter o
on the velocity function f” are depicted in Fig. 4. This graph
shows that the value of velocity function f’ and the boundary
layer thickness decrease by increasing ¢. Because applying
suction leads to draw the amount of fluid particles into the
wall and consequently the velocity boundary layer decreases.
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Also suction is an agent which causes a reduction in the fluid
velocity. Figure 5 shows the influence of Hartman number M
on the velocity. Here we analyzed that the velocity is reduced
when we increase the values of Hartman number. The appli-
cation of an applied magnetic field has the tendency to slow
down the movement of the fluid, which leads to a decrease in
the velocity and momentum boundary layer thickness. From
Fig. 6, we can see that higher values of porosity parameter
A correspond to the lower velocity. The porosity parameter
depends on the permeability parameter K. An increase in the
porosity parameter leads to the lower permeability parameter.
This lower permeability parameter causes a reduction in the
fluid velocity.

1.0
Cu-water
— ¢=0.01
0.8 - $=0.03
— $=0.04
— 0.6 - ¢ =0.05
=
3
0.4
0.2
0
0

Cu-water
— M=0.1
---M=0.3
---M=0.5
- M=0.7

Fig. 6. Effects of M on f/. A =05, Pr=1, a = 0.9, ¢ =0.03, and
h=—0.6.

1O Cu-water

— A=0.1

0.8 ---A=0.8

--A=1.5

06 -~ A=2.0

£
= 04
0.2
0
0 1 2 3 4 5 6

Fig. 7. Effects of A on f'. @ =0.9, Pr=1, M =0.1, ¢ =0.03, and
A=0.5.

0.5
. Cu-water

0(n)

Fig. 8. Effectsof ¢ on 0. A =0.5, Pr=1,y=0.7, a =09, M =0.1,
h=—-0.6.

0.5

Cu-water

\ —a=20.1
0.4} \\ ---a=05
\ ---- = U.

AN . a=15

Fig. 9. Effectsof c on 6. A = 0.5, Pr=1,y=0.7, M = 0.1, ¢ =0.03,
and h = —0.6.

The effects of volume fraction of nanoparticles (Cu),
mass transfer parameter o, Hartman number M, porosity pa-
rameter A, Prandtl number Pr and Biot number ¥ on the tem-
perature profile 6 are shown in Figs. 8-13. Effect of ¢ on
the temperature is analyzed in Fig. 7. It is observed that in-
creasing the volume fraction of nanoparticles ¢, increases the
thermal conductivity of nanofluids and consequently the ther-
mal boundary layer thickness increases. The behavior of & on
the temperature profile is similar to that of the velocity profile
(see Fig. 9). Figure 10 illustrates the effects of M on tempera-
ture profile 6. As the Lorentz force is a resistive force which
opposes the fluid motion, so heat is produced and as a result,
the thermal boundary layer thickness increases. Variations of
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A and Pr on temperature profile 6 can be seen in Figs. 11-12.
There is a decrease in temperature 0 when porosity parame-
ter A and Prandtl number Pr are increased. In fact, the ther-
mal diffusivity decreases by increasing Pr and thus the heat
diffuses away slowly from the heated surface. Figure 13 rep-
resents the effect of Biot number y on temperature profile 6.
Temperature profile 0 increases for an increase in . The Biot
number involves the heat transfer coefficient. Higher values of
the Biot number implies an enhancement in the heat transfer
coefficient. This enhancement in the heat transfer coefficient
give rise to the temperature and thermal boundary layer thick-

ness.

0.4

Cu-water

Fig. 10. Effectsof Mon 6.1 =0.5, Pr=1,y=0.7, « = 0.9, ¢ = 0.03,
and h = —0.6.

Cu-water
323
0.3 ~A=40
- A=5.0
£ 0.2
>
0.1
0
5 6 7

Fig. 11. Effectsof Aon 6. ¢ =0.03, Pr=1,y=0.7,a =09, M = 0.1,
and h = —0.6.

0.5

0.4

0.3

0(n)

0.2

0.1

Fig. 12. Effects of Pr on 6. ¢ =0.03, A =0.5, y=0.7, o« = 0.9,
M =0.1,and h = —0.6.

In Figs. 14(a) and 14(b) we observe that boundary
layer thickness is maximum when Alumina is chosen as the

Figures 15(a) and 15(b) show the effects of
nanoparticle volume fraction ¢, mass transfer parameter o and

nanoparticle.

porosity parameter A on the skin friction coefficient in the case
of Cu-water. It is noticed that the skin friction coefficient de-
creases when we increase ¢ for both o and A. Figures 16(a)
and (16(b) describe the variation of the Nusselt number for
nanoparticle volume fraction ¢, mass transfer parameter o and
porosity parameter A. In this figure, heat transfer rates de-
crease as ¢ increases for both o and A.

0.8 "‘ Cu-water
— v=0.05
---vy=0.1
0.6 —-y=1.0
- . -y =25.0
\
5z 041 «
\
N .
\ .
0.2 Se
SOt
0 —_— = S
0 1 2 3 4

Fig. 13. Effectsof yon 6. ¢ =0.03,A =0.5,Pr=1,=0.9,M =0.1,
and h = —0.6.

1.0

— copper
(@) --- silver
0.8 ---- alumina
- titanium oxide
. 0.6
£
=
0.4
0.2
0
0
0.5
v (D) — copper
---silver
0.4 \ ---- alumina
----- titanium oxide
0.3
=
T
0.2
0.1
0
0

Fig. 14. (a) Velocity and (b) temperature profiles for different types of
nanofluids.

Table 1 shows the convergence of the series solutions. It
is observed that convergence is achieved at the 17-th order
of approximations. In Table 2, some thermophysical prop-
erties of water and nanoparticles are given. Table 3 shows
the effects of the nanoparticle volume fraction ¢ for differ-
ent types of nanofluids on the skin friction coefficient when
A =0.5,M=0.1,and ot = 0.9. Table 4 shows the effects of the
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nanoparticle volume fraction ¢ for different types of nanoflu-
ids on the Nusselt number when A = 0.5, Pr=1, y = 0.7,
M = 0.1, and ¢ = 0.9. These tables show that the shear stress
and heat transfer rate change when we use different types of
nanoparticles.

—2
-3
=
s —4
S~
—5
—6
0 1 2 3 4
«a
—1.5
Cu-water
—¢=0
—2.0} > -~ $=0.05
(b) < —- = 0.10
S 25 o
g
—3.0 N \\\
SoN
AN
—-35 N
0 1 2 3 4

Fig. 15. (a) Effect of nanoparticle volume fraction ¢, mass transfer pa-
rameter o and (b) porosity parameter A on the skin friction coefficient
when M =0.1.

0.65 (a) Cu-water
—$=0
---$=0.05 -7 .
0.55 ¢=0.10 - .-
—~ - -7
e -7
S e
0.45
0.35
;/
0 1 2 3 4
(03
0.41} V) Cuvoater
---$=0.05
¢ =0.10
030  T— 7 ¢=010
s
& b T ———_______
0.37 -
0.35
0 1 2 3 4
A

Fig. 16. Effect of nanoparticle volume fraction ¢, (a) mass transfer pa-
rameter @ and (b) porosity parameter A on the Nusselt number when
M=0.1,Pr=1,and y=0.7.

Table 1. Convergence of HAM solutions for different order of approxi-
mations when Pr=1,¢ =0.03,A =0.5,y=0.7, M =0.1,and @ =0.9.

Order —£"(0) —0'(0)

1 1.76172 0.416270
5 2.14446 0.422428
10 2.15409 0.423256
17 2.15426 0.423311
20 2.15426 0.423311
25 2.15426 0.423311
30 2.15426 0.423311
35 2.15426 0.423311
40 2.15426 0.423311

Table 2. Thermophysical properties of water and nanoparticles.

plkgm™ Cplikg !k k/W-m~ 1k B x103/K™!

Pure water 997.1 4179 0.613 21

Copper (Cu) 8933 385 401 1.67
Silver (Ag) 10500 235 429 1.89
Alumina (Al 03) 3970 765 40 0.85
Titanium Oxide (TiO;) 4250 686.2 8.9538 0.9

Table 3. Effect of ¢ for different types of nanofluids on the skin friction
coefficient when A = 0.5, M = 0.1, and o = 0.9.

(]) Cu Ag A1203 TIOZ
0.01 —2.05387 —2.07036 —2.00143 —2.00439
0.03 —2.15426 —2.20071 —2.00558 —2.01404
0.05 —2.23960 —2.31255 —2.00535 —2.01873

Table 4. Effect of ¢ for different types of nanofluids on the Nusselt
number when A = 0.5, Pr=1,y=0.7,M =0.1, and a = 0.9.

0 Cu Ag AlLO; TiO,

001 0436981 0436452 0437649  0.438380
003 0423311 0421702 0425326  0.427566
0.05 0409403 0406691 0412767  0.416582

5. Concluding remarks

Here MHD flow of nanofluid by an exponentially perme-
able stretching sheet is studied. The effects of different pa-
rameters on the velocity and temperature profiles are shown.
A convergent approximate solution is constructed. The fol-
lowing observations are made.

(i) An increase in the values of ¢, o, M and A have similar
effects on the velocity f'(1) in a qualitative sense.

(i1) The temperature profile increases by increasing ¢, M
and y while it decreases when o and A are increased.

(iii) An increase in Prandtl number Pr reduces the tem-
perature and the thermal boundary layer thickness.

(iv) The values of the skin friction coefficient are higher
for increasing values of ¢.

(v) Higher values of ¢ correspond to smaller values of the
Nusselt number.
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Chapter 1

Literature review and governing

equations

This chapter contains the literature review related to the nanofluid, magnetohydrodynamic,
stretching surface, rotating disk, slip flows and homogeneous-heterogeneous reactions. Equa-
tions governing nanofluids flow for Buongiornoe and phase flow model are presented. The basic

idea of homotopy analysis method (HAM) is also included.

1.1 Background

‘onvective heat transfer through nanoparticles is a popular area of research at present. The
nanoparticles (nanometer sized particles) are made up of metals, cagbides, oxides or carbon
nanotubes. The nanofluids are formed by adding nanoparticles into many conventional fluids
like water, ethylene glycol and engine oil. Thg use of additive is a process which enhances
the heat transfer performance of base fluids. Choi [1] experimentally found that addition of
nanoparticles in conventional/base fluid appreciably enhances the thermal conductigty of the
fluid. Eastman et al. [2] and Choi et al. [3] pointed out that a small amount {{ymlume
fraction) of Cu nanoparticles or carbon nanotubes dispersed in ethylene glycol or oilxemark-
ably enhanced the thermal conductivity of a fluid by 40% and 50% respectively. ﬁms the
nanomaterials are recognized more effective in micro/mnano electromechanical devices, advanced

cooling systems, large scale thermal management systems via evaporators, heat exchangers and




industrial cooling applications. Use of nanofluids as coolants allow for smaller size and better
positioning of the radiators which eventually consumes less energy for overcoming resistance
on the road. Nanoparticles in refrigerant/lubricant mixtures could enable a cost effective tech-
logy tor improving the efficiency of chillers that cool buildings. Tiwari and Das [4] studied
éat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing
nanofluids. At present, the literature on theoretical and experimental attempts about nanoflu-
ids is quite extensive. The comprehensive review on nanofluids can be found in the book [5]
and refs. [6 — 11]. Detailed review on this topic up to 2012 has been made by Mchammed et
al.[12] and Dalkilic et al. [13]. Besides these, a comprehensive survey of convective transport
in nanofluids is presented by Buongiorno [14]. He developed a non-homogeneous equilibrium
model for convective transport to ribe the heat transfer enhancement of nanofluids. He
concluded that abnormal increase in thermal conductivity occurs due to the presence of two
main velocity-slip effects, namely, the Brownian diffusion and the thermophaoretic diffusion of
the nanoparticles. Later Buongiorno et al. [15] conducted novel investigations which show no
ﬁu et al. [16] studied

slip flow of a non-Newtonian nanofluid in a microtube. ects of heat generation/absorption

anomalous thermal conductivity enhancement in the congidered fluids.

on stagnation point flow of nanofluid over a surface with convective dary conditions have
been analyzed by Alsaediet al. [17]. Xu et al. [18] examined unstead:@n" in a nano-liquid film
over a stretching surface. Imtiaz et al. [19] presented mixed convection flow of nanofluid with
Newtonian heating. Khalili et al. [20] considered unsteady convective heat and mass transfer
in pseudoplastic nanofluid.

Magnetic nanofluids are more useful jp the sense that their physical properties are tun-
able through the external magnetic field. gany equipments such as MHD generators, pumps,
bearings and boundary layer control are affected by the interaction between the electrically
conducting fluid and a magnetic field. The behavior of flow strongly depends on the orienta-
tion and intensity of the applied magnetic field. The exerted magnetic field manipulates the
suspended particles and rearranges their concentration in the fluid which strongly changes heat
transfer characteristics of the flow. A magnetic nanofluid has both the liquid and magnetic

characteristics. Such materials have fascinating applications in optical modulators, magneto-

optical wavelength filters, nonlinear optical materials, optical switches, optical gratings etc.




Magnetic particles have pivotal role in the construction of loud speakers as sealing materials
and in sink float separation. Magneto nanofluids are useful to guide the particles up the blood
stream to a tumor with magnets. This is due to the fact that the magnetic nanoparticles are
regarded more adhesive to tumor cells than non-malignant cells. Such particles absorb more
power than microparticles in alternating current magnetic fields tolerable in humans i.e. for
cancer therapy. Numerous applications involving magnetic nanofluids include drug delivery,
hyperthermia, contrast enhancement in magnetic resonance imaging and magnetic cell separa-
tion. Motivated by all the aforementioned facts, various scientists and engineers are en in
the discussion of flows of nanofluids via different aspects. Rashidi et al. [21] analyzed entropy
generation in M flow due to a rotating porous disk in a nanofluid. Sheikholeslami et al.
[22] investigated D nanoflujd flow in a semi-porous channel. Khalili et al. [23] discussed
unsteady MHD nanofluid Alow over a stretching/shrinking sheet in porous medium filled with
a nanofluid. Rashidi et [24] reported buoyancy effect on MHD stretched flow of nanofluid
with thermal radiation. ect of thermal radiation on magnetohydrodynamics nanofluid Aow
and heat transfer by means of two phase model has been studied by Sheikholeslamigt al. [25].
Numerical simulation of two phase unsteady nanofluid flow between parallel plates in presence
of time dependent magnetic field has been investigated by Sheikholeslami et al. [26]. Lin et
al. [27] analyzed MHD pseudo-plastic nanofluid flow in a finite thin film over stretching sur-
ace. They also considered heat transfer analysis with internal heat generation. Melting heat
énsf&r on MHD convective low of a nanofluid with viscous dissipation and second order slip
has been presented by Mabood and Mastroberardino [28]. Hayat et al. [29] explored 3D MHD
flow of viscoelastic nanofluid with nonlinear thermal radiation. Hayat et al. [30] also examined
interactign of magnetic field in flow of Maxwell nanofluid with convective effect.

The 91'1::1 flow over stretching surface has gained the attention of researchers due to its
important applications in engineering processes namely polymer extrusion, drawing of plastic
films and wires, glass fiber and paper production, manufacture of foods, crystal growing, liquid
films in congdensation process, ete. Crane [31] investigated the flow caused by the stretching
of a sheet. Most of the available literature deals with the study of boundary layer flow over a
stretching surface where the velocity of the stretching sheet is assumed linearly proportional

to the distance from the fixed origin. However, realistically stretching of plastic sheet may not

=1




necessarily be linear. Flow and heat transfer characteristics past an exponentially stretching
sheet has a wider applications in technology. For example, in case of annealing and thinning
of copper wires, the final product depends on the rate of heat transfer at the surface with
exponential variations of stretching velocity. During such processes, both the kinematics of
stretching and the simultaneous heating or cooling have a decisive influence on the quality of
the final product. Specific example in this digection can be mentioned through process in plastic
industry. Gupta and Gupta [32] discussed t and mass transfer on a stretching sheet with
suction or blowing. Afzal et al. [33] ied momentum and heat transfer on a continuous flat
surface moving in a parallel stream. Magyari and Keller [34] focused on heat and mass transfer
on boundary layer flow due to an exponentially continuous stretching sheet. Cortell found
the solutions for moving fluid over a moving flat surface. Zheng et al. [36] reported ﬁ ow
and heat transfer over a porous shrinking surface with velocity slip and temperature jump.ﬁHD
stagnation point flow and heat transfer due to nanofluid towards g stretching sheet have been
addressed by Ibrahim et al. [37]. Mukhopadhyay [38] investigated slp effects on MHD boundary
layer flow by an expgpentially stretching sheet with suction/blowing and thermal radiation.
Exact solutions overﬂetching or shrinking sheet in an electrically conducting quiescent coygle
stress fluid have been computed by Turkyilmazoglu [39]. Malvandi et al. [40] p nted‘gp
effects on unsteady stagnation peint flow of a nanofluid over a stretching sheet. Casson fluid
flow and heat transfer past an exponentially porous stretching surface in presence of thermal
radiation have been provided by Pramanik [41]. Three dimensional flow of viscoelastic fuid
by an exponentially stretching surface with mass transfer has been obtained by Alhuthali et
al. [42]. Rosca and Pop [43] studied Powell-Eyring fluid flow over a shrinking surface in
a parallel free stream. Nandy and Pop [44] explored ﬁt& of magnetic field and thermal
radiation on stagnatign flow and heat transfer of nanofluid over a shrinking surface. Nandy [45]
considered unsteady Ew of Maxwell fluid in the presence of nanoparticles toward a permeable
shrinking surface with Navier slip. Weidman and Ishak [46] computed multiple solutions of
two-dimensional and three-dimensional flows induced by a ﬁtching flat surface. cts of
viscous dissipation and heat source on unsteady MHD flow o a stretching sheet have been
examined by Reddy et al. [47]. Chen et al. [48] discussed boundary layer flow of Maxyell

fluid over an unsteady stretching surface. Mustafa et al. [49] analyzed radiation effects over




i-directional exponentially stretching sheet. Effects of convective heat and mass transfer in
g}; of Powell-Eyring fluid past an exponentially stretching sheet have been presented by Hayat
et al. [50].

Fluid flow by a rotating disk is important in engineering and geophysical applications such
as flows in spin coating, manufacturing and use of computer disks, rotational viscometer, cen-
trifugal machinery, pumping of liquid metals at high melting point, crystal growth from molten
silicon, turbo-machinery etc. Karman [51] investi the classical problem of a rotating disk.

ﬁonfoaxial rotations of disk a@a fluid at

infinity. A note on porous rotating disk is presented by Kelson and Desseaux [53]. Flow due to

Erdogan 22] analyzed unsteady viscous fluid flow

a rotating porous digk in presence of nanoparticles is analyzed by Bachok et al. [564]. Rashidi et
al. [55] developed approximate solutions for steady flow due to a ting disk through porous
medium and heat transfer. Turkyilmazoglu [56] studied nanoﬂuidﬁ and heat transfer due to
a rotating disk. Hayat et al. [57] analyzed MHD flow of Cu-water nanofluid due to a rotating
disk with partial slip.

The tormation and use of micro devices have attracted the attention of recent scientists.
The small size as well as high efficiency of micro-devices-such as microsensors, microvalves and
micropumps are some of the advantages of using MEMS and NEMS (Micro and Nano Electro
Mechanical Systems). Many attempts addressing the flow and heat transter have been pre-
sented to guarantee the performance of such devices. The surface effects at micro scale level
lead to change in the classical conditions. Thus no-slip condition is inadequate for the fAuid
flows in MEMS and NEMS. No slip conditions show unrealistic behavior for the cases like
the extrusion of polymer melts from a capillary tube, corner flow and spreading of liquid on
a solid substrate [58]. Theﬁw analysis with heat transfer at micro-scale is encountered in
micro-electro-mechanical systems (MEMS). Such systems have association with consideration
of velocity slip and tempe e jump. Khare et al. [59] presented relationship between velocity
and thermal slip. Wu [60] derived a slip model fgr rarefied gas flows at arbitrary Knudsen num-
ber. Fapo and Aziz [61] considered viscous flow with second-order slip velocity over a stretching
sheet. E&t transter enhancement using nanofluids in microchannels with slip and non-slip fow

regimes P@a&en investigated by Akbarinia et al. [62]. Mahmoud and Waheed [63] examined

stretched flow of a micropolar fluid with heat generation (absorption) and slip velocity. Ibrahim




and Shankar [64] presented m[) boundary layer flow and heat transter of a nanofluid past a
permeable stretching gheet with velocity, thermal and solutal slip boundary condition. Khan
et al. [65] analyzed hydrodynamic and thermal slip effect on double-diffusive free convective
boundary layer flow of a nanofluid. Extension of a second order velocity slip/temperature jump
boundary condition to simulate high speed micro/nanoflows has been given by Roocholghdos
and Roohi [66]. Malvandi and Ganji [67] considered Brownian motion and thermophoresis -
effects on slip flow of alumina/water nanofluid inside a circular microchannel. Second order slip
flow of Cu-water nanofluid over a stretching sheet with heat transter has been igyestigated by
Sharma and Ishak [68]. Rashidi et al. [69] investigated entropy generation in ﬁ;ﬂi and slip
flow over a rotating porous disk with variable properties. Karimipour et al. [70] analyzed the
simulation of copper-water nanofluid in a microchannel with slip flow effect. Here the lattice
Boltzman method is used for the simulation. Megahed [71] studied MHD{gasson fluid flow and
heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet.
Hakeem et al. [T2] presented magnetic field effect on second order slip flow of nanofluid over a
radiative stretching/shrinking sheet.

Homogeneous-heterogeneous reactions occur in many chemically reacting systems such as
in combustion, catalysis and biochemical systems. Some of the reactions have the ability to
proceed very slowly or not at all, except in the presence of a catalyst. The interaction between
the ogeneous and heterogeneous reactions is very complex. It is involved in the produc-
tion and consumption of reactant species at different rates both within the fluid and on the
catalytic surfaces. Especially chemical reaction effects are quite significant in food processing,
hydrometallurgical industry, manufacturing of ceramics and polymer production, fog formation
and dispersion, chemical processing equipment design, crops damage via freezing, cooling tow-

s and temperature distribution and moisture over agricultural fields and groves of fruit trees.
gmodel for isothermal homogeneous-heterogeneous reactions in boundary layer low of viscous
fluid past a flat plate is studied by Merkin [73]. He presented the homogeneous reaction by
cubic autocatalysis and the heterogeneous reaction with a first order process. It is shown that
the surface reaction is the dominant mecFiam near the leading edge of the plate. Chaudhary

and Merkin [74] studied th mogenous-heterogeneous reactions in boundary layer flow of vis-

cous fluid. They found the numerical solution near the leading edge of a flat plate. Khan and

10




Pop [75] studied two-dimensional stagnation-point flow with homogeneous-heterogeneous reac-
tion. Bachok et al. [76] focused on the stagng’:n-point, flow towards a stretching sheet with

homogeneous-heterogeneous reaction effects. ects of homogeneous-heterogeneous reactions

the flow of viscoelastic fluid towards a stretching sheet are investigated by Khan and Pop [77].
gomogeneous-heterogeneous reactiongdn micropolar fluid flow from a permeable stretching or
shrinking sheet in a porous medium Euve been studied by Shaw et al. [78]. Kameswaran et
al. [79] extended the work of Khan and Pop [77] for nanofluid ov porous stretching sheet.
Hayat et al. [R0] analyzed homogeneous-heterogenecus reactions mhe stagnation point flow
of carbon nanotubes with Newtoglan heating. Effect of homogeneous-heterogeneous reactions
in flowof Powell-Eyring fluid is examined by Hayat et al. [81]. Abbasi et al. [22] investi-
gated stagnation-point flow of viscous fluid over stretching/shrinking sheet in the presence of

homogeneous-heterogeneous reactions.

1.2 Fundamental laws for Buongiorno’s model

1.2.1 aw of conservation of mass

In absence of sources or sinks we can write equation of continuity as

dp

4V (pV)=0. (1.1)

in which p is fluid density, ¢ is time and V is Auid velocity. The above equation for an incom-

pressible fluid takes the form
V.-V=0. (1.2)
1.2.2 Law of conservation of linear momentum

Generalized equation of motion can be expressed as

dv

which the left hand side represents an inertial force, the first term on right hand side is

the surface force and the second term on right hand side is body force. For an incompressible

11




viscous fluid T = — PIL + A, is the Cauchy stress tensor, P the pressue, I the identity tensor,

A, = VV+(VV)! the first Rivlin-Erickson tensor, b the body force and d/dt the material

time derivative,

1.2.9 Law of conservation of energy

The energy equation for a nanofluid can be written as

dT = = —.)
pep— = —divg + hpV - o, (1.4)
where ¢, is spegific heat of nanofluid, T is the temperature, h, is the specific enthalpy for
nanoparticles, ¢ 1s the energy flux and E’p is the nanoparticles diffusion mass flux. Energy flux

¢ and nanoparticles diffusion mass flux Tp are given by

G=—kVT +h,Jp, (1.5)

. VT .
Jp= PpDBvC PPDTT—T‘ (16)

in which & the thermal conductivity, Pp is the nanoparticle mass density, Dy the Brownian
motion parameter, Dy the thermophoretic diffusion coefficient and € the nanoparticles volume

fraction. So Eq. (1.4) takes the form

dl’ . vr.-vTr
pep—- = kV?T + pye, |DpVC - VT + Dp————| (1.7)
dt T
which is the energy equation for nanofluids.
1.2.4 Law of conservation of concentration
The concentration equation for nanofluids is
%JFV-VC':—iV-TP, (1.8)

Pp
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After utilizing Eq. (1.6), we get

ac viT

— +V.VC = DgV’C + Dp——, 1.9

=+ B + Dr——, (1.9)
which is the concentration equation for nanofluids.
1.3 Basic laws for phase flow model
1.3.1 Law of conservation of linear Momentum
Generalized equation of motion can be expressed as

AY
Pfgy =~V T+ Pagb (1.10)

where the effective nanofluid density p,,; and the heat capacity (pep)ny is taken as follows [4]):

pn_f_l?f(]-_o)—f—psm- (11]-]

(pep)ns = (pep) f(1 — 0) + (pep)sth. (1.12)

The dynamic viscosity of nanofluid g, given by Brinkmann is [98]:

_ By

The effective thermal conductivity of nanofluid %,y by Maxwell-Garnett model is given by [99]:

kup ks +2ky — 2(ky — k)

— = ; 1.14
ky ke + 2kp + dlky — k) ( )
1.3.2 aw of conservation of Energy
The energy equation for a nanofluid can be written as
darl —-
P = —AVE+ IV - ), (1.15)
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Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript

is for base fluid.

1.4 Solution procedure

Flow equations occuring in the field of science and engineering are highly nonlinear in general.
Therefore it is very difficult to find the exact solution of such equations. Usually perturbation,
Adomian decomposion and homotopy perturbation methods are used to find the sclution of non-
linear equations. But these methods have some drawback through involvement of large/small
parameters in the equations and convergence. Homotopy analysis method (HA 23 — 97] is
one while is independent of small/large parameters. This method also gives us a way to adjust
and control the convergence region (i.g. by plotting h-curve). It also provides exemption to
choose different sets of base functions. n

e have used this technique in the subsequent chapters

to get the analytical solutions.
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Chapter 2

MHD ?low of nanofluid over
permeable stretching sheet with

convective boundary conditions

This chapter addresses the magnetohydrodynamic (MHD) boundary layer E.w of nanofluid.
Flow is induced by a permeable stretching sheet. Convegtive type boundary conditions are
employed in modeling the heat and mass transfer process.e?pproprial;e transformations reduce
the nonlinear partial differential equations to ordinary differential equations. The convergent

ies solutions are constructed. Graphical results of different parameters are discussed. The
Ehaviors of Brownian motion and therwhoretic diffusion of nanoparticles have been exam-

ined. The dimensionless expressions of local Nusselt and local Sherwood numbers have been

evaluated and discussed.

2.1 groblem formulation

We consider the two-dimensional Aow of nanofluid bounded by a permeable stretching sheet.
The xz—axis is taken along the stretching surface in the direction of motion and y—axis is
perpendicular to it. A uniform transverse magnetic field of strength By is applied parallel to
the y—axis. It is a?ed that the effects of induced magnetic and electric fields are negligible.

Salient features of Brownian motion and thermophoresis are present. The temperature T' and
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the nanoparticle fraction C' at the surface have constant values T3, and O, respectively. The

ambient values of T and C attained as y tends to infinity are denoted by T, and C, respectively.
The conservation of mass, momentum, energy and nanoparticles equations for nanofluids are:

Bu@

T 4 By =0, (2.1)

du du 8w oBju

— _— = p— 9
uge + o5 = v — 0%, (2.2)
ar aT 8T ac 8T Dy (0T\?
“5s o~ %or VT | PP ey T T (a_y) ] ’ e
ac ac a2Cc Dy 8T
u—+ t:—ay = .D;;—ayg + T. 8,7 (2.4)

where u and v are the velocity components along z and y— directions respectively, v the
kinematic viscosity, g the fluid density, ¢ the electrical conductivity of the base fluid, o the
thermal diffusivity, T = (pe),/(pc)y is the ratio between the effective heat capacity of the
nanoparticle material and heat capacity of the fluid, Dg is the Brownian diffusion coefficient
and D is the thermophoretic diffusion coefficient.

The boundary conditions are prescribed as follows:

ar ac
u=uy(z)=cz, v="V,, - ka—y =nTy-T), — D’”a_y =kn(Cy—C) at y=0,
u=0T->T,, C—Cy as y — oq, (2.5)

in which V3, is the wall mass transter velocity, k is the thermal conductivity of Auid, b 15 the
convective heat transfer coefficient, Ty is the heated fluid temperature, D)y, is the molecular
diffusivity of the species concentration, ky is the wall mass transfer coefficient and C is the

heated fuid concentration. Using the translformations

a r T-T+ C—Cyx
— il — LU= — . 4] E L] = —, 2.6
1= [Bn um el ) v VIS, 00) = T 00 = 5o, )
equation (2.1) is satisfied automatically and Eqs. (2.2 — 2.5) take the following forms
-1+ -Mf =0, (2.7)
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1
50" + S0+ Np®'0' + Nio™” = 0, (2.8)
r
i ~ _ ax} *'\"l i
" + Scfd -I—?H =0, (2.9)
i¥h

f(0) =8, f(0) =1, 6'(0) = =711 - 0(0)], '(0) = —72[1 — ®(0)],
fi(m} =0, 8(c0) = 0,®(0) = 0, (2.10)

where prime indicates the differentiation with respect to 1. Moreover the Hartman number A,
the Prandt]l number Pr, the Brownian motion parameter Ny, the thermophoresis parameter Ny,
the Schmidt number Se, the mass transfer parameter S with S > 0 for suction and S < 0 for
injection, the thermal Biot number ~, and the concentration Biot number v, are defined by

the following definitions:

oB? v (pc), Dp (Cy — Cux) (pe), Dr (T — Two)
M = , Pr=—=, N, = , ¥y = '
pe a (pe)y v (pe) ; Toov
o v L WV _hJy km [V ,
Se = Dn 1 5= V{E‘ M= I \/:! Yo = Dm ¢ . (211)

The local Nusselt number Nu and Sherwood number Sh are

Ty ar
Nu=——"2 . gu=—k—/| |, (2.12
k(ff_j’m) dy =0 )
. TGm aC
Sh=—-- .0 =_-DZ| (2.13
D5 (Cs — Og) % |0 )

in which g, and g,, denote the wall heat and mass fluxes respectively. In dimensionless form
NuRe_ Y% = —¢'(0), ShRe,'/? = —&'(0), (2.14)

where Re, = u,(z)z/v is the local Reynolds number.




2.2 Homotopic solutions

2.2.1 Zeroth-order deformation problems

We choose initial guesses fy(n), #o(n) and $g(n) and linear operators Ly, £y and L4 in the

form
fo(n) = 5 +1—exp(—n), (2.15)
__" - .
fo(n) = T+ exp(—1n), (2.16)
Ya =
= = —_— @
Po(n) = 77 —~ exp(—n), (2.17)
Li(f) = =7, (2.18)
Lo(0) =0" -9, (2.19)
La(P) =" — b, (2.20)
together with the properties
£1ler + o2 exp(n) + eaexp(—n)] = 0, (221)
Lo [es exp(n) + cs exp(—n)] = 0, (2.22)
Ly [egexp(n) + crexp(—n)] = 0, (2.23)

where ¢; — ¢7 are the constants. If p € [0,1] denotes an embedding parameter and fi, fig and
hq represent the non-zero auxiliary parameters then the zeroth order deformation problems are

defined as tollows:

(1= p)es [fms ) = foln)] = ph sy Lfm; ), (2.24)
(1-p)Ly [étn:p} - 90{"?}] = phaNol0(m; p), f(m; p), D(m; p)], (2.25)
(1 - p)Ls |(n;p) — ‘Mn)} = pliaNa[®(n; p), f(m;p),0(n; )], (2.26)

f(0;p) = 8, F(0;p) =1, f'(c0;p) =0,
8'(0;p) = —71[L — 8(0;p)], O(o0;p) = O,
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&'(0;p) = —7a[l — ©(0;p)], ®(o0;p) =0, (2.27)

where Ay, Mg and Ny are the nonlinear operators defined in the forms:

e B Fip) s 8imp)  (0imw)) ., 00(np) J
Ny [ = =58 + fnm) =552 - ( oL ) -uEE o
5 . ‘ 1 8%0(y;p) | ;. 98(n;p) 0mp)\’
Nolo(n; ), F(n; p), @(n; )] Br oy TSmp)—5 — +Ne (T)
LNy 51};? ) aag:; P), (2.29)
- A & 2 n- 5 B (- N, 28
Nol#r ), 0 2), 001 )] = 5 B2 + sefonp) TR 4+ SLZHDL - (2.30
For p = 0 and p = 1 we have
f;0) = foln), f(n;1) = f(n),
0(n; 0) = Bo(n), O(m;1) = 6(n),
d(n; 0) = o(n), ®(n;1) = B(n). (2.31)

Note that fa(n), #a(n) and $4(n) approach f(n), #(n) and ¥(n) respectively, when p has variation

from 0 to 1. According to Taylor series we have

Fp) = fon) + 3 S Funl) = — TS VD),

— m!  dp™ 0
i 5

ey m _ 1 3m8(n;p)

0(n; p) = Bo(n) + Zlﬂm(n)p  On(m) = =g K
e p=0

: & 1 8 (n; p)

'I}(ﬂ;p} — @n(n) + ZL@'H(’T)P'B‘ 'I‘m(i}} = ET"’: N (232)
m= p_u
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where the convergence depends upon fiy, fig and fig. By proper choice of kg, g and fig the

series (2.32) converge for p = 1 and so

1) = foln) + 3 S,

m=1

8(1) = 60(n) + 3. O,

m=1

®(n) = Poln) + Z D p(n).

m=1

2.2.2 m'" order deformation problems

lth

m™" order deformation problems are given by

f-f [frn(n) — X Jm I{TF:]] = &J'""—‘"f,m{"f)s

*CI‘J |0m(7.i') - xmam I(7.i')| — ﬁﬂ]ﬁﬂ,m(ﬂ)n

Ly [Prmln) - X P 1("1” - ﬁ-'-'lr""-"-dl.m("f:]n

f:rr!(o) = f::r(ﬂj = f:fn(m) = H‘lnr(ﬂ] ﬁ:"lgm(n} = Brrz(m) = [I,Jm(ﬂj i ﬁf‘?(.[)lri(o) . ([)

0, m<1
x“’]‘: 1
I, m>1
m—1
Rim(m) = a1+ 3 (Fm-1-kFk = frac1-F8) = M froy,

k=0

1 m;'l. i )
'Rﬂ.m(ﬂ) = Egi’n 1+ }.{' (Hiri 1 ki‘k + "\'h@m--l--kg.ik + N:Ein 1 kgiL

m—1 t"‘"'L
Raomm) =8, 1 +Se 3 B 1 pfe + A =i
k=0 Ny
The general solutions can be expressed as follows:

Tm(n) = f(n) + 1 + coe” + cge™,
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(2.33)

(2.34)

(2.35)
(2.36)

rri(m} = 0!‘
(2.37)

(2.39)

(2.39)

(2.40)

(2.41)

(2.42)




Bm(n) = 07,(n) + cae” + c5e” 7, (2.43)
() = P5(n) + coe” + ere™7, (2.44)

in which fZ,, 67, and %, denote the particular solutions and constants ¢; (i = 1 — 7) can be

determined by the boundary conditions (2.37). They are given by

af*(n) . 1 3-9'(1?)‘ "
3 = ———| ,e=-cz—f0), cs= ——| —mf0O)],
31‘? =0 ( ) 1+ 8’? n=0 ' ( )
1 [oerm)
= 4 = 5 = [‘_"A 7] = —_— i ¢:'* 0 . 2-45
ca2 C4 s CF T+ 7, [ an — Ta ( )] ( )

2.3 Analysis of series solutions

The solution of pggblems consisting of Eqs. (2.7) — (2.10) is computed employing homotopy
analysis method. The convergence region and rate of approximations for the tunctions f, f# and
® can be controlled and adjusted through the auxiliary parameters fis, fig and fig. The fi—curves
are sketched at 14'" —order of approximations to obtain valid ranges of these parameters (see
Fig. 2.1). Permissible values of the aux'ﬂ'ﬂ'}' parameters are —1.5 < fiy < —04, -1.5 <
fg < —0.5 and —1.4 < hy < —0.7. Further, the series solutions convem in the whole region of
7 (0 <n < co) when fiy = fip = fig = —1.2. Table 2.1 displays the convergence of homotopy

solutions for different orders of approximations.
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Fig. 2.1: fi—curves for velocity, temperature and concentration fields.
Table 2.1: g}nvergence of HAM sclutionsﬁar different order of approximations when
M=Ny=04,N;=03,8=Pr=7,=1,5=05 and vy, =0.9.

Order of approximations —f"(0) —@'(0) —®'(0)
1 1.54000 0.441053 0.344668
5 1.45883 0.431349 0.31977
10 1.45934 0.430920 0.318765
15 1.45934 0.430912 0.318750
20 1.45934 0.430912 0.318750
25 1.45934 0.430912 0.318750
30 1.45934 (0.430812 0.318750
35 1.45934 0.430912 0.318750

40 1.45934 0.430912 0.318750
50 1.45934 0.430912 0.318750
60 1.45934 0.430012 0.318750
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2.4 gesu]ts and discussion

In this section, the effects of various involved pggameters on the velocity, temperature and
concentration profiles are discussed. Figs. (2.2 —2.3) are plotted to show the effects of Hartman
number M and mass transa parameter S on the velocity profile f'. Fig. 2.2 shows the effects
of M on f. Application of magnetic field has the tendency to slow down the movement of the
fluid particles and consequently the velocity decreases. Fig. 2.3 displays the effect of S on f. In
this Fig. the velocity field f' decreases when S increases. In fact applying suction leads to draw
the amount of flyid particles into the wall and hence the velocity boundary layer decreases.

Effects of l;he'@rownian motion parameter Ny, thermophoresis parameter Ny, Schmidt num-
ber Se¢, Prandtl number Pr, Hartman number M, mass transter parameter S, thermal Biot
number 7, and concentration Biot number v4 on the temperature profile # and the ggucentra-
tion profile ¢ are shown in the Figs. (2.4 — 2.18). It is noted that an increase in the Brownian
motion parameter Ny, thermophoresis parameter N; and Schmidt number Se¢ increase thgtem-
perature profile 6 as shown in Figs. (2.4 — 2.6). The effects of Prandtl number Pr on the
temperature profile are depicteddn Fig. 2.7. This graph shows that the temperature profile
! decreases when Pr increases. In fact the thermal diffusivity decreases by increasing Pr and
thus the heat diffused away slowly from the heated surface. Fig. 2.8 illustrates the effects
of Hartman number M on temperature profile 8. The Lorentz force is a resistive force which
opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary layer
thickness increases. Further, the temperature profile @ decreases when S is increased (see Fig.
2.9). Also the temperature profile @ increases when the thermal Biot number 7y, increases (see
Fig. 2.10). Fig. 2.11 illustrates the effects of Nj on @. The concentration profile @ decreases by
increasing the Brownian motion parameter N;. Influence of N; on & can be seen in Fig. 2.12.
There is angperease in & when NV, is increased. Figs. (2.13 — 2.16) display the effects of Se, Pr
, M and S on the concentration profile ®. It is observed that concentration profile ¢ decreases
by increasing these parameters. [t is observed from Fig. 2.17 that the mass fraction field in-
creases when thermal Biot number -, is increased. Also the concentration profile increases by
inc ing concentration Biot number +, as depicted in Fig. 2.18.

E‘nerical values of local Nusselt nurm and local Sherwood number for different emerging

parameters are presented in Table 2. It is noticed that local Nusselt number Nu(Re‘n)_%
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dectnses for larger values of Dy, N and N;. However it increases for larger values of 5. and

Pr. The magnitude of local Sherwood number Sh(Re.) 3 decreases for larger values of S,, Pr
and N; however it increases for larger values of Dy and Nj.

Figs. 2.19 and 2.20 describe the variations of the Nusselt number Nu(Re, )~ Y/? for Brownian
motion parameter Ny, thermophoresis parameter Ny and Schmidt number Se. It is noticed that
heat transfer rate decreases as N, and N; increase for Se. Fig. 2.21 shows the effects of thermal
Biot number v, and mass transfer parameter S on the Nusselt number Nu(Re,) /2. In this
figure, heat transfer rate increases as 7, increases for S. Fi 2.22 and 2.23 illustrate the
variation in dimensionless mass transfer rate Sh(Re,;) '/ vs Brownian motion parameter N
and thermophoresis parameter N;. Here the mass transfer rate increases with an increases in
N, and decreases with an increase in N;. Effects of concentration Biot number 7, and mass

transfer parameter S on the Sherwood number Sh(Re,) /2 are displayed in Fig. 2.24. It is

noted that mass transfer rate increases for higher -y,.

f'(n)
1.0

on
Il

0.5
0.8

0.6

M=0.1,0.3,0.5,0.7
0.4

0.2¢

Fig. 2.2: Influence of M on f'(7).
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0.4r

0.2}

$=0.1,04,07,1

1 2 3 4

Fig. 2.3: Influence of S on f'(n).

Mp=1134

Fig. 2.4: Influence of Ny on @(n).
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0.8

8=0.5,N;=M=04,Sc=Pr=y,=1,7,=09

1 2 3 4 5

Fig. 2.5: ﬁuence of Ny on 6(n).

0.3 5¢=05,1,15,2
0.2t

0.1t

1 2 3 A 5

Fig. 2.6: Influence of Sc on 7(n).
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Fig. 2.7: Influence of Pr on 8(x).
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Fig. 29 Influence of M on 8(x).
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Fig. 2.9: Influence of S on #(y).
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Fig. 2.10: Influence of v, on 8(n).
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Fig. 2.11: Influence of Nj on ®(n).
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Fig. 2.12: Influence of N; on ®(n).
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Fig. 2_9: Influence of Sc on $(7).
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Fig. 2.14: Influence of Pr on ®(n).
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Fig. 2.16: Influence of S on ®(n).
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Fig. 2.17: Influence of v on &(x).
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Fig. 2.18: Influence of v, on &(x).
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Fig. 2.19: Influence of N}, and Seon —6'(0).
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Fig. 2.20: Influence of N; and Sc¢ on —6'(0).
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Fig. 2.21: Influence of 4, and § on —&'(0).
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Fig. 2.22: Influence of Nj and Se on —®'(0).
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Fig. 2.23: Influence of Ny and Sc on —&®'(0).
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Fig. 2.24: Influence of v, and § on —&'(0).
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2.5 Main points

!B 2
The How of nanofluid generated by a permeable stretching sheet is studied. Effects of different
parameters on the velocity, temperature and concentration distributions are explored. The

following observations are worthmentioning.

# The effects of Hartman number and mass transfer parameter are similar on the velocity

profile.

¢ Increase in Brownian motion parameter, thermopherosis parameter, Schmidt number,

Hartman number and thermal Biot number enhances the temperature profile.

# There is enhancement of concentration for increasing thermophoresis parameter, thermal

and concentration Biot numbers.
¢ Local Nusselt number increases by larger thermal Biot number.

& Local Sherwood number increases by increasing Brownian motion parameter and concen-

tration Biot number.
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Chapter 3

K/IHD flow of nanofluids over an
exponentially stretching sheet in a
porous medium with convective

boundary conditions

This chapter concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid.

The flow is caused by a permeable exponentially stretching surface. An incompressible fluid
fills the porous space. A comparative study is made for the nanoparticles namely Copper (Cu),
Silver (Ag), Alumina (AloO3) and Titanium Oxide (TiOg). Water is treated as a base fluid.
Convective type boundary conditions are employed in modeling the heat transfer process. The
non-linear partial differential equations governing the flow are reduced to an ordinary differ-
ential equation by similarity transformations. The obtained equations are then solved for the
development of series solutions. Convergence of the obtained series solutions is explicitly dis-
cussed. Effects of different parameters on the velocity and temperature profiles are shown and

analyzed through graphs.




9.1 Mathematical formulation

Here we investigate the steaﬁwo-dimensional flow of an incompressible nanofluid induged by
an exponentially stretching surface in a porous medium with permeability &', The z—axis is

taken along the stretching surface in the direction of motion and y—axis is perpendicular to it.

a
>

!Jlila'sﬂ

u =y kL = p(T;—1)

e

Fig. 3.1: Geometry of the problem.

A uniform transverse magnetic field of strength By is applied parallel to the y—axis. It is
assumed that the induced magnetic field and the electric field effects are negligible. Further,
the surface exhibits convective type boundary conditions (see Fig. 3.1). The boundary layer

flow in the present analysis is governed by the following equations:

du v .
s + a—y =0, (3.1)
du du 8%y fnf 2
pnf (‘i‘.&a:‘f’ta—y') —,Lt-ﬂf'a? - ?‘i‘.{,—UHIBUR, ('32)

ar  ar kng O°T
e + U/ =

5z By~ (oplny O (33)




where u and v are the velocity components along the x— and y— directions respectively. The

effective nanofluid density p, ; and heat capacity (pcy),y are taken as follows [A]:
Png = pp(l — &) + psod, (3.4)

(pep)ng = (pep) (1 — ¢) + (pep)scd. (3.5)

The ?ynamic viscosity of nanofluid g, ¢ given by Brinkmann is [98):

Hnt =1 _.“;;)M, (3.6)

The effective thermal conductivity of nanofluid %,y by Maxwell-Garnett model is given by [99]:

k,;f _ ks + Qk‘r - 2@(1‘.; - ks)

b7 . 3.7
kf ket 2k + d(ky — Ks) (3.7)
and the electric conductivity o,y of nanofluid is [100]:
1(5-1)¢
o/ _14 = (3.8)

a " v & .
N A R L
Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript

is for base fluid. The subjected boundary conditions are

z a1 . .
u = uy=Uhet,v=V,, —k—=~hI—-T) at y=10,

1%y = T)

w — 0, T—Ty, asy— oo (3.9)
Introducing
- Uy o= o z L VJ‘UD_L ' _T_Tr:c
1= g, T U= UeT f'(n), v = op ¢ [f) +nf' ()], 6n) = T, T

(3.10)
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Eq. (3.1) is satisfied automatically and Egs. (3.2), (3.3) and (3.9) after using Eq. (3.10) can

be reduced as follows:

af" + i =22 Aerf - (1 - ¢)*°Me, "ff 0, (3.11)
1 !"n,f 7 {p )8 F_ .
Yy 0 ({1 D+ Lo c:)f )}6‘ (3.12)
') = 1, f(0) =5, 6'(0) = —v,[1 - 8(0)],

fi(m] 0, 0(c0) = 0, (3.13)

27
in which prime indicates the differentiation with respect to n and the value of =, is

L 1
h (a-0)+20) -2

Moreover the porosity parameter A, the Hartman number M, the Prandt] number Pr, the mass

(3.14)

transfer parameter S with S > 0 for suction and 5 < 0 for injection and the thermal Biot

number v, are defined as follows:

21‘/1’_{. =z QOIB(I‘-}L = uf(pcp)f 2L _= h vy
L, M =" 0T, Pr= S = TV, 11 = —1 [ -
TR0, pUs & kg n T Tk
(3.15)
Local skin-friction coefficient Cyy and local Nusselt number Nu are given by
T Ty
C = Nu= ————, 3.16
T kf (T — Twc) .
%ere the surface shear stress 7, and wall heat flux ¢, are given by
dhu aT
w = Mpf o v w = _k!!_f - i (31?}
o By y=0 ay y=0
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Dimensionless forms of skin friction coefficient Csy and local Nusselt number N« can be repre-

sented by the relations

Cup[ 52 = s I"(0), Nuke; /2|22 = Ty,

1—¢)2d @ kJr

in which Re, = UgeT x /v denotes the local Reynolds number,

3.2 Homotopy analysis solutions

Employing the methodology of homotopy analysis solutions the initial approximations fo(#)

and fy(n) and auxiliary linear operators £y and £y are given by

T
1+7

foln) =1+ 8 —exp(—n), bo(n) = exp(—n),

Lif)=1"—f, Lo(0)=0" -0,

together with the properties

Lyley + erexp(n) + ezexp(—7n)] = 0,

Lg leqexp(n) + esexp(—n)] = 0,

(3.19)

(3.20)

(3.21)

where ¢; — ¢5 are the constants. Il p € [U,?indicat.es the embedding parameter then the zeroth

order deformation problems are constructed as follows:

(1-p)Cy [f(‘-';r;?) - J"n('-';r)] = phyNy[f(m:p)l,

(1-p)Ls [@(n; p) - 80(11)] = phaNg[0(m; p), £(m: p)],

110 p)

4'(0; p)

1, f(0;p) =8, f'(c0;p) =0,

—1[1 = 8(0;p)], B(c0;p) = 0,
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glene By and hg are the nonzero auxiliary parameters. With Egs. (3.11) and (3.12), the
efinitions of operators A’y and Ny can be written as

. B10mp) | 5, O F 27(n 7))\
Ny [I(H;P)] = g ‘;(;?3 2) 4 f:p) ‘;(?:’2 r) —2( fg;p))
af(n; p) 951, Ons Of(n;p) :
—dep——= (1 — )" Mgy —L —=, 3.25
£1 an ( ) 1 z; Pr (3.25)
y : L kay 8%0(n; p) ( (pcp)s ) s 90(m;p) ,
Nolb(m;p), f(mip)l = —=——2—=+ [ (1 — @) + =——0 i p)——2L 3.96
oB0rsp), Frip)] = gl i + (- 0) + {E226 ) flrsm) T (3.26)
The resulting problems at m*" order are given by
Ly [Fm(m) = Xmfm-1(n)) = ifR s m(n), (3.27)
Lo [0m(n) — XmPm-1(n)] = haRom(n), (3.28)
fm(0) = [, (0) = fra(00) = 67,(0) — 710 (0) = m(oo) = 0, (3.29)
0, m =< 1
Xm= { ) (3.30)
1, m > 1
m-1 . =
Rimn) = e1fpm_y+ Z [fm-1-k Sk = 2fm-1-sfi) = Aer 1= (1 -'G'?}E'Ul"'filai;f;n 1, (3.31)
k=0
m _ 1 kg, oo leg)s NS z
Rom(n) = g 201+ (a-0+ (%”aﬂ) 5 s ali (3.32)
where the general solutions are
fm(m) = fan)+er+ege +cze™,
Om(n) = 05,(n) + cae’ +cse™, (3.33)

in which f}, and &}, denote the special solutions,
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3.3 %onvergence of the homotopy solutions

Now the solutions of Eqs. (3.11) and (3.12) subject to the g}undary conditions (3.13) is
computed by means of homotopy analysis method. We choose auxiliary parameters iy and
hy for the functions f and @ respectively. The convergence of obtained series and rate of the

approximn'on for HAM strongly depend upon the values of the auxiliary parameters. For
ranges of admissible values of fiy and fig, the i—curves for 12th —order of approximations are
plotted in the Fig. 3.2. We can see thatée permissible values for fiy and kg are —0.7 < iy <

—0.4 and =0.6 < fig < —0.45. Further, the series solutions converge in the whole region of 5

(0 <n < oo) when hy = hy = —0.6.
0.5— :

00 * —f"(0)

S(0), 6'(0)
|

-1.0 -0.5 0.0
0 Ny, hy

1

Fig. 3.2: h—curves for velocity and temperature fields.
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Table 3.1: Convergence of HAM sclutions for different order of approximations when
Pr=62,0=003A=05+v,=07 M =01and § =09,

Order of approximations — f"(0) —6'(0)

1 1.761  0.4432
5 2144 0.5421
10 2.1564 0.6139
16 2154 0.6336
20 21564  0.6271
30 2154 0.6184
35 2.154  0.6241
40 2154  0.6241

3.4 Discussion

In this section we discuss the influence of various parameters on the velocity f'(5) and tem-

perature fields 6(n). Figs. (3.3 — 3.6) are plotted to analyze the effects of volume fraction of
nanoparticles ¢, mass transfer parameter 5, Hartman number M antaorosil;y parameter A on
the velocity field f'. Effects of volume fraction of nanoparticles ¢ on the velocity profile f'
can be seen from Fig. 3.3. Here the values of f' and boundary layer thickness decrease when
volume fraction for the nanoparticles increases. The effects of mass trans'a parameter S5 on
the velocity function f' are depicted in Fig. 3.4. This graph shows that the value of veloc-
ity function f' and the boundary layer thickness decrease by increasing S. Because applying
suction leads to draw the amount of fluid particles into the wall and consequently the velocity
boundary layer decreases. Influence of Hartman nu r M and parameter A on the velocity
field f is similar to that of S. As application of a magnetic field has the tendency to slow
down the movement of the fluid, causing its velocity to decrease. Also by increasing porosity
parameter A, the resistance to the fluid motion also increases. This causes the fluid velocity to
decrease.

Effects of volume fraction of nanoparticleg &, mass transfer paramter S, Hartman number
M, porosity parametge A and Biot number *H)n the temperature profile 6 are shown in the

Figs. (3.7 —3.11). Effect of ¢ on the temperature is analyzed in Fig. 3.7. It is observed
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that increasing the volume fraction of nancparticles ¢, increases the thermal conductivity of

ofluid and consequently the thermal boundary layer thickness increases. The behavior of S
on the temperature profile is similar to that of velocity profile (see Fig. 3.8). Fig. 3.9 illustrates
the effects of M on temperature profile . As lorentz force is a resistive force which opposes the
fluid motion. So heat is produced and as a result thermal boundary layer thickness increases,
Variations of A on temperature profile & can be seen in the Fig. 3.10. There is a decrease in
temperature § when porosity parameter A is increased. Fig. 3.11 represents the effect of Biot
number 7, on temperature profile 8. Temperature profile & increases for an increase in ;.

In Fig. 3.12 we observe that boundary lay hickness is maximum when Titanium ox-
ide is chosen as nanoparticle. Fig. 3.13 shows the effecfgof nanoparticle volume fraction o,
mass transfer parameter S and porosity parameter A on Qin Iriction coefficient in the case of
C'u—water. It is noticed that skin friction coefficient decreases when we increase ¢ lor both S
and A. Fig. 3.14 describes the variation of Nusselt number for nanoparticle volume fraction o,
mass transler parameter S and porosity parameter A. In this Fig. heat transfer rates increase
as ¢ increases for both S and A.

Table 3.1 shows the convergence of the series solutions. In Table some g}:mo physical
properties of water and nanoparticles are given. Table 3.3 shows the effects of the nanoparticle
volume fraction ¢ for different types of nangfluids on skin friction coefficient when A = 0.5,
M = 0.1 and § = 0.9. Table 3.4 shows thefgicts of the nanoparticle volume fraction ¢ for
different types of nanofluids on Nusselt number when A = 0.5, Pr = 6.2, v, = 0.7, M = 0.1 and
S = 0.9. These tables show that the shear stress and heat transfer rate change when we use

different types of nanoparticles.
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f'(n)
1.0

0.8¢

0.6+
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1=05M=0.1,8=09

¢=10.01,0.03,0.04, 0.05

£'(m)
1.0

0.8}

0.6

0.4

0.2

1

z 3 4

Fig. 3.3: Influence of ¢ on f'(x).

Cu-water

A=05,M=0.1,6=0.03

8=481.050915

7 3 4

Fig. 3.4: Influence of S on f/(n).
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Cu-water
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Fig. 3.5: Influence of M on (7).
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M=0.1,8=0.9,¢9=0.03

A=01,08.13.2

Fig. 3.6: Influence of A on f'(7).




B(n)
0.4}
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0.2t

0.1¢

0.3f

0.2}

0.1¢

Cu-water

M=0.1,1=05,8=09,Pr=62,9,=0.7

¢=0.01,0.03,0.1,0.2
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Fig. 3.7: Influence of ¢ on #(n).
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Fig. ']? Influence of S on 6(7n).




0.3+

0.2+

0.1r

Cu-water

S=09,1=0.5,6=0.03,Pr=62,,=0.7

M=01,05,09,2
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Fig. 3.9: Influence of M on ().
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M=0.1,8=09,6=0.03, Pr=62, 7 =0.7

Fig. 3.10: Influence of A on #(n).
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(n)

0.4}
Cu-water

. M=0.1,8=09,$=0.03, Pr=62,1=0.9

¥ =0.3,0.5,0.7,09
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Fig. 3.11: Influence of v, on &(%).

50




£
1.0}

0.8¢

0.6+

Cl.l= Ag, A!rgO;, T102

0.4}

0.2}

(a)

Cll, Ag, Afgf:'j, T103

Fig. 3.12: (a) Velocity and (b) temperature profiles for different types of nanoparticles.
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£1(0)

-1.3 Cu-water

~2.0t

-2.5}

-3.0¢

¢=0,0.05,0.1
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0.0 0.5 1.0 1.5
(a)

fll(o]
G ]5 L
Cu-water

/

6=0,0.05,0.1

(b)
Fig. 3.13: Effects of nanoparticle volume fraction ¢, (a) mass transter parameter S and (b)

porosity parameter A on the skin friction coefficient when M = 0.1.
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Fig. 3.14: Effects of nanoparticle volume fraction ¢, (a) mass transfer parameter 5 and (b)

porosity parameter A on the Nusselt number when M = 0.1, Pr = 6.2 and v, = 0.7.




Table 3.2: Thermo physical properties of water and nanoparticles.

plkg/m®) c,(i/kgk) k(W/m.k) Bx10°(K~') o(Qm)!

ﬁe water 997.1 4179 0.613 21 0.05
Copper(Cu) 8033 385 401 1.67 5.96 x 107
Silver( Ag) 10500 235 429 1.89 3.6 x 107
Alumina( Al;O3) 3970 765 40 0.85 1x 1010
Titanium Oxide(Ti03) 4250 R6.2 8.9538 0.9 1x10°12

Table 3.3: Effect of ¢ tor different types of nanofluids on skin friction coefficient when

A=05 M =10.1and 5§ =029

¢ Cu Ag Aly Oy TiO,
0.01 -205387 -2.07036 —2.00143 —2.00439
0.03 —2.15426 —2.20071 —2.00558 —2.01404
0.05 —223960 —2.31255 —2.00535 —2.01873

Table 3.4: Effect of ¢ for different types of nanofluids on Nusselt number when A = 0.5,

Pr=6.2,v, = 0.7, M = 0.1 and S = 0.9.

0 Cu Ag Alo Oy TiOy
0.01 0436981 0.436452 0.437649 0.438380
0.03 0423311 0421702 0.425326 0.427566
0.05 0409403 0406691 0.412767 0.416582

3.5 Eoncluding remarks

Here M? flow of nanofluid by an exponentially permeable stretching sheet is studied. Ef-
1

tects ol different parameters on the velocity and temperature profiles are shown. Convergent

approximate solution is constructed. The following observations are made

« An increase in the values of ¢, 5, M and A have similar effects on the velocity profile in

a qualitative sense,

e Temperature profile increases by increasing ¢, M and 5, while it decreases when S and

A are increased.
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# The values of skin friction coefficient are higher for increasing values of .

# Higher values of ¢ correspond to smaller values of Nusselt number.




Chapter 4

MHD flow of nanofluid with

homogeneous-heterogeneous

reactions and velocity slip

Present chapter focuses on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid.

The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. An in-
compressible fluid fills the porous space. Copper-water and silver-water nanofluids are investi-
gated in this study. 'Transforaation method reduces the nonlinear partial differential equations
governing the flow into the ordinary differential equation by similarity transformations. The
obtained equations are then solved for the development of series solutions. Convergence of the
obtained series solutions is explicitly discussed. Effects of different parameters on the velocity,

concentration and skin friction coefficient are shown and analyzed through graphs.

4.1 ?/Iathematical formulation

We consider the steady two-dimensional flow of an incompggssible nanofluid over a stretching
surface in porous medium with permeability K. The x—axis is taken along the stretching
surface in the direction of motion and y—axis is perpendicular to it. A uniform transverse
magnetic field of strength By is applied parallel to the y—axis. It is assumed that the induced

magnetic and electric fields effects are negligible (see Fig. 4.1). Nanoparticles such as copper
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(Cw) and silver (Ag) are considered. Water is treated as a base fluid.

]
< = - = M
. Q
22—, e
u=ex Ay —
Lo (;J‘_I—U

Fig. 4.1: Geometry of the problem.

We have taken a simple homogeneous-heterogeneous reaction model in the following form [73]:
A+2B — 3B, rate = k.ab?, (49

while on the catalyst surface we have the single, isothermal, first order reaction
A— B, rate=ka, (49

where a and b are the concentrations of the chemical species A and B and k. and k. denote
the rate constants. We assume that both reaction processes are isothermal. Under these

assumptions, the relevant boundary layer equations are

du v
et =0 (4.3)
Bu  Bu\ 8w g 2
Pnf (‘ILE + La—y> = Hn!?}ﬁ = T‘IL = G',!IB(]TL. (4.4)




da da 82a

U=+ V5 = DAB—!'J — koab®, (4.5)
o &b 8%b g
HE + L'B—y = DBTUQ + koab“. (46)

The subjected boundary conditions are

2—0,, Ou da ob
Ay — yuv=0, Dgy— =ksa, Dg— = —ksa at y=0,
oy 8y |y gy ° ay :

U= cxr +
u—0,a—ag b—0 asy — o0, (4.7)

where u and v are the velocity components along the x— and y— directions respectively, D, and
Dy are the respective diffusion species coefficients of A and B, o, the tangential momentum
accommodation coefficient and Ay the molecular mean free path. The effective density p,, ,

dynamic viscosity P fs the electrical conductivity o, , the heat capacitance (pC}),s and the

thermal conductivity %, s of the nanofluid are given by

Png = ps(1 = &) + pyo, (4.8)
_ ¥
.Iu'!!f - {1 . (..")}2'5’ (4_9)
Tof —1+4 ’ (;? _ 1) ! (4.10)

- = F )

a : i ;

r (&Y (E e

Here ¢ is the nanoparticle volume fraction, s in subscript is for nano-solid-particles and f

in subscript is for base fluid. Denoting ag (a constant) and £(n) and h(y) the dimensionless

concentration and defining

7= \E”‘ w=caf(n), v= -7/, &= a0t(n), b=aoh(n), (4.11)

equation (4.3) is satisfied automatically and Eqgs. (4.4 — 4.7) reduce to

af" = 1= def - (1- «p}“ﬂfsl%f’ =0, (4.12)
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1 ] f
E‘f + & — kiER% =0, (4.13)

6 i I
Sch, + fH + kiEh® =0, (4.14)

F1(0) = 14 B8£"(0), £(0)=0, f(cc)— 0,
£'(0) = k2£(0), &(oc) — 1,

51(0) = —ka€(0), h(o0) — 0, (4.15)

1
m which prime indicates the differentiation with respect to n. Moreover the non-dimensional

nstants in Egs. (4.12 — 4.17) are the porosity parameter A, the Hartman number M, the
Schmidf number Se, the measure of the strength of the homogeneous reaction k&, the measure
of the strength of the heterogeneous reaction ky, the ratio of the diffusion coefficient 4 and the

velocity slip parameter 3. These are defined as follows:

N = ”_f, T oyBjy Se — ”_f_ ky = k‘-”aU, kg:ﬁ ﬂ’ ,J,:&’ 8 = ‘_ﬂ"‘,\u i,
el epy D4 [ DaV e A Ty vy :
(4.16
where
1
£l = (4.17)

25 (1 hpla)
(1-¢) (1 ¢+¢ﬁ;)

The diffusion coefficients of chemical species A and B are expected to be of a comparable size.
This leads to make a further assumption that the diffusion coefficients D4 and Dp are equal,

i.e. to take d = 1 [73]. In this case we have from Eqs. (4.15)

£(n) + h(n) =1 (4.18)
Thus Eqgs. (4.13) and (4.14) become
i i T _ogy2
526+ 1€ - k(L - 9% =0, (4.19)
subject to the boundary conditions
£(0) = k2£(0), &(o0) — 1. (4.20)
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The physical quantity of interest is the skin-friction coefficient €y ;. It characterizes the surface

drag. The shearing stress at the surface of the wall 7., is given by

Ju 1
— = f <P 9
Tw = —Hpf A = {1 .']2-‘3 Hyrpgc zf7(0). (4.21)

The skin friction coefficient is defined as

Tw
Csf = T+ (4.22)
S Uy
2
CasvRey = —mf”(m: (4.23)

in which Re, = u,2/v denotes the local Reynolds number.

4.2 Solutions derivation

We choose the initial guesses fp(5) and £y(x) and the linear operators £y and L¢ in the forms

1 1
= e —1_ Zp-km 4.5
Fo) = (1~ e7), &) =1 g, (4:24)
Li(N)=f"—1f, L&) =¢€" -, (4.25)
together with the properties
Lyler+coe +c3e™™| = 0,
Le [r:qe" +cse""] = 0, (4.26)
where ¢} — c5 are the constants.
We construct the zeroth order %oblems as follows:
1
(1-p)Cy [f(??;P} - fu('-'?)] = ph Nyl f(m:p)], (4.27)
(1-p)Le [é(n; p) — £ (n]] = pheNelE(m: p), F(mip)], (4.28)
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£(0; p) 1+ B8f"(0;p), f(B;p) =0, f(c0;p)=0,
E(0;p) = kt(0;p), E(ooip) = 1, (4.29)

where p € [0,1] denotes an embedding parameter and fiy and e are the nonzero auxiliary

parameters. With Eqs. (4.12) and (4.19), the definitions of operators A’y and A are

2
. [ P 3 & 3 f . af :
Ny [J’(r}:;ﬂ)] = & J;:i 24 ) f;E?Q _ ( fg; p))
~xe 2Ln7) g:? P _q- q,)?-ﬁ,u»;l%iaf é’;"’], (4.30)
. 18 " 1 8% . :
Nel&(msp), f(mip)] = Sc g;, 2, fn ,piaﬂﬂ i2) (f(ﬂ:p))?
~ka(m; p) + QLI(E(T?.-P}}J- (4.31)
The resulting problems at m'* order are given by
Ly [fin(1) = Xpn Fm-1(n)] = hfRpm(n), (4.32)
Le [Em) = XmEm-1(0)] = AeRem(n), (4.33)

Sm(0) = fr(0) — Bfm(0) = fr(00) = £m(0) — k2t (0) = £(00) =0, (4.34)

0, m <1
Xm= ; (4.35)
1L, m > 1
m—1
P.r:rri (’?} =£ m 1+ Z [fm -1 - ffl' _fm 1- fff] _)‘Vlfm l_{l_w}zll'!’l nfj m—11 (4 3&")
=0

-

i
Remn) = ﬁfn-l + E [g:n—l—lff —kém_1-1 %Ef- &t 2k 16| — kb, (4.37)
£
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where the general solutions are

Im(m) = Faln) +e+ e’ +eze™,

El’!! {??:]

Ea(m) + cae” + c5e™", (4.38)

in which fZ, and £}, denote the special solutions. constants ¢; (i = 1 — 5) can be determined

by the boundary conditions (4.34). They are given by

L [8/' () 81" (n) L
03 1 e IS { 3]? - .S 8]?2 ] q_n ] C]. - 03 f (G)*
1 Jeem| . ,
o = =0 = e |: M |y REE(U)l . (4.39)

4.3 Convergence of the homotopy solutions

Now the sclutions of Eqs. (4.12) and (4.19) subject to the boundary conditions (4.15) and
(4.20) are computed by means of homotopy analysis method. We choose auxiliary parameters
fiy and fig for the functions f and £ respectively. The convergence ol obtained series and rate
of the approximation for HAM strongly depend upon the values of the auxiliary parameters.
For ranges of admissible values of iy and fig, the Ai—curves for 13" —order of approximations
are plotted in the Figs. (4.2 and 4.3). We can see that the permissible values for fiy and h
for Cu—water are —1.6 < fiy < —0.5 and —1.2 < fiy < —0.3 and for Ag—water are —1.6 <
fiy < —=0.6 and -1 < fig < —0.1. Further, the series solutions converge in the whole region of n

(0 <5 < o0) when hy = he = =1,
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Fig. 4.2: hi—curves of j(0) and £'(0) for Cu-water when ¢ = 0.2, A = 0.4, ky = ko = 0.3,
M=8c=05and §=1.
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Fig. 4.3: fi—curves of f(0) and £'(0) for Ag-water when ¢ = 0.2, A = 0.4, ky = ko = 0.3,

M=8c=05and 3=1.
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Table 4.1: Convergence of HAM solutions for different order of approximations when

=02, A=04, =k =03 M =8Sec=05and 3 =1.

Order of approximations —f"(0)  g'(0)

L 0.5455 0.04916
5 0.5564  0.04835
10 0.5588  0.04788
15 0.5596  0.04755
17 0.5594  0.04736
20 0.6594  0.04736
25 0.6594  0.04736

4.4 Results and discussion

The effects of different parameters on the dimensionless flow and concentration profiles are

investigated and presented graphically in this section.

4.4.1 Dimensionless velocity profiles

Figs. (4.4 — 4.7) exhibit the dimensionless velocity profiles for different values of nanoparticle
volume fraction ¢, Hartman number M, velocity slip parameter S and porosity parameter A.
Effects of volume fraction of nanoparticles (Cu and Ag) on the velocity profile f' can be seen
from Fig. 4.4. Here the velocity profile and boundary layer thickness decrease when volume
fraction for the nanoparticles increases. The effects of Hartman number M on the velocity
f' are depicted in Fig. 4.5. We analyzed that the velocity is reduced when we increase the
values of Hartman number. In fact applied magnetic field has the tendency to slow down the
moverment of the fluid which leads to a decrease in the velocity and momentum boundary layer
thickness. Variations of velocity slip parameter 3 on velocity profile f' can be seen in the Fig.
4.6. There is a decrease in velocity when velocity slip parameter 3 is increased. From Fig. 4.7,
we have seen that larger values of porosity parameter A correspond to the less velocity. Porosity
parameter depends on the permeability parameter K. Increase in porosity parameter leads to
the lower permeability parameter. This lower permeability parameter causes a reduction in the

fuid velocity.
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Fig. 4.5. Influence of M on velocity field.
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Fig. 4.6. Influence of 3 on velocity field.
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Fig. 4.7. Influence of A on velocity field.
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4.4.2 Dimensionless concentration profiles

Effects of the measure of the strength of the homogeneous reaction kp, the measure of the
strength of the heterogeneous reaction k; and the Schmidt number Se¢ on the concentration
profile £ are shown in the Figs. (4.8 — 4.10). Effects of k; on the concentration is analyzed
in Fig. 4.8, It is observed that increasing the measure of the strength of the homogeneous
reaction ky decreases the thermal boundary layer thickness, Fig. 4.9 illustrates the effects of
ko on concentration profile £, There is an increase in concentration £ when the measure of the
strength of the heterogeneous reaction ko is increased. The behavior of Schmidt number Se¢ on

the concentration profile is similar to that of ko (see Fig. 4.10).
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4.4.3 Skin friction coefficient and surface concentration

Fig. 4.11 shows the skin friction coefficient f"(0) as a function of nanoparticle volume fraction
¢. The skin friction coefficient enhances with increasing values of ¢». The results of the skin
friction coefficient are examined for both types of nanofluids. We observe that the Ag—water
nanofluid gives a higher drag force opposite to the flow when compared with the Cu—water
nanofluid.

The variation of dimensionless concentration for different values of &k and ko are shown
in Figs. 4.12 and 4.13 respectively. From Fig. 4.12 it is observed that concentration at the
surface decreases as the strength of the heterogeneous reaction increases for different types of
nanofluids. One can see from Fig. 4.13 that £(0) decreases with the increase of homogeneous
reaction strength k. Influence of Sc on £(0) for two different types of nanoparticles is shown
in Fig. 4.14. It is clear that the concentration decreases with an increase of Schmidt number.

In Table 4.3 some numerical values of skin friction coeflicient are given for copper and silver
nanoparticles. Tabular values show that skin friction coefficient increases by increasing ¢ and
M while it decreases for larger 3. Table 4.4 shows that surface concentration decreases by

increasing ky, ko, Sec and S.
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Fig. 4.11. Influence of ¢ on skin friction coefficient.
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Table 4.2: Thermophysical properties of water and nanoparticles.

plkg/m®)  c,(i/kgk) k(W/m.k) Bx10°5(K-1') o(ftm)!

Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8033 385 401 1.67 5.06 x 107
Silver( Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Al2Os) 3970 765 40 0.85 1 x 10710
Titanium Oxide(T103) 4250 6R6.2 R.0538 0.9 1x 1012




Table 4.3: Numerical values of skin friction coefficient for copper and silver when A = 0.4.

I M B CyvRe; for Cu  Cypy/Re; for Ag

0.05 0.5 1.278 1.284
0.1 1.465 1.475
0.2 1.955 1.973
0.2 01 1.897 1.917
0.3 1.928 1.945

.7 1.981 1.996

0.5 01 4.542 4.672

0.5 2.827 2.865

0.9 2.079 2.008

Table 4.4: Numerical values of surface concentration for copper and silver when ¢ = 0.2,

A=04 and M = 0.5.

ky ke Se B £(0) for Cu  £(0) for Ag

0.5 0.4407 0.4413
1 0.4087 0.3997
L5 0.3645 0.3761
0.3 0.5 0.4169 0.4173
1 0.3274 0.3321

1.5 0.2856 0.2741

0.5 04 0.4726 0.4675

0.7 0.4703 0.4561

1 0.4675 0.4532

05 01 0.4618 0.4619

0.5 0.4583 0.4537

0.9 0.4565 0.4502

4.5 Final remarks

This chapter investigates the MHD flow of nanofluid by a stretching sheet in presence of

homogeneous-heterogeneous reactions. Convergent approximate solution is constructed. The
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tollowing observations are made:

e An increase in the values of ¢, M, 3 and X has similar effects on the velocity in a qualitative

sense.

e Concentration profile increases by increasing ks and Se while it decreases when £y is

increased.
& The values of skin friction coefficient are higher for Ag—water when ¢ enhances.

e Higher values of k1, ke and Se correspond to smaller values of dimensionless surface

concentration.




Chapter 5

Impact of magnetohydrodynamics in
bidirectional flow of nanofluid
subject to second order slip velocity
and homogeneous-heterogeneous

reactions

This chapter addresses the steady three-dimensional boundary layer flow of viscous nanofluid.
The flow is caused by a permeable stretching surface with second order velocity slip and
homogeneous-heterogeneous reactions. Water is treated as base fluid and copper as nanoparti-
cle. An incompressible fluid fills the porous space. The fluid is electrically conducting in the
presence of an applied magnetic field. A system of ordinary differential equations is obtained
by using suitable transtormations. Convergent series solutions are derived. Impact of various
pertinent parameters on the velocity, concentration and skin friction coefficient is discussed.
Analysis of the obtained results shows that the Alow field is influenced appreciably by the pres-
ence of velocity slip parameters. Also concentration distribution decreases for larger values of
strength of homogeneous reaction parameter while it increases for strength ol heterogeneous

reaction parameter.




5.1 Model development

We consider the steady three-dimensional incompressible flow of nanofluid saturating porous
medinm with permeability K. The porous medium features have been characterized by using
Darcy’s law, Material is water based nanofluid consisting of copper (Cu) as nanoparticle.
Flow is induced by a permeable stretching sheet at 2 = 0. An incompressible fluid occupies
z > 0. It is assumed that the sheet is stretched with velocities u,, = ez and v, = dy, where
¢, d > 0 are the stretching rates. A uniform magnetic field of strength By is applied in the
z—direction. Electric and induced magnetic fields are neglected. Flow analysis is carried out
with homogeneous-heterogeneous reactions. The homogeneous reaction for cubic autocatalysis

can be expressed as follows [73]:
A+2B — 3B, rate = k.ab®, (5.1)
while first-order isothermal reaction on the catalyst surface is presented in the form
A— B, rate = kga, (5.2)

where o and b are the concentrations of the chemical species A and B and k. and k; are the
rate constants. We assume that both reaction processes are isothermal. Using the nanofluid
model as proposed by Tiwari and Das [4], the boundary layer equations governing the flow can

be written as follows:

du Ov  Ow

E+5_y+§=0‘ (5.3)

Pnf (ug—;-kvg—:—kw%) Z”nf% - %u—a,.;ﬁgu, (5.4)
Puf (‘t;% + ‘ug—; + w%) = _IL,!I% - %v — a,;;B{%v? (5.5)
u% + v% + w% = DA% = kab?, (5.6)

u% + vg—; + w% = D;gg + koab®, (5.7)




The subjected boundary conditions are put into the form

U = Uy + Uglipy V= Uy + Uslip, W = Wy, at z = 0,

da ab

D‘J'E = kg, DBE = —ksa at z =0,
w—0, v—0 a—ay b—0 as z — oo, (5.8)
in which u, v and w are velocity components along x—, y— and z— directions respectively, wyg

is suction (wg < 0) or injection (wy > 0) velocity, Dy and Dg are diffusion species coefficients
of A and B and ay is positive dimensional constant. Effective density Pufs dynamic viscosity

g and electrical conductivity &,y of nanofluid are given by

Png = ps(1 = &)+ pyo, (5.9)
_ By
.Iu'r!j' - (1 — {."l)}l'!'a’ (5]0)

e I Ts ’ _{oa ..
4 ('TJ i 2) (5-1)0
Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript

is for base fluid. Also ugy, is the slip velocity at the wall. The Wu'’s slip velocity model (valid

for arbitrary Knudsen number, K'n ) is employed here as follows [60]:

2/(3-k* 31-71?\ du 1 2 ; 5%u
Uslip = —( )Aﬁx L——(Id-l-m(l—fz]) A —,

3\’ x 2 Kn ) 9z 4 722"
= Nl% -P-NI:J%.
Velip = % (3 _:Id = ;1‘,;5) !\g - % ([‘1 + K%(l - 12)) M%'
= N_q,% +N.1$, (5.12)
where I = min [#,1], & is momentum accommodation coefficient with 0 < x < 1, A is

molecular mean free path and Kn is Knudsen number defined as mean free path A divided by

a characteristic length for the flow. Based on the definition of I, it is seen that for any given




value of K'n we have 0 < I < 1. The molecular mean free path is always positive. Thus we

know that Ny, Ny < 0 and Ny, Ny are positive numbers,

Making use of the following similarity transformations

czf'(n), v=cyg'(n), w=—Vev[f(n)+gn),
n o= \/gz, = 'IIJE(TI')': b= agh('q),

2
Il

the continuity equation is satisfied automatically and Eqgs. (5.4 — 5.8) are reduced to
" 2 i 25 rTnf
af" = L+ (F+a)f' = Af = a(l - ¢) Mg—ff=0,
] ) i 51 C‘In )
e19" — g% + (f+9)g" — Mg’ — e1(1 - 0)* ﬂ-fd—fg =0,

1 1 . 2 _

56 T (f+9)§ — k&R =0,

ih" F(f+g)h + k&R =0

Sr L 1 3

F10) =1+ 8, f(0) + 821"(0), g'(0) = v+ 859" (0) + 844" (0),

f(0) +g(0) = S, f'(c00) =0, g'(c0) — 0,

£'(0) = k2£(0), Sh'(0) = —k2£(0), &(o0) — 1, h(oo) — 0,

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

where ) is the porosity parameter, M is the Hartman number, v is the ratio of the stretching

rate along the y— direction to the stretching rate along the x— direction, 3, and 35 are the first

order slip velocity parameters, 3, and 3, (< 0) are the second order slip velocity parameters, S

is the suction/injection velocity parameter, Sc is the Schmidt number, k; is the measure of the

strength of homogeneous reaction, & is the ratio of diffusion coefficient and ks is the measure of




the strength of the heterogeneous reaction. These quantities are defined as follows:

1 B d
g = = -4 M = 0; n r=—
(1—¢)25(1 —f‘:--i-—f*.-) ~ eK’
By = Nw’yi B = N j , B3 = N3 j , Ba= Ny ,’i
wy kcau : D;;
s = - Se = 0= — &k =— =L 5.19
,#cy‘r €= D‘.»,' = c Dy’ 2 Dy ( )

It is noticed that tor 7 = 0 and 3 = 1 the two-dimensional and axisymmetric flows are respec-
tively noticed. Here it is assumed that diffusion coefficients of chemical species A and B to be
of a comparable size. This leads to make a further assumption that the diffusion coefficients

D4 and Dpg are equal, i.e. § =1 [73] and thus

£(n) + h(n) = 1. (5.20)
Now Eqgs. (5.16) and (5.17) yield
" i ! » 2 _ £
€+ (f+9)E — g1 - €7 =0, (5:21)
with the boundary conditions
£'(0) = k2£(0), £(o0) — 1. (5.22)

Skin friction coefficients along the x— and y— directions are defined as follows:

Twsr Twy
Cpp = —=, Cpy = —=, (5.23
f pfuz_ fu Pﬂf‘{f- )

where the surface shear stresses 7,,, and 74, along the x— and y— directions are given hy

du du
Twe = #HIE y Twy — -u'p_faﬁ (524)




Dimensionless skin friction coeflicients are

1 i 9 1 i
Cra(Reg)? = WI (0), Cry(Rey)"/2 = S = gy25Y (0), (5.25)

where (Re;)'/? = z,/c/v; and (Rey)'/? = y\/c/v denotes the local Reynolds number.

5.2 Homotopic solutions

The initial approximations fo(n), go(n) and £3(n) and auxiliary linear operators Ly, £g and Lg

are taken as follows:

1
1+ 81— 585

~

Jo(n) = 5+ (1—e™), goln) = m(l —e "), &(n) =1- %fuh (5.26)

.{:I — J-”.f _ J-F‘ L‘g — g.f” _ gi1 .{:E = 5” _51 {5,2?)
A‘:; [61 + Cgeﬂ + cge r"] =0,
Lg [c4 + ese” + cge ™| =0,

Le [cre" + cge ™| =0, (5.28)

in which ¢; (i = 1 — 8) are the constants.
If p € [0,1] indicates the embedding parameter and fiy, ki, and fig the non-zero auxiliary

parameters then the zeroth order deformation problems are constructed as follows:

(1= p)ey [Fnsp) = foln)| = pheN 7o ), 30 ), (5.20)

(1= p)Lq [a(n; P) = 90(n)) = phigNyla(n; p), F(n; )], (5.30)

(1~ p)Le 407 p) — Eoln)| = PheNelén; p), F(n; ), ;) (5.31)
F(0;) = 14 8,7"(0; p) + B21"(0;p), F(0;p) =S, f'(003p) =0, (5.32)
§'(0;p) = v + 839" (0;p) + 849" (0; ), 9(0;p) = 0, §'(005p) =0, (5.33)
£ (0;p) = kn€(0; p), &(c0ip) = 1, (5.34)




where the nonlinear differential operators ANy, Aj; and Ny are given by

i 3 Fr e aNE 2 Fr. . 2 5
Ny f{r};p).g}(n;p)] = el&}‘;;z’p) — (3‘,1';1:';;?)) +ff?J;P)‘3—g?£—p“)'+§(?};P)a—gq'%—pl
25y, s 5 (m5p)
- (}\ +&(1 — )" M r ) —5?3 ; (5.35)

) 3 TS T 20 2ar,
Ny [ﬁr(ﬂ;p).f(n;p)] = EIBJQ;;‘:; 2 (aggi; p}) + )2 gai?‘-;m + s p) ZLED) i:‘;;ﬂ 2)
- (). +er(l - r_.-';)g"'"ﬂ-fi—”;) ng‘; P), (5.36)
Ne [E(n;p}, f(fjr;P)sﬁ("i;P)} = i% 2 f(ﬁ;p)%;w 0 ﬁf(ﬂ;p)%

2 3

~ky (If(n;p) ~2(émp) + (&mp) ) . (537)

m'* order deformation equations can be written in the forms

Ly [fn(1) = Xpn Fm—1(n)] = figRim(n), (5.38)
f‘g L'Jm("‘]) o Xm.glri—l(n]] = ﬁgj—‘j‘g.rr!(n]‘ (5?'9)
Le [Em) = XmEm-1(n)] = heRe,m (), (5.40)
with
fn(0) = B1fn(0) = Bofn(0) = fin(0) = fin(o0) =0
Im(0) = B3gm(0) = B1gm(0) = gm(0) = g,(00) =0
Em(0) — k26 (0) = Ep(e0) =0, (5.41)
m—1 L &
T‘?'f,m (’?]' = Elf;:—l+z [fm 1 i’ff - f;n—'l.—kfi' + Gm-1 kf;;] _(A_F ELU- - G’)zluﬂ'{ﬁ) f:n—le
o (5.42)

B0




m=1

25 o
Rom(n) = £1Gm 1+Z [fm—l—&g}: — Gra-1-19k + Qm—l—kg.;:]_ ()‘ +e1(l - ;p)‘!"M a'—f) Do

k=0
(5.43)
1 fif "T_]- ) . )
R’E,mﬁ” = Eim—l - kl‘Em—l + :;0 [‘Em 1 l'-h +‘sm 1-19¢
{
—k (fm 1 fZﬂEf i€ + 26m-1 :rf:)] , (5.44)
4=
0, m<1
Xm= . (5.45)
1, m > 1

The general solutions ( fu, gm,&m) comprising the special solutions (f,, g, &m) are given by

fm(m) = foln)+e1+ e’ + ez,
am(n) = g:‘ra(ﬂ} + ¢4 + cse” + ege 7,
Emm) = &n(n) + cre” +cge™, (5.46)

where the constants ¢; (i = 1,2,...,8) through the boundary conditions (5.41) have the values

2 = cg=cr=0, o1 =—c3— fr(0), ca = —cs — gr(0),
Lo L (), P, P L)
1+ 8,8 an o an? o o’ =0 '
B 1 dom(n) . FPan(m)  , Pah(n)
© T T+8;- 5, ( on fa on? & on® =0
1 [ 86,(n) . -
— [ &m\W g , _
cs e ( n |, 26m(0) (5.47)

5.3 Convergence analysis

Homotopy analysis technique provides us great freedom and an easy way to adjust and control
the convergence region of the series solutions. The auxiliary parameters fiy, f, and f; play
an important role tor the convergence of the series solutions. Therefore, we have sketched the
li—curves at 10*" —order of approximations (see Fig. 5.1). The admissible ranges of the auxiliary

parameters are —1.4 < fiy < —-0.2, 1.5 < b, < —0.2 and —1.9 < ke < —0.8. Also the HAM

Rl




solutions converge in the whole region of 5 (0 < 5 < cc) when Ay = by = —1 and g = —1.2.
Table 5.1 shows the convergence of series solutions of momentum and concentration equations.
It is noted that 14" order of approximations are sufficient for the convergence of functions

£7(0), ¢"(0) and #'(0).
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Fig. 5.1: h—curves for f"(0), ¢"(0) and &'(0) when ¢ = M = 0.5, A = 8y = v = 0.3,
S=08,=8=09k =k =07, 83=-03and 3, = -0.2.




Table 5.1: Convergence of HAM solutions for different order of approximations when
d=M=05 A=8=7y=03,8=83,=5c=09, ki =k =07, 33=-03 and 3, = -0.2.

Order of approximations  — f"(0) —g"(0) £(0)

1 0.507202 0.200061 0.364126

5 0.491527 0.198039 0.395551
10 0.491387 0197965 0.396517
14 0.491389 0.197965 0.396476
20 0.491389  0.197965 0.396476
26 0.491389 0.197965 0.396476
30 0.491389 0.197965 0.396476
35 0.491389 0.197965 0.396476
40 0.491389 0.197965 0.396476
45 0.491389 0.197965 0.396476

5.4 Results and discussion

This section presents the behavior of various involved parameters on the velocities along x—
and y— directions and concentration in the form of graphical and tabulated results (see Figs.

(5.2 — 5.15) and Tables (5.2 — 5.5)).

5.4.1 Dimensionless velocity profiles

The effects of nanoparticle volume fraction ¢ on both the x— and y— components of velocity
f' and g' are depicted in Fig. 5.2. It is observed that velocity profiles decrease when ¢ is
increased. Behaviors of porosity parameter A on velocity profiles f' and g’ are displayed in Fig.
5.3. An increase in the porosity parameter leads to the lower permeability parameter which
decreases the fluid motion. Hence velocity profiles decreases. Fig. 5.4 displays the velocity
profiles tor different values of M. The applied magnetic field has the tendency to slow down the
movement of the fluid which decreases the velocities and momentum boundary layer thickness.
The influence of suction/injection velocity parameter S on f' and g’ can be visualized in the
Fig. 5.5. It is obvious that an increase in S reduces the velocity fields. Here applying suction

leads to draw the amount of the fluid particles into the wall and consequently the velocity
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fields decrease. From Figs. (5.6 —5.9), we have seen that larger values of first order slip velocity
parameters and magnitude of second order slip velocity parameters correspond to lower velocity.
With an increase in slip velocity parameters, stretching velocity is partially transferred to the
fluid so velocity profiles decreases. Fig. 5.10 illustrates the impact of stretching rates ratio «
on the velocity fields. Increasing values of + indicates higher rate of stretching along the y—
direction in comparison to x— direction. Therefore the velocity along z— direction f' decreases

and velocity along y— direction g' increases when stretching rates ratio is increased.
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Fig. 5.2: Variation of ¢ on f'() and g'(n).
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Fig. 5.6: Variation of 3, on f'(n) and ¢'(n).
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5.4.2 Dimensionless concentration profiles

Figs. (5.11—5.13) exhibit the dimensionless concentration profile for different values of measure
of the strength of the homogeneous reaction k&, measure of the strength of the heterogeneous
reaction ke and Schmidt number Se. Effect of the strength of the homogeneous reaction k;
on the concentration is analyzed in Fig. 5.11. There is a decrease in concentration when ky is
increased, Fig. 5.12 illustrates the variation of measure of the strength of the heterogeneous
reaction ks on concentration field £. Here concentration profile enhances with an increase in ks.
Effect of Schmidt number Sc on concentration profile is shown in Fig. 5.13. Increasing behavior
of concentration profile is noted for larger Schmidt number. In fact Schmidt number is the ratio
of momentum diffusivity to mass diffusivity, so higher values of Schmidt number correspond to

small mass diffusivity. Theretore concentration profile increases.

0.9} ]
0.8} ]
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n

Fig. 5.11: Variation of &k on &(7).

89




1.0

0.9t

0.8

£(17)

0.7+

0.6}

1.0F
0.9}

0.8¢

an

0.6f

0.5

ky=0.3,0.4,0.6,0.7

A=y=03,8:=-02,k =0.7

¢=M=p;=05,p=8=Sc=09, B =-03,

2 4 6 8 | S
n

Fig. 5.12: Variation of ko on &(n).

14

e 07 o

gc=0309. 15 2

A=y=03,8,=-02, ki =ky=0.7

$=M=p;=03,8,=5=09, 5, =-03,

T -
n

Fig. 5.13: Variation of Sc on £(7).

90




5.4.3 Surface concentration and skin friction coefficient

The variation of dimensionless wall concentration £(0) for different values of the strength of het-
erogeneous reaction parameter kg, strength of homogeneous reaction parameter k; and Schmidt
nurmber Se are shown in Figs. 5.14 and 5.15 respectively. One can see from these Figs. that
£(0) decreases with the increase of the parameters k; and ko. Some thermo physical prop-
erties of water and nanoparticles are given in Table 5.2, Effects of the nanoparticle volume
fraction for different types of nanofluids on skin friction coefficient along x— and y— directions
are presented in Tables 5.3 and 5.4. Here we see that magnitude of skin friction coefficient
increases with the increase in . Numerical values of skin friction coefficient for different values
of first and second order slip velocity parameters, porosity parameter, Hartman number and
suction/injection parameter are presented in Table 5.5. It is noted that the skin friction coef-
ficients decrease for increasing values of first order slip velocity parameters and magnitude of
second order slip velocity parameters while it increases for larger porosity parameter, Hartman

number and suction/injection parameter.

f=
L]
T
1

<
e

0.3} k;=0.3,0.6,09, 1.5 d

0.2F ]
0.1F .
0.0& - - : : : :
0 1 2 3 4 5 6

Sc

Fig. 5.14: Variation of &y and Sec on £(0).
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Fig. 5.15: Variation of k9 and Sc on £(0).

Table 5.2: Thermo physical properties of water and nanoparticles [].

plkg/m®)  e,(i/kgk) k(W/m.k) Bx10°(K™') o(Qm)!

Pure water 9097.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver( Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Al;O3) 3970 765 40 0.85 1x 10710
Titanium Oxide(TiOs) 4250 686.2 R.0538 0.9 1x 10712

Table 5.3: Effects of the nanoparticle volume fraction for different types of nanofluids on
skin friction coefficient along x—direction when M = 83 =05, A =v=0.3,5 = 3, = Se = 0.9,
ky = ke = 0.7, B = =03 and 3, = =0.2.

ih Cu Ag Al O Ti04

0.1 -0.6555 —0.6543 -—0.6516 -—0.6521
0.2 -0.8795 -0.8757 -0.8684 -0.8703
0.3 -1.229 -1.226 1191 -1.19b
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Table 5.4: Effects of the nanoparticle volume fraction for different types of nanofluids on
skin friction coefficient along y—direction when M = 3 =05, A=y =03, 5 = 3, = Se = 0.9,
kg = ke = 0.7, 8, = —-0.3 and 8, = —0.2.

6 Cu Ag  AbOs  TiO;

0.1 -1.704 -1714 -1.645 —1.650
0.2 —2.296 -2310 —2164 -2.176
0.3 —3.184 -3.215 -2.006 -2.931
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Table 5.5: Numerical values of skin friction coefficient for different values of 3y, 35, 33,

84 A, M and S.

B8, Bs By By A M S —Cpn(Re)Y? —Cpy(Rey,)/?

03 -03 05 -02 03 05 09 3.979 6.896
0.5 3.477 6.863
0.7 3.089 6.837
0.9 -0.1 3.203 6.844
-0.2 2.974 6.829
-0.3 2.779 6.815
-0.3 01 2.789 9.314

0.4 2.781 7.306

0.7 2.776 6.008

0.5 —0.1 2.781 7.403

—0.3 2777 6.19

—0.5 2.774 5.526

0.2 0.1 2.748 6.641

0.4 2.791 6.887

0.5 2.802 6.949

0.3 0.3 2.774 6.784

.7 2.784 6.845

0.9 2.789 6.871

0.5 0.2 2.592 5.906

0.4 2.656 6.199

.7 2.737 6.601

5.5 Conclusions

Here flow of Cu-water nanofluid induced by bidirectional stretching surtace is investigated. The
effects of homogeneous-heterogeneous reactions and second order velocity slip are also taken

into account. The key points are summarized as follows:




Velocity profiles ' and g' are decreasing functions of velocity slip parameters and nanopar-

ticle volume fraction.
The velocity component f' decreases while g' increases for larger stretching rates ratio.

Concentration of the reactants decreases for higher values of strength of homogeneous

reaction parameter.

Strength of heterogeneous reaction parameter results in the enhancement of concentration

profile.
There is an enhancement in concentration profile when Schmidt number increases.

Concentration at the surtace decreases for increasing values of the strengths of homoge-

neous and heterogeneous reaction parameters.

Skin friction coefficients decrease for increasing values of first and second order velocity

slip parameters.
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Chapter 6

Effects of

homogeneous-heterogeneous
reactions in flow of magnetite-Fe30,

nanoparticles by a rotating disk

This chapter investigates the How of ferrofluid due to a rotating disk in the presence of homogeneous-
heterogeneous reactions. Water 15 used as base fluid while magnetite-Fe; 04 as nanoparticle.
Fluid is electrically conducting in the presence of applied magnetic field. Effects of viscous
dissipation are also considered. Appropriate transformations reduce the nonlinear partial dif-
terential system to ordinary differential system. Convergent series solutions are computed for
the resulting nonlinear problems. Effects of different parameters on the velocity, temperature
and concentration profiles are shown and analyzed. Computations for skin friction coefficient
and Nusselt number are presented and examined for the influences of pertinent parameters. It
1s noted that concentration distribution decreases for larger values of strength of homogeneous
reaction parameter while it increases for strength of heterogeneous reaction parameter. Skin
Iriction coeflicient and rate of heat transfer are enhanced when the strength of magnetic field

is increased.




6.1 Model development

Here we consider an incompressible flow of ferrofluid induced by a rotating disk at z = 0.
Magnetite—Fe; Oy nanoparticles in water are known as ferrofluid. The disk rotates with constant
angular velocity €2 about the z—axis. Components of flow velocity are (u, v, w) in the direction
of increasing (r, ©, z), respectively. A uniform magnetic field of strength By is applied parallel
to the z—axis. It i1s assumed that the induced magnetic field and the electric field effects are
negligible. Effects of viscous dissipation are taken into account. The disk is kept at uniform
temperature T, while temperature far away from the disk is T,. In view of the rotational
symmetry, the derivatives in the azimuthal direction are neglected. Flow analysis is carried out
with homogeneous-heterogeneous reactions of two chemical species A and B. The homogeneous

reaction for cubic autocatalysis can be expressed as follows [73]:
A+28B — 3B, rate = k.ab®, (6.1)
while first-order isothermal reaction on the catalyst surface is presented in the form
A— B, rate = kg, (6.2)

where a and b are the concentrations of the chemical species A and B and k. and k; are the rate
constants. We assume that both reaction processes are isothermal. Under these assumptions

the relevant mass, momentum, energy and concentration equations are

du  uw  dw

wrrtE =" (6:3)

du  v? du ar 2w 1w 5 5
Puf (? A “‘5) ="y THus (a_f e =t 3_5) ~onrBou,  (6.4)

v wuv du v 1w v v

Paf (*a— Tt ”’3_) = g (m tror wt m) - owsBov, i)
dw _3:-; _OP w  1dw  HFPw .
Prs\vo v )= T e\ GE e T e ) (5}
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54 ]
v = OT 10T L 81N oty o (08 2+(E)2+ Suff’
“ar "Yaz T “YgRert v ar 822 ) " (peping r r 52
8 o\ v\ 2 du  Aw\? -
+(’E(F)) +(E) +(E+E) , (6.7)

e 1 fa 5% 9

— e - 3R
“ar t u, (Brz rar 3‘22) koo’ )

3-5 325 1 3b 32 3

with boundary conditions

a

w=0 o=l w=0, T =T, D1aa—ka Dt

dz
v—0, v—=0,T—-Ty, a—ay b—0as 2 — oo, (6.10)

= —ka at z =0,

where P is the pressure, T' Is the temperature, a,y = k;,r/(pc)ny is the thermal diffusivity and
ag is the positive dimensional constant. The effective nanofluid dynamic viscosity p,, density

Pnfs heat capacity (pq,)nf, thermal conductivity k,; and electric conductivity o, are taken as

follows:
_ Ky

Mg ,[l__,_l.-,}z.a’ (6.11)
Png = (1= d)ps + dp,, (6.12)
(pep)ny = (1 — d)(pep) f + Dpcp)ss (6.13)

knj (kﬂ-l-if\‘.‘f) —pr(kj —ks)
- = ; 6.14
kp = (ke t 2kg) T By — o) (6.14)

3(2e -1

o1t ( ;)¢ (6.15)

o (&+2)-(2-1)e

o8




where ¢ denotes the solid volume fraction of nanoparticles, s in subscript is for nano-solid-

particles and f in subscript is for base fluid. We now consider transformations

0 .
u=rQf(n), v=rQg(n), w=/vQH(n),n= ‘/V_;z’ P — Py = psv;QP(n),

A

B apé(n), b= agh(n). (6.16)

f(n)

Eqgs. (6.3) — (6.10) atter using Eq. (6.16) can be reduced as follows:

H +2f =0, (6.17)
_ Fr=Hf =24 4% - (—%—) Mf=0 (6.18)
(1 — ¢)25 (1 — b+ {I.-j-%;_) -+ ‘T’% :
1 g - Hg —2fg - (iﬂ,) Mg=0, (6.19)
(1-6)2%(1- ¢+ 02) 1=¢+¢g

1 kl'if o (pc_ﬂ}ﬂ ! Ee 12 v 1 2 a2y \ »
=——=0 —(1—",??4-"?? 1'1'3+m f“+4 +E(’U +2H")) =0, (6.20)

Pr ky (pep) s
%g" ~ HE — ky£h? =0, (6.21)
Si;:h“ ~HN + k&R =0, (6.22)
H(0) = 0, f(0)=0, g(0) =1, 8(0) =1, £'(0) = k2£(0), h'(0) = —k2h(0),
fleo) — 0, gloc) =0, 8(00) = 0, £(c0) — 1, h(s0) — 0, (6.23)

where M = a;Bﬁ/pfw the Hartman number, Pr = vffa; is the Prandtl number, Ec =

(r2)?/(Tw — Too)(cp)y is the local Eckert number Re, = Eéfyf is the local Reynolds number,
Se = vy/D, is the Schmidt number, k) = aik./ is the measure of strength of homogeneous
reaction, § = Dg /D, is the ratio of diffusion coefficient and ks = k, \fy_f,fD_,l\f’ﬁ is the measure
of strength of the heterogeneous reaction.

Her:gﬂ

is assumed that diffusion coefficients of chemical species A and B to be of a compa-

rable size. This leads to make a further assumption that the diffusion coefficients D'y and Dy
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are equal, ie. § = 1 and thus

() + hin) =1. (6.24)
Now Eqs. (6.21) and (6.22) yield
| . 1 V-
5.¢ —H¢ k(1 - €)° =0, (6.25)
with the boundary conditions
£'(0) = k2£(0), £(o0) — 1. (6.26)

The imporl;ant]::stical quantities of interest in this problem are the local skin-friction coefficient

Css and Nusselt number Nu which are given by
Viehar :
a ] r v qld-‘ "
C = s s Nu=  im om0 6.27
ST T Ky (Tw — To) (6.27)
where the surface radial stress 7., tangential stress 7g and heat flux g, are given by

du

T = ﬂ.n‘rg

v
y TE = ”'nJ'E

arT
y Guw=—knj— . (6.28)
d 9z =0

z=0 =0

In dimensionless form the local skin friction coefficient Cy; and Nusselt number Nu can be

written as follows:

1

12
C"f(Re"}l - (1 _ :-‘}}2'5

J (F(0)) + [¢(0))%, Nu(Re,) /2 = —’“Lj—';fa’(o). (6.29)

6.2 Solutions procedure

Initial approximations Ho(n), fo(n), go(n), fo(n) and £,(n) and auxiliary linear operators £y,

L, L4, Lo and L are taken in the forms

1,
Ho(n) =0, fo(n) =ne™, go(n) =e™", Bu(n) =€, &) =1 - 7€ kat, (6.30)
Lu=H, Ly=f"—f, Lag=g"—g, Lo3=0"—-8, Le=E" -, (6.31)
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subject to the properties

Lyl = 0
Lylcoe" +cge™ = 0,
Loleie" +ge™™ = 0,
Lolcge” + cpe™™] = 0,
Lelege” +cge™™] = 0, (6.32)

in which ¢; (fo= 1 — 9) are the constants.
If p € [0,1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:

(1 - p)Lu(H(n,p) = Ho(n)] = phuNp(H (0, p), F0,p): 3(n, p)); (6.33)

(1 - p)£ 1 F,p) = Jo(n)] = phyNy[F(nyp), H (n,2),9(n, )], (6.34)

(1 - p)Lg[a(n,p) = 90(n)] = PhgN[a(n,p), f(n,p), H (n,p)], (6.35)

(1 — p) LolB(n.p) = Oo(n)] = phaNo B(n,), H(n,p): f(n,p), 3(n.p)); (6.36)

(1~ p)LelEn.p) — Eo(n)] = pheNe(EGnp) H(n,p), F(0.2):8(n. p), (6.37)
H(0,p) =

0, f(otp} =0 ﬁ'(o-?)) =1, é(osp} =1, EF(D*:D) = kQé{D,P],
0,

f(oo,p) 9(c0,p) = 0, 8(c0,p) =0, &(cc,p) =1, (6.38)

where fig, fif, fi,y, hg and ke are the nonzero auxiliary parameters and the nonlinear operators

Nu, Ny, Ny, Ny and Ng are given by

_OH(m.p) .
N” - 3?? + Zf(n:pja (639)
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10

p 1 8 f(n,p) - 3_{(1}.,;,] . 9
Ny = — H(n,p)—DE _ :
f [:1 _ (:’}2_5 (1 — ¢+ f."b:;) a.ﬁ,Z ('-'? P} (f(ﬂ P))

oL .
+(a(n,p))* - (m) M f(n,p), (6.40)
o
’ 1 &g(np) 5, Bglnp) e .
Ny = = — H(n,pl—— = 2fin, )
9 1 aops (1 5 "’ff) an? (n.p) o1 (n,2)g(n,p)
ﬁ.’_
o Ty A
(1 — f3+fﬁ§;) 1‘“-{9(?]':?7): {641)
. . " 2
- 1 kay 8%(n,p) ( Py (pcp)s) . 86(n,p) Ec 8f(n,p)
Moo= By e\ ), ) TP s |\ Ty
a(mp)\’ | 1 : 2 8H (. p)
02 ) s . ,,
Ne = 22580 1y ) 28D ) (1 - Enon) (6.43)
1
The resulting problems at m*" order can be presented in the following forms
Ly [Hu(n) = XmHm-10)] = kuRum(n), (6.44)
Ly [fm) = X fm-1()] = AR pm(n), (6.45)
Ly [gm(n) = Xmgm-1(n)] = hgRy m(n), (6.46)
‘CG [Bm(ﬁ) - Xmgm—l(ﬁ)] = ﬁﬂﬁ-ﬂ,m(n): (64?)
‘CE [‘Em(ﬁ) - XHEEHJ--[(H)] - h’EREm(H)! (648)

H'H(U) - fm(D) = f'n(OO) - gm(D) = g'n(OO:l = Em(o) - 9'“(00) - E;r!(o)_kzgrr!(oj - gm(m) - D’
(6.49)
.R-H,m (7?) = H:u 1+ Qfm—ls (650)
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m—1

1
Rpm (n) = N m=1 " Z ’Hm 1- ﬁ.ﬂc"'fm 1-k Sk — Gm-1- .kg&]
(1 — )25 (1 — i+ q’::—}) k—0
Ony
- —2 M. ]
(1 —r_.ﬁ—|-f,.a£=) { fm-1, (6.51)
Py
1 m—1
rRSJ“ (m) - 9:;:—1 - Z ’Hm—l—kgrk +2fm—l—ﬁ'9k]
(1 —g)2e (1 — ¢+ fﬁ-%) k=0
Tnf
| —2 | Ma. 6.59
(1 _r;.’_'_q‘r&) Om—1, ( )
Py
. ! '!‘"rr.l’ g" m—1 Ee m-l
R, = 1-— H. 6}
ﬂ.m(rﬂ Pl" A., m 1 (Pcp)_j' E m—1—k (] }*‘J-_ Z f:n 1 kf;c
1 .y
+9m 1—- kgk Ly Re (Lfm 1k Sk +2}Ir‘ra 1- ka}} (b-t"j)

m-—1

el 1 -
I‘-ﬁ.m(ﬂ} = E‘E?ﬂ—l - I;-Lﬂ

| — )

4
h':n—l—kgk_kl (‘Em 1 fl%fr J‘E_j - 2&::: 1 I‘ﬁ{ ] _!‘:l‘sm 1:
J_
(6.54)

0, m<1
Xm= { . (6.55)

L, m>1

The general solutions (Hu, fiu, @ms Oms £,) comprising the special solutions (H},, fL, g&., 05,

£5,) are

HM(TF - ‘l"I (Ti’} + Cl L]
Fu(n) = fa(n) + cae” + cze™,
9m(n) = g () + cae” + cze™,

Om(n) = 07,(n) + cee” + cze”,

Em(m) = £5,(n) + cse + coe ™, (6.56)
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where the constants ¢; (¢ = 1 — 9) through the boundary conditions (6.49) have the values

= _H;E(D)! ea=a=c=cg=0 = _fr:!(o:li €5 = _g:n(‘])!
.~ _ 1 | %) -
er = 05,(0), s = 1+ & an i k2£3,(0)] . (6.57)

6.3 Convergence of series solutions

The auxiliary parameters g, fiy, fig, g and he play an important role for convergence of
series solutions. The Ai—curves are sketched at 10%" —order of approximations to obtain valid
ranges of these parameters (see Fig. 6.1). Permissible values of the auxiliary parameters
are —=1.1 < hy < -0.7, —1.16 hy < -06, =12 < k;, < -0.6, =1.1 < hp < -1 and
~1.5 < ke < —0.5. Further the series solutions converge in the whole region of 7 (0 < 5 < o0)
when by = hy = —0.7 and hy = iy = h; = —1. Also Table 6.1 ensures that the series solutions

are convergent up to four decimal places.

1"'(0).£'(0),g'(0).68'(0),£'(0)

—20 —1I.5 —ll.O -0.5 0.0 -0.5
ﬁH: ﬁf" ﬁg: ﬁg: ﬁg

Fig. 6.1: The h—curves for H"(0), f'(0), ¢'(0), &'(0) and £'(0) when M = ky = ko = 0.3,
¢=02 Pr=62, Fe=0.7 and Re, = Se=0.9.
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1
Table 6.1: Convergence of HAM solutions for different order of approximations when
M=k=kKk=03¢=02 Pt =062 Ec=0.7 and Re, = Se=0.9.

Order of approximations —H"(0) (0} —g'(0) &'(0) £'(0)

1 1400  0.4754 09230 0.1656 0.1349

5 0.8466  0.4276 0.7790 1.343 0.1260
10 0.8832  0.4420 07672 1.660 0.1208
15 0.8863  0.4434 07680 1.797 0.1194
20 0.8858 0.4429 0.7683 1.830 0.1190
26 0.8858 0.4429 0.7683 1.839 0.1193
30 0.8858 0.4429 0.7683 1.839 0.1193
35 0.8858 0.4429 0.76R3 1.839 0.1193

6.4 Discussion

Theﬁcts of different parameters on the dimensionless velocity, temperatyge and concentration
are examined graphically in this section. Effects of Hartman number M on the axial velocity
profile H(n) can be seen from Fig_ 6.2. Here negative values of H(n) indicate downward flow
in the vertical dimctinnnﬁs the magnetic field has the tendency to slow down the movement
of the fluid which leads to a decrease in the velocity and momentum boundary layer thicknes
Fig. 6.3 illustrates the behavior of M on the radial component of velocity f(n). There is a
decrease in velocity and associated boundary layer thickness when M is increased. Also flow
distribution is parabolic and positive values of f(#) indicate radially outward flow. Fig. 6.4
depicts the distribution of azimuthal velocity g(n) at various values of M. It is observed that
g(nkds decreasing function of Hartman number M.

hn:luence of Hartman number M on the temperature profile 8(s) is analyzed in Fig. 6.5.
Since Lorentz force is a resistive force which opposes the fluid motion therefore heat is produced
and consequently thermal boundary layer thickness increases. Fig. 6.6 shows that temperature
is an increasing tunction of nanoparticle volume fraction ¢. This is because of the fact that
when the volume fraction of nanoparticles Increases, the thermal conductivity enhances and
consequently thermal boundary layer thickness increases. Variations of Eckert number Ee on

temperature profile @(n) can be seen in Fig. 6.7. When E'¢ is increased the temperature profile
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first rises to a maximum value and then it asymptotically approaches to zero. It reveals that
"Sparrow-Gregg type Hill" phenomenon exists in the presepge of viscous dissipation. Fig., 6.8
represents the effect of rotational Reynolds number Re,. on temperature profile 8(n). Here the
temperature profile and thermal boundary layer thickness decrease when Re, is increased.

Fig. 6.9 shows the impact of strength of homogeneous reaction parameter ky on the concen-
tration profile £(n). Concentration decreases since the reactants are consumed during homoge-
neous reaction. Influence of strength of heterogeneous reaction parameter ks on the concentra-
tion distribution is analyzed in Fig. 6.10. It is noted that for higher values of ks the diffusion
reduces and less diffused particles enhance the concentration. Influence of Schmidt number Se
on concentration profile £(7) is shown in Fig_£.11. Increasing behavior of concentration profile
is noted for larger Schmidt number. In fact gmidt number is the ratio of viscous diffusion rate
to molecular diffusion rate. Therefore higher values of Schmidt number correspond to higher
viscous diffusion rate which in turn increases the fluid concentrasan.

Fig. 6.12 presents the skin [riction coefficient ' ;(Re,-}l" ? as a function of nanoparticles
volume fraction ¢ for different values of Hartman number M. When ¢ increases the magnitude
of {’_T'”-l[Re,.)ll“:a grows in nonlinear way. Also magnitude of C‘_gf(Re,-}”"! is directly proportional
to M. Fig. 6.13 shows local Nusselt number Nu(Re,) /2 as a function of ¢ at different values

‘12 when ¢ is increased. While

of Re,. There is an increase in the magnitude of Nu(Re,)
magnitude of Nu(Re,) /% has inverse relationship with Re,.
Variations of surface concentration £(0) via nanoparticles volume fraction ¢ for different
values of the strength of homogeneous reaction parameter &k and strength of heterogeneous
reaction parameter ks are shown in the Figs. 6.14 and 6.15. One can see from these Figs. that
£(0) decreases with the increase of k) and ko. It is in view of the fact that surface concentration
reduces due to the consumption of reactants during homogeneous-heterogeneous reactions.
Some thermo-physical properties of water and magnetite Fe30y4 are given in Table 6.2. In
Table 6.3 we compared the results of f'(0), ¢'(0), H{co) and #'(0) with existing_literature in
limiting sense. Obtained results are in good agreement. Table 6.4 includes the values of local

Nusselt number Nu(Re,) /2 for different values of ¢, M and Eec. It is noted that heat transfer

rate enhances by increasing Nu(Re,) "1/ for different values of ¢, M and Eec.
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Fig. 6.2: Influence of M on H(%).
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Fig. ﬁ.ﬂnﬂuenoe of M on f(n).
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Fig. 6.4: Influence of M on g(n).
f(n)
1.0
¢=02,Ec=0.7,Re, =0.9
0.8
0.6+
i M=0.1,05,1,2
0.4}
0.2}
2 1 6 3

Fig. 6? Influence of M on 8(x).




6(n)
1.0

0.8+
0.6¢
04t

0.2}

M=0.3,Ec=0.7,Re, =09

¢=0.01,0.05,0.1,0.2

6(n)
1.0

0.8}
0.6f
0.4}

0.2}

2 3 4 &

Fig. 6.6: Influence of ¢ on #(7n).
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Fig. Egnﬂuence of Ec on #(n).
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Fig. 6.8: Influence of Re, on 8(n).
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Fig. 6.9: gﬂuenoe of k; on &(7).
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Fig. 6.11: gﬂuence of Se on &(n).
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Table 6.2: Thermo-physical properties of water and magnetite FezOy.

plkg/m™ ep(J/kgK) E(W/mI) o(Qm)” 1
Water 997.1 4179 0.613 0.05
Fez Oy 5180 670 9.7 25000

Table 6.3: Comparison of present results with previously published work when M = ¢ =

Ee=0.

Kelson and Desseaux [53] Bachok et al. [54] Turkyilmazoglu [66] Present

(0 0.510233 0.5101 0.51023262 0.5102
—g'(0) 0.615922 0.6158 0.61592201 0.6160
—H(o0) 0.884474 e 0.88447411 0.8843
—a'(0) — 0.9337 0.93387794 0.9335

Table 6.4: Numerical values of Nusselt number N u(R;e,)‘” 2 for different values of ¢, M

and Fe when Pr = 6.2 and Re, = 0.9.

6 M Ec -T0'(0)
0 03 07 -1.189
0.05 ~1.532
0.1 ~1.847
02 05 —2.853
0.7 —3.065

1 —3.301

0.3 04 —1.229

0.6 —2.327

0.8 —3.549

6.5 Main points

Here flow of ferrofluid induced by a rotating disk is investigated. Effects of homogeneous—
heterogeneous reactions and viscous dissipation are also taken into account. The following

observations are made.
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The axial, radial and azimuthal velocity profiles are decreasing function of Hartman num-

ber.

Opposite behavior of homogeneous and heterogeneous reaction parameters are seen on

the concentration profiles.
Surface drag force has direct relationship with the strength of magnetic field.

Heat transfer rate rises for increasing values of nanoparticles volume traction, Hartman

number and Eckert number.

Surface concentration decreases for both the strength of homogeneous reaction parameter

and the strength of heterogeneous reaction parameter.

There is an excellent agreement between present and previously published results in lim-

iting case when M = ¢ = Fe = 0.
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%hapter '

Melting heat transfer in the MHD
flow of Cu-water nanofluid with

viscous dissipation and Joule heating

?n analysis has been carried out in this chapter for the characteristics of ngu-uniform melting
heat transfer in the boundary layer flow of nanofluid past a stretching sheet. Qater is tre as
a base fluid and copper as a nanoparticle. An incompressible fluyid fills the porous space. ﬁcts
of viscous dissipation and Joule heatipg are also examined. Fluid is electrically conducting in
the presence of applied magnetic field. §ppropr’iate transformations reduce the nonlinear partial
differential system to ordinary differential system. Convergent series solutions are computed for
the velocity and temperature. Effectg of different parameters on the velocity and temperature
profiles are shown and analyzed. [t is revealed that an inc in the melting parameter
increases the velocity and decreases the temperature. Impactxgziﬁerent parameters on skin
friction coefficient and Nusselt number are computed through numerical values. It is concluded

that temperature gradient at the surface increases for higher Hartman number and nanoparticle

volume fraction.
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7.1 Model development

% consider the steady t\tadimensional incompressible flow of nanofluid past a stretching
sheet situated at y = 0. We have taken x— and y— axes along and perpendicular to the
sheet, respectively, and the flow is confi to y = 0. It is assumed that the velocity of the
stretching sheet 18 uw(x) = ex, where ¢ 18 a positive constant. We have chosen T, > T3y
where T, = Ty — az? is the n—uniforrn temperature of the melting surface and T, is the
ambient temperature. Also a niform magnetic field of intensity By acts in the y—direction.
The magnetic Reynolds number is assumed to be small so that the induced m tic field is
negligible in comparison with the applied magnetic field. We incorporate theﬁle heating

and viscous dissipation effects in the energy equation. The continuity, momentum and energy

equations which govern such type of flow are written as:

du  dv _
B2 + By 0, (7.1)
du N du 8y T o'nlﬁ'g 7.9)
Uz Lay = VUps a7 7 "y u, (7.
ar  ar AT g (an)'-* onfB:
U+ V=— = Ay g + = | — | + (TR 7.3
55 " "oy =%t Gocphor \3u) oy s
The subjected boundary conditions are
u = uy=cxr,v=0 T=T, at y=20,
u — 0, T—=T, asy— oo, (7.4)
and
ar .
.FC"I (a—y) ; = Pnf [F -+ CS(Tm - T{.)TJ(I‘,U)] s (i 5)
=

where u and v are the velocity components along the r— and y— directions respectively, K the
permeabilty of porous medium, e is the stretching constant, I" = I'gz? is the non-uniform latent
heat of the fluid and ¢; is the heat capacity of the solid surface. The boundary condition (7.5)
shows that the heat conducted to the melting surface is equal to the heat of melting plus the

sensible heat required to raise the solid temperature Ty = T,,, — bz? to its melting temperature
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T‘"t‘
The effective nanofluid dynamic viscosity p,;, density p, g, thermal diffusivity o, heat

capacitance (pep),f, thermal conductivity k,; and electrical conductivity ¢,y are

=__ ¥ 7.6
bnf = A= g2 (7.6)
Pof = l:}f{]- - ¢) + psd, (7.7)
kug
Cipf = : 7.8
T Tocp)ag (75)
(pep)ng = (pep) (1 — &) + (pep)st, (7.9)
knf _ ks + Qk‘r - 2(,-‘!(1‘.; - ks) (T 10)
ki ket 2ks + 20(ks — k)’ :
32 —1) b
Inf _ 14 ("f ) 7.11)

1
() (- é
where ¢ denotes the solid volume fraction of nanoparticles. Here the subscripts nf represents
the thermophysical properties of the nanofluid, f explains base fluid and s is defined as nano

solid particles. We now introduce the following similarity transtormations

1 T o T‘Piﬂ‘ —_
w=eef (), v=—yTRIO), 1= [0 00) = 7=, (7.12)

Now eq. (7.1) is satisfied automatically and substituting Eq. (7.12) into Egs. (7.2) and (7.3),

we get the following ordinary differential equations:

e ("= M) = 14 - Ma (- ) 2, (7.13)
i
k“ a0 " 25 ] .
Plk—fa-z (1—@)250" + [0 — 2f0+ 2 + eoBeM (1 — )25 2L f2 4 coEef =0, (7.14)
r ky of :

where prime indicates the differentiation with respect to 1, A is the porosity parameter, M 15

the Hartman number, Pr is the Prandtl number and E¢ is the Eckert number. These quantities
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are defined as

BE u? ¢
A=l =220 p_ Y e P 1w =P -, (7.15)
ek cpy ag (pep)f(Too = Tm) ~ (pep)sa
The boundary conditions (7.4) and (7.5) become
k
f1(0) = 1, &5Prf(0)+ Lifee’(o) =0, 8(0) =0,
vf
f(0) — 0, 6(c0) — 1, (7.16)

where ¢ is the dimensionless melting parameter

f= CI(TM - Tm) _ CI&
T+e(Tmn—To) To4eb

(7.17)

which is a combination of the Stefan numbers gr(T, — T )/T and es(Ty, — Tp)/T for the liquid
and solid phases, respectively. When ¢ = 0 we obtain the governing equations for a viscous

fluid. Also

1 1
&1 = @ = ——, s =1-¢+ Ps g, (7.18)
— $)2.5 ; — $)25 Spla 4
(1- 0% (1- 6+ 20) (1= ¢)2° (1~ 6+ {E8=0) Py

Local skin friction coefficient Cyy and Nusselt number Nu are given by

T =
=—, NMu= ————M—, ;
i Nu Ff (oo — Tin) (7.19)

where the surface shear stress 7, and wall heat flux g, are given by

du aT
Tw = MHpfo s Quw = —kny— . (720)
Iay y=0 / 35" =0
By using the above equations we get
CAI(REJ')IIE - ! f”[:D:I, Jwru(Reﬂ:)_l” - _EB,(D) (721)
- o® Ry

where Re, = zy/a/vy is the local Reynolds number.
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7.2 HAM Solution

The initial approximations fy(n) and () and auxiliary linear operators £y and Ly are taken

as follows:

k8
P . L — 11— 99
fo(n)=1-e Frea Pt Bo(n) =1-¢"", (7.22)
Ly=f"—F, Log=0"-0, (7.23)
with
Ly [cl + coe™ + cae ’7] = 0,
La [r:de:rr + cae_n] = 0, (7.24)

in which r?i =1 — 5) are the constants.
If p € [0,1] indicates the embedding parameter then the zeroth order deformation problems

are established as tollows:

(1-p)Ly [f{nm) -fu(n}] = ph (N[ f(m; p)], (7.25)

(1= p)Lo ﬁ,p) = 0u(m)] = phaNalB(n; p): Fi ] (7.26)
F:p) =1, =5 Pr j(05p) + 52Le ) = 0, flo0in) =0, (721)
8(0;p) = 0, (c0;p) = 1, (7.28)

where nonzero auxiliary parameters are represented as hy and hg and ANy and Aj are the

nonlinear operators given as

| F & 5 aL : 3‘ : g . 32‘ :
Ny [f(ﬂi?)} = & ( J;;“?JP) _,\ fg':;z?)) - (%) +f(n: ) gs;?zp)
—Mzg (1—.',-‘1)-2'5 ﬂaﬂ“ﬂp), (T.?Q)

ay Oy
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Nb%;p),f(mp)} — ,;rg"'}f 2 (1— ¢)*° i(;?;p}Jrf( :p) ( P) pun E( )

3f(n P); df(n; p) 2.5 G'nf
on O(m: p) + 2— 22 5 + eaEcM (1 — ¢)* ( )3

The m'" order deformation problems can be written as

Ly [fin(n) = XmFm-1(n)] = hfRpm(n), (7.31)
*CEJ lﬁm(ﬁ) - Xmam I(”}] = ﬁﬂﬁ-ﬂ,m(njn (732}

' 1 'kn -’ v -
£1n(0) = &3 Pr f(0) + k—;cﬂm(o} = fa(60) = Om(0) = Oy (00) = 0, (7.33)

m—1 .,

'R-J\m (m) == (J‘:;r,—l - }‘f:n— Z [J‘m 1 1."&- - er 1- kfk] -Me (1- ‘d’)_'-’ "j-fm 1:

k=0 (7.34)
R ( } _ 1 Lnl (1 -(-*,-)2":'9” 4 Z 7 gt & pafis Z f
A m\i] Pl" -l'-j' f m—1 m=1-kYk 2 w.- 1-k
tesBeM (1- g8 LY g g (7.35)
o

0, m<l1 o
Xm= (7.36)
1, m>1
The general solutions ( fy;, &) comprising the special solutions ( f;,,0},) are
fmm) = fa(n) +e1+ce” + ege”™,
Om(n) = O,(n) + cae” + cse . (7.37)
7.3 Convergence of HAM solution
Homotopy analysis method is employed to in the solutions of Eqs. (7.13) and (7.14) along

with the boundary conditions (7.16). The auxiliary parameters fi; and fip play an important

role for the convergence of the series solutions. fi—curves are sketched at 14* —order of ap-
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proximations to get valid ranges of these parameters (see Fig. 7.1). The permissible values
of auxiliary parameters are —1.5 < iy < —0.85 and —1.2 < fig < —1. The residual errors are

calculated for momentum and energy equations by the expressions

so= [ () an
s = f [P )] (7.39)

In Figs. (7.2 — 7.3), the fi—curves for residual error of f and # are sketched in order to get the
admissible range for k. It is noted that correct result uw 4th decimal place is obtained by
choosing the values of /i from this range., Also, the HﬁMﬁlutions converge in the whole region
of 7 (0 < < oo) when iy = —1.5 and hy = —1. Table 7.1 is prepared to check the convergence
of obtained HAM solutions. This table shows that convergence is attained for the functions

F(0) and 6'(0) at 24" and 40" order of approximations respectively.

.............................

2 S0
----- 6 (0)

J"(0), 6'(0)

205
fir, g

Fig. 7.1: Combined hi—curves for velocity and temperature when M = 0.7, A = 0.3,

Ece=¢e=05and ¢ =0.1.
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Table 7? Convergence of HAM sclutions for different order of approximations when
M=07 2=03, Ec=e=10.5 and ¢ = 0.1.

Order of approximations —f"(0) ¢'(0)

L 1.225  3.215
5 1.286  3.433
10 1.296  3.467
15 1.300  3.475
20 1.302  3.479
25 1.303 3481
32 1.304  3.483
40 1.309  3.484
50 1.309  3.484

7.4 ﬂesults and discussion

This section presents the effects of various parameters on the velocity, temperature, skin friction
coefficient and Nusselt number in the form of graphical and tabulated results (see Figs. (7.4 —

7.17) and Table 7.2).

7.4.1 Dimensionless velocity field

Fig. (7.4 = 7.7) exhibit the dimensionless velocity profiles for different values of porosity para-
meter A, Hartman number M, nanoparticle volume fraction ¢ and melting parameter €. Fig.
T.dg ys the velocity profiles for different values of porosity parameter A. The porosity para-
meter depends on the permeability parameter K. An increase in the porosity parameter leads
to the lower perm lity parameter. This lower permeability parameter causes a reduction in
the fluid velocity. Fig. 7.5 illustrates the influence of Hartman number M on the velocity f'(n).
As the applied lwetic field is a resistive force which reduces the fluid motion, so the velocity
field decreases. The effects of nanoparticle yglume fraction ¢ on the velocity field f'(n) are
depicted in the Fig. 7.6. It is evident that an increase in the values of nanoparticle volume
taction corresponds to a decrease in the velocity profile f'(n). The effect of Melting parameter

€15 seen in Fig. 7.7. It is quite obvious from the Fig. that larger values of € increase the velocity
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profile. It is because of the fact Eat an increase in melting causes an increase in the molecular

motion which enhances the flow.

7.4.2 Dimensionless temperature field

Effects of Eckert number Fe, Hartman number M, nanoparticle volume fraction ¢ and melting
parameter € on the temperature profile # are shown in the Figs. (7.8 — 7.11). Fig. 7.8 depicts
that temperature is an increasing function of the Eckert number Ee. Eckert number is defined
as the ratio of kinetic energy to enthalpy. dUith the increase in Fe, kinetic energy increases
which consequently enhances temperature. g&ct of Hartman number M on the temperature
is analyzed in Fig. 7.9. As the Lorentz force opposes the fluid motion, so heat is produced and
as a result, the thermal boundary layer thickness increases. Fig. 7.10 illustrates the variation of
nanoparticle volume fraction ¢ on temperature field #. Here temperature profile # increases for
an increase in ¢. Because there is enhancement in thermal conductivity by increasing theyolume
fraction of nanoparticles, so thermal boundary layer thickness enhances. Fig. 7.11 @ws the
variations of melting parameter € on temperature profile. It is noted that temperature profile
decreases tor larger values of melting parameter due tcﬁhe fact that temperature difference
increases between ambient and melting surface which reduces the temperature of the fluid.

Further the thermal boundary layer thickness increases when melting parameter is increased.

7.4.3 g(in friction coefficient and Nusselt number

Figs. (7.12 — 7.14) represent variation of skin friction coefficient for larger values of porosity
parameter, nanoparticles volume fraction and melting parameter. It is obserxﬁhat Aand ¢
are increasing functions of f(0) whereas with the increase of € it ggereases. The variation of
heat transfer rate for Ec, € and ¢ is shown in Figs. (7.15 — 7.17). It is found that the Nusselt
number d ases with the increase of ¢, while it increases by increasing Ec¢ and .

Some thermo physical properties of water and copper are given in Table 7.2. CPU time
in seconds is given for different order of approximations in Tabkle 7.3. Table 7.4 presents some
numerical values of —:'__;"”(Re,:}lJf2 and —Nu(Re;) ‘1/2 for different parameters. It is noted here
that magnitude of skin friction coefficient increases for higher C'u—nanoparticles volume fraction

¢, Hartman mumber M and porosity parameter A. However it decreases when Eckert number Fe
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and melting parameter ¢ are increased. The increase in the values of C'u—nanoparticles volume
fraction ¢, Hartman number M, porosity parameter A and Eckert number Ee enhances the
magnitude of local Nusselt number. Furthermore rate of heat transfer decreases when melting

parameter ¢ is increased,

'(m)
1.0F
Cu-water
0.8}
€=05M=0.7,Ec=05,6=0.1,Pr=62
0.6}
A=0.1,03,0.5,0.7
0.4}
0.2
-].Lnna.a.';..a.a.a.é.a--d--- 5 6' ‘%n

Fig. 7.4: gﬂuenoe of A an velocity field.
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Fig. 7.5: Influence of M on velocity field.
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Fig. ?9 Influence of ¢ on velocity field.
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Fig. 7.7: Influence of € on velocity field.
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Fig. 7.8: Influence of Fe on temperature field.
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Fig. 7.10: Influence of ¢ on temperature field.
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Fig. 7.11: Influence of € on temperature field.
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Fig. 7.12: Influence of A and M on skin friction coefficient.
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Fig. 7.13: Influence of € and X on skin friction coefficient.
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Fig. 7.14: Influence of ¢ and A on skin friction coefficient.
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Fig. 7.15: Influence of Ec and M on Nusselt number.
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Fig. 7.16: Influence of € and A on Nusselt number.
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Fig. 7.17: Influence of ¢ and A on Nusselt number.
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Table 7.2: Thermo physical properties of water and copper.

plkg/m3)  cp(ifkgk) k(W/mk) Bx10°(K™1) o(Qm) ‘m
Pure water 997.1 4179 0.613 21 0.05
Coppei(Cu) 2933 385 401 1.67 5.96 x 107

Table 7.3: CPU time (seconds) used by HAM for different order of approximations.

Order of approximations CPU time (sec)

2 0.387022
4 0.932053
6 1.99511

8 3.84522
10 6.46637
12 10.3336
14 15.6849
16 20.6332
18 27.0535
20 35.221
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Table T.4: Numerical values of skin friction coefficient and Nusselt number for different

parameters.

i M A FEe € —C,,I(REI}IN —N'ufReI)_”z

001 0.7 03 05 0.5 1.3065 3.9187
0.05 1.4749 4.2285
0.1 1.6971 4,6308
0.1 0.1 1.4543 4.1486
0.4 1.5798 4.4009

0.9 1.7713 4.7915

7 01 1.6151 4.5939

0.2 1.6565 4.6167

0.4 1.7369 4.6615

0.3 0.1 1.7645 3.5463

0.2 1.7459 3.8347

0.3 1.7292 4.11189

0.5 0.1 1.9215 5.8563

0.4 1.7420 4.8745

0.7 1.6204 4.2512

7.5 Concluding remarks

Influence of MHD fHlow of C'u—water nanofluid over a stretching sheet is presented in this

article. Melting heat transfer and ts of viscous dissipation are also considered. HAM is
used to obtain analytic solutions. ‘#%s observed that wvelocity profile is decreasing function
of Eckert number, Hartman number and nanoparticle volume fraction. Melting parameter
enhances the velocity and reduces the temperature field. Temperature profile increases when
volume fraction of copper nanoparticles is increased. Higher values of Cu-panoparticles volume
fraction, Hartman number and pomﬁiﬁarameter correspond to larger values of skin friction

coefficient and local Nusselt number. "Temperature gradient at the surtace decreases for larger

values of melting parameter.
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Chapter 8

Unsteady flow of nanofluid with
double stratification and

magnetohydrodynamics

This cl er addresses the unsteady flow of viscous nanofluid caused by an inclined stretching
sheet. %cts of thermal radiation, viscousgdissipation and stratification process due to tem-
perature and concentration are analyzed. Erﬂuid is electrically conducting in the presence of
applied magnetic field. The flow congideration is subjected to small magnetic Reynolds num-
ber. Induced magnetic field is ahﬁenh.‘éppropriate transformations reduce the nonlinear partial
differential system to ordinary di ntial system. Convergent solutions are computed. Inter-
val of convergence is determined. Effects of different parameters on the velocity, temperature
and concentration profiles are shown and analyzed. If is cggcluded that thermal and solutal
stratification parameters reduce the velocity clisl;ribution.catis also observed that velocity is

decreasing function of Hartman number.

8.1 Flow equations

Consider an unsteady two-dimensional incompressible flow of nanoﬂuid&nst a stretching sheet.
The sheet makes an angle ¥ with the horizontal direction. The x—®Ris is taken along the

stretching surface in the direction of motion and y—axis is perpendicular to it. Thermal and
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concentration bucyancy forces are applied to the fluid with double stratified phenomena due to
temperature and concentration. The sheet is maintained at temperature T, = Top+ A%z /(1—at)
and concentration C, = Cy + D*z/(1 — a*f). The temperature and mass concentration of
the ambient fluid are assumed to be stratified in the form T = Ty + B*z/(1 — a*f) and

Cowo = Ch+ E*z/(1 — a*t) respectively (see Fig. 8.1).

Fig. 8.1: Geometry of the problem.

a8
It is assumed that a uniform magnetic field of intensity By acts in the y—direction. The

magnetic Reynolds number is assumed to be small so that the induced magnetic field is negligible
in comparison with the applied magnetic field. In addition the effects of thermal radiation
and viscous dissipation are considered. The continuity, momentum, energy and concentration

equations which govern such type of flow are written as:

du v
ot 5 =0 (8.1)
du du du 5%u . (0" — p)
Eﬂ—uaﬂ'l‘a—y = JJ3—f+gS|n@['ST(T_TH’C)“_CW)—FT(C_Gw)
aBSu
= , 8.2
r (8.2)
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or o _ . 5r &1 aTdC Dy (8T)*
ot oz oy | Yoy2 5y By Te \ Oy

160*T3, 8°T

+ ol (%)2

$—00 8.3
3k*(pep) y Oy* (®3)
ac  ac oo 9°C Dy 8T

— — tv—=Dp—=+ ———. 24
8t+u8:r;+b8'y ﬂ8y2+’f_.,n8y2 (8.4)
The subjected boundary conditions are
e U= =0, T=To=Tot+ =, C=Cp=Cot > at y=0
u = _l_a,tvl_'.- = Ly = L0 1 — 't = by = L0 1—a’ta y=\y
u U,T—PTM=T|;]+£,C—!CM=CU+ i as y — 090, (8.5)
1 —a*t 1l—a*

where u and v are the velocity components along the x— and y— directions respectively, v,
p and o are the kinematic viscosity, density and electrical conductivity of the fluid, g is the
gravitational acceleration, 8y is the coefficient of thermal expansion, T, T.,, € and C., are the
fluid temperature, ambient fluid temperature, fluid concentration and ambient fluid concentra-
tion, e = k/(pep) ; is the thermal diffusivity, 7 = (pe),/(pe) s is the ratio between the effective
heat capacity of the nanoparticle material and heat capacity of the fluid, Dp is the Brownian
diffusion coeflicient, Dy 1s the thermophoretic diffusion coefficient, k* i1s the mean absorption
coefficient, " is the Stefan-Boltzmann constant, £ is the thermal conductivity, ¢ and a® are
positive constants having dimension T!, A*, B*, D* and E* are the dimensional constants
having dimension L ~and Ty and Cjy are the reference temperature and concentration.

We now introduce the following similarity transtormations

cr i L (5 - c
o l—a'tf(n}' v \ 1—a'tfm}’ e Vow(l —a)
T, C — Coo

0(n) % ®(n) =

— 8.6
Cu_.' _ G{I ( )

Now eq. (8.1) is satisfied automatically and Egs. (8.2) — (8.5) alter using Eq. (8.6) can be

reduced as follows:

7 - fﬂ2 + i -4 (f + %ij‘f”) + Nesin U + N, &) — Mf =0, (8.7)

138




1 4 1 .
= (1 + ERd) 8" + f0' — f'0 — S, f - 6* (St + 0 + 5”9,) + Np8'® + N8 + Ecf" = 0, (8.8)
r

Jr\‘r!

g" =10 8.9
=0, (89)

|
3" + Se(fd' — f'®) — SpSef’ — 6*Se (sm + &+ 5«.@’) +

f'(0)
flloo) = 0, 8(c0) =0, B(oo) =0, (8.10)

1, f(0)=0, 8(0) =1— Sy, B(0) =1 — Sy,

where prime indicates the differentiation with respect to n. Moreover the unsteady parameter §°,
mixed convection parameter N., Buoyancy ratio N, Hartman number M, Prandtl number Pr,
Radiation parameter H;, thermal stratification parameter 5;, Brownian motion parameter Ny,
thermophoresis parameter Ny, Eckert number Fe, Schmidt number Se and solutal stratification

parameter S, are defined by the following definitions:

. _ o o _g(l-a't)Br,. . _m _ (¢ = P)(Cu — C)
(s - e 1] Jwr. — Cz.'L' (l C’K‘.‘)(T‘ib Tﬂ)s J“"r]" - pﬁf(?‘". — Tf]){l — Cw)1
aBi(1 — a*t) 7 40*T3, B* 7 Dg(Cy, — Cp)
] - —_— = — = - = Ney=m ———— -
"'-!r pe [ Pr ﬂ;’ Rd :jkk‘ i) ‘&i At [ b v [
. 7Dy (Tw — To) pU* v E*
N w0 g P g E e D 8.11
i T T Gy @e-To) ° D5 "D (8.11)

The important physical quantities of interest in this problem are the local skin friction coefficient

Cyy, Nusselt number Nu and Sherwood number Sk which are given by

Tan 1‘(} xrjﬁn

Csf = ——, Nt = ————— Sh = ————o 3.12
Sf %pUz au k(Tru - Trr} ' .DH{CH.- - C’&G) { )
where the surface shear stress t,,, wall heat flux g,, and wall mass flux ¢, are given by
o ( 160*T3 ) dl ac
Tw = M— s = (B ——= ) — sy Gm = — Dp— ; 2.13
nu’ay y_n q 3k' ay y_{' q?f B ay y_n ( }

139




By using the above equations we get

Re.\ 1/2
(%)

Sh(Re,;) V2 = —(1_13 )11’(0). (8.14)

£"(0), Nu(Re;)™ "2 = - (1 + %Rd) ( 1 )9’(0),

1 -5

where Re, = Uz /v is the local Reynolds number.

8.2 Homotopy analysis solutions

Initial approximations fo(n), fo(y) and ®g(x), auxiliary linear operators Ly, £ and Ly and

auxiliary functions Hy, Hy and ‘Hg are taken in the forms

fon) =1 — €, Bo(m) = (1 — Se)e™, @oy) = (1 — Sm)e™, (8.15)
Li=f"—f, Lo=0"—0, Lo=D" D, (8.16)
Hy=e", Hop=e" Hyp=¢, (8.17)
with
Lyler+eoe” + e = 0,
Lo [r:;.c”+c_-—,c TI] = 0,
Ly [cge” +e7e™| = 0, (8.18)

in which ¢; (i =1 — 7) are the constants.
If p € [0,1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:

(1= p)Ls [F3p) = folm))| = phsHyN7LF(n;),000; p), & ), (8.19)
(1= p)Lo [0039) - 60(n)]| = phaMaNalO(r; ), 50 ), BC: ), (8.20)
(1-p)Lo [‘P{mp) = ‘I’u(ﬂ]] = phaMaNo[(n;p), f(5;p), 00 p)]; (8.21)
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F(0;p) =1, f(0;p) =0, f(o0;p) =0,
8(0;p) = 1 — Sy, B(co;p) =0,
®(0;p) =1 — Sy P(00;p) = 0, (8.22)

where fis, fig and fi, are the nonzero auxiliary parameters and the nonlinear operators Ny, Nj

and N, are given by

8% f (n; p)
an?

Ny [J’(nmlﬁ(n:p)#i*(n:p)] = s an

e (ﬁf(n;P) N lna'f(?i‘;?’)

a3 Feo 3 F( I
Ffmp) (d‘f(ﬁm)) + fn:p)

) + N_sin U[0(n; p)

an 2 dn?
& af(n;
N ()] - 2D (3.23)
Ui
e [atr ey Foery Btee] L 4.\ P8mip) | ;.\ 8(mp) o 3f(nip)
Ny H(n..:o},f(n..ﬁ)ﬁ(n..p}] Do (1 + §Rd) o f(m:p) A 6(m; p) B
) . : 2
Af(mip) . Ar 1 99(n;p) . 99(m:p)
S:T 9 (St +0(n; p) + 37 Bn ) + Ny (d—'q)
R . : 2
90 (n; p) 32 (n; p) 8%6(m; p)
Ny—————"" 4 Fe| ——| , 2.24
+ Ny B o + Ec a2 (8.24)
Na |®(n; p), f(n;p) é(n'p}] - D) 5 f(n'?)}—a(i)(mp) — &( 'P}—aﬂmp)
q} 1 1 b 1 ’ al?g 1 61? 1 an
af - . . 1 ad ;
—S,,,,Sc% - d"Se (Sm + (g p) + En%)
N; 8% (n; p)
N o (8.25)
The resulting problems at m** order can be presented in the following forms
Jf:_i' [fa(®) = XpnFm—1(n)] = &fﬁ-j',m(’”e (8.26)
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Ly [Bml(n) = xmbm-1(n)] = hgRom(n), (8.27)
Ly [‘Dm("?) - Xm(I’m—l(Ti)] = fiq;ﬂ.¢1,n(?}), (823)

f:n([]) = fm(0) = f:”(oo} = 8n(0) = O(00) = P1n(0) = Byy(00) =0, (8.29)
m—1

e & 1 f Fom T
R () = st 3 fer-aff = FnesoaBi) =8 Fvca b g0fs ) 4N WOt N s =M o,
k=0

(8.30)

1 4 m—1 o 1 .,
Rtl_-m(ﬂ} = ﬁ (1 + ERd) 9:1 1+ ’;ZU [:fm—].—ﬁ'g.ik - Bm—l—k.ﬂc) - Sf—f:n 1~ & (S! '1"9m—l * —T;Bm I)

2
it ! ] ¥ ¥ il S
+ Z {Nﬂ'am—l—l‘tbk + Nlam—l—kak + chm—l—kfk )1 (8‘31)
k=0
. 1 m=l I 1 - 1 ' Ny
R@__m(ﬂ) = (I’m |-1-S:‘: Z (ft:r:—l—k@j_-_(bm—l—kfﬁ-)_Smscf:n |_gJ Se | S+ Bmo1 + §r|f¢'m 1 "'mgm 11
k=0
(8.32)
0, m=1
M= : (8.33)
1, m>1
The general solutions ( fi, @, Pin) comprising the special solutions (f,,85,, ®5,) are
f:rn(?” = f:n(?:‘) + 0 + G?E’T + (-"de_r:e
Om(n) = 65,(n) + cae” +cse™™,
Pm(n) = () + cee” +cre, (8.34)

where the constants ¢; (i = 1,2,...,7) through the boundary conditions (8.29) have the values

Ofm(n)
a?} #=0 '
;5 = —9::1(0)9 ey = _q):n(oj‘ (835}

eg = ea=¢=0, e1=—e3— f,(0), e3=

8.3 Convergence of the homotopy solutions

Now the solutions of Egs. (8.7 — 8.9) subject to the boundary conditions (8.10) are computed

by means of homotopy analysis method. The convergence of the series solutions is highly
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dependent upon the auxiliary parameters fiy, fig and fig. For valid ranges of these parameters,

we have sketched the fi—curves at 15" —order of approximations (see Fig. 8.2). We can see

that the admissible values of Ay, hp and hg are —1.5 < fiy < —0.7, =1.3 < hy < —0.4 and

—1.2 < hg < —0.4. The residual errors are calculated for momentum, energy and concentration

equations by the expressions

Al

a
A'1"!‘3-

i
a m

fn l (24, (n.ﬁf)]gdn.
[ [ om)]an,

1 2
/ﬂ [RY (1, ha)]” dn.

(8.36)

In Figs. (8.3 — 8.5), the i—curves for residual error of f, # and ® are sketched in order to get

the admissible range for fi. It is noted that correct result up to 4th decimal place is obtained

by choosing the values of i from this range. Further the series solutions converge in the whole

region of n (0 < n < c0) when iy = —1.2, hp = —1.1 and fig, = —0.9.

00f it

S Y
= -0.3} ,
— s
=
%:
= -1.0}
=
~

-1.5}

-2.0

=2

210 <05

fig, g, iy

0.0

Fig. 8.2. i— curves for f"(0), 8'(0) and @'(0).
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Fig. 8.3: fiy—curve for the residual error &}i!.
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Fig. 8.4: figp—curve for the residual error .ﬁ"?“.
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Fig. &.5: hg—curve for the residual error A® .
Table 8.1: Convergence of HAM sclutions for different order of approximations when

M=07TN.=F;=04, N, =03, ¢ ==x/4, Pr = 12,5, = 02, §* = N, = 0.5, N, = 0.1,
Se=0.9, Ec=0.6 and 5,;, = 0.1.

Order of approximations —f"(0) —6'(0) —¢'(0)

1 1.358  0.7193 0.9608
5 1.341  0.6832 0.9856
10 1.342  0.6839 0.9815
14 1.343  0.6855 0.9810
20 1.343  0.6868 0.9808
25 1.343  0.6876  0.9809
29 1.343  0.6880 09810
35 1.343  0.6887 09810
40 1.343  0.6887 09810
45 1.343  0.6887 0.9810




8.4 Interpretation of results

The effects of different parameters on the velocity, temperature and concentration fields are
investigated through plots in this section. Figs. (8.6 — 8,12} exhibit the dimensionless velocity
profiles for different values of inclination angle W, unsteady parameter 6*, Hartman number M,
mixed convection parameter N., Buoyancy ratio N,, thermal stratification parameter S; and
solutal stratification parameter S,,. Variation in velocity with an increase in angle of inclination
¥ can be seen from Fig. 8.6. It is noticed that with an increase in ¥ i.e. when the sheet moves
from horizontal to vertical direction, the strength of buoyancy force increases and consequently
the velocity and boundary layer thickness increase. Influence of unsteady parameter 4% on the
velocity profile f* can be seen in Fig. 8.7, Increasing values of §° indicates smaller stretching
rate in the z— direction which eventually decrease the velocity and boundary layer thickness.
The effects of Hartman number M are displayed in Fig. 8.8, which shows that an increase
in M reduces the velocity profile. This is because of the reason that Lorentz force acts as
a retarding force. Such retarding force enhances the frictional resistance opposing the fluid
motion in the momentum boundary layer thickness. Fig. 8.9 elucidates the behavior of mixed
convection parameter N. on the velocity profile. This Fig. shows that the values of velocity
function f" and the boundary layer thickness increase by increasing N,.. This is because a larger
value of N. accompanies a stronger buoyancy force which leads to an increase in velocity. The
effects of Buoyancy ratio N, on the velocity profile are depicted in Fig. 8.10. This Fig. shows
that velocity profile increases when N, increases. N, is the ratio ol concentration to thermal
buoyancy forces. With an increase in buoyancy ratio parameter, concentration buoyancy force
increases which results in higher velocity profile. Fig. 8.11 is plotted to show the influence of
thermal stratification parameter S; on the velocity profile f'(x). With an increase in thermal
stratification parameter the density of the fluid in the lower region is high than the upper
region. So thermal stratification reduces the convective flow between the sheet and ambient
fluid. Therefore velocity profile decreases. Behavior of solutal stratification parameter S, on
velocity profile is sketched in Fig. £.12. Tt is depicted that velocity and boundary layer thickness
decrease with an increase in solutal stratification parameter.

Effects of Prandtl number Pr, unsteady parameter 8*, Brownian motion parameter Ny,

thermophoresis parameter Ny, thermal stratification parameter S;, radiation parameter R; and

146




Eckert number Ec on the temperature profile € are shown in the Figs. (8.13 — 8.19). Fig. 8.13
indicates that temperature profile # is a decreasing function of Pr. In fact thermal diffusivity
decreases by increasing Pr and thus the heat diffuses away slowly from the heated surface.
Effect of unsteacdy parameter §* on the temperature is analyzed in Fig. 8.14. It is observed that
the temperature and thermal boundary layer thickness are decreasing function of 4*. Fig, 8.15
illustrates the effects of Brownian motion parameter N, on temperature profile #. When N
increases, random motion of nanoparticles increases. Therefore collision of particles increases
and kinetic energy converted to heat energy. Hence temperature profile # increases for an
increase in Ny. The behavior of N; on the temperature profile is similar to that of Nj (see
Fig. 8.16). Also the temperature profile # and thermal boundary layer thickness decrease
when the thermal stratification parameter S, increases (see Fig. 8.17). Because temperature
difference gradually decreases between the sheet and ambient Auid which causes a reduction
in the temperature profile. Radiation effects on the temperature profile are displayed in Fig.
8,18, An increase in Fy enhances the heat flux from the sheet which gives rise to the fluid’s
temperature. Therefore the temperature profile and thermal boundary layer increase with an
increase in Hy. Fig. 8.19 depicts that temperature is an increasing function of the Eckert number
Eec. Eckert number is defined as the ratio of kinetic energy to enthalpy. With the increase in
Fe, kinetic energy increases which consequently enhances temperature.

Figs. (8.20 — 8.24) illustrate the effects of Schmidt number Se, unsteady parameter 4",
Brownian motion parameter N, thermophoresis parameter N; and concentration stratification
number Sy, on the dimensionless nanoparticle volume fraction profile ®. It is observed that the
mass fraction © and the associated boundary layer decrease for an increase in Schmidt number
Se (see Fig. 8.20). This is due to the fact that an increase in Se reduces the molecular diffusivity.
Fig. 821 indicates that an increase in the unsteady parameter §* decreases the concentration
profile. The effects of Brownian motion parameter N on the concentration profile are depicted
in Fig. 822, This Fig. shows that ¢ decreases when N increases. Also the concentration profile
P increases when thermophoresis parameter Ny is increased as shown in Fig. 8.23. Variations
of solutal stratification parameter S,, on the dimensionless nanoparticle volume fraction profile
& can be seen in Fig. 8.24. It is noted that there is a decrease in concentration profile when S,

is increased. Because increase in S, decreases the concentration difference between the sheet




and ambient fAuid.

Table 8.1 shows the convergence of the series solutions. It is observed that convergence for
velocity, temperature and concentration is achieved at 14", 35" and 29*" order of approxima-
tions respectively. Table 8.2 shows the comparison of the present results with the numerical
solution of Ibrahim and Shankar [64] in limiting case. It is found that our solution has good
agreement with the limiting numerical solution. In Table 83 some numerical values of skin
friction coefficient are given. Tabular values shows that skin friction coefficient decreases by
increasing ¥, N, and N, while it increases for larger values of M, 4%, §; and S,,. Numerical
values of local Nusselt and Sherwood numbers for different emerging parameters are presented
in Table 8.4. It is noted that local Nusselt number increases for larger values of S;, S5, and Pr.
However it decreases for larger values of Ny, N; and Se. It is noted that local Sherwood number

decreases by increasing Ny, S; and Pr and it increases for larger values of Ny, S, and Se.

M= 0?, ."Irc = Rd = 04.. N! = 03_ Pr= 12- SI - 0_25
081\ 6" =N, =N,=0.5,Ec=0.6,5c=0.9, S, =0.1

¥ =n/10, n/6, n/4, n/3

Fig. 8.6: Influence of ¥ on f'(n).
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M=0.7, N,=R; =04, N, =03,Pr=12,¥=n/4,
S;=0.2, Ny = N, = 0.5, Ec = 0.6, S¢ =0.9, Sp = 0.1

0*=0.1,0.509,15

0.4}
0.2}
————
1 2 3 4 5 6
Fig. 8.7: Influence of 8* on f'(n).
f'(n)
1.0
\ N=R;=04,N,=03,¥=nf4,Pr=12,5=02,
08\ 6"=Ny=N;=0.5,Ec=0.6,8¢=0.9,5,=0.1
0.6f
M=0.1,02,03,04
0.4r
0.2
s 6

Fig. 8.8: Influence of M on f'(7).
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1.0
M=0.7,R;=04,N,=03,¥Y=n/4,Pr=12,5,=0.2,
0.8t\ 6" =N;=N,=05,Ec=06,8¢=09,5,=0.1
0.6f
N:=0.1,05,09,1.5
0.4
0.2
5 6
Fig. 8.9: Influence of N. on f'(n).
)
1.0

M=0.7,N,=R;=04,¥=n/4,Pr=12,5,=0.2,
6‘ = ﬂ'rb = JV! = 0.5, Ec = 0,6, SI: = 09, Sm- = 01

N, =0.1,04,0.6,0.9

._‘
(=] 8
L%
o
n
L=a

Fig. 8.10: Influence of N, on f'(n).
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1.0}
M=07,N,=R;=04,¥=nr/4, Pr=12,N, =023,

0*=Ny=N,=0.5,Ec=0.6,8¢c=0.9, 5, =0.1

0.8+

0.6}
$,=0.1,04,0.7, 1

0.4}
0.2t
i 2 A 5 6
Fig. 8.11: Influence of S; on f'(n).
f'(m)
1.0

M=07,N,=R;=04,Y=7/4,Pr=1.2,N, =023,
L\0" =N =N;=0.5,Ec=0.6,8¢=09,5 =0.2

Sy =0.1,0.3,0.6,0.9

Fig. 8.12: Influence of Sy; on f'(n).




8(n)

0.8
M=0.7,N,=R;=04,%=n/4,N,=03,5,=02,
0"=Ny=N,=05,Ec=0.6,8¢=0.9, 5, =0.2
0.6+
0.4t Pr=12,1517,19
0.2r
T
Fig. 813: Influence of Pr on é(n).
o)
0-8F  M=07,N.=R;=04,¥=7/4,Pr=12, N, =03,
Ny=N;=05,Ec=0.6,8¢=09,5,=0.2,5,=0.1
0.6
0.4} 6°=0.1,0.5,0.7,09
0.2}

Fig. 8.14: Influence of §* on 6(n).




8(n)

0 M=0.7,N.,=R;=04,¥=n/4,Pr=12, N, =0.3,
0"=N;=0.5,Ec=0.6,5¢=0.9,5;=0.2, 5, =0.1
0.6+
0.4+
0.2t
4 5 0
Fig. 8.15: Influence of Ny, on #(n).
o)
0.8;

0.6}

0.4}

M=0.7,N.=R;=04,¥=n/4,Pr=12, N, =03
0" =N, =0.5,Ec=0.6,8¢c=09,5,=0.2,5,=0.1

N:=0.1,04,0.7,09

1 2 3 4 5

Fig. 8.16: Influence of N; on 8(n).




8(n)

M=0.7,N,=R;=04,¥=7/4,Pr=12,N,=03,
6 =N,=N,=0.5, Ec=0.6, Sc = 0.9, S, = 0.1

0.8}
0.6f
$:=0.1,02,0.3,04

0.4

0.2¢

Fig. 8.17: Influence of S; on #(x).

6(n)
085y M=07,N.=04,¥=n/4,Pr=12,N,=03,S,=0.
6" =Ny =N, =0.5, Ec=0.6, Sc = 0.9, S,y = 0.1

0.6}

R;=0.1,04,0.7.0.9

0.4}
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x B & A 5

Fig. 8.18: Influence of Ry on #(n).
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08 M=07,N.=R;=0.4,9=4,Pr=12,N,=03,
§*=N,=N,=05,5,=02,8c=09, S, =0.1
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0.4;
0.2t
1 2 3 y :
Fig. 8.19: Influence of Ec on #(n).
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0.6t
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Fig. 8.20: Influence of Sc on ®(n).
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M=0.7, N,=R; =04, ¥=n/4, Pr=12,N, =03,
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Fig. 8.21: Influence of * on $(n).

M=0.7, N,=R;=04,¥=n/4,Pr=12, N, =03,
§"=N,=0.5,Ec=0.6,5c=09,5, =02,85,=0.1
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Fig. 8.22: Influence of N on ®(5).
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Fig. 8.23: Influence of N; on $(n).
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Fig. 8.24: Influence of S); on ©(7n).




Table 8.2: Comparison of skin friction coefficient with Ibrahim and Shankar [| when N, =

Ry=N,=¥=Pr=58=0=N,=N,=Sc=Ec= 5p=0.

M Ibrahim and Shankar [64] Present results

0 1.2808 1.2808
L 1.4142 1.4142
5 2.4494 2.4494

Table 8.3: Numerical values of skin friction coefficient for different parameters when Ny =

0.9, Ny = 0.2, Pr = 1.2, Se¢ = 0.9, Ry = 0.4 and Ec = 0.6.

T M X N 4§ S5 Sm —f'0)
/6 0.7 04 03 06 01 01 1.365
7/3 1.294
/2 1.269
7/4 0.5 1.252

0.6 1.289

0.8 1.360

.7 0.1 1.428
0.3 1.359
0.5 1.291
0.4 05 1.306

0.6 1.297
0.7 1.287
0.3 0.1 1.169
0.2 1.203
0.3 1.235
0.6 01 1.325
0.2 1.342

0.3 1.359

0.1 0.2 1.330

0.3 1.336

0.4 1.341




Table 8.4: Numerical values of Nusselt and Sherwood numbers for different parameters

when M = 0.7, N. =04, N, =03, ¥ =x/4, By = 0.4, §* = 0.6 and Ec = 0.6,

S, S: N, N, Pr Sec —(1+§'@Rd)(1—l§)9’(0) —(

=) #0)

0.1
0.2
0.3
0.1

0.1

0.2
0.3
0.4
0.1

0.9

0.5

-

a
1.0
0.9

0.2

0.1
0.3
0.5
0.2

1.2 0.9

1.5

1.7

2.0

1.2 0.5
0.7
1.0

1.078
1.190
1.334
1.080
1.082
1.083
1.209
1.142
1.047
1.078
1.047
1.017
1.215
1.294
1.398
1.141
1.105
1.066

1.197
1.193
1.189
1.333

8.5 Concluding remarks

MHD unsteady flow of viscous nanofluid over an inclined stretching sheet has been studied.

Effects of different parameters on the velocity, temperature and concentration profiles are ana-

lyzed. The following observations are worthmentioning.

* Angle of inclination enhances the velocity.

« Velocity profile decreases with an increase in thermal and solutal stratification parameters.




Increase in the mixed convection parameter enhances the velocity profile.

Thermal stratification parameter reduces the temperature field.

Concentration profile decreases with the increase in solutal stratification parameter.

The impact of thermophoresis parameter and Schmidt number on the concentration profile

is opposite.

Higher values of solutal stratification parameter correspond to larger values of local Nus-

selt and Sherwood numbers.
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Chapter 9

Magnetohydrodynamic stagnation
point flow of a Jeffrey nanofluid with

Newtonian heating

The purpose of present chapter 1s to examine the stagnation point flow of a Jeffrey nanofluid to-
wards a stretching surface in the presence of Newtonian heating. Fluid is electrically conducting
in the presence of applied magnetic field. Appropriate transformations reduce the non-linear
partial differential system to ordinary differential system. Governing nonlinear system is com-
puted for the convergent solutions. Results of velocity, temperature and concentration fields
are calculated in series forms. Effects of different parameters on the velocity, temperature and
concentration profiles are shown and analyzed. Skin friction coefficient, Nusselt and Sherwood

numbers are also computed and examined.

9.1 Flow equations

The extra stress tensor for Jeffrey fluid is

dA,
S= AL+ 2=t 9.1
1+A,[l+2ds] 1)
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In above expressions p is the dynamic viscosity, Ay is the ratio of relaxation to retardation
times, Ao is the retardation time, A, is the first Rivlin-Erickson tensor, d/dit is the material
derivative define as

d o

Eq. (9.1) reduces to a Newtonian fluid when Ay = Ao =10,

9.2 Problem formulation

Let us consider the steady two-dimensional stagnation point flow of a Jeffrey nanofluid towards
a stretching surface-. The z—axis is taken along the stretching surface in the direction of motion
and y—axis is perpendicular to it. A uniform transverse magnetic field of strength By is applied
parallel to the y—axis. It is assumed that the induced magnetic field and the electric field
effects are negligible. Effects of Brownian motion and thermophoresis are presented. Further,
the surface exhibits Newtonian heating boundary condition. The boundary layer flow in the

present analysis 1s governed by the following equations:

du v
i i q
55t 3y 0, (9.3)
9z By 1+ M |0y P\ Byoxdy | zdy: dr oyl | Oy
U, oB?
+Us 6‘: + —PU~|[U,-J.D — u), (9.4)
dl aT T 9T dC Dy [T\’
TLE + %a—y —(‘c@ +T [DHE% Fﬁ (a_y) ' (9.5)
ac aC C Dy &°T )
ﬂ% + '-Ua—y = Dﬂa_yﬂ T—wa—y? (9.6)
The subjected boundary conditions are
u Uglx) =cx, v=20 L hT, C at y=10
= Ll &) = y U=Uy, — ==l , U =0y =
Ay
u — dz, T — Ty, C—Cyx asy— co. (9.7)
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where u and v are the velocity components along the x— and y— directions respectively, p,

d & are the dynamic viscosity, density and electrical conductivity of fluid, A is the
ratio of relaxation to retardation times, A; is the retardation time, U, 18 the free stream
velocity, T, Tw,, Cu and C, are the fluid temperature, ambient ﬂuibﬁemperatune, constant
wall concentration and ambient fluid concentration, T = (pc)p/(pc)s is the ratio between the
effective heat capacity of the nanoparticle material and heat capacity of the fluid, Dpg is the
Brownian diffusion coefficient, Dy is the thermophoretic diffusion coefficient, a = k/(pe); is
the thermal diffusivity and hg is the heat transfer parameter.

We now introduce the following similarity transformations

u=czf(n), v=—VEf(n), 1= \/;y () = - L0 (g

o0
—, B(y) = :

Eq. (9.3) is satisfied automatically and Eqgs. (9.4 — 9.7) after using Eq. (9.8) can be reduced

as follows:

P+ A+ MEF = P+ 82 = 1) + U+ MG+ M- F) =0, (99)

%9” | £0' + Np8'®' + N8 = 0, (9.10)
N,
" + Sefd' + =Lo" =0, (9.11)
N,
F(0) = 1, f(0) =0, '(0) = —7"[1 + 6(0)], ®(0) =1
fl(0) — [—i =1, #(c0) — 0, ®(cc) — 0, (9.12)

where 3* = ¢Ag is the Deborah number, M = ¢ Bj/pe is the Hartman number, Pr = v/« is the
Prandtl number, N, = 71Dg(C, — Cx)/v is the Brownian motion parameter, N; = 7D /v is
the thermophoresis parameter, v* = hyy/¥/c is the conjugate parameter for Newtonian heating,
~ is the ratio of rategand Sc = v/Dg is the Schmidt number.

The important gysical quantities of interest in this problem are the local skin-friction

coefficient Cy, local Nusselt number Nu and the local Sherwood number Sh which are given
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Tw B Ly Iqm
Cof= —, Nu= ——2 __ Sh=—-—"" _ 9.13
R N ) (0.12)

where the surface shear stress T,,, wall heat flux g,, and wall mass flux g, are given by

du aT oC
Tw=pg-l s Gu=-kzr| am=-Dpo=| . (9.14)
¥ y=0 y=0 ¥ y=0
By using the above equations, we get
. ’ 1 .
Cap(Re) V2 = f7(0), Nu(Rey)™V2 = " [1 " m} | Sh(Re,) V2 = ~2(0),  (9.15)

where Re, = ex?/v is the local Reynolds number.

9.3 Series solutions
Initial approximations fy(n), #o(n) and ®o(n) and auxiliary linear operators Ly, Ly and L4 are
taken in the forms

*

¥
L —y*

Jon) = (v —1)(e™7 — 1), Bo(n) = e, @g(n) =e, (9.16)

Li=f"+f" Lg=0"—0, Lo=0"—], (9.17)

subject to the properties

Liler+ con+e3e”™ = 0,
Lalcse™ + cse7™] = 0,
Lyplcge +ere™ = 0, (9.18)

in which cgfi = 1 — 7) are the constants.
If p € [0,1] indicates the embedding parameter then the zeroth order deformation problems

are constructed as follows:

(1 — p)Ls[f(mp) — folm)] = pheNs[F(m:p)], (9.19)
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(1 — p)Lol0(n; p) — Oo(n)] = phaNa[6(n; p), f(m; p), ®(m; p)], (9.20)
(1 = p)Lal®(m; p) — ®o(n)] = phaNa[®(p; p), f(m;p),0(m; p)], (9.21)

) )

F(O05p) = 1, f(O;p) =0, f'(c0;p) =7,

0'(0;p) = —+°[1+06(0;p)], b(co;p) = 0,

&(0;p) = 1, (o0;p) =0, (9.22)

Il

where fif, fig and kg are the nonzero auxiliary parameters and the nonlinear operators Ay, Aj

and Ny are given by

g
A & f(m; 2 8% f (n; af(mp)\
Ny [J’(n:;o)} = ’;:;p}+(1+)u) {f(n:p) ‘;ﬁp) - ( ,rg;p}) ]
; 2 ;
82 f(m; o &% f(n;
+3* {( “;E; p}) = f(mp) ﬁ;i P}] +(1+ M) [+2
(L 2Fmp) .
+ M (-, o )] . (9.23)
P 1 8% (n;p) | & 98(m;p) 0 (n; p) 0 (n; p)
N 9(n.p)+f{r;',p},¢>(n,m] Pr o + f(n;p) B + Np an an
. 2
- [ 90(n;p)
+N, (_ﬁn ) , (9.24)
. : - 9 (n; . OB(n; Ny 8%0(n;
No <I’(n;:v)-f(ri;p),ﬂ(n;p)] = # + Sef(n; p) é?? P) ﬁ a(,;?gp}- (9.25)
The m** order deformation equations can be presented in the following forms
f-_r‘ [Fm(n) = X fn—1(0)] = rl’f??'f,:ra(iF)e (9.26)
Lo [0m(n) = XmBm-1(n)] = "R m(n), (9.27)
fCl‘[' [‘Dm(ﬂ) - X|n®rr! J.(ﬁ)] - ﬁq}',';’_.-[.1m[:i}:|, (928)
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fﬂ!(D) = f:n(ﬂ) = fr’u(w:] = B;FI(D) + "-"'.9"!(0) = gm(oo) = Q'"(U) = "D;"(D{)) = U! (929)

m—1

R’f.-'” (n) = r:: 1 * (l + )‘l} Z [fm—].—kf_:: - f:n 1 .R‘fi'] +-3*[f::: 1 kf; - fm—l—kﬂ:v]
k=0
1+ M)+ MY = frua))s (9.30)
1 m=1 a
’R-El.m(ﬁ} = ﬁa:q 1+ kzﬂ[fm 1 k&i =} ‘Nﬁ&;a—l—kd):k + N'gﬁin_l_kﬂi.], (931}
3 I m-l i P‘"'E i
Rom(n) = Pmoy +5¢ 3 fm1-Pp + N, Jm-1 (9.32)
k=0 b
0, m<I1
Xm=1 . (9.33)
I, m>1

The general solutions ( fi, &, ®m) comprising the special solutions ( f;,, 0,, ®},) are
fm() = fr(n) + e1 + ean + cze ™,

O() = O3n() + exe + e,

Bnln) = Pr.(n) + coe” + cre . (9.34)

9.4 Convergence analysis

eow the solutions of Eqs. (9.9 — 9.11) subject to the boundary conditions (9.12) is computed
by means of homotopy analysis method. The convergence of the series solutions is highly
dependent upon the auxiliary parameters hiy, fig and hy. For valid ranges of these parameters,
we have sketched the fi—curves at 15'* —order of approximations (see Figs. 9.1 — 9.3). We can
see that the admissible values ojghw, fig and hg are —1.3 < fiy < —0.2, —=1.3 < fig < —0.2 and
=1.5 < kg < =0.7. Further, the series solutions converge in the whole region of (0 < 5 < o0)

when iy = —1, fig = —1.1 and hp = —1.3.

166




(0
—Uﬁﬂl

-0.9¢
-1.0}

-1.1}

M= g =y=Ny=N=y" =01,
A =02,Pr=158c=038

210 0.5 0.0

curve for the velocity field.

=

Fig. 9.1: &
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Fig. 9.2: h— curve for the temperature field.
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Fig. 9.3: i— curve for the concentration field.
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Table 99 Convergence of HAM solutions for different order of approximations when
AM=02,Pr=15 8" =y=M =N,=N, =v*=0.1 and Sc= 0.8

Order of approximations —f"(0)  —#'(0) —B'(0)

1 1.08225 0.113764 0.459778
5 1.056568 0.116260 0.433609
8 1.05648 0.116289 0.428189
15 1.05648 0.116273 0.427542
18 1.05648 0.116273  0.427544
20 1.05648 0.116273 0.427544
25 1.05648 0.116273 0.427544
30 1.05648 0.116273 0.427544
35 1.05648 0.116273 0.427544

9.5 g.esults and discussion

The effects of different parameters on the dimensionless flow, heat and mass transfer rates are
investigated and presented graphically in this section. Figs. (9.4 — 9.7) exhibit the dimension-
less velocity profiles for different values of ratio of relaxation to retar&gion times Ay, Hartman
number M, Deborah mumber 8* and ratio parameter . Effects of A on the velocity profile f’
can be seen hal Fig. 9.4. Here the values of f' and boundary layer thickness decrease when
A1 increases. Effects of Hartman number M on the velocity f' are depicted in Fig. 9.5. The
graph shows that the values of velocity function f* and the boundary layer thickness decrease
by i sing M. As the magnetic field has the tendency to slow down the movement of the
ﬂuidﬁch leads to a decrease in the velocity and momentum boundary layer thickness. Fig.
9.6 shows that larger values ofﬁeborah number 3% correspond to higher velocity. Fig. 9.7
illustrates the influence of ratio parameter v on the \felﬁy profile f'. There is an increase in
velocity field f' and boundary layer thickness when the velocity of the stretching sheet exceeds
the free stre locity (v < 1).

Effects of ratio of relgsation to retardation times A;, Hartman number M, Deborah number
3%, ratio parameter *;.Handtl number Pr, Brownian motion parameter é, thermophoresis

parameter N;, Schmidt number Sc¢ and Newtonian heating parameter +* on the temperature
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profile @ are shown in the Figs. (9.8 — 9.16). Effect of A; on the temperature is analyzed in Fig.

9.8, Tt is observed that the temperature and the thermal boundary layer thickness are increasing
function of A;. Fig. 9.9 illustrates the effects of M on temperature profile . As Lorentz force
is a resistive force that opposes the fluid motion. So heat is produced and as a result thermal
boundary layer thickness increases, Variations of 3%, v and Pr on temperature profile # can be
seen in the Figs. (9.10 — 9.12). There is a decrease in temperﬂre & when Deborah number
3%, ratio parameter v and Prandtl number Pr are increased. In fact the thermal diffusivity
decreases by increasing Pr and thus the heat diffused away slowly from the heated surface.

jo. 9.13 represents the effect of Brownian motion parameter N, on temperature profile 4.
Temperature profile # increases for an increase in Ny. The behavior of N; on the temperature
profile is similar to that of N, (see Fig. 9.14). Also the temperature profile 6 and thermal
boundary layer thickness decrease when the Schmidt number Se increases. This isﬁe to the
fact that an increase in Sc reduces the molecular diffusivity. Fig. 9.16 displays the effect of
Newtonian heating parameter v on temperature field 6. The temperature field # is found to
increase when + increases.

Figs. (917 — 9.25) illustrate the effects of ratio of relaxation to retardation times A,
Hartman number M, Deborah number 3%, ratio parameter «, Brownian motion parameter N,
Schmidt numkg Se, Prandtl number Pr, thermophoresis parameter Ny and Newtonian heating
parameter 4* on the dimensionless nanoparticle volum“'raction profile ®. It is observed that
the mass fraction ® and the associated boundary layer decrease when the values of Ay, M, 5%,
«, Ny and Se are increa and these quantities increase for higher Pr, N, and ~*.

Table 9.1 shows the convergence of the series soluﬁns. It is observed that convergence is
achieved at 18" order of approximations. In Table 9.2 some numerical values of skin friction
coefficient are given. This Table depicts that skin friction coefficient decreases by increasilakl
and M while it increases for larger values of 8% and 4. Table 9.3 includes the values of local
Nusselt and Sherwood numbers. It is noted that Nusselt number decreases by increasing Ny,
Ny, M and 4* while Sherwood number increases for higher Ny, and it decreases for larger vales

of Ny, M and ~*.
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Table 9.2: Numerical values of skin friction coefficient for different values of Ay, M. 3% and

A

M

3:-:

y

(;'HI(REI)IH

0.1
0.3
0.4
0.5
0.2

0.1

0.15
0.2
0.3
04
0.1

0.1

0.15
0.2
0.25
0.3
0.1

0.1

0.01
0.03
0.05
0.07

—1.05648
—1.09962
—1.14114
—-1.18116
—1.03400
—1.09737
—1.13684
—=1.17502
1.03399
1.01290
—0.993061
—0.974349
—1.09255
—1.08605
—1.07866
1.07040




Table 9.3: Numerical values of local Nusselt and Sherwood numbers when A = 0.2,

g*=~4=0.1,Pr=1.5 and Sc=0.8.

Ne No My oy (1+gy)  -#(0)
01 01 01 01 0714516  0.427544

0.2 0.673145 0.468469
0.3 0.633230 0.482122
0.5 0.557819 0.493069
01 02 0.710164 0.346337
0.3 0.7057T6 0.265221

0.4 0.701351 0.184186

0.5 0.696886 0.103238

01 0.2 0.708029 0.421407

0.25 0.704905 0.418477

0.3 0.701856 0.415635

0.4 0.695969 0.410193

0.1 015 0.711763 0.376091
0.2 0.708442 0.314421
0.25 0.704340 0.238845
0.3 0.699108 0.143430

9.6 Conclusions

Here MHD stagnation point gw of Jeffrey nanofluid over a stretching sheet is studied. Effects
of different parameters on the velocity, temperature and concentration profiles are analyzed.

The following observations are made.

e Velocity profile decreases by increasing Ay and M while it increases when 4% and + are

increased.

e An increase in the values of A, M, Ny, Ny and v* have similar effects on the temperature

f(n) in a qualitative sense.
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& Temperature profile decreases by increasing 5%, v and Se.

. 21 increase in Prandtl number Pr reduces the temperature and thermal boundary layer
thickness.

s Concentration profile ®(n) decreases by increasing Ay, M, 8°%, v, N} and Se.

¢ The values of skin friction coefficient are higher for increasing values of 3% and .

& Higher values of V;, M and +* correspond to smaller values of local Nusselt and Sherwood

numbers.
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Chapter 10

?\/IHD three-dimensional flow of
nanofluid with velocity slip and

nonlinear thermal radiation

An analysis has been carried out in this chapter to investigate three-dimensional flow of viscous
nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by
a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparti-
cle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different
concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from
the previous literature, the nonlinear system for temperature distribution is solved and ana-
lyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary
differential system. Convergent series solutions are computed for the velocity and temperature.
Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt
number are computed and examined. It is concluded that heat transfer rate increases when

temperature and radiation parameters are increased.

10.1 Flow description

ansider the?ady three-dimensional nanofluid flow over a stretching sheet situated at z = 0.

Let (u,v,w) be the velocity components along the (z,y, z) directions, respectively. A constant
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magnetic field of strength By is applied in the z—direction. The governing boundary layer

equations can be written as

du  dv
B2 + By 0, (10.1)
u du u a2y a,!fBﬂzu
HE+1.3_§;+H£ —v,;_f@—T:‘r, {102)
dv  Bv v 8%  o.Btv
CY g — =y — — =0 10.3
ua$+bay+waz pfazﬂ oot { )
with the boundary conditions given by
2-g,, Ou 2—-g,, v o
w = o+ - Ana,b—d‘;‘,{i‘ T ).{.a,u,— W oatz=0,
u — 0,v—0 asz— oo, (10.4)

where ¢ and d are stretching rate constants, W (> 0) is the suction velocity, o, is the tangential
momentum accommodation coefficient and Ag is the molecular mean tree path. The effective
nanofluid dynamic viscosity p,,r, density p,, ;, thermal diffusivity a, s, heat capacitance (pep)yy,

thermal conductivity k, y and electrical conductivity o, are given by

pus = p(1— 0) + pd, (10.5)

fonf = ﬁ (10.6)

(pep)ng = (pep)f(1 — 6) + (pep)sd, (10.7)
- ey (103
=1+ 3(%_1)¢ (10.9)

a i e 1\ 4
r (G- (e
26
Here ¢ 15 the nanoparticle volume l*ract'ﬂl, pj and p, are the densities of the fluid and of the
solid fractions, respectively, ky and k, are the thermal conductivities of the fAluid and of the
solid fractions, respectively, and o; and o, are the electrical conductivity of the fluid and of

the solid fractions, respectively.
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Making use of the following transtormations

. ! C
u=cxf(n), v=cyg(n), w=—/ve(f +g), n= H’U—Iz. (10.10)
equation (10.1) is identically satisfied and Egs. (10.2 — 10.4) become
1 i 2 ¥ M Tnf o
- -——f =0, 10.11
1 M an[ '

gd"—g*+(f+9)d" - g =0, (10.12)

(1 - 9)*5[L - ¢+ £24] 1—¢+ 220 05
J(0)=1+81"(0), ¢ (0) =~ + B¢"(0), f(0)+g(0) =S5,
J'(00) = 0, g'(cc) — 0, (10.13)

where prime denotes the gffemntiation with respect to n, M is the Hartman number, 3 is
the velocity slip parameter, v is the ratio of stretching rates and S is the suction/injection

parameter. These quantities are defined by

B2 9—a, [€ d W
M=2L0 go"T¢ |5 y== §= . (10.14)
p‘r"ﬂ F Vf c .,fl'/j'C

10.2 Heat transfer analysis
)
The boundary layer energy equation in the presence of thermal radiation effects is given by

ar  ar aT a*r 1 3,

3w "oy Vo T M2 (pop)uy 92 R

32
where T 18 the temperature, o, ; is the nanofluid thermal diffusivity, ¢, is the specific heat at

constant pressure and g, is the radiative heat flux. Using Rosseland approximation for thermal
radiation, the radiative heat flux is simplified as tollows:

4o* OT* 160", 8T

e Pl T (18:16)
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in which o* and £* are the Stefan-Boltzmann constant and the mean absorption coefficient,

respectively. Now Eq. (10.15) can be written in the form

ar  ar ar aBQ_T_i_ 160 8 (50T
8r By | 8z M8 " 3k*(pep)as 02

It is worthmentioning to note that for thermal radiation effect in the existing literature, 7% in
Eq. (10.16) was expanded about the ambient temperature T.,. However in the present case
this has been avoided to get more meaningful results. Therefore in present analysis the energy
equation is nonlinear.

The boundary conditions are
T=T,atz=0,T —T, as z — oo, (10.18)

where T, and T, are the sheet and ambient fluid temperatures respectively. We define the
non-dimensional temperature by
T T
f(n) = T T (10.19)

or

T = Too(1 + (8w — 1)8), (10.20)

where #,, = T}, /T is the temperature parameter. Using Eq. (10.20), Eq. (10.17) takes the

form

1 [ kay R, i . ;
— (2L py e+ 22 [.9“. — 13(30%0% + 0%6") + 3(0,, — 1) (200" + 029"
Pr(;c,+ d) +Pr(. ) + ) +3(8, — 1)%( +0°0")

(pep)s
(pep) 1

+3(6, — 1)(6" + 69”)} + (l — ¢+ rp) #'(f+g)=0 (10.21)

where Prandt] number Pr and radiation parameter By are defined by

vilpep)y 160*T2,
Pr — 2t R, = —= 10.22
TR ST (10:22)
with the boundary conditions
9(0) =1, #(oc) — 0. (10.23)




Surface shear stresses 7, and 74, along the x and y directions are given by

du v
Twr = fnf = y Tuy = fnf =— : (10.24)
we nf 3= il wy nf Sz i)
The heat transfer rate at the sheet is defined as follows:
ar < ;
Gw = _knf (F) * (Q'r')w = _(Tw - Toc) I"_! (1 + Rdgi-) 9:(0)' (10-25)
=/ z=0

Local skin friction coefficients along the z and y directions and Nusselt number for the problem

are given by

. 1 1 1
Re)iC, = ———e—f"(0), (Re,)2 Cpy = /———3"
(Rez)? Cra (1 - )25 (0), (Rey)? Oy vi(1 - )25
_“Rt = —(L+Rqf3)0'(0), (0:25)

in which (Re&.)% = xy/efvy and (Rey]% = y+/e/v; denotes the local Reynolds number.

10.3 Analytical solutions

Employing the homotopy analysis method the initial approximations and auxiliary linear op-

erators are given by

1
Jo(n) =58+ m(l —e "), goln) = 11—3(1 —e M, Bgln) =e ", (10.27)
s fE Bfdf _ dg  dg N d%e
Li(f) = e i-g(g)—d—ﬁ_£| Lo(8) = dT;;?_E’ (10.28)
with
Ly [e1 + e exp(n) + czexp(—n)] = 0, (10.29)
Lges + esexp(n) + esexp(—n)] = 0, (10.30)
Ly [erexp(n) + cgexp(—n)] = 0, (10.31)
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in whi%:i (i = 1 — 8) are the arbitrary constants. It p € [0, 1] indicates the embedding para-

meter then the zeroth order deformation problems are constructed as follows:

(1-p) Ly [f(n;:oll ~fo (n)] = phyNy [f (9) (n;pJ] ,
(1 =) £415 (157) = 90 ()] = phig, 3 (i) . F (9]
1
(1= ) Lo [8 () — 80 ()] = phale (B (10) £ (i) 5 (mip)

FO;p) =8, F(0;p) =1+ 57 (0:p), f (o05p) =0,

=

G (0;p) =0, 4 (0;p) = v+ 85" (G;p) s § (00;p) =0,

0(0;p) =1, 0 (co;p) =0,

(10.32)

(10.33)
(10.34)
(10.35)
(10.36)

(10.37)

where fif, hiy and fig are the nonzero auxiliary parameters and the nonlinear operators Ny, N

and Ny are given by

10
. P
S0 aa i #f(pp) (3 (np)

s N8 f(mp) M a.p8f(mp)
+ (f(n,r) +9('-'LP)) W I-s+ 5}“7’; anuﬁ-fiﬁ)
- — 1 Pg(mp) . (94 (mp)\*
.-'"U'g Q(TLP]J(?LP}] (1 . ¢)2';.[1 — b+ ﬁ—;ﬁf?] 3.,?.'3 - ( 5?} )
+ (Fln) + o ip) TG 70 00igly o
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i F n 8% . R,
No |0 (n;p) - f (m3p) ,.&(mp)] = Pi (—f +Rd> (”2 P - [(gu_. —1)

TR BA (-
(a0’ (22)' s () 2552
R ¥ 2 2 (n:
+3(0w — 1)* (Qé(n: P) (—‘%g,’; p)) +&n;p))2 : %E;i‘ p})
+3mw_u((%) 6 1) 220 ))]

+ (1 EP :;‘ ) (I(n p) + é(m; p)) éé—?;p)- (10.40)

=
Lol
—

The m'* order deformation equations are

‘C'_f[fm (1) = XmFm-1(n)] = ifRyim (n), (10.41)
Ly lgm (1) = Xmgm—1 ()] = BgR jm (n) (10.42)
Lo[0m (M) = XmPm-1(n)] = heRsm (1), (10.43)
Jm (0) = £, (0) = B2y, (0) = f7, (00) = 0, (10.44)
gm (0) = g1, (0) — Bgm (0) = g}, (00) = 0, (10.45)
0n(0) = 8 (00) = 0, (10.46)
1 m—1
T\’,J‘_‘m (1” = (1 - r.-';)'zﬁ[l — ﬁlf?’] ,.:: i TI Z (fm 1- kfk + Gm-1- kf.i. ﬁn—l—kﬁc)
' k=0
U,;J‘ M _
o oy 1= E".‘J-I‘——"—e")fm 1 {104(}
1 m—1
'R'!i"m (T") = (1 — fﬁ)?'ﬁ[l — o+ &ﬁ]-‘?:;i 1 (Tf) + ; (.fm—l—kgi-’ +§m—1—kgg _Q:n- 1- kg.;;)
S . —— (10.48)

oy l—m—l——;w
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- 3 58
1 (kuy Ry = 3 g { - i
F‘UJII: (1]') = - ( = + .R;j) J;!_]_ + = (aw - ]-JL 6::: 1 kzek fz‘:zgai—gas i+ 6[ 36:}
Pr\ ky Pr k=0 1=0 5=0
ﬁ.
+3(0w — 1) 0m-1-k 3 _(205_10) + 0k 18}) + 30 — 1) (01103 + Om1-16%)
[=0
{ ) m—1
+ (]' —¢+ “T—’);{"}) Z (&:n 1 .ir-rﬁ' + 6;:: 1 kgk:] * (1049)
P k=0
0, m<I1
Xm = i (10.50)
1, m=>1

The general solutions in terms of particular solutions [, g5, and 87, are

Fn (1) = £ (1) + 1 + 026" + ege ™, (1051)

gm (M) = g () + ca + 58" + cge™7, (10.52)
m 7)) = n) +ecye’ +cge 7, i

Bon ( 0. (n) i — (10.53

10.4 Convergence of the developed solutions

The convergence of the series solutions is highly dependent upon auxiliary parameters fiy, kg,
and hy. For valid ranges of these parameters, we have sketched the fi—curves at 10th-order of
approximations (see Fig. 10.1). This Fig. shows that the admissible values of iy, iy and fg are
—2<hy<-02 -2<hy < —-02and —1.6 < fip < —1.3. Further Table 10.1 ensures that when

fiy = iy = —1.1 and ky = —1.3 the series solutions are convergent up to six decimal places.
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S(0), g(0), €'(0)
|

Fig. 10.1: Combined fi—curves for f"(0), g"(0) and #'(0) when Pr = 6.2, v = 0.5,¢ = 0.03,
A=1,Ry=M=01,08,=1.1and §=0.3
Table 10.1: Convergence of HAM solutions for different order of approximations when

Pr=62,v=05,0=003,8=1,R;=M=01,0, =11and 5§ =03 and iy = h; = —1.1

and fig = —1.3.
Order of approximation | — f"(0) —g"(0) —'(0)

5 0.501136 | 0.238561 | 2.18655
9 0.501129 | 0.238543 | 2.34913
15 0.501129 | 0.238543 | 2.41402
20 0.501129 | 0.238543 | 2.40545
25 0.501129 | 0.238543 | 2.39321
30 0.501129 | 0.238543 | 2.39321
35 0.501129 | 0.238543 | 2.39321
40 0.501129 | 0.238543 | 2.39321
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10.5 Discussion

This section presents the effects of varions parameters on the velocity, temperature, skin friction

coefficient and Nusselt number in the form of graphical and tabulated results.

10.5.1 Dimensionless velocity profiles

Figs. (10.2 — 10.6) exhibit the dimensionless velocity profiles for different values of Hartman
number M, velocity slip parameter 3, nanoparticle volume fraction ¢, suction/injection velocity
parameter S and stretching parameter 4. Fig. 10.2 plots the velocity profiles f* and ¢ for
various values of Hartman number M. It is observed that velocity fields f' and g' decrease
when M increases. The application of an applied magnetic field has the tendency to slow down
the movement of the fluid, which leads to a decrease in the velocity and momentum boundary
layer thickness. Fig. 10.3 shows the effects of velocity slip parameter 3. This Fig. shows that
by increasing the values of velocity slip parameter 3, there is a gradual decrease in the velocity
profiles. The effects of nanoparticle volume fraction ¢ on velocity profile are presented in the
Fig. 10.4. It is noted that an increase in the values of ¢ decreases the velocity profiles f’ and
g'. The effect of suction/injection velocity parameter S on f' and g' can be visualized in the
Fig. 10.5. It is obvious that an increase in S reduces the velocity fields f' and g'. Because
applying suction leads to draw the amount of fluid particles into the wall and consequently the
velocity boundary layer decreases. Also suction is an agent which causes a reduction in the
fluid velocity., Influence of stretching parameter + on the velocity profiles 1s displayed in the
Fig. 10.6. Tt is observed that velocity field f' decreases with an increase in  while ¢’ increases

when  is increased.

10.5.2 Dimensionless temperature profiles

Effects of Hartman number M, nanoparticle volume fraction ¢, temperature parameter #,, and
radiation parameter Fy on the temperature profile § are shown in the Figs. (10.7 — 10.10). To
capture the effects of Hartman number M on the temperature @, Fig. 10.7 is displayed. It is
depicted that temperature is an increasing function of M. As the Lorentz force is a resistive

torce which opposes the fluid motion, so heat is produced and as a result, the thermal boundary
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layer thickness increases. Fig. 10.8 portrays the influence of ¢ on #. It is found that temperature
increases when values of nanoparticle volume fraction ¢ are increased. This is because of the
fact that by increasing the volume fraction of nanoparticles, the thermal conductivity increases
and thermal boundary layer increases. Figs. 10.9 and 10.10 indicate that temperature increases
by increasing values of temperature parameter 8, and radiation parameter By Physically this
is due to the fact that with the increase in radiation parameter, the mean absorption coefficient

decreases. Hence the rate of radiative heat transter to the fluid increases.

10.5.3 Skin friction coefficient and Nusselt number

In Table 10.2 the thermophysical properties of water and nanoparticles are given. Tables 10.3
and 10.4 show the effects of nanoparticle volume fraction ¢ on skin friction coefficient for
different types of nanofluids in the = and y—directions. Effects of the nanoparticle volume
traction ¢ on Nusselt number are presented in Table 10.5. These Tables show that the values
of skin friction coefficient and Nusselt number change for different nanofluids. It means that by
using different types of nanofluid, the shear stress and rate of heat transter change. Numerical
values of local Nusselt number for different emerging parameters are presented in Table 10.6.
It is noticed that local Nusselt number N‘H.(Rer}_% increases for larger values of 8, and R,

However it decreases by increasing M.
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£'(n), g'(n)

L Al, O; — water

v B=1,6=003,y=05,8=03

1 2 3 4 5
Fig. 10.2: Effect of M on f' and g'.
£'(n). g(n)

0.6

Allz (03 — water
0.5F ¥=0.5,9=0.03,M=01,5=0.3
0.4

03F)\ 8=05,1,15,2
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Y
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2 P L
Py P

0.1%..,

T 4 5

Fig. 10.3: Effect of 5 on f' and g'.
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£'(m).

0.5

0.4

0.3

0.2¢

0.1

g(n)

Al, Oy - water

B=1,y=05,M=0.1,8=03

¢=0.1,0.2,0.3,04

Fig. 10.4: Effect of ¢» on f' and g'.

Al, O; — water

B=1,6=0.03,M=0.1,y=03

8=0.1,03,05,0.7

Fig. 10.5: Effect of S on f' and g'.

197




f'(n), £'(n)

0.5
Al O; — water
0'41 B=1,4=003,M=0.1,8=03

.
\
D3¢
&
.'\

Fig. 10.6: Effect of v on f' and g'.
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1.0}
Al, O3 — water

0.8l B=1,6=0.03, R;=0.1,8=0.3,
Pr=62,0,=101,y=0.5
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Fig. 10.7: Effect of M on 8(5).




8(m)

1.0}
Al O; — water
ol B=1,R;=M=01,8=03,
Pr=62,0,=101,y=0.5
0.6}
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6
Fig. 10.8: Effect of ¢ on 8(7).
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1.0
AEI], 03 — water
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Pr=62,R;=0.1,y=0.5
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Fig. 10.9: Effect of 8,, on 8(n).
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6(n)

1.0}
Al; O; — water
0.5 B=1,6=0.03,M=0.1,8=03,
' Pr=62,06,=1.01,y=05

or R;=0.1,0.3,0.5,0.7

0.4}

0.2}

n

2 4 6 8
Fig. 10.10: Effect of Ry on #(n).

Table 10.2: Thermo physical properties of water and nanoparticles.

plkg/m®)  e,(i/kgk) k(W/m.k) Bx10°(K~'Y) o(Qm)!

Pure water 997.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver(Ag) 10500 235 429 1.89 3.6 x 107
Alumina( Al O3) 3970 765 40 0.85 1x10-10
Titanium Oxide(T105) 4250 686.2 8.9538 0.9 1x10-12

Table 10.3: Effects of the nanoparticle volume fraction for different types of nanofluids on
skin friction coefficient along x—direction when M = 0.1, 8 =1, Pr = 6.2, § = 0.3, v = 0.5,
R;=0.1 and 8, = 1.1.

b Cu Ag Als Oy 1104
0.01 -0.519383 -0.521081 -0.513864 —0.514181
0.03 -—0.556763 —0.561468 —0.540779 —0.541729
0.05 -0.595136 -0.602496 -0.569204 -—0.570789
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Table 10.4: Effects of the nanoparticle volume fraction tor different types of nanofluids on
skin friction coefficient along y—direction when M = 0.1, 3 = 1, Pr = 6.2, & = 0.3, v = 0.5,
R; =01 and #, = 1.1.

" Cu Ag Al O TiO,
0.01 —0.699999 —0.702450 —0.692049 —0.692506
0.03 =0.751194 —0.758029 —0.728085 -—0.729453
0.05 —-0.803691 -0.814440 —0.766089 —0.768375

Table 10.5: Effects of the nanoparticle volume fraction for different types of nanofluids on

Nusselt number when M = 0.1, 3=1,Pr=6.2, §=03,4=05, B4 =0.1 and &, = 1.1.

& C'u Ag Ala Oy TiC
0.01 -0.726911 -—-0.723181 -0.733826 —0.732487

0.03 —0.720097 —0.710335 —0.740837 —0.736838
0.05 —0.716675 —0.699623 —0.748444 —0.741798

Table 10.6: Values of Nu(Re;) ~% when =003, 58=1,5=03and v=0.5.

M 8, Ra —(l+R46)06'(0)

0.1 1.1 01 0.74084

0.3 0.70977

0.5 0.68279

01 1.2 0.74410
1.3 0.7477

1.4 0.75180

1.1 0.05 0.73328

0.15 0.74802

0.2 0.75482

10.6 Concluding remarks

Three-dimensional flow of AlO45 nanofluid over a permeable stretching surface with partial slip

and nonlinear thermal radiation is studied. The outcomes are given as:
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Increasing values of Hartman number, velocity slip parameter and suction/injection ve-

locity parameter decrease the velocity profiles.
The velocity profiles f' and g’ decrease by Increasing nanoparticle volume fraction.

Effect of stretching parameter on the velocity profiles and momentum boundary layers

are opposite.

The temperature and thermal boundary layer thickness increases via larger nanoparticle

volume fraction.

Increasing values of temperature and radiation parameters show enhancement in the tem-

perature and thermal boundary layer thickness.

Temperature gradient at the surface increases for higher temperature and radiation pa-

rameters.

The governing equations for a viscous fluid are obtained when ¢ = 0.
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Chapter 11

Magnetohydrodynamic
three-dimensional flow of nanofluid

by a porous shrinking surface

This chapter investigates the steady three-dimensional flow of viscous nanofluid past a perme-
able shrinking surface with velocity slip and temperature jump. An incompressible fluid fills
the porous space. The fluid is electrically conducting in the presence of an applied magnetic
field. The governing nonlinear partial differential equations are reduced to ordinary differential
equations by similarity transtormations. The analytic solutions are presented in series form
by the homotopy analysis method. Convergence of the obtained series solutions is explicitly
discussed. The velocity and temperature profiles are shown and analyzed for different emerging
parameters of interest. It is observed that by increasing the volume of copper nanoparticles, the
thermal conductivity increases and the boundary layer thickness decreases. The velocity profile
increases and temperature profile decreases for the larger velocity slip parameter. The temper-
ature is a decreasing function of the thermal slip parameter. Hence, less heat is transferred to

the fluid from the sheet




11.1 Problem formulation

Let us consider steacdy three dimensional flow of viscous nanofluid over a shrinking surface. A
cartesian coordinate system is used with {u,v,w) as the velocity components in the (x,y, z)
directions. An incompressible nanofluid flows at 2 = 0, where z is the coordinate measured
normal to the shrinking surface (see Fig. 11.1). The fluid is water based nanofluid consisting
of nanoparticles like copper (Cu), sliver (Ag), alumina (Al;O3), Titanium oxide (Ti0;) and

copper oxide (Cu().

Vi=dn-"1) + S 10%’
A2 A A A5
4 £ V4 v £ /L

Fig. 11.1: Physical model of the problem.
Further, the fluid is subjected to a uniform magnetic field with strength By in the transverse
direction to flow. Here induced magnetic field is taken small in comparison to the applied
magnetic field and thus neglected. Under the aforementioned assumptions the equations of

continuity, momentum and thermal energy can be expressed in the forms

du  dv  Ow
E-FB—F—FE—U. (11.1)
Ou Ou  Gu_ (Fu &%u du
Yoz LB‘y Ya: T\ 8a2 dy? 9z

8u  H%u Bzu) 1 aprP U..U‘Bgu Uy 2
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A A 0 v v 1 P ouyBiv  wppv
g oy g = (R ) gy e W)
9z oy T Ve T "M\ 822 T eyt T 0:2) T b, 02 '
1g+'£+w£—a 32T+52—T—|—82—T (11.5)
‘oz " "oy oz ™M\ez T e T 82)’ :
subject to the boundary conditions
-y . Hu 2 —g,. Ov .
— - § = o = — 1
u = dx + = /\naz, v=d(n—1)y+ = /\naz, w W,
- 2—op 27 N N OT -
T=Tu+ = ('f"l"l) EE at z =0,
u—0, v—=0, T =T, as z — 00. (11.6)

In the above equations p,,; denotes the effective density of the nanofluid, v,,s the effective kine-
matic viscosity of the nanofluid, Bnf the effective dynamic viscosity, o, s the effective electrical
conductivity, P the pressure, K the permeability of porous medium, W = 0 the suction ve-
locity, d < 0 the shrinking rate, T the temperature of nanofluid, o, the tangential momentum
accommodation coefficient, o the thermal accommodation coefficient, Ag the molecular mean
free path, ¥ the specific heat ratio and sheet shrinks only in the z—direction when n = 1. The
sheet shrinks asymmetrically for n = 2.
The effective dynamic viscosity of the nanofluid is

Ky

Hnf = T )25 (11.7)

where ¢ is the solid volume fraction of nanoparticles and the effective density of nanofluids is
given by

Png = (1—d)ps+ dp,. (11.8)
The thermal diffusivity of the nanofluid is

ke

~ (pep)ns’ -

Cip f
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where the heat capacitance of nanofluid is given by

(pep)as = (1~ 6)(pey) + b(pcy)- (11.10)

For spherical nanoparticles, the thermal conductivity of the nanofluid is

kraj - k$+2k‘r —Q(ﬁ-{kf —ks)

=& = : 11.11
ky ks + 2k + 20(ky — k) ( )
The effective electrical conductivity is
3(2-1)9
fof _14 ! (11.12)

(&) - (-1
Here the subscripts nf represents the thermophysical properties of the nanofluid, f explains

base fluid and s is defined as nano solid particles.

In order to attain similarity solution, the lollowing transformations can be posited:

T - T
u=czf (), v=cln—Dyf(n), w= —mnf(f;), 0= \/gz, O(n) = T T

wo -I-T

(11.13)

Continuity equation (11.1) is automatically satisfied and the other equations and conditions

give
e f" — e [*'”*(1 —opo Ly "] P nf'f=0, (11.14)
!
knf 1 " -(pc:]ﬁ .
Fng 1 gn (1_@“,_ nfl =0, (11.15
ky Pr (pc) s )

FO) = v+8£(0), f(0) =S, 6(0) =1+ 38'(0),

fl(e0) — 0, 8(c0) — 0, (11.16)

where M? is the Hartman number, Pr the Prandtl number, S the mass suction parameter,

~ < 0 the shrinking parameter, 3 the velocity slip parameter, A the porosity parameter and 3
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the temperature jump parameter. These parameters are defined by

B2 W d 2-
M2 0% pr=Y g-— == ot I
pr a g C'L-'_rﬂ. Ty ?_f
uf. 3= 2—or 521* ﬂ i, (11.17)
ek oT r+1 T vy
where &1 is defined as
= L (11.18)

o)
with p, as nano solid particle density and p; as base fluid density.
The important physical quantities of interest are local skin friction coefficient Cyy and
Nusselt number Nu which are given by

Tl L
C = zl_l'lq f\'ru:;.‘ 11.]9
I Td kp (Ty = Too)” (11.19)

where the surface shear stress 7, and surface heat flux g, satisfies

ar .
Tw — H’nj E‘:_n, qu. = ;"n‘f E 2_{'. (1120)
Dimensionless forms of local skin friction coefficient and Nusselt number are
Re, 1 " . 4 knj '
Copy)| — = ——————=f"(0), NuRe, ® = ——=0(0), 11.21
W5 = T/ O, NuRe:? = - 2000) (11.21)

in which Re, = u,,_-:c,’v; denotes the local Reynolds number.

11.2 Homotopy analysis solutions

The initial guesses fy(n) and fy(n) and the linear operators £y and Ly are selected in the

following forms

-~ . l
folf) =5+ ﬁ =3 1_5. exp(=1), Boln) = - " exp(—1), (11.22)
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af  af a0
L == — =, Lg{f) = — — 0, 11.23
with the properties mentioned below
Ly [cl + ecom + c;;e:"’] = 0,
Lylea+ese™ = 0, (11.24)

and ¢; — ¢5 are the constants. With Eqgs. (11.14) and (11.15), the definitions of operators N

and Ny can be introduced as follows

- 3 r . ) . -
Ny )] = e FImp) {.&1?(1 B {I,-;)2_\-;‘:T_r}f . /\} af (; p)

-IW an
N 2 = 0 s
- (Blg:;p)) _}_nafg;p}i* g(r:{;ﬂ, (11.25)

i ; n 5% 5 C)s ; 96 5 .
No [ﬂ(n;?})?f(n;r-?)] = %% ?3?2 P, (l — ¢+ Ggﬁc;:) nf(n;p) 92} 2, (11.26)

The problems subjected to zeroth order deformation can be written as

(1 —p)Ly [f(r;;p) - J‘u(n)] = phN7[f(n; p)), (11.27)
(1-p)Lo [5(0; p) — ﬂﬂ(ﬂ)} = phNy[0(m; p), f(m; p)], (11.28)
o — g O 8f(0p) Bf(coip) _
f(01 ?}) = S+ 31‘}‘ =7+ 3 a?‘]l‘! N 3:; = 09
0(0p) = 1+ _!339;?; P), 6(o0;p) = 0, (11.29)

in which Ay and hyp are the nonzero auxiliary parameters.

t order satisfy the following expressions

The corresponding problems at m
":j' [fm (1) = X Sm-1(n)] = h’fﬁ'j',m (m), (11.30)

Ly [9"; ('-'?) - Xmgm 1 (1])] - hﬂﬁ-ﬂ,m (1]‘) ) (113].)
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"

f"!([]) = f:n([}) - -Sfm(o} = f:n(oo:] = 97"(0} - 39;“(0) = gm(oo) =0, (1132)

m—1

Ry () = 1 £ () - 1 [M?u — g ’+A} L)+ S k£~ Py o)
o (11.33)
1y - fp} —
Pﬁm (?I} ‘l",f P m I(H)++ 1 ﬁ+ﬁ Z-fm 1 18&! (11-34)
and

0, m<I1
Xom = . (11.35)

1, m>1

It f% and @}, denote the special solutions then the general solutions can be written as
fm(@) = fr.(n) + c1 + con + cze™",

Om(n) = 05, (n) + ca + cse . (11.36)

11.3 Convergence analysis

We note that the computed series solutions depend upon the auxiliary parameters. The conver-
gence region and rate of approximations for the tunctions f and # can be controlled and adjusted
through the auxiliary parameters fiy and hyp. For admissible values of iy and fiy, the h—curves
of f"(0) and &'(0) for 17'" —order of approximations are displayed. Figs. 11.1 and 11.2 depict
that the range of admissible values of hy and hg are —1.5 < /iy < —01and —1.4 < hy < -0.6. It
is found that the series solutions converge in the whole region of 5 (0 < 5 < co) when Ay = —0.7

and hy = -0.9.

209




i f"(ﬂ')
S S ' (0)
S
S
-
O S Y
_0.8 L 1 . . ...
-2.0 -1.5 -1.0 -0.5 0.5
hy, g

Fig. 11.2: h—curves of f"(0) and #'(0).
Table 11.1: Convergence of HAM solutions for different order of approximations when

y=-01,8=8=M=1,n=2A=¢=03and §=0.5.

Order of approximations F(0) —0'(0)

1 0.0661678 0.532809
5 0.0700218 0.589974
10 0.0700198 0.594100
15 0.0700198  0.593038
20 0.0700198 0.593149
25 0.0700198 0.593162
28 0.0700198 0.593155
35 0.0700198 0.593155
40 0.0700188 0.593155
45 0.0700198 0.593155




11.4 Results and discussion

This section is prepared to examine the impact of pertinent parameters on the velocity and
temperature. This objective has been achieved by plots of Figs. (11.3 — 11.14). Here Figs
(11.3 - 11.8) have been plotted for the effects of M (Hartman number), A (porosity parameter),
5 (mass suction parameter), 5 (velocity slip parameter), ¢ (nanoparticles volume fraction) on
the velocity f' and - (shrinking parameter). The behavior of Hartman number M for the
boundary layer is shown in Fig. 11.3. There is decrease in thickness of boundary layer due to
an increase in M. This is because of the reason that Lorentz force acts as a retarding force. Such
retarding force enhances the frictional resistance opposing the fluid motion in the momentum
boundary layer. Fig. 11.4 depicts that the velocity is increased when porosity parameter A
increases. As noted in Fig. 11.5 the associated boundary layer thickness decays when mass
suction parameter S increases. Because applying suction leads to draw the amount of fluid
particles into the wall and consequently the velocity boundary layer decreases. Also suction is
an agent which cause a reduction in the fluid velocity. FFig. 11.6 shows that velocity rises when
values of velocity slip parameter 3 are enhanced. However velocity is a decreasing function
of ¢ (see Fig. 11.7). This is because of the fact that by increasing the volume of copper
nanoparticles, the thermal conductivity increases and the boundary layer thickness decreases.
Fig. 11.8 portrays the influence of 7 on f'. It is found that velocity increases when values of
are increased. Figs. 11.9 — 11.14 depict the effects of Hartman number M, porosity parameter
A, mass suction parameter 5, velocity slip parameter 3, temperature jump parameter 3 and
shrinking parameter v on temperature profile #. Effect of M on the temperature is analyzed
in Fig. 11.9. As Lorentz force is a resistive lorce which opposes the fluid motion. So heat
is produced and as a result thermal boundary layer thickness increases. It is ohserved that
increasing the porosity parameter A decreases the thermal boundary layer thickness. Variations
of § and 3 on temperature profile # can be seen in the Figs. (11.11-11.12). There is a decrease
in temperature when mass suction parameter S and velocity slip parameter 3 are increased.
Fig. 11.13 indicates that the surface temperature and thermal boundary layer decrease by
increasing value of temperature jump 3 With the increase of thermal slip parameter, less
heat is transferred to the fluid trom the sheet and so temperature is found to decrease. Fig.

11.14 represents the effect of shrinking parameter v on temperature profile. It is observed that

2n




temperature profile decreases for an increase in -y.

Table 11.1 is prepared for the convergence of series solutions. It is observed that convergence

for velocity is achieved at 10" order of approximation and for temperature convergence is

achieved at 28" order of approximation. The values of shear stress at the surtace are compared

with previous published results in Table 11.2. Here it is seen that the obtained solutions agree

well with results of Zheng et al. [36]. Numerical values of the local Nusselt number for different

emerging parameters are presented in Table 11.3. It is noted that the local Nusselt number

increases for larger values of ¢, v, § and 3. However, it decreases for larger values of 3.
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Fig. 11.3: Influence of M on f'(x).
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Fig. 11.4: Influence of A on f'(x).
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Fig. 11.5: Influence of S on f'(n).
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Fig. 11.6: Influence of 3 on f'(7n).

$=0.1,03,04,0.5

M=2,A=8=18=03,1=2,9=-1

& & ® & B &

Fig. 11.7: Influence of ¢ on f'(7).
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Fig. 11.9: Influence of M on (7).
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Fig. 11.10: Influence of A on 8(xn).
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Fig. 11.13: Influence of 3 on o(n).
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Fig. 11.14: Influence of v on #(xn).

Table 11.2: Comparison of values of f"(0) when A=0, 8=0,v =

n M 5 Zheng et al. [36] Present results
2 2 18 4.21671330 4.20406130
2 2 1 2,80187352 2.89160464
2 2 02 1.84296593 1.84287335
2 VB 2 475696326 4.74614023
2 5 3 6.54909894 6.53871573
1 2 18 2.85192213 2.85192199
1 22 1 2.30277564 2.30277376
1 2 02 1.83493516 1.83493413

1 and ¢ = 0.




Table 11.3: Numerical values of Nusselt number Nu for different values of ¢, v, 5, 3 and

¢ L

8

k.r F
~Eatg'(0)

025 =01

0.3

0.4

03 -04
-0.3
-0.2
-0.1

0.5

0.3
0.4

=

0.5

1

0.5

Ll
a

0.9

0.3
0.5
0.7

1.97478
2.36243
3.43831
2.30085
2.31914
2.33626
1.82586
2.12684
2.668R9
2.343809
2.34821
2.35123
4.02267
3.34427
2.86169

11.5 Concluding remarks

Three dimensional flow of viscous nanofluid due to porous shrinking surtace is discussed. At-

tention is focused to the development of series solutions. The following observations have been

made:

# The velocity has similar pattern with respect to Hartman number, porosity parameter,

mass suction parameter and velocity slip parameter.

# The Shrinking parameter has reverse effect on the velocity and temperature profiles.

# Role of velocity slip, temperature jump and suction parameters on the temperature are

similar in a gualitative sense.
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® There is an increase in the temperature and thermal boundary layer when Hartman

number increases,
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Chapter 12

MHD 3D flow of nanofluid in

presence of convective conditions

This chapter deals with the boundary layer magnetohydrodynamic (MHD) flow of viscous
nanofluid saturating porous medium. The flow is induced by a convectively heated permeable
shrinking surface. Appropriate transformations reduce the nonlinear partial differential system
to ordinary differential system. Flow and heat transfer characteristics are computed by HAM
solutions. The results of velocity, temperature and Nusselt number are analyzed for various
parameters of interest. It is noted that higher nanoparticle volume fraction decreases the

velocity field. Also temperature and heat transfer rate enhance for larger values of Biot number.

12.1 Model development

Let us consider the steady three-dimensional flow of an incompressible nanofluid over a shrinking
surface. The fluid fills the porous medium. A uniform transverse magnetic field of strength By
is applied parallel to the z—axis. It is assumed that the induced magnetic and electric field
effects are negligible. The convective boundary conditions are employed in the heat transfer

process. The governing equations are given by

du  dv  dw

— e e = 2.
5‘:::433;4 5% 0, (12.1)

S
]
=




du du tu &u Jn_ngu Vnf
“oe oy TV S aE T g TR RE:E)
dv dv dv v  onyBiv vy )
1&E+va—y+wa—ulu;j@—p—”—?h (12.3)
ar 8T 8T 8T
E‘f"b'a—y +WE:&,!fo. (124}

where (u,v,w) are the velocity components along the (z,y, z) directions respectively and K the
permeability of porous medium. The effective density p,, ¢, the effective dynamic viscosity p,,,
the effective thermal diffusivity o, s, the heat capacitance (pegp), r, the thermal conductivity ks

and the electrical conductivity o,y of the nanofluid are given by

Puf = pf{l — @) + ps, (12.5)
_ Hy
Yy = = g5’ (12.6)
ke f
Qo p = , 12.7
i (pep)nf (20
(Pcp}n_f = (Pc‘_ﬂ)_f{l : m} + (Pcﬁ}s‘?’e (12-8)
Fug _ ks + 2Ky — 20(ks — ks) (12.9)
ki kst 2kg+ o(ky — ks)’ -
F(Z—-1)4¢
Inf _ 1+ (‘” ) (12.10)

o [ _ (e _ s
T E) G
Here ¢ is the solid volume fraction, s in subscript is for nano-solid-particles and f in subscript

1s for base fluid. The boundary conditions are

u = dr, v=d(n -y, w=-W, —k;% =MT;=T) at z=0,

u — 0, v—=0T—Ty, asz— oo, (12.11)

where d < 0 is the shrinking constant, 1 is the suction velocity and & is the convective heat

transfer coefficient. We observe that when n = 1, the sheet shrinks in z—direction only and the
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sheet shrinks axisymmetrically for n = 2. Introducing

1] 1] c T_ T’\O
w=caf/(n), v=cln— ysm)s w= T 1= \/:f 0 = g (1212

equation (12.1) is satisfied automatically and Egs. (77) are reduced as follows:
af” = 2 nff — Me(l-¢)25 2L _ xey ' =0, (12.13)
af

(1 — ¢)%°

kr!j’ i '
—0" +nfi" =0, 12.14
Pr Ky d (204

with the boundary conditions

F0) = S f(0) =, 6'(0) = —m[1 - 6(0)],
f() — 0, 8(c0) — 0. (12.15)

Here a > 0 and the porosity parameter A, the Hartman number M, the Prandtl number Pr,
the mass transfer parameter 5 > 0 holds for suction and 5 < 0 for injection, the shrinking

parameter v and the thermal Biot number +, are defined as follows:

vy aBE vilpen) s W d ho vy .
A=—%, M =—, Pr= ; 3= Y ==y T = —af 2, 12.16
o’ pse " kg NG rT=em EpV ¢ ( )

in which £, and &2 are constants relating to the properties of nanofluid defined by

1
£1= _— . (12.17)
(1-0)22[1 - ¢ + 62|
! (12.18)
£9 = = . .
_ AY2E[1 — o 4 LeC)s
(1 = ¢)**[1 - b + di557)
Local Nusselt number Nu is
Nu o) (12.19)

"k (Tf - Tw)’
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where the surface heat flux g,, satisfies

arT
Guw = —HKnf E . (1220)
“lz=0
Using Egs. (12.12) and (12.20), we obtain
1 £
NuRe; 2 = —%9'(0), (12.21)
“f

in which Re, = u,,z/v; denotes the local Reynolds number.

12.2 Homotopy analysis solutions

We choose initial guesses fo(n) and fq(n) and auxiliary linear operators £ and Ly of the forms

foln) = S + {1 —exp(-m)), fo(n) = 77— exp(~n), (12.22)
T
Ly(f) ="~ 1, Lo(0) =0" -0, (12.23)
with
Lgley + exexp(n) + esexp(—n)] = 0,
Ly leaexp(n) + esexp(-m)] = 0, (12.24)

in which ¢; — ¢5 are the constants.
If p € [0,1] indicates the embedding parameter then the zeroth order problems are con-

structed as follows:

(1= p)Ly [fr59) = folm)] = ph Nyl (i), (12.25)
(1= B)Lo [00; ) ~ 00(n) | = phoNGIO(n,p), F(mi ) (12.26)
f(0p) = S, f'(0;p) =7, f(oosp) =0,

af

¢(0;p) ~m[1 - 0(0;p)], 6(co;p) =0, (12.27)
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where fiy and fig are the nonzero auxiliary parameters and the nonlinear operators Ay and Nj

are given by
2
ST 1 B3fmp)  (8fmp)\ L ;. 8 f(np)
Ny [f(*hp)} = =53 an + n}ﬁhp)TF
\2.50ns f(n;p) af(n;p)
“Mey(1— ¢)237ns — A s 2.28
fe1(1 — ¢) cr Oy Agy By (12.28)
ae oy de v €2 kny 050%0(mp) . 30(n;p) 8
Nolo(n; p), f(mi p)l = 5 ¥ (1-9) e +nf(n;p) oy (12.29)
The m'* order deformation problems are given by
-{-.-f lfm(n] - mem |(Tﬂ] = ﬁ]'RLm{n)’ (12.30)
‘:H lom(ﬂ) - xmom I(ﬂ)] = &Uﬁ-l’l,m(fﬂn {12‘51)
£(0) = £4(0) = F4(00) = 8,(0) — 118n(0) = n(o0) = 0, (12.32)
0, m<i1 e
Xm = : (12.33)
1, m>1
mr—1 Onf
Ry (1) = 1S 1= 3 Uil = il -Mer(1=0) 2L —xea gy, (1239
k=0
- &2 kny 2.5 et i . p
f\.-g‘m(ﬂ) = ﬁ'k—j'(l . f_.'il) E}m__]_ +n kl:,u ﬂm 1 j_.fk. (1335)
The general solutions ( f,,f,,) comprising the special solutions ( f;, 6,) are
fm(’.?} = f::(’.?) +eoa+ c?'eu + c.'.].'euih
Bun(n) = 05, (n) + c1e” + c5e™ 7, (12.36)

225




where the constants ¢; (¢ = 1 — 5) through the boundary conditions (12.32) have the values

a -
f1= e f:r:([])' cp=e =0, c3= %‘m ,
n n=0
L | 90mn)
ey = — — _ .9:"0 ) 19.87
l-l—’n[ a lpo (0) (12.37)

12.3 gonvergence of the series solutions
@
The series solutions of Eqgs. (12.30) and (12.31) contain the non-zero auxiliary parameters fiy

and fig which can adjust and control the convergence of the geries solutions. In order to see
the range of admissible values of /iy and lig of the functions f”(0) and 8'(0), the i—curves for
14t —order of approximations are displayed. Figs. (12.1) and (12.2) show that the ran for
the admissible values of fiy and fig are —1 < hy < —0.5 and —1 < kg < —0.1. Further, the series
solutions converge in the whole region of n (0 < 5 < oc) when iy = —0.6 and ks = —0.5.
£(0)
s ¢=7=0.1,0=2,5=08,Pr=6.2,

0.5 M=02,1=0.5,y=-0.

0.4

0.3

0.2}

0.1¢

: - A 4
15 ~1.0 205 00 7

Fig. 12.1: hi— curve for the velocity field.
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Fig. 12.2: h— curve for the temperature field.
Table 12.1: Convergence of HAM solutions for different order of approximations when

p=7=01,n=2,5=08Pr=62, M =02, A=5andv=-01.

Order of approximations  f(0) —'(0)

1 0.192992 0.0936255
5 0.304420 0.0996007
10 0.316424 0.0991102
15 0.317116 0.0990997
24 0.317159 0.0985958
30 0.317159 0.0982642
35 0.317159 0.0982642
40 0.317159 0.0982642
50 0.317159 0.0982642

12.4 Results and discussion

In this section, Figs. (12.3 — 12.13}& plotted to analyze the effects of mass transfer parameter

S, Hartman number M, shrinking parameter -, porosity parameter A and nanoparticles volume
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fraction o the velocity f' and temperature # profiles. Effects of mass transfer parameter S
on the velocity profile f' can be seen from Fig. 12.3. Here the magnitude of velocity profile
f' decreases when mass transfer parameter S increases. Because applying suction leads to
draw the amount ofﬁlid particles into the wall and consequently the velocity boundary layer
decreases. Fig. 12.4 displays the effect of Hartman number M on f'. The magmitude of velocity
field f' is found to decrease when M increases. The application of an applied magnetic field has
the tendency to slow down the movement of the ﬂuid,%ch leads to a decrease in the velocity
and momentum boundary layer thickness. Influence of shrinking parameter + and porosity
parameter A on the velocity field f' is similar to that of M (see Figs. 12.5 and 12.6). The
behavior of nanoparticle volume fraction ¢ on f' is shown in Fig. 12.7. This graph shows that
magnitude of f' increases when nanoparticle volume fraction ¢ increases.

Fig. 12.8 illustrates the effects of mass transfer parameter S on temperature profile .
Temperature ¢ decreases by increasing the mass transfer parameter S. Fig. 12.9 illustrates the
effects of Hartman number M on temperature profile 6. The Lorentz force jg g resistive force
which opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary
layer thickness increases. Influence of shrinking parameteg=. and porosity parameter A on
temperature profile # can be seen in the Figs. (12.10-12.11). It is observed that the temperature
profile ¢ decreases wlen the shrinking parameter v and porosity parameter A are increased. Fig.
12.12 represents theg\ect of nanoparticle e fraction ¢ on temperature field §. It is noted
that the temperature profile @ increases for increaging values of nanoparticle volume fraction ¢.
This is because of the fact that by increasing the volume fraction of nanoparticles, the thermal
conductivity increases. The behavior of thermal Biot number «; on temperature profile @ is
similar to that of nanoparticle volume fraction ¢.

able 12.1 shows the convergence of the series solutions. Some thermo physical properties
of water and nanopartigles are given in Table 12.2. Numerical values of local Nusselt number
for different emerging parameters are presented in Table 12.3. It is noticed that local Nusselt

_i _ ) .
number Nu(Re,) % increases for larger values of Hartman number M, nanoparticle volume

fraction ¢ and thermal Biot number .

228




£'m)
0.00

-0.02¢

-0.04¢

-0.06F
i

-0.08¢

8=0.1,03,0.5,0.7

M=02,y=-0.1,n=2,6=0.1,Pr=62,1=0.5

£'()
0.00}

-0.02]
-0.04]
~0.06}

-0.08}

0.5 1.0 1.5 2.0 2.5

Fig. 12.3: Influence of S on f'(n).
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Fig. 12.4: Influence of M on f'(7).
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Fig. 12.6: Influence of A on f'(7).
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Fig. 12.10: Influence of v on #(7).
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Table 12.2: Thermo physical properties of water and nanoparticles.

1 2 3 4 3

plkg/m®)  c,(j/kak) k(W/mk) Bx105(K™Y) o(Qm)~!

Pure water 9a7.1 4179 0.613 21 0.05
Copper(Cu) 8933 385 401 1.67 5.96 x 107
Silver( Ag) 10500 235 429 1.89 3.6 x 107
Alumina(Aly Os) 3970 765 40 0.85 1x10-10
Titanium Oxide(T#05) 4250 686.2 8.9538 0.9 1x10-12
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Table 12.3: Values of Nu(Re,) Z whenn =2 Pr= 6.2, A=05,5=08and v = -0.1.

M o oy -0
05 005 03 0336178

0.7 0.336187
1.0 0.336201
2.0 0.336996
0.2 0.01 0.301109
0.05 0.334288
0.07 0.355500
0.1 0.379977

0.05 0.1 0.113946
0.3 0.332611
0.5 0.537019
0.7  0.767305

12.5 Final remarks

MHD ﬂw of nanofiuid over a permeable shrinking sheet with convective condition is studied.

The main results can be mentioned as follows:

o Effects of mass transler parameter S, Hartman number M, shrinking parameter v and

porosity parameter A are similar on the velocity profile f.

& An increase in nanoparticle volume fraction ¢ reduces the velocity profile f'.

# There is a decrease in temperature profile @ for larger values of mass transfer parameter

S, shrinking parameter v and porosity parameter A.

* An increase in nanoparticle volume fraction ¢ and thermal Biot number 7, enhances the

temperature profile 6.
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