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ABSTRACT

A number of diffraction problems having a practical application in science and

engineering can be solved through Wiener-Hopf and Mode Matching techniques.

Whilst using these techniques, this dissertation addresses a class of boundary-

value problems related to the effect of cold plasma and wave scattering. These

problems find applications in a broad area of physics and engineering. The envis-

aged mathematical model is governed by the Helmholtz equation in cold plasma

along with soft, hard and impedance boundary conditions. The diffracted, scat-

tered, transmitted and radiated fields are obtained for waveguide structures lo-

cated in cold plasma. The numerical analysis is made in its factual perspective by

using different material properties of the waveguide. It is revealed that the am-

plitude of obtained field is affected drastically in the presence of an ionosphere

plasma medium. Likewise it is observed that the field showed impedance de-

pendent variations that are actually related to the magnetic and electric suscepti-

bilities of the waveguide surfaces. We conclude that such types of results can be

used to improve the radiated signal quality transmitted by an artificial satellite

in the ionosphere.
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1 INTRODUCTION

1.1 MOTIVATION

The problems involving wave scattering in cold plasma have been of great inter-

est to scientists and engineers. The study of the propagation of electromagnetic

(EM) waves through the earth’s ionosphere is of deep interest and importance

providing with a natural mean of radio communication [1, 2, 3]. Ionosphere

consists of ions and electrons formed by solar photo-ionization and soft x-ray

radiation [4]. Such ions and electrons, of course, form weak neutral plasma

and hence, the physics of ionosphere can be coined in terms of plasma physics.

Earth’s ionosphere has been divided into four broad regions, namely, D, E, F, and

topside regions. For radio communications the region of interest is F-region lying

above the height of 150 km. The F-region contains an important reflecting layer

for communication signals arriving from an earth station. However, ionosphere

consists of electrons, ions and neutrals, of course, it can be modeled as a medium

comprising of weak neutral plasma, hence, its physics can be grasped as plasma

physics. Since the ionosphere plasma is highly magnetized under earth’s mag-

netic field, therefore, it can be treated as an anisotropic medium. The ultraviolet

radiation which impinges on the earth’s atmosphere ionizes a fraction of neutral

atmosphere, resulting into a mixture of charged (electrons and ions) and neutral

particles. Since the collisions at altitudes above 80 km in the earth’s atmosphere
1
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are very rare, therefore, under such conditions the recombination rate of charged

species is very slow and hence, a permanent ionized medium occurs, which is

known as ionosphere.

The transmission, reflection, refraction, and diffraction of EM waves by iono-

sphere are the processes that can be understood via plasma physics. The iono-

sphere plasma also retains the equilibrium density of free electrons and ions

because of the balance between photo-ionization and various loss mechanisms.

However, the density of these electrons varies dramatically with altitude by the

effects of sunrise and sunset [5]. Moreover, the ionosphere plasma is magne-

tized by the earth’s magnetic field that forms the plasma to be as an anisotropic

medium. The measurements based upon the artificial satellites immerse in the

ionosphere plasma may be affected due to the interaction of communicating EM

signals that are used for communication between the spacecraft and earth sta-

tion. It is well known that the communicating signal radiated by the satellite

may modify due to its interaction with the ionosphere plasma and due to the

nature of body material (electric and magnetic susceptibilities or impedance) of

waveguide used to guide the EM signal (radiated from the vehicle) to the earth

station [6, 7]. With this the measurements based upon artificial satellite present in

ionosphere communicating to an earth station may be affected drastically. The

geometry and material used in complex body structure of an artificial satellite

can also change the quality of an EM signal. It is understood that electric and

magnetic susceptibilities of a material are related to permittivity and permeabil-

ity parameters. Moreover, the characteristic impedance and speed of EM wave

depend on any medium where detailed information of any medium is obtained

by its refractive index.

The present work is based upon a theoretical model to investigate the effective-

ness of the ionosphere plasma, earth’s magnetic field, structure and nature of the

body material (electric and magnetic susceptibilities or impedance) of an artifi-



1.2. STATE OF THE ART 3

cial satellite on an EM signal transmitting through the ionosphere. It is pertinent

to mention that in order to model ionosphere plasma the whole system is sup-

posed to be immersed in a cold plasma. The modeled problem have been com-

bined to have a well known Helmholtz equation which is solved for the specified

boundary conditions by employing Wiener-Hopf technique [8, 9]. Here, we have

employed the magnetoionic theory that deals with the cold anisotropic plasma

which is considered in this model. The temperature and pressure of plasma

species (ions and electrons) are usually small and hence, are neglected. Under

these circumstances such a plasma is treated as cold plasma. Sahin et al. [10]

investigated the diffraction phenomenon in cold plasma. Yener and Serbest [11]

also explored the diffraction of plane waves by an impedance loaded half-plane

in cold plasma. Cinar and Büyükaksoy [12] studied the diffraction of the plane

waves by an impedance loaded parallel-plate waveguide in the absence of cold

plasma.

Keeping in view the aforementioned background, this thesis concerns largely

with the effect of cold plasma permittivity on the scattering process of waveguide

structures. This study is important mainly due to the worthwhile applications of

scattering phenomena in structural design antennas and aircrafts.

1.2 STATE OF THE ART

This documents is mainly concerned about the wave scattering processes in

the waveguide structure in the presence of cold plasma. Being fourth state of

matter and larger part of universe the study of plasma is quite relevant and

significant. The plasma contains a certain portion of free electrons whereas the

atoms are partly ionized. The presence of negative and positive carriers of charge

makes plasma electrically conductive and distinguishes it from gaseous state.

The plasma that contains a very small part (approximately one percent) of the

ionized particles is termed as cold (non-thermal) plasma. The cold plasma is
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generated in a high-voltage electric field and the velocity of electron is strongly

dependent to the temperature up to a thousand degrees of Celsius. Whilst their

effect on the plasma temperature is low and final plasma temperature is close

to the outward temperature. To quantify the results arising due to the effec-

tiveness of ionosphere plasma, earth’s magnetic field, structure and nature of

body material of the radiator on the EM signal communicating to earth station

propagating through ionosphere, a theoretical model has been devised. Lau and

Biggs [13] is examined the effects of cold plasma on electron layer immersed in

a cold background plasma. The mutual actions between guided electromagnetic

waves and cold plasma in the presence of a static magnetic field were studied

by Buchsbaum et al. [14]. Bardos and Barankova [15] examined the relation be-

tween a new type of radio frequency and cold plasma. Janis [16] developed a

variational formulation for the impedances loaded antenna immersed in cold

plasma. Tyukhtin [17] studied the diffraction of plane electromagnetic waves by

a half-plane immersed in a parallel flow of cold plasma. Ikiz and Karoomerli-

oglu [18] investigated diffraction phenomenon by considering two impedances

wedge in cold plasma.

In continuation to second part of this work, the wave scattering is a physical phe-

nomenon in which waves are constrained to depart from the route in the medium

through which they move. Mathematical analysis of scattering was the focus of

attention for many researchers and scientists, for example [19, 20, 21]. The study

was initiated by Ibn-al-Haitam in 10th century AD who computed the asymp-

totic field for diffraction of the wedge and arose the wave propagation theory

referred as Poincare [22]. Sommerfeld [23] discussed the exact solution of diffrac-

tion from a plate by using the physical method of images on Reimann surfaces.

Carslaw [24] utilized the parabolic coordinates and the results obtained by him

were the same as achieved by Sommerfeld [23]. Levine and Schwinger [25, 26]

used the integral equation in problem of diffraction followed by some related
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studies containing the Wiener-Hopf type integral equations. Copson [27] studied

the diffraction from a plane screen in the form of integral equation whose solu-

tion was obtained by Wiener-Hopf technique. Interestingly the obtained solution

was consistent with the Summerfeld’s problem [23]. It is worthwhile to comment

that Copson [27] was the first one who used Wiener-Hopf technique to solve the

problem of sound. The key feature of obtaining the solution via Wiener-Hopf

technique is the kernel factorization. This factorization splits the function into a

sum or product of two functions where one function is regular in the upper half-

plane while the other in the lower half-plane. The detailed description regarding

the kernel factorization can be found in [28, 29, 30, 31]. Sometime kernel factor-

ization becomes very difficult and in such cases some alternative techniques are

opted to get desired results. Bates and Mittra [32] have employed an integral

representation for the factorization of a scalar function. Wiener-Hopf is a useful

tool to handle two or three dimensional diffraction problems [33, 34, 35].

It is renowned that the problem having a geometry of planer boundaries with a

sudden change in material properties of boundaries may lead to the solution by

Wiener-Hopf technique [36, 37, 38, 39]. Büyükaksoy and Birbir [40, 41] consid-

ered the diffraction of E-polarized plane wave by the reactive step and radiation

phenomenon that radiates from an impedance loaded parallel-plate waveguide

radiator. Topsakal et.al. [42] used the Wiener-hopf technique to solve the prob-

lem of scattering of electromagnetic waves by a rectangular impedance cylinder.

Cinar and Büyükoksoy [43] used the Wiener-Hopf technique for the problem of

diffraction by a thick impedance half-plane with different end faces impedance.

The diffraction by a rigid barrier with a soft or perfectly absorbent end face with

Wiener-Hopf technique was studied by Mclver and Rawlins [44]. Rienstra [45]

applied the Wiener-Hopf technique for the problem of sound radiation from

semi-infinite duct. The solution to the sound radiation problem using Wiener-

Hopf technique was due to Hassan and Rawlins [46]. Furthermore, the said
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technique was successively used by Ayub et al [47, 48, 49, 50] and Nawaz et

al. [51, 52, 53, 54] in their recent studies. A brief historical view of Wiener-Hopf

technique was given by Lawrie and Abrahams [55]. As mentioned earlier that

Wiener-Hopf technique is not always considered to be the easy task when kernel

factor becomes complicated. Therefore, a hybrid method has recently been in-

troduced to solve such complicated problems while bypassing the most difficult

process of the matrix Wiener-Hopf factorization. This hybrid method is combina-

tion of Wiener-Hopf and Mode-Matching techniques that reduces the boundary-

valued problem in terms of a modified Wiener-Hopf equation with second kind.

The solution obtained from hybrid method contains an eigenfunction expansion

of unknown complex coefficients. The expressions for these unknown coeffi-

cients are obtained as a system of infinite linear algebraic equations. Through

a numerical procedure, this system can be solved approximately. This method

was adopted to solve the E-polarized plane wave diffraction and radiation phe-

nomenon in a waveguide by Büyükaksoy and Birbir [41]. Such methods were

initially developed to tackle the problems governed by Helmholtz equation and

waveguide boundaries described by Neumann (Rigid), Dirichlet (Soft) or Robin

(Mixed) conditions. The solution of these problems contains the eigenfunction

expansion. Ikiz et al. [56] used the name numerical-analytical method instead of

hybrid method. The main objective of using this method is to modify the ana-

lytical methods which works well at high frequencies while numerical method

works well at low frequencies.

Also the diffraction phenomenon was studied in a bifurcated waveguide using

a dominant mode wave incident on a soft-hard half-plane amidst an infinite

parallel-plate with hard boundary by Büyükaksoy and Polot [57]. Transmission

and reflection coefficients are acquired in a bifurcated waveguide by Rawlin [58].

Pace and Mithra [59] studied the problem involving a trifurcated parallel-plate

waveguide with an arbitrary spacing between the plates. Jones [60] considered
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the waves scattering from the waveguide containing three semi-infinite parallel

soft and equidistant plates. Asgher et al. [61] extended the Jones’ problem [60] for

point and line source scattering. Rawlin [62] also studied the radiation of a sur-

face wave mode propagating in a semi-infinite cylindrical waveguide. Hassan

and Rawlin [63] solved the problem of sound radiation from a waveguide (Semi-

infinite duct) placed symmetrically within an infinite duct. Later on the radiation

phenomenon was studied in a trifurcated parallel-plate waveguide by Rawlin

and Hassan [64]. Morse and Feshbach [65] considered the problem of scattering

in a perfectly conducting and an impedance loaded parallel-plate waveguide

having the same impedances on lower and upper faces of the plates. Later on

Johansen [66] considered the same geometry for different surface impedances

using a coupled system of modified Wiener-Hopf equations. Büyükaksoy et

al. [67] and Idemen [68] uncoupled the coupled system of modified Wiener-Hopf

equations by using the week factorization method and obtained the exact solu-

tions of the vector Wiener-Hopf equations. Abrahams [69] introduced a "pole

removal technique" to uncouple the coupled system of modified Wiener-Hopf

equations. This technique can be seen in some classical articles, to mention a

few [70, 71, 72, 73].

1.3 AVANT GARDE

The main aspiration of this dissertation is to investigate that how a particular

class of structural problems related to wave scattering may be solved while using

different semi-analytic techniques. In particular when a cold plasma is immersed

in the waveguide structure would be the topic of interest. Broadly speaking the

present work can be seen as a continuation of ongoing studies, refer for instance

to [1, 6, 10, 12]. The major part of this research is carried out in the following

perspective:
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(1) The derivation of governing Helmholtz equation in cold plasma from the

well-known Maxwell equations.

(2) Inclusion of cold plasma permittivity values ε1 and ε2 in the given model.

(3) The use of Wiener-Hopf technique together with the Mode-Matching tech-

nique in order to yield a larger part of solutions to above model.

(4) The mathematical and numerical study related to the effect of cold plasma

on scattering of E-polarized plane wave by step discontinuity.

(5) The discussion concerning the effect of cold plasma permittivity due to

impedance loaded parallel-plate waveguide located in cold plasma.

(6) The consideration of radiation problem with an impedance loaded parallel-

plate waveguide radiator.

(7) The study of problems involving the diffracted and transmitted fields.

(8) The graphical behavior of diffracted, transmitted and radiated field versus

different physical parameters of our choice.

(9) In fact the major contribution towards the development of present study is

to quantify the effects of ionosphere plasma on the communicating signals

between earth station and an artificial satellite in the earth’s atmosphere. In

the process the standard Wiener-Hopf and somehow Mode-matching tech-

niques are used to find appropriate solutions for such models. In fact the

Wiener-Hopf technique with Mode Matching technique is used to show the

effect of cold plasma permittivity in different waveguide structures. Briefly

saying the Wiener-Hopf analysis and the effect of cold plasma permittivity

in a waveguide are the major focus for this thesis.
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1.4 DISSERTATION CATALOG

This thesis is summarized in the order below.

CHAPTER (2) begins with the review of generalized form of boundary-valued

problems in cold plasma. As mentioned earlier this thesis is concerned mostly

with the effect of cold plasma permittivity and scattering of waves in a waveg-

uide structure. For this purpose, it contains some basic definitions and mathe-

matical preliminaries which will be utilized in the succeeding chapters. A canon-

ical problem is modeled in cold plasma and solved while using a modified Wiener-

Hopf technique.

CHAPTER (3) consists of impedances loaded step problem in cold plasma. Here, a

waveguide is designed in cold plasma containing by a two separated half-planes

with different surface impedances and afterwards these half-planes were joined

vertically by a hard step. Typically such kind of geometries can be used in con-

structing antennas. The contents of this chapter has already been submitted to

the Journal of Waves in Random and Complex Media for possible publication.

In CHAPTER (4), the effect of cold plasma permittivity is analyzed on E-polarized

plane wave diffraction by an impedance loaded parallel-plate waveguide in cold

plasma. Also the effect of different parameters such as surface impedance and

plate separation is observed. The model problem is solved by hybrid method i.e.,

Mode-Matching technique in conjunction with Fourier transform. These type of

geometries in the ionosphere (plasma) are important in communication between

the vehicles and the earth station. The contents of this chapter have been pub-

lished in Physica Scripta, 89(8): Paper ID. e095207, (2014).

CHAPTER (5) deals with radiation phenomenon where an impedance loaded

parallel-plate waveguide radiator in cold plasma is considered. This geome-

try is designed by a parallel plane and half-plane having all having different

faces different surface impedances located in cold plasma. Here the effect of cold

plasma permittivity is investigated on the radiation problem. The contents of
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Chapter (5) are published in Mathematical Methods in the Applied Sciences,

DOI : 10.1002/mma.3464.

CHAPTER (6) investigates the diffracted and transmitted fields from a waveguide

located in cold plasma. The geometry of the problem is designed from the three

half-planes where one half-plane is located between the other two in opposite

direction. The surface material properties of the half-planes are characterized ei-

ther by soft (Dirichlet type), hard (Neumann type) or impedances (Robin type).

The solution to the underline problem is obtained with the help of hybrid method

that reduces the boundary-valued problem to the modified Wiener-Hopf equa-

tion. This investigation has already been submitted to New Journal of Physics

for possible publication.
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2 PRELIMINARIES

This chapter contains some of the mathematical preliminaries and compact re-

views of the techniques which will be used in the subsequent chapters. These

consist of Fourier transform [74], Wiener-Hopf technique [8, 57], Maliuzhinetz’s

function [75, 76, 77, 78, 79, 80] and Helmholtz equation in cold plasma [81]. Cer-

tainly these preliminaries will help to successful completion of thesis document.

2.1 ANALYTICAL PROPERTIES OF THE FOURIER TRANS-

FORM

The Fourier transform is a useful technique and plays an important role in solv-

ing a partial differential equation. This technique is applicable for the majority of

the problem whether their domain is finite or infinite. Consider a function h(x)

defined for x ∈ (−∞,∞). Then h(x) can be written in the form as under

h(x) = h+(x)+h−(x), (2.1)

where

h+(x) =

 h(x) x > 0

0 x < 0,
(2.2)

11
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and

h−(x) =

 h(x) x < 0

0 x > 0.
(2.3)

H(α) represents the Fourier transform of h(x) which is defined as under

H(α) = 1p
2π

∞̂

−∞
h(x)e ιαxd x, (2.4)

where the integral in the above expression exists and h(x) is bounded for all x in

the given domain. Use of equations (2.2) and (2.3) in equation (2.4) gives

H(α) = 1p
2π

∞̂

−∞
[h−(x)+h+(x)]e ιαxd x. (2.5)

After simplification, equation (2.5) takes the form

H(α) = 1p
2π

0̂

−∞
h−(x)e ιαxd x + 1p

2π

∞̂

0

h+(x)e ιαxd x, (2.6)

that is

H(α) = H−(α)+H+(α), (2.7)

where

H−(α) = 1p
2π

0̂

−∞
h−(x)e ιαxd x, (2.8)

and

H+(α) = 1p
2π

∞̂

0

h+(x)e ιαxd x. (2.9)

The analytic properties of H(α) are the properties of H−(α) and H+(α). Initially,

consider the properties of H+(α) as follow:

If the function h+(x) is of exponential order, i.e.,

|h+(x)| < Meτ−x as x →∞, (2.10)
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then the function H+(α) is a regular function of the complex variable α = σ+ ιτ
and H+(α) → 0 as |α|→∞ in the domain Im(α) > τ− . Perceiving that

Meτ−xe ιαx = Me(τ−−τ)xe ισx (2.11)

is bounded if τ > τ−. Now taking the inverse Fourier transform of H+(α), one

obtains

h+(x) = 1p
2π

∞̂

0

H+(α)e−ιαxdα, (2.12)

where integration will be taken over any straight line in the region Im(α) > τ−

and parallel to x−axis in the complex α−plane.

Now for the problem considered in this thesis, the strip of the analyticity can be

calculated by considering the following cases.

(i) For τ− < 0 the function h+(x) decreases, the domain of the analyticity of h+(x)

contains the real axis and equation (2.12) will be integrated along the positive

real axis.

(ii) For τ− > 0 the function h+(x) increases but not faster than the exponential

function with linear exponent, the domain of the analyticity of h+(x) lies above

the real axis of the complex α−plane and equation (2.12) will be integrated above

the positive real axis.

Now consider the function h−(x) satisfies the exponential order condition, so one

can write

|h−(x)| < Meτ+x as x →∞, (2.13)

H−(α) =
∞̂

0

h−(x)e ιαxd x (2.14)

is regular in the lower half plane Im(α) < τ+.
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Now taking into account the inverse Fourier transform of H−(α) gives

h−(x) = 1p
2π

∞̂

0

H−(α)e−ιαxdα, (2.15)

for τ+ > 0 the domain of analyticity of H−(α) contains the negative real axis and

for τ+ < 0, is below the negative real axis. Hence equation (2.15) is analytic in

region τ− < Im(α) < τ+ as shown in Fig. (2.1)

τ+

τ−

<e(α)

=m(α)

α− plane

FIGURE 2.1. Strip of analyticity

2.2 WIENER-HOPF TECHNIQUE

Wiener-Hopf technique was introduced by N. Wiener and E. Hopf in 1931. Ini-

tially, this was used to solve singular integral equation of the form

f (x) =φ(x)+
∞̂

0

K (x − y) f (y)d y , 0 < x <∞, (2.16)

where φ(x) and K (x − y) are given known function while f (y) is unknown func-

tion to be calculated. This equation had arisen in Hopf’s work on Milne-Schwarzschild

equation. This technique also reduces the problem of diffraction by a semi-

infinite plate to the solution of singular integral equation. All physical phe-

nomena are associated with ordinary or partial differential equations. These
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partial differential equations may be solved by using certain method depending

upon the geometry of the problem. The method of separation of variables is one

of these methods that fails for certain geometries such as semi-infinite regions,

waveguide structure with non planer boundaries etc. The detailed description

of the technique is mentioned below.

2.2.1 GENERAL SCHEME OF WIENER-HOPF TECHNIQUE

In this technique it is required to determined the unknown function F−(α) and

F+(α) of a complex variable α occurring in the below Wiener-Hopf equation.

These functions are analytic in the half-planes Im(α) < τ+ and Im(α) > τ−, re-

spectively, and approach to zero as |α|→∞, satisfying the functional equation

A (α)F+(α)+B(α)F−(α)+C (α) = 0, (2.17)

in the region τ− < Im(α) < τ+. Here A (α) , B(α) and C (α) are the known functions

regular in the strip τ− < Im(α) < τ+ and A (α) and B(α) are non- zero in the strip.

For the solution of the Wiener equation the main step is to replace

A (α)

B(α)
= P+(α)

P−(α)
, (2.18)

where the functions P+(α) and P−(α) are non zero and regular, respectively, in

the half-planes Im(α) > τ− and Im(α) < τ+ . On using equation (2.18) in equation

(2.17), one can write

P+(α)F+(α)+P−(α)F−(α)+P−(α)
C (α)

B(α)
= 0. (2.19)

The last term of the equation (2.19) can be decomposed as

P−(α)
C (α)

B(α)
= K+(α)+K−(α), (2.20)
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where the functions K+(α) and K−(α) are analytic in the half-planes Im(α) > τ−

and Im(α) < τ−, respectively. In the strip the following equation holds true

P+(α)F+(α)+K+(α) =−P−(α)F−(α)−K−(α) = S(α). (2.21)

The above equation is valid in the strip τ− < Im(α) < τ+. The left-hand side of

the equation (2.21) is regular in the half-plane Im(α) > τ− while the right-hand

side of the equation (2.21) is regular in the half-plane Im(α) < τ+. Hence by the

analytic continuation principal one can define S(α) over the complex α−pl ane.

Let us suppose that

|P+(α)F+(α)+K+(α)| < |α|p as α→∞, Im(α) > τ− (2.22)

and

|P−(α)F−(α)+K−(α)| < |α|q as α→∞, Im(α) < τ+. (2.23)

Then on using the extended Liouvillle’s theorem which states that "If S(α) is an

integral function such that |S(α)| < M |α|p as α→∞ where M and p are constant

then S(α) is a polynomial of degree less than or equal to
[
p

]
where

[
p

]
is the

integral part of p." Here, S(α) represents a polynomial P (α) whose degree is less

than or equal to the integral part of (p, q) i.e.,

F+(α) = P (α)−K+(α)

P+(α)
(2.24)

and

F−(α) = −P (α)−K−(α)

P−(α)
. (2.25)

The above equations determine F+(α) and F−(α) in term of P (α). Thus, the rep-

resentation of equations (2.24) and (2.25) form a base to use the Wiener-Hopf

technique. It is important to annotate that factorization of function expressed
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in equation (2.18) and decomposition of function expressed in equation (2.20)

is possible under certain conditions. The possibility of these representations is

guaranteed by the following theorems.

2.3 ADDITIVE DECOMPOSITION THEOREM

Statement:

Let F (α) be a regular function in the region τ− < Im(α) < τ+ and F (α) → 0 uni-

formly in the given region as |α|→∞, then F (α) can be decomposed in the given

region as under

F (α) = F−(α)+F+(α), (2.26)

where F+(α) and F−(α) are regular functions in the region Im(α) > τ− and Im(α) <
τ+, respectively.

Proof:

Consider a rectangle P1P2P3P4 bounded by the lines Im(α) = τ′− , Im(α) = τ′+ ,

Re(α) = T and Re(α) =−T containing an arbitrary complex number α=σ+ιτ and

lying in the given strip such that τ− < τ′− < Im(α) < τ′− < τ− as shown in the Fig.

(2.2).

α = σ + ιτ

P1(−T,−τ ′+)

P4(−T, τ ′+) P3(T, τ
′
+)

P2(T,−τ ′+)

<e(α)

=m(α)

τ = τ+

τ = τ−

FIGURE 2.2. Contour of integration
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According to Cauchy’s integral formula, one can write

F (α) = 1

2πι

T+ιτ′−ˆ

−T+ιτ′−

f (ζ)

ζ−αdζ+ 1

2πι

T+ιτ′+ˆ

T+ιτ′−

f (ζ)

ζ−αdζ

+ 1

2πι

−T+ιτ′+ˆ

T+ιτ′+

f (ζ)

ζ−αdζ+ 1

2πι

−T+ιτ′−ˆ

−T+ιτ′+

f (ζ)

ζ−αdζ. (2.27)

On taking the limit T → ∞, the second and fourth integrals on the right-hand

side of equations (2.27) will tend to zero and hence equations (2.27) will take the

form

F (α) = F−(α)+F+(α), (2.28)

where

F−(α) =− 1

2πι

∞+ιτ′+ˆ

−∞+ιτ′+

f (ζ)

ζ−αdζ (2.29)

and

F+(α) = 1

2πι

∞+ιτ′−ˆ

−∞+ιτ′−

f (ζ)

ζ−αdζ. (2.30)

F+(α) and F−(α) are regular functions in upper α−pl ane Im(α) > τ− and in lower

α−pl ane Im(α) < τ+, respectively. The arbitrary complex number α=σ+ ιτ does

not lie on the contour of integration.

2.4 MULTIPLICATIVE DECOMPOSITION THEOREM

Statement:

Let Ψ(α) be a non zero and regular function in the strip τ− < Im(α) < τ+ and

Ψ(α) → 0 uniformly as |α| →∞ in the strip. Then Ψ(α) can be factorized in the

given strip as

Ψ(α) =Ψ−(α)Ψ+(α), (2.31)
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where the functionsΨ+(α) andΨ−(α) are non-zero and regular in the half-planes

Im(α) > τ− and Im(α) < τ+ , respectively.

Proof:

Let

F (α) = logΨ(α), (2.32)

which satisfies all the condition of additive decomposition theorem. Thus, F (α)

can be expressed as

F (α) = F−(α)+F+(α), (2.33)

where

F+(α) = logΨ+(α) (2.34)

and

F−(α) = logΨ−(α). (2.35)

Substituting the equations (2.32), (2.34) and (2.35) in equation (2.33) gives

logΨ(α) = logΨ+(α)+ logΨ−(α). (2.36)

After simplification equation (2.36) takes the form

Ψ(α) =Ψ+(α)Ψ−(α). (2.37)

2.5 MALIUZHINETZ’S FUNCTION

Maliuzhinetz function plays a nobel role in the study of diffraction theory by an

impedances half planes. The function denoted by Mπ(z) and defined as

Mπ(z) = exp

− 1

8π

ẑ

0

πsin t −2
p

2sin t
2 +2t

cos t
d t

 , (2.38)
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known as Maliuzhinetz’s function introduced by Maliuzhinetz. Volakis and Se-

nior [82] expressed the Maliuzhinetz’s function for small and large complex ar-

guments. For small arguments,

Mπ(z) = 1−bz2 +O(z4), (2.39)

where b = 1
16 (1+ 2

π
−p

2). The small complex arguments approximation of Mali-

uzhinetz’s function is, therefore,

Mπ(z) = 1−0.013900388z2. (2.40)

If Im(z) >> 0, then

Mπ(z) = 1.05302

[
cos

1

4
(z − ι ln2)

] 1
2

Im(z) > 8. (2.41)

Equations (2.40) and (2.41) must be valid within the strip 0 < z < π
2 . For the re-

maining values of Re(z) the Mπ(z) relates to its value at the corresponding point

within the strip

Mπ(z) =
[
Mπ

(π
2

)]2 cos( z
4 − π

8 )

Mπ(z −π)
, (2.42)

Mπ(z) =Mπ(−z) (2.43)

and
−

Mπ(z) =Mπ(
−
z), (2.44)

where bar complex conjugate. Maliuzhinetz’s function is an even regular func-

tion of a complex variable z.

2.6 HELMHOLTZ EQUATION IN COLD PLASMA

In order to have a mathematical model for the problems in the subsequent chap-

ters, we first derive the Helmholtz equation in cold plasma. For the reasons Fel-
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son and Marcuvits [81] defined the tensor of dielectric permittivity for the cold

plasma and expressed the electric field component in term of the magnetic field

Hz(x, y) by using the Maxwell’s equations along with tensor of dielectric permit-

tivity for the cold plasma as under:

The tensor of dielectric permittivity for the cold plasma is defined as

ε=


ε1 −ιε2 0

ιε2 ε1 0

0 0 εz

,

 (2.45)

with

ε1 = 1−
(ωp

ω

)2
[

1−
(ωc

ω

)2
]−1

, (2.46)

ε2 =
(ωp

ω

)2
[
ω

ωc
− ωc

ω

]−1

(2.47)

and

εz = 1−
(ωc

ω

)2
, (2.48)

where

ω2
p = Ne e2

mε0
(2.49)

and

ωc =
|e|µ0Hdc

m
. (2.50)

Here, e, Ne , m, ω, ωc , ωp and Hdc represent the electric charge, electron density,

electron mass, operating, cyclotron, plasma frequencies and magnitude of the dc

magnetic field vector, respectively.

The electric field component in term of the magnetic field are as follow

Ex = ιε1

ωε0(ε2
1 −ε2

2)

∂Bz

∂y
+ ε2

ωε0(ε2
1 −ε2

2)

∂Bz

∂x
, (2.51)
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Ey = ε2

ωε0(ε2
1 −ε2

2)

∂Bz

∂y
+ ιε1

ωε0(ε2
1 −ε2

2)

∂Bz

∂x
. (2.52)

It is known that Maxwell’s equations are valid in plasma so, one can write

∇×→
E = 1

c2

∂2

∂t 2

→
B , (2.53)

where
→
E = Ex i +Ey j +Ezk and

→
B = Bx i +By j +Bzk . (2.54)

Thus, using equations (2.51) and (2.52) in equation (2.53), one obtains the required

Helmholtz’s equation in cold plasma as follow

∂2

∂x2
Hz(x, y)+ ∂2

∂y2
Hz(x, y)+k2

e f f Hz(x, y) = 0, (2.55)

with

k2
eff = k2(

ε2
1 −ε2

2

ε1
), k =ωpε0µ0 and Bz = e−ιωt Hz(x, y). (2.56)

where the time dependence is assumed to be e−ιωt and keff depends on k, ε1 and

ε2.

2.7 CANONICAL PROBLEM IN COLD PLASMA

In this section we consider a prototype problem arising in cold plasma that con-

cerned with wave scattering in waveguide designed by three semi-infinite plates.

The material properties of these plates are impedance, rigid and soft. The rigid

plate is defined in term of Neumann boundary condition whereas the soft plat

are defined in term of Dirichlet condition. The Winer-Hopf technique along with

Mode-Matching technique is used to obtain the approximate solution.

2.7.1 MATHEMATICAL MODEL OF THE PROBLEM

Here, we consider the scattering of a plane wave which is incident with angle θ0

in the waveguide region in cold plasma formed by two half-planes S1 define by
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{(x, y, z)| x ∈ (−∞,0), y = b, z ∈ (−∞,∞)} and S2 defined by {(x, y, z)| x ∈ (0,∞), y =
0, z ∈ (−∞,∞)}. The characteristic properties of the upper face of half-plane S1 is

characterized by surface impedance Z and the upper face of the half-plane S1 is

rigid. These two planes are combined by a soft vertical step of hight b as shown

in Fig. (2.3):

×××××× × ××××××× × ×××××××× × × × × ×× ×××××

y

x

(0,b)

Cold Plasma
b

(0,0)

N (Rigid)

D
(S

of
t)

Hinc
z (x, y)

θ0Z (Impedance)

FIGURE 2.3. The physical configuration of the waveguide structure in cold plasma

The total field takes the form as under

H T
z (x, y) =

 H 1
z (x, y)+H i nc

z (x, y)+H r e f
z (x, y), y ∈ (b,∞)

H 2
z (x, y), y ∈ (a,b)

(2.57)

where H i nc
z (x, y) and H r e f

z (x, y) stand for incident and reflected field, respectively,

given by

H i nc
z (x, y) = e−ιkeff(x cosθ0+y sinθ0) (2.58)

and

H r e f
z (x, y) =−1−ηsinθ0

1+ηsinθ0
e−ιkeff(x cosθ0−(y−2b)sinθ0) (2.59)

and {H j
z ( j = 1,2)} satisfying the Helmholtz equation in cold plasma

[
∂2

∂x2
+ ∂2

∂y2
+k2

eff

][
H j

z (x, y)
]
= 0, (2.60)
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with the following corresponding boundary conditions along with the continuity

relations (
1+ η

ιkeff

)
H 1

z (x,b) = 0, x ∈ (−∞,0), (2.61)

∂

∂y
H 2

z (x,0) = 0, x ∈ (0,∞), (2.62)

H 2
z (0, y) = 0, y ∈ (a,b), (2.63)

H 1
z (x,b)+H i nc

z (x,b)+H r e f
z (x,b) = H 2

z (x,b), x ∈ (0,∞), (2.64)

∂

∂y
H 1

z (x,b)+ ∂

∂y
H i nc

z (x,b)+ ∂

∂y
H r e f

z (x,b) = ∂

∂y
H 2

z (x,b). x ∈ (0,∞). (2.65)

The radiation and edge conditions for the uniqueness of the boundary-valued

problem defined by the set of equations (2.60) - (2.65) are given by [83].

p
ρ

[
∂

∂ρ
H 1

z (x, y)− ιkeffH
1
z (x, y)

]
= 0, ρ =

√
x2 + y2 →∞ (2.66)

and

H T
z (x, y) =O ( |x| 1

2 ),
∂

∂y
H T

z (x, y) =O ( |x|− 1
2 ), |x|→ 0 (2.67)

respectively.

2.7.2 FORMULATION OF WIENER-HOPF EQUATION

Since Helmholtz equation in cold plasma is satisfied by the field H 1
z (x, y) in the

region x ∈ (−∞,∞) and y ∈ (b,∞) which gives

∂2

∂x2
H 1

z (x, y)+ ∂2

∂y2
H 1

z (x, y)+k2
effH

1
z (x, y) = 0. (2.68)

The Fourier transform of equation (2.68) with respect to x yields

[
∂2

∂y2
+ (k2

eff−α2)

]
F (α, y) = 0, (2.69)

where
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F (α, y) =
∞̂

−∞
H 1

z (x, y)e ιαxd x. (2.70)

Using additive decomposition theorem F (α, y) can be decomposed as

F (α, y) = F−(α, y)+F+(α, y), (2.71)

where

F±(α, y) =±
±∞̂

0

H 1
z (x, y)e ιαd x. (2.72)

It is assumed that F+(α, y) and F−(α, y) are regular functions of α in the half-plane

Im(α) > Im(keff cosθ0) and Im(α) < Im(keff), respectively.

The general solution of equation (2.69) satisfying the radiation condition repre-

sented by equations (2.66) yields

F (α, y) = A(α)e ιL(α)(y−b), (2.73)

where

L(α) =
√

k2
eff

−α2. (2.74)

The square-root function L(α) =
√

k2
eff

−α2 is defined in the complex α-plane

with branch cuts along α= keff to α= keff+ ι∞ and α=−keff to α=−keff− ι∞ such

that L(0) = keff as shown in the Fig. (2.4).
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Branch Point

Branch Point
×

×
Re(α)

Im(α)

Cold Plasma

FIGURE 2.4. The depiction of Branch cuts
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To find the unknown coefficient A(α), we can use the transformed form of bound-

ary condition represented by equation (2.61) which gives

A(α) = keff

L(α)
R+(α)χ(η,α), (2.75)

with

R+(α) = F+(α,b)+ η

ιkeff

′
F+(α,b) (2.76)

and

χ(η,α) = L(α)

ηL(α)+keff
, (2.77)

where the prime sign in equation (2.75) denotes the derivative with respect to y .

Replacing equations (2.71) and (2.75) in equation (2.73), one gets

F−(α, y)+F+(α, y) = keff

L(α)
R+(α)χ(η,α)e ιL(α)(y−b). (2.78)

In the region x ∈ (0,∞) and y ∈ (a,b), H 2
z (x, y) satisfies the Helmholtz equation in

cold plasma gives

∂2

∂x2
H 2

z (x, y)+ ∂2

∂y2
H 2

z (x, y)+k2
effH

2
z (x, y) = 0. (2.79)

On multiplying equation (2.79) by e ιαx and integrating with respect to x from 0

to ∞, one obtains [
∂2

∂y2
+L2(α)

]
G+(α, y) = f(y), (2.80)

with

f(y) = ∂

∂x
H 2

z (0, y) (2.81)

and G+(α, y) is defined by

G+(α, y) =
∞̂

0

H 2
z (x, y)e ιαxd x, (2.82)
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which is a regular function in the half-plane.

The general solution of the non homogenous differential equation (2.80) can be

obtained by using the method of variation of parameter as follow

G+(α, y) = B(α)cosL(α)y +C (α)sinL(α)y + 1

L(α)

ŷ

0

f(t )sinL(α)(y − t )d t , (2.83)

where B(α) and C (α) are the unknown spectral coefficients and L(α) is defined in

equation (2.74).

Combining the transformed form of the boundary condition represented by the

equation (2.62) and equation (2.83) gives

G+(α, y) = B(α)cosL(α)y + 1

L(α)

ŷ

0

f(t )sinL(α)(y − t )d t . (2.84)

In the above expression B(α) can be obtained by adding the transformed form of

equations (2.64) and η
ιkeff

time of (2.65) as under

B(α) = R+(α)

W (α)
+ 1

W (α)

b̂

0

f(t )

(
sinL(α)(b − t )

L(α)
+ η

ιkeff
cosL(α)(b − t )

)
d t , (2.85)

where

W (α) = cosL(α)b − η

ιkeff
L(α)sinL(α)b. (2.86)

Using equation (2.85) in equation (2.84), one gets

G+(α, y) =cosL(α)y

W (α)

R+(α)−
b̂

0

f(t )

(
sinL(α)(b − t )

L(α)
+ η

ιkeff
cosL(α)(b − t )

)
d t


+ 1

L(α)

ŷ

0

f(t )sinL(α)(b − t )d t . (2.87)

The left-hand side (i.e., G+(α, y)) of the equation (2.87) is analytic in the upper

half-plane Im(α) > Im(keff cosθ0). However, the analyticity of the right-hand side
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is violated by the appearance of simple poles lying at the zeros of W (α), i.e.,

α=±αm satisfying

W (±αm) = 0, Im(αm) > Im(ke f f ), m = 1,2,3.... (2.88)

The poles in the equation (2.87) can be removed by using the condition that the

residues of these poles are zero. Then from equation (2.87), it is found that

R+(αm) =Dm

(
sinLmb

Lm
+ η

ιkeff
cosLmb

)
fm , (2.89)

where fm is defined by

f(t ) =
∞∑

n=1
fm cosLm t , (2.90)

with

Lm =
√

k2
eff

−α2
m (2.91)

and

Dm = Lm sinLmb

2αm

∂

∂α
W (αm). (2.92)

Combining equations (2.87) and (2.78) with the help of the transformed domain

of continuity relation given by equation (2.65), one can obtain

ιkeffR+(α)χ(η,α)− ′
F−(α,b) =− 2keff sinθ0e−ιkeffb sinθ0

(ηsinθ0 +1)(α−keff cosθ0)

+ L(α)sinL(α)b

W (α)

R+(α)−
b̂

0

f(t )

(
sinL(α)(b − t )

L(α)
+ η

ιkeff
cosL(α)(b − t )

)
d t


+

b̂

0

f(t )cosL(α)(b − t )d t . (2.93)

After simplification the above expression can take the form
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ιkeffR+(α)χ(η,α)

N (α)
− ′

F−(α,b) =− 2keff sinθ0e−ιkeffb sinθ0

(ηsinθ0 +1)(α−keff cosθ0)

+ 1

W (α)

b̂

0

f(t )cosL(α)td t , (2.94)

where

N (α) =W (α)e ιL(α)b . (2.95)

Using equation (2.90) in equation (2.94), one obtains the required Wiener-Hopf

equation valid in the strip Im(−keff) < Im(α) < Im(keff) as follows:

ιkeffχ(η,α)R+(α)

N (α)
− ′

F−(α,b) =− 2keff sinθ0e−ιkeffb sinθ0

(η2 sinθ0 +1)(α−keff cosθ0)

+
∞∑

m=1

Lm sinLmbfm

α2 −α2
m

. (2.96)

2.7.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation, the kernel functions N (α) and χ(η,α) in

equation (2.96) can be factorized by using the known results as following [8]:

N+(α) = [
coskeffb + ιηsinkeffb

] 1
2

×exp

[
L(α)b

π
ln

(
α+ ιL(α)

keff

)
+ ιαb

π

(
1−C + ln

[
2π

keffb

]
+ ιπ

2

)] ∞∏
m=1

(
1+ α

αm

)
e
ιαb
mπ , (2.97)

and

N−(α) =N+(−α). (2.98)

In equation (2.97), C denotes the Euler-Mascheroni constant given by

C = 0.5772156649.... Similarly the factor of χ(η,α) can be expressed in the form of

the Maliuzhinetz’s function [82] as follows
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χ−(η,keff cosθ) =
4[Mπ(3π/2−θ−ψ)Mπ(π/2−θ+ψ)]2 sin(θ/2)

p
η[Mπ(π/2)]4 ×

(
1+p

2cos[ 3π/2−θ−ψ
2 ]

)(
1+p

2cos[π/2−θ+ψ
2 ]

) (2.99)

and

χ+(η,keff cosθ) =χ−(η,−keff cosθ), (2.100)

with Mπ(z) and ψ are defined by

Mπ(z) = exp

− 1

8π

ẑ

0

πsinu −2
p

2πsin(u/2)+2u

cosu
du

 (2.101)

and

η= sin−1
(

1

ψ

)
. (2.102)

Now, multiplying the Wiener-Hopf equation (2.96) on both sides with N−(α)
χ−(η,α) , one

obtains

ιkeffχ+(η,α)R+(α)

N+(α)
− N−(α)

χ−(η,α)

′
F−(α,b) =− 2keff sinθ0e−ιkeffb sinθ0N−(α)

(ηsinθ0 +1)(α−keff cosθ0)χ−(η,α)

+
∞∑

m=1

Lm sinLmbfmN−(α)

(α2 −α2
m)χ−(η,α)

. (2.103)

With the help of Cauchy’s integral formula the terms at right-hand side of the

equation (2.103) can be decomposed as

2keff sinθ0e−ιkeffb sinθ0N−(α)

(ηsinθ0 +1)(α−keff cosθ0)χ−(η2,α)

= 2keff sinθ0e−ιkeffb sinθ0

(ηsinθ0 +1)(α−keff cosθ0)

[
N−(α)

χ−(η,α)
− N−(keff cosθ0)

χ−(η,keff cosθ0)

]
+ 2keff sinθ0e−ιkeffb sinθ0N−(keff cosθ0)

(ηsinθ0 +1)(α−keff cosθ0)χ−(η,keff cosθ0)
(2.104)
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and

∞∑
m=1

Lm sinLmbN−(α)fm

(α2 −α2
m)χ−(η,α)

=
∞∑

m=1

Lm sinLmbfm

(α+αm)

×
[

N−(α)

(α−αm)χ−(η,α)
− N+(αm)

2αmχ+(η,αm)

]
+

∞∑
m=1

Lm sinLmbN+(αm)fm

2αm(α+αm)χ+(η,αm)
. (2.105)

Now using equations (2.104) and (2.105) in equation (2.103), then placing the

terms which are analytic in the upper half-plane (Im(α) >−keff)and those which

analytic in lower half-plane (Im(α) < keff) at the right-hand side,which yields

ιkeffχ+(η,α)R+(α)

N+(α)
+ 2keff sinθ0e−ιkeffb sinθ0N−(keff cosθ0)

(ηsinθ0 +1)(α−keff cosθ0)χ−(η,keff cosθ0)

−
∞∑

m=1

Lm sinLmbN+(αm)fm

2αm(α+αm)χ+(η,αm)
= N−(α)

χ−(η,α)

′
F−(α,b)

− 2keff sinθ0e−ιkeffb sinθ0

(ηsinθ0 +1)(α−keff cosθ0)

[
N−(α)

χ−(η,α)
− N−(keff cosθ0)

χ−(η,keff cosθ0)

]
+

∞∑
m=1

Lm sinLmbfm

(α+αm)

[
N−(α)

(α−αm)χ−(η,α)
− N+(αm)

2αmχ+(η,αm)

]
. (2.106)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle complying the extended Liouville’s theorem as under

χ+(η,α)R+(α)

N+(α)
= 2ιsinθ0e−ιkeffb sinθ0N−(keff cosθ0)

(ηsinθ0 +1)(α−keff cosθ0)χ−(η,keff cosθ0)

−
∞∑

m=1

ιLm sinLmbN+(αm)fm

2keffαm(α+αm)χ+(η,αm)
. (2.107)

Placing equation (2.89) into equation (2.107), gives

Dnχ+(η,αn)

N+(αn)

(
sinLnb

Ln
+ η

ιkeff
cosLnb

)
fn

= 2ιsinθ0e−ιkeffb sinθ0N−(keff cosθ0)

(ηsinθ0 +1)(αn −keff cosθ0)χ−(η,keff cosθ0)

−
∞∑

m=1

ιLm sinLmbN+(αm)fm

2keffαm(αn +αm)χ+(η,αm)
. (2.108)



32 CHAPTER 2

The above expression is system of infinite number of equation and these system

of equation can be solved numerically after truncating after N terms.

2.7.4 THE DIFFRACTED FIELD

The required diffracted field H 1
z (x, y) can be acquired by using the inverse Fourier

transform of F (α, y). Thus from equation (2.78), one can get

H 1
z (x, y) = 1

2π

ˆ

L

keffχ(η,α)R+(α)

L(α)
e ιL(α)(y−b)e−ιαxdα. (2.109)

Using the replacement of the function χ(η,α) and the variables α = −keff cos t ,

x = ρ cosθ and y = ρ sinθ in the equation (2.109), one obtains

H 1
z (ρ,θ) = 1

2π

ˆ

L

R+(−keff cos t )

1+ηsin t
e−ιkeffb sin t+ιkeffρ cos(t−θ)keff sin td t . (2.110)

The asymptotic evaluation of the integral in the equation (2.110) can be obtained

via saddle-point technique. Here, saddle-point rests at t = θ which gives

H 1
z (ρ,θ) = sinθe−ιk

√
(ε2

1−ε2
2)/ε1ρ+ ι3π

4 −ιk
√

(ε2
1−ε2

2)/ε1b sinθ

p
2π

√
kρ

√
(ε2

1 −ε2
2)/ε1(1+ηsinθ)

×

 2ιsinθ0e−ιk
√

(ε2
1−ε2

2)/ε1b sinθ0N−(k
√

(ε2
1 −ε2

2)/ε1 cosθ0)N−(k
√

(ε2
1 −ε2

2)/ε1 cosθ)

(ηsinθ+1)(cosθ+cosθ0)χ−(η,k
√

(ε2
1 −ε2

2)/ε1 cosθ0)χ−(η,k
√

(ε2
1 −ε2

2)/ε1 cosθ)

−
∞∑

m=1

ιLm sinLmbN+(αm)N−(k
√

(ε2
1 −ε2

2)/ε1 cosθ)fm

2k
√

(ε2
1 −ε2

2)/ε1αm(αm −k
√

(ε2
1 −ε2

2)/ε1 cosθ)χ+(η,αm)χ−(η,k
√

(ε2
1 −ε2

2)/ε1 cosθ)

 .

(2.111)

2.7.5 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have analyzed the numerical results for various physical pa-

rameters of interest by plotting graphs. Fig. (2.5) depicts the variation in the
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diffracted field amplitude versus the truncation number "N ". It is apparent that

the effect of the truncation number is negligible for N ≥ 40. Hence, the system

containing infinite number of algebraic equations represented by the equation

(2.108) can be managed to deal as finite. Where as the Fig. (2.6) has been plot-

ted by varying the plate separations "b". The amplitude of the diffracted field

decreases with increase in b. Fig. (2.7) depicts the variations of diffracted fields

versus incident angle θ0 (0o ≤ θ0 ≤ 90o). It is interesting to note that the value of

diffracted field amplitude lies at 90o when θ0 = 90o . Where as this peak values

moves to 120o and 150o for θ0 = 60o and θ0 = 30o , respectively. As long as the an-

gle of incident increases the center of diffracted field amplitude shifted towards

900. Fig. (2.8) shows the variation in the diffracted field amplitude versus the

impedance "η". The variation in the diffracted field amplitude versus effect of

cold plasma permittivity values for ε1 and ε2 have been analyzed in Figs. (2.9)

and (2.10), respectively. Here it is noted that the amplitude of the diffracted field

decreases by increasing the value of ε1 where as slightly increases by increasing

ε2 but the effect of ε2 is negligible as compare with ε1.
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FIGURE 2.5. Variation in the diffracted field amplitude versus "N " at k = 5, θ0 = 90o , θ = 60o ,
η= 0.3ι, ε1 = 0.8, ε2 = 0.1 and b = 0.2λ.
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FIGURE 2.8. Variation in the diffracted field amplitude versus "η" at θ0 = 900, k = 5, ε1 = 0.8,
ε2 = 0.1 and b = 0.2λ.

0 30 60 90 120 150 180

-100

-50

0

50

Observation angle Θ HdegL

D
iff

ra
ct

ed
fie

ld
am

pl
itu

de
HdB

L

Ε1=0.5 Ε1=0.7 Ε1=0.9
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3 EFFECT OF COLD PLASMA

PERMITTIVITY ON SCATTERING OF

E-POLARIZED PLANE WAVE BY AN

IMPEDANCE LOADED STEP

In this chapter, the scattering of E-polarized plane wave by two half-planes com-

bined by a step of hight b is discussed. These types of geometries play a vital role

in diffraction theory and many problems in science and engineering. Initially,

Johansen [84] considered the problem of diffraction by two half-planes having

same surfaces impedances combined by a step of hight h. After that Büyükaksoy

and Birbir [85] studied the similar geometry for different impedances of the dif-

ferent surfaces. Yener and Serbest [11] considered the diffraction phenomenon in

cold plasma considering by a single surface impedance half-plane. Here, in this

chapter two half-planes of different surface impedances joined by rigid vertical

step of hight b located in cold plasma is considered.

The contents of this chapter are organized in the following order. The boundary-

valued problem is developed in Section (3.1) whereas Section (3.2) is dedicated to

the formulation of Wiener-Hopf equation. The solution of Wiener-Hopf equation

is obtained in Section (3.3). The diffracted field expression is shown in Section

(3.4). Few numerical results for different parameters are plotted and discussed

in the last Section (3.5).
37
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3.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD

PLASMA

Here, consider the scattering of a plane wave making an incident angle θ0 in the

region designed by two half-planes S1 define by {(x, y, z)| x ∈ (−∞,0), y = 0, z ∈
(−∞,∞)} and S2 defined by {(x, y, z)| x ∈ (0,∞), y = b, z ∈ (−∞,∞)}. The top faces

of the half-planes S1 and S2 are characterized by the impedances Z1 and Z2, re-

spectively. While vertical step surface is rigid as shown in Fig. (3.1):
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y

x
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FIGURE 3.1. Geometrical configuration of the waveguide structure in cold plasma

The total field takes the form as under

H T
z (x, y) =

 H 1
z (x, y)+H i nc

z (x, y)+H r e f
z (x, y), y ∈ (b,∞)

H 2
z (x, y), y ∈ (a,b)

(3.1)

where H i nc
z (x, y) and H r e f

z (x, y) stand for the incident and reflected fields, respec-

tively, given by

H i nc
z (x, y) = e−ιkeff(x cosθ0+y sinθ0) (3.2)

and

H r e f
z (x, y) =−1−η2 sinθ0

1+η2 sinθ0
e−ιkeff(x cosθ0−(y−2b)sinθ0), (3.3)

with

keff = k
√

(ε2
1 −ε2

2)/ε1. (3.4)



3.2. FORMULATION OF WIENER-HOPF EQUATION 39

{H j
z ( j = 1,2)} satisfying the Helmholtz equation in cold plasma, i.e.,

[
∂2

∂x2
+ ∂2

∂y2
+k2

eff

][
H j

z (x, y)
]
= 0, (3.5)

with the following corresponding boundary conditions and continuity relations

(
1+ η2

ιkeff

∂

∂y

)
H 1

z (x,b) = 0, x ∈ (−∞,0) (3.6)

(
1+ η1

ιkeff

∂

∂y

)
H 2

z (x,0) = 0, x ∈ (0,∞) (3.7)

∂

∂x
H 2

z (0, y) = 0, y ∈ (0,b) (3.8)

H 1
z (x,b)+H i nc

z (x,b)+H r e f
z (x,b) = H 2

z (x,b), x ∈ (0,∞) (3.9)

∂

∂y
H 1

z (x,b)+ ∂

∂y
H i nc

z (x,b)+ ∂

∂y
H r e f

z (x,b) = ∂

∂y
H 2

z (x,b). x ∈ (0,∞) (3.10)

The radiation and edge conditions for the uniqueness of the boundary-valued

problem defined by the set of equations (3.5) - (3.10) are given by

p
ρ

[
∂

∂ρ
H 1

z (x, y)− ιkeffH
1
z (x, y)

]
= 0, ρ =

√
x2 + y2 →∞ (3.11)

and
H T

z (x, y) =O ( |x| 1
2 ),

∂

∂y
H T

z (x, y) =O ( |x|− 1
2 ), |x|→ 0 (3.12)

respectively.

3.2 FORMULATION OF WIENER-HOPF EQUATION

The Fourier transform of the Helmholtz equation in cold plasma which is satis-

fied by the field H 1
z (x, y) in the domain x ∈ (−∞,∞) and y ∈ (b,∞) leads to

[
d 2

d y2
+ (k2

eff−α2)

]
F (α, y) = 0, (3.13)

where F (α, y) is defined earlier.
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Using the radiation condition represented by equation (3.11), the solution of

equation (3.13) gives

F (α, y) = A1(α)e ιL(α)(y−b), (3.14)

where

L(α) =
√

k2
eff

−α2 (3.15)

and A1(α) is the unknown spectral coefficient.

The square-root function L(α) =
√

k2
eff

−α2 represents the branch cuts along α =
keff to α= keff+ ι∞ and α=−keff to α=−keff− ι∞ such that L(0) = keff .

To find A1(α), using the transformed form of the boundary condition represented

by equation (3.6), one obtains

A1(α) = keffR
1+(α)

keff+η2L(α)
, (3.16)

with

R1
+(α) = F+(α,b)+ η2

ιkeff

′
F+(α,b), (3.17)

where the prime sign in equation (3.17) represents the derivative with respect

to y . Using the additive decomposition theorem and placing equation (3.16) in

equation (3.14), one gets

F−(α, y)+F+(α, y) = keffR
1+(α)

keff+η2L(α)
e ιL(α)(y−b). (3.18)

The derivative of equation (3.18) with respect to y at y = b takes the form

′
F+(α,b) = ιkeffL(α)R+(α)

keff+η2L(α)
− ′

F−(α,b). (3.19)

As the Helmholtz equation in cold plasma is satisfied by field H 2
z (x, y) in equation

(3.5) in the domain x ∈ (0,∞) and y ∈ (a,b), multiplying this equation by e ιαx and
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integrating the resultant equation with respect to x from 0 to ∞ leads to

[
d 2

d y2
−L2(α)

]
G+(α, y) =−ιαg(y), (3.20)

where

g(y) = H 2
z (0, y) (3.21)

and G+(α, y) defined by

G+(α, y) =
∞̂

0

H 2
z (x, y)e ιαxd x, (3.22)

is a regular function in the half-plane.

Owing the method of variation of parameter the solution of non homogenous

differential equation (3.20) gives

G+(α, y) =C1(α)cosL(α)y +C2(α)sinL(α)y − ια

L(α)

ŷ

0

g(t )sinL(α)(b − t )d t , (3.23)

where C1(α) and C2(α) are the unknown spectral coefficients.

To find C1(α) one can apply the transformed form of the boundary condition

represented by the equation (3.7), to get

C1(α) =− η1

ιkeff
L(α)C2(α). (3.24)

Substituting equation (3.24) in equation (3.23) yields

G+(α, y) =
[

sinL(α)y − η1

ιkeff
L(α)cosL(α)y

]
C2(α)

− ια

L(α)

ŷ

0

g(t )sinL(α)(b − t )d t . (3.25)
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C2(α) can be obtained by adding the transformed form of equations (3.9) and η1
ιkeff

time of (3.10)

C2(α) = R1+(α)

W1(α)
+ 1

W1(α)

b̂

0

f(t )

(
sinL(α)(b − t )

L(α)
+ η1

ιkeff
cosL(α)(b − t )

)
d t , (3.26)

where

W1(α) =
(
η2 −η1

ιkeff

)
cosL(α)b +

(
1− η1η2

k2
eff

L2(α)

)
sinL(α)b

L(α)
. (3.27)

Using equation (3.26) in equation (3.25), one gets

G+(α, y) =
sinL(α)y − η1

ιkeff
L(α)cosL(α)y

L(α)W1(α)

×

R1
+(α)+ ια

b̂

0

g(t )

(
sinL(α)(b − t )

L(α)
+ η2

ιkeff
cosL(α)(b − t )

)
d t


− ια

L(α)

ŷ

0

g(t )sinL(α)(b − t )d t . (3.28)

The left-hand side (i.e., G+(α, y)) of the equation (3.28) is analytic in the upper

half-plane Im(α) > Im(keff cosθ0). However, the analyticity of the right-hand side

is desecrated by the appearance of simple poles lying at the zeros of W1(α), i.e.,

α=±αm satisfying

W1(±αm) = 0, Im(αm) > Im(keff), m = 1,2,3.... (3.29)

The poles in the equation (3.28) can be removed by applying the condition that

the residues of these poles are zero. Then from equation (3.28), it is found that

R1
+(αm) =D1

m

(
η2

ιke f f
Lm sinLmb −cosLmb

)
gm , (3.30)
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where gm is denoted by

gm = 1

D1
m

b̂

0

g(t )

(
sinLm t

Lm
− η1

ιkeff
cosLm t

)
d t , (3.31)

with

Lm =
√

k2
eff

−α2
m (3.32)

and

D1
m = ιLm

2

(
cosLmb

Lm
+ η1

ιkeff
sinLmb

)
d

dα
W1(αm). (3.33)

Hence, considering equations (3.19) and (3.28) in the transformed domain of con-

tinuity relation given by equation (3.10) together, one can write

ιkeffR
1
+(α)χ(η2,α)− ′

F−(α,b) =− 2keff sinθ0e−ιkeffb sinθ0

(η2 sinθ0 +1)(α−keff cosθ0)

+
cosLb + η1

ιkeff
LsinLb

W1(α)

R1
+(α)+ ια

b̂

0

g(t )

(
sinL(b − t )

L(α)
+ η2

ιkeff
cosL(b − t )

)
d t


− ια

b̂

0

g(t )cosL(b − t )d t , (3.34)

where

χ(η j ,α) = L(α)

η jL(α)+keff
. (3.35)

After simplification, equation (3.34) takes the form

χ(η2,α)R1+(α)

χ(η1,α)N 1(α)
+ ′

F−(α,b) = 2keff sinθ0e−ιkeffb sinθ0

(η2 sinθ0 +1)(α−keff cosθ0)

+ ια

W1(α)

b̂

0

g(t )

(
sinL(α)t

L(α)
− η1

ιkeff
cosL(α)t

)
d t , (3.36)

where

N 1(α) =W1(α)e ιL(α)b . (3.37)
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Owing to equation (3.31), g(t ) can be expanded into a series of eigen-functions as

under

g(t ) =
∞∑

m=1
gm

(
sinLm t

Lm
− η1

ιkeff
cosLm t

)
. (3.38)

Using equation (3.38) in equation (3.36), one obtains the required Wiener-Hopf

equation valid in the strip Im(−keff) < Im(α) < Im(keff) as follows:

χ(η2,α)R1+(α)

χ(η1,α)N 1(α)
+ ′

F−(α,b) = 2keff sinθ0e−ιkeffb sinθ0

(η2 sinθ0 +1)(α−keff cosθ0)

−
∞∑

m=1

ιαLmgm

α2 −α2
m

(
cosLmb

Lm
+ η1

ιke f f
sinLmb

)
. (3.39)

3.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation the kernel functions N 1(α) and χ(η j ,α) in

equation (3.39) can be factorized by applying the known results as following:

N 1
+ (α) =

[(
η2 −η1

ιkeff

)
coskeffb + (1−η1η2)

sinkeffb

keff

] 1
2

×exp

[
L(α)b

π
ln

(
α+ ιL(α)

keff

)
+ ιαb

π

(
1−C + ln

[
2π

keffb

]
+ ιπ

2

)] ∞∏
m=1

(
1+ α

αm

)
e
ιαb
mπ , (3.40)

and

N 1
− (α) =N 1

+ (−α). (3.41)

Similarly the factor of χ(η j ,α) can be expressed in form of the Maliuzhinetz’s

function as discussed in earlier.

Now, multiplying the Wiener-Hopf equation (3.39) on both sides by χ−(η1,α)N 1− (α)
χ−(η2,α) ,

one obtains
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χ+(η2,α)R1+(α)

N 1+ (α)χ+(η1,α)
+ χ−(η1,α)N 1− (α)

χ−(η2,α)

′
F−(α,b)

= 2keff sinθ0e−ιkeffb sinθ0χ−(η1,α)N 1− (α)

(η2 sinθ0 +1)(α−keff cosθ0)χ−(η2,α)

−
∞∑

m=1

ιαgmLmχ−(η1,α)N 1− (α)

(α2 −α2
m)χ−(η2,α)

(
cosLmb

Lm
+ η1

ιke f f
sinLmb

)
. (3.42)

With the aid of Cauchy’s integral formula the terms on right-hand of the equation

(3.42) can be decomposed as

2keff sinθ0e−ιkeffb sinθ0χ−(η1,α)N 1− (α)

(η2 sinθ0 +1)(α−keff cosθ0)χ−(η2,α)
= 2keff sinθ0e−ιkeffb sinθ0

(η2 sinθ0 +1)(α−keff cosθ0)

×
[
χ−(η1,α)N 1− (α)

χ−(η2,α)
− χ−(η1,keff cosθ0)N 1− (keff cosθ0)

χ−(η2,keff cosθ0)

]

+ 2keff sinθ0e−ιkeffb sinθ0χ−(η4,keff cosθ0)N 1− (keff cosθ0)

(η1 sinθ0 +1)(α−keff cosθ0)χ−(η2,keff cosθ0)
(3.43)

and

∞∑
m=1

ιαLmgmχ−(η1,α)N 1− (α)

(α2 −α2
m)χ−(η2,α)

(
cosLmb

Lm
+ η1

ιke f f
sinLmb

)
=

∞∑
m=1

ιLm

(α+αm)

(
cosLmb

Lm
+ η2

ιke f f
sinLmb

)
×

[
αgmχ−(η1,α)N 1− (α)

(α−αm)χ−(η2,α)
− αmgmχ+(η1,αm)N 1+ (αm)

2αmχ+(η2,αm)

]
+

∞∑
m=1

ιLmαmgmχ+(η1,αm)N 1+ (αm))

2αmχ+(η1,αm)(α+αm)

(
cosLmb

Lm
+ η1

ιke f f
sinLmb

)
. (3.44)

On using equations (3.43) and (3.44) in equation (3.42), and then separating the

terms which are analytic in the upper half-plane (Im(α) >−keff) at left-hand side

and those which are analytic in lower half-plane (Im(α) < keff) at the right-hand
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side yields

χ+(η2,α)R1+(α)

N 1+ (α)χ+(η1,α)
− 2keff sinθ0e−ιkeffb sinθ0χ−(η1,keff cosθ0)N 1− (keff cosθ0)

(η2 sinθ0 +1)(α−keff cosθ0)χ−(η2,keff cosθ0)

+
∞∑

m=1

ιαmLmgmχ+(η1,αm)N 1+ (αm))

2αmχ+(η2,αm)(α+αm)

(
cosLmb

Lm
+ η1

ιkeff sinLmb

)

=−χ−(η1,α)N 1− (α)

χ−(η2,α)

′
F−(α,b)+ 2keff sinθ0e−ιkeffb sinθ0

(η2 sinθ0 +1)(α−keff cosθ0)

×
[
χ−(η1,α)N 1− (α)

χ−(η2,α)
− χ−(η1,keff cosθ0)N 1− (keff cosθ0)

χ−(η2,keff cosθ0)

]

−
∞∑

m=1

ιLm

(α+αm)

(
cosLmb

Lm
+ η1

ιke f f
sinLmb

)
×

[
αgmχ−(η1,α)N 1− (α)

(α−αm)χ−(η2,α)
− αmgmχ+(η1,αm)N 1+ (αm)

2αmχ+(η2,αm)

]
. (3.45)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle complying the extended Liouville’s theorem as under

χ+(η2,α)R1+(α)

χ+(η1,α)N 1+ (α)
= 2keff sinθ0e−ιkeffb sinθ0χ−(η1,keff cosθ0)N 1− (keff cosθ0)

(η2 sinθ0 +1)(α−keff cosθ0)χ−(η2,keff cosθ0)

−
∞∑

m=1

ιαmLmgm χ+(η1,αm)N 1+ (αm)

2αm(α+αm)χ+(η2,αm)

(
cosLmb

Lm
+ η1

ιkeff
sinLmb

)
. (3.46)

While placing equation (3.30) in equation (3.46) at α=αm , one can obtain

χ+(η2,αn)D1
n

χ+(η1,αn)N 1+ (αn)

(
η2

ιke f f
Ln sinLnb −cosLnb

)
gn

= 2keff sinθ0e−ιkeffb sinθ0χ−(η1,keff cosθ0)N 1− (keff cosθ0)

(η2 sinθ0 +1)(αn −keff cosθ0)χ−(η2,keff cosθ0)

−
∞∑

m=1

ιαmLmgmχ+(η1,αm)N 1+ (αm)

2αm(αn +αm)χ+(η2,αm)

(
cosLmb

Lm
+ η1

ιkeff
sinLmb

)
. (3.47)

The above expression is the system of infinite number of algebraic equations that

can be solved numerically by truncating after N terms.
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3.4 THE DIFFRACTED FIELD

The diffracted field H 1
z (x, y) is acquired by taking the inverse Fourier transform

of F (α, y). On using equation (3.18), one gets

H 1
z (x, y) = 1

2π

ˆ

L

keffR
1+(α)

keff+η2L(α)
e ιL(α)(y−b)e−ιαxdα. (3.48)

Now placing the variables α=−keff cos t , x = ρ cosθ and y = ρ sinθ in the equation

(3.48) gives

H 1
z (ρ,θ) = 1

2π

ˆ

L

R1+(−keff cos t )

1+η2 sin t
e−ιkeffb sin t+ιkeffρ cos(t−θ)keff sin td t . (3.49)

The asymptotic evaluation of the integral in the equation (3.49) can be obtained

via saddle-point technique. Here, saddle-point rests at t = θ, which gives

H 1
z (ρ,θ) = keff sinθR1+(−keff cosθ)√

2πkeffρ(1+η2 sinθ)
e ιkeffρ−

ιπ
4 −ιkeffb sinθ. (3.50)

On taking into account equations (3.4) and (3.46), the diffracted field takes the

form

H 1
z (ρ,θ) =−

k
√

(ε2
1 −ε2

2)/ε1 sinθe ιk
√

(ε2
1−ε2

2)/ε1ρ− ιπ
4 −ιk

√
(ε2

1−ε2
2)/ε1b sinθ√

2πkρ
√

(ε2
1 −ε2

2)/ε1(1+η1 sinθ)

×


2k

√
(ε2

1 −ε2
2)/ε1 sinθ0e−ιk

√
(ε2

1−ε2
2)/ε1b sinθ0χ−(η1,keff cosθ0)

(η2 sinθ0 +1)(k
√

(ε2
1 −ε2

2)/ε1 cosθ+k
√

(ε2
1 −ε2

2)/ε1 cosθ0)

×
N 1− (k

√
(ε2

1 −ε2
2)/ε1 cosθ0)χ−(η1,k

√
(ε2

1 −ε2
2)/ε1 cosθ)N 1− (k

√
(ε2

1 −ε2
2)/ε1 cosθ)

χ−(η2,k
√

(ε2
1 −ε2

2)/ε1 cosθ0)χ−(η2,k
√

(ε2
1 −ε2

2)/ε1 cosθ)


−

∞∑
m=1

 ιαmLmgm χ+(η1,αm)N 1+ (αm)χ−(η1,k
√

(ε2
1 −ε2

2)/ε1 cosθ)

2αm(k
√

(ε2
1 −ε2

2)/ε1 cosθ−αm)χ+(η2,αm))


×

N 1− (k
√

(ε2
1 −ε2

2)/ε1 cosθ)

χ−(η2,k
√

(ε2
1 −ε2

2)/ε1 cosθ

cosLmb

Lm
+ η1

ιk
√

(ε2
1 −ε2

2)/ε1

sinLmb


 . (3.51)
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3.5 COMPUTATIONAL RESULTS AND DISCUSSION

This section is devoted to analyze the numerical results for various physical

parameters of interest. Fig. (3.2) shows the variation in the diffracted field am-

plitude versus the truncation number "N ". It is clear that the effect of the trun-

cation number is negligible for N ≥ 15. Hence, the infinite system of algebraic

equations in equation (3.47) can be managed to deal as finite. Fig. (3.3) explores

the effect of separation "b" between the parallel plates on the diffracted field am-

plitude which shows that the diffracted field amplitude also depend upon the

plate separation. While Fig. (3.4) represents the variation in diffracted field am-

plitude versus the incident angle "θ0" (0o ≤ θ0 ≤ 90o). It is interesting to note that

the value of diffracted field amplitude lies at 90o when θ0 = 90o . Whereas this

peak values moves to 120o and 150o for θ0 = 60o and θ0 = 30o , respectively. The

effect of wall impedance η1 on the amplitude of the diffracted field is shown in

Fig. (3.5). Fig. (3.6) shows the variation in the diffracted field amplitude with

wall impedance η2. The effect of cold plasma permittivity has been analyzed in

Figs. (3.7) and (3.8). Here, we have found that the increase in cold plasma per-

mittivity decreases the diffracted field amplitude. In other words the diffracted

field amplitude decreases with increasing ion number density in cold plasma or

by decreasing plasma frequency. Here, in this problem it is observed that the

diffracted field is highly effected with ε1 while slightly with ε2. Also it is noted

that the diffracted field amplitude decreases with increase in permittivity value

ε1 while in case of ε2 diffracted field amplitude decreases with increasing ε2.
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FIGURE 3.2. Variation in the diffracted field amplitude versus "N" at k = 5, θ0 = 90o , θ = 60o ,
η1 = 0.3ι, η2 = 0.5ι, ε1 = 0.8, ε2 = 0.1 and b = 0.2λ.
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FIGURE 3.3. Variation in the diffracted field amplitude versus "b" at k = 5, θ0 = 90o , η1 = 0.7ι,
η2 = 0.5ι, ε1 = 0.8 and ε2 = 0.1.
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FIGURE 3.4. Variation in the diffracted field amplitude versus "θ0" at k = 5, η1 = 0.7ι, η2 = 0.5ι,
ε1 = 0.8, ε2 = 0.1 and b = 0.2λ.
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FIGURE 3.5. Variation in the diffracted field amplitude versus "η1" at θ0 = 900, k = 5, η2 = 0.5ι,
ε1 = 0.8, ε2 = 0.1 and b = 0.2λ.
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FIGURE 3.6. Variation in the diffracted field amplitude versus "η2" at k = 5, θ0 = 900, η1 = 0.3ι,
ε1 = 0.8, ε2 = 0.1 and b = 0.2λ.
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4 E-POLARIZED PLANE WAVE

DIFFRACTION BY AN IMPEDANCE

LOADED PARALLEL-PLATE

WAVEGUIDE LOCATED IN COLD

PLASMA

This chapter comprises the consideration of the diffraction of E-polarized plane

wave by a waveguide designed by an infinite plane and a parallel half-plane

having a different surface impedances in cold plasma. It plays an important role

in diffraction theory and many problems in science and engineering. Initially,

Büyükaksoy and Cinar [70] studied the problem of diffraction of a plane wave

by a waveguide designed by an infinite plane and half-plane. The upper faces of

the left and right part of the plane having different surface impedances. While

the half-plane is parallel to the plane and perfectly conducting. This problem

was solved with the help of matrix Wiener-Hopf equations. After that Cinar

and Büyükaksoy [12] considered the same geometry but for different surface

impedances of the half-plane instead of perfectly conducting half-plane. The so-

lution of the problem was obtained by a hybrid method. Here, in this chapter the

same geometry is considered in cold plasma.

This chapter is compiled with the subsequent order. Section (4.1) is dedicated to

formulate boundary-valued problem governing the wave propagation in waveg-
53
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uide located in cold plasma. Section (4.2) contains the formulation of Wiener-

Hopf equation from the related model. The solution of the said Winer-Hopf

equation is obtained in Section (4.3). Whereas Section (4.4) is devoted to the

determination of infinite unknown coefficients. The diffracted field expression

is presented in Section (4.5). Finally graphical results for different parameters are

discussed in Section (4.6). The contents of this chapter have been published in

Physica Scripta, 89(8): Paper ID. e095207, (2014).

4.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD

PLASMA

Consider a waveguide constructed by a half-plane defined by S1 = {(x, y, z)| x ∈
(−∞,0), y = b, z ∈ (−∞,∞)} and an infinite plane defined by S2={(x, y, z)| x ∈ (−∞,∞),

y = 0, z ∈ (−∞,∞)} designed in cold plasma. The surface impedances of the upper

and lower faces of the half-plane S1 are assumed to be Z1 = η1Z0 and Z2 = η2Z0, re-

spectively. The surface impedances of the left and right upper faces of the plane

S2 are assumed to be Z3 = η3Z0 and Z4 = η4Z0, respectively, as shown in Fig. (4.1)

×××××× × ××××××× × ×××××××× × × × × ×× ×××××

y

x

(0,b)

Cold Plasma
b

(0,0)

Hinc
z (x, y)

θ0Z1 (Impedance)

Z3 (Impedance)
×××××× × ××××××× × ××××××× × × × × ×× ××××××××××× × ××××××× × ×××××××× × × × × ×× ×××××

Z4 (Impedance)

Z2 (Impedance)

FIGURE 4.1. Geometrical configuration of a waveguide structure in cold plasma

For analysis purpose, it is convenient to express the total field as follows:
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H T
z (x, y) =

 H i nc
z (x, y)+H r e f

z (x, y)+H 1
z (x, y), y ∈ (b,∞)

H 2
z (x, y)H (−x)+H 3

z (x, y)H (x), y ∈ (0,b)
(4.1)

where H (x) represents the Heaviside unit step function. H i nc
z (x, y) and H r e f

z (x, y)

denotes the incident and reflected fields, respectively, defined as below

H i nc
z (x, y) = e−ιkeff(x cosθ0+y sinθ0) (4.2)

and

H r e f
z (x, y) = η1 sinθ0 −1

η1 sinθ0 +1
e−ιkeff(x cosθ0−(y−2b)sinθ0), (4.3)

where

keff = k

√
ε2

1 −ε2
2

ε1
and k =ωpε0µ0. (4.4)

Now, H j
z (x, y), ( j = 1,2,3) are scattered fields satisfying the Helmholtz equation

in cold plasma as under

[
∂2

∂x2
+ ∂2

∂y2
+k2

eff

][
H j

z (x, y)
]
= 0, j = 1,2,3 (4.5)

with the following corresponding boundary conditions and continuity relations

(
1+ η1

ιkeff

∂

∂y

)
H 1

z (x,b) = 0, x ∈ (−∞,0) (4.6)

(
1− η2

ιkeff

∂

∂y

)
H 2

z (x,b) = 0, x ∈ (−∞,0) (4.7)

H (−x)

(
1+ η3

ιkeff

∂

∂y

)
H 2

z (x,0)+H (x)

(
1+ η4

ιkeff

∂

∂y

)
H 3

z (x,0) = 0, x ∈ (−∞,∞)

(4.8)

H 1
z (x,b)+H i nc

z (x,b)+H r e f
z (x,b)−H 3

z (x,b) = 0, x ∈ (0,∞) (4.9)

∂

∂y
H 1

z (x,b)+ ∂

∂y
H i nc

z (x,b)+ ∂

∂y
H r e f

z (x,b)− ∂

∂y
H 3

z (x,b) = 0, x ∈ (0,∞) (4.10)

H 2
z (0, y)−H 3

z (0, y) = 0, y ∈ (0,b) (4.11)
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∂

∂x
H 2

z (0, y)− ∂

∂x
H 3

z (0, y) = 0, y ∈ (0,b). (4.12)

For the uniqueness of the boundary-value problem defined by the set of equa-

tions (4.6) - (4.12). One can take the radiation and edge conditions, respectively,

as follow
p
ρ

[
∂

∂ρ
H 1

z (x, y)− ιkeffH
1
z (x, y)

]
= 0, ρ =

√
x2 + y2 →∞ (4.13)

and

H T
z (x, y) =O ( |x| 1

2 ),
∂

∂y
H T

z (x, y) =O ( |x|− 1
2 ), |x|→ 0. (4.14)

4.2 FORMULATION OF WIENER-HOPF EQUATION

The Fourier transform of the Helmholtz equation in cold plasma is satisfied by

the field H 1
z (x, y) in the region x ∈ (−∞,∞) and y ∈ (b,∞) gives

[
d 2

d y2
+L2(α)

]
F (α, y) = 0, (4.15)

where F (α, y) is defined as earlier.

The general solution of equation (4.15) satisfying the radiation condition repre-

sented by equations (4.13) yields

F (α, y) = A2(α)e ιL(α)(y−b), (4.16)

where

L(α) =
√

k2
eff

−α2. (4.17)

To find the unknown spectral coefficient A2(α), using the boundary condition

represented by the equation (4.6) in the transformed domain, one obtains

A2(α) = R2+(α)

1+ η1
keff

L(α)
, (4.18)
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with
R2

+(α) = F+(α,b)+ η1

ιkeff

′
F+(α,b). (4.19)

Using the additive decomposition theorem and placing equation (4.48) in equa-

tion (4.16), one obtains

F−(α, y)+F+(α, y) = R2+(α)

1+ η1
keff

L(α)
e ιL(α)(y−b). (4.20)

The derivative of equation (4.20) with respect to at y = b takes the form

′
F+(α,b) = ιL(α)R2+(α)

1+ η1
keff

L(α)
− ′

F−(α,b). (4.21)

As the Helmholtz equation in cold plasma is satisfied by field H 2
z (x, y) in the

waveguide region x ∈ (0,∞) and y ∈ (a,b), multiplying this equation by e ιαx and

integrating the resultant equation with respect to x from 0 to ∞ gives

[
d 2

d y2
−L2(α)

]
G+(α, y) = f(t )− ιαg(t ), (4.22)

where

f(y)− ιαg(y) = ∂

∂x
H 3

z (0, y)− ιαH 3
z (0, y) (4.23)

and G+(α, y) defined by

G+(α, y) =
∞̂

0

H 3
z (x, y)e ιαxd x, (4.24)

is a regular function in the half-plane.

Owing the method of variation of parameter the solution of non-homogenous

differential equation (3.20) yields
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G+(α, y) =C5(α)cosL(α)y +C6(α)sinL(α)y

+ 1

L(α)

ŷ

0

(f(t )− ιαg(t ))sinL(α)(b − t )d t . (4.25)

Here C5(α) and C6(α) are the unknown spectral coefficients.

To find C5(α), one uses the transformed form of the boundary condition repre-

sented by the equation (4.7) which gives

C5(α) =− η4

ιkeff
L(α)C6(α). (4.26)

Placing equation (4.26) in equation (4.25) yields

G+(α, y) =
[

sinL(α)y − η4

ιkeff
L(α)cosL(α)y

]
C6(α)

+ 1

L(α)

ŷ

0

(f(t )− ιαg(t ))sinL(α)(b − t )d t . (4.27)

C6(α) can be obtained by adding the transformed form of equations (4.9) and η1
ιkeff

time of (4.10) as under

C6(α) = R2+(α)

L(α)W2(α)

− 1

L(α)W2(α)

b̂

0

(f(t )− ιαg(t ))

(
sinL(α)(b − t )

L(α)
+ η1

ιkeff
cosL(α)(b − t )

)
d t , (4.28)

where

W2(α) =
(
η1 −η4

ιkeff

)
cosL(α)b +

(
1− η1η4

k2
eff

L2(α)

)
sinL(α)b

L(α)
. (4.29)

Using equation (4.28) in equation (4.27), one gets
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G+(α, y) =
sinL(α)y − η4

ιkeff
L(α)cosL(α)y

L(α)W2(α)

×

R2
+(α)−

b̂

0

(f(t )− ιαg(t ))

(
sinL(α)(b − t )

L(α)
+ η1

ιkeff
cosL(α)(b − t )

)
d t


+ 1

L(α)

ŷ

0

(f(t )− ιαg(t ))sinL(α)(b − t )d t . (4.30)

The left-hand side (i.e., G+(α, y)) of the equation (4.30) is analytic in the upper

half-plane Im(α) > Im(keff cosθ0). However, the analyticity of the right-hand side

is desecrated by the appearance of simple poles placing at the zeros of W2(α), i.e.,

α=±αm satisfying

W2(±αm) = 0, Im(αm) > Im(keff), m = 1,2,3.... (4.31)

The poles in the equation (4.30) can be removed by applying the condition that

the residues of these poles are zero. Then from equation (4.30), one gets

R2
+(αm) =D2

m

(
η1

ιke f f
Lm sinLmb −cosLmb

)
(fm − ιαmgm), (4.32)

where fm and gm are denoted by

 fm

gm

= 1

D2
m

b̂

0

 f(t )

g(t )

[
sinLm t

Lm
− η4

ιkeff
cosLm t

]
d t , (4.33)

with

Lm =
√

k2
eff

−α2
m (4.34)

and

D2
m =− Lm

2αm

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
∂

∂α
W2(αm). (4.35)
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Hence, considering equation (4.21) and transformed domain of continuity rela-

tion given by equation (4.10), one can write

ιR2
+(α)χ(η1,α)− ′

F−(α,b) =− 2keff sinθ0e−ιkeffb sinθ0

(η1 sinθ0 +1)(α−keff cosθ0)

+
b̂

0

(f(t )− ιαg(t ))cosL(b − t )d t +
cosLb + η4

ιkeff
LsinLb

W2(α)

×

R2
+(α)−

b̂

0

(f(t )− ιαg(t ))

(
sinL(b − t )

L(α)
+ η1

ιkeff
cosL(b − t )

)
d t

 , (4.36)

where

χ(η j ,α) = L(α)

η jL(α)+keff
. (4.37)

After simplification, equation (5.33) takes the form

χ(η1,α)R2+(α)

χ(η4,α)N 2(α)
+ ′

F−(α,b) = 2keff sinθ0e−ιkeffb sinθ0

(η1 sinθ0 +1)(α−keff cosθ0)

− 1

W2(α)

b̂

0

(f(t )− ιαg(t ))

(
sinL(α)t

L(α)
− η4

ιkeff
cosL(α)t

)
d t , (4.38)

where

N 2(α) =W2(α)e ιL(α)b . (4.39)

Owing to equation (4.33), f(t ) and g(t ) can be expanded into a series of eigen-

functions as under

 f(t )

g(t )

=
∞∑

m=1

 fm

gm

[
sinLm t

Lm
− η4

ιkeff
cosLm t

]
. (4.40)
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Using equation (4.40) in equation (4.38), one obtains the required Wiener-Hopf

equation valid in the strip Im(−keff) < Im(α) < Im(keff) as follows:

χ(η1,α)R2+(α)

χ(η4,α)N 2(α)
+ ′

F−(α,b) = 2keff sinθ0e−ιkeffb sinθ0

(η1 sinθ0 +1)(α−keff cosθ0)

+
∞∑

m=1

(fm − ιαgm)Lm

α2 −α2
m

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
. (4.41)

4.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation the kernel functions N 2(α) and χ(η j ,α)) in

equation (4.41) can be factorized by applying the known results as follows

N 2
+ (α) =

[(
η1 −η4

ιkeff

)
coskeffb + (1−η1η4)

sinkeffb

keff

] 1
2

×exp

[
L(α)b

π
ln

(
α+ ιL(α)

keff

)
+ ιαb

π

(
1−C + ln

[
2π

keffb

]
+ ιπ

2

)] ∞∏
m=1

(
1+ α

αm

)
e
ιαb
mπ (4.42)

and

N 2
− (α) =N 2

+ (−α). (4.43)

Now, on multiplying the Wiener-Hopf equation (4.41) on both sides with χ−(η4,α)N 2− (α)
χ−(η1,α) ,

one obtains

χ+(η1,α)R2+(α)

N 2+ (α)χ+(η4,α)
+

′
F−(α,b)χ−(η4,α)N 2− (α)

χ−(η1,α)
= 2keff sinθ0e−ιkeffb sinθ0χ−(η4,α)N 2− (α)

(η1 sinθ0 +1)(α−keff cosθ0)χ−(η1,α)

+
∞∑

m=1

(fm − ιαgm)Lmχ−(η4,α)N 2− (α)

(α2 −α2
m)χ−(η1,α)

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
. (4.44)

With help of cauchy’s integral formula the terms on the right-hand side of equa-

tion (4.44) can be decomposed as



62 CHAPTER 4

2keff sinθ0e−ιkeffb sinθ0χ−(η4,α)N 2− (α)

(η1 sinθ0 +1)(α−keff cosθ0)χ−(η1,α)
= 2keff sinθ0e−ιkeffb sinθ0

(η1 sinθ0 +1)(α−keff cosθ0)

×
[
χ−(η4,α)N 2− (α)

χ−(η1,α)
− χ−(η4,keff cosθ0)N 2− (keff cosθ0)

χ−(η1,keff cosθ0)

]

+ 2keff sinθ0e−ιkeffb sinθ0χ−(η4,keff cosθ0)N 2− (keff cosθ0)

(η1 sinθ0 +1)(α−keff cosθ0)χ−(η1,keff cosθ0)
(4.45)

and

∞∑
m=1

Lm(fm − ιαgm)χ−(η4,α)N 2− (α)

(α2 −α2
m)χ−(η1,α)

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

]
=

∞∑
m=1

Lm

(α+αm)

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
×

[
(fm − ιαgm)χ−(η4,α)N 2− (α)

(α−αm)χ−(η1,α)
+ (fm + ιαmgm)χ+(η4,αm)N 2+ (αm)

2αmχ+(η1,αm)

]
−

∞∑
m=1

Lm(fm + ιαmgm)χ+(η4,αm)N 2+ (αm))

2αmχ+(η1,αm)(α+αm)

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
. (4.46)

Now using equations (4.45) and (4.46) in equation (4.44), then placing the terms

which are analytic in the upper half-plane (Im(α) > −keff) at the left-hand side

and those which analytic in lower half-plane (Im(α) < keff) at the right-hand side,

gives

χ+(η1,α)R2+(α)

N 2+ (α)χ+(η4,α)
− 2keff sinθ0e−ιkeffb sinθ0χ−(η4,keff cosθ0)N 2− (keff cosθ0)

(η1 sinθ0 +1)(α−keff cosθ0)χ−(η1,keff cosθ0)

+
∞∑

m=1

Lm(fm + ιαmgm)χ+(η4,αm)N 2+ (αm)

2αmχ+(η1,αm)(α+αm)

(
cosLmb

Lm
+ η4

ιke f f
sinLmb

)

=−
′

F−(α,b)χ−(η4,α)N 2− (α)

χ−(η1,α)
+

∞∑
m=1

Lm

(α+αm)

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
×

[
(fm − ιαgm)χ−(η4,α)N 2− (α)

(α−αm)χ−(η1,α)
+ (fm + ιαmgm)χ+(η4,αm)N 2+ (αm)

2αmχ+(η1,αm)

]
+

∞∑
m=1

Lm

(α+αm)

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
×

[
(fm − ιαgm)χ−(η4,α)N 2− (α)

(α−αm)χ−(η1,α)
+ (fm + ιαmgm)χ+(η4,αm)N 2+ (αm)

2αmχ+(η1,αm)

]
. (4.47)
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The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle following the extended Liouville’s theorem gives

χ+(η1,α)R2+(α)

χ+(η4,α)N+(α)
= 2keff sinθ0e−ιkeffb sinθ0χ−(η4,keff cosθ0)N 2− (keff cosθ0)

(η1 sinθ0 +1)(α−keff cosθ0)χ−(η1,keff cosθ0)

−
∞∑

m=1

(fm + ιαmgm)Lm

2αm(α+αm)

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
χ+(η4,αm)N 2+ (αm)

χ+(η1,αm)
. (4.48)

4.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The equation (4.48) contains infinite number of unknown coefficients. To find out

these unknown coefficients one uses method of Mode-Matching technique with

the Fourier transform [70]. The Mode-Matching technique enables us to declare

the field components defined in the waveguide region in terms of normal modes,

as

H 2
z (x, y) =

∞∑
m=1

an

(
sinζn y

ζn
− η3

ιkeff
cosζn y

)
e−ιβn x , (4.49)

where

βn =
√

k2
eff

−ζ2
n , Im(βn) > Im(keff), n = 1,2,3, .... (4.50)

To find βn and ζn , placing equations (4.49) in equation (4.7) gives

(η3 +η2)

ιkeff
cosζnb − (1+ η2η3

k2
eff

ζ2
n)

sinζn y

ζn
= 0, n = 1,2,3, .... (4.51)

Using equations (4.40) and (4.49) in equation (4.23), then multiplying the result-

ing equation by (
sinL j y
L j

− η4
ιkeff

cosL j y) and integrating with respect to y from y = 0

to y = b, one obtains

fm − ιαmgm =− ι

D2
m

∞∑
n=1

an(α+βn)∆nm , (4.52)

where ∆nm is
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∆nm = (η3 −η4)

ιkeff(ζ2
n −L2

m)
+ (η2 +η1)Lmζn

ιkeff(ζ2
n −L2

m)

(
cosζnb

ζn
+ η3

ιkeff
sinζnb

)
×

(
cosLmb

Lm
+ η4

ιkeff
sinLmb

)
.

(4.53)

Placing equation (4.52) in equation (4.32), then using the resulting equation in

equation (4.48) to yield

∞∑
n=1

An(α j )an = I (α j ), j = 1,2,3, ..., (4.54)

where

An(α j ) =−ι
(
η1

keff
L j sinL j b −cosLmb

)
(α j +βn)∆n j

− ιN 2+ (α j )χ+(η4,α j )

χ+(η1,α j )

∞∑
m=1

Lm(βn −αm)∆nm

2αmD2
m(α j +αm)(

cosLmb

Lm
+ η4

ιk
sinLmb

)
χ+(η4,αm)N 2+ (αm)

χ+(η1,αm)
, (4.55)

and

I (α j ) = 2keff sinθ0e−ιkeffb sinθ0χ−(η4,keff cosθ0)N 2− (keff cosθ0)N 2+ (α j )χ+(η4,α j )

(η1 sinθ0 +1)(α j −keff cosθ0)χ+(η1,α j )χ−(η1,keff cosθ0)
.

(4.56)

The infinite system of algebraic equations represented by equation (4.54) is solved

numerically. To solve this infinite system of algebraic equations we have trun-

cated it after first N terms in order to obtain required diffracted field.

4.5 THE DIFFRACTED FIELD

The diffracted field H 1
z (x, y) is acquired redby taking the inverse Fourier trans-

form of F (α, y). By using equation (4.20), one obtains

H 1
z (x, y) = 1

2π

ˆ

L

R2+(α)

1+ η1
keff

L(α)
e ιL(α)(y−b)e−ιαxdα. (4.57)
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Using the change of variables α = −keff cos t , x = ρ cosθ and y = ρ sinθ in the

equation (4.57), one yields

H 1
z (ρ,θ) = 1

2π

ˆ

L

R2+(−keff cos t )keff sin t

1+η1 sin t
e−ιkeff sin t+ιkeffρ cos(t−θ)d t . (4.58)

The asymptotic evaluation of the integral in the equation (4.58) can be obtained

via saddle-point technique. Here, saddle-point rests at t = θ whose contribution

is

H 1
z (ρ,θ) = P1 (P2 +P2) , (4.59)

where

P1 =

k
√

(ε2
1 −ε2

2)/ε1 sinθe ιkρ
√

(ε2
1−ε2

2)/ε1−ιπ4 −ιk
√

(ε2
1−ε2

2)/ε1b sinθ√
2πkρ(1+η1 sin t )


×

χ−(η4,k
√

(ε2
1 −ε2

2)/ε1 cosθ0)N−(k
√

(ε2
1 −ε2

2)/ε1 cosθ0)

χ−(η1,k
√

(ε2
1 −ε2

2)/ε1 cosθ0)

 , (4.60)

P2 =

2k
√(

ε2
1 −ε2

2

)
sinθ0e−ιk

√
(ε2

1−ε2
2)/ε1b sinθ0N−(k

√
(ε2

1 −ε2
2)/ε1 cosθ0)

p
ε1(η1 sinθ0 +1)(cosθ+cosθ0)


×

 χ−(η4,k
√

(ε2
1 −ε2

2)/ε1 cosθ0)

χ−(η1,k
√

×(ε2
1 −ε2

2)/ε1 cosθ0)

 (4.61)

and

P3 =
∞∑

m=1

 (fm + ιαmgm)Lm

2αm(αm − (k
√

(ε2
1 −ε2

2)/ε1 cosθ))

χ+(η4,αm)N+(αm)

χ+(η1,αm)


×

cosLmb

Lm
+ η4

ιk
√

(ε2
1 −ε2

2)/ε1

sinLmb

 . (4.62)
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4.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have analyzed and potted the numerical results for various

physical parameters of interest. Fig. (4.2) depicts the variation in the diffracted

field amplitude versus the truncation number "N ". It is apparent that the effect

of the truncation number is negligible for N ≥ 80. Hence, the infinite system

of algebraic equations in equation (4.54) can be managed to deal as finite. Fig.

(4.3) explores the effect of separation between the parallel plates on the diffracted

field amplitude. The amplitude of the diffracted field decreases with the increase

of wall impedance |η1| as shown in Fig. (4.4). Figs. (4.5) and (4.6) show that

the diffracted field amplitude is not affected by impedances η2 and η3, which is

similar to the result obtained by Cinar and Büyükaksoy [12]. Fig. (4.7) shows the

variation in the diffracted field amplitude with wall impedance η4. The effect of

cold plasma permittivity values ε1 and ε2 has been analyzed in Fig. (4.8) and (4.9),

respectively. Here, we have found that the increase in cold plasma permittivity

value ε1 highly decreases the diffracted field amplitude while the effect of ε1

is negligibly small. In other words the diffracted field amplitude decreases with

increasing ion number density in cold plasma or by decreasing plasma frequency.

Here, in this problem it is observed that the diffracted field is highly effected with

ε1 while slightly with ε2.



4.6. COMPUTATIONAL RESULTS AND DISCUSSION 67

0 20 40 60 80 100 120
-39.6305

-39.6300

-39.6295

-39.6290

-39.6285

-39.6280

-39.6275

Truncation Number N

A
m

pl
itu

de
of

D
if

fr
ac

te
d

Fi
el

dH
db
L

FIGURE 4.2. Variation in the diffracted field amplitude versus truncation number "N" atθ0 =
90o , θ = 45o , k = 5, η1 = 0.3ι, η2 = 0.9ι, η3 = 0.6ι, η4 = 0.4ι, ε1 = 0.8, ε2 = 0.0 and b = 0.2λ.
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FIGURE 4.3. Variation in the diffracted field amplitude versus "b" at θ0 = 90o , k = 5, η1 = 0.6ι,
η2 = 0.4ι, η3 = 0.7ι, η4 = 0.5ι, ε1 = 0.8 and ε2 = 0.
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FIGURE 4.4. Variation in the diffracted field amplitude versus "η1" at φ0 = 90o , k = 5, η2 = 0.4t ι
, η3 = 0.7ι, η4 = 0.5ι, tε1 = 0.8, ε2 = 0 and b = 0.2λ.
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FIGURE 4.5. Variation in the diffracted field amplitude versus "η2" at θ0 = 90o , k = 5, η1 = 0.4ι
, η3 = 0.7ι, η4 = 0.5ι, ε1 = 0.8, ε2 = 0 and b = 0.2λ.
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FIGURE 4.6. Variation in the diffracted field amplitude versus "η3" at θ0 = 90o , k = 5, η1 = 0.4ι,
η2 = 0.3ι, η4 = 0.5ι, ε1 = 0.8, ε2 = 0 and b = 0.2λ.
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FIGURE 4.7. Variation in the diffracted field amplitude versus "η4" at θ0 = 90o ,k = 5, η1 = 0.4ι,
η2 = 0.3ι, η3 = 0.5ι, ε1 = 0.8, ε2 = 0 and b = 0.2λ.
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FIGURE 4.8. Variation in the diffracted field amplitude versus "ε1" at θ0 = 90o , k = 5, η1 = 0.4ι
, η2 = 0.3ι, η3 = 0.5ι, η4 = 0.7, ε2 = 0 and b = 0.2λ.
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FIGURE 4.9. Variation in the diffracted field amplitude versus "ε2" at θ0 = 90o , k = 5, η1 = 0.4ι
, η2 = 0.3ι, η3 = 0.5ι, η4 = 0.7, ε1 = 0.9 and b = 0.2λ.



C
H

A
P

T
E

R

5 EFFECT OF COLD PLASMA

PERMITTIVITY ON THE

RADIATION OF THE DOMINANT

TEM-WAVE BY AN IMPEDANCE

LOADED PARALLEL-PLATE

WAVEGUIDE RADIATOR

In this chapter, the aim is to determine the effect of cold plasma permittivity and

other parameters on the radiation phenomenon. For this purpose an impedance

coated parallel-plate waveguide radiator located in cold plasma is considered.

This radiation phenomenon was initially considered by Rulf and Hurd [86]. Ac-

cording to them, the presence of surface impedances +Z1 on the upper and −Z1

on the lower faces is the merely combination of impedances that converts the

boundary-valued problem into a scalar Wiener-Hopf equation. After that Büyükak-

soy and Birbir [41] generalized the problem for different upper and lower faces

surface impedances and solved by the hybrid method consisting of Fourier trans-

form with Mode Matching technique.

The section wise summery of this chapter is arranged as follow. Section (5.1)

consists of boundary-valued problem for radiation phenomenon obtained from

the geometry of the problem. Using this mathematical model, the Wiener-Hopf
71
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equation is formulated in Section (5.2) while the solution of Wiener-Hopf equa-

tion is obtained in Section (5.3). In Section (5.4) the infinite number of unknown

coefficients are determined. The mathematical expression for the radiated field

is obtained in Section (5.5) whereas the numerical results are shown in Section

(5.6). The contents of this chapter are published in Mathematical Methods in

the Applied Sciences, DOI : 10.1002/mma.3464.

5.1 MATHEMATICAL MODEL OF THE PROBLEM

Here, we consider the radiation of the dominant transverse electromagnetic wave

(TEM-wave) which is incident from the left in the parallel-plate waveguide re-

gion formed by two-part impedance plane S1 define by {(x, y, z)| x ∈ (−∞,∞), y =
0, z ∈ (−∞,∞)} and a parallel impedance half-plane S2 defined by {(x, y, z)| x ∈
(−∞,0), y = b, z ∈ (−∞,∞)}. The left and right parts of the plane S1 are coated

by the impedances Z1 and Z2, respectively. The surface impedance of the lower

and upper faces of the half-plane S2 are assumed to be Z3 and Z4, respectively, as

shown in Fig. (5.1).

×××××× × ××××××× × ×××××××× × × × × ×× ×××××

y

x

(0,b)

Cold Plasma

(0,0)

Hinc
z (x, y)

Z4 (Impedance)

Z1 (Impedance)
×××××× × ××××××× × ××××××× × × × × ×× ××××××××××× × ××××××× × ×××××××× × × × × ×× ×××××

Z2 (Impedance)

Z3 (Impedance)

FIGURE 5.1. Geometry of the impedance loaded parallel-plate waveguide radiator located in cold
plasma

The total field can be expressed as follows:

H T
z (x, y) =

 H 1
z (x, y), y ∈ (b,∞)[

H i nc
z (x, y)+H 2

z (x, y)
]
H (−x)+H 3

z (x, y)H (x), y ∈ (0,b),
(5.1)
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where H (x) denotes the Heaviside unit step function, H i nc
z (x, y) is the incident

field given by

H i nc
z (x, y) = e

ιkeffx
, (5.2)

with
keff = k

√
ε2

1 −ε2
2

ε1
and k =ωpε0µ0. (5.3)

H j
z ( j = 1,2,3) are the scattered fields satisfy the Helmholtz’s equation in cold

plasma [
∂2

∂x2
+ ∂2

∂y2
+k2

eff

][
H j

z (x, y)
]
= 0, (5.4)

with the following corresponding boundary conditions and continuity relations

(
η4keff+

∂

∂y

)
H 1

z (x,b) = 0, x ∈ (−∞,0), (5.5)

(
η3keff−

∂

∂y

)
H 2

z (x,b) = 0, x ∈ (−∞,0), (5.6)

H (−x)

(
η1keff+

∂

∂y

)
H 2

z (x,0)+H (x)

(
η2keff+

∂

∂y

)
H 3

z (x,0) = 0, x ∈ (−∞,∞), (5.7)

H 1
z (x,b) = H 3

z (x,b), x ∈ (0,∞), (5.8)

∂

∂y
H 1

z (x,b) = ∂

∂y
H 3

z (x,b), x ∈ (0,∞), (5.9)

H i nc
z (0, y)+H 2

z (0, y) = H 3
z (0, y), y ∈ (0,b), (5.10)

∂

∂x
H i nc

z (0, y)+ ∂

∂x
H 2

z (0, y) = ∂

∂x
H 3

z (0, y), y ∈ (0,b). (5.11)

The radiation and edge conditions are discussed as earlier.

5.2 FORMULATION OF WIENER-HOPF EQUATION

Fourier transform of the Helmholtz equation in cold plasma is satisfied by the

field H 1
z (x, y) in the waveguide region x ∈ (−∞,∞) and y ∈ (b,∞) gives

[
d 2

d y2
+ (k2

eff−α2)

]
F (α, y) = 0, (5.12)
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With the help of radiation condition solution of equation (5.12) leads to

F (α, y) = A3(α)e ιL(α)(y−b), (5.13)

where

L(α) =
√

k2
eff

−α2. (5.14)

To find the unknown coefficient A3(α), using the transformed domain of the

boundary condition represented by the equation (5.5), one obtains

A3(α) = R3+(α)

η4keff+ ιL(α)
, (5.15)

with

R3
+(α) = η4keffF+(α,b)+ ′

F+(α,b), (5.16)

where the prime sign in equation (5.16) denotes the derivative with respect to y .

On using the additive decomposition theorem and equation (5.15) in equation

(5.13), one gets

F+(α, y)+F−(α, y) = R3+(α)

η4keff+ ιL(α)
e ιL(α)(y−b). (5.17)

The derivative of equation (5.17) with respect to y at y = b takes the form

′
F+(α,b) = ιL(α)R3+(α)

η4keff+ ιL(α)
− ′

F−(α,b). (5.18)

As in equation (5.4), the Helmholtz equation in cold plasma is satisfied by field

H 2
z (x, y) in the waveguide region x ∈ (0,∞) and y ∈ (a,b), multiplying this equa-

tion by e ιαx and integrating the resultant equation with respect to x from 0 to ∞
yields [

d 2

d y2
−L2(α)

]
G+(α, y) = f(t )− ιαg(t ), (5.19)
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where

f(y)− ιαg(y) = ∂

∂x
H 3

z (0, y)− ιαH 3
z (0, y) (5.20)

and G+(α, y) defined by

G+(α, y) =
∞̂

0

H 3
z (x, y)e ιαxd x, (5.21)

is a regular function in the half-plane.

Owing the method of variation of parameter the solution of the non-homogenous

differential equation (5.19) gives

G+(α, y) =C7(α)cosL(α)y +C8(α)sinL(α)y

+ 1

L(α)

ŷ

0

(f(t )− ιαg(t ))sinL(α)(b − t )d t , (5.22)

where C7(α) and C8(α) are the unknown spectral coefficients.

To find C8(α) applying the transformed form of the boundary condition repre-

sented by the equation (5.7), one gets

C8(α) =−η2keff

L(α)
C7(α). (5.23)

Placing equation (5.23) in equation (5.22) yields

G+(α, y) =
[

cosL(α)y −η2keff
sinL(α)y

L(α)

]
C7(α)

+ 1

L(α)

ŷ

0

(f(t )− ιαg(t ))sinL(α)(b − t )d t . (5.24)
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C7(α) can be obtained by adding the transformed form of equation (5.9) and η4keff

times of equation (5.8) gives

C7(α) = R2+(α)

W3(α)

− 1

L(α)W3(α)

b̂

0

((f(t )− ιαg(t ))
(
η4keff sinL(α)(b − t )+L(α)cosL(α)(b − t )

)
d t , (5.25)

where W3(α) = (η4 −η2)keff cosL(α)b − (1+η2η4k2
eff)

sinL(α)b

L(α)
. (5.26)

Substituting equation (5.25) in equation (5.24) gives

G+(α, y) = L(α)cosL(α)y −keffη2 sinL(α)y

L(α)W3(α)

×

R3
+(α)−

b̂

0

(f(t )− ιαg(t ))

(
cosL(α)(b − t )+keffη4

sinL(α)(b − t )

L(α)

)
d t


+ 1

L(α)

ŷ

0

(f(t )− ιαg(t ))sinL(α)(y − t )d t . (5.27)

The left-hand side (i.e., G+(α, y)) of the equation (5.27) is analytic in the region

Im(α) > Im(keff cosθ0). However, the analyticity of the right-hand side is des-

ecrated due to the appearance of simple poles lying at the zeros of W3(α), i.e.,

α=±αm satisfying

W3(±αm) = 0, Im(αm) > Im(ke f f ), m = 1,2,3.... (5.28)

The poles in the equation (5.27) can be removed by enforcing the condition that

residues of these poles are zero. Then from equation (5.27), one obtains

R3
+(αm) =D3

m(fm − ιαmgm)

(
cosLmb +keffη4

sinLmb

Lm

)
, (5.29)
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where fm and gm are denoted by

 fm

gm

= 1

D3
m

b̂

0

 f(t )

g(t )

[
cosLm t −η2keff

sinLm t

Lm

]
d t , (5.30)

with

Lm =
√

k2
eff

−α2
m , (5.31)

and

D3
m = 1

2αm

(
cosLmb −η2keff

sinLmb

Lm

)
∂

∂α
W3(αm). (5.32)

Hence, considering equation (5.17) and the Fourier transform of the continuity

relation given by equation (5.8), one can write

R3+(α)

η4keff+ ιL(α)
−F−(α,b) = L(α)cosL(α)b −keffη2 sinL(α)b

L(α)W3(α)

×

R3
+(α)−

b̂

0

(f(t )− ιαg(t ))

(
cosL(α)(b − t )+keffη4

sinL(α)(b − t )

L(α)

)
d t


+ 1

L(α)

b̂

0

(f(t )− ιαg(t ))sinL(α)(b − t )d t . (5.33)

After simplification the above expression takes the form

η2χ( ι
η4

,α)R3+(α)

η4χ( ι
η2

,α)N 3(α)
+F−(α,b)

= 1

W3(α)

b̂

0

[f(t )− ιαg(t )]

[
cosL(α)t −keffη2

sinL(α)t

L(α)

]
d t , (5.34)

with

χ(η j ,α) = L(α)

η jL(α)+keff
and N 3(α) =W3(α)e ιL(α)b , (5.35)
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and f(t ) and g(t ) are expanded into a series of eigen-functions as

 f(t )

g(t )

=
∞∑

m=1

 fm

gm

[
cosLm t −η2keff

sinLm t

Lm

]
. (5.36)

Using equation (5.36) into equation (5.34), one gets the required Wiener-Hopf

equation valid within the strip Im(−keff) < Im(α) < Im(keff) as follow:

η2χ( ι
η4

,α)R3+(α)

η4χ( ι
η2

,α)N 3(α)
+F−(α,b) =

∞∑
m=1

fm − ιαgm

α2 −α2
m

(
cosLmb −keffη2

sinLmb

Lm

)
. (5.37)

5.3 SOLUTION OF WIENER-HOPF EQUATION

To obtain the required solution of Wiener-Hopf equation the kernel functions

N 3(α) and χ(η j ,α)) in equation (5.37) can be factorized by applying the known

results as follows

N 3
+ (α) = [

keff

(
η4 −η2

)
coskeffb −keff(1+η2η4)sinkeffb

] 1
2

×exp

[
L(α)b

π
ln

(
α+ ιL(α)

keff

)
+ ιαb

π

(
1−C + ln[

2π

keffb
]+ ιπ

2

)] ∞∏
m=1

(
1+ α

αm

)
e
ιαb
mπ (5.38)

and

N 3
− (α) =N 3

+ (−α), (5.39)

where the factors of χ(η j ,α) and C are discussed in earlier chapters.

Now, multiplying the Wiener-Hopf equation (5.37) on both sides with
χ−( ι

η2
,α) N 3− (α)

χ−( ι
η4

,α) ,

one obtains

η2χ+( ι
η4

,α)R3+(α)

η4χ+( ι
η2

,α)N 3+ (α)
+
χ−( ι

η2
,α)N 3− (α)

χ−( ι
η4

,α)
F−(α,b)

=
χ−( ι

η2
,α)N 3− (α)

χ−( ι
η4

,α)

∞∑
m=1

fm − ιαgm

α2 −α2
m

(
cosLmb +keffη2

sinLmb

Lm

)
(5.40)
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With help of cauchy integral formula the terms on right-hand of the equation

(5.40) can be decomposed as

χ−( ι
η2

,α)N 3− (α)

χ−( ι
η4

,α)

∞∑
m=1

fm − ιαgm

α2 −α2
m

(
cosLmb +keffη2

sinLmb

Lm

)
=

∞∑
m=1

1

α+αm

(
cosLmb +keffη2

sinLmb

Lm

)
[

(fm − ιαgm)χ−( ι
η2

,α)N 3− (α)

(α−αm)χ−( ι
η4

,α)
+

(fm + ιαgm)χ+( ι
η2

,α)N 3+ (α)

2αmχ+( ι
η4

,α)

]

−
∞∑

m=1

(
cosLmb +keffη2

sinLmb

Lm

) (fm + ιαgm)χ+( ι
η2

,α)N 3+ (α)

2αm(α+αm)χ+( ι
η4

,α)
. (5.41)

Now using equation (5.41) in equation (5.40) and then placing all those terms on

the left-hand side which are analytic in the region (Im(α) > −keff) and the terms

which are analytic in the region (Im(α) < keff) on the right-hand side which yields

η2χ+( ι
η4

,α)R+(α)

η4χ+( ι
η2

,α)N+(α)
+

∞∑
m=1

(
cosLmb +keffη2

sinLmb

Lm

) (fm + ιαgm)χ+( ι
η2

,α)N+(α)

2αm(α+αm)χ+( ι
η4

,α)

=−
χ−( ι

η2
,α)N−(α)

χ−( ι
η4

,α)
F−(α,b)+

∞∑
m=1

1

α+αm

(
cosLmb +keffη2

sinLmb

Lm

)
[

(fm − ιαgm)χ−( ι
η2

,α)N−(α)

(α−αm)χ−( ι
η4

,α)
+

(fm + ιαgm)χ+( ι
η2

,α)N+(α)

2αmχ+( ι
η4

,α)

]
. (5.42)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle following Liouville’s theorem gives

η2χ+( ι
η4

,α)R3+(α)

η4χ+( ι
η2

,α)N 3+ (α)
=

−
∞∑

m=1

(fm + ιαmgm)

2αm(α+αm)

(
cosLmb −keffη2

sinLmb

Lm

) χ+( ι
η2

,αm)N 3+ (αm)

χ+( ι
η4

,αm)
. (5.43)
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5.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The equation(5.43) contains infinite number of unknown coefficients. In order to

determine these unknown coefficients we employ the well-known Mode-Matching

technique along with the Fourier transform. The Mode-Matching technique is a

standard method to handle the waveguide structures. This technique has been

used extensively [87, 88] to analyze the scattered field at the junction. In this

investigation the Mode-Matching technique enables us to declare the field com-

ponent defined in the waveguide region in terms of normal modes as

H 2
z (x, y) =

∞∑
n=1

an

(
cosζn y −keffη1

sinζn y

ζn

)
e−ιβn x , (5.44)

where

βn =
√

k2
eff

−ζ2
n , Im(βn) > Im(keff), n = 1,2,3, .... (5.45)

βn’s and ζn’s can be obtained by using equations (5.6) together with (5.44) as

under

keff(η1 +η3)cosζnb + (ζ2
n −k2

effη1η3)
sinζn y

ζn
= 0, n = 0,1,2,3, .... (5.46)

Placing the continuity relations represented by the equations (5.10) and (5.11) in

equation (5.20), one yields

f(y)− ιαg(y) = ι(keff−α)+ ∂

∂x
H 2

z (0, y)− ιαH 2
z (0, y). (5.47)

Substituting equations (5.44) and (5.30) in equation (5.47), then multiplying the

resulting equation by (
sinL j y
L j

− η4
ιkeff

cosL j y) and integrating from y = 0 to y = b,

one obtains
fm − ιαmgm = ι(keff−a)

D3
mL2

m

(
keffη2 cosLmb +Lm sinLmb −keffη2

)
− ι

D3
m

∞∑
n=1

an(α+βn)∆nm , (5.48)
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where ∆nm is
∆nm = keff(η2 −η1)

ζ2
n −L2

m
− keff(η3 +η4)

ζ2
n −L2

m

(
cosζnb −keffη1

sinζnb

ζn

)
×

(
cosLmb −keffη2

sinLmb

Lm

)
. (5.49)

Substituting equation (5.48) into equation (5.29) and then using the resulting

equation into equation (5.43) to yield

∞∑
n=1

An(α j )an = I (α j ), j = 1,2,3, ... (5.50)

where

An(α j ) =−ι(α j +βn)∆n j

(
cosL j b +keffη4

sinL j b

L j

)

+
ιη2

4N
3+ (α j )χ+( ι

η2
,α j )

η2
2χ+( ι

η4 ,α j )

∞∑
m=1

(βn −αm)∆nm

2αmD3
m(α j +αm)

×
(
cosLmb +keffη4

sinLmb

Lm

) χ+( ι
η2

,αm)N 3+ (αm)

χ+( ι
η4 ,αm)

(5.51)

and

I (α j ) = ι(keff−α j )

(
cosL j b +keffη4

sinL j b

L j

)(
sinL j b

L j
+keffη2

cosL j b

L j
− keffη2

L2
j

)

+
η2

4χ+( ι
η2

,α j )N 3+ (α j )

η2
2χ+( ι

η4 ,α j )

∞∑
m=1

ι(keff+αm)

2αmD3
m(α j +αm)

(
sinLmb

Lm
+keffη2

cosLmb

Lm
− η2keff

L2
m

)

×
(
cosLmb +keffη2

sinLmb

Lm

) χ+( ι
η2

,αm)N 3+ (αm)

χ+( ι
η4 ,αm)

. (5.52)

The infinite system of algebraic equations represented by equation (5.50) is solved

numerically. To solve this infinite system of algebraic equations we have trun-

cated it after first N terms in order to obtain required radiated field.
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5.5 RADIATED FIELD

The radiated field H 1
z (x, y) is obtained by taking the inverse Fourier transform of

F (α, y). By using equation (5.17), one obtains

H 1
z (x, y) = 1

2π

ˆ

L

R3+(α)

η4keff+ ιL(α)
e ιL(α)(α)(y−b)e−ιαxdα. (5.53)

Using the change of variables α = −keff cos t , x = ρ cosθ and y = ρ sinθ in the

equation (5.53), one obtains

H 1
z (ρ,θ) = 1

2π

ˆ

L

R3+(−keff cos t )keff sin t

η2 + ιsin t
e−ιkeff sin t+ιkeffρ cos(t−θ)d t . (5.54)

The integral in equation (5.53) can be evaluated asymptotically through the sad-

dle point technique. Here, saddle point occurs at t = θ. On taking into account

equations (5.3) and (5.43), the radiated field takes the form:

H 1
z (ρ,θ) =

−
η2

2k
√

(ε2
1 −ε2

2)/ε1 sinθe ιkρ
√

(ε2
1−ε2

2)/ε1−ιπ4 χ−( ι
η2

,k
√

(ε2
1 −ε2

2)/ε1 cosθ)√
2πkρ(η2 + sin t )η2

4χ−( ι
η4

,k
√

(ε2
1 −ε2

2)/ε1 cosθ)

×


 ∞∑

m=1

(fm + ιαmgm)χ+( ι
η2

,αm)N 3+ (αm)N 3− (k
√

(ε2
1 −ε2

2)/ε1 cosθ)

2αm(αm − (k
√

(ε2
1 −ε2

2)/ε1 cosθ))χ+( ι
η4

,αm)


×

(
cosLmb −η2k

√
(ε2

1 −ε2
2)/ε1

sinLmb

Lm

)]
. (5.55)

5.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have presented some useful numerical results to show the

effects of various physical parameters of interest on the radiated field ampli-

tude. Actually the solution of Wiener-Hopf equation contains a set of infinitely

many constants satisfying an infinite system of algebraic equations. To solve this
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infinite system of algebraic equations we have truncated it after N terms in or-

der to obtain the required radiated field. Fig. (5.2) illustrates the variation in

the radiated field amplitude versus the truncation number "N ". It is apparent

that the effect of the truncation number is negligible for N > 20. Hence, the in-

finite system of algebraic equations in equation (5.50) can be managed to deal

as finite. Fig. (5.3) shows the variation in the radiated field amplitude with

increasing plate separation parameter b. Clearly, the radiated (diffracted) field

amplitude enhances when we increase the ratio b/λ. Physically, such an in-

crease in the diffracted field amplitude is due to the fact that plate separation

parameter b becomes comparable to the wavelength λ of the incident wave. The

amplitude will be maximum for b/λ = 1. Figs. (5.4) and (5.5) shows the vari-

ation in the radiated field amplitude with impedances η1 and η2 both for in-

ductive and capacitative cases. Fig. (5.4) shows that in case of η1 (for capacita-

tive and inductive cases) the amplitude decreases with increasing impedance

where as for η2 (See Fig. (5.5)) for capacitative case the amplitude decreases

and for inductive case it rises. Fig. (5.6) explores the effect of η3 (both for ca-

pacitative and inductive cases) wherein the amplitude decreases with increas-

ing impedance, however, the case is different for the variation of η4 as shown

in Fig. (5.7). These impedance dependent variations are actually related to the

magnetic and electric susceptibilities of the waveguide surfaces. Actually, the

surface impedances Z j ( j = 1,2,3,4) are normalized by Z0 i.e., Z j = η4 Z0. Here

Z0 =
√
µ0 /ε0 is the characteristic impedance of surrounding medium and µ0 and

ε0 are, respectively, the magnetic permeability and dielectric permittivity of the

free space. Since the surface impedances of a conductive medium (plasma) are

imaginary in magnitude, that is, Z = √
iωµ/(σ+ iωε), where σ is conductivity of

cold plasma, so in the present model it would be taken as complex. Z in the

normalized form is η = √
iωµ/(σ+ iωε)/Z0, which for free space becomes unity.

Fig. (5.8) demonstrates the effect of cold plasma permittivity ε1 on the radiation
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phenomenon. The radiated field amplitude is effected drastically in the presence

of an anisotropic plasma medium. The field amplitude enhances with increasing

plasma permittivity ε1, actually for fixed number densities of ions and electrons

in cold plasma, the parameter increases with the increase in incident wave fre-

quency ω, i.e., ε1 ≈ 1− (
ωp

ω
)2 (for high frequency signal). The electric field of such

a high frequency signal oscillates the electrons about the cold ionic centers and

such oscillating electrons then radiate enormously thereby increasing the ampli-

tude of the radiated field. Fig. (5.9) demonstrates the effect of parameter ε2 on

the radiated field amplitude. Clearly, the amplitude of the radiated field dimin-

ishes with the increase in parameter ε2. Actually, the increase in the parameter

ε2 leads to the decrease in the signal frequency for which the electron oscillation

under the low frequency of incident wave diminishes the radiated amplitude.

The results obtained in this work can be a useful knot in order to improve the

radiated signal quality transmitted by an artificial satellite in the ionosphere for

communication means to an earth station.

1 5 10 15 20 25 30
-83.5

-83.0

-82.5

-82.0

-81.5

-81.0

Truncation number N

R
ad

ia
te

d
fie

ld
am

pl
itu

de
HdB

L

FIGURE 5.2. Variation in the radiated field amplitude versus truncation number "N". The
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6 DIFFRACTED AND TRANSMITTED

FIELDS BY AN IMPEDANCE

LOADED WAVEGUIDE LOCATED IN

COLD PLASMA

In this chapter, the problem of diffraction of plane wave by an impedance loaded

waveguide designed in cold plasma is considered. The structure of waveguide

is constructed from three parallel impedance loaded half-planes such that one

amidst in the opposite direction. Such type of problem was initially considered

by Weinstein [89, 90] and Boersma [91] for the case of two half-planes character-

istic by either soft (Dirichlet) or rigid (Neumann) surface material properties of

all faces of the half-planes. After that Cinar and Büyükaksoy [85] generalized

the problem for surface impedance (Robin) and each face of the half-planes is

loaded by different impedances. Here, the case is considered for soft, rigid and

impedance surface material properties of the waveguide located in cold plasma

as shown in Fig. (6.1).

The chapter is arranged as follows. In the next Section (6.1) mathematical model

of the problem in cold plasma is stated. The Wiener-Hopf equation is formu-

lated in Section (6.2) whereas the solution of Wiener-Hopf equation is developed

in Section (6.3). The unknown coefficients are obtained with the help of Mode-

Matching technique in Section (6.4). The diffracted and transmitted fields are
89
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considered in Section (6.5). In the end the Section (6.6) is devoted to numerical

results and discussions.

6.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD

PLASMA

In this chapter consider an incident time harmonic wave propagating in cold

plasma and making an incident angle θ0. On striking the waveguide surface

the incident field generates reflected and transmitted fields. Let ω denotes the

angular frequency and k be the wave number. The geometry of the problem is

formed by three parallel half-planes represented by S1={(x, y, z)| x ∈ (−∞,0), y =
b, z ∈ (−∞,∞)}, S2={(x, y, z)| x ∈ (−∞,0), y = −b, z ∈ (−∞,∞)} and S3={(x, y, z)| x ∈
(0,∞), y = 0, z ∈ (−∞,∞)}, respectively. The material property of waveguide sur-

face impedance of the upper and lower faces of the half-planes S1 and S2 are

assumed to be Z1 and Z2, respectively, as shown in the Fig. (6.1)

y

(0,-b)

Z1 (Impedance)

Cold Plasma
b

(0,0)

Hinc
z (x, y)

(0,b)
××××× × ××××××× × ××××××× × × × × ×× ×××××

×××××× × ××××××× × ××××××× × × × × ×× ××××××

×

Z2 (Impedance)

D (Soft)

N (Rigid)
x

θ0

××

D (Soft)

N (Rigid)

FIGURE 6.1. The physical configuration of the waveguide located in cold plasma

The total field can be expressed as follows:

H T
z (x, y) =



H 1
z (x, y)+H i nc

z (x, y)+H r e f
z (x, y), y ∈ (b,∞)

H 3
z (x, y)H (−x)+H 2

z (x, y)H (x), y ∈ (0,b)

H 3
z (x, y)H (−x)+H 4

z (x, y)H (x), y ∈ (−b,0)

H 5
z (x, y), y ∈ (−∞,−b).

(6.1)
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where H (x), H i nc
z (x, y) and H r e f

z (x, y) stand for Heaviside unit step function, inci-

dent and reflected fields, respectively, which are already defined in Chapter (4).

{H j
z ( j = 1,2,3,4,5)} are the scattered fields satisfy the Helmholtz equation in

cold plasma as under

[
∂2

∂x2
+ ∂2

∂y2
+k2

eff

][
H j

z (x, y)
]
= 0, (6.2)

with the following corresponding boundary conditions and continuity relations

(
1+ η1

i keff

∂

∂y

)
H 1

z (x,b) = 0, x ∈ (−∞,0) (6.3)

∂

∂y
H 2

z (x,0) = 0, x ∈ (0,∞) (6.4)

∂

∂y
H 3

z (x,b) = 0, x ∈ (−∞,0) (6.5)

H 2
z (x,−b) = 0, x ∈ (−∞,0) (6.6)

H 4
z (x,0) = 0, x ∈ (0,∞) (6.7)(

1− η2

ιkeff

∂

∂y

)
H 5

z (x,−b) = 0, x ∈ (−∞,0) (6.8)

H 1
z (x,b)+H i nc

z (x,b)+H r e f
z (x,b) = H 2

z (x,b), x ∈ (0,∞) (6.9)

∂

∂y
H 1

z (x,b)+ ∂

∂y
H i nc

z (x,b)+ ∂

∂y
H r e f

z (x,b) = ∂

∂y
H 2

z (x,b), x ∈ (0,∞) (6.10)

H 3
z (0, y) = H 2

z (0, y), x ∈ (0,b) (6.11)

∂

∂x
H 3

z (0, y) = ∂

∂x
H 2

z (0, y), x ∈ (0,b) (6.12)

H 3
z (0, y) = H 4

z (0, y), x ∈ (−b,0) (6.13)

∂

∂x
H 3

z (0, y) = ∂

∂x
H 4

z (0, y), x ∈ (−b,0) (6.14)

H 4
z (x,−b) = H 5

z (x,−b), x ∈ (0,∞) (6.15)
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∂

∂y
H 4

z (x,−b) = ∂

∂y
H 5

z (x,−b), x ∈ (0,∞). (6.16)

6.2 FORMULATION OF WIENER-HOPF EQUATION

Since Helmholtz equation in cold plasma is satisfied by the field H 1
z (x, y) in the

waveguide region x ∈ (−∞,∞) and y ∈ (b,∞) whose Fourier transform gives

[
d 2

d y2
+ (k2

eff−α2)

]
F (α, y) = 0. (6.17)

Using the radiation condition the general solution of equation (6.17) is as under

F (α, y) = A4(α)e ιL(α)(y−b). (6.18)

To find the unknown spectral coefficient A4(α), using the transformed domain of

the boundary condition represented by equation (6.3) gives

A4(α) = keff

L(α)
R4

+(α)χ(η1,α), (6.19)

where

R4
+(α) = F+(α,b)+ η1

ιkeff

′
F+(α,b) (6.20)

and χ(η1,α) are defined in previous chapter.

Using the additive decomposition theorem and substituting equation (6.19) in

equation (6.18), one can write

F−(α, y)+F+(α, y) = keff

L(α)
R4

+(α)χ(η1,α)e ιL(α)(y−b). (6.21)

The derivative of equation (6.21) with respect to y at y = b takes the form

′
F+(α,b) = ιkeffR

4
+(α)χ(η1,α)− ′

F−(α,b). (6.22)
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As the Helmholtz equation in cold plasma is satisfied by field H 2
z (x, y) in equation

(6.2) in the waveguide region x ∈ (0,∞) and y ∈ (0,b), on multiplying this equation

by e ιαx and then integrating the resultant equation with respect to x from 0 to ∞,

one gets [
d 2

d y2
+L2(α)

]
G+(α, y) = f(y)− ιαg(y), (6.23)

where G+(α, y), f(y) and g(y) are also defined as earlier.

The general solution of the non-homogenous differential equation (6.23) can be

obtained by using the method of variation of parameter yields

G+(α, y) =C9(α)cosL(α)y +C10(α)sinL(α)y + 1

L(α)

ŷ

0

f(t )sinL(α)(b − t )d t , (6.24)

where C9(α) and C10(α) are the unknown spectral coefficients.

Using the transformed form of boundary condition given by the equation (6.4),

one gets

G+(α, y) =C9(α)cosL(α)y + 1

L(α)

ŷ

0

[f(t )− ιag(t )]sinL(α)(y − t )d t . (6.25)

The transformed form of the continuity relation represented by the equations

(6.9) and (6.18), respectively, gives

F+(α,b)+ 2iη1 sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)
=G+(α,b) (6.26)

and
′

F+(α,b)+ 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)
=

′
G+(α,b). (6.27)

Adding equation (6.26) and η1
i keff

times of equation (6.27), one can obtain

G+(α,b)+ η1

i keff

′
G+(α,b) =R4

+(α). (6.28)
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C9(α) can be obtained by placing equation (6.25) in equation (6.28) which yields

C9(α) = R4+(α)

W4(α)
− 1

W4(α)

b̂

0

(f(y)− ιαg(y))

(
sinL(α)(b − t )

L(α)
+ η1

ιkeff
cosL(α)(b − t )

)
d t ,

(6.29)

with

W4(α) = cosL(α)b − η1

ιkeff
L(α)sinL(α)b. (6.30)

Placing equation (6.29) in equation (6.25) gives

G+(α, y) = 1

L(α)

ŷ

0

(f(y)− ιαg(y))sinL(α)(y − t )d t+

cosL(α)y

W4(α)

R4
+(α)−

b̂

0

(f(y)− ιαg(y))

(
sinL(α)(b − t )

L(α)
+ η1

ιkeff
cosL(α)(b − t )

)
d t

 .

(6.31)

The left-hand side (i.e., G+(α, y)) of the equation (6.31) is analytic in the upper

half-plane Im(α) > Im(keff cosθ0). However, the analyticity of the right-hand side

is desecrated by the appearance of simple poles placing at the zeros of W4(α), i.e.,

α=±αm satisfying

W4(±αm) = 0, Im(αm) > Im(keff), m = 1,2,3.... (6.32)

The poles in the equation (6.31) can be removed by imposing the condition that

residues of these poles are zero. Then from equation (6.31), one obtains

R4
+(αm) =

b̂

0

(f(t )− ιαmg(t ))

(
sinLm(b − t )

Lm
+ η1

ιkeff
cosLm(b − t )

)
d t . (6.33)
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After simplifying equation (6.34), one gets

R4
+(αm) =

(
sinLmb

Lm
+ η1

ιkeff
cosLmb

) b̂

0

(f(t )− ιαmg(t ))cosLm td t . (6.34)

f(t ) and g(t ) can be express in the form of eigen-functions as follows:

f(t )− ιαg(t ) =
∞∑

n=1
(fn − ιαgn)cosLn t . (6.35)

Substituting equation (6.35) in equation (6.34) leads to

R4
+(αm) =

(
sinLmb

Lm
+ η1

ιkeff
cosLmb

) b̂

0

∞∑
n=1

(fn − ιαmgn)cosLn t cosLm td t . (6.36)

After simplifying the equation (6.36), one can write

R4
+(αm) =D4

m(fm − ιαgm)

(
sinLmb

Lm
+ η1

i keff
cosLmb

)
, (6.37)

with

Lm =
√

k2
eff

−α2
m (6.38)

and

D4
m = Lm sinLmb

2αm

∂

∂α
W4(αm). (6.39)

The Fourier transform of the continuity relation given by equation (6.18) gives

′
F+(α,b)+ 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)
=

′
G+(α,b). (6.40)

While placing equations (6.22) and (6.31) in equation (6.40) yields
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ιkeffR
4
+(α)χ(η1,α)− ′

F−(α,b)+ 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)

= −L(α)(α)sinL(α)bR4+(α)

W4(α)
+ 1

W4(α)

b̂

0

[f(t )− ιαg(t )]cosL(α)td t . (6.41)

Rearranging equations (6.41), one gets

ιη1χ(η1,α)R4+(α)

N 4(α)
+ ′

F−(α,b) = 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)

− 1

W4(α)

b̂

0

(f(t )− ιαg(t ))cosL(α)td t , (6.42)

where

N 4(α) =W4(α)e ιL(α)b . (6.43)

Using equation (6.35) into equation (6.42), one obtains

ιη1χ(η1,α)R4+(α)

N 4(α)
+ ′

F−(α,b) = 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)

− 1

W4(α)

b̂

0

∞∑
m=1

(fm + ιαgm)cosLm t cosL(α)td t . (6.44)

After simplifying the equation (6.44), one can obtain the required Wiener-Hopf

equation valid within the strip Im(keff cosθ0) < Im(α) < Im(keff) as follows:

ιη1χ(η1,α)R4+(α)

N (α)
+ ′

F−(α,b) = 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)

−
∞∑

m=1

fm − ιαgm

α2 −α2
m

(Lm sinLmb) . (6.45)

In order to calculate the transmitted field, the Fourier transform of the Helmholtz

equation in cold plasma in the waveguide region x ∈ (−∞,∞) and y ∈ (−∞,−b)



6.2. FORMULATION OF WIENER-HOPF EQUATION 97

results into [
d 2

d y2
+ (k2

eff−α2)

]
Ψ(α, y) = 0, (6.46)

where

Ψ(α, y) =
∞̂

−∞
H 5

z (x, y)e ιαxd x. (6.47)

Using the radiation condition the general solution of equation (6.46) is as under

Ψ(α, y) = A5(α)e−ιL(α)(y+b). (6.48)

To find the unknown coefficient A5(α), using the boundary condition represented

by equation (6.8) in the transformed domain, one obtains

A5(α) = keffR
5+(α)χ(η2,α)

L(α)
, (6.49)

where

R5
+(α) =Ψ+(α,−b)− η2

ιkeff

′
Ψ+(α,−b). (6.50)

Using the additive decomposition theorem and equation (6.49) in equation (6.48),

it is found that

Ψ+(α, y)+Ψ−(α, y) = keffR
4+(α)χ(η2,α)

L(α)
e−ιL(α)(y+b), (6.51)

whereas the derivative of equation (6.51) with respect to y at y = b takes the form

′
Ψ+(α,−b) =−ιkeffR

4
+(α)χ(η2,α)− ′

Ψ−(α,−b). (6.52)

From equation (6.2), we observe that H 4
z (x, y) satisfies the Helmholtz equation in

cold plasma in the waveguide region x ∈ (0,∞) and y ∈ (−b,0). After multiplying
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by e ιαx and integrating with respect to x from 0 to ∞, takes the form as under

[
d 2

d y2
+L2(α)

]
G+(α, y) = p(y)+ ιq(y), (6.53)

with

p(y) = ∂

∂x
H 4

z (0, y), q(y) = H 4
z (0, y) (6.54)

and G+(α, y) defined by

G+(α, y) =
∞̂

0

H 4
z (x, y)e ιαxd x, (6.55)

is a regular function in the half-plane.

The general solution of the non-homogenous differential equation (6.53) can be

obtained by using the method of variation of parameter yields

G+(α, y) =C11(α)cosL(α)y +C12(α)sinL(α)y + 1

L(α)

ŷ

−b

(p(t )+ ιq(t ))sinL(α)(y − t )d t .

(6.56)

To find C11(α) using the transform form of the boundary condition represented

by equation (6.7) gives

C11(α) = 1

L(α)

0̂

−b

(p(t )− ιαq(t ))sinL(α)td t . (6.57)

Substituting equations (6.57) in equations (6.56), one obtains

G+(α, y) =C12(α)sinL(α)y + cosL(α)y

L(α)

0̂

−b

(p(t )− ιαq(t ))sinLtd t

+ 1

L(α)

ŷ

−b

(p(t )− ιαg(y))sinL(α)(y − t )d t . (6.58)
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The transformed form of the continuity relations represented by the equations

(6.15) and (6.16), respectively, are as below

Ψ+(α,−b) =G+(α,−b) (6.59)

and
′
Ψ+(α,−b) = ′

G+(α,−b). (6.60)

Subtracting equation (6.59) and η2
i keff

times of equation (6.60) yields

G+(α,−b)− η2

ιkeff

′
G+(α,−b) =R5

+(α). (6.61)

To find C12(α) placing equation (6.58) in equation (6.61), one obtains

C12(α) = −R5+(α)

W5(α)
+

cosL(α)y − η2
ιkeff

L(α)sinL(α)b

L(α)W5(α)

0̂

−b

(p(t )− ιαq(t ))sinL(α)td t ,

(6.62)

where

W5(α) = sinL(α)b + η2

ιkeff
L(α)cosL(α)b. (6.63)

Using equation (6.62) in (6.58) yields

G+(α, y) = −R5+(α)

W5(α)
sinL(α)y

+
cosL(α)b − η2

i keff
LsinL(α)b

L(α)W5(α)
sinL(α)y

0̂

−b

(p(t )− ιαq(t ))sinL(α)td t

+ cosLy

L(α)

0̂

−b

(p(t )− ιαq(t ))sinLtd t + 1

L(α)

ŷ

−b

(f(t )− ιαg(t ))sinL(y − t )d t . (6.64)
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Rearranging equation (6.64) takes the form

G+(α, y) = −R5+(α)

W5(α)
sinL(α)y + 1

L(α)

ŷ

−b

(p(t )− ιαq(t ))sinL(α)(y − t )d t

+
sinL(α)(y +b)+ η2

ιkeff
L(α)cosL(α)(y +b)

L(α)W5(α)

0̂

−b

(p(t )− ιαq(t ))sinL(α)td t .

(6.65)

The left-hand side (i.e., G+(α, y)) of the equation (6.65) is analytic in the upper

half-plane Im(α) > Im(keff cosθ0). However, the analyticity of the right-hand side

is violated by the appearance of simple poles placing at the zeros of W5(α), i.e.,

α=±αm satisfying

W5(±νm) = 0, Im(νm) > Im(keff), m = 1,2,3.... (6.66)

The poles in the equation (6.65) can be removed by imposing the condition that

residues of these poles are zero. Then from equation (6.65), one obtains

R5
+(νm) =−

(
cosLmb

Lm
+ η2

ιkeff
sinLmb

) 0̂

−b

(p(t )− ιαq(t ))sinLm td t , (6.67)

where

Lm =
√

k2
eff

−ν2
m , (6.68)

p(t ) and q(t ) can be expanded into a series of eigen-functions as follows:

p(t )− ιαq(t ) =
∞∑

n=1
(pn − ιαqn)sinLn t . (6.69)
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Using equation (6.69) in equation (6.67) yields

R5
+(αm) =−

(
cosLmb

Lm
+ η2

ιkeff
sinLmb

) 0̂

−b

∞∑
n=1

(pn − ιαmqn)sinLn t sinLm td t . (6.70)

After simplification, equation (6.70) gives

R4
+(αm) =D5

m(pm + ιqm)

(
cosLmb

Lm
+ η2

ιkeff
sinLmb

)
, (6.71)

D5
m = Lm cosLmb

2νm

∂

∂α
W5(νm). (6.72)

Using equations (6.52) and (6.65) in equation (6.60) yields

− ιkeffR
5
+(α)χ(η2,α)− ′

Ψ−(α,−b) =−L(α)R5+(α)

W5(α)
cosL(α)b

− 1

W5(α)

0̂

−b

(p(t )− ιαq(t ))sinL(α)td t . (6.73)

After simplifying equations (6.73), one can obtain

keffχ(η2,α)R5+(α)

N 5(α)
− ′
Ψ−(α,−b)=− 1

W5(α)

0̂

−b

(p(t )− ιαq(t ))sinL(α)td t , (6.74)

where

N 5(α) =W5(α)e ιL(α)b . (6.75)

Using equation (6.69) into equation (6.74), one obtains the required Wiener-Hopf

equation valid in the strip Im(−keff) < Im(α) < Im(keff) as follows:

keffχ(η2,α)R5+(α)

N 5(α)
− ′
Ψ−(α,−b)=− 1

W5(α)

b̂

0

∞∑
m=1

(pm − ιαqm)sinLm t sinL(α)td t .

(6.76)
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From the above expression, one can write

keffχ(η2,α)R5+(α)

N 5(α)
− ′
Ψ−(α,−b)=

∞∑
m=1

pm − ιαqm

α2 −ν2
m

(Lm cosLmb) . (6.77)

6.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equations the kernel functions N 4(α), N 5(α) and χ(η j ,α))

in equations (6.45) and (6.77) can be factorized by applying the known results as

following:

N 4(α) =N 4
+ (α)N 4

− (α), (6.78)

N 5(α) =N 5
+ (α)N 5

− (α), (6.79)

where

N 4
+ (α) = [

coskeffb + ιη1 sinkeffb
] 1

2

×exp

[
L(α)b

π
ln

(
α+ ιL(α)

keff

)
+ ιαb

π

(
1−C + ln

[
2π

keffb

]
+ ιπ

2

)] ∞∏
m=1

(
1+ α

αm

)
e
ιαb
mπ (6.80)

and

N 5
+ (α) = [

sinkeffb − ιη2 coskeffb
] 1

2

×exp

[
L(α)b

π
ln

(
α+ ιL(α)

keff

)
+ ιαb

π

(
1−C + ln

[
2π

keffb

]
+ ιπ

2

)] ∞∏
m=1

(
1+ α

αm

)
e
ιαb
mπ , (6.81)

such that

N 4
− (α) =N 4

+ (−α), (6.82)

N 5
− (α) =N 5

+ (−α). (6.83)

As mention before, the factor of χ(η j ,α) can be written in terms of the Mali-

uzhinetz’s function.

Now, multiplying the Wiener-Hopf equation (6.45) on both sides with N 4− (α)
χ−(η1,α) ,

one obtains
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ιη1χ+(η1,α)R+(α)

N 4+ (α)
+ N 4− (α)

′
F−(α,b)

χ−(η1,α)
= 2keff sinθ0e−ιkeffb sinθ0N 4− (α)

(1+η1 sinθ0)(α−keff cosθ0)χ−(η1,α)

−
∞∑

m=1

Lm sinLmb(fm − ιαgm)N 4− (α)

(α2 −α2
m)χ−(η1,α)

. (6.84)

With the help of cauchy’s integral formula the terms on right-hand of the equa-

tion (6.84) can be decomposed as

2keff sinθ0e−ιkeff sinθ0N 4− (α)

(1+η1 sinθ0)(α−keff cosθ0)χ−(η1,α)

= 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)

[
N 4− (α)

χ−(η,α)
− N 4− (keff cosθ0)

χ−(η1,keff cosθ0)

]

+ 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)

N 4− (keff cosθ0)

χ−(η1,keff cosθ0)
(6.85)

and

∞∑
m=1

Lm sinLmb(fm − ιαgm)N 4− (α)

(α2 −α2
m)χ−(η1,α)

=−
∞∑

m=1

Lm sinLmb(fm + ιαmgm)N 4+ (αm)

2αm(α+αm)χ+(η1,αm)

+
∞∑

m=1

Lm sinLmb

α+αm

[
(fm − ιαgm) N 4− (α)

(α−αm)χ−(η,α)
+ (fm + ιαmgm) N 4+ (αm)

2αmχ+(η1,αm)

]
. (6.86)

Now using equations (6.85) and (6.86) in equation (6.84), then placing the terms

which are analytic in the upper half-plane (Im(α) > −keff) at the left-hand side

and those which analytic in lower half-plane (Im(α) < keff) at the right-hand side

which gives

ιη1χ+(η1,α)R4+(α)

N 4+ (α)
− 2keff sinθ0e−ιkeffb sinθ0N 4− (keff cosθ0)

(1+η1 sinθ0)(α−keff cosθ0)χ−(η1,keff cosθ0)

+
∞∑

m=1

(fm + ιαmgm)Lm sinLmbN 4+ (αm)

2αm(α+αm)χ+(η1,αm)
=−F−(α,b)N 4− (α)

χ−(η1,α)

+ 2keff sinθ0e−ιkeffb sinθ0

(1+η1 sinθ0)(α−keff cosθ0)

[
N 4− (α)

χ−(η1,α)
− N 4− (keff cosθ0)

χ−(η1,keff cosθ0)

]

+
∞∑

m=1

Lm sinLmb

α+αm

[
(fm − ιαgm)N 4− (α)

(α−αm)χ−(η1,α)
+ (fm + ιαmgm) N 4+ (αm)

2αmχ+(η1,αm)

]
. (6.87)
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The required solution of Wiener-Hopf equation for the diffracted can be obtained

by using analytical continuation principle following extended Liouville’s theo-

rem yields

ιη1χ+(η1,α)R+(α)

N 4+ (α)
= 2keff sinθ0e

−ιkeffb sinθ0− N 4− (keff cosθ0)

(1+η1 sinθ0)(α−keff cosθ0)χ−(η1,keff cosθ0)

−
∞∑

m=1

(fm + ιαmgm)Lm sinLmbN 4+ (αm)

2αm(α+αm)χ+(η1,αm)
. (6.88)

Now, multiplying the Wiener-Hopf equation (6.77) on both sides with N 5− (α)
χ−(η2,α) ,

one obtains

keffχ+(η2,α)R4+(α)

N 5+ (α)
− N 5− (α)

′
Ψ−(α,b)

χ−(η2,α)
=

∞∑
m=1

Lm sinLmb(pm − ιαqm)N 5− (α)

(α2 −ν2
m)χ−(η2,α)

. (6.89)

With the aid of cauchy’s integral formula the terms at the right-hand of the equa-

tion (6.89) can be decomposed as

∞∑
m=1

Lm cosLmb(pm − ιαqm)N 5− (α)

(α2 −ν2
m)χ−(η2,α)

=−
∞∑

m=1

(pm + ινmqm)Lm cosLmbN 5+ (υm)

2υm(α+υm)χ+(η2,νm)

+
∞∑

m=1

Lm cosLmb

α+νm

[
(pm − ιαqm) N 5− (α)

(α−υm)χ−(η2,α)
+ (pm + ινmqm) N 5+ (νm)

2νmχ+(η2,νm)

]
. (6.90)

Now substituting equation (6.90) in equation (6.89), then placing the terms which

are analytic in the upper half-plane (Im(α) >−keff) at the left-hand side and those

which analytic in lower half-plane (Im(α) < keff) at the right-hand side which

gives

kχ+(η2,α)R5+(α)

N 4+ (α)
+

∞∑
m=1

(pm + ιυmqm)Lm cosLmbN 5+ (υm)

2υm(α+υm)χ+(η2,υm)
= F−(α,b)Q−(α)

χ−(η2,α)

+
∞∑

m=1

Lm cosLmb

α+υm

[
(pm − ιαqm) N 5− (α)

(α−υm)χ−(η2,α)
+ (pm + ιυmqm) N 5+ (υm)

2υmχ+(η2,υm)

]
. (6.91)

The required solution of Wiener-Hopf equation for the transmitted can be ob-

tained by using analytical continuation principle following extended Liouville’s
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theorem, the above expression gives

kχ+(η1,α)R5+(α)

N 5+ (α)
=−

∞∑
m=1

(pm + ιυmqm)Lm cosLmbN 5+ (υm)

2υm(α+υm)χ+(η2,υm)
. (6.92)

6.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The significant distinction of this sort of formulation from the one used by Cigar

and Büyükaksoy [12], was the simultaneous use of Mode-Matching technique

with the Fourier transform. The Mode-Matching technique enables us to express

the field components defined in the waveguide region in terms of normal modes

as

H 2
z (x, y) =

∞∑
m=1

an sinζn(y +b)e−ιβn x . (6.93)

With the help of boundary conditions represented by equations (6.5) and (6.6) βn

’s and ζn’s are obtained from

ζn cosζnb = 0, n = 1,2,3, ..., (6.94)

which gives

ζn = (2n +1)
π

4b
, βn =

√
k2
eff

−ζ2
n , Im(βn) > Im(keff), n = 1,2, .... (6.95)

From continuity relations represented by equations (6.11) and (6.12) gives

f(y)− ιαg(y) =−ι
∞∑

n=1
an(α+βn)sinζn(y +b). (6.96)

Using equation (6.35) into equation (6.96) gives

∞∑
m=1

(fm − ιαgm)cosLm t =−ι
∞∑

n=1
an(α+βn)sinζn(y +b). (6.97)
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Multiplying equation (6.97) by cosLs t and integrating with respect y from y = 0

to y = b, one obtains

fs − ιαgs =− ι

D4
s

∞∑
n=1

ζn cosLsb

ζ2
n −L2

s
an(α+βn), (6.98)

Using equation (6.98) in equation (6.37) gives

R4
+(αm) =−ι

(
sinLmb

Lm
+ η1

i keff
cosLmb

) ∞∑
n=1

ζn cosLmb

ζ2
n −L2

m
an(αm +βn) (6.99)

Substituting equations (6.99) and (6.98) in equation (6.45) at α=αs leads to

η1χ+(η1,αs)

N 4+ (αs)

(
sinLsb

Ls
+ η1

i keff
cosLsb

) ∞∑
n=1

ζn sinLsb

ζ2
n −L2

s
an(αs +βn)

= 2k sinθ0e−i ke f f b sinθ0N−(keff cosθ0)

(1+η1 sinθ0)(αs −keff cosθ0)χ−(η1,keff cosθ0)

+
∞∑

m=1

ιLm sinLmbN 4+ (αm)

N 4
m(αs +αm)2αmχ+(η1,αm)

∞∑
n=1

ζn sinLmb

ζ2
n −L2

m
an(βn −αm). (6.100)

The above expression can be written as under

∞∑
n=1

An(αs)an = I (αs), s = 1,2,3, ... (6.101)

where

An(αs) = η1χ+(η1,αs)

N+(αs)

(
sinLsb

Ls
+ η1

i keff
cosL j b

)
ζn sinLsb

ζ2
n −L2

s
(αs +βn)

+
∞∑

m=1

ιLm sinLmbN 4+ (αm)ζn sinLmb(βn −αm)

2N 4
mαm(α j +αm)χ+(η1,αm)(ζ2

n −L2
m)

(6.102)

and

I (αs) = 2ke f f sinθ0e−ιkeffb sinθ0N−(keff cosθ0)

(1+η1 sinθ0)(αs −keff cosθ0)χ−(η1,keff cosθ0)
. (6.103)
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The infinite system of algebraic equation in equation (6.101) will be solved nu-

merically. To solve this system we truncate the infinite system of algebraic equa-

tions after the first N terms.

Now for transmitted field one can consider continuity relations represented by

equations (6.13) and (6.14) as under

p(y)− ιαq(y) =−ι
∞∑

n=1
an(α+βn)sinζn(y +b). (6.104)

Using equation (6.69) into equation (6.104), gives

∞∑
m=1

(pm − ιαqm)sinLm t =−ι
∞∑

n=1
an(α+βn)sinζn(y +b). (6.105)

Multiplying equation (6.105) by sinLs y and integrating from y =−b to y = 0, one

obtains

ps − ιαqs = −ι
D5

s

0̂

−b

∞∑
n=1

an(α+βn)sinζn(y +b)sinLs yd y, (6.106)

simplification of which gives

ps − ιαsq j =− ι

D5
m

∞∑
n=1

an(α+βn)∆ns , (6.107)

where ∆ns is given by

∆ns = 1

ζ2
n −L2

s
(Ls sinζnb −ζn sinLsb) . (6.108)

6.5 THE DIFFRACTED AND TRANSMITTED FIELDS

The diffracted field H 1
z (x, y) is acquired by taking the inverse Fourier transform

of F (α, y). While using equation (6.21), one gets

H 1
z (x, y) = 1

2π

ˆ

L

keff

L(α)
R4

+(α)χ(η1,α)e ιL(α)(y−b)e−ιαxdα. (6.109)
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Using the replacement of function χ(η1,α) and variables α=−keff cos t , x = ρ cosθ

and y = ρ sinθ, equation (6.109) takes the form

H 1
z (ρ,θ) = 1

2π

ˆ

L

R4+(−keff cos t )keff sin t

1+η1 sin t
e−ιkeff sin t+ιkeffρ cos(t−θ)d t . (6.110)

The integral in equation (6.110) can be evaluated asymptotically through the sad-

dle point technique. Here, saddle point occurs at t = θ.

On taking into account equation (6.88), the diffracted field takes following form

H 1
z (ρ,θ) =

k
√

(ε2
1 −ε2

2)/ε1e ιkρ
√

(ε2
1−ε2

2)/ε1−ιπ4 −ιk
√

(ε2
1−ε2

2)/ε1b sinθ sinθ√
2πkρ(1+η1 sinθ)

×

2ιsinθ0e−i k
√

(ε2
1−ε2

2)/ε1b sinθ0N 4− (k
√

(ε2
1 −ε2

2)/ε1 cosθ0)

η1(1+ sinθ0)(cosθ+cosθ0)χ−(η1,keff cosθ0)
+

∞∑
m=1

ιLm sinLmbN 4+ (αm)(fm + ιαmgm)

2η1αm(αm −k
√

(ε2
1 −ε2

2)/ε1 cosθ)χ+(η1,αm)

 N 4− (k
√

(ε2
1 −ε2

2)/ε1 cosθ)

χ−(η1,k
√

(ε2
1 −ε2

2)/ε1 cosθ)
.

(6.111)

The transmitted field H 5
z (x, y) is obtained by taking the inverse Fourier transform

of ψ(α, y). While using equation (6.51), one gets

H 5
z (x, y) = 1

2π

ˆ

L

keffR
5+(α)χ(η2,α)

L(α)
e−ιL(y+b)e−ιαxdα. (6.112)

Using the replacement of function χ(η2,α) and change of variables α=−keff cos t ,

x = ρ cosθ and y = ρ sinθ, equation (6.112) takes the form

H 5
z (ρ,θ) = 1

2π

ˆ

L

R5+(−keff cos t )keff sin t

1+η2 sin t
e−ιkeff sin t+ιkeffρ cos(t+θ)d t . (6.113)

The integral in equation (6.113) can be evaluated asymptotically through the sad-

dle point technique. Here, saddle point occurs at t = 2π−θ. Taking into account
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equation (6.92), the transmitted field takes the form:

H 5
z (ρ,θ) =−

√
(ε2

1 −ε2
2)/ε1 sinθe ιkρ

√
(ε2

1−ε2
2)/ε1− ιπ

4 −ιkb
√

(ε2
1−ε2

2)/ε1 sinθ√
2πkρ(1−η2 sinθ)

×
N 5− (k

√
(ε2

1 −ε2
2)/ε1 cosθ)

χ−(η1,k
√

(ε2
1 −ε2

2)/ε1 cosθ)

∞∑
m=1

Lm cosLmbN 5+ (υm)(pm + ιqm)

2υm(υm −keff cosθ)χ+(η2,υm)
. (6.114)

6.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we evaluate the numerical results for various physical param-

eters of interest. It is obvious to see that the diffracted and transmitted fields

represented by the equations (6.111) and (6.114) contain infinite series. Fig. (6.2)

shows the variation of the modulus of the diffracted field versus the truncation

number "N ". It is observed that the effect of the truncation number is negligible

for N ≥ 100. Hence, the infinite system of algebraic equations in equation (6.101)

can be managed to deal as finite. Fig. (6.3) deals with variation of modulus of the

transmitted field with respect to truncation number N and the result is obtained

that the effect of the truncation number is negligible for N ≥ 80. Fig. (6.4) depicts

the variation in the diffracted field versus impedance η1. It is apparent that the

diffracted field decreases with increasing of surface impedance η1. Whereas Figs.

(6.5) and (6.6) show variation in the diffracted field versus the cold plasma per-

mittivity values ε1 and ε2, respectively. It is interesting to note that the diffracted

field highly decreases by increasing ε1 but slightly increases with increasing ε2.

Also Fig. (6.7) explores the effect of surface impedance over the transmitted field.

It is observed that the transmitted field also decreases with increasing η2. The ef-

fect of cold plasma permittivity values ε1 and ε2 over the transmitted are shown

in Figs. (6.8) and (6.9), respectively. It is observed here that the transmitted field

highly decreases while increasing ε1 whereas it increases slightly by increasing

ε2. In other words the diffracted and transmitted fields amplitude decreases with
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increasing ion number density in cold plasma or by decreasing plasma frequency.
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FIGURE 6.2. Variation in the diffracted field amplitude versus "N" at k = 5, θ0 = 45o , θ = 900,
η1 = 0.2ι, ε1 = 0.8, ε2 = 0.1, b = 0.2λ.
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FIGURE 6.3. Variation in the transmitted field amplitude versus "N" at k = 5, θ0 = 45o , θ = 900,
η5 = 0.4ι, ε1 = 0.5, ε2 = 0.1, b = 0.2λ.



6.6. COMPUTATIONAL RESULTS AND DISCUSSION 111

0 30 60 90 120 150 180
-60

-40

-20

0

20

40

Observation angle Θ HdegL

D
iff

ra
ct

ed
fie

ld
am

pl
itu

de
HdB

L

Η1=0.2ä Η1=0.4ä Η1= 0.6ä

FIGURE 6.4. Variation in the diffracted field amplitude versus "θ1" at θ0 = 450, k = 5, ε1 = 0.8,
ε2 = 0.1 and b = 0.2λ.
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FIGURE 6.5. Variation in the diffracted field amplitude versus "ε1" at k = 5, θ0 = 450, η1 = 0.2ι,
ε2 = 0.1 and b = 0.2λ.
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FIGURE 6.6. Variation in the diffracted field amplitude versus "ε2" at k = 5, θ0 = 450, η1 = 0.2ι,
ε1 = 0.8 and b = 0.2λ.
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FIGURE 6.7. Variation in the transmitted field amplitude versus "η2" at k = 5, θ0 = 45o , ε1 =
0.8, ε2 = 0.1 and b = 0.2λ.
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FIGURE 6.8. Variation in the transmitted field amplitude versus "ε1" at k = 5, η2 = 0.2ι, ε2 = 0.1
and b = 0.2λ.
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FIGURE 6.9. Variation in the transmitted field amplitude versus "ε2" at k = 5, η2 = 0.2ι, ε1 = 0.8
and b = 0.2λ.
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7 CONCLUSION AND PERSPECTIVES

The study of plasma in wave scattering problems have been of significant inter-

est in recent years due to a variety of associated applications in diverse domains.

The particular application includes, the construction of antennas, communica-

tion between the vehicles and earth station, radio communication etc. We have

investigated theoretically the effectiveness of ionosphere plasma, earth’s mag-

netic field, structure and nature of the body material used as an artificial satel-

lite. For analysis purpose the whole system was supposed to be immersed in a

cold plasma. The underlying model problems present that how a particular class

of boundary-valued problems related to wave scattering in cold plasma may be

solved by using different semi-analytic techniques. The solutions to the prob-

lems have been focused using Wiener-Hopf technique together with the Mode-

Matching technique.

In a first attempt, the model problem describing the effect of cold plasma on

scattering of E-polarized plane wave by step discontinuity has been considered.

For this purpose the Helmholtz equation in cold plasma has been retrieved from

Maxwell’s equations in the canonical problem. Then with the help of Fourier

transform followed by the Wiener-Hopf technique the diffracted field expression

was obtained successfully. It is concluded that the effect of the truncation num-

ber is negligible after 15 truncation term. Moreover the diffracted field amplitude
115
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increases with the length of vertical plate. The analysis has also been performed

for other parameters of interest such as incident angle and surface impedances.

It is depicted that the amplitude of diffracted field increases while increasing the

permittivity value ε1. In other words amplitude increases by either decreasing

electron number density (plasma frequency) or by increasing ion number den-

sity. Whereas in contrast to ε1 the amplitude of diffracted field decreases with

increase of the permittivity value ε2. It has been noted that the diffracted field is

greatly effected due to permittivity value ε1 as compared with that of permittiv-

ity value ε2. Moreover the results in the absence of cold plasma can be computed

while taking ε1 = 1 and ε2 = 0 With this we may conclude that the existing model

with out cold plasma’s effects can be reduced from this model. This analysis has

been carried out in Chapter (3).

Further, we have studied the effect of cold plasma permittivity by an impedance

loaded parallel-plate waveguide. From the computed results it has been ob-

served that diffracted field is mostly affected by varying the plate separations,

whereas the variation of impedances η2 and η3 have negligibly small effects on

the obtained diffracted field. These results are much consistent with that of al-

ready existing results in literature, for example [12]. Moreover the diffracted field

amplitude decreases with increasing the permittivity values ε1 and ε2. Again the

diffracted field is generally affected due to permittivity value ε1 than that of ε2.

In this case the truncated parameter takes higher value in order to get appropri-

ate results. These observations are related to Chapter (4) of this dissertation.

The effect of cold plasma permittivity on the radiation of the dominant TEM-

wave by an impedance loaded parallel plate has been examined in Chapter (5).

For the reason, the waveguide radiator with impedance loaded parallel-plate

is considered. The Wiener-Hopf technique enables to obtain the radiated field

while computing the unknown complex coefficients with the help of Mode-Matching

technique. It has been concluded that the radiated field amplitude had impres-
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sive variation against all physical parameters such as plate separation b, surface

impedances η1, η2, η3 and η4 and permittivity values ε1 and ε2 for both reac-

tive and capacitive cases. Moreover the radiated field amplitude for both cases

(Reactive and Capacitive) decreases with the increasing of permittivity values

ε1 and ε2. Likewise diffracted field, the radiated field has largely been affected

due to permittivity value ε1 instead of ε2. Further the amplitude of radiated field

is effected drastically in the presence of an ionosphere plasma medium. This

observation can be depicted while ignoring the effect of cold plasma in the ex-

pression obtained for radiated field. It has also been observed throughout that

the radiated field showed impedance dependant variations. These variations are

actually related to the magnetic and electric susceptibilities of the waveguide

surfaces. We conclude that these results can be used to improve the radiated sig-

nal quality transmitted by an artificial satellite in the ionosphere.

Finally, we have examined diffracted and transmitted fields due to an impedance

loaded waveguide located in cold plasma. The ultimate objective was to study

the effect of cold plasma permittivity on the diffracted and transmitted fields.

Again hybrid methods such as Wiener-Hopf technique and Mode-Matching tech-

nique were opted to get the desired expressions of diffracted and transmitted

fields. It is worthwhile to comment that up to 100 number of truncation terms are

needed to achieve the better accuracy of the obtained solution. By this we can say

that whilst computing diffracted and transmitted field one requires higher num-

ber of truncated terms as compared to problem of diffraction and radiation. The

diffracted and transmitted fields have similar behavior (inverse proportionality)

for both impedance parameters η1 and η2. A similar proportionality is observed

when diffracted and transmitted fields were observed with respect to both per-

mittivity values ε1 and ε2.

In addition, while solving field problems, there are mainly three types of tech-

niques: experimental, analytical, and numerical. Experiments are expensive,
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time consuming, and usually do not allow much flexibility in parameter vari-

ation. However analytical and numerical methods are much flexible. Numerical

methods have become popular with the development of the computing capabil-

ities, and although they give approximate solutions, have sufficient accuracy for

engineering purposes. But as a particular choice in this thesis we have preferred

analytical methods over numerical methods. As an argument we seek that the

implication of numerical techniques restrict such models up to low frequency

regime whereas the analytical/hybrid methods used here in do not have limita-

tions for a specific range of frequency problems. So we have a preference to use

hybrid methods which operate well for both low frequency problems as well as

high frequency problems.

7.1 FUTURE DIRECTIONS AND OPEN QUESTIONS

The analysis to the proposed problems related to the effect of cold plasma and

wave scattering requires further attention for more realistic models, for example,

by taking into account non-linear higher order boundaries, modeling different

physical edge conditions and computing related power expressions. Moreover,

in view of their application for acoustic scattering, underwater acoustics, struc-

tural acoustics, electromagnetic wave scattering, the low-frequency approxima-

tions need due attention. The problems of coupled wave scattering with cold

plasma effects finds many applications in a broad area of physics and engi-

neering. For the problems involving planar boundaries such as soft, rigid or

impedance, their solution can be obtained via standard Wiener-Hopf technique

In such cases the obtained eigenfunctions in terms of either reflected, transmitted

or radiated fields satisfy the usual orthogonal properties and required no more

complications. Also these eigenfunctions are linearly independent. It would be

of interest to consider more complicated boundary conditions on the faces of

waveguide. Therefore for non-planar boundaries (flexible), the eigenfunctions
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will no more be orthogonal as well as linearly independent. All such problems

will lead to in some form of infinite sum. Obviously calculating an infinite sum

is impractical (but still possible) but mathematical solutions will require higher

order of accuracy. The demonstration of such an application of plasma physics

and wave scattering will determine that how a particular class of model prob-

lems may be solved. The Wiener-Hopf technique will no longer exist to yield

solution of these problems. Of course, for such type of problems, one have to

develop appropriate orthogonality relations instead of usual ones. After that

the matched eigenfunctions expansion may lead to the solution of problem. The

eigenfunctions expansion with dependant sums will require the use of some ex-

tra conditions. Therefore some extra conditions in terms of edge conditions will

be necessary to use. Otherwise the uniqueness and the convergence of the mod-

eled problems will be questionable. The overall process will be the blend of

analytic as well as numerical approaches. Further, while obtaining expressions

for the power transferred through the boundaries as well as fluid would be an

interesting and realistic choice. The present model could be extended to afore-

mentioned studies with the help of some related investigations, refer for instance

to [92, 93, 94, 95, 96].
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