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ABSTRACT

A number of diffraction problems having a practical application in science and
engineering can be solved through Wiener-Hopf and Mode Matching techniques.
Whilst using these techniques, this dissertation addresses a class of boundary-
value problems related to the effect of cold plasma and wave scattering. These
problems find applications in a broad area of physics and engineering. The envis-
aged mathematical model is governed by the Helmholtz equation in cold plasma
along with soft, hard and impedance boundary conditions. The diffracted, scat-
tered, transmitted and radiated fields are obtained for waveguide structures lo-
cated in cold plasma. The numerical analysis is made in its factual perspective by
using different material properties of the waveguide. It is revealed that the am-
plitude of obtained field is affected drastically in the presence of an ionosphere
plasma medium. Likewise it is observed that the field showed impedance de-
pendent variations that are actually related to the magnetic and electric suscepti-
bilities of the waveguide surfaces. We conclude that such types of results can be
used to improve the radiated signal quality transmitted by an artificial satellite

in the ionosphere.
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INTRODUCTION

CHAPTER

1.1 MOTIVATION

The problems involving wave scattering in cold plasma have been of great inter-
est to scientists and engineers. The study of the propagation of electromagnetic
(EM) waves through the earth’s ionosphere is of deep interest and importance
providing with a natural mean of radio communication [1, 2, 3]. Ionosphere
consists of ions and electrons formed by solar photo-ionization and soft x-ray
radiation [4]. Such ions and electrons, of course, form weak neutral plasma
and hence, the physics of ionosphere can be coined in terms of plasma physics.
Earth’s ionosphere has been divided into four broad regions, namely, D, E, F, and
topside regions. For radio communications the region of interest is F-region lying
above the height of 150 km. The F-region contains an important reflecting layer
for communication signals arriving from an earth station. However, ionosphere
consists of electrons, ions and neutrals, of course, it can be modeled as a medium
comprising of weak neutral plasma, hence, its physics can be grasped as plasma
physics. Since the ionosphere plasma is highly magnetized under earth’s mag-
netic field, therefore, it can be treated as an anisotropic medium. The ultraviolet
radiation which impinges on the earth’s atmosphere ionizes a fraction of neutral
atmosphere, resulting into a mixture of charged (electrons and ions) and neutral

particles. Since the collisions at altitudes above 80 km in the earth’s atmosphere
1
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are very rare, therefore, under such conditions the recombination rate of charged
species is very slow and hence, a permanent ionized medium occurs, which is
known as ionosphere.

The transmission, reflection, refraction, and diffraction of EM waves by iono-
sphere are the processes that can be understood via plasma physics. The iono-
sphere plasma also retains the equilibrium density of free electrons and ions
because of the balance between photo-ionization and various loss mechanisms.
However, the density of these electrons varies dramatically with altitude by the
effects of sunrise and sunset [5]. Moreover, the ionosphere plasma is magne-
tized by the earth’s magnetic field that forms the plasma to be as an anisotropic
medium. The measurements based upon the artificial satellites immerse in the
ionosphere plasma may be affected due to the interaction of communicating EM
signals that are used for communication between the spacecraft and earth sta-
tion. It is well known that the communicating signal radiated by the satellite
may modify due to its interaction with the ionosphere plasma and due to the
nature of body material (electric and magnetic susceptibilities or impedance) of
waveguide used to guide the EM signal (radiated from the vehicle) to the earth
station [6}7]. With this the measurements based upon artificial satellite present in
ionosphere communicating to an earth station may be affected drastically. The
geometry and material used in complex body structure of an artificial satellite
can also change the quality of an EM signal. It is understood that electric and
magnetic susceptibilities of a material are related to permittivity and permeabil-
ity parameters. Moreover, the characteristic impedance and speed of EM wave
depend on any medium where detailed information of any medium is obtained
by its refractive index.

The present work is based upon a theoretical model to investigate the effective-
ness of the ionosphere plasma, earth’s magnetic field, structure and nature of the

body material (electric and magnetic susceptibilities or impedance) of an artifi-
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cial satellite on an EM signal transmitting through the ionosphere. It is pertinent
to mention that in order to model ionosphere plasma the whole system is sup-
posed to be immersed in a cold plasma. The modeled problem have been com-
bined to have a well known Helmholtz equation which is solved for the specified
boundary conditions by employing Wiener-Hopf technique [8|9]. Here, we have
employed the magnetoionic theory that deals with the cold anisotropic plasma
which is considered in this model. The temperature and pressure of plasma
species (ions and electrons) are usually small and hence, are neglected. Under
these circumstances such a plasma is treated as cold plasma. Sahin et al. [10]
investigated the diffraction phenomenon in cold plasma. Yener and Serbest [11]
also explored the diffraction of plane waves by an impedance loaded half-plane
in cold plasma. Cinar and Biiyiikaksoy [12] studied the diffraction of the plane
waves by an impedance loaded parallel-plate waveguide in the absence of cold
plasma.

Keeping in view the aforementioned background, this thesis concerns largely
with the effect of cold plasma permittivity on the scattering process of waveguide
structures. This study is important mainly due to the worthwhile applications of

scattering phenomena in structural design antennas and aircrafts.

1.2 STATE OF THE ART

This documents is mainly concerned about the wave scattering processes in
the waveguide structure in the presence of cold plasma. Being fourth state of
matter and larger part of universe the study of plasma is quite relevant and
significant. The plasma contains a certain portion of free electrons whereas the
atoms are partly ionized. The presence of negative and positive carriers of charge
makes plasma electrically conductive and distinguishes it from gaseous state.
The plasma that contains a very small part (approximately one percent) of the

ionized particles is termed as cold (non-thermal) plasma. The cold plasma is
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generated in a high-voltage electric field and the velocity of electron is strongly
dependent to the temperature up to a thousand degrees of Celsius. Whilst their
effect on the plasma temperature is low and final plasma temperature is close
to the outward temperature. To quantify the results arising due to the effec-
tiveness of ionosphere plasma, earth’s magnetic field, structure and nature of
body material of the radiator on the EM signal communicating to earth station
propagating through ionosphere, a theoretical model has been devised. Lau and
Biggs [13] is examined the effects of cold plasma on electron layer immersed in
a cold background plasma. The mutual actions between guided electromagnetic
waves and cold plasma in the presence of a static magnetic field were studied
by Buchsbaum et al. [14]. Bardos and Barankova [15] examined the relation be-
tween a new type of radio frequency and cold plasma. Janis [16] developed a
variational formulation for the impedances loaded antenna immersed in cold
plasma. Tyukhtin [17] studied the diffraction of plane electromagnetic waves by
a half-plane immersed in a parallel flow of cold plasma. Ikiz and Karoomerli-
oglu [18] investigated diffraction phenomenon by considering two impedances
wedge in cold plasma.

In continuation to second part of this work, the wave scattering is a physical phe-
nomenon in which waves are constrained to depart from the route in the medium
through which they move. Mathematical analysis of scattering was the focus of
attention for many researchers and scientists, for example [19, 20, 21]. The study
was initiated by Ibn-al-Haitam in 10th century AD who computed the asymp-
totic field for diffraction of the wedge and arose the wave propagation theory
referred as Poincare [22]]. Sommerfeld [23] discussed the exact solution of diffrac-
tion from a plate by using the physical method of images on Reimann surfaces.
Carslaw [24] utilized the parabolic coordinates and the results obtained by him
were the same as achieved by Sommerfeld [23]. Levine and Schwinger [25, 26]

used the integral equation in problem of diffraction followed by some related
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studies containing the Wiener-Hopf type integral equations. Copson [27] studied
the diffraction from a plane screen in the form of integral equation whose solu-
tion was obtained by Wiener-Hopf technique. Interestingly the obtained solution
was consistent with the Summerfeld’s problem [23]. It is worthwhile to comment
that Copson [27] was the first one who used Wiener-Hopf technique to solve the
problem of sound. The key feature of obtaining the solution via Wiener-Hopf
technique is the kernel factorization. This factorization splits the function into a
sum or product of two functions where one function is regular in the upper half-
plane while the other in the lower half-plane. The detailed description regarding
the kernel factorization can be found in [28, 29, 30, 31]. Sometime kernel factor-
ization becomes very difficult and in such cases some alternative techniques are
opted to get desired results. Bates and Mittra [32] have employed an integral
representation for the factorization of a scalar function. Wiener-Hopf is a useful
tool to handle two or three dimensional diffraction problems [33} 34, 35].

It is renowned that the problem having a geometry of planer boundaries with a
sudden change in material properties of boundaries may lead to the solution by
Wiener-Hopf technique [36] 37, 38, [39]. Biiyiikaksoy and Birbir [40, 41]] consid-
ered the diffraction of E-polarized plane wave by the reactive step and radiation
phenomenon that radiates from an impedance loaded parallel-plate waveguide
radiator. Topsakal et.al. [42] used the Wiener-hopf technique to solve the prob-
lem of scattering of electromagnetic waves by a rectangular impedance cylinder.
Cinar and Biiyiikoksoy [43] used the Wiener-Hopf technique for the problem of
diffraction by a thick impedance half-plane with different end faces impedance.
The diffraction by a rigid barrier with a soft or perfectly absorbent end face with
Wiener-Hopf technique was studied by Mclver and Rawlins [44]. Rienstra [45]
applied the Wiener-Hopf technique for the problem of sound radiation from
semi-infinite duct. The solution to the sound radiation problem using Wiener-

Hopf technique was due to Hassan and Rawlins [46]. Furthermore, the said
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technique was successively used by Ayub et al [47, 48| 49| 50] and Nawaz et
al. [51, 52, 53] 54] in their recent studies. A brief historical view of Wiener-Hopf
technique was given by Lawrie and Abrahams [55]. As mentioned earlier that
Wiener-Hopf technique is not always considered to be the easy task when kernel
factor becomes complicated. Therefore, a hybrid method has recently been in-
troduced to solve such complicated problems while bypassing the most difficult
process of the matrix Wiener-Hopf factorization. This hybrid method is combina-
tion of Wiener-Hopf and Mode-Matching techniques that reduces the boundary-
valued problem in terms of a modified Wiener-Hopf equation with second kind.
The solution obtained from hybrid method contains an eigenfunction expansion
of unknown complex coefficients. The expressions for these unknown coeffi-
cients are obtained as a system of infinite linear algebraic equations. Through
a numerical procedure, this system can be solved approximately. This method
was adopted to solve the E-polarized plane wave diffraction and radiation phe-
nomenon in a waveguide by Biiyiikaksoy and Birbir [41]. Such methods were
initially developed to tackle the problems governed by Helmholtz equation and
waveguide boundaries described by Neumann (Rigid), Dirichlet (Soft) or Robin
(Mixed) conditions. The solution of these problems contains the eigenfunction
expansion. Ikiz et al. [56] used the name numerical-analytical method instead of
hybrid method. The main objective of using this method is to modify the ana-
lytical methods which works well at high frequencies while numerical method
works well at low frequencies.

Also the diffraction phenomenon was studied in a bifurcated waveguide using
a dominant mode wave incident on a soft-hard half-plane amidst an infinite
parallel-plate with hard boundary by Biiyiikaksoy and Polot [57]. Transmission
and reflection coefficients are acquired in a bifurcated waveguide by Rawlin [58].
Pace and Mithra [59] studied the problem involving a trifurcated parallel-plate

waveguide with an arbitrary spacing between the plates. Jones [60] considered
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the waves scattering from the waveguide containing three semi-infinite parallel
soft and equidistant plates. Asgher et al. [61] extended the Jones’ problem [60] for
point and line source scattering. Rawlin [62] also studied the radiation of a sur-
face wave mode propagating in a semi-infinite cylindrical waveguide. Hassan
and Rawlin [63] solved the problem of sound radiation from a waveguide (Semi-
infinite duct) placed symmetrically within an infinite duct. Later on the radiation
phenomenon was studied in a trifurcated parallel-plate waveguide by Rawlin
and Hassan [64]. Morse and Feshbach [65] considered the problem of scattering
in a perfectly conducting and an impedance loaded parallel-plate waveguide
having the same impedances on lower and upper faces of the plates. Later on
Johansen [66] considered the same geometry for different surface impedances
using a coupled system of modified Wiener-Hopf equations. Biiyiikaksoy et
al. [67] and Idemen [68] uncoupled the coupled system of modified Wiener-Hopf
equations by using the week factorization method and obtained the exact solu-
tions of the vector Wiener-Hopf equations. Abrahams [69] introduced a "pole
removal technique" to uncouple the coupled system of modified Wiener-Hopf
equations. This technique can be seen in some classical articles, to mention a

few [70,71},172}, 73]

1.3 AVANT GARDE

The main aspiration of this dissertation is to investigate that how a particular
class of structural problems related to wave scattering may be solved while using
different semi-analytic techniques. In particular when a cold plasma is immersed
in the waveguide structure would be the topic of interest. Broadly speaking the
present work can be seen as a continuation of ongoing studies, refer for instance
to [1, 16, 10, 12]. The major part of this research is carried out in the following

perspective:
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(1) The derivation of governing Helmholtz equation in cold plasma from the

well-known Maxwell equations.

(2) Inclusion of cold plasma permittivity values €; and e, in the given model.

(3) The use of Wiener-Hopf technique together with the Mode-Matching tech-

nique in order to yield a larger part of solutions to above model.

(4) The mathematical and numerical study related to the effect of cold plasma

on scattering of E-polarized plane wave by step discontinuity.

(5) The discussion concerning the effect of cold plasma permittivity due to

impedance loaded parallel-plate waveguide located in cold plasma.

(6) The consideration of radiation problem with an impedance loaded parallel-

plate waveguide radiator.

(7) The study of problems involving the diffracted and transmitted fields.

(8) The graphical behavior of diffracted, transmitted and radiated field versus

different physical parameters of our choice.

(9) In fact the major contribution towards the development of present study is
to quantify the effects of ionosphere plasma on the communicating signals
between earth station and an artificial satellite in the earth’s atmosphere. In
the process the standard Wiener-Hopf and somehow Mode-matching tech-
niques are used to find appropriate solutions for such models. In fact the
Wiener-Hopf technique with Mode Matching technique is used to show the
effect of cold plasma permittivity in different waveguide structures. Briefly
saying the Wiener-Hopf analysis and the effect of cold plasma permittivity

in a waveguide are the major focus for this thesis.
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1.4 DISSERTATION CATALOG

This thesis is summarized in the order below.

CHAPTER (2) begins with the review of generalized form of boundary-valued
problems in cold plasma. As mentioned earlier this thesis is concerned mostly
with the effect of cold plasma permittivity and scattering of waves in a waveg-
uide structure. For this purpose, it contains some basic definitions and mathe-
matical preliminaries which will be utilized in the succeeding chapters. A canon-
ical problem is modeled in cold plasma and solved while using a modified Wiener-
Hopf technique.

CHAPTER (3) consists of impedances loaded step problem in cold plasma. Here, a
waveguide is designed in cold plasma containing by a two separated half-planes
with different surface impedances and afterwards these half-planes were joined
vertically by a hard step. Typically such kind of geometries can be used in con-
structing antennas. The contents of this chapter has already been submitted to
the Journal of Waves in Random and Complex Media for possible publication.
In CHAPTER (4), the effect of cold plasma permittivity is analyzed on E-polarized
plane wave diffraction by an impedance loaded parallel-plate waveguide in cold
plasma. Also the effect of different parameters such as surface impedance and
plate separation is observed. The model problem is solved by hybrid method i.e.,
Mode-Matching technique in conjunction with Fourier transform. These type of
geometries in the ionosphere (plasma) are important in communication between
the vehicles and the earth station. The contents of this chapter have been pub-
lished in Physica Scripta, 89(8): Paper ID. 095207, (2014).

CHAPTER (5) deals with radiation phenomenon where an impedance loaded
parallel-plate waveguide radiator in cold plasma is considered. This geome-
try is designed by a parallel plane and half-plane having all having different
faces different surface impedances located in cold plasma. Here the effect of cold

plasma permittivity is investigated on the radiation problem. The contents of
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Chapter (5) are published in Mathematical Methods in the Applied Sciences,
DOI:10.1002/ mma.3464.

CHAPTER (6) investigates the diffracted and transmitted fields from a waveguide
located in cold plasma. The geometry of the problem is designed from the three
half-planes where one half-plane is located between the other two in opposite
direction. The surface material properties of the half-planes are characterized ei-
ther by soft (Dirichlet type), hard (Neumann type) or impedances (Robin type).
The solution to the underline problem is obtained with the help of hybrid method
that reduces the boundary-valued problem to the modified Wiener-Hopf equa-
tion. This investigation has already been submitted to New Journal of Physics

for possible publication.



PRELIMINARIES

CHAPTER

This chapter contains some of the mathematical preliminaries and compact re-
views of the techniques which will be used in the subsequent chapters. These
consist of Fourier transform [74], Wiener-Hopf technique [8, 57], Maliuzhinetz’s
tunction [75] 76,177, 78,179|180] and Helmholtz equation in cold plasma [81]. Cer-

tainly these preliminaries will help to successful completion of thesis document.

2.1 ANALYTICAL PROPERTIES OF THE FOURIER TRANS-

FORM

The Fourier transform is a useful technique and plays an important role in solv-
ing a partial differential equation. This technique is applicable for the majority of
the problem whether their domain is finite or infinite. Consider a function h(x)

defined for x € (—oo,00). Then h(x) can be written in the form as under

h(x) = hy(x) + h_(x), (2.1)
where
h(x) x>0
h+ (x) = (2.2)
0 x<0,

11
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and

h(x) x<0
h_(x) = (2.3)

0 x>0.

H(a) represents the Fourier transform of h(x) which is defined as under

H(a) = \/%_/h(x)e“”dx, (2.4)

where the integral in the above expression exists and h(x) is bounded for all x in

the given domain. Use of equations (2.2) and (2.3) in equation (2.4) gives

1 o0
H(a) = \/T_n_/ [h_(x) + hy (x)] e**dx. (2.5)

After simplification, equation (2.5) takes the form

0 oo
H(a) = \/%_ﬂ_/h_(x)e‘“xdx+ \/%_n{hﬁx)e’”dx, (2.6)
that is
H(a) = H_() + Hy (@), (2.7)
where
0
H_(a) = \/%_/h_(x)e“”dx, (2.8)
and -
1
H, (a)= E{m (x)e'**dx. (2.9)

The analytic properties of H(a) are the properties of H_(a) and H, (a). Initially,
consider the properties of H, () as follow:

If the function k. (x) is of exponential order, i.e.,

|hy(x)| < Me"'* as x— oo, (2.10)
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then the function H, () is a regular function of the complex variable @ = o + 17

and H,(a) — 0 as |a@| — oo in the domain Jm(a) > 7_ . Perceiving that
Mer_xetax — Me(r_—r)xetax (211)

is bounded if 7 > 7_. Now taking the inverse Fourier transform of H,(a), one

obtains

hi(x) = \/%_ﬂ/H;r (v)e "““*da, (2.12)
0

where integration will be taken over any straight line in the region Jm(a) > 7_
and parallel to x—axis in the complex a—plane.

Now for the problem considered in this thesis, the strip of the analyticity can be
calculated by considering the following cases.

(i) For 7_ <0 the function h, (x) decreases, the domain of the analyticity of h, (x)
contains the real axis and equation (2.12) will be integrated along the positive
real axis.

(ii) For 7_ > 0 the function h,(x) increases but not faster than the exponential
function with linear exponent, the domain of the analyticity of h.(x) lies above
the real axis of the complex a—plane and equation will be integrated above
the positive real axis.

Now consider the function h_(x) satisfies the exponential order condition, so one
can write

|h_(x)| < Me™* as x— oo, (2.13)

H_(a) = /h_ (x)e'“ dx (2.14)
0

is regular in the lower half plane Im(a) < 7.
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Now taking into account the inverse Fourier transform of H_(a) gives

ho(x) = \/%_n [ H (@) **da, (2.15)

for 7, > 0 the domain of analyticity of H_(a) contains the negative real axis and
for 7, <0, is below the negative real axis. Hence equation (2.15) is analytic in

region 7_ < Jm(a) < 74 as shown in Fig. (2.1)

A

o — plane

FIGURE 2.1. Strip of analyticity

2.2 WIENER-HOPF TECHNIQUE

Wiener-Hopf technique was introduced by N. Wiener and E. Hopf in 1931. Ini-

tially, this was used to solve singular integral equation of the form
f(x):d)(x)+/K(x—y)f(y)dy, 0< x<oo, (2.16)
0

where ¢(x) and K(x — y) are given known function while f(y) is unknown func-
tion to be calculated. This equation had arisen in Hopf’s work on Milne-Schwarzschild
equation. This technique also reduces the problem of diffraction by a semi-
infinite plate to the solution of singular integral equation. All physical phe-

nomena are associated with ordinary or partial differential equations. These
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partial differential equations may be solved by using certain method depending
upon the geometry of the problem. The method of separation of variables is one
of these methods that fails for certain geometries such as semi-infinite regions,
waveguide structure with non planer boundaries etc. The detailed description

of the technique is mentioned below.

2.2.1 GENERAL SCHEME OF WIENER-HOPF TECHNIQUE

In this technique it is required to determined the unknown function F_(a) and
F.(a) of a complex variable a occurring in the below Wiener-Hopf equation.
These functions are analytic in the half-planes Jm(a) < 7, and Jm(a) > 7_, re-

spectively, and approach to zero as |a| — oo, satisfying the functional equation

(@) F. () + Ba)F_(a)+ € (a) =0, (2.17)

in the region 7_ < Jm(a) < 7. Here «/ (@) , (a) and € («) are the known functions
regular in the strip 7_ <Jm(a) < 7, and </ (a) and %(a) are non- zero in the strip.

For the solution of the Wiener equation the main step is to replace

o (a)  Pi(a)
Ba) P_(a)

(2.18)

where the functions P, (a) and P_(a) are non zero and regular, respectively, in

the half-planes Jm(a) > 7_ and Jm(a) < 7, . On using equation (2.18) in equation

(2.17), one can write

PL(@F. (@) +P_(@F_(@)+P_(a) 2% ~ 0, (2.19)
B (a)
The last term of the equation (2.19) can be decomposed as
P@fY _ k(@) + K (@), (2.20)

B(a)
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where the functions K, (a) and K_(a) are analytic in the half-planes Jm(a) > 7_

and Jm(a) < 7_, respectively. In the strip the following equation holds true

P,(@)Fi(a)+ K (a) =—-P_(a)F-(a) - K_(a) = S(a). (2.21)

The above equation is valid in the strip 7 < Jm(a) < 7. The left-hand side of
the equation (2.21) is regular in the half-plane Jm(a) > 7_ while the right-hand
side of the equation (2.21) is regular in the half-plane Jm(a) < 7,.. Hence by the

analytic continuation principal one can define S(a) over the complex a — plane.

Let us suppose that

IP.(@)Fi(a)+ K ()| <|alPas a— oo, IJm(a)>T1_ (2.22)
and

|IP_(@)F_(a) + K_(a)| < |a|?as a — oo, Jm(a) <T.. (2.23)

Then on using the extended Liouvillle’s theorem which states that "If S(a) is an
integral function such that |S(a)| < M|a|” as @ — co where M and p are constant
then S(a) is a polynomial of degree less than or equal to [p] where [p] is the
integral part of p." Here, S(a) represents a polynomial P(a) whose degree is less

than or equal to the integral part of (p,q) i.e.,

P(a) - Ky (a)

F.(a)= W (2.24)
and
—P(a)—K_(a)
F_ (@) = P_—m (225)

The above equations determine F, (a) and F_(a) in term of P(a). Thus, the rep-
resentation of equations (2.24) and (2.25) form a base to use the Wiener-Hopf

technique. It is important to annotate that factorization of function expressed
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in equation (2.18) and decomposition of function expressed in equation (2.20)
is possible under certain conditions. The possibility of these representations is

guaranteed by the following theorems.

2.3 ADDITIVE DECOMPOSITION THEOREM

Statement:

Let F(a) be a regular function in the region 7_ < Jm(a) < 7, and F(a) — 0 uni-
formly in the given region as |a| — oo, then F(a) can be decomposed in the given
region as under

F(a) = F_(a) + F, (), (2.26)

where F, (@) and F_(a) are regular functions in the region Jm(a) > 7_- and Jm(a) <
7., respectively.

Proof:

Consider a rectangle P;P,P3P, bounded by the lines Jm(a) = 7~ , Jm(a) =7, ,
Re(a) = T and Re(a) = —T containing an arbitrary complex number « = o +i7 and
lying in the given strip such that 7_ < 7. <Jm(a) < 7_ < 7_ as shown in the Fig.

(2.2).

e e e e e e e e — - = - - T = T4

Py(—T,7%) : Ps(T, )

FIGURE 2.2. Contour of integration
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According to Cauchy’s integral formula, one can write

T+ir! T+it!,

1O [
F(a)_Zm (—ad(+2m (—ad(
—T+it" T+l
-T+iT!, -T+ir"
R S T (9
+— / S ot (2.27)

! !
T+l =T+t

On taking the limit T — oo, the second and fourth integrals on the right-hand
side of equations (2.27) will tend to zero and hence equations (2.27) will take the

form
F(a)=F_(a) + F, (@), (2.28)
where
oo+it!,
F (a)= 1 &d( (2.29)
271 (—a
—oo+IT!,
and
co+iT’
F.(a) = 1 md(. (2.30)
271 (—a
—oo+1T!

F.(a) and F_(a) are regular functions in upper a—plane IJm(a) > 7_ and in lower
a—plane Jm(a) < 14, respectively. The arbitrary complex number « = o + 7 does

not lie on the contour of integration.

2.4 MULTIPLICATIVE DECOMPOSITION THEOREM

Statement:

Let ¥(a) be a non zero and regular function in the strip 7- < Jm(a) < 74 and
¥(a) — 0 uniformly as |a| — oo in the strip. Then ¥(a) can be factorized in the
given strip as

Y(a)=¥Y_(a)¥, (), (2.31)
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where the functions ¥, (@) and ¥_(a) are non-zero and regular in the half-planes
Jm(a) >7- and Im(a) < 7, , respectively.
Proof:
Let
F(a)=log¥(a), (2.32)

which satisfies all the condition of additive decomposition theorem. Thus, F(a)

can be expressed as

F(a)=F_(a) + Fy (@), (2.33)
where
Fi(a)=log¥.(a) (2.34)
and
F_(a) =log¥_(a). (2.35)

Substituting the equations (2.32), and in equation gives

log¥(a) =log¥ . (a)+log¥_(a). (2.36)
After simplification equation takes the form

¥(a)=V,(a)¥_(a). (2.37)

2.5 MALIUZHINETZ’S FUNCTION

Maliuzhinetz function plays a nobel role in the study of diffraction theory by an

impedances half planes. The function denoted by .4 (z) and defined as

1 y msint—2v/2sin % +2¢
My (2) = exp —a/ d

t], (2.38)
cost
0
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known as Maliuzhinetz’s function introduced by Maliuzhinetz. Volakis and Se-
nior [82] expressed the Maliuzhinetz’s function for small and large complex ar-

guments. For small arguments,
My(2) =1-bz*+0(2h), (2.39)

where b = {=(1 + 2 - v/2). The small complex arguments approximation of Mali-

uzhinetz’s function is, therefore,
Mr(z) =1-0.0139003882>. (2.40)
If Jm(z) >> 0, then

1
1 1
M7 (z) =1.05302 | cos Z(Z - Lln2)] ’ Jm(z) > 8. (2.41)

Equations (2.40) and (2.41) must be valid within the strip 0 < z < 7. For the re-

maining values of PRe(z) the ./ (z) relates to its value at the corresponding point

within the strip
~ m\12 cos(§ — %)
M (2) = [-/%n (E)] ATE) (2.42)
My (2) = My(—2) (2.43)
and
My (2) = My (2), (2.44)

where bar complex conjugate. Maliuzhinetz’s function is an even regular func-

tion of a complex variable z.
2.6 HELMHOLTZ EQUATION IN COLD PLASMA

In order to have a mathematical model for the problems in the subsequent chap-

ters, we first derive the Helmholtz equation in cold plasma. For the reasons Fel-
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son and Marcuvits [81] defined the tensor of dielectric permittivity for the cold
plasma and expressed the electric field component in term of the magnetic field
H,(x,y) by using the Maxwell’s equations along with tensor of dielectric permit-
tivity for the cold plasma as under:

The tensor of dielectric permittivity for the cold plasma is defined as

€= 1) €1 0, (245)
0 0 e
with
_ wp 2 We 2171
er=1-(22) - (%)) (2.46)
2 -1
62:(@) @Y Qe (2.47)
w we
and
2
ez:1—(%) , (2.48)
where
N,eé?
2 =2 2.4
wy, e (2.49)
and
H
= eIk — (2.50)

Here, e, N,, m, w, w¢, 0, and Hy represent the electric charge, electron density,
electron mass, operating, cyclotron, plasma frequencies and magnitude of the dc
magnetic field vector, respectively.

The electric field component in term of the magnetic field are as follow

B, = €1 0B, € 0B,

= + , 2.51
weo(e? —€3) 0y weg(e —€3) 0x (2.51)



CHAPTER 2

3 €2 0B, N 1€ 0B,
weg(e?—€2) 0y weg(e?—€2) 0x

E, (2.52)

It is known that Maxwell’s equations are valid in plasma so, one can write

VBt 0% (2.53)
xEF=—— .
c2orz’
where
E=E,i+Eyj+Ek and B=B,i+B,j+Bk. (2.54)

Thus, using equations (2.51) and (2.52) in equation (2.53), one obtains the required

Helmholtz’s equation in cold plasma as follow

0° 0°
Sz Ho )+ a—ysz(x, y) + kgf FHz(x,9) =0, (2.55)
with
€2 _ g2
kfﬁ =k%( 16 2y, k= w+/eoty and B, =e "“'H,(x,y). (2.56)
1

where the time dependence is assumed to be e™“* and k.j; depends on k, €; and

€o.

2.7 CANONICAL PROBLEM IN COLD PLASMA

In this section we consider a prototype problem arising in cold plasma that con-
cerned with wave scattering in waveguide designed by three semi-infinite plates.
The material properties of these plates are impedance, rigid and soft. The rigid
plate is defined in term of Neumann boundary condition whereas the soft plat
are defined in term of Dirichlet condition. The Winer-Hopf technique along with

Mode-Matching technique is used to obtain the approximate solution.

2.7.1 MATHEMATICAL MODEL OF THE PROBLEM

Here, we consider the scattering of a plane wave which is incident with angle 6,

in the waveguide region in cold plasma formed by two half-planes S; define by
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{(x,y,2)| x€(=00,0), y=Db, z€ (—00,00)} and S, defined by {(x,y,2)| x € (0,00), y =
0, z € (—oo,00)}. The characteristic properties of the upper face of half-plane S; is
characterized by surface impedance Z and the upper face of the half-plane S; is
rigid. These two planes are combined by a soft vertical step of hight b as shown

in Fig. (2.3):

FIGURE 2.3. The physical configuration of the waveguide structure in cold plasma

The total field takes the form as under

H(x,y) + Hi"(x, ) + H.% (x, y), y e (b,00)
Wiy =] (2.57)
H:(x,y), y€(a,b)

where Hé”c (x,y)and H. Zref (x, y) stand for incident and reflected field, respectively,

given by
Hinc(x y) = e—tkeﬁ(xcoseo+ysin00) (2 58)
z ’ '
and
Href(x 9= 1- nSineo e—tkeff(xcosﬁo—(y—Zb) sinfp) (259)
£ 1+nsinfy

and {H] (j=1,2)} satisfying the Helmholtz equation in cold plasma

ﬁ-i_a_yz-l_keﬁ] [Hé(x,y)] :0, (260)
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with the following corresponding boundary conditions along with the continuity

relations
(1 L0 ) H.(x,b) =0, X € (-00,0), (2.61)
Lkeff
0 2
5o (0,0 =0, x € (0,00), (2.62)
y
H2(0,) =0, y € (a,b), (2.63)
H!(x,b) + H™ (x, b) + H,* (x,b) = H(x, b), x € (0,00), (2.64)

) o . 0 )
aH; (x, b) + @H;”C(x, b) + @Hz’ef (x,b) = aH§ (x,b). x€(0,00.  (2.65)

The radiation and edge conditions for the uniqueness of the boundary-valued

problem defined by the set of equations - are given by [83].

=0, p=1/x%+y%2—> o0 (2.66)

0
Vo %H; (x, ) — thefi Hy (x, )

and

1.0 1
HY (x,y) = 6(Ix]2), @HZT(x,y)=@(IXI 2), |xl—0 (2.67)
respectively.

2.7.2 FORMULATION OF WIENER-HOPF EQUATION

Since Helmholtz equation in cold plasma is satisfied by the field HZ1 (x,y) in the

region x € (—oo,00) and y € (b,00) which gives

2 2

0 0
S+ a—yZH; (%, ) +K H (%, y) = 0. (2.68)

The Fourier transform of equation (2.68) with respect to x yields

2

9
ot (k2 —a®)| F(a,y) =0, (2.69)

where
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F(a,y) = / H(x,y)e'““dx. (2.70)

Using additive decomposition theorem F(a, y) can be decomposed as

F(a,y)=F-_(a,y)+Fi(a,y), (2.71)
where
+00
Fi(a,y)=+ / H}(x,y)e%dx. (2.72)
0

It is assumed that F, (@, y) and F_(«, y) are regular functions of « in the half-plane
Jm(a) > Tm(k.s; cosbo) and Jm(a) < Jm(k.), respectively.

The general solution of equation satisfying the radiation condition repre-
sented by equations yields

F(a,y) = Aa) @00, (2.73)

where

£(a) = /% —a?. (2.74)

The square-root function £(a) = ,/kfﬁc —a? is defined in the complex a-plane
with branch cuts along a = kj; to a = k.j; + 100 and a = —kej; to @ = —kj; — 100 such

that £(0) = kj; as shown in the Fig. (2.4).

- - -

,,—“‘lm&a) -~
,’ . b4 \\
.7 Cold Plasma - §§<— Branch Cut ™«
. Branch Point § .
- g
' . N \
P Reff o oo oo > Re(a)!
\ T 1
\ H . ’
Branch Cut—; Branch Point e
S X . ’/

FIGURE 2.4. The depiction of Branch cuts
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To find the unknown coefficient A(a), we can use the transformed form of bound-

ary condition represented by equation (2.61) which gives

Keji
L(a)

Ala) = Zi(@)x(n,a), (2.75)

with

T (a,b) (2.76)
thejs

R.(a) = Fy(a,b) +

and
L(a)

_, 2.77
nﬂ(a) + keff ( )

x(n,a) =

where the prime sign in equation (2.75) denotes the derivative with respect to y.

Replacing equations and in equation (2.73), one gets

k
F_(a,y)+Fi(a,y) = %%Jr(a)xm, @)t @0=b), (2.78)

In the region x € (0,00) and y € (a, b), H%(x, y) satisfies the Helmholtz equation in

cold plasma gives

2 2

0 0
ﬁﬂg (x,y) + a—y2H§ (x, ) + ks Hz (x, y) = 0. (2.79)

On multiplying equation (2.79) by €'** and integrating with respect to x from 0
to oo, one obtains

[a?z” @

Y. (a,y) =F), (2.80)

with

)
f(y) = aHﬁ 0,y) (2.81)

and ¥, (a, y) is defined by

G, (a,y) = /Hﬁ(x, ye'*rdx, (2.82)
0
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which is a regular function in the half-plane.
The general solution of the non homogenous differential equation (2.80) can be

obtained by using the method of variation of parameter as follow
4. (a,y) =B(a)cos£(a)y + C(a)sin£(a)y + —/f(t) sin£(a)(y—0)dt, (2.83)

where B(a) and C(a) are the unknown spectral coefficients and £(a) is defined in

equation (2.74).

Combining the transformed form of the boundary condition represented by the

equation (2.62) and equation (2.83) gives

y
4. (a,y) = B(a) cosS(a)y+L/f(t) sin £(a)(y - dt. (2.84)

£(
0

In the above expression B(a) can be obtained by adding the transformed form of

equations (2.64 and t1me of (2.65) as under
Z+(a) y La)b-1t)
_ Ry(a 1 sinL(a)(b-t Ui B
B(a) = 7@ +7//(04) /f(t)( @ +lkeff cos(a)(b—1)|dt, (2.85)
0
where

L T_¢@sing(@b. (2.86)
o

Using equation (2.85) in equation (2.84), one gets

W (@) =cosL(a)b—

Y (a,y) =

b
cos£(a)y %+(a)_/f(t)(sm£(a)(b—t)+ Ui cos&(a)(b—1) | dr

W (a) L(a) thes

* 5@ / f()sin £(@) (b— D)dt. (2.87)

The left-hand side (i.e., 9. (a,y)) of the equation (2.87) is analytic in the upper

half-plane Jm(a) > Jm(k.s; cos6y). However, the analyticity of the right-hand side
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is violated by the appearance of simple poles lying at the zeros of #'(a), i.e.,

a = ta,, satisfying

W(tam) =0, Jm(ay)>Tmkers), m=1,2,3.... (2.88)

The poles in the equation (2.87) can be removed by using the condition that the

residues of these poles are zero. Then from equation (2.87), it is found that

sinf,b 1

Ro(m) =D . + ey cos £mb|fm, (2.89)
where §,, is defined by
f(£) = ) fmcosLmt, (2.90)
n=1
with
L= kesz - a?, (2.91)
and
@,y = ZmSNEmb 0 (2.92)

2a., oa

Combining equations (2.87) and (2.78) with the help of the transformed domain

of continuity relation given by equation (2.65), one can obtain

2 keff Sin 90 e—tkeffbsine()

!
tkeji %+ (@) x (0, @) — F-(a, b) = -

(nsinfy + 1) (a — keﬁ cosfp)

b
L@)sinL(a)b %(a)—/f(t)(smg(a)(b_” — cos S@)(b-1)| i
0

W () L(a) - theess

b

+/f(t) cos£(a)(b—1)dt. (2.93)
0

After simplification the above expression can take the form
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Lkeff,%Jr(a))((n,a) 1{7 @b = Zkeff SinHOe_‘keﬁbSiHQO
N (a) -o= (msinBg + 1) (& — ke cos b)
b
1
+ 7@ /f(t) cosL(a)tdt, (2.94)
0
where
N (@) =W (@)~ @b, (2.95)

Using equation (2.90) in equation (2.94), one obtains the required Wiener-Hopf

equation valid in the strip Jm(=k.s;) < Im(a) < IJm(k) as follows:

tkesixm, @)%+ (@) 1 2k sin e keibsindo

~F (a,b)=—
N (a) (. 0) (n2sinfy + 1) (a — keff cosby)
S Lpsinly,bfm

2
m=1 az_am

N (2.96)

2.7.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation, the kernel functions .4 (a) and y(n, @) in

equation can be factorized by using the known results as following [8]:

N (@) = [cos kejib + 1) sin kes;b] 2

comp [ SOy (18 by [ 2] 1)) (12 oy
/2 keff T keffb 2 m=1 Am
and
N (@) = N (—a). (2.98)

In equation (2.97), C denotes the Euler-Mascheroni constant given by
C =0.5772156649.... Similarly the factor of y(n, @) can be expressed in the form of

the Maliuzhinetz’s function [82] as follows



CHAPTER 2
x-(m, keﬁ cosf) =
A My (31120 — W) My (/2 -0 +)])?sin(0/2) (2.99)
Vil i) x (14 VZoos 224 (1 4+ V2 cos[Z24Y
and
X+, kejcos0) = y— (1, —kesscos0), (2.100)
with ./ (z) and y are defined by
Z
(@) = exp [_i/nsmu—zﬁnsm(um)+2udu 2.101)
8 cosu
0
and
1
-1
1 =sin (— . (2.102)
{1/
Now, multiplying the Wiener-Hopf equation (2.96) on both sides with = (nz) ,one
obtains
thejix+ (0, )R (@) N () 1 2kejysinBoe kiP5 A (a)
- F_(a,b) =
Ny (a) x-m,a)

- (nsin6y + 1) (a — kej cosbo) y- (0, @)
N Lm s1n£,;bfm,/V_(a) . (2.103)
m=1 (@ —ag)y-(n, @)

With the help of Cauchy’s integral formula the terms at right-hand side of the
equation (2.103) can be decomposed as

2kef5sinfgeKeribsindo 4 (q)

(nsinfy + 1) (@ — kejjcosbp) x - (12, @)

2kgjsinfoe” P00 T g (@) A (kejpcosBo)

- (msin6p + 1) (a — kej5cosbp) [ x-(n, @)  x—(0, kejs cosBp)
2k sin@geKeiibsinfo 4 (ks cos6p)

2.104
(msin6g + 1) (a — kej;cos o) x - (1, kes; cOs o) ( )
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and

X LmsinLyb AN (@) & LmsinL,,biny
Z 2 2 = Z
m=1 (@—ap)x-0,a) me1 (@tap)

N () N (am) N X Lmsin Ly b N (@m)fm

X —_ .
(a—ap)y-m,a) 2amy+(M,an)| S12am@+a)y+M,am)

(2.105)

Now using equations (2.104) and (2.105) in equation (2.103), then placing the

terms which are analytic in the upper half-plane (Jm(a) > —k.s;)and those which

analytic in lower half-plane (Jm(a) < k.;) at the right-hand side,which yields

tkeix+m, @) 2+ () . 2kef sinHoe_‘kefbeineoe/V_(keff cosby)
N () (nsinfy + 1) (a — keff cosBp) y-(n, keff cosfy)
_ i f;@s(lzijn;b{+(am)fm _ N (a) F,'_(a, b)
m=120m m X+ am)  x-,a)
2kgjsinfoe” KPS0 T g (@) A (Kejcosbo)
- (msinfy + 1) (a — kejscosbo) | x- (1, @) - X -1, kejs cos o)
N i Lmsin £y, b, N (a) B N (ay,)
(@—amy-m,a) 2amy+m am)

: (2.106)

me1  (@+ap)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle complying the extended Liouville’s theorem as under

X+, )R (@) 2Lsin90e“k2ffb51n90w/_(keffcoseo)
N (a) (nsin6y + 1) (& — kejscos ) x - (1, kes; cOs Op)
B i LEmsin £y b AL (am)fm (2.107)

me1 2Kef @ m (@ + &) X+ (1), X ) '

Placing equation (2.89) into equation (2.107), gives

Dnx+m,ay) (sing,b n n
N (ay) Ln Lkeff
2Lsin906_‘k¢ffb51ngoﬂ_(keff cosby)
 (sinBp + 1) (an — kefs c0800) Y (1, ks cOS Op)
X 1Lysing b AL (@m)fm

_ ) 2.108
mZ::12keffam(an+am)X+(77,am) ( )

cosL,b|fn
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The above expression is system of infinite number of equation and these system

of equation can be solved numerically after truncating after N terms.

2.7.4 THE DIFFRACTED FIELD

The required diffracted field H.(x, y) can be acquired by using the inverse Fourier

transform of F(a, y). Thus from equation (2.78), one can get

1 [k )R
H (6,1 = 5 / eff}((ns(;) (@ L@y giax g (2.109)
<

Using the replacement of the function y(n,a) and the variables a = —kjcos¢?,

x=pcosf and y = psinf in the equation (2.109), one obtains

ol (o, 9) = i/%+ (_keff cos ) e_Lkeffbsin t+ikeg50 cos(1—6) keff sin tdt. (2.110)
“ 27 1+nsint
<

The asymptotic evaluation of the integral in the equation (2.110) can be obtained

via saddle-point technique. Here, saddle-point rests at ¢ = 0 which gives

sin@eﬂk\/mp'*%—lk\/Mbsine

\/Z_n\/kp\ /(€3 —€3)/e1(1 +nsinb)

2usinfge” ¥V (e-ep/erbsindo - (ky/ (€2 —€3) /€1 cosBp) N (ky/ (€% — €3)/€1 cosH)
(nsinB + 1)(cos O + cosBy) x— (1), k/ (€3 —€3) /€1 cosBp) x— (1), ky/ (€5 — €3) /€1 cos 6)
00 1L SIN L DN (@) N (k[ (€5 — €5) /€1 COSO)f

-2
m=12k, [ (€2 —€3)/€10m(Am — ky/ (€2 —€3) /€1 cOSO) Y+ (0, am) X - (1), k/ (€3 — €3) /€1 cOS O)
2.111)

H}(p,0) =

X

2.7.5 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have analyzed the numerical results for various physical pa-

rameters of interest by plotting graphs. Fig. (2.5) depicts the variation in the
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diffracted field amplitude versus the truncation number "N". It is apparent that
the effect of the truncation number is negligible for N = 40. Hence, the system
containing infinite number of algebraic equations represented by the equation
can be managed to deal as finite. Where as the Fig. (2.6) has been plot-
ted by varying the plate separations "b". The amplitude of the diffracted field
decreases with increase in b. Fig. (2.7) depicts the variations of diffracted fields
versus incident angle 0y (0° < 8y < 90°). It is interesting to note that the value of
diffracted field amplitude lies at 90° when 6y = 90°. Where as this peak values
moves to 120° and 1509 for 8y = 60° and 6, = 30°, respectively. As long as the an-
gle of incident increases the center of diffracted field amplitude shifted towards
90°. Fig. (2.8) shows the variation in the diffracted field amplitude versus the
impedance "n". The variation in the diffracted field amplitude versus effect of
cold plasma permittivity values for €; and e, have been analyzed in Figs. (2.9)
and (2.10), respectively. Here it is noted that the amplitude of the diffracted field
decreases by increasing the value of €; where as slightly increases by increasing

€2 but the effect of €, is negligible as compare with €.

~1455
—~ i . —
g -1460
° I
°
E
E— i
8 _1465-
3 I
3
= L
& -1470 £
_14'75 L | | | | | | |
1 10 20 30 40 50 60 70

Truncation number N

FIGURE 2.5. Variation in the diffracted field amplitude versus "N" at k =5, 6y = 90°, 8 = 60°,
1=0.31,€,=0.8,€2 =0.1 and b=0.2A.
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Diffracted field amplitude (dB)

—100 -

0 30 60 90 120 150 180

Observation angle 0 (deg)

FIGURE 2.6. Variation in the diffracted field amplitude versus "b” at k =5, 8p =90°, n = 0.7,
€1=0.8and e; =0.1.
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FIGURE 2.7. Variation in the diffracted field amplitude versus "0y” at k=5, n=0.71, €, = 0.8,
€2=0.1and b=0.2A.
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50

-50

Diffracted field amplitude (dB)

-100

0 30 60 90 120 150 180
Observation angle 6 (deg)

FIGURE 2.8. Variation in the diffracted field amplitude versus "n” at 6y =90°, k=5, €; = 0.8,
€2=0.1and b=0.2A.
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FIGURE 2.9. Variation in the diffracted field amplitude versus “e,” at k=5, 69 =90°, 7 =0.71,
€2=0.1and b=0.2A.
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FIGURE 2.10. Variation in the diffracted field amplitude versus "e;" at k=5, 6 =90°, 1 =0.71,
€1=0.8and b=0.2A.



EFFECT OF COLD PLASMA

CHAPTER

PERMITTIVITY ON SCATTERING OF

E-POLARIZED PLANE WAVE BY AN

IMPEDANCE LOADED STEP

In this chapter, the scattering of E-polarized plane wave by two half-planes com-
bined by a step of hight b is discussed. These types of geometries play a vital role
in diffraction theory and many problems in science and engineering. Initially,
Johansen [84] considered the problem of diffraction by two half-planes having
same surfaces impedances combined by a step of hight h. After that Biiytikaksoy
and Birbir [85] studied the similar geometry for different impedances of the dif-
ferent surfaces. Yener and Serbest [11] considered the diffraction phenomenon in
cold plasma considering by a single surface impedance half-plane. Here, in this
chapter two half-planes of different surface impedances joined by rigid vertical
step of hight b located in cold plasma is considered.

The contents of this chapter are organized in the following order. The boundary-
valued problem is developed in Section whereas Section is dedicated to
the formulation of Wiener-Hopf equation. The solution of Wiener-Hopf equation
is obtained in Section (3.3). The diffracted field expression is shown in Section
(.4). Few numerical results for different parameters are plotted and discussed

in the last Section (3.5).
37
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3.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD

PLASMA

Here, consider the scattering of a plane wave making an incident angle 6, in the
region designed by two half-planes S; define by {(x,y,2)| x € (-00,0), y =0, z€
(—00,00)} and S, defined by {(x,y,2)| x € (0,00), y =b, z € (—oo,00)}. The top faces
of the half-planes S; and S, are characterized by the impedances Z; and Z,, re-

spectively. While vertical step surface is rigid as shown in Fig. (3.1):

.- - , Cold Plasma Hi" (2,) R -
// \\
7 : N
’ . *
\
| Z»(Impedance) (0) Al ___ !
\ 1
\ — !
\ ° !
. k=) ’
N T ’
\\ E’ //
~. . 7, (Impedance) X -7
~ o *(Q'Q) }_ - -

FIGURE 3.1. Geometrical configuration of the waveguide structure in cold plasma

The total field takes the form as under

H(x,y) + Hi" (x, p) + H- (x, y), € (b,00)
W= & y)+H"(x, y y y 31)

H:(x,y), y€(a,b)

where H ;"C(x, y) and H Zref (x,y) stand for the incident and reflected fields, respec-

tively, given by
Hinc(x y) = e—tkeﬁ(xcoseo+ysin00) (3 2)
¥4 ) .
and
H (x y) = _l_nz—smeoe—tkeff(xcosf)o—(y—zmsineo) (33)
‘ ’ 1+1n2sin6y ’
with

keji = ky/ (€] —€3) /ey (3.4)
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{H g (j =1,2)} satistying the Helmholtz equation in cold plasma, i.e.,

62 62 ) .
@—Fa_yz—'_keff] [Hé(x,y)] =0, (35)

with the following corresponding boundary conditions and continuity relations

N2 0 1
1 — | H,(x,b) =0, —00, .
( +Lkgﬁay) lx,b)=0 x € (~00,0) (3.6)
(1+£i)H2(x 0)=0 X € (0,00) 3.7)
tkeﬁay 2 ' ’ '
0 2
—H2(0,y) =0, y€(0,b) (3.8)
0x
H(x,b) + H™ (x,b) + HL (x,b) = H2(x,b), x € (0,00) (3.9)

) o 0 e )
aH;(x,b) + aH;”C(x,b) + @HZ T(x,b) = @Hg(x,b). x € (0,00) (3.10)

The radiation and edge conditions for the uniqueness of the boundary-valued

problem defined by the set of equations - are given by

=0, p=\/x*+y?>— 00 (3.11)

4
NG %H; (x,y) — thej Hy (x, )

and T 1.0 o _1
H(x,y) =0(Ix]?), @HZ (x,)=0(x1"2), [x|—0 (3.12)

respectively.

3.2 FORMULATION OF WIENER-HOPF EQUATION

The Fourier transform of the Helmholtz equation in cold plasma which is satis-

tied by the field H ; (x,y) in the domain x € (—o00,00) and y € (b,00) leads to

2

d
2y kg a)| Flay =0, (313)

where F(a, y) is defined earlier.
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Using the radiation condition represented by equation (3.11), the solution of

equation (3.13) gives

F(a,y) = Aj(@)e* @00, (3.14)

where
L) =, /kf]cf —a? (3.15)

and A; (@) is the unknown spectral coefficient.

The square-root function £(a) = kesz — a? represents the branch cuts along a =

kej; to a = kej; + 100 and a = —kj; to @ = —k.j; — too such that £(0) = ke .
To find A, (@), using the transformed form of the boundary condition represented

by equation (3.6), one obtains

kg% (@
M@= @ (3.16)

with

%L () = Fy(a,b) + Zz

LR

F.(a,b), (3.17)

where the prime sign in equation (3.17) represents the derivative with respect

to y. Using the additive decomposition theorem and placing equation (3.16) in

equation (3.14), one gets

ke % (@)

— @b, 3.18
keff+n2£(aﬁ)e ( )

F_ (a,y)+Fi(a,y) =

The derivative of equation (3.18) with respect to y at y = b takes the form

Lkeffﬂ(a)%+ (@) 1

/
Fi(a,b) = —-F_(a,b). 3.19
+(a,b) keff L@ (a,b) ( )

As the Helmholtz equation in cold plasma is satisfied by field H2(x, y) in equation

in the domain x € (0,00) and y € (a, b), multiplying this equation by e'“* and
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integrating the resultant equation with respect to x from 0 to oo leads to

d2
[_ — 22(@)| G, (@, y) = —1ag(y),

dy?

where

a(y) = H2(0,y)

and ¥, (a, y) defined by
Y. (a,y) z/Hﬁ(x,y)e‘“xdx,
0

is a regular function in the half-plane.

(3.20)

(3.21)

(3.22)

Owing the method of variation of parameter the solution of non homogenous

differential equation (3.20) gives

y

Y. (a,y)=Ci(@)cos L(a)y+ Co(a)sinL(a)y — @ g(t)sinL(a)(b—t)dt,

L(a)
0

where C;(a) and Cy(a) are the unknown spectral coefficients.

(3.23)

To find Ci(@) one can apply the transformed form of the boundary condition

represented by the equation (3.7), to get

Ci(a) = - Zl

Ees

L(a)Co(a).

Substituting equation (3.24) in equation (3.23) yields

sin£(a)y — Zl

)

Y(a,y) = L(a)cos L(a)y | Ca(a)

y
a .
“S@ g(t)sinL(a)(b-t)dt.
0

(3.24)

(3.25)
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C»(a) can be obtained by adding the transformed form of equations |i and H?Tlﬁ
time of (3.10)

b
) 1 sin€(@)(b-1) m
Co(a) = 7@ +7I/1(a)[fm( @) +tkeff cos £(a)(b t))dt, (3.26)
where
%(a):(u)coss(a)m 1- T2 g2 (g sinS@b (3.27)
Lkeff keff 2(0()
Using equation (3.26) in equation (3.25), one gets
sinL(a)y - 2(04) cosL(a)y
Gl = S(a)%(a)
b
sinf(a)(b—1) n
X %i(a)ﬂa[g(t)( @ + Lk;f cosL(a)(b—1t)|dt
y
9 g(0sin L) (b- pdt. (3.28)
) *

The left-hand side (i.e., ¥.(a,y)) of the equation (3.28) is analytic in the upper
half-plane Jm(a) > Jm(k;cosy). However, the analyticity of the right-hand side
is desecrated by the appearance of simple poles lying at the zeros of #1(a), i.e.,

a = ta,, satisfying
M(£am) =0, JTm(an) >Tmky), m=1,2,3.... (3.29)

The poles in the equation can be removed by applying the condition that

the residues of these poles are zero. Then from equation (3.28), it is found that

%i(am):@,ln :2 LmsinL,,b—cosL,,b|gm, (3.30)
Leff
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where g,, is denoted by

b
m = @i}n { a0 (Sir;i mt lZ:ﬁ c08 £1m t) dt, (3.31)
with
L= kesz - a?, (3.32)
and
2 - lim (Coizimb 4 lZ:ﬁ singmb) %Wl(am). (3.33)

Hence, considering equations (3.19) and (3.28) in the transformed domain of con-
tinuity relation given by equation (3.10) together, one can write

2Ky 5in g e kerjbsindo

!/
k :%1 ) - F— 4 b ==
thkesi 2 4 (@) x (12, @) (a, b) (M2sinfg + 1) (a — kej5 cos O)

cos £b+ -1-Lsin£b b ; _
ket 1 sin(b—1) n
R t b-1t)|dt
AT +(a)+ta/g( )( @ + ey cos £( )
0
b
—ta/g(t) cos£(b-t)dt, (3.34)
0
where
L(a)
)= ——F——". 3.35
X(n] ) 17j£(0§) + keff ( )
After simplification, equation takes the form
x (12, R () b b= 2_keff sin e tkeifbsinfo
¥, ) A (a) (n25inBg + 1) (@ — ke cosby)
b
Ko sinf(a)t m
+ t - cos(a)t|dt, 3.36
%(a)[g( )( L(a) Lkeff (@) ( )

where

N (@) =W (@)™ DP. (3.37)
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Owing to equation (3.31), g(#) can be expanded into a series of eigen-functions as

under
sing,,t 1n

g(t)= > gm cos £nt]. (3.38)

m=1 Sm lkeﬁ

Using equation (3.38) in equation (3.36), one obtains the required Wiener-Hopf

equation valid in the strip Jm(=k.s;) < Im(a) < IJm(k.) as follows:

, %1 2k in@ —Lkeﬁbsinﬂg
X2, a) Jrl(a) +1,7_(a,b) _ . eff SINUpe
1M, ) N Ha) (n2sinBg + 1) (@ — kef; cos bp)
x b
Y lmm (COSEmD | M 6 ) (3.39)
mo1 @ —ag, U Lm tkery

3.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation the kernel functions A (@) and x(nj, @) in

equation (3.39) can be factorized by applying the known results as following;:

1
1’]2—1’1 Slnkeﬁblz
N a) = kesib + (1 -
(@) ( ey )COS o0+ (L —=1112) K
2 o0
X exp g(a)bln(a-l_tg(a))+@(1—C+ln ﬂ +LE) H(l+i emn, (3.40)
b/ keff b/ keﬁb 2] a5 m
and
N (@)= N} (~a). (3.41)

Similarly the factor of y(nj,a) can be expressed in form of the Maliuzhinetz’s
function as discussed in earlier.

N 1t ) ) . . 1-n1,0) .8 ()
ow, multiplying the Wiener-Hopf equation (3.39) on both sides by “—=~7"=—,

one obtains
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X+ (M2, )R () . x-m, @) N () boan

N @)+, @) x-2,@)

_ 2ke sin@getkeribsinfoy _(n, o) N1 ()

~ (2sinfy + 1) (a — kejs cosBOo) x - (n2, @)

_ °X°: agmemx-m,a) A (@) (cos€ub m
o1 (@ —ad)x-(n2, @) Lm

sin€,,b|. (3.42)
Lkeff

With the aid of Cauchy’s integral formula the terms on right-hand of the equation
can be decomposed as

Zkeff sin eoe—tkeffbsin&)x_ M1, (X)JV_I (@) ~ Zkeff sinHoe_‘keﬁbSin"O

(n2sinfy + 1) (a — keffcoseo))(_(ng, a (n2sinfy+ 1) (a — keﬁ cosfp)
y x-m1, Q) AN () _X-(m, ke cos ) N (keji cosOo)
x-(2,a) x-(M2, keff cosfp)
2kejisinBo e tkesibsinboy (g, k5 cos 0p) N (kejs cosBy) (3.43)

(M18inBg + 1) (@ — kefj c0sBo) x - (12, kes cOS 6)

and

i 1L m@my-(m, )N (@) (cosSmb m
mo1 (@ —ad)x-(m2,q)
L cosmb 12
m=1 (a+anm) (

inC,,b
. Ker, sing,, )

8

ing,,b
e lkeffsm m )

agmy-0, )N (@) m@mi+ (1, @) A (@)
(@—am)y-m2,a) 2amx+M2, &m)

+ Oi L @mGm X+ M1, Am) N (@) (cosSmb 1

me1 20mX+(M, am)(a+ay)

X

i b|. 3.44
T Ko7 sin £, ) (3.44)

On using equations and in equation (3.42), and then separating the
terms which are analytic in the upper half-plane (Jm(a) > —kj;) at left-hand side

and those which are analytic in lower half-plane (Jm(a) < k.;) at the right-hand
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side yields

Xs Mo, R (@) 2kejisinfgekeiibsinfoy (ki cos0p) A (kes; cos Op)

NH@ys,a) 128000+ 1) (@ kejcos0o) - (12, ke cosOp)

N i 1A mLmBmX+ N1, A N (@) (cos £, LM )

me1 2@mX+M2, am)(@+ ay) Lm thefs Sin £, b

_ - (@ Foan+ z'lceff sin e keibsinbo
X-(2, @) (m2sinfp + 1) (@ — ks cos Op)

y [X_(nl,a)ﬂ_l (@)  x-01, kejy cos o) N (keji cosBo)
x-(M2,a) X - (12, kes cos 6)

S (cosﬁmb LM

-2

m= (@ +an)
agmy-m1, N (@) am@mx+ M1, Am) A (@)
(@—am)y-m2 a) 2amx+ M2, Am) '

ing,,b
o Lkeffsm m )

X

(3.45)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle complying the extended Liouville’s theorem as under

X+ M2, R (@) 2KkejysinOoeKeiiPsinfoy (11, ke cos o) N (Kef O 0)
X+, )N @) (m28in6g + 1) (@ — kej; c0s o) ¥ - (2, kejs cOs 6)

_ S A EmIm X+(771»am)t/‘/+1(am) (COSSmb N M
m=1 2am(a+ap)x+ M2, am) Lm Lkeﬁ

sinSmb) . (3.46)

While placing equation (3.30) in equation (3.46) at a = @, one can obtain

X+ M2, an) 2}, ( 12
X+(771ran)z/V+l(an) lkeff
~thejtbsino (), kejs cos 0o) N1 (ks cos Bp)

Losing,b- cosSnb) On

2 kejssinfpe

(28000 + 1) (@ — Kejj €08 O0) ¥ - (112, Kej cOS O)
X LmBm X+ M1, X)) N (@) (cos£mb+ m
m=1 20m(@p+am))+M2,am) L lkeﬁ

sinﬂmb) . (3.47)

The above expression is the system of infinite number of algebraic equations that

can be solved numerically by truncating after N terms.
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3.4 THE DIFFRACTED FIELD

The diffracted field H(x,y) is acquired by taking the inverse Fourier transform

of F(a, y). On using equation (3.18), one gets

1 ke () by

Hl(x,y) = — [ — ———— @0 Pemtxgg, 3.48

Z(x y) Zﬂ/keﬁ+172£(af)e ¢ “ ( )
Z

Now placing the variables a = —k;cos #, x = pcosf and y = psin6 in the equation

gives

1_
H; (p, 9) = i/%+( keff .COS 1) e—;kcffbsin t+ikessp cos(1—0) ksz sin tdt. (349)
21 1+mn2sint
<

The asymptotic evaluation of the integral in the equation (3.49) can be obtained

via saddle-point technique. Here, saddle-point rests at ¢ = 0, which gives
keji SO (—kej cos6)

V27 kejs 0 (1 +128in0)

On taking into account equations (3.4) and (3.46), the diffracted field takes the

etkeffp—%—tkeﬁbsinﬂ. (3.50)

H(p,0) =

form
\/anp\ /(€% —€3)/e1(1+n;sinb)
2ky\/ (€2 —€3) /ey sinfge kv (eﬁ_eg)/elbsme‘))(_(nl, kej; cos6p)
X

(n2sinB + 1) (ky/ (€] —€3) /€1 cosO + ky/ (€3 — €3) /€1 cos Bp)
N2 (ky/ (€2 —€3) /€1 cos00) x— (1, k[ (€5 —€3) /€1 cosO) N (ky/ (€5 — €5) /€ cosB)

X-(2,k\/ (€] —€3) /€1 cosBo) x- (2, k[ (€] — €3) /€1 cos O)

H}(p,0) = -

X

:

W LmBm Xy 1, Am) A (@) x- (11, ky/ (€5 —€3) /€1 cos D)

=1 2am(ky/ (e —€3)/€1c0860 — apm) ¥+ (N2, Am))
N2 (ky/ (€2 —€3) /€1 cosb) cos £,,b m .
x + sing,,b||. (3.51)
X-(12,ky\/ (€3 —€3) /€1 cosB Lm tky\/ (€2 —€3) /€
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3.5 COMPUTATIONAL RESULTS AND DISCUSSION

This section is devoted to analyze the numerical results for various physical
parameters of interest. Fig. (3.2) shows the variation in the diffracted field am-
plitude versus the truncation number "N". It is clear that the effect of the trun-
cation number is negligible for N = 15. Hence, the infinite system of algebraic
equations in equation (3.47) can be managed to deal as finite. Fig. (3.3) explores
the effect of separation "b" between the parallel plates on the diffracted field am-
plitude which shows that the diffracted field amplitude also depend upon the
plate separation. While Fig. (3.4) represents the variation in diffracted field am-
plitude versus the incident angle "6y" (0° < 6y < 90°). It is interesting to note that
the value of diffracted field amplitude lies at 90° when 6y = 90°. Whereas this
peak values moves to 120° and 150° for 6y = 60° and 6, = 30°, respectively. The
effect of wall impedance 1, on the amplitude of the diffracted field is shown in
Fig. (3.5). Fig. (3.6) shows the variation in the diffracted field amplitude with
wall impedance 7,. The effect of cold plasma permittivity has been analyzed in
Figs. (3.7) and (3.8). Here, we have found that the increase in cold plasma per-
mittivity decreases the diffracted field amplitude. In other words the diffracted
tield amplitude decreases with increasing ion number density in cold plasma or
by decreasing plasma frequency. Here, in this problem it is observed that the
diffracted field is highly effected with e; while slightly with e,. Also it is noted
that the diffracted field amplitude decreases with increase in permittivity value

€1 while in case of e, diffracted field amplitude decreases with increasing €.
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FIGURE 3.2. Variation in the diffracted field amplitude versus "N" at k=5, 8y = 90°, 0 = 60°,
11 =0.3t, 12 =0.51, €1 =0.8, €2 =0.1 and b=0.2A.
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FIGURE 3.3. Variation in the diffracted field amplitude versus "b” at k=5, 6y =90°, 11 =0.71,
2= 0.51,¢1=0.8 and €, =0.1.
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FIGURE 3.4. Variation in the diffracted field amplitude versus "60y" at k =5,11 = 0.7t, 12 = 0.5,
€1=0.8,¢2=0.1and b=0.2A.
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FIGURE 3.5. Variation in the diffracted field amplitude versus "n, " at 0g = 90°, k =5, 1, = 0.51,
€1=0.8,¢2=0.1and b=0.2A.
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FIGURE 3.6. Variation in the diffracted field amplitude versus "n," at k=5, 0o = 90°, 71 = 0.31,
€1=0.8,¢62=0.1and b=0.2A.
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FIGURE 3.7. Variation in the diffracted field amplitude versus “e,” at k=5, 69 =90°, 11 =0.71,
N2 =0.50€, =0.1 and b =0.2A.
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E-POLARIZED PLANE WAVE

CHAPTER

DIFFRACTION BY AN IMPEDANCE

LOADED PARALLEL-PLATE

WAVEGUIDE LOCATED IN COLD

PLASMA

This chapter comprises the consideration of the diffraction of E-polarized plane
wave by a waveguide designed by an infinite plane and a parallel half-plane
having a different surface impedances in cold plasma. It plays an important role
in diffraction theory and many problems in science and engineering. Initially,
Biiytikaksoy and Cinar [70] studied the problem of diffraction of a plane wave
by a waveguide designed by an infinite plane and half-plane. The upper faces of
the left and right part of the plane having different surface impedances. While
the half-plane is parallel to the plane and perfectly conducting. This problem
was solved with the help of matrix Wiener-Hopf equations. After that Cinar
and Biiyiikaksoy [12] considered the same geometry but for different surface
impedances of the half-plane instead of perfectly conducting half-plane. The so-
lution of the problem was obtained by a hybrid method. Here, in this chapter the
same geometry is considered in cold plasma.

This chapter is compiled with the subsequent order. Section is dedicated to

formulate boundary-valued problem governing the wave propagation in waveg-
53
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uide located in cold plasma. Section (4.2) contains the formulation of Wiener-
Hopf equation from the related model. The solution of the said Winer-Hopf
equation is obtained in Section (4.3). Whereas Section is devoted to the
determination of infinite unknown coefficients. The diffracted field expression
is presented in Section (4.5). Finally graphical results for different parameters are
discussed in Section (4.6). The contents of this chapter have been published in
Physica Scripta, 89(8): Paper ID. 095207, (2014).

4.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD

PLASMA

Consider a waveguide constructed by a half-plane defined by S; = {(x,y,2)| x €
(=00,0), y = b, z € (—o0,00)} and an infinite plane defined by S,={(x, y, 2)| x € (—00,00),
y =0, z€ (—o0,00)} designed in cold plasma. The surface impedances of the upper
and lower faces of the half-plane S; are assumed to be Z; =1, 2y and Z, =1, 2, re-
spectively. The surface impedances of the left and right upper faces of the plane

S, are assumed to be Z3 =137y and Z, =147, respectively, as shown in Fig. (4.1)

FIGURE 4.1. Geometrical configuration of a waveguide structure in cold plasma

For analysis purpose, it is convenient to express the total field as follows:



4.1. MATHEMATICAL MODEL OF THE PROBLEM IN COLD PLASMA

H" (x,y) + Hy (%, ) + HA(x, ), € (b,00)

HZT(x,y): z y z y PAC IR y 1)
HZ(x, y)#(—x) + H3 (x, y) 7 (x), y€(0,b)

where #(x) represents the Heaviside unit step function. Hé”c(x, y) and Hzref (x,9)

denotes the incident and reflected fields, respectively, defined as below

H!"(x, y) = e~ keij(xcosfo+ysinfo) 42)
and
ref( ) = % —tkeff(xcoseo—(y—zb)sin@o) (4 3)
oYy n1sinfg + 1 ’ :
where
2 _¢2

Now, Hé (x,y), (j =1,2,3) are scattered fields satisfying the Helmholtz equation

in cold plasma as under

#? P,
ox? 0y2+keff

][Hg(x,y)] -0, =123 (4.5)

with the following corresponding boundary conditions and continuity relations

(1+ m_9 )Hl( ,b) = X € (—00,0) (4.6)
Lkeff 0_)/
(1— n2 9 )HZ( ,b) = X € (—00,0) (4.7)
Lkeff ay
0|1+ a)Hz(x 0)+Jf(x)(1+ 4 a)H“‘( ,00=0, xé€ (—00,00)
Lk'eff ay keff ay
(4.8)
H(x,b) + H"(x, b) + H.% (x, b) - H3(x,b) =0, x € (0,00) (4.9)

iHl(x,b)Jr 0 H"(x, b)+i H (x,b) - 9 —H>(x,b)=0, x€(0,00) (4.10)
dy dy dy oy

HZ2(0,y) - H2(0,y) =0, y€(0,b) (4.11)
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0 0
5 H20,) = - H2(0,7) =0, y€©,b). (4.12)

For the uniqueness of the boundary-value problem defined by the set of equa-
tions - (4.12). One can take the radiation and edge conditions, respectively,
as follow

=0, p=1/x%+y%2—> o0 (4.13)

0
Vo %H; (x, ) — thefi Hy (x, )

and

9 )
HY (x,) = 6(|x]2), @HZT(x,y) —0(x?), |xl—0. (4.14)

4.2 FORMULATION OF WIENER-HOPF EQUATION

The Fourier transform of the Helmholtz equation in cold plasma is satisfied by

the field H!(x, y) in the region x € (—0o,00) and y € (b,00) gives

d2
[d_yz +£%(a)|F(a,y) =0, (4.15)

where F(a, y) is defined as earlier.

The general solution of equation (4.15) satisfying the radiation condition repre-
sented by equations (4.13) yields

F(a,y) = Ay(@)e*@0=b), (4.16)

where
L(a) = \/kgﬁ—az. (4.17)

To find the unknown spectral coefficient A;(a), using the boundary condition

represented by the equation (4.6) in the transformed domain, one obtains

R ()

m ’
1+ keffﬁ(a)

Az (@) = (4.18)



4.2. FORMULATION OF WIENER-HOPF EQUATION

with 1

R% (@) = Fy(a,b) + F. (a, b). (4.19)

LKeff
Using the additive decomposition theorem and placing equation (4.48) in equa-

tion (4.16), one obtains

_E@) @b, (4.20)

m
1+ Kffﬂ(a)

F(a,y)+ Fila,y) =
The derivative of equation with respect to at y = b takes the form

2
‘Sw‘,)]ﬂ _F_(a,b). (4.21)
1+ ﬁs(a)

i

!/
F+((X,b) =

As the Helmholtz equation in cold plasma is satisfied by field Hg(x, y) in the

waveguide region x € (0,00) and y € (a, b), multiplying this equation by e'** and
integrating the resultant equation with respect to x from 0 to co gives
d2
[d_yz -9, (a,y) =1(t) —ag(D), (4.22)
where
0
f(y) —1ag(y) = aHg 0,y) —1aH>(0,y) (4.23)
and ¥, (a, y) defined by
Y. (a,y)= /Hg(x, ye'*rdx, (4.24)
0

is a regular function in the half-plane.

Owing the method of variation of parameter the solution of non-homogenous

differential equation yields
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Y. (a,y)=Cs(a)cos&(a)y+ Cs(a)sinL(a)y
1 .
+ m/(f(t) —tag(t))sin(a)(b-1)dt. (4.25)
0
Here Cs(a) and Cg(a) are the unknown spectral coefficients.

To find Cs(a), one uses the transformed form of the boundary condition repre-

sented by the equation which gives

L (@) Cs(a). (4.26)
ey

Cs(a) =—

Placing equation (4.26) in equation (4.25) yields

YGi(a,y)=|sinL(a)y— Z4 Lla@)cosL(a)y | Cs(a)
¢ff

" S )/(f(t)—tag(t))smi}(a)(b ndt. (4.27)

Cs(a) can be obtained by adding the transformed form of equations (4.9) and ; 1? 1”
time of (4.10) as under

%4 ()
R VAT
I _ sinC(@((b-0 m ) )
S(a)%(a)[(f(t) Lag(t))( @ +Lkeﬁcos£(a)(b t|dt, (4.28)
where
%(a):(nl_n4)cosﬁ(a)b+ 1- 771774£2( ) —smﬁ(a)b. (4.29)
ey K2, £(a)

Using equation (4.28) in equation (4.27), one gets
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sin€(a)y - L%fﬂ(a) cos £(a)y

L)Wz (a)

Y (a,y) =

sin€(a)(b—t) m
L(a) Lkzﬁ

b
X %i(a)—/(f(t)—tag(t))( cosL(a)(b—1)|dt
0

1

y
+ %/(f(t) —tag(t)sinL(a)(b—1dt. (4.30)
0

The left-hand side (i.e., 9. (a,y)) of the equation (4.30) is analytic in the upper
half-plane Jm(a) > Jm(k.;cosy). However, the analyticity of the right-hand side
is desecrated by the appearance of simple poles placing at the zeros of #5(a), i.e.,

a = ta,, satistying
Wolxam,) =0, JTImlay)>Imkg), m=1,2,3.... (4.31)

The poles in the equation can be removed by applying the condition that

the residues of these poles are zero. Then from equation (4.30), one gets

YA
Lkeff

%i (am) = @%1 ( Lmsing,,b— cosﬁmb) Fm—1am@m), (4.32)

where §,, and g,, are denoted by

b
1 (1) i
Fim :_2/ T sn;ﬂmt_ 24 cosSmt]dt, (4.33)
am | Zmy | e mo e
with
S = /K2~ (4.34)
and
£ cosmb mng4 0
P2 = — ’”( i b)—W . 4.
m="2a |2, +Lkeﬁsm£m e 5(Am) (4.35)
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Hence, considering equation (4.21) and transformed domain of continuity rela-

tion given by equation (4.10), one can write

2 keff Sin 00 e—lkeffbsineo

!/
1R (@) y (1, @) — F_(a, b) =

~ (m15inf + 1) (@ — kejjcosBp)

cos b+ lkﬂﬁ sin &b
eff

b
+/(f(t)—tag(t))cos£(b— ndr+
0

Wa(a)
y in £(b
v gzzi(a)—/(f(t)—mg(r))(sm B=0 M osetb-o)del, (4.36)
0 S((X) Lkeﬁc
where
L(a)
Ha) = ——————. 4.37
X(n] “ 77j£(a:) + keff ( )
After simplification, equation takes the form
L a)%iz(a) b = — 2KeisinBoe” Farbent
X4, )N = () (M18in6g + 1) (@ — kej5 cos 6)
b
1 sin(a)t 1y
%(a)z(fm Lag(t))( S e cosL(a)t|dt, (4.38)
where
N2 (@) = Wy ()= DP, (4.39)

Owing to equation (4.33), f(#) and g(¢) can be expanded into a series of eigen-

functions as under

f(2) _ i": fm sinpt M4

Lmtl|. 4.4
o Py cos £y, (4.40)
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Using equation (4.40) in equation (4.38), one obtains the required Wiener-Hopf

equation valid in the strip Jm(—k.s;) < Jm(a) < Im(k.s;) as follows:

, Q) %5 , 2k.j5sinBe Keibsindo
XM, @) +2(oc) L F_(ab)= Kefy 0
X (M4, W) N () (m15in6g + 1) (@ — kefs cos Op)
X - £ Lmb
4y U t@Gm)Em (COSEmb | Ma g6 4 (4.41)
w1 @i-ag, Em they

4.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation the kernel functions A4%(a) and x(n;,@)) in

equation (4.41) can be factorized by applying the known results as follows

1
- sin kb 12
JVf(a)z (771 n4)coskeﬁb+(l—nm4) il ]
off Kefs
2 ) 1104
X exp £("‘)bln(‘”"g(“))+“”9(1—c+1n " +Lf) ]‘[(1+i)em—ﬁ (4.42)
/1 keﬁ 7T keffb 2] m=1 am
and
NP(a) = NP (~a). (4.43)

Now, on multiplying the Wiener-Hopf equation (4.41) on both sides wit P CT™)

one obtains

!/ .
XMy ORL (@ | F-(@b)y-(ns, @A) _ 2k sinfge™keiibsinboy _(ny, ) N2 (a)

NE @) x+ (M4, @) x-n1, )  (m18inf + 1) (@ — ke cosB) x— (11, @)
[es) _ B , JVZ

;3 Um ‘“g’"m?" (4, AZ(@) (€OSEmb | M4 G0 ) (4.44)
m=1 (@ —a5)x-(m,a) Lm theejs

With help of cauchy’s integral formula the terms on the right-hand side of equa-

tion (4.44) can be decomposed as

h ¥-M4,0) N2(a)

4
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2kjisinOpe Keitb 0y _(ny, ). /%) 2kgjsinfoe Keiibsindo
(m18in6o + 1) (a — kejicosOo)y—M1,a)  (118inbp + 1) (@ — kej cos O)

N X-M4, )N (a) _ X-(M4, e cosBg) N2 (keji cosOo)
xX-(m1, @) X (M1, kejscosBg)
2kjisin B e“keffbsmg")(_ (14, ke cOs 0o) N2 (kejs cosBp)
- (n18inBg + 1) (@ — kej c0sOo) ¥ - (11, kesp cOs )

(4.45)

and

i L m—tagm)x-ma, ) N(@) (coszmb L
m=1 (@?-a?)y-(n,a) Lm tejt
S Ly [cosLyub  my
mzzl (@+am) ( Lm " LK
[ (Fm = 1agm) X (4, A2 () , G+ 1@m@m) 1+ (4, ) N E (@)
(@—am)x-(m,a) 2amy+ M1, am)

3 i Lo Fm +1&m@m) X+ M4, A) NE (@) (cosﬁmb LM

m=1 2amx+ M, am) @+ apy) Lm ke

sinﬂmb]

sin Smb)

X

sin Smb) . (4.46)

Now using equations (4.45) and (4.46) in equation (4.44), then placing the terms

which are analytic in the upper half-plane (Jm(a) > —k.s;) at the left-hand side
and those which analytic in lower half-plane (Jm(a) < k) at the right-hand side,
gives

X+, ) %% (@) 2 k.5 sin@getkeribsinfoy _(n, ks cos Ho)ﬂf(keffcos 6o)

NE @)+ (14, @) (n15in6p + 1) (@ — kej c0s Oo) ¥ - (11, kef cOS Bo)

N i LonFm +1QmGm) X+ M, @) NE (@) (Cosﬂmb LM
m=1 2amy+ M1, am)(@+ am)

ing,,b
. Lkeffsm m )

__F@byma@ £ (cossmb L m
Y-, ) o1 @+ agy) Lm thes
. [(fm —1agm) - 01, ) N (@) LGt L m@m) X+ N4, X)) N E (@)
(@—am)x-m,a) 20mx+M1, am)
Lm (cosSmb M4
+
m Sm Lkeff
§ [(fm—tagm)x_(m,a)ﬂ_z(a) . (Fm + L@mBm) X+ M4, ) NE (@) .
(@—am)y-m,a) 20mX¥+M1, am)

sin Emb)

33

ara) sinSmb)
=1 m

(4.47)
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The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle following the extended Liouville’s theorem gives

X+ 1, B2 (@) _ 2kefisinBpe R0y (), keji cos 0g) N2 (kejj cos o)

X+ Ma, ) No(@) (m18infg + 1) (@ — kej €08 00) Y - (11, kejs COS Op)
_i G+ 1@m@m) S (€OSEmb | Ma 0 Xes (1) ) AZ (@) (4.48)
me1 2am(@+am) Lm thees X+, am)

4.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The equation (4.48) contains infinite number of unknown coefficients. To find out
these unknown coefficients one uses method of Mode-Matching technique with
the Fourier transform [70]. The Mode-Matching technique enables us to declare

the field components defined in the waveguide region in terms of normal modes,

as
H:x, =) ay (sm(ny _ s cos{ny|e P, (4.49)
m=1 Cn Lkeff
where
Bn=1/ kfﬁ —¢%, Im(Bn) >Imlkeg), n=1,2,3,.... (4.50)
To find B, and {,, placing equations in equation gives
Ws+M2) e b—(1+ LEURFES SINCuV _ o o123, (4.51)
Lejy k n

eff

Using equations (4.40) and (4.49) in equation (4.23), then multiplying the result-

. . sing;
ing equation by (— Y _ l,?—:‘ﬁ

cos £;y) and integrating with respect to y from y =0

to y = b, one obtains
1 o0
fm—Lamgm = —@_zzan(a'i'ﬁn)Anm; (452)

mn=1

where A, is
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- (7732—774)2 (772+1721)2m2(n (cos(nb L S b
ke ((7— L5 thesp((5 — £5) (n e
(4.53)
X cos Emb + T sin £ b)
Sm Lkeﬁ mey

Placing equation (4.52) in equation (4.32), then using the resulting equation in
equation (4.48) to yield

Y dpl@pa,=1a)), j=1,23.., (4.54)

n=1

where
dn(aj) :—L(%Sjsinﬁjb—cosﬁmb) (@j+ Pn)Anj
eff
_wf(a,-)x+(n4,aj) X LnBn—am)Anm
X+Mua)  pT12a,P5 (@ + am)
b U NE
(Cosﬁm N Esin)lmb) X+ M4, ) N (am), (4.55)
Lm tk X+ (M1, @m)
and
K 2keffsinHoe_‘kefbeineox_(n4,keffcos@o)JV_Z(keﬁcos@o)ﬂf(aj))(+(174,aj)
Oﬁj = .

(M18inBg + 1) (@ j — kescos o) x + (1M1, & ) x - (11, kejs cOS Op)
(4.56)

The infinite system of algebraic equations represented by equation (4.54) is solved
numerically. To solve this infinite system of algebraic equations we have trun-

cated it after first N terms in order to obtain required diffracted field.

4.5 THE DIFFRACTED FIELD

The diffracted field H}(x,y) is acquired redby taking the inverse Fourier trans-

form of F(a, y). By using equation (4.20), one obtains

1 R (@)
Hxy)=— | —F——
z(x J’) o 1+I;7_1£(a)
4 eff

L@ y-b) j-ax g, (4.57)
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Using the change of variables a = —kj;cost, x = pcosf and y = psin6 in the

equation (4.57), one yields

2 .
Hzl (0,0) = zi/%.'_ (_]iei cos f) k;ff Sin te_Lk°ff sin t+tkefprOS([_9)dz-' (4.58)
T 11 sin

<

The asymptotic evaluation of the integral in the equation (4.58) can be obtained
via saddle-point technique. Here, saddle-point rests at t = @ whose contribution
is

H1(p,0) = P (P, + P), (4.59)

where

2_ .2 o 2 .2 .
k /(5% —65)/61 Sineetkp‘/(el e5)le1—1p—tky/(€7—€5)/e1bsing
V2nkp(1+mnysint)

X-(N4,ky\/ (€3 —€5) /€1 cosOp) N (ky/ (€2 — €3) /€1 cos Bp)
, (4.60)
X-(n1,ky/ (€5 —€5) /€1 cosbp)

Py

X

2ky/ (€3 —€3) sin@pe kv (G%_eg)/elbsmg‘)ﬂ_(k\ /(€2 —€3) /€1 cosBy)
- Vve1(m1sinfy + 1) (cosO + cosbyp)
¥— (N4, k\/ (€2 —€2) /€1 cosOy)
x - (4.61)
X-(1,ky/ x (€5 —€5) /€1 cosOp)

P

and

P=Y (Frm + 1&m@m) Em X (4, Q) Ao (@)
m=

1 26}:m(am_(k (62—62)/€1C089)) X"'(nl’am)
1 2

cosLy,b N N4

Lm tky/ (€5 —€5) /€1

sing,;,b|. (4.62)
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4.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have analyzed and potted the numerical results for various
physical parameters of interest. Fig. (4.2) depicts the variation in the diffracted
tield amplitude versus the truncation number "N". It is apparent that the effect
of the truncation number is negligible for N = 80. Hence, the infinite system
of algebraic equations in equation (4.54) can be managed to deal as finite. Fig.
(4.3) explores the effect of separation between the parallel plates on the diffracted
field amplitude. The amplitude of the diffracted field decreases with the increase
of wall impedance |n;| as shown in Fig. (4.4). Figs. (4.5) and (4.6) show that
the diffracted field amplitude is not affected by impedances 7, and n3, which is
similar to the result obtained by Cinar and Biiyiikaksoy [12]. Fig. (4.7) shows the
variation in the diffracted field amplitude with wall impedance 74. The effect of
cold plasma permittivity values €; and €, has been analyzed in Fig. (4.8) and (4.9),
respectively. Here, we have found that the increase in cold plasma permittivity
value €; highly decreases the diffracted field amplitude while the effect of ¢,
is negligibly small. In other words the diffracted field amplitude decreases with
increasing ion number density in cold plasma or by decreasing plasma frequency.
Here, in this problem it is observed that the diffracted field is highly effected with

€1 while slightly with €.
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FIGURE 4.2. Variation in the diffracted field amplitude versus truncation number "N " at0y =
90°,0=45° k=5,11=0.3;, 12 =0.91, 13 = 0.61, N4 = 0.41, €1 = 0.8, €2 = 0.0 and b = 0.2A.
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FIGURE 4.3. Variation in the diffracted field amplitude versus "b” at 6y =90°, k=5, 11 =0.61,
2= 0.4, n3 = 0.71, N4 = 0.51,¢1=0.8 and € =0.
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FIGURE 4.4. Variation in the diffracted field amplitude versus "n, " at ¢o =90°, k=5,1, =0.411
,M3=0.71,4=0.51, te; =0.8, €2 =0 and b=0.2A.
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FIGURE 4.5. Variation in the diffracted field amplitude versus "n,” at 6y =90°, k=5,1; =0.4
,M3=0.71,m4=0.51, €1 =0.8, ¢, =0and b=0.2.
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FIGURE 4.6. Variation in the diffracted field amplitude versus "ns3” at 6y =90°, k=5, 11 = 0.4,

N2 =0.31, 74 =0.51,€1 =0.8, €2 =0 and b=0.2A.
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FIGURE 4.7. Variation in the diffracted field amplitude versus "ns" at 8 =90°,k =5, 11 = 0.4,

2= 0.3, n3 = 0.51,61=0.8,¢62=0 and b=0.27.
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FIGURE 4.8. Variation in the diffracted field amplitude versus “"e1” at 0o =90°, k=5,1n; =0.4
,M2=0.31,13=0.51, 14 =0.7, €, =0 and b= 0.2A.
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FIGURE 4.9. Variation in the diffracted field amplitude versus "e;” at 0 =90°, k=5,1; =0.4
,M2=0.31,13=0.5(, 4, =0.7, €1 =09 and b=0.2\.



EFFECT OF COLD PLASMA

CHAPTER

PERMITTIVITY ON THE

RADIATION OF THE DOMINANT

TEM-WAVE BY AN IMPEDANCE

LOADED PARALLEL-PLATE

WAVEGUIDE RADIATOR

In this chapter, the aim is to determine the effect of cold plasma permittivity and
other parameters on the radiation phenomenon. For this purpose an impedance
coated parallel-plate waveguide radiator located in cold plasma is considered.
This radiation phenomenon was initially considered by Rulf and Hurd [86]. Ac-
cording to them, the presence of surface impedances +7; on the upper and -Z7;
on the lower faces is the merely combination of impedances that converts the
boundary-valued problem into a scalar Wiener-Hopf equation. After that Biiyiikak-
soy and Birbir [41] generalized the problem for different upper and lower faces
surface impedances and solved by the hybrid method consisting of Fourier trans-
form with Mode Matching technique.

The section wise summery of this chapter is arranged as follow. Section (5.1)
consists of boundary-valued problem for radiation phenomenon obtained from

the geometry of the problem. Using this mathematical model, the Wiener-Hopf
71
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equation is formulated in Section while the solution of Wiener-Hopf equa-
tion is obtained in Section (5.3). In Section the infinite number of unknown
coefficients are determined. The mathematical expression for the radiated field
is obtained in Section whereas the numerical results are shown in Section
(5.6). The contents of this chapter are published in Mathematical Methods in

the Applied Sciences, DOI:10.1002/ mma.3464.

5.1 MATHEMATICAL MODEL OF THE PROBLEM

Here, we consider the radiation of the dominant transverse electromagnetic wave
(TEM-wave) which is incident from the left in the parallel-plate waveguide re-
gion formed by two-part impedance plane S; define by {(x, y,2)| x € (—00,00), y =
0, z € (—00,00)} and a parallel impedance half-plane S, defined by {(x,y,2)| x €
(-00,0), ¥y = b, z € (—o0,00)}. The left and right parts of the plane S; are coated
by the impedances Z; and Z,, respectively. The surface impedance of the lower

and upper faces of the half-plane S, are assumed to be Z3 and Z,, respectively, as

shown in Fig. (5.1).

AN __Zy (Impedance) - Z» (Impedance) B ’

FIGURE 5.1. Geometry of the impedance loaded parallel-plate waveguide radiator located in cold
plasma

The total field can be expressed as follows:

H: (x, y), € (b,00)
Hl (x,y) = ‘ Y ’ G1)
[HI™(x, y) + HE(x, )] #0(~) + H3 (x, ) #(x),  y€(0,D),



5.2. FORMULATION OF WIENER-HOPF EQUATION

where #(x) denotes the Heaviside unit step function, H."“(x, y) is the incident
tield given by
Hé”c(x, y) = elkeﬁx, (5.2)

with €l —¢5
keff =k

and k=w\/€olo. (5.3)

H! (j=1,2,3) are the scattered fields satisfy the Helmholtz’s equation in cold

plasma
62 02 i
@+0_y2+k§ﬁ] |l y)] =0, (5.4)

with the following corresponding boundary conditions and continuity relations

0

(1’]4keff + 5) HZ1 (x,b) =0, X € (—00,0), (55)
0 2

(173 kes; — a) HZ(x,b) =0, X € (—00,0), (5.6)

FE(-X) (nlkeﬁ + %) HZ(x,0) + 7(x) (nzkeﬁ + %) H}(x,0)=0, x€(-00,00), (5.7)

H}(x,b) = H>(x,b), x € (0,00), (5.8)
iHl(x b) = iH3(x b) x € (0,00) (5.9)
ay z ) - ay z ’ ’ , OQ), .
HI™(0,y) + H2(0,y) = H2(0,), y€(0,b), (5.10)
iH"”C(o y)+iH2(o y) = iH3(o ¥) y€(0,b) (5.11)
ox ¢ ax 7 ox ¢ 77 T '

The radiation and edge conditions are discussed as earlier.
5.2 FORMULATION OF WIENER-HOPF EQUATION

Fourier transform of the Helmholtz equation in cold plasma is satisfied by the

field H}(x,y) in the waveguide region x € (—oo,00) and y € (b,00) gives

2

d
ot (k& —a®) | Fla,y) =0, (5.12)
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With the help of radiation condition solution of equation leads to
F(a,y) = As(@)e*@0D), (5.13)

where
Lla) = \/kfﬁ—az. (5.14)

To find the unknown coefficient As(a), using the transformed domain of the

boundary condition represented by the equation (5.5), one obtains

%3 ()
A =——+ - 5.15
3(@) n4keﬁc +18(a) ( )
with
!/
93 (@) = NakejiFi (@, b) + Fi(a,b), (5.16)

where the prime sign in equation (5.16) denotes the derivative with respect to y.
On using the additive decomposition theorem and equation (5.15) in equation

(5.13), one gets

O L@ (-b) (5.17)

F.(a,y)+F_(a,y)=
by Y Nakess +1£(a)

The derivative of equation (5.17) with respect to y at y = b takes the form

3 /
L), (@) —~F_(a,b). (5.18)

!/
Fi(a,b) =
i Nakesi +1L(a)

As in equation (5.4), the Helmholtz equation in cold plasma is satisfied by field

HZ(x,y) in the waveguide region x € (0,00) and y € (a, b), multiplying this equa-

Lax

tion by ¢'“* and integrating the resultant equation with respect to x from 0 to co
yields

2
a £2() | Y (a, y) = f(1) —1ag(p), (5.19)
dy?
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where

0
f(y) —1ag(y) = —HS(O y) —1aH2(0,y) (5.20)

and %, (a, y) defined by
4. (a,y) :/Hg’(x, ye'*rdx, (5.21)

is a regular function in the half-plane.

Owing the method of variation of parameter the solution of the non-homogenous

differential equation (5.19) gives

Y. (a,y) =Cr(a)cosL(a)y+ Cs(a)sinL(a)y

2( )/(f(t)—Lag(t))31n£(a)(b— rdt, (5.22)
where C;(a) and Cg(a) are the unknown spectral coefficients.
To find Cg(a) applying the transformed form of the boundary condition repre-

sented by the equation (5.7), one gets

N2 keji
L(a)

Ca(@) = — 2 Cr (). (5.23)

Placing equation (5.23) in equation (5.22) yields

sin£(a)y

o Cr(a)

Gi(a,y) =

cosL(a)y— T]Zkeﬁ

S( )/(f(t)—Lag(t))81n£(a)(b—t)dt (5.24)
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C7(a) can be obtained by adding the transformed form of equation and n k.5

times of equation (5.8) gives

R ()

(@)= W3 (a)

b
_ m[((ﬂn —1ag(t)) (Nakesssin £(a) (b — 1) + £(a) cos L(a) (b - 1)) dt, (5.25)

sin&(a)b
where W3(a) = (N4 —n2)kesjcos £(@) b — (1 + 121y kesz)w (5.26)
Substituting equation in equation gives
_ La)cosE(@)y — kesnzsinL(a) y
Grlay) = S@#5@)
b
x{ % (a) - /(f(t) —1ag(5) (coss(a)(b— 0+ keﬁm% dt
0
./
+ m/(f(t) —ag(t)sinL(a)(y - 1n)dt. (5.27)
0

The left-hand side (i.e., 9. (a,y)) of the equation is analytic in the region
Jm(a) > Jm(ke;costh). However, the analyticity of the right-hand side is des-
ecrated due to the appearance of simple poles lying at the zeros of #3(a), i.e.,

a = ta,, satisfying

Wi(xa,) =0, Jm(am)>Imkerr), m=1,2,3... (5.28)

The poles in the equation (5.27) can be removed by enforcing the condition that

residues of these poles are zero. Then from equation (5.27), one obtains

sing,,b
Ln )

%i(am) = @fn (Fm = t&m@m) | c0S £mb + keina (5.29)



5.2. FORMULATION OF WIENER-HOPF EQUATION

where §,, and g,, are denoted by

Fm 1 7 (1)
~ o3
Dmd | a(0)

9m 0

sing,,t
Lm

cos Lt — N2 ke ] dt, (5.30)

with
S= /K2 =, (5.31)
and
1 sing,,b) 0
7= 5 (cos b nar L) ot (532)

Hence, considering equation (5.17) and the Fourier transform of the continuity

relation given by equation (5.8), one can write

%3 () CFab)= £(a) cos £(@) b — kjsn2 sin £(a)b
Mk +18@ L(@)#3(a)

sin £(a)(b—1)

b
x { R () — / (F(£) —1ag(1) (cosE(a)(b—t)+keffn4 @
0

b
1 .
+ %/(f(t) —tag(t)sinL(a)(b-1)dt. (5.33)
0

After simplification the above expression takes the form

77276(#4,06)9?3 (@)
+F (a,b)

174)((,%2,04)%3(0&)

1
W3 ()

sin£(a)t
COS 2(04) t— keffnzw d

o~

b
/ [F(8) — tag(2)] , (5.34)
0

with
L(a)

— = and N3@)=Wi(a)et WP, 5.35
@+ kg an (@) =Ws()e (5.35)

xmj,a) =
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and f(¢) and g(t) are expanded into a series of eigen-functions as

(1) o i t
f = Z Im COS £y t — M2 Kefy sn;ﬂm
m

g(1) m=1{ g,

(5.36)

Using equation (5.36) into equation (5.34), one gets the required Wiener-Hopf

equation valid within the strip Jm(=k.s;) < Im(a) < Im(k.s;) as follow:

M2x G %5 (@) 0 o — LGm sin £, b
+F_(a,b) = ———|cos&,,b—k 5.37
MG A @ o e 637

5.3 SOLUTION OF WIENER-HOPF EQUATION

To obtain the required solution of Wiener-Hopf equation the kernel functions
A3(a) and x(n;,@)) in equation (5.37) can be factorized by applying the known

results as follows

1
N2 (@) = [ keji (N2 —12) cOS kejih — ke (1 +11214) sin kg D] 2

X exp @b, “+‘£(“))+‘“b(1—c+1n[ 27 L ] I (1+i)e% (5.38)
T kess 7 keib 2] m=1 Am
and
N3 (@) = N2 (~a), (5.39)

where the factors of y(n;,@) and C are discussed in earlier chapters.

~Gs,0) A (@)
Now, multiplying the Wiener-Hopf equation (5.37) on both sides with Tap 7@
x-Gg®)

one obtains

e+ (o WAL (@) x-(r )N (@)

L —+ l F_(a,b)
n4x+(n—2,a)=/V+ (a) x_(n—4, a)
X-Go )N (@) & 5, — ing b
=—2= Im Lagm cosﬁmb+keﬁnzsm L (5.40)

X—(T;j’a) m=1 az_am

4
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With help of cauchy integral formula the terms on right-hand of the equation

(5.40) can be decomposed as

-G AN(@) = 5, —1ag,,

i b
(cos Lmb + kesin2 $in Ly )

X—(nﬁya) m=1 az_a]zn Sm

g

1At a

(cos Lmb + Kesin2 T
m

[ (Fm —1agm)x-Gr AN2@) (i +iragmy+ G, A3 (@)

- L + L
(@—amy-(;;, @) 2amy+(5, @)

sinﬁmb)

sing,, b) (Fm +tagm) ¥+ (s AN (@) 5.41)

- (cosﬁmb+keﬁng
Lm

m=1 Zam(a"‘a’m))m(n—l,a)

Now using equation (5.41) in equation (5.40) and then placing all those terms on

the left-hand side which are analytic in the region (Jm(a) > —k.5;) and the terms

which are analytic in the region (Jm(a) < k) on the right-hand side which yields

N2X+ (G MR+ (@)
+
Nax+ G AN (@) 5T
X-Gora) N (a) %
=-— F_(a,b)+ Y

X—(nﬁ»a) m=1%+Qam

cos £, b + kesin2

sinsmb) (Fm +1agm) x+ () @) N (@)

Lm 2a,(a+ am)x+(,,ﬁ,a)

ing,,b
(cosSmb+ keﬁnzsm m )

Lm
(Fm — tagm)x_(,%z, )N (a) Fm+ tagm)m(nﬁ, a) N, (a)

L + J (5.42)
(a— am))(_(nj,a) Zamx+(n—4,a)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle following Liouville’s theorem gives

N2+ (i RS (@)
Nax+ G QA @

: * 3
- 5 Umt g cosﬂmb—keffnzslngmb X+(’;2’ar7)ﬂ+ Rl
’Sm X+(a!am)

5.43
me120m(a+ ay) ( )
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5.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The equation(5.43) contains infinite number of unknown coefficients. In order to
determine these unknown coefficients we employ the well-known Mode-Matching
technique along with the Fourier transform. The Mode-Matching technique is a
standard method to handle the waveguide structures. This technique has been
used extensively [87, 188] to analyze the scattered field at the junction. In this
investigation the Mode-Matching technique enables us to declare the field com-

ponent defined in the waveguide region in terms of normal modes as

X sin
Hg (x,7) = Z ap (cos(ny — kefim Cny e Pnx, (5.44)
n=1 Cn
where
Brn = /kfff -5, Im(Bn) >Imlkeg), n=1,2,3,.... (5.45)

Brn’'s and {,’s can be obtained by using equations (5.6) together with (5.44) as

under

sin
eff(m4—173)cos(nb+(( ]J']l’l’lg) ((ny 0, n=01,23,... (5.46)
n

Placing the continuity relations represented by the equations (5.10) and (5.11) in

equation (5.20), one yields

0
f() —1ag(y) = tlkej; — @) + aHﬁ(o,y) —1aH2(0,y). (5.47)

Substituting equations (5.44) and (5.30) in equation (5.47), then multiplying the

1n£]y N4
tk eff

resulting equation by ( cos £;y) and integrating from y =0 to y = b,

one obtains

fm —1Xm@m =

L(keff — a)
@3 82

@3 Z an(a+ Bn)Anm, (5.48)

(Kejinn2 co8 £nb + Ly sin £, b — kefs2)
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where A, is

kesi(2—m1)  kesi(n3 +14) ( sin{,b
Apm = — cos(yb—k
e, g, \tTRem Ty
sin£,,b
x | cos Limb — kejin2 : (5.49)
Lm

Substituting equation (5.48) into equation (5.29) and then using the resulting

equation into equation (5.43) to yield

dh(aja,=1(aj), j=12,3,.. (5.50)

n=1

where
Sinsjb
dn(aj) =—ilaj+ Pr)An; (cos£jb+ kefina T
J
miﬂf’(aj)xﬂu(#z,aj) X (Bn—Am)Aum
77§X+(U_L4’“J') =1 2Am D (A + )
3
sinSmb) X+ (s am) Ay (@m)
x|cosLy,b+k 5.51
( moT R X+ G @) 65D
and
sin£;b\([sinL;b cosLib  keine
I(aj) = tlkeji — @) [cos £ b+ h ’) Ltk L
(@) = tlkess a])(cos j KCefiTa <; ( < effT]2 <; 2?
MaX+ (G @) AN (@) o L(Kkefs + ) (sinﬂmerk cos£mb_772keff)
X+ Grap)  ms12amPy(aj+am) U Ln T, L5
ing b\ X+Ga am) A2 (am)
x(cos£mb+keﬁngsmsm ) TNt —— (5.52)
Lm X+(,7_4yam)

The infinite system of algebraic equations represented by equation (5.50) is solved
numerically. To solve this infinite system of algebraic equations we have trun-

cated it after first N terms in order to obtain required radiated field.
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5.5 RADIATED FIELD

The radiated field H.(x, y) is obtained by taking the inverse Fourier transform of

F(a,y). By using equation (5.17), one obtains

1 R ()
Hl ’ — + LL(a)(a)(y—b) —lax go 5.53
(%)) 21 n4keff+L£(a)e ¢ ¢ (5-53)
<

Using the change of variables a = —kcos ¢, x = pcosf and y = psinf in the

equation (5.53), one obtains

1 / R (—kej cos 1) kej sin ¢
e

1 —tkesysin t+ikesp cos(t=0) 4 (5.54)
27 2+ tsint

Hl(p,0) =
<~
The integral in equation can be evaluated asymptotically through the sad-

dle point technique. Here, saddle point occurs at t = 6. On taking into account

equations (5.3) and (5.43), the radiated field takes the form:

H(p,0) =

_n%k\ /(€3 —€2)/e; sin@e'*PV (E%_eg)/ew%x_(é, ky/ (€2 —€3) /€1 cosH)
V2mkp(n, +sin t)ni)(_(n—:, ky\/ (€5 —€35)/€e1 cosB)
i (Fm +1@m@m) X+ G Am) A2 (@m) N2 (ky /(€5 — €3) /€1 cos0)

_ m=1 2am(am—(k\/(6%—63)/€1C059))X+(n_l4,am)

sinﬂmb)]
/Sm ’

x |cos Lmb—12ky\/ (€] —€3) /€1 (5.55)

5.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have presented some useful numerical results to show the
effects of various physical parameters of interest on the radiated field ampli-
tude. Actually the solution of Wiener-Hopf equation contains a set of infinitely

many constants satisfying an infinite system of algebraic equations. To solve this
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infinite system of algebraic equations we have truncated it after N terms in or-
der to obtain the required radiated field. Fig. illustrates the variation in
the radiated field amplitude versus the truncation number "N". It is apparent
that the effect of the truncation number is negligible for N > 20. Hence, the in-
tinite system of algebraic equations in equation can be managed to deal
as finite. Fig. shows the variation in the radiated field amplitude with
increasing plate separation parameter b. Clearly, the radiated (diffracted) field
amplitude enhances when we increase the ratio b/A. Physically, such an in-
crease in the diffracted field amplitude is due to the fact that plate separation
parameter b becomes comparable to the wavelength A of the incident wave. The
amplitude will be maximum for b/A = 1. Figs. (5.4) and shows the vari-
ation in the radiated field amplitude with impedances n; and 7, both for in-
ductive and capacitative cases. Fig. shows that in case of 1, (for capacita-
tive and inductive cases) the amplitude decreases with increasing impedance
where as for 7, (See Fig. (5.5)) for capacitative case the amplitude decreases
and for inductive case it rises. Fig. explores the effect of n3 (both for ca-
pacitative and inductive cases) wherein the amplitude decreases with increas-
ing impedance, however, the case is different for the variation of n4 as shown
in Fig. (5.7). These impedance dependent variations are actually related to the
magnetic and electric susceptibilities of the waveguide surfaces. Actually, the
surface impedances Z; (j = 1,2,3,4) are normalized by %, i.e., Z; = n,Z,. Here
Zo = /4, /€0 is the characteristic impedance of surrounding medium and g, and
€o are, respectively, the magnetic permeability and dielectric permittivity of the
free space. Since the surface impedances of a conductive medium (plasma) are
imaginary in magnitude, that is, Z = \/iwu/(o + iwe), where o is conductivity of
cold plasma, so in the present model it would be taken as complex. Z in the
normalized form is n = \/iwp/ (o + iwe)/ Zy, which for free space becomes unity.

Fig. (5.8) demonstrates the effect of cold plasma permittivity e; on the radiation



CHAPTER 5

phenomenon. The radiated field amplitude is effected drastically in the presence
of an anisotropic plasma medium. The field amplitude enhances with increasing
plasma permittivity €, actually for fixed number densities of ions and electrons
in cold plasma, the parameter increases with the increase in incident wave fre-
quency w, i.e., €, =1— (%)2 (for high frequency signal). The electric field of such
a high frequency signal oscillates the electrons about the cold ionic centers and
such oscillating electrons then radiate enormously thereby increasing the ampli-
tude of the radiated field. Fig. demonstrates the effect of parameter €, on
the radiated field amplitude. Clearly, the amplitude of the radiated field dimin-
ishes with the increase in parameter €,. Actually, the increase in the parameter
€2 leads to the decrease in the signal frequency for which the electron oscillation
under the low frequency of incident wave diminishes the radiated amplitude.
The results obtained in this work can be a useful knot in order to improve the
radiated signal quality transmitted by an artificial satellite in the ionosphere for

communication means to an earth station.
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FIGURE 5.2. Variation in the radiated field amplitude versus truncation number "N”. The
other parameters are 0 = 45° 1 = 0.2, 12 = 0.5, 73 =0.3, 14 = 0.6, €, = 0.8, €2 =0, k =5 and
b=0.2A.
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DIFFRACTED AND TRANSMITTED

CHAPTER

FIELDS BY AN IMPEDANCE

LOADED WAVEGUIDE LOCATED IN

COLD PLASMA

In this chapter, the problem of diffraction of plane wave by an impedance loaded
waveguide designed in cold plasma is considered. The structure of waveguide
is constructed from three parallel impedance loaded half-planes such that one
amidst in the opposite direction. Such type of problem was initially considered
by Weinstein [89, 90] and Boersma [91] for the case of two half-planes character-
istic by either soft (Dirichlet) or rigid (Neumann) surface material properties of
all faces of the half-planes. After that Cinar and Biiyiikaksoy [85] generalized
the problem for surface impedance (Robin) and each face of the half-planes is
loaded by different impedances. Here, the case is considered for soft, rigid and
impedance surface material properties of the waveguide located in cold plasma
as shown in Fig. (6.1).

The chapter is arranged as follows. In the next Section mathematical model
of the problem in cold plasma is stated. The Wiener-Hopf equation is formu-
lated in Section whereas the solution of Wiener-Hopf equation is developed
in Section (6.3). The unknown coefficients are obtained with the help of Mode-

Matching technique in Section . The diffracted and transmitted fields are
89
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considered in Section (6.5). In the end the Section is devoted to numerical

results and discussions.

6.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD
PLASMA

In this chapter consider an incident time harmonic wave propagating in cold
plasma and making an incident angle 6;. On striking the waveguide surface
the incident field generates reflected and transmitted fields. Let w denotes the
angular frequency and k be the wave number. The geometry of the problem is
formed by three parallel half-planes represented by S;={(x,y,2)| x € (—00,0), y =
b, z € (—00,00)}, S2={(x,),2)| x € (—00,0), ¥y = —b, z€ (—o0,00)} and S3={(x,y,2)| x €
(0,00), y =0, z€ (—o00,00)}, respectively. The material property of waveguide sur-
face impedance of the upper and lower faces of the half-planes S; and S, are

assumed to be Z; and Z,, respectively, as shown in the Fig. (6.1)

- - o
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N T e —————— - > X ,

N (00) D (Soft) ,

* X ,

» '

R D (Soft) : .

~ < Z> (Impedance) (0:-b) Pt

-~ - I

FIGURE 6.1. The physical configuration of the waveguide located in cold plasma

The total field can be expressed as follows:

H(x,y)+ Hi"(x, y) + Hi (x, y), y € (b,00)
H3(x, ) 7(—x) + H2(x, y) F(X), y€(0,b)
HzT(x, ¥) =14 Y (6.1)
H3 (x, ) H(—x) + Hi (x, y) 7(x), y € (—b,0)
Hg(x;J/), ye(_ooy_b)-
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where #(x), H ;”C(x, y)and H. Zref (x, y) stand for Heaviside unit step function, inci-
dent and reflected fields, respectively, which are already defined in Chapter (4).
{H]  (j=1,2,3,4,5) are the scattered fields satisfy the Helmholtz equation in
cold plasma as under

0? 02
o2 d ay?

+ kfﬁ] [Hg (x, y)] =0, 6.2)

with the following corresponding boundary conditions and continuity relations

(1 49 )Hl( ,b) = x € (—00,0) (6.3)
lkeff ay
0 2
—H;(x,0)=0, x € (0,00) (6.4)
oy
0 3
— H>(x,b) =0, x € (—00,0) (6.5)
dy
H?(x,—b) =0, X € (—00,0) (6.6)
H(x,0) =0, x € (0,00) (6.7)
N2 0 5
1- H2(x,-b) = X € (—00,0) (6.8)
tkeff ay
H. (x, b) + H™ (x, b) + H.? (x, b) = H2(x, b), x € (0,00) (6.9)
iHl(x b)+ 9 H!"(x, b)+ 9 H (x,b) = 9 — H2(x, b), x€(0,00) (6.10)
dy oy dy dy
H2(0,y) = H2(0,), x € (0,b) (6.11)
0 3 0 2
S H20.)=——H;0,), x€(0,b) (6.12)
H2(0,y) = H:(0, ), x € (~b,0) (6.13)
0 3 0 4
O_H 0,y)= —H 0, ), x€ (—b,0) (6.14)

H:(x,—-b) = H>(x,—b), x € (0,00) (6.15)
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0 d
aHj;(x,—b) = 5Hg(x,—b), x € (0,00). (6.16)

6.2 FORMULATION OF WIENER-HOPF EQUATION

Since Helmholtz equation in cold plasma is satisfied by the field HZ1 (x,y) in the
waveguide region x € (—oo,00) and y € (b,00) whose Fourier transform gives
da? 2

— +(k

e eﬁ—az) F(a,y) =0. (6.17)

Using the radiation condition the general solution of equation (6.17) is as under
F(a,y) = Ay(@)e* @0, (6.18)

To find the unknown spectral coefficient A4(a), using the transformed domain of

the boundary condition represented by equation (6.3) gives

Ay(a) = B @y, @), (6.19)
L)t

where

&L (@) = Fs(a,b) + Zl

ERes

F. (a,b) (6.20)

and y(n;, @) are defined in previous chapter.
Using the additive decomposition theorem and substituting equation (6.19) in

equation (6.18), one can write

Keji

oy 2@ xm, @) SO0, (6.21)

F(a,y)+Fi(a,y) =
The derivative of equation (6.21) with respect to y at y = b takes the form

! /
F.(a,b) = ke %% (@) x (1, @) — F_(a, b). (6.22)
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As the Helmholtz equation in cold plasma is satisfied by field Hg (x,y) in equation

(6.2) in the waveguide region x € (0,00) and y € (0, b), on multiplying this equation

by e'** and then integrating the resultant equation with respect to x from 0 to oo,
one gets
dZ
[d_yz +£4@) | Fr (@) = ()~ 1ag(y), (6.23)

where ¥, (a, y), f(y) and g(y) are also defined as earlier.
The general solution of the non-homogenous differential equation can be

obtained by using the method of variation of parameter yields

Y. (a,y) =Cy(a)cosL(a)y + Crp(a)sinL(a)y + m/f([) sinC(a)(b—-1dt, (6.24)
where Cy(a) and Cjo(a) are the unknown spectral coefficients.
Using the transformed form of boundary condition given by the equation (6.4),
one gets

Y. (a,y) =Cyo(a)cos&(@)y + —— /[f(t) —tag(D)]sinL(a)(y—0dt. (6.25)

L(a)

The transformed form of the continuity relation represented by the equations
and (6.18), respectively, gives

2”71 Sine()e_lkefbeineo

Fi(a,b)+

(141 8in6) (a — kejs cos ) =%:(a, D) (6.26)

and

2 keff Sin 90 e—Lkefbeineo

Fo(a,b)+ — . (a,b). 6.27)

(1+m18in6p) (@ — kes; cos )

Adding equation (6.26) and l.chﬁ times of equation (6.27), one can obtain

€,4+(oc, b) = %% (a). (6.28)

G, (a,b) + L
lkeff
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Cy(a) can be obtained by placing equation in equation which yields

b
Rl 1 sinC(a)(b-1)
Co(a) = V@) —%(a){(f(y)—tag(y))( @ +lkeff cos&(a)(b—1)|dt,
(6.29)
with
Wi(a) = cos &(a)b— Zl £(a)sin £(@)b. (6.30)

Ehes
Placing equation (6.29) in equation (6.25) gives

y
1 ,
Gi(a,y) = %/(f(y) —tag(y))sin £(a)(y — dt+
0
£ y L(a)(b
cosf(@)y | 4 _/ _ (sin (@b-1) m _
@ X (@) O(f(y) wag(y)) o) +lkeffcos/2(a)(b n|dt

(6.31)

The left-hand side (i.e., ¥+ (a,y)) of the equation is analytic in the upper
half-plane Jm(a) > Jm( kejscosp). However, the analyticity of the right-hand side
is desecrated by the appearance of simple poles placing at the zeros of #,(a), i.e.,

a = ta,, satisfying
Wiltam) =0, JTm(an)>Tmky), m=1,2,3.... (6.32)

The poles in the equation (6.31) can be removed by imposing the condition that

residues of these poles are zero. Then from equation (6.31), one obtains

sin&,,(b—1) N 1

Lmb-1)|dt. 6.33
Qm Lkeﬁ:COS m( ) ( )

b
R (am) = / (F(O) — 1amg () (
0
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After simplifying equation (6.34), one gets

sing,,b N 1

7 =
+(C¥m) £m Lkeﬁ

b
cos£mb) /(f(t) —amg(t))cos L tdt.
0
f(#) and g(#) can be express in the form of eigen-functions as follows:
f(6) —1ag() = Y (fn—1agn) cos £, 1.

n=1

Substituting equation (6.35) in equation (6.34) leads to

n=1

b
. b -~
R (am) = Sin S 4 cosﬂmb)/z(fn—Lamgn)cos£ntcos)3mtdt.
0

£ m lkeﬁ

After simplifying the equation (6.36), one can write

sing,;, b N '171

%i(am) = @fn(fm —1agm) ( o i cosL,bl,
with
L= kfﬁ -a?,
and
D = W%%(am)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

The Fourier transform of the continuity relation given by equation (6.18) gives

—Lkeffbsine() /

2k,.s8inBge
i it 4. (a,b).

!/
F.(a,b)+
+@b) (1+n;sinfp) (a — keﬁ cosfy)

While placing equations (6.22) and (6.31) in equation (6.40) yields

(6.40)
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2 keff sin 90 e—lszfbsingo

1+m sinHo) (@ — kejs cosO)

!
ke &L (@) x (M1, @) — F—(a, b)+

L)@ sin):(a)bg?,i(a)
- Wi(a) 2T

/[f(t) —tag(t)]cosL(a)tdt. (6.41)

Rearranging equations (6.41), one gets

4 2k ing —tk,ssbsinfg
tmx(nlyf)%(a) +F_(a.b)= eff SinOoe
N(a) (1+msln90)(a—keﬁcoseo)
“ i@ )/(f(t)—tag(t))cosﬁ(a)tdt (6.42)
where
N (@) = Wy(a)e ™ DP, (6.43)

Using equation (6.35) into equation (6.42), one obtains

, R / 2l sin O e—tkeffbsineo
mx(n, )% (a) L F_(ab) = eff’ 0
N (a) (14+m18in6p) (@ — kes; cos )
b
1
7//4(“) Z (Fm +tagm) cos £ tcos £(a) tdt. (6.44)

After simplifying the equation (6.44), one can obtain the required Wiener-Hopf

equation valid within the strip Jm(k.j; cosg) < Im(a) < Im(k.s;) as follows:

X (m, )% () F @b - 2kygy sinBgetkeirbsindo
N @ o (1+n;sin6p) (@ — ks cosBp)
X fm—lagm
-y (2, sin S D). (6.45)

2
m=1 @ _am

In order to calculate the transmitted field, the Fourier transform of the Helmholtz

equation in cold plasma in the waveguide region x € (—o0o,00) and y € (—oco,—b)
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results into

d2
[d_yz + (ks — a®) | W (@, ) =0, (6.46)
where .
Y(a,y) = /Hg(x, y)e'*rdx. (6.47)
—00

Using the radiation condition the general solution of equation (6.46) is as under

¥(a,y) = As(a)e” F@WD), (6.48)

To find the unknown coefficient As(a), using the boundary condition represented

by equation in the transformed domain, one obtains

ke 85 (@) x (02, @)

As(a) = @ ,

(6.49)

where
Up
LiCeff

R (a) =¥, (a,~b) - ‘I’,+(a, ~b). (6.50)

Using the additive decomposition theorem and equation (6.49) in equation (6.48),

it is found that

keff%i (CZ))((772» @) e—L/Q(a’)(J’"’b)’

Vi@, y)+¥Y-(a,y)= @

(6.51)
whereas the derivative of equation (6.51) with respect to y at y = b takes the form

! /
¥, (a,—b) = —tkej; R (@) (2, @) —¥_ (@, —b). (6.52)

From equation (6.2), we observe that H;‘(x, y) satisfies the Helmholtz equation in

cold plasma in the waveguide region x € (0,00) and y € (-b,0). After multiplying
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by €'“* and integrating with respect to x from 0 to oo, takes the form as under

d2
[d_yz +£2(@) | Gi(@, ) =p(y) +14()), (6.53)

with

0
py) = —H“(O y), q4(y)=H0,y) (6.54)

and G, (a, y) defined by
Gi(a,y) = / Hj(x,y)e'* dx, (6.55)

is a regular function in the half-plane.
The general solution of the non-homogenous differential equation (6.53) can be

obtained by using the method of variation of parameter yields

Gi(a,y) =Cr(a)cosL£(a)y + Cra(a)sin £(a)y + m/(p(t)+tq(t))sm£(a)(y— ndt.

(6.56)

To find Cyi(@) using the transform form of the boundary condition represented

by equation (6.7) gives
Ci(a) = L/(p(z‘) —taq(n)sin L(a)tdt. (6.57)
L(a)

Substituting equations (6.57) in equations (6.56), one obtains

0
cos L£(a)y

Gi(a,y) =Cp(a)sinL(a)y + @ /(p(t) —taq(t))sin Ltdt

2( )/(p(t)—tag(y))S1n£(a)(y—t)dt (6.58)
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The transformed form of the continuity relations represented by the equations

(6.15) and (6.16), respectively, are as below

‘P+ (a,_b) = G+(a,_b) (6.59)

and

¥, (a,~b) = G+ (a, D). (6.60)

Subtracting equation (6.59) and lec’_fff times of equation (6.60) yields

2
LiCefs

G+ (a,—b) - (l?+(a, -b) = %> (a). (6.61)

To find Ci2(a@) placing equation (6.58) in equation (6.61), one obtains

@ (a) CosL@y-7=L@sing@)b

C = +
2@ == S@)Ws(a)

0
/(p(t) —aq()sin£(a)tdt,
-b

(6.62)
where

Ws(a) =sin£(a)b +

12 L(a)cosL(a)b. (6.63)
lkeﬁ

Using equation (6.62) in yields

5
- )
— + .
Gila,y) = Vol sin£(a)y
cos £(a)b— 7= Lsin L(a)b 0
S(aﬂ;/:(a) sin£(a)y /b (p(2) —taq(t) sin L(a) tdt
ey | /
cos Ly ~ _ 1 ) ' i
+ @ /(p(t) Laq(t))81n£tdt+—S(a)/(f(t) wag()sinL(y—ndr.  (6.64)
-b b
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Rearranging equation (6.64) takes the form

_op5
Gila,y) = % (@) 51n£(a)y+—/(p(t) —taq(t)sinL(a)(y - 1)dt

Ws(a) ()
sin&(a@)(y+b) + = Q(a) cos £(a) (y + b) |
i S(a)WS(a) /(P(f)—taq(t))sm)Z(a)tdt.
(6.65)

The left-hand side (i.e., G.(a,y)) of the equation is analytic in the upper
half-plane Jm(a) > Jm(k.s; cosy). However, the analyticity of the right-hand side
is violated by the appearance of simple poles placing at the zeros of #5(a), i.e.,

a = ta,, satisfying
Ws(£vm) =0,  Tm(vy) > Tm(ke), m=1,2,3... (6.66)

The poles in the equation (6.65) can be removed by imposing the condition that

residues of these poles are zero. Then from equation (6.65), one obtains

Lyub
R (V) = — | o 4 L2

sianb) /(p(t) —taq(t)sinL,, tdt, (6.67)
Ly, Lhes

where
=,/ kfﬁ v2, (6.68)

p(2) and q(#) can be expanded into a series of eigen-functions as follows:

p(t) —waq(t) =Y (pn—taqy)sinLyt. (6.69)
n=1
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Using equation in equation (6.67) yields

0
L b ©
%i(am):— COS Sm Lk s1an )/Z(pn—Lamqn)sinLntsiantdt.
eff
-b

Lm

n=1

After simplification, equation (6.70) gives

L,,b
%i(am):Q%(pm—qu)(cos LU N2 sinL,,b|,
L,,cosL,,b 0

5 m m
—_— W
Dm 2Vm a S(Vm)

Using equations (6.52) and (6.65) in equation yields

I %5
_ tkeﬁgi’i (@) xm2,a)—¥Y_(a,—b) = —% cos £(a)b

- Ws(a)/(p(t)—Laq(t))sini}(a) tdt.

After simplifying equations (6.73), one can obtain

kejix (12, ) 5 (@) ) |

where

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

Using equation into equation (6.74), one obtains the required Wiener-Hopf

equation valid in the strip Jm(—k.s;) < IJm(a) < Im(kes;) as follows:

kejix (M2, %3 (@)
~¥_(a,-b)=
A5(@) (@, 28) 71/5()

Z (P — L@q) sin Ly, tsin £(a) tdt.

(6.76)
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From the above expression, one can write

kefix (02, )R, (@) © = 1A
JVS((Z) -¥Y_(a,—-b)= n;lw (L COSLmb). (677)

6.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equations the kernel functions A Ya), /(@) and y(n jra))

in equations (6.45) and (6.77) can be factorized by applying the known results as

following:

A @)= N @M (@), (6.78)
N (@) = N2 ()N (), (6.79)

where

N2 (@) = [cos kejpb + 111 sin kej; D] 2

L(a)b (a+t£(a)) tab
In +
14

X exp

(1—C+ln

a
+i=
2

I (1 + ai) et (6.80)
m=1

V4 m

kejy keji b

and

N2 (@) = [sin kb — 12 cos kej; D] 2

S(a)bln(a-'-tg(a))+%(1—C+ln

et (6.81)

X exp

)
+i=
2

10_0[ (1+ai

m=1 m

2
T keff keffb

such that

N @) = N (~a), (6.82)
N2(a) = N (~a). (6.83)

As mention before, the factor of y(n;,a) can be written in terms of the Mali-

uzhinetz’s function.

N ()

Now, multiplying the Wiener-Hopf equation (6.45) on both sides with ===,

one obtains
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!/ .
My, DR (@  NA@F (@ b) 2k sinfgeKeribsinfo_g4(q)
N (@) X-,@)  (1+n;sin6) (@ — kesscosBo) x— (11, @)
msm£ b(fm - Lagm)JV4(a)

—Z

(6.84)
am)X (T]l) a)

With the help of cauchy’s integral formula the terms on right-hand of the equa-

tion (6.84) can be decomposed as

2k sinfgekerisinfo g4 (q)
(1+n1sinbp)(a — kejscosbo) x- (01, @)
2k sin@ge~keirbsino NA@) A A(kess cos o)
~ (L+m18in6p) (@ — kejjcosbo) | x-0, ) -, kejs cos 0p)
2kjisinBo e~ tkefibsinto N4 (kej5 cosBo)
(1 +n18in6p) (@ — kejj cos o) x - (M1, kejs cOS6)

(6.85)

and

& Smsmﬁmb(fm agm) AN @) & LnsinLmb G + 10 gm) AL (@)

) )

m= —am))(—(rll,a) - m=1 2am(a+am)y+m,am)
. i £ms1n£mb (o= 10gm) N2@ | G+ 1@mGrm) A (@) | (6.86)
sl atan (@—amy-m a) 2am )+, m)

Now using equations (6.85) and (6.86) in equation (6.84), then placing the terms

which are analytic in the upper half-plane (Jm(a) > —k) at the left-hand side
and those which analytic in lower half-plane (Jm(a) < k) at the right-hand side

which gives

miysm, @)% (@) 2kejisinBe keiibsindo g4 (ki cos )
N (@) 1+ n18in6p) (@ — kej;cos o) x - (11, kejs O Op)
X+ 1A m@m) Emsin Lpb N (@)  F_(a,b) N (@)
= 2aml@tanysmuan) 0 x-na)
~thejjbsino NA@) N (kesscos0)
r-m,a) x_(m,keffcoseo)]
(Frm = tagm) V(@) s (Fn + 10 @) A @)
(@—am)y-m,a) 2amy+M, am)

2 keff sin 9() e

(1+1n;sinfp) (a — keﬁ cosfp)

X Lsint,,b

)

m=1 Qa+am

(6.87)
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The required solution of Wiener-Hopf equation for the diffracted can be obtained
by using analytical continuation principle following extended Liouville’s theo-

rem yields

. —tkessbsin®
mx+mn, R (@) defsmgoe_t frosin * N4 (ke cOS 0p)

N a) (1471 8in6p) (@ — kejj c0s60) x - (1, ke cOs B)
O (Fm + 101, @) L SIN L BN 2 (1)

_ 6.88
m; 2ama+am)y+m, am) (6.88)
Now, multiplying the Wiener-Hopf equation (6.77) on both sides with X‘iﬁ%),
one obtains
/
kejix+ M2, )25 (@) N3(@W-_(a,b) _ i Ly sin Ly, b(p, — taqm) N (@) (6.89)
N2 (@) -z S (@-vix-p@)

With the aid of cauchy’s integral formula the terms at the right-hand of the equa-

tion (6.89) can be decomposed as

‘i Lin€0S Lynb(pm —taqm) NV >(@) & (D + 1V pyGm) Lin €08 Ly b (U )

m=1 (@? = v5)x-(n2, @) ol 2um@+uR) X M2, vim)

N i LincoSLyb [ (Pm —taqm,) N°(a) N P+ Vi Gm) A2 Vi) . (6.90)
m=1 @+Vm (@—vm)x-(m2,a) 2vmX+M2,Vim)

Now substituting equation in equation (6.89), then placing the terms which
are analytic in the upper half-plane (Jm(a) > —k.;) at the left-hand side and those
which analytic in lower half-plane (Jm(a) < k) at the right-hand side which

gives

kx+ (2, A3(@) & P+ Wimm)Lm COSLnb NP Wm) _ F-(a,b)Q-(a)

+ 2

NHa) o 2Um (@ + V) X+ 12, Um) x-(12, @)
s X LyncosLyb [ (pm—taqm) N2 (@) .\ (P + W Qm) N2 W) ' 6.91)
m=1 @+Um (@—vm)x-(m2,a) 2Umx+M2,Vm)

The required solution of Wiener-Hopf equation for the transmitted can be ob-

tained by using analytical continuation principle following extended Liouville’s
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theorem, the above expression gives

kys (1, )% (a) i (P + Wi dm) Lin €08 Ly b N2 ()

- (6.92)
N2 () =1 2um(@+ V) X+ M2,V m)

6.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The significant distinction of this sort of formulation from the one used by Cigar
and Biiyiikaksoy [12], was the simultaneous use of Mode-Matching technique
with the Fourier transform. The Mode-Matching technique enables us to express
the field components defined in the waveguide region in terms of normal modes

as

H2(x,y) = Y ansind,(y+b)e Fr. (6.93)

m=1
With the help of boundary conditions represented by equations and Bn

‘s and (,,’s are obtained from

{n,cos(,b=0, n=1,23,.., (6.94)
which gives
v/ ~ ~
Co=@n+ Do Bu=y/k=Ch Tm(Bp)>Imlke), n=12.. (6.95)

From continuity relations represented by equations (6.11) and (6.12) gives

f(y) —1ag(y) = —1)_ an(a+ PBr)sinl,(y + b). (6.96)

n=1

Using equation (6.35) into equation gives

(Fm —1agm) cOs &t = —1)_ ap(a+ Pfr)sin,(y+b). (6.97)
1 n=1

S M8
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Multiplying equation by cos £t and integrating with respect y from y =0

to y = b, one obtains

fo—tags = - Z("COSS L (6.98)

S

Using equation (6.98) in equation (6.37) gives

%i(am) _ _L(sinﬂmb 1 X (,cosmb

+ ——cos g b)
Sm lkeff " nz_"

Cz ap(@m+ Pn) (6.99)
=1 n—

Substituting equations and (6.98) in equation (6.45) at @ = a; leads to

(ny,as) (sinLb sme
nix+ M, as ( b m f:sb)Z(” an(@s+ By)

=/V+4 (as) Ls ikeff o8 Cz
_ 2ksin60e_ikefbein9°JV_(lceff cosby)
~ (L+n15in0o) (s — kejc0sBo) X - (171, Kef c0s 6)
o 1L sin £, b 2 (a )

X (,sinL,b
+ Z Z an(Pn—am). 6.100
mzlﬂrﬁ(as+am)2am)(+(n1,a’m) n=1 (%—2?71 p ( )

The above expression can be written as under

Y ep(agan=1(as), $=1,2,3,.. (6.101)

n=1

where

nix+m,as) 5in£5b+ .771 COSSjb Cn;ings
N (ag) L lkeff 63
O 1L, 8in L b2 (@) sin £ b(Br — &)

+ 2

o1 2N @ (@ + ) X+ (11, @) ((5 = £3)

() = +Bn)

(6.102)
and

2keff sinfgekeibsinfo g (kejs cosOp)

Ias) = ; .
Y+ n18in6g) (a5 — ke c0s60) ¥ - (11, kesj cOS o)

(6.103)
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The infinite system of algebraic equation in equation (6.101) will be solved nu-
merically. To solve this system we truncate the infinite system of algebraic equa-
tions after the first N terms.

Now for transmitted field one can consider continuity relations represented by

equations (6.13) and (6.14) as under
p(y) —taq(y) = —1)_ az(a+ Br)sind,(y +b). (6.104)
n=1
Using equation into equation (6.104), gives

(Pm—taqm)sinLyt =—1)_ ay(a+ Pp)sind,(y + b). (6.105)
1 n=1

S8

Multiplying equation (6.105) by sin Ly and integrating from y = —b to y =0, one

obtains

0
—laqs = @L/Zan(a+ﬁn)sincn(y+b)sianydy, (6.106)

n=1

simplification of which gives

ps—tasq; = Z an(a+ Bn)Ans, (6.107)

95

where A, is given by

1
(n - Ls

6.5 THE DIFFRACTED AND TRANSMITTED FIELDS

The diffracted field H}(x,y) is acquired by taking the inverse Fourier transform

of F(a, y). While using equation (6.21), one gets

Keff
Hl(x,y) = ! / o % (@) y (1, @) e @b gmax gy (6.109)
<
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Using the replacement of function x (1, ) and variables a = —k.j;cos ¢, x = pcost

and y = psinf, equation (6.109) takes the form

—tkefs sin t+tkeffpcos(l‘—9)dt. (6110)

1 / R, (—kesscos 1) kejisin ¢
e

H(p,0) = —
(0 0) 27 1+nysint
7

The integral in equation can be evaluated asymptotically through the sad-
dle point technique. Here, saddle point occurs at = 6.

On taking into account equation (6.88), the diffracted field takes following form

k /(6% _ 6‘%) /et etkp\ [(€3—€3)/e1—1 % —tky/(€5—€3)/e1bsin® sind

V2mkp(1+mn;sin0)
. —iky/(€2—€2)/€e1 bsind
21sinfye FVEI-/a O N A(ky/(€? —€2) /€1 cosBy)
\/ €16 .\

11 (1 +sinfp)(cosf + cosbp) x- (11, keffcos 6o)

Hl(p,0) =

X

i 1L SN L b2 () Fm + 10, 9m) N (k[ (€2 —€3) /€1 cos )
m=1201 & (@ — k[ (€5 —€5) /€1 C0SO) Y+ (1, &) | X (11, ky/ (€2 —€3) /€1 cosh)
6.111)

The transmitted field H3(x, y) is obtained by taking the inverse Fourier transform

of w(a, y). While using equation (6.51), one gets

1 [k (a a
Hi(x,)) =5 / il *;(Z)((nz ) grib) gt gy (6.112)

<

Using the replacement of function y (2, @) and change of variables a = —k.j;cost,

x=pcosf and y = psinf, equation (6.112) takes the form

e—;keﬁ sint+ikes50 COs(Hg)d[_ (6.113)

1 [ R (—kecost)kygssin t
Hg(p,ng/ + (kejj cos D kg
@

1+mn,sint

The integral in equation (6.113) can be evaluated asymptotically through the sad-

dle point technique. Here, saddle point occurs at ¢ = 27 — 6. Taking into account
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equation (6.92), the transmitted field takes the form:

(6% _ 6%)/61 sinHelkp‘ [(€3—€3) ey = —1kby/(€2—€3) /€1 sinB
V2mkp(1—mn,sinf)
JV_S(k\/ (6% —6‘%)/61 cosf) oo L CosLmeVf(Um)(pm + 1)

. y . (6.114)
-1,k /(€2 = €2) €1 cos §) m=12VmUm = Kejj COSO) )+ (02, V)

H(p,0) =-

6.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we evaluate the numerical results for various physical param-

eters of interest. It is obvious to see that the diffracted and transmitted fields

represented by the equations (6.111) and (6.114) contain infinite series. Fig. (6.2)

shows the variation of the modulus of the diffracted field versus the truncation
number "N". It is observed that the effect of the truncation number is negligible
for N = 100. Hence, the infinite system of algebraic equations in equation (6.101)
can be managed to deal as finite. Fig. (6.3) deals with variation of modulus of the
transmitted field with respect to truncation number N and the result is obtained
that the effect of the truncation number is negligible for N = 80. Fig. (6.4) depicts
the variation in the diffracted field versus impedance n,. It is apparent that the
diffracted field decreases with increasing of surface impedance n;. Whereas Figs.
(6.5) and (6.6) show variation in the diffracted field versus the cold plasma per-
mittivity values €; and e, respectively. It is interesting to note that the diffracted
tield highly decreases by increasing €; but slightly increases with increasing €.
Also Fig. (6.7) explores the effect of surface impedance over the transmitted field.
It is observed that the transmitted field also decreases with increasing 7,. The ef-
fect of cold plasma permittivity values €; and €, over the transmitted are shown
in Figs. (6.8) and (6.9), respectively. It is observed here that the transmitted field
highly decreases while increasing €; whereas it increases slightly by increasing

€2. In other words the diffracted and transmitted fields amplitude decreases with
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increasing ion number density in cold plasma or by decreasing plasma frequency.
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FIGURE 6.2. Variation in the diffracted field amplitude versus "N” at k =5, 6y = 45°, 6 = 90°,

n1 =0.2¢,

€1=0.8,€,=0.1, b=0.2A.
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FIGURE 6.3. Variation in the transmitted field amplitude versus "N” at k=5, 0y = 45°, 0 = 90°,

N5 = 0.4¢,

€1 = 0.5, €y = 0.1, b=0.2A.
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FIGURE 6.4. Variation in the diffracted field amplitude versus "0," at 0y = 45°, k=5, €; = 0.8,
€2=0.1and b=0.2A.
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FIGURE 6.5. Variation in the diffracted field amplitude versus "e," at k=5, 0y = 45°, 71 = 0.21,
€2=0.1and b=0.2A.
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FIGURE 6.6. Variation in the diffracted field amplitude versus "e;" at k=5, 0y = 45°, 11 = 0.2,
€1 =0.8and b=0.2A.
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FIGURE 6.7. Variation in the transmitted field amplitude versus "n," at k=5, 6y = 45°, €; =
0.8, €2 =0.1 and b=0.2A.
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CONCLUSION AND PERSPECTIVES

CHAPTER

The study of plasma in wave scattering problems have been of significant inter-
est in recent years due to a variety of associated applications in diverse domains.
The particular application includes, the construction of antennas, communica-
tion between the vehicles and earth station, radio communication etc. We have
investigated theoretically the effectiveness of ionosphere plasma, earth’s mag-
netic field, structure and nature of the body material used as an artificial satel-
lite. For analysis purpose the whole system was supposed to be immersed in a
cold plasma. The underlying model problems present that how a particular class
of boundary-valued problems related to wave scattering in cold plasma may be
solved by using different semi-analytic techniques. The solutions to the prob-
lems have been focused using Wiener-Hopf technique together with the Mode-
Matching technique.

In a first attempt, the model problem describing the effect of cold plasma on
scattering of E-polarized plane wave by step discontinuity has been considered.
For this purpose the Helmholtz equation in cold plasma has been retrieved from
Maxwell’s equations in the canonical problem. Then with the help of Fourier
transform followed by the Wiener-Hopf technique the diffracted field expression
was obtained successfully. It is concluded that the effect of the truncation num-

ber is negligible after 15 truncation term. Moreover the diffracted field amplitude
115
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increases with the length of vertical plate. The analysis has also been performed
for other parameters of interest such as incident angle and surface impedances.
It is depicted that the amplitude of diffracted field increases while increasing the
permittivity value €;. In other words amplitude increases by either decreasing
electron number density (plasma frequency) or by increasing ion number den-
sity. Whereas in contrast to €; the amplitude of diffracted field decreases with
increase of the permittivity value €. It has been noted that the diffracted field is
greatly effected due to permittivity value €; as compared with that of permittiv-
ity value e,. Moreover the results in the absence of cold plasma can be computed
while taking e; =1 and e, = 0 With this we may conclude that the existing model
with out cold plasma’s effects can be reduced from this model. This analysis has
been carried out in Chapter (3).

Further, we have studied the effect of cold plasma permittivity by an impedance
loaded parallel-plate waveguide. From the computed results it has been ob-
served that diffracted field is mostly affected by varying the plate separations,
whereas the variation of impedances 1, and n3 have negligibly small effects on
the obtained diffracted field. These results are much consistent with that of al-
ready existing results in literature, for example [12]. Moreover the diffracted field
amplitude decreases with increasing the permittivity values €; and e,. Again the
diffracted field is generally affected due to permittivity value e; than that of ;.
In this case the truncated parameter takes higher value in order to get appropri-
ate results. These observations are related to Chapter (4) of this dissertation.

The effect of cold plasma permittivity on the radiation of the dominant TEM-
wave by an impedance loaded parallel plate has been examined in Chapter (5).
For the reason, the waveguide radiator with impedance loaded parallel-plate
is considered. The Wiener-Hopf technique enables to obtain the radiated field
while computing the unknown complex coefficients with the help of Mode-Matching

technique. It has been concluded that the radiated field amplitude had impres-
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sive variation against all physical parameters such as plate separation b, surface
impedances 711, 12, n3 and 74 and permittivity values €; and e, for both reac-
tive and capacitive cases. Moreover the radiated field amplitude for both cases
(Reactive and Capacitive) decreases with the increasing of permittivity values
€1 and e,. Likewise diffracted field, the radiated field has largely been affected
due to permittivity value € instead of €,. Further the amplitude of radiated field
is effected drastically in the presence of an ionosphere plasma medium. This
observation can be depicted while ignoring the effect of cold plasma in the ex-
pression obtained for radiated field. It has also been observed throughout that
the radiated field showed impedance dependant variations. These variations are
actually related to the magnetic and electric susceptibilities of the waveguide
surfaces. We conclude that these results can be used to improve the radiated sig-
nal quality transmitted by an artificial satellite in the ionosphere.

Finally, we have examined diffracted and transmitted fields due to an impedance
loaded waveguide located in cold plasma. The ultimate objective was to study
the effect of cold plasma permittivity on the diffracted and transmitted fields.
Again hybrid methods such as Wiener-Hopf technique and Mode-Matching tech-
nique were opted to get the desired expressions of diffracted and transmitted
tields. It is worthwhile to comment that up to 100 number of truncation terms are
needed to achieve the better accuracy of the obtained solution. By this we can say
that whilst computing diffracted and transmitted field one requires higher num-
ber of truncated terms as compared to problem of diffraction and radiation. The
diffracted and transmitted fields have similar behavior (inverse proportionality)
for both impedance parameters n; and 7,. A similar proportionality is observed
when diffracted and transmitted fields were observed with respect to both per-
mittivity values €; and €.

In addition, while solving field problems, there are mainly three types of tech-

niques: experimental, analytical, and numerical. Experiments are expensive,
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time consuming, and usually do not allow much flexibility in parameter vari-
ation. However analytical and numerical methods are much flexible. Numerical
methods have become popular with the development of the computing capabil-
ities, and although they give approximate solutions, have sufficient accuracy for
engineering purposes. But as a particular choice in this thesis we have preferred
analytical methods over numerical methods. As an argument we seek that the
implication of numerical techniques restrict such models up to low frequency
regime whereas the analytical /hybrid methods used here in do not have limita-
tions for a specific range of frequency problems. So we have a preference to use
hybrid methods which operate well for both low frequency problems as well as

high frequency problems.

7.1 FUTURE DIRECTIONS AND OPEN QUESTIONS

The analysis to the proposed problems related to the effect of cold plasma and
wave scattering requires further attention for more realistic models, for example,
by taking into account non-linear higher order boundaries, modeling different
physical edge conditions and computing related power expressions. Moreover,
in view of their application for acoustic scattering, underwater acoustics, struc-
tural acoustics, electromagnetic wave scattering, the low-frequency approxima-
tions need due attention. The problems of coupled wave scattering with cold
plasma effects finds many applications in a broad area of physics and engi-
neering. For the problems involving planar boundaries such as soft, rigid or
impedance, their solution can be obtained via standard Wiener-Hopf technique
In such cases the obtained eigenfunctions in terms of either reflected, transmitted
or radiated fields satisfy the usual orthogonal properties and required no more
complications. Also these eigenfunctions are linearly independent. It would be
of interest to consider more complicated boundary conditions on the faces of

waveguide. Therefore for non-planar boundaries (flexible), the eigenfunctions
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will no more be orthogonal as well as linearly independent. All such problems
will lead to in some form of infinite sum. Obviously calculating an infinite sum
is impractical (but still possible) but mathematical solutions will require higher
order of accuracy. The demonstration of such an application of plasma physics
and wave scattering will determine that how a particular class of model prob-
lems may be solved. The Wiener-Hopf technique will no longer exist to yield
solution of these problems. Of course, for such type of problems, one have to
develop appropriate orthogonality relations instead of usual ones. After that
the matched eigenfunctions expansion may lead to the solution of problem. The
eigenfunctions expansion with dependant sums will require the use of some ex-
tra conditions. Therefore some extra conditions in terms of edge conditions will
be necessary to use. Otherwise the uniqueness and the convergence of the mod-
eled problems will be questionable. The overall process will be the blend of
analytic as well as numerical approaches. Further, while obtaining expressions
for the power transferred through the boundaries as well as fluid would be an
interesting and realistic choice. The present model could be extended to afore-
mentioned studies with the help of some related investigations, refer for instance

to [92,93] 194,95, 96].
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ABSTRACT

A number of diffraction problems having a practical application in science and
engineering can be solved through Wiener-Hopf and Mode Matching techniques.
Whilst using these techniques, this dissertation addresses a class of boundary-
value problems related to the effect of cold plasma and wave scattering. These
problems find applications in a broad area of physics and engineering. The envis-
aged mathematical model is governed by the Helmholtz equation in cold plasma
along with soft, hard and impedance boundary conditions. The diffracted, scat-
tered, transmitted and radiated fields are obtained for waveguide structures lo-
cated in cold plasma. The numerical analysis is made in its factual perspective by
using different material properties of the waveguide. It is revealed that the am-
plitude of obtained field is affected drastically in the presence of an ionosphere
plasma medium. Likewise it is observed that the field showed impedance de-
pendent variations that are actually related to the magnetic and electric suscepti-
bilities of the waveguide surfaces. We conclude that such types of results can be
used to improve the radiated signal quality transmitted by an artificial satellite

in the ionosphere.
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INTRODUCTION

CHAPTER

1.1 MOTIVATION

The problems involving wave scattering in cold plasma have been of great inter-
est to scientists and engineers. The study of the propagation of electromagnetic
(EM) waves through the earth’s ionosphere is of deep interest and importance
providing with a natural mean of radio communication [1, 2, 3]. Ionosphere
consists of ions and electrons formed by solar photo-ionization and soft x-ray
radiation [4]. Such ions and electrons, of course, form weak neutral plasma
and hence, the physics of ionosphere can be coined in terms of plasma physics.
Earth’s ionosphere has been divided into four broad regions, namely, D, E, F, and
topside regions. For radio communications the region of interest is F-region lying
above the height of 150 km. The F-region contains an important reflecting layer
for communication signals arriving from an earth station. However, ionosphere
consists of electrons, ions and neutrals, of course, it can be modeled as a medium
comprising of weak neutral plasma, hence, its physics can be grasped as plasma
physics. Since the ionosphere plasma is highly magnetized under earth’s mag-
netic field, therefore, it can be treated as an anisotropic medium. The ultraviolet
radiation which impinges on the earth’s atmosphere ionizes a fraction of neutral
atmosphere, resulting into a mixture of charged (electrons and ions) and neutral

particles. Since the collisions at altitudes above 80 km in the earth’s atmosphere
1
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are very rare, therefore, under such conditions the recombination rate of charged
species is very slow and hence, a permanent ionized medium occurs, which is
known as ionosphere.

The transmission, reflection, refraction, and diffraction of EM waves by iono-
sphere are the processes that can be understood via plasma physics. The iono-
sphere plasma also retains the equilibrium density of free electrons and ions
because of the balance between photo-ionization and various loss mechanisms.
However, the density of these electrons varies dramatically with altitude by the
effects of sunrise and sunset [5]. Moreover, the ionosphere plasma is magne-
tized by the earth’s magnetic field that forms the plasma to be as an anisotropic
medium. The measurements based upon the artificial satellites immerse in the
ionosphere plasma may be affected due to the interaction of communicating EM
signals that are used for communication between the spacecraft and earth sta-
tion. It is well known that the communicating signal radiated by the satellite
may modify due to its interaction with the ionosphere plasma and due to the
nature of body material (electric and magnetic susceptibilities or impedance) of
waveguide used to guide the EM signal (radiated from the vehicle) to the earth
station [6, 7]. With this the measurements based upon artificial satellite present in
ionosphere communicating to an earth station may be affected drastically. The
geometry and material used in complex body structure of an artificial satellite
can also change the quality of an EM signal. It is understood that electric and
magnetic susceptibilities of a material are related to permittivity and permeabil-
ity parameters. Moreover, the characteristic impedance and speed of EM wave
depend on any medium where detailed information of any medium is obtained
by its refractive index.

The present work is based upon a theoretical model to investigate the effective-
ness of the ionosphere plasma, earth’s magnetic field, structure and nature of the

body material (electric and magnetic susceptibilities or impedance) of an artifi-
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cial satellite on an EM signal transmitting through the ionosphere. It is pertinent
to mention that in order to model ionosphere plasma the whole system is sup-
posed to be immersed in a cold plasma. The modeled problem have been com-
bined to have a well known Helmholtz equation which is solved for the specified
boundary conditions by employing Wiener-Hopf technique [8, 9]. Here, we have
employed the magnetoionic theory that deals with the cold anisotropic plasma
which is considered in this model. The temperature and pressure of plasma
species (ions and electrons) are usually small and hence, are neglected. Under
these circumstances such a plasma is treated as cold plasma. Sahin et al. [10]
investigated tbe diffraction phenomenon in cold plasma. Yener and Serbest [11]
also explored the diffraction of plane waves by an ini)edance loaded half-plane
in cold plasma. Cinar and Biiyiikaksoy [12] studied the difraction of the plane
waves by an impedance loaded parallel-plate waveguide in the absence of cold
plasma.

Keeping in view the aforementioned background, this thesis concerns largely
with the effect of cold plasma permittivity on the scattering process of waveguide
structures. This study is important mainly due to the worthwhile applications of

scattering phenomena in structural design antennas and aircrafts.

1.2 STATE OF THE ART

This documents is mainly concerned about the wave scattering processes in
the waveguide structure in the presence of cold plasma. Being fourth state of
matter and larger part of universe the study of plasma is quite relevant and
significant. The plasma contains a certain portion of free electrons whereas the
atoms are partly ionized. The presence of negative and positive carriers of charge
makes plasma electrically conductive and distinguishes it from gaseous state.
The plasma that contains a very small part (approximately one percent) of the

ionized particles is termed as cold (non-thermal) plasma. The cold plasma is
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generated in a high-voltage electric field and the velocity of electron is strongly
dependent to the temperature up to a thousand degrees of Celsius. Whilst their
effect on the plasma temperature is low and final plasma temperature is close
to the outward temperature. To quantify the results arising due to the effec-
tiveness of ionosphere plasma, earth’s magnetic field, structure and nature of
body material of the radiator on the EM signal communicating to earth station
propagating through ionosphere, a theoretical model has been devised. Lau and
Biggs [13] is examined the effects of cold plasma on electron layer immersed in
a cold background plasma. The mutual actions between guided electromagnetic
waves and cold plasma in the presence of a static magnetic field were studied
by Buchsbaum et al. [14]. Bardos and Barankova [15] examined the relation be-
tween a new type of radio frequency and cold plasma. Janis [16] developed a
variational formulation for thiimpedances loaded antenna immersed in cold
plasma. Tyukhtin [17] studied the diffraction of plane electromagnetic waves by
a half-plane immersed in a parallel flow of cold plasma. Ikiz and Karoomerli-
oglu [18] investigated diffraction phenomenon by considering two impedances
wedge in cold plasma.

In continuation to second part of this work, the wave scattering is a physical phe-
nomenon in which waves are constrained to depart from the route in the medium
through which they move. Mathematical analysis of scattering was the focus of
attention for many researchers and scientists, for example [19, 20, 21]. The study
was initiated by Ibn-al-Haitam in 10th century AD who computed the asymp-
totic field for diffraction of the wedge and arose the wave propagation theory
referred as Poincare [22]. Sommerfeld [23] discussed the exact solution of diffrac-
tion from a plate by using the physical method of images on Reimann surfaces.
Carslaw [24] utilized the parabolic coordinates and the results obtained by him
were the same as achieved by Sommerfeld [23]. Levine and Schwinger [25, 26]

used the integral equation in problem of diffraction followed by some related
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studies containing the Wiener-Hopf type integral equations. Copson [27] studied
the diffraction from a plane screen in the form of integral equation whose solu-
tion was obtained by Wiener-Hopf technique. Interestingly the obtained solution
was consistent with the Summerfeld’s problem [23]. It is worthwhile to comment
that Copson [27] was the first one who used Wiener-Hopf technique to solve the
problem of sound. The key feature of obtaining the solution via Wiener-Hopf
technique is the kernel factorization. This factorization splits the function into a
sum or product of two functions where one function is regular in the upper half-
plane while the other in the lower half-plane. The detailed description regarding
the kernel factorization can be found in [28, 29, 30, 31]. Sometime kernel factor-
ization becomes very difficult and in such cases some alternative techniques are
opted to get desired results. Bates and Mittra [32] have employed an integral
representation for the factorization of a scalar function. Wiener-Hopf is a useful
tool to handle two or three dimensional diffraction problems [33, 34, 35].

It is renowned that the problem having a geometry of planer boundaries with a
sudden change in material properties of boundaries may lead to the solution by
Wiener-Hopf technique [36, 37, 38, 39]. Biiyiikaksoy and Birbir [40, 41] consid-
ered the diffraction of E-polarized plane wave by the reactive step and radiation
phenomenon that radiates from an impedance loaded parallel-plate waveguide
radiator. Topsakal et.al. [42] used the Wiener-hopf technique to solve the prob-
lem of scattering of electromagnetic waves by a rectangular impedance cylinder.
Cinar and Biiyiikoksoy [43] used the Wiener-Hopf technique for the problem of
diffraction by a thick impedance half-plane with different end faces impedance.
The diffraction by a rigid barrier with a soft or perfectly absorbent end face with
Wiener-Hopf technique was studied by Mclver and Rawlins [44]. Rienstra [45]
applied the Wiener-Hopf technique for the problem of sound radiation from
semi-infinite duct. The solution to the sound radiation problem using Wiener-

Hopf technique was due to Hassan and Rawlins [46]. Furthermore, the said
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technique was successively used by Ayub et al [47, 48, 49, 50] and Nawaz et
al. [51, 52, 53, 54] in their recent studies. A brief historical view of Wiener-Hopf
technique was given by Lawrie and Abrahams [55]. As mentioned earlier that
Wiener-Hopf technique is not always considered to be the easy task when kernel
factor becomes complicated. Therefore, a hybrid method has recently been in-
troduced to solve such complicated problems while bypassing the most difficult
process of the matrix Wiener-Hopf factorization. This hybrid method is combina-
tion of Wiener-Hopf and Mode-Matching techniques that reduces the boundary-
valued problem in terms of a modified Wiener-Hopf equation with second kind.
The solution obtained from hybrid method contains an eigenfunction expansion
of unknown complex ccifﬁcients. The expressions for these unknown coeffi-
cients are obtained as a system of infinite linear algebraic equations. Through
a numerical procedure, this system can be solved approximately. This method
was adopted to solve the E-polarized plane wave diffraction and radiation phe-
nomenon in a waveguide by Biiyiikaksoy and Birbir [41]. Such methods were
initially developed to tackle the problems governed by Helmholtz equation and
waveguide boundaries described by Neumann (Rigid), Dirichlet (Soft) or Robin
(Mixed) conditions. The solution of these problems contains the eigenfunction
expansion. Ikiz et al. [56] used the name numerical-analytical method instead of
hybrid method. The main objective of using this method is to modify the ana-
lytical methods which works well at high frequencies while numerical method
works well at low frequencies.

Also the diffraction phenomenon was studied in a bifurcated waveguide using
a dominant mode wave incident on a soft-hard half-plane amidst an infinite
parallel-plate with hard boundary by Biiyiikaksoy and Polot [57]. Transmission
and reflection coefficients are acquired in a bifurcated waveguide by Rawlin [58].
Pace and Mithra [59] studied the problem involving a trifurcated parallel-plate

waveguide with an arbitrary spacing between the plates. Jones [60] considered
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the waves scattering from the waveguide containing three semi-infinite parallel
soft and equidistant plates. Asgher etal. [61] extended the Jones’ problem [60] for
point and line source scattering. Rawlin [62] also studied the radiation of a sur-
face wave mode propagating in a semi-infinite cylindrical waveguide. Hassan
and Rawlin [63] solved the problem of sound radiation from a waveguide (Semi-
infinite duct) placed symmetrically within an infinite duct. Later on the radiation
phenomenon was studied in a trifurcated parallel-plate waveguide by Rawlin
and Hassan [64]. Morse and Feshbach [65] considered the problem of scattering
in a perfectly conducting and an impedance loaded parallel-plate waveguide
having the same impedances on lower and upper faces of the plates. Later on
Johansen [66] considered the same geometry for different surface impedances
using a coupled system of modified Wiener-Hopf equations. Biiyiikaksoy et
al. [67] and Idemen [68] uncoupled the coupled system of modified Wiener-Hopf
equations by using the week factorization method and obtained the exact solu-
tions of the vector Wiener-Hopf equations. Abrahams [69] introduced a "pole
removal technique” to uncouple the coupled system of modified Wiener-Hopf
equations. This technique can be seen in some classical articles, to mention a

few [70, 71, 72, 73].

1.3 AVANT GARDE

The main aspiration of this dissertation is to investigate that how a particular
class of structural problems related to wave scattering may be solved while using
different semi-analytic techniques. In particular when a cold plasma is immersed
in the waveguide structure would be the topic of interest. Broadly speaking the
present work can be seen as a continuation of ongoing studies, refer for instance
to [1, 6, 10, 12]. The major part of this research is carried out in the following

perspective:
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(1) The derivation of governing Helmholtz equation in cold plasma from the

well-known Maxwell equations.

(2) Inclusion of cold plasma permittivity values €; and ¢; in the given model.

(3) The use of Wiener-Hopf technique together with the Mode-Matching tech-

nique in order to yield a larger part of solutions to above model.

(4) The mathematical and numerical study related to the effect of cold plasma

on scattering of E-polarized plane wave by step discontinuity.

(5) The discussion concerning the effect of cold plasma permittivity due to

impedance loaded parallel-plate waveguide located in cold plasma.

(6) The consideration of radiation problem with an impedance loaded parallel-

plate waveguide radiator.

(7) The study of problems involving the diffracted and transmitted fields.

(8) The graphical behavior of diffracted, transmitted and radiated field versus

different physical parameters of our choice.

(9) In fact the major contribution towards the development of present study is
to quantify the effects of ionosphere plasma on the communicating signals
between earth station and an artificial satellite in the earth’s atmosphere. In
the process the standard Wiener-Hopf and somehow Mode-matching tech-
niques are used to find appropriate solutions for such models. In fact the
Wiener-Hopf technique with Mode Matching technique is used to show the
effect of cold plasma permittivity in different waveguide structures. Briefly
saying the Wiener-Hopf analysis and the effect of cold plasma permittivity

in a waveguide are the major focus for this thesis.
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1.4 DISSERTATION CATALOG

This thesis is summarized in the order below.

CHAPTER (2) begins with the review of generalized form of boundary-valued
problems in cold plasma. As mentioned earlier this thesis is concerned mostly
with the effect of cold plasma permittivity and scattering of waves in a waveg-
uide structure. For this purpose, it contains some basic definitions and mathe-
matical preliminaries which will be utilized in the succeeding chapters. A canon-
ical problem is modeled in cold plasma and solved while using a modified Wiener-
Hopf technique.

CHAPTER (3) consists of impedances loaded step problem in cold plasma. Here, a
waveguide is designed in cold plasma containing by a two separated half-planes
with different surface impedances and afterwards these half-planes were joined
vertically by a hard step. Typically such kind of geometries can be used in con-
structing antennas. The contents of this chapter has already been submitted to
the Journal of Waves in Random and Complex Media for possible i.lblication.
aﬂ CHAPTER (4), the effect of cold plasma permittivity is analyzed on E-polarized
plane wave diffraction by an impedance loaded parallel-plate waveguide in cold
plasma. Also the effect of different parameters such as surface impedance and
plate separation is observed. The model problem is solved by hybrid method i.e.,
Mode-Matching technique in conjunction with Fourier transform. These type of
geometries in the ionosphere (plasma) are important in communication between
the vehicles and the earth station. The contents of this chapter have been pub-
lished in Physica Scripta, 89(8): Paper ID. e095207, (2014).

CHAPTER (5) deals with radiation phenomenon where an impedance loaded
parallel-plate waveguide radiator in cold plasma is considered. This geome-
try is designed by a parallel plane and half-plane having all having different
faces different surface impedances located in cold plasma. Here the effect of cold

plasma permittivity is investigated on the radiation problem. The contents of
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Chapter (5) are published in Mathematical Methods in the Applied Sciences,
DOI:10.1002/ mma.3464.

CHAPTER (6) investigates the diffracted and transmitted fields from a waveguide
located in cold plasma. The geometry of the problem is designed from the three
half-planes where one half-plane is located between the other two in opposite
direction. The surface material properties of the half-planes are characterized ei-
ther by soft (Dirichlet type), hard (Neumann type) or impedances (Robin type).
The solution to the underline problem is obtained with the help of hybrid method
that reduces the boundary-valued problem to the modified Wiener-Hopf equa-
tion. This investigation has already been submitted to New Journal of Physics

for possible publication.
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CHAPTER

This chapter contains some of the mathematical preliminaries and compact re-
views of the techniques which will be used in the subsequent chapters. These
consist of Fourier transform [74], Wiener-Hopf technique [8, 57], Maliuzhinetz's
function [75, 76, 77, 78, 79, 80] and Helmholtz equation in cold plasma [81]. Cer-

tainly these preliminaries will help to successful completion of thesis document.

2.1 ANALYTICAL PROPERTIES OF THE FOURIER TRANS-

FORM

The Fourier transform is a useful technique and plays an important role in solv-
ing a partial differential equation. This technique is applicable for the majority of
the problem whether their domain is finite or infinite. Consider a function h(x)

defined for x € (—oo,00). Then h(x) can be written in the form as under

h(x)=h,(x)+h_(x), (2.1)
where
hix) x=0
he(x)= (2.2)
0 x<0,

11
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and

hix) x<0
h-(x) = (2.3)
0 x = 0.

H(a) represents the Fourier transform of h(x) which is defined as under

H(a}=$_{oh(xle’”dx, (2.4)

where the integral in the above expression exists and h(x) is bounded for all x in

the given domain. Use of equations (2.2) and (2.3) in equation (2.4) gives
1 (% ]
H(a) = —f [h_(x)+ he(x)] "™ dx. 25
Var b

After simplification, equation (2.5) takes the form

0 o
1 ' 1
Hia)=— | h_(x e’“"dx+—fh xe'"dx, 2.6
(a) ‘/ﬁ_jc; (x) o / +(x) (2.6)
that is
H(a)= H_(a)+ H, (a), (2.7)
where
; 0
H_(a) :—/sz{x]e'“""dx. 2.8
Var)_ (28)
and o
1
Hila)= — [ hiix)e**dx. 29
(@) V,z_n{ i 29)

The analytic properties of H(a) are the properties of H_(a) and H.(a). Initially,
consider the properties of H, (a) as follow:

If the function h,(x) is of exponential order, i.e.,

|he(x)| < Me™* as x—oo, (2.10)
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then the function H,(a) is a regular function of the complex variable @ = o +r

and H. (@) — 0 as |a| — oo in the domain Jm(a) > 7. . Perceiving that
Met-*'%% = pgelT-—7)¥ glox (2.11)

is bounded if 7 > 7_. Now taking the inverse Fourier transform of H,(a), one
obtains

he) = —= { Hi(@e " da, (212)
where integration will be taken over any straight line in the region Jm(a) > 7-
and parallel to x—axis in the complex a—plane.

Now for the problem considered in this thesis, the strip of the analyticity can be
calculated by considering the following cases.

(i) For 7_ < 0 the function h,(x) decreases, the domain of the analyticity of h,(x)
contains the real axis and equation (2.12) will be integrated along the positive
real axis.

(ii) For 7_ > 0 the function h.(x) increases but not faster than the exponential
function with linear exponent, the domain of the analyticity of h.(x) lies above
the real axis of the complex a—plane and equation (2.12) will be integrated above
the positive real axis.

Now consider the function h_ (x) satisfies the exponential order condition, so one

can write
lho(x)| < Me™* as x— oo, (2.13)
H_(a)= /h_(x]e‘“dx (2.14)
0

is regular in the lower half plane Jm(a) <7,.
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Now taking into account the inverse Fourier transform of H_(a) gives
=]
1 )
h-(x) = — [H_ ale"‘da, 215
( @.0 (a) (2.15)

for T, > 0 the domain of analyticity of H_(a) contains the negative real axis and
for 74 <0, is below the negative real axis. Hence equation (2.15) is analytic in

region - <Jm(a) < 7. as shown in Fig. (2.1)

T (ex)
A

o — plane

= Rela)

FIGURE 2.1. Strip of analyticity

2.2 WIENER-HOPF TECHNIQUE

Wiener-Hopf technique was introduced by N. Wiener and E. Hopf in 1931. Ini-

tially, this was used to solve singular integral equation of the form

o0

f) =¢p(x) + /K(x—ylf(yldy, 0<x<oo, (2.16)

[1]

where ¢(x) and K(x - y) are given known function while f(y) is unknown func-

tion to be calculated. This equation had arisengdn Hopt’s work on Milne-Schwarzschild

equation. This technique also reduces the problem of diffraction by a semi-
infinite plate to the solution of singular integral equation. All physical phe-

nomena are associated with ordinary or partial differential equations. These
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partial differential equations may be solved by using certain method depending
upon the geometry of the problem. The method of separation of variables is one
of these methods that fails for certain geometries such as semi-infinite regions,
waveguide structure with non planer boundaries etc. The detailed description

of the technique is mentioned below.

2.2.1 GENERAL SCHEME OF WIENER-HOPF TECHNIQUE

In this technique it is required to determined the unknown function F_(a) and
F.(a) of a complex variable @ occurring in the below Wiener-Hopf equation.
These functions are analytic in the half-planes Jm(a) < 7, and Jm(a) > 7_, re-

spectively, and approach to zero as |a| — oo, satisfying the functional equation

(@) Fy (a) + Bla)F-(a) +Ea) =0, (2.17)

in the region - < Jm(a) <7.. Here o/ (a) , 2(a) and € (a) are the known functions
regular in the strip 7_ <Jm(a) < 7. and «/(a) and Z8(a) are non- zero in the strip.
For the solution of the Wiener equation the main step is to replace

(a) _Pi(a)
Bla) P_(a)

(2.18)

where the functions P, (a) and P_(a) are non zero and regular, respectively, in
the half-planes Jm(a) > 7_ and Jm(a) <7, . On using equation (2.18) in equation

(2.17), one can write

PP+ PR s Pt <. (2.19)
S8 (a)
The last term of the equation (2.19) can be decomposed as
P_(a) @ = Ki(a) + K_(a), (2.20)

T B()
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where the functions K, (a) and K_(a) are analytic in the half-planes Jm(a) > 7_

and Jm(a) < 7_, respectively. In the strip the following equation holds true
Pi(a)Fs(a) + Ky (a) = —P_(a)F_(a) — K_(a) = S(a). (2.21)

The above equation is valid in the strip 7_ < Jm(a) < 7. The left-hand side of
the equation (2.21) is regular in the half-plane Jm(a) > 7~ while the right—hild
side of the equation (2.21) is regular in the half-plane Jm(a) < r,. Hence by the

analytic continuation principal one can define S(a) over the complex a — plane.

Let us suppose that

| Py () Fy (o) + Ky (a)| < |a|” as a — oo, Im(a) >71_ (2.22)
and

[P_(a)F-(a)+ K_(a)| < |a|Tas a—oco, Im(a) <T,. (2.23)

Then on using the extended Liouvillle’s theorem which states that "If S(a) is an
integral function such that |S(a)| < M|a|” as @ — oo where M and p are constant
then S(a) is a polynomial of degree less than or equal to [p| where [p] is the
integral part of p." Here, S(a) represents a polynomial P(a) whose degree is less

than or equal to the integral part of (p,q) i.e.,

_ Pla)-Ky(a)
Fle)= Py (a) (224)
and
. _ —Pla)-K_(a)
E_(a)= _P_{a} : (2.25)

The above equations determine F,(a) and F_(a) in term of P(a). Thus, the rep-
resentation of equations (2.24) and (2.25) form a base to use the Wiener-Hopf

technique. It is important to annotate that factorization of function expressed
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in equation (2.18) and decomposition of function expressed in equation (2.20)
is possible under certain conditions. The possibility of these representations is

guaranteed by the following theorems.

2.3 ADDITIVE DECOMPOSITION THEOREM

Statement:

Let F(a) be a regular function in the region 7_ < Jm(a) < 7+ and F(a) — 0 uni-
formly in the given region as |a| — oo, then F(a) can be decomposed in the given
region as under

![a:] = F_(a) + Fy(a), (2.26)

where Fi(a) and F_(a) are regular functions in the region Jm(a) > 7- and Jm(a) <
1., respectively.

Proof:

Consider a rectangle P, P2P3P4 bounded by the lines Jm(a) = 1_ , Jm(a) = 7/, ,
Re(a) = T and Re(a) = - T containing an arbitrary complex number a = o +t7 and
lying in the given strip such that 7_ < 1. < Jm(a) < 7_ < 7. as shown in the Fig.

(2.2).

Frne (o)

FIGURE 2.2. Contour of integration
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According to Cauchy’s integral formula, one can write

T+’ T+it!,
N S N (W U 1)
Ha]_Em f (—adc+2m C—adf
—T+it” T+t

=T+, =T#7"

1[0 1 [ f©
+2m [ (—adc+2m / f_adf. (2.27)

T+t =T+’

On taking the limit T — oo, the second and fourth integrals on the right-hand

side of equations (2.27) will tend to zero and hence equations (2.27) will take the

form
Fla)= F_(a) + Fy (@), (2.28)
where :
oO+IT,
__r Fit9)
F (o) = S, f = ad(‘ (2.29)
—oaHiT,
and f
OOHIT
_L [ ©
Fila) = e / f,’—o:d(' (2.30)

. —oo+HiT!

Fi(a) and F_(a) are regular functions in upper @ — plane Jm(a) > 7~ and in lower
a—plane Jm(a) < 1., respectively. The arbitrary complex number a = o +17 does

not lie on the contour of integration.

2.4 MULTIPLICATIVE DECOMPOSITION THEOREM

Statement:

Let W(a) be a non zero and regular function in the strip 7- < Jm(a) < 7, and
W(a) — 0 uniformly as |a| — co in the strip. Then ¥ (a) can be factorized in the
given strip as

Y(a)=V_(a)¥.(a), (2.31)
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where the functions ¥, (@) and ¥_(a) are non-zero and regular in the half-planes
Jm(a) >7- and Im(a) < 1, , respectively.
Proof:
Let
Fla) =log¥(a), (2.32)

which satisfies all the condition of additive decomposition theorem. Thus, F(a)

can be expressed as

!(a]: F_(@) + Fy(a), (2.33)
where
Fila) =log¥.(a) (2.34)
and
,_[a] =log¥_(a). (2.35)

Substituting the equations (2.32), (2.34) and (2.35) in equation (2.33) gives
log'¥(a)=log¥ . .(a)+log¥_(a). (2.36)
After simplification equation (2.36) takes the form

Yia)=Y¥i(a)¥_(a). (2.37)

2.5 MALIUZHINETZ’S FUNCTION

Maliuzhinetz function plays a nobel role in the study of diffraction theory by an
impedances half planes. The function denoted by .#,(z) and defined as

) C
1 [:rrsin r—2\/§sin% +2td

8n

Alx(2) = exp t, (2.38)

cost

0
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known as Maliuzhinetz’s function introduced by Maliuzhinetz. Volakis and Se-
nior [82] expressed the Maliuzhinetz’s function for small and large complex ar-

guments. For small arguments,
M (2) =1-bz%+0(zY), (2.39)

where b = (1 + 2 — /2). The small complex arguments approximation of Mali-
16 7 P g PP

uzhinetz’s function is, therefore,
Az (2) = 1-0.0139003882°. (2.40)

If Jm(z) >> 0, then

1

2

A (2) = 1.05302 Im(z) > 8. (2.41)

il
—(z-1tln2
cosé(z tIn2)

Equations (2.40) and (2.41) must be valid within the strip 0 < z < 7. For the re-
maining values of Re(z) the .4, (z) relates to its value at the corresponding point

within the strip
2 cus(j— - %]

n

M (Z) = Mz (-2) (2.43)
and

My (2) = M (2), (244)

where bar complex conjugate. Maliuzhinetz’s function is an even regular func-

tion of a complex variable z.
2.6 HELMHOLTZ EQUATION IN COLD PLASMA

In order to have a mathematical model for the problems in the subsequent chap-

ters, we first derive the Helmholtz equation in cold plasma. For the reasons Fel-
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son and Marcuvits [81] defined the tensor of dielectric permittivity for the cold
plasma and expressed the electric field component in term of the magnetic field
H:(x,y) by using the Maxwell’s equations along with tensor of dielectric permit-
tivity for the cold plasma as under:

The tensor of dielectric permittivity for the cold plasma is defined as

€= L€ €1 0., (2*45)
0 0 e
with
_ wWp\? we)2] ™!
£|—1—[?] 1—[5) : (2.46)
wpllew w1
ezz[—’] = ke (2.47)
W Wy W
and
2
52:1—[ﬁ] , (2.48)
il
where
. N.e*
Wy = e (249)
and
— |€|H[1de (2 50)
# m )

Here, e, N, m, w, w., w, and Hy, represent the electric charge, electron density,
electron mass, operating, cyclotron, plasma frequencies and magnitude of the dc
magnetic field vector, respectively.

The electric field component in term of the magnetic field are as follow

€] 0B, €2 dB.

Byzemrm—— ———
g we.](ef—f:%j dy wm(e%—eg] ox

(251)




CHAPTER 2

B dB,
e | E (2.52)

E‘J =—_— + . T .
weg(e —€3) 0y weoled —€3) Ox

¥

It is known that Maxwell’s equations are valid in plasma so, one can write

vxE=12% (2.53)
= = —— -
c2art’
where
E=Eyi+E,j+Ek and B=Byi+Byj+B:k. (2.54)

Thus, using equations (2.51) and (2.52) in equation (2.53), one obtains the required

Helmholtz’s equation in cold plasma as follow

o* i
o2 Helo P+ 55 Holx ) + kg Hel, ) = 0, (2.55)
with
- . 62 s 62
ki =k (——2), k=wyEofto and B, =e ' H.(x,)). (2.56)
1

where the time dependence is assumed to be e™*! and k5 depends on k, €; and
€2,

2.7 CANONICAL PROBLEM IN COLD PLASMA

In this section we consider a prototype problem arising in cold plasma that con-
cerned with wave scattering in waveguide designed by three semi-infinite plates.
The material properties of these plates are impedance, rigid and soft. The rigid
plate is defined in term of Neumann boundary condition whereas the soft plat
are defined in term of Dirichlet condition. The Winer-Hopf technique along with
Mode-Matching technique is used to obtain the approximate solution.

2.7.1 MATHEMATICAL MODEL OF THE PROBLEM

Here, we consider the scattering of a plane wave which is incident with angle 8,

in the waveguide region in cold plasma formed by two half-planes §; define by
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flx,y,2)] x€ [—oi(]), y=b, z€ (—o00,00)} and Sz defined by {(x,y,2)| x€(0,00), y =
0, z € (—oo,00)}. The characteristic properties of the upper face of half-plane 5, is
characterized by surface impedance Z and the upper face of the half-plane S, is
rigid. These two planes are combined by a soft vertical step of hight b as shown

in Fig. (2.3):

__________

_saetg i
L - ’ Cold Plasma Hine(z ) - "
"‘ {1 b
- ' by
’ * )
i : LY
¢ 7 (Impedance) (0:b) Ak 1
' i ]
' '
% Lg s
\\ a f’
. 20 N (Rigid) .
R
=~ (00 e

_____________

FIGURE 2.3. The physical configuration of the waveguide structure in cold plasma

The total field takes the form as under

H! (x,) + HI"(x, y) + H. (x, ), € (b,00)
Hap={ ‘I > W | YERS T sy

Hix, D, yel(a,b)

where Hg"c(x, y) and Hff (x, y) stand for incident and reflected field, respectively,

given by
H;'nr(x’ }’J = e—:k(ﬁ{xmsﬂn+ysinﬂg} (2.58)
and
ref = 1= nsinﬂu —tkesilxcosty—(y—2b)sinfy)
H, " (o) = TG e (2.59)

and {H] ( Jj =1,2)} satisfying the Helmholtz equation in cold plasma

2 a2
2 a—+k2

T2 + 302+ Koy [Hle )] =0 (2.60)
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with the following corresponding boundary conditions along with the continuity

relations
[1 +i]H§(x,b) =0, x € (~00,0), (2.61)
ks
iﬁzu 0)=0 x € (0,00) (2.62)
ay z ] =\ e #
H2(0,)) =0, V€ la,b), (2.63)
H!(x,b) + H" (e, b) + HS (x, b) = H2(x, b), x€ (g,oo]. (2.64)
d 1 d inc d ref - a 2
6sz(x, b) + asz (x,b) + &sz (x,b) = asz(x.b], x € (0,00). (2.65)

The radiation and edge conditions for the uniqueness of the boundary-valued

problem defined by the set of equations (2.60) - (2.65) are given by [83].

/P %Hz'u,yn-mﬁﬂ_lu,yn =0, p=y/r2+y2 o0 (2.66)
and
o a -
HT (x,y) = 6(|x]7), a—yH;(x,szmlxr%J, x| — 0 (2.67)
respectively.

2.7.2 FORMULATION OF WIENER-HOPF EQUATION

Since Helmholtz equation in cold plasma is satisfied by the field H(x,y) in the

region x € (—oo0,00) and y € (b,00) which gives

(32 2

EH;[X,J!]+ ﬂyz (x,y) +kiﬁH (x.y)= (2.68)

The Fourier transform of equation (2.68) with respect to x yields
F (kcﬁ - } F(a:yj =0, (2.69)

ﬁ‘yz

where
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Fla,y) = /H;(x.yje'“"dx. (2.70)

Using additive decomposition theorem F(a, y) can be decomposed as

Fla,y)=F_(a,)) + Fi(a, ), (2.71)
where 5
(= 4]
Fila,y) =+ f Hi(x,y)e'“dx. (2.72)
1]

It is assumed that F.(a,y) and F_(a, y) are rei.llar functions of @ in the half-plane
Jm(a) > Jm(kgicosfp) and Im(a) < Im(k;), respectively.
The general solution of equation (2.69) satisfying the radiation condition repre-

sented by equations (2.66) yields
Fla,) = A@)e™ V7Y, (2.73)

where

L(@) = /K —a?. (2.74)

The square-root function £(a) = , e‘kfﬁ —a? is defined in the complex a-plane

with branch cuts along @ = kj; to @ = kj; + 100 and a = —kj; to @ = —kj; — 100 such

that £(0) = kj; as shown in the Fig. (2.4).

-—— ==

- I cx -
- 4 A ) - “
-7 N | Branch O l% ~
b Cold Plasma 2 ranch Cu .

P Branch Point : \
i . 2 \
B e e e funn e e Koffo oo ennnn > Refa)!
b 1

3 ’

i :
* Branch Cut—s; Branch Point 4
5 .

x
- E . -
R

-
L

FIGURE 2.4, The depiction of Branch cuts
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To find the unknown coefficient A(@), we can use the transformed form of bound-

ary condition represented by equation (2.61) which gives

L

Ala) = E{al.%,,(a)x(n,a], (2.75)

with
R (@) = Fy (a, b) +%HF+(0: b) (2.76)

and
1@ = (:1+]kcﬁ , 2.77)

where the prime sign in equation (2.75) denotes the derivative with respect to y.

Replacing equations (2.71) and (2.75) in equation (2.73), one gets

k 1
F_(a,y) +Fila,y) = i.‘ﬁ’...{a]mn, a)ett@=b (2.78)

L(a)

In the region x € (0,00) and y € (a, b), Hf(x. y) satisfies the Helmholtz equation in
cold plasma gives

a2 . 8 . . ;
ﬁh’j(x. »)+ a—yij(x, W +EH2(x,y) =0. (2.79)

On multiplying equation (2.79) by '** and integrating with respect to x from 0
to co, one obtains

|— +£2(a)]f§+(a =y, (2.80)
with
6 2
fly) = =0 (2.81)

L
and ¥, (a, y) is defined by

o0

G, (a,y) = in(x,y]e‘“dx, (2.82)

0
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which is a regular function in the half-plane.
The general solution of the non homogenous differential equation (2.80) can be

obtained by using the method of variation of parameter as follow

¥G.(a,y) =Bla)cosL(a)y+ Cla)sin L(a)y +

¥
r;{lanﬂ” sin £(a)(y— der, (2.83)
0

where B(a) and C(a) are the unknown spectral coefficients and £(a) is defined in
equation (2.74).
Combining the transformed form of the boundary condition represented by the
equation (2.62) and equation (2.83) gives

1

4
7 f f(Hsin&(a)(y - t)dt. (2.84)
(1]

%, (a,y)=Bla)cosL(a)y +

In the above expression B(a) can be obtained by adding the transformed form of

equations (2.64) and ﬁ time of (2.65) as under
L4

Bla)=

b
@R (a) 1 sin£(a)(b—- 1) 1 2 B )
7@ +W[a]{fm( @) +Ekcﬁcosl,{a]{b 1)\ dt, (2.85)

where

W) :cnsE(an—%S(a]sinS(ajb. (2.86)
eff

Using equation (2.85) in equation (2.84), one gets

b
_cosLlaly | _[ [sinf,(ﬂ:](b—t} n = - )
‘.—i,(a.y)——yf[m R l(a) of[.r] — @ +—lkeﬁcos..,(aj(b 1|dt
, ¥
i & =
+£Ea] /ﬂr]sm..(a}[b ndt. (2.87)
0

The left-hand side (i.e., ¥, (a,y)) of the equation (2.87) is analytic in the upper

half-plane Jm(a) > Jm(kj;cosfy). However, the analyticity of the right-hand side
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is violated by the appearance of simple poles lying at the zeros of #'(a), i.e.,

@ = ta,, satisfying

Wi(tam) =0, Jm(ay)>TImlkesr), m=1213.. (2.88)

The poles in the equation (2.87) can be removed by using the condition that the

residues of these poles are zero. Then from equation (2.87), it is found that

sing,, b
R4 (@) = Doy | ——— + icaszz,,,b) foits (2.89)
— 1k¢ﬁ
where f,, is defined by
o0
f() =Y fmcos Emt, (2.90)
n=1
with
B ,,.fkf”— az, (2.91)
and
¢ cip
D = Hmmnymbiw{am]- (2.92)
2, Oa

Combining equations (2.87) and (2.78) with the help of the transformed domain

of continuity relation given by equation (2.65), one can obtain

2-"‘:{}]‘ Sinﬁue—:k‘.iibsinﬂn

.ol g apa) = EA D) (msin@g + 1) (@ — kejj cosBp)

b
Ll@)sinL(a)b | sinCla)(b—1) n .
+—?f’[a} 5€+(a}—{f(tl[T+ﬁcns.‘_(m(b— nldte

b
+ff[£)cos£[a}[b— Ndt. (2.93)
0

After simplification the above expression can take the form
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tkej; %+ (@) (0, @) Lo n 2k,; sin @geKeifbsinbo
N a) TR __(nsinﬂg+1}(a—kcﬁcosﬁg}
b
1 L
+y{(a][f(r]cnsi,[a]rdr. (2.94)
1]
where
N (@) =W (a)e™ Db, (2.95)

Using equation (2.90) in equation (2.94), one obtains the required Wiener-Hopf

equation valid in the strip Jm(—k;) < Jm(a) < Jm (k) as follows:

thorpy(n, )28 () 7 2k sinf e thejibsintly
L s o M Y S i i
N (a) (n2sing + 1) (@ — k55 cos )
P S Siﬂﬂ,;;bfm. (2.96)

2
m=1 a’-a m

2.7.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation, the kernel functions .4 (a) and y(n,a) in

equation (2.96) can be factorized by using the known results as following [8]:

Aula) = [[:DS kesi b + iy sin keﬁb] :

X exp IE[::]b ln[a +f:j'm]]+ﬂ[l —C+In
ii

T

oo e
il (1 +i)eﬁ, (2.97)

+ "’)
I_
ktifb 2/ ma @

and

No(@) = N (~a). (2.98)

In equation (2.97), C denotes the Euler-Mascheroni constant given by
C =0.5772156649.... Similarly the factor of y(n, @) can be expressed in the form of

the Maliuzhinetz’s function [82] as follows
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x-, krssﬁisﬁl =
A[ My (3712 =0 — ) Ml (]2 = B + )] 5in(0/2)

e — (2.99)
Vil (1214 x (14 VZcos[ 22222 )) (1 + VZcos| 22574
and
X+ (1, kejicos 6) = x - (1, —kpcos6), (2.100)
with .#;(z) and y are defined by
A= I_i/Jrsmu—zvﬁﬂsmiumnmd“ (2.101)
8 cosu
0
and
1
=sin™! [—] 2.102)
n = (
Now, multiplying the Wiener-Hopf equation (2.96) on both sides with xf{_';?l’ one
obtains
thejix (0, OR+ (@) N (@) 1 e 2kefsinBgekefibsindo g7 (q)
AT x-ma) ~ T (nsinfg + 1)(a - kejjcosf)x- (0, a)
g i Lnsin £, bf A (a) (2.103)

m=1 (a? _ﬂ'ﬁ;]x-(ﬁ:ﬂr] :

With the help of Cauchy’s integral formula the terms at right-hand side of the

equation (2.103) can be decomposed as

2k sinfgekeiibsinfo_g (q)
(nsinB + 1) (@ — kj; cosbo) ¥ - (12, @)
_ 2kgjsinBge kb0t 1 4 (@) A (kejjcosBo)
" (nsinfy + 1)(a - kejjcosBy) | x-(n, a) - x-(n, kjicosBp)
2k i sin Boe ™ Keiibsin®o g (ki cosBy)
(msinfg + 1) (@ = kejj cosOg) x - (1, keji cosbp)

(2.104)
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and
o0 Ll," Sinﬂﬂ;bﬂ-[a]fui _ - M{
m=l (@~ ﬂfi;lx-(?}'-ﬂfl m=1 (@+am)
§ N (@) N lay) 2 LysinLy, b (@m)fm (2.105)

(@—apy)y-(na) - 20X+ (M Q) me1 2@ (@ + @) Yo (17, @) 3

afnw using equations (2.104) and (2.105) in equation (2.103), then placing the
terms which are analytic in the upper half-plane (Jm(a) > —k;)and those which

analytic in lower half-plane (Jm(a) < k) at the right-hand side,which yields

1ktfi1+ma a)%, (a) n zkcifSiﬂﬁu‘?_'k‘”b“""’“ﬂ_[kcﬁccsﬁ'u}

i la) (nsinBp + 1)(a — kejjcos Bo) y - (0, ke cosBp)

_ = LmsinLpb AN (@m)im  A-(a)
me1 2@l + ) Yo (1, apy) - ¥-(1,al

=tkesfbsinty N (@) -f"'/-{kcijCUSHU}
1-M.@)  x-(, kejrcosBo) ]

N (@) __ Mlan) ]
(@—am)x-na) 2apy+am ]

Iff..{af.bj

2k¢rfsinﬂge

(nsinfy + 1)(a — kejjcosty)
X Lpsin Ly bf

me1 @+ ay)

(2.106)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle complying the extended Liouville’s theorem as under

X+ a)R(a) Ezsinﬂoe"""fiif’s"w",ﬂ_I{k._."cosﬁoj
A (a) " (sinBy + 1) (@ — kejs c0880) x— (17, kefj c0s Bg)
_ 1L 8in L b A, (@) fm
m=1 2krffﬂ:mﬂa + A X))

(2.107)

Placing equation (2.89) into equation (2.107), gives

DX+ (M ay) (sin, b N 1
A (ee,) Ln theej
~ 2£sinﬁge"kfffbsmﬂﬂu4’.{Iccﬁ cosfg)
N (nsinfy+ 1)(ay, — kepyeoslp) x - (1, kejj cos By)
= 1L sin Ly oA (@ n)fm
o1 2kefi@m (@ n + Em) X+ (1, Xm)

cOs 2.,17) fn

(2.108)
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The above expression is system of infinite number of equation and these system

of equation can be solved numerically after truncating after N terms.

2.7.4 THE DIFFRACTED FIELD

The required diffracted field H.(x, y) can be acquired by using the inverse Fourier

transform of F(a, y). Thus from equation (2.78), one can get

1 kcifltﬁ:&}.@Jr(a] o i _
H} ] e tE(a)(y b lﬂxd 3 2109
(X, ) 2]’[[ ) e e a (2.109)
5
Using the replacement of the function y(n,a) and the variables @ = —kjicost,

x=pcosf and y = psind in the equation (2.109), one obtains

1 [ ZRi(—kecost s
H;[prﬂl = g %E-!A,“Dsm F+Ikr”,DCOSfF-0)kcﬁ sin rdt. (21]0)
&

Theasymptotic evaluation of the integral in the equation (2.110) can be obtained

via saddle-point technique. Here, saddle-point rests at ¢ = 8 which gives

sinfe "V (€ -5 er1p+ 5L ~tky/(e]~€5) fey bsing

V2r\[ kpy/ (€3 - €2) /e, (1 +nsind)
21sinfly e_'j‘_‘-‘f{cf_cgwflwnﬂnﬂ_ (k+/f (Ef = E‘%]fﬂ cosBp) A_(ky/ (Ef = Eg}fﬂ cos)

(nsin@ + 1)(cosf + cosBp) y- (17, ky/ (E‘% —E%] leycosB)y-(n, k I{Ef — s%}fﬂ cosf)

Hl(p,0) =

*

f t-;:"; Sin ﬂjubﬂq.(a";]ﬂ—(k (E%_Eg]'rsl Cﬂss]fﬂf
m=12k, /(€3 —€2)le1aml@m - ky/ (€5 —€3) /€1 cosO)x+ (1, am)x- (1, k[ (€2 —€2)/e1 cosh)

(2.111)

2.7.5 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have analyzed the numerical results for various physical pa-

rameters of interest by plotting graphs. Fig. (2.5) depicts the variation in the
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diffracted field amplitude versus the truncation number "N". It is apparent that

the effect of the truncation number is negligible for N = 40. Hence, the system
containing infinite number of algebraic equations represented by the equation
(2.108) can be managed to deal as finite. Where as the Fig. (2.6) has been plot-
ted by varying the plate separations "b". The amplitude of the diffracted field
decreases with increase in b. Fig. (2.7) depicts the variations of diffracted fields
versus incident angle 8y (07 =8y = 90°). It is interesting to note that the value of
diffracted field amplitude lies at 90° when 6, = 90°. Where as this peak values
moves to 120” and 150 for 8y = 60” and 6, = 307, respectively. As long as the an-
gle of incident increases the center of diffracted field amplitude shifted towards
90%. Fig. (2.8) shows the variation in the diffracted field amplitude versus the
impedance "n". The variation in the diffracted field amplitude versus effect of
cold plasma permittivity valbes for €; and €2 have been analyzed in Figs. (2.9)
and (2.10), respectively. Here it is noted that the amplitude of the diffracted field
decreases by increasing the value of €; where as slightly increases by increasing

€2 but the effect of ¢ is negligible as compare with ¢).

-14.55 —
L
= e
o 1460 L
=2 - e
g [ e
= I
g :
'E —14.65
=
=
-
8
=
3 :
28 —14.70
=1475 4 | 1 1 L i
| 1o 20 30 40 50 60 70

Truncation number N

FIGURE 2.5. Variation in the diffracted field amplitude versus "N" at k =5, 8, =90, 8 = 60°,
n=0.3t €, =08, €2 =0.1 and b=0.2A.
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b=0.14 b=0.1514 b=0.21 >

Diffracted ficld amplinude (dB)
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[\] 30 [1k] a0 120 150 180

Observation angle d (deg)

FIGURE 2.6. Variation in the diffracted field amplitude versus "b" at k=5, 80 =90°, n=0.71,
€1 =0.8 and €2 =0.1.

500 ¢
= |
= L
2 0
£ L
o5
=
o -
: —50
= 3
E F By =30 iy =60" f,=90" =~ A
= N
= \'l
— 106 ¢
L L 1 L 1 1
[}] 30 &l L4 120 150 180

Observation angle # (deg)

FIGURE 2.7. Variation in the diffracted field amplitude versus "8y" at k=5, 7=0.71, €; = 0.8,
€2 =0.1 and b=0.21.
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m=01 =03 =05

Diffeacted field amplinude (dB)
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FIGURE 2.8. Variation in the diffracted field amplitude versus "n" at 0y = 90", k=5, ¢ = 0.8,
€2 =0.1 and b=0.21.
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FIGURE 2.9. Variation in the diffracted field amplitude versus "e,” at k =5, 8y =90°, =0.74,
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FIGURE 2.10. Variation in the diffracted field amplifude versus "ex" at k=5, 8 =90°, =071,
e1=08and b=021.




EFFECT OF COLD PLASMA

CHAPTER

gy
PERMITTIVITY ON SCATTERING OF

E-POLARIZED PLANE WAVE BY AN

IMPEDANCE LOADED STEP

In this chapter, the scattering of E-polarized plane wave by two half-planes com-
bined by a step of hight b is discussed. These types of geometries play a vital role
in diffraction theory and many problems in science and engineering. Initially,
Johansen [84] considered the problem of diffraction by two half-planes having
same surfaces impedances combined by a step of hight h. After that Biiyiikaksoy
and Birbir [85] studied the similar geometry for different impedances of the dif-
ferent surfaces. Yener and Serbest [11] considered the diffraction phenomenon in
cold plasma considering by a single surface impedance half-plane. Here, in this
chapter two half-planes of different surface impedances joined by rigid vertical
step of hight b located in cold plasma is considered.

The contents of this chapter are organized in the following order. The boundary-
valued problem is developed in Section (3.1) whereas Section (3.2) is dedicated to
the formulation of Wiener-Hopf equation. The solution of Wiener-Hopf equation
is obtained in Section (3.3). The diffracted field expression is shown in Section
(3.4). Few numerical results for different parameters are plotted and discussed

in the last Section (3.5).
37
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3.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD
PLASMA

Here, consider the scattering of a plane wave riiking an incident angle 8y in the
region designediy two half-planes S, define by {(x,y,2)| x € {—m‘}, y=0,z¢€
(—o0,00)} and S, defined by ir.y.ﬂl x € (0,00), y=b, z € (—o0,00)}. The top faces
of the half-planes S; and S; are characterized by the impedances Z; and Z;, re-

spectively. While vertical step surface is rigid as shown in Fig. (3.1):
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FIGURE 3.1. Geometrical configuration of the waveguide structure in cold plasma

The total field takes the form as under

H(x,y) + HI"(x, p) + H (x, ), € (b, c0)
HI, =4 7 e T R Y (3.1)
H%(x,y), ye(a,b)

where Hi"(x, y) and H_?'f (x, y) stand for the incident and reflected fields, respec-

tively, given by
H:‘nc(x = e—akt”(xcosﬁmysinﬁu} (3.2)
and
H®S (5, y) = 1 _HzSinHUe-;IctH(.t'cosﬂg-{y-%}sinﬂ'u)' (3.3)
= 1 +n2sinfy
with

kesi = k\f{s%—eg}fel. (3.4)




3.2. FORMULATION OF WIENER-HOPF EQUATION E

(HI  (j=1,2) satisfying the Helmholtz equation in cold plasma, i.e.,

+— +k?

a &
[E ay? off

] (it p] =0, (3.5)

with the following corresponding boundary conditions and continuity relations

M2 6 ) e by = -
(H:kﬁ; ay]Hztx,b]-O. x € (~00,0) (3.6)
m 4 2
1+ ——— | H3(x,0) =0, x € (0,00) (3.7)
theji Ay
EHﬂ(o )=0 €(0,b) (3.8)
dx WY =0, ¥y ) -
H! (x,b) + H" (x,b) + HI (x,b) = H2(x, b), x€(0,00) (3.9)

A Hl(x,b) + EH;‘"f(x, b) + ;—nyf{x, e H:(x,b).  xe(0,00  (3.10)

dy oy oy
The radiation and edge conditions for the uniqueness of the boundary-valued

problem defined by the set of equations (3.5) - (3.10) are given by

NG %H;(x,yl—tkcﬁHi(x,yJ =0, p=y/x2+y?—~o0 (3.11)
and T 1 4 r 1

H; (x,y) =6(|x|2), 6_sz (x,y)=0(|x|"2), |x|—0 (3.12)
respectively.

3.2 FORMULATION OF WIENER-HOPF EQUATION
The Fourier transform of the Helmholtz equation in cold plasma which is satis-
fied by the field H}(x, y) in the domain x € (—oo,00) and y € (b,00) leads to

2

d 8
ok (kg —a®) | Fla, ) =0, (3.13)

where F(a, y) is defined earlier.
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Using the radiation condition represented by equation (3.11), the solution of
equation (3.13) gives

Fla, y) = A (@)~ @U-b), (3.14)

where
L(a) = /K2, - a? (3.15)

and A, (a) is the unknown spectral coefficient.

The square-root function £(a) = \/W represents the branch cuts along a =
keji to @ = ke + 100 and @ = —kijj to @ = — k55 — 100 such that £(0) = kg .

To find A, (@), using the transformed form of the boundary condition represented

by equation (3.6), one obtains

keji 22 (@)
g Al 3.16
“ k‘c" +?]2£{ﬂ!] ( )
with .
(@) = Fyl@,b) + = Fy @, b), (317)

LR ff
where the prime sign in equation (3.17) represents the derivative with respect
to y. Using the additive decomposition theorem and placing equation (3.16) in

equation (3.14), one gets

k ﬂl 3
!_Ea. Y +Fyla,y) = "ff—*(me‘*-f““«"'b}. (3.18)

ki +n28(@)
The derivative of equation (3.18) with respect to y at y = b takes the form

, ke Lla) Gy (a)
F.la b =—————-F_(a,b). 19
+(a, b) T (a,b) (3.19)

As the Helmholtz equation in cold plasma is satisfied by field HZ(x,y) in equation

(3.5) in the domain x € (0,c0) and y € (a, b), multiplying this equation by ¢'“* and
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integrating the resultant equation with respect to x from 0 to co leads to

[— — £4(a)| 9, (@, ) = g (), (320)
where
a(y) = H2(0,y) (3.21)
and ¥, (a, y) defined by
Yila,y) = Hg(x,y]e’“dx, (3.22)

is a regular function in the half-plane.
Owing the method of variation of parameter the solution of non homogenous
differential equation (3.20) gives
Y
Y. (a,y)=Cla)cosLla)y + Caola)sin L(a)y — %/g(t]sin.ﬂ(a}[b— Hdt, (3.23)

0

where C;(a) and Cz(a) are the unknown spectral coefficients.
To find Cj(@) one can apply the transformed form of the boundary condition

represented by the equation (3.7), to get

Ci(@) = - (@) Cala). (3.24)
tkeﬁ

Substituting equation (3.24) in equation (3.23) yields

Gela,y) = sini}(a]y—lzl Lla)cosLia)y| Cala)
cff
y
L. [ (t)sinL(a)(b— tdt (3.25)
2/ ® ' '
0
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m

Cz(a) can be obtained by adding the transformed form of equations (3.9) and ; b

time of (3.10)

b
@! in (@) (b -
Bl Wllm] f f(z)[wJ,icns @) b- r}]dr, (3.26)
0

#i(a) (a) thes
where
_[(12—m = _Minz e | sinL(a)b
(@) [—lkrf[ ]cos.,(a]b+ (1 kf” £ (a]] @ (3.27)
Using equation (3.26) in equation (3.25), one gets
sin £(a)y - 7= £(@) cos L(a)y
(‘g-!‘ » = ”_r
G S@#(@)
b
% @i[a]+m[g[t][%+ ::f“ cosS(a)(b—t)|dt
1]
¥
... [ (OsinL(a)(b-1)dt (3.28)
2/ ? ’ '
0

The left-hand side (i.e., %, (a,y)) of the equation (3.28) is analytic in the upper
half-plane Jm(a) > Jm(kjcosfp). However, the analyticity of the right-hand side
is desecrated by the appearance of simple poles lying at the zeros of #1(a), i.e.,

a = ta,, satisfying
M(zam) =0, JIm(ay)>Imky;), =123.... (3.29)

The poles in the equation (3.28) can be removed by applying the condition that

the residues of these poles are zero. Then from equation (3.28), it is found that

ﬂl{a m) = 92\}1?i [% Lmsinenbh—cos Ly, b) [\ (3.30)
e




3.2. FORMULATION OF WIENER-HOPF EQUATION

where g,, is denoted by

b

Om = @L}".{g(t] [Eig’:”r = IE:” Cos 2,,,r]dr, (3.31)
with
L=/ kg~ i (332
and
- ;;;,,, [cozi:nb " f:cln sinﬁ,,,b) %#’1(&”,]. (3.33)

Hence, considering equations (3.19) and (3.28) in the transformed domain of con-

tinuity relation given by equation (3.10) together, one can write

Zkr”sinﬁne_'kf”"”i“”“

(n28infy + 1)(a — k.jjcosby)

tkeji ) (@) ¥ (M2, @) — F—(a, b) = -

|:Dsﬁ.'llb'+‘_,f_]L Lsinth b e _
off ol sinL(b-1) ES — )
+ (@) %, (a) +1a{n(ﬂ [—E(a] + 7o cosL(b-1)|dt
b
—ta [gm cosLib-ndz, (3.34)
"o
where
Lla)
I = ey 3.35
x(nj, a) njj:(a] = k‘-ﬁ ( )
After simplification, equation (3.34) takes the form
. 75! ' : —tk,jjbsindy
x(nza), (a) g Progg iy 2.k¢ifSlnB:]8
X, )N (a) (n28inBp + 1) (@ — k5c086,)
b
a sin S{a)t . m " )
+W|(a]fmﬂ[ Lla) ik e 0]
1]

where

@) = Wi(@)e P, (3.37)
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Owing to equation (3.31), g(#) can be expanded into a series of eigen-functions as

under

£a Sin.ﬁp”f 7;'| )
()= . [ ———cosyt]. 3.38
a mZ=I9 n B tktﬂ- n ( )

Using equation (3.38) in equation (3.36), one obtains the required Wiener-Hopf

equation valid in the strip Jm(—k;) < Jm(a) < Jm(k) as follows:

5, @) 1 ' 2hesesind e—:k,_.n-bsim']"

X2, a)@, (a) s o e . eff 0

xm, @) A (a) (n28inB + 1) (@ — ke cos8)
o0

B E 1aLmom cosLyb % Uil

v 2
m=1 ot~ Ay ’g”i Ik?ff

sin€,,b]. (3.39)

3.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation the kernel functions A'(a) and (1, @) in

equation (3.39) can be factorized by applying the known results as following;:

. L
- sink.b )z
Ha) = [UJCOSkcﬁb+[l—ﬂ1ﬂ2] i }
thej ke
L(a)b [a+££[ﬂ:]] :ab( T ;rr) m[ u:) b
X BX In +—|1-C+In +i1— 1+—|ems, (340
. " keji n kejs b 2 ;;1;-=[| &gy ( )
and
Na) = N (-a). (3.41)

Similarly the factor of y(n;,a) can be expressed in form of the Maliuzhinetz’s

function as discussed in earlier.

F- el a)

Now, multiplying the Wiener-Hopf equation (3.39) on both sides by *—~r==—,

one obtains
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s 1 L(a) ¢
:r+|tnz-alﬂ+(a) : ¥y, @) A (a]P_(u:,b}
A @y, a) x-(n2,a)

o 2k¢ffSiﬂﬂoe‘fhif“s"'o"x-Wl-ﬂ‘JJV_l(aJ

(M2 sinfy + 1) (a - kcﬁ cosfp) y-(n2, a)

o0 1
B Z aq@mEmy-m, ) A (a) cu.'sj.'j,,;!r;!Jr m s 5 (3.42)

mo1 (@ -af)y-(n2.@) L thefs

With the aid of Cauchy’s integral formula the terms on right-hand of the equation

(3.42) can be decomposed as

2k sinfgeeii?sin%y (), a) A (a) B 2k‘-ﬁsinﬁ?ue_'kﬂfb5i“ﬂ'—‘
(n2sinfy + 1)(a@ — kejj cosBg) y— (2, @) (172 5inBg + 1) (@ — kejs cOsbp)
=@ A @ x- 0 ks c0s8y) A (kejj cosby)
X-(12, @) X -2, kesjcosd)
2Ky sinBge‘”"riii’Si“aﬂx-(m.kcﬂcc:-sﬁgjlu’i’_l(kc”cosﬁu}

(M sinfy + 1) (@ = kejpeosBo) x - (02, kesjeosty)

(3.43)

and

f 1aﬂmﬂmx—[?}'1:a}ﬂj (a) (CUSErr:b+ 1

me1  (@P- ﬂ:ﬁ,];l:-(r?z,ﬂf] Lo theps

_ DZD: (S cos £, b N UH
m=1 (@ + Q) Lm tkan

sinﬂmb]

sin2 ., b)

. aﬂm,’l‘,’-[ﬂlzal*ﬂ"_l(a] - amﬂmlq-("]l-ﬂm]v‘ﬂl (am)

(@ —am)y- (2 a) 2amy +(Nz @m)

3 - I-‘:mamﬂmx-}[ﬂI-a.-:a]'-f'y+1(a.ra:]] (CUSSJi:b+ m
me1l 20X+ @) (e + agy)

sint b] g 3.44
S;” Ikgff m ( )

i)n using equations (3.43) and (3.44) in equation (3.42), and then separating the
terms which are analytic in the upper half-plane (Jm(a) > —k,j;) at left-hand side

and those which are analytic in lower half-plane (Jm(a) < k) at the right-hand
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side yields

ri2, )& (@)  2keysin@geKeiibsinboy (k. cos ) A (kejj cosbp)
N M)y, @) - (nzsinfy + 1) (@ — kg5 cosBp) y - (12, kejy cos Bp)
" = 1“»:£mﬂm.¥+[ﬂl-aua]’-f’VJ (am)) [CDSEmb . M )

m=1 2apmys (2, am)la+ay) Lm Ekcff sinLy, b

: ' : —tkcjjbsinfy
__x-m,a) A [a)F_[a:, B+ 2:k¢ﬁ sinfpe
X-M2,a) (n2sinfy + 1) (@ = kej; cosbp)
y x-,a) A (@) _x-(m, ke c0s Bg) A (kefs cos Bp)
X-(n2,a) X- (12, kejpcosfy)

= (L1 (COS Lmb m

sinﬂmb]
m=1 [a *+ am]

Em fkeff
ag,,,x-(m,a],ﬂ} (a) _ amﬂmxﬂ-(f?lsam]dﬂl(amj
(a—amly-(n,al 2a,x+ Mz, am)

: (3.45)

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle complying the extended Liouville’s theorem as under

X2, Q)R (@) 2kygsinBpe*eiibsnfoy (1), ki cos6) A" (kejjcosby)
K+, )N Ha) (2sinBg +1)(a — kejjcos8y) y - (12, kejj cosby)

_ 2 1 mLmdm x.;.(f.'r'laam]ﬂ.g.l[am} CUSE;;;E7+ m s b) (3.46)
m=1 2o+ ay) )Mz, ay) Lo ‘kcf]'- "

While placing equation (3.30) in equation (3.46) at @ = a;,, one can obtain

:['.+[ﬂ2- an)g}; T2
I+[HI=RJ:JU’1/+1EQHJ [‘keff
~ 2k,;,-,-sinﬂge"kfffbsmﬂﬂx_{r:.-l, kciicusﬁg)‘ﬁf_l(Ict“ccsﬁo]
a (n2sinfy + 1 (a, — kejpcosBy) x - (12, kesjcosby)

. v Lamﬂmg,,,xq.(?}|,a,,,].ﬂ+|{ﬂ:m] [COS Lmb % 1

m=1 2am,lan +&mlx+(??2,¢m]' Em Leff

ﬂ"Sin -r.-l"b = C05 -{:-”b) ﬂn

sinzmb] . (347)

The above expression is the system of infinite number of algebraic equations that

can be solved numerically by truncating after N terms.
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3.4 THE DIFFRACTED FIELD

The diffracted field H; (x,y) is acquired by taking the inverse Fourier transform

of F(a, y). On using equation (3.18), one gets

1 - L[W 12 (@) (y=b) ,—1ax
H,(x,y) = P | Ferr+ 12 2@) e e ' da. (3.48)

Now placing the variables a = —k;cost, x=pcosf and y = psind in the equation
(3.48) gives

1 [ R (—keicost)
_[—e

2m, 1+nzsint
3

Hé (p,0) = =tkejjbsin t+kejsp cos(r=0) kﬁfSil’l tdt. (3.49)
The_asymptotic evaluation of the integral in the equation (3.49) can be obtained

via saddle-point technique. Here, saddle-point rests at ¢ =6, which gives
keji sin 02", (— kejj cos )

,,f‘EIrk.:”p(l +1725in8)

H;[p.ﬂ] = elk(fip—%—!l:‘.ifbsiﬂﬂ' (350)

On taking into account equations (3.4) and (3.46), the diffracted field takes the

form
k a'&_% —e2)le; SinQetk\;{ef-ei)mp-%-:k \ (€]=€3)/er bsing

JZJT.’Cqu(E% —e3)/e1(1+15in0)
3 -rf.-. 2
2k /(€2 — €2) /ey sinBpe” ¥V RISy @ ic0sBp)

= *
(n2sinfly + 1) (ky/ (€2 —€3) /e, cosB + ky/ (€3 — €2) /e, cosby)
N (k[ (€2 = €2)ley cosB)x - (M, ky/ (€3 — €3) /1 cos). A (ky /(€2 - €3) /€)1 cosB)

X- M2, ky\/ (€2 —€3) /€1 cosBp) x - (N2, ky/ (€3 — €3) /€1 cos )

f Iamﬂmﬁm X+ [ﬂ 9] a!?i]"'y-i-l (& m'JI— [ﬂ 9] k'”' (5“1g = t:-%]-I“::I CGSS]

m=1 2am(ky/ (€] —€3)/€1 €080 — @) x+ (N2, @)

N Ek\/mmsm {cos.‘lmb m
b4

Hip,0) = -

o + sinC,b||. (3.51)
~m tky/ (€3 —€3)ley

X-(n2,ky/ (] —€3) /€ cosO
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3.5 COMPUTATIONAL RESULTS AND DISCUSSION

This section is devoted to analyze the numerical results for various physical
parameters of 'iterest. Fig. (3.2) shows the variation in the diffracted field am-
plitude versus the truncation number "N". It is clear that the effect of the trun-
cation number is negligible for N = 15. Hence, the infinite system of algebraic
equations in equation (3.47) can be managed to deal as finite. Fig. (3.3) explores
the effect of separation "b" between the parallel plates on the diffracted field am-
plitude which shows that the diffracted field amplitude also depend upon the
plate separation. While Fig. (3.4) represents the variation in diffracted field am-
plitude versus the incident angle "6y" (0? < 8y = 90°). It is interesting to note that
the value of diffracted field amplitude lies at 90° when 6y = 90°. Whereas this
peak values moves to 120 and 1507 for 6§, = 60° and 8, = 30%, respectively. The
effect of wall impedance 1, on the amplitude of the diffracted field is shown in
Fig. (3.5). Fig. (3.6) shows the variation in the diffracted field amplitude with
wall impedance 7,. The effect of cold plasma permittivity has been analyzed in
Figs. (3.7) and (3.8). Here, we have found that the increase in cold plasma per-
mittivity decreases the diffracted field amplitude. In other words the diffracted
field amplitude decreases with increasing ion number density in cold plasma or
by decreasing plasma frequency. Here, in this problem it is observed that the
diffracted field is highly effected with €, while slightly with €. Also it is noted
that the diffracted field amplitude decreases with increase in permittivity value

€; while in case of ¢, diffracted field amplitude decreases with increasing €.
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FIGURE 3.2. Variation in the diffracted field amplitude versus "N " at k=5, 8y =907, 6 =607,
M =03, 12 =05, € =08, e2=0.1and b=02A.
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FIGURE 3.3. Variation in the diffracted field amplitude versus "b" al k=5, 6y =90%, 11 =071,
2 =0.51, €, = 0.8 and €2 = 0.1,
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FIGURE 3.4. Variation in the diffracted field amplitude versus "0y" al k=5,m =0.71, 12 = 0.5,
€1 =08, e2=0.1and b=0.2A.
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FIGURE 3.5. Variation in the diffracted field amplitude versus "n, " at 85 =90°% k=5, 1, = 0.51,
€1 =0.8, €2 =0.1 and b=0.2A.
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FIGURE 3.6. Variation in the diffracted field amplitude versus "nz" at k=5, 6 =90%, 1, =0.31,
€1 =08, e2=0.1and b=0.2A.
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FIGURE 3.7. Variation in the diffracted field amplitude versus "e, " at k =5, 8y =90%, 1, =0.71,
N2 =0.50€s = 0.1 and b=0.21.
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FIGURE 3.8. Variation in the diffracted field amplitude versus "e,” at k=5, 8y =90, 11, = 0.7y,
i72 =0.51€; =0.8 and b= 0.2A.
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E-POLARIZED PLANE WAVE

CHAPTER

DIFFRACTION BY AN IMPEDANCE

LOADED PARALLEL-PLATE

WAVEGUIDE LOCATED IN COLD

PLASMA

This chapter comprises the consideration of thediffrar:tion of E-polarized plane
wave by a waveguide designed by an infinite plane and a parallel half-plane
having a different surface impedances in cold plasma. It plays an important role
in diffraction theory and many problems in science and engineering. Initially,
Biiyiikaksoy and Cinar [70] studied the problem of diffraction of a plane wave
by a waveguide designed by an infinite plane and half-plane. The upper faces of
the left and right part of the plane having different surface impedances. While
the half-plane is parallel to the plane and perfectly conducting. This problem
was solved with the help of matrix Wiener-Hopf equations. After that Cinar
and Biiyiitkaksoy [12] considered the same geometry but for different surface
impedances of the half-plane instead of perfectly conducting half-plane. The so-
lution of the problem was obtained by a hybrid method. Here, in this chapter the
same geometry is considered in cold plasma.

This chapter is compiled with the subsequent order. Section (4.1) is dedicated to

formulate boundary-valued problem governing the wave propagation in waveg-
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uide located in cold plasma. Section (4.2) contains the formulation of Wiener-
Hopf equation from the related model. The solution of the said Winer-Hopf
equation is obtained in Section (4.3). Whereas Section (4.4) is devoted to the
determination of infinite unknown coefficients. The diffracted field expression
is presented in Section (4.5). Finally graphical results for different parameters are
discussed in Section (4.6). The contents of this chapter have been published in
Physica Scripta, 89(8): Paper ID. e095207, (2014).

4.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD

PLASMA

Consider a waveguide constructed by a‘nalf—plane defined by §; = {(x,y.2)| x€
(=00,0), y = b, z € (—o0,00)} and an infinite plane diﬁned by S2={(x, y, 2)| x € (—o0,00),
¥ =0, z€ (—o0,00)} designed in cold plasma. The surface impedances of the upper
and lower faces‘f the half-plane S; are assumed tobe Z; = 1, Z; and Z, = 1, Z, re-
spectively. The surface impedances of the left and right upper faces of the plane

S, are assumed to be Z; = 113 Z) and Z,; =147, respectively, as shown in Fig. (4.1)

-

y
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FIGURE 4.1. Geometrical configuration of a waveguide structure in cold plasma

For analysis purpose, it is convenient to express the total field as follows:
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Hine(x, y) + H- (x,y) + H) (x, 9, € (b,00)
HI(x,y = e ' - - (4.1)
H2(x, ). 76(—x) + H2 (x, ). 7(x), ye(0,b)

where 7 (x) represents the Heaviside unit step function. Hi"¢(x,y) and Hzr o (x,%)

denotes the incident and reflected fields, respectively, defined as below

Hinr(x, }') L e—{k(fi(xcasﬂg+ysinﬁa} (42)
and
sinflg—1 i
Hfff ) = m 0 -do:..f;i.vcn::r:'sﬂo-l[y-Ei.))slm:k.}I 43
: (1Y) q.sin90+le 42)
where
£f=¢2
ki = k\|—= and k=w/Eolo. (4.4)
€]

Now, HI(x,y), (j = 1,2,3) are scattered fields satistying the Helmholtz equation

in cold plasma as under

g at . i :
@Jra—y”kf“] |Hlexp| =0, j=1,2,3 (4.5)

with the following corresponding boundary conditions and continuity relations

m 0
[1 o 6y] H(x, b) = %€ (=00,0) (4.6)
_ M2 0),0 _ _
[1 urc.:ﬁ (3y] H2(x,b) = x € (~c0,0) 4.7)
Jf{—x;[1 + l—k———]H‘E(x 0) +fﬂx}[1 + ——]H (x,00=0, x¢€ (—00,00)

«jf 0

(4.8)
8

H! (x, b) + HI" (x,b) + H'* (x,b) - H3(x,b) =0, X € (0,00) (4.9)

d

—H(x,b) + aH”'f(x,bJ L 1 e (x b)—iH?'(x,b) 0, x€(0,00 (4.10)
dy ay ay ay

H2(0,y) - H3(0,3) =0, y€(0,b) (4.11)
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d d
EHE (0,y) - aHﬁ(u, y) =0, y€ (0,b). (4.12)

For the uniqueness of the boundary-value problem defined by the set of equa-

tions (4.6) - (4.12). One can take the radiation and edge conditions, respectively,

as follow
0
VP %Hz‘u,yn—tkcﬁﬂéu,yn =0, p=y/x2+)*—~c0 (4.13)
and
= 1 Fi — 1
HI(x,p)=0(x7), —H (x,y)=6(x"2), |xI—0. (4.14)

ay

4.2 FORMULATION OF WIENER-HOPF EQUATION

The Fourier transform of the Helmholtz equation in cold plasma is satisfied by

the field H.(x, y) in the region x € (—oo,00) and y € (b,c0) gives

d? a2 5 _
Id—y2 + £%a) | Fla,y) =0, (4.15)

irhere Fl(a, y) is defined as earlier.
The general solution of equation (4.15) satisfying the radiation condition repre-

sented by equations (4.13) yields
F(a,y) = Ap(a)e @00, (4.16)

where
£la) = /K2 - a?. (4.17)

To find the unknown spectral coefficient Az(a), using the boundary condition

represented by the equation (4.6) in the transformed domain, one obtains

2 (a)

T TP
1+ r;iL(ﬂ:]

Az (@) (4.18)
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with 2 n ot
R2 (@) = F. (a, b) + ——F, (at, b). (4.19)
h‘.‘.‘._.”
Using the additive decomposition theorem and placing equation (4.48) in equa-

tion (4.16), one obtains

R ()

1
1+ F:_ff,{a']

F_(a,y) +Fi(a,y) = g U5 (4.20)

The derivative of equation (4.20) with respect to at y = b takes the form

O o) B i
- ‘”(‘ﬂ]ﬂ = Pz B). (4.21)
1+ Fﬂtaj

i

F.(a,b)

As the Helmholtz equation in cold plasma is satisfied by field HZ(x,y) in the
waveguide region x € (0,c0) and y € (@, b), multiplying this equation by ¢'“* and

integrating the resultant equation with respect to x from 0 to co gives

a
- @) 9@ = 0 - wagon, (422)
¥
where
d
f(y) —tag(y) = aHﬁ'{-::o,y) — 1@ H2(0,y) (4.23)
and ¥, (a, y) defined by
4, (a,y) = [Hg'(x.y]e‘“"dx, (4.24)
0

is a regular function in the half-plane.
Owing the method of variation of parameter the solution of non-homogenous

differential equation (3.20) yields
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G (a, y) = Csla)cos Lla)y + Cgla)sin L(a)y

1

@ (f(2) —rag()) sin £(a) (b - t)dt. (4.25)

o — =

Here Cs(a) and Cg(ar) are the unknown spectral coefficients.
To find Cs(a), one uses the transformed form of the boundary condition repre-

sented by the equation (4.7) which gives

T o(a)Cs(a. (4.26)

Csla)=-
Ij(,'t“

Placing equation (4.26) in equation (4.25) yields

G (a, y) = |sinl(a)y- T4 —L(a)cos L(a)y| Csla)
UReff
1 oo
= %[(fm —tag())sin £(a)(b-rdt. (4.27)
0

Cs(a) can be obtained by adding the transformed form of equations (4.9) and =~ "' .

time of (4.10) as under

R% (@)
C Pttt ot S
o) = C@w@
smf‘(a](b—:] m R ]
?F[a: f[f(z) g .!]]( @) kcﬁcos*{al(b n|det, (4.28)
where
. ing
W (@) = [ m]cos.‘!(a]b+ 1- T g2y | ARAGID (4.29)
tKej kg L(a)

Using equation (4.28) in equation (4.27), one gets
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sin £(a)y - 7 - C(a)cos L(a)y

(g.p i =
o) uaw’z(al
x .@i(a}—[(f(r)—mg[r)][%+tzn cos L(a)(b—t)|dt
2[ J[[f(r )—tag()) sinL(a)(b-ndt. (4.30)

The left-hand side (i.e., ¥, (a,y)) of the equation (4.30) is analytic in the upper
half-plane Jm(a) > Jm(kjjcosfy). However, the analyticity of the right-hand side
is desecrated by the appearance of simple poles placing at the zeros of #;(a), i.e.,

@ = +a,, satisfying
Wo(za,) =0, JIm(ay) > Imky;), =1223.... (4.31)

The poles in the equation (4.30) can be removed by applying the condition that

the residues of these poles are zero. Then from equation (4.30), one gets
-%-2'- (am) = @rzn [ ‘cm sinf,,b-cos £, ) (Fm — t@m@m), (4.32)

where f,, and g,, are denoted by

b
m f(.‘f:l i -‘:n:r
B = / Tml 4 cos 2,,,:] dt, (4.33)
Om @m 0 B([) ~m l eff
with
L= kfrf - a%n (4.34)
and
; Lm (cosLyb
e L sin &b > #i (am). (4:35)
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Hence, considering equation (4.21) and transformed domain of continuity rela-

tion given by equation (4.10), one can write

Zkl:ﬁ Sinﬁoeﬂlk,“bsfll 90

2 — . = —
125 (@) y (i, a) — F_(a, b) (11 5in 8 + 1) (@ — kejjc0s 6p)

2 cosLh+ ‘;,?—"“Esinﬂb
1) - t Sh-ndi+ =
+f(ft )—tag(t))cos £(b— 1) 7o)
0
b in (b
« | 2 (@) - [(fm—1ag(z))[w+£cos£(b—n)afr , (4.36)
A Slea) ks
where
Lla)
n,a)=———. 4.37
A0 n;Lla) + ke ( )
After simplification, equation (5.33) takes the form
x(n].a)e:eiz(a] . ;“-Ea, B = 2fc¢g;singue—:k(frbsi.lan
XN, @) AN = () (1 5inBy + 1) (@ — kejjcosty)
b
B 1 B sinﬂ(a]t_ 14 ) )
Wz(a]{(f[t) tag(t)) [—11((1] Ik':”n:i:)SL(.:n:}.-: dt, (4.38)
where
Na) = Wla)e T @b, (4.39)

Owing to equation (4.33), f(#) and g(#) can be expanded into a series of eigen-
functions as under

() =0 m i
f as Z f Slnﬂﬂff = ﬂ—dcosﬁmf ) (4.40)

B[ﬂ m=1 Om Rm lk}ﬁ
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Using equation (4.40) in equation (4.38), one obtains the required Wiener-Hopf

equation valid in the strip Jm(—k;) < Jm(a) < Jm(k) as follows:

M_'_;: i By = chﬁsinﬁge"‘hfibﬁﬂﬂo

Ans @A) (m1sinfp + 1) (@ — k¢ costly)
2 (fm—tagm)Em (cos Ly b _

o E fn : _Elnza m . mb %sm.‘imb 7 841)
m=1 "=y Lm tkes;

4.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equation the kernel functions A 2(a) and y(n jra)) in

equation (4.41) can be factorized by applying the known results as follows

() =

sin ktﬁb] :
Kejy

M —1N4
—_— kb +(1-
[ e ]COS eifb + (1 =11m4)

Lla)b (anﬂ[a:] mb[ 2 JT) = [ @ ) wah
x ex In +—|1-C+In|—|+1— 1+—|ems (442
? Kejf T kejib 2 :rl;l 1 L3 el
and
N a) = A2 (-a). (4.43)

E X-na,a) A (@)

Now, on multiplying the Wiener-Hopf equation (4.41) on both sides with *—==7==—,

one obtains

X, QA% (@) F_(a,b)y- (4, N %(a) _ 2kegysinBoeiPsn00y_(n, @) A2 (@)

N ys (Mg, @) x-(m,a) "~ (ysinfg + D(a = kejcosBp)y-(n1, a)
= mT I 1:}: - ' --’V...z -‘:n:r

b i it I I ["0“" 2+ 2 Sing,b). (4.44)
m=1 (a?-ag)y-m,.a) L the

With help of cauchy’s integral formula the terms on the right-hand side of equa-

tion (4.44) can be decomposed as
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2k sinfge~*eii?sin%y _(n,, a) A2 (a) a 2kﬁfsin9ne_’kﬂfb5inﬂ'—‘
(m1sinfp + 1)(a — kejjcosbo) - (1, @) - (11 8infp + 1) (@ — kej5 cosfy)
. X-a, @) A2 (@) x- (4, kegj €08 00) A2 (ke cos Bg)
x-(m,a) X - (171, kejjcosf)
2k sinBoe““'rFFI’Si"ﬂUI_(m,kcﬂcosﬁg}u’i’_z(kcﬁccsﬁg]l
! (n1sinfg + 1) (@ — kejpcosBy)y - (171, Kesjcosby)

(4.45)

and

f -‘:mtfm —;ag,,;]x_(rm, CZ]JVE(CZ] cosLyb " i Siﬂﬂ;;,b]
m=1 (@ —ap)x-(m,a) Lm Ekf”
— 3 -(-‘-p); (COS E]”b + i S]]'l ﬂn:b]

mo1 (@ + @) L tkefi

& [(fm _laﬁmlx—[ﬂd-ﬂ]-ﬁv}(ﬂ] = (fm "'Iﬂmﬂm],’l‘,’+(ﬂd-ﬂm]u"ﬁz[am}
(@—am)y-(m,a) 2amx+(M,@m)
_ f Enfm+ ‘anaﬂua).xa-[ﬂd-am}ﬁf(amﬂ

cosEpb + 4
m=1 2amy+Muam)a+ay)

Lm "kcﬁ

sin L, b) : (4.46)

Now using equations (4.45) and (4.46) in equation (4.44), then placing the terms
which are analytic in the upper half-plane (Jm(a) > —kj;) at the left-hand side
and those which analytic in lower half-plane (Jm(a) < k.j;) at the right-hand side,

gives

X, )R (@)  2kepsinfpekeiibsindoy (n, ki cosfy) A2 (kejicosby)
N @y (4, @) N (1 sinflp + 1) (a — ks costlo) x - (1, kejj cos Bg)
” = Lmlfm +lﬂriiﬂl:a:'1+(’]'4-ﬂm]v’ﬁz(a’m] [cus,ﬁmb + Uk

m=1 20X (M ap)(a+ay)

sin,,b
‘cm E'I:EJ["_]" " )

B _.ri‘_(a,b)x_[q,,,al.fv_z(a) = Ly [cos.‘.‘.,nb L
x-(m,a) m@+am)\ Ly tkeji

« [ (Fn — Iuﬂm]x-(ﬂd-a]ﬂ_z(a] N (Frm +1am§!m]}{+(ﬂ4-a:ujv"’f(am] l
(la—ap)y-(n,a) 2amy+ M, am)

by Em [COSR”’b +£Siﬂ£mb]

me1 @+ am) LEm tkeeji

) I (i =~ tagm) -0, DAZ(@) | (fm + 10 Q) X+ (1a) X)) A (@) ] _

(@—-an)y-(nm,a) 2+ M1, )

sinﬂmb)

(4.47)
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The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle following the extended Liouville’s theorem gives

1+(r;1,a}@2+[a] a zk‘-"Siﬂﬂoe-!kfffbsmoﬂx_{?;Iq,ktiiCDSBOJ‘ﬁ/E{ICL-ﬂCOSHU}
¥+(g, @A, (@) (11 sin8y + 1) (a — ke cosBg) - (171, kejj cos by)
S Fm+tam@m)lm [COSLmb 14 X+{ﬁ4-am]-ﬂ+2(am}

- +—sint b)
m=1 2apla+an,) ﬂm ”Cﬁf " ,’t+(??1-ﬂml

(4.48)

4.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The equation (4.48) contains infinite number of u&known coefficients. To find out
these unknown coefficients one uses method of Mode-Matching technique with
the Fourier transform [70]. The Mode-Matching technique enables us to declare

the field components defined in the waveguide region in terms of normal modes,

as
: o Siﬂfjr}’ UE]
P ( g tPnx 449
2®9) mzzla Lo ik e
where
.rﬁ kflf f:r! Jm{ﬁn]:’jm{kﬂm' n=123.. (4.50)

To find B, and (,, placing equations (4.49) in equation (4.7) gives

sing,y
ﬂ”

&
(n3 +12) e ﬂz;?a
tkej krii

3)—"==0, n=123.. (4.51)

Using equations (4.40) and (4.49) in equation (4.23), then multiplying the result-

n"i} Ma
] JLf

ing equation by ( cos £;y) and integrating with respect to y from y=0

to y=b, one nbtams

fm—tCmm=— Lz Z apla+ .ﬁn]&nm- (4—52)

mn=1

where Ay, is
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ey — p “ :
. [’?:}2 ?}'4]2 + (ﬂz+ﬂ2|}--rjfri [COS(”b 4 i Siﬂfnb)
thesp (05 —£5))  thep(5; — £3) Cn theji (4.53)
Cﬂs.ﬁuxb Mg . ) |
s g sin£,,b|.
Rm {ki‘” "

Placing equation (4.52) in equation (4.32), then using the resulting equation in

equation (4.48) to yield

S da@an=I@;), j=123 (4.54)

n=1

where

alylaj) =—1 (%ﬂj sinL;b —cusf‘,mb) (aj+ Bn)Anj
cff

B lﬂfiﬂjlxuy (145 aj] = Lm(Bn—am)Aum
X+ (ﬁ'l;lxﬂ m:lzanr@%:(aj""am]
[COS.":;”b " E sl b) I+(?}4,£Im]</'r/+2(ﬂm:l
2 k X+, am)

~m [

(4.55)

and

— 2kejisin@ge~Keiibsintoy 1y, keji cosB) N2 (keji cOsO0) A (@) Y +(Nar @)
ai) = . :
¢ (1 sin8p + D(aj — kesjcosBo) x+ (M, @) x - (1, kejjcos o)

(4.56)
The infinite system of algebraic equations represented by equation (4.54) is solved
numerically. To solve this infinite system of algebraic equations we have trun-

cated it after first N terms in order to obtain required diffracted field.

4.5 THE DIFFRACTED FIELD

The diffracted field H; (x,y) is acquired redby taking the inverse Fourier trans-

form of F(a, y). By using equation (4.20), one obtains

1 %% (a)
Hi(x,y)= — | ———

5 — iﬂ(a] e!ﬂ[ﬂ][}-’—ble—laxda' (475?)
"o Kefs
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Using the change of variables a = —k5cost, x = pcosf and y = psin@ in the

equation (4.57), one yields

2 .
Hl[p ) = L[‘%+(_kﬁfcos 1) ki sin [e-;.lc,"sin:Hk,“pcos{:-ﬁJdr (4.58)
i 2n 1+, sint ' ’
b4

The asymptotic evaluation of the integral in the equation (4.58) can be obtained

via saddle-point technique. Here, saddle-point rests at t = @ whose contribution

is
H!(p,0) = P (P, + Py), (4.59)
where
. kmsinBe:kpvfl[ef-e‘i)a’eL-:ﬁ--:k.‘f[e"f-s%}mbsinﬁ
r= Vemkp(l+msint)
x- (N4, ky/ (€] — €3) /€1 cos Bg) A (K / (€] — €3) /€1 cosby)
X — . (4.60)
x-(m1, ky (E"f —E'é]ffl costy)
2k+/ (€2 - €2) sinBe~ KV €Ei-edeibsindo o (€] - €3) /€1 cosby)
s VEL(nsinfy + 1)(cosf + costy)
X-Ma ky/ (5 —€3)/e) cosbly)
: (4.61)
X-011, ky/ x (€4 —€3)/e) cosbl)
and

P3 = f (flﬂ' + Ial?!gﬂ]']‘cl?! x+ {?:-'bamj}'ﬁ’; {Q'HT:}

m=1\ 2amlam - (ky/ (€2 — /e cos@)) X+ &Em)

Cmb
cos Ly i yr

Cm tky/ (€2 —€) /e,

sinf,,b|. (4.62)
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4.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have analyzed and potted the numerical resuli for various
physical parameters of inteiest. Fig. (4.2) depicts the variation in the diffracted
field amplitude versus the truncation number "N". It is apparent that the effect
of the truncation number is negligible for N = 80. Hence, the infinite system
of algebraic equations in equation (4.54) can be managed to deal as finite. Fig.
(4.3) explores theiffect of separation between the parallel plates on the diffracted
field amplitude. The amplitude of the diffracted field decreases with the increase
of wall impedance |n,| as shown in Fig. (4.4). Figs. (4.5) and (4.6) show that
the diffracted field amplitude is not affected by impedances ag and 713, which is
similar to the result obtained by Cinar and Buiytikaksoy [12]. Fig. (4.7) shows the
variation in the diffracted field amplitude with wall impedance n,. The effect of
cold plasma permittivity values ) and e, has been analyzed in Fig. (4.8) and (4.9),
respectively. Here, we have found that the increase in cold plasma permittivity
value ¢ highly decreases the diffracted field amplitude while the effect of ¢
is negligibly small. In other words the diffracted field amplitude decreases with
increasing ion number density in cold plasma or by decreasing plasma frequency.
Here, in this problem it is observed that the diffracted field is highly effected with

€1 while slightly with e,.
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FIGURE 4.2, Variation in the diffracted field amplitude versus truncation number "N atfly =
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FIGURE 4.3. Variation in the diffracted field amplitude versus "b" al 8, =90°, k=5, 11 = 0.6,
N2 =041, 103 =07, n13=05€,=08and e =0.
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FIGURE 4.4. Variation in the diffracted field amplitude versus "n, " at ¢ =90%, k=5, 12 =0.41
,Ma=0.71,14=051 tey = 0.8, ea=0and b=0.2A.
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FIGURE 4.5. Variation in the diffracted field amplitude versus "n." at 84 =907, k=5, m =0.41
,H3=0.7,14=051¢, =08, €2 =0and b=0.2A.
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FIGURE 4.6. Variation in the diffracted field amplitude versus "ns " at 8y =907, k=5, 1, = 0.4,
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FIGURE 4.7. Variation in the diffracted field amplitude versus "ny” at 8= 90",k =5, 11 = 0.4,
N2 =031, 03 =051 € =08, 2 =0and b=0.2A.
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FIGURE 4.8. Variation in the diffracted field amplitude versus "e,” at 6 =90%, k=5, n, =0.4
,M2=03,n3=05,103=07, €2 =0and b=0.2A.
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FIGURE 4.9. Variation in the diffracted field amplitude versus "e2” at 8= 90", k=5, m =0.41
M2 =031, 03 =050, =07, €, =09 and b=0.2A.




EFFECT OF COLD PLASMA

CHAPTER

PERMITTIVITY ON THE
RADIATION OF THE DOMINANT
TEM-WAVE ?n' AN IMPEDANCE

LOADED PARALLEL-PLATE

WAVEGUIDE RADIATOR

In this chapter, the aim is to determine the effect of cold plasma permittivity and
other parameters on the radiation phenomenon. For this purpose an impedance
coated parallel-plate waveguide radiator located in cold plasma is considered.
This radiation phenomenon was initially considered by Rulf and Hurd [86]. Ac-
cording to them, the presence of surface impedances +Z; on the upper and -Z,
on the lower faces is the merely combination of impedances that converts the
boundary-valued problem into a scalar Wiener-Hopf equation. After that Biiyiikak-
soy and Birbir [41] generalized the problem for different upper and lower faces
surface impedances and solved by the hybrid method consisting of Fourier trans-
form with Mode Matching technique.

The section wise summery of this chapter is arranged as follow. Section (5.1)
consists of boundary-valued problem for radiation phenomenon obtained from

the geometry of the problem. Using this mathematical model, the Wiener-Hopf
71
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equation is formulated in Section (5.2) while the solution of Wiener-Hopf equa-
tion is obtained in Section (5.3). In Section (5.4) the infinite number of unknown
coefficients are determined. The mathematical expression for the radiated field
is obtained in Section (5.5) whereas the numerical results are shown in Section
(5.6). The contents of this chapter are published in Mathematical Methods in

the Applied Sciences, DOJI:10.1002/ mma.3464.

5.1 MATHEMATICAL MODEL OF THE PROBLEM

Here, we consider the radiation of the dominant trariverse electromagnetic wave
(TEM-wave) which is incident from the left in the parallel-plate waveguide re-
gion formed by two-part impedance plane S, define by {‘r, ¥.2)| x€(—00,00), ¥y =
0, z € (—oo,00)} and a parallel impedance half-plane S; defined by {(x,y,2)| x €
(-00,0), ¥y = b, z € (—oo,00)}. The left and right parts of the plane S, are coated
by the impadances Zy and Z,, respectively. The surface impedance of the lower
and upper faces of the half-plane S, are assumed to be Z; and Z,, respectively, as

shown in Fig. (5.1).

- .-l 1 ------- e -
. 4 Cold Plasma L
s i 2 e

i Zy (lmpedance)  {(xh) .
’ Z3 (Impedance) 4
r ® \
I i & I
L) ,
\ 3 ’

% B o #

e &y (Impedance) ; £y (Impedance) 1 .
. PR S

FIGURE 5.1. Geometry of the impedance loaded parallel-plate waveguide radiator locafed in cold
plasma

The total field can be expressed as follows:

. Hl(x,y) (b,00)
i 21X ¥y YE (b,00
HI(x,3 = ; (5.1)
[HI"(x,y) + H2(x, y)| #0(—x) + H2 (x, ) #(x), ye(0,b),
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where #(x) denotes the Heaviside unit step function, H inc(x,y) is the incident

field given by
H;:m:{x,yj - E’krii‘r' (52}
with €5 —¢€3
kejj =k - and k=w/Eoug. (5.3)
1

H;f (j =1,2,3) are the scattered fields satisfy the Helmholtz’s equation in cold
plasma

62 2
a2 a2

o+ k| )] =0 (5.4)

with the following corresponding boundary conditions and continuity relations

[m keji + ;_y] Hzltx.b] =0, X € (—o0,0), (5.5)
d 2
[ﬂgkq‘" - 5] HZ(x,b) =0, X € (—o0,0), (5.6)
a 2 a 3
FE(—X) {m keji + ﬁ_y] H (x,0) + 7(x) [ nakesi + a) H;(x,00=0, x€(-co,00), (5.7)
Hy (x,b) = H (x,b), X € (0,00), (5.8)
iHltx b)—ihﬂ*u b) x € (0,00) (5.9)
- S Tl Bk '
Hi™ 0,y + H2(0,y) = H3(0,y), ye(0,b), (5.10)
d ine i 2 _ i 3
S 0,)+ S HZ(0,y) = ——HZ(0, ), ye(0,b). (5.11)

The radiation and edge conditions are discussed as earlier.
5.2 FORMULATION OF WIENER-HOPF EQUATION

Fourier transform of the Helmholtz equation in cold plasma is satisfied by the
field H}(x,y) in the waveguide region x € (—co,00) and y € (b,c0) gives

2

d
27" (kg — a®) | Fla,y) =0, (5.12)
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With the help of radiation condition solution of equation (5.12) leads to

Fla,y) = As(@)e~ @b (5.13)

where

Lla) = f“ — a2 (5.14)

To find the unknown coefficient A;(a), using the transformed domain of the

boundary condition represented by the equation (5.5), one obtains

R (@)
Asz(g) = ————, 5.15
ala) Takey; +12(@) (5.15)
with
(@) = nakegiFs (@, b) + F4 (@, ), (5.16)

where the prime sign in equation (5.16) denotes the derivative with respect to y.
On using the additive decomposition theorem and equation (5.15) in equation

(5.13), one gets

!+(a.yl +F_(a,y) =

Ri(@) | eiay-b
—_— : B:17
T}'qkﬁf +I£(C¥]e ( )
The derivative of equation (5.17) with respect to y at y = b takes the form
r ¢ a3 [
Fila,b) = law A0 F_(a,b). (5.18)

Nake +1L(a)

As in equation (5.4), the Helmholtz equation in cold plasma is satisfied by field
HZ(x,y) in the waveguide region x € (0,00) and y € (a, b), multiplying this equa-
tion by €"* and integrating the resultant equation with respect to x from 0 to co
yields

d
5-s0

G la, y) =f(6) —raglt), (5.19)
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where

ad
F(y) —tag(y) = = H2(0,y) -1 H2(0, y) (5.20)

and ¥, (a, y) defined by

o0
@ la,y) = [Hg(x.y]e‘“dx, (5.21)
0
is a regular function in the half-plane.

Owing the method of variation of parameter the solution of the non-homogenous

differential equation (5.19) gives

W la,y) = Crla)cos Lla)y + Cgla) sin L(a) y

1
+ —_

@, (f(£) —rag(t)) sin L(a)(b-ndt, (5.22)

ST —

where C;(a) and Cyla) are the unknown spectral coefficients.
To find Cyla) applying the transformed form of the boundary condition repre-

sented by the equation (5.7), one gets

k,
Calar) = _132(::? Cyl(a). (5.23)

Placing equation (5.23) in equation (5.22) yields

sinL(a)y

Y. (a,y = CDSL(R’]_}’—T]ER}HW Co(a)
1 /
+ “(a]/(fm —xg(N))sinL(a)(b-tdt. (5.24)
0
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C7(a) can be obtained by adding the transformed form of equation (5.9) and 14k

times of equation (5.8) gives

R (@)
Crla) = —=
- #i(a)
i b
s T [((f[:] —1ag(1)) (nakejsin £(a) (b - t) + £(a) cos L(a) (b - 1) dt, (5.25)
0
) sin S(a)b
where wala) = (ma— I]g]kt”CGS.ﬁ(a]b — (1 +n2m4 k’fﬁjw (5.26)

Substituting equation (5.25) in equation (5.24) gives

Lla)cos Lla)y — kejjnzsin L(a)y

(gq. ¥ = -
HE S@w3(a)
b
: ing =
® %i(a] —f[f[r]—tag[t]] [cas.&l{a](b— n+ kt”mw)dr
L)
0
1 J'

]

The left-hand side (i.e., ¥, (a, y)) of the equation (5.27) is analytic in the region
Jm(a) > Im(kgscosfg). However, d‘he analyticity of the right-hand side is des-
ecrated due to the appearance of simple poles lying at the zeros of #5(a), i.e.,

@ = ta,, satisfying
Ws(tam) =0, Jm(am)>Imlkesy), m=1,2,3.. (5.28)

The poles in the equation (5.27) can be removed by enforcing the condition that

residues of these poles are zero. Then from equation (5.27), one obtains

@i(auﬂ = @ﬁ;[frn — 1 Om) [cos Ly b+ kc[f’h

sing,, b
29
E ) (5.29)

m
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where f,,; and g,, are denoted by

im |1 7| o
4l
‘o

sing,,t

2”!

CDSRQ; I— nz ktif

] dt, (5.30)

with
Em=/ k,?ﬁ - s (5.31)
and
1 Sin’:n;b] d o
@3:—[ b =12k, — W4 . 33
m= cos Ly b — nakejy Ss o a(am) (5.32)

Hence, considering equation (5.17) and the Fourier transform of the continuity

relation given by equation (5.8), one can write

gﬂ(a} Lla)cos L(alb — kemzsin £(a)b
————-F_(a,b) =
ﬂchff+!.‘_[ﬂ:] Lla)is(a)

b
X .@i[a]—f[f(t)—mg{ﬂ][cos,ﬁ[a]{b—r]+kcffn4% dt
0

]
" % [ (F(8) — targ(1)) sin S(@) (b - D). (5.33)
o

After simplification the above expression takes the form

ﬂzxiﬁ,alﬂ?itﬂr]

. +F_(a,b

naxti,a%ﬂ*(al (@0)
b

: f['[t]—mr ()]

l‘fﬁtall J ¥

1

cos Sla)t — ktﬁng% d

)

, (5.34)

with
L(a)

PO - . S 3 =] 2{a) b
@ + oy and A7 (a) =#5(a)e ¢ (5.35)

xmja) =
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and f(t) and g(¢) are expanded into a series of eigen-functions as

f(r) o | f sin £
_ Z m li:ns Cost=Tiki . mt
9[ I] m=1 gm i

(5.36)

Using equation (5.36) into equation (5.34), one gets the required Wiener-Hopf

equation valid within the strip Jm(—k;) < Im(a) < Im(k;) as follow:

mnﬂmb

’Tél[, J u}ﬂi (Q) m m
T4 @b=Y fiﬂ(cos Emb— ke (5.37)

Nax (3= ,a)ﬂ*(a) m=1 X*—any

Tz

5.3 SOLUTION OF WIENER-HOPF EQUATION

To obtain the required solution of Wiener-Hopf equation the kernel functions
A3(@) and yx(n;,@)) in equation (5.37) can be factorized by applying the known

results as follows

: : 1
A2 @) = [l (114 = 172) €08 kg — Kijj(1 +n2ma) sin kegyb] 2

Lla)b [anﬂ[a] uxb[ 2n n)
In - +
k,ﬁ b

x exp I (1 " ai) e (5.38)
1 m

and
N a) = A (-a), (5.39)

where the factors of y(7;, @) and C are discussed in earlier chapters.

() A (a)
Now, multiplying the Wiener-Hopf equation (5.37) on both sides with ki

X-Gpe) !
one obtains

Mex+ G @& (@) x-(G5 ) A (@)
[ 3 + F_la,b)

Nax+(5; @) AL (@) x-Goa)

r-(E,a) N3 @) o 5 _ o

- UE : fmz LG €08 Conb + keji) Smﬁ mb) (5.40)

x“(ﬂ’a} m1 @ —aj, Lo




5.3. SOLUTION OF WIENER-HOPF EQUATION 79

With help of cauchy integral formula the terms on right-hand of the equation

(5.40) can be decomposed as

Sk 3
‘I'Ef;z'ajﬂ_ (@) e Fm—1a@m

sin 2,,.!3]

~m

cos L, b+k
I'E!;T'a] m=1 az_a%! [ o Ll

oo ine.. b
Sll‘l...m
=3 cos Lmb + kejin2 —
m=1@+dm ~m

I (Fm —tagm)y- (,;_2- ﬂ:'-/"f_a(ﬂ] (Fm + iﬂ:ﬂm],‘[‘p{é. a:}-/ﬂ.g(a:}

+
([x—am]x-[ﬁ,tﬂ 2ar,;‘;[¢($.01]

sinL, b (Frm +tag,,i]x+(¢rmﬁsml

2!?! zaﬂ‘]'(ﬂ: +'ﬂ'm:|x+ tiia]

- Z [cosﬂmb+k¢"n2 (5.41)

m=1

Now using equation (5.41) in equation (5.40) and then placing all those terms on
the left-hand side which are analytic in the region (Jm(a) > — k) and the terms

which are analytic in the region (Jm(a) < k;) on the right-hand side which yields

Moxs G, R (@) in£,,b) Fm +1@8m) s (5, @)As (@)

J,: . ceat b kﬁmzsm‘ mb] H m na :
ﬁ41+(ﬁ'“:‘ﬁ+[a] m=1 Lm 2am(a +a"']x”(ﬁ’a}

I-(ﬁ.ﬂ]ﬂ-(ﬂ) ] i m

- @+ 3 (cosSb ke T

I—Em-ﬂ] m=10+ &m . Lm

(Fm —tagm)x - (,J]Lé: a) A (a) (fn+ Iﬂﬂ,,!]x+[$,ﬂ')u’§{+{ﬂ}
‘ 5 : (5.42)
[a:—frm]_:[_(a.ﬂ} 2aml’+(,?_d-ﬂ]

The required solution of Wiener-Hopf equation can be obtained by using analyt-

ical continuation principle following Liouville’s theorem gives

n2x+ (0 Q)R (@)

Nax-Go, ) A2(@)

i i 3
_ o (fm + t&m@m) SIUE;nb)I*-(E-ﬂ”‘jJ/"‘ {a'm:l. (5.43)

cos L b—k
m efffl2 o PR

me1 20 (@ + a ) m

@)
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5.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The equation(5.43) contains infinite number of unknown coefﬁcieisv In order to
determine these unknown coefficients we employ the well-known Mode-Matching
technique along with the Fourier transform. The Mode-Matching technique is a
standard method to handle the waveguide structures. This technique has been
used extensively iﬁ?, 88] to analyze the scattered field at the junction. In this
investigation the Mode-Matching technique enables us to declare the field com-

ponent defined in the waveguide region in terms of normal modes as

22 sin ’
HE9) = 3 an 005ty - kem =2 epe, (5.44)
n=1 n
where
Bn= ,fkfﬁ —%,  Im(By) > Im(kgp), n=1,2,3,... (5.45)

Bn's and {,'s can be obtained by using equations (5.6) together with (5.44) as

under

sing, y
al!

ke +113) cos{nb+ (L5, = kgmn) =0, n=0,1,23,.. (5.46)

Placing the continuity relations represented by the equations (5.10) and (5.11) in

equation (5.20), one yields
a 2
f(y) —ag(y) = ke — @) + aHz (0,y) — 1 HZ (0, y). (5.47)

Substituting equations (5.44) and (5.30) in equation (5.47), then multiplying the

resulting equation by (%ﬁ# - l%‘ﬁcos £;y) and integrating from y=0to y= b,
one obtains T
fm My Qm = % {kcifnﬂ:ﬂsgmb + EmSinEmb <= kcff’??z]
"aﬂl""fﬂ
Il o0
G > apla+Bn)Apm, (5.48)

@lﬂ n=1
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where Ay, is

keiitnz—m1)  keji(n3 +114) sin{,b
cFFz - tfiz > (cas{nb — ki izl
cu = 'Lm ‘-ru _Sm {

n
sinC, b
X (COS S"Eb = kc"ﬂ2 =

nm =

. (5.49)

Substituting equation (5.48) into equation (5.29) and then using the resulting

equation into equation (5.43) to yield

(= u]

Y dhlapan=1Ilayp, j=12,3,. (5.50)

n=1

where
sinC;b
.Efn[ﬂ:_;'} o= —1(0:}' + _ﬁn]&”j (C{]S -J‘:._;b + keffﬂd —
~1
A @I G @) 2 (B - @) A
H§I+(ﬁ, aj] m=1 2“::1@;’;; (aj + ®m)
i 3
Sin.ﬂmb] I-i-(apﬂ’m)u"ﬂ. (am)
x|cos8,,b+k 5.51
[ m effT4 £ I+(,-:T1-amj ( )
and
sinf;b) [sing;b cosLib ke
Iaj) = wlkejj — a;)[cosﬂjb+ kejiha— _" ] [ = _-' + kejifla— .f = '3‘_[&)
" W31+(,;—2,ﬂj]fﬂ3(aj] o0 tkegs + atm) [Sinﬂmb B cos L, b ?}zkcﬁ)
1 2 -
nip[ﬁ.a,—l ;:a:lzﬂ:r:@ﬁ;[a; +ap)\ Ly S Lm e
sinL, b I+(L:am]v"”’3(am]

o [cosﬁmb+ ez ] B (552)

‘cm x+{ﬁ-ﬂ:m]

The infinite system of algebraic equations represented by equation (5.50) is solved
numerically. To solve this infinite system of algebraic equations we have trun-

cated it after first N terms in order to obtain required radiated field.
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5.5 RADIATED FIELD

The radiated field H.(x, y) is obtained by taking the inverse Fourier transform of

F(a,y). By using equation (5.17), one obtains

1 R3 (@) .
Hl X, =t + EEL{H]{E}U‘_ME_I“IdﬂL 553
(%)) 2 ?}.1](2,;”+!.£(01) ( )
&
Using the change of variables @ = —kjjcos £, x = pcosf and y = psinf in the

equation (5.53), one obtains

Hzl (P.-B] Rl E-Ik,"Sill.f+!|‘.‘,“ﬂ(.‘05l[.f-ﬂ)dr. (554)

1 /‘ﬂﬁ(—kﬁf cos t)kejisin t
2r

M2 +isint
L4

The integral in equation (5.53) can be evaluated asymptotically through the sad-
dle point technique. Here, saddle point occurs at ¢ = 8. On taking into account

equations (5.3) and (5.43), the radiated field takes the form:

Hy(p,0) =

m3ky/ (€5 —€d) /e, sin@e™*PVE-edle _'%1_(,1—'2, ky/ (7 —€5) 1€ cosB)
V2mkp(ma+sinnix - (ﬁ. k\/ (€5 —€3) /€1 cosh)
i (Fm + 1amﬂm]}t+(¢= am]ﬂf(amjﬂi(k” [:Ef = €§]f€| cosf)

m=1 2&;}1[“1]!_(k (E%-f%]!€|COSGJJI-}(ﬁIaJnJ

z 1
sinL,, b
e '

% [cos Lub-nk\/ (€5 - €d)le, (5.55)

m

5.6 COMPUTATIONAL RESULTS AND DISCUSSION

In this section, we have presented some useful numerical results to show the
effects of various i-ysical parameters of interest on the radiated field ampli-
tude. Actually the solution of Wiener-Hopf equation contains a seif infinitely

many constants satisfying an infinite system of algebraic equations. To solve this




5.6. COMPUTATIONAL RESULTS AND DISCUSSION

infinite system of algebraic equations we have truncated it after N terms in or-
der to obtain the required radiated fielch Fig. (5.2) illustrates the variation in
the radiated field amplitude versus the fruncation number "N". It is apparent
that the effect of the truncation number is negligible for N > 20. Hence, the in-
finite system of algebraic equations in equation (5.50) can be managed to deal
as finite. Fig. (5.3) shows the variation in the radiated field amplitude with
increasing plate separation parameter b. Clearly, the radiated (diffracted) field
amplitude enhances when we increase the ratio b/A. Physically, such an in-
crease in the diffracted field amplitude is due to the fact that plate separation
parameter b becomes comparable to the wavelength A of the incident wave. The
amplitude will be maximum for b/A = 1. Figs. (5.4) and (5.5) shows the vari-
ation in the radiated field amplitude with impedances 5, and 7. both for in-
ductive and capacitative cases. Fig. (5.4) shows that in case of , (for capacita-
tive and inductive cases) the amplitude decreases with increasing impedance
where as for 1, (See Fig. (5.5)) for capacitative case the amplitude decreases
and for inductive case it rises. Fig. (5.6) explores the effect of 13 (both for ca-
pacitative and inductive cases) wherein the amplitude decreases with increas-
ing impedance, however, the case is different for the variation of 4 as shown
in Fig. (5.7). These impedance dependent variations are actually related to the
magnetic and electric susceptibilities of the waveguide surfaces. Actually, the
surface impedances Z; (j = 1,2,3,4) are normalized by Z; i.e., Z; = n,Zy. Here
Zy = \/H,/€q is the characteristic impedance of surrounding medium and g, and
€g are, respectively, the magnetic permeability and dielectric permittivity of the
free space. Since the surface impedances of a conductive medium (plasma) are
imaginary in magnitude, that is, Z = \/iep/(o + iwe), where o is conductivity of
cold plasma, so in the present model it would be taken as complex. Z in the
normalized form is ) = \/iop/(o + iwe)! Zy, which for free space becomes unity.

Fig. (5.8) demonstrates the effect of cold plasma permittivity €; on the radiation
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phenomenon. The radiated field amplitude is effected drastically in the presence
of an anisotropic plasma medium. The field amplitude enhances with increasing
plasma permittivity €, actually for fixed number densities of ions and electrons
in cold plasma, the parameter increases with the increase in incident wave fre-
quency o, i.e., € = 1- (“2)? (for high frequency signal). The electric field of such
a high frequency signal oscillates the electrons about the cold ionic centers and
such oscillating electrons then radiate enormously thereby increasing the ampli-
tude of the radiated field. Fig. (5.9) demonstrates the effect of parameter ¢; on
the radiated field amplitude. Clearly, the amplitude of the radiated field dimin-
ishes with the increase in parameter €;. Actually, the increase in the parameter
€2 leads to the decrease in the signal frequency for which the electron oscillation
under the low frequency of incident wave diminishes the radiated amplitude.
The results obtained in this work can be a useful knot in order to improve the
radiated signal quality transmitted by an artificial satellite in the ionosphere for

communication means to an earth station.

=81.0 -

-8l5

=825t

Radiated field amplitude (dB)

~83.0 T——

_8:‘“‘ - . - - . -
1 5 1 15 20 25 30

Truncation number N

FIGURE 5.2. Variation in the radiated field amplitude versus truncation number "N". The
other parameters are 8 =45% 1, =02, 1, =05, 13 =03, 13 = 0.6, ¢ = 0.8, €2 =0, k=5 and
bh=0.2A.
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FIGURE 5.5. Variation in the radiated field amplitude versus "n.". The other parameters are

k=5, m=07,1m3=06,1n,=04,6,=08,e2 =0and b=0.2A,
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FIGURE 5.6. Variation in the radiated field amplitude versus "na”. The other parameters are
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DIFFRACTED AND TRANSMITTED

CHAPTER

FIELDS BY AN IMPEDANCE

LOADED WAVEGUIDE LOCATED IN

COLD PLASMA

In this chapter, the prgblem of diffraction of plane wave by an impedance loaded
waveguide designed in cold plasma is considered. The structure of waveguide
is constructed from three parallel impedance loaded half-planes such that one
amidst in the opposite direction. Such type of problem was initially considered
by Weinstein [89, 90] and Boersma [91] for the case of two half-planes character-
istic by either soft (Dirichlet) or rigid (Neumann) surface material properties of
all faces of the half-planes. After that Cinar and Biiyiikaksoy [85] generalized
the problem for surface impedance (Robin) and each face of the half-planes is
loaded by different impedances. Here, the case is considered for soft, rigid and
impedance surface material properties of the waveguide located in cold plasma
as shown in Fig. (6.1).

The chapter is arranged as follows. In the next Section (6.1) mathematical model
of the problem in cold plasma is stated. The Wiener-Hopf equation is formu-
lated in Section (6.2) whereas the solution of Wiener-Hopf equation is developed
in Section (6.3). The unknown coefficients are obtained with the help of Mode-

Matching technique in Section (6.4). The diffracted and transmitted fields are
89
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considered in Section (6.5). In the end the Section (6.6) is devoted to numerical
results and discussions.

6.1 MATHEMATICAL MODEL OF THE PROBLEM IN COLD
PLASMA

In this chapter consider an incident time harmonic wave propagating in cold
plasma and making an incident angle . On striking the waveguide surface
the incident field generates reflected and transmitted fields. Let w denotes the
angular frequency and k be the wave number. The gec:rritry of the problem is
formed by three parilel half-planes represented by S;={(x, y,z)| x€ (~00,0), y =
b, z € (—oo,00)}, S;={(x, ¥, 2)| X € (-00,0), ¥ = —b, z € (—00,00)} and S3={(x,y,2)| x€
(0,00), y=0, z€ [_oi o)}, respectively. The material property of waveguide sur-
face impedance of the upper and lower faces of the half-planes S, and S; are

assumed to be Z; and Z;, respectively, as shown in the Fig. (6.1)

___________
- -

- -

- - Cold Plasma !r:nr{; ‘J'}]-.. .
- ¥ }. i Y
’ A .

) - A
/ ! i \
I Zy (Impedance)  ((h) -ttt T == [l
“ N (Rigid) ; :
v v e o '

\ . N (Rigid) ‘
A\ R ) n
& (0.0) D (Soft) ’

Y - ’

- 5 -
~. D (Soft) ; L

~ Eg l[im|:cdnnm_-jwch) I

- -
- . -
--------

FIGURE 6.1. The physical configuration of the waveguide located in cold plasma

The total field can be expressed as follows:

H(gy) + Hi"(x,3) + H (x,3), y € (b,00)
P Hg i ]ﬁ[_x] + H%(xr ]f-;bp{x]r £y, b}
H; (x, ) =14 E X i (6.1)
H3(x, y)#(—x) + H (x, y) #(x), y€e(=b,0)
| H:(x,y), y € (—oo,—b).




6.1. MATHEMATICAL MODEL OF THE PROBLEM IN COLD PLASMA

where .#°(x), H;"‘(x, y) and Hff (x, y) stand for Heaviside unit step function, inci-
dent and reflected fields, respectively, which are already defined in Chapter (4).
{H]  (j=1,2,3,4,5) are the scattered fields satisfy the Helmholtz equation in
cold plasma as under

[ F P

2
EJFEJFE‘TT]

Hi(x, )] =0, 6.2)

with the following corresponding boundary conditions and continuity relations

m @ 1 _ . =
[1+ o 6y]Hz(x, b) =0, X € (—00,0) (6.3)
EH2(::c 0)=0 x € (0,00) (6.4)
6}’ z 3 =\ e ¥
a 3
—H;(x,b) =0, X€ (—o0,0) (6.5)
dy
H:(x,-b) =0, X € (—00,0) (6.6)
8
Hi(x,0)=0, X € (0,00) (6.7)
[1 - ﬂi] H®(x,~b) = 0, X € (~00,0) (6.8)
I-"C.:Ff 5}'
Hlxb)+ H™(x,b) + H' (x,b) = H:(x, b), X € (0,00) (6.9)
a 1 d inc d ref = d 2
asz(x,bHasz [x,b]+ayH: (x,b) = Efsz(x’b]' x€(0,00) (6.10)
H3(0,y) = H(0, ), x€(0,b) (6.11)
iH“m )—EH‘?(O ) x€(0,b) (6.12)
B B g Eae ' '
H2(0,y) = H2(0, ), x€(=h,0) (6.13)
iH3(|:- ]—EH‘;[O ) €(-b0) (6.14)
B = g " . :

Hi(x,~b) = H}(x,~b), x€(0,00) (6.15)
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d 4 i d 5
aHz(x,—b)_asz(x, b), x € (0,00). (6.16)

6.2 FORMULATION OF WIENER-HOPF EQUATION

Since Helmholtz equation in cold plasma is satisfied by the field H.(x,y) in the

waveguide region x € (—co,00) and y € (b,o0) whose Fourier transform gives

2

d 3 ol
a7 +(k;— a®) | Fla,y) =0. (6.17)

Using the radiation condition the general solution of equation (6.17) is as under
Fla,y) = Ay(@)e @00, (6.18)

To find the unknown spectral coefficient A;(a), using the transformed domain of

the boundary condition represented by equation (6.3) gives

Kefi

As(@) = o T @y, @), (6.19)
where
#* (@) = Fy (a, b) + %A(a,b) (6.20)

L eff
and y(n;,a) are defined in previous chapter.
Using the additive decomposition theorem and substituting equation (6.19) in

equation (6.18), one can write

k{- { L
F_(a,y) + Fula,y) = %@i(a]x(m,a]e’”‘“"y b (6.21)

The derivative of equation (6.21) with respect to y at y = b takes the form

Fil(a,b) = kiR @y, a) - F-(a, b). (6.22)
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As ﬂi Helmholtz equation in cold plasma is satisfied by field HZ(x, y) in equation
(6.2) in the waveguide region x € (0,00) and y € (0, b), on multiplying this equation
by e'** and then integrating the resultant equation with respect to x from 0 to co,
one gets

d? .
Ia—yz +22@)| 4, @, y) = §) —sagm), (6.23)

where 4, (a,y), f(y) and a(y) are also defined as earlier.
The general solution of the non-homogenous differential equation (6.23) can be

obtained by using the method of variation of parameter yields
1 1
Gl y) = Cola)cos Lla)y + Crpla) sin L(a)y + @ / f(t)sin C(a)(b-1)dt, (6.24)
0

where Cy(a) and Cjg(a) are the unknown spectral coefficients.
H sing the transformed form of boundary condition given by the equation (6.4),

one gets

1

4 (a,y) = Cola)cos Lla)y + o

¥
[[fm —wag(n)]sinLia)(y - ndt. (6.25)
0

The transformed form of the continuity relation represented by the equations

(6.9) and (6.18), respectively, gives

2in; sin Boe‘lkq;bsmao
F.(a,b) + e -
(o, D) [1+qlsinﬁu]([x—kcﬁcﬂsﬂo] L, b) ( )
and
: 2k,i;5inﬂge"*-:ﬁbsinﬂﬂ ,
Fo(a,b)+ =4 (a,b). (6.27)

(1 +1ysin8g) (@ — ke cos bg)

Adding equation (6.26) and {.E’ff times of equation (6.27), one can obtain

Ul
ikejj

G, (a,b) + -4, (a,b) = R (a). (6.28)
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Cy(a) can be obtained by placing equation (6.25) in equation (6.28) which yields

]

 Ri@ 1 sinC(a)b-1 m

Cola) = V@) %[a]f(f(yj —mg{y]][—ma] + ke cosL(a)(b—1t)|dt,
0

(6.29)

with

#ila) = cos Lla)b— Th

Lla)sin L{a)b. (6.30)
lkcﬁ

Placing equation (6.29) in equation (6.25) gives

1
Lla)

¥
Gila,y) = [(ﬂy]—tag(ynsin Lla)(y-nde+
0

cos L(a)y 4
— & (a
Wila) +

sin &(a)(b—1) o m
S(a] !k’cﬂr

b
J—f(f(y]—mg[y]]( cos,ﬂ(a](b—r})dt !
0

(6.31)

The left-hand side (i.e., ¥, (a,y)) of the equation (6.31) is analytic in the upper
half-plane Jm(a) > Jm(k.j;cos ). However, the analyticity of the right-hand side
is desecrated by the appearance of simple poles placing at the zeros of #;(a), i.e.,

@ = +a, satisfying
Wi(xam) =0, Jmlam)>Imkey;), m=1,273... (6.32)

The poles in the equation (6.31) can be removed by imposing the condition that
residues of these poles are zero. Then from equation (6.31), one obtains
sin £, (b — 1) M

b
‘@i(am} = [(f[ﬂ — 1ty (1)) (7 +—=—cosEp(b-t)|dt. (6.33)
2 L e
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After simplifying equation (6.34), one gets

sing,b

#liam=|
. it ‘cm kcf

cosL,y, )[(f t)—tamal))cos £y tdt.
f(¢) and g(t) can be express in the form of eigen-functions as follows:
—ag(t) = Z{ —1agy) cosLyt.

Substituting equation (6.35) in equation (6.34) leads to

sing,, b
Lm ‘ cf

-@1 (am) = [

After simplifying the equation (6.36), one can write

sin£,, b L m

@f_(am] = D':,,(f,,, — Q) ( <. T cos b
with
. kfﬁ -a,
and
D = ‘Q”‘%’T%%(aml

cos ﬂ,,,b] f z (fn—taman)cos £, tcos Ly, tdt.

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

The Fourier transform of the continuity relation given by equation (6.18) gives

2.]6:}[8“'1 Q[Je—:k,ff.‘minﬂg

(1+n,sinb)(a - kjjcos ) =9 (a, b).

.|.::+(a.b]+

While placing equations (6.22) and (6.31) in equation (6.40) yields

(6.40)
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2kjisin Oge " keifbsindo

L
k @" ] _F' ’b
ke 2 (@) x(m, a) (a J+(l+q13in80}(a—kcﬁcnsﬁg]

b
» T 4
AR SODE (o) . 1 f[f{r]—aag{r)]cosi‘,{a’]tdr. (6.41)
Wy(a) .

Wyla)

Rearranging equations (6.41), one gets

: ol ' 2k ing, —tk,jjlrsinGy
”TII'[?;;I)QJ“] & F e ﬁf.Sln ne
(a) (1 + 1 sinfp) (@ — ke cosBy)

b
—Mﬁf{f(ﬂ—:ag(f})cos,ﬁ(alrdr, (6.42)

0

where

N a) = Wila)e~@P, (6.43)

Using equation (6.35) into equation (6.42), one obtains

. @4 2k in@ =tkejprsindy
tmx(mqﬂr) +m+f?-{a,b]: t“:sm e
A4 a) (1 + 11 sinf) (@ — kefs cos )
] b o
Y (Fm + ta@gm) cos £, r cos L(@) tdr. (6.44)

B ?fﬁfﬂ] m=1
0

After simplifying the equation (6.44), one can obtain the required Wiener-Hopf

equation valid within the strip Jm(kj;cos ) < Jm(a) < Im(k.) as follows:

’ﬁlx[ﬂl.a]ﬂi(a) i j’:'__.(alb} - Zkﬁi.singt]e_lkl'”bﬁnﬂ”
S (141 sinfg) (@ — kejj cos bg)
B w{.ﬂmsin,ﬂm by. (6.45)

2 2
m=1 @~ — Uy

In order to calculate the transmitted field, the Fourier transform of the Helmholtz

equation in cold plasma in the waveguide region x € (—co,00) and y € (oo, =b)
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results into

d2
[d—yzﬂfcfﬁ—az] ¥(a,y) =0, (6.46)
where -
¥(a,y) = [ H3(x,y)e'“ dx. (6.47)

-0

Using the radiation condition the general solution of equation (6.46) is as under
Y@, y) = As(@)e” H@Uh, (6.48)

To find the unknown coefficient A5(a), using the boundary condition represented

by equation (6.8) in the transformed domain, one obtains

ke R (@)x (12, @)

Asl(a) = , 49
&) Lla) L)
where
R (@) =¥ (@, —~b) - 22, (a,-b). (6.50)
ki

Using the additive decomposition theorem and equation (6.49) in equation (6.48),

it is found that

hffﬁéi(a]x(nz,a]E_,,_‘m}{‘.,m}

Wila, ) +¥_(a,y) = @)

(6.51)
whereas the derivative of equation (6.51) with respect to y at y = b takes the form
W (@, —b) = —tk§i R (@) x (2, @) =¥ (a, - D). (6.52)

From equation (6.2), we observe that H:(x, y) satisfies the Helmholtz equation in

cold plasma in the waveguide region x € (0,c0) and y € (=b,0). After multiplying
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by ¢'"" and integrating with respect to x from 0 to co, takes the form as under

d2
Id_yz + £2(0)| Gala,y) =p(y) +eq09), (6.53)
with
)
p(y) = aﬂjm. ¥), q(y) = H0,y) (6.54)
and G, (a,y) defined by
Gila,y) = ng(x,yJE“Idx, (6.55)

0

is a regular function in the half-plane.
The general solution of the non-homogenous differential equation (6.53) can be

obtained by using the method of variation of parameter yields

¥
Gila,y)=Cp(a)cos Lla)y + Crzla)sinL(a)y + ﬁ/(p{t] +q(f))sinL(a)(y— ndt.

-k
(6.56)
To find Cj;(a) using the transform form of the boundary condition represented

by equation (6.7) gives

0
Ciila)=— [ (0(1) - 1aq (1) sin £(a) rdt. (6.57)
@,
-b

Substituting equations (6.57) in equations (6.56), one obtains

0
G (e, y) = Cra(@)sin L(a) y + w-/‘(p(ﬂ—mqunsinﬁrdr
-b
1
+ @ /(p(r] —ag(y))sinL(a) (y - t)dt. (6.58)
=0
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The transformed form of the continuity relations represented by the equations

(6.15) and (6.16), respectively, are as below
¥ila,—b) = Gila,—b) (6.59)

and

¥, (a,-b) = G (a, —b). (6.60)

!J] @

Subtracting equation (6.59) and ; tlmes of equation (6.60) yields

Gy (@,—b) — 22-G, (a,~b) = B (a). (6.61)
1k¢ﬁ

To find Cjz2(a) placing equation (6.58) in equation (6.61), one obtains

~ %5 (@) cosLla)y— “,Lﬁ M a)sinS(a)b
Ciala) = Vo) + TS AT /(p N —aq(n))sinCla)tdt,
(6.62)
where
Ws(a) =sin L(a)b + t:—:ﬁ L(a)cos Lla)b. (6.63)

Using equation (6.62) in (6.58) yields

G.(a,y) = f}'(?sinsm;y
cosL(a)b —T;Ffﬂsinﬂ[a]b

+ S @Hoa) sinﬂ{a]yf(pu} —aq())sinL(a)rdt

-b

Cgi"}yf(p[n —taq())sin “£d£+m[(f(£] —tag())sinL(y-ndt.  (6.64)
-b




100 CHAPTER 6

Rearranging equation (6.64) takes the form

J"

~ 25 (

Gela,y) = (@ sin £(a)y + @ I/b(P(!]—mq(.r]]sinﬂ{a](y-;}d;
sin £(a)(y+ b) + %E(Q}CQS-‘:(Q](}’+ B ° |
N Lla)#s(a) f(P“:'ﬂaq(ﬂ}smﬁ[a}!dt.

=b

(6.65)

The left-hand side (i.e., G.(a,y)) of the equation (6.65) is inaly'* in the upper
half-plane Jm(a) > Jm(kjscosty). However, the analyticity of the right-hand side
is violated by the appearance of simple poles placing at the zeros of #5(a), i.e.,

@ = +a,, satisfying
Hs(£vim) =0, JIm(v,y) > JTmke), m=1,2.3.... (6.66)

The poles in the equation (6.65) can be removed by imposing the condition that

residues of these poles are zero. Then from equation (6.65), one obtains

@i (Vi) =— tostinl + 2

—
Lin L

0
inL,,;b] f{p{t} —xq(D))sinly, tdt, (6.67)
=0

where
Lim = \/ ki = Vi, (6.68)

p(r) and q(1) can be expanded into a series of eigen-functions as follows:

p(t) —aq(t) = Z (pn —taqy)sinLyt. (6.69)

n=1
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Using equation (6.69) in equation (6.67) yields

casLmb

'@i(aml =- [ I .l .
m ¢

After simplification, equation (6.70) gives

COs ‘iLJ'n';-.'I N2
L lkcl'f

@i (@)= Di;(pm + Iqml ( Sianb ’

LmcosLy,b 8 .
Dii - (i zvni m E%(‘v,n].

Using equations (6.52) and (6.65) in equation (6.60) yields

. ' () %3 (a)
i -1 3 ok S St St At sl AR 1
thesi R (@) x (N2, @) =¥ (&, —b) Vo) cosL(a)b

#'/( ]f(;o(r] —xq(t))sinL(a)tdt.

-k

After simplifying equations (6.73), one can obtain

Va) R o it 7

0
k; i 2 ‘%‘i ! :
pix (N2, @)% (@) 1 /(p(;]_mq(.r]]sin.‘l{alfd!.
~b
where

._/VE({I} -~ %(a]elﬂ[ﬂl b.

2 SIHL,,!b]fZ{p,, 1) sinL, tsinl,, rdt.

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

(6.75)

Using equation (6.69) into equation (6.74), one obtains the required Wiener-Hopf

equation valid in the strip Jm(—k;) < Jm(a) < IJm(k) as follows:

kefix (2, )3 (a)
N (@)

—lF (ax,—

b
o0

[E (P —taqm)sinL,, tsin L(a)tde.

[ :

(6.76)
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From the above expression, one can write

ke x (M2, )R (@) ¢ o
EFF"I l_}‘:"r‘[ﬂ:] _l{"l--{a ,”E_IH (L;” CQSLrnb} (677}

6.3 SOLUTION OF WIENER-HOPF EQUATION

To solve the Wiener-Hopf equations the kernel functions 4 (a), A (a) and y(17;,a))
in equations (6.45) and (6.77) can be factorized by applying the known results as
following:

Na) = N )N ), (6.78)
N3 (@) = NP (@) N (a), (6.79)
where

1

A a) = [cos kejib + 1y sin kb

Lla)b [a+1“' a:]] uxb( 2 n) o ( a) wh
X €X In 1-C+In +1= 1+—|emws (6.80)
5 kej kil 2 ml_—ll @m
and
2 1
NP (@) = [sinkejib— i cos kejib) 2
Lia)b a+tL(a) xh 2n 7] & a el
x exp ln[ ]+—(1—C+ln -!-l—) (1+—)em (6.81)
7 kfﬁ 7 ktiib 2 nlr-z[l m
such that
N a) = A -a), (6.82)
N(@) = A2 (—a). (6.83)

As mention before, the factor of y(n;,a) can be written in terms of the Mali-

uzhinetz’s function.

AHa)

Now, multiplying the Wiener-Hopf equation (6.45) on both sides with -,

one obtains
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iy 0, R+ (@) NA@F_(@b)  2kgysinGoekeibinlo 4 (q)
Nia) x-mua)  (1+n;sinBp)(a — kejjcosBo) y - (11, @)
= Rm Sinﬂmb(frn _lagmj-”j(ixl

=2

m=1 [uz'a%r].x—(ﬁ'l:a]

(6.84)

With the help of cauchy’s integral formula the terms on right-hand of the equa-

tion (6.84) can be decomposed as

Zktrfsinﬂge"k*ffsmm’.ﬂ_“(a]
(141, sinfy)(a — kc"rznsﬁ[,]x_ (1, a)
NHa) ANk cosbo)
X-(n,@  x—(m, kejjcoso)
2kgjisinBpe keiibsinbo 44 (ks cosBg)
(1 +118in8p) (@ — kejjcosBy) y- (11, kejj cosBg)

2k€lf SinBOE-Jk,FFGSiI]{}u

~ (1 + 71 5in00) (& — Kef; 05 B)

(6.85)

and

f Lmsin Ly, b(fm —tag,,,]ﬂ_“(a] .y f Emsgf«mb(fnr +ﬂamﬂm}-ﬁf+‘4(am]
m=1 ('12_‘1%;;]1'-[7?1-“] m=1 Al + @) Y+ (1, @)
=, -ﬂmsin-ﬂmb (fm - “xﬂm] Jy_“(a] + (fm +1amﬂm] L-’Vf(am}

*2

m=1 @ty (a—apy-a) 2amy+ (M, )

(6.86)

Now using equations (6.85) and (6.86) in equation (6.84), then placing the terms
which are analytic in the upper half-plane (Jm(a) > —k;) at the left-hand side
and those which analytic in lower half-plane (Jm(a) < k) at the right-hand side
which gives

1 y+ (1, R (@) 2ksinfpetefibsinto g4 (k. cosBy)
J‘r’ftaj - (1 +mnysinflp) (@ — ke cosbp) y - (171, kejs cos )
+ f (Frm + 1@ @m) L Sin ﬂmbﬂf(am] . F_(a,b) A (a)
m=1 2amla+amysn,am x-,a)
2k,jisinBpekefibsindo Na) A (kejjcosBo)
(1+n, sinfp)(a — kj;cosby) lx- (M, @) x-(11, kejj cos Bo) ‘
" f LmsinLy b [[fn: —Iagm]«fi"_"[a] " (im + 1€ 1, 9 1m) v”"":rq{am} .

€+ (@ —am,)y-(n,al 2amy+ (M, anm)

(6.87)

m=1
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The required solution of Wiener-Hopf equation for the diffracted can be obtained

by using analytical continuation principle following extended Liouville’s theo-

rem yields
. -Ik,“bsillﬂﬂ 4
miys )R (@) 2kj5sinfpe- N (ke cos )
Na) " (1 +n18infg)(a — kejj cosB)x - (11, keji cOS Bg)
= — [fﬂi'+Iall!glﬂjﬂﬂlSinﬁl’ﬂb“’yﬂ?{alﬂ)Y (6788)
m=1 2apm(a+am)y+ M, am)
Now, multiplying the Wiener-Hopf equation (6.77) on both sides with %,
one obtains
4 = ! =
ffeFfX+(Hz,&)5€+fﬂ) B A2 (a)¥Y_(a, b) - = Lpsin Lmb(pm —1aqm) A (@) (6 89)

N3 (a) x-m2,@) o] (@2 —v2)x-(2,a)

With the aid of cauchy’s integral formula the terms at the right-hand of the equa-

tion (6.89) can be decomposed as

D [y €08 Ly b(p m — taq ) A2 (@) _ 2 (P + WV ) L €08 Lin BAZ (V)

m=1 (@2 - vi,)x- (2, @) T e 2um(@+ U)X+ (2, Vim)

+ o LmcosLyb [ (pm —1aqm) H3(a) i (pm+1vyaQm) 'ﬁf{“'nﬂ (6.90)
m=1 @+Vpy (a@—vp)x-(1n2 a) 2V X+ (M2, Vi)

Now substituting equation (6.90) in equation (6.89), then placing the terms which
are analytic in the upper half-plane (Jm(a) > - k) at the left-hand side and those
which analytic in lower half-plane (Jm(a) < k) at the right-hand side which

gives

ky+(n2, @)% (@) 2 2 (P + WimAm) Lin €08 Lin b A2 () _ F_{a,h)Q_(a)

J‘r"f(ﬂ:) _-;;Z=| 2o (a+vm)ys (2, v5) - x-(m2,a)
e 2 Ly cosLyb [ (P — taqm) JV_E(“J " (P + 10 qm) u"‘aﬁ(um] (6.91)
m=1 @+Um (@—vmlx-n2z a) 2Umx+ M2, vm)

The required solution of Wiener-Hopf equation for the transmitted can be ob-

tained by using analytical continuation principle following extended Liouville’s
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theorem, the above expression gives

kx+mua)&3 (@) $ Bt W) L €08 Linb N (Um)
.,4’;5[0:] m=1 2upla+vmlxs (M2, vm) )

(6.92)

e
6.4 DETERMINATION OF THE UNKNOWN COEFFICIENTS

The significant distinctin of this sort of formulation from the one used by Cigar
and Biiyiikaksoy [12], was the simultaneous use of Mode-Matching technique
with the Fourier transform. The Mode-Matching technique enables us to express
the field components defined in the waveguide region in terms of normal modes

as

H2(x%,3) = Y apsin,(y+bye™'P*, (6.93)

m=1
With the help of boundary conditions represented by equations (6.5) and (6.6) 8,

‘s and {,’s are obtained from

c” CDSEHb :0, n= 1,2,3,..., (6.94}
which gives
n
{n=02n+ 1)5, Py=1 a’k‘:'ﬁ =%, Im(Ba) > Imikeyy), n=1,2,.. (6.95)

From continuity relations represented by equations (6.11) and (6.12) gives

() —t1ag(y) = —1 ) anla+ Pp)sindn(y +b). (6.96)

n=1
Using equation (6.35) into equation (6.96) gives

o0

Z (fm - m:ﬂm] COSE;;;I =it cf: anla+ ﬁn] sindp {}’ +b). (69?)

m=1 n=1




CHAPTER 6

Multiplying equation (6.97) by cos £5t and integrating with respect y from y =0

to y = b, one obtains

= & casil
fs—tags = @4 Z : : apla+pBp), (6.98)

§H= S

Using equation (6.98) in equation (6.37) gives

sin £ b ( cos L
@1 (Xm) =— [ o = C'DS-mb] = q:! ap(@m + Bu) (6.99)
A f ke fif n=1 =L

Substituting equations (6.99) and (6.98) in equation (6.45) at & = a, leads to

M x+(, as) [Siﬂﬂs ] (.,smi,s
£b "
Aas) 2 fhn S E 2 —5 a3 nla@s+ Bn)

- 2k sin@geKesrbsinbo g (g COSHQ]
(1 +7n;sinBp)(as— kejjcosBo) x - (1, kejjcosbo)
v 1€ SIN Ly BN () = {psin Ly b

- —0p(fn — am). 6.100)
m:l-f"';fa(as+am:'zaml'ﬂﬁ'laamlu=1 ff,—-ﬂﬁ, b " (
The above expression can be written as under
oo
¥ byl =I0ad.  $=1%23u. (6.101)
n=1
where
mx+m,ay) (sinCb  m )(,,sm.,s
aylas) = +——vcosl;b (as+ By)
Al = i) e, kg g P
i f Ly 51;:12.-:;'[7--’1":'[ﬂ.-u]f.-;SinEmb(f:i = zﬂfnﬂ (6.102)
me1 2N @@+ am) Y (N, @5 — £55)
and

2kerrsinBpe keitbsinbo g (ks cos )

I(ay) = / ]
(1 411 5in8g) (@ — kejj c0sBp) ¥ — (11, kejj cO8 B)

(6.103)
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The infinite system of algebraic equation iiequation (6.101) will be solved nu-
merically. To solve this system we truncate the infinite system of algebraic equa-
tions after the first N terms.

Now for transmitted field one can consider continuity relations represented by

equations (6.13) and (6.14) as under

p(Y) —taq(y) = -1 anla+Pp)sind,(y + b). (6.104)

n=1

Using equation (6.69) into equation (6.104), gives

Z (pm —taqmlsinLy,t =—t Z ayla+ fy)sind,(y+ b). (6.105)
m=1 n=1

Multiplying equation (6.105) by sin L;y and integrating from y=-b to y =0, one

obtains
0

Ps—lags = E';Tl’ Z apla+ fp)sind ,(y + b)sinLgydy, (6.106)
s n=1
-b

simplification of which gives
pPs—tagqj=— @.; Z apla+ Bp)Ans, (6.107)
mi

where A, is given by

A= - gz (Lasin b= CysinLb). (6.108)

6.5 THE DIFFRACTED AND TRANSMITTED FIELDS
L

The diffracted field H; (x,y) is acquired by taking the inverse Fourier transform

of F(a, y). While using equation (6.21), one gets

ke g
H (x, J 1 /“[ﬁ}( 4(’1]1(” a] Jn..-[ﬂ'][]r' 14} —Jﬂ’Ida (6.109)
%
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Using the replacement of function y (1, @) and variables a = —kj;cost, x= pcos0

and y = psinf, equation (6.109) takes the form

-lktffsi.l'll"‘{kt”lﬂCOS“-ﬂjdL (61][})

1 (R (—keicost)kessint
Hzllp.ﬂ]zgf +(=kejjcos Dkejisint

1+nsint
s

Theintegral in equation (6.110) can be evaluated asymptotically through the sad-
dle point technique. Here, saddle point occurs at ¢ = 1.

On taking into account equation (6.88), the diffracted field takes following form

T TR
k #(E:f _Eg] Ilrelel.ﬁ'pv' [E‘E—E%]#E]—EE—ELv’{f‘[—fi}fftbslﬂﬂ sin@
Vvemkp(l+1ysinf)

2zsinﬂue_Fk\ ‘Ef_fgmlbﬁinﬂ“.ﬁf_"[k\ 1€ —€2)/e; cosBy)
1 FaEl 0 "
N1 (1 + sinBp)(cos @ + cosBy) x - (11, ki cosBy)

H;(p,0) =

f 18y singy, b'ﬂ;i (@) (Fim + 1@, Om) 'jyj(k"\-" (Ef B E%”E' cosf)
m=12101 @@ — k[ (€5 —€3) /€1 cosO) x4 (1, @m) | X-(m1, ky/ (€3 —€3) /€1 cosB)
(6.111)

The transmitted field H2(x, y) is obtained by taking the inverse Fourier transform

of w(a, y). While using equation (6.51), one gets

5 " kcffﬂi(&}x(?}'z,&] —180+b) ,-1ax
Hl(x,y) = 23[ @ e e "da. (6.112)
»

Using the replacement of function y (12, @) and change of variables a = ~kejjcost,

x=pcosf and y = psind, equation (6.112) takes the form

5 -
Hg[p,ﬂ] = % [.%4-[_?2;02;??‘5[“!e_‘k'”mMk'”pcosmmd[- (6.113)
) 2
%

Thegdntegral in equation (6.113) can be evaluated asymptotically through the sad-

dle point technique. Here, saddle point occurs at ¢ = 27 — 8. Taking into account
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equation (6.92), the transmitted field takes the form:

(€2 -ed)/ey sin@e Py €1 -ed)ler—F —tkby /(€] -c3) ey sind
V2mkp(l—1n2sind)

3 ./V_S(k (E%—E’%]J{E|CUEB) i LFH CDSL,,!.E].)"I"‘E[‘_U";}{pm+(qm] (6.114)

x_ [ﬂ 1s k‘ III(E-% _Eglffl cOs H) m=1 2”!?! (UJH = kﬂff{:ﬂsejx"' (?]EJUm] )

]
6.6 COMPUTATIONAL RESULTS AND DISCUSSION

Hi(p,0) =~

In this section, we evaluate the numerical results for various physical param-
eters of interest. It is obvious to see that the diffracted and transmitted fielﬁ
represented by the equations (6.111) and (6.114) contain infinite series. Fig. (6.2)
shows the variation of the modulus of the diffracted field versus the truncation
number "N". It is observed that the effect of the truncation number is negligible
for N = 100. Hence, the infinite system of algebraic eilations in equation (6.101)
can be managed to deal as finite. Fig. (6.3) deals with variation of modulus of the
transmitted field with respect to truncation number N and the result is obtained
that the effect of the truncation number is negligible for N = 80. Fig. (6.4) depicts
the variation in the diffracted field versus impedance n,. It is apparent that the
diffracted field decreases with increasing of surface impedance 7,. Whereas Figs.
(6.5) and (6.6) show variation in the diffracted field versus the cold plasma per-
mittivity values €) and e;, respectively. It is interesting to note that the diffracted
field highly decreases by increasing €; but slightly increases with increasing €.
Also Fig. (6.7) explores the effect of surface impedance over the transmitted field.
It is observed that the transmitted field also decreases with increasing 7. The ef-
fect of cold plasma permittivity values €; and e» over the transmitted are shown
in Figs. (6.8) and (6.9), respectively. It is observed here that the transmitted field
highly decreases while increasing €, whereas it increases slightly by increasing

€2. In other words the diffracted and transmitted fields amplitude decreases with
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increasing ion number density in cold plasma or by decreasing plasma frequency.
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FIGURE 6.2. Variation in the diffracted field amplitude versus "N" at k=5, 0y =45%, 0 = gp?,

M =0.2;,€ =086 =01, b=0.21.
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FIGURE 6.3. Variation in the fransmitted field amplitude versus "N” at k=5, 8, =45, 0 = 90",
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FIGURE 6.4. Variation in the diffracted field amplitude versus "&" af 6y = 45% k=56, =08,
€2 =0.1 and b=0.21.
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FIGURE 6.5. Variation in the diffracted field amplitude versus "e," at k=5, 8y = 45%, n =02,
€2 =0.1 and b=0.21.
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FIGURE 6.6. Variation in the diffracted field amplitude versus "e2" at k=5, 0y = 45% 1, =0.24,
e1=08and b=02A.
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CONCLUSION AND PERSPECTIVES

CHAPTER

The study of plasma in wave scattering problems have been of significant inter-
est in recent years due to a variety of associated applications in diverse domains.
The particular application includes, the construction of antennas, communica-
tion between the vehicles and earth station, radio communication etc. We have
investigated theoretically the effectiveness of ionosphere plasma, earth’s mag-
netic field, structure and nature of the body material used as an artificial satel-
lite. For analysis purpose the whole system was supposed to be immersed in a
cold plasma. The underlying model problems present that how a particular class
of boundary-valued problems related to wave scattering in cold plasma may be
solved by using different semi-analytic techniques. The solutions to the prob-
lems have been focused using Wiener-Hopf technique together with the Mode-
Matching technique.

In a first attempt, the model problem describing the effect of cold plasma on
scattering of E-polarized plane wave by step discontinuity has been considered.
For this purpose the Helmholtz equation in cold plasma has been retrieved from
Maxwell’s equations in the canonical problem. Then with the help of Fourier
transform followed by the Wiener-Hopf technique the diffracted field expression
was obtained successfully. It is concluded that the effect of the truncation num-

ber is negligible after 15 truncation term. Moreover the diffracted field amplitude
115
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increases with the length of vertical plate. The analysis has also been performed

&;r other parameters of interest such as incident angle and surface impedances.
Itis depicted that the amplitude of diffracted field increases while increasing the
permittivity value €. In other words amplitude increases by either decreasing
electron number density (plasma frequency) or by increasing ion number den-
sity. Whereas in contrast to €, the amplitude of diffracted field decreases with
increase of the permittivity value e2. It has been noted that the diffracted field is
greatly effected due to permittivity value ¢, as compared with that of permittiv-
ity value €;. Moreover the results in the absence of cold plasma can be computed
while taking €; =1 and ¢, = 0 With this we may conclude that the existing model
with out cold plasma’s effects can be reduced from this model. This analysis has
been carried out in Chapter (3).

Further, we have studied the effect of cold plasma permittivity by an impedance
loaded parallel-plate waveguide. From the computed results it has been ob-
served that diffracted field is mostly affected by varying the plate separations,
whereas the variation of impedances 1, and 13 have negligibly small effects on
the obtained diffracted field. These results are much consistent with that of al-
ready existing results in literature, for example [12]. Moreover the diffracted field
amplitude decreases with increasing the permittivity values €, and €. Again the
diffracted field is generally affected due to permittivity value €, than that of 2.
In this case the truncated parameter takes higher value in order to get appropri-
ate results. These observations are related to Chapter (4) of this dissertation.
The effect of cold plasma permittivity on the radiation of the dominant TEM-
wave by an impedance loaded parallel plate has been examined in Chapter (5).
For the reason, the waveguide radiator with impedance loaded parallel-plate

is considered. The Wiener-Hopf technique enables to obtain the radiated field

while computing the unknown complex coefficients with the help of Mode-Matching

technique. It has been concluded that the radiated field amplitude had impres-




sive variation against all physical parameters such as plate separation b, surface

impedances 1y, 12, 73 and 14 and permittivity values €; and e for both reac-
tive and capacitive cases. Moreover the radiated field amplitude for both cases
(Reactive and Capacitive) decreases with the increasing of permittivity values
€; and ¢;. Likewise diffracted field, the radiated field has largely been affected
due to permittivity value ¢, instead of e2. Further the amplitude of radiated field
is effected drastically in the presence of an ionosphere plasma medium. This
observation can be depicted while ignoring the effect of cold plasma in the ex-
pression obtained for radiated field. It has also been observed throughout that
the radiated field showed impedance dependant variations. These variations are
actually related to the magnetic and electric susceptibilities of the waveguide
surfaces. We conclude that these results can be used to improve the radiated sig-
nal quality transmitted by an artificial satellite in the ionosphere.

Finally, we have examined diffracted and transmitted fields due to an impedance
loaded waveguide located in cold plasma. The ultimate objective was to study
the effect of cold plasma permittivity on the diffracted and transmitted fields.
Again hybrid methods such as Wiener-Hopf technique and Mode-Matching tech-
nique were opted to get the desired expressions of diffracted and transmitted
fields. It is worthwhile to comment that up to 100 number of truncation terms are
needed to achieve the better accuracy of the obtained solution. By this we can say
that whilst computing diffracted and transmitted field one requires higher num-
ber of truncated terms as compared to problem of diffraction and radiation. The
diffracted and transmitted fields have similar behavior (inverse proportionality)
for both impedance parameters 1, and 1,. A similar proportionality is observed
when diffracted and transmitted fields were observed with respect to both per-
mittivity values €, and e».

In addition, while solving field problems, there are mainly three types of tech-

niques: experimental, analytical, and numerical. Experiments are expensive,
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time consuming, and usually do not allow much flexibility in parameter vari-

ation. However analytical and numerical methods are much flexible. Numerical
methods have become popular with the development of the computing capabil-
ities, and although they give approximate solutions, have sufficient accuracy for
engineering purposes. But as a particular choice in this thesis we have preferred
analytical methods over numerical methods. As an argument we seek that the
implication of numerical techniques restrict such models up to low frequency
regime whereas the analytical /hybrid methods used here in do not have limita-
tions for a specific range of frequency problems. So we have a preference to use
hybrid methods which operate well for both low frequency problems as well as

high frequency problems.

7.1 FUTURE DIRECTIONS AND OPEN QUESTIONS

The analysis to the proposed problems related to the effect of cold plasma and
wave scattering requires further attention for more realistic models, for example,
by taking into account non-linear higher order boundaries, modeling different
physical edge conditions and computing related power expressions. Moreover,
in view of their application for acoustic scattering, underwater acoustics, struc-
tural acoustics, electromagnetic wave scattering, the low-frequency approxima-
tions need due attention. The problems of coupled wave scattering with cold
plasma effects finds many applications in a broad area of physics and engi-
neering. For the problems involving planar boundaries such as soft, rigid or
impedance, their solution can be obtained via standard Wiener-Hopf technique
In such cases the obtained eigenfunctions in terms of either reflected, transmitted
or radiated fields satisfy the usual orthogonal properties and required no more
complications. Also these eigenfunctions are linearly independent. It would be
of interest to consider more complicated boundary conditions on the faces of

waveguide. Therefore for non-planar boundaries (flexible), the eigenfunctions
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will no more be orthogonal as well as linearly independent. All such problems
will lead to in some form of infinite sum. Obviously calculating an infinite sum
is impractical (but still possible) but mathematical solutions will require higher
order of accuracy. The demonstration of such an application of plasma physics
and wave scattering will determine that how a particular class of model prob-
lems may be solved. The Wiener-Hopf technique will no longer exist to yield
solution of these problems. Of course, for such type of problems, one have to
develop appropriate orthogonality relations instead of usual ones. After that
the matched eigenfunctions expansion may lead to the solution of problem. The
eigenfunctions expansion with dependant sums will require the use of some ex-
tra conditions. Therefore some extra conditions in terms of edge conditions will
be necessary to use. Otherwise the uniqueness and the convergence of the mod-
eled problems will be questionable. The overall process will be the blend of
analytic as well as numerical approaches. Further, while obtaining expressions
for the power transferred through the boundaries as well as fluid would be an
interesting and realistic choice. The present model could be extended to afore-
mentioned studies with the help of some related investigations, refer for instance

to [92, 93, 94, 95, 96].
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