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Preface 

With the evolution of communication, digital media is now widely used throughout the world. 

Digital libraries containing a huge amount of information have been formed. These libraries 

contain digital data (books, images, magazines, even video and audio information) that can be 

accessed by anyone in the world. Due to free access of multimedia data throughout the internet 

and other accessible sources, the security of information has encouraged researchers to develop 

secure schemes for transmission as well as for copyright protection. Digital images are one of 

the major portions of communication happening around the globe. Generally, secure 

communication is when two individuals are communicating in such a way that no one in the 

path of communication can have any access to alter the data. There are many schemes available 

in literature to address this issue, but there is still a large room available for the development 

of secure, robust, and hassle-free cryptosystems. 

The only nonlinear element of the block cipher is the traditional expansion of Boolean 

functions from sole output to numerous outputs. The role of S-boxes in cryptosystems is to 

create confusion, which is achieved through substitution operations. The alteration of plaintext 

values by the S-box certifies resistance to any attempt at cryptanalysis. Constructions of S-

boxes based on finite fields are commonly used in literature. Many other algebraic structures, 

like groups or rings, are also used for such constructions. Cryptography and steganography are 

the two most important data hiding fields. The former is used to alter the original data into a 

bogus one, while the latter one is used to hide secret messages in a carrier. 

The importance of image encryption in the field of multimedia security is an established fact. 

Image encryption techniques transform information into an unreadable form to avoid 

unauthorized access. To improve multimedia security and guarantee secure communication, 

we in this thesis, emphasize on the construction of dynamical S-boxes from dynamical systems. 

The aim of this research is to build secure S-boxes with the additional property of diffusing the 

data. Based on these S-boxes, new cryptosystems are to be proposed for their practical 

utilization. With the advancement of computer technology, cryptanalytic schemes are also 

being designed to either alter the data or to recover secret messages. Therefore, the robustness 

of a cryptosystem is the ultimate target to be achieved. 



In this thesis, three constructions of robust S-boxes are proposed to enhance the security of 

block ciphers. The first method of construction is based on a newly designed 3D chaotic map. 

The suggested method can produce several types of S-boxes with admirable statistical and 

algebraic properties. In comparison to other algebraic techniques, the proposed technique is 

constraint free and simple. Moreover, it generates a large number of S-boxes having the 

property of confusion and diffusion as well. 

In the second method of construction, we designed chaotic S-boxes based on a 3D mixed 

chaotic map. This construction procedure guarantees many constraint-free, highly non-linear, 

and simple S-boxes. These S-boxes possess the unique property of diffusion along with 

confusion. These S-boxes yield the same algebraic analyses but different statistical analyses 

which is the motivation of our work to obtain a large number of highly non-linear S-boxes. 

These properties of S-boxes are very helpful for improving the multimedia security. In the third 

construction, we utilized linear fractional transformation for the construction of S-boxes. These 

S-boxes also preserve all cryptographic properties. 

The designed algebraic S-boxes and dynamic S-boxes are utilized in multimedia security 

through image encryption. Various schemes of image encryption utilizing algebraic and 

dynamic S-boxes have been designed. These schemes are capable of inducing confusion and 

diffusion at the same time. Moreover, in these encryption schemes, pixel values of the image 

are scrambled utilizing algebraic and dynamic S-box transformations to puzzle the connection 

between the plain and the encrypted image. Their security linked with differential and linear 

cryptanalysis has also been confirmed. These schemes are robust and have shown excellent 

outcomes. 
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Chapter 1 

Symmetric Key Cryptography Developed by Discrete Chaotic 

Systems and Algebraic Structures 
The secure and reliable communication in today's world is a clearly defined goal of 

communicating parties. On way, this is achieved via the creation of a non-linear element of a 

block cipher prepared using a chaotic dynamical system, which is the focus of this 

dissertation. This chapter has two main sections. The first section highlights the goals and 

structure of the dissertation, while the second section provides an overview of the field of 

cryptography and chaos, along with the theory of substitution boxes and their cryptographic 

properties. 

1.1. Introduction 

The huge amount of digital content that is transmitted through an unsecured channel is just 

the tip of the Iceberg. Leaking confidential and valuable information can sometimes have 

disastrous consequences for public order. Digital data must be provided when entering the 

channel and is responsible for transferring ownership. An insecure channel is a matter of 

concern for many people. There are many issues related to ensuring the security of digital 

data, but the fact is that it does not have a specific channel and takes part in data transmission. 

This is the optimal solution to this problem to build a reliable and secure channel. 

With the rise of multimedia technology, there is a constant need to develop an interface that 

serves ease of access to media files. On the other hand, there is the constraint that such ease 

of use must be accompanied by security features that go beyond mere password protection.  

The cryptographic algorithms provide a direct solution for safe and trustworthy digital data 

transfer. Cryptography is a vast subject of study that encompasses a wide spectrum of 

innovative and trustworthy cryptosystems. The field is concerned with data security, 

integrity, and authentication, with the primary goal of supplementing information sent from 

the recipient to the sender. Converting important information into a false file is one method of 

doing this. This procedure can be repeated. Finally, the procedure is based on mathematical 

processes, which creates a vicious loop throughout the entire creation process. 

Cryptography is the science that deals with the methods used to enrich copyrighted data and 

secure communication through channels. This is done with the help of knowledge in the 

fields of computer science and mathematics, and the development of algorithms that are used 
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in documents and regulations to reliably hide transmitted information. Recovery of the 

original data is possible only in the case of an exact set of keys that can be used in 

cryptanalysis. This study is categorized based on the keys: symmetric-key cryptography and 

asymmetric-key cryptography. The encryption and decryption keys are the same in 

symmetric-key cryptography, but different keys are used for encryption and decryption in 

asymmetric key cryptography, also known as public-key cryptography. Input data is in the 

form of blocks and streams that continue to divide the cipher into block and stream ciphers, 

respectively. In addition, the hash function will have a different code, splitting the 

information. 

Confusion and diffusion, introduced in [1] are the two main characteristics of a reliable 

cryptosystem. The first is achieved by an ambiguous relationship between each of the binary 

bits with the key. The second intends that 50% of the output bits will have to change with a 

single bit change in input. It is recommended to develop a cryptosystem in which the strength 

can be increased by slightly changing the parameters that must be implemented through 

creating confusion and diffusion in the system. Boolean functions are an example of 

following the criteria specified above, and therefore, their presence in such systems is 

mandatory. 

After the launch of the advanced encryption standard (AES) [2], the need for developing a 

new standard was minimized, because the application is secure. The substitution box (S-box), 

whose creation is mathematical, is the sole non-linear component of the AES block cipher. 

Different mathematical systems are used to develop cryptographically strong S-boxes to 

ensure the security of the cryptosystem instead of making a new encryption standard. The 

aim of block cipher confusion is accomplished by employing the S-box to the encrypted text. 

In addition, S-boxes can also be used in the design of steganography, watermarking, and 

image encryption [3], [4]. 

The Boolean function and block cipher are being recognized as important components of a 

modern cryptosystem. The former gives one output for one input and the latter generates 

more output bits for one input bit. Both are interlinked by the application of the theory of 

function. 

The S-box is a look-up table constructed from a mathematical system. In the first instance, 

the text is divided into blocks of data, in bytes. The design of the S-box incorporates original 

information with S-box entries. If done correctly, the probability of recognizing the input 

information is close to zero. 
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The main goal of an attacker is to gain access to all the data that can be transmitted using the 

security system. In addition, it is forced verification and modification of data that are the 

hacker’s main objectives. The sort of block cipher construction, in this respect, is their 

primary goal. By using various guesses of linear, differential, and brute-force attacks, the 

attacker breaks the weak cryptosystem. The biggest obstacle in a block cipher is the S-box. If 

the non-linear component of the block cipher is stronger, an encryption system is more 

secure. 

Many physical systems are chaotic in the discipline of Biology, Physics, and Engineering, 

such as weather forecasting and the movement of gases in the atmosphere. Chaos theory is 

used today in engineering, biology, physics, and economics to evaluate dynamical systems. 

Discrete systems are easy to navigate in models and can be used for forecasting even for 

longer periods, unlike chaotic dynamical systems. It has been observed that in any chaotic 

system, mathematically, there is a non-linear system. Such systems are sensitive to initial 

parameters, inherently unstable, uncertain, and follow a complex distribution formula. These 

properties make them difficult to analyze but perfect for application in cryptography. Such 

applications use features such as unpredictability and randomness in the construction of a 

cryptosystem that is not predictable. 

This thesis involves the use of chaotic dynamical systems in multimedia security to build 

cryptographically strong S-boxes. In addition, these S-boxes are used for encryption, its sole 

purpose is to increase the security of the encryption systems. 

1.2. Research Goals 

This study aims to achieve the following goals: 

1. Identification of chaotic dynamical systems that are well suited for creating rich and 

complex dynamics based on mathematical schemes.  

2. Instead of using a 1D system to create a stream of pseudorandom numbers, the use of 

multidimensional systems is proposed to produce more than two streams of 

pseudorandom numbers.  

3. The systems are built with the goal of producing a large number of S-boxes with 

certain cryptographic properties. 

4. To examine the effectiveness of these systems and applications in multimedia 

security, image encryption schemes must be developed. 

5. The ultimate goal is to achieve all of the above goals with low computational 

complexity. 
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The non-linear components of a block cipher have a particularly important role and are at the 

heart of the methods of this thesis. The aim of this thesis is to develop new S-boxes with 

compatible/improved cryptographic properties. In addition, their effectiveness can be 

determined by utilizing them in image encryption schemes and analysing experimental results 

and observations. This can be achieved with various mathematical structures or processes 

used to obtain the necessary randomness. Our goal is to design new chaotic dynamical 

systems and use them for S-box construction as well as encryption schemes. In this way, we 

expect that we will have to develop new systems for the security of information data using 

novel chaotic systems. 

1.3. Thesis Layout 

This thesis consists of six chapters. Detail information about all the chapters is provided 

below. 

Cryptography, Chaos, and Substitution box theory are mostly discussed in Chapter 1. Some 

key concepts in cryptography, Boolean algebra, Substitution box theory and block ciphers, 

have been explained in detail. 

The second chapter is divided into two parts. In the first part, we investigated a three-

dimensional (3D) chaotic map in detail. A dynamic S-box is created using the 3D chaotic 

map, which is then evaluated using standard measures of substitution boxes. The created S-

box retains all cryptographic characteristics, whereas a 3D mixed chaotic map is presented in 

the second section. The S-boxes are then constructed using a 3D mixed chaotic map. As the 

algorithm runs, each dimension of the 3D mixed chaotic map generates an S-box. To explain 

the procedure, we only went over three s-boxes. This approach can create infinite S-boxes. 

To ensure that all created S-boxes retain cryptographic characteristics, the test S-boxes are 

examined using standard analyses. 

In Chapter 3, the S-boxes built in Chapter 2 are used to design two different image encryption 

schemes. S-boxes are utilized to create confusion in these schemes. Image encryption 

includes a significant amount of confusion. These encryption schemes are also subjected to 

standard analysis to determine the strength of the image encryption algorithm. 

The small algebraic S-boxes are thought to be better for lightweight cryptography. For this 

purpose, Chapter 4 describes a small S-box construction technique and its application to 

image encryption. S-boxes are constructed using the linear fractional transformation. These 

S-boxes are later employed in an image encryption technique to cause confusion. Security 

analysis determines the strength of suggested encryption algorithm. 
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The Legendre chaotic map, its chaotic behaviour, and its use in image encryption are all 

covered in Chapter 5. The design of the image encryption technique consists of five steps. 

These five steps provide the essential confusion and diffusion for every encryption method. 

The security analysis is also examined critically. 

In Chapter 6, the conclusion of the work presented in this dissertation is explored. 

1.4. Preliminaries of Cryptography 

 The term cryptography is derived from the Greek word “Kryptos”, which means "hidden". 

Consequently, cryptography is concerned with concealing information so that unlawful users 

cannot read it. It is, in fact, a study that comprises the concepts and strategies for 

transforming understandable/meaningful information into a meaningless one and then 

restoring that meaningless message to its original form. Cryptography provides information 

security resources as well as a set of techniques. The basic idea of cryptography is given 

below in Fig. 1.1. 

Figure 1.1: Basic idea of cryptography 

Basically, in cryptography, the initial form of an understandable message is transformed into 

some meaningless and non-understandable form using some key. This key is known as an 

encryption key and the process is called encryption. The authorized person only knows how 

to get the original information using some key from the transformed message. Here, the used 

key is known as a decryption key and the process is called decryption. 

In cryptography, mainly two methods are used for transforming a message, viz. transposition 

and substitution. The process of rearranging the characters of a message using some rules is 

called transposition, while the process of replacing all the characters of the message with 

some other characters under some rules is called substitution. In the substitution method, the 

main idea is to pick out a permutation p  of letters that are used to compose the plaintext and 

then substitute each letter e  in the plaintext with ( )p e . This permutation p  is called a key. 
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Cryptography is an inter-disciplinary study of Mathematics, Computer Science, and Electrical 

Engineering. 

1.4.1. Basic Terminologies in Cryptography 

Here, some basic notions of cryptography are described. 

Definition 1. The text or message which is in understandable/readable form is called 

plaintext. 

The plaintext can be a text file, numerical data, a stream of bits, or an audio or video file. We 

can say that plaintext is simply binary data that a computer uses, which is denoted by .M  

For example, “MATH IS GREAT FUN”. The characters used to write plaintext are called the 

plaintext alphabet. These characters may be the English alphabet, punctuation marks, and 

numerals. 

Definition 2. The text or message which has been transformed into a meaningless/non-

readable form is called the ciphertext.  

The ciphertext is also binary data and usually the size of the ciphertext is the same as the 

plaintext M  but may be larger. It is denoted by .C  

For example, “NQCKFDNLGHFDSDFGH”. The characters used to write converted 

messages are called the ciphertext alphabet. These characters may be the same as the 

plaintext alphabet or different. 

Definition 3. A set of rules which transform an understandable/readable message into a 

meaningless form and vice versa by means of transposition and/or substitution 

is called a cipher.  

Definition 4. A substitution cipher is one that uses the substitution technique for 

encryption, whereas a transposition cipher uses the process of transposition 

for encryption. 

Definition 5. Some uncertain data or information known to the sender and receiver used by 

the cipher is called a key. It is denoted by K . 

Definition 6. The method of transforming an understandable/readable message into a 

meaningless form is called enciphering. It is also known as encryption or 

encoding. 

Definition 7. The method of transforming a meaningless/non-readable message into an 

understandable/readable form is called deciphering. It is also known as 

decryption or decoding. 
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Definition 8. A mathematical process that converts a meaningful message into a 

meaningless form by different transformations and substitutions is called the 

Encryption algorithm. 

Definition 9. A mathematical process that converts a meaningless message into a 

meaningful message by different transformations and substitutions is called 

the Decryption algorithm. 

Definition 10. Cryptology is a field of mathematics that studies cryptography and 

cryptanalysis. 

Definition 11. Cryptanalysis is the process of retrieving an intelligible message from an 

unintelligible message without knowing the key, but with the help of known 

principles and methods of transformation. It is also known as “Breaking of 

Code”. 

1.4.2. Fundamental Goals of Cryptography 

Understanding the challenges related with information security is required to become 

acquainted with cryptography. All parties engaged in a transaction must have assurance that 

specific information security goals have been accomplished. The fundamental goals of secure 

communications are confidentiality, data integrity, authentication, and non-repudiation.  

1.4.2.1. Confidentiality 

As the name implies, the term signifies the restriction of use to authorized parties (sender and 

receiver), both of whom can only see the data. The data is kept secret from all unauthorized 

parties (for instance, hackers, interceptors). That is, if X and Y are two people and they want 

to have a conversation between themselves, then X sends messages to Y, then these sent 

messages should be readable by Y only and they should not be readable by any unauthorized 

person Z. 

1.4.2.2. Data Integrity 

This goal signifies that no one other than authorized parties can modify the information. If X 

sends messages to Y, then these sent messages should be modifiable for X and Y only. These 

messages should not be modifiable by any unauthorized person Z. Y must be proficient 

enough to check out messages sent by X that have been modified by an unauthorized person 

Z. 
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1.4.2.3. Authentication 

This goal solidifies the identification of the source of data and one’s identity. For instance, if 

X sends messages to Y, then Y, after receiving messages from X, must be proficient at 

confirming that messages received from X are surely initiated by X. 

1.4.2.4. Non-Repudiation 

It is a tool for ensuring that the information was indeed transmitted by the sender. If X sends 

messages to Y and X acknowledges that he did so. 

1.4.3. Categories of Cryptography 

Cryptography is subdivided into symmetric-key cryptography and public-key cryptography. 

1.4.3.1. Symmetric-Key Cryptography 

The sender and recipient in this category utilise the same key. The sender uses a key K to 

encrypt a meaningful information into a meaningless information, and the receiver uses the 

same key K to decode the meaningless message into a meaningful message. This 

cryptography approach is symmetric encryption since a single key is utilised at both ends. 

The distribution of keys is a difficulty in this approach since encryption and decryption are 

accomplished using a single key. Fig. 1.2 depicts a graphical representation of this category. 

Figure 1.2: Illustration of Symmetric-Key Cryptography 

This category is further subdivided into block ciphers and stream ciphers. 

1.4.3.1.1. Block Cipher 

A fixed-length block of an intelligible message is converted into a nonsensical message of the 

same length as the intelligible message in block cipher. 
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1.4.3.1.2. Stream Cipher  

The Stream Cipher is also a symmetric-key encryption system. Stream ciphers are projected 

to be extremely fast, and the work of these ciphers is considerably quicker than block ciphers. 

These ciphers work on smaller parts of information as compared to block ciphers, which 

work on big blocks of information. 

1.4.3.2. Public-Key Cryptography 

Different keys are used at both ends in public-key cryptography. The transmitter uses a key 

(say 1K ) to encrypt an intelligible message into a nonsensical message, while the receiver 

uses another key (say 2K ) to decrypt the received nonsensical message into an intelligible 

message. This cryptography approach is asymmetric encryption since it employs a pair of 

keys. 

Both participants in this approach utilize a private key as well as a public key (sender and 

receiver). The private key is kept hidden and not revealed in this case. The public key, on the 

other hand, is shared with all communicating members. If Bob wants to transmit a secret 

message to Alice, he will encrypt it with Alice's public key. Alice will use her private key to 

decipher Bob's encrypted communication after receiving it. 

Figure 1.3: Illustration of Public-Key Cryptography 

1.5. Boolean Algebra 

Boolean functions in algebra are an essential prerequisite for diving deeper into software 

computing devices. This area of mathematics contracts the real line into two outputs, viz, 

zero and one. This contraction of the real line resulted in the microprocessor and fast systems 

inventions. It is also imperative for research to have a better understanding of block ciphers 

and the S-box. In addition, the transmitted information is converted to bits and bytes, which 

further processing also needs to have prior knowledge of Boolean algebra. Boolean functions 

have been studied for a long time, and this section of the dissertation can never do justice to a 
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well-established and broad theory. Our goal is to set a language and notation straight for what 

follows within the dissertation, specifically regarding the basic cryptographic functions that 

are described in this dissertation.  

Definition 12. Let (2 )mGF  is an m-dimensional vector space over the Boolean field 2 . A 

Boolean function   is defined as: 

 : (2) (2)mGF GF →  (1.1) 

Here (2 )mGF  is the Galois field, comprising 2m  elements in binary form, 

1 2 3( , , , , )mu u u u u= . 

The number of elements in domain and codomain sets is 2m  and 2 respectively, the possible 

distinctive Boolean function is 22
m

 that can be built. 

Remarks: 2(2 )m mGF , Since (2)mGF  and 2
m  are vector spaces over 2 .  

Throughout this section, and     will refer to m-variable Boolean functions. 

Definition 13. [4] The collection of binary outcomes of ( )u  for each u is the truth table for 

( )u . 

Definition 14. [5] The polarity truth table of an m-variable Boolean function   is given as 

follows: 

 ( ) ( ) ( )ˆ 1 uu 
 = −  (1.2) 

Note that ( )  ˆ 1, 1u  − . 

Definition 15. Consider a Boolean function ( )u  of m-variables, its hamming weight is the 

number of ones (1’s) in the truth table (see [5]). It is denoted by 

( ) ( ) or    . 

It is one of the main terms used in explaining many concepts related to the theory of Boolean 

functions. 

Definition 16. Consider two Boolean functions ,   , then the hamming distance is 

denoted by ( , )d    , is the number of different truth table positions from each 

other [6]. 

 ( ) ( ) ( ) ( , ) # 2 md u GF u u    =    (1.3) 

It is also known as the Hamming weight of the XOR sum of two Boolean functions. 
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( )( , )d     =        (1.4) 

The degree of similarity between   and *  is marked by the Hamming distance. These 

include a parable related to the idea of the correlation of two functions, which is of particular 

importance for cryptographic analysis. The correlation coefficient of completely uncorrelated 

and correlated functions is zero and one, respectively. 

Definition 17. [6] Consider two Boolean functions ,    then the correlation is denoted by 

( , )Corr    , is defined as follow: 

( ) ( )( )

1

( , ) 2 1

2 ( , )( , ) 2 1
2

( , )( , ) 2 1 1
2

( , )( , ) 2 2 1
2

( , )( , ) 1
2

m

m

m

m

m

Corr P u u

dCorr

dCorr

dCorr

dCorr

   

 
 

 
 

 
 

 
 

 













−

= = −

 −
= − 

 

 
= − − 

 

= − −

= −

    (1.5) 

Using the definition of ( , )d    : 

1

1

( , )( , ) 1
2
( ( ) ( ))

( , ) 1
2

2 2 ( ( ) ( ))
( , )

2
1 2 ( ( ) ( ))

( , )
2

1 2( ( ) ( ))
( , )

2
( ) ( )

( , )
2

m

u
m

m

u
m

u u
m

u
m

u
m

dCorr

u u
Corr

u u
Corr

u u
Corr

u u
Corr

u u
Corr

 
 

 

 

 

 

 

 

 

 

 

 




−





−

















= −



= −

− 

=

− 

=

− 

=

=





 





   (1.6) 

The results of ( , )Corr     lie down in the interval  1,1− . The ( , ) 1 or 1Corr    = −  

Whenever ( , ) 0 or 2md    = , respectively. This is the main component for determining the  

imbalance among pairs of functions. 
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Definition 18.  [5] A Boolean function   is said to be totally uncorrelated to a Boolean 

function *  if ( , ) 0Corr    = . Total uncorrelation indicates that the 

assessment of   is independent of the information of * . 

Definition 19.  [5] The algebraic normal form of   is stated as: 

  1 2 3( , , , , ) , {0,1,2, , }m jJ F j J
u u u u V J u F m 

 

=  =  (1.7) 

where V represents bitwise exclusive-or operation, the coefficients {0,1}J  , 

produce the truth table for the ANF of ( )u . 

It is simple to see that each ANF representation corresponds to a single Boolean function 

truth table. The ANF represents a Boolean function in the form of a unique XOR sum of the 

input variables and products. 

Definition 20. The correlation between function and the set of all linear functions is 

measured by the Walsh Hadamard Transform (WHT). The WHT value for 

different Boolean functions is unique. WHT is another way of defining 

Boolean functions. 

1.5.1. Cryptographic Properties of Boolean functions 

Definition 21.  [7]   is said to be balanced if ( ) 0W  =  or 1( ) 2mW  −= . Equivalently, if 

#{ : ( ) 0} #{ : ( ) 1}u u u u = = =  and imbalanced, otherwise. It follows that: 

  

1

1

1
1

1

1

( ) 2 ( ( ( ),0))

( ) ( ) 2

( ( ),0)( ) 2 1
2

( ) 2 ( ( ),0)

( ) 2 ( )

m

m

m
m

m

m

Corr u

W

d u

d u

W

 

 




 

 

−

−

−
−

−

−

 =

 = −

 
 = − 

 

 = −

 = −

 (1.8) 

where the zero Boolean function is denoted by 0. The scalar value between 0 and the 

correlation coefficient   is proportional to ( )I  . Any function having a zero imbalance is 

balanced and with the constant function, it does not correlate. 

An important and desirable cryptographic property of   is its non-linearity. This is because 

each linear system can be easily hacked, utilizing linear cryptanalysis. The degree of non-
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linearity ( )LN   can be determined as the Hamming distance between   and other suitably 

chosen functions. 

Definition 22.  [7] The minimal Hamming distance between the set of all m-variable affine 

functions and an m-variable Boolean function  determines the non-linearity 

( )LN   of  . 

max( ) 0.5(2 )m
LN WHT = −     (1.9) 

where WHT is an abbreviation of Walsh–Hadamard Transform and WHT 

represents the maximum absolute value. 

There are other ways to determine nonlinearity of  . A more efficient way is to use the 

minimum distance between the affine function and the order of  . Therefore, non-linearity 

can be introduced or even increased by reducing the minimum distance to the affine function. 

As you can see from the formula, a small change to the truth table will make minor changes 

to the minimum distance. 

Definition 23. [5]   is supposed to validate an avalanche criterion if a change in one bit of 

the input bits changes by half the average value of the output bits. 

It also takes care of confusion and diffusion of expected results and guarantees randomness. 

Such a change in the output signal can be viewed using the derivative of a Boolean function. 

Definition 24.  [5] The avalanche effect ( )
jyA   for   corresponding to a variable jy  is 

expressed as: 

( ( ) ( ),  
jy jA prob u u y u =       (1.10) 

Definition 25.  [5] A function 2 2
m S→  is complete if 

2

( ) ( ) (0,0,0, ,0), 1,2, ,
m

m
j

u

u u C j m 


    = (1.11) 

where both the summation and the relation > are applied component-wise. 

Definition 26.  [5]   is said to fulfil SAC, if  
1,  ( ) 1, ( ) ( ) 2m

u
s W s u u s  − =  =    (1.12) 

That is, for one of the inputs, because of the change, one-half of the output bits will probably 

need to be changed. 

Another useful measure is correlation immunity. 
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Definition 27.   has thi  order correlation immunity if it does not depend upon any of the 

subsets with  (1 )i i m   input variables. A function is resilient if it is 

balanced and has correlation immunity. 

1.6. Substitution Boxes 

The substitution box is the sole non-linear component in the block ciphers. Some essential 

ideas for describing the S-box theory are provided to support the study. In addition, some of 

the cryptographic key characteristics of S-boxes are given here. 

The S-box addresses the conventional development of the notion of one input to multiple 

outputs. 

Definition 28. An S-box of dimension n m  is a nonlinear mapping 2 2: n mS →  working 

on n input bits and generating m   output bits  

For n m=  , there are two different S-box formats. In one case, each input has its output, 

while in the second-several inputs to the same one, all possible outputs do not exist in an S-

box. It is referred to be a bijective S-box if it is one-to-one and onto. That is, each input is 

assigned a unique output, and all outputs are included in the S-box. For reversible S-boxes, it 

may be the case that n m= . Reversible S-boxes play a very important role in symmetric-key 

cryptosystems. 

1.6.1. Cryptographic Properties of Substitution Box 

In this subsection, the standard measures for evaluating the cryptographic properties of S-

boxes are given. To resist linear attacks on the approximation of the S-box, the degree of 

nonlinearity is also of great importance. Higher values of nonlinearity indicate strength and 

rigidity, against linear attacks. 

Definition 29. Nonlinearity computes the base separation concerning the arrangement of all 

n-variable Affine functions and an n-variable Boolean function. It is computed 

by: 

max( ) 0.5(2 )nNL g WHT= −  (1.13) 

where WHT is an abbreviation of Walsh–Hadamard Transform and maxWHT  
represents the maximum absolute value. 

In other words, nonlinearity is the smallest Hamming distance of a Boolean function to the 

collection of affine functions [8]. 
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In any substitution-permutation network, the Avalanche effect is observable whenever a 

chain of deviations is produced due to the consequence of a solitary input disparity [6]. 

Definition 30.  A mapping 2 2: n nS →  is said to satisfy the Strict Avalanche Criterion 

(SAC) if the following relation holds: 

2

1 1 1 1( ) ( ) (2 ,2 ,2 , , 2 ),  (1 )
n

n n n n n
j

u

S u S u C j n− − − −



  =     (1.14) 

This criterion was met for each of the strong S-boxes together with the completeness 

property. It quantifies the extent to which the output bits are changed by a single input bit 

alteration. One bit in the input, which changes about half of the output bits, is a very 

interesting observation indeed. For any S-box to satisfy this measure, it must change 50% of 

the output bits by one-bit alteration in the input bits. This measure indicates the powerful 

resistance throughout plaintext attacks. 

The bit independence criterion (BIC) investigates the information bits which remain 

unchanged. The symmetric cryptosystem has this compelling property. By increasing 

freedom among bits, it is almost difficult to foresee and perceive the indications of the 

framework. 

Definition 31.  A mapping 2 2: n nS →  is said to satisfy the Bit Independence Criterion if 

 , , 1,2,3, ,x y z m   with y z , changing x  input bit make y  and z  

output bits to vary independently. 

The BIC is to investigate the effect of integration from a single input bit to total output bits. 

Therefore, the independent behaviour of two avalanche vectors in pairs and the variation of 

input bits are imperative factors for BIC. The range values for BIC are in  0,1 , where the 

minimum and maximum values of this interval indicate the ideal and the worst cases 

respectively. 

It computes the imbalance of the occurrence. This investigation helps to count the supreme 

estimation of the inconsistency of an occasion between input and output. 

Definition 32. The maximum amount of imbalance of an event is measured in the linear 

approximation probability (LAP) [9]. It is computed as: 

 
( ) 

0

# :
max 0.5

2u v

u v
n

u u S u
LP

  

  = 
= − 

  

 (1.14) 
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where u  and v  are two covers, u  and v  are all possible inputs, and 2n is the 

quantity of the information component. 

Definition 33. Differential approximation probability (DP) ensured uniform mapping. For 

each alteration in the input, there must be a unique change in the yield. This 

climax of differential estimate likelihood guarantees uniform mapping 

likelihood for each information bit i. 

( ) ( ) # :
( )

2n

u X S u S u u v
DP u v

    = 
=  →  =  

  

 (1.15) 

1.6.1.1. Majority Logic Criterion 

An image encrypted with an S-box must pass the majority logic requirement in this criterion. 

It includes analyses such as homogeneity, energy, contrast, correlation, and entropy [10]. 

These analyses are used to measure the alterations made to an encrypted image. To put it 

another way, they are used to examine the strength of an S-box for image encryption. 

1.6.1.2. Randomness Test (NIST SP-800 22) 

The NIST-authenticated randomness test, also known as NIST SP 800-22 [11], is used to 

verify the statistical randomness and unpredictability of pseudorandom number generators for 

cryptographic purposes. This contains fifteen tests, including frequency (mono-bit) tests, 

block frequencies, long runs of ones, overlapping templates, approximate entropy, and 

random excursions, etc. The frequency test, which counts the number of ones and zeroes in a 

sequence, is the most fundamental of these. The passing of this test determines the outcome 

of the next fourteen tests. If it fails, the probability of other failures increases. After that, the 

test suit software analyzes the remaining tests to proclaim the randomness of the input data. 

1.7. Chaos and Chaotic Systems 

Typically, each of the physical systems governed by a series of mathematical equations that 

create dynamics that are impossible to predict over time is known to be one of the most 

chaotic systems. Chaos is also known as confusion or disorder. Some systems and changes 

are observed over time, occasionally providing chaotic motion. Thus, now time and change 

are two foundations of the chaos theory. A system’s chaotic behavior is identified by a 

graphical estimate of the system's time series. These systems are unpredictable because they 

do not follow any trends. There are many natural and laboratory studies of dynamic system 
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design in the fields of engineering, electronic engineering, physics, economics, ecology, and 

many, many others) that have been found useful. You do not have to accept chaotic behavior 

resulting from a complex system of equations before we can see the disorderly motion of a 

simple equation, as in [12]–[14]. The only variable that can appear in the equation generates 

chaos, i.e., it has no restrictions on the number of variables and parameters. Also, several 

systems are deterministic, meaning they represent a large set of line equations to predict the 

next term or region, but still, if they were random, such a system should generate 

deterministic chaos. In addition, self-movement leads to the chaotic movement of the system, 

which means that there is no need for external participation-necessary to produce chaos, 

which is an option. All this will lead to a difficult situation-determining the level of chaos in 

real cases. Although they can be seen in the fields of mathematics and computer science, 

thanks to the graphical representation of control equations in problems. 

The scientists’ first and most important attraction to chaos theory is the visualization of the 

complex and disordered behavior of a system that results from a simple deterministic 

equation. Secondly, the system being considered is comprehendible at the same time, 

impossible to decipher and recognize from the solution trajectory. The third attraction is the 

minimum amount of knowledge of higher mathematics that can be understood by the game, 

along with basic knowledge of algebra, geometry, and data analysis. After all, chaos can be 

analyzed without going too deep into the underlying mathematical equations. All these 

revelations came as a surprise to cryptographers and forcing them to use such systems means 

creating strong cryptosystems that are difficult to decipher. 

1.7.1. Chaotic Dynamical Systems  

In chaos, perhaps, sometimes, as in a system, changes are detected over time. Temporal chaos 

and spatial chaos arise when time has been replaced by space and distance, respectively. 

Unlike linear systems, nonlinear equations that appear in algebra or differential equations are 

difficult to solve. The dynamics of such systems can be very complex. Also, each of the 

nonlinear systems does not have to be chaotic. Many experts believe that nonlinear dynamics, 

the theory of dynamical systems, is in the field of chaotic dynamical systems. 

There are two types of dynamical systems, depending on energy conservation. In a 

conservative dynamical system, there is no energy loss. That is, the system is friction-free. At 

the same time, a dissipative system is charged by friction and loses energy in the process. A 

dissipative dynamical system, after the loss of energy, a limiting factor is realized. Under the 
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influence of these restrictions, chaotic solutions are born. In this thesis, we will focus on 

chaotic dynamical systems, and hence on dissipative dynamical systems. 

Changes in the dynamical system can be observed at discrete time intervals. These intervals 

can be uniform or nonuniform. Examples of such systems are storms, earthquakes, and 

volcanic eruptions. Discrete-time systems are controlled by differential equations that are 

iteratively solved. Variations in dynamical systems should also be observed over a 

continuous period. There is continuity in the measurement of such phenomena, in contrast to 

discrete time intervals. Differential equations are used to calculate continuous changes in a 

dynamical system. Examples of such systems are temperature, heat, and water flow in rivers 

and streams.  

Differential equations are a large and developed branch of mathematics that is found in 

almost all areas where a physical system is subject to modelling. Thanks to the active work of 

mathematicians in this field, it can predict phenomena in acoustics, astrophysics, weather 

forecasting, and many other areas of life sciences. The idea is to implement differential 

equations in cybersecurity when designing secure and stable systems. The only non-linear 

component of a block cipher is designed using a system of non-linear differential equations 

that must be solved, and which can become an obstacle to cryptanalysis. 

1.7.1.1. Causes of a chaotic system 

Chaos theory is a multidiscipline topic. The importance of chaos in recent decades has been 

recognized by many scientists by considering such systems for their proper evaluation and 

examination. The factors causing chaos in real-world phenomena are still unknown. To some 

extent, one can say that the factors causing chaos are variations in control parameters, 

deviations from initial conditions, nonlinear interaction of two or more progressions, 

involvement of nonlinear terms in the equations, and noise/resistance. 

1.7.1.2. Characteristics of a chaotic system 

The peculiar nature of a chaotic dynamical system is still a well-known problem for 

scientists. With the advancement of computing devices, the bifurcation pattern of chaotic 

systems can be visualized by using different software, but still, getting the proper grip on this 

subject is an objective for many. The unusual behaviour is observed by all in analysing these 

systems. The specific attributes of a chaotic system are as followed. 
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1.7.1.2.1. Sensitivity to initial conditions 

The most important property of a chaotic system is its sensitive behaviour towards initial 

conditions and parameters. Sometimes, slight variations in initial input result in different 

bifurcation patterns of that system. Cryptographically speaking, this property is the most 

attractive for the design of a cryptosystem. It assures the sender that any slightly wrong guess 

will generate a different solution space, hence the predictability of data is minimized. 

1.7.1.2.2. Entropy 

The amount of disorder is usually evaluated in entropy analysis. Since a chaotic system bears 

the most disorderly behaviour. That’s why entropy is linked with these systems. 

1.7.1.2.3. Lyapunov exponent 

The Lyapunov exponent is used to decide whether the mathematical system used is chaotic or 

not. The value of this exponent greater than zero implies the chaotic nature of a system. 

1.7.1.2.4. Long term unpredictability 

This characteristic of a chaotic system is very interesting and irrational. The bifurcation 

pattern and trajectory of such a system are unpredictable for a very long interval. This is very 

useful for the utilization of such systems in cyber security. 

1.7.1.3. One-dimensional discrete chaotic system 

The chaotic system used in cryptography is reviewed hereafter based on dimensions initially. 

Mostly, simple chaotic systems having one dimension are used in cryptography because they 

are easy to understand and evaluate as compared to higher dimension systems. The 

shortcoming lies in these small solution spaces, can be predicted using advanced technology, 

the fewer number of controlled parameters and conditions, and smaller key spaces. Due to all 

these, the recapture of such a system using different software is comparatively an easy task 

[15]. 

1.7.1.3.1. The logistic equation 

The population model in terms of an equation known as the logistic equation was proposed 

by biologist Robert May in 1976 [13]. This is the simplest discrete time intervals based 

chaotic system. It explains various key features of a chaotic system. Moreover, many 
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researchers have used this map because of its simplicity in cryptography [16], [17]. 

Mathematically, its map is represented as: 

( )1 1m m m  + = −      (1.16) 

1.7.1.3.2. Tent map 

The Tent map is an iterative map-generating deterministic chaos under a certain selection of 

the parameter 𝜒,  which is considered responsible for controlling chaos. The range of 𝜒 for 

this map is in  1, 2  for chaotic behaviour. 

1

1

2  if 0 0.5
2 2  if 0.5 1

m m

m m

  

  

+

+

=  

= −  
    (1.17) 

This map with a slight extension in it has been utilized by [16] in the field of chaotic 

cryptography. 

1.7.1.3.3. Quadratic map 

The term quadratic refers to the polynomial of degree 2. The standard quadratic equation is 
2 0a b c + + =     (1.18) 

The constants a, b and c define the chaotic behaviour of this quadratic map. For example, 
2

1m mc + = +      (1.19) 

Where c is a constant. The above equation is a special case of the standard quadratic equation 

for the case 1a =  and 1b = . A similar quadratic equation generating chaos is of the type 

( )2
1 2m m + = −     (1.20) 

1.7.1.3.4. Henon Map 

This is an example of a discrete time dynamical system proposed by Michel Henon [19] to 

explain the Poincare section of the Lorenz model. It involves two parameters a and b that 

control the chaos. Mathematically,  
2

1 1

1

1m m m

m m

y a
y b
 



+ +

+

= − +
=

    (1.21) 

[1] Utilized this map for the construction of the S-box. 
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Chapter 2 

Design of Nonlinear Component of Block Cipher using 3D 

Chaotic map 

Three-dimensional chaotic systems with rich chaotic and complicated dynamics are used in 

data security in this chapter. These systems will first be used to produce random numbers, 

which will be permuted to create a highly nonlinear chaotic S-box. The suggested design's 

key advantage is the ability to create a large number of cryptographically strong S-boxes by 

modifying the system's parameters and initial states slightly. The algebraic and statistical 

analyses that are easily available in the literature are used to evaluate the S-boxes created in 

this chapter. The study's findings are encouraging, demonstrating the study's relevance to 

secure communications implementation. 

2.1. Introduction 

Humanity's desire for global communication via diverse technologies is rising quickly. It 

includes sensitive material from fields such as biology, engineering, foreign ministries, and 

the military. Data loss or modification is always a possibility while chatting online. Many 

companies pay huge sums of money to ensure safe data transfer. These cryptanalysts foresee 

the illicit interception, alteration, and use of secret information that must be secured. 

Researchers employ cryptographic methods to secure sensitive data transmission. 

Cryptography is the art of hiding data from beginning to finish using cryptographic methods, 

such that no one in the communication channel can obtain the important data communicated. 

If the sender supplies a proper algorithm and keys, only authorised persons will have access 

to the generated data. There are two types of cryptosystems: symmetric and asymmetric. 

Asymmetric cryptography does not utilise the same key for encryption and decryption. 

Symmetric cryptography does. Symmetric cryptography is divided into two types: stream 

ciphers and block ciphers [5]. The block cryptosystem served as the motivation for this 

chapter. To allow the cryptographic technique to be employed in a step-by-step way, the 

plaintext is divided into blocks. 

The two basic concepts of block cryptosystems, confusion and diffusion, were proposed by 

Shannon [1]. Substitution, permutation, mixing, and adding keys are the four processes of the 

block cryptosystem [8], [20]–[23]. The algorithms of the block cryptosystem first divide the 
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primary data into blocks of equivalent size, then encrypt the entire block. Diffusion is the 

process of modifying and obscuring the plaintext containing the sender's original message by 

distributing the original text bits to the cipher text bits. Confusion refers to the process of 

changing plain text to modify encrypted text. To accomplish these two properties, round 

recurrence is often employed. 

When certain parameters are constrained, specific systems cause chaos. Such chaotic 

dynamical systems are extremely sensitive to initial conditions and exhibit unpredictable 

behaviour, resulting in a variety of paths given varying initial conditions. Because of its 

unpredictability, chaotic dynamical systems are employed in cryptosystems to generate 

confusion and diffusion. Chaotic systems and block cryptosystem characteristics like as 

confusion and diffusion have a strong connection. The system's sensitivity to initial 

conditions/parameters, unpredictability, and chaos all contribute to this link's existence. A 

wider solution area also permits many reliable and secure S-box approaches from a single 

system to coexist. 

In contrast to previous systems such as logistic, tent, and Chebyshev maps, this methodology 

use a three-dimensional system. In the suggested approach, this three-dimensional system is 

responsible for complex and chaotic dynamics, making it ideal for the creation of an S-box. 

2.2. 3D Chaotic Map 

Since color images has three layers, Red, Green, and Blue (RGB). In order to encrypt each 

layer of color image with high security level, we designed 3D chaotic map which is very 

sensitive to initial conditions and highly chaotic (Randomness). This designed 3D map is 

analyzed by chaotic attractors as shown in section 2.2. 

This map is used to generate three nonlinear chaotic sequences which are used for image 

encryption. These three random sequences are extracted and used for pixels rows and 

columns permutations. Finally, these sequences are further used to construct chaotic 

Substitution boxes. Then, the pixels are substituted with the entries of newly designed 

Substitution boxes to enhance the confusion in the encrypted image. 

This section suggests a chaotic map for a more efficient multi-image encryption scheme. The 

suggested 3D chaotic map is defined as: 

 ( 1) ( ) ( )sin cosm m
u u u ux x y z + = + −  (2.1) 

 ( 1) sin( ) cos( tan( ))u u u u uy x y x z+ =  + +  (2.2) 

 ( ) ( ) 1
( 1) cos s a (n )i t nu u u

m
uu uz y x x y y −

+ = +  − −  (2.3) 
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, ,  and      are the control parameters, x, y, z are the variables, and u, m are nonnegative 

integers as m represents the exponent. 

Every chaotic system exhibits chaotic behavior for a specific interval of control parameters 

and initial values. The interval for control parameters for suggested system in Eq. (2.1) to Eq. 

(2.3) is: 

0 , 2,  0 , 1,        

Further, x, y, z are the obtained pseudo-random sequences, where: 

8 8,  -1 1, 8 8,  and 0 10,x y z m−     −      

As an example, the chaotic behavior of the suggested map for the initial values: 

1 1 10.20005,  =0.00001, 0.10038,x y z= =  

1.113, 0.6888, 1.43332 and 0.11   = = = = . 

is presented in Fig. 2.1. The non-uniform histograms of the suggested chaotic sequences are 

made uniform by the histogram equalization approach [24]. The histograms of the proposed 

sequences are shown in Fig. 2.2. Fig. 2.3 illustrates the 2D and 3D chaotic trajectories of the 

suggested dynamic system. The chaotic sequences and trajectories obtained by the 3D chaotic 

map are distributed uniformly and have complex chaotic behavior, which is suitable for 

image encryption. 

 

Figure 2.1: Chaotic performance of the suggested chaotic X, Y, and Z sequences 
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( )a  ( )d  

  

( )b  ( )e  

  

( )c  ( )f  
Figure 2.2: Histograms of suggested sequences.  

2.2(a-c): Histograms before equalization, 2.2(d-f): Histograms after equalization 

  

( )a  ( )b  
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( )c  ( )d  
Figure 2.3: 2D and 3D chaotic trajectories of a suggested chaotic map. 

3(a): the trajectory of ( , )i ix y ; 3(b): the trajectory of ( , )i ix z ; 3(c): the trajectory of ( , )i iy z ; 3(d): the 

trajectory of ( , , )i i ix y z  

2.2.1. Construction of Substitution boxes (1st Construction) 

The system of equations used here is far superior that generates significant complex and 

chaotic dynamics. Subsection 2.2 describes the range of parameters for the chaotic 

bifurcation pattern seen on MATLAB. 

The following are the steps involved in the creation of a substitute box: 

▪ Initial condition used in Eq. (2.1) to Eq. (2.3) are: 

1 1 10.20005,  =0.00001, 0.10038,x y z= =  

1.113, 0.6888, 1.43332 and 0.11   = = = = . 

▪ In this step extract iy  from the sequence  , ,i i ix y z . We can extract anyone among 

from the sequence  , ,i i ix y z . 

▪ Multiplying iy  with 100000 to get a new sequence of numbers L  in integer 

representation. 

100000,iL y=   

▪ The sequence of numbers M  is obtained using (mod( 256,256)).ceil L  

(mod( 256,256)).M ceil L=   

▪ In the final step, the above-mentioned sequence is permuted in MATLAB to produce 

an S-box with appropriate cryptographic characteristics. 

The flowchart below explains all the steps. 
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Figure 2.4: Flow chart for S-box design 

Table 2.1: Suggested S-box 

247 132 42 57 86 65 152 68 78 35 40 193 245 124 167 93 
179 190 225 230 208 154 34 255 233 110 131 212 58 185 209 117 
220 13 97 19 216 24 228 45 242 101 52 156 44 129 102 206 
21 69 75 201 146 41 49 175 3 246 136 53 48 74 237 6 
1 253 172 120 133 33 254 169 123 96 64 109 213 173 62 251 
144 163 16 72 222 71 43 29 231 226 166 56 182 54 248 186 
121 142 192 92 205 126 137 191 217 105 164 104 171 10 60 207 
91 219 252 239 107 47 151 112 170 160 243 174 203 188 198 66 
178 70 238 27 0 130 84 168 162 235 9 32 148 211 103 12 
79 14 11 149 214 218 46 15 234 250 25 118 195 111 39 38 
99 143 77 150 165 17 113 20 108 59 200 4 7 61 73 202 
240 51 215 181 241 2 184 5 119 187 153 83 88 18 114 141 
177 89 140 199 227 224 115 80 122 176 85 249 157 8 116 196 
36 194 37 161 90 204 145 94 30 76 180 155 189 139 98 127 
210 221 23 26 28 159 63 31 158 223 229 236 134 55 22 197 
135 128 67 82 87 95 81 138 106 244 147 232 183 100 50 125 

2.2.2. Algebraic analyses for substitution boxes 

This section examines the effectiveness of the block cipher's nonlinear component. The 

measurements that determine its efficacy include nonlinearity analysis, bit independence 

criteria (BIC), strict avalanche criterion (SAC), and linear and differential approximation 

probabilities. The details of these analyses are presented below. 

Start 

Fix Parameters 

Extract iy  

End 

100000iL y= 

00000 (mod( 256,256))M Ceil L=   

16 16 Matrix  
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2.2.2.1. Nonlinearity 

It is the most important among all the cryptographic characteristics. Nonlinearity must be 

higher to have a robust cryptographic system. If we express nonlinearity mathematically as 

NL, then it is defined as: 

 max( ) 0.5(2 )nNL g WHT= −  (2.4) 

where WHT is an abbreviation of Walsh-Hadamard Transform and maxWHT  represents the 

maximum absolute value which validates resistance to linear cryptanalysis by calculating the 

resistance of a system described as a set of linear equations. 

Table 2.2: The nonlinearity analysis and comparison 

S-boxes Proposed Ref. [28] Ref.  [33] Ref. [34] Ref. [35] Ref. [36] 

Average 103.5 103.2 103.3 103 105.25 104.7 

Minimum 100 98 99 100 102 102 

Maximum 108 108 106 106 108 108 

Table 2.2 clearly indicates that the average value achieved from the suggested strategy for 

creating S-boxes is significantly higher than that obtained from other approaches previously 

found in the literature. 

2.2.2.2. Bit Independence Criterion 

This concept is employed in substitution boxes to increase the efficiency of the confusion 

function. Webster and Tavares [25] were the first to develop this statistical criterion, which 

states for a given set of avalanche vectors, avalanche variables must be pairwise independent. 

Table 2.3: The BIC analysis and comparison 

S-Boxes Average Minimum Value Square Deviation 

Proposed 103.214 100 1.9522 

Ref. [26] 106 102 2.1380 

Ref. [27] 103.24 98 2.6098 

Ref. [28] 103.78 100 1.8776 

Table 2.3 displays the results of the BIC analysis, as well as a comparison to other existing 

methods. The suggested S-box has a minimum value of 100, an average of 103.214, and a 

square deviation of 1.9522. These findings outperform those seen in [26], [27]and [28]. 
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2.2.2.3. Strict Avalanche Criterion 

It quantifies the extent to which a single input bit change affects the output bits [29]. It is 

computed by: 

 1( ) 1 ( ) ( ) 2n

x
HW t g x g x t −=  = , (2.5) 

where ( )g x  is the Boolean function satisfies Eq. (2.5) for every t . 

For any S-box to satisfy this measure, it must change 50% of the output bits by one-bit 

alteration in the input bits. Table 2.4 displays the results of the SAC analysis, as well as a 

comparison to other existing methods. The suggested S-box has a minimum value of 

0.406250, an average of 0.498047, and a maximum of 0.593750. The comparison also 

confirms the usefulness of the proposed S-box. 

Table 2.4: The SAC analysis and comparison 

S-boxes Proposed Ref. [28] Ref. [16] Ref. [33] Ref. [34] Ref. [35] Ref. [36] 

Minimum  0.406250 0.3671 0.4219 0.4140 0.4218 0.4297 0.3906 

Average 0.498047 0.506 0.4939 0.499 0.500 0.496 0.506 

Maximum 0.593750 0.5975 0.5625 0.6015 0.6093 0.5313 0.5937 

2.2.2.4. Linear Approximation Probability 

The linear approximation probability (LAP) measures the highest level of imbalance in an 

event [29]. It is computed as: 

 
( ) 

0

# :
max 0.5

2u v

u v
n

u u S u
LP

  

  = 
= − 

  

 (2.6) 

where u  and v  are two covers, u  are all possible inputs, and 2n is the quantity of the 

information component. 

In other words, it is the greatest value of an event's disparity. Table 2.5 displays the LP 

analysis findings, which are compared to various S-boxes. These findings show that the 

suggested S-box provides significant resistance against linear attacks. 

Table 2.5: The LAP analysis and comparison 

S-boxes Proposed Ref. [28] Ref. [16] Ref. [33] Ref. [34] Ref. [35] Ref. [36] 

Max. LP  0.14062 0.1289 0.1250 0.1328 0.1289 0.1562 0.1250 

Max. Value 160 162 160 164 162 168 160 
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2.2.2.5. Differential Approximation Probability 

Uniform mapping is accomplished via differential approximation probability (DP). There 

must be a distinct change in the yield for each change in the input. This climax of differential 

estimate likelihood guarantees uniform mapping likelihood for each information bit i. 

 
( ) ( ) # :

( )
2n

u X S u S u u v
DP u v

    = 
=  →  =  

  

 (2.7) 

Table 2.6 shows the result and comparison of DP for the suggested S-box. Because the 

suggested S-box has a DP of 0.046875, it is effective against differential attacks. These 

results collectively show that the new S-box will outperform many others. 

Table 2.6: The DP analysis and comparison 

S-boxes Proposed Ref. [28] Ref. [16] Ref. [33] Ref. [34] Ref. [35] Ref. [36] 

Max. DP 0.046875 0.04688 0.0625 0.03906 0.05469 0.03906 0.04688 

2.2.2.6. Majority Logic Criteria 

An image encrypted by an S-box must pass the majority logic criterion (MLC). It includes 

analyses such as homogeneity, energy, contrast, correlation, and entropy [29]. These analyses 

are used to measure the alterations made to an encrypted image. The graphical 

representations of these analyses are shown in Fig. 2.5, and the comparison for the proposed 

S-box is shown in Table 2.7. 

Figure 2.5: Histogram of original and encrypted images using the proposed S-box 

Fig. 2.5(a) and Fig. 2.5(c) illustrate the host and the encrypted images. Fig. 2.5(b) and Fig. 

2.5(d) shows their respective histograms. 
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Table 2.7: The MLC analysis and comparison 

Pictures Entropy Correlation Energy Homogeneity Contrast 

Original 7.2187 0.6947 0.0887 0.7549 0.8657 

Proposed 7.9657 0.0035 0.0257 0.4035 10.4572 

Ref. [20] 7.9591 -0.0441 0.0202 0.4151 8.2314 

Ref. [22]  7.9561 0.0554 0.0202 0.4662 8.3124 

Ref. [30] 7.9431 0.0155 0.0219 0.4248 8.2113 

The MLC results are similarly encouraging, indicating that the suggested S-box is suitable for 

the construction of cryptographic algorithms for data encryption. 

 



33 

2.3. 3D mixed Chaotic Map 

The 3D mixed chaotic map is defined by the following equations: 

 ( )( )2
1

1 1i isin n sin −
−= , (2.8) 

 ( )( )2
1

2 1i isin n sin −
−= , (2.9) 

 ( )( )2
1

3 1i isin n sin −
−= . (2.10) 

This system has chaotic behaviour for the initial values ( )2
1 1 1sin n  = , ( )2

1 2 2sin n  = ,

( )2
1 3 3sin n  = , here 1 2 3 1 2, ,n n n n n=   are parameters which are non-zero real numbers. 

Further, ( 2,  , 0,2 , 1,2,3 and 3.14ji i j  +   =  . We used 45 , 1,2,3j j = =  in 

initial conditions. The equations (2.8) - (2.10) are used to cause N  term chaotic sequence. 

2.3.1. Construction of Substitution boxes (2nd Construction) 

We utilized the following expressions and changed them into integers in the range of 

[0 255]− . 

 ( )1510 mod256i iround =  , (2.11) 

 ( )1510 mod256i iround =  , (2.12) 

 ( )1510 mod256i iround =  . (2.13) 

Using Eq. (2.11) with the initial condition ( )2
1 1 1sin n  = , the first suggested S-box is given 

in Table 2.8. 

Table 2.8: Substitution box 1 (S-box 1) 

215 57 147 179 7 192 76 114 61 250 128 101 87 201 176 198 

15 213 253 96 178 36 227 142 0 13 173 74 42 241 211 139 

161 109 132 32 233 148 228 40 144 162 11 138 151 50 24 129 

152 124 62 207 247 107 205 33 97 67 149 37 174 231 43 242 

26 156 83 193 70 118 59 46 79 68 181 137 254 112 125 243 

216 208 5 167 225 115 200 222 195 80 45 196 140 219 163 18 

72 119 86 47 123 164 223 10 226 120 39 82 73 238 155 55 

169 232 191 64 103 54 126 116 186 52 92 246 3 190 199 12 

157 9 170 53 30 183 69 65 1 113 63 105 175 212 136 88 

236 249 188 110 166 182 34 160 220 75 172 168 19 204 158 165 
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Using Eq. (2.12) with the initial condition ( )2
1 2 2sin n  = , the second suggested S-box is 

given in Table 2.9. 

Table 2.9: Substitution box 2 (S-box 2) 

Using Eq. (2.13) with the initial condition ( )2
1 3 3sin n  = , the third suggested S-box is 

given in Table 2.10. 

Table 2.10: Substitution box 3 (S-box 3) 

213 156 109 233 234 216 125 129 243 2 128 68 204 166 39 103 

215 250 127 96 119 15 242 225 147 105 239 77 135 248 199 19 

90 49 227 93 136 64 247 13 153 88 187 143 6 202 24 252 

126 70 11 85 78 50 198 218 168 1 40 53 21 161 97 55 

17 133 127 27 150 221 180 14 141 90 23 187 20 251 171 66 

229 185 230 2 203 77 44 121 91 6 99 89 48 78 245 106 

237 35 145 217 135 214 240 31 248 189 25 224 93 104 102 202 

153 194 21 108 210 252 134 234 38 111 255 51 235 8 197 154 

94 146 100 218 130 16 58 22 131 60 209 81 84 184 29 95 

239 41 143 206 98 28 122 244 177 4 159 117 56 49 71 85 

15 3 9 223 142 121 231 10 140 255 180 118 81 124 130 205 

55 227 155 47 27 86 2 98 70 22 66 138 21 215 51 26 

29 72 63 19 217 48 93 238 176 226 153 52 188 30 239 18 

136 173 6 88 201 246 183 77 237 159 139 251 49 23 212 8 

132 82 129 54 235 36 1 114 112 122 189 65 197 195 230 12 

254 222 203 207 43 165 179 115 111 221 172 190 250 210 157 167 

154 110 42 224 11 214 105 61 186 96 109 31 216 44 38 14 

182 59 160 17 113 20 34 68 145 213 177 67 123 194 117 228 

191 243 134 174 131 76 127 101 249 80 236 79 53 158 241 92 

149 200 229 170 242 196 103 162 74 209 5 232 248 240 102 58 

69 187 94 148 39 85 4 143 60 233 84 73 126 89 161 7 

90 78 83 24 171 181 204 99 234 135 206 125 220 193 37 192 

152 208 169 87 185 56 218 144 64 25 28 95 178 151 141 75 

119 104 247 164 219 211 253 116 202 91 97 147 46 166 45 245 

108 41 13 50 156 150 71 62 199 107 252 198 128 35 137 244 

33 32 106 175 57 184 0 100 163 146 16 133 168 120 225 40 
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110 174 163 132 26 240 66 57 144 154 230 92 80 4 130 32 

177 121 46 18 245 180 108 208 72 14 33 52 16 22 160 176 

59 229 0 3 134 236 131 27 206 222 12 169 167 114 122 188 

133 111 83 107 98 155 23 113 45 123 226 165 5 224 235 87 

47 94 10 17 137 7 9 181 118 223 44 214 217 62 116 42 

115 145 141 35 175 212 173 164 71 30 102 67 162 43 151 228 

193 8 179 41 171 159 253 36 157 140 186 192 201 158 74 106 

205 178 231 54 95 237 58 210 37 76 189 84 190 207 209 81 

65 34 142 75 244 61 79 183 246 28 232 221 195 146 91 196 

182 29 194 139 120 219 238 101 249 148 100 31 86 241 197 254 

255 89 220 138 60 63 56 104 82 20 251 149 51 25 150 112 

48 124 184 99 211 203 117 38 73 152 185 69 191 172 170 200 

2.3.2. Algebraic and Statistical Analyses of S-box 

Several statistical and theoretical approaches are used to investigate the interesting 

characteristics of S-boxes. This evaluation of the strength of S-box impacts its suitability for 

usage in various cryptographic methods and for security requirements. [25] provides a 

concise discussion of a technique that employs differential block cipher features. This 

cryptanalysis technique is easily applicable to the DES algorithm, many cyphers, and S-boxes 

[25]. 

A technique based on information theory can also be used to evaluate the strength of a cipher 

[29]. This technique uses a variety of criteria to determine the features and connections of 

input and output bits, including nonlinearity, bit independence criterion and strict avalanche 

criterion [29]. In addition, approximation probability offers event probability as well as 

differential uniformity, allowing an iterative approach to be developed. 

Tables 2.8 – 2.10 show the tabular form of S-boxes generated with the help of 3D mixed 

chaotic map. Table 2.11 shows the nonlinearity outcomes of the suggested S-boxes in 

contrast to a variety of well-known S-boxes. The average nonlinearity values for the 

generated S-boxes can be seen to be better than all other S-boxes, as shown in this table. 

Furthermore, because the suggested S-boxes' entries are unique and lie in the integral range 

of 0 to 255, they have the bijection property. Table 2.12 also includes the strict avalanche 

criterion, bit independence criterion, and linear and differential approximation probabilities. 

The graphical demonstration of Table 2.12 is provided in Fig. 2.6 to Fig. 2.10. 
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Table 2.11: Comparison of nonlinearity values 

S-boxes S-box 1 S-box 2 S-box 3 Ref. [28] Ref. [33] Ref. [34] Ref. [35] Ref. [36] 

Average 103.75 104.25 103.75 103.2 103.3 103 105.25 104.7 

Minimum 98 102 102 98 99 100 102 102 

Maximum 108 106 106 108 106 106 108 108 

Table 2.12: Results of standard measures of proposed S-boxes 

 

 

Figure 2.6: Graphic display of Nonlinearities and comparison 

 

 

Substitution boxes Nonlinearity SAC DP LP BIC 

S-box 1 103.75 0.508 0.0390 0.1562 103.6 

S-box 2 105.75 0.498 0.0546 0.1328 103.2 

S-box 3 104.25 0.491 0.0468 0.1327 103.6 

Ref. [31]  104.7 0.506 0.0469 0.1250 104.1 

Ref. [21] 103.2 0.506 0.0469 0.1289 104.2 

Ref. [32] 103.3 0.499 0.0391 0.1328 103.3 

Ref. [33] 103.2 0.505 0.0391 0.1289 103.7 

Ref. [34] 103 0.500 0.0547 0.1289 103.1 

Ref. [35] 105.25 0.496 0.0391 0.1562 103.8 

S-box 1 S-box 2 S-box 3 Ref. [25] Ref. [26] Ref. [31] Ref. [28] Ref. [32] Ref. [16]
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Figure 2.7: Graphic display of SAC values and comparison 

 

Figure 2.8: Graphic display of DP values and comparison 
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Figure 2.9: Graphic display of BIC values and comparison 

Figure 2.10: Graphic display of LP values and comparison 

From Table 2.12, it can be noted that the average nonlinearity of newly constructed S-boxes 

is approximately 105 and the strict avalanche criterion for newly constructed S-boxes is as 

high as 0.59375. Furthermore, the BIC investigation of the proposed S-boxes has a value of 

104. Also, the most serious estimate of the linear approximation of the proposed S-boxes is 

168, which proves that the proposed S-boxes have solid counter-capability against direct 

attacks. The proposed S boxes have a very high probability of variance of 0.01562. 
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Performance analyses and comparisons show that the proposed S-boxes have almost optimal 

results when it comes to randomness, and resistance to various linear and different attacks. 

2.3.2.1. Majority Logic Criterion 

The majority logic criteria (MLC) are discussed briefly in Ref. [36]. This analysis examines 

the S-box's strength in image encryption applications. Encryption distorts images, which 

indicate the algorithm's strength. The correlation analysis is the most important method used 

to compare two images. The higher correlation value enhances the chances of actual 

information being deciphered by cryptanalysis. Contrast helps identify objects in images. 

After scrambling the data, the increase in unpredictability leads in a large increase in contrast 

level. The higher contrast in the encrypted images indicates good encryption. Entropy 

measures a cryptosystem's randomness. The value of entropy relates to the arrangement of 

components in a digital image. The homogeneity of entries in the grey level co-occurrence 

matrix (GLCM) is computed. Energy analysis evaluates the dispersion of energy before and 

after encryption by computing the sum of square elements in GLCM. Fig. 2.5(a) and Fig. 

2.5(c) illustrate the host and the encrypted images. Fig. 2.5(b) and Fig. 2.5(d) shows their 

respective histograms. 
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Figure 2.11: Histogram of original and encrypted images using the proposed S-box 
2.11(a-d): Original and encrypted images of Baboon; 2.11(e-h): Histogram of Original and encrypted images of 
Baboon; 2.11(i-l): Original and encrypted images of Pepper; 2.11(m-p): Histogram of Original and encrypted 
images of Pepper. 

 

Table 2.13: Comparison of MLC analysis 

Images Entropy Contrast Correlation Energy Homogeneity 

Baboon image 

Plain Text 7.5817 0.2752 0.9395 0.1378 0.9132 

Proposed 1 7.9723 8.6727 -0.0041 0.0175 0.4065 

Proposed 2 7.9823 8.5814 -0.0046 0.0176 0.4089 

Proposed 3 7.9829 8.3123 0.0012 0.0181 0.4125 

Ref. [20] 7.9562 8.3129 0.0103 0.0180 0.4219 

AES [22] 7.9211 7.5509 0.0554 0.0202 0.4662 

Belazi [30] 7.9233 8.1423 -0.0112 0.0286 0.4648 

Skipjack [37]  7.7561 7.7058 0.1205 0.0239 0.4708 

Table 2.13 shows that the MLC findings are also good, showing that the proposed S-box is 

suitable for the development of cryptographic algorithms for data encryption. 
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Chapter 3 

Image Encryption Application of Block Cipher Improved by 3D 

Chaotic map  

This chapter introduces a new hybrid permutation-substitution-based color image encryption 

system. The permutation and substitution processes are being applied by using an S-box that 

makes the system extremely diffusing and confusing. To enhance the diffusion and confusion 

in the algorithm, a 3D chaotic map has been used. The permutation box, substitution box, and 

initial conditions of the 3D mixed chaotic map are being used as a key. The stability of the 

proposed scheme for statistical purposes and differential attacks is also analyzed. 

3.1. Introduction 

The protection of digital content is increasingly becoming a significant issue for researchers 

and engineers as millions of digital images are transmitted every second to all corners of the 

world. Different encryption techniques are thus applied to prevent unauthorized access to 

such information. These techniques provide considerable convenience for secure transmission 

over Internet channels. 

Research in image encryption has rapidly developed in the last decade, where researchers 

have produced some ground-breaking work. Some of the relevant research is presented as 

follows: Wang et al. [38] used Deoxyribonucleic Acid, and Babaei et al. [39] used Recursive 

Cellular Automata for their effective image masking techniques; a high-speed modified El 

Gamal encryption algorithm was proposed in [40]. In a later study [41], a controlled alternate 

quantum walk was used to generate random numbers for a quantum-color image masking 

technique. Similarly, an image masking technique was developed based on an aperture 

nonlinear fractional Mellin transform with extreme resistance to known-plaintext and chosen-

plaintext attacks [42]. [43] effectively applied the fractional domain, Arnold transforms, 

DWT, and MSVD to design an image-masking algorithm. 

It is vital to scientifically study the fundamental core of the critical problems in image 

encryption algorithms and then strategize new algorithms. Chaos-based encryption processes 

are more efficient as compared to other practical techniques. Lorenz was the first to introduce 

the "Butterfly effect" in 1963. He suggested the Lorenz system used in [38], [44]. Li and 

Yorke discovered the development from order to chaos precisely in Ref. [45]. 
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Researchers have recently developed several algorithms based on neural networks [46]. In 

particularly, the pseudo-random number sequences are efficiently generated by employing a 

composite chaotic map in [46] and a chaotic Hopfield neural network for the permutation and 

diffusion by bit XOR operation in [47]. The proposed scheme has achieved a high degree of 

security, but the diffusion portion is not secure enough to withstand plaintext attacks, so the 

scheme's security has some question marks. The Boltzmann machine is more effective for 

encryption than neural networks [48], the restricted Boltzmann device is utilized to generate 

pseudo-random numbers that continuously adjust the weight matrix between the hidden and 

visible layers. Similarly, the ultimate weight matrix is used as a pseudo-random number 

matrix [46]. Finally, the XORing bit operation with the plain image accomplishes the 

encryption. The developed scheme has some faults, like lack of permutation, which weakens 

the diffusion segment and has a small key space. 

Modified fuzzy cellular neural networks were introduced in [49]. Chaotic fuzzy cellular 

neural networks with high sensitivity efficiently provide plaintext sensitivity and key 

sensitivity. The major drawbacks of this algorithm are the absence of a permutation process 

and the slow rate of encryption/decryption [46]. The image encryption scheme in [50] is 

known as the Chaotic Neural Network (CNN), has two phases (3-layer neurons). These 

phases are named the chaotic neuron layer and the permutation neuron layer and are used in 

the diffusion part and the permutation part of image pixel values, respectively. Lusystems, 

Chua, and Lorenz bring in the bias vector of the chaotic neuron layer and weight matrix, and 

a tent map is used as the activation function. In the permutation of the neuron layer, a cat map 

is utilized for scrambling the pixel position. This is applicable to limited image types and the 

tent map has a low degree of nonlinearity. Further, the diffusion phase weakens the security 

of the overall algorithm. 

In Ref. [51], [52], Huang et al., and Lidong et al., proposed double-image encryption and 

triple-image compression encryption algorithms based on chaotic systems, S-boxes, 

compression, and interpolation. In Ref. [53], Patro et al. presented a multi-color image 

encryption scheme through a multi-level scrambling operation. Moreover, the hash value of 

the image has been linked with the integrated PWLCM system to improve the security of the 

encryption scheme. Although Patro's scheme improves encryption efficiency to some extent, 

it does not consider compressing more vivid images to reduce storage space and transfer 

costs.  
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The encryption schemes in these articles focus on one aspect out of two (confusion & 

diffusion). Confusion is obtained by a substitution process, while for diffusion, chaotic maps 

and permutations are used. A highly secure scheme has a balance of confusion and diffusion.  

3.2. Proposed Encryption Scheme-I (PES-I) 

The proposed multi-image encryption scheme is explored in this section. The scheme is based 

on the chaotic map and is described by four modules. 

3.2.1.  Combine images and RGB channels 

3.2.2.  Permutation of the combined RGB channels 

3.2.3.  Construction of substitution boxes 

3.2.4.  Substitution of permuted RGB channels 

Now we discuss these modules one by one hereunder: 

3.2.1.  Combine Images and RGB Channels 

Let 1 2 3 4, , ,  and I I I I be the RGB images of dimension 3M N  . Initially, the scheme merges 

each color component of the images iI  for 1 4i   into a single matrix. Then combine the 

Color components to produce a single image mI  of dimension 2 2 3M N  . Once obtained, 

this matrix is processed through the following modules to encrypt the image mI . 

3.2.2.  Permutation of RGB Channels 

In digital images, up to fifteen neighbouring pixels are highly correlated; therefore, a well-

organized pattern should destroy the pixel intra-correlation. This module permutes the pixel's 

position of the combined image (single image) using the map given in Eq. (2.1) to Eq. (2.3) 

in chapter 2. To mix the data of each image in a nonlinear manner, the chaos generated by the 

suggested nonlinear map is used in the permutation process. The mathematical representation 

of the permutation process is given in four cases as follows. 

2.3.2.1.  Row-Wise Permutation 

Case I 

( , ) ( , )p uI u v I u x v= −   (3.1) 

if 1 and 2  for some u uu x x q q−  =   
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Case II 

( , ) ( , ),p uI u v I u M x v= + −   (3.2) 

if 1 and 2  for some u uu x x q q−  =   

Case III 

( , ) ( , ),p uI u v I u x v= −   (3.3) 

if  and 2 1 for some u uu x M x q q−  = +   

Case IV 

( , ) ( , )p uI u v I u x M v= + −   (3.4) 

if  and 2 1 for some u uu x M x q q−  = +   

2.3.2.2.  Column-Wise Permutation 

Case I 

( , ) ( , )p uI u v I u x v= −   (3.5) 

if 1 and 2  for some u uu x x q q−  =   

Case II 

( , ) ( , ),p uI u v I u M x v= + −   (3.6) 

if 1 and 2  for some u uu x x q q−  =   

Case III 

( , ) ( , ),p uI u v I u x v= −   (3.7) 

if  and 2 1 for some u uu x M x q q−  = +   

Case IV 

( , ) ( , )p uI u v I u x M v= + −   (3.8) 

if  and 2 1 for some u uu x M x q q−  = +   

( , )I u v  and ( , )pI u v  denotes the pixel values of the original and the permuted image, 

respectively. 
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All pixel values in the original image are row-wise permuted, followed by a column-wise 

permutation, depending on the value of the chaotic sequence. The consequent matrix is 

represented by pI . In this scheme, the column-wise permutation process is the same as the 

row-wise permutation. However, a different approach for the two permutations can be used to 

induce further complexity. 

3.2.3.  Construction of Substitution Boxes 

The substitution box is an essential part of any symmetric key cryptographic scheme. 

Therefore, this module generates an S-box and then uses it for the substitution. The S-box 

construction procedure is given as. 

  '' d25o 6mi iy y  (3.9) 

Defined a map: 
''

256: iS y →  

  
'' ''

''
''

 if ,  1 -1 
( )

0   if ,  1 -1
i i

i
i

y y S j i
S y

y S j i

    = 
=   

 (3.10) 

The map S is an onto map that contains random numbers from 0 to 255. For a different value 

of the initial condition and the parameter, the scheme generates different S-boxes which 

preserve all the cryptographic properties. 

3.2.4.  Substitution of Permuted RGB Channels 

In the last module, the substitution is performed through the S-boxes generated in module III 

via the AES substitution method. The resultant image is encrypted eI . 

The flowchart of the scheme, the results of the combined and individual encrypted images are 

demonstrated in Fig. 3.1 to Fig. 3.3, respectively.  

Figure 3.1: Flow chart of the encryption process 

Construction of 

Substitution 

boxes 

Substitution of the permuted pixel 

Color channels into single image 𝐼𝑚 

Permutation of the pixel of image 𝐼𝑚 

Encrypted Image 𝐼𝑒 

Red channel 

Green channel 

Blue channel 

Combined Image 

1Image I
 

2Image I  

3Image I  

4Image I  



46 

Fig. 3.2 shows that the ciphered and original images have no relationship, but later the 

decryption gives the original image. In Fig. 3.3, the original, permuted, and ciphered images 

of Lena, Mandrill, Peppers, and Deblur are provided. Both figures demonstrate that the 

scheme has exceptional encryption and decryption properties. 

 

   

( )a  ( )b  ( )c  

Figure 3.2: Encryption outcomes, 3.2(a): Plain image; 3.2(b): Encrypted image; 3.2(c): Decrypted image 

    

( )a  ( )b  ( )c  ( )d  

    

( )e  ( )f  ( )g  ( )h  

    

( )i  ( )j  ( )k  ( )l  

Figure 3.3: Experimental outcomes. 
3.3(a-d): Plain images; 3.3(e-h): permuted images; 3.3(i-l): encrypted images 
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3.3. Simulation Results and Analyses 

In this work, standard Color images of "Lena", "Peppers", "Mandrill", and "Deblur" have 

been used as test images.  

The combined multi-image, its ciphered and deciphered images are provided in Fig. 3.2(a), 

Fig. 3.2(b), and Fig. 3.2(c), respectively. Furthermore, individual plain images, their 

permuted and ciphered images are displayed in Fig. 3.3(a-d), Fig. 3.3(e-h) and Fig. 3.3(i-l), 

respectively. For the execution of both the encryption and decryption process, the 

computerized simulations are conducted in MATLAB R2013a (8.1.0.604). 

3.3.1. Security Analyses 

To examine the security strength of the proposed scheme, we performed different analyses on 

it. The detail of these analyses on the proposed scheme is discussed critically.  

3.3.1.1.  Histogram Analysis 

The histogram analysis is presented to evaluate the uniform distribution of ciphered [54]. A 

cryptosystem has a high resistance to statistical attacks if the probability of each gray value in 

the uniform histogram is the same [54]. 

In Fig. 3.4, the original, the ciphered, and their corresponding histograms of the multi-image 

and single images are displayed. These histograms demonstrate that the pixels of the ciphered 

images are more evenly spread than the original images. This aspect ensures that the 

proposed scheme has high resistive capability against differential, plaintext, and statistical 

attacks. 
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( )a  ( )b  ( )c  ( )d  
Figure 3.4: Histogram of original and encrypted images. 

3.4(a): plain images; 3.4(b): corresponding histograms; 3.4(c): encrypted images; 3.4(d): corresponding 
histograms 
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3.3.1.2.  Key Sensitive Analysis 

The key plays a vital role in testing the strength of the encryption scheme [55]. A 

cryptosystem has a high key sensitivity if the decryption with slightly different key outputs 

different images instead of plain images [56]. 

To appraise the key sensitivity of the suggested scheme, two keys 1K  and 2K  which are 

slightly different from each other are compared. The Lena test image is encrypted using 1K  

and 2K . The demonstration is provided in Fig. 3.5. The plain image is given in Fig. 3.5(a). 

The encryption of plain images with 1K  and 2K  are given in Fig. 3.5(b) and Fig. 3.5(c) 

respectively. The difference between encrypted images is given in Fig. 3.5(d). During the 

decryption of Fig. 3.5(b) with key 1K , the original image is obtained, but this is not the case 

with key 2K , where the obtained image is shown in Fig. 3.5(f). Likewise, during the 

decryption of Fig. 3.5(c) with key 1K , the obtained image is shown in Fig. 3.5(g) which is not 

same as the original image, at the same time we obtain the original image with key 2K . This 

analysis ensures the capability of the scheme to yield different ciphered images when 

encryption is performed with slightly different keys. 

Figure 3.5: Key sensitive analysis 

3.2.1.3.  Keyspace Analysis 

It is important to test the brute force attack to test the security strength of the cryptosystem 

[57]. A cryptosystem can withstand a brute force attack if its key space is greater than 
30 100 30 100110 2 0 2  . Assume that the precision of the computer is 1510 . The keys of the 3D 

    

( )a  ( )b  ( )c  ( )d  

    

( )e  ( )f  ( )g  ( )h  
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chaotic map given in Eq. (2.1) to Eq. (2.3) are 1 1 1, , , , ,  and x y z     . Thus, the key space 

has a total of 105 34810 2  possibilities. It shows that the key space of the proposed scheme is 

enormous in its ability to withstand the brute force attack. 

3.2.1.4.  Time Execution Analysis 

The time required for algorithm execution is also of critical importance to test the value of a 

cryptosystem [58]. The proposed algorithm is tested on a machine with the following specs: 

Intel(R) Core (TM) i3-4010U processor @ 1.70GHz; 4.00 GB RAM; and Windows 10 

Enterprise. For the execution of both the encryption and decryption process, the computerized 

simulations are conducted in MATLAB R2013a (8.1.0.604). The time taken to encrypt the 

RGB Test image is 19.922 seconds. 

3.3.2. Statistical Analyses 

The key point of the proposed work is to transmute visually meaningful images into noise-

like encrypted images. Several statistical analyses are used to evaluate the noise-like 

encrypted images. The noise analysis, information entropy, correlation analysis, and 

differential attacks are presented hereunder. 

3.3.2.1. Noise Analysis 

When exposed to some noise in the transmission, the behaviour of the cipher scheme is of 

critical importance. Rarely, there is some noise in the broadcast channel. As a result, the 

encrypted image gets affected severely, and the cryptosystem failed to recover the image 

[59]. Hence, a cryptosystem is strong if it has image retrieval property even if there is noise. 

Here, the effectiveness of the proposed scheme is analyzed. 

Consider the analysis of fat-tail distribution, also known as salt and pepper noise [59]. There 

are bright pixels in the dark and dark pixels in the bright in this type of noise. In Fig. 3.6, 

encrypted and decrypted images of Lena, Baboon, Fruits, and Airplane with increment in 

noise are given. The proposed scheme can recover the original image in each case of noise. 

The encrypted and decrypted images with minimum, default, and maximum noise are given 

in Fig. 3.6 (a-c) and Fig. 3.6 (d-f) respectively. 

3.3.2.2. Randomness Test 

The security level of a cryptosystem can be determined by finding its distribution, 

complexity, period, and output data. A cryptosystem is safe if the data is evenly distributed, 
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so it exhibits high complexity and durability [60]. In this chapter, NIST SP 800–22 test is 

performed on a multi-image. There are also some subcategories in this test. Test results show 

that the encrypted test image using the proposed scheme passes all the security threats. The 

NIST test results are presented in Table 3.1.  

Table 3.1: NIST test results 

Test  P – values (Encrypted Image) Result 

  Red Green Blue Random Non-
random 

Frequency  0.49672 0.81027 0.24957 ☑  

Block Frequency  0.2314 0.03474 0.79895 ☑  

Rank  0.28911 0.29892 0.29781 ☑  

Runs (M=10,000)  0.81517 0.96785 0.74577 ☑  

Long Runs of ones  0.7126 0.7126 0.7126 ☑  

Overlapping Templates  0.86598 0.82166 0.85789 ☑  

No Overlapping Templates  0.99326 0.99819 0.99628 ☑  

Spectral DFT  0.25474 1 0.47686 ☑  

Approximate Entropy  0.052736 0.70132 0.6312 ☑  

Universal  0.98108 0.99878 0.99115 ☑  

Serial p values 1 0.029565 0.19870 0.13674 ☑  

Serial p values 2 0.003765 0.03782 0.15076 ☑  

Cumulative Sums Forward  0.093897 0.23879 0.10914 ☑  

Cumulative Sums Reverse  1.1715 0.61785 0.91678 ☑  

Random Excursions 𝑋 = −4 3.45E-15 0.23178 0.62765 ☑  
 𝑋 = −3 0.59549 0.00343 0.61652 ☑  
 𝑋 = −2 0.01279 0.5343 0.93581 ☑  
 𝑋 = −1 0.7138 0.81799 0.93472 ☑  
 𝑋 = 1 0.91818 0.9402 0.01759 ☑  
 𝑋 = 2 0.97863 0.89732 0.87874 ☑  
 𝑋 = 3 0.99435 0.034587 0.56754 ☑  
 𝑋 = 4 0.9895 0.031562 0.63204 ☑  
Random excursions 
variants 𝑋 = −5 0.13454 0.32821 0.30243 ☑  

 𝑋 = −4 0.70664 0.28653 0.62678 ☑  
 𝑋 = −3 1 0.19349 1 ☑  
 𝑋 = −2 0.78392 0.17659 0.83415 ☑  
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 𝑋 = −1 0.62617 0.19947 0.89837 ☑  
 𝑋 = 1 0.31843 0.34674 0.30262 ☑  
 𝑋 = 2 0.5726 0.48946 0.37325 ☑  
 𝑋 = 3 0.66354 0.74845 0.19643 ☑  
 𝑋 = 4 0.71657 0.83143 0.05465 ☑  

  

( )a  ( )b  ( )c  ( )d  ( )e  ( )f  

Figure 3.6: Noise Analysis 

3.3.2.3. Information Entropy Analysis 

Entropy estimates the strength of a cryptographic scheme in terms of how much it can 

disorganize the encrypted image [54], [61]. It measures the degree of randomness of an 

encryption scheme [62]. The expression to compute the degree of randomness is given as 

[54]. 

  
255

2
0

( ) ( ) log ( )u u
u

H m p m p m
=

= −  (3.11) 

m and ( )up m  are the unique random variable and probability of um . 

A cryptosystem has a high degree of randomness if its entropy estimation is 8. The entropy 

analysis of the original and the ciphered image is presented in Table 3.2. Note that the 
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randomness of the ciphered image is in proximity to the optimum value. Consequently, the 

suggested scheme can randomize the pixels to their optimum level. 

Table 3.2: Information entropy analysis 

Test Image 
Information entropy (Original) Information entropy (Encrypted) 

Red Green Blue Red Green Blue 

Combine 7.7599 7.6978 7.6571 7.9991 7.9954 7.9963 

Lena 7.3277 7.6048 7.1326 7.9977 7.9945 7.9943 

Peppers 7.3920 7.3920 7.1738 7.9965 7.9969 7.9932 

Deblur 7.6646 7.1724 6.4954 7.9971 7.9957 7.9949 

Mandrill 7.6634 7.3871 7.6646 7.9967 7.9931 7.9939 

3.3.2.4. Correlation Analysis  
It examines the strength of the encryption scheme to determine how much it can break the 

relationship of neighbouring pixels [63]. In the plain image, the adjacent pixels are highly 

correlated. A good encryption scheme can break this relationship [61]. Two thousand pairs 

are randomly chosen to analyze adjacent correlation coefficients. The following expressions 

are used to calculate the correlation coefficient. 

  ,
(( ( ))( ( ))) ,

( ) ( )u v
E u E u v E vr

D u D v
− −

=  (3.12) 

  
1

1( ) ,
N

i
i

E u u
N =

=   (3.13) 

  2

1

1( ) ( ( )) ,
N

i
i

D u u E u
N =

= −  (3.14) 

( ) and ( )E u D u  are the mathematical expectation and covariance [54]. 

A cryptosystem has more strength if its correlation estimation is 0. The original image 

correlates close to 1 and the correlation of our test images is close to 0. This suggests that the 

proposed scheme is capable to break the relationship of adjacent pixels. The results of the 

correlation analysis of the original and the ciphered images are provided in Fig. 3.7(A) to Fig. 

3.7(C), and Table 3.3. In Fig. 3.7(A) to Fig. 3.7(C), (a-c) and (d-f) represent the horizontal, 

vertical, and diagonal correlation of original and encrypted images, respectively. 
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( )a  ( )b  ( )c  

   

( )d  ( )e  ( )f  
Figure 3.7(A): The correlation coefficient (red channel) 

 

   

( )a  ( )b  ( )c  

   

( )d  ( )e  ( )f  
Figure 3.7(B): The correlation coefficient (green channel) 

 

   

( )a  ( )b  ( )c  
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( )d  ( )e  ( )f  
Figure 3.7(C): The correlation coefficient (blue channel) 

Table 3.3: Correlation analysis 

Test Image 
Correlation (Original) Correlation (Encrypted) 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Combine 0.9724 0.9718 0.9386 0.0016 -0.0056 0.0015 

Lena 0.9452 0.9438 0.9048 -0.00243 -0.00187 -0.00254 

Peppers 0.9369 0.9272 0.9637 -0.0174 -0.0105 -0.0241 

Deblur 0.9848 0.9903 0.9825 -0.0291 -0.0014 -0.0149 

Mandrill 0.9419 0.9656 0.9114 0.0065 -0.0187 -0.0054 

3.3.2.5. Differential Attacks 

The association between the pixels of the plain image and the ciphered image is evaluated by 

the NPCR and UACI analyses [54]. 

A cryptosystem is secure if it is highly sensitive to minor changes in input. Suppose 

1 2 and  C C are two ciphers of plain images. The following expressions are used to calculate 

NPCR and UACI. 

  
,

1 ( , ) 100%,
u v

NPCR D u v
W H

 
=  

  
  (3.15) 

  1 2

,

( , ) ( , )1 100%,
255u v

C u v C u vUACI
W H

 −
=  

  
  (3.16) 

1( , )C u v  is the gray pixel value of the cipher image [54]. 

  1 21   ( , ) ( , )
( , )

0   
C m n C m n

D u v
otherwise


= 


, (3.17) 

These analyses are evaluated, and the findings are presented in Table 3.4. These findings 

indicate the suggested scheme's high resistance to differential attacks. 

Table 3.4: NPCR and UACI results 
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Schemes 
NPCR UACI 

Blue (%) Green (%) Red (%) Blue (%) Green (%) Red (%) 

Combine 99.6063 99.6017 99.5997 33.3846 33.4102 33.2960 

Lena 99.5925 99.5921 99.5917 33.0371 33.3102 33.0319 

Peppers 99.6014 99.6174 99.6275 33.1504 33.0761 33.2046 

Deblur 99.6032 99.6051 99.5961 33.5202 33.2466 33.2779 

Mandrill 99.5809 99.5992 99.5975 33.4076 33.1655 33.2769 

3.3.2.6. Comparisons 

The experimental findings of Entropy, Correlation coefficient, NPCR, and UACI of the 
suggested scheme are compared with some existing schemes in Table 3.5. Note that the 
entropy of the ciphered image is too close to the optimum value. Consequently, the suggested 
scheme is considerably more secure and has more strength. The results of NPCR and UACI 
of the ciphered image are 99.61% and 33.40%, respectively. These results indicate that the 
suggested scheme has a high resistance to differential attacks. The correlation coefficient 
values are very close to the optimal value. This indicates that the suggested scheme is better 
than the techniques shown in comparison. Hence it is highly secure. 

Table 3.5: Comparison of experimental findings with some existing techniques 

M
ea

su
re

s 

Channels Proposed Ref. [64] Ref. [65] Ref. [66] Ref. [67] Ref. [68] Ref. [69] 

E
nt

ro
py

 Red 7.9984 7.9974 7.9971 7.9798 7.9895 7.9913 7.9874 

Green 7.9987 7.9969 7.9969 7.9795 7.9894 7.9914 7.9872 

Blue 7.9989 7.9979 7.9962 7.9797 7.9894 7.9916 7.9866 

N
PC

R
 Red 99.6163 99.623 99.5864 99.5925 99.6369 99.6113 99.5990 

Green 99.6170 99.606 99.2172 99.5921 99.6174 99.6060 99.5777 

Blue 99.6259 99.652 99.8474 99.5927 99.6054 99.6052 99.5990 

U
A

C
I 

Red 33.6476 33.245 33.4834 33.5039 33.8547 33.4280 33.4808 

Green 33.6116 33.362 33.6399 33.5112 33.7619 33.4966 33.1617 

Blue 33.6068 33.521 33.2689 33.5037 33.6046 33.3779 33.6066 

C
or

re
la

tio
n Horizontal -0.00243 -0.0009 0.0054 0.0037 0.0023 -0.0080 -0.0580 

Vertical -0.00187 -0.0011 0.0062 0.0030 -0.0059 0.0098 -0.0024 

Diagonal -0.00254 -0.0010 0.0017 -0.0029 0.0029 -0.0058 -0.0170 
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3.3. Proposed Image Encryption Scheme-II (PES-II) 

At this stage, the second proposed encryption scheme is being explored. This proposed 

scheme consists of three modules. The flowchart of the proposed scheme is set out in Fig. 

3.8, and then the module-wise process of the scheme is provided. 

 

Figure 3.8. Flowchart of the proposed encryption scheme 

The modules of the proposed scheme can be described as following. 

Before the first module of the proposed scheme, a newly designed 3D mixed chaotic map is 

used for the construction of three S-boxes discussed in chapter 2. Due to proposed S-boxes, 

the confusion and diffusion in the plaintext are enhanced, which makes it a challenge for the 

cryptanalyst to determine any information in the encryption process. It is found that the 

proposed S-boxes with an increasing level of turbulence provide excellent results in any 

application for secure communication. 

Module 1 The first module of the proposed scheme transforms the plain image into bits. 

After transformation, the XOR operation is performed on the plain image bits and 

one of the constructed substitution boxes. 

Module 2 In this module, row wise permutation is performed on the result of the module 1. 

Here, one of the remaining two substitution boxes is used for the substitution of 

row-wise permuted bits. 
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Module 3 In the last module of the scheme, column wise permutation is performed on 

resulted bits of module 2. Here, third substitution box is used for the substitution 

of column-wise permuted bits. The result of this step is the final encrypted image. 

Here is a description of the functionality of the module 1, 2, and 3. 

3.3.1. Pixel Mixing 

Assume ( , )I i j  be the S T  dimensional plain image. Here i  and j  indicate the position of 

the pixels on the X-axis and Y-axis respectively. In the pixel mixing phase, firstly S-box 1 

1( )S  is produced through Eq. (2.11). We have to find out the biggest random number in 1S . 

Let S T  be the required biggest random number in 1S . After this, the XOR operation is 

performed on the pixels of the image with each entry 1kp S . 

 ( , ) ( , ) ( , )p k k kI i j I i j p I i p j p=  =   , (3.18) 

where ( , )pI i j  represents the image pixels after XORing with 1S  entries. We have utilized the 

XOR operation for bits because this operation is self inverse. 

3.3.2. Row-wise Pixel Permutation 

In this module, we produced S-box 2 2( )S  through Eq. (2.12). Considering S  the biggest 

number in 2S . The equation used for this phase is given below: 

 
if 

( , )
if 

k k

k k

i p i p S
I i j

i p S i p S
+ + 

=  + − + 
, (3.19) 

Where 2 ,  1kp S i S   . In this chapter, we have applied row-wise permutation on pixel 

locations. To increase the security of the scheme, corresponding to odd (resp. even) values of 

chaos, permutation can apply on pixels positions from right (resp. left) directions. 

3.3.3. Column-wise Pixel Permutation 

In this module, we produced S-box 3 3( )S  through Eq. (2.13). Considering T  the biggest 

number in 3S . The equation used for this phase is given below: 

 
if  

( , )
if  

k k
e

k k

j p j p T
I i j

j p T j p T
+ + 

=  + − + 
, (3.20) 

where 3,  1kp S j T   . To make the scheme extra protected, corresponding to odd (resp. 

even) values of chaos, permutation can apply on pixels position from upward (resp. 

downward) directions. 
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After performing these four steps, the output image has all cryptographic assets for a secure 

system.  

3.4. Simulation Results and Analyses 

In this subsection, we present a security analysis that includes histogram analysis, key 

sensitivity analysis, and statistical analysis that includes data entropy analysis, correlation 

analysis, and differential attack analytics of the proposed encryption scheme. Each analysis 

includes a discussion demonstrating the dominance of the proposed scheme. The encryption 

of the color image is given in Fig. 3.9. 

   

   

   

   

( )a  ( )b  ( )c  

Figure 3.9: Encryption results. 

3.9(a): Plain images; 3.9(b): XORing and row-wise permutation of pixels; 3.9(c): Column-wise permutation of 
pixels. 
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3.4.1. Security Analyses 

To examine the security strength of the proposed scheme, we performed different analyses on 

it. The detail of these analyses on the proposed scheme is discussed critically. 

3.4.1.1. Keyspace analysis 

It is important to test the brute force attack to test the security strength of the cryptosystem 

[57]. A cryptosystem can withstand the brute force attack if its keyspace is greater than 
30 10010 2 . Assume that the precision of the computer is 1510 . The keys and parameters of the 

3D chaotic map are 1 2 3 1 1 1, , , ,  and n n n    . Thus, the keyspace has a total of 90 29910 2  

possibilities. It shows that the keyspace of the proposed scheme is enormous in its ability to 

withstand the brute force attack. 

3.4.1.2. Time execution analysis 

The time required for algorithm execution is also of critical importance to test the value of a 

cryptosystem [58]. The proposed algorithm is tested on a machine with the following specs: 

Intel(R) Core (TM) i3-4010U processor @ 1.70GHz; 4.00 GB RAM; and Windows 10 

Enterprise. For the execution of both the encryption and decryption process, the computerized 

simulations are conducted in MATLAB R2013a (8.1.0.604). The time taken to encrypt the 

RGB Test image is 8.292 seconds. 

3.4.1.3. Key Sensitive Analysis 

High penetration of encryption schemes against encryption keys describes a highly protected 

scheme [55]. In order words, the cipher image is different when a small change in the key is 

made. In Table 3.6, two keys 1K and 2K  are listed which are used to analyze the sensitivity of 

the proposed scheme. 

Table 3.6: Encryption Keys 

Parameters 1  2  3  1  2  3  1N  2N  3N  

Keys 

1K  2 3 6 60 70 80 40 80 180 

2K  2.000001 3 6.000003 60 70 80 40 80 180 

The encryption of plain image and decryption of cipher image with 1K and 2K  respectively 

presented in Fig. 3.8. The plain image is given in Fig. 3.8( )a . The encryption of plain 
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images with 1K  and 2K  are given in Fig. 3.8( )b  and Fig. 3.8( )c , respectively. The difference 

between encrypted images is given in Fig. 3.8( )d . During the decryption of Fig. 3.8( )b  with 

key 1K , the original image is obtained, but this is not the case with the key 2K , where the 

obtained image is shown in Fig. 3.8( )f . Likewise, during the decryption of Fig. Fig. 3.8( )c  

with key 1K , the obtained image is shown in Fig. 3.8( )g which is not same as the original 

image, at the same time we obtain the original image with key 2K . This analysis ensures the 

capability of the scheme to yield different ciphered images when encryption is performed 

with slightly different keys. 

 
   

( )a  ( )b  ( )c  ( )d  

 
  

 

( )e  ( )f  ( )g  ( )h  

Figure 3.8: Key sensitive analysis 

3.4.1.4. Histogram analysis 

To authenticate the consistency of pixel values of the cipher image, histogram analysis is 

performed [54]. The probability of each gray value in the uniform histogram of the cipher 

image is the same. The uniformness of the histogram of the cipher image defines the 

resistance of the encryption scheme against statistical and differential attacks. The histograms 

of original and cipher images are given in Fig. 3.9(b) and Fig. 3.9(d) respectively. It shows 

that the distribution of pixel values of cipher images is uniform as compared to pixel values 

of original images. This illustration assumes that the proposed encryption scheme has high 

resistance against statistical and differential attacks. 
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( )a  ( )b  ( )c  ( )d  

Figure 3.9: Histogram analysis. 

3.9(a): Plain image; 3.9(b): Histogram of the plain image; 3.9(c): Encrypted image; 3.9(d): Histogram of the 
encrypted image 

3.4.2. Statistical Analyses 

The key point of the proposed work is to transmute visually meaningful images into noise-

like encrypted images. Several statistical analyses are used to evaluate the noise-like 

encrypted images. The information entropy and correlation analysis and differential attacks 

are presented in this subsection. 
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3.4.2.1. Information Entropy (IE) 

Entropy estimates the strength of a cryptographic scheme in terms of how much it can 

disorganize the encrypted image [54], [61]. It measures the degree of randomness of an 

encryption scheme [62]. The results of the entropy analysis are presented in Table 3.7. 

Besides, comparisons with some of the existing schemes are given in Table 3.8. 

Table 3.7: Information entropy analysis of the proposed technique 

Table 3.8: Comparison of Information entropy analysis 

Schemes Test Images 
Encrypted Images 

Red Green Blue 

Proposed 

Lena 

7.9992 7.9985 7.9991 

Ref. [66] 7.9798 7.9795 7.9797 

Ref. [70] 7.9895 7.9894 7.9894 

Ref. [71] 7.9913 7.9914 7.9916 

Ref. [72] 7.9893 7.9896 7.9903 

3.4.2.2. Correlation analysis 

It examines the strength of the encryption scheme to determine how much it can break the 

relationship of neighbouring pixels [63]. In the plain image, the adjacent pixels are highly 

correlated. A good encryption scheme can break this relationship [61]. Two thousand pairs 

are randomly chosen to analyze adjacent correlation coefficients. The results of the 

correlation analysis of the original and the ciphered images are presented in Fig. 3.10, and 

Table 3.9. Besides, comparisons with some of the existing schemes are given in Table 3.10. 

Fig. 3.10(a-c) to Fig. 3.10(d-f) represent the horizontal, vertical, and diagonal correlation of 

original and encrypted images, respectively. 

Test Image 
Information entropy (Original) Information entropy (Encrypted) 

Red Green Blue Red Green Blue 

Lena 7.3277 7.6048 7.1326 7.9992 7.9985 7.9991 

Peppers 7.3920 7.3920 7.1738 7.9970 7.9965 7.9970 

Deblur 7.6646 7.1724 6.4954 7.9967 7.9973 7.9973 

Mandrill 7.6634 7.3871 7.6646 7.9969 7.9972 7.9975 
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( )a  ( )b  ( )c  

   

( )d  ( )e  ( )f  

Figure 3.10: The correlation coefficient between pixel pairs for the original and encrypted image. 

Table 3.9: Correlation analysis 

Test 
Image 

Correlation (Original) Correlation (Encrypted) 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Lena 0.9452 0.9438 0.9048 -0.0358 -0.0382 0.0060 

Peppers 0.9369 0.9272 0.9637 -0.0174 -0.0105 -0.0241 

Deblur 0.9848 0.9903 0.9825 -0.0291 -0.0014 -0.0149 

Mandrill 0.9419 0.9656 0.9114 0.0065 -0.0187 -0.0054 

Table 3.10: Comparison of Correlation Coefficients 

Schemes Test Images 
Correlation Coefficient 

Horizontal Vertical Diagonal 
Proposed 

Lena 

-0.00052 0.00068 -0.00932 
Ref. [66] 0.0023 - 0.0059 0.0029 
Ref. [70] -0.0080 0.0098 -0.0058 
Ref. [71] 0.0018 -0.0015 0.0018 
Ref. [72] 0.0035 0.0024 0.0010 

3.4.2.3. Differential Attacks 

The association between the pixels of the plain image and the ciphered image is evaluated by 

the NPCR and UACI analyses [54]. These analyses are evaluated, and the findings are 

presented in Table 3.11. 
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Table 3.11: Comparison of NPCR and UACI results 

Schemes 
NPCR UACI 

Blue (%) Green (%) Red (%) Blue (%) Green (%) Red (%) 

Proposed 99.6163 99.6170 99.6259 33.4476 33.5116 33.5068 

Ref. [66] 99.6054 99.6174 99.6369 33.8547 33.7619 33.6046 

Ref. [70] 99.6052 99.6060 99.6113 33.4280 33.4966 33.3779 

Ref. [71] 99.6097 99.5994 99.5975 33.4476 33.4655 33.4769 

Ref. [72] 99.6100 99.6092 99.6099 33.4639 33.5042 33.4776 

3.4.2.4. Discussion 

The experimental findings of Entropy, Correlation coefficient, NPCR, and UACI of the 

suggested scheme are presented in Table 3.7 to Table 3.11. These results of NPCR and UACI 

indicate that the suggested scheme has a high resistance to differential attacks. 

A cryptosystem has a high degree of randomness if its entropy estimation is 8. From Table 

3.7, note that the randomness of the ciphered image is in proximity to the optimum value. 

Furthermore, the comparison of this analysis shows that the proposed scheme produces more 

coincidences than all the schemes presented in the comparison.  

A cryptosystem has more strength if its correlation estimation is 0. The original image 

correlates close to 1 and the correlation of our test images is close to 0. This suggests that the 

proposed scheme is capable to break the relationship of adjacent pixels. Consequently, the 

suggested scheme is more secure. 
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Chapter 4 

Small S-box Generation and its Image Processing Application by 

Mixed Chaotic Maps 

In this chapter, an efficient image-encryption technique based on a two-dimensional (2D) 

chaotic system combine with the Galois Field is introduced. The proposed scheme consists of 

four modules which are the separation of bits, compression, 2D chaotic map, and small S-

boxes. The proposed algorithm's encryption strength is determined through Entropy, 

Correlation coefficient, NPCR, and UACI analyses, which were then compared to the past 

techniques. The proposed image encryption procedure is fast as implementation is concerned 

because of comprising of one round only. 

4.1.  Introduction 

The digital revolution, particularly at this age of advancement, is a good call for research into 

multimedia security. Image processing methods have been developed using a variety of 

technologies. SCAN [73], gray code [74], wave transmission [75], circular random grids [76], 

vector quantization [77], and elliptic curve ElGamal [78] are some examples of these 

technologies. 

Chaotic systems are unpredictable, nonlinear, and highly penetrating to the starting values. 

The foundation of encryption with chaos are those dynamic systems that can produce the 

sequence of random numbers. In the encryption process, these sequences are utilized by 

different ways. These features make such systems ideal for encryption. Consequently, many 

researchers designed and utilized the chaotic systems in encryption procedures, new chaotic 

image encryption schemes have been developed. 

Data compression can be utilized when either storage is short, or communication bandwidth 

is limited [79]. In particular, the data compression algorithm having a low bitrate is required 

in the wireless communication network for bandwidth limitations. To protect user privacy, 

encryption is performed [80]. The chaotic systems and compression algorithms are combined 

with the image encryption algorithm for constructing Chaos-based encryption algorithms and 

combined crypto-compression algorithms. These combinations are considered more efficient 

and secure for image encryption. 
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In Ref. [81], atta et al. established an encryption scheme utilizing S-boxes and chaotic map 

while in Ref. [82], Bukhari et al. proposed a technique for the construction of the S-boxes and 

their application in multimedia security. In Ref. [83], shah et al. constructed S-boxes using 

the irreducible polynomial of degree 8. Sajjad et al. in Ref. [13] constructed S-boxes using 

the chaotic tent-sine map. A highly secure scheme has a balance of confusion and diffusion. 

The ultimate objective of this chapter is to provide confusion through Substitution-box and 

diffusion is created by utilizing a chaotic map. A balanced scheme that covers both necessary 

aspects. 

4.2.  Preliminaries 

In this section, the fundamental facts of suggested image encryption are explored. Firstly, the 

construction of S-boxes using Mobius transformation and their analyses are presented. Then, 

the sine map, the Tinkerbell map, and the mixed chaotic map are discussed. At the end of this 

section, the compression, compression ratio, and compression algorithm are described. 

4.2.1.  Construction of Substitution Box (S-box) 

We utilized Linear Fractional Transformation (LFT) and its application over the Galois field 
4(2 )GF  through group action to design a new substitution box (S-box). The group action is 

defined as: 

 

( ) ( ) ( )

( )

2 2 2[ ] [ ] [ ]: 2,

,  0 

x x xh PGL
x x x

at bh t ad bc
ct d

  

 
 → 

 
 

+
= − 

+   (4.1) 

where ( ) ( )2
4[ ], , , , ,  and 1x xt a b c d x x x  = + + . The image of ( )h t in the field 

( )2[ ]x x  is used to generate the S-box. It should be noted that the value of t  is from 0 to 

15 belongs to ( )2[ ]x x . These values are used in LFT after they are converted into 

polynomial form. When the condition 0ad bc−   does not hold, the algorithm stops. Also, if 

the denominator becomes zero for any value of t . In that case, the missing one after the end 

of the process will place value at that position. 

Here t  is supposed as the solution of ( ) 0x =  such that ( ) 4 1 0t t t = + + = . The solution of 

( ) 0t =  is used to generate different elements of 4(2 )GF  . In this study we fix the values of 
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12,  4,  8a b c= = =  and 13d = , then construct the S-box by using the transformation given 

as follows: 

 

12 4 / 8 13 , 0
( )

8 , 0
t t t

h t
t

+ + 
=  =  (4.2) 

The elements of Galois Field 4(2 )GF , their corresponding binary and decimal values along 

with elements of the Substitution box are presented in Table 4.1. 

Table 4.1: Elements of 4 4
2(2 ) [ ] 1GF x x x= + +  and an S-box 

4.2.1.1.  Algebraic Analysis for Substitution boxes 

The standard measures to evaluate the strength of the Substitution boxes are nonlinearity, 

strict avalanche criteria (SAC), Linear proximation probability (LP), Differential 

approximation probability (DP), and Bit independence criteria (BIC) are given in this 

subsection. Nonlinearity computes the base separation between the arrangement of all n-

variable affine functions and n-variable Boolean functions. Strict avalanche criteria measure 

the no. of bits changed in output by making a change of a single bit in the input. LP estimates 

42( )GF  
Binary 
values Decimal Form ( ) 12 4 / 8 13h t t t= + +  Elements of S-

box 
0 0000 0 (0) (12(0) 4) / (8(0) 13)h = + +  3 

t  0010 2 (2) (12(2) 4) / (8(2) 13)h = + +  14 
2t  0100 4 (4) (12(4) 4) / (8(4) 13)h = + +  7 
3t  1000 8 (8) (12(8) 4) / (8(8) 13)h = + +  2 
4t  0011 3 (3) (12(3) 4) / (8(3) 13)h = + +  15 
5t  0110 6 (6) (12(6) 4) / (8(6) 13)h = + +  4 
6t  1100 12 (12) (12(12) 4) / (8(12) 13)h = + +  9 
7t  1011 11 (11) (12(11) 4) / (8(11) 13)h = + +  0 
8t  0101 5 (5) (12(5) 4) / (8(5) 13)h = + +  10 
9t  1010 10 (10) (12(10) 4) / (8(10) 13)h = + +  11 

10t  0111 7 (7) (12(7) 4) / (8(7) 13)h = + +  13 
11t  1110 14 (14) (12(14) 4) / (8(14) 13)h = + +  6 
12t  1111 15 (15) (12(15) 4) / (8(15) 13)h = + +  1 
13t  1101 13 (13) (12(13) 4) / (8(13) 13)h = + +  8 
14t  1001 9 (9) (12(9) 4) / (8(9) 13)h = + +  12 
15t  0001 1 (1) (12(1) 4) / (8(1) 13)h = + +  5 



69 

the inconsistency of an occasion among input and output while DP ensured the uniqueness of 

the change in output for each change made in the input. Furthermore, BIC explores the 

unaltered bits. For detail, the study follows [36]. 

The SAC and Average SAC values of the suggested small S-box are provided in Tables 4.2 

and 4.3 respectively. Further, the BIC and DP values are given in Tables 4.4 and 4.5. 

Table 4.2: The SAC analysis 

0 4 4 4 

4 0 4 4 

4 4 0 4 

4 4 4 0 

Table 4.3: The Average SAC analysis 

0.5000 0.6250 0.6250 0.7500 

0.5000 0.6250 0.3750 0.5000 

0.5000 0.6250 0.5000 0.2500 

0.5000 0.5000 0.6250 0.2500 

Table 4.4: The BIC analysis  

4 1 1 2 

1 4 0 1 

1 0 4 1 

2 1 1 4 

Table 4.5: The DP analysis  

2 4 4 4 

2 4 6 4 

4 2 4 6 

4 2 4 16 
The nonlinearity of our suggested small S-boxes is 4, which is the optimum value of 

nonlinearity of 4 bits S-boxes. The values of the SAC, Average SAC, the BIC, and the DP 

satisfying all measurements for the suggested small S-boxes. The performance analyses 

indicate that the suggested S-boxes have almost the optimized results when it comes to 

randomness, resistance against the various linear and differential attacks. 
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4.2.3.  Chaotic Map 

Chaotic maps are defined as recursive functions. These maps can also be any number of 

dimensions. The chaotic maps used in the algorithm are described below. 

4.2.3.1.  Sine Map 

The subsequent iterated equation is an equation of one of the discrete chaotic maps that is a 

sine map.  

 1 ( , ) sin( )t t tS a a   + = =   (4.3) 

where a  is used as a parameter and its range is (0,1]  and the range of t  is (0,1) . When the 

value of a  is equal to 1, then this function is in a state of chaos. The Bifurcation and 

Lyapunov diagrams of the Sine map are given in Fig. 4.1(a) and Fig. 4.1(b), respectively. 
  

( )a  ( )b  

Figure 4.1: Bifurcation and Lyapunov diagrams of Sine map 

4.2.3.2.  Tinkerbell Map 
Tinkerbell map, the two-dimensional chaotic map, is a discrete map defined by following 

subsequent iterated equations as: 

 2 2
1t t t t tx x y p x q y+  = − + +  (4.4) 

 1 2t t t t ty x y m x n y+  = + +  (4.5) 

where , ,  and p q m n     are the parameters from real numbers or any interval. The most 

frequently used values of , ,  and p q m n     are 0.9, 0.6013, 2.0, 0.50p q m n = ==  =  and 

0.3, 0.6000,p q ==  2.0, 0.27.m n = =  

Like other chaotic maps, this chaotic map has also periods. The root of mapping’s name 

Tinkerbell is unknown. However, the graphical representation of this map depicts an analogy 

to the motion of a fictional character Tinkerbell in Cinderella castle. 
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4.2.3.3.  Mixed Chaotic map 

The Tinkerbell map and sine map are mixed up to design the suggested map which is a 

nonlinear combination of the above-mentioned maps. The mix-up process is represented by 

the following equation. 

 1

1

( , )

( , ) ( , , , , ) mod1

a
t ST t

a a
t t t

Z r Z

Z S a Z T p q m n Z

+

+

=

    = + 

 (4.6) 

Where ( , )a
ST tr Z  is mixed two dimensional chaotic map of sine map and Tinkerbell map, 

( , )a
tS a Z  is a one-dimensional chaotic map having a  as its parameter, and 

( , , , , )a
tT p q m n Z     is a two-dimensional chaotic map having , , ,  and p q m n    as its 

parameters, mod represents modulo operation whose range is [0,1)  and t  depicts the 

iteration’s number. The Tinkerbell map attractor and mixed chaotic map attractor are given in 

Fig. 4.2. 
  

( )a  ( )b  

Figure 4.2: Attractor diagrams, 4.2(a): Tinkerbell map attractor, 4.2(b): Mixed chaotic map attractor 

The mixed chaotic map has a better chaotic range and randomness. The main advantage of 

mixing the 1D sine map and 2D Tinkerbell map is to use the parameters to double the 

keyspace for high resistance against brute force attack. This is one example of the proposed 

encryption scheme otherwise; we can use or mix any two chaotic maps for the proposed 

encryption algorithm. 

4.2.4.  Data Compression 

The method of terminating the data redundancies from documents to decrease the cost of data 

storing is data compression [84]. Mostly, compression is used to make the best use of 

bandwidth through a distribution link. It is also used to enhance disk space while saving 
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documents. All compression methods can compress the data to a certain limit. This limit is 

directly connected to the different types and consistency of data [84]. 

4.2.4.1.  Compression ratio 

It is the measure of compression and is defined in terms of disk utilization [84]. 

    1 100%
  

compressed file sizeCompression ratio
uncompressed file size

 
= −  
 

 (4.7) 

4.2.4.2.  Lempel-Zev-Welch algorithm 

Dictionary-based compression algorithms do not rely on the statistical model. In its place, 

they depend on a dictionary, which consists of all that one can think of words of a language, 

which are kept in a table-like construction. For the representation of larger and repeating 

words of the dictionary, the table uses indexes of entries. An algorithm that works using this 

dictionary is the Lempel-Zev-Welch algorithm or the LZW algorithm for short. In the LZW 

method, for storing and indexing earlier seen string configurations, a dictionary is used. 

During the compression procedure, the algorithm does not use repeating string configurations 

and a dictionary is generated dynamically. There is no compulsion on this dictionary to move 

it with the coded data for the decompression process. During decompressing, the same 

dictionary is generated dynamically and is used for decryption purposes. Hence, it is an 

effective compression algorithm for adaptation [84]. 

4.3.  Proposed Image Encryption Technique 

This section comprises the suggested image encryption technique, security analyses, and 

comparisons.  

The suggested technique applies to the RGB image, which consists of four modules. The 

RGB image of dimension 3M N   is split into the three-color components of dimension 

M N  before the first module of the encryption process. Afterward, encrypt each component 

of the image independently. The four modules of the suggested technique are described as 

follows. 

Module I: The scheme divides the block of the image into two sub-blocks; LSB block and 

MSB block, and then convert the MSB into LSB. Subsequently amalgamate the 

two matrices into a single block, consequently, get three new blocks of dimension 

2 2M N . 
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Module II: The scheme applies the LZW compression algorithm on the bits of the new data 

blocks. The aim of using LZW is to eliminate unnecessary data from the original 

image. 

Module III: Since the pixels of the plain image are highly correlated with one another. 

Therefore, the scheme uses a 2D mixed chaotic map to permutes the obtained data 

of module II. The permutation step aims to diminish the correlation among the 

neighbouring pixels of the image and mix up the LSB of the image with the newly 

converted LSBs of the image. The permutation step is given as follows: 

 10( 10 mod )
Mt tZ floor Z M=   (4.8) 

 
2

10( 10 mod 2 )
Nt tZ floor Z N=   (4.9) 

 ( ),
M Mt tZ Zunique stable=  (4.10) 

 
2 2

( ),
N Nt tunique stableZ Z =  (4.11) 

Apply 

 ( ) ( )2 2
, if   , 0 and 0

M N M Ni j i jC i j I Z Z Z Z =   (4.12) 

Apply 

 ( ) ( )2 21 0, if , 0 and 
M N M Ni j i jC i j I Z Z Z Z+  = =  (4.13) 

Apply 

 ( ) ( )2 21 0, if, 0 and  
M N M Ni j i jC i j I Z Z Z Z+ =  =  (4.14) 

Apply 

 ( ) ( )2 21 1 0, i, 0 and  f
M N M Ni j i jC i j I Z Z Z Z+ + =  = =  (4.15) 

( ),I i j  indicates the pixel position of the compressed data matrix and ( ),C i j  

denotes the pixel position of the mixed-up permuted data matrix. Module III 

yields a mixed-up permuted matrix.  

Module IV: The scheme uses the generated S-box and substitutes the mixed-up permuted 

matrix to produce confusion in the ciphered data. The substitution process is the 

same as the mini-AES substitution. Subsequently, divide the substituted block in 

two subblocks of dimension M N , and transform the data of the first Block into 

MSB and combine with the LSB of the second block. The obtained block is the 

required encrypted image. For the decryption process, start from the end of the 

encryption process in reverse order.  
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Figure 4.3: Flowchart of the proposed technique 

The flowchart of the encryption and decryption process is shown in Fig. 4.3. 

The encryption result along with histograms is illustrated in Fig. 4.4. The plain images of 

Lena, Deblur, Mandrill, and Pepper and their corresponding histograms are presented in In 

Fig. 4.4 ( )a  and Fig. 4.4 ( )b , While the encrypted images and their corresponding histograms 

are presented in Fig. 4.4 ( )c  and Fig. 4.4 ( )d , respectively. 

 

 

  

    

    

    

( )a  ( )b  ( )c  ( )d  

Figure 4.4: Encryption results of the proposed technique 
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4.4.  Simulation Results and Analyses 

4.4.1.  Security Analyses 

An excellent encryption method should be both robust and effective. Robustness means that 

the cipher should apply to any plaintext image written in a supported format. Effectiveness 

implies that the cipher can generate eligible ciphertext images, which hide information from 

possible intruders. 

4.4.1.2.  Key sensitivity 

It is very significant to observe the effect of different keys in the algorithm [55]. What kind of 

change occurred when a key is changed in the algorithm. Two keys (say) 1K  and 2K  are 

considered which are ( )0,0 0.5,  [0.5,1,1.5,2,2.5]S r= =  and ( )0,0 0.97542,S =

[0.50000001,1,1.5,2,2.5]r = . The Lena image is encrypted with these two different keys, and 

it is shown in Fig. 4.5. 

     

( )P  ( )w  ( )x  ( )y  ( )z  

Figure 4.5: Key sensitivity test with different keys 

4.4.1.3.  Time complexity 

The Time complexity of an algorithm describes the amount of time required for execution 

[58]. Typically, marked by big O . The modules of the suggested technique are completely 

based on the arithmetic operations addition and multiplication. Thus, the time complexity of 

the third module III is (2 )O M N . In Module IV, the arithmetic operation multiplication and 

inversion in the Galois field 42
 have been used one time, consequently the execution of 

module I requires 4(2 )O , which is constant. The time complexity of the overall algorithm is 

(2 )O M N . One can see that the time complexity of the suggested technique is linear time. 

Thus, the suggested technique is secure and having less time complexity. 
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4.4.1.4.  Chosen plaintext attack 

For an image encryption technique to withstand the chosen plaintext attacks, it should have 

outstanding diffusion property [54]. However, using the same security keys in many existing 

encryption schemes, their encrypted image is duplicate. This security weakness aspect offers 

the chance for attackers to break down the encryption scheme using the chosen plaintext 

attack. This analysis demonstrates that if we use the same key on the same message, we get a 

different result every time, which makes it impossible for a hacker to use the same message's 

encryption for finding the decryption procedure or guessing the message twice successively.  

 

   

( )P  ( )w  ( )x  

 

  

( )y  ( )z  ( )u  

Figure 4.6: Chosen plaintext attack analysis 

4.4.2.  Statistical Analyses 

The key point of the suggested work is to transmute the visually important image data into 

noise-like encrypted images. Several statistical methods are used to evaluate the noise-like 

encrypted images. 

4.4.2.1.  Information entropy (IE) 

This measure is used to compute the randomness of an image [54], [61]. The IE results of the 

suggested technique are presented in Table 4.6 and compared in Table 4.8. 
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Table 4.5: Information entropy analysis 

Test Image 
Information entropy (Original) Information entropy (Encrypted) 

Red Green Blue Red Green Blue 

Lena 7.3277 7.6048 7.1326 7.9984 7.9987 7.9989 

Peppers 7.3920 7.3920 7.1738 7.9970 7.9965 7.9970 

Deblur 7.6646 7.1724 6.4954 7.9967 7.9973 7.9973 

Mandrill 7.6634 7.3871 7.6646 7.9969 7.9972 7.9975 

4.4.2.2.  Correlation analysis 
In an image that is not encrypted, the color dissolves into the dark to lighter shades, which 

makes the pixel values correlated with its neighbouring [63]. The purpose of encryption is to 

break every relation in the image pixels. The analysis of the correlation coefficient and their 

comparison with existing algorithms are given in Fig. 4.7, Table 4.7, and 4.8, respectively. 

The suggested technique shows a very low correlation coefficient. So, the suggested 

technique is secure. 

   

( )a  ( )b  ( )c  

   

( )d  ( )e  ( )f  

Figure 4.7: The correlation coefficient analysis. 
4.7 ( )b , 4.7 ( )f : Horizontal; 4.7 ( )c , 4.7 ( )g : Vertical; 4.7 ( )d , 4.7 ( )h : Diagonal. 

Table 4.7: Correlation analysis 

Test 
Image 

Correlation (Original) Correlation (Encrypted) 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Lena 0.9452 0.9438 0.9048 -0.0358 -0.0382 0.0060 

Peppers 0.9369 0.9272 0.9637 -0.0174 -0.0105 -0.0241 

Deblur 0.9848 0.9903 0.9825 -0.0291 -0.0014 -0.0149 

Mandrill 0.9419 0.9656 0.9114 0.0065 -0.0187 -0.0054 
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Table 4.8: Comparison of information entropy and Correlation analysis 

Schemes Test 
Images 

Encrypted Images Correlation Coefficient 

Red Green Blue Horizontal Vertical Diagonal 

Proposed 

Lena 

7.9984 7.9987 7.9989 0.0043 -0.0187 -0.0054 

Ref. [66] 7.9798 7.9795 7.9797 0.0037 0.0030 -0.0029 

Ref. [67] - - - 0.00231 - 0.00590 0.00291 

Ref. [70] 7.9893 7.9896 7.9903 - - - 

Ref. [65] 7.9974 7.9969 7.9973 0.00350 0.00247 0.0010 

Ref. [64] 7.9970 7.9964 7.9976 0.0075 0.0041 0.0002 

Ref. [68] 7.9913 7.9914 7.9916 0.00186 -0.00155 0.00185 

Ref. [69] 7.9874 7.9872 7.9866 -0.0580 -0.0024 -0.0170 

4.4.2.3.  Differential attacks 

The two most routine measures used to assess the quality of picture encryption are the NPCR 

and UACI [43]. NPCR quantifies the absolute number of pixels which changes the value in 

differential attacks while the UACI computes the averaged difference between two paired 

cipher images. A high NPCR and UACI demonstrate high protection from differential 

assaults. These measures must lie in [99, 100] and [33, 34], respectively. 

The results of these measurements lie in the abovementioned range. They are presented and 

compared in Table 4.9. 

Table 4.9: NPCR and UACI comparison 

Schemes 
NPCR UACI 

Blue (%) Green (%) Red (%) Blue (%) Green (%) Red (%) 

Proposed 99.6163 99.6170 99.6259 33.4476 33.5316 33.5068 

Ref. [66] 99.5925 99.5921 99.5927 33.5037 33.5112 33.5039 

Ref. [67] 99.6054 99.6174 99.6369 33.8547 33.7619 33.6046 

Ref. [70] 99.6100 99.6092 99.6099 33.4639 33.5042 33.4776 

Ref. [65] 99.6041 99.5920 99.5992 33.4635 33.5418 33.4001 

Ref. [64] 99.6550 99.6535 99.6492 33.5160 33.5316 33.5237 

Ref. [68] 99.6097 99.5994 99.5975 33.4476 33.4655 33.4769 
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Chapter 5 

A Novel Design of Legendre Chaotic Map and its Implementation 

in Image Processing 

This chapter is devoted to analysing a chaotic oscillator generated by the Legendre 

differential equation which produces confusion and diffusion in the plaintext message to 

achieve the desired secrecy. The produced chaotic sequence of random numbers from the 

dynamical system is utilized to scramble the pixels of an image to get an encrypted image. 

Chaos-based encryption technique is found secure enough to tackle chosen plaintext attacks 

and brute force attacks. The specific attributes of a chaotic system like, sensitivity to initial 

conditions, randomness, and uncertainty make it suitable for the design of cryptosystem. The 

dominance of the proposed scheme is acknowledged due to the fact of better cryptographic 

properties when compared with the algorithms developed already in the literature. 

5.1.  Introduction 

The advancement of the internet and information age has a huge interest of study related to 

the security of multimedia. Multiple technologies have been utilized in the construction of a 

cryptosystem.  

Recently many researchers are working on image encryption techniques utilizing different 

algebraic structures as well as chaotic maps. Iqtadar et al. [85] used the permutation of the 

symmetric group for the construction of the encryption technique. In another article, Ayesha 

et al. [86] considered triangular groups for the construction of substitution boxes with an 

application in patent safety. Chaotic systems are highly penetrating to initial values and 

unpredictable, nonlinear, random, and unsystematic. In [23], [87], the authors proposed their 

schemes based on a single 1D map and multiple chaotic maps. In [88]–[90], the researchers 

discussed the combine maps with enhanced unpredictability having more complex puzzling 

behaviours. Many researchers have been proposed several chaos-based cryptosystems, not all 

these proposed models are perfect. 

In this modern age of technology, data compression is essential for digital communication. 

Without it, we could not have digital televisions, smarts-phones, satellite communications, 

and the internet [79]. Further, data compression can be utilized when either storage is short, 

or communication bandwidth is limited. In particular, the data compression algorithm having 
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a low bitrate is required in the wireless communication network for bandwidth limitations. To 

protect user privacy, encryption is performed [80]. The combination of the chaotic system 

and compression has provided efficient and secure schemes for image encryption.  

Zhou et al. [23], Al-Maadeed et al. [80], and Farajallah et al. [91], [92] investigated on joint 

chaos-based and compression-based cryptosystems. They inspired us to construct a chaos-

compression-based image encryption system having efficient and better security and 

statistical results. 

The zero-one test is used to build a novel chaotic system using the Legendre polynomial. The 

zero-one test verifies the Legendre chaotic map's chaotic behaviour. This is the first time we 

employ Legendre polynomials only for this aspect. A stronger and more secure picture 

encryption method with confusion and diffusion is presented for use in multimedia security. 

5.2.  Preliminaries 

In this section, the Legendre differential equation, Zero-One test, and Lempel-Ziv Welch 

compression algorithm are illustrated. 

5.2.1  Legendre differential equation 

In 1784, French mathematician Adrien-Marie Legendre introduced differential equations 

which are named Legendre differential equations. Legendre's differential equations are a very 

significant case in Sturm-Liouville's Boundary value problems. These differential equations 

appear in several problems, particularly in those that exhibit spherical symmetry. There are 

many other non-linear systems which are capable to produce chaotic behaviour.  Since the 

Legendre Polynomials exhibit spherical symmetry (symmetricity), that why, we investigated 

the chaotic behaviour using the Legendre Polynomials. The chaotic sequences and their 

chaotic behaviour are analyzed using Zero-One test.  

Legendre’s Differential Equation is expressed as follows: 

 2(1 ) 2 ( 1) 0x y xy n n y − − + + =  (5.1) 

Where n represents a real number. The solutions of Eq. (5.1) are known as Legendre 

functions. The degree of these Legendre functions is same as the real number n. For any non-

negative integer n, the Legendre functions are frequently known as Legendre polynomials 

( )nP x . Illustration of some Legendre polynomials are provided in Fig. 5.1. 
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Figure 5.1: Graphical Illustration of some Legendre polynomials 

5.2.2.  Z1 Test 

Gottwald and Melbourne [93], [94] introduced the Z1 test and its validity. The non-regular 

stationary responses of dynamical systems of any sort can be detected by Zero–one test (Z1). 

This test discussed the amount of chaos in a sequence in a single value between 0 and 1. As 

the amount of chaos in sequence increases, the outcome gets closer to 1. We can verify our 

newly generated chaotic map employing this test. The Zero-one test can be précised in four 

steps. 

1. Calculate the translation variable 

2. Analyze the diffusive behaviour 

3. Discuss the asymptotic growth rate 

4. Compute the median 

5.2.2.1.  Outcomes of Z1 test for proposed sequence 

In this subsection, the chaotic sequences along with the statistical results of the Z1 test are 

revealed via MATLAB. The chaotic performance of suggested sequences is illustrated in Fig. 

5.2 while, the statistical results of the Zero-One test are presented in Table 5.1. 

Table 5.1: Proposed chaotic system analysis, Z1 test 

Size of 
sequence Z1 test result 

100 0.9950 

900 0.9977 

10,000 0.9982 
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(a) 

 

(b) 

Figure 5.2: Chaotic performance of suggested sequences 

The above experimental data show that as the length of the sequence increases, the amount of 

chaos in the sequence enhances. This is because the three conditions of chaotic maps can be 

observed better in a bigger sequence. 

5.2.4.  Data Compression 

The method of terminating the data redundancies which occur in many documents to 

decrease the cost of data storing is known as data compression [84]. Mostly, compression is 

used to make the best use of bandwidth through a distribution link. It is also used to enhance 
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disk space while saving documents. Data compression techniques compress data to an extent, 

but the compression depends on the type and texture of data [84]. In this research, a 

compression technique is used as a function that will compress or decompress the image data. 

5.2.4.1.  Compression ratio 

Compression ratio is a measure of compression and is defined in terms of disk utilization 

[84]. 

 (1 ) 100%CCR
U

= −   (5.2) 

where ‘CR’ represents compression ratio, ‘C’ represents compressed file size and ‘U’ defined 

as uncompressed file size. 

5.2.4.2.  Lempel-Zev-Welch algorithm 

It's a dictionary-based compression method that doesn't rely on a statistical model. Instead, it 

uses a dictionary, which is a table-like structure that contains all conceivable worlds of a 

language. For the presentation of higher and repeated terms in the dictionary, the table uses 

indexes of entries. 

A dictionary is employed in the LZW technique for storing and indexing previously 

encountered text configurations. The technique does not employ repeated string 

configurations during compression, and a dictionary is built dynamically. This dictionary is 

not obligated to travel with the coded data during the decompression process. The same 

dictionary is produced dynamically for decryption during decompression. As a result, it is an 

excellent adaption compression algorithm [84]. 

5.3.  Proposed Image Encryption Algorithm 

In this section, the proposed image encryption algorithm is presented. This algorithm is 

described in five steps. The third step of the algorithm is further consisting of five modules. 

These five modules are explored in subsection 5.3.1. 

Flowchart of the proposed algorithm is given in Fig. 5.3, while the demonstration is provided 

in Fig. 5.4. At the end of this section, the proposed scheme is analyzed using standard 

measures. 

5.3.1.  Proposed Encryption Algorithm 

The proposed algorithm can be described in the following five steps. 



84 
 

Firstly, the algorithm applies the LZW compression technique on bits of the plain image, 

which is lossless, common, and very simple to implement. The goal of using LZW is to 

eliminate the unnecessary data from the original image and reduce the range of the pixel 

values. 

Secondly, the algorithm divides the bits of the image into two sub-blocks of LSB’s and 

MSB’s. 

Thirdly, the algorithm performs four rounds of the following modules on MSB’s: 

5.3.1.1.  Random Pixel Insertion  

5.3.1.2.  Row Separation 

5.3.1.3.  1D substitution 

5.3.1.4.  Row Combination 

5.3.1.5.  Image Rotation 

These modules are explored hereunder. 

5.3.1.1.  Random Pixel Insertion  

The first module of the third step is defined as follows: 

 
( )  1

( , )
( , 1)

Rand j if k
P j k

I j k otherwise
=

=  −
 (5.3) 

where I and ( ),P j k  denote the input and processed image whose sizes are, ,S T

( 1),1  and 1 ( 1)S T j S k T +     + , respectively and Rand(j) is a random function used to 

generate random values/numbers. 

5.3.1.2.  Row Separation 

This module is a transformation of the image into the 1D matrix by using all pixel rows of the 

image one by one. 

 ( ) ( , )jR k P j k= , (5.4) 

where jR  shows the thj  1D row matrix having length ( 1)T + . 
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5.3.1.3.  1D substitution 

In this module, all the data values in each 1D matrix jR undergo the process of alteration. The 

1D substitution can be defined as: 

 
( )  1

( ) j
j

R k if k
Q k

W otherwise
=

= 


 (5.5) 

where, ( )10( 1) ( ) ( , ) 10 mod256j j lW Q k R k N j k = −     , and  indicates the bit-level

XOR  operation,    is the floor function and ( , )lN j k denote the random sequence for 

, ( 1,2,3,4)thk k = encryption round. 

5.3.1.4.  Row Combination 

This module is the inverse of the first and second modules. This module adjoins all 1D 

matrices to make a two-dimensional image matrix and then eliminates the first added pixel 

from each row. It is mathematically defined as: 

 ( , ) ( 1)jO j k Q k= + , (5.6) 

where O express the two-dimensional image matrix with the size of S T  with k T . 

5.3.1.5.  Image Rotation 

In the last module, the two-dimensional image matrix is rotated at an angle of 90 degrees 

counter clockwise given as follows: 

 ( , ) ( , 1)D j k O k T i= − +  (5.7) 

Hence, with the completion of this module, one encryption round completes successfully. 

Then D moves towards the 1st module (random pixel insertion) for the second round. Four 

rounds of these modules are performed. Finally, we get the required encrypted bits. 

In the fourth step, the algorithm applies the XOR operation on the LSB's and the new chaotic 

system. 

In the fifth step, the algorithm merges the resulted bits of the 3rd and 4th steps. The resulted 

image is the encrypted image. 

 



86 
 

Figure 5.3: Flowchart of the proposed algorithm 

    

( )a  ( )b  ( )c  ( )d  

    

( )e  ( )f  ( )g  ( )h  

Figure 5.4: Experimental outcomes. 

5.4(a-d): Plain images; 5.4(e-h): encrypted images 

5.4.  Simulation results and discussions 

The security analysis uncovers that the cryptosystem holds certain serious security defects 

and is incapable to secure encrypted content. There are lot of statistical analyses that are used 

to evaluate secure encrypted content. 

In this research, standard color images of “Lena”, “Peppers”, “Mandrill”, and “Deblur” have 

been used as test images. 
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5.4.1.  Security Analyses 

To examine the security strength of the proposed scheme, we performed different analyses on 

it. The detail of these analyses on the proposed scheme is discussed comprehensively. 

5.4.1.1.  Key sensitivity 

It is very significant to observe the effect of slightly different keys in the algorithm [55]. To 

analyze this effect of the proposed algorithm, two keys are used for encryption. These keys 

are: 

    

1

2

:
(0,0) 0.5, [0.5,1,1.5,2,2.5]

:
(0,0) 0.97542, [0.50000001,0.5,1,1.5,2,2.5]

K
S r
K
S r

= =

= =

 

The same keys will be used for the decryption process to get the respective case results. The 

encryption of the same image using two slightly different keys is shown in Fig. 5.6. 

    
( )a  ( )b  ( )c  ( )d  

    
( )e  ( )f  ( )g  ( )h  

Figure 5.6: Key sensitivity analysis 

In the above figure, the plain image is symbolized by (a); Encryption using keys 1K  and 2K  

are symbolized by (b) and (c) respectively, while the difference between both encryptions is 

symbolized by (d). On decryption of (b) and (c) with 1K  and 2K , respectively, the original 

images are obtained by using different keys, decrypted images are not as the original image 

which is shown in Fig. 5.6(e) to Fig. 5.6(h). 
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5.4.1.2.  Histogram analysis 

The histogram analysis is presented to evaluate the uniform distribution of ciphered [54]. A 

cryptosystem has a high resistance to statistical attacks if the probability of each gray value in 

the uniform histogram is the same [54]. 

In Fig. 5.7, the original, ciphered, and their corresponding histograms are displayed. These 

histograms demonstrate that the pixels of the ciphered images are more evenly spread than 

the original images. This aspect ensures that the proposed scheme has high resistive 

capability against differential, plaintext, and statistical attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )a  ( )b  ( )c  ( )d  

Figure 5.7: Histogram analysis.  
5.7(a): plain images; 5.7(b): corresponding histograms; 5.7(c): encrypted images; 5.7(d): corresponding 

histograms 
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5.4.1.3.  Information entropy 

Information entropy analysis is used to calculate the randomness of an image [54], [61]. The 

Information entropy analysis of a perfectly random grayscale image (with pixel values in the 

range [0,255]) is 8, so if the resulting image has its information entropy equal to 8 or close to 

8, we have a strong encryption method. The results, we obtained from the proposed algorithm 

are analyzed in Table 5.2. 

Table 5.2: Information entropy analysis 

5.4.1.4.  Correlation analysis 

In an image that is not encrypted, the color dissolve into the dark to lighter shades which 

makes the pixel values correlated with its neighbouring [63]. Applying the encryption, we try 

to break every relation in the image's pixels which makes the values go random.  

Therefore, for an encryption system to be strong, the value from the above equation will be 

equal to or close to zero. In Table 5.3, the results of the correlation coefficient are presented 

and compared with some schemes. Fig. 5.8 shows the correlation distribution of original and 

encrypted images in horizontal, vertical, and diagonal directions. The test image Lena.jpg 

gives high correlation values and all the encrypted images are very close to zero. 
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Figure 5.8: The correlation coefficient. 

5.8(a): Horizontal correlation; 5.8(b): Vertical correlation; 5.8(c): Diagonal correlation 

Name Entropy Proposed Ref. [23] Ref. [95] Ref. [96] 

Lena 7.7849 7.9983 7.9821 7.9278 7.9807 

Pepper 7.7383 7.9989 7.9811 7.9744 7.9879 

Baboon 7.6831 7.9975 7.9807 7.9705 7.9845 
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Table 5.3: Comparison of Correlation Analysis 

Algorithms Images 
Encrypted Images 

Horizontal Vertical Diagonal 

Proposed Peppers 0.0007 0.0008 -0.0009 

Ref. [97] Peppers 0.0038 0.0023 0.0009 

Ref. [75] Peppers 0.0064 0.0092 0.0010 

Ref. [98] Peppers 0.0094 0.0894 0.0542 

Proposed Lena 0.0064 -0.0177 -0.0059 

Ref. [96] Lena 0.0075 0.0041 0.0002 

Ref. [99] Lena 0.1257 0.0581 0.0504 

Ref. [100] Lena -0.0580 -0.0024 -0.0170 

5.4.1.5.  Differential Attacks 

The number of Pixels Changing Rate (NPCR) and the Unified Averaged Changing Intensity 

(UACI) are the two most regular measures used to evaluate the quality of image encryption 

[54]. A high NPCR and UACI demonstrate high protection from differential attacks.  

A security system has good resistance against differential attacks if its NPCR and UACI are 

very close to 99.60 and 33.40, respectively. The results of NPCR and UACI are presented in 

Table 5.4. This ensures that the proposed algorithm is highly secure against differential 

attacks. 

Table 5.4: NPCR and UACI results 

5.4.1.6.  Energy, contrast, and homogeneity 

To testify the encryption quality, the energy, the contrast, and homogeneity analyses are 

evaluated. The outcomes of these analyses are presented in Table 5.5. 

 

 

 

Image NPCR UACI 

Boat 99.6465 33.4587 

Lena 99.5863 33.4476 

Baboon 99.5968 33.3768 

Pepper 99.6211 33.3816 
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Table 5.5: The contrast, homogeneity, and energy analyses 

5.5.  Internal Comparison of Proposed Algorithms 

Four encryption algorithms are proposed in this thesis. All algorithms show optimum output 

of all statistical and security analyses. Additionally, first ecryption algorithm encrypts 

channel wise single and multi-color images to enhance the data security. Second encryption 

algorithm is applicable for single color images with different encryption approach as 

compared to first encryption algorithm. The third and fourth encryption algorithm uses data 

compression to squeeze the data and then encryption is performed. These two algorithms are 

helpful to reduce the storage cost and to improve the data transfer rate.  

 

Analysis Lena Image 

 Host Encrypted 

Contrast 0.7904 10.3173 

Homogeneity 0.8114 0.3918 

Energy 0.1188 0.0157 

 Peppers Image 

 Host Encrypted 

Contrast 0.5271 2.7808 

Homogeneity 0.8597 0.5322 

Energy 0.1244 0.0402 
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Chapter 6 

Conclusion 

In the beginning, a 3D chaotic map is presented. The chaotic behaviour of a chaotic map is 

outstanding. The chaotic behaviour is judged through histograms. Due to the randomness 

property of this chaotic map, it is very useful for S-box construction. For this purpose, we 

present an S-box construction scheme. The proposed S-box is then critically analysed and its 

comparison with some currently constructed S-boxes is presented. From the analysis, the 

proposed S-box has good nonlinearity and SAC, BIC, LP, and DP are also close to optimal 

values. Statistical analyses are also analysed to judge the suitability of the constructed S-box 

in image encryption applications. The statistical analyses of the proposed S-box are excellent. 

The anticipated S-box is very effective in image encryption. From algebraic and statistical 

analyses, the proposed S-box is outstanding in cryptographic properties. 

Another construction of S-boxes is presented in this chapter. Again, a 3D chaotic map is used 

as a source of a random number generator. Interestingly, each dimension of the chaotic map 

constructs one S-box as the algorithm runs once. So, we obtained three S-boxes and by 

running the algorithm again and again, a bunch of S-boxes can be obtained. For analyses, we 

just analysed three S-boxes as a sample. The algebraic analyses of these sample S-boxes are 

good, and the statistical analyses are also impressive. The analyses show that the proposed S-

boxes are suitable for any cryptosystem. 

Applications in image encryption of constructed S-boxes in Chapter 2 are presented in 

Chapter 3. Two image encryption techniques are presented. The first image encryption 

technique is the multi-image encryption technique and the single image encryption technique. 

The proposed encryption scheme consists of four steps. The first step is to separate the red, 

green, and blue channels. Second step permutation RGB channels row wise and column wise. 

This step induced diffusion in the scheme. In the third step, the S-boxes are constructed using 

a chaotic map and in the fourth step, the S-box is substituted in each RGB channel. This step 

induced confusion in the encryption scheme. The proposed scheme is critically analysed with 

the help of standard analyses. The encryption scheme has a large key space, sensitive with 

key, highly random and the relationship between pixels is broken. These features demonstrate 

that the proposed scheme is adoptable and has high resistance to different cryptanalysis. 
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The second encryption scheme consists of three steps. The first three S-boxes are constructed 

utilizing the 3D chaotic map mentioned in Chapter 2 second construction. In the first step, 

pixels are XOR with S-box 1 entries. In the second step, permute the pixels row-wise and 

substitute the entries of S-box 2. In the last step, permute the pixels column wise and 

substitute S-box entries. The last two steps induced confusion and diffusion in this encryption 

scheme. The security analyses of the anticipated scheme are made and comparisons with the 

latest and classical encryption schemes are presented. From the security analyses, the 

proposed scheme is more secure in comparison to other encryption algorithms. 

Small S-boxes are vital in light-weight cryptography. The Small S-boxes construction 

technique and its application in image encryption are presented in Chapter 4. The small S-box 

is constructed by utilizing linear fractional transformation. The designed S-box fulfils 

algebraic analysis and preserves all cryptographic properties. An image scheme is proposed 

using compression, chaotic map, and S-box. Compression is applied for the purpose of 

making big data small, and it also increases the effectiveness of the algorithm because 

compression is also a weak encryption itself. A two-dimensional chaotic map is applied to 

randomize the pixels. This action gives rise to diffusion in the encryption algorithm. The 

constructed S-box is substituted to create confusion in the algorithm. Security analyses are 

conducted to judge the strength of an algorithm. From security analyses proposed scheme 

fulfils all the requirements of the image encryption algorithm. 

The last chapter is devoted to analysing a chaotic oscillator generated by the Legendre 

differential equation, which produces confusion and diffusion in the plaintext message to 

achieve the desired secrecy. The produced chaotic sequence of random numbers from the 

dynamical system is utilized to scramble the pixels of an image to get an encrypted image. 

The proposed encryption scheme consists of five modules. These modules are random pixel 

insertion, row separation, 1D substitution, row combination, and image rotation. 1D 

substitution provides confusion and all other modules provide diffusion. The proposed 

scheme is highly sensitive and has a large key space. The security analyses of the proposed 

scheme are excellent and are better in comparison with the latest scheme present in literature. 
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