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Abstract
Three-way decision (TWD) theory is based on human cognition and plays a vital role in

everyday multi-criteria decision-making (MCDM) problems based on uncertain and irresolute

information. Conflict, being an instinctive feature of human civilizations, exists in diverse

real-life problems. Three-way decisions are more advantageous to resolve conflict problems,

and its structure correlates with conflict analysis naturally. The current study mainly aims to

improve TWD analysis to address the complex issues more significantly. For this, we propose

a three-way conflict study analysis from a trade-off view point by incorporating game theory

with rough set data analysis approach. Further, we present a three-way conflict analysis

model to deal with hesitant fuzzy information system (HFIS). To exemplify the viability of

proposed techniques, we resolve some real-life problems including the Syrian conflict, Middle

East conflict, and the development problem of Gansu province China. Besides, detailed

result analysis and comparative study are also provided. Another novel contribution of this

thesis is to define some generalized operation rules for T-spherical fuzzy numbers (T-SFNs)

by using Frank t-norm and Frank t-conorm, which can make more provision of options for

the decision-makers. Additionally, we originate some T-spherical fuzzy frank aggregation

operators and investigate some basic characteristics of these operators. By proposing the

entropy measure for T-spherical fuzzy information, we generate a possibility to obtain the

unknown weights information of the criteria. Then it is further used for criteria weight

determination in the proposed aggregation based MCDM and TWD models. To validate

the potentiality of the suggested approaches, we consider two practical cases concerning the

investment problem. Moreover, in-depth comparative study and sensitivity analysis are also

delineated.
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Chapter 1

Introduction

This chapter aims to present an overview of the background knowledge and motivations of

current study. The novel contributions are also outlined.

1.1 Background knowledge and Motivations

1.1.1 Three-way conflict study based on game-theoretic rough set

model

TWD theory is considered as one of the significant ways to analyse and solve the decision

making problems under uncertainty. The essential idea of TWD was originally introduced

in the framework of rough sets [1, 2]. Later, Yao developed TWD based on the partition of

a whole into three pair-wise disjoint parts labeled as the positive, boundary and negative

regions [3]. Further, these three regions enable us to produce different decision rules for

acceptance, indecision, or delayed decision and rejection. In past decades, numerous authors

have successfully applied it to several domains, which can be formulated as three-way rec-

ommendation system [4,5], three-way concept learning [6,7], three-way decision space [8,9],

three-way data classification [10,11], three-way email spam filtering [12,13], three-way fuzzy

clustering [14], three-way multi-attribute decision-making [15], three-way government deci-

sions [16], medical diagnosis [17] and three-way conflict analysis [18, 19].
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Game-theoretic rough set (GTRS) model was initially established by Yao and Her-

bert [20–22] as a new extension of traditional rough sets. GTRS has proved to be more

advantageous in solving three-way classification decision problems, specifically for MCDM

problems where multiple evaluation functions or criteria are involved in the procedure of

decision-making. GTRS have been successfully applied to numerous real-life problems like

MCDM [23, 24], feature selection [25], the architecture of a web-based medical decision

support system [26], analyzing the uncertainties of rough set regions for finding the suitable

thresholds [27], recommended system to analyze the capacity of an intelligent component [28],

determining three-way decision conditions for evaluation functions (measures) [29], three-

way email spam filtering [31] and studying shadowed sets by utilizing a three-way trade-off

viewpoint [30].

Conflict analysis [32, 33] is of undeniable importance in the practical as well as theo-

retical areas. Preliminary work about conflicts was done by Pawlak [32–34]. In literature,

Pawlak’s model is widely studied and several developments have been made to enable a

far better understanding of conflicts. Stoyo et al. [35] described an alternative technique

to manage conflicts by using the idea of the co-occurrence of parameters in soft set the-

ory. Afterward, by emerging a matrix technique for examining conflict structure, Sun et

al. [36] developed a conflict resolution study model founded on rough set theory over two

universes. Lately, Lang et al. [37] presented a decision-theoretic rough set (DTRS) model of

conflict resolution with incremental approaches to obtain the maximal coalition in dynamic

ISs. Also, Lang et al. [38] studied conflict resolution with both rough set theory and formal

concept analysis and designed a unified model that resolves conflict both quantitatively and

qualitatively. Then, Sun et al. [39] modified the Pawlak model by employing the principle

of TWD based on a probabilistic rough set over two universes. Further, Zhi et al. [40] de-

veloped a conflict study model based on one vote and three-way formal concept analysis by

utilizing an inconsistency measure for inducing a partition of attributes set and formulated

a three-way concept lattice to determine differences among several participants.
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Despite of aforementioned notable studies, the research on three-way conflict resolution

based on GTRS is still a blank. Taking into account this flaw of existing conflicts study, we

designed a novel conflict study model based on GTRS. By constructing a game mechanism

among all participants (players), computing payoffs of all strategies, and following equilib-

rium rules, the more realistic and accurate results are obtained. To further validate the

proposed technique, some real-life conflict problems are resolved and a detailed comparative

study analysis with existing models is provided.

1.1.2 Motivations for using GTRS for three-way conflict study

• Pawlak’s model [33, 34], is rigid and possesses some certain limitations as with the

strict condition of the threshold value 1/2, model is unable to deal the values in the

distance matrix which are very close to 0,1 and 0.5. The complexities and imprecise

data in different real-life scenarios would require adjustment in the bench-mark value

1/2. Thus, we should be flexible in our approach to decision making and carefully

explore all possibilities.

• Most of existing models [36–38] are unilateral and use a single measure (aggregated

difference of opinion) to evaluate the opinion of an object independently, without taking

into account the opinion of other objects, which may lead to a wrong conclusion. Hence,

there is a severe need to inspect the given informtion system (IS) more closely.

• In a general sense, some recently designed models [38–40] are advantageous in finding

feasible sets of issues/attributes for a given conflict situation with minimum conflict

or maximum collations for all the objects. Nevertheless, considering the opinion of

an object in isolation to opinions of other objects could be troublesome in real world

conflict situations.

• To determine the relative positions of two objects, in TWD models based on Bayesian

risk decision-making model [41, 42], the simultaneous actions (conflict,alliance), (al-

liance,conflict), (neutral,conflict) and others are not taken into account for objects.

3



Therefore, there is a need for more careful study on the gains or losses of each object

subject to their possible actions.

1.1.3 Contributions

Given the motivations mentioned above, the main novelties of the current study are delin-

eated as follows:

• The proposed GTRS based model allows decision makers to separately set parameters

for alliance, neutrality, and conflict based on their priorities in different circumstances.

By constructing a game mechanism among all participants (players), computing pay-

offs of all strategies, and following equilibrium rules, the resulting outcomes are more

realistic and accurate in classifying the objects in the conflict, neutral and allied sets.

• To address the deficiencies of the existing models, the proposed model explores all

possibilities and is flexible in determining different threshold values relative to the

complexities of real-life problems.

• In comparison to present techniques, the GTRS based proposed model adopts a bi-

lateral approach. By considering the actions of all objects simultaneously, computing

the respective gains (payoffs) accordingly for all possible actions, and submitting the

difference of opinions on all issues, more accurate results are obtained.

• GTRS based game settings provide a compromise and trade-off mechanism for com-

bining and balancing the differences between the opinions of different objects. In

particular, we demonstrate that equilibrium analysis can be used to construct conflict,

allied, and neutral sets.

To enhance the supremacy of the provided approach, three real-life conflict problems

are solved with the proposed model, and a comprehensive analysis with existing models

is provided.
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1.1.4 Three-way conflict study in hesitant fuzzy setting

To bargain with the fuzziness of assessment data, Zadeh [43] coined the idea of fuzzy set

(FS), till date, numerous extensions of FSs have been provided for better depiction of the

real world’s imprecision. As a recent enhancement of FS, hesitant FS (HFSs) proposed by

Torra and Narukawa [44,45], have great capability to reduce the complexity of initiating the

membership values for decision makers. HFSs are more resourceful to express the hesitant or

irresolute attitudes of decision makers. Many researchers have applied HFS theory in many

fields. For instance, Xia and Xu [46] and Xia et al. [47] derived several aggregation operators

in the hesitant fuzzy framework and provided an approach to solve issues related to decision

analysis. Xu and Xia [48] profoundly investigated the similarity measures of HFS established

on the distance, correlation, and entropy, respectively. Rodrıguez et al. [49] provided the

idea of the hesitant fuzzy linguistic term set (HFLTS), this new approach is used in several

multi-criterion linguistic decision making problems. Afterward, for the sake of adjusting the

foremost questionable and complicated environment, Zhu et al. [50] presented the idea of dual

HFSs (DHFSs) composed of membership degree and non-membership degree. Additionally,

Qian et al. [51] investigated generalized HFSs and their utilization in the problems associated

with decision study support systems. Further, Zhu et al. [52] derived a ranking procedure for

group decision analysis by using hesitant fuzzy preference relations. Then, Liang and Liu [53]

examined a risk decision procedure founded on DTRS in the hesitant fuzzy environment.

HFS have been widely used in the recent past, to understand and resolve multi criteria

TWD problems. By allowing decision makers to depict their opinions with multiple values

instead of a single one, HFS theory provides an effective approach to reduce the complexity

of decision analysis. Liu et al. [54] adopted dual hesitant fuzzy sets to develop a new TWD

method founded on DTRS with the dual hesitant fuzzy setting. Qiao et al. [55] described

the notion of hesitant relations and discussed its novel properties and applications in TWD.

Moreover, Zhang et al. [56] examined multi-granularity TWD with adjustable hesitant fuzzy

linguistic multi-granulation DTRS over two universes. The concept of tri-partition of set
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of agents or issues in three pair wise disjoint sets in conflict analysis is similar to the idea

of TWD. Yao [57] initiated a three-way conflict resolution model based on reformulation

of Pawlak model. This work bridges the gap between TWD theory and conflict analysis,

and some noteworthy researches are published afterwards. Such as, G. Lang [58] explored

the three-way group conflict study for the Pythagorean fuzzy IS (PyFIS). Soon after, Li et

al. [59] put forward a three-way conflict analysis model founded on a triangular fuzzy IS

(TFIS) and obtained a tri-partition of agents by determining the total attitude of agents

to all issues. Bashir et al. [60] established a three-way conflict resolution model by using

game theory and rough sets. Recently, Yi et al. [61] presented a three-way conflict analysis

by formulating the alliance and conflict sets on a single issue and then on compound issues

respectively, under hesitant fuzzy information setting. Most of existing techniques have some

drawbacks as they failed to cope complex conflicts with multi-valued data sets. Till now,

little research work has been done on conflict resolution based on hesitant fuzzy IS(HFIS),

with agents’ opinion as HFNs.

Our study aims to devise a novel three-way conflict study model under a hesitant fuzzy

setting. Our research work contributes in three aspects. Firstly, we reset our initial IS to

a HFIS. Secondly, we construct a three-way conflict analysis model based on HFIS that

depicts agents’ opinion as HFEs and loss functions as real numbers. In last, we drive three-

way decision by utilising two different techniques, the first one is general method based on

average of score functions and the second one is ranking method of possibility degree founded

on a stochastic way. To enhance the validity and advantages of the proposed model, we use it

to solve the Middle East conflict problem and a detailed comparison with existing literature

is also outlined.

1.1.5 Motivations for studying conflicts under hesitant fuzzy setting

• Most of the existing conflict study models [34, 36, 37, 39] are not flexible in their ap-

proach and do not allow decision makers to have a certain viewpoint. Therefore, a
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more adjustable model is required to evaluate the complex hesitant attitudes of deci-

sion makers.

• Some recent studies, [58,59] used PyFSs and TFSs respectively, to describe the opinion

of agents towards given issues. Both models have their advantages, but the scales

employed to indicate the agents’ opinions concerning agreement and disagreement are

not self-sufficient. To analyze ambiguous and irresolute opinions of decision makers, a

more flexible approach is required.

• Present conflict studies are not capable of modeling complex data sets based on both

positive and negative values. To circumvent this concern, a more reasonable approach

is required to investigate the complex hesitant setup of conflicts.

1.1.6 Contributions

To negate the challenges specified above, the main contributions of this work are listed in a

nutshell below:

• To adress the flaws of existing models, our proposed model provides leverage to decision

makers for submitting their opinions using values in a range from -1 to 1, instead of

considering strict values and thus proves to be more effective to comprehend complex

scenarios.

• To drive a three-way classification of objects, our proposed technique utilized the gen-

eral idea based on the average of score functions and the second one, the ranking

method of possibility degree founded on a stochastic way that examines all the possi-

bilities more accurately.

• We construct conflict, neutral and allied sets of objects more precisely by using aggre-

gated opinion functions based on HFEs and associated loss functions.
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1.1.7 Application of T-spherical fuzzy Frank aggregation operators

in multicriteria TWD problems

Owing to the uncertainty of decision data, many theoretical developments on FS including

intuitionistic FS (IFS), Pythagorean FS (PyFS), q-rung orthopair FS (q-ROFS), Picture FS

(PFS) have been put forward, till now [62–65]. But, there were still some difficulties; when

a person provides such numbers in [0, 1], the total of which exceeds the unit interval, the

PFS is unable to handle it. Mahmood et al. [66] initiated spherical FS (SFS) for dealing

with such difficulties by changing the PFS rule such that the sum of the squares of the

truth, abstinence, and falsehood degrees is confined to [0, 1]. Compared to existing PFS,

SFS is a more robust approach for dealing with complex and untrustworthy information in

decision analysis. Furthermore, Mahmood et al. [66] changed the SFS condition to examine

the theory of T-spherical FS (T-SFS) owing a requirement that the total of the t-powers of

the truth, abstinence, and falsehood degrees is not greater than the unit interval. Due to its

generalized structure, the T-SFS has been widely used and drawn more interest from many

researchers [67–69].

The geometrical analysis of PFS, SFS, and T-SFS spaces is presented in Fig. 1.1.

Figure 1.1: Spaces comparison of TSFNs with PFNs and SFNs
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Aggregation operators play a key role in decision-making issues hence numerous schol-

ars have made significant contributions to introducing aggregation operators for spherical

fuzzy environments. Ashraf and Abdullah [70] presented some families of aggregation op-

erators founded on Archimedean t-norm and t-conorm with spherical fuzzy information.

Chinram et al. [71] worked on the uncertainty to probe the best power plant location in

Pakistan using SFS and Yager aggregation operators. But, over time, it is noticed that

these operators [70, 71] cannot model decision makers opinions when we obtain information

in the form of a triplet like (0.6, 0.7, 0.6⟩ where the sum of squares of truth, abstinence,

and falsehood degrees is greater than 1, i.e., 0.62 + 0.72 + 0.62 ≰ 1. To handle such issues,

Garg et al. [72] studied some geometric aggregation operators founded on their developed

T-spherical fuzzy operational rules. Quek and his coworkers [73] investigated some general-

ized T-spherical fuzzy weighted aggregation operators and then used them effectively to a

problem related to the degree of pollution. Liu et al. [74] initiated the concept of normal

T-SFNs and their relevant theory. They further put forward a normal T-spherical fuzzy

Maclaurin symmetric mean operator and explored a novel MCDM approach. Guleria and

Bajaj [75] presented several averaging and geometric aggregation operators for T-spherical

fuzzy soft numbers. Based on their proposed operators, they provided an MCDM technique

for handling complex problems regarding decision analysis.

The MCDM approach allows decision makers to rate alternatives according to a spe-

cific set based on criteria and then opt for the best one. While, TWD methods generate the

possibility to classify the alternatives into three domains, namely, positive domain, boundary

domain, and negative domain. Zeng et al. [76] highlighted the drawbacks of the existing T-

spherical fuzzy Einstein aggregation operators and intuitionistic fuzzy operators and studied

some novel T-spherical fuzzy Einstein aggregation operators along with their desired proper-

ties. Recently, Ullah et al. [77] combined the concept of T-SFNs and Hamacher aggregation

operators. However, the aforementioned proposed operators still have several weak points

and are not capable of solving complex decision problems. (Detailed discussion in Chapter

5, Section 5.5).
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This study aims to explore some generalized operational rules of T-SFNs to develop

T-spherical fuzzy aggregation operators that comply with the principles of Frank t-norm

and t-conorm. Most of existing decision making models only rank the alternatives and

classification of alternatives is not provided. We make contributions by establishing novel

MCDM and TWD model based on the proposed Frank operators. MCDM technique rank the

alternatives while TWD model also provides an effective approach to classify all alternatives

in the complex decision making problems.

1.1.8 Motivations

• Existing aggregation operators [70,71] still have several weak points and cannot model

decision makers opinions for obtained information in the form of T-SFNs.

• Though several information fusion techniques [73–77] have been explored to aggregate

spherical fuzzy data. Nevertheless, all these techniques are limited to algebraic, Ein-

stein or Hamacher t-norm, and t-conorm, and some of them have certain limitations.

• Generally, these operators can only handle the MCDM problems expressed by PFNs

or SFNs. These operators are not capable of dealing with complex MCDM and TWD

problems with T-spherical fuzzy data sets.

• Frank sum and product are suitable substitutes of the algebraic, Einstein and Hamacher

product for a union and intersection and can deliver an even assessment of the alge-

braic sum and product. In the present literature, there is no research on aggregation

operators utilizing these operations on T-SFSs.

• The existing decision methods based on aggregation operators basically rank the al-

ternatives and opt the best alternative, three-way classification of alternatives is not

provided.
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1.1.9 Contributions

The core contributions of the present study are summarized as follows:

• To explore novel generalized operational rules of T-SFNs by using beneficial charac-

teristics of Frank t-norm and Frank t-conorm, which can provide more choices for the

decision makers.

• To originate T-spherical fuzzy Frank arithmetic and geometric aggregation operators

based on the proposed frank operations. Further, some basic properties like idem-

potency, monotonicity, boundedness, homogeneity and some limiting cases of these

operators are also investigated.

• To propose the entropy measure for T-spherical fuzzy data sets, which can help to

obtain the unknown weights information of the criteria.

• To develop MCDM model and TWD model based on the proposed T-spherical fuzzy

operators to handle the T-spherical fuzzy decision problems with unknown weight

information.

To manifest the implementation of the suggested approaches, two practical investment

problem are solved and detailed comparison with existing literature is provided.

1.2 Arrangement of the thesis

This thesis contains six chapters. Excluding the current chapter, other parts of the thesis

are arranged as follows:

• Chapter 2 describes the general frame work and some basic concepts related of this

dissertation, including TWD, Pawlak’s conflict study model, GTRS model, HFSs, and

T-SFSs and T-spherical fuzzy aggregation operators. These concepts will help to un-

derstand the core purpose of the research work presented in the current thesis.
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• Chapter 3 introduces a conflict resolution model based on GTRS. The game settings

and mechanism are explained in detail. GTRS model is employed to some real-life

conflict problems to validate the proposed work and detailed comparative analysis

with existing models is provided.

• Chapter 4 proposes a three-way conflict study model to manage the complexity of

the hesitant fuzzy environment. We present the conflict, neutral, and alliance sets

in hesitant fuzzy settings. A detailed comparison is done with the existing conflict

study models under hesitant fuzzy framework to enhance the virtually of the presented

method.

• Chapter 5 explores the novel generalized operational rules of T-SFNs to build T-

spherical fuzzy aggregation operators that comply with the principles of Frank t-norm

and t-conorm. Besides, a T-spherical fuzzy entropy measure is proposed along with de-

tailed proof of its characteristics. Then, to handle complex decision-making problems,

MCDM and TWD methods based on the proposed operators are established. Two

real-life project investment cases are provided to elaborate on the implication of the

suggested MCDM and TWD approaches. Finally, a detailed analysis of comparison is

conducted with some existing approaches to highlight the feasibility and supremacy of

the presented study.

• Chapter 6 concisely reviews some novel contributions and concludes the current study.

Some possible future research directions are also discussed and summarised.
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Chapter 2

Some related foundations

This chapter overviews some core fundamental concepts related to this thesis, namely, TWD

theory, Pawlak model for conflict analysis, GTRS model, HFSs, T-SFSs, and T-spherical

fuzzy aggregation operators, that are required to understand the work proposed in succeeding

chapters.

2.1 Three-way decision theory

The idea of three-way decisions is initially outlined by Yao [1, 2]. The core concept of

TWD theory is introduced as a trinal classification based on evaluation of a set of criteria.

Consider U as a finite nonempty set of alternatives or objects and C is a nonempty finite

set of concepts. Every concept belonging to C may be an idea, constraint, or criterion. The

universal set U is divided into three parts that are pair-wise disjoint labelled as, acceptance,

non-commitment and rejection regions denoted as POS(C), BON(C) and NEG(C) regions,

respectively. TWD rules are induced by using these three regions. The decision for the

inclusion of any object in a specific region is according to the degrees or levels to which

objects meet the concept C.

• An object is considered in POS(C) i.e, acceptance region of the criteria if the degree

to which it meets the concept C is above to a certain level of acceptance.
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• An object is considered in NEG(C) i.e, rejection region of the criteria if the degree to

which it meets the concept C is above a certain level of acceptance.

• An object is considered in BON(C) i.e, boundary region of the criteria if the degree

to which it meets the concept C is between the rejection level and acceptance level.

2.2 Pawlak’s conflict analysis model

Pawlak [34] used an IS to get the initial opinions of decision makers.

Definition 2.2.1 A set-based IS is defined as a quadruple, S = (U,At, Va, ηa), where finite

non-empty set U consists of elements k1, k2, ...., kn, At is a finite non-empty set of attributes,

Va is the nonempty set of values of attribute a ∈ At, and cardinality of Va is always greater

than one, ηa represents an information function for each attribute, from U to 2Va.

For Pawlak’s study of Middle East Conflict Model Va = {−1, 0, 1}, thus ηa(k) can take three

values −1, 0 and 1 giving the opinion of object k as disagreement, neutrality and agreement,

respectively, as shown in Table 2.1. The IS will be written as IS = (U,A) in short.

Table 2.1: Information system for the Middle East conflict.

U a1 a2 a3 a4 a5

k1 −1 +1 +1 +1 +1

k2 +1 0 −1 −1 −1

k3 +1 −1 −1 −1 0

k4 0 −1 −1 0 −1

k5 +1 −1 −1 −1 −1

k6 0 +1 −1 0 +1

Example 2.2.1 . [34]. The Middle East Conflict situation is represented in Table 2.1, where

rows of the table depict the agents and columns depict the issues involved in the conflict.

We denote U = {k1, k2, k3, k4, k5, k6} as the universe of six agents, where

k1: Israel k2: Egypt k3: Palestine k4: Jordan k5: Syria k6: Saudi Arabia.
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Let A = {a1, a2, a3, a4, a5} denotes the universe of five issues of the conflict problem, where:

a1: refers to an Autonomous State In The West Bank And Gaza;

a2: represents an Israeli military outpost along the Jordan River;

a3: denotes Israel retaining East Jerusalem;

a4: stands for Israeli military outposts on the Golan Heights;

a5: represents Arab countries granting citizenship to Palestinians who choose to remain

within their borders.

Definition 2.2.2 . [34]. Consider IS = (U,A), an auxiliary function denoted by φa(k, l)

for each attribute a ∈ A is defined as follows:

φa(k, l) =


1, if ηa(k).ηa(l) = 1 ∨ k = l ;

0, if ηa(k).ηa(l) = 0 ∧ k ̸= l;

−1, if ηa(k).ηa(l) = −1.

(2.1)

When the auxiliary function φa(k, l) = 1, it means that the objects k and l have the same

judgement about issue a; when the auxiliary function φa(k, l) = 0, it shows that at least

one of the objects has a neutral judgement about issue a; and if the auxiliary function

φa(k, l) = −1, then it means that objects k and l have different judgements on issue a.

Afterward, Pawlak suggests the idea of distance function for any two objects (k, l) for

conflict situation as follows:

Definition 2.2.3 . [34]. Consider IS = (U,A), the distance function σA(k, l) for any two

objects k, l ∈ U , is defined as follows

σA(k, l) =

∑
a∈Aφ∗

a(k,l)

|A|
,
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where

φ∗
a(k, l) =

1− φa(k, l)

2
=


0, if ηa(k).ηa(l) = 1 ∨ k = l ;

0.5, if ηa(k).ηa(l) = 0 ∧ k ̸= l ;

1, if ηa(k).ηa(l) = −1.

Table 2.2: Distance matrix for the Middle East conflict.

U k1 k2 k3 k4 k5 k6

k1

k2 0.9

k3 0.9 0.2

k3 0.8 0.3 0.3

k5 1.0 0.1 0.1 0.2

k6 0.4 0.5 0.5 0.4 0.6

Thus, by using Definition 2.2.3, we obtain the conflict space (CS), CS = (U, σA), where σA

represents the distance function. By using the distance function σA, Pawlak introduced the

conflict, neutral and allied relations to study conflicts as follows:

Definition 2.2.4 . [34]. Consider CS = (U, σA), where σA(k, l) represents the distance

function, then:

i. (k, l) ∈ U is said to be conflict if σA(k, l) > 0.5;

ii. (k, l) ∈ U is said to be neutral if σA(k, l) = 0.5;

iii. (k, l) ∈ U is said to be allied if σA(k, l) < 0.5.

By using Definition 2.2.4, Pawalk introduced the conflict, neutral and allied sets as follows:

Definition 2.2.5 . [34]. Consider CS = (U, σA), the conflict, neutral and allied sets of

k ∈ U is defined as follows;

i. CON(k) = {l ∈ U : σA(k, l) > 0.5};

ii. NEU(k) = {l ∈ U : σA(k, l) = 0.5};

16



iii. ALL(k) = {l ∈ U : σA(k, l) < 0.5}.

By using the Definition 2.2.5, pawlak formulated the conflict, neutral and allied sets of each

object, in this way a relationship is defined between two objects.

2.3 Game-theoretic rough sets model

As a novel extension of traditional rough sets, the GTRS model combines the game theory

with rough sets [20, 21]. These sets are widely used in decision analysis in the situation of

conflict or cooperation. GTRS model proves to be more resourceful in solving different types

of decision-making problems. GTRS provides a deeper and a wider perspective to assist in

problem analysis by facilitating the set of possible outcomes. It lists both non-cooperative

and cooperative outcomes by considering all possible actions or strategies and computing

respective payoffs for each player. Whereas, equilibrium analysis can be used by scrutinizing

payoffs. The model is used in many problems to establish a game among multiple agents

for analyzing the interactive situation of conflict. A game mechanism is established among

the agents to obtain an optimal solution by seeking dominance over the rest of the agents

or trying to team up with others. GTRS model comprises a player’s set, a set of strategies

for each player, and a set of payoff functions for respective strategies.

The normal form also named as the strategic form is usually considered as the most

formal and fundamental formulation of game theory. The mathematical expression of normal

form of game theory as a tuple (P, S, F ) [78], where:

• P = {p1, p2, ...., pn} is a finite set of n players;

• S = {s1, s2, s3, ....., sn} is a strategy profile for player;

• F = {u1, u2, ...., un}, where ui : S → ℜ is a real-valued pay off function for n players.

A formal two-player GTRS based game is presented in Table 2.3. The two players are

denoted as p1 and p2, respectively. In the game setting, each player has assigned a strategy
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profile {s1, s2, s3}. In table, each block is congruous with a strategy profile comprising a pair

of payoff values based on that strategy profile. Each block of the table gives the payoffs to

both players for each combination of actions or strategies. To give an instance, for player p1

strategy profile (s1, s1) containing payoffs functions u1(s1, s1) and u2(s1, s1) appears on the

top left block, for player p2 on the right. The game solution is a formal rule for predicting

the best strategy profile in which the participants adopt their revered actions.

Table 2.3: Table of Payoffs for two-player GTRS based game

player p2

s1 s2 s3

s1 u1(s1, s1), u2(s1, s1) u1(s1, s2), u2(s1, s2) u1(s1, s3), u2(s1, s3)

player p1 s2 u1(s2, s1), u2(s2, s1) u1(s2, s2), u2(s2, s2) u1(s2, s3), u2(s2, s3)

s3 u1(s3, s1), u2(s3, s1) u1(s3, s2), u2(s3, s2) u1(s3, s3), u2(s3, s3)

The Nash equilibrium is utilized by GTRS for analyzing the payoff tables to determine

the possible outcomes of the games. In the game mechanism, the equilibrium point suggests

that no player may obtain a better gain or payoff by switching to some other strategy while

knowledge has been provided to him about the strategies followed by other players. Nash

equilibrium is specifically employed for game solutions to opt for desirable game outcomes

in GTRS. If for two players, si and sj are the best responses to each other then the strategy

profile (si, sj) is a pure strategy or Nash equilibrium. Mathematically this equilibrium point

can be expressed as [79]

∀s′i ∈ S1, u1(si, sj) ≥ u1(s
′
i, sj) where si ∈ S1 and s′i ̸= si (2.2)

∀s′j ∈ S2, u1(si, sj) ≥ u1(si, s
′
j) where sj ∈ S2 and s′j ̸= sj (2.3)

Equations 2.2-2.3 may be presented as a strategy profile as no benefit can be secured

by any player if he changes his respective strategy. Intuitively, a strategy profile is a stable
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state as no player can obtain a higher benefit from a unilateral deviation to some other

strategy. Deviating from the strategies to increase the payoff of one player results in a

decrease in the other player’s payoff. To get the possible solution, equilibrium analysis may

be used by examining payoff tables carefully. Subsequently, we may struggle to find a steady

solution such that each player can achieve the highest payoff knowing about their opponent’s

chosen strategies. Equilibrium analysis is used to acquire the optimal solution for the conflict

problem.

2.4 Hesitant fuzzy sets

The well-known concept of HFS is given by Torra [44, 45] and has been applied effectively

to deal vagueness of real life. HFEs allow the membership degrees of elements to a set to

be provided by various possible values between 0 and 1. The concepts of HFEs and a brief

review of associated operations are provided in this section.

Definition 2.4.1 Let Y be a fixed set then a HFS on Y is in terms of a function that when

applied to Y returns a subset of [0, 1], which is mathematically denoted as follows:

E = {⟨s, τE(s)⟩|s ∈ S}

where τE is a set of some values in [0, 1], which denotes the possible membership degrees of

the element s ∈ S to the set E [45, 46]. For comfort, we say τE as an HFE.

Definition 2.4.2 Let three HFEs be denoted as τ , τ1, and τ2, and then some associated

operations are expressed as follows:

• τ c =
⋃

µ∈τ{1− µ}

• ζτ =
⋃

µ∈τ{1− (1− µ)ζ}

• τ1 ⊕ τ2 =
⋃

µ1∈τ1,µ2∈τ2{µ1 + µ2 − µ1µ2}
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• τ1 ⊗ τ2 =
⋃

µ1∈τ1,µ2∈τ2{µ1µ2}

where ζ is constant, For instance, if τ = µ, τ1 = {µ1} and τ2 = {µ2} then τ c = {1− µ};

ζτ = {1− (1− µ)ζ}; τ1 ⊕ τ2 = {µ1 + µ2 − µ1µ2}; τ1 ⊗ τ2 = {µ1µ2}.

Xia and Xu [46] introduced a criterion to compare HFEs as follows:

Definition 2.4.3 Let τ be a HFE, the score function of τ is denoted as s(τ) = 1
lτ

∑
µ∈τ µ,

here l(τ) indicates the number of elements in τ . For τ1 and τ2:

if, sc(τ1) < sc(τ2) ⇒ τ1 ≺ τ2;

if, sc(τ1) = sc(τ2) ⇒ τ1 ≈ τ2;

if, sc(τ1) ⪯ sc(τ2) ⇒ τ1 ⪯ h2.

Conversely,

if, sc(τ1) > sc(τ2) ⇒ τ1 ≻ τ2;

if, sc(τ1) ≥ sc(τ2) ⇒ τ1 ⪰ τ2.

2.5 T-spherical fuzzy sets

The notion of T-SFS is propounded by Mahmood et al. [66] as a synthesis of SFS to offer a

broader range of preferences for decision makers and enable them to express their hesitation

about an alternative. Some basic definitions of T-SFS and terms relevant to planned work

are delineated as follows:

Definition 2.5.1 [66] Let Y be a given nonempty set. A T-spherical fuzzy set (SFS) S on

Y is given by

S = {(y, σ(y), ϑ(y), ϱ(y)) |y ∈ Y } , (2.4)

where σ(y), ϑ(y), ϱ(y) ∈ [0, 1] indicate the membership, neutral and non-membership grades

of y ∈ Y to the set S, respectively, with the restriction that 0 ≤ σt(y) + ϑt(y) + ϱt(y) ≤ 1.

The degree of refusal is π(y) = t
√
1− σt(y)− ϑt(y)− ϱt(y). For convince, (σ(y), ϑ(y), ϱ(y))
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is called a T-spherical fuzzy number (T-SFN), labelled by S = (σ, ϑ, ϱ).

Definition 2.5.2 [80] Let S1 = (σ1, ϑ1, ϱ1) and S2 = (σ2, ϑ2, ϱ2) be two T-SFNs and η > 0,

then

i. S1 ⊕ S2 =

(
t
√
σt
1 + σt

2 − σt
1σ

t
2, ϑ1ϑ2, ϱ1ϱ2

)
;

ii. S1 ⊗ S2 =

(
σ1σ2,

t
√

ϑt
1 + ϑt

2 − ϑt
1ϑ

t
2,

t
√

ϱt1 + ϱt2 − ϱt1ϱ
t
2

)
;

iii. Sη
1 =

(
ση
1 ,

t
√
1− (1− ϑt

1)
η, t
√

1− (1− ϱt1)
η

)
;

iv. ηS1 =
(

t
√
1− (1− σt

1)
η, ϑη

1, ϱ
η
1

)
;

v. Sc
1 = (ϱ1, ϑ1, σ1).

Definition 2.5.3 [66, 81] S1 = (σ1, ϑ1, ϱ1) and S2 = (σ2, ϑ2, ϱ2) be any two T-SFNs, let

S (S1) = σt
1−ϑt

1−ϱt1+
(

expσ
t
1−ϑt

1−ϱt1

expσ
t
1−ϑt

1−ϱt1 +1
− 1

2

)
πt and S (S2) = σt

2−ϑt
2−ϱt2+

(
expσ

t
2−ϑt

2−ϱt2

expσ
t
2−ϑt

2−ϱt2 +1
− 1

2

)
πt

be the score values of S1 and S2, respectively, and let A (S1) = σt
1 + ϑt

1 + ϱt1 and A (S2) =

σt
2 + ϑt

2 + ϱt2 be the accuracy values of S1 and S2, respectively. Then,

i. If S (S1) < S (S1), then S1 < S2;

ii. If S (S1) = S (S1), then

a. If A (S1) < A (S1), then S1 < S2;

b. If A (S1) = A (S2), then S1 = S2.

2.6 T-spherical fuzzy aggregation operators

As an important tool in information fusion, the T-spherical fuzzy aggregation operator has

received much attention, Mahmood et al. [82] propounded the T-SFWA operator and the

T-SFWG operator as follows:

Definition 2.6.1 [82] Let Si (i = 1, 2, ..., n) be a collection of SFNs, then the T-SFWA
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operator is a mapping Sn −→ S such that

T − SFWA (S1,S2, ...,Sn) = w1S1 ⊕ w2S2 ⊕ ...⊕ wnSn

=
(
(1−

∏n
k=1 (1− σt

k)
wk)

1/t
,
∏n

k=1 (ϑk)
wk ,
∏n

k=1 (ϱk)
wk

)
,

(2.5)

where w = {w1, w2, ..., wn}T is the weight vector of (S1,S2, ...,Sn) such that 0 ≤ wi ≤ 1 and∑n
i=1wi = 1.

Definition 2.6.2 [82] Let Si (i = 1, 2, ..., n) be a collection of SFNs, then the T-spherical

fuzzy weighted geometric(T-SFWG) operator is a mapping Sn −→ S such that

T − SFWG (S1,S2, ...,Sn) = w1S1 ⊗ w2S2 ⊗ ...⊗ wnSn

=

( ∏n
k=1 (σk)

wk , (1−
∏n

k=1 (1− ϑt
k)

wk)
1/t

, (1−
∏n

k=1 (1− ϱtk)
wk)

1/t

)
, (2.6)

where w = (w1, w2, ..., wn)
T is the weight vector of (S1,S2, ...,Sn) such that 0 ≤ wi ≤ 1 and∑n

i=1wi = 1.

The study of triangular norms is extensive, initiating from Zadeh presented max and

min operation as a pair of the triangular norm and triangular conorm. We can make reference

to several triangular norms and corresponding triangular conorms, like product t-norm and

probabilistic sum t-conorm [83], Einstein t-norm and t-conorm [84], Lukasiewicz t-norm and

t-conorm [85], Hamacher t-norm and t-conorm [86] etc., are vehicles for operations on FSs.

Frank operations include Frank’s product and Frank’s sum, which are examples of triangular

norms and triangular conorms, respectively.

Frank t-norm TF and Frank t-conorm SF are defined as follows.

TF (y1, y2) = logτ

(
1 + (τy1−1)(τy2−1)

τ−1

)
∀ (y1, y2) ∈ [0, 1]2 ,

SF (y1, y2) = 1− logτ

(
1 +

(τ1−y1−1)(τ1−y2−1)
τ−1

)
∀ (y1, y2) ∈ [0, 1]2 .
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Frank t-norm and Frank t-conorm have the properties described as follows [87].

TF (y1, y2) + SF (y1, y2) = y1 + y2, ∂TF (y1,y2)
∂y1

+ ∂SF (y1,y2)
∂y1

= 1.

Using the limit theory, one can easily verify the following desirable results [87].

1). If τ −→ 1, then TF (y1, y2) −→ y1 + y2 − y1y2, SF (y1, y2) −→ y1y2, the Frank

t-norm and Frank t-conorm are reduced to probabilistic product and probabilistic sum.

2). If τ −→ ∞, then TF (y1, y2) −→ min (y1 + y2, 1), SF (y1, y2) −→ max (0, y1+ y2 − 1),

the Frank t-norm and Frank t-conorm are reduced to the Lukasiewicz product and Lukasiewicz

sum, respectively.
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Chapter 3

Conflict resolution using game theory

and rough sets

The core aim of the current chapter is to address the real-life conflict problems with the GTRS

approach. Conflicts occur naturally in the real world at all levels of society, individually, in

groups, or society as a whole. Almost all the existing conflict resolution models are unilateral

in their decision-making process. They do not consider the actions of the involved parties

simultaneously. Therefore, in this chapter, a novel three-way conflict resolution model is

presented which is founded on GTRS, by formulating a game mechanism among all the

concerned parties(players), computing the payoff of different strategies, and classifying them

following equilibrium rules. The proposed model yields more realistic and accurate results

as it explores all possibilities and is flexible in determining different threshold values relative

to the complexities of real-life problems. Three real-life conflict situations are solved with

the proposed model, and a comprehensive analysis is presented to validate the practicality

of the proposed method. The research work presented in this chapter is published in [60].
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3.1 A novel conflict study model based on GTRS

This section presents the novel GTRS based conflict study model. GTRS is more efficient

in determining the conflict, alliance, or neutrality between two objects by playing a game

between them because all the possibilities are explored by the calculating payoff of all strate-

gies of conflict, alliance, and neutrality. The payoff functions are designed based on initial

opinions of objects/agents on given issues/attributes.

3.1.1 Components of GTRS model

Let IS = (U,A) be an IS describing the opinions of objects/agents in U = {k1, k2, k3, ..., kn}

regarding given issues/attributes A = {a1, a2, ..., am}, as shown in Table 2.1.

The Players Set: U is the set of players and game is played among all the players

(k1, k2, k3, ...,

kn) taking two at a time. Each player will participate in a game in an effective way to get a

final decision for the formulation of conflict, neutral and allied sets objects.

The Strategy Set: S = {sall, sneu, scon} be the set of strategies/actions for each player in

U , where:

sall is a strategy of making alliance with the other player;

sneu is a strategy of abstaining in making any decision of making alliance or conflict with

the other player;

scon is a strategy of making conflict with the other player.

The Payoff Functions: Consider two players kr, kt ∈ U , the utility functions denoted ukr

and ukt for kr and kt, respectively, measure the outcomes of opting a certain action/strategy

in S by players. The two payoff sets are formulated as follows:

ukr = {ukr(sall, sall), ukr(sall, sneu), ukr(sall, scon), ukr(sneu, sall), ukr(sneu, sneu),
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ukr(sneu, scon), ukr(scon, sall), ukr(scon, sneu), ukr(scon, scon)}.

ukt = {ukt(sall, sall), ukt(sall, sneu), ukt(sall, scon), ukt(sneu, sall), ukt(sneu, sneu),

ukt(sneu, scon), ukt(scon, sall), ukt(scon, sneu), ukt(scon, scon)}.

3.1.2 Game formulation

Now, the payoff/utility functions are designed that lead to a final decision for each player.

Let kr and kt be two players in U . First, the values of auxiliary functions φa(kr, kt) are

calculated for all a ∈ A according to Equation 2.1. Using these functions, cumulative

degree of agreement denoted as COA(kr, kt) is obtained as the sum of auxiliary functions

with value +1 i.e. φ+
a (kr, kt) and cumulative degree of neutrality denoted as CON(kr, kt) is

computed as the sum of auxiliary functions with value 0 i.e. φ0
a(kr, kt) . Similarly, cumulative

degree of disagreement between kr and kt denoted as COD(kr, kt) is obtained as the sum

of auxiliary functions with value −1 i.e. φ−
a (kr, kt). Based on these cumulative degrees,

normalized/mean cumulative degrees of agreement (alliance), neutrality and disagreement

(conflict) are defined, respectively, as follows:

COA(kr, kt) =
COA(kr, kt)

m
=

1

m

∑
a∈K

φ+
a (kr, kt); (3.1)

CON (kr, kt) =
COA(kr, kt)

m
=

1

m

∑
a∈K

φ0
a(kr, kt); (3.2)

COD(kr, kt) =
COA(kr, kt)

m
=

1

m

∑
a∈K

φ−
a (kr, kt). (3.3)

For decision making, decision-theoretic rough set model (DTRS) used probabilities [41, 42].

A pair of threshold values is used to represent the required level of precision for the classification of
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objects [1]. In contrast to DTRS, we used normalised/mean cumulative degrees of three involved

measures i.e. agreement, neutrality and disagreement instead of probabilities. The pair of threshold

values can be determined by Bayesian decision-theoretic analysis using notions of risks and losses

[88]. This threshold pair helps to obtain a three-way classification of objects effectively. Intuitively,

an object is classified into a particular concept or set, if its conditional probability within the bounds

of the set is equal to or greater than threshold α. The object will be rejected for the concept or

set if the conditional probability is equal to or less than the threshold β. When the conditional

probability remains between the two thresholds α and β, then a final decision for the object can not

be made and hence abstained or delayed. Thus, three pairs of threshold values (αA, βA), (αN , βN )

and (αD, βD) are decided by decision makers based on how much leverage they want to give to make

alliance, neutrality and conflict, respectively. For players kr and kt in U , the preliminary weighted

payoff denoted by ωkr,kt for all the strategies is defined as follows:

ωkr,kt(sall) =


1, COA(kr, kt) ≥ αA

0.5, βA < COA(kr, kt) < αA

0, COA(kr, kt) ≤ βA

(3.4)

ωkr,kt(sneu) =


1, CON (kr, kt) ≥ αN

0.5, βN < CON (kr, kt) < αN

0, CON (kr, kt) ≤ βN

(3.5)

ωkr,kt(scon) =


1, COD(kr, kt) ≥ αD

0.5, βD < COD(kr, kt) < αD

0, COD(kr, kt) ≤ βD

(3.6)
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The function ωkr,kt(sall) signifies the utility/function of alliance of a player kr with the other player

kt. If the value of COA(kr, kt) for a player kr with the other player kt is equal to or greater than

threshold αA, then the function attains its maximum value 1. This shows the highest interest of a

player to go for an alliance with the other player. If the value of COA(kr, kt) for a player kr with

the other player kt is lesser than or equal to threshold βA, then the function attains its minimum

value 0. This reflects a player’s lowest interest in accepting the other player for alliance (conflict).

When the value of COA(kr, kt) for a player with the other player is between thresholds αA and βA,

the function attains the value of 0.5, suggesting an uncertainty for acceptance or rejection of the

other player for the alliance or conflict. Similarly, other two functions ωkr,kt(sneu) and ωkr,kt(scon)

can be described.

Here, we need interaction within the game among different players. Players’ personal beliefs

and utilities would be affected by preferred strategies of the other players. By considering it, we

employ a mean value or average of utilities of involved players in securing their payoff functions. It

is a rational choice as we try to obtain coordination between players in deciding an object’s inclusion

in allied, neutral or conflict sets. Additionally, the judgements of both players are considered as

beneficial without any distinction. The preliminary payoff serves as a basis to define payoffs of both

the players kr and kt. Let s1, s2 be strategies in S = {sall, sneu, scon}, payoffs of both the players

are defined as follows:

ukr(s1, s2) =
ωkr,kt(s1) + ωkt,kr(s2)

2
; (3.7)

ukt(s1, s2) =
ωkt,kr(s1) + ωkr,kt(s2)

2
. (3.8)

Finally, we construct a game mechanism between two players kr and kt. The respective payoffs

are presented in Table 3.1, where each block corresponding to a strategy outline comprises a pair

of payoff values based on that strategy outline. Each block of the table gives the payoffs to both

players for each combination of actions. For example, top left block of the table contains two payoffs

ukr(sall, sall) and ukt(sall, sall) for players kr and kt with strategy outline (sall, sall), respectively.

This implies that each cell of the table represents a payoff pair (ukr(sj , sh), ukt(sj , sh)) corresponding
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to strategy sj of player kr and sh of the other player kt. To construct this game, we have total nine

pairs of payoffs, listed in Table 3.1.

Table 3.1: Table of payoffs for two-player GTRS based game

kt

sall sneu scon

sall ukr(sall, sall), ukt(sall, sall) ukr(sall, sneu), ukt(sall, sneu) ukr(sall, scon), ukt(sall, scon)

kr sneu ukr(sneu, sall), ukt(sneu, sall) ukr(sneu, sneu), ukt(sneu, sneu), ukr(sneu, scon), ukt(sneu, scon)

scon ukr(scon, sall), ukt(scon, sall) ukr(scon, sneu), ukt(scon, sneu), ukr(scon, scon), ukt(scon, scon)

The game solution is a formal rule for predicting the best strategy outline in which the

participants adopt their preferred actions. The game solutions are then used in determining three-

way decisions. A strategic portfolio and a steady condition of a game is Nash equilibrium, when

every player understands all possible predictions about the other player’s move. Moreover, it is the

best response to the other player’s possible choice. Nash equilibrium is typically employed for game

solution to conclude possible game outcomes in GTRS. In the proposed two-player game between

the players kr and kt, a payoff pair (u′kr(sall, sall), u
′
kt
(sall, sall)) is an equilibrium point if for any

strategy se,

u′kr(sall, sall) ≥ ukr(se, sv)∀se, sv ∈ S (3.9)

u′kt(sall, sall) ≥ ukt(se, so)∀se, so ∈ S (3.10)

This payoff pair (u′kr(sall, sall), u
′
kt
(sall, sall)) is said to be the optimal solution or a balanced point

in determining actions for the players and any variation in it would not be beneficial for any player.

Similar descriptions are valid for the other two payoff pairs (u′kr(sneu, sneu), u
′
kt
(sneu, sneu)) and

(u′kr(scon, scon), u
′
kt
(scon, scon)).

The proposed GTRS model utilizes Nash equilibrium [89] for analyzing payoff tables in order

to find possible outcomes for games. Further, this Equilibrium analysis suggests the inclusion of an

object/agent into one of the sets i.e., CON(k),NEU(k), ALL(k).
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Algorithm: To formulate CON(k),NEU(k), ALL(k)

Input: IS for conflict situation IS = (U,A)

Step 1: Choose two players kr, kt in U .

Step 2: Compute φa(kr, kt) for all a ∈ A based on Equation 2.2.

Step 3: Compute COA(kr, kt), CON (kr, kt) and COD(kr, kt) using Equations 3.1-3.3.

Step 4: Set the threshold values for involved measures, i.e.,(αA, βA), (αN , βN ) and (αD, βD).

Step 5: Compute values of weighted payoff, i.e., ωkr,kt(sall), ωkr,kt(sneu), ωkr,kt(scon) by using

Equations 3.4-3.6.

Step 6: Compute payoffs of both players (kr, kt) for all strategies by using Equations 3.7-3.8.

Step 7: Calculate the equilibrium point in payoffs tables by using Equations 3.9–3.10.

Step 8: Classify kr, kt as ally, neutral or enemy based on Nash equilibrium.

Step 9: Repeat the steps 1− 8 unless the game is played between all the objects of U .

Output:CON(k), NEU(k), ALL(k).
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We present the flow chart of the proposed algorithm in Figure 3.1.

Figure 3.1: Flow chart of proposed conflict resolution model
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3.1.3 A case study on Syrian conflict

In this section to practically demonstrate the proposed model, we solve the Syrian Conflict problem

[90] with IS given in Table 3.2.

Table 3.2: Information system for the Syrian conflict

U a1 a2 a3 a4 a5 a6 a7

k1 −1 +1 +1 −1 +1 0 −1

k2 0 +1 −1 −1 −1 +1 −1

k3 +1 −1 −1 −1 +1 +1 −1

k4 +1 −1 0 +1 0 −1 +1

k5 −1 +1 +1 −1 0 −1 +1

k6 −1 +1 0 −1 0 −1 −1

k7 +1 −1 −1 +1 0 0 +1

k8 −1 +1 +1 −1 +1 +1 −1

Here, we denote U = {k1, k2, k3, k4, k5, k6, k7, k8} as the universe of eight agents, where

k1 : USA k2 : Turkey k3 : Russia k4 : Iran k5 : Saudi Arabia k6 : Qatar k7 : Iraq k8 : Israel.

Let A = {a1, a2, a3, a4, a5, a6, a7} denotes the universe of seven issues of the conflict problem,

where:

a1: refers to support to retain the government of Bashar Al-Assad;

a2: represents safe zone;

a3: denotes Kurdish federalism (Rojava);

a4: stands for naming the moderate opposition factions ;

a5: represents Syrian Democratic Forces (SDF) ;

a6: denotes useful Syria project;

a7: Hezbollah involvement in the Syrian war.

To illustrate our proposed GTRS model Algorithm, we explain and compute all steps for player k1:

Step 1: Choose two players kr, kt in U .

We choose two player k1 and ki for i = 2, 3, ..., 8, alternatively.
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Step 2: Compute φa(kr, kt) for all a ∈ A based on Equation 2.1.

Table 3.3: Auxiliary functions of objects

φa(kr, kt) a1 a2 a3 a4 a5 a6 a7

φa(k1, k2) 0 +1 −1 +1 −1 0 +1

φa(k1, k3) −1 −1 0 −1 0 0 −1

φa(k1, k4) +1 +1 0 +1 0 0 +1

φa(k1, k5) +1 +1 0 +1 0 0 +1

φa(k1, k6) −1 −1 −1 −1 0 0 −1

φa(k1, k7) +1 +1 +1 +1 +1 0 +1

φa(k1, k8) 0 +1 −1 +1 −1 0 +1

Auxiliary functions for player k1 and other players are calculated by using Equation 2.1, presented

in Table 3.3.

Step 3: Compute COA(kr, kt), CON (kr, kt) and COD(kr, kt) by using Equations 3.1-3.3.

In this step, we need to calculate mean cumulative degree of opinion for three measures, i.e.,

COA, CON and COD. They can be calculated with the help of Table 3.3 using their respective

definitions in Equations 3.1–3.3. For example, COA(k1, k2) is computed as a mean cumulative

degree of agreement for objects k1 and k2 as their total number of agreement (+1 on various issues

divided by the number of total issues within the conflict, i.e.,
∑

φ+
a (k1,k2)
m = 3

7 = 0.4287. Similarly,

CON (k1, k2) and COD(k1, k2) are calculated as
∑

φ0
a(k1,k2)
m = 2

7 = 0.2857 and
∑

φ−
a (k1,k2)
m = 2

7 =

0.2857, respectively. We present COA(k1, kt), CON (k1, kt) and COD(k1, kt) for t = 2, ...8 in Table

3.4.

Step 4: Set the threshold values for involved measures, i.e., (αA, βA), (αN , βN ) and (αD, βD).

By analysing the mean cumulative degree values, we can define a pair of threshold for each player in

order to obtain the payoff functions. A pair of threshold can be calculated in several ways, e.g., by

inspecting all the objects’ mean cumulative degree values for the involved measures, i.e., agreement,

neutrality and disagreement, selector’s perception of tolerance levels for choosing an object for

conflict, neutral or alliance. In this example, we obtain the threshold pair as (αA, βA) = (0.54, 0.29)

by using DTRS model [41] for agreement between two objects. Same pair of threshold values can
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also be used for the other two measures, i.e., neutrality (αN , βN ) and disagreement (αD, βD).

Step 5: Compute weighted payoff, i.e., ωkr,kt(sall), ωkr,kt(sneu), ωkr,kt(scon) based on Equations

3.4-3.6.

Table 3.4: Mean cumulative degrees of objects

(kr, kt) COA CON COD COA CON COD

(k1, k2) 3 2 2 0.4287 0.2857 0.2857

(k1, k3) 0 3 4 0.0000 0.4287 0.5714

(k1, k4) 0 3 4 0.0000 0.4287 0.5714

(k1, k5) 4 2 1 0.5714 0.2857 0.4128

(k1, k6) 4 3 0 0.5714 0.4287 0.000

(k1, k7) 0 2 5 0.0000 0.2857 0.7142

(k1, k8) 6 1 0 0.8571 0.1428 0.0000

For any particular player ki, we determine its payoff table by calculating all respective payoff

pairs of individual cells of the table. Recalling the representation of Table 3.1, the payoff pair

(uk1(sall, sall), uk2(sall, sall)) is corresponding pair of the first cell of the table. From Table 3.4, We

can see that COA(k1, k2) = 0.4287, CON (k1, k2) = 0.2857 and COD(k1, k2) = 0.2857. By utilising

the function ωkr,kt(sall), presented in Equations 3.4-3.6, we can calculate the utility or gain of player

kr if he makes an alliance with the other player kt. The utility function for player k1, in making

an alliance with player k2, is denoted as ωk1,k2(sall), is 0.5 as βA < COA(k1, k2) = 0.42875 < αA.

This means that player k1 has a moderate desire to make an alliance with the player k2. Similarly,

the utility function for player k2 in making alliance with the player k1 within the conflict will also

be 0.5 as β < COA(k2, k1) = 0.42875 < αA. This suggests that k2 has also a moderate desire to

accept the player k1 for an alliance.

Step 6: Compute payoffs of both players for all strategies by using Equations 3.7-3.8.

Now, the payoff function corresponding to pair (uk1(sall, sall), uk2(sall, sall)) can be calculated as

follows:

uk1(sall, sall) =
ωk1,k2(sall) + ωk2,k1(sall)

2
=

0.5 + 0.5

2
= 0.5

uk2(sall, sall) =
ωk2,k1(sall) + ωk1,k2(sall)

2
=

0.5 + 0.5

2
= 0.5
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Table 3.5: Table of payoffs for game played between players k1 and k2

k2

sall sneu scon

sall (0.50,0.50) (0.25, 0.25) (0.25, 0.25)

k1 sneu (0.25, 0.25) (0.0, 0.0) (0.0, 0.0)

scon (0.25, 0.25) (0.0, 0.0) (0.0, 0.0)

Similarly, by utilising the functions presented in Equations 3.7- 3.8, ukr(sall, sneu) and ukr(sall, scon)

are calculated, respectively. Now, the utility for player k1 in getting a neutral position with the

player k2 is 0 as CON (k1, k2) = 0.2857 < βN . This suggests that k1 has the least desire to get a

neutral position with k2 within the conflict. Similar description is valid for k2. Now, the payoff

function corresponding to the pair (uk1(sall, sneu), uk2(sall, sneu)) are calculated as follows:

uk1 (sall, sneu) =
ωk1,k2(sall) + ωk2,k1(sneu)

2
=

0.5 + 0

2
= 0.25.

uk2 (sall, sneu) =
ωk2,k1(sall) + ωk1,k2(sneu)

2
=

0 + 0.5

2
= 0.25.

Following the same pattern, the other payoff pairs are calculated to get a payoff table for a game

between two players k1 and k2, shown in Table 3.5.

Step 7: Calculate equilibrium point in payoffs tables using Equations 3.9–3.10.

If we analyze the payoff values in Table 3.5, then equilibrium analysis suggests the strategy sall for

player k1 and sall for player k2 is a Nash equilibrium, represented in bold. It is also observed that no

player can obtain a better payoff, provided with the knowledge of the other player’s chosen strategy.

For instance, if player k1 changes its strategy from sall to sneu or scon, its payoff will decrease from

0.5 to a lower value. Same description is also true for k2.

Step 8: Thus, the object k2 is included in the set ALL(k1) using equilibrium analysis.

Step 9: We repeat steps(1-8) until we obtain classification for all objects.
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3.1.4 Further analysis

Similar to the game between players k1 and k2, we can examine the competitions/games of player

k1 with the other objects k3, k4, k5, k6, k7, k8. In this section, we will examine them one-by-one.

Table 3.6: Table of payoffs for game played between players k1 and k3

k3

sall sneu scon

sall (0.00, 0.00) (0.25, 0.25) (0.50, 0.50)

k1 sneu (0.25, 0.25) (0.50, 0.50) (0.75, 0.75)

scon (0.50, 0.50) (0.75, 0.75) (1.00,1.00)

For the player k3: it has the lowest mean cumulative degree of agreement, i.e., COA(k1, k3) = 0,

a moderate degree of neutrality, i.e., CON (k1, k3) = 0.4287, and the mean cumulative degree of

disagreement is higher, i.e., COD(k1, k3) = 0.5714. The payoff table for game between players k1

and k3 is shown in Table 3.6. Equilibrium analysis suggests strategy scon for player k1 and scon for

player k3 is Nash equilibrium. Thus, player k3 is included in the set CON(k1).

Table 3.7: Table of payoffs for game played between players k1 and k4

k4

sall sneu scon

sall (0.00, 0.00) (0.25, 0.25) (0.50, 0.50)

k1 sneu (0.25, 0.25) (0.50, 0.50) (0.75, 0.75)

scon (0.5, 0.5) (0.75, 0.75) (1.00,1.00)

Next, we consider the game between players k1 and k4. The object k4 has the lowest mean cumulative

degree of agreement, a moderate mean cumulative degree of neutrality and a higher mean cumulative

degree of disagreement, shown in Table 3.4. Payoff table for this game is shown in Table 3.7. The

equilibrium states are scon for player k1 and scon for player k4. Hence, the object k4 is also considered

to be in the set CON(k1).

Considering the object k5, it has a higher mean cumulative degree of agreement, lower mean cumu-

lative degrees of neutrality and disagreement. In this case, player k1 has the highest desire to ally
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Table 3.8: Table of payoffs for game played between players k1 and k5

k5

sall sneu scon

sall (1.00,1.00) (0.50, 0.50) (0.75, 0.75)

k1 sneu (0.50, 0.50) (0.0, 0.0) (0.25, 0.25)

scon (0.75, 0.75) (0.25, 0.25) (0.50, 0.50)

with the player k5. Similarly, k5 has also the highest desire to accept the player k1 in an alliance.

By using utility functions, we can construct the payoff table of the game between players k1 and

k5 as presented in Table 3.8. Equilibrium analysis suggests the inclusion of object k5 in the set

ALL(k1).

Table 3.9: Table of payoffs for game played between players k1 and k6

k6

sall sneu scon

sall (1.00,1.00) (0.75, 0.75) (0.50, 0.50)

k1 sneu (0.75, 0.75) (0.50, 0.50) (0.25, 0.25)

scon (0.50, 0.50) (0.25, 0.25) (0.0, 0.0)

Now, we consider the object k6. It has a higher mean cumulative degree of agreement, a moderate

mean cumulative degree of neutrality and the lowest mean cumulative degree of disagreement. Table

3.9 shows its payoff table. Equilibrium analysis suggests strategy sall for player k1 and sall for player

k6 as a Nash equilibrium and its inclusion in the set ALL(k1).

Table 3.10: Table of payoffs for game played between players k1 and k7

k7

sall sneu scon

sall (0.00, 0.00) (0.00, 0.00) (0.50, 0.50)

k1 sneu (0.00, 0.00) (0.00, 0.00) (0.50, 0.50)

scon (0.50, 0.50) (0.50, 0.50) (1.00,1.00)

Now, considering the object k7, it has lowest the mean cumulative degree of agreement, a low
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cumulative degree of neutrality and the highest mean cumulative degree of disagreement. Table

3.10 shows its payoff table. Equilibrium analysis suggests that strategy scon for player k1 and scon

for player k7 is a Nash equilibrium. Hence, object k7 is included in the set CON(k1). Finally, we

Table 3.11: Table of payoffs for game played between players k1 and k8

k8

sall sneu scon

sall (1.00,1.00) (0.50, 0.50) (0.50, 0.50)

k1 sneu (0.50, 0.50) (0.00, 0.00) (0.00, 0.00)

scon (0.50, 0.50) (0.00, 0.00) (0.00, 0.00)

observe the last object k8. It has the highest mean cumulative degree of agreement and lower mean

cumulative degrees of neutrality and disagreement. All payoffs are shown in Table 3.11. Equilibrium

analysis suggests strategy sall for player k1 and sall for player k8 as a Nash equilibrium. Hence,

object k8 is included in the set CON(k1).

From the payoff tables of games between players k1 and ki for i = 2, 3, ..., 8, we can construct the

sets ALL(k1), CON(k1) and NEU(k1). We need to note, if equilibrium analysis suggests for both

players strategies (sall, sall) or (scon, scon) in a game, this reflects that they both are agreed for an

alliance or a conflict respectively. Thus, they are included in the allied set ALL(k) or the conflict

set CON(k). An object will be in the neutral set if one player agrees for an alliance, and the other

has a disagreement or both want to be neutral within the conflict. On the basis of Nash equilibrium

analysis, we can formulate the Conflict, Neutral and Allied sets of the first object k1 as follows:

CON(k1) = {k7, k3, k4}; NEU(k1) = {} = ∅; ALL(k1) = {k1, k2, k5, k6, k8}.

Now, we repeat the steps 1−9 unless the game is played between the all possible pairs of objects of U .

Following the steps 1−8 for objects ki for i = 2, 3, ..., 8, we can establish games between all possible

pairs of objects in U and consequently, can construct payoff tables for each game. Finally using

Nash equilibrium, objects are classified in conflict, neutral and allied sets of ki for i = 1, 2, 3....., 8.

Output: CON(k), NEU(k), ALL(k), presented in Table 3.12.
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Table 3.12: Allied, Neutral and Conflict sets for Syrian conflict Problem

U CON(ki) NEU(ki) ALL(ki)

k1 {k3, k4, k7} ∅ {k2, k5, k6, k8}
k2 {k3, k7} {k4} {k1, k5, k6, k8}
k3 {k1, k2, k5, k6, k8} ∅ {k4, k7}
k4 {k1, k5, k6, k8} {k2} {k3, k7}
k5 {k3, k4, k7} ∅ {k1, k2, k6, k8}
k6 {k3, k4, k7} ∅ {k1, k2, k5, k8}
k7 {k1, k2, k5, k6, k8} ∅ {k3, k4}
k8 {k3, k4, k7} ∅ {k1, k2, k5, k6}

3.1.5 Algorithmic analysis

In the proposed model, IS = (U,A) describes the opinion of n agents U = {k1, k2, k3, ..., kn}

regarding the given m issues/attributes A = {a1, a2, a3, ..., am}. Each player/agent in U will play

a game against every other player ki ∈ U to determine their conflict, alliance or neutrality. For

each game between two players, we need to determine their conflict, alliance or neutrality for each

aj ∈ A for j = 1, 2, 3, ...,m. Thus, the complexity of playing one game is O(m) to determine the

conflict, alliance or neutrality between two players for m attributes/issues. The other factor that

contributes towards the complexity of the proposed algorithm is the total number of games played.

To calculate the total number of games, we need to determine how many games will be played by

each player. For example, k1 will play (n − 1) games with the remaining player in U . Player k2

will play (n − 2) games with players {k3, k4, ..., kn} because he has already played a game with

k1. Similarly, Player k3 will play (n− 3) games with players {k4, k5, ..., kn} because he has already

played games with k1 and k2. Thus, players k1, k2, k3, ..., k(n−3), k(n−2), k(n−1), and kn will play

(n− 1), (n− 2), (n− 3), ..., 3, 2, 1, 0 games, respectively. We can calculate the total games by adding

these numbers as follows:

Total games =
n−1∑
i−0

i =
n(n− 1)

2
. (3.11)
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Based on the total number of games, the proposed algorithm will have time complexity as follows:

Algorithm(time complexity) =
n(n− 1)

2
× (time for one game). (3.12)

Consequently, the proposed algorithm has the complexity O(n2m).

3.1.6 A case study on development plans for Gansu province in

China

To further validate the proposed algorithm and make a comparison with recent studies on conflict

analysis, we present and solve another case study on development plans for Gansu province in China

[38, 39]. In China, for local government, economic development and social stabilisation are great

Table 3.13: Information system of development plans for Gansu province China

U a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

k1 +1 −1 0 −1 +1 −1 0 −1 +1 −1 +1

k2 0 +1 −1 0 0 +1 −1 0 0 +1 −1

k3 −1 0 −1 −1 −1 +1 +1 −1 −1 0 0

k4 0 0 −1 +1 +1 −1 −1 +1 0 −1 −1

k5 −1 +1 −1 0 −1 +1 0 0 −1 +1 +1

k6 0 +1 0 −1 −1 −1 −1 −1 0 +1 −1

k7 +1 +1 0 +1 0 +1 0 +1 +1 +1 0

k8 −1 0 −1 +1 −1 0 +1 +1 −1 0 +1

k9 +1 +1 0 −1 +1 +1 −1 −1 +1 +1 −1

k10 −1 −1 −1 0 +1 −1 +1 0 −1 −1 +1

k11 −1 0 −1 −1 −1 −1 −1 −1 −1 0 −1

k12 0 +1 0 −1 +1 +1 +1 −1 0 +1 0

k13 −1 0 −1 +1 0 0 0 +1 −1 0 +1

k14 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1

challenges. For the implementation of a new policy, local government faces various conflicts among

involved cities. The local government of Gansu province needs to implement a new development plan

for the new year. Gansu Province consists of fourteen cities, namely Lanzhou, Jinchang, Baiyin,
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Tianshui, Jiayuguan, Wuwei, Zhangye, Pingliang, Jiuquan, Qingyang, Dingxi, Longnan, Linxia, and

Gannan, which are denoted as k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, respectively. The

development plan mainly involves eleven issues, namely, the construction of roads, factories, enter-

tainment, educational institutions, total population of residence, ecology environment, the number

of senior intellectuals, the traffic capacity, mineral resources, sustainable development capacity and

water resources carrying capacity, which are denoted as a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, re-

spectively. The opinions of each agent on all issues are shown in Table 3.13.

All cities have different positions on related issues, which is natural as every city has its own

geographical, political and economic needs, so their priorities are different. We solve this problem

with our proposed model based on GTRS and present the results in Table 3.14.

Table 3.14: Solution of development problem of Gansu province China with proposed model

U ALL(ki) NEU(ki) CON(ki)

k1 {k9, k10} {k2, k4, k12, k13} {k3, k5, k6, k7, k8, k11, k14}
k2 {} {k1, k3, k4, k5, k6, k7, k8, k9, k11, k12, k13, k14} {k10}
k3 {k8, k10, k11, k12} {k2, k5, k6, k7, k13, k14} {k1, k4, k9}
k4 {k11, k14} {k1, k2, k5, k7, k8, k10, k13} {k3, k6, k9, k12}
k5 {k8, k10, k11} {k2, k3, k4, k6, k7, k9, k12, k13, k14} {k1}
k6 {k9, k11, k12} {k2, k3, k5, k7, k8, k13, k14} {k1, k4, k10}
k7 {k9} {k2, k3, k4, k5, k6, k7, k8, k10, k11, k12, k13, k14} {k1}
k8 {k3, k5, k10, k11, k13} {k2, k4, k6, k7, k12, k14} {k1, k9}
k9 {k1, k6, k7, k12} {k2, k5, k11, k13} {k3, k4, k8, k10, k14}
k10 {k1, k3, k5, k8, k14} {k4, k7, k11, k12, k13} {k2, k6, k9}
k11 {k3, k4, k5, k6, k8, k14} {k2, k7, k9, k10, k12, k13} {k1}
k12 {k3, k6, k9} {k1, k2, k5, k7, k8, k10, k11, k13} {k4, k14}
k13 {k8} {k1, k2, k3, k4, k5, k6, k7, k9, k10, k11, k12, k14} {}
k14 {k4, k10, k11} {k2, k3, k5, k6, k7, k8, k13} {k1, k9, k12}
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3.2 Comparative analysis with the existing conflict study

models

For comparison and to validate the proposed model, we solve the Middle East conflict presented in

Table 2.1 using the proposed model. Results are shown in Table 3.15. To compare our solution with

Pawlak’s solution for the Middle East conflict, Table 3.16 is computed based on Pawlak’s model,

described in Chapter 2.

Table 3.15: Solution of Middle East conflict with the proposed model

U CON(ki) NEU(ki) ALL(ki)

k1 {k2, k3, k4, k5} {k6} ∅
k2 {k1} {k4, k6} {k3, k5}
k3 {k1} {k4, k6} {k2, k5}
k4 {k1} {k2, k3, k6} {k5}
k5 {k1} {k6} {k2, k3, k4}
k6 ∅ {k1, k2, k3, k4, k5} ∅

Table 3.16: Pawlak’s solution of Middle East conflict

U CON(ki) NEU(ki) ALL(ki)

k1 {k2, k3, k4, k5} ∅ {k6}
k2 {k1} {k6} {k3, k4, k5}
k3 {k1} {k6} {k2, k4, k5}
k4 {k1} ∅ {k2, k3, k5, k6}
k5 {k1, k6} ∅ {k2, k3, k4}
k6 {k5} {k2, k3} {k1, k4}

Despite of evident contributions of Pawlak model concerning to conflict resolution, there are

some certain deficiencies in it. In Pawlak model, quadruple IS = (U,A, VA, f) be an IS that

describes the opinions of objects in U regarding the issues in A utilizing a function f : U ×A → VA.

Here, VA = {−1, 0, 1}, typically f(ki, aj) = −1, 0 or 1 means object ki is against, neutral or

in agreement on issue aj , respectively. However, there are issues in the classification of objects.

Subsequently, objects ki and kj are classified as against (in the conflict set), neutral (in the neutral
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set) or allied (in the allied set) if σA(ki, kj) > 1/2, σA(ki, kj) = 1/2 or σA(ki, kj) < 1/2, respectively,

where σA(ki, kj) is the distance among ki and kj (defined in the Chapter refch1). If distance of two

objects is near 1/2 in either side let say 4.99 or 5.05. No doubt, It seems unrealistic to classify

objects in conflict or allied sets strictly, by giving it a second thought, we should inspect the given IS

more closely. In real-world problems, if an object k that is actually in conflict with the other object

l, is classified into the allied set of the object l with a threshold 0.5 then object l bears an exceptional

loss, for instance, Pawlak’ model put objects k5 and k6 in conflict as σA(k5, k6) = 0.6 > 0.5, whereas,

from Table 2.2 we may observe that objects k5 and k6 are in conflict on attributes a2 and a5 and

neutral on attributes a1 and a4 but on attribute a3 they are allied, therefore, there are some losses if

we put k5 and k6 in conflict. The complex and imprecise information in various real-world scenarios

would need some adjustment in the bench-mark value 1/2. Hence, it is vital to find the optimal

threshold values for classification of objects. The proposed model, with optimal threshold values

and balanced solution, addressed this issue effectively and classified all objects more precisely.

GTRS based model, setting up games between all involved parties (players), computing the

payoff of different strategies and classifying them following equilibrium rules, yields more realistic

and accurate results as it explores all possibilities and is flexible in determining different threshold

values relative to the complexities of real-life problems.

Table 3.17: Informtion system

U a1 a2 a3 a4 a5 a6 a7 a8

k1 +1 +1 +1 +1 −1 −1 −1 −1

k2 −1 −1 −1 −1 +1 +1 +1 +1

Lang’s model [37] uses a single measure σA (aggregated difference of opinion) which may lead

to loss of important information in many scenarios. Sun et al. [39] used two measures |F+(ki)| and

|F−(ki)| (count of +1 and −1 for object ki in IS, respectively), but for an object ki counting +1

or −1 individually, without taking into consideration the opinion of rest of objects may provide

wrong conclusion. The inspection of IS(Table 3.17) reveals that k1 and k2 must be in conflict

set by all accounts. But for B = {a3, a4, a5, a6}, we have P (B|F+(k1)) = |B∩F+(k1)|
|F+(k1)| = 1/2 and

P (B|F+(k2)) = |B∩F+(k2)|
|F+(k2)| = 1/2. Similarly, P (B|F−(k1)) = 1/2 and P (B|F−(k2)) = 1/2, so their

model will most likely classify them as neutral or with respect to B both k1 and k2 have neutral
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attitude. Also, Lang et al. [38] designed a unified model with both rough set theory and formal

concept analysis that resolve conflict both quantitatively and qualitatively. Their work generalised

the work examined by Sun et al. [39] with the use of two evaluation functions (positive and negative).

Generally, both models are accurate in pointing out the feasible sets of issues(attributes) with

minimum conflict or maximum collations for all the objects. However, measuring the opinion of an

object in isolation to opinions of other objects could be problematic in some cases, usually when

some issues are more important than others or both positive and negative measures are propor-

tional, as discussed earlier. More recently, Zhi et al [40] proposed an inconsistency measure for any

X ∈ U that leads to the partition of issues/attributes set A and build a three-way concept lattice to

access differences among members of X. In our suggested model, instead of using a single measure,

it uses the mean cumulative degree of three measures: agreement, neutrality and disagreement, with

a pair of threshold values for each measure to signify the utilities of the players. Each object uses

its respective payoff functions in analysing another object for its inclusion in conflict, neutral and

allied sets of the object. The strategies of players are used to drive a balanced solution by using

Nash equilibrium for classifying the conflict, neutral and allied objects.

We summarise our analysis as follows.

• In comparison to existing models, the GTRS based proposed model adopts a bilateral ap-

proach and considers the actions of all objects simultaneously, and calculates the respective

gains (payoffs) accordingly. We use three measures alliance (COA), neutrality (CON ), and

conflict (COD). Whereas, using an aggregated difference of opinions or two measures (alliance

and conflict) only, cannot support the computation of payoffs for all possible actions. Also,

we register the difference of opinions on all issues with care to obtain correct results.

• The proposed model is more flexible as it allows decision-makers to separately set parameters

(αA, βA), (αN , βN ) and (αD, βD) for alliance, neutrality and conflict, respectively. Depending

upon the priorities in different circumstances, we can reduce and increase the margins of all

three measures alliance, conflict and neutrality. We determine the relative position of an

object by comparing its payoffs with the principle of the Nash equilibrium, which is quite
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accurate in pointing out the right choice with maximum benefits for any object.

• The inspection of Table 3.14 reveals that most of the cities have a neutral attitude towards

others because of given issues. In order to remove conflict among cities and come to a partial

agreement, we can persuade the cities in the neutral zone to reconsider their opinions. If the

issues are not critical, they can agree to development plans. Also, in our model government

can set lower values of alliance parameters (αA, βA) to increase collation among cities. Based

on these observations, in the set {k2, k3, k5, k6, k7, k8, k11, k12, k13} no two cities are in conflict

with each other, therefore, government can implement a plan for these cites.

• Generally, if the objects with a neutral attitude can tolerate, we can find the maximum

possible set as a conflict resolution solution, in which no two objects conflict with each other.

Our solution has a different prospect than the models [38,39]. Their work is related to finding

a sub-collection of issues according to which a certain number of objects are in agreement.

Their study has its own merits.

In light of the above discussion, the proposed model has many advantages and merits compared

to the existing models. We analyzed the conflict scenarios more critically and tried to be flexible in

our decision-making process to come up with accurate results.

45



Chapter 4

Three-way conflict analysis based on

hesitant fuzzy environment

HFSs, as a generalization of FSs, have been extensively practiced in many areas of risk decision

analysis. Whenever we deal with an uncertain and complex conflict situation, we need to reduce the

complexity and fuzziness of the conflict problems. HFSs can manage complex situations more effec-

tively. This study presents a three-way conflict analysis model founded on HFIS where evaluation

functions are HFEs while associated loss functions are real numbers. Further, we drive three-way

decisions and costs associated with each object. Moreover, we use two methods to derive three-way

conflict analysis. The first method is general and based on the scores of loss functions while the

other method is founded on the ranking method of possibility degrees with a stochastic strategy and

encapsulates all comparisons among expected losses. To validate the rationality of the presented

model, the example of the Middle East conflict problem is solved and a result analysis is presented.

A comparison with existing conflict analysis models is also provided to enhance the viability of the

suggested approach.
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4.1 A new conflict study model based on hesitant fuzzy

frame work

In the present section, we introduced a novel method of conflict study founded on the TWD in a

hesitant fuzzy environment. The study of conflict analysis is mainly relies on an IS. In Pawlak’s

model, an IS is represented in a matrix form where rows represent agents while columns represent

issues of conflict problem. Pawlak’s model restricted the opinions of agents in {−1, 0,+1} as op-

posite, neutral, and favorable towards the issues, respectively. In real-life situations, we often have

to deal with complex conflict problems, where a participant is hesitant to be in favor or against

an issue. To deal with such situations, we need a more complex IS, founded on subset values of

(−1, 0,+1). For instance, an object may be hesitant to be in favor or against an issue then the

values +1 and −1 are not enough. We need more than one value to depict the possible degree

to which a participant is against or in support of an issue. With this aim, we need to introduce

a new kind of IS by extending the domain of attributes of Vb to [−1,+1] for all b, where values

between (−1, 0) show the disagreement and values between (0, 1) show agreement while 0 shows the

neutrality.

Table 4.1: Information system

X b1 b2 . . . bm

x1 ξ11 ξ12 . . . ξ1m

x2 ξ21 ξ22 . . . ξ2m

x3 ξ31 ξ32 . . . ξ3m

. . . . . . .

. . . . . . .

. . . . . . .

xn ξn1 ξn2 . . . ξnm

Definition 4.1.1 Let X = {x1, x2, x3, ..., xn} and I = {b1, b2, ..., bm} be the set of agents and issues

(attributes) respectively then S = (X, I) = [ξkl]n×m for k = 1, 2, ..., n, l = 1, 2, ...,m, be an IS where

ξkl = {ξskl ∈ [−1, 1] : s = 1, 2, ....,#ξkl} describing the opinion of kth object regarding the lth issue.

Here the object (xk) provides all the possible evaluated values based on three measures i.e; agree-
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ment, neutrality and disagreement, under the attribute(issue) (bl) denoted by ξkl, as shown in Table

4.1. Here all the values of ξkl are arranged in increasing order. It is noteworthy that different values

of [ξkl] may not be necessarily in order e.g., #ξ12 ̸= #ξ13. We need to ensure that they are of the

same length [48] so we may arrange them in any order for convenience. For the said purpose, Zhu

et al. [52] defined a technique to normalize the HFE. Keeping in mind that the values of ξkl are

like HFNs but the domain is [−1, 1] instead of [0, 1], we may use the same technique. This defined

technique may be used for adding elements in HFEs.

Let ξkl = {ξskl : s = 1, 2, ....,#ξkl}, then we may normalize it by adding the values. For

optimized parameter 0 ≤ κ ≤ 1, the added membership degree of ξkl is κδ+ + (1 − κ)δ−, where

δ+ is the largest while δ− is the smallest value of ξkl. The decision maker can opt the argument

κ(0 ≤ κ ≤ 1) according to his risk preferences. Then by Zhu et al. [52] added value would be δ+

and δ− for κ = 1 and κ = 0 respectively and ξ̄kl = {ξkln×n} be a normalized set of values with κ as

optimised parameter and ξkl is a normalized value. Here we may use κz(0 < κz < 1, z = 1, 2, ..., g)

to convert initial IS S = [ξkl]n×m = {ξskl : s = 1, 2, ....,#ξkl} into the normalized IS S = [ξkl]n×n =

{ξskl : s = 1, 2, ...., d} by using the following equations:

ξkl =


ξkl, #ξkl = d;ξ

(1),....,ξ
(tkl)

kl
kl︸ ︷︷ ︸

tkl

, κzξ
(#ξkl)
kl + (1− κz)ξ

(1)
kl , ...., κzξ

(#ξkl)
kl + (1− κz)ξ

(1)
kl︸ ︷︷ ︸

d−(#ξkl)

, ξ
(tkl+1)
kl , ...., ξ(#ξkl)︸ ︷︷ ︸

(#ξkl)−tkl

 , #ξkl < d.

(4.1)

where

d = max{#ξkl|k = 1, 2, ..., n, l = 1, 2, ...,m} and

tkl = max{s ∈ {1, 2, ...,#ξkl}|ξskl ≤ κz(ξ
(#ξkl)
kl + (1− κz)ξ

(1)
kl )}.

According to new kind of IS, S = [ξkl]n×m, we define an auxiliary function as follows:

Definition 4.1.2 Let S = [ξkl]n×m be the normalized IS then auxiliary function denoted by

φbl(xk, xq) = {φs
bl
(xk, xq) : s = 1, 2, 3, ....} is defined as follows:
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φbl(xk, xq) =



|ξskl−ξsql)|
2 if ξskl.ξ

s
ql > 0 ∨ xk = xq;

1
2 ifξskl.ξ

s
ql = 0 ∧ xk ̸= xq;

1
2 +

|ξskl−ξsql|
4 if ξskl.ξ

s
ql < 0;

(4.2)

for all s = 1, 2, 3....#ξkl

The defined auxiliary function φbl(xk, xq) works in two ways, firstly it measures the similarity

or difference in judgments or opinions of two objects (xk,xq) about issue bl, secondly the scale of

opinion difference is shifted from [−1, 1] to [0, 1]. The value near 1 shows the strong agreement of

two objects on an issue while the value near −1 depicts the strong disagreement and values near

0 represent the neutrality of opinion about an issue. Furthermore, the values of φbl(xk, xq) are

HFEs, hence we may accumulate the opinion of all objects on different issues by using any feasible

operator.

4.1.1 Hesitant fuzzy information system

The conflict problem is investigated through a new normalized HFIS.

Table 4.2: Normalized Information system

X b1 b2 . . bm

x1 (χ11) (χ12) . . . (χ1m)

x2 (χ21) (χ22) . . . (χ2m)

x3 (χ31) (χ32) . . . (χ3m)

. . . . . . .

. . . . . . .

. . . . . . .
xn (χn1) (χn2) . . . (χnm)

Definition 4.1.3 A HFIS is a quadruple S = (X, I, Vb, χ) consisting a non empty finite set of

agents X = {x1, x2, ..., xn}, a non empty finite set of issues, I = {b1, b2, ..., bm} and Vb = {Vb|b ∈ I},
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where Vb is the set of issue values on b based on HFNs and χ is function from X × I into V .

It is obvious that the HFIS is a generalization of Pawlak’s IS which depicts all the knowledge

where the agents yield their judgments about alternatives(agreement,disagreement,neutrality) under

the attributes(issues) (bl) denoted as {ξkl}n×m for k = 1, 2, ..., n, l = 1, 2, ...,m.

Example 4.1.1 A HFIS represented by Table 4.2 is employed to depict the Middle East Conflict,

where six agents and five issues are denoted by x1, x2, ..., x6 and b1, b2, ..., b5 respectively. For in-

stance, (χ11) = (u11, v11, w11), where this triplet evaluates the degree of similarity of agents x1 and

x2 regarding issue b1.

As far as a concern to conflict analysis, all involved attributes(issues) are not of equal im-

portance as some issues could have more weight than others. Therefore we assign the importance

degree wl(l = 1, 2, ...,m) for attributes according to different focuses, advantages, and preferences

of analysts. Here for convenience, we have assigned equal weights to all issues.

Definition 4.1.4 Let xk and xq be two objects and φbl(xk, xq) is the auxiliary function depicting the

difference of opinion between objects xk and xq then weighted average operator denoted as ϱ(xk, xq)

is defined as follows:

ϱ(xk, xq) =

m∑
l=1

wlφ
s
bl
(xk, xq) : s = 1, 2, 3, ..., d for k < q

where w = (w1, w2, ...., wm)T is the normalized weight vector of φbl(xk, xq) with wl ∈ [0, 1] and

Σm
l=1wl = 1, if w = ( 1

m , 1
m , ..., 1

m)T , then

ϱ(xk, xq) =
m∑
l=1

1

m
φbl(xk, xq)] for k < q

For better analysis, we may aggregate the opinion of any two individuals, holding the same or

opposite attitude towards described issues.

Based on the above definition, we may aggregate the opinion of any two individuals xk and

xq. To aggregate our normalized HFIS, we define some new operations on HFEs. Let three HFEs

be τ , τ1, and τ2, and then, ζ ≥ 0 and τ c be the complementary set of τ , then new operations for
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HFEs are defined as follows:

• τ c =
⋃

µ∈τ{1− µ}

• ζτ =
⋃

µ∈τ{ζµ}

• τ1 ⊕ τ2 =
⋃

µ1∈τ1,µ2∈τ2{µ1 + µ2}

• τ1 ⊗ τ2 =
⋃

µ1∈τ1,µ2∈τ2{µ1µ2}

• τ ζ =
⋃

µ∈τ{τ ζ}

4.1.2 Deriving three-way decisions in hesitant fuzzy environment

Taking into consideration the new normalized HFIS of a conflict problem provided in Table 4.1, in

the present section, we develop a novel conflict study model under a hesitant fuzzy environment.

Practically, we employ the new measurement of HFEs. We consider the losses as real numbers

while the evaluation functions are in form of HFEs. This new conflict study is based on DTRS and

Bayesian decision procedure [53]. In [53], the decision-making method is concretely based on losses

of DTRS of HFEs. In our proposed model, the Bayesian decision procedure is applied to choose

the minimum risk after calculating and comparing the conditional risks of all states by using the

given information. Moreover, we drive a three-way decisions [2] and consequently, a mechanism

is found for rules of classification of all objects. The conditional probability is also considered as

one of the main components, while we employ the Bayesian decision procedure. Here, we replace

conditional probability with aggregated evaluation function ϱ(xk, xq) which is a HFE. Let ϱ(xk, xq)

and 1 − (ϱ(xk, xq)) be the probability of conflict and allied space respectively, therefore we have a

relationship ϱ(xk, xq) + (ϱ(xk, xq))
c = 1.

The model is based on two states and three actions. Let the set of states be Π = {C,A}

indicating the inclusion of an object in the conflict or allied state respectively. Let a set of three

actions {aC , aN , aA} where aC refers action of accepting an object into conflict set i.e CO(xk), aN

refers action of accepting an object into neutral set i.e; NE(xk) and aA refers action of accepting

an object into allied set i.e; AL(xk). We express the losses of accepting these actions regarding

two states C and A in Table 4.3, where (ζaC\C), (ζaN\C), (ζaA\C) designate the associated losses to
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Table 4.3: Loss functions related to different actions

Action Loss State

aC (ζaC\C) C

aN (ζaN\C) C

aA (ζaA\C) C

aC (ζaC\A) A

aN (ζaN\A) A

aA (ζaA\A) A

take actions of aC , aN , aA respectively. Similarly (ζaC\A), (ζaN\A), (ζaA\A) designate the associated

losses to take the same actions when an object be in A. We have losses aC , aN , aA, for conflict and

allied states, these losses satisfy the following conditions:

ζ(aC |C) ≤ ζ(aN |C) < ζ(aA|C) and ζ(aC |A) ≤ ζ(aN |A) < ζ(aA|A)

That is, the loss of including an object xk that belongs to C into the CO(xk) is equal to or less

than the loss of including xk into the neutral set NE(xk), and these two losses are strictly less

than the loss of including xk into the allied set AL(xk). For these losses, the reverse orders are

also applicable for the inclusion of an object not in C. For an object xk, the expected losses

R(aC |xk), R(aN |xk), R(aA|xk) related to the corresponding actions can be calculated as:

R(aC |xk) = ζ(aC |C)((xk, xq)) + ζ(aC |A)(1− (xk, xq)) (4.3)

R(aN |xk) = ζ(aN |C)((xk, xq)) + ζ(aN |A)(1− (xk, xq)) (4.4)

R(aA|xk) = ζ(aA|C)((xk, xq)) + ζ(aA|A)(1− (xk, xq)) (4.5)

where ζ(ap|C) ≥ 0, ζ(ap|A) ≥ 0, p ∈ (C,N,A) and 0 ≤ ((xk, xq)) ≤ 1, 0 ≤ ((xk, xq))
c ≤ 1

In this situation losses are real numbers but ϱ(xk, xq) for k ̸= q are in the form of HFNs so we need

to consider the situation under the new defined hesitant fuzzy environment. With the accordance
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of new defined operations of HFEs, Equations 4.3-4.5 can be calculated as:

R(aC |xk) =
⋃

µ1∈(ϱ(xk,xq))

{ζ(aC |C)µ1} ⊕
⋃

µ2∈(ϱ(xk,xq))c

{ζ(aC |A)µ2} = w1 + w2 (4.6)

R(aN |xk) =
⋃

µ3∈(ϱ(xk,xq))

{ζ(aN |C)µ3} ⊕
⋃

µ4∈(ϱ(xk,xq))c

{ζ(aN |A)µ4} = w3 + w4 (4.7)

R(aA|xk) =
⋃

µ5∈(ϱ(xk,xq))

{ζ(aA|C)µ5} ⊕
⋃

µ6∈(ϱ(xk,xq))c

{ζ(aA|A)µ6} = w5 + w6 (4.8)

where

w1 =
⋃

µ1∈(ϱ(xk,xq))

{ζ(aC |C)µ1}, w2 =
⋃

µ2∈(ϱ(xk,xq))c

{ζ(aC |A)µ2},

w3 =
⋃

µ3∈(ϱ(xk,xq))

{ζ(aN |C)µ3}, w4 =
⋃

µ4∈(ϱ(xk,xq))c

{ζ(aN |A)µ4},

w5 =
⋃

µ5∈(ϱ(xk,xq))

{ζ(aA|C)µ5}, w6 =
⋃

µ6∈((xk,xq))c

{ζ(aA|A)µ6}.

By using the new operations of HFEs, these expected losses can be re-expressed as follows:

R(aC |xk) = w1 + w2 =
⋃

µ′
1∈w1,µ′

2∈w2

{µ′
1 + µ′

2}

R(aN |xk) = w3 + w4 =
⋃

µ′
3∈w3,µ′

4∈w4

{µ′
3 + µ′

4}

R(aA|xk) = w5 + w6 =
⋃

µ′
5∈w5,µ′

6∈w6

{µ′
5 + µ′

6}
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Hence it may be concluded that R(ap|xk)(p = C,N,A) are HFEs with the same cardinality i.e;

#R(aC |xk) = #R(aN |xk) = #R(aA|xk). Now, if the value of Pr(C|xk) is constant, the variations

of the expected losses with the losses were discussed by Lang and Liu in [53]. Inspired by that

techniques, we may deduce the following result.

Preposition 1: For R(aC |xk), let τ1 = ζ(aC |C)µ1 + ζ(aC |A)µ2 where µ1 ∈ (ϱ(xk, xq)) and µ2 ∈

(ϱ(xk, xq))
c, then τ1 is non-monotone decreasing with any increase in µ1 and µ2, when the loss

functions ζ(aC |C), ζ(aC |A) are constant.

Proof : Here in this preposition, we consider µ1, µ2 are two independent variables of τ1. To examine

the variation of τ1, we evaluate the partial derivative of τ1 with respect to µ1 and µ2, respectively.

When µ2 is constant, we evaluate the partial derivative of τ1 with respect to µ1 as ∂τ1
∂µ1

= ζ(aC |C).

As ζ(aC |A) ≥ 0, ζ(aC |C) ≥ 0.

Hence, it may proved that ∂τ1
∂µ1

≥ 0.

Now consider µ1 as constant, by taking partial derivative of τ1 with respect to µ2 can be

calculated as ∂τ1
∂µ2

= ζ(aC |A). As ζ(aC |A) ≥ 0, ζ(aC |C) ≥ 0. Hence, it may proved that ∂τ1
∂µ2

≥ 0.

By analysing partial derivative of τ1 w.r.t µ1 and µ2, it may deduce that ∂τ1
∂µ1

≥ 0 and ∂τ1
∂µ2

≥ 0.

Therefore, the statement of Preposition 1 is satisfied.

Proposition 1 demonstrates that if the values of µ1 and µ2 increase, then we have variation

in value of τ1. According to results of Proposition 1, we can deduce two more corollaries based on

Equations 4.7 and Equation 4.8.

Corollary 1: For R(aN |xk), let τ1 = ζ(aN |C)µ3 + ζ(aN |A)µ4 where µ3 ∈ (ϱ(xk, xq)) and µ4 ∈

(ϱ(xk, xq))
c, then τ1 is non-monotone decreasing with any increase in µ3 and µ4, when the loss

functions ζ(aN |C), ζ(aN |A) are constant.

Corollary 2: For R(aA|xk), τ1 = ζ(aA|C)µ5 + ζ(aA|A)µ6 where µ5 ∈ (ϱ(xk, xq)) and µ6 ∈

(ϱ(xk, xq))
c, then τ1 is non-monotone decreasing with any increase in µ5 and µ6, when the loss

functions ζ(aA|C), ζ(aA|A) are constant.

By using the results reported in [41,88] the Bayesian decision procedure provides the minimum-

cost decision laws are described as follows:
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If R(aC |xk) ⪯ R(aN |xk) and R(aC |xk) ⪯ R(aA|xk) then xk ∈ CO{xq}

If R(aN |xk) ⪯ R(aC |xk) and R(aN |xk) ⪯ R(aA|xk) then xk ∈ NE{xq}

If R(aA|xk) ⪯ R(aC |xk) and R(aA|xk) ⪯ R(aN |xk) then xk ∈ AL{xq}

Where ⪯ is the equivalent or inferior.

These are decision rules for conflict analysis. To compare the expected losses we may re-express

these relations as follows:

(C1) If sc(R(aC |xk)) ≤ sc(R(aN |xk)) and sc(R(aC |xk)) ≤ sc(R(aA|xk)) then xk ∈ CO{xq}

(N1) If sc(R(aN |xk)) ≤ sc(R(aC |xk)) and sc(R(aN |xk)) ≤ sc(R(aA|xk)) then xk ∈ NE{xq}

(A1) If sc(R(aA|xk)) ≤ sc(R(aC |xk)) and sc(R(aA|xk)) ≤ sc(R(aN |xk)) then xk ∈ AL{xq}

where

sc(R(aC |xk)) =
1

l(R(aC |xk)
∑

u1∈R(aC |xk)

u1 (4.9)

sc(R(aN |xk)) =
1

l(R(aN |xk)
∑

u2∈R(aN |xk)

u2 (4.10)

sc(R(aA|xk)) =
1

l(R(aA|xk)
∑

u3∈R(aA|xi)

u3 (4.11)

where l(R(aC |xk)), l(R(aN |xk)), l(R(aA|xk)) indicate the number of elements found in the (R(aC |xk))

, (R(aN |xk)) and (R(aA|xk)). Using score functions, (R(aC |xk)), (R(aN |xk)) and (R(aA|xk)) are

transformed into precise real values and the hesitancy of the expected losses is eliminated. Now,

the decision rule for an object xk is derived by evaluating score i.e; (R(aC |xk)), (R(aN |xk)) and

(R(aA|xk).
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Algorithmic description to formulate CO(xk), NE(xk) and AL(xk).

Input: IS for conflict situation S = [(ξkl)]n×m

Step 1. Calculate normalized HFIS S̄ = [ξ̄kl]n×m.

Step 2. Compute the values of auxiliary function φl(xk, xq) for k ̸= q, k = 1, 2, ...., n, l = 1, 2, ....,m

for all objects of X based on Equation 4.2.

Step 3. Compute the aggregated opinion ϱI(xk, xq) for k ̸= q, k = 1, 2, ...., n, l = 1, 2, ....,m by

using Definition 4.1.4.

Step 4. Compute the aggregated opinion matrix Ag = |ϱI(xk, xq)|m×n for k ̸= q.

Step 5. Calculate the losses ζ(aC |C), ζ(aN |C), ζ(aA|C) and ζ(aC |A), ζ(aN |A), ζ(aA|A) by using

Bayesian decision procedure.

Step 6. Calculate successively expected loss functions R(aC |xk), R(aN |xk), R(aA|xk) by using

Equations 4.6-4.8 for the object xk under a given value of (ϱ(xk, xq)).

Step 7. Calculate the scores of expected losses by using Equations 4.9 -4.11.

Step 8. Classify all objects into allied, neutral and conflict sets based on the three-way classification

rules given by (C1−A1).

4.2 Application of proposed three-way hesitant fuzzy con-

flict analysis model

To validate the proposed algorithm, we consider the case of the Middle East conflict problem [36,38]

with HFIS given in Table 4.4.

4.2.1 Application of general method based on the scores functions

Step 1. We normalize the initial IS [ξkl]n×m. The normalized IS is shown in Table 4.5.

56



Table 4.4: Information system for conflict problem

U b1 b2 b3 b4 b5

x1 (0.09, 0.26, 0.93) (0.31, 0.42, 1.00) (−0.23, 0.57, 0.95 (−0.78,−0.70) (0.41, 0.93)

x2 (−0.10,−0.10) (0.05, 0.57, 1.00) (−0.80, 0.30) (−0.08,−0.17, 0.32) (−0.80, 0.89)

x3 (−1.00,−0.43) (−0.99,−0.48, 0.07) (−0.97,−0.46, 0.25) (−0.75,−0.74,−0.41) (0.22, 0.22)

x4 (−0.60,−0.36, 0.20) (0.68, 0.98, 1.00) (−1.00,−0.05, 0.10) (0.59, 0.75, 0.99) (0.98, 1.00)

x5 (−0.40, 0.75) (−0.39, 0.38, 0.59) (−0.87,−0.35) (0.48, 0.87, 0.96) (0.18, 0.77, 0.86)

x6 (−0.30,−0.26) (0.10, 0.80) (−0.20, 0.00, 0.10) (−0.90, 0.43, 0.55) (−1.00,−0.10, 0.30)

Table 4.5: Normalized Information system for conflict problem.

U b1 b2 b3 b4 b5

x1 (0.09, 0.26, 0.93) (0.31, 0.42, 1.00) (−0.23, 0.57, 0.95) (−0.78,−0.70,−0.70) (0.41, 0.93, 0.93)

x2 (−0.10,−0.10,−0.10) (0.05, 0.57, 1.00) (−0.80, 0.30, 0.30) (−0.08,−0.17, 0.32) (−0.80, 0.89, 0.89)

x3 (−1.00,−0.43,−0.43) (−0.99,−0.48, 0.07) (−0.97,−0.46, 0.25) (−0.75,−0.74,−0.41) (0.22, 0.22, 0.22)

x4 (−0.60,−0.36, 0.20) (0.68, 0.98, 1.00) (−1.00,−0.05, 0.10) (0.59, 0.75, 0.99) (0.98, 1.00, 1.00)

x5 (−0.40, 0.75, 0.75) (−0.39, 0.38, 0.59) (−0.87,−0.35,−0.35) (0.48, 0.87, 0.96) (0.18, 0.77, 0.86)

x6 (−0.30,−0.26,−0.26) (0.10, 0.80, 0.80) (−0.20, 0.00, 0.10) (−0.90, 0.43, 0.55) (−1.00,−0.10, 0.30)

Step 2. We compute the values of auxiliary function φI(xk, xq) for all xk ̸= xq of X based on

Equations 4.2.

Let us consider two objects x1 and x2 from set X of IS S = (X, I) shown in Table 4.4. The auxiliary

function φI(x1, x2) can be calculated by using Definition 4.2 as follows:

φb1(x1, x2) = (0.55, 0.59, 0.76); φb2(x1, x2) = (0.13, 0.08, 0.00); φb3(x1, x2) = (0.29, 0.14, 0.33);

φb4(x1, x2) = (0.35, 0.27, 0.76); φb5(x1, x2) = (0.80, 0.02, 0.02).

Following same manners, all other auxiliary functions can be evaluated as depicted in Table 4.6.

Step 3. We calculate the aggregated opinion function ϱI(xk, xq) by using Definition 4.1.4.

For the IS depicted in Table 4.4, by using Definition 4.1.4, we may calculate the aggregated opinion

of objects x1 and x2, for n = 6 and I = {b1, b2, b3, b4, b5}, as follows:

ϱI(x1, x2) = {1
5(0.55 + 0.13 + 0.29 + 0.35 + 0.80), 15(0.59 + 0.08 + 0.14 + 0.27 + 0.02),

1
5(0.76 + 0 + 0.33 + 0.76 + 0.02)}

= (0.424, 0.220, 0.374)
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Table 4.6: Auxiliary functions for object xk

U b1 b2 b3 b4 b5

φb(x1, x2) (0.55, 0.59, 0.76) (0.13, 0.08, 0.00) (0.29, 0.14, 0.33) (0.35, 0.27, 0.76) (0.80, 0.02, 0.02)

φb(x1, x3) (0.77, 0.67, 0.84) (0.83, 0.73, 0.47) (0.37, 0.85, 0.35) (0.02, 0.02, 0.15) (0.10, 0.36, 0.36)

φb(x1, x4) (0.67, 0.66, 0.37) (0.19, 0.28, 0.00) (0.39, 0.75, 0.43) (0.84, 0.86, 0.92) (0.29, 0.04, 0.04)

φb(x1, x5) (0.62, 0.25, 0.09) (0.68, 0.02, 0.21) (0.32, 0.83, 0.83) (0.82, 0.89, 0.92) (0.12, 0.08, 0.04)

φb(x1, x6) (0.60, 0.63, 0.80) (0.11, 0.19, 0.10) (0.02, 0.50, 0.43) (0.06, 0.78, 0.81) (0.85, 0.76, 0.32)

φb(x2, x3) (0.50, 0.17, 0.17) (0.76, 0.76, 0.47) (0.09, 0.69, 0.03) (0.34, 0.29, 0.68) (0.76, 0.34, 0.34)

φb(x2, x4) (0.50, 0.13, 0.58) (0.32, 0.21, 0.00) (0.10, 0.59, 0.10) (0.67, 0.73, 0.34) (0.95, 0.06, 0.06)

φb(x2, x5) (0.50, 0.71, 0.71) (0.61, 0.10, 0.21) (0.04, 0.66, 0.66) (0.64, 0.76, 0.32) (0.75, 0.06, 0.02)

φb(x2, x6) (0.50, 0.08, 0.08) (0.03, 0.12, 0.10) (0.30, 0.50, 0.10) (0.41, 0.65, 0.12) (0.10, 0.75, 0.30)

φb(x3, x4) (0.20, 0.04, 0.66) (0.92, 0.87, 0.47) (0.02, 0.21, 0.08) (0.84, 0.87, 0.85) (0.38, 0.39, 0.39)

φb(x3, x5) (0.30, 0.80, 0.80) (0.30, 0.72, 0.26) (0.05, 0.06, 0.65) (0.81, 0.90, 0.84) (0.02, 0.28, 0.32)

φb(x3, x6) (0.35, 0.09, 0.09) (0.77, 0.82, 0.37) (0.39, 0.50, 0.08) (0.08, 0.79, 0.74) (0.81, 0.58, 0.04)

φb(x4, x5) (0.10, 0.78, 0.28) (0.77, 0.30, 0.21) (0.07, 0.15, 0.61) (0.06, 0.06, 0.02) (0.40, 0.12, 0.07)

φb(x4, x6) (0.15, 0.05, 0.62) (0.29, 0.09, 0.10) (0.40, 0.50, 0.00) (0.87, 0.16, 0.22) (1.00, 0.78, 0.35)

φb(x5, x6) (0.05, 0.75, 0.75) (0.62, 0.21, 0.11) (0.34, 0.50, 0.61) (0.85, 0.22, 0.21) (0.80, 0.74, 0.28)

We can calculate aggregated opinion of all other objects by using the same manners.

Step 4. The aggregated opinion matrix of the IS shown in Table 4.5 is provided in Table 4.7.

Table 4.7: Matrix of aggregated opinions of objects for conflict situation

X x1 x2 x3 x4 x5 x6

x1

x2 (0.424, 0.22, 0.374)

x3 (0.418, 0.526, 0.434) (0.490, 0.450, 0.338)

x4 (0.476, 0.702, 0.352) (0.508, 0.344, 0.220) (0.472, 0.476, 0.490)

x5 (0.512, 0.414, 0.418) (0.508, 0.458, 0.384) (0.296, 0.552, 0.574) (0.280, 0.282, 0.238)

x6 (0.328, 0.572, 0.492) (0.268, 0.420, 0.140) (0.480, 0.556, 0.264) (0.542, 0.316, 0.258) (0.532, 0.484, 0.392)

Step 5. We calculate the losses ζ(aC |C), ζ(aN |C), ζ(aA|C) and ζ(aC |A), ζ(aN |A), ζ(aA|A) by using

DTRSs.

Step 6. We calculate expected loss functions R(aC |xk), R(aN |xk), R(aA|xk) by using Equations

4.6-4.8.
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Table 4.8: Loss functions for IS given in Table 4.5

Action\states C A

aC (ζaC\C) = 0.1 (ζaC\A) = 0.7

aN (ζaN\C) = 0.3 (ζaN\A) = 0.5

aA (ζaA\C) = 0.9 (ζaA\A) = 0.0

For instance, consider object x1 then incurred loss functions for taking object x2 as conflict, neutral

and ally, can be represented as follows:

R(aC |x2) = ζ(aC |C)ϱI(x1, x2) + ζ(aC |A)ϱcI(x1, x2)

R(aN |x2) = ζ(aN |C)ϱI(x1, x2) + ζ(aN |A)ϱcI(x1, x2)

R(aA|x2) = ζ(aA|C)ϱI(x1, x2) + ζ(aA|A)ϱcI(x1, x2)

Hence

R(aC |x2) = 0.1(0.424, 0.22, 0.374) + 0.7(0.576, 0.780, 0.626)

R(aN |x2) = 0.3(0.424, 0.22, 0.374) + 0.5(0.576, 0.780, 0.626)

R(aA|x2) = 0.9(0.424, 0.22, 0.374) + 0.0(0.576, 0.780, 0.626)

We have

R(aC |x2) = {0.4456, 0.5680, 0.4756}

R(aN |x2) = {0.4152, 0.3540, 0.4255}

R(aA|x2) = {0.3816, 0.1980, 0.3366}

Similarly, all other losses can be obtained as depicted in Table 4.9

Step 7. We compute the score of expected losses by using Equations 4.9-4.11.

sc(R(aC |x2)) =
0.4456, 0.5680, 0.4756

3
= 0.4964
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Table 4.9: Expected loss functions for all objects

objects R(aC |xk) R(aN |xk) R(aA|xk)
(x1, x2) (0.4456, 0.5680, 0.4756) (0.4152, 0.3540, 0.4255) (0.3816, 0.1980, 0.3366)

(x1, x3) (0.4492, 0.3844, 0.4396) (0.4164, 0.3948, 0.4132) (0.3762, 0.4734, 0.3906)

(x1, x4) (0.4144, 0.3892, 0.4888) (0.4048, 0.3964, 0.4296) (0.4284, 0.4662, 0.3168)

(x1, x5) (0.3928, 0.4516, 0.2764) (0.3976, 0.4172, 0.4164) (0.4608, 0.3726, 0.3726)

(x1, x6) (0.5032, 0.3568, 0.4048) (0.4344, 0.3856, 0.4016) (0.2952, 0.5148, 0.4428)

(x2, x3) (0.4060, 0.4300, 0.4972) (0.4020, 0.4100, 0.4323) (0.4410, 0.4050, 0.3042)

(x2, x4) (0.3952, 0.4936, 0.5680) (0.3984, 0.43120.4560) (0.4572, 0.3096, 0.1980)

(x2, x5) (0.3952, 0.4249, 0.4696) (0.3984, 0.4084, 0.5464) (0.4572, 0.4122, 0.3456)

(x2, x6) (0.5392, 0.4480, 0.6160) (0.4464, 0.4160, 0.4720) (0.2412, 0.3780.0.1260)

(x3, x4) (0.4168, 0.4144, 0.4046) (0.4168, 0.4018, 0.4020) (0.4248, 0.4284, 0.4410)

(x3, x5) (0.5224, 0.3688, 0.3556) (0.4408, 0.3896, 0.3852) (0.2664, 0.1490, 0.1540)

(x3, x6) (0.4120, 0.3664, 0.5416) (0.4040, 0.3888, 0.4472) (0.432, 0.5004, 0.2376)

(x4, x5) (0.5320, 0.5308, 0.5572) (0.4440, 0.4436, 0.4524) (0.2520, 0.2538, 0.2142)

(x4, x6) (0.3748, 0.5104, 0.5452) (0.4832, 0.5736, 0.4484) (0.4878, 0.2844, 0.2322)

(x5, x6) (0.3808, 0.4096, 0.4648) (0.3936, 0.4032, 0.4216) (0.4788, 0.4356, 0.3528)

sc(R(aN |x2)) =
0.4152, 0.3540, 0.4255

3
= 0.3982

sc(R(aA|x2)) =
0.3816, 0.1980, 0.3366

3
= 0.3054

By following same manners, we compute all scores of expected loss functions as shown in Table

4.10.

Step 8. We classify all objects by using TWD rules (C1)−(A1). Hence for deciding about the inclu-

sion of object x2, we get sc(R(aA|x2)) ⪯ sc(R(aC |x2)) and sc(R(aA|x2)) ⪯ sc(R(aN |x2)) then x2 ∈

AL{x1}

Hence x2 ∈ AL{x1}

Output: Following same manners we obtain CON(xk), NEU(xk), ALL(xk), for k = 1, 2, ..., 6, as

shown in Table 4.11.
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Table 4.10: Score functions for all objects

Qbjects R(aC |xk) R(aN |xk) R(aA|xk)

(x1, x2) 0.4964 0.3982 0.3054

(x1, x3) 0.4244 0.4081 0.4134

(x1, x4) 0.4308 0.4102 0.4037

(x1, x5) 0.3736 0.4104 0.4020

(x1, x6) 0.4216 0.4072 0.4176

(x2, x3) 0.4444 0.4147 0.3834

(x2, x4) 0.4856 0.4285 0.3216

(x2, x5) 0.4299 0.4510 0.4050

(x2, x6) 0.5344 0.4448 0.2484

(x3, x4) 0.4119 0.4068 0.4314

(x3, x5) 0.4156 0.4052 0.1898

(x3, x6) 0.4400 0.4133 0.3900

(x4, x5) 0.5400 0.4475 0.2400

(x4, x6) 0.4768 0.5017 0.3348

(x5, x6) 0.4184) 0.4061 0.4224

Table 4.11: Allied, Neutral and Conflict sets for the Middle East conflict with proposed
model

U CO(xk) NE(xk) AL(xk)

x1 {x5} {x3, x6} {x2, x4}
x2 {} {} {x1, x3, x4, x5, x6}
x3 {} {x1, x4} {x2, x5, x6}
x4 {} {x3} {x1, x2, x5, x6}
x5 {x1} {x6} {x2, x3, x4}
x6 {} {x1, x5} {x2, x3, x4}

4.2.2 A ranking method of possibility degrees

We have computed the score functions of expected losses by using the idea of average. The expected

losses R(aC), R(aN ), R(aA) are the HFEs as represented by Equations 4.6-4.8. Hence, when we use

the method of score functions then we may lose some information about expected losses so we need a
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more effective method to compare the expected losses of decision rules (C1−N1) expressed in Section

4.1. We employ the technique of degree of possibility ranking by assuming that the membership

degree of the element xk is stochastic. This method was initially introduced by Lahdelma and

Salminen [91], motivated by a stochastic multi-criteria acceptability analysis (SMAA) method.

Furthermore, the method was effectively applied by Zhu and Xu [92] into analytic hierarchy process-

hesitant group decision analysis and numerical preference relations. With the fast development

in the field of information technology, we may attain relevant technical support. To deal with

HFEs, we may utilize the stochastic technique to obtain a sequence of exact values of the expected

losses. By using Equations 4.6-4.8 and outcomes derived in the previous section, ultimately, we can

generate a set of expected losses from R(aC/xk) = τC , R(aN/xk) = τN and R(aA/xk) = τA i.e;

R(aC/xk) = τ1, R(aN/xk) = τ2, R(aA/xk) = τ3, where τ1 ∈ τC , τ2 ∈ τN and τ3 ∈ τA and

τ1 = ζ(aC/C)t1 + ζ(aC/C)t2, (4.12)

τ2 = ζ(aN/C)t3 + ζ(aN/C)t4, (4.13)

τ3 = ζ(aA/C)t5 + ζ(aA/C)t6. (4.14)

where t1 ∈ ϱI(xk, xq), t2 ∈ ϱcI(xk, xq), t3 ∈ ϱI(xk, xq), t4 ∈ ϱcI(xk, xq), t5 ∈ ϱI(xk, xq), and t6 ∈

ϱcI(xk, xq). Here, τ1, τ2 and τ3 are treated as numeric not as sets. When we consider the different

combination of the values τ1, τ2 and τ3, we can derive different decision rules.

For R(aC/x) = τ1, R(aN/x) = τ2, R(aA/x) = τ3, the decision laws can be re-stated as follows:

(C2) if (τ1 < τ2) ∨ (τ1 < τ3) =⇒ xk ∈ CO{xq}

(N2) if (τ2 < τ1) ∨ (τ2 < τ3) =⇒ xk ∈ NE{xq}

(A2) if (τ3 < τ1) ∨ (τ3 < τ2) =⇒ xk ∈ AL{xq}

By taking into account the new decision rules, for inclusion of an object xk in the allied, neutral

or conflict set of object xq, the extract results can be found based on these rules when the val-
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ues of expected losses are determined. We consider loss functions as real numbers and expected

losses as HFEs. By using Equations 4.12- 4.14. We can obtain different values of the expected

losses R(aC/x) = τ1, R(aN/x) = τ2, R(aA/x) = τ3. For any element xk, the number of maximum

simulation is

M(xk) = #(τC)×#(τN )×#(τA)

For each element xk, each simulation provides an extract result based on the decision laws

(C2 − N2). Through this process, we obtain different decisions rules based on the inclusion of

elements in conflict, neutral and allied sets. We consider that number of rules for conflict be

MC(xk), number of rules for neutral be MN (xk) and rules for alliance be MA(xk). Here we remove

the redundancy, we obtain with the values of expected losses having the same elements. After

calculating the values of M(xk),MC(xk),MN (xk) and MA(xk) with the use of stochastic simulation,

by exerting the enumerated results, we may acquire the proportions of the object xk classifying into

each decision rule.

Let PC(xk), PN (xk) and PA(xk) refer the proportion of xk to the conflict rule CO(xk), neutral

rule NE(xk) and alliance AL(xk) rule respectively then

PC(xk) =
MC(xk)

M(xk)
× 100% (4.15)

PN (xk) =
MN (xk)

M(xk)
× 100% (4.16)

PA(xk) =
MA(xk)

M(xk)
× 100% (4.17)

Hence, the final decision rules for inclusion of an object in CO(xk), NE(xk) and AL(xk) are

calculated as follows:

(C3) if (PC(xk)) ≥ (PN (xk)) and (PC(xk)) ≥ (PA(xk)) =⇒ xk ∈ CO{xq}

(N3) if (PN (xk)) ≥ (PC(xk)) and (PN (xk)) ≥ (PA(xk)) =⇒ xk ∈ NE{xq}
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(A3) if (PA(xk)) ≥ (PC(xk)) and (PA(xk)) ≥ (PN (xk)) =⇒ xk ∈ AL{xq}

The decision rules (C3−A3) are utilized the enumerated results of the stochastic process to formulate

the final criteria for the inclusion of objects in three regions. Consequently, the supreme proportion

of an object decides the inclusion of that object in a specific set.

Algorithm2: Algorithmic description to formulate CO(xk), NE(xk) and AL(xk).

Input: R(aC/x) = τC , R(aN/x) = τN , R(aA/x) = τA

Step 1. Compute the total number of simulation M(xk) based on the expected losses.

Step 2. Calculate MC(xk),MN (xk),MA(xk) by using the corresponding extract values for

expected losses.

Step 3. Formulate the extract results for the object xk by using the decision rules (C2−A2).

Step 4. By striving the enumerated results, acquire the proportions PC(xk), PN (xk) and PA(xk)

by using Equations 4.15-4.17.

Step 5. Classify xk into CO(xk), NE(xk) and AL(xk) by using the decision rules (C3−A3).

Step 6. Repeat the steps 1 to 5 for all the objects.

Output: CO(xk), NE(xk) and AL(xk).

4.2.3 Application of ranking method of possibility degree

Now we utilize the ranking method of possibility degree for conflict situation provided by Table 4.5,

which is mainly based on the algorithmic description of the ranking method of possibility degree.

Following the steps of Algorithm 2, if we first consider the object x2 for deciding its inclusion in

ally, neutral or conflict sets of object x1 then we obtain the results as follows:

M(x2) = 27,MAL(x2) = 24,MNE(x2) = 03 and MCO(x2) = 0

Hence, PAL(x2) = 88.88%, PNE(x2) = 11.11%, PCO(x2) = 0%

Based on the above results, the proportion of object x2 classifying in the conflict rule is greater

than the neutral and alliance rule. By employing the conditions provided by Equations 4.15-4.17,

we may include object x2 in AL(x1). By repeating the same steps for the rest of the objects, we

obtained the same results as shown in Table 4.11.
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4.3 A comparison with existing conflict study models

Pawlak’s conflict study model [34] uses three values +1, 0,−1 to rate the attitudes(positive, negative,

neutral) of agents towards an issue. The model failed to demonstrate the degree of three attitudes

of agents. In many practical situations, agents prefer to depict their attitudes with a combination

of positive and negative values. Most of the recent models are failed to manage such scenarios

as the involved agents have no freedom to partially agreed or disagreed and are restricted to take

some definite viewpoint. Therefore, to deal the hesitancy of partial agreement or disagreement,

a more flexible model is needed to resolve such conflict problems. Our proposed model proves

to be more realistic as the IS with uncertain attitudes of agents can be restructured by using an

auxiliary function that limits the agents’ opinion in [0, 1]. Then, the hesitancy of agents’ attitudes

can be dealt more sensibly by using the aggregated opinion function and associated loss functions.

In the conflict analysis model investigated by Lang et al. [58] based on the pythagorean IS, the

positive(negative) attitude of an agent towards an issue is presented by a pair of real numbers that

is certainly not sufficient to describe the vantage point of an agent towards some particular issue.

Later on, Li et al. [59] presented a conflict study model by employing a range of fuzzy numbers

denoted by Ã = (l,m, u) to depict the attitude of agents and described the total attitude △s of

agents about issues. Though the model claims that it uses the three most indicative fuzzy numbers

to illustrate the agent’s attitude but in fact, it is not enough to deal with an IS in which agents’

opinions are based on both positive and negative values. By analysing the aforementioned aspects,

this study established a novel three-way conflict study model that allows decision makers to provide

their opinions independently using the multiple values in range from −1 to +1 instead of providing

their opinion with strict values. This setting nicely models the hesitancy of agents’ attitude. In real

world conflict problems, all issues have not same worth. Consequently, we redefine the difference

measure of opinion associated to any pair of objects by employing aggregated opinion operator.

Most recently, Yi et al. [61] proposed a three-way conflict study model founded on HFIS. The

model used the preliminary idea of auxiliary function and a threshold pair to analyze the conflict

and showed the coalitions by using graph theory. Our proposed model works differently as it mainly

relies on aggregated opinion functions and the associated loss functions, calculation of threshold pair

is not a task here. Secondly, while we deal with huge data sets it is a not convenient to investigate
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the conflict, model the coalition based on binary relation, and convert these coalitions to maximal

sub-graphs. On the other hand, our proposed model yields more realistic and less time-consuming.

Particularly, when ISs are based on more complex agents’ attitude, our proposed model derives

more accurate results and validate the efficiency of the proposed approach in dealing with complex

real-life conflict problems.
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Chapter 5

T-spherical fuzzy Frank aggregation

operators and their application to

decision making with unknown weight

information

This chapter presents virtual MCDM and TWD techniques to deal with decision analysis with

provided information based on T-spherical fuzzy data with all fully unknown weights of criteria. For

this, we introduced some generalized operational laws, namely Frank operational laws for T-SFNs

using Frank t-norm and t-conorm. Moreover, by employing these developed operations, a range

of T-spherical fuzzy aggregation operators is provided to aggregate T-spherical fuzzy information

effectively. Considering the significance of ordered position and argument itself, the notions of T-

SFFHA and T-SFFHG are provided. Some advisable properties and particular cases related to

these operators are also investigated comprehensibly. Afterward, we examined the entropy measure

and its potential worth to fulfill the desirable properties. We used it to determine criteria weight

in the proposed aggregation-based MCDM and TWD methods. Later, we examined the impact of

the parameters τ and t in the decision procedure and reported the stability stage of sorting results.

To enhance the superiority and viability of the suggested approach two descriptive examples are

provided. The research work presented in this chapter is published in [93]
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5.1 Frank operations of T-spherical fuzzy sets

This section is dedicated to presenting Frank operations of T-SFNs and studying some interesting

properties of these operations.

Definition 5.1.1 Let S1 = (σ1, ϑ1, ϱ1) and S2 = (σ2, ϑ2, ϱ2) be two T-SFNs and η > 0, then

i. S1 ⊕ S2 =


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2−1

)
τ−1

)


;

ii. S1 ⊗ S2 =
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;

iii. Sη
1 =
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;
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iv. ηS1 =



t

√√√√1− logτ
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;

v. Sc
1 = (ϱ1, ϑ1, σ1).

By using the operational laws given in Definition 5.1.1, we examine the subsequent results.

Theorem 5.1.1 Let Sℓ = (σℓ, ϑℓ, ϱℓ) (ℓ = 1, 2) and S = (σ, ϑ, ϱ) be three T-SFNs, and η, η1, η2 > 0,

then

i. S1 ⊕ S2 = S2 ⊕ S1;

ii. S1 ⊗ S2 = S2 ⊗ S1;

iii. η (S1 ⊕ S2) = ηS1 ⊕ ηS2;

iv. (S1 ⊗ S2)
η = Sη

1 ⊗ Sη
2 ;

v. η1S ⊕ η2S = (η1 + η2)S;

vi. Sη1 ⊗ Sη2 = Sη1+η2;

vii. (η1η2)S = η1 (η2S).

Proof: We prove only parts 1, 3, 5 and 7 and similarly for others.

1. It is obvious.
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3.

S1 ⊕ S2 =
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by the Frank operational law (4) in Definition 5.1.1, it follows that

η (S1 ⊕ S2) =
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,
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=


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. (5.1)

Now
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=


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. (5.2)

From Equation (5.1) and (5.2), we get

η (S1 ⊕ S2) = ηS1 ⊕ ηS2.
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5.

η1S ⊕ η2S =


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And

(η1 + η2)S =


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Thus, from Equations (5.3) and (5.4), we get the required result.

7. Since
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From this, we can further write η1 (η2S)
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5.2 Aggregation operators about T-SFNs based Frank

operations

By employing the proposed Frank operation rules, in what follows, we propose a series of weighted

aggregation operators for T-SFNs.

5.2.1 T-spherical fuzzy Frank averaging operators

Definition 5.2.1 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the T-spherical

fuzzy Frank weighted averaging operator (T-SFFWA) is:

T − SFFWA (S1,S2, ...,Sn) = ⊕n
j=1 (ϖjSj) , (5.5)

where ϖ = (ϖ1, ϖ2, ..., ϖn)
T is the weight vector of Sj (j = 1, 2, .., n) such that ϖj > 0 and∑n

j=1ϖj = 1. Especially, if ϖ =
(
1
n ,

1
n , ...,

1
n

)T , then the T-SFFWA operator reduces to the T-

spherical fuzzy Frank averaging (T-SFFA) operator of dimension n, which is given as follows:

T − SFFA (S1,S2, ...,Sn) =
1

n
⊕n

j=1 (Sj) . (5.6)

Theorem 5.2.1 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the result obtained

by using the T-SFFWA operator is still a T-SFN, and
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=
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 . (5.7)

Proof: We use mathematical induction on n to verify it.

For n = 2, T − SFFWA (S1,S2) = ϖ1S1 ⊕ϖ2S2
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

t

√√√√√√√√1− logτ

1 +

1+

(
τ
1−σt

1−1

)ϖ1

(τ−1)ϖ1−1 −1

1+

(
τ
1−σt

2−1

)ϖ2

(τ−1)ϖ2−1 −1


τ−1

,

t

√√√√√√√√logτ

1 +

1+

(
τ
ϑt
1−1

)ϖ1

(τ−1)ϖ1−1 −1

1+

(
τ
ϑt
2−1

)ϖ2

(τ−1)ϖ2−1 −1


τ−1

,

t

√√√√√√√√logτ

1 +

1+

(
τ
ϱt1−1

)ϖ1

(τ−1)ϖ1−1 −1

1+

(
τ
ϱt2−1

)ϖ2

(τ−1)ϖ2−1 −1


τ−1




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=



t

√√√√√√√√1− logτ

1 +

1+

(
τ
1−σt

1−1

)ϖ1

(τ−1)ϖ1−1 −1

1+

(
τ
1−σt

2−1

)ϖ2

(τ−1)ϖ2−1 −1


τ−1

,

t

√√√√√√√√logτ

1 +

1+

(
τ
ϑt
1−1

)ϖ1

(τ−1)ϖ1−1 −1

1+

(
τ
ϑt
2−1

)ϖ2

(τ−1)ϖ2−1 −1


τ−1

,

t

√√√√√√√√logτ

1 +

1+

(
τ
ϱt1−1

)ϖ1

(τ−1)ϖ1−1 −1

1+

(
τ
ϱt2−1

)ϖ2

(τ−1)ϖ2−1 −1


τ−1





=



t

√
1− logτ

(
1 +

((
τ1−σt

1 − 1
)ϖ1

)((
τ1−σt

2 − 1
)ϖ2

))
,

t

√
logτ

(
1 +

((
τϑ

t
1 − 1

)ϖ1
)((

τϑ
t
2 − 1

)ϖ2
))

,

t

√
logτ

(
1 +

((
τϱ

t
1 − 1

)ϖ1
)((

τϱ
t
2 − 1

)ϖ2
))


.

Thus, result holds for n = 2.

If Equation (5.7) satisfies for n = k, then for n = k + 1, we get

T − SFFWA (S1,S2, ...,Sk+1) = T − SFFWA (S1,S2, ...,Sk)⊕ϖk+1Sk+1

=



t

√
1− logτ

(
1 + Πk

j=1

(
τ1−σt

j − 1
)ϖj

)
,

t

√
logτ

(
1 + Πk

j=1

(
τϑ

t
j − 1

)ϖj
)
,

t

√
logτ

(
1 + Πk

j=1

(
τϱ

t
j − 1

)ϖj
)


⊕



t

√√√√√1− logτ

1 +

(
τ
1−σt

(k+1)−1

)ϖ(k+1)

(τ−1)
ϖ(k+1)−1

,

t

√√√√√logτ

1 +

(
τ
ϑt
(k+1)−1

)ϖ(k+1)

(τ−1)
ϖ(k+1)−1

,

t

√√√√√logτ

1 +

(
τ
ϱt
(k+1)−1

)ϖ(k+1)

(τ−1)
ϖ(k+1)−1




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=



t

√√√√√√√√√1− logτ

1 +
Πk

j=1

(
τ
1−σt

j−1

)ϖj

τ
1−σt

(k+1)−1

ϖ(k+1)

(τ−1)
ϖ(k+1)−1

τ−1

,

t

√√√√√√√√√logτ

1 +
Πk

j=1

(
τ
ϑt
j−1

)ϖj

τ
ϑt
(k+1)−1

ϖ(k+1)

(τ−1)
ϖ(k+1)−1

τ−1

,

t

√√√√√√√√√logτ

1 +
Πk

j=1

(
τ
ϱt
j−1

)ϖj

τ
ϱt
(k+1)−1

ϖ(k+1)

(τ−1)
ϖ(k+1)−1

τ−1





=



t

√√√√√1− logτ

1 +
Πk

j=1

(
τ
1−σt

j−1

)ϖj
(
τ
1−σt

(k+1)−1

)ϖ(k+1)

(τ−1)
∑k

j=1
ϖ(j)−1

(τ−1)(τ−1)
ϖ(k+1)−1

,

t

√√√√√logτ

1 +
Πk

j=1

(
τ
ϑt
j−1

)ϖj
(
τ
ϑt
(k+1)−1

)ϖ(k+1)

(τ−1)
∑k

j=1
ϖ(j)−1

(τ−1)(τ−1)
ϖ(k+1)−1

,

t

√√√√√logτ

1 +
Πk

j=1

(
τ
ϱt
j−1

)ϖj
(
τ
ϱt
(k+1)−1

)ϖ(k+1)

∑k
j=1(τ−1)

ϖ(j)−1
(τ−1)(τ−1)

ϖ(k+1)−1





=



t

√√√√√1− logτ

1 +
Πk

j=1

(
τ
1−σt

j−1

)ϖj
(
τ
1−σt

(k+1)−1

)ϖ(k+1)

(τ−1)
∑k+1

j=1
ϖ(j)−1

,

t

√√√√√logτ

1 +
Πk

j=1

(
τ
ϑt
j−1

)ϖj
(
τ
ϑt
(k+1)−1

)ϖ(k+1)

(τ−1)
∑k+1

j=1
ϖ(j)−1

,

t

√√√√√logτ

1 +
Πk

j=1

(
τ
ϱt
j−1

)ϖj
(
τ
ϱt
(k+1)−1

)ϖ(k+1)

∑k+1
j=1 (τ−1)

ϖ(j)−1




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=



t

√
1− logτ

(
1 + Πk

j=1

(
τ1−σt

j − 1
)ϖj

(
τ
1−σt

(k+1) − 1
)ϖ(k+1)

)
t

√
logτ

(
1 + Πk

j=1

(
τϑ

t
j − 1

)ϖj
(
τ
ϑt
(k+1) − 1

)ϖ(k+1)
)

t

√
logτ

(
1 + Πk

j=1

(
τϱ

t
j − 1

)ϖj
(
τ
ϱt
(k+1) − 1

)ϖ(k+1)
)


.

Thus, results are valid for n = k+1 and therefore, by the principle of mathematical induction,

result obtained in Equations (5.7) is valid for all positive integer n. 2

Example 5.2.2 Let S1 = (0.4, 0.3, 0.5) , S2 = (0.7, 0.3, 0.4) , S3 = (0.6, 0.7, 0.8) be three T-SFNs,

and ϖ = (0.4, 0.3, 0.3)T be the weight vector of Sj (j = 1, 2, 3). Suppose τ = 2, then by Definition

5.2.1 and Theorem 5.2.1, we can get (t = 4):

T − SFFWA (S1,S2,S3) =



4

√
1− log2

(
1 +

∏3
j=1

(
21−σ4

j − 1
)ϖj

)
,

4

√
log2

(
1 +

∏3
j=1

(
2ϑ

4
j − 1

)ϖj
)
,

4

√
log2

(
1 +

∏3
j=1

(
2ϱ

4
j − 1

)ϖj
)



=



4

√
1− log2

(
1 +

(
21−.44 − 1

).4 (
21−.74 − 1

).3 (
21−.64 − 1

).3)
,

4

√
log2

(
1 +

(
2.34 − 1

).4 (
2.34 − 1

).3 (
2.74 − 1

).3)
,

4

√
log2

(
1 +

(
2.54 − 1

).4 (
2.44 − 1

).3 (
2.84 − 1

).3)


= (0.5940, 0.3887, 0.5418)

Theorem 5.2.3 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As τ −→ 1,

the T-SFFWA operator proceeds towards the following limit

lim
τ−→1

T − SFFWA (S1,S2, ...,Sn)

=

(
t

√
1−Πn

j=1

(
1− σt

j

)ϖj

, t

√
Πn

j=1

(
ϑt
j

)ϖj

, t

√
Πn

j=1

(
ϱtj

)ϖj

)
. (5.8)

Proof: As τ −→ 1, then
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(
Πn

j=1

(
τ1−σt

j − 1
)ϖj

,Πn
j=1

(
τϑ

t
j − 1

)ϖj

,Πn
j=1

(
τϱ

t
j − 1

)ϖj

)
−→ (0, 0, 0)

by log property and the rule of infinitesimal changes, we have

logτ

(
1 + Πn

j=1

(
τ1−σt

j − 1
)ϖj

)
=

ln

(
1+Πn

j=1

(
τ
1−σt

j−1

)ϖj
)

ln τ −→
Πn

j=1

(
τ
1−σt

j−1

)ϖj

ln τ

logτ

(
1 + Πn

j=1

(
τϑ

t
j − 1

)ϖj
)
=

ln

(
1+Πn

j=1

(
τ
ϑt
j−1

)ϖj
)

ln τ −→
Πn

j=1

(
τ
ϑt
j−1

)ϖj

ln τ

logτ

(
1 + Πn

j=1

(
τϱ

t
j − 1

)ϖj
)
=

ln

(
1+Πn

j=1

(
τ
ϱtj−1

)ϖj
)

ln τ −→
Πn

j=1

(
τ
ϱtj−1

)ϖj

ln τ

By using Taylor’s expansion formula, we have

τ1−σt
j = 1 +

(
1− σt

j

)
ln τ +

((1−σt
j) ln τ)

2

2! + ...

τϑ
t
j = 1 +

(
ϑt
j

)
ln τ +

((ϑt
j) ln τ)

2

2! + ...

τϱ
t
j = 1 +

(
ϱtj

)
ln τ +

((ϱtj) ln τ)
2

2! + ...

Also, since τ > 1, then

ln τ > 0, τ1−σt
j = 1 +

(
1− σt

j

)
ln τ +O (ln τ) , τϑ

t
j = 1 +

(
ϑt
j

)
ln τ +O (ln τ) ,

τϱ
t
j = 1 +

(
ϱtj

)
ln τ +O (ln τ) .

It follows that(
τ1−σt

j − 1
)ϖj

−→
((

1− σt
j

)
ln τ
)ϖj

Πn
j=1

(
τ1−σt

j − 1
)ϖj

−→ Πn
j=1

(
1− σt

j

)
Πn

j=1 (ln τ)
ϖj

Πn
j=1

(
τ1−σt

j − 1
)ϖj

−→ Πn
j=1

(
1− σt

j

)
ln (τ)

∑n
j=1 ϖj

Πn
j=1

(
τ
1−σt

j−1

)ϖj

ln τ −→ Πn
j=1

(
1− σt

j

)
.

Analogously, we can get

Πn
j=1

(
τ
ϑt
j−1

)ϖj

ln τ −→ Πn
j=1

(
ϑt
j

)
and

Πn
j=1

(
τ
ϱtj−1

)ϖj

ln τ −→ Πn
j=1

(
ϱtj

)
Then, we have
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limτ−→1 T − SFFWA (S1,S2, ...,Sn)

= limτ−→1


t

√
1− logτ

(
1 + Πn

j=1

(
τ1−σt

j − 1
)ϖj

)
, t

√
logτ

(
1 + Πn

j=1

(
τϑ

t
j − 1

)ϖj
)
,

t

√
logτ

(
1 + Πn

j=1

(
τϱ

t
j − 1

)ϖj
)



= limτ−→1


t

√
1−

ln

(
1+Πn

j=1

(
τ
1−σt

j−1

)ϖj
)

ln τ ,
t

√
ln

(
1+Πn

j=1

(
τ
ϑt
j−1

)ϖj
)

ln τ ,

t

√
ln

(
1+Πn

j=1

(
τ
ϱt
j−1

)ϖj
)

ln τ



= limτ−→1


t

√
1−

Πn
j=1

(
τ
1−σt

j−1

)ϖj

ln τ ,
t

√
Πn

j=1

(
τ
ϑt
j−1

)ϖj

ln τ ,

t

√
Πn

j=1

(
τ
ϱt
j−1

)ϖj

ln τ



=


t

√
1−Πn

j=1

(
1− σt

j

)ϖj

, t

√
Πn

j=1

(
ϑt
j

)ϖj

,

t

√
Πn

j=1

(
ϱtj

)ϖj

 .

which completes the proof. 2

Theorem 5.2.4 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As τ −→

∞, the T-SFFWA operator proceeds towards the following limit

lim
τ−→∞

T − SFFWA (S1,S2, ...,Sn) =


t

√(∑n
j=1ϖj

(
σt
j

))
, t

√
1−

(∑n
j=1ϖj

(
ϑt
j

))
,

t

√
1−

(∑n
j=1ϖj

(
ϱtj

))
 . (5.9)

Proof: According to Theorem 5.2.1, we have

limτ−→∞ T − SFFWA (S1,S2, ...,Sn)

=


limτ−→∞

t

√
1− logτ

(
1 + Πn

j=1

(
τ1−σt

j − 1
)ϖj

)
,

limτ−→∞
t

√
logτ

(
1 + Πn

j=1

(
τϑ

t
j − 1

)ϖj
)
,

limτ−→∞
t

√
logτ

(
1 + Πn

j=1

(
τϱ

t
j − 1

)ϖj
)


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Using limit rules, logarithmic transform and L’Hospital’s rule, it follows that,

=



t

√
1− limτ−→∞

ln

(
1+Πn

j=1

(
τ
1−σt

j−1

)ϖj
)

ln τ ,

t

√
limτ−→∞

ln

(
1+Πn

j=1

(
τ
ϑt
j−1

)ϖj
)

ln τ ,

t

√
limτ−→∞

ln

(
1+Πn

j=1

(
τ
ϱt
j−1

)ϖj
)

ln τ



=



t

√√√√√√
1− limτ−→∞

Πn
j=1

(
τ
1−σt

j−1

)ϖj

1+Πn
j=1

(
τ
1−σt

j−1

)ϖj

(∑n
j=1 ϖj(1−σt

j)
τ
−σt

j

τ
1−σt

j−1

)
1
τ

,

t

√√√√√√
1− limτ−→∞

Πn
j=1

(
τ
ϑt
j−1

)ϖj

1+Πn
j=1

(
τ
ϑt
j−1

)ϖj

(∑n
j=1 ϖj(ϑt

j)
τ
ϑt
j
−1

τ
ϑt
j−1

)
1
τ

,

t

√√√√√√
1− limτ−→∞

Πn
j=1

(
τ
ϱt
j−1

)ϖj

1+Πn
j=1

(
τ
ϱt
j−1

)ϖj

(∑n
j=1 ϖj(ϱtj)

τ
ϱt
j
−1

τ
ϱt
j−1

)
1
τ

,



=



t

√√√√√1− limτ−→∞
Πn

j=1

(
τ
1−σt

j−1

)ϖj

1+Πn
j=1

(
τ
1−σt

j−1

)ϖj

(∑n
j=1ϖj

(
1− σt

j

)
τ
1−σt

j

τ
1−σt

j−1

)
,

t

√√√√√1− limτ−→∞
Πn

j=1

(
τ
ϑt
j−1

)ϖj

1+Πn
j=1

(
τ
ϑt
j−1

)ϖj

(∑n
j=1ϖj

(
ϑt
j

)
τ
ϑt
j

τ
ϑt
j−1

)
,

t

√√√√√1− limτ−→∞
Πn

j=1

(
τ
ϱt
j−1

)ϖj

1+Πn
j=1

(
τ
ϱt
j−1

)ϖj

(∑n
j=1ϖj

(
ϱtj

)
τ
ϱt
j

τ
ϱt
j−1

)


=

(
t

√
1−

(∑n
j=1ϖj

(
1− σt

j

))
, t

√
1−

(∑n
j=1ϖj

(
ϑt
j

))
, t

√
1−

(∑n
j=1ϖj

(
ϱtj

)) )

=

(
t

√(∑n
j=1ϖj

(
σt
j

))
, t

√
1−

(∑n
j=1ϖj

(
ϑt
j

))
, t

√
1−

(∑n
j=1ϖj

(
ϱtj

)) )

which completes the proof of Theorem 5.2.4. 2
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Theorem 5.2.5 (Idempotency) Let Tj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, if Sj =

S0 ∀ j, then

T − SFFWA (S1,S2, ...,Sn) = S0. (5.10)

Proof: Since for all j, Sj = S0 = (σ0, ϑ0, ϱ0), and
∑n

j=1ϖj = 1 so by Theorem 5.2.1, we have

T − SFFWA (S1,S2, ...,Sn) =



t

√
1− logτ

(
1 + Πn

j=1

(
τ1−σt

0 − 1
)ϖj

)
,

t

√
logτ

(
1 + Πn

j=1

(
τϑ

t
0 − 1

)ϖj
)
,

t

√
logτ

(
1 + Πn

j=1

(
τϱ

t
0 − 1

)ϖj
)


=

(
t

√
1− logτ τ

1−σt
0 , t

√
logτ τ

ϑt
0 , t

√
logτ τ

ϱt0

)
= (σ0, ϑ0, ϱ0) = S0.

Thus, proof is completed. 2

Theorem 5.2.6 (Monotonicity) Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) and Ṡj =
(
σ̇j , ϑ̇j , ϱ̇j

)
(j = 1, 2, ..., n) be two families of T-SFNs such that σj ≥ σ̇j , ϑj ≤ ϑ̇j and ϱj ≤ ϱ̇j ∀ j, then

T − SFFWA (S1,S2, ...,Sn) ≥ T − SFFWA
(
Ṡ1, Ṡ2, ..., Ṡn

)
. (5.11)

Proof: According to Definition 2.5.3, when σj ≥ σ̇j , ϑj ≤ ϑ̇j and ϱj ≤ ϱ̇j ∀ j, then

t

√
1− logτ

(
1 + Πn

j=1

(
τ1−σt

j − 1
)ϖj

)
≥ t

√
1− logτ

(
1 + Πn

j=1

(
τ1−σ̇t

j − 1
)ϖj

)
,

t

√
logτ

(
1 + Πn

j=1

(
τϑ

t
j − 1

)ϖj
)
≤ t

√
logτ

(
1 + Πn

j=1

(
τ ϑ̇

t
j − 1

)ϖj
)

and

t

√
logτ

(
1 + Πn

j=1

(
τϱ

t
j − 1

)ϖj
)
≤ t

√
logτ

(
1 + Πn

j=1

(
τ ϱ̇

t
j − 1

)ϖj
)

Thus, S (T − SFFWA (S1,S2, ...,Sn)) ≥ S
(
T − SFFWA

(
Ṡ1, Ṡ2, ..., Ṡn

))
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Hence, T − SFFWA (S1,S2, ...,Sn) ≥ T − SFFWA
(
Ṡ1, Ṡ2, ..., Ṡn

)
. 2

Theorem 5.2.7 (Boundedness) Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and let

S− = (min1≤j≤n σj , max1≤j≤n ϑj ,max1≤j≤n ϱj), S+ = (max1≤j≤n σj ,min1≤j≤n ϑj ,min1≤j≤n ϱj),

then

S− ≤ T − SFFWA (S1,S2, ...,Sn) ≤ S+. (5.12)

Proof: Since for all j, min1≤j≤n σj ≤ σj ≤ max1≤j≤n σj , min1≤j≤n ϑj ≤ ϑj ≤ max1≤j≤n ϑj and

min1≤j≤n ϱj ≤ ϱj ≤ max1≤j≤n ϱj , thereby on the basis of idempotency and monotonicity, we get

S− ≤ T − SFFWA (S1,S2, ...,Sn) ≤ S+. 2

Theorem 5.2.8 (Shift-invariance) Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs and

Ṡ =
(
σ̇, ϑ̇, ϱ̇

)
be any other T-SFNs, then

T − SFFWA
(
S1 ⊕ Ṡ,S2 ⊕ Ṡ, ...,Sn ⊕ Ṡ

)
= T − SFFWA (S1,S2, ...,Sn)⊕ Ṡ. (5.13)

Theorem 5.2.9 (Homogeneity) Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs and

η > 0 be any real number, then

T − SFFWA (ηS1, ηS2, ..., ηSn) = ηT − SFFWA (S1,S2, ...,Sn) . (5.14)

By using the proposed Frank operational laws of T-SFNs, the above two theorems can be easily

verified. Due to the space limitations, it is omitted here.

Definition 5.2.2 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the T-spherical

fuzzy Frank ordered weighted averaging (T-SFFOWA) operator is:

T − SFFOWA (S1,S2, ...,Sn) = ⊕n
j=1

(
wjSδ(j)

)
, (5.15)

where w = (w1, w2, ..., wn)
T is the position weights of Sj (j = 1, 2, .., n) such that wj > 0 and∑n

j=1wj = 1. (δ(1), δ(2), ..., δ(n)) is a permutation of (1, 2, 3, ..., n) such that Sδ(j−1) ≥ Sδ(j) for
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j = 2, 3.., n.

Theorem 5.2.10 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the result ob-

tained by using the T-SFFOWA operator is still a T-SFN, and

T − SFFOWA (S1,S2, ...,Sn) =



t

√
1− logτ

(
1 + Πn

j=1

(
τ
1−σt

δ(j) − 1
)wj
)
,

t

√
logτ

(
1 + Πn

j=1

(
τ
ϑt
δ(j) − 1

)wj
)
,

t

√
logτ

(
1 + Πn

j=1

(
τ
ϱt
δ(j) − 1

)wj
)


. (5.16)

Proof: This result has similar proof to that of Theorem 5.2.1, and so is omitted here. 2

Example 5.2.11 Let S1 = (0.3, 0.3, 0.5) , S2 = (0.7, 0.4, 0.5) , S3 = (0.6, 0.7, 0.8) be three T-SFNs,

then according to Definition 2.5.3, we can get (t=4):

S (S1) = −0.0769, S (S2) = 0.1775, S (S3) = −0.5482

Since S (S2) > S (S1) > S (S3), we have

Sδ(1) = (0.7, 0.4, 0.5) ,Sδ(2) = (0.3, 0.3, 0.5) ,Sδ(3) =, (0.6, 0.7, 0.8) and w = (0.3, 0.4, 0.3)T is

the weight vector associated with the T-SFFOWA operator. Suppose τ = 2, then by Definition 5.2.2

and Theorem 5.2.10, we can get:

T − SFFOWA
(
Sδ(1),Sδ(2),Sδ(3)

)
=



4

√
1− log2

(
1 +

∏3
j=1

(
2
1−σ4

δ(j) − 1
)wj
)
,

4

√
log2

(
1 +

∏3
j=1

(
2
ϑ4
δ(j) − 1

)wj
)
,

4

√
log2

(
1 +

∏3
j=1

(
2
ϱ4
δ(j) − 1

)wj
)



=



4

√
1− log2

(
1 +

(
21−.74 − 1

).3 (
21−.34 − 1

).4 (
21−.64 − 1

).3)
,

4

√
log2

(
1 +

(
2.44 − 1

).3 (
2.34 − 1

).4 (
2.74 − 1

).3)
,

4

√
log2

(
1 +

(
2.54 − 1

).3 (
2.54 − 1

).4 (
2.84 − 1

).3)


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= (0.5861, 0.4236, 0.5786) .

Theorem 5.2.12 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ 1, the T-SFFOWA operator proceeds towards the following limit

lim
τ−→1

T − SFFOWA (S1,S2, ...,Sn) =


t

√
1−Πn

j=1

(
1− σt

δ(j)

)wj

, t

√
Πn

j=1

(
ϑt
δ(j)

)wj

,

t

√
Πn

j=1

(
ϱtδ(j)

)wj

 . (5.17)

Theorem 5.2.13 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ ∞, the T-SFFOWA proceeds towards the following limit

lim
τ−→∞

T − SFFOWA (S1,S2, ...,Sn) =


t

√(∑n
j=1wj

(
σt
δ(j)

))
, t

√
1−

(∑n
j=1wj

(
ϑt
δ(j)

))
,

t

√
1−

(∑n
j=1wj

(
ϱtδ(j)

))
 .

(5.18)

To be same as T-SFFWA operator, the T-SFFOWA operator also follows the boundedness, idem-

potency and monotonicity, shift-invariance, homogeneity properties. Besides the aforementioned

properties, the T-SFFOWA operator has some other useful results, as follows:

Theorem 5.2.14 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then we have the

following:

i). If w = (1, 0, ..., 0)T then T − SFFOWA (S1,S2, ...,Sn) = max {S1,S2, ...,Sn}.

ii). If w = (0, 0, ..., 1)T then T − SFFOWA (S1,S2, ...,Sn) = min {S1,S2, ...,Sn}.

iii). If wj = 1 and ϖi = 0 (i ̸= j) then T − SFFOWA (S1,S2, ...,Sn) = Sδ(j) where Sδ(j) is

the jth largest of Sj , (j = 1, 2, ..., n).

Based on the definition of T-SFFWA and T-SFFOWA operators, we can see that the T-SFFWA

operator can weights only the SFNs while T-SFFOWA operator weights only the ordered position

of SFNs. In real-life practical scenarios, we should take under consideration the both aspects at the

same time. Consequently, to remove this flaw, we define the hybrid averaging operator [95] based
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on Frank t-norm and t-conorm, which weight both the given T-SFNs and their ordered positions.

Definition 5.2.3 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the T-spherical

fuzzy Frank hybrid averaging (T-SFFHA) operator is:

T − SFFHA (S1,S2, ...,Sn) = ⊕n
j=1

(
wjŜδ(j)

)
, (5.19)

where w = (w1, w2, ..., wn)
T is the weight vector associated with T-SFFHA such that wj > 0 and∑n

j=1wj = 1, ϖ = (ϖ1, ϖ2, ..., ϖn)
T is the weight vector of Sj (j = 1, 2, .., n) such that ϖj > 0 and∑n

j=1ϖj = 1 . Ŝδ(j) is the jth largest of the weighted T-SFNs Ŝj

(
Ŝj = (nϖj)Sj , j = 1, 2, .., n

)
and

n is the balancing coefficient.

Theorem 5.2.15 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the result ob-

tained by using the T-SFFHA operator is still a T-SFN, and

T − SFFHA (S1,S2, ...,Sn) =


t

√
1− logτ

(
1 + Πn

j=1

(
τ
1−σ̂t

δ(j) − 1
)wj
)
, t

√
logτ

(
1 + Πn

j=1

(
τ
ϑ̂t
δ(j) − 1

)wj
)
,

t

√
logτ

(
1 + Πn

j=1

(
τ
ϱ̂t
δ(j) − 1

)wj
)

 ,

(5.20)

Proof: The proof of this result is same as of Theorem 5.2.1, and so is omitted here. 2

Example 5.2.16 Let S1 = (0.4, 0.5, 0.2) , S2 = (0.6, 0.7, 0.8) S3 = (0.3, 0.6, 0.5) , be three T-SFNs

(t=4), and ϖ = (0.4, 0.4, 0.2)T is the weight vector of Sj (j = 1, 2, 3). Suppose τ = 2, then according

to Definition 5.1.1, we can get the weighted T-SFNs:

Ŝ1 = 3× 0.4× S1 =


4

√
1− log2

(
1 +

(21−0.44−1)
3×0.4

(2−1)3×0.4−1

)
, 4

√
log2

(
1 +

(20.54−1)
3×0.4

(2−1)3×0.4−1

)
,

4

√
log2

(
1 +

(20.24−1)
3×0.4

(2−1)3×0.4−1

)


= (0.4185, 0.4289, 0.1423) ;
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Ŝ2 = 3× 0.4× S2 =


4

√
1− log2

(
1 +

(21−0.64−1)
3×0.4

(2−1)3×0.4−1

)
, 4

√
log2

(
1 +

(20.74−1)
3×0.4

(2−1)3×0.4−1

)
,

4

√
log2

(
1 +

(20.84−1)
3×0.4

(2−1)3×0.4−1

)


= (0.6264, 0.6464, 0.7617)

Ŝ3 = 3× 0.2× S3 =


4

√
1− log2

(
1 +

(21−0.34−1)
3×0.2

(2−1)3×0.4−1

)
, 4

√
log2

(
1 +

(20.64−1)
3×0.2

(2−1)3×0.4−1

)
,

4

√
log2

(
1 +

(20.54−1)
3×0.2

(2−1)3×0.4−1

)


= (0.2641, 0.7478, 0.6743) .

According to Definitions 2.5.3, we can get the score of Ŝj (j = 1, 2, 3) :

S
(
Ŝ1

)
= −0.0044, S

(
Ŝ2

)
= −0.3868, S

(
Ŝ3

)
= −0.5745.

Since S
(
Ŝ1

)
> S

(
Ŝ2

)
> S

(
Ŝ3

)
, we have

Ŝδ(1) = (0.4185, 0.4289, 0.1423), Ŝδ(2) = (0.6264, 0.6464, 0.7617), Ŝδ(3) = (0.2641, 0.7478, 0.6743) .

Suppose w = (0.3, 0.4, 0.3)T is the weight vector associated with the T-SFFHA operator. Then by

Definition 5.2.3 and Theorem 5.2.15, we can get:

T − SFFHA
(
Ŝδ(1), Ŝδ(2), Ŝδ(3)

)

=


4

√
1− log2

(
1 +

∏3
j=1

(
2
1−σ̂4

δ(j) − 1
)wj
)
, 4

√
log2

(
1 +

∏3
j=1

(
2
ϑ̂4
δ(j) − 1

)wj
)
,

4

√
log2

(
1 +

∏3
j=1

(
2
ϱ̂4
δ(j) − 1

)wj
)



=



4

√
1− log2

(
1 +

(
21−0.41854 − 1

).3 (
21−0.62644 − 1

).4 (
21−0.26414 − 1

).3)
,

4

√
log2

(
1 +

(
20.42894 − 1

).3 (
20.64644 − 1

).4 (
20.74784 − 1

).3)
,

4

√
log2

(
1 +

(
20.14234 − 1

).3 (
20.76174 − 1

).4 (
20.67434 − 1

).3)


= (0.5216, 0.5995, 0.4501) .
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Theorem 5.2.17 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ 1, the T-SFFHA operator proceeds towards the following limit

lim
τ−→1

T − SFFHA (S1,S2, ...,Sn) =


t

√
1−Πn

j=1

(
1− σ̂t

δ(j)

)wj

, t

√
Πn

j=1

(
ϑ̂t
δ(j)

)wj

,

t

√
Πn

j=1

(
ϱ̂tδ(j)

)wj

 . (5.21)

Theorem 5.2.18 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ ∞, the T-SFFHA operator approaches the following limit

lim
τ−→∞

T − SFFHA (S1,S2, ...,Sn) =


t

√(∑n
j=1wj

(
σ̂t
δ(j)

))
, t

√
1−

(∑n
j=1wj

(
ϑ̂t
δ(j)

))
,

t

√
1−

(∑n
j=1wj

(
ϱ̂tδ(j)

))
 .

(5.22)

To be similar as T-SFFWA operator, the T-SFFHA operator also follows the boundedness, idem-

potency and monotonicity, shift-invariance, homogeneity properties. Besides the aforementioned

properties, the T-SFFHA operator has the following special cases.

Corollary 5.2.19 T-SFFWA operator is a special case of the T-SFFHA operator.

Proof: Let w =
(
1
n ,

1
n , ...,

1
n

)T
, then

T − SFFHA (S1,S2, ...,Sn) = w1Ŝδ(1) ⊕ w2Ŝδ(2) ⊕ ...⊕ wnŜδ(n)

= 1
n

(
Ŝδ(1) ⊕ Ŝδ(2) ⊕ ...⊕ Ŝδ(n)

)
= ϖ1S1 ⊕ϖ2S2 ⊕ ...⊕ϖnSn = T − SFFWA (S1,S2, ...,Sn) .

2

Corollary 5.2.20 T-SFFOWA operator is a special case of the T-SFFHA operator.
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Proof: Let ϖ =
(
1
n ,

1
n , ...,

1
n

)T
, then

T − SFFHA (S1,S2, ...,Sn) = w1Ŝδ(1) ⊕ w2Ŝδ(2) ⊕ ...⊕ wnŜδ(n)

= w1Sδ(1) ⊕ w2Sδ(2) ⊕ ...⊕ wnSδ(n) = T − SFFOWA (S1,S2, ...,Sn) .

2

5.2.2 T-spherical fuzzy Frank geometric operators

This section is devoted to providing a series of T-spherical fuzzy Frank geometric aggregation op-

erators founded on proposed Frank operations. In geometric aggregation operators, we will further

discuss the T-SFFWG, T-SFFOWG and T-SFFHWG and also the basic definitions, remarks, and

results, corollary for these operators which are based on the Frank t-norm and t-conorm.

Definition 5.2.4 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the T-spherical

fuzzy Frank weighted geometric operator (T-SFFWG) is:

T − SFFWG (S1,S2, ...,Sn) = ⊗n
j=1 (Sj)

ϖj , (5.23)

where ϖ = (ϖ1, ϖ2, ..., ϖn)
T is the weight vector of Sj (j = 1, 2, .., n) such that ϖj > 0 and∑n

j=1ϖj = 1. Especially, if ϖ =
(
1
n ,

1
n , ...,

1
n

)T , then the T-SFFWG operator reduces to the T-

spherical fuzzy Frank geometric (T-SFFG) operator of dimension n, which is given as follows:

T − SFFA (S1,S2, ...,Sn) = ⊗n
j=1 (Sj)

1
n . (5.24)

Theorem 5.2.21 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the result ob-

tained by usingT-SFFWG operator is still a T-SFN, and
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T − SFFWG (S1,S2, ...,Sn) =



t

√
logτ

(
1 + Πn

j=1

(
τσ

t
j − 1

)ϖj
)
,

t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϑt

j − 1
)ϖj

)
,

t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϱtj − 1

)ϖj
)


. (5.25)

Proof: We prove it by mathematical induction on n.

For n = 2, we have

T − SFFWG (S1,S2) = Sϖ1
1 ⊗ Sϖ2

2

=



t

√√√√√√√√√√√√√√√√
logτ


1 +
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1−

1−logτ
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(
τ
σt
1−1

)ϖ1

(τ−1)ϖ1−1



−1



τ

1−

1−logτ

1+

(
τ
σt
2−1

)ϖ2

(τ−1)ϖ2−1



−1


τ−1


,

t

√√√√√√√√√√√√√√√√
1− logτ


1 +

τ

1−

1−logτ

1+

(
τ
1−ϑt

1−1

)ϖ1

(τ−1)ϖ1−1



−1



τ

1−

1−logτ

1+
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τ
1−ϑt

2−1

)ϖ2

(τ−1)ϖ2−1



−1


τ−1


,

t

√√√√√√√√√√√√√√√√
1− logτ


1 +

τ

1−

1−logτ

1+

(
τ
1−ϱt1−1

)ϖ1

(τ−1)ϖ1−1
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−1



τ

1−

1−logτ

1+

(
τ
1−ϱt2−1
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(τ−1)ϖ2−1
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−1


τ−1




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=



t

√√√√√√√√logτ

1 +

1+

(
τ
σt
1−1

)ϖ1

(τ−1)ϖ1−1 −1
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τ
σt
2−1

)ϖ2

(τ−1)ϖ2−1 −1
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τ−1
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t

√√√√√√√√1− logτ
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τ
1−ϑt

1−1

)ϖ1

(τ−1)ϖ1−1 −1
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τ
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τ−1
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√√√√√√√√1− logτ
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τ
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)ϖ1

(τ−1)ϖ1−1 −1
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(
τ
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)ϖ2
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τ−1





=



t

√
logτ

(
1 +

((
τσ

t
1 − 1

)ϖ1
)((

τσ
t
2 − 1

)ϖ2
))

,

t

√
1− logτ

(
1 +

((
τ1−ϑt

1 − 1
)ϖ1

)((
τ1−ϑt

2 − 1
)ϖ2

))
,

t

√
1− logτ

(
1 +

((
τ1−ϱt1 − 1

)ϖ1
)((

τ1−ϱt2 − 1
)ϖ2

))


.

Thus, result holds for n = 2.

If Equation (5.25) holds for n = k, then for n = k + 1, we have

T − SFFWG (S1,S2, ...,Sk+1) = T − SFFWG (S1,S2, ...,Sk)⊗ Sϖk+1

k+1

=



t

√
logτ

(
1 + Πk

j=1

(
τσ

t
j − 1

)ϖj
)
,

t

√
1− logτ

(
1 + Πk

j=1

(
τ1−ϑt

j − 1
)ϖj

)
,

t

√
1− logτ

(
1 + Πk

j=1

(
τ1−ϱtj − 1

)ϖj
)


⊗


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√√√√√logτ
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)ϖ(k+1)
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


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=
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=
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t

√
logτ

(
1 + Πk

j=1

(
τσ

t
j − 1

)ϖj
(
τ
σt
(k+1) − 1

)ϖ(k+1)
)
,

t

√
1− logτ

(
1 + Πk

j=1

(
τ1−ϑt

j − 1
)ϖj

(
τ
1−ϑt

(k+1) − 1
)ϖ(k+1)

)
,

t

√
1− logτ

(
1 + Πk

j=1

(
τ1−ϱtj − 1

)ϖj
(
τ
1−ϱt

(k+1) − 1
)ϖ(k+1)

)


.

Thus, results holds for n = k+1 and hence, by the principle of mathematical induction, result given

in Equation (5.25) holds for all positive integer n. 2

Example 5.2.22 (Continued from Example 5.2.2)

According to Definition 5.2.4 and Theorem 5.2.21, we have

T − SFFWG (S1,S2,S3) =


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
= (0.5361, 0.5358, 0.6417) .

Theorem 5.2.23 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ 1, the T-SFFWG operator proceeds towards the following limit

lim
τ−→1

T − SFFWG (S1,S2, ...,Sn) =


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 . (5.26)

Proof: As τ −→ 1, then(
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, Πn
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τ1−ϱtj − 1

)ϖj
)
−→ (0, 0, 0)
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by log property and the rule of infinitesimal changes, we have
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Based on Taylor’s expansion formula, we have
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Analogously, we can get
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Then, we have limτ−→1 T − SFFWG (S1,S2, ...,Sn)

95



= limτ−→1
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√
1−

ln

(
1+Πn

j=1

(
τ
1−ϑt

j−1

)ϖj
)

ln τ ,

t

√
1−

ln

(
1+Πn

j=1

(
τ
1−ϱt

j−1

)ϖj
)

ln τ



= limτ−→1


t

√
Πn

j=1

(
τ
σt
j−1

)ϖj

ln τ ,
t

√
1−

Πn
j=1

(
τ
1−ϑt

j−1

)ϖj

ln τ ,

t

√
1−

Πn
j=1

(
τ
1−ϑt

j−1

)ϖj

ln τ



=


t

√
Πn

j=1

(
σt
j

)ϖj

, t

√
1−Πn

j=1

(
1− ϑt

j

)ϖj

,

t

√
1−Πn

j=1

(
1− ϱtj

)ϖj


which completes the proof. 2

Theorem 5.2.24 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ ∞, the T-SFFWG operator proceeds towards the following limit

lim
τ−→∞

T − SFFWG (S1,S2, ...,Sn) =


t

√
1−

(∑n
j=1ϖj

(
σt
j

))
, t

√(∑n
j=1ϖj

(
ϑt
j

))
,

t

√(∑n
j=1ϖj

(
ϱtj

))
 . (5.27)

Proof: According to Theorem 5.2.21, we have

limτ−→∞ T − SFFWG (S1,S2, ...,Sn)

=


limτ−→∞

t

√
logτ

(
1 + Πn

j=1

(
τσ

t
j − 1

)ϖj
)
,

limτ−→∞
t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϑt

j − 1
)ϖj

)
,

limτ−→∞
t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϱtj − 1

)ϖj
)


.
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Using limit rules, logarithmic transform and L’Hospital’s rule, it follows that,

t

√
limτ−→∞

ln

(
1+Πn

j=1

(
τ
σt
j−1

)ϖj
)

ln τ ,

t

√
1− limτ−→∞

ln

(
1+Πn

j=1

(
τ
1−ϑt

j−1

)ϖj
)

ln τ ,

t

√
1− limτ−→∞

ln

(
1+Πn

j=1

(
τ
1−ϱt

j−1

)ϖj
)

ln τ



=



t

√√√√√√
1− limτ−→∞

Πn
j=1

(
τ
σt
j−1

)ϖj

1+Πn
j=1

(
τ
σt
j−1

)ϖj

(∑n
j=1 ϖj(ϑt

j)
τ
σt
j
−1

τ
σt
j−1

)
1
τ

,

t

√√√√√√
1− limτ−→∞

Πn
j=1

(
τ
1−ϑt

j−1

)ϖj

1+Πn
j=1

(
τ
1−ϑt

j−1

)ϖj

(∑n
j=1 ϖj(1−ϑt

j)
τ
−ϑt

j

τ
1−ϑt

j−1

)
1
τ

,

t

√√√√√√
1− limτ−→∞

Πn
j=1

(
τ
1−ϱt

j−1

)ϖj

1+Πn
j=1

(
τ
1−ϱt

j−1

)ϖj

(∑n
j=1 ϖj(1−ϱtj)

τ
−ϱt

j

τ
1−ϱt

j−1

)
1
τ

,



=



t

√√√√√1− limτ−→∞
Πn

j=1

(
τ
σt
j−1

)ϖj

1+Πn
j=1

(
τ
σt
j−1

)ϖj

(∑n
j=1ϖj

(
σt
j

)
τ
σt
j

τ
σt
j−1

)
,

t

√√√√√1− limτ−→∞
Πn

j=1

(
τ
1−ϑt

j−1

)ϖj

1+Πn
j=1

(
τ
1−ϑt

j−1

)ϖj

(∑n
j=1ϖj

(
1− ϑt

j

)
τ
1−ϑt

j

τ
1−ϑt

j−1

)
,

t

√√√√√1− limτ−→∞
Πn

j=1

(
τ
1−ϱt

j−1

)ϖj

1+Πn
j=1

(
τ
1−ϱt

j−1

)ϖj

(∑n
j=1ϖj

(
1− ϱtj

)
τ
1−ϱt

j

τ
1−ϱt

j−1

)



=



t

√
1−

(∑n
j=1ϖj

(
σt
j

))
,

t

√
1−

(∑n
j=1ϖj

(
1− ϑt

j

))
,

t

√
1−

(∑n
j=1ϖj

(
1− ϱtj

))


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=



t

√
1−

(∑n
j=1ϖj

(
σt
j

))
,

t

√(∑n
j=1ϖj

(
ϑt
j

))
,

t

√(∑n
j=1ϖj

(
ϱtj

))


which completes the proof of Theorem 5.2.24. 2

Theorem 5.2.25 (Idempotency)

Let Tj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, if Sj = S0 for all j, then

T − SFFWG (S1,S2, ...,Sn) = S0. (5.28)

Proof: Since for all j Sj = S0 = (σ0, ϑ0, ϱ0), and
∑n

j=1ϖj = 1 so by Theorem 5.2.21, we have

T − SFFWG (S1,S2, ...,Sn)

=


t

√
logτ

(
1 + Πn

j=1

(
τσ

t
0 − 1

)ϖj
)
, t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϑt

0 − 1
)ϖj

)
,

t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϱt0 − 1

)ϖj
)


=

(
t

√
logτ τ

σt
0 , t

√
1− logτ τ

1−ϑt
0 , t

√
1− logτ τ

1−ϱt0

)
= (σ0, ϑ0, ϱ0) = S0.

Thus, proof is completed. 2

Theorem 5.2.26 (Monotonicity) Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) and Ṡj =
(
σ̇j , ϑ̇j , ϱ̇j

)
(j = 1, 2, ..., n) be two families of T-SFNs such that σj ≥ σ̇j , ϑj ≤ ϑ̇j and ϱj ≤ ϱ̇j ∀ j, then

T − SFFWG (S1,S2, ...,Sn) ≥ T − SFFWG
(
Ṡ1, Ṡ2, ..., Ṡn

)
. (5.29)

Proof: According to Definition 2.5.3, when σj ≥ σ̇j , ϑj ≤ ϑ̇j and ϱj ≤ ϱ̇j ∀ j, then

t

√
logτ

(
1 + Πn

j=1

(
τσ

t
j − 1

)ϖj
)
≤ t

√
logτ

(
1 + Πn

j=1

(
τ σ̇

t
j − 1

)ϖj
)
,
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t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϑt

j − 1
)ϖj

)
≥ t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϑ̇t

j − 1
)ϖj

)
and

t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϱtj − 1

)ϖj
)
≥ t

√
1− logτ

(
1 + Πn

j=1

(
τ1−ϱ̇tj − 1

)ϖj
)
.

Thus, S (T − SFFWG (S1,S2, ...,Sn)) ≥ S
(
T − SFFWG

(
Ṡ1, Ṡ2, ..., Ṡn

))
Hence, T − SFFWG (S1,S2, ...,Sn) ≥ T − SFFWG

(
Ṡ1, Ṡ2, ..., Ṡn

)
. 2

Theorem 5.2.27 (Boundedness) Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and

let S− = (min1≤j≤n σj ,max1≤j≤n ϑj , max1≤j≤n ϱj),

S+ = (max1≤j≤n σj ,min1≤j≤n ϑj , min1≤j≤n ϱj), then

S− ≤ T − SFFWG (S1,S2, ...,Sn) ≤ S+. (5.30)

Proof: Since for all j, min1≤j≤n σj ≤ σj ≤ max1≤j≤n σj , min1≤j≤n ϑj ≤ ϑj ≤ max1≤j≤n ϑj and

min1≤j≤n ϱj ≤ ϱj ≤ max1≤j≤n ϱj , thereby on the basis of idempotency and monotonicity, we get

S− ≤ T − SFFWG (S1,S2, ...,Sn) ≤ S+. 2

Theorem 5.2.28 (Shift-invariance) Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs and

Ṡ =
(
σ̇, ϑ̇, ϱ̇

)
be any other T-SFNs, then

T − SFFWG
(
S1 ⊗ Ṡ,S2 ⊗ Ṡ, ...,Sn ⊗ Ṡ

)
= T − SFFWG (S1,S2, ...,Sn)⊗ Ṡ. (5.31)

Theorem 5.2.29 (Homogeneity) Let Sj = (σj , ϑj , ϱj)

(j = 1, 2, ..., n) be a family of T-SFNs and η > 0 be any real number, then

T − SFFWG (ηS1, ηS2, ..., ηSn) = ηT − SFFWG (S1,S2, ...,Sn) . (5.32)

The above two theorems can be easily verified from the proposed Frank operational laws of T-SFNs;

thus, we omit here due to the space limitations.
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Definition 5.2.5 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the T-spherical

fuzzy Frank ordered weighted geometric (T-SFFOWG) operator is:

T − SFFOWG (S1,S2, ...,Sn) = ⊗n
j=1

(
Swj

δ(j)

)
, (5.33)

where w = (w1, w2, ..., wn)
T is the position weights of Sj (j = 1, 2, .., n) such that wj > 0 and∑n

j=1wj = 1. (δ(1), δ(2), ..., δ(n)) is a permutation of (1, 2, 3, ..., n) such that Sδ(j−1) ≥ Sδ(j) for

j = 2, 3.., n.

Theorem 5.2.30 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the result ob-

tained by using T-SFFOWG operator is still a T-SFN, and

T − SFFOWG (S1,S2, ...,Sn) =



t

√
logτ

(
1 + Πn

j=1

(
τ
σt
δ(j) − 1

)wj
)
,

t

√
1− logτ

(
1 + Πn

j=1

(
τ
1−ϑt

δ(j) − 1
)wj
)
,

t

√
1− logτ

(
1 + Πn

j=1

(
τ
1−ϱt

δ(j) − 1
)wj
)


. (5.34)

Proof: The proof of this result is similar to that of Theorem 5.2.21, and so we omit here. 2

Example 5.2.31 (Continued from Example 5.2.11) According to Definition 5.2.5 and Theorem

5.2.30, we can get:

T − SFFOWG
(
Sδ(1),Sδ(2),Sδ(3)

)

=



4

√
log2

(
1 +

∏3
j=1

(
2
σ4
δ(j) − 1

)wj
)
,

4

√
1− log2

(
1 +

∏3
j=1

(
2
1−ϑ4

δ(j) − 1
)wj
)
,

4

√
1− log2

(
1 +

∏3
j=1

(
2
1−ϱ4

δ(j) − 1
)wj
)


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=



4

√
log2

(
1 +

(
2.74 − 1

).3 (
2.34 − 1

).4 (
2.64 − 1

).3)
,

4

√
1− log2

(
1 +

(
21−.44 − 1

).3 (
21−.34 − 1

).4 (
21−.74 − 1

).3)
,

4

√
1− log2

(
1 +

(
21−.54 − 1

).3 (
21−.54 − 1

).4 (
21−.84 − 1

).3)


= (0.4788, 0.5438, 0.6509) .

Theorem 5.2.32 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ 1, the T-SFFOWG operator approaches the following limit

lim
τ−→1

T − SFFOWG (S1,S2, ...,Sn)

=


t

√
Πn

j=1

(
σt
δ(j)

)wj

, t

√
1−Πn

j=1

(
1− ϑt

δ(j)

)wj

,

t

√
1−Πn

j=1

(
1− ϱtδ(j)

)wj

 . (5.35)

Theorem 5.2.33 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ ∞, the T-SFFOWG operator approaches the following limit

lim
τ−→∞

T − SFFOWG (S1,S2, ...,Sn)

=


t

√
1−

(∑n
j=1wj

(
σt
δ(j)

))
, t

√(∑n
j=1wj

(
ϑt
δ(j)

))
,

t

√(∑n
j=1wj

(
ϱtδ(j)

))
 . (5.36)

As similar to those of the T-SFFWG operator, the T-SFFOWG operator also follows the bounded-

ness, idempotency and monotonicity, shift-invariance, homogeneity properties. Besides the afore-

mentioned properties, the T-SFFOWG operator has the following desirable results.

Theorem 5.2.34 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then we have the

following:

i). If w = (1, 0, ..., 0)T then T − SFFOWG (S1,S2, ...,Sn) = max {S1,S2, ...,Sn}.

ii). If w = (0, 0, ..., 1)T then T − SFFOWG (S1,S2, ...,Sn) = min {S1,S2, ...,Sn}.

101



iii). If wj = 1 and ϖi = 0 (i ̸= j) then T − SFFOWG (S1,S2, ...,Sn) = Sδ(j) where Sδ(j) is

the jth largest of Sj , (j = 1, 2, ..., n).

Based on the definition of T-SFFWG and T-SFFOWG operators, we can see that the T-

SFFWG operator can weigh only the SFNs while the T-SFFOWG operator weights only the ordered

position of SFNs. In practical real-life scenarios, both aspects should be considered at the same

time. Hence, to overcome this shortcoming, we define the hybrid geometric operator [95] founded on

Frank t-norm and t-conorm, which weights both the given T-SFNs and also their ordered positions.

Definition 5.2.6 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the T-spherical

fuzzy Frank hybrid geometric (T-SFFHG) operator is:

T − SFFHG (S1,S2, ...,Sn) = ⊗n
j=1

(
Ŝδ(j)

)wj

, (5.37)

where w = (w1, w2, ..., wn)
T is the weight vector associated with T-SFFHG such that wj > 0 and∑n

j=1wj = 1, ϖ = (ϖ1, ϖ2, ..., ϖn)
T is the weight vector of Sj (j = 1, 2, .., n) such that ϖj > 0 and∑n

j=1ϖj = 1. Ŝδ(j) is the jth largest of the weighted T-SFNs Ŝj, where Ŝj = (Sj)
nϖj , (j = 1, 2, .., n)

and n is the balancing coefficient.

Theorem 5.2.35 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, then the result derived

by using the T-SFFHG operator is still a T-SFN, and

T − SFFHG (S1,S2, ...,Sn) =


t

√
logτ

(
1 + Πn

j=1

(
τ
σ̂t
δ(j) − 1

)wj
)
, t

√
1− logτ

(
1 + Πn

j=1

(
τ
1−ϑ̂t

δ(j) − 1
)wj
)
,

t

√
1− logτ

(
1 + Πn

j=1

(
τ
1−ϱ̂t

δ(j) − 1
)wj
)

 ,

(5.38)

Proof: This proof is similar to that of Theorem 5.2.21, hence omitted here. 2

Example 5.2.36 (Continued from Example 5.2.16) According to Definition 5.1.1, we can get the

weighted T-SFNs:
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Ŝ1 = S3×0.4
1 =


4

√
log2

(
1 +

(20.44−1)
3×0.4

(2−1)3×0.4−1

)
, 4

√
1− log2

(
1 +

(21−0.54−1)
3×0.4

(2−1)3×0.4−1

)
,

4

√
1− log2

(
1 +

(21−0.24−1)
3×0.4

(2−1)3×0.4−1

)


= (0.3275, 0.5227, 0.2093) ;

Ŝ2 = S3×0.4
2 =


4

√
log2

(
1 +

(20.64−1)
3×0.4

(2−1)3×0.4−1

)
, 4

√
1− log2

(
1 +

(21−0.74−1)
3×0.4

(2−1)3×0.4−1

)
,

4

√
1− log2

(
1 +

(21−0.84−1)
3×0.4

(2−1)3×0.4−1

)


= (0.5353, 0.7290, 0.8292) ;

Ŝ3 = S3×0.2
3

=


4

√
log2

(
1 +

(20.34−1)
3×0.2

(2−1)3×0.4−1

)
, 4

√
1− log2

(
1 +

(21−0.64−1)
3×0.2

(2−1)3×0.4−1

)
,

4

√
1− log2

(
1 +

(21−0.54−1)
3×0.2

(2−1)3×0.4−1

)


= (0.5012, 0.5307, 0.4410) .

According to Definition 2.5.3, we can get the score of Ŝj (j = 1, 2, 3) :

S
(
Ŝ1

)
= −0.0799, S

(
Ŝ2

)
= −0.6995, S

(
Ŝ3

)
= −0.0651.

Since S
(
Ŝ3

)
> S

(
Ŝ1

)
> S

(
Ŝ2

)
, we have

Ŝδ(1) = (0.5012, 0.5307, 0.4410) ,

Ŝδ(2) = (0.3275, 0.5227, 0.2093) ,

Ŝδ(3) = (0.5353, 0.7290, 0.8292) .

Suppose w = (0.3, 0.4, 0.3)T is the weight vector associated with the T-SFFHG operator. Then by

Definition 5.2.6 and Theorem 5.2.35, we can get:
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T − SFFHG
(
Ŝδ(1), Ŝδ(2), Ŝδ(3)

)
=



4

√
log2

(
1 +

∏3
j=1

(
2
σ̂4
δ(j) − 1

)wj
)
,

4

√
1− log2

(
1 +

∏3
j=1

(
2
1−ϑ̂4

δ(j) − 1
)wj
)
,

4

√
1− log2

(
1 +

∏3
j=1

(
2
1−ϱ̂4

δ(j) − 1
)wj
)



=



4

√
log2

(
1 +

(
20.50124 − 1

).3 (
20.32754 − 1

).4 (
20.53534 − 1

).3)
,

4

√
1− log2

(
1 +

(
21−0.53074 − 1

).3 (
21−0.52274 − 1

).4 (
21−0.72904 − 1

).3)
,

4

√
1− log2

(
1 +

(
21−0.44104 − 1

).3 (
21−0.20934 − 1

).4 (
21−0.82924 − 1

).3)


= (0.4317, 0.6143, 0.6486) .

Theorem 5.2.37 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ 1, the T-SFFHG operator proceeds towards the following limit

lim
τ−→1

T − SFFHG (S1,S2, ...,Sn)

=


t

√
Πn

j=1

(
σ̂t
δ(j)

)wj

, t

√
1−Πn

j=1

(
1− ϑ̂t

δ(j)

)wj

,

t

√
1−Πn

j=1

(
1− ϱ̂tδ(j)

)wj

 . (5.39)

Theorem 5.2.38 Let Sj = (σj , ϑj , ϱj) (j = 1, 2, ..., n) be a family of T-SFNs, and τ > 1. As

τ −→ ∞, the T-SFFHG operator approaches the following limit

lim
τ−→∞

T − SFFHG (S1,S2, ...,Sn)

=


t

√
1−

(∑n
j=1wj

(
σ̂t
δ(j)

))
, t

√(∑n
j=1wj

(
ϑ̂t
δ(j)

))
,

t

√(∑n
j=1wj

(
ϱ̂tδ(j)

))
 . (5.40)

To be similar as T-SFFWG operator, the T-SFFHG operator also follows the boundedness, idem-

potency and monotonicity, shift-invariance, homogeneity properties. Besides the aforementioned

properties, the T-SFFHG operator has the following special cases.
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Corollary 5.2.39 T-SFFWG operator is a special case of the T-SFFHG operator.

Proof: Let w =
(
1
n ,

1
n , ...,

1
n

)T
, then

T − SFFHG (S1,S2, ...,Sn) = Ŝw1

δ(1) ⊗ Ŝw2

δ(2) ⊗ ...⊗ Ŝwn

δ(n)

=
(
Ŝδ(1) ⊗ Ŝδ(2) ⊗ ...⊗ Ŝδ(n)

) 1
n
= Sϖ1

1 ⊗ Sϖ2
2 ⊗ ...⊗ Sϖn

n

= T − SFFWG (S1,S2, ...,Sn) .

2

Corollary 5.2.40 T-SFFOWG operator is a special case of the T-SFFHG operator.

Proof: Let ϖ =
(
1
n ,

1
n , ...,

1
n

)T
, then

T − SFFHG (S1,S2, ...,Sn) = Ŝw1

δ(1) ⊗ Ŝw2

δ(2) ⊗ ...⊗ Ŝwn

δ(n)

= Sw1

δ(1) ⊗ Sw2

δ(2) ⊗ ...⊗ Swn

δ(n) = T − SFFOWG (S1,S2, ...,Sn) .

2

5.3 Entropy measure for T-spherical fuzzy set

In this part, the entropy measure for T-spherical fuzzy set is given in detail and the required proof

in terms of satisfying given properties is shared.

Definition 5.3.1 Let S1 and S2 be two T-SFSs on Y . A real-valued function E :T-SFS −→ [0, 1]

is an entropy measure for SFSs if it is provided with the following properties:

p1. E (S1) = 0 iff S1 is a crisp set;

p2. E (S1) = 1 iff σ1(y) = ϱ1(y) and ϑ1(y) =
t
√
0.25 for all y ∈ Y ;

p3. E (S1) = E (Sc
1);

p4. E (S1) ≤ E (S2) if ϑt
2(y) ≤ ϑt

1(y) and σt
1(y) ≤ σt

2(y) ≤ ϱt2(y) ≤ ϱt1(y) or ϱt1(y) ≤ ϱt2(y) ≤

σt
2(y) ≤ σt

1(y) for all y ∈ Y .

Theorem 5.3.1 Let S be a T-SFS on Y . The mapping

E (S) = 1

n

n∑
i=1

(
1− 4

5

[∣∣σt(yi)− ϱt(yi)
∣∣+ ∣∣ϑt(yi)− 0.25

∣∣]) , (5.41)
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is an entropy measure for T-SFS.

Proof:

p1. Let S be a crisp set. Then, we have σt(yi) = 1, ϱt(yi) = 0, ϑt(yi) = 0 or σt(yi) = 0, ϱt(yi) = 1,

ϑt(yi) = 0 ∀yi ∈ Y . If σt(yi) = 1, ϱt(yi) = 0, ϑt(yi) = 0, then

E (S) = 1
n

∑n
i=1

(
1− 4

5

[∣∣σt(yi)− ϱt(yi)
∣∣+ ∣∣ϑt(yi)− 0.25

∣∣])
= 1

n

∑n
i=1

(
1− 4

5 [|1− 0|+ |0− 0.25|])

= 1
n

∑n
i=1

(
1− 4

5 [1.25]
)
= 0.

Analogously, when σt(yi) = 0, ϱt(yi) = 1, ϑt(yi) = 0 ∀yi ∈ Y , we can easily show that

E (S) = 0. Conversely, suppose that E (S) = 0. Thus,

4

5

[∣∣σt(yi)− ϱt(yi)
∣∣+ ∣∣ϑt(yi)− 0.25

∣∣] = 1, (5.42)

Eq. (5.42) ⇒
∣∣σt(yi)− ϱt(yi)

∣∣+ ∣∣ϑt(yi)− 0.25
∣∣ = 1.25.

There are four possibilities:

The first one is
(
σt(yi)− ϱt(yi)

)
+
(
ϑt(yi)− 0.25

)
= 1.25

⇒ σt(yi)− ϱt(yi) + ϑt(yi) = 1.5 ⇒ σt(yi) + ϑt(yi) = ϱt(yi) + 1.5.

The second is
(
σt(yi)− ϱt(yi)

)
−
(
ϑt(yi)− 0.25

)
= 1.25 ⇒ σt(yi)− ϱt(yi)− ϑt(yi) = 1

⇒ σt(yi) = ϑt(yi) + ϱt(yi) + 1.

The third is −
(
σt(yi)− ϱt(yi)

)
+
(
ϑt(yi)− 0.25

)
= 1.25 ⇒ −σt(yi) + ϱt(yi) + ϑt(yi) = 1.5

⇒ ϱt(yi) + ϑt(yi) = σt(yi) + 1.5.

The last one is −
(
σt(yi)− ϱt(yi)

)
−
(
ϑt(yi)− 0.25

)
= 1.25

⇒ −σt(yi) + ϱt(yi)− ϑt(yi) = 1 ⇒ ϱt(yi) = σt(yi) + ϑt(yi) + 1.

In all these possibilities, the inequality 0 ≤ σt(yi) + ϑt(yi) + ϱt(yi) ≤ 1 is not satisfied for

all yi ∈ Y . So Eq. (5.42) can hold when σt(yi) = 1, ϱt(yi) = 0, ϑt(yi) = 0 or σt(yi) = 0,

ϱt(yi) = 1, ϑt(yi) = 0 ∀yi ∈ Y . Consequently, it is proved that S is a crisp set.

p2. Let σt(yi) = ϱt(yi) ϑ
t(yi) = 0.25 ∀yi ∈ Y . Then

E (S) = 1
n

∑n
i=1

(
1− 4

5

[∣∣σt(yi)− ϱt(yi)
∣∣ +

∣∣ϑt(yi)− 0.25
∣∣]) = 1

n

∑n
i=1

(
1− 4

5 [0+ 0]) = 1.
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Conversely, suppose that E (S) = 1. Then 4
5

[∣∣σt(yi)− ϱt(yi)
∣∣+ ∣∣ϑt(yi)− 0.25

∣∣] = 0

⇒
∣∣σt(yi)− ϱt(yi)

∣∣+ ∣∣ϑt(yi)− 0.25
∣∣ = 0.

Hence, σ(yi) = ϱ(yi) and ϑ(yi) =
t
√
0.25 ∀ yi ∈ Y .

p3. E (S) = 1
n

∑n
i=1

(
1− 4

5

[∣∣σt(yi)− ϱt(yi)
∣∣+ ∣∣ϑt(yi)− 0.25

∣∣])
= 1

n

∑n
i=1

(
1− 4

5

[∣∣ϱt(yi) −σt(yi)
∣∣+ ∣∣ϑt(yi)− 0.25

∣∣]) = E (Sc) .

p4. Since ϑt
2(y) ≤ ϑt

1(y) and σt
1(y) ≤ σt

2(y) ≤ ϱt2(y) ≤ ϱt1(y), we have∣∣σt
2(yi)− ϱt2(yi)

∣∣ ≤ ∣∣σt
1(yi)− ϱt1(yi)

∣∣ and
∣∣ϑt

2(yi)− 0.25
∣∣ ≤ ∣∣ϑt

1(yi)− 0.25
∣∣ .

Therefore

E (S1) =
1
n

∑n
i=1

(
1− 4

5

[∣∣σt
1(yi)− ϱt1(yi)

∣∣+ ∣∣ϑt
1(yi)− 0.25

∣∣])
≤ 1

n

∑n
i=1

(
1− 4

5

[∣∣σt
2(yi)− ϱt2(yi)

∣∣+ ∣∣ϑt
2(yi)− 0.25

∣∣])
= E (S2) .

Analogously, if ϑt
2(y) ≤ ϑt

1(y) and ϱt1(y) ≤ ϱt2(y) ≤ σt
2(y) ≤ σt

1(y) for all y ∈ Y, then

E (S1) ≤ E (S2) .

2

5.4 Proposed method of SFS for MCDM problems

This section focuses on presenting an MCDM method based on the proposed Frank aggregation

operators to handle decision-making problems with T-spherical fuzzy information.

5.4.1 Decision-making method

Let o = {o1, o2, ..., om} be a set of alternatives, and κ = {κ1, κ2, ..., κn} be the set of criteria, whose

weight vector is unknown. The characteristics of each alternative oi (i = 1, 2, ..,m) with respect to

each criteria is characterized in terms of T-SFNs Sij = (σij + ϑij + ϱij); 0 ≤ σt
ij + ϑt

ij + ϱtij ≤ 1

Then, in the following, we construct an MCDM method based on the proposed operator to cope with

the decision-making problems with T-spherical fuzzy information, which mainly relies on following

steps.
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Step 1: Formation of decision matrix:

Collect the T-spherical fuzzy information from experts about the finite set of alternatives

observing the criteria in the form of matrix M = [Sij ]. Also, decide the least value of t for

which every triplet of the provided information lies in the frame of T-SFNs.

Step 2: Normalization:

Transform the decision matrix M = [Sij ] into the normalized form M̃ =
[
S̃ij

]
by the below

formula:

S̃ij =


Sij , if for benefit criteria

(Sij)
c , for cost criteria.

where (Sij)
c is the complement of Sij .

Step 3: Criteria weight determination:

The stated entropy measure for T-SFSs is used to derive the weights of criteria. First, Eq.

(5.41) is used for each jth criteria to get the entropy measure that represents the information

dispersion in handled criteria, and then all the criteria’s entropies are used to derive their

weights (ϖj).

Ej =
1

n

m∑
i=1

(
1− 4

5

[∣∣σt
ij − ϱtij

∣∣+ ∣∣ϑt
ij − 0.25

∣∣]) (5.43)

Divergence representing the intrinsic information of jth criteria is computed through divj =

1− Ej . The objective criteria weights can be computed as follows [96]:

ϖj =
divj∑n
j=1 divj

. (5.44)

Step 4: Aggregation:

Aggregate the T-SFNs Sij (j = 1, 2, ..., n) for each alternative oi (i = 1, 2, ..., n) into the over-

all preference value Si either by using the proposed T-SFFHWA or T-SFFHWG operators.

Mathematically,

Si = T − SFFHWAϖ,w (Si1,Si2, ...,Sim) , (5.45)
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Si = T − SFFHWGϖ,w (Si1,Si2, ...,Sim) , (5.46)

where ϖ = (ϖ1, ϖ2, ..., ϖn) is the weight vector of criteria derived in Step 3. And w =

(w1, w2, ..., wn) is the weight vector associated the aggregation operator such that wj > 0 and∑n
j=1wj = 1.

Step 5: Score values:

Compute the score values of S (Si)

(i = 1, 2, ...,m) of the overall values Si (i = 1, 2, ...,m).

Step 6: Ranking:

Rank the alternatives oi (i = 1, 2, ...,m) according to the score values S (Si) and select the

best one.

5.5 Illustrative example

This section first uses a numerical example to demonstrate the working procedure of the suggested

MCDM method, then performs a series of experiments to examine the effects of different specific

operators and parameter values on the obtained aggregation results.

5.5.1 Example

The presented MCDM method is illustrated by using a numerical example to determine the best

industry for investment from five possible industries (adopted from Ref. [74]).

To attain maximum use of idle capital, the board of directors of the company decided to

invest in a new industry. Following the preliminary investigation, four industries were selected as

potential investment targets. The four alternative industries are manufacturing industry (o1), real

estate development industry (o2), education and training industry (o3) and medical industry (o4).

To determine the best choice for investment, the directors have set up a panel of experts. These

experts were called to rate the four alternatives industries based on four criteria namely, level of

capital gain (κ1), market potential (κ2), growth potential (κ3) and political stability (κ4), whose
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Table 5.1: T-spherical fuzzy decision matrix

κ1 κ2 κ3 κ4

o1 (0.7, 0.3, 0.4) (0.3, 0.3, 0.5) (0.6, 0.7, 0.6) (0.3, 0.4, 0.2)

o2 (0.5, 0.5, 0.4) (0.6, 0.3, 0.4) (0.3, 0.2, 0.8) (0.7, 0.2, 0.4)

o3 (0.6, 0.9, 0.2) (0.7, 0.3, 0.3) (0.5, 0.4, 0.3) (0.4, 0.7, 0.5)

o4 (0.8, 0.2, 0.2) (0.5, 0.6, 0.2) (0.4, 0.1, 0.3) (0.5, 0.7, 0.4)

weights are unknown. To offer sufficient freedom in the evaluation of five criteria values for each

alternative industry, the experts were allowed to use T-SFNs. The evaluation information of experts

is detailed in the matrix as follows.

5.5.2 The process of solving

In the following, we utilize T-SFFHA operator and T-SFFHG operator in the provided MCDM

approach with T-spherical fuzzy information.

Using T-SFFHA operator

Step 1. The provided decision matrix is listed in Table 5.1. On account of this, we determine the

value of ‘t’ for which the given data lie in T-spherical fuzzy information.

As 0.6+0.7+0.6 = 1.9 > 1, for t = 2, 0.62+0.72+0.62 = 1.21 > 1, for t = 3, 0.63+0.73+0.63 =

0.775 < 1. Analogously, for t = 3, all the given data lie in the T-spherical fuzzy information.

Step 2. Consider all the criteria κj (j = 1, 2, 3, 4) be the benefit criteria, hence, the criteria values

of alternatives oi (i = 1, 2, 3, 4) do not require normalization.

Step 3. In the light of Equation (5.41), the criteria weight is calculated as given below.

ϖ = (0.3576, 0.2337, 0.2344, 0.1743),

nϖ = (1.4304, 0.9348, 0.9376, 0.6972) .

Step 4. Using the T-spherical fuzzy information listed in Table 5.1, the values of Ŝij = (nϖj)Sij ,

(suppose n=4, τ = 2), are worked out as given below.
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Ŝ11 = (0.7713, 0.1702, 0.2580) , Ŝ12 = (0.2934, 0.3267, 0.5256) , Ŝ13 = (0.5883, 0.7172, 0.6214) ,

Ŝ14 = (0.2663, 0.5406, 0.3366) , Ŝ21 = (0.5595, 0.3575, 0.2580) , Ŝ22 = (0.5878, 0.3267, 0.4271) ,

Ŝ23 = (0.2937, 0.2227, 0.8120) , Ŝ24 = (0.6303, 0.3366, 0.5406) , Ŝ31 = (0.6675, 0.8578, 0.0950) ,

Ŝ32 = (0.6867, 0.3267, 0.3267) , Ŝ33 = (0.4899, 0.4259, 0.3255) , Ŝ34 = (0.3555, 0.7857, 0.6280) ,

Ŝ41 = (0.8675, 0.0950, 0.0950) , Ŝ42 = (0.4894, 0.6224, 0.2238) , Ŝ43 = (0.3917, 0.1163, 0.3255) ,

Ŝ44 = (0.4455, 0.7857, 0.5406) .

Based on the score function, we have

Ŝδ(11) = Ŝ11 = (0.7713, 0.1702, 0.2580) , Ŝδ(12) = Ŝ12 = (0.2934, 0.3267, 0.5256) ,

Ŝδ(13) = Ŝ14 = (0.2663, 0.5406, 0.3366) , Ŝδ(14) = Ŝ13 = (0.5883, 0.7172, 0.6214) ,

Ŝδ(21) = Ŝ21 = (0.5595, 0.3575, 0.2580) , Ŝδ(22) = Ŝ22 = (0.5878, 0.3267, 0.4271) ,

Ŝδ(23) = Ŝ24 = (0.6303, 0.3366, 0.5406) , Ŝδ(24) = Ŝ23 = (0.2937, 0.2227, 0.8120) ,

Ŝδ(31) = Ŝ32 = (0.6867, 0.3267, 0.3267) , Ŝδ(32) = Ŝ33 = (0.4899, 0.4259, 0.3255) ,

Ŝδ(33) = Ŝ31 = (0.6675, 0.8578, 0.0950) , Ŝδ(34) = Ŝ34 = (0.3555, 0.7857, 0.6280) ,

Ŝδ(41) = Ŝ41 = (0.8675, 0.0950, 0.0950) , Ŝδ(42) = Ŝ43 = (0.3917, 0.1163, 0.3255) ,

Ŝδ(43) = Ŝ42 = (0.4894, 0.6224, 0.2238) , Ŝδ(44) = Ŝ44 = (0.4455, 0.7857, 0.5406) .

Now applying the T-SFFHA operator Equation (5.19), having associated weight vector w =

(0.3, 0.2, 0.3, 0.2)T to get the overall preference values Si of the alternative oi (i = 1, 2, ..., n):

S1 = (0.5922, 0.3691, 0.3857) , S2 = (0.5604, 0.3138, 0.4526) ,

S3 = (0.6082, 0.5579, 0.2583) , S4 = (0.6747, 0.2700, 0.2233) .

Step 5: By Definition 2.5.3, we calculate the score values S (Si) (i = 1, 2, 3, 4) of the overall preference

values Si (i = 1, 2, 3, 4) as follows:

S (S1) = 0.1171, S (S2) = 0.0615, S (S3) = 0.0391, S (S4) = 0.3218.
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Step 6: Based on the above score values the ranking order of alternatives is: o4 ≻ o1 ≻ o2 ≻ o3,

where the symbol “≻” implies “superior to”. Hence, the most preferable company is o4.

Using T-SFFHG operator

Step 4. Using the T-spherical fuzzy information listed in Table 5.1, and Ŝij = (Sij)
nϖj , (suppose

n=4, τ = 2), the results are worked out as given below.

Ŝ11 = (0.5893, 0.3376, 0.4492) , Ŝ12 = (0.3267, 0.2934, 0.4894) , Ŝ13 = (0.6214, 0.6873, 0.5883) ,

Ŝ14 = (0.4447, 0.3555, 0.1774) , Ŝ21 = (0.3575, 0.5595, 0.4492) , Ŝ22 = (0.6224, 0.2934, 0.3913) ,

Ŝ23 = (0.3255, 0.1958, 0.7873) , Ŝ24 = (0.7857, 0.1774, 0.3555) , Ŝ31 = (0.4681, 0.9496, 0.2253) ,

Ŝ32 = (0.7179, 0.2934, 0.2934) , Ŝ33 = (0.5244, 0.3917, 0.2937) , Ŝ34 = (0.5406, 0.6303, 0.4455) ,

Ŝ41 = (0.7199, 0.2253, 0.2253) , Ŝ42 = (0.5256, 0.5878, 0.1956) , Ŝ43 = (0.4259, 0.0979, 0.2937) ,

Ŝ44 = (0.6280, 0.6303, 0.3555) .

Based on the score function, we have

Ŝδ(11) = Ŝ11 = (0.5893, 0.3376, 0.4492) , Ŝδ(12) = Ŝ14 = (0.4447, 0.3555, 0.1774) ,

Ŝδ(13) = Ŝ12 = (0.3267, 0.2934, 0.4894) , Ŝδ(14) = Ŝ13 = (0.6214, 0.6873, 0.5883) ,

Ŝδ(21) = Ŝ24 = (0.7857, 0.1774, 0.3555) , Ŝδ(22) = Ŝ22 = (0.6224, 0.2934, 0.3913) ,

Ŝδ(23) = Ŝ21 = (0.3575, 0.5595, 0.4492) , Ŝδ(24) = Ŝ23 = (0.3255, 0.1958, 0.7873) ,

Ŝδ(31) = Ŝ32 = (0.7179, 0.2934, 0.2934) , Ŝδ(32) = Ŝ33 = (0.5244, 0.3917, 0.2937) ,

Ŝδ(33) = Ŝ34 = (0.5406, 0.6303, 0.4455) , Ŝδ(34) = Ŝ31 = (0.4681, 0.9496, 0.2253) ,

Ŝδ(41) = Ŝ41 = (0.7199, 0.2253, 0.2253) , Ŝδ(42) = Ŝ43 = (0.4259, 0.0979, 0.2937) ,

Ŝδ(43) = Ŝ44 = (0.6280, 0.6303, 0.3555) , Ŝδ(44) = Ŝ42 = (0.5256, 0.5878, 0.1956) .

Applying the T-SFFHG operator Equation (5.37), having the associated weight vector w =

(0.3, 0.2, 0.3, 0.2)T to get the overall preference values Si of the alternative oi (i = 1, 2, ..., n):

S1 = (0.4734, 0.46298, 0.4730) , S2 = (0.5018, 0.3979, 0.5499) ,
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S3 = (0.5699, 0.7152, 0.3471) , S4 = (0.5863, 0.4996, 0.2867) .

Step 5: By definition 2.5.3, we calculate the score values S (Si) (i = 1, 2, 3, 4) of the overall preference

values Si (i = 1, 2, 3, 4) as follows:

S (S1) = −0.1160, S (S2) = −0.1195,

S (S3) = −0.2451, S (S4) = 0.0619.

Step 6: Based on the above score values the ranking order of alternatives is: o4 ≻ o1 ≻ o2 ≻ o3,

where the symbol “≻” means “superior to”. Thus, the most desirable company is o4.

5.5.3 Parameter analysis

The two parameters (τ, t) associated with the established model certainly have an effect on the final

outcomes; therefore, we attempt to examine their effects.

The influence of the parameter τ

To represent the impact of different values of parameter τ , we employ several values of τ in our

suggested methodology to rank the alternatives. The ranking results are depicted in Table 5.2 and

Figures 5.1 and 5.2.

Table 5.2: Ranking of alternatives with different values of τ

τ T-SFFHA T-SFFHG

Score values Ranking Score values Ranking

τ −→ 1 0.1219,0.0656,0.0525,0.3291 o4 ≻ o1 ≻ o2 ≻ o3 -0.1222,-0.1286,-0.2659,0.0523 o4 ≻ o1 ≻ o2 ≻ o3

τ = 2 0.1171,0.0615,0.0391,0.3218 o4 ≻ o1 ≻ o2 ≻ o3 -0.1160,-0.1195,-0.2451,0.0619 o4 ≻ o1 ≻ o2 ≻ o3

τ = 5 0.1119,0.0568,0.0210,0.3138 o4 ≻ o1 ≻ o2 ≻ o3 -0.0797,-0.1101,-0.2208,0.0732 o4 ≻ o1 ≻ o2 ≻ o3

τ = 10 0.1160,0.0582,0.0195,0.3205 o4 ≻ o1 ≻ o2 ≻ o3 -0.1046,-0.1049,-0.2056,0.0806 o4 ≻ o1 ≻ o2 ≻ o3

τ = 50 0.1255,0.0634,0.0156,0.3136 o4 ≻ o1 ≻ o2 ≻ o3 -0.0956,-0.0971,-0.1793,0.0951 o4 ≻ o1 ≻ o2 ≻ o3
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Figure 5.1: Ranking of alternatives by T-SFFHA operator for different values of τ

Figure 5.2: Ranking of alternatives by T-SFFHG operator for different values of τ
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As shown in Table 5.2, the score values with various parameters τ alter, but the order of

ranking for the alternatives are changeless, indicating that the suggested approach has the feature

of isotonicity, allowing decision makers to select the adequate value based on their preferences. By

examining Figures 5.1 and 5.2, we can see that the score values generated by the T-SFFHWG

operator rise as the parameter grow for the same option, but the score values produced by T-

SFFHWA operator get lower as the parameter τ increases within the interval (1, 5]. Further from

Table 5.2, one can notice that the aggregated score values of alternatives o2 and o3 obtained by

T-SFFHWA operator are quite close for smaller values of τ , but as the value of τ increases, their

gap of difference also becomes enlarge. This implies that the T-SFFHWA operator with the larger

value of τ has a strong sense of differentiation.

The influence of the parameter t

To examine the influence of various values of the parameter t on the ranking order of alternatives,

we adapt different values of t in Step 4 of the suggested MCDM approach. The derived results are

shown in Tables 5.3 and Figures 5.3 and 5.4 (setting τ = 2).

Table 5.3: Ranking of alternatives with different values of t

t T-SFFHA T-SFFHG

Score values Ranking Score values Ranking

t = 3 0.1171,0.0615,0.0391,0.3218 o4 ≻ o1 ≻ o2 ≻ o3 -0.1160,-0.1195,-0.2451,0.0619 o4 ≻ o1 ≻ o2 ≻ o3

t = 5 0.0914,0.0530,0.0433,0.1979 o4 ≻ o1 ≻ o2 ≻ o3 -0.0505,-0.06351,-0.2261,0.0169 o4 ≻ o1 ≻ o2 ≻ o3

t = 7 0.0484,0.0275,0.0268,0.1196 o4 ≻ o1 ≻ o2 ≻ o3 -0.0179,-0.0400,-0.1810,0.0089 o4 ≻ o1 ≻ o2 ≻ o3

t = 9 0.0237,0.0151,0.0144,0.0742 o4 ≻ o1 ≻ o2 ≻ o3 -0.0114,-0.0315,-0.1549,-0.0035 o4 ≻ o1 ≻ o2 ≻ o3

t = 12 0.0079,0.0042,0.0052,0.0373 o4 ≻ o1 ≻ o2 ≻ o3 -0.0037,-0.0162,-0.1098,-0.0023 o4 ≻ o1 ≻ o2 ≻ o3
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Figure 5.3: Ranking of alternatives by T-SFFHA operator for different values of t
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Figure 5.4: Ranking of alternatives by T-SFFHG operator for different values of t

From Table 5.3, we can observe that the score values secured by T-SFFHA operator become

smaller and smaller as the value of t increases while those obtained by T-SFFHG operator rise

when the value of t increases. However, the rating results are same; the best alternative is all o4.

The parameter t may be considered as the “DM’s attitude.” The operator is T-SFFHA suitable

for modelling pessimistic decision makers, whereas the T-SFFHA operator is considered useful in

reflecting optimistic decision makers. Suppose we use T-SFFHA operator as an aggregation tool

for the decision process. In that case, the higher value of t indicates that decision makers have a

more pessimistic attitude and vice versa in the case of the T-SFHG operator. So, different decision

makers can choose the value of t based on their attitude.
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5.5.4 The analysis of comparison

To validate the effectiveness of the developed approach, in what follows, we compare our estab-

lished approach with three previous MCDM approach based on T-spherical fuzzy Einstein hybrid

interactive averaging (T-SFEHIA) [76], T-spherical fuzzy Einstein hybrid interactive geometric (T-

SFEHIG) [76], T-spherical fuzzy Hamacher averaging (TSFHHA) [77], T-spherical fuzzy Hamacher

geometric (TSFHHG) [77], spherical fuzzy number weighted averaging operator (SFNWA) [70],

spherical fuzzy number weighted geometric operator (SFNWG) [70] operators. The comparison

results obtained by these existing methods and our proposed methods are depicted in Table 5.4.

Table 5.4: Ranking results for different existing aggregation operators

Parameter score values Ranking

T-SFEHIA operator [76] -0.0207,-0.2146,-0.9255,0.0230 o4 ≻ o1 ≻ o2 ≻ o3

T-SFEHIG operator [76] 0.0296,-0.0676,-0.1309,0.1639 o4 ≻ o1 ≻ o2 ≻ o3

TSFHHA operator [77] 0.1525,0.1048,0.1091,0.3257 o4 ≻ o1 ≻ o3 ≻ o2

TSFHHG operator [77] -0.1520,-0.1529,-0.2851,-0.0041 o4 ≻ o1 ≻ o2 ≻ o3

SFNWA operator [70] Not applicable

SFNWG operator [70] Not applicable

Based on Table 5.4, we can see that the ranking results secured by applying T-SFEHIA

and T-SFEHIG operators [76] are consistent with the result obtained by the proposed operators.

But these operators are based on Einstein operational rules [76] which are not authentic. For

instance, if we take S = (0.6, 0.9, 0.2), then clearly 0.63 +0.93 +0.23 = 0.953 < 1. Now accordingly

to the operational rules of [76], if we take scalar multiple of S with scalar η = 1.4304, we get

ηS = (0.6724, 0.9540, 0.1463). From this, we have 0.67243 + 0.95403 + 0.14633 = 1.1754 ≮ 1.

Analogously, if we take scalar power with η, we get Sη = (0.5135, 0.9540, 0.2253). Again we have

0.51353 + 0.95403 + 0.22533 = 1.015 ≮ 1. This seems unsuitable because the operating results

are not valid for t = 3, and may cause unfruitful results in the decision process. In addition, the

provided operators include a parameter, which effectively adjust the aggregate value according to
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the genuine decision needs and encapsulates many existing hesitant fuzzy aggregation operators.

Hence, the usefulness of the proposed operators evident with their higher universality and feasibility.

In the second comparison TSFHHA and TSFHHG operators [77] are adopted to address the

problem presented in subsection 5.5.1. From Table 5.4, it can be observed that likewise T-SFEHIA

and T-SFEHIG operators, the ranking result obtained by utilizing TSFHHG operator is consistent

with our proposed operators’ results. However, in the case that TSFHHA operator is applied we

have o4, o1, o3, o2. The alternatives o2 and o3 have interchanged their positions. Thus the ranking

of alternatives is slightly different from that derived by the proposed and other existing operators.

However, the best alternative remains the same in all cases. This verifies the validity of the developed

operators.

Finally, we compare our developed approach with the method from Ashraf and Abdullah [70]

for the considered problem, where the method from [70] is structured on the Archimedean t-norm

and t-conorm based spherical fuzzy weighted averaging and geometric operators. Obviously, these

operators have a general representation by Archimedean t-norm and t-conorm. But, Ashraf and

Abdullah’s method also has some failure cases because it has some certain limitations. It can only

handle the MCDM problems demonstrated by PFNs or SFNs. Therefore it cannot be employed to

solve the aforementioned MCDM problem. On the contrary, the proposed method has the parameter

t, which can express the spherical fuzzy information more flexible. Hence, in the real world practical

problems, the suggested approach is more appropriate.

5.6 TWD model for T-spherical fuzzy decision system

This section aims to construct a three-way decision model in a T-spherical fuzzy decision system.

Let (X,BUD,S) be a T-spherical fuzzy decision systems with B∩D = ∅, where X = {x1, x2, ..., xk}

is a set of objects, B = {b1, b2, b3, ..., bl} is a set of attributes with unknown weight vectors, S is a

fuzzy measure of X, D is a decision set and ΩD = {D1, D2, ..., De} is a partition of decision set.

The T-spherical fuzzy decision system is described in Table 5.5 in which all attribute values are

T-SFNs. The element xq(br) = Sqr implies the evaluation of object xq with respect to attribute br.

T-spherical fuzzy decision systems depict all available information and knowledge, where
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Table 5.5: A T-spherical fuzzy decision system

x1 (σ11, ϑ11, ϱ11) (σ12, ϑ12, ϱ12) . . . . . (σ1k, ϑ1k, ϱ1k)

x2 (σ21, ϑ21, ϱ21) (σ22, ϑ22, ϱ22) . . . . . (σ2k, ϑ2k, ϱ2k)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
xk (σk1, ϑk1, ϱk1) (σk2, ϑk2, ϱk2) . . . . . (σkl, ϑkl, ϱkl)

objects are considered by using a finite number of attributes, and attribute values are T-SFNs based

on three evaluation measures i.e; degree of support, abstain, and objection.T-SF decision systems

depict all available information and knowledge, where objects are considered by using a finite number

of attributes and attributes values are T-SFNs based on three evaluation measures i.e; degree of

support, abstain, and objection. In Table 5.5 Sqr = xq(br) = (σqr, ϑqr, ϱqr), (q = {1, 2, . . . , k}, r =

{1, 2, . . . , l}), where σqr, ϑqr, ϱqr ∈ [0, 1], satisfy the condition 0 ≤ σt
qr + ϑt

qr + ϱtqr ≤ 1. σqr is a

degree of support, which is used to describe the degree that object xq satisfies the attribute ar, ϑqr is

abstain degree, which is used to describe the degree that object xq dose not satisfies the attribute ar,

ϱqr indicates the degree that object xq dose not fulfill the attribute ar. To aggregate the evaluation

measures of an object xq on issues (br) for (r = 1, 2, ..., l), we use T-SFFHA operator or T-SFFHG

operator based on frank fuzzy operations, defined by Equations 5.19 and 5.37 in Section 5.2.

Let Sqr = (σqr, ϑqr, ϱqr) be evaluation measures of object xq on issues br, (q = 1, 2, ..., k),

(r = 1, 2, ..., l), then the T-SFFHA and T-SFFHG operators aggregate the evaluation measures as

follows:

T − SFFHA (Sq1,Sq2, ...,Sql) =



t

√
1− logτ

(
1 + Πn

r=1

(
τ
1−σ̂t

δ(r) − 1
)wr
)
,

t

√
logτ

(
1 + Πn

r=1

(
τ
ϑ̂t
δ(r) − 1

)wr
)
,

t

√
logτ

(
1 + Πn

r=1

(
τ
ϱ̂t
δ(r) − 1

)wr
)


.

T − SFFHG (Sq1,Sq2, ...,Sql) =



t

√
logτ

(
1 + Πl

r=1

(
τ
σ̂t
δ(r) − 1

)wr
)
,

t

√
1− logτ

(
1 + Πl

r=1

(
τ
1−ϑ̂t

δ(r) − 1
)wr
)
,

t

√
1− logτ

(
1 + Πl

r=1

(
τ
1−ϱ̂t

δ(r) − 1
)wr
)


.
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where w = (w1, w2, ..., wl)
T is the weight vector associated with T-SFFHA and T-SFFHG such that

wr > 0 and
∑l

r=1wr = 1, ϖ = (ϖ1, ϖ2, ..., ϖl)
T is the weight vector of Sqr (r = 1, 2, .., l) such that

ϖr > 0 and
∑n

r=1ϖr = 1 , Ŝδ(qr) is the rth largest of the weighted Ŝqr = lϖrSqr), (r = 1, 2, ..., l)

where l is the balancing coefficient.

An aggregated evaluation measure for an object xq on attribute set B is obtained by using the

following formula:

E(xq, B) = ⊕l
r=1ϖrSqr

where, ϖSqr = ϖxq(br), ϖ is the attribute weights.

By using T-spherical fuzzy frank operators, we obtain aggregated evaluation of an object xq on B

in the form of T-SFN. Further the aggregated evaluation matrix may be defined as follows:

M(E) = |E(xq, B)|k×k

Moreover, on the basis of E(xq, B), we have the decision rules as follows:

(P1) If (E(xq, B)) ≥ α then decide xq ∈ POS(X);

(B1) If β < (E(xq, B)) < α then decide xq ∈ BND(X);

(N1) If (E(xq, B)) ≤ β then decide xq ∈ NEG(X).

where, (α, β) is a pair of threshold based on T-SFNs. Then the positive, neutral and negative

regions are given by rules (P1), (B1) and (N1) respectively, as follows:

POS(α,β)(X) = {xq ∈ X | (E(xq, B)) ≥ α};

BND(α,β)(X) = {xq ∈ X |α < (E(xq, B) < β};

NEG(α,β)(X) = {xq ∈ X | (E(xq, B) ≤ β}.

We can get a tri-partition based on positive, neutral, and negative regions by using the

threshold pair based on T-SFNs. For these sets, in particular, POS(α, β)(X) ∪ BND(α, β)(X) ∪

NEG(α, β)(X) = X i.e., these are pairwise disjoint sets. Moreover, we may compare T-SFNs by

using the score function defined by Definition 2.5.3 as (xq, B) and (α, β) are T-SFNs.

121



5.6.1 Decision making process

We construct a TWD method based on the proposed T-spherical fuzzy frank operators to deal with

multi-criteria decision problems with T-spherical fuzzy information, the main steps of the procedure

are as follows:

Step 1: Consider a T-spherical fuzzy decision system:

Consider a T-spherical fuzzy decision system founded on the finite set of objects observing

the attributes in the form of matrix M(S) = [Sqr]. Also, choose the least value of t for which

every triplet of the considered decision system lies in the frame of T-SFNs.

Step 2: Normalization:

Transform the decision matrix M(S) = [Sqr] into the normalized form M̃(S) =
[
S̃qr

]
by the

below formula:

S̃qr =


Sqr, if for benefit attribute

(Sqr)
c , for cost attribute.

where (Sqr)
c is the complement of Sqr.

Step 3: Attributes’ weight determination:

To derive the weights of attributes, the stated entropy measure for T-SFSs is used. First,

Equation (5.41) is applied for each rth attribute to compute the entropy measure which depicts

the dispersion in provided information of attributes, further these attributes’ entropies are

utilized to assign their weights (ϖr).

Er =
1

l

k∑
q=1

(
1− 4

5

[∣∣σt
qr − ϱtqr

∣∣+ ∣∣ϑt
qr − 0.25

∣∣]) (5.47)

Divergence is expressing the actual information of rth attribute obtained by using relation
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divr = 1− Er. The objective attribute weights can be determined as follows:

ϖr =
divr∑l
r=1 divr

. (5.48)

Step 4: Aggregation:

Aggregate the T-SFNs based evaluation measures xq(br)= Sqr (r = 1, 2, ..., l) for each object

xq (q = 1, 2, ..., k) into the overall aggregated value Sq = E(xq, B) either by using the proposed

T-SFFHA or T-SFFHG operators. Mathematically,

Sq = T − SFFHWAϖ,w (Sq1,Sq2, ...,Sql) ,

Sq = T − SFFHWGϖ,w (Sq1,Sq2, ...,Sqk) ,

where ϖ = (ϖ1, ϖ2, ..., ϖl) is the weight vector of attributes obtained in Step 3, and w =

(w1, w2, ..., wl) is the weight vector associated the aggregation operator such that wr > 0 and∑l
r=1wr = 1.

Step 5: Score values:

Compute the score values of the aggregated evaluation measures s (Sq) (q = 1, 2, ..., k).

Step 6: Set threshold values:

A pair of threshold based on T-SFNs is chosen by experts. These two numbers represent

desired levels of precision for deciding about inclusion of objects in POS(X), BND(X) and

NEG(X).

Step 7: Construction of POS(X), BND(X) and NEG(X).

By using decision rules, (P1), (B1) and (N1), we formulate the POS(X),

BND(X) and NEG(X).
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5.7 Illustrative example

This section aims to resolve a practical example of project investment to validate the procedure of

the proposed multi-criteria TWD method. Moreover, we perform a series of experiments to examine

the influence of various specific operators and parameter values on the aggregation results.

5.7.1 Example

An investment company needs to opt some investment projects for reasonable use of idle funds.

There are five alternatives (where X = (x1, x2, x3, x4, x5) can be selected: Two projects are asso-

ciated with internet education (denoted as x1 and x2 ) and three projects are associated with film

studio investments (represent as x3, x4 and x5). The company’s board of directors acquired the

services of some experts(decision makers). According to the project investment books, the decision

makers evaluate the alternatives with respect to four attributes including, human resources, social

benefits, marketing management and expected benefits (denoted as b1, b2, b3 and b4, respectively),

with unknown weights. Also ΩD = {accepted, abstain, rejected} is the partition of decision set.

To offer sufficient freedom in the evaluation of the values of the five attributes related to each al-

ternative project, the decision makers were allowed to use T-SFNs. The evaluation information of

decision makers is detailed in the following matrix. [97]

Table 5.6: T-spherical fuzzy decision matrix

b1 b2 b3 b4

x1 (0.47, 0.66, 0.75) (0.81, 0.30, 0.37) (0.57, 0.51, 0.39) (0.34, 0.56, 0.78)

x2 (0.11, 0.11, 0.11) (0.59, 0.66, 0.66) (0.91, 0.34, 0.68) (0.68, 0.46, 0.88)

x3 (0.35, 0.45, 0.61) (0.42, 0.56, 0.71) (0.27, 0.59, 0.72) (0.41, 0.73, 0.41)

x4 (0.59, 0.45, 0.90) (0.44, 0.55, 0.77) (0.46, 0.46, 0.45) (0.76, 0.46, 0.85)

x5 (0.82, 0.46, 0.69) (0.16, 0.33, 0.42) (0.55, 0.44, 0.29) (0.21, 0.43, 0.13)
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Table 5.7: Normalized T-spherical fuzzy decision matrix

b1 b2 b3 b4

x1 (0.75, 0.66, 0.47) (0.81, 0.30, 0.37) (0.39, 0.51, 0.57) (0.34, 0.56, 0.78)

x2 (0.11, 0.11, 0.11) (0.59, 0.66, 0.66) (0.68, 0.34, 0.91) (0.68, 0.46, 0.88)

x3 (0.61, 0.45, 0.35) (0.42, 0.56, 0.71) (0.72, 0.59, 0.27) (0.41, 0.73, 0.41)

x4 (0.90, 0.45, 0.59) (0.44, 0.55, 0.77) (0.45, 0.46, 0.46) (0.76, 0.46, 0.85)

x5 (0.69, 0.46, 0.82) (0.16, 0.33, 0.42) (0.29, 0.44, 0.55) (0.21, 0.43, 0.13)

5.7.2 The procedure of solution

In the following procedure, we use T-SFFHA operator and T-SFFHG operator to solve TWD

problem with T-spherical fuzzy information.

Using T-SFFHA operator

Step 1. The decision matrix of described problem is provided in Table 5.6. We need to determine

the value of ‘t’ for which the given data lies in T-spherical fuzzy information.

As for t = 3, 0.903 + 0.453 + 0.593 = 1.025 > 1, for t = 4, 0.904 + 0.454 + 0.594 = 0.8182 < 1,.

Hence, all the given values in Table 5.6 lie in T-spherical fuzzy information for n = 4.

Step 2. We may observe that the social benefits and expected benefits are benefit attributes while

human resources, and marketing management are associated with cost attributes. The normalized

T-spherical fuzzy decision system is provided in Table 5.7.

Step 3. By using Equation 5.41, the attribute weight is calculated as shown below.

ϖ = (0.3509, 0.2070, 0.2627, 0.1794) .

lϖ = (1.4036, 0.8280, 1.0508, 0.7176) .
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Step 4. Using the normalized T-spherical fuzzy information listed in Table 5.7, the values of Ŝqr =

(lϖr)Sqr, (for l = 4, τ = 2), are listed as shown below.

Table 5.8: The values of Ŝqr ( l = 4, τ = 2)

Ŝ11 = (0.7486, 0.9693, 0.9957) Ŝ12 = (0.7795, 0.9950, 0.9900) Ŝ13 = (0.3948, 0.9851, 0.9758) Ŝ14 = (0.3129, 0.9455, 0.8409)

Ŝ21 = (0.1197, 0.9999, 0.9999) Ŝ22 = (0.5639, 0.9276, 0.9276) Ŝ23 = (0.6877, 0.9973, 0.7567) Ŝ24 = (0.6295, 0.9696, 0.7416)

Ŝ31 = (0.6603, 0.9975, 0.9994) Ŝ32 = (0.4008, 0.9595, 0.9052) Ŝ33 = (0.7279, 0.9719, 0.9989) Ŝ34 = (0.3775, 0.8739, 0.9782)

Ŝ41 = (0.9420, 0.9975, 0.9881) Ŝ42 = (0.4199, 0.9619, 0.8700) Ŝ43 = (0.4555, 0.9904, 0.9904) Ŝ44 = (0.7066, 0.9696, 0.7780)

Ŝ51 = (0.7439, 0.9971, 0.9090) Ŝ52 = (0.1526, 0.9932, 0.9847) Ŝ53 = (0.2936, 0.9921, 0.9793) Ŝ54 = (0.1932, 0.9750, 0.9990)

By using the score function, we have obtained ordered values of Ŝqr as follows:

Table 5.9: The values of Ŝδ(qr) ( l = 4, τ = 2)

Ŝδ(11) = (0.3129, 0.9455, 0.8409) Ŝδ(12) = (0.7486, 0.9693, 0.9957) Ŝδ(13) = (0.7795, 0.9950, 0.9900) Ŝδ(14) = (0.3948, 0.9851, 0.9758)

Ŝδ(21) = (0.6295, 0.9696, 0.7416) Ŝδ(22) = (0.6877, 0.9973, 0.7567) Ŝδ(23) = (0.5639, 0.9276, 0.9276) Ŝδ(24) = (0.1197, 0.9999, 0.9999)

Ŝδ(31) = (0.3775, 0.8739, 0.9782) Ŝδ(32) = (0.4008, 0.9595, 0.9052) Ŝδ(33) = (0.7279, 0.9719, 0.9989) Ŝδ(34) = (0.6603, 0.9975, 0.09994)

Ŝδ(41) = (0.7066, 0.9696, 0.7780) Ŝδ(42) = (0.9420, 0.9975, 0.9881) Ŝδ(43) = (0.4199, 0.9619, 0.8700) Ŝδ(44) = (0.4555, 0.9904, 0.9904)

Ŝδ51 = (0.7439, 0.9971, 0.9090) Ŝδ52 = (0.2936, 0.9921, 0.9793) Ŝδ53 = (0.1932, 0.9750, 0.9990) Ŝδ54 = (0.1526, 0.9932, 0.9847)

Now we apply the T-SFFHA operator by using Equation (5.19), taking associated weight vector w =

(0.3, 0.2, 0.3, 0.2)T to get the aggregated evaluation measures Sq of the objects xq (q = 1, 2, ..., k):

E(x1, B) = S1 = (0.8813, 0.4057, 0.4912), E(x2, B) = S2 = (0.8603, 0.4225, 0.6254),

E(x3, B) = S3 = (0.8684, 0.4859, 0.4031), E(x4, B) = S4 = (0.9136, 0.3896, 0.5799),

E(x5, B) = S5 = (0.80760, 0.3263, 0.4335).

Step 5: By Definition 2.5.3, we calculate the score values s (E(xq, B)) = s (Sq) (q = 1, 2, 3, 4, 5) of

the aggregated evaluation measures Sq (q = 1, 2, 3, 4, 5) as follows:

s(E(x1, B)) = s (S1) = 0.0916, s(E(x2, B)) = s (S2) = 0.3868, s(E(x3, B)) = s (S3) = 0.5699,

s(E(x4, B)) = s (S4) = 0.5833, s(E(x5, B)) = s (S4) = 0.4280.
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Step 6: Two T-SFNs (α, β) based on T-SFNs are chosen by experts as threshold pair. Here,

α = (0.87, 0.65, 0.33) and β = (0.73, 0.65, 0.43). On the basis of these threshold values, decisions

are made about inclusion of objects in POS(X), BND(X) and NEG(X).

Step 7: By using decision rule (P1), (B1) and (N1), we formulate the POS(X),

BND(X) and NEG(X).

As (E(xq, B)) and (α, β) are T-SFNs so we compare these by using score functions provided by

Definition 2.5.3. s(α) = 0.4408, s(β) = 0.1565. On the basis of the score values of (E(xq, B)) and

(α, β), we formulate the POS(X), BND(X) and NEG(X) as follows:

POS(X) = {x3, x4};BND(X) = {x2, x5};NEG(X) = {x1}.

Using T-SFFHG operator

Step 4. Using the normalized T-spherical fuzzy information listed in Table 5.7, and Ŝqr = (Sqr)
lϖr ,

(for l = 4, τ = 2), the derived results are listed as shown below:

Table 5.10: The values of Ŝqr ( l = 4, τ = 2)

Ŝ11 = (0.6583, 0.7128, 0.5106) Ŝ12 = (0.8420, 0.2862, 0.3530) Ŝ13 = (0.3702, 0.5161, 0.5768) Ŝ14 = (0.4715, 0.5167, 0.7264)

Ŝ21 = (0.0434, 0.1197, 0.1197) Ŝ22 = (0.6517, 0.6316, 0.6316) Ŝ23 = (0.6653, 0.3442, 0.9164) Ŝ24 = (0.7651, 0.4238, 0.8291)

Ŝ31 = (0.4873, 0.4890, 0.6392) Ŝ32 = (0.4938, 0.5350, 0.6803) Ŝ33 = (0.7068, 0.5970, 0.2733) Ŝ34 = (0.5382, 0.6775, 0.3776)

Ŝ41 = (0.8599, 0.4890, 0.6392) Ŝ42 = (0.5130, 0.5254, 0.7394) Ŝ43 = (0.4304, 0.4656, 0.4656) Ŝ44 = (0.8258, 0.4238, 0.7972)

Ŝ51 = (0.5827, 0.4998, 0.8725) Ŝ52 = (0.2227, 0.3148, 0.4008) Ŝ53 = (0.2711, 0.4454, 0.5566) Ŝ54 = (0.3345, 0.3961, 0.1196)

By using the score function, we have obtained ordered values of Ŝqr as follows:
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Table 5.11: The values of Ŝδ(qr) ( l = 4, τ = 2)

Ŝδ(11) = (0.8420, 0.2862, 0.3530) Ŝδ(12) = (0.3702, 0.5161, 0.5768) Ŝδ(13) = (0.6583, 0.7128, 0.5106) Ŝδ(14) = (0.4715, 0.5167, 0.7264)

Ŝδ(21) = (0.0434, 0.1197, 0.1197) Ŝδ(22) = (0.6517, 0.6316, 0.6316) Ŝδ(23) = (0.5639, 0.9276, 0.9276) Ŝδ(24) = (0.6653, 0.3442, 0.9164)

Ŝδ(31) = (0.5382, 0.6775, 0.3776) Ŝδ(32) = (0.7068, 0.5970, 0.2733) Ŝδ(33) = (0.4873, 0.4890, 0.6392) Ŝδ(34) = (0.4938, 0.5350, 0.6803)

Ŝδ(41) = (0.8599, 0.4890, 0.6392) Ŝδ(42) = (0.4304, 0.4656, 0.4656) Ŝδ(43) = (0.8258, 0.4238, 0.7972) Ŝδ(44) = (0.5130, 0.5254, 0.7394)

Ŝδ(51) = (0.3345, 0.3961, 0.1196) Ŝδ(52) = (0.2227, 0.3148, 0.4008) Ŝδ(53) = (0.2711, 0.4454, 0.5566) Ŝδ(54) = (0.5827, 0.4998, 0.8725)

Now we apply the T-SFFHG operator Eq. (5.19), taking associated weight vector w = (0.3, 0.2, 0.3, 0.2)T

to get the aggregated evaluation measures Sq of the objects xq (q = 1, 2, ..., k):

E(x1, B) = S1 = (0.5959, 0.5789, 0.5715); E(x2, B) = S2 = (0.2804, 0.7616, 0.8316);

E(x3, B) = S3 = (0.5430, 0.5932, 0.5668); E(x4, B) = S4 = (0.6743, 0.4765, 0.7066);

E(x5, B) = S5 = (0.3240, 0.4286, 0.6491).

Step 5: By Definition 2.5.3, we calculate the score values s ((xq, B)) = s (Sq) (q = 1, 2, 3, 4, 5) of the

aggregated evaluation measures Sq(q = 1, 2, 3, 4, 5) are listed as follows:

s(E(x1, B)) = s (S1) = −0.8479; s(E(x2, B)) = s (S2) = −0.5328; s(E(x3, B)) = s (S3) = −0.1639;

s(E(x4, B)) = s (S4) = −0.1056; s(E(x5, B)) = s (S4) = −0.2389.

Step 6: A threshold pair (α, β) based on T-SFNs is chosen by experts. Here, α = (0.33, 0.45, 0.63)

and β = (0.47, 0.58, 0.87). Based on these threshold values, decisions are made about the inclusion

of objects in POS(X), BND(X), and NEG(X).

Step 7: By using decision rule (P1), (B1) and (N1), we formulate the POS(X), BND(X) and

NEG(X).

As (E(xq, B)) and (α, β) are T-SFNs so we compare these by using score functions provided by

Definition 2.5.3. s(α) = 0.− 0.2233, s(β) = −0.6780. On the basis of score values of (E(xq, B)) and

(α, β). we formulate the POS(X), BND(X) and NEG(X) as follows:

POS(X) = {x3, x4};BND(X) = {x2, x5};NEG(X) = {x1}.
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5.7.3 Parameter analysis

The influence of two parameters (τ, t) on final decisions of three-way classification of objects, is

obvious so we may investigate their effects.

The influence of the parameter τ

We employ several values of τ to find the effect of different values of parameter τ , on our established

three-way decisions approach. The obtained outcomes are depicted in Table 5.12.

Table 5.12: TWD outcomes with different values of τ by using T-SFFHA operator

τ Score values outcomes

τ −→ 1 0.0988,0.3916,0.4711,0.5935,0.4299 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 2 0.0916,0.3868,0.5699,0.5833,0.4280 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 5 0.0891,0.3714,0.5539,0.5725,0.4167 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 10 0.1028,0.3853,0.5436,0.5661,0.4058 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 50 0.1103,0.3987,0.5521.0.5535,0.4169 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

Table 5.13: TWD outcomes with different values of τ by using T-SFFHG operator

τ Score values outcomes

τ −→ 1 -0.8587,-0.5465,-0.1739,-0.1172,-0.2729 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 2 -0.8479,-0.5328,-0.1639,-0.1056,-0.2689 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 5 -0.7901,-0.5224,-0.1597,-0.1167,-0.2758 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 10 -0.8299,-0.5328,-0.1558,-0.0985,-0.2574 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

τ = 50 -0.8153,-0.5232,-0.1429,-0.0873,-0.2364 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

As shown in Tables 5.12, 5.13, the score values with different parameter τ vary, but the

decision results are same, indicating that the suggested method has an isotonic approach, and

decision makers are allowed to opt the adequate value based on their preferences. We may observe
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that the score values derived by the T-SFFHWG operator enlarge as the parameter enlarges for the

same option, but the score values generated by T-SFFHWA operator decrease as the parameter τ

increases within the interval (1, 5].

The influence of the parameter t

To explore the impact of different values of the parameter t on three-way decisions outcomes, we use

various values of t in Step 4 of the proposed TWD approach. The obtained outcomes are depicted

in Tables 5.14 and Table 5.15. (setting τ = 2).

Table 5.14: TWD outcomes with different values of t by using T-SFFHA operator

t Score values outcomes

t = 4 0.0916,0.3868,0.5699,0.5833,0.4280 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 6 0.0683,0.3628,0.5418,0.5765,0.4159 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 8 0.0529,0.3463,0.5233,0.5671,0.4050 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 10 0.0465,0.3253,0.5038,0.5412,0.3967 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 12 0.0316,0.3081,0.4966,0.5239,0.3724 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

Table 5.15: TWD outcomes with different values of t by using T-SFFHG operator

t Score values outcomes

t = 4 -0.8479,-0.5328,-0.1639,-0.1056,-0.2689 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 6 -0.8376,-0.5293,-0.1548,-0.1021,-0.2501 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 8 -0.8265,-0.5187,-0.1499,-0.1008,-0.2443 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 10 -0.8173,-0.5062,-0.1345,-0.1001,-0.2399 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

t = 12 -0.8064,-0.4986,-0.1299,-0.0972,-0.2258 POS(X) = {x3, x4}, BND(X) = {x2, x5}, NEG(X) = {x1}

Table 5.14 shows that the score values derived by using T-SFFHA operator become smaller

and smaller as the value of t increases while Table 5.15 depicts that the score values derived by

T-SFFHG operator rise as the value of t increases. However, the decision results are same. The
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parameter t can be viewed as the “DM’s attitude”. Same as for MCDM approach, different decision

makers can opt the value of t based on their optimistic or pessimistic attitude.

5.7.4 Comparative analysis

In fact, the existing decision methods based on aggregation operators [70, 76, 77] mainly focus on

ranking of the alternatives and then selection of the best one, classification of alternatives is not

provided. Nevertheless, our suggested approach classifies these alternatives into three domains i.e;

positive domain, central domain and negative domain. Nevertheless, it is a strenuous task here

to directly compare our suggested approach with some existing methodologies. Although, we may

attain the ranking of alternatives by utilizing the proposed T-SFFA operators. To validate the

viability and supremacy of the suggested approach, this study provides a collective comparative

analysis with some previous decision approaches that includes the MCDM approach founded on T-

SFEHIA and T-SFEHIG [76], TSFHHA and TSFHHG [77], SFNWA and SFNWG [70] operators.

The comparison results obtained by these existing methods and our designed method are depicted

in Table 5.16.

Table 5.16: Ranking results for different existing aggregation operators

Parameter score values Ranking

Proposed T-SFFHA operator 0.0916,0.3868,0.5699,0.5833,0.4280 x4 ≻ x3 ≻ x5 ≻ x2 ≻ x1

Proposed T-SFFHG operator -0.8479,-0.5328,-0.1639,-0.1056,-0.2689 x4 ≻ x3 ≻ x5 ≻ x2 ≻ x1

T-SFEHIA operator [76] -0.5637,-0.1059,0.3521,0.5023,0.2779 x4 ≻ x3 ≻ x5 ≻ x2 ≻ x1

T-SFEHIG operator [76] -0.5967,-0.1344,0.2360,0.4019,-0.2064 x4 ≻ x3 ≻ x5 ≻ x2 ≻ x1

T-SFHHA operator [77] -0.6352,-0.1643,0.2971,0.3623,-0.1481 x4 ≻ x3 ≻ x2 ≻ x5 ≻ x1

T-SFHHG operator [77] -0.4579,-0.3288,-0.2361,-0.1757,-0.3048 x4 ≻ x3 ≻ x5 ≻ x2 ≻ x1

SFNWA operator [70] Not applicable

SFNWG operator [70] Not applicable

It is observed that ranking results of alternatives attained by using the previous methods

and our designed method are same. However, the ranking results for the alternatives x2 and
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x5 are slightly changed by using TSFHHA operator [77]. But the interesting thing is, that the

best alternative x1 remains same in all cases. This demonstrates the validity and feasibility of

the developed operators. The proposed T-spherical frank fuzzy operators with the spherical fuzzy

set environment provide an effective generalized methodology to deal with uncertainty in decision

analysis. These operators with the T-spherical fuzzy environment are more flexible and virtual to

manage MCDM and TWD problems of real world.

In comparison to the aforementioned aggregation operators, the proposed work has the fol-

lowing key advantages during implementation.

1). Unlike Ullah et al. [77], the proposed approach remains unchanged on the same output ranking

for different operators.

2). The developed method includes two parameters, which seems more suitable to adjust the

aggregate value according to the real-world decision needs and encapsulate the various spherical

fuzzy aggregation operators. Consequently, the proposed method proved to be more general and

applicable.

3). Unlike the previous methods [70,76,77], the stated method employ the proposed entropy measure

for the criteria weight determination, and the derived weights are then used in the decision process.

Thus the proposed method is more useful in the situation where the criteria weights are completely

unknown.

4). T-spherical fuzzy Frank operators can tackle the problems considered in the present day litera-

ture [70, 98, 99], but the existing operators of IFSs, PyFSs, PFSs and q-ROFSs cannot address the

problems described in T-spherical fuzzy environment.
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Chapter 6

Concluding Remarks

In this chapter, the proposed doctoral work is concluded, the contributions of this thesis are sum-

marized. Further, some possible future research directions are presented.

6.1 Conclusions

In the real world, decision-making activity occurs frequently and most of the decision problems have

imprecise and ambiguous information. Due to the presence of various types of uncertainties, classical

methods are not as resourceful to address these decision problems. In last few decades, several

decision making techniques have been established to reduce the complexity of MCDM problems.

But still, there are some imperfections in these provided techniques, therefore, there is a need to

develop some advanced approaches. TWD theory has been proved more inventive in diverse decision

making activities as it provides sufficient flexibility and minimizes the decision risks. Conflict

analysis study aims to lessen the complexity of conflicts, that occur naturally in many aspects of

real-life. Numerous studies have been established to seek effective procedures to upgrade conflict

management. TWD concept is closely related to the idea of conflict analysis, hence recent studies

have combined both ideas significantly to manage more complex real-life scenarios. In the current

thesis, novel three-way conflict resolution models are established to facilitate the intricate conflict

situations more precisely. In addition, MCDM and TWD models are proposed to solve decision

problems with T-spherical fuzzy data, whose weights of criteria are fully unknown.

At the beginning of this thesis, we initiated a novel three-way conflict study model based on
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GTRS. In comparison to current conflict studies, the proposed model adopts a bilateral approach

because almost all existing conflict analysis models are unilateral and did not take into account the

concerns of all the objects. In reality, the actions of objects are interlinked with severe consequences.

Therefore, the actions of all objects should be considered simultaneously so that the respective gains

(payoffs) can be calculated accordingly. The proposed model overcome the imperfections of existing

models effectively and improved the understandability of conflict resolution.

Our proposed GTRS approach is more fruitful as it explores all possible actions for each player

concerning the others and is not as conservative as Pawlak’s model. It uses the mean cumulative

degree of three measures: agreement, neutrality, and disagreement, with a pair of threshold values

for each measure to signify the utilities of the players. Each object uses its respective payoff

functions in analyzing another object for its inclusion in conflict, neutral and allied sets of the

object. The strategies of players are used to drive a balanced solution by using Nash equilibrium

for classifying the conflict, neutral and allied objects. GTRS is more efficient in solving three-way

conflict resolution and investigating the varying probabilistic thresholds to improve the rough set

decision-making. We demonstrate that the proposed game mechanism is more useful for reducing the

complexity experienced in the context of multi-agent-based conflict situations. We elaborated the

game representation for conflict situations, including a detailed description of all game components.

The game settings provide a compromise and trade-off mechanism for combining and balancing the

differences between the opinions of different objects. In particular, we demonstrate that equilibrium

analysis can be used to construct conflict, allied, and neutral sets. We have also utilized the proposed

model to solve the Syrian conflict problem with a detailed analysis and illustrate its effectiveness.

The proposed model is further used for Middle East conflict resolution. It is also applied to a case

study on development plans for Gansu province in China. A detailed comparison with existing

models is given to validate the strength of the proposed model. As a result, we expect twofold

advantages: at first, it will enhance the current understandability of the conflict study in the GTRS

framework, and secondly, it will provide a better perception of the GTRS theory, its wide scope,

and appropriateness to deal with various real-life conflict problems.

The upcoming chapter focused on another approach to address the conflict resolution problems

when the given IS is based on agents’ opinions with multiple positive and negative values rather
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than a single value. When facing a conflict situation it seems more reasonable to depict the agents’

attitude by multiple positive and negative real numbers. Most of the current conflict study models

are rigid in their approach and decision makers have no freedom to take a definite stance. Though

these models claim that the most indicative scales are employed to depict the agents’ attitude of

partial agreement or disagreement but in fact, they are failed to deal with an IS based on agents’

opinions with multiple values (positive and negative). Hence, there is a need for an adjustable

model to evaluate the hesitancy of agents’ opinions. Compared with existing studies, we put efforts

to promote the conflict analysis study under a hesitant fuzzy environment. Our research work

contributes in three aspects. Firstly, we have reset the initial IS by limiting the domain of agents’

opinions from [−1,+1] to [0, 1]. Secondly, we construct a three-way conflict analysis model based on

a hesitant fuzzy IS by utilizing aggregated opinion functions as HFEs and associated loss functions

as real numbers. Instead of using traditional hesitant fuzzy operations we have defined and utilized

some new hesitant fuzzy operations to calculate the risk loss functions based on the Bayesian decision

procedure. The proposed model does not rely on threshold values to formulate allied, neutral, and

conflict sets of agents. In last, we drive three-way decisions by utilizing two different techniques,

the first one is the general method based on the average of score functions and the second one is the

ranking method of possibility degree founded on a stochastic way. To demonstrate the vitality of

the proposed model the Middle East conflict problem is considered, and the results are summarized.

A comparison with existing models is also provided.

The fifth chapter enhanced the contribution of this thesis regarding the provision of the

MCDM method and TWD method based on the proposed Frank aggregation operators to handle

decision-making problems with T-spherical fuzzy information. In present-day studies, the existing

aggregation operators concentrated on the algebraic, Einstein, and Hamacher norms under T-SFSs

to formulate the combination process. Algebraic, Einstein, and Hamacher product and sum are not

only fundamental TSFS operations that characterize the union and intersection of two T-SFSs. A

generalized norm may be utilized to build a general union and intersection under T-spherical fuzzy

information; that is, instances of deferent-norms families can be used to execute the corresponding

intersections and unions under a T-spherical fuzzy environment. Frank product and sum are suitable

substitutes of the algebraic, Einstein, and Hamacher product for an intersection and union and can

deliver smooth estimates of the algebraic product and sum. But it seems that in the literature, there
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is no research on aggregation operators utilizing these operations on T-SFSs. Motivated by these

defects and beneficial characteristics of Frank t-norm and t-conorm, we explored novel generalized

operational rules of T-SFNs to build T-spherical fuzzy aggregation operators that comply with the

principles of Frank t-norm and t-conorm. Keeping in mind the significance of ordered position and

argument itself, the notions of T-SFFHA and T-SFFHG are provided. Some desirable properties

and special cases of these operators are also studied comprehensibly. Besides, the T-spherical fuzzy

entropy measure is proposed along with detailed proof of its characteristics. Then, based on the

proposed operators and entropy measure, the MCDM method and TWD method are established

to handle the decision-making problems with T-SF information. We compare our developed ap-

proach with the method structured on the Archimedean t-norm and t-conorm based spherical fuzzy

weighted averaging and geometric operators. These operators have a general representation by

Archimedean t-norm and t-conorm. But, due to its limited scope of practical application, it can

only handle the MCDM problems demonstrated by PFNs or SFNs. On the contrary, the proposed

study has the parameter t, which can express the spherical fuzzy information more flexibly. The

presented study has a good improvement in terms of criteria weights, that is, it utilizes the pro-

posed entropy measure to find the criteria weights and can address the completely unknown weight

information problems accurately. Two practical cases are provided to elaborate on the implication

of the suggested MCDM and TWD methods for selecting the best investment company. Further, we

examined the impact of the parameters τ and t in the decision procedure and reported the stability

stage of sorting results. Finally, a comparative analysis is conducted with some existing approaches

to highlight the feasibility and supremacy of the presented work.

6.2 Future research work suggestions

This section presents some significant future research guidelines for researchers in this area by

analyzing the subject matter of this study. For possible future research lines, see our suggestions

as follows:

i. In the proposed approach for conflict resolution, we examined Nash equilibrium game analysis

for the GTRS model. Some other types of game analysis, for instance, the trembling-hand
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perfect equilibrium [100], correlated equilibrium [101], and ϵ-Nash equilibrium [102], may also

be applied in the GTRS model. In this context, it would be a useful and interesting task

to fix the relationship between the decision thresholds and a specific kind of game analysis

under observation. Another significant issue would be to analyze the implications of various

game solutions for decision-making.

ii. Other kinds of games like matrix games and in some cases zero-sum games can be used to

study conflict resolution. To devise more practical ways to remove conflict, we suggest using

GTRS in combination with formal three-way concept analysis.

iii. GTRS generally considers a direct modification of thresholds as a possible game strategy. Very

often, this proves to be troublesome in exactly finding out and illustrating the strategies of

players as a decision framework from players’ viewpoint. More significant approaches may be

utilized to develop strategies that may incite far better and more purposeful interpretations.

iv. One can work on incomplete ISs as it is possible for some issues an object cannot take a

concrete decision. Therefore, it is a challenging problem to deal with such scenarios. We

suggest considering an IS with fuzzy values that allow objects more freedom in expressing

their opinions as an object does not need to fully agree or disagree on a certain issue.

v. Apart from working on conflict resolution under a hesitant fuzzy environment, the proposed

approach can be utilized for other multi-criteria decision problems, especially in three-way

decision problems.

vi. In the future, the proposed methods can be employed in diverse fields like spam email filtering,

document classification, and web mining under uncertain environments.

vii. T-Spherical fuzzy frank aggregation operators can also be examined with fuzzy, hesitant fuzzy,

and dual fuzzy weight information.

viii. As future research study, the established MCDM and TWD methods for the T-spherical fuzzy

system can be applied in other domains, such as three-way conflict analysis, project selection,

risk analysis, and in other fields with uncertain and incomplete information.
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