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Abstract 

Obesity and diabetes are complex metabolic disorders characterized by elevated levels 

of fats and glucose, respectively. Currently, Protein Tyrosine Phosphatase 1B 

(PTP1B) is known for its negative regulation of insulin and leptin signaling. A low 

dose of streptozotocin (STZ) combined with a High Fat Diet (HFD) results in 

endoplasmic reticulum stress that results in the cleavage of PTP1B which increases 

the level of active PTP1B in the cytosol, causing the dephosphorylation of tyrosine-

mediated receptors. Shred of evidence showed that PTP1B is overexpressed in both 

hypothalamus and adipocytes, disrupting the leptin signaling pathways in both organs. 

Hence, we predict that the inhibition of PTP1B might be a potential therapeutic target 

in the relieving of leptin resistance. Numerous studies have reported that Dodonaea 

Viscosa extract has hypoglycemic, anti-inflammatory, and anti-PTP1B properties. 

Compound 5, 7-dihydroxy-3, 6- dimethoxy-2- (4-methoxy-3- (3-methyl-2-enyl) 

phenyl)-4H -chromen-4- one extracted from the Dodonaea Viscosa was analyzed and 

showed anti-diabetic and anti-leptin resistant properties. We have divided our 

experimental animals into three groups named Group I, (Normal), Group II, (STZ-

HFD induced diabetic group), and Group III, (STZ-HFD-compound treated group). 

Real-time PCR data showed that leptin lipolytic (PPARα, HSL, and MGL), and 

energy homeostasis markers (STAT3 and POMC) are found downregulated in both 

adipose and hypothalamus, respectively followed by their upregulation in the 

compound-treated group. We explored the downstream cascade of leptin signaling 

and its role in anorexic signaling in the hypothalamus and lipolysis in adipose tissue. 

Interestingly, we observed that both activities were dysregulated in the STZ-HFD 

model and were potentially reverted in the compound-treated group. Likewise, PTP1B 

and inflammatory markers (IL-6 and IL-1β) expression was significantly reduced in 

Group III. Collectively, the inhibitory effect of our compound helps to determine that, 

our compound not only inhibits the activity of PTP1B but also affects its regulated 

pathways same as our target leptin signaling pathway. Taken together, our compound 

ameliorates the diabetic condition by targeting insulin signaling mediators and our 

study demonstrates that by targeting PTP1B we might also encounter leptin signaling.  

Key words: Leptin resistance, PTP1B, streptozotocin, HFD, Dodonaea Viscosa, 

Viscosol. 
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1. INTRODUCTION 

1.1. Adipose 

Adipose tissue, conversationally known as ‘‘fat’’ is an extensive heterogeneous and 

adaptable organ. While generally and historically viewed as a passive site for storage 

of energy, currently it is understood that adipose tissue controls and regulates various 

aspects of entire body physiology, which includes intake of food, insulin sensitivity, 

immune response, body temperature, maintenance of energy level. A pivotal property 

of adipose tissue is its high level of plasticity (A Sakers et al., 2022). To date 

numerous types of adipose tissues have been reported, specifically white adipose 

tissue (WAT), Brown adipose tissue (BAT) and Beige, that are present in different 

anatomical positions all through the body (A Chait and LJ Den Hartigh 2020).  

Adipose tissue is composed of many diverse sorts of cells which functions 

coordinately and also secretes various types of hormones, cytokines and chemokines. 

Roughly 30% of the cells inside adipose tissue are adipocytes and the rest of the cells 

are stromal cells, immune cells, fibroblasts, macrophages, pre-adipocytes, and 

endothelial cells. (DE Chusyd et al., 2006). Warm blooded animals have two main 

sorts of adipose tissue; WAT and BAT. WAT have the largest proportion of total 

body adipose tissue and is present around major and important organs and blood 

vessels subcutaneously and abdominal cavity (ME Piche et al., 2020). 

Across ageing adipose tissue quantity and dissemination also changes. Adipose tissue 

become dysfunctional with the increased number of inflammatory cytokines and also 

its concentration decreases when the anti-inflammatory cytokines amount decrease (E 

Zoico et al., 2019). The World Health Organization measures that about 1 billion 

individuals are overweight around the world, and 300 million individuals are obese 

(WHO). This information is alarming due to the fact that obesity can disrupt the 

function of different organ systems (YC Chooi et al., 2019), can also short life span of 

an individual and furthermore, epidemiology investigations have recorded high body 

mass index (BMI) as a risky aspect for different set of diseases which includes 

Corona, T2DM, cardiovascular diseases (CVD), Non-alcoholic fatty liver disease 

https://scholar.google.com/citations?user=Fj04rhsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=rApq-IAAAAAJ&hl=en&oi=sra
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(NAFLD) different type of cancers and chronic kidney disease (BM Popkin et al., 

2020; Lauby-Secretan B et al., 2016). These all problem arise when there is disruption 

in adipose tissue function (Lauby-Secretan B et al., 2016). The escalating number of 

over wight and obesity is now a matter of concern, nearly one-third of the whole 

world population is now either have prey to overweightness and obesity (YC Chooi et 

al., 2019). Obesity severely affects the whole-body physiology and also contributes to 

develop different serious conditions in the body including diabetes (GM Singh et al., 

2013). WHO has announced the obesity as a risk for human health. Obesity is not 

restricted to age it can occur to any person at any stage of life and at any age (YC 

Chooi et al., 2019). 

Table 1.1 Characteristics of different adipose tissues. 

 WAT BAT Beige/brite References 

 

Location 
Visceral and 
subcutaneous 

Interscapular, 
Suprarenal 
and neck 
region 

Supraclavicular, 
cervical, within 
inguinal WAT 

A Thirupathi 
et al. (2019); 
M 
Soundarrajan 
et al (2020) 

Morphology Large adipocyte Small 
adipocyte 

Small adipocyte 

M Cedikova 
et al. (2016); 

A Thirupathi 
et al. (2019) 

Lipid droplet Large, single Small, 
multiple 

Multiple small 
lipid droplet 

Q Zhu et al. 
(2019); MD 
Lynes et al. 
(2018) 

Origin/develop
ment 

Pdgfr-α 
progenitors 

Myf5+ 
progenitors 

---- 

Brown et al. 
(2014); 

Harms and 
Seale (2013) 

Functions Store energy Heat 
production 

Adaptive 
thermogenesis 

M Cedikova 
et al. (2016); 
Harms and 
Seale (2013) 

UCP-1 Almost 
undetectable 

++ Upon stimulus++ Cedikova et 
al. (2016); 

https://scholar.google.com/citations?user=urXYmB4AAAAJ&hl=en&oi=sra
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Harms and 
Seale (2013) 

Mitochondria ++ ++ Upon stimulus++ 
Cedikova et 
al. (2016) 

Adipocyte-
Specific gene 

MEST, GRAP2, 
TCF21, NANT, 
APOL7C, 
DAPL1, 
STAP1, 
RIP140, TLE3, 
Rb 

DIO2, 
KNG2m, 
COX7A1, 
BMP7, 
CIDEA, 
CPT1B, ZIC1, 
SCL27A2, 
ELOVL3 

Tbx1, Tmem26, 
CD137 

M Hassan et 
al., (2012); C 
ME Rafols 
(2014); 
Harms and 
Seale (2013); 
CH Saely et 
al. (2012) 

Vascularization Low Abundant 
Cold stimulus 
tends to increase 
angiogenesis 

M Hassan et 
al., (2012) 

Obesity Positive effect 
Negative 
effect Negative effect 

Cedikova et 
al. (2016) 

Activators HFD 

Thyroid 
hormone, 
cold, Bmp8b, 
Mmp7, 
natriuretic 
peptide 

FGF21, irisin, 
catecholamines, 
thiazolidinedione
s 

Harms and 
Seale (2013); 
Cedikova et 
al. (2016) 

Iron content Low Abundant Upon stimulation 
(Abundant) 

Harms and 
Seale (2013) 

Enriched 
markers 

Ang, Resistin, 
LPL, G3PDH 

UCP-1, Eva1, 
Pdk4, Ebf3, 
Hspb7 

Tmem26, Tbx1, 
Shox2 

Q Zhu et al. 
(2019); 
Cedikova et 
al. (2016); 
Harms and 
Seale (2013) 
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1.1.1. Leptin 

Leptin is a 16 KDa hormone and was discovered in 1994 by Freidman et al. The word 

“Leptin” was originally coined from the Greek word ‘leptos’ which literally means 

‘thin’ (AG Izquierdo et al., 2019). It is mainly produced and secreted by WAT while a 

minor concentration of leptin is also secreted by fibroblast (K Watanabe et al., 2019), 

mammary gland (K Rehman et al., 2018), placenta (M Schanton et al., 2018), skeletal 

muscle (M Schonke et al., 2018), ovary (SF de Medeiros and RJ Rodgers 2021), 

stomach (K Inagaki-Ohara et al., 2019), pituitary gland (GV Childs et al., 2021). It is 

encoded by Lep (Ob) gene which resides on chromosome 7q32.1 (Zhang et al., 1994; 

Li et al., 1999).  

Leptin belongs to type I helical family of proteins which is linked to interleukins, 

growth and prolactin hormone. It consists of 4 antiparallel helices, forming a 

transmembrane structure consisting of 5-6 turns (F Zhang et al., 2005). Inactive and 

non-functional leptin protein has 167 amino acids sequence whereas only 146 amino 

acid sequence is present in functional and mature leptin protein (JB Funcke et al., 

2014). Leptin executes its biological activities by binding to its receptor (Ob-Rb), 

encoded by LepR, which is located on Chr:1p31(M Wasim 2016). Leptin regulates 

and control body mass, food intake, reproductive functioning and plays an imperative 

role in angiogenesis, pro-inflammatory responses, fetal growth and lipolysis (M 

Obradovic et al., 2021). Leptin also controls metabolic activities by acting on 

peripheral tissues like adipose tissues (S Carter et al., 2013). 

 

 

 

  

https://scholar.google.com/citations?user=2Nv7c_QAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zSyWwPMAAAAJ&hl=en&oi=sra
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1.1.2. Leptin Receptors 

Leptin receptors have six isoform such as, Ob-Ra, Ob-Rb, Ob-Rc, Ob-Rd, Ob-Re and 

Ob-Rf, these all are due to the result of alternate splicing (A Nunziata et al., 2019). 

These all are different from one another by only a single bond COOH terminus, 

except Ob-Rb which is long isoform of leptin receptor all the remaining isoforms are 

truncated (A Nunziata et al., 2019). Isoform Ob-Rb is majorly expressed in feeding 

center of hypothalamus, where it performs the function of controlling and regulating 

feeding behavior and metabolic rate (M Szyszka et al., 2007). This isoform of leptin 

receptors is also present in the peripheral tissues (T Trinh et al., 2021). Isoform Ob-

Ra and Ob-Rb are present in all the tissues of mammals, but isoform Ob-Rb is very 

specific and only expresses in Hypothalamus and adipocytes (Pennington et al., 

2022). Long isoform of leptin receptor Ob-Rb is the only receptor that can initiate the 

leptin signaling cascade, Ob-Rb activation leads to activation of Janus activated 

      
     
      
         

           
   
       
     

         
      
    

                  
                 
                 

         
          
     

         
        
           
        
         

         
         

         
          
       
           

Figure 1.1 Localization of Leptin receptors and their functions. 
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kinase 2 (JAK2) which turns phosphorylate two tyrosine residues and signal 

transducer and activator of transcription 3 (STAT3) (H Liu et al., 2021). 

1.1.3. Leptin and Energy Homeostasis 

Leptin is reported to regulate food intake via its action on hypothalamus. Various 

studies of animal models have reported that hypothalamus is the key center for 

controlling and regulation of body weight and food intake (S Yang et al., 2017). 

Leptin is secreted in the bloodstream by adipocytes, and to perform its action, leptin 

has to cross blood-brain barrier (BBB), acts on the hypothalamus and informs about 

body energy status (T Trinh et al., 2021). Soon after binding to the Ob-Rb, it then 

regulates the activity of a number of different hypothalamic neurons and expresses 

different orexigenic and anorexigenic neuropeptides. Leptin regulates different neuro 

peptides in the brain such as Neuro peptide Y (NPY), Agouti-related protein (AgRP), 

Proopiomelanocortin (POMC), orexin, galania, melanin-concentrating hormone (S 

Kumano et al., 2003). It is reported that concentration of leptin hormone secreted by 

adipocytes have direct relation with mass of adipose tissue under physiological 

condition (S Carter et al., 2013). 

Leptin is also involved in different processes such as increase glucose metabolism, 

suppressing insulin hyper exocytosis and also having role in fat metabolism (AA 

Ghadge et al., 2017). Different reports stated that leptin acts on β-cells and suppresses 

insulin secretion causing damaging and even destruction of the insulin receptor, 

consequently promoting the synthesis of glucose in the liver (D Kraus et al., 2010; M 

Y Wang et al., 2010; WS Chen et al., 2009). Deficiency of leptin or leptin receptor 

prompts, insulin insensitivity, increases glucose concentration and leads to the 

development of obesity in ob/ob humans and mice (KD Niswender et al., 2007 and 

AG Diwan et al., 2018).  

 

 

 

https://scholar.google.com/citations?user=NehS5tEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=NehS5tEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=L0rrFmgAAAAJ&hl=en&oi=sra
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1.1.4. Leptin Signaling in Adipose 

Conditions like overweightness and obesity are increasing day by day globally and 

their main source is fat depots in our body. Among the various health effects, this 

condition can increase the risk of other Diseases such as, CVD, hypertension, T2DM, 

fatty liver, dyslipidemia, obstructive sleep apnea, certain types of cancers, 

musculoskeletal disorders, many of these shorten lifespan (AG Izquierdo I 2019). 

Leptin signaling starts when Ob-Rb gets activated by interacting with leptin molecule 

and down signaling cascade begins after that. The very first protein which is activated 

by Ob-Rb is JAK2 (BD Manning and A Toker 2017). JAK2 is family member of 

protein Tyrosine Kinases. The JAK family of protein tyrosine kinases is composed of 

four members (JAK1, JAK2, JAK3, and TYK2) that are specifically activated in 

response to different cytokines (JN Ihle 1995). JAK2 phosphorylates Insulin receptor 

substrate 1 and 2 (IRS1/2) and Phosphatidylinositol-3-Kinase (PI3K) is 

phosphorylated by IRS1/2 (H Liu et al., 2021). PI3K family are divided into 3 classes 

(class I, II and III). Amongst them, PI3K class I have numerous vital roles and 

perform important activities (H Guo et al., 2015).  PI3K Class I is a heterodimer and 

is classified into classes IA and IB, based on molecular structure differences (M 

Graupera et al., 2013). PI3K once activated, it phosphorylates phosphatidylinositol 

4,5-biphosphate (PIP2) to convert it into phosphatidylinositol 3,4,5-triphosphate 

(PIP3) on the inner side of the cell membrane and thus recruits signaling protein such 

as AKT/Protein Kinase B (PKB) (TF Franke et al., 1997). 

AKT consists of 3 domains: middle kinases, and regulatory carboxy-terminal domain 

and pleckstrin homology (PH), translocation of AKT is regulated by PH domain (P 

Abeyrathnaet et al., 2015). AKT can be divided into 3 isoforms (AKT1, AKT2, 

AKT3). AKT1 is ubiquitously expressed, AKT2 is mainly expressed in adipose 

tissues, skeletal muscles and liver, and AKT3 is expressed in brain and testes (P 

Abeyrathna et al., 2015; JR Krycer et al., 2010). Leptin activated AKT signaling 

pathway activates Mammalian target of Rapamycin (mTORC) which in turn activates 

Hormone-sensitive lipase (HSL), Adipose triglyceride lipase (ATGL) and Peroxisome 

proliferator-activated receptor alpha (PPARα) (RS Ahima and JS Flier 2000). 

https://scholar.google.com/citations?user=EFhfzoIAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=jDLKMMgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=TXpoP5YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=GaCIdSMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=GaCIdSMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=SWXthG0AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=BqNztmUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=BqNztmUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=BqNztmUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=BqNztmUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HdKbuRkAAAAJ&hl=en&oi=sra
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Forkhead box protein O1 (FOXO1) showed very significant role in the regulation of 

lipolysis in adipose tissues by regulating the expression of Adipose triglyceride lipase 

(ATGL). The role of FOXO1 in lipolysis is confirmed by knocking out FOXO1 gene 

in 3T3-L1 adipocytes, after that process of lipolysis and expression of ATGL is halted 

(P Chakrabarti et al., 2009). Role of leptin mediated Hormone sensitive lipase (HSL) 

is studied by Takahashi et al., stated that HSL is a under control regulation of leptin 

and mediates lipolysis and is more prominent at supra-physiological hyperleptinemia. 

By using HSL knockout mice the role of leptin in HSL expression had been cleared, 

HSL is partly mediated by leptin (M Shimabukuro  2017). 

Monoacylglycerol lipase (MGL) impacts lipid metabolism by somewhere around 2 

mechanisms. To start with, it catalyzes the MGL into glycerol and unsaturated fatty 

acids. These two products of MGL are used for energy purposes or synthesis 

purposes. Second function of MGL is to degrade 2-arachidonoyl glycerol (2-AG), the 

most plentiful endogenous ligand of cannabinoid receptors (CBR). MGL knockout 

mice shows increase 2-AG amount in adipocytes (U Taschler et al., 2011). 

 

Figure 1.2 Activation of leptin receptor and downstream mediators. 
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1.2. Brain 

Brain is the most superior and mysterious organ of the human body, controls almost 

all the basic and important functions of the body (RR Bimonte 1998), such as 

memory, breathing, senses, hunger, vision and controls the body temperature (JM 

Henshaw 2012). At broader level brain is comprised of mainly three parts such as 

cerebrum, cerebellum and the brainstem (LW Swanson 2000). Brain has two 

significantly different regions, outside portion and darker portion is known as gray 

matter while the inner and light portion is called white matter (V Pando-Naude et al., 

2021). Brain has also outer protective covering known as meninges which are 

composed of dura matter, pia matter and arachnoid matter (K Dasgupta  et al., 2019). 

1.2.1. Hypothalamus 

Hypothalamus have 14 gm of weight, constitute a very minute portion of the brain but 

performs very diverse and basic activities of life such as  energy expenditure, feeding 

and digestion, electrolytes balance, regulation of body temperature, reproduction, 

sleep wake cycle (CB Saper and BB Lowell 2014). It is now understood that feeding 

center is present in the hypothalamus, in 1930s and 1940s a lesion was developed in 

the hypothalamus which disrupts feeding pattern and causes obesity and hyperphagia 

(CB Saper and BB Lowell 2014; JH Jeong  et al., 2017). Specific receptors for leptin 

action are present in arcuate nuclei (ARC), ventromedial, dorsomedial and 

premammilary nuclei in the hypothalamus. Leptin concentration decreased due to low 

fats in the body and insulin resistance which results in increased appetite and 

decreased energy expenditure (P Seoane-Collazo et al., 2020).  

1.2.1.1. Leptin signaling in hypothalamus 
Inside the brain, leptin follows up on numerous populaces of Ob-Rb neurons 

fundamentally in the hypothalamus and brain stem (Patterson et al., 2011; Scott et al., 

2009). In the hypothalamus, leptin acts on several neurons which have Ob-Rb 

including those neurons which are lateral to hypothalamic area and the dorsomedial, 

ventromedial, ARC and ventral premammilary area. (Patterson et al., 2011; Scott et 

al., 2009). All these sites contain several differential forms of leptin receptors, every 

https://scholar.google.com/citations?user=CsQTBwsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=_vU61x4AAAAJ&hl=en&oi=sra
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one of which contributes interestingly to leptin activity. The most reported site for 

leptin signaling is ARC (Hayes et al., 2010; Schwartz et al., 2000). 

Binding of leptin ligands to Ob-Rb brings conformational changes in Ob-Rb that 

trigger autophosphorylation of JAK2 (Banks et al., 2000; Kloek et al., 2002). 

Phosphorylated JAK2 turn phosphorylates multiple tyrosine motifs Tyr985, Tyr1077 

and Tyr1138 (Banks et al., 2000; Gong et al., 2007). Phosphorylated tyrosine motifs 

have Src homology 2 (SH2) that recruits explicit SH2-containing effector protein to 

receptor intercede consequent signaling (Banks et al., 2000; Gong et al., 2007). 

After phosphorylation of Tyr1138 brings about recruitment of STAT3 to leptin 

receptor and gets phosphorylated (pSTAT3) and stimulation by JAK2 (Banks et al., 

2000; White et al., 1997). STATs protein is diverse a group of transcription factors 

(TFs) and consists of 7 members (STAT1, 2, 3 ,4, 5a, 5b and 6), have a vital role in 

transcription regulation and signal transduction (F Dandoy‐Dron et al., 1995; S Sano 

et al., 1999; Y Cui et al., 2004). STAT3 was first reported in 1994, highly conserved, 

like other STAT proteins STAT3 also consist of six residues: coiled-coil domain 

(CCD) for protein-to-protein cross talk, N-terminal dimerization domain (ND), SH2 

domain essential for STAT3 activation, linker domain (LD) that regulates DNA-

binding stability, C-terminal transcriptional activation domain (TAD) and central 

DNA-binding domain (DBD) (H Liu et al., 2021). Once pSTAT3 activated, it 

translocases into the nucleus, where it targets several genes (Bjorbaek, et al., 1999). 

STAT3 after translocation into nucleus promotes gene expression of POMC neurons 

(MA Cowley et al., 2001; MW Schwartz et al., 2000; JK Elmquist et al., 2005), 

whereas downregulates the expression of AgRP gene and can also inhibits AgRP 

neurons (Y Aponte et al., 2011; MJ Krashes et al., 2013). Dependably, ob/ob and 

db/db mice showed decreased expression level of mPOMC and increase level of 

mAgRP (MW Schwartz et al., 1997 and TM Mizuno et al., 1999). Knockout of 

mAgRP neurons and reduction in mAgRP expression leads to lean mice (GA Bewicket 

et al., 2005; E Gropp et al., 2005). Contrarywise, knockdown of mPOMC neurons and 

their reduce expression bring obesity in mice (N Balthasar et al., 2004). This 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170570/#R36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170570/#R75
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170570/#R3
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underlines the significance of leptin-stimulated mAgRP and mPOMC in regulation of 

energy expenditure and food intake (AG Uner et al., 2019).  

AgRP and NPY are present in close vicinity (Betley et al., 2013; Bouret 2017), the 

main orexigenic neurons that produce hunger signaling during energy deficiency and 

food intake (MS Vohra et al., 2021). AgRP and NPY are potent appetite inducer 

neurons located ARC nucleus (Aponte et al., 2011; Krashes et al., 2011). Various 

high-level procedure has been utilized to dig out the orexigenic role of NPY, 

knockout of NPY in mice model showed decrease food intake (Wu et al., 2012), 

while presence of NPY neuron revealed increase food consumption (Aponte et al., 

2011; Krashes et al., 2011).  

 

 

Figure 1.3 Diagrammatical sketch of activation of leptin receptor via leptin ligand, 
and regualtion of SOCS3 by IL-6. 

Decrease leptin availability to brain is also considered as a significant factor for leptin 

resistance (WA Banks et al., 2004).  For normal biological functioning of leptin 

signaling, it is prerequisite for leptin to cross BBB by a particular and saturable 

protein transporter protein (AG Izquierdo et al., 2019). Experimental data showed that 

leptin receptor functionality is mandatory and their absence results in loss of function 

of leptin in the brain (SM Hilemane et al., 2002). Henceforth, if the leptin level is 

https://www.sciencedirect.com/science/article/pii/S0014299921007676#bib33
https://www.sciencedirect.com/science/article/pii/S0014299921007676#bib47
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https://scholar.google.com/citations?user=VWSF4tEAAAAJ&hl=en&oi=sra
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unnecessarily high, it might prompt leptin saturation and further diminish the 

proportion of leptin transport via BBB and results in leptin resistance (WA Banks et 

al., 2000; WA Banks et al., 2002). 

1.3. Endoplasmic Reticulum and Leptin Resistance 
Endoplasmic reticulum (ER), responsible for various functions in the cell such as lipid 

biosynthesis, protein biosynthesis, xenobiotic detoxification and also responsible for 

cellular Ca+2 storage (X Chen et al., 2021). ER homeostasis permits secretion of 

plasma membrane and also organelle proteins with proper tertiary structure with the 

help of molecular chaperons and different enzymes. Under pathological conditions, 

ER cannot perform its function of protein folding and the misfolded, unfolded 

proteins cannot be sent to Golgi Bodies and thus that proteins gather in the ER lumen. 

This phenomenon is known as ‘‘ER stress’’ (DL Eizirik et al., 2008). 

ER stress is reported in causing impairment of leptin signaling pathway, which is 

brought about by accumulation of mis or unfolded proteins that activates unfolded 

protein response (UPR) (Cakir et al., 2013). This process improves the ER capacity of 

protein folding, the degradation of unfolded proteins and also causes to minimize the 

entry of new proteins to solve its folding defects. ER stress diminishes the post-

transcriptional changes of POMC and also disrupts its synthesis (Cakir et al., 2013). It 

is reported that, pharmacologically induced hypothalamic ER stress in mice cause to 

surges PTP1B concentration and Suppressor of cytokine signaling 3 (SOCS3) and 

thus causes leptin resistance (Cakir et al., 2013). Obesity-related hypothalamic ER 

stress have a potent role in central leptin resistance (Cakir & Nillni 2018a). 

During ER stress condition, PTP1B expression is increased in the cell, 

dephosphorylates the Ob-Rb and also IRS1/2 which results in both leptin and insulin 

resistance, respectively. PTP1B gene knockout mice are observed and shows higher 

sensitivity of leptin receptor as there is none dephosphorylation of leptin receptor take 

place then (CL White et al., 2009). Expression of PTP1B is reported higher in leptin 

resistance indicating that PTP1B contribute to leptin resistance (DL Morris et al., 

2009). ER stress and inflammation disrupts leptin receptiveness to neurons by 

impeding leptin signaling pathway. As of late UPR and ER stress have arisen a 

https://scholar.google.com/citations?user=HpW86PIAAAAJ&hl=en&oi=sra
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significant link in causing leptin resistance (L Ozcan et al., 2009 and X Zhang et al., 

2008). 

1.3.1. Role of HFD in Leptin resistance 
Maximum number of humans and rodents who are obese generally have extremely 

high concentration of leptin in plasma. Nevertheless, this endogenous higher leptin 

concentration may not inrease utilization of energy or decrease apetite. There are 

uncommon cases of single-gene mutations which are accountable for obesity in 

humans, but the most common cause of obesity is thought to have from polygenic 

interaction with the environment (M Tshop et al., 2001). This condition is known as 

“leptin resistance”. There are several hypothesis regarding leptin resistance but two of 

them are widely accepted which are that leptin fails to reach its target (hypothalamus  

in brain) (WA Banks et al., 2003) and there is disruption of 0b-Rb based signaling 

cascade (H Munzberg et al., 2005).  

Activated pro-inflammatory cytokines are evidence that leptin resistance in 

hypothalamus is caused by high-fat-diet (HFD) (Thaler JP et al., 2012). In particular, 

only in one day rodents on HFD induced inflammation in hypothalamus. The major 

cytokines of innate-immunity/inflammation NF-KB and IKB kinase-B (IKKB) are 

strongly expressed in hypothalamus (Zhang X et al., 2008). It has been observed that 

after only one day rodent exposure to HFD or a single ICV injection of fatty acid or 

glucose, IKKβ–NF-KB signaling cascade become active. Therefore, HFD induced 

hypothalamus inflammation may be an initial in the on setting of leptin resistance by 

over nutrition (HFD) (Thaler JP et al., 2012 and Posey KA et al., 2009). ER stress in 

POMC and peripheral tissues in obese mice, signifies that ER stress and HFD are 

associated with metabolic disorders (M Schneeberger et al., 2013; JP Thaler et al., 

2012). Prominently, IKKβ/NF-KB expression is initiated by HFD via ER stress in 

hypothalamus, which prompts leptin resistance (X Zhang et al., 2008). In addition, 

IKKβ expression enhances SOCS3 promoter activity, impedes the leptin signaling by 

blocking phosphorylation of JAK2 (MC Maeso Fortuny et al., 2006; X Zhang et al., 

2008). The expression of SOCS3 isn't just initiated by leptin, yet additionally by LIF, 

ciliary neurotrophic factor (CNTF), growth hormone (GH), interleukin-6 (IL-6) and 
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different cytokines may induce SOCS3 (AR Lubis et al., 2008). Bjorbaek et al. 

reported that serum containing different cytokines might activates SOCS3, which thus 

can cause leptin resistance. 

Increased expression and activity of hypothalamic Toll like receptor 4 (TLR4) is 

observed during chronic HFD feeding (Ropelle et al., 2010). Expression of TLR4 on 

astrocyte and microglia is observed by keeping rodents on HFD, this may trigger 

hypothalamic inflammation via inflammatory cytokines. These inflammatory 

cytokines specifically induce inflammation in AgRP and POMC neurons, mostly by 

upregulation of IKKβ–NF-KB signaling which congregates with PTP1B expression 

and stimulated leptin signaling to induce SOCS3, which results in leptin resistance 

(KCG De Git et al., 2015).  

1.3.2. Role of Protein Tyrosine Phosphatase 1 B in Leptin Resistance 

PTP1B is a member of PTPs family, plays different vital biological roles and perform 

various functions of cell (B Sharma et al., 2020). PTPs are very diverse group of 

enzymes, which involves in the catalysis, the removal of phosphate moiety from 

phosphorylated protein from tyrosine residue (M Kim et al., 2018). PTPs family has 

been well studies and until now it is estimated that PTPs family includes 107 human 

gene which are well characterized (B Sharma et al., 2020). The main subfamily 

consists of 21 non receptor types and 17 receptor type. PTP1B is group into the 

receptor type of 1st sub-family which catalyzes the dephosphorylation process the 

PTPs substrates (RH Reddy et al., 2017). Up until this point, PTP1B has been 

reported to involve in causing different disorders including insulin resistance, leptin 

resistance, CVD and cancers (Sharma et al., 2020). 

PTP1B is anchored in the ER membrane at C-terminus by the hydrophobic tail, whose 

main function is to dephosphorylate leptin and insulin signaling pathway (FG Haj  et 

al., 2002). Leptin receptor is activated when a specific ligand is bind to it, which is 

leptin hormone itself, when the receptor activated, the down cascade of signal 

transduction is started such as the JAK2 activates, phosphorylates the tyrosine 

residues Y985, Y1077 and Y1138 at first place and then STAT3 (MF Andreoli et al., 

2019). PTP1B causes leptin resistance by dephosphorylating JAK2, the very first step 

https://scholar.google.com/citations?user=DK6eBloAAAAJ&hl=en&oi=sra
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to start the signaling cascade of leptin (JM Zabolotny et al., 2002). Unphosphorylated 

JAK2 thus cannot activates the STAT3 which a key step of leptin signaling, such as 

STAT3 translocases into the nucleus and then different protein expression and 

inhibition take place (H Liu et al., 2021). Over expression of PTP1B, lowers the 

activity and even inhibit Ob-Rb to perform it signaling cascade (CL White et al., 

2009). PTP1B is expressed in ventromedial hypothalamus (VMH), ARC and 

dorsomedial hypothalamus (DMH), and neuron-specific and systemic deletion of 

PTP1B increased leptin sensitivity and decreases adiposity in mice (KK Bence et al., 

2006; A Cheng et al., 2002; JM Zabolotny et al., 2002). PTP1B expression in leptin 

resistant animals is upregulated, proposing that PTP1B likewise adds to leptin 

resistance (CD Morrison et al., 2007 and CL White et al., 2009). 

1.4. Diabetes 
Diabetes mellitus (DM) is a type of metabolic disorder in which individuals 

experience high blood glucose levels because their bodies do not respond to, or 

produce insufficient insulin that assists with balancing out the glucose (Khan et al., 

2019). Over the preceding few decades, the number of diabetic patients increased in 

both developed and developing countries. The International Diabetes Federation 

(IDF) recently estimates that 537 million people worldwide have diabetes. It is 

expected that the number of diabetic individuals will increase to 634 million by 2030 

and 7.83 million by 2045 (IDF Diabetes Atlas 9th edition 2021). 

The etiological study of diabetes primarily divided DM into two principal types: 

T1DM and T2DM which represent 85% of the all-out DM (Forouhi et al., 2019). 

Vascular complexities like CVD and diabetic kidney diseases (DKD), diabetic 

neuropathy, and retinopathy are the main sources of dismalness and mortality in 

people with diabetes (Morrish et al., 2001). T1DM, which is brought about by a 

complete or close to total lack of insulin, T2DM is depicted by the presence of insulin 

antagonism with a deficient compensatory surge in insulin secretion (Solis-Herrera et 

al., 2018). 

The existence of autoantibodies against the β-cells and the absence of insulin 

production are biological markers of T1DM (LS Geiss 2014). T2DM is linked with 
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physical inactivity, aging, and obesity (Berbudi A et al., 2020). Due to both deficient 

insulin activity (insulin resistance) and impeded insulin production by islet β-cells in 

the pancreas. This condition brings about high glucose levels in the bloodstream 

(Brestoff J. R. and Artis D. 2015).  

1.4.1. Causes of Diabetes 

T2DM is a complex metabolic problem with diverse contributing features including 

different genes, epigenetics, environment, lifestyle, and diet (GG Kang et al., 2019). 

T2DM is also linked with the most serious diseases like hypertension, and 

hyperlipidemia which may cause insulin resistance in individuals (N Holman et al., 

2015). These factors are involved in the production of Reactive Oxygen species 

(ROS) in the mitochondrial matrix which disturbs the cell redox balance and produce 

oxidative stress which is not present in normal condition (M Valko et al., 2007). The 

pancreatic β-cells have low potency to overcome endogenous oxidative stress, making 

them highly vulnerable to oxidative stress (J Wang and H Wang 2017). Consequently, 

an abundance of ROS production in β-cells prompts a low concentration of insulin 

secretion. Excess Nitric oxide (NO) production can initiate apoptosis of β-cells of the 

pancreas and halt insulin production and secretion (S Tangvarasittichai 2015). 

The pathophysiological connection between T2DM and obesity is mainly accredited 

to two aspects IR and insulin deficiency (JP Felber and A Golay 2002). HFD 

contributes to the increased concentration of free fatty acids (FFAs) and followed by 

excess of plasma glucose level, a major marker for IR (AG Ampofo et al., 2020). 

When the level of FFAs exceeded from normal, then the extra FFAs are stored around 

different organs such skeletal muscles, liver and pancreas. This results in the 

mitochondrial dysfunction and turn release of toxins and ROS and causes damage to 

the cells and leads to impaired metabolism of glucose, affects secretion of insulin and 

damage β-cells (N Ouchi et al., 2011). 
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1.5. Streptozotocin and its Effect 

Streptozotocin (STZ) was first identify by group of researchers at Upjohn laboratory 

in Michigan 1959 in the fermented broth of streptomyces achromogenes (J Capdevila 

et al., 2022). STZ (2-deoxy-2-(3-methyl-3-nitrosourea)-1-D-glucopyranose) is a very 

potent alkylating antineoplastic drug that is very destructive to β-cell, it has a 

molecular mass of 265 g/mol and a blend of α- and β-stereoisomers (Eleazu et al., 

2013). It is a potent alkylating agent of DNA in both mammalian and bacterial cells 

(Eleazu et al., 2013). STZ destroy pancreatic β-cells leading to hyperglycemia, 

hyperinsulinemia and following T2DM. After 72 h of administration its effect can be 

seen relying upon dose administered (Eleazu et al. 2013). 

Glucose transporter 2 (GLUT2) can block by STZ because of its chemical structural 

analogue to N-acetyl glucosamine, β-D-(acetylamino)-2-deoxy-glucopyranose and 

glucose, so as result it accumulated specifically in β-cells (Eleazu et al., 2013).  

GLUT2 are moreover present in the kidney and liver however less significantly so 

STZ explicitly targets the pancreas (Bouwens and Rooman, 2005). STZ can target β-

cells of pancreas and causes immunological response by means of releasing of 

decarboxylase autoantigens and glutamic acid, when it injected in high doses (Eleazu 

et al., 2013). And in such cases, pancreatic β-cells are destroyed, and hyperglycemia 

is instigated prompting to pancreatic islets inflammation (Boni-Schnetzler and Meier 

2019). 

The disrupted β-cells evidently releases impaired DNA that acts on different types of 

cells, such as endothelial, epithelial, macrophages, neutrophil-type containing Toll-

like receptor 9 (TL9) receptors on their surfaces. When TL9 receptor enacted the 

nuclear TF, NF kappa B (NF-KB) that forms the heterotrimer P50-P65-kappa B to 

upregulate the inhibitory components (ikb) (Vitseva et al., 2008; Naamane et al., 

2007). After that NF-KB (P50-P65) sans iKb cross the nuclear membrane and enter 

into nucleus and upregulate gene expression of pro-form of several inflammatory 

genes which are NF-B dependent, such as IL-18, IL-2 tumor necrosis factor alpha 

(TNF-α) (A Stutz et al., 2009). 
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This mechanism produce a large amount of Nitric oxide (NO) and ROS. These 

reactive species damages the DNA or mutate the DNA which have to be reversed. 

The poly (ADP-ribose) polymerase I, DNA repair enzyme activated but it consumes 

all the energy stored in the β-cells (K Van Dyke et al., 2010). STZ inhibits ATP 

production by blocking the TCA cycle directly and through NO in beta cells 

(Nukatsuka et al., 1990; Sofue et al., 1991). Superoxide produced due to STZ affects 

mitochondrial activity and increase xanthine oxidase activity (Turk et al., 1993). 

Xanthine oxidases use ADP as a substate and produce uric acid along with superoxide 

(hydrogen peroxide and hydroxyl radicals) in feedback manners (Nukatsuka et al., 

1990 and Takasu et al., 1991) and as a result necrosis occur and cell dies. After cell 

death several pro inflammatory cytokines deployed to the site of necrosis and that’s 

the reason that diabetes and leptin resistance is linked with inflammation (K Van 

Dyke et al., 2010 and Thaler JP et al., 2012). 

1.6. PTP1B Inhibitors 
Tyrosine residue phosphorylation of proteins is the key mechanism to regulate cell 

growth, regulation, and differentiation of cells. It is a reversible mechanism which is 

opposes by PTPs (AK Tamrakar et al., 2014; AJ Barr et al., 2010). Besides, defective 

and distorted activity of PTPs and PTKs causes abnormal tyrosine residue 

phosphorylation processes prompting to various and serious disorders such as 

inflammatory disorders, diabetes, cancer and leptin resistance (AK Tamrakar et al., 

2014; Y He et al., 2005; P Heneberg  2009). PTP1B is placed in intracellular PTP, 

negatively impact insulin and leptin signaling (Y He et al., 2005). It is reported that 

PTP1B is responsible for dephosphorylation of tyrosine residue (pY1162/pY1163) of 

IRS-1 and IRS2 (A Haque et al., 2011).  

Recently PTP1B is used as potent drug target for treatment of leptin resistance and 

T2DM  (Tamrakar et al., 2014). In this specific circumstance, albeit several PTP1B 

inhibitors have been studied, but the polar and highly conserved PTP1B catalytic 

domain makes it a quite sluggish to achieve cell permeability and selectivity for 

PTP1B inhibitors (Kennedy and Ramachandran 2000; Feldhammer et al., 2013; 

Panzhinskiy and Nair 2013; Sun et al., 2016). For signal transduction, Ob-Rb employs 
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JAK2 to downstream it downstream signaling cascade. Hypothalamus expresses 

PTP1B, which dephosphorylates Ob-Rb and associated kinases JAK2. Leptin 

signaling is inhibited by PTP1B by dephosphorylating JAK2 and thus PTP1B 

inhibition can reverse the leptin resistance (A Cheng et al., 2002 and JM Zabolotny et 

al., 2002). 

Recently, compounds isolated from plants have shown different biological activities, 

such as anticancer, anti-obesity, anti-diabetic, anti-inflammatory, antihypertension, 

anti-Alzheimer, antioxidant and antimicrobial (Kamohara 2016; Tsoukalas and 

Engin 2018; Salehi et al., 2019; Wu C et al., 2006). It is reported that 16αH-17-

isovaleryloxy-ent-kauran-19-oic acid extracted from plant species Acanthopanax 

koreanum is a strong inhibitor of PTP1B with IC50 value 7.1 to 0,9 μM in a 

noncompetitive fashion, while ent-kaur-16-en-19-oic acid and acanthoic acid can 

inhibit the PTP1B in dose-dependent manners (Tsoukalas and Engin 2018). Along 

with these compound, 17-isobutyryloxy-kauran-19-oic, Ent-16βH and 17-acetoxy-18-

isobutyryloxy-kauran-19-oic acid secluded from Siegesbeckia glabrescens can inhibit 

PTP1B expression at 30 μg/ml (Kim et al., 2006). Compound, hueafuranoid A, 

isoated from Antarctic lichen Huea sp, has been reported to inhibit PTP1B activity 

with IC50 value of 13.9 μM (Y Cui et al., 2012). 

1.7. Dodonaea Viscosa 
Dodonaea Viscosa (D. viscosa) is a medicinal plant first reported from Australia and 

is local to western America. The plant is broadly dispersed in the specific areas of 

Mexico, Northern Mariana Island, New Zealand, South America, Florida, Virgin 

Island, India, Pakistan, Africa, and somewhere else. Presently, it is present in most of 

the nations. The particular plant is now present throughout the tropical and sub-

tropical countries (Al Oraimi et al., 2013). 

The plant is widely distributed as a single-stemmed or multi-stemmed, small tree and 

height about 7m tall. Plant leaves are different in shapes and size and for the most part 

obviate, yet few of them are lanceolate. Leaf size of plant is around 4-7.5 cm long and 

1-1.5 cm wide with dark green tone. The leaves are organized alternately and secretes 

a white gummy substance. Typically, the flowers are around 2.5 cm long, yellow 

https://onlinelibrary.wiley.com/doi/full/10.1002/ptr.6602#ptr6602-bib-0012
https://onlinelibrary.wiley.com/doi/full/10.1002/ptr.6602#ptr6602-bib-0012
https://onlinelibrary.wiley.com/doi/full/10.1002/ptr.6602#ptr6602-bib-0027
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color but every so often yellow change to red. The flower. The flower is of specific 

gender, both stamin and carpel are not identified in a single plant (MA Hossain 2019), 

in a rare condition both can be found in plant at same time (Al Oraimi et al., 2013). 

M. Khan et al. (1992) and R.A and Mothana et al. (2010) reported that 

Leucocyanidins a Methanolic extract of plant contains different bioactive compounds 

like tannins, terpenoids, volatile oil and flavonoids. Whereas ethanolic extract of plant 

showed the presence of flavonoids, alkaloids, saponins, phytosterols, triterpenoids and 

steroids (R.A. Mothana et al., 2010). Flavanoids, saponins, tannins, steroids and 

terpenoids were identified from aqueous extract of plant (N.U. Prakash et al., 2012; 

D.Lawal et al., 2012). 

Table 1.2 Classification of Dodonaea viscosa. 

            Classification 

Kingdom Plantae 

Sub-kingdom  Tracheobionta 

Division Magnoliophyta 

Class Angiosperms 

Sub-Class Rosids 

Order  Sapindales 

Family Sapindaceae 

genus Dodonaea 

Specie Dodonaea viscos 

1.7.1. Evaluation of Dodonaea Viscosa on PTP1B inhibition 

XH Wang et al. (2018), reported that extract from Dodonaea Viscosa is a potent 

inhibitor of enzyme PTP1B, Triterpenoids 1 to 6 extracted from the particular plant 

and were tested in vitro their role in inhibition of PTP1B and Triterpenoids 1, 2, 5 and 

6 show positive effect on PTP1B inhibition with IC50 values ranges from 23.7±2.2 to 

35.7±9.3 μM.  P Muthukumran et al., (2011) have confirmed the role of Dodonaea 

Viscosa on PTP1B inhibition, by treating the male Wister rats which were diabetic. 
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Butanol and methanol extracts from the particular plant were given to rats. The 

glucose tolerance of rats was significantly increases in rats in both short and prolong 

treatment.  

Dodonaea viscosa leaves and stem contain nine polyphenolic compound 1 to 9, every 

of them were studied through spectroscopic analysis also included HREIMS and 2D 

NMR. Consequently, it is shown that plant have PTP1B inhibitory properties, all the 

compounds which were isolated exhibit significant dose-dependent inhibition with 

IC50 ranges from 13.5 TO 57.9 μM. Viscosol (4) from among them shown promising 

result on inhibition of PTP1B with IC50 value 13.5 μM. To uncover the mechanism 

behind the inhibitory effect a very detailed kinetic studied was conducted and HPLC-

DAD-ESI/MS analysis shown that compound 1 to 9 had the potential to inhibit 

PTP1B (Z Uddin et al., 2018). All the peaks obtained by LC-DAD-ESI/MS analysis 

were characterized and it was found that compound 4 is the most potent which is 5,7-

dihydroxy-3,6-dimethoxy-2-(4-methoxy-3-(3-methyl-but-2-enyl)-phenyl)-4 chromen-

4-one. The whole methanolic extract of D. Viscosa showed potent PTP1B inhibition 

(Z Uddin et al., 2018). 

The potent bioactive compound (molecular formula C23H24O7), with a molecular 

weight of 412.1522. PTP1B inhibitory activity of all the 9 compounds was analyzed 

by hydrolysis of p-nitrophenyl phosphate, monitored by spectrophotometer. All the 9 

compounds have an IC50 value of 13.5-57.9 µM. Compound 4, potent inhibitor of 

PTP1B have an IC50 value of 13.5 µM and exhibits more fold inhibitory activity than 

other isolated compounds. Also, from the kinetic analysis, it was seen that compound 

4 effectively blocked free enzymes as compared to the enzyme-substrate complex 

which is evident from KI = 4.1 ± 0.2µM and KIS = 26.4 ± 0.4µM respectively (Z 

Uddin et al., 2018). 

 

 

 

 

https://scholar.google.com/citations?user=klLAG5YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=klLAG5YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=klLAG5YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=klLAG5YAAAAJ&hl=en&oi=sra
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1.8. Aims and Objectives of the study 

In this study, we determine the role of leptin signaling in food intake and lipolysis, 

and the potential role of flavonoid compound 5,7- dihydroxy-3,6-dimethoxy-2-(4-

methoxy-3-(3-methyl but-2-enyl)-phenyl)-4H-chromen-4-one, to revert Leptin 

signaling in a HFD and low dose streptozotocin-induced type 2 diabetic model.  

1.8.1. Specifics aims of the study 

1) To study the role of flavonolic compound in reverting the Leptin signaling in 

STZ-HFD leptin resistance mice. 

2) To evaluate the role of leptin signaling in food intake in hypothalamus. 

3) To determine effect of leptin signaling on lipolysis in adipose tissue.  
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2. Materials and Methods 

2.1. Animals 

Our experiment was conducted on mice (Mus musculus) as an animal model.  

Experimental studies were performed on male mice C57BL/6, whose weight ranges 

from 25 to 40 mg (8 to 12 weeks). All these mice were kept for 1 week and 

acclimatized in the animal facility center of Quaid-i-Azam University. Mice were 

provided with standard pellet food and water and conditions of the room include 12 

hours light/dark cycle, 27°C. 

2.2. Ethical approval 

The study was permitted by the institutional Bioethics committee of Quaid-i-Azam 

University, Islamabad. All the experiments were performed according to the standard 

protocols.  

2.3. Groups 

The experiment was performed on total of 9 mice, which were separated into three 

groups, each containing 3 mice. Group I, (Normal), The normal group was provided 

with a normal pellet diet and water. Group II, (STZ-HFD induced diabetic group) was 

placed on HFD alongside STZ injection intraperitoneally for 5 successive days 

(40mg/body weight), for the induction of diabetes. Group III, (STZ-HFD-compound 

treated group) was administered the same as group II with the administration of our 

compound (5,7-dihydroxy-3,6-dimethoxy-2-(4-methoxy-3-(3-methyl-but-2-enyl)-

phenyl)-4H-chromen-4-one) (33.3 mg/Kg) intraperitoneally for the treatment after the 

induction of diabetes (Table 2.1). The total percentage of normal pellet diet were as 

22.2% protein, 4.1% fat, and 12.1% carbohydrates whereas, HFD consists of 25% 

protein, 17% carbohydrate, and 17% cholesterol.                                        
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Table 2.1 Grouping of mice. 

Sr.No. Groups Names 

1 Group I Normal 

2 Group II STZ-HFD induced 

3 Group III STZ-HFD-compound treated 

 

2.4. Induction of Diabetes and Compound treatment 

As stated above, mice were separated into 3 groups and each group consists of 3 mice. 

The normal or positive control group was kept on normal standard diet and water. 

Normal group was administered with a single dose of saline (500µl) intraperitoneally. 

The fasting blood glucose concentration of control mice was measured by a 

glucometer (ACCU-CHEK Instant S, Roche Diagnostic, Mannheim, Germany), for 7 

days at fasted condition for 4 to 6 hours. Regular and repeated low dose of 

streptozotocin (Bioworld, CAT # 41910012-3) were used to generate the T2DM mice 

model. 

In STZ-HFD induced T2DM model, all mice of group II were kept on overnight 

fasting before the injection of STZ and normal water was provided. The 

streptozotocin (Bio plus Fine Research Chemical, CAT # 41910012-3, Bioworld), 

was dissolved in saline (500 µl), vortex and was administered intraperitoneally 

according to the body weight of mice (40mg/Kg), for 5 repeated days. After every 

STZ injection, the mice group was provided with 10% glucose, along with HFD. 

After the 5th day, normal water was provided to the mice and 10% glucose water was 

removed. To develop T2DM model leading to leptin resistance, mice take 9 to 10 

days. Only those mice were validated as diabetic, who’s fasting BGL was higher than 

250mg/dl. The BGL concentration was measured and monitored on regular bases 

using a glucometer until euthanization. 
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Group III was also administered intraperitoneally with STZ for five consecutive days 

and was kept on HFD and 10% glucose water.  The induction of diabetes in group III 

is like group II (STZ-HFD induced). After confirming that mice are diabetic, HFD 

was removed. On the very next day (11th day), compound (5,7-dihydroxy-3,6-

dimethoxy-2-(4-methoxy-3-(3-methyl-but-2-enyl)-phenyl)-4H-chromen-4-one) 

isolated from Dodonaea Viscosa first dissolved in 1% dimethyl sulfoxide (DMSO) 

was given to each mouse (33mg/kg, 1mg/mice) by a single intraperitoneal injection 

(500µl). After administering our compound, mice were closely observed for 7 days, 

and fasting BGL were measured all over that week. After checking the fasting BGL 

on the 17th day, group III was euthanized for further analysis. During the whole 

experimental days, all the group’s weights were strictly measured. Their mRNA 

expression was studied using RT-qPCR. 

2.5. Serum Blood Glucose Analysis 

Our experiment lasted for 21 days and during this period, the BGL of mice was 

measured regularly by keeping them fasting for 4-6 hours. We measured the BGL 

using a commercial glucometer (ACCU-CHEK Instant S, Roche Diagnostic, 

Mannheim, Germany) from the tail vein. 

2.6. Blood collection and serum separation 

After the induction of T2DM leading to leptin resistance and treatment with our 

compound, all the mice were anesthetized with chloroform. Blood was collected by 

cardiac puncture from the mice with the help of a 23G needle/1ml syringe.  Blood was 

transferred to a 4ml gel and clot vacutainer (BD # 366643, Lot No # 7327961, Becton, 

Dickinson and company, USA). Tube was then centrifuged (Hermile Labortechnit 

GmbH Siemensstr-25 D-78564, Wehingen) at 6000 rpm for 10 minutes. The serum 

was present in supernatant, so we collected it, and stored those sera at -20°C for 

further usage. 
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2.7. Mice Dissection 

All the mice were kept on overnight fasting, the BGL was checked in all the mice. 

Throughout the dissection, a cooling chain was maintained to ensure a better quality 

of RNA. A wooden dissection board was used, and mice were dissected using 

sterilized surgical tools. Required organs, brain and adipose tissues were isolated from 

the mice. The organs were washed with chilled PBS buffer (pH 7.2-7.4) and chilled 

distilled water, respectively and stored at -80°C for further investigation.  

2.8. RNA extraction and purification 

RNA from adipose tissue and hypothalamus was extracted by using RNA Kit 

(PureLink TM, RNA Minikit, Invitrogen by Thermifiesher Scientific, Cat No # 

1218301 8A). For RNA isolation, the tissue (100-150mg) was grind by using a mortar 

and pestle with liquid nitrogen. Lysis buffer (0.6-1ml) and β-mercaptoethanol (10µl) 

was added to the homogenate. The lysed tissues were transferred to the RNase-free 

Eppendorf tube. Additionally, the lysate was passed 5 to 10 times through a 21 G×1/4 

(0.8 mm×32mm) gauge syringe needle for properly homogenization. The volume of 

100-200µl of chloroform was added, tubes were shake vigorously for 15s and 

incubated at room temperature for 3 minutes. After incubation, centrifuged the tube at 

12000g for 15 minutes at 4°C. The supernatant was transferred into a new RNase-free 

tube, and an equal volume of chilled 70% ethanol was added. 

The homogenate was vortexed and 700µl volume was transferred in the spin 

cartridge, centrifuged at 12000g for 15s, the flow-through liquid was discarded and 

the spin cartridge was inserted in the tube. The above steps were repeated until all the 

sample homogenate passed through the spin cartridge. Furthermore, 700µl of wash 

buffer I was added and centrifuged at 12,000g for 15s. The flow-through was 

discarded. Wash buffer II with volume of 500µl was added and tube was again 

centrifuge under the same condition. The process was repeated, for a better quality of 

RNA and flow through was discarded. A dry spin was given at 12000g for 2 minutes 

to let the membrane dry properly before adding elution buffer (Nuclease-free water). 
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Finally, elution buffer with the volume of 35µl was added in the spin cartridge and 

incubate for 1 minute at room temperature. Then, centrifuged it at 12000g for 2 

minutes, at room temperature, and step was repeated for proper elution. The purified 

RNA was checked by using the nanodrop machine (Colibri Spectrophotometer, 

Berthold Detection System GmbH 75173 Pforzheim, Germany). The purified RNA 

was then stored at -80 ºC until further use. All the procedure were performed at 4°C 

and the cooling chain was maintained to minimize the denaturation of RNA and 

contamination by RNases. 

2.9. cDNA Synthesis 

The RNA sample from all the tissue were normalized. The normalized sample of 1 µg 

was used for the cDNA synthesis by using a cDNA synthesis kit (Maxima SYBR 

Green/ROX qPCR Master Mix (2X), Thermo scientific). A total volume of 20µl was 

prepared to synthesize 1000ng of cDNA. A master mix consisting of 2µl of dNTPs, 

2µl of RT buffer, 1µl of RNase inhibitor, 1µl of reverse transcriptase enzyme, 0.8µl 

of oligo dT primer was prepared, and required RNA with the concentration of 1000ng 

was added. The remaining volume was maintained with nuclease-free water. The 

reaction mixture was then incubated for 1 hour at 37ºC in a PCR machine (T3 

Thermoblock, Biometra, Germany). Afterward, were heated for 5 minutes at 95 ºC to 

inactivate the reverse transcriptase enzyme. cDNA was then stored at -20ºC. 

2.10. RT-qPCR 

Real-time qPCR was performed with SYBR Green PCR Master Mix (Thermo Fisher 

Scientific, CA, USA) by using MyGo Pro PCR system (MyGo PCR systems, IT-IS 

life sciences). The set of primers or desired target genes markers are given below in 

Table 2.4. The primers (100µM) were diluted by ratio of 1:10. Likewise, the cDNA 

was diluted with a ratio of 1:10. The total reaction of 10µl was prepared as given in 

the Table 2.2. PPiA was used as housekeeping gene. The program setting used in RT-

PCR is mentioned in the Table 2.3. The relative mRNA expression of the target genes 

was analyzed by using the ΔΔCT method (X Rao et al., 2013). 

https://scholar.google.com/citations?user=92ViLBgAAAAJ&hl=en&oi=sra
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Table 2.2  Recipe of the Master mix for RT-PCR reaction (10µl). 

Sr.no Names Concentration 

1 SYBR Green 2µl 

2 Forward primer 1µl 

3 Reverse primer 1µl 

4 cDNA 6µl 

 

Table 2.3 Profile of RT-PCR 

Sr. 

no 

Stage Incubation 

Temperature 

Time Cycles 

1 Hold 95 °C 60s No 

2 3 step Amplification 95 °C 15s 40 

60 °C 30s 

72 °C 30s 

3 Pre-melt Hold 95 °C 10s No 

4 High 

Resolution 

Melting 

Initial 

stage 

60 °C 60s No 

Final 

stage 

97 °C 1s 
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2.11. Statistical Analysis 

To assess the significance in our data, we represent our data as mean ± SEM. The 

graphs were plotted by using Graph pad prism (Version 9). For statistical analysis, 

one-way ANOVA (comparison between the groups) and Tukey’s Test (pairwise 

multiple comparisons) were performed. The p-value <0.05 were considered 

significant. 

Table 2.4 List of Primers for RT-qPCR respective Tm (C̊) and amplicon size (bp). 

Sr.no

. 

Primer 

name 

Sequence (5' to 3') Tm 

(̊C) 

Amplico

n size 

(bp) 

1 mPi3k-F GAGACAGGATGGGTCAAGGA 60 132  

mPi3k –R CAAAGCAACACAGGAGAGCA 60.

2 

2 mPtpn1-F GCATAGGACAGTGGTAATGCG 60.

5 

123  

mPtpn1-R AACTCACAGGGAAAGCAGAGG 60.

8 

3 mTorc1-F CCAGGAGGACATTTGTTCAGA 60.

1 

96 

mTorc1-R CACTGAACACAGTAGAGCCAG

TG 

60.

0 

4 mIrs1-F AAGCACTGTGACACCGGAA 60.

3 

72  

mIrs1-R CTTCGTGACCAGCTGTCCTT 60.

4 

5 mIRS2-F AAATGTGACTGGAGCAGCCT 59. 79 bp 
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9 

mIRS2-R AAGAGAGATCCACCCATCCC 60.

3 

6 mPPiA-F TTGGTCCGAAGTAGCCACA 60.

2 

88 

mPPiA-R GCCAAGCCTTTCTCGTTTC 59.

9 

7 mAgRP-F TGTGTAAGGCTGCACGAGTC 60.

1 

78 

mAgRP-R GAAGCGGCAGTAGCACGTA 60,

2 

8 mJAK2-F AGACAGATGGGAAGGGAAGG 60.

4 

70 

mJAK2-R CACACGCCTGCTGGTATTC 60.

3 

9 mPOMC-F GCAAGCGCTCCTACTCCAT 60.

5 

101  

mPOMC-R CGACTCGTTCTCAGCAACG 60.

8 

10 mSOCS3-F CAAGGGGTGACCTGAAGAGA 60.

2 

89  

mSOCS3-

R 

TCTGGGGTGCAAGGGAT 60.

0 

11 mSTAT3-F AGCAGCCGAACCCCATA 60.

2 

96  

mSTAT3- GCCCAGATTGCCCAAAG 60.
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R 1 

12 mNPY-F ATACTACTCCGCTCTGCGACA 60.

1 

77  

mNPY-R TCTCAGGGCTGGATCTCTTG 60.

5 

13 mPPARα-F GCCGTTGCCACTGTTCA 60.

4 

110 

mPPARα-

R 

TACGCTCAGCCCTCTTCATC 60.

5 

14 mLEPTIN-

F 

GGTCATACCCTGTGGAGGTG 60.

2 

96  

mLEPTIN-

R 

CACATCACATCACCCCTCAG 60.

0 

15 mMGL-F ATAACTGGGGCTCACTGCTCT 60.

3 

88  

mMGL-R TCCTGAGGTAACAGCAAGGC 60.

4 
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3. Results 

3.1. Mice mean body weight and fasting Blood glucose level 

Insulin and leptin play a significant role in regulating the body glucose level (BGL) and 

body mass respectively. Therefore, we measure the mice’s body weight and serum 

glucose level. The fluctuations in the body weight were plotted against the 

experimental days. A dramatic reduction in the body weight of STZ-HFD group was 

observed as compared to the control. While on treatment with our compound the 

trendline of body weight was noted like the control group (Figure 3.1). Normal pellet 

diet was given to the control group whereas HFD was given to both STZ and 

compound treated group. Ordinary One-Way ANOVA was performed and results were 

found significant, ****P-value <0.0001. 

 

 

 

 

 

 

 

 

 

 

Further, fasting blood glucose level (BGL) was also estimated before the start of the 

experiment on day 1 and after that post-treatment. Mice were considered diabetic with a 

fasting BGL >250mg/dl. The blood glucose level of the STZ-HFD induced diabetic 

mice group was found to be significantly elevated as compared to the normal group, as 

shown in (Figure 3.2). After injecting with a compound, a gradual alleviation of BGL 

Figure 3.1. Mean body weight of all experimental groups, the 5-days dose induction of 
STZ drug is indicated with an arrow. 
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has been seen in the STZ-HFD-compound treated group. The normal group was only 

given one saline injection (500µl). Five STZ injections were given intraperitoneally to 

both STZ-HFD induced, and STZ-HFD-compound treated groups. STZ-HFD-

compound treated group was given an injection of the compound on day 11. We 

evaluated the gradual alleviation of BGL in the STZ-HFD-compound treated group.  

(P=0.7157), (p ***). 
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Figure 3.2 Mean fasting blood glucose level (BGL) of mice. 

3.2. Targeted gene expression in Adipocytes 
In mice adipocytes (control), STZ-HFD induced T2DM mice model (STZ-HFD) and 

STZ-HFD-compound treated mice model (STZ+C), we evaluate different genes at 

mRNA level, which were involved in the downregulating leptin mediated PI3K 

pathway such as inhibition of De-novo lipogenesis, halting of adipocytes 

differentiation, genes regulating fatty acid hydrolysis and genes important for changing 

structure of lipid droplets and those involve in adipocytes specified lipolysis. We have 

found that the expression of leptin hormone was significantly reduced in the STZ-HFD 

induced group as compared to the STZ-HFD-compound treated group. These results 

validate that our PTP1B inhibitor in the treated group was able to revert the leptin 

signaling pathway by inhibiting the PTP1B (Figure 3.3). The cDNA sample was run in 

triplicates and PPiA was used as a housekeeping gene. The data from three independent 

experiments were analyzed by a ΔΔCt method and the mRNA fold change was 
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obtained by using three respective groups. The data were represented as means ± SD. 

The differences between groups were analyzed by One-way ANOVA using Brown-

Forsythe test and Bartlett’s test. A ***p<0.0001 was considered statistically significant. 

 

 

 

 

 

 

 

                            

 

 

 

As we were interested in targeting PTP1B in the diabetic-induced model, so we 

measured the relative expression of mPTP1B and found a significant decrease in the 

expression in STZ-HFD-compound treated group as compared to the STZ-HFD group. 

Therefore, the bar graph (Figure 3.4) shows that our compound has an inhibitory effect 

on PTP1B. The data were represented as means ± SD. One-way ANOVA using Brown-

Forsythe test and Bartlett’s test was used as a statistical test and ***p<0.0001.  

 

 

 

 

 

Figure 3.3 Leptin expression.  
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The expression of insulin receptors IRS1, IRS2 and PI3K, AKT2, and mTORC1 were 

was significantly reduced in the STZ-HFD group but was found significantly high in 

the STZ-HFD-compound treated group (Figure 3.5). These results authenticate that 

PTP1B has a negative effect on the expression of insulin signaling mediators and found 

a significant increase after treating with our potential PTP1B inhibitor (compound). The 

data were represented as means ± SD. Statistical analysis was done by using One-way 

ANOVA using Brown-Forsythe test and Bartlett’s test. The value of ***p<0.0001 was 

considered statistically significant. 

 

 

 

 

 

 

Figure 3.4 PTP1B expression.  
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Further, we have found the expression of leptin receptor (Lep R) and JAK2 

(downstream mediators of leptin) was significantly increased in the STZ-HFD-

compound treated group as compared to the STZ-HFD group (Figure 3.6). These 

results elaborate that the expression of Lep R and Jak2 was decreased during the 

diabetic state while, in our STZ-HFD-compound treated group the expression was 

increased showing the PTP1B inhibitor was successful able to revert the condition. The 

data were represented as means ± SD. Statistical analysis was done by using One-way 

ANOVA using Brown-Forsythe test and Bartlett’s test. The value of ***p<0.0001 was 

considered statistically significant. 

 

 

Figure 3.5 Leptin and Insulin-mediated signaling pathway expression. (A) Relative mRNA 
expression of IRS1. (B) Relative mRNA expression of IRS2. (C) Relative mRNA expression 

of PI3K. (D) Relative mRNA expression of AKT2. (E) Relative mRNA expression of m 
TORC1 
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To validate the role of leptin on lipolysis and adipose differentiation, we evaluate the 

gene expression which is involved in lipolysis and differentiation of adipocytes such as 

PPARα HSL, MGL, and the expression of such genes in the STZ-HFD group was 

significantly reduced and showed elevated expression in STZ-HFD-compound treated 

group (Figure 3.7). The results showed that our compound has the potential to 

negatively regulate the expression of PTP1B. The data were represented as means ± 

SD. For statistical analysis, we used One-way ANOVA using Brown-Forsythe test and 

Bartlett’s test. The statistically significant value in our data was ***p<0.0001. 

Figure 3.6 Expression of leptin signaling mediators. (A) Relative mRNA expression of Lep R. 
(B) Relative mRNA expression of JAK2. 
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Figure 3.7 Effect of leptin on lipolysis. Relative mRNA expression of PPARα. (B) Relative 

mRNA expression of MGL. (C) Relative mRNA expression of HSL. 

3.3. Targeted gene expression in hypothalamus 
Various studies have supported the detrimental effect of PTP1B in the brain on leptin 

signaling that causes over-weightness and obesity in individuals. Our study was 

focused to find out the relation between PTP1B and leptin resistance. So, we checked 

the PTP1B expression at the mRNA level in the hypothalamus of the brain by 

performing qPCR. Its expression was significantly increased>2 folds in the STZ-HFD 

group and was found significantly alleviated in the STZ-HFD-compound treated group. 

Inflammatory markers were also checked like IL-6 and IL-1β at mRNA level which in 

turn causes the expression of SOCS3 negative regulator of leptin signaling. The relative 

mRNA expression of different genes which are under the regulation of leptin was 

studied in the hypothalamus by using PPiA as a housekeeping gene.  

We have found the expression of Lep R, JAK2 and STAT3 were significantly elevated 

in the STZ-HFD-compound treated group as compared to the STZ-HFD group which 

showed reduced expression (Figure 3.8). These expressions validate that our compound 

has the potential to inhibit the expression of PTP1B. The data were represented as 

means ± SD. One-way ANOVA using Brown-Forsythe test and Bartlett’s test was used 

for statistical analysis. The statistical significance in data was ***p<0.0001. 
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Figure 3.8 Leptin mediators expression. (A) Relative mRNA expression of Lep R. (B) 
Relative mRNA expression of JAK2. (C) Relative mRNA expression of STAT3. 

 

Further, we have investigated the expression of PTP1B and POMC in the hypothalamus 

(Figure 3.9). The expression of PTP1B was significantly higher in the STZ-HFD group 

as compared to the STZ-HFD-compound treated group.  The expression of POMC was 

significantly higher in the STZ-HFD-compound treated group whereas decreased 

expression in the STZ-HFD group. The significance in our data was (P<0.0001). The 

data were represented as means ± SD. We used One-way ANOVA using Brown-

Forsythe test and Bartlett’s test for statistical analysis. This result showed that our 

compound has significantly decreased the expression of PTTP1B and increased the 

expression of POMC.  
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Figure 3.9 PTP1B and POMC expression. (A) Relative mRNA expression of PTP1B. 
(B) Relative mRNA expression of POMC. 

 

Next, we have found the expression of NPY and AgRP (Figure 3.10). The expression 

of NPY and AgRP was significantly higher in the STZ-HFD group whereas decreased 

expression was displayed in the STZ-HFD-compound treated group. The result 

validates that during leptin resistance (STZ-HFD) where PTP1B expression is higher 

than normal, both annoreix peptide NPY and AgRP expression is elevated. The 

expression was then seen to be lowered in the STZ-HFD-compound treated group. The 

data were represented as means ± SD. We used One-way ANOVA using Brown-

Forsythe test and Bartlett’s test for statistical analysis. The statistical significance in 

data was ***p<0.0001. 
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Figure 3.10 Orexigenic peptide expression. (A) Relative mRNA expression of NPY. 
(B) Relative mRNA expression of AgRP. 

 

Further, we have found the expression of inflammatory markers IL-6, IL-1β and 

negative regulator of leptin SOCS3 (Figure 3.11). We have found increased expression 

of IL-6, IL-1β and SOCS3 in the STZ-HFD group whereas, the expression was 

significantly reduced in the STZ-HFD-compound treated group These results showed 

that the expression of inflammatory markers is reduced by inhibiting the PTP1B 

expression. The data were represented as means ± SD. For statistical analysis One-way 

ANOVA using Brown-Forsythe test and Bartlett’s test was used. The statistical 

significance in data was ***p<0.0001. 
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Figure 3.11 Expression of Inflammatory markers and negative regulators of Leptin. 
(A) Relative mRNA expression of IL-6. (B) Relative mRNA expression of IL-1β. (C) 

Relative mRNA expression of SOCS3. 
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4. DISCUSSION 

T2DM is characterized by a persistent hyperglycemic and insulin resistance state 

(Tangvarasittichai, 2015). It is been characterized by disruptions in the metabolism of 

fats, carbohydrates, and protein that result in deficiencies of insulin secretion, insulin 

action, or both. In some conditions i.e., diabetes, the β-cells of the pancreas are 

destroyed which can affect the production of insulin and hence lead to diabetes (Alberti 

& Zimmet, 1998). Persistent hyperglycemia condition leads to a number of micro and 

macro-complications that collectively disrupt the body’s homeostasis.  

Adipose tissue is composed of a diverse variety of cells that are involved in the 

secretion of various types of hormones, cytokines, and chemokines. Adipose tissue is 

surrounded by a number of cells including stromal cells, immune cells, fibroblasts, and 

macrophages. With the discovery of the leptin hormone, adipose tissue is not only 

considered as a site for energy reservoir but its true essence are still unraveled (EE 

Kershaw and JS Flier 2004). Leptin has been studied enormously in order to find its 

relation between central and peripherals organs to identify its role in regulating the 

cycle of hunger and energy hemostasis (RS Ahima and JS Flier 2000). Literature shows 

that leptin has a direct effect in controlling body weight and improving the metabolic 

regulation of rodents (LA Campfield et al., 1995; JL Halaas et al., 1995; TW Stephens 

et al., 1995). The focus of our study was to explore the changes in the regulation of 

leptin hormone in high glycemic conditions. Recently, a protein named Protein 

Tyrosine Phosphatase 1B (PTP1B) is considered a new road in treating diabetes and its 

associated complications. PTP1B is involved in negatively regulating the signaling 

pathways that are mediated via tyrosine kinase. The main targets of PTP1B are insulin 

and leptin signaling pathways. A number of studies reported that ER stress and 

inflammatory cytokines are responsible for the enhanced expression of PTP1B in the 

liver, muscle, fat, and hypothalamus, which propagates leptin resistance and IR 

(Agouni et al., 2011). PTP1B enhanced expression in insulin-sensitive tissues has been 

reported in STZ-induced diabetic models of rats and mice (Mohammad Taghvaei et al., 

2011). During the condition of ER stress, over expression of PTP1B take place which 

https://scholar.google.com/citations?user=euFWEn8AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=euFWEn8AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=JmMtY3IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=HdKbuRkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=JmMtY3IAAAAJ&hl=en&oi=sra
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inhibits the leptin signaling and subsequently results in leptin resistance (O Grunzdeva 

et al., 2019). 

PTP1B inhibitors are found to be the potential and novel drugs for the medication of 

obesity and T2DM (Nurul Islam et al., 2013). PTP1B is commonly expressed in the 

human brain, liver, muscle, and adipose tissues (Zabolotny et al., 2008). PTP1B is 

involved in insulin and leptin resistance and its inhibition is the most potent therapeutic 

target in human diseases (Montalibet and Kennedy 2005).  

The current study was designed to investigate the effect of inhibiting the PTP1B on 

leptin signaling specifically in the brain and adipose tissue. For this purpose, we have 

generated a mouse model having leptin resistance induced by feeding them with HFD 

and carbohydrate combination that causes a decrease in plasma leptin level (CL White 

et al., 2009). PTP1B is also found to be expressed in the hypothalamus of the brain (JM 

Zabolotny and KK Bence 2002).  Multiple low doses of STZ in combination with HFD 

were used in generating a model having T2DM and leptin resistance. The toxic effects 

of STZ cause partial damage to the β-cells of the pancreas and triggered an 

inflammatory process, aggravating the damage. (Like & Rossini 1976). The increased 

level of PTP1B is reported in insulin-sensitive tissues in STZ-induced diabetes in mice 

and rats (Adeli et al., n.d.). Leptin signaling is inhibited by the expression of PTP1B, 

which directly dephosphorylates the tyrosine residues on leptin receptor (J Peng et al., 

2021). PTP1B is overexpressed in obesity and in IR in adipose tissues and 

hypothalamus (Ahmad et al., n.d.). Overexpression of PTP1B can inhibit the leptin 

signaling pathway and thus causes leptin resistance in the hypothalamus (O Gruzdeva 

et al., 2019). 

In our present study, we evaluate the role of PTP1B on signaling pathways and also 

examine the protective role of the PTP1B inhibitor in dysfunctional leptin and insulin 

signaling (N Krishnan et al., 2018). As predicted, our PTP1B inhibitor in the compound 

treated group was able to revert the leptin hormone by inhibiting the PTP1B and we 

found an increased mRNA expression of leptin, and a decrease expression of PTP1B 

which goes in line with our hypothesis. Furthermore, we evaluated the insulin 

sensitivity in adipocytes and found a significant retrieval from insulin resistance to 

normal insulin signaling pathway. Insulin signaling initiators such as mIRS1, mIRS2, 

https://scholar.google.com/citations?user=pNEj3eAAAAAJ&hl=en&oi=sra
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mPI3K, and mAKT2 expression were found significantly enhanced in our compound-

treated group. Our study is also supported by other studies that PTP1B deletion in the 

adipose leads to enhanced glucose uptake and elevates adipose insulin sensitivity (M 

Teimouri et al., 2022; LA Méndez‐Garcia et al., 2018). A study reported that during 

leptin resistance mTORC1 expression was also reduced (G Marwarha  et al., 2010). In 

our study, we found a similar case, the expression of mTORC1 was reduced in the STZ-

HFD case but was significantly increased in our compound treated group.  

Additionally, to explore the role of leptin on lipolysis and adipose differentiation and 

evaluate how PTP1B is able to regulate the expression of the genes involved in 

lipolysis and differentiation of adipocytes. We measured the relative expression of 

mPPARα, mHSL, mMGL, and found a significant reduction in the STZ-HFD group and 

elevated expression in STZ-HFD-compound treated group. Our study is also supported 

by a study that during leptin resistance the expression of PPARα is reduced and once 

the leptin signaling pathway is reverted the expression increases (A Yadav et al., 2013; 

MY Wang et al., 1999). Shred of evidence shows that leptin has a potent role in 

lipolysis by expressing mATGL, mMGL, and mHSL (Y Li et al., 2008). Our study also 

supports the literature as we also found a decreased level of mHSL and mMGL in the 

leptin resistance model, but the concentration was significantly increased after treating 

with our compound.  

Various reports have supported the negative effect of PTP1B in the brain on leptin 

signaling. Our study also focused to find out the relation between PTP1B and leptin 

resistance in the brain. Therefore, we checked the PTP1B expression at the mRNA 

level in the hypothalamus of the brain and found an increase in expression in our 

disease model and significant decrease in the compound treated group. Moreover, we 

also investigate the anorexic effect of leptin by measuring the expression of mNPY and 

mAgRP peptides, which is a potent stimulator of food intake. We found an elevated 

level of expression of the said peptides, but their expression was reduced in our 

compound treated group. 

Our study was also supported by the study that concludes that leptin suppresses mNPY 

and mAgRP during normal signaling pathways (A Guzman et al., 2019; H Munzberg et 

al., 2020). Some pieces of evidence reported the decreased expression of mPOMC 

https://scholar.google.com/citations?user=EilhhUYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=EilhhUYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=P4KgxI4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=O-M5wKAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=gLxd4eIAAAAJ&hl=en&oi=sra
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neurons during leptin resistance (IV Romanova et al., 2018). A reduction in the 

expression of the mJAK2 and mSTAT3 has been observed in leptin resistance (H Liu et 

al., 2021). The same was observed in our study, where we found a decreased level of 

concentration in leptin-resistant model but an expression of the said gene mimics the 

normal level after treatment with our compound. The expression of leptin receptors is 

also reduced during our study, and this has been supported by other studies that stated 

that during leptin resistance the expression of leptin receptors in the hypothalamus is 

also reduced (J Wauman et al., 2011). We also found a decreased concentration of 

mPOMC in the STZ-HFD case while increased expression was observed in the 

compound-treated group. Further, we have analyzed the expression of inflammatory 

markers mIL-6, mIL-1β, and negative regulators of leptin mSOCS3. We found an 

increased expression of mIL-6, mIL-1β, and mSOCS3 in the STZ-HFD group whereas, 

it was significantly reduced in the STZ-HFD-compound treated group. These results 

showed the expression of inflammatory markers is reduced by inhibiting the PTP1B 

expression. Our results were consistent with the previous report which stated that IL-6 

overexpression can also cause the expression of mSOCS3 (AR Lubis et al., 2008). 

Summarizing the whole study postulate that the T2DM mice model with a low dose of 

STZ and HFD, causes inflammation and over-expression of PTP1B. Overexpression of 

PTP1B also causes leptin resistance; leptin is an anorexic hormone that tends to balance 

food intake and energy consumption by regulating the hypothalamus and adipocytes. 

Our phytochemical flavanolic compound viscosol having anti-inflammatory activities, 

also have PTP1B inhibitory activity. To conclude, our compound can be a potential 

drug to relieve inflammation, insulin- and leptin resistance and this will help to develop 

a new pharmacological drug for the treatment of T2DM and leptin resistance by 

specifically inhibiting PTP1B. 
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5. Conclusion 

Our study reveals the effect of PTP1B on the leptin signaling pathway in the combined 

diabetic and leptin resistance model via measuring the leptin signaling mediators 

involved through a multifaceted mechanism involved in the disruption of the hunger 

cycle and energy homeostasis. The flavanolic compound viscosol (5, 7-dihydroxy-3, 6-

dimethoxy-2-(4-methoxy-3-(3-methyl but-2-enyl) phenyl)-4H-chromen-4-one) has 

anti-diabetic and anti-leptin resistant properties. The present study confirms that the 

therapeutic administration of our compound is successfully involved in the inhibition of 

De-novo lipogenesis, halting of adipocytes differentiation, genes regulating fatty acid 

hydrolysis, formation of lipid droplet structure, feeding sensation, and anorexic effect 

in adipose and the brain. The compound also exhibited a protective effect against 

inflammation via downregulating the expression of inflammatory markers (IL-6, IL-

1β). Conclusively, our results reinforced our hypothesis that PTP1B is involved in the 

leptin signaling pathway and by targeting PTP1B, not only the hyperglycemic condition 

was reverted, but it might also help in regulating the leptin and its downstream 

signaling in adipose and the brain. 
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