
GRAPHIC EDITOR
BY

ABDUL W ADOOD KHAN

A project repot1 submitted to the QUAID-E-AZAM University, Islamabad, in pal1ial fu lfillment
of requirement of Postgraduate Diploma in computer sciences.

COMPUTER CENTRE
QUAID-E-AZAM UNIVERSITY

ISLAMABAD
MAY, 2002.

COMPUTER CENTRE
QUAID-E-AZAM UNIVERSITY

ISLAMABAD

FINAL APPROVAL

Celtified that we have read the project report submitted by Abdul Wadood Khan. And in
our judgement this work is of sufficient standard to warrant its acceptance by Quaid-e-Azam
Univel'sity,Islamabad for the Post graduate Diploma in computer sciences.

COMMITTEE:-

I. EXTERNAL EXAMINER ------------------------

2. SUPERVISOR --------------------------------------­
Mr. Nazim-ud-Din
Deputy Director Computer Center
Quaid-e-Azam University Islamabad.

3. D lRECTO R ---­
Dr. Ghulam Muhammad
Computer Center,
Quqid-e-Azam University Islamabad.

PROJECT TITLE:

UNDERTAKEN BY:

SUPERVISED BY:

OBJECTIVE:

DA TE OF COMMENCEMENT:

DA TE OF CMPLETION:

SOURCE LANGUAGE:

OPERATING SYSTEM:

SYSTEM USED :

PROJECT BRIEF

Graphic Editor

Abdul Wadood Khan

Mr. Nazim-ud-Din

To develop a graphics editor based on
Geometrical figures

March 2002

June 2002

C++ 2.0

MS DOS 6.0

IBM 300 GL(PC)

ACKNOWLEDGEMENT

I am thankful to Almi ghty Allah , Who helped me to complete this project. Working on this
project was of great interest for me because it was an experience of passing through a maze-one
end leadi ng towards several openings . A ll openings seemed workable at the first g lance. Later it
used to dawn upon me that [had a I ittle room for maneuver ing.

Initial des ign of the project could not be completed . Because I had env isaged a vicious
project-not in the sense of complexity but the time and my knowledge of the language(c++)
were little.

Anyhow then J slashed my project and left the incomplete modul es, as a room for
improvement is a lways there.

[am great ly indebted to Mr.Nazim-ud-Din, whom 1 always found at hand for my guidance.
Infect it was him who helped me to conceive the project.

[am also thankful to the staff members of the Computer Center for their help.

Abdul Wadood Khan

CHAPTER 1 Intt'oduction

1.1 Introduction
1.2 Computer Graphics
1.3 Graphics Editor

Index

CHAPTER 2 Obj ect Oriented P"ogramming (OOP)

2. 1 Introduction
2 .2 Obj ect Oriented Paradigm
2 .3 C lasses and Obj ects
2.4 Attributes and Domain
2 .5 Operati ons, Methods and Serv ices
2.6 E ncapsul ation, Inhe ritance and Po lymorphi sm

CHAPTER 3 Object Oriented Design

2
2
2

4
4
4
5
5
5

3.2 Introduction 8
3 .2 Object Oriented Des ign 8
3.3 A Unified Approach To OOA 8
3.4 The OOA Process On the Software 9

3.4 .1 Use cases 9
3.4.2 Class Responsibility Co llaborator Modelin g (CRC) 10

3 .5 Definin g Structures 12
3 .6 Object Behav ior Model 13

CHAPTER 4 Object Oriented Design Process

4. 1 Introduction 18
4.2 T he System Des ign Process

4.2 .1 Partitioning the Analys is Model
4.2.2 Inter Subsystem Communi cation

4.3 Obj ect Des ign Process
4 .3. 1 Introduction
4.3 .2 Program Components

CHAPTER 5 Mathematical Procedures and Algorithms

5. 1 Introduction
5.2 L ine
5.3 Arc
5.4 Cone
5.5 Rectangle
5.6 Squ are
5.7 Pie-s lice
5. 8 C irc le
5.9 Triangle

18
18
23
28
28
28

33
33
33
34
35
36
37
38
39

CHAPTER 6 Project as it is

6.1 Introd uct ion
6 .2 Software as it is
6.3 Deficiencies
6.4 Room for improvement
6.5 User Interface
6.6 Division of main screen

41
41
42
42
42
42

CHAPTER 1

INTRODUCTION

1.1 Introduction

Today there is hardly a field of li fe , whi ch is not affected by graphics. Reason is s imple and
very o ld . A pi cture or a figure conveys whi ch would otherwise require hours of ora l exp lanat ions
or lengthy pages of w ritten messages. St i II there is a chance that sOLlnd and words may not
compl ete ly depict the mind of the creator of the message.

On the other hand a figure or a sketch may influence the subj ect, in the intended and des ired
way, more eas ily. Prov ided the subj ect has the basic inte lli gence to decode the pi ctor ia l message.
For instance traffic signals are universa ll y recognized and understood, messages/ in struct ions
rega rding traffic-flow-control.

1.2 Computer Graphics

Computer has invaded every sphere of life, may it be commerc ia l, persona l, profess iona l o r
ethi cal spheres. And as more than ninety percent of com puters are used by the users - who are not
profess ional s. Therefore it has become all the more s ign ifi cant to deve lop a un iversa l language,
on part of computer profess iona ls so that th e ir software are better understood, used and marketed.

And it is very interesting that the modern man of twenty-first-century could not develop a
new universa lly understood code of language of hi s times. He had to revert back to the language
of s igns and symbols of the stone-age-man .

This is the core reason why graphics user interface (GU J) paradigm, so thoroughly and
extens ive ly, is be in g incorporated in a ll th e new software. Which has increased the importance
and use of the computer graphics, as a subj ect and as a profess ion in the field of computer
sC Iences.

1.3 Graphics Editor

There may be a va ri ety of the graphics ed itors. But the underly ing feature is to enable the user
to des ign, employ ing different too ls with varying degrees of maneuverability . Tools may be
geometric fi gures, free hand sketching, co lors se lection etc.

Besides, geometric objects, an option of free hand sketching are a lso incorporated in the
software. The software is menu driven, w ith keyboard as the input dev ice. While the free hand
sketch ing is us ing mouse as input dev ice.

2

CHAPTER 2

OBJECT ORIENTED PROGRAMMING (OOP)

3

2.1 INTRODUCTION

We live in a world of objects. These objects exist in nature, in human made entiti es, in
commerce and trade, and in the products we use. These can be categorized, described , organized,
combined, manipul ated and created. For instance doors, w indows, paints, co lors, g lass, wa ll s,
roofs, ce ilings, frames, hinges, door knobs, etc, all are objects which may be created and
manipulated to des ign and create yet another object ' a house ' .

Therefore it is no surpri se that an object or iented v iew would be proposed fo r the c reation of
the computer software. It is an abstract ion, which enables us to world in ways that he lp us to
understand and nav igate it.

Object or iented approach (OOP) was first introduced in the late s ixt ies. And now the
approach has evo lved into a full-fledged eng ineering discipline, known as object or iented
software engineerin g.

2.2 OBJECT ORIENTED PARADIGM

The obj ect-oriented approach demands an evo lutionary approach towards engi neer ing.
Fo llow in g are the steps, which are followed in a spiral path, start ing from the beginning of
software to the end .

· Identify cand idate c lasses
· Look up classes in library
· Extract classes if ava ilable
· E ngineer c lasses if unava ilab le

· Object ori ented ana lys is
· Object or iented des ign
· Programming
· Test ing

· Put new c lasses in the library
· Construct nth iteration of the system

2.3 CLASSES AND OBJECTS

In obj ect or iented concept, a c lass is a logical construct, which encapsulates the data and the
procedural abstractions req uired to describe the contents and behavior of some real world entity.
A wall of procedures (functions) separates data and the procedura l abstract ions (operat io ns,
methods or serv ices) . Which means data (i.e. the attributes) can only be approached through the
functions or the procedural abstractions. Which achieves the concept of info rmation hiding, i.e.
the attributes of a c lass is hidden from rest of the software.

By defi ning all objects that exist within a c lass inher it it's attributes and the operat ions that
are ava ilab le to manipulate they attr ibutes . A super-class is a co ll ect ion of c lasses, and a subc lass
is a specia lized instance of a c lass.

4

2.4 ATTRIBUTES AND DOMAIN

Attributes are attached to classes and objects, and they describe the class or object in some
way. And an attribute may have a domain. Which means that an attribute can take on a value
defined by a domain.

For example ' automobile ' is a class. Which has an attribute ' color '. While color has a domain
of red, white, blue, yellow, orange etc. Thus the attribute ' color ' can take on any value from
within the domain of colors .

2.5 OPERATIONS, METHODS, AND SERVICES

An object encapsulates data (represented as a collection of attributes) and the algorithms that
process the data. These algorithms are called operations, methods or services .

2.6 ENCAPSULATION, INHERITANCE, AND POLYMORPHISM

Encapsulation, inheritance and polymorphism are the three characteristics, which differentiate
object-oriented paradigm, in a considerable way, from the structured paradigm. Rather these three
characteristics are the strong points of the OOD (object oriented design)

Encapsulation

As object oriented class and objects spawned from the class, which encapsulate data and the
operations that work on the data in a single package. This concept of encapsulation provides a
number of very important benefits:

1. The internal implementation details of data and procedures are hidden from the outside
world . Which reduces the propagation of side effects when changes are incorporated in
the software.

2. Data structures and the operations that manipulate them are merged in a single named
entity-class. This facilitates component ' Reuse ' . And reuse, reuse, reuse is the call ofthe
day .

3. Interfaces among encapsulated objects are simplified . Because an object which sends a
message need not be concerned with the details of the internal data structures . Thereby
interfacing is simplified .

Inheritance

Inheritance is one of the key elements, which differentiates between the conventional and
object-oriented systems. Let us see it ' s utility through an example.

A subclass Y inherits all the attributes and operations associated with it ' s super-class X. This
means that all data structures and algorithms originally designed and implemented for X are
immediately available for Y. And no further work need to dine. That is 'Reuse' has been
accomplished directly.

FlIlihermore, any change to the data and operations contained within a super-class is
immediately inherited by all subclasses that have inherited from the super-class . Therefore the
class hierarchy becomes a mechanism through which changes (at high level) can be immediately
propagated through a system.

5

It is important to note that, at each level of the c lass hierarchy, new attributes and operations
may be added to those that have been inheri ted f rom higher leve ls on the hi erarchy. In fact,
whenever a new c lass has to be crea ted, th e software engineer has a number of opt ions:

• T he c lass can be des igned and buil t fro m scratch. W hi ch means inheri tance is not
used.

• The c lass hierarchy can be searched fo r determining, if a c lass hi gher in the hi erarchy
conta ins most of the required attributes and operati ons. The new c lass inh erits from
the hi gher c lass and additi ons may then be added, as required .

• T he c lass hierarchy can be restructured so that the new c lass can inherit the required
attributes and operati ons.

• Characteri st ics of an existin g c lass can be over-ridden and private vers ions of
attributes and operations are implemented fo r the new c lass. Over-ridding occurs
when attributes and operations are inherited in the normal manner but are then
mod ified to the spec ific needs of the new c lass .

Polymorphism

Po lymorphi sm is a characteri stic that great ly reduces the effort required extending an ex isting
obj ect o ri ented system. To understand po lymorphism, consider a conventi ona l app licat ion that
must draw three di fferent types of graphs, line graph, pie chart, and hi stogram .

Idea lly once data are co llected fo r a pal1icul ar type of graph, the graph should draw itself. To
accompli sh, thi s in a procedura l way . It is necessary to deve lop drawing modul es fo r each type of
graph . A nd w ithin the des ign of each graph type, contro l logic simil ar to the fo llow ing would
have to be embedded:

Case of graph-type:
Ifgraph-type = line-graph then Draw-Line-Graph (data) ;
If graph-type = p ie-chart then Draw-Pie-Chart (data);
If graph-type = histogram then Draw-Histogram (data);

End case:

On the other hand, same problem adopting obj ect-oriented des ign requires that a ll of the
graphs become sub-c lasses of a genera l c lass say ' graph '. Us ing a concept called over-lading,
each subc lass defi nes an operation ca ll ed ' Draw' . An obj ect can send a draw message to anyone
of the object instantiated from anyone of the subc lasses. T he obj ect receiv ing the message w ill
invoke it's own ' Draw' operation to create the appropriate graph . Therefore, the des ign is reduced
to:

Graph-type draw

Furthermore, whenever a new graph is to be added to the system, a subc lass is created w ith
it ' s own, draw' operati on. And no changes are required w ithin any obj ect that wants a graph
drawn, because message' graph-type draw' remains unchanged.

To summarize, po lymorphi sm enables a number of di fferent operations to have the same
name. Which in turn de-couples the obj ects from one another, making each more independent.

6

CHAPTER 3

OBJECT -ORlENTED DESIGN

7

3.1 INTRODUCTION

What is the relevant object? How do they re late to one another? How do objects behave in the
context of the system? How do we specify or mode l a probl em so that we can create an effective
des ign?

Each of these question s is answered w ithin the context of obj ect-oriented analys is (OOA).
Which is the first technical act ivity that is performed as part of object-o ri ented software
eng ll1eerll1 g.

Coad and Y ourdon consider th is issue when they w rite:

" OOA, object -ori ented analysis is based upon concepts that we first learned in
Kindergarten : Objects and attributes, c lasses and members, who les and palts. Why it has taken so
lo ng to apply these concepts to the ana lys is and spec ificat ion of information systems is anyone ' s
guess"

3.2 OBJECT -ORIENTED ANALYSIS

The objective of the obj ect-or iented analys is is to deve lop a mode l that describes computer
software as it works to sat isfy a set of customer-defi ned requirements. And this obj ect ive is
achi eved by defi ning a ll c lasses that are re levant to the problem to be so lved, the operat ions and
attr ibutes assoc iated w ith them, the re lati onships between them, and the behavior they exhibit. To
accompli sh this, a number of tasks must occur:

l. Basic user requirements must be communicated between the customer and the
software engineer.

2. C lasses must be identifi ed . (i. e. attributes and methods are defi ned)
3 . A c lass hi erarchy must be spec ifi ed.
4. O bj ect to obj ect re lati onships (object connect ions) should be represented.
5. Object behavi or must be mode led.
6. Tasks 1 through 5 are reapplied iterative ly until the mode l is complete.

3.3 A UNIFIED APPROACH TO OOA

Over the past three decades a lot of independent approaches have evo lved around the methods
to implement OOA to achieve an analysis mode l. Each mode l has it ' s own strong and weak
points.

However, over the last decade Grady Booch, James Rumbaugh, and Ivan Jacobson have
co llaborated to combine the best features of their individual object-oriented analysis and des ign
method s into a unifi ed method. The result ca lled the 'Unified Modeling Language (UML)" has
become widely used throughout the software industry .

In UML, a system is represented us ing five different ' views ' that descr ibe the sys tem,
distinctly from diffe rent perspectives. Each view is defi ned by a set of diagram s:

User Model View

This view represents the system from the user ' s (ca lled acto rs in UML) perspect ive. T hi s
important analys is representat ion describes a usage scenario from the end-user' s perspect ive.

8

Structural Model View

Data and functionality are viewed from inside the system. Which means static structures
(classes, objects, and relationships) is modeled.

Implementation Model View

The structural and behavioral aspects of the system are represented as they are to be built.

Behavioral Model

This analysis model represents the dynamic or behavioral aspects of the system

Envil"Onmental Model View

The structural and behavioral aspects of the environment in wh ich the system is to be
implemented are represented.

3.4 THE OOA PROCESS ON THE SOFTWARE

The OOA PROCESS DOES NOT BEGIN WITH A CONCERN FOR OBJECTS. Rather, it
begins with an understanding of the manner in which the system will be used. My software was
designed to be user-interactive.

3.4.1 USE-CASES P;;O\~'J~S ;};)tt

~4.. . v.;

Following were the user ' s requirements as envisaged by me. r:* ,f ~
; , l '~. (i.
! <. ::;> .. ' ~ " 1 I rr ,

1. It should be a graphic editor, e~abling the user to draw different figu .~ I h-... ',~ l'
2. The system should be menu-driven. " ':~d'
3. Following are the geometric figures '" fll, "0 C>

Line '~\ S

Arc
Rectangle
Square
Ellipse
Cone
Circle
Pie-slice
Triangle

4. There should be a facility to fill the figure with user defined color.
5. In case a figure is drawn at the wrong location . The system should be able to erase

the previous figure and translate it to the user-defined location.
6. There must be a provision to rotate the drawn figure .
7. The system should provide the user with a facility to scale the drawn figure according

to the user defined scaling factor.

9

8. The help line should be ab le to guide any user to effective ly des ign, making use of
the system.

9. System should provide the user w ith a fac ili ty to change the set up of the screen.
10. T he system must be able to save a drawing as file on the hard di sk.
11 . System shou ld be ab le to open an a lready saved file on the hard di sk.
12. System must have a faci lity to enab le the user to find the drawing coordin ates of a

point (pixe l) on the draw ing area.
13. Free hand drawing fac ili ty should a lso be there to complement the drawing.

3.4.2 CLASS-RESPONSIBILITY-COLLABORATOR MODELING (CRC)

Fo ll owing c lasses were identified on the bas is of the user scenar ios .

Classes

1. Menu class
2. Line c lass
3 . Arc c lass
4. E llipse c lass
5. Rectangle c lass
6. Sq uare c lass
7. Cone c lass
8. Pie-slice c lass
9. Triangle c lass
10. Circle c lass
11 . Setup c lass
12 . Mouse c lass
13. Free hand c lass

Class Responsibilities

1. Figures classes

F igure classes would be the same for all the geometric figures with littl e variations according
to the requ irements of the concerned figure

i. Provide user interface.
ii . Accept user va lues as attributes or data .
iii . Should have the following operations or services.

a) Draw the figures.
b) Rotate the figures
c) Sca le the figures.
d) Transfer the figures.
e) E rase the o ld figures before translation
f) Send contro l to a common point among a ll the c lasses.
g) Ask the user for the screen coordinates
h) Set the drawing area coordinates
I) Display messages for asking the user to input the screen coordi nates
k) Ca lculate the rotat ion coordinates

10

I) Ca lcu late the scaling coordinates
j) Ca lculate the translation coordinates

2. Position class

It should enabl e the user to find the d raw ing coordinates in the draw ing area, w ith the help of
mouse.

3. Menu Class

The menu c lass should be responsible for the fo llowing operations :

a) Di splay the main menu .
b) Highlight the line to which the contro l is shi fted .
c) D ispl ay the menu se lected by the user:

F il e menu
T rans lation menu
Scaling menu
Rotation menu
Mouse message
Help menu
Setup menu

d) Highlight the line of the menu se lected, to which the contro l has been shifted .
e) Close the opened menu .
f) Shi ft contro l to the FIGURES.

4.Mouse Class

The mouse c lass is responsible fo r the fo llowing operat ions:

a) Act ivate the mouse.
b) Display the mouse po inter.
c) Restrict the mouse to a defined area.
d) Display the coordinates of a pixe l.
e) Display the messages for the mouse activation period.

5.Free Hand Class

F ree hand class 's responsibilities are:

a) Acti vate the mouse
b) Display the mouse po inter
c) Restrict the mouse to a defi ned area
d) Ask for the user's draw ing co lor
e) Di splay messages
f) Hide the mouse while draw ing, w ith left button pressed
g) Draw in th e user defi ned co lor

II

6.Setup Class

It has the fo llowing responsib ilities:

a) Ask the user ' s choice for the background color of the drawing area
b) Set the desired background co lor of the drawing area
c) Ask the user for the background co lor of the messages area
d) Set the desired background co lor of the messages area
e)

Class Collaboration

In my software, a ll the classes work independently. Which means that hierarchical
distribution was not needed. Which also means that the concepts ofInheritance and
polymorphism were not incorporated. If incorporated they wou ld have reduced the code to a
considerab le degree. However due to the lack of my knowledge about these concepts in the
language C++ I cou ld not benefit from them.

3.5 DEFINING STRUCTURES

Fol lowing is the class structure of the software.

LINE CLASS ARC CLASS ELLIPSE RECTANGLE MOUSE
CLASS CLASS CLASS ., .. J~ "

~, r "
SQUARE .. MAIN MENU ... CONE
CLASS

....
CLASS

J~ J~

FREEHAND
CLASS

~, ~,

CIRCLE PIE-SLICE TRIANGLE SETUP
CLASS CLASS CLASS CLASS

12

3.6 OBJECT BEHAVIOR MODEL

1. To (h"aw all object

Fo llowing is the object behavior model for a ll the geometrica l objects

i Q-i"'~ cl.o.to. 'r~CQ1"~

OPERATION
\'t. -ro S \.. \<.~0'o

TO DISPLAY
SCREEN

T
OPERATION DRAWING OPERATION
TO SAVE ... PERFORMED
SCREEN

2. To tl"allslate an object

Fo llowing is the object behavior model for the tran slation of a line as an object. And thi s
model is the same for a ll other geometrical obj ects to be tran slated.

4'f E",\~'" ()yus~o\. LINE CLASS ..
MAIN MENU I) ..

AI.

\ ... a."'sQa~'\D'" J.. 0.'-.:0.. 'ft.c:.~ ;'J4!..J..
:-m~\.. \<e..J'beo. ... ~ J;'rDVV\ u..~ t..y ~

~,.

OPERA TION TO
DISPLA Y SCREEN OPERA TION TO ERASE

OLD LINE
J~

~

~RATIONTO OPERATION TO
TRANSLATE LIN E SAVE SCREEN

13

3. To scale an object

Following is the object behavior model fo r the scali ng a line, as an object. And thi s model is
same for a ll other geometr ical figures .

MAIN
MENU

.(~ E.~\:e. \., t s s ctJ.. ,
J~

OPERA TION TO DlSPLA Y
SCREEN

H.

OPERATION TO TRANSLATE
LINE

4. To rotate an object

...I LINE CLASS
PO-I

S"~o.Q.\"'0 c:ko.~o.. '(
~, \)'H"f \~"'D"'S

~c. e..N eeL ~yo"",

'" ',c:.~~\'oo."fol

OPERATION TO ERASE
OLD LINE

,r

OPERA TION TO SAVE
SCREEN

Fo llowing is the object behavior model for rotation of line, as an object. Which is true fo r a ll
other geometrical figures .

~C E", ~y t')'i'U'~ ctJ..
MAIN

)

ME1f

OPERA nON TO DlSPLA Y
SCREEN

OPERA TION TO ROT A TE
LINE

i
OPERA nON TO SAVE
SCREEN ,..

.. ...
LINE CLASS

Qo~o.\-i .. 't\ cb~o. "('tCt'\lt.~ \'YDW"

~~~'ooo.'IS'J.. u.~Q.¥ " ... '¥o~1.-

~,. 

OPERA nON TO ERASE OLD 
LINE 

14 



5.To set SC1'een attributes 

MAIN -if ~.,,~{l"( ",,,e<;~~ SETU P 
MENU ... CLASS • 1 ... 

~~ 

.5"c::.'l~~'" o..l~ ... ,\'v. 

~~ ' ''''' \.).(' II-W 
\C. 

\~r ·'ncC!""Qct. 

~~\,.. Y< tj \, oo."J. 

r 

.... ~ SETUP OPERA nON .... 
PERFORMED 

6.To determine position 

MAIN ~'f ~Ii'\~'( .... 'C Q.~rQJ.. .. MOUSE CLASS 
MENU ) \ ... 

r 

OPERA TJON TO ACTIVATE 
MOUS E 

P'\O\IJ~ ""'" .... ~"'" 

r 

OPERA nON TO DISPLAY ... OPERATION TO FIND 
COORDINATES 

..... 
COORDINATES 

15 



7.To draw with free hand 

MAIN 
~~ f",\l1.'( i'\~,uJ'Q.J.. MENU J r 

J~ 

~.~ \< t.j \, Do.'(J.. \\'i.-t 

OPERATION TO DRAW .. .... 

FREE HAND CLASS .. ... 

;~ L ~ ~~ 

" 
OPERA TION TO 
ACTIV A TE MOUSE 

~. 

" 
OPERATION TO ACCEPT 
LEFT BUTTON 

"'~':j 0'" vv-ov..r t 
I?YH.tQ.~ 

16 



CHAPTER 4 

OBJECT ORIENTED DESIGN PROCESS 

17 



4.1 INTRODUCTION 

Object oriented des ign tran sform s the ana lys is mode created; using object o ri ented analys is, 
into a des ign model that serves as a blueprint for software engineerin g or construction. 

UML (unified mode ling language) is organized into two major des ign activiti es: System 
design and Object des ign. T he primary object ive ofUML system des ign is to represent the 
software architecture. The conceptua l architecture is concerned with the structure of the static 
class mode l and the connect ions between the components of the mode l. 

UML obj ect design focu ses on a description of objects and their interact ions with one 
another. And then System and Obj ect design in UML are extend ed to cons ider the des ign ofthe 
user interfaces . T he user mode l view of the analys is model drives th e user interface des ign 
process, prov iding a scenar io that is e laborated through iterat ion to become a set of interface 
c lasses. 

4.2 THE SYSTEM DESIGN PROCESS 

System des ign deve lops the architectural deta il required to build a system or a product. 

4.2.1 Partitioning the analysis model 

The software is partitioned into three layers: 

Presentation Layer, 
Data base Layer, and 
Applicat ion Layer. 

The Presentation Layel' 

T he main menu is the top layer. In which the mai n menu is the ma in-system. And it has the 
fo ll ow in g sub-systems : 

File (communicates with the file c lass) 
Translat ion (communicates w ith any of the figure c lasses) 
Scaling (communicates with any of the fi gure c lasses) 
Rotat ion (communicates with any of the figure classes) 
Help (communicates with the he lp c lass) 
Position (commun icates with the mouse c lass) 
Free hand (communi cates with the free hand c lass) 
L ine (communicates with the line class) 
Arc (communi cates w ith the arc c lass) 
Pie-s l ice (comlllun icates with the pie-sl ice c lassO 
Rectangle (communicates with the rectangle c lass) 
Square (communicates w ith the square c lass) 
Triangle (communi cates with the triangle c lass) 
C irc le (communicates w ith the circ le c lass) 
Cone (communicates w ith the cone c lass) 
Setup (colllmunicates with the setup c lass) 

18 



Messages sent from the presentation layer 

As the architecture of my system is an open system, so messages may be sent to any lower 
layer, from any layer. In a c losed architecture the messages may be sent only to the adjacent 
layers. 

Messages are the means by which object interact. A message st imulates some behavior to 
occur in the receiving object. T he behavior is accomp li shed when an operation is executed. 
General fo rmat of the message is 

Message: [destination , operation , and pa rameters I 

Message: [fi le c lass, open fi le menu, name offi le] 
Message: [translate, open translation menu, enter-key-s igna l] 
Message: [sca lin g, open sca le menu, enter-key-s igna l] 
Message: [rotate, open rotat ion menu, enter-key-signa l] 
Message: [help class, open help menu, enter-key-s igna l] 
Message: [mouse c lasses, activate, enter-key-s igna l] 
Message: [free-hand-class, act ivate, enter-key-s igna l] 
Message: [line-class, take coordinates, enter-key-signal] 
Message: [arc-class, take coordinates, enter-key-s ignal] 
Message: [p ie-s l ice-class, take coordinates, enter-key-s ignal] 
Message : [rectangle-class, take coordinates , enter-key-s igna l] 
Message: [square-c lass, take coordinates, enter-key-s ignal] 
Message: [triangle-class, take coordinates, enter-key-signal] 
Message: [circle-c lass, take coord inates, enter-key-s igna l] 
Message: [cone-class, take coordinates, enter-key-signal] 

T he Database Layel' 

Fo llowi ng are the subsystems ofthe database layer, whi ch is the middle layer between the 
presentation layer and the appli cation layer. 

L ine data (com municates w ith the line c lass) 
Arc data (communi cates w ith the arc c lass) 
Pie-sl ice data (commun icates with the pi e-sl ice c lass) 
Rectangle data (commun icates w ith the rectangle c lass) 
Square data (communicates w ith the sq uare c lass) 
Triangle data (commun icates with the triangle class) 
C ircle data (coml11unicates with the c irc le c lass) 
Cone data (communi cates w ith the cone c lass) 

Scale data (comm un icates w ith the figure c lasses) 
Rotate data (comm unicates with the figure c lasses) 
Translate data (coml11 un icates with the figure c lasses) 
Free hand data (communi cates with the free hand c lass) 

19 



Setup data (communicates with the setup c lass) 
Mouse data (commun icates w ith the mouse c lass) 
Open file data (communicates with the file c lass) 
C lose file data (commun icates with the fi le c lass) 
Save file data (communicates with the file c lass) 

Messages sent from the database layer 

Message: [line data, set drawing data, data input from keyboard] 
Message: [arc data , set drawing data , data input from keyboard] 
Message: [pie-slice data, set drawing data, data input from keyboard] 
Message: [rectangle data, set drawing data, data input from keyboard] 
Message: [sq uare data, set drawing data, data input from keyboard] 
Message: [triangle data, set drawing data, data input from keyboard] 
Message: [circle data, set drawing data, data input from keyboard] 
Message: [cone data, set drawing data, data input from keyboard] 

Message: [rotate data, set rotation data for line, input from keyboard] 
Message: [rotate data, set rotation data for arc, input from keyboard] 
Message: [rotate data, set rotation data for rectangle, input from keyboard] 
Message: [rotate data, set rotat ion data for square, input from keyboard] 
Message: [rotate data, set rotation data for triangle, input from keyboard] 
Message: [rotate data , set rotation data for circle, input from keyboard] 
Message: [rotate data, set rotation data for pie-slice, input from keyboard] 
Message: [rotate data, set rotation data for cone, input from keyboard] 

Message: [scale data, set scaling data for line, input from keyboard] 
Message: [sca le data, set sca lin g data fo r arc, input from keyboard] 
Message: [sca le data, set sca ling data fo r rectangle, input from keyboard] 
Message: [sca le data, set sca ling data for sq uare, input from keyboard] 
Message: [scale data, set scaling data for triangle, input from keyboard] 
Message: [scale data, set sca ling data fo r circle, input from keyboard] 
Message: [scale data, set scaling data for pie-s lice, input from keyboard] 
Message: [scale data, set scaling data for cone, input from keyboard] 

Message: [translate data , set translation data for line, input from keyboard] 
Message: [translate data, set translation data for arc, input fro m keyboard] 
Message: [translate data , set translation data for rectangle, input from keyboard] 
Message: [translate data, set translation data for square, input from keyboard] 
Message: [translate data, set translation data for triangle, input from keyboard] 
Message: [translate data, set translation data for c irc le, input from keyboard] 
Message: [translate data, set translation data for pie-slice, input from keyboard] 
Message: [translate data, set translation data for cone, input fro m keyboard] 

Message: [free hand data set mouse coordinates, mouse movement] 
Message: [position data, set mouse coord inates, mouse movement] 
Message: [open file data, read file name, input from keyboard] 
Message: [close fi Ie data, read fi Ie name, input from keyboard] 
Message: [save file data, read file name, input from keyboard] 

20 



The Application Layer 

Fo llowing are the subsystems of the app lication layer 

D raw line (com municates w ith line c lass) 
Draw arc (commun icates with the arc c lass) 
Draw pie-sl ice (coll1 mun icates with the pie-sl ice c lass) 
Draw rectangle (com municates w ith the rectangle c lass) 
Draw Sq uare (communicates with the square c lass) 
Draw c irc le (commun icates w ith the c irc le c lass) 
Draw tri angle (commun icates with the tri angle c lass) 
Draw cone (coll1ll1un icates w ith the cone c lass) 

T ranslate line (col1lmun icates w ith I ine c lass) 
T ran slate arc (communicates with the arc c lass) 
T rans late pie-sl ice (communi cates w ith the pie-sl ice c lass) 
Trans late rectangle (comll1un icates w ith the rectangle c lass) 
Translate square (communicates w ith the square c lass) 
Trans late c irc le (communicates with the circle c lass) 
T rans late triangle (col1ll1lunicates w ith the triangle c lass) 
Translate cone (col1l mun icates w ith the cone c lass) 

Rotate line (communicates w ith line c lass) 
Rotate arc (co 111 111 un icates w ith the arc c lass) 
Rotate pie-slice (commun icates with the pie-slice c lass) 
Rotate rectangle (coll1ll1un icates with the rectangle c lass) 
Rotate square (communicates w ith the sq uare c lass) 
Rotate c irc le (com municates with the c irc le c lass) 
Rotate triangle (col1lmuni cates with the triangle c lass) 
Rotate cone (coml1lunicates w ith the cone c lass) 

Sca le I ine (communicates w ith I ine c lass) 
Sca le arc (communicates w ith the arc c lass) 
Sca le pie-sl ice (coml1lun icates with the pie-sl ice c lass) 
Scale rectangle (commun icates w ith the rectangle c lass) 
Scale Sq uare (commun icates with the square c lass) 
Scale c irc le (communicates w ith the c irc le c lass) 
Scale triangle (communicates w ith the triangle c lass) 
Scale cone (com municates with the cone c lass) 

Open file (communicates with the fi le c lass) 
C lose fi Ie (co l1ll1lun icates with the fi Ie class) 
Save file (communi cates w ith the file c lass) 
Activate position (communicates with the he lp class) 
Activate free hand (com municates w ith the free hand c lass) 

21 



Messages sent f."om the application laye." 

Message: [draw line, draw, coordinates and co lor] 
Message: [draw arc, draw, coord in ates and co lor] 
Message: [draw pie-slice, draw, coordinates and co lor] 
Message: [draw rectangle, draw, coordinates and co lor] 
Message: [draw square, draw coord inates and co lor] 
Message: [draw triangle, draw, coordinates and co lor] 
Message: [draw circle, draw, coordinates and co lor] 
Message: [draw cone, draw, coordinates and co lor] 

Message: [translate line, translate, di stance and direction] 
Message: [translate arc, translate, di stance and direct ion] 
Message: [translate pi e-s lice, translate, di stance and direction] 
Message: [translate rectangle, translate, di stance and direction] 
Message: [translate square, translate, distance and direction] 
Message: [translate triangle, translate, distance and direction] 
Message: [translate circle, translate, di stance and direct ion] 
Message: [translate cone, translate, distance and direct ion] 

Message: [rotate line, rotate, angle] 
Message: [rotate arc, rotate, angle] 
Message: [rotate pie-s li ce, rotate, angle] 
Message: [rotate rectangle, rotate, angle] 
Message: [rotate, sq uare, rotate, ang le] 
Message: [rotate, c irc le, rotate, angle] 
Message: [rotate tr iangle, rotate, angle] 
Message: [rotate cone, rotate, angle] 

Message: [open-file, open, fil e-name and drive name] 
Message: [close-fil e, c lose, drawing area coordinates] 
Message: [save-file, save, file-name and drive name] 
Message: [activate-mouse, act ivate, mouse movement] 
Message: [act ivate free hand, act ivate, (mouse-position, left-key-s ignal)] 

22 



4.2.2 INTER SUBSYSTEM COMMUNICATION 

Following is the subsystem collaboration table. 

Contract Type Collaborators Classes Operation(s) Message 

Request User/system • File File • Open menu User presses 

• Open file • Set data Enter key 

data 
Request User/system • Fi le File • Open menu User presses 

• Close file • Set data Enter key 

data 
Request User/system • Fi le File • Open menu User presses 

• Save file data • Set data Enter key 

Internal Peer-to-peer • Open fi le Fi le • Open the Internal call 
trigger data fi le to the object 

• Open file 
Internal Peer-to-peer • Close fi le Fi le • Close the Internal call 
trigger data fi le to the object 

• Close file 
Internal Peer-to-peer • Save file data File • Save the file Internal call 
trigger • Save file to the object 

Request User/system • Position Mouse • Set screen User presses 

• Activate • Set mouse enter key 

position • Set cursor 

• Disp lay 
coordinates 

Request User/system • Free hand Free hand • Set screen User presses 

• Free hand • Save screen enter key 

data • Set mouse 
coordi nates 

• Activate 
mouse 

Request User/system • Free hand Free hand • Set data User presses 
data • Fill the Enter key 

• Activate free pixel 
hand • Display 

pixe l 
Request User/system • Line Line • Receive User inputs 

• Line data data through 

• Set data keyboard 

Internal Peer-to-peer • Line data Line • Save screen Internal call 
trigger • Draw line • Draw to object 

• Display 
screen 

Request User/system • Line data Line • Save screen User Inputs 

23 



• Trans late line • Erase line through 

• Trans late keyboard 

line 

• Displ ay 
screen 

Request U serf system • L ine data L ine • Save screen User inputs 

• Rotate line • Erase line through 

• Rotate line keyboard 

• D isp lay 
screen 

Request Userlsystem • L ine data L ine • Save screen User inputs 

• Scale data • Erase line through 

• Scale line keyboard 

• Displ ay 
screen 

Request U serf system • Arc Arc • Rece ive User inputs 

• Arc data data thro ugh 

• Set data keyboard 

Interna l Peer-to-peer • Arc data Arc • Save screen Inte rna l call 
trigger • Draw arc • Draw to obj ect 

• Display 
screen 

Request U serf system • Arc data Arc • Save screen User Inputs 

• Translate arc • Erase arc thro ugh 

• Translate keyboard 

arc 

• Display 
screen 

Request U serf system • Arc data Arc • Save screen User inputs 

• Rotate arc • Erase arc th rough 

• Rotate arc keyboard 

• Display 
screen 

Request User/system • Arc data Arc • Save screen User inputs 

• Sca le data • Erase arc through 

• Sca le arc keyboard 

• Di splay 
screen 

Request User/system • P ie-s lice Pie-s lice • Rece ive User inputs 

• Pie-s lice data data through 

• Set data keyboard 

Intern a l Peer-to-peer • Pie-s lice data Pie-s lice • Save screen Interna l call 
tri gger • Draw pie- • Draw to obj ect 

slice • Display 
screen 

Request U serlsystem • Pie-s lice data Pie-s li ce • Save screen User Inpu ts 

• Translate pie- • Erase pie- through 

s li ce s lice keyboard 

24 



sli ce s lice 

• T ranslate 
pie-slice 

• Display 
screen 

Request User/system • Pie-s lice data Pie-s lice • Save screen User inpu ts 

• Rotate pie- • Erase pie- through 
slice slice keyboard 

• Rotate pie-
slice 

• Display 
screen 

Request User/system • Pie-slice data Pie-s lice • Save screen User inputs 

• Scale data • Erase pi e- through 

slice keyboard 

• Sca le pie-
slice 

• Display 
screen 

Request User/system • Rectangle Rectangle • Rece ive User inputs 

• Rectangle data th rough 

data • Set data keyboard 

Internal Peer-to-peer • Rectangle Rectangle • Save screen Internal ca ll 
tr igger data • Draw to object 

• Draw • Display 
Rectangle screen 

Request User/system • Rectangle Rectangle • Save screen User Inputs 
data • Erase through 

• Translate Rectangle keyboard 

Rectangle • Trans late 
Rectangle 

• Display 
screen 

Request User/system • Rectangle Rectangle • Save screen User inputs 
data • Erase through 

• Rotate Rectangle keyboard 

Rectangle • Rotate 
Rectangle 

• Display 
screen 

Request User/system • Rectangle Rectangle • Save screen User inputs 
data • Erase through 

• Sca le data Rectangle keyboard 

• Scale 
Rectangle 

• Display 
screen 

Request User/system • Tri angle T riangle • Receive User inputs 

• Triangle data data through 

25 



• Set data keyboard 
Internal Peer-to-peer • Triangle data Triangle • Save screen Internal ca ll 
trigger • Draw • Draw to object 

T ri angle • Display 
screen 

Request User/system • T riangle data T ri angle • Save screen User Inputs 

• Translate • Erase through 
Tr iangle Tr iang le keyboard 

• Trans late 
Tri angle 

• Display 
screen 

Request User/system • Triangle data Triangle • Save screen User inputs 

• Rotate • Erase through 

T ri angle Tri angle keyboard 

• Rotate 
Triangle 

• Display 
screen 

Request User/system • T ri angle data Triangle • Save screen User inputs 

• Sca le data • Erase through 

Triangle keyboard 

• Sca le 
Triangle 

• Displ ay 
screen 

Request U ser/ system • C irc le C irc le • Rece ive User inputs 

• C irc le data data through 

• Set data keyboard 

Internal Peer-to-peer • Ci rcl e data C irc le • Save screen Internal ca ll 
trigger • Draw Circ le • Draw to object 

• Display 
screen 

Request User/system • C irc le data C irc le • Save screen User Inputs 

• Translate • Erase C irc le through 

C irc le • Translate keyboard 

C irc le 

• Disp lay 
screen 

Request U serf system • Circ le data C irc le • Save screen User inputs 

• Rotate C irc le • Erase C irc le through 

• Rotate keyboard 

C ircle 

• Disp lay 
screen 

• C irc le C irc le • Save screen User inputs 
Request U serf system • Sca le data • Erase C irc le through 

• Scale C irc le keyboard 

26 



• Display 
screen 

Request User/system • Square Square • Receive User inputs 

• Sq uare data data through 

• Set data keyboard 

Internal Peer-to-peer • Square data Square • Save screen Internal ca ll 
trigger • Draw Square • Draw to object 

• Display 
screen 

Request User/system • Sq uare data Sq uare • Save screen User Inputs 

• T ranslate • Erase through 

Square Square keyboard 

• Translate 
Square 

• Display 
screen 

Request U serf system • Square data Square • Save screen User inputs 

• Rotate • Erase through 

Square Square keyboard 

• Rotate 
Square 

• Displ ay 
screen 

Request U serf system • Square data Square • Save screen User inputs 

• Scale data • Erase through 

Square keyboard 

• Sca le 
Square 

• Displ ay 
screen 

Request User/system • Cone Cone • Receive User inputs 

• Cone data data through 

• Set data keyboard 

Internal Peer-to-peer • Cone data Cone • Save screen Internal ca ll 
trigger • Draw Cone • Draw to obj ect 

• Display 
screen 

Request U serf system • Cone data Cone • Save screen User Inputs 

• T ranslate • Erase Cone through 

Cone • Translate keyboard 

Cone 

• Display 
screen 

Request User/system • Cone data Co ne • Save screen User inputs 

• Rotate Cone • Erase Cone through 

• Rotate Cone keyboard 

• Display 
screen 

27 



Request U serf system • Cone data Cone • Save screen User inputs 

• Scale data • Erase Cone through 

• Scale Cone keyboard 

• Display 
screen 

4.3 OBJECT DESIGN PROCESS 

4.3.1 INTRODUCTION 

A des ign descri pt ion of an object (an in stance of a class or subclass) can take one of two 
forms : 

• A protocol description: 
That establishes the interface of an object by defining each message that the object can 

receive and the related operation that the object performs when it receives the message. 

• An implementation description: 
That shows implementation detai Is for each operation implied by a message that is passed to 

an object. It provides the internal details that are required for implementation. 

As I will code the design in C++, therefore I am going for the ' implementation description '. 

4.3.2 PROGRAM COMPONENTS 

PACKAGE program-component-open file 
TYPE 

File name. string (8) 
PROC read, load, display. 
PACKAGE BODY program-component-open file 

PROC operation. Read (file name) 

END 

Read. File-name. Keyboard 
Compare. F ile names 

IF (matched) THEN load. File-name. Buffer 
ELSE 

DISPLAY. Message = ' no file found ' . 
EX IT 

PROC operation. load (file) 
Load . File. Buffer 

END 
PROC operation. Display (fi le) 

DISPLAY. F ile. Monitor 
EN D 

END program-component-open file 

28 



PACKAGE program-component-close fi Ie 
TYPE 

Int. drawing-area-coordinates 
PROC get, close 
PACKAGE BODY program-component-close file 

PROC operat ion. Get (d rawing area coordi nates) 
Pass (coo rdinates) TO operation. C lose 

END 
PROC operation. Close (file) 

FOR (coordinates) 
Put-pixel. White 

END 
END program-component-close fil e 

PACKAGE program-component-save file 
TYPE file-name . String (8), dri ve char ( I) 
PROC read, save 
PACKAGE BODY program-component-save fil e 

PROC operation. Read (fi le-name) 
Read. Fi le-name. Keyboard 
Read. Drive-name. Keyboard 

EN D 
PROC operat ion. Save (fi le) 

Compare. File-names 

END 

IF (not matched) THEN save. File ON drive 
ELSE 

DISPLAY. Message = ' fi le already exists, overwrite? ' 
IF yes THEN save. File ON dri ve 
ELSE EXIT 

END program-component-save file 

PACKAGE program-component-posi tion 
TYPE int. position-coordinates 
PROC get, di splay 
PACKAGE BODY program-component-position 

PROC operation. Get (position coordinates) 
FOR (not keyboard hit) 

Get. Coordin ates 
PASS. Coord inates TO operation. Disp lay 

END 
PROC operation. Display (coordinates) 

FOR (not keyboard hit) 
Di splay. Coordinates. Monitor 

END 
END program-compo nent-positi on 

29 



PACKAGE program-component-free hand 
TYPE in to position-coordi nates 
PROC get, write, display 
PACKAGE BODY program-component-free hand 

PROC operation . Get (pos iti on coo rdinates) 
FOR (not keyboard hit) 

Get. Coordinates 
PASS (coordinates) TO operati on. Wri te 

EN D 
PROC operati on. Write (p ixel) 

FOR (not keyboard hit) 
FOR (left key) 

END 

PASS (write. Pixe l. Coordinates) 
TO operati on. Displ ay 

PROC operati on. Display (pixel) 
Displ ay. Pi xel 

END 
EN D program-component- free hand 

PACKAGE program-co mponent-line 
TYPE PRIVATE int. center coordinates 

lnt. drawing coordinates 
ln t. translation coordinates 

PROC clear-message-area 
Make-message-area 
Make-drawi ng-area 
Save-screen 
Display-screen 
Get-center coo rdinates 
Set-d raw ing-coordinates 
Set-t rans lat ion-coord i nates 
Draw- line 
Translate-l ine 
Erase-line 

PACKAGE BODY program-component-line 
PROC operation. Clear-message-area 

EN D 

PUB LI C into message-area-coordinates = ' DEFINED ' 
FOR (message-area-coordinates) 

Write. Pixel. White 

PROC operat ion. Make-message-area 

END 

PUBLIC TYPE int. message-area-coordinates = 'DEFINED' 
Make-boundary. Message-area-coordinates 

PROC operati on. Make-drawing-area 

END 

PUBLI C int. drawing-area-coord inates = 'DEFINED' 
Make-boundary. Drawing-area-coordinates 

PROC operation. Save-screen (drawing-area) 

EN D 

PUBLI C int. drawing-area-coordinates = ' DEFINED' 
FOR (d raw ing-area-coordinates) 

Array = get. Pixel. Color 

PROC operation. Display-screen (d rawing-area) 

EN D 

PUBLI C int. drawi ng-area-coordinates = ' DEFINED' 
FOR (d rawing-area-coo rdinates) 

Put. Pixe l. Co lor = array 

30 



PROC operation. Get-center-coordinates 
PUBLIC int. x, Y 

EN D 

DI SPLA Y. Message = ' Enter center coo rdinates ' 
GET. X, Y 
CALCULATE. Center-coordinates 
DI SPLA Y. Message = ' Enter co lor' 
GET. Color 

PROC operation . Set-drawing-coordinates 
PU BLI C 

CALCULATE. Drawing-coordinates 
EN D 
PROC operati on. Set-translati on-coordinates 

PUBLIC 
CALCULATE. Translation-coordinates 

EN D 
PROC operation. Draw-line 

PUBLIC 

EN D 

FOR (d rawing-coo rdinates) 
Write. Pi xe l. Co lor 

PROC operation. Translate-line 
PUBLI C 

EN D 

FOR (translation-coordinates) 
Write. Pixe l. . co lor 

PROC operati on. Erase- line 
PUBLIC 

EN D 
EN D program-component-line 

FOR (drawing-coordinates) 
Write. Pixe l. White 

NOTE: The above component is true for all geometrical figures, with the co .... esponding 
changes to the concerned figure. 

31 



CHAPTER S 

MATHEMATICAL PROCEDUTRES 

AND 

ALGORITHMS 

32 



5.1 INTRODUCTION 

As my software ' s core workin g area is the geometric fi gures. For w hi ch mathemati cal 
routin es were deve loped . After deve lopin g the ir mathemat ical ro utines, correspondin gly the ir 
algorithms were deve loped. And these a lgorithms were then coded in C++. 

In thi s c hapter a long w ith the necessary mathemat ica l background are presented. Where x 
stands for the co lumns and y for the rows . I have also made use of the C++ built- in graphics 
functions. 

5.2 LINE 

A (ax, ay) B (bx, by) 

Where ax & ay are the starting coordinates 
And bx, by are the ending coordinates. 

I. START 
2. INPUT sta rting coordinates (ax, ay) 
3. INPUT ending coord in ates (bx, by) 
4. IN PUT co lor 
5. FOR (starting to ending coordinates) 

WRITE. Position. Co lor 
6. END 

5.3 ARC 

y 

(xc, yc) 

R = radius 
Xc, yc = center coordinates 

= starting angle 
= ending angle 

x 

33 



I. START 
2 . IN PUT rad ius (r) 
3. IN P UT center-coord inates (xc, yc) 
4. INPUT starting ang le ( ) 
5. IN P UT ending ang le ( ) 
6. IN P UT co lor 
7. CALC ULATE 

xp = rcos ( ) 
yp = rs in ( ) 
x = xc + xp 
y = yc + yp 
WRIT E. X. Y. Co lor 

8. EN D 

5.4 CONE 
xrad 

(h x, hy) 

xC,yc = center coordinates 
h = he ight 
xrad = semi-major ax is of base 
yrad = semi-minor ax is of base 
yrad = 1/3 xrad 

I. START 
2. INPUT center coordinates (xc, yc) 
3 . INPUT height (h) 
4. IN PUT base-color 
5. IN P UT he ight co lo r 
6. IN P UT radi us of base (x rad) 
7. C ALCU LAT E 

Y rad = 1/3 (xradO 
Hx = xc 
Hy = h + yc 

8. SET . I-Ie ightco lo r 
9. DRAW. Height 

FO R (Hx. Hy. Yrad) 
WR ITE. heightco lo r 

h 

34 



10. CALCUALTE 
X= \-I x-xrad 
y = \-Iy 

II . SET. Baseco lor 
12. DRAWBASE 

FOR (X, Y) 
WRITE. X. Y baseco lor 

13. END 

5.5 RECTANGLE 

(bx,by) 

w 

(ax,ay) 

w = width 
L = length 

I. START 

(xc, yc) 

2. INPUT length (I) 
3. INPUT width (w) 
4. INPUT co lor 
5. INPUT center coordinates (xc, yc) 
6. CALCULATE 

tux = xc- (1/2) 
Ay = yc- (w/2) 
Bx = ax 
By = yc- w/2 
Cx = by 
Ox = cx 
Dy = ay 

7. ORA W rectangle 

8.ENO 

FOR (X-coordinates) 
FOR (Y -coordinates) 

WR ITE. color 

( cx, cy) 

(dx,dy) 

35 



5.6 SQUARE 

(bx, by) 

(xc, yc) 

(ax , ay) 

I. START 
2. IN PUT cnter coordinates (xc, yc) 
3. INPUT length (I) 
4. INPUT co lor 
5. CALCULATE 

6. DRAW square 

Ax = xc - 1/2 
Ay = yc + 112 
Bx = ax 
By = yc - 1/2 
Cx = xc + 112 
Cy= by 
Dx = cx 
Dy= ay 

FOR (X-coord inates) 

(ex, ey) 

I = length 

(dx, dy) 

FOR (Y -coord inates) 
WRITE. co lor 

7. END 

36 



5.7 PIE-SLICE 

R = radius 
= starti ng angle 
= ending angle 

(xc, yc) 

xc, yc = center coordinates 

I. START 
2. IN PUT rad ius 
3. INPUT starting angle 
4. INPUT ending angle 
5. INPUT co lor 
6. CLACU LATE 

Yrad = radius 
7. DRAW pie-slice 

8. EN D 

FOR (starting angle, ending angle, Yrad) 
WRITE. co lor 

x 

37 



5.8 CIRCLE 

R = radius 
Xc, yc = center coordinates 

I. START 
2. INPUT co lor 
3. INPUT radi us 
4. CALCULATE 

5. DRAW circle 

6. END 

FOR (angle= 0 TO 360) 
X= radius (cosine of angle) 
y = rad ius (sine of angle) 

FOR (X, Y) 
WRITE. co lor 

38 



5.9 TRIANGLE 

(ax, ay) 

Oy = height 
Dx = w idth 

(bx , by) 

(xc, yc) 

Dx 

Xc, yc = center coordinates 

I. START · 
2. IN PUT center coordin ates (xc. yc) 
3 . INPUT width (dx) 
4. IN PUT he ight (dy) 
5. IN P UT co lor 
6. C LACU LATE 

7. SET co lor 

Ax = xc - ( 1/2)dx 
Ay = yc + ( 1/3)dy 
Bx =xc 
By = yc - (2/3)dy 
Cx = xc + ( 112)dx 
Cy = yc + (1I3 0dy 

7. DRA W triangle 

8. END 

FO R (ax, ay, bx, by, cx, cy) 
WRITE. co lo r 

(ex, ey) 

39 



CHAPTER 6 

PROJECT AS IT IS 

40 



6.1 INTRODUCTION 

In thi s chapter the software is described as it is. Afterwards the room fo r improvement is 
di scussed . T he defic ienc ies in the in iti a l des ign are a lso di scussed 

6.2 SOFTWARE AS IT IS 

The software is menu driven. At the start the mai n menu is di splayed . In whi ch on the top line 
fo ll owing are the obj ects : 

• F igures 

• F ile 
• Sca le 

• He lp 

• Translation 

• Rotation 

• Mouse 

• Free hand 

• Setup 
F igure is the common point to whi ch the contro l is transferred after the execution an obj ect 

(component). Whenever background co lor is white and the foreground co lor is red, the contro l 
w i II be on fi gures, in other words in the hands of users. 

If the user presses the down arrow key he can se lect the geometrical obj ects to draw. Once an 
obj ect is selected it is hi ghli ghted. And the system asks the users to input the needed va lues fo r 
se lected obj ect. The user is supposed to interact w ith the system through the keyboard . 

Scaling means to enlarge an obj ect or to shrink an obj ect to the predefined factors. 
It has a submenu th at a llows the user to select the factor scaling through a multiple-choice option. 
After selecting the des ired option the system asks the user to select the object to be sca led . 

T ranslation means to move an obj ect in one of the four directi ons, up, down, left , right. It has 
a submenu that asks the user to select the direction. After se lecting the direction the system would 
asks the user to select the obj ect to be translated. Upon selection of obj ect the needful is done, 
after eras ing the prev ious fi gure. 

Rotation means to rotate through predefin ed angles in counter c lockw ise directi on. It has a 
submenu, whi ch asks the user to se lect the angle. After selecting the ang le the system would asks 
the user to select the obj ect to be translated. Upon se lection of obj ect the needful is done, after 
eras ing the prev ious fi gure. 

In the setup the user is prov ided with a fac ility to change the fo llowing: 
• Backgrollnd co lor of the drawin g area. 
• Background co lor of the message area and 
• Text co lor of the screen wri t ing. 

The software is equipped with a he lp line. Whi ch can be ca lled by se lecting the HELP from 
the ma in menu . The he lp line has e ighteen pages of expl anati ons; one page dedicated to an obj ect. 

As the software is used, fo r the purpose of des igning, w ith the he lp of geometrica l objects . 
For which the user mllst know the exact locat ion on the draw ing area. The MOUSE, when 

41 



selected, enables the user to do so, with the help of mouse in his hands. The pixels ' coordinates 
are displayed as the mouse is moved within the drawing area. 

Free hand drawing utility is also provided in the system. Wh ich can be activated if the user 
selects the FREEHAND from the main menu . The mouse pointer will appear on the drawing area. 
And will move with the movement of the mouse. When the left button on the mouse is pressed 
the mouse pointer will disappear. Which is an indication of the fact that now the user can draw, 
by dragging the mouse . Before activating the free hand drawing facility the system wou ld ask the 
user to choose the drawing color. For this purpose the colors along with their code numbers are 
displayed on the screen. 

6.3 DEFFICIENCIES 

The software could not be completed as per the original design. Reasons were two. First my 
little knowledge about the language C++. Second, time. For which the following components of 
the design could not be coded: 

• Rotation 
• Scaling 
• Setup 
• File saving 
• File retrieval 

6.4 ROOM FOR IMPROVEMENT 

A room for improvement is always there. It is true here. Personally I think that the code of the 
software could have considerab ly be slashed, had I employed the strong concepts of C++. Which 
are the inheritance and polymorphism. Secondly, there could be a design in which the help can be 
called at any point during the execution ofthe software. Presently it is not so. 

6.5 USER INTERFACE 

The software is equipped with the user interface in the shape of proper messages displayed at 
the needed places. Furthermore, throughout the process of drawing the user is not left to guess. 
Rather he is guided at every step. The screen outputs ofthe different messages are part of this 
chapter. 

6.6 DIVISION OF THE MAIN SCREEN 

The main screen of the display monitor is divided in the following areas: 

• Drawing area 

• Message area 

• Tips area 

• Top line 

• Figures area 

42 



Drawing Area 

The drawing area is a portion of the screen, reserved for the user to draw hi s designing. T he 
software is designed in the VGE mode. In which the screen has 640 co lumns and 480 rows . T he 
drawing area starts at the 75 1h co lumn and 62nd row, w ith a dimens ion of 560 co lumns and 418 
rows. It is thi s area in whi ch the mouse movement is a lso restricted wh il e drawing with the free 
hand fac ility. 

Message Area 

T he message area is reserved for the purpose of di sp lay ing messages, needed while 
interacting with the user. It starts at the 75 1h co lumn and 251h row, w ith a dimension of 560 
co lumns and 37 rows . 

Tips A."ea 

Thi s is the area of the screen where different tips would appear at the req uired instances of 
operation of the software. These tips guide the user about the steps needed at different places. 
It starts at 2 161h row and zero column of the screen, with a dimension of 74 co lumns and 264 
rows . 

43 



Figures 

Message 

Af'ter 
reading 
the page 
press 
ENTER 

Fi Ie Scale Rotate Mouse Help Translate Free Hand Setup 



Figures File Scale Rotate Mouse He1.p Translate Free Hand Setup 





Fi Ie Scale Rotate Mouse He~p Translate Free Hand Setup 





Message 

Af t er 
t-eadi n g 
t he page 
press 
EtH ER 

Fi Ie Scale Rotate Mouse TransTate Free Hand Setup 





~(ou can use 
the .srFOI.J 

~eys 

for moving 
the 

control to 
the desired 



g'O bac~ 1'0 
Ihe sIan . 
Select BACt( 
.and pt6 ess 
ENTER 



Message 

Af"te.­
t-eading 
the page 
press 

ENTER 

Fi Ie Scale Rotate Mouse Rel.p Tt-anslate Free Rand Setup 



Figu,-e s i Ie Scare Rotate Mouse Help Trans rate Free Hand Setup 

Line 
Arc 
Circle 
Square 
Ell ipse 
Rectangle 
Piesl ice 
Triangle 
Cone 
Fi Ie 
Translation 
Scaling 
Rotation 
Mouse 

Ora 





Message 

Aftet­
reading 
the page 
pt-ess 

ENTER 

FIle Scale Rotate Mouse Translate Free Rand Setup 



Figures File Scale Rotate Mouse 

Message 



Figur es File Scale Rotate Mouse 

'the arrOl·' 

fot- moving 
the 

control t o 

What do l,jOU IJdnt tot r ;;msl at e ? 

Pr ess DOWN ARROW to sel eel. 

Hel Translate Free Hand 





Bl.3b~=O 

O-Blue=l 
O-Gri?E-n=2 
O-Cyan=3 
O-Red='\ 
D=Purple=5 
L-Red=6 
L-Grey=? 
O-Grey=8 
L-Blue=9 
L-Gr ey=10 
L-Cyan=ll 
L- Red=12 
L-Purpl e=13 
Vellow=14 
Whi te= 15 



Figu,-es 

Af" te r 
r eading 
the p a g e 
press 
ENTER 

Fi Ie Scale Rotate Mouse Translate Free Hand Setup 




