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Preface 
Peristaltic is a mechanism to pump a fluid by means of progressive area of 
contraction or expansion on the length of a distensible tube or channel containing 
fluid. This mechanism has large number applications in physiology, industry and 
biosciences. Some typical applications include urine transport from kidney to 
bladder through ureter, vasomotorin small blood vessels. Some recent studies 
dealing the peristaltic flows different flow geometries are given in the refs.[1-10]. 

Recently, the peristaltic flows of non-Newtonian fluids have gained considerable 
attention. In nature there is not a single model which exhibits all the properties of 
fluids. Therefore, numerous models have been reported to discuss different aspects 
of the fluid. Some new fluid models are reported in the refs.[11-15]. 

Very recently, the flow of Williamson fluid model has given much importance due 
to its large number of applications. Some important studies on the Williamson fluid 
are reported in the paper [15-20]. 

The purpose of the present dissertation is to examine the peristaltic flow of 
Williamson fluid model in an asymmetric channel with or without Nanoparticle 
volume fraction. The solutions are constructed with the help of regular perturbation 
method and Homotopy perturbation method. 

In chapter one we have examined the peristaltic flow a Williamson fluid in an 
asymmetric channel. The analytical solutions are found under the assumption of 
long wavelength and low Reynolds approximations. 

Chapter two is devoted to study peristaltic flow of Nano non-Newtonian fluid in an 
asymmetric channel. The assumption of long wavelength and low Reynolds 
approximations and then solved analytically with the help of HPM. 
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Chapter 1

Peristaltic flow of a Williamson fluid

in an asymmetric channel

1.1 Introduction

In this chapter, we have presented the peristaltic flow of a Williamson fluid in an asymmetric

channel. The flow equations of Williamson fluid for two dimensional channel are modelled

under the assumptions of long wavelength and low Reynolds number approximation. The

reduced equations are solved analytically with the help of regular perturbation method. The

flow analysis is characterized in detail. This work is the review of Akbar and Nadeem [26],

however, the essential details missing in their work are incorporated.

1.2 Fluid model

For an incompressible fluid the balance of mass and momentum are defined as

divU = 0, (1.1)

ς
dU

dt
= div+ςf , (1.2)

where ς is the density,U is the velocity vector, S is the Cauchy stress tensor, f represents the
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specific body force and d/dt represents the material time derivative. The constitutive equation

for Williamson fluid is charecterized as

S = −pI+ ², (1.3)

² = −[µ∞ + (µ0+µ∞)(1− Γ̊γ̊)−1 ]̊γ,

in which - pI is the spherical part of the stress due to constraint of incompressibility, ² is

the extra stress tensor, µ∞ is the infinite shear rate viscosity, µ0 is the zero shear rate viscosity,

Γ is the time constant and γ̊ is defined as

γ̊ =

r
1

2

XX
γ̊ijγ̊ji =

r
Π

2
. (1.4)

Here Π is the second invariant strain tensor. We consider the constitutive Eq. (1.4) , the

case for which µ∞ = 0 and Γγ‹1 . The component of extra stress tensor therefore, can be

written as

² = −µ0[(1 + Γ̊γ)]̊γ. (1.5)

1.3 Mathematical formulation

Consider the peristaltic flow of an incompressible Williamson fluid in a two dimensional channel

of width d1 + d2. Along the channel walls the flow is generated by sinusoidal wave trains

propagating with constant speed c . The geometry of the wall surface is defined as

Y = N1 = d̄1 + ā1 cos

∙
2π

λ
(X̄ − ct̄)

¸
, (1.6)

Y = N2 = −d̄2 − b̄1 cos

∙
2π

λ
(X̄ − ct̄) +Φ

¸
, (1.7)

where the amplitudes of the waves are a1 and b1, λ is the wave length, the width of the

channel is d̄1 + d̄2, c is the velocity of propagation, t is the time and X̄ is the direction of wave

propagation. The phase difference Φ varies in the range 0≤ Φ ≤ π in which Φ = 0 corresponds
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to symmetric channel with waves out of phase and Φ = π, the waves are in phase, further ā1,

ā2, d̄1, d̄2 and Φ satisfies the condition

ā21 + b̄21 + 2ā1b̄1 cosΦ ≤ (d̄1 + d̄2)
2. (1.8)

The equations governing the flow of a Williamson fluid are given by

∂Ū

∂X
+

∂V̄

∂Y
= 0, (1.9)

ς(
∂Ū

∂t̄
+ Ū

∂Ū

∂X̄
+ V̄

∂Ū

∂Ȳ
) = − ∂P̄

∂X̄
− ∂τ̄ X̄X̄

∂X̄
− ∂τ̄ X̄Ȳ

∂Y
, (1.10)

ς(
∂V̄

∂t̄
+ Ū

∂V̄

∂X̄
+ V̄

∂V̄

∂Ȳ
= −∂P̄

∂Ȳ
− ∂τ̄ X̄Ȳ

∂X̄
− ∂τ̄ Ȳ Ȳ

∂Ȳ
. (1.11)

Introducing a wave frame(x, y) moving with velocity c away from the fixed frame (X̄, Ȳ ) by

the transformation

x̄ = X̄ − ct̄, ȳ = Ȳ , ū = Ū − c, v̄ = V̄ , P̄ (x) = P̄ (X, t). (1.12)

Also, we introduce the following nondimensional parameters to reduce the number of para-

meters in the given equations

x =
x̄

λ
, y =

ȳ

d1
, u =

ū

c
, v =

v̄

c
, t =

ct̄

λ
, h1 =

h̄1
d1

, h2 =
h̄2
d̄2

, (1.13)

τxx =
λ

µ0c
τ̄xx, τxy =

d̄1
µ0c

τ̄xy, τyy =
d̄1
µ0c

τ̄ ȳȳ,

δ =
d̄1
λ
, Re =

ςcd̄1
µ0

, We =
Γc

d̄1
, P =

d21
cλµ0

P̄ , γ =
γ̊d̊1
c

.

Making use of Eqs. (1.12) and (1.13) into Eqs. (1.9) to (1.11), the resulting equations

interms of stream function ψ(u = ∂ψ
∂y , v = −δ

∂ψ
∂x ) take the following form

δRe

∙
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

¸
∂ψ

∂y
= −∂p

∂x
− δ2

∂τ xx
∂x
− ∂τ xy

∂y
, (1.14)
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δ3Re

∙
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

¸
∂ψ

∂x
= −∂p

∂y
− δ2

∂τxy
∂x
− δ

∂τ yy
∂y

, (1.15)

where

²xx = −2[1 +We̊γ]
∂2Ψ

∂x∂y
, (1.16)

²xy = −[1 +We̊γ](
∂2Ψ

∂y2
− δ2

∂2Ψ

∂x2
), (1.17)

²yy = 2δ[1 +We̊γ]
∂2Ψ

∂x∂y
, (1.18)

γ̊ =

∙
2δ2(

∂2Ψ

∂x∂y
)2 + (

∂2Ψ

∂y2
− δ2

∂2Ψ

∂x2
)2 + 2δ2(

∂2Ψ

∂x∂y
)2
¸ 1
2

, (1.19)

in which δ, Re, We represents the wave, Reynolds and Weissenberg numbers, respectively.

Under the assumptions of long wavelength δ << 1 and low Reynold number, neglecting the

terms of order δ and higher, Eqs. (1.14) and (1.15) along with (1.16) to (1.19) take the following

form

∂P

∂x
=

∂

∂y
[(1 +We

∂2Ψ

∂y2
)
∂2Ψ

∂y2
], (1.20)

∂P

∂y
= 0. (1.21)

Elimination of pressure from above two equations, yields

∂2

∂y2

∙
(1 +We

∂2Ψ

∂y2
)
∂2Ψ

∂y2

¸
= 0. (1.22)

The dimensionsless mean flow Θ is defined by

Θ = L+ 1 + d, (1.23)

in which
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L =

h1(x)Z
h2(x)

∂Ψ

∂y
dy = Ψ(h1(x)− h2(x)), (1.24)

where

h1(x) = 1 + a cos 2πx, h2(x) = −d− b cos(2πx+Φ). (1.25)

The boundary conditions in terms of stream function Ψ are defined as

Ψ =
L

2
,
∂Ψ

∂y
= −1 for y = h1(x), (1.26)

Ψ = −L
2
,
∂Ψ

∂y
= −1 for y = h2(x). (1.27)

1.4 Perturbation solution

Since Eq.(1.22) is non-linear equation, its exact solution seems to be impossible subject to

these conditions, therefore, we are interested to calculate the analytical solution with the help

of famous regular perturbation method.

For perturbation solution, we expand Ψ, L and P as,

Ψ = Ψ0 +Ψ1 + 0(We2), (1.28)

L = L0 + L1 + 0(We2), (1.29)

P = P0 + P1 + 0(We2). (1.30)

Making use Eqs.(1.28) to (1.29) into Eq.(1.22) and boundary conditions (1.26) and (1.27),

and equating the like powers of We, we obtain the following systems
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1.4.1 Zeroth order system

∂4Ψ0
∂y4

= 0, (1.31)

∂Po
∂x

=
∂3Ψ0
∂y3

, (1.32)

Ψ0 =
Lo

2
,
∂Ψ0
∂y

= −1 on h1(x), (1.34)

Ψ0 = −Lo

2
,
∂Ψ0
∂y

= −1 on h2(x). (1.35)

1.4.2 First order system

∂4Ψ1
∂y4

= − ∂2

∂y2
(
∂Ψ0
∂y

)2, (1.36)

∂P1
∂x

=
∂3Ψ1
∂y3

+
∂

∂y
(
∂Ψ0
∂y

)2, (1.37)

Ψ1 =
L1
2
,
∂Ψ1
∂y

= 0 on h1(x), (1.38)

Ψ1 = −L1
2
,
∂Ψ1
∂y

= 0 on h2(x). (1.39)

1.4.3 Solution of zeroth order system

the solution of Eqs. (1.31) and (1.32) subject to boundary conditions (1.34) and (1.35) are

directly defined as

Ψ0 =
L0 + h1 − h2
(h2 − h1)3

(2y3 − 3(h1 + h2)y
2 + 6h1h2y)− y +

1

(h2 − h1)3
((
L0
2
+ h1)(h

3
2 − 3h1h22)

−(h2 −
F0
2
)(h31 − 3h2h21)), (1.40)

dP0
dx

=
12(L0 + h1 − h2)

(h2 − h1)3
. (1.41)
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For one wavelength the integration of Eq.(41), yeilds

∆P0 =

Z 1

0

dP0
dx

dx, (1.42)

where dP0
dx is defined in Eq.(1.41).

1.4.4 Solution for the first order system

Substituting the zeroth-order solution (1.40)into (1.36), the solution of the resulting problem

satisfing the boundary conditions take the following form:

Ψ1 = C0 + C1y + C2
y2

2!
+ C3

y3

3!
− 288(L0 + h1 − h2

(h2 − h1)3
)2
y4

4!
, (1.43)

where

C0 = − 6

(h2 − h1)3
(L1 −

A

4!
(h31(2h2 − h1)−

h32(2h1 − h2)))(
h1h

2
2

2
− h32
6
)− A

3!
(
h21h

2
2

2
+

h1h
3
2

2
− h42
4
)− L1

2
, (1.44)

C1 =
Ah1h2
2

(
(h1 + h2)

3
−

1

2(h2 − h1)3
(h31(2h2 − h1)− h32(2h1 − h2))) +

6h1h2L1
(h2 − h1)3

, (1.45)

C2 = A(
(h1 + h2)

4(h2 − h1)3
(h31(2h2 − h1)− h32(2h1 − h2)) +

(h21 + h1h2 + h22)

3!
)− 6L1(h1 + h2)

(h2 − h1)3
, (1.46)

C3 =
12

(h2 − h1)3
(F1 −

A

4!
(h31(2h2 − h1)− h32(2h1 − h2))), (1.47)

A = −288(L0 + h1 − h2
(h2 − h1)3

). (1.48)

The axial pressure gradient at this order is

∆P1 =

Z 1

0

dP0
dx

dx. (1.49)

Summerizing the perturbation results for small parameter We, the expression for stream
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funcions and pressure gradient can be written as

Ψ =
L1(h1 + h2)

(h2 − h1)3
(2y3 − 3(h1 + h2)y

2 + 6h1h2y)− y +
1

(h2 − h1)3
((
L

2
+ h1)(h

3
2 − 3h1h22)

−(h2 −
L

2
)(h31 − 3h2h21) +We(B + Cy +D

y2

2!
+E

y4

3!
+A1

y4

4!
), (1.50)

dP

dx
=

12(L+ h1 + h2)

(h2 − h1)3
+We(− 12

(h2 − h1)3
A1
4!
(h31(2h2 − h1)− h32(2h1 − h2))

−144(h1 + h2)[
(L+ h1 + h2)

(h2 − h1)3
]2. (1.51)

1.5 Results and discussion

Using mathematics software expression for pressure rise ∆P is calculated. The effects of various

parameters on the pressure rise ∆P are shown in Figs.1 to 4, for various values of Weissenberg

number We , channel width d and wave amplitudes a, b. It is observed from Fig.1 that

pressure rise decreases for small values of θ (0≤ θ ≤4.4) with the increase in We and for large

θ (4.4≤ θ ≤6.4), the pressure rise remains constant and then again decreases for θ = 6.4. It is

observed that the pressure rise increases with the increase in a and b for small θ (0≤ θ ≤40)

and for large θ (40≤ θ ≤80), the results are opposite (see Fig.2 and Fig.3). It is also observed

that the pressure rise decreases with the increase in d for small θ (0≤ θ ≤30) and for large θ

(30≤ θ ≤80), the results are opposite (see Fig.4). Fig.5 and Fig.6 represent that for [70, 100]

the pressure gradient is small, we say that the flow can easily pass without imposition of large

pressure gradient, while in the narrow part of the channel, to retain same flux large pressure

gradient is required. Moreover in the narrow part of the channel, the pressure gradient decreases

with the increase inWe and d. It is also observed that the behavior ofWe and d on the pressure

gradient are similar. The pressure rise ∆P for different values of b are shown in Fig.7. It is seen

that the curves for the pressure rise are not linear and in the region, the pressure rise decreases

with the increase in b while in the region θ ∈ [0, 40].
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Figure 1-1: Variation of ∆P with θ for different values of We at a = 0.01, b = 0.01,d = 0.2 and
φ = 0.8.

1.6 Trapping phenomena

Trapping is another interesting phenomenon in peristaltic motion. It is basically the formation

of an internally circulating bolus of fluid by closed stream lines. This trapped bolus pushed a

head along peristaltic waves. Figs.8 to15 illustrate the stream lines for different values of We,

Q and a. The stream lines for different values of We are shown in Figs.8, 9 and 10. It is found

that with the increase in Weissenberg number We the size of the trapping bolus decreases in

the upper half of the channel and increases in the lower half of the channel. In Figs.11, 12 and

13 the stream lines are prepared for different values of volume flow rate Q. It is depicted that

the size of the trapped bolus increases in the upper half of the channel with the increase in Q,

while the size and the number of the trapped bolus increases in the lower half of the channel.

It is observed from Figs. 14, 15 that the size of the trapping bolus increases in the lower and

upper half of the channel with the increase in amplitude of the wave a.
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Figure 1-2: Variation of ∆P with θ for different values of a at We = 0.001, b = 0.1, d = 0.4
and φ = 0.3.

Figure 1-3: . Variation of ∆P with θ for different values of b at We = 0.001, a = 0.1, d = 0.4
and φ = π.
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Figure 1-4: Variation of ∆P with θ for different values of d at We = 0.001, a = 0.1,b = 0.4,
and φ = π/6.

Figure 1-5: Variation of dP/dx with x for different values of We at a = 0.5, b = 0.5, d = 0.4
and φ = 0.01.

13



Figure 1-6: Variation of dP/dx with x for different values of d at a = 0.5, b = 0.5, We = 0.4
and φ = 0.01.

Figure 1-7: . Variation of ∆P with θ for different values of We at a = 0.5, b = 0.5, d = 0.4 and
φ = 0.01.
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Figure 1-8: stream lines for We = 0.53.

Figure 1-9: stream lines for We = 0.62.
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Figure 1-10: stream lines for We = 0.72

Figure 1-11: stream lines for Q = 0.8
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Figure 1-12: stream lines for Q = 0.9.

Figure 1-13: stream lines for Q = 0.98.
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Figure 1-14: stream lines for a = 0.1.

Figure 1-15: stream lines for a = 0.13.
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Chapter 2

Peristaltic flow of Non-Newtonain

nanofluid in an asymmetric channel

2.1 Introduction

This chapter deals with the study of peristaltic flow of non-Newtonian fluid in asymmetric

channel. The governing equations of nano-Williamson fluid model are presented and simplified

with the help of long wavelength and low Reynolds number approximations. The simplified

problem is solved analytically with the help of homotopy perturbation method (HPM). The

physical features of pertinent parameters are disscussed through graphs. Finally, the trapping

phenomena is aslo presented through ploting stream lines.

2.2 Mathematical formulation

Let us consider the peristaltic flow of an incompressible non-Newtonian fluid in a two dimen-

sional vertical channel of width d1 + d2. The flow is generated due to sinusoidal wave trains

propagating with constant speed c along the channel walls. The geometry of the wall surface
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is defined as

Y = N1 = d̄1 + ā1 cos

∙
2π

λ
(X̄ − ct̄)

¸
, (2.1)

Y = N2 = −d̄2 − b̄1 cos

∙
2π

λ
(X̄ − ct̄) +Φ

¸
, (2.2)

where a1 and b1 are the amplitudes of the waves, λ is the wave length, the width of the

channel is d̄1 + d̄2, the velocity of propagation is c, t̄ is the time and X̄ is the direction of wave

propagation. The phase difference Φ varies in the range 0≤ Φ ≤ π in which Φ = 0 corresponds

to symmetric channel with waves out of phase and Φ = π, the waves are in phase, further ā1,

ā2, d̄1, d̄2andΦ satisfies the condition

ā21 + b̄21 + 2ā1b̄1 cosΦ ≤ (d̄1 + d̄2)
2. (2.3)

The governing equations of nano non-Newtonian fluid for vertical asymmetric channel are

defined as

∂Ū

∂X̄
+

∂V̄

∂Ȳ
= 0, (2.4)

ς(
∂Ū

∂t̄
+ Ū

∂Ū

∂X̄
+ V̄

∂Ū

∂Ȳ
) = − ∂P̄

∂X̄
− ∂τ̄ X̄X̄

∂X̄
− ∂τ̄ X̄Ȳ

∂Ȳ
+ ςgα(T̄ − T̄0) + ςgd(C̄ − C̄0), (2.5)

ς(
∂V̄

∂t̄
+ Ū

∂V̄

∂X̄
+ V̄

∂V̄

∂Ȳ
= −∂P̄

∂Ȳ
− ∂τ̄ X̄Ȳ

∂X̄
− ∂τ̄ Ȳ Ȳ

∂Ȳ
, (2.6)

ςcp(ū
∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
) = κ[

∂2T̄

∂x̄2
+

∂2T̄

∂ȳ2
] + τ{DB(

∂C̄

∂x̄

∂T̄

∂x̄
+

∂C̄

∂ȳ

∂T̄

∂ȳ
)

+
DT̄

T̄0
[(
∂T̄

∂x̄
)2 + (

∂T̄

∂ȳ
)2]}, (2.7)

(ū
∂C̄

∂x̄
+ v̄

∂C̄

∂ȳ
) = DB(

∂2C̄

∂x̄2
+

∂2C̄

∂ȳ2
) +

DT̄

T̄0
(
∂2T̄

∂x̄
+

∂2T̄

∂ȳ
), (2.8)
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Introducing the nondimensional variables

x =
2πx̄

λ
, y =

ȳ

d1
, υ =

ῡ

λ
, t =

2πt̄

λ
, δ =

2πd1
λ

, d =
d2
d1
, P =

2πd21P

µc1λ
,

h1 =
h̄1
d1

, h2 =
h̄2
d2

,Re =
ρc1d1
µ

, a =
a1
d1
, b =

a2
d1
, S =

S̄d1
µc1

, θ =
T̄ − T̄0
T̄1 − T̄0

,

σ =
C̄ − C̄0
C̄1 − C̄0

, α =
κ

(ςc)f
, Nb =

(ςc)pDB(C̄1 − C̄0)(T̄1 − T̄0)

(ςc)fα
,Nt =

(ςc)pDT (T̄1 − T̄0)
2

T̄0(ςc)fα
,

Pr =
ν

α
,Gr =

gαd21(T̄1 − T̄0)

νc1
, Br =

gαd21(C̄1 − C̄0)

νc1
. (2.9)

Using the above non dimensional quantities and the resulting equations in terms of stream

function ψ(u = ∂ψ
∂y , v = −δ

∂ψ
∂x ) can be written as

δRe

∙
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

¸
∂ψ

∂y
= −∂P

∂x
− δ2

∂τxx
∂x
− ∂τxy

∂y
+

Gr
∂θ

∂y
+Br

∂σ

∂y
, (2.10)

δ3Re

∙
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

¸
∂ψ

∂x
= −∂P

∂y
− δ2

∂τxy
∂x
− δ

∂τ yy
∂y

, (2.11)

∂2θ

∂y2
+Nb

∂θ

∂y

∂σ

∂y
+ (

∂θ

∂y
)2 = 0, (2.12)

∂2σ

∂y2
+

Nt

Nb
(
∂θ

∂y
)2 = 0. (2.13)

where
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τxx = −2[1 +We̊γ]
∂2Ψ

∂x∂y
, (2.14)

τxy = −[1 +We̊γ](
∂2Ψ

∂y2
− δ2

∂2Ψ

∂x2
), (2.15)

τ yy = 2δ[1 +We̊γ]
∂2Ψ

∂x∂y
, (2.16)

γ̊ =

∙
2δ2(

∂2Ψ

∂x∂y
)2 + (

∂2Ψ

∂y2
− δ2

∂2Ψ

∂x2
)2 + 2δ2(

∂2Ψ

∂x∂y
)2
¸ 1
2

. (2.17)

in which δ, Re, We represents the wave, Reynolds and Weissenberg numbers, respectively.

Under the assumptions of long wavelength δ << 1 and low Reynolds number, neglecting the

terms of order δ and higher,

∂P

∂x
=

∂

∂y
[(1 +We

∂2Ψ

∂y2
)
∂2Ψ

∂y2
] +Grθ +Brσ, (2.18)

∂P

∂y
= 0. (2.19)

Elimination of pressure from equations, give

∂2

∂y2
[(1 +We

∂2Ψ

∂y2
)
∂2Ψ

∂y2
] +Gr

∂θ

∂y
+Br

∂σ

∂y
= 0, (2.20)

in which

L =

h1(x)Z
h2(x)

∂Ψ

∂y
dy = Ψ(h1(x)− h2(x)), (2.21)

h1(x) = 1 + a cos 2πx, h2(x) = −d− b cos(2πx+Φ). (2.22)

The bounddary conditions in terms of stream function Ψ can be defined as
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Ψ =
L

2
,
∂Ψ

∂y
= −1 for y = h1(x), (2.23)

Ψ = −L
2
,
∂Ψ

∂y
= −1 for y = h2(x). (2.24)

2.3 Homotopy perturbation method

Since, the above equations of above boundry value problem is highly nonlinear and coupled

differential equations their exact solutions are not possible, therefore we are intersted to compute

the solution with the help of homotopy perturbation method. The homotopy perturbation

method is defined as

H(Ψ, q) = (1− q)[L(Ψ)− L(Ψ0)] +

q[
∂4Ψ

∂y4
+ 2We(

∂3Ψ

∂y3
)2 + 2We

∂2Ψ

∂y2
∂4Ψ

∂y4
+Gr

∂θ

∂y
+

Br
∂σ

∂y
] = 0, (2.25)

H(θ, q) = (1− q)[L(θ)− L(θ0)] + q[
∂2θ

∂y2
+Nb

∂θ

∂y

∂σ

∂y
+Nt(

∂θ

∂y
)2], (2.26)

H(σ, q) = (1− q)[L(σ)− L(σ0)] + q[
∂2σ

∂y2
+

Nt

Nb
(
∂2θ

∂y2
)2] = 0, (2.27)

H(p, q) = (1− q)[
∂P

∂x
− ∂3Ψ

∂y3
] + q[

∂P

∂x
− ∂3Ψ

∂y3
− 2We

∂2Ψ

∂y2
∂3Ψ

∂y3
−Grθ

−Brσ] = 0. (2.28)

According to HPM, we choose the following linear operaters

LΨ =
∂4

∂y4
, (2.29)
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Lθ =
∂2

∂y2
, (2.30)

Lσ =
∂2

∂y2
. (2.31)

Using

Ψ = Ψ0 + qΨ1 + ... (2.32)

θ = θ0 + qθ1 + ... (2.33)

σ = σ0 + qσ1 + ... (2.34)

Making use of Eqs. (2.29) to (2.34) and equating the like powers of q, we obtain the following

systems

2.3.1 Zeroth order system

∂2θ0
∂y2

= 0, (2.35)

θ0 = 0 at y = h1, (2.36)

θ0 = 1 at y = h2, (2.37)

∂2σ0
∂y2

= 0, (2.38)

σ0 = 0 at y = h1, (2.39)

σ0 = 1 at y = h2, (2.40)

∂4Ψ0
∂y4

= 0, (2.41)
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Ψ0 =
L

2
,
∂Ψ0
∂y

= −1 at y = h1, (2.42)

Ψ0 = −L
2
,
∂Ψ0
∂y

= −1 at y = h2, (2.43)

∂P0
∂x

=
∂3Ψ0
∂y3

. (2.44)

2.3.2 First order system

∂2θ1
∂y2

+Nb
∂θ0
∂y

∂σ0
∂y

+Nt(
∂θ0
∂y
)2 = 0, (2.45)

θ1 = 0 at y = h1, (2.46)

θ1 = 0 at y = h2, (2.47)

∂2σ1
∂y2

+
Nt

Nb
(
∂2θ0
∂y2

)2 = 0, (2.48)

σ1 = 0 at y = h1, (2.49)

σ1 = 0 at y = h2, (2.50)

∂4Ψ1
∂y4

+ 2We(
∂3Ψ0
∂y3

)2 + 2We
∂2Ψ0
∂y2

∂4Ψ0
∂y4

+Gr
∂θ0
∂y

+Br
∂σ0
∂y

= 0, (2.51)

Ψ0 = 0,
∂Ψ0
∂y

= 0 at y = h1, (2.52)

Ψ0 = 0,
∂Ψ0
∂y

= 0 at y = h2, (2.53)
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∂P1
∂x

=
∂3Ψ1
∂y3

+ 2We
∂2Ψ0
∂y2

∂3Ψ0
∂y3

+Grθ0 +Brσ0. (2.54)

2.3.3 Solution of zeroth order system

The solution of the zeroth order system satisfing the boundry conditions straight forward written

as

θ0 =
y

h2 − h1
+

h1
h1 − h2

, (2.55)

σ0 =
y

h2 − h1
+

h1
h1 − h2

, (2.56)

Ψ0 =
L(h1 + h2)

(h2 − h1)3
(2y3 − 3(h1 + h2)y

2 + 6h1h2y)− y +

1

(h2 − h1)3
((
L

2
+ h1)(h

3
2 − 3h1h22)− (h2 −

L

2
)(h31 − 3h2h1), (2.57)

∂P0
∂x

=
12(L+ h1 − h2)

(h2 − h1)3
. (2.58)

2.3.4 Solution of first order system

With the help of zeroth order system, the solution of first order system is defined as

θ1 =
1

2(h1 − h2)2
(−h1h2Nb + h1yNb + h2yNb − y2Nb

−h1h2Nt + h1yNt + h2yNt − y2Nt), (2.59)

σ1 = 0, (2.60)
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Ψ1 = Ch21h
2
2 + 2Ch

2
1h2y + 2Ch1h

2
2y −Ch21y

2 − 4Ch1h2y2 − Ch22y
2 + 2Ch2y

3 − Cy, (2.61)

where

288We
L(h1 + h2)

2

(h2 − h1)6
+

Gr

(h2 − h1)
+

Br

(h2 − h1)
= C, (2.62)

∂P1
∂x

=
144We(L+ h1 − h2)

2

(h2 − h1)6
− 144h2(L+ h1 − h2)

2

(h2 − h1)6

−Gr(h1 + h2)

2(h1 − h2)
− Br(h1 + h2)

2(h1 − h2)
. (2.63)

Finally, substituting zeroth order and first order solutions into Eqs. (2.32) to (2.34) when

q → 1, take the form

Ψ =
L(h1 + h2)

(h2 − h1)3
(2y3 − 3(h1 + h2)y

2 + 6h1h2y)− y +

1

(h2 − h1)3
((
L

2
+ h1)(h

3
2 − 3h1h22)− (h2 −

L

2
)(h31 − 3h2h21) +

Ch21h
2
2 + 2Ch

2
1h2y + 2Ch1h

2
2y −Ch21y

2 − 4Ch1h2y2 − Ch22y
2 +

2Ch2y
3 − Cy, (2.64)
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∂P

∂x
=

12(L+ h1 − h2)

(h2 − h1)3
+
144We(L+ h1 − h2)

2

(h2 − h1)6

−144h2(F + h1 − h2)2

(h2 − h1)6
− Gr(h1 + h2)

2(h1 − h2)
− Br(h1 + h2)

2(h1 − h2)
+

1

20(h2 − h1)9Nb
(5(h2 − h1)

7((−1 + h1)h1 + (−1 + h2)h2)GrN
2
b − 2(h1 − h2)

9BrN
2
t

−2Nb(2304(L+ h1 − h2)
3(11h21 + 8h1h2 + 11h

2
2)We2

−(h1 − h2)
5(8(L+ h1 − h2)

(11h21 + 8h1h2 + 11h
2
2)We(Br +Gr) + (h1 − h2)

4GrNt. (2.65)

2.4 Results and discussion

Using mathematics software the expression for pressure rise ∆P is calculated numerically . The

effects of various parameters on the pressure rise∆P are shown in Fig.1to 4 for various values of

Weissenberg numberWe , channel width d and wave amplitudes a, b. It is observed from Fig.1

that pressure rise increases for small values of θ (0≤ θ ≤24) with the increase in We and for θ

(24≤ θ ≤48), the pressure rise remains constant and then decreases for θ ≥48 . It is observed

that the pressure rise increases with the increase in a for small θ (0≤ θ ≤25) for θ (25≤ θ ≤45),

it remains constant (see Fig.2) and for θ (25≤ θ ≤70) pressure rise decreases. It is observed

that the pressure rise increases with the increase in b for small θ (0≤ θ ≤23) and then for θ ≥23

pressure rise shows opposite behaviour. It is also observed that the pressure rise decreases with

the increase in d for small θ (0≤ θ ≤12.5) and for large θ (12.5≤ θ ≤25), the results are opposite

(see Fig.4). Fig.5 represent that for and [60, 100] the pressure gradient is small. It is seen that

with the increase in the Brownian motion parameter Nb concentration profile decreases in the

region (0≤y≤1). For thermophoresis parameter Nt concentration profile increases in the region

(0≤y≤1.6). It is seen that with the increase in the Brownian motion parameter Nb temperature

profile increases in the region (0≤y≤1). For thermophoresis parameter Nt temprature profile

increases in the range (0≤y≤1). It is observed that pressure rise increases for small values of x

with the increase in Brownian parameter ,thermophoresis parameter, local temprature Grashaf

number and local nanopartical Grashaf number.
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Figure 2-1: Variation of ∆P with θ for different values of We at a = 0.2, b = 1, d = 3,
φ = 0.5,Gr = 0.5, Br = 0.5, Nb = 1, Nt = 1

2.5 Trapping phenomena

Trapping is another interesting phenomenon in peristaltic motion. It is basically the formation

of an internally circulating bolus of fluid by closed stream lines. This trapped bolus pushed a

head along peristaltic waves. Figs. (14) to (19) illustrate the stream lines for different values

of We and a. The stream lines for different values of We are shown in Figs.(14), (15), (16).

It is found that with the increase in Weissenberg number We the size of the trapping bolus

decreases in the upper half of the channel and increases in the lower half of the channel. It

is observed from Figs.(17), (18), (19) that the size of the trapping bolus increases in the lower

and upper half of the channel with the increase in amplitude of the wave a.
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Figure 2-2: Variation of ∆P with θ for different values of a at We = 0.98, b = 0.2, d = 3,
φ = 0.5,Gr = 1, Br = 2, Nb = 1, Nt = 1

Figure 2-3: Variation of ∆P with θ for different values of b at a = 0.1, We = 0.01, d = 7.5,
φ = 0.5,Gr = 0.91, Br = 0.1, Nb = 1, Nt = 1

30



Figure 2-4: Variation of ∆P with θ for different values of d at a = 0.1, b = 1, d = 7.5, φ = 0.5,
Gr = 0.91, Br = 0.1, Nb = 1, Nt = 1, We = 0.01

Figure 2-5: Variation of dP/dx with x for different values of We at a = 0.5, b = 0.5, d = 0.4
and φ = 0.01.
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Figure 2-6: Variation of ∆P with x for different values of Gr at We = 0.01, b = 1, d = 3,
φ = 0.5,a = 0.2, Br = 0.05, Nb = 1, Nt = 1

Figure 2-7: Variation of ∆P with x for different values of Br at We = 0.01, b = 1, d = 5,
φ = 0.5,a = 0.4, Gr = 0.1, Nb = 0.5, Nt = 0.5
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Figure 2-8: Variation of ∆P with x for different values of Nb at We = 0.01, b = 1, d = 3.5,
φ = 0.5,a = 0.2, Gr = 1, Nt = 1

Figure 2-9: Variation of ∆P with x for different values of Nt at We = 0.01, b = 1, d = 3.5,
φ = 0.5,a = 0.2, Gr = 1, Nb = 1
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Figure 2-10: Variation of σ with x for different values of Nb at b = 0.5, d = 0.1, φ = 1.5,a = 0.6,
Nt = 1
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Figure 2-11: Variation of σ with x for different values of Nt at b = 0.5, d = 0.1, φ = 1.5,a = 0.6,
Nb = 1.5
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Figure 2-12: Variation of σ with x for different values of Nb at b = 0.5, d = 0.2, φ = 3.5,a = 0.6,
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Figure 2-13: Variation of σ with x for different values of Nt at b = 0.5, d = 0.1, φ = 3.5,a = 0.6,
Nb = 8
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Figure 2-14: stream lines for We = 0.06

Figure 2-15: stream lines for We = 0.08.
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Figure 2-16: stream lines for We = 0.09.

Figure 2-17: stream lines for a = 0.8.
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Figure 2-18: stream lines for a = 0.9.
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