
, 
5)S~ 

(y~ rf/) 
\(b 'J 

v !x' 
~ross-pla~form Vet:sion Coqtrol 

S~stem 

VCS Server 

Muhammad Ali 

A report submitted to 

the Department of Computer Sciences, Quaid-I-Azam University 

as a partial fulfillment of the requirement 

for the award of the degree ofM.Sc in Computer Sciences. 

January 2002 



QUAID-I-AZAM UNIVERSITY 
DEPARTMENT OF COMPUTER SCIENCE 

Dated: March 16,2002 
FINAL APPR VAL 

This is to certifY that we have . read the project report submitted by Mr. 
Muhammad Ali and it is our judgement that this rcport is of sufficient tandard 
to warrant its acceptance by the Quaid-i-Azam University, Islamabad ~ r the 
dCf::,rree of Master ofScicnce in Computcr Science. 

COMMITTEE: 

1. 

2. 

3. 

EXTERNAL EXAMINER 

Ms. Naseem Akhtar Bhatti 
Director, 
Computer Training Centre, 
UOC Campus, 
Sector H-9, 
Islamabad. 

SUPERVISOR 

Ms. Mudassira Arshad 
Lecturer 
Dept. of Computer Science 
Quaid-I-Azam niversity 
Islamabad. 

CHAIRMAN 

Dr. Masud Ahmad Malik 
Professor 
Deptt. Of Computer Science 
Quaid-I-Azam University 
Islamabad. 



p;S5 
u::£s 

Dedicated to 

those who live for others and thus truly live 

ii 



PROJECT BRIEF 

Project title 

Developed by 

Internal Supervisor 

Starting date 

Completion date 

Software used 

Operating system used 

System used 

Cross-platform Version Control System 

Muhammad Ali 

MMam Mudassira Arshad 

Department of Computer Science 

Quaid-I-Azam University, Islamabad 

September 2001 

January 2002 

Microsoft Visual Studio 6.0 

Windows 2000 Server 

Pentium III, 733 MHZ 

iii 



ACKNOWLEDGEMENTS 
I feel overwhelming gratitude towards the Divine for providing sustenance and assistance to 

my soul throughout its journey and I am especially grateful for having such a loving family . 

It amazes me whenever I think about my father, who started out from very humble 

beginnings, not just succeeded but provided me with a solid educational foundation . His 

appreciation and confidence in me has been an abundant source of motivation and I am 

eternally indebted to him for his instilling a love of books in me. He has been truly a friend 

and a companion to me. It is impossible to put into words the feelings of love and respect that 

I have for him. 

My mother, who is a symbol of patience and unconditional love, has literally drowned me in 

her love and care. I have intimately known just one such self-less creature and that was my 

grandmother. 

My sisters, each one of them so unique and special, have provided me with a lot of love and 

respect. Little Ahmed you are an unlimited source of joy. 

This acknowledgement would be incomplete without a mention of my uncles who have had 

an enormous impact on my life. From Uncle Aziz I have learnt kindness; from Uncle Dayan I 

have learnt what it is to be a man of principle and discipline. And Uncle Muhib has been my 

mentor and counselor. 

I pay tribute to the Chairman of our department Mr. Masud Malik for his support. 

I am also thankful to Madam Mudassira Arshad, my project supervisor for her guidance. 

Hats off to Mr. Nauman Yousuff for his ideas and interest in this project. 

Special mention must go to my friends Shah Saud, Muaziz Ali Khattak, Balach Wahid, Abid 

Khan, Lt. Muhammad Omar, Irfanullah, Bakhtiar Mamoon, Irfan Khalil, AmiI' Nawas, 

Shahid-ullah and Abdul Malik. Their sheer presence was an inspiration. 

I have also had the pleasure of knowing some terrific seniors who haven't let any opportunity 

of helping out their juniors astray. People like Nadeem Khan, Syed Jawad-ul-Hassan 

Bukhari , Majid Ali Chaudry, Nuaman Jamil, KashifRasool and Shahid Khan are rare. 

I thank you all 

Muhammad Ali 

IV 



ABSTRACT 

CVS Server is the server part of a client-server software that provides access to a SourceSafe 

database over the Internet. It enables users of Windows and non-Windows based operating 

systems to access and use the SourceSafe database for source and version control purposes. 

The CVS Server communicates with the client through HTTP (Hyper Text Transfer 

Protocol). The medium of communication for the response by the CVS Server as well as for 

transfer of files is XML (Extensible Markup Language) thus realizing cross-platform access. 

The CVS server uses the SourceSafe API to drive the SourceSafe database. It was 

incorporated in the COM components that were created. These components dealt with 

different aspects such as those of files , users, projects, conversion from XML to binary, 

conversion of binary files to XML, sending other XML responses to the client and so on. 

The COM components are called from ASP pages which provide communication with the 

Client. The files and information is sent using HTTP POST request. 



PREFACE 
This report is concerned with the development process of cl'Oss-pla~rol'm version contl'o! 

system; a software that provides the facility of source and version control over the Internet 

and for different platforms. 

The document has been divided into five parts. Each part is compdsed of different chapters. 

Part I contains the introduction to the version control systems and our own system. 

Part II is analysis and contains the requirements and use case diagrams. 

Part III is the design and it contains the class diagrams and collaboration diagrams. 

Part IV is implementation and it contains the Class Definitions and implementation specific 

details. 

Part V contains the appendices that include XML DTDs, technologies used, process model , 
required resources, feasibility, glossary and bibliography. 

v 



Table of Contents 

PART I -- Introduction 

CHAPTER 1 -- Version Control Systems .............. .. . .... ........ ... ................ ..... ................ .. 2 

1.1 Version control systems: .. .. ..... ...... .... ... .. ... ..... .... .. ...... ... ..... .... ..... .. .... .... .... .. ............. ....... 1 

1.2 Microsoft Visual SourceSafe Overview .... ......... ............. ........ .. .............. ....... .. ...... ....... .... 2 

CHAPTER 2 System Overview .... .... ............. ........ .... ................. . .......... .. ........ .. .. ........... 7 

2. 1 Limitations of SourceSafe: .... .. ........ ..... .. ..... .... ..... .............. .. .... .. .. ...... .. ...... ... ... ........... ... ...... 8 

2.2 Overcoming the Limitations: ............................... .. ........ ...... .. .. .. .... .... .. .. ...... ... .... .. ......... ..... . 8 

2.3 Objectives: ... ... .... .. .... ..... ........... .... .. ......... ... .... .. ... ..... .. ... ....... ..... ..... ...................... ... .. ..... ......... 9 

2 .4 Scope: .. ..... ....... ... ... ..... ... .... ... ... ... ... ... .. ......... ... .... ................. .... ..... .. .... .. .......... ... .. ......... ....... ... 10 

PART' II Analysis 

CHAPTER 3 Requirements ............................ ... ............... ..... ............ .. ... .... .............. .... . 12 

3.1 Requirement Specifications: ....... .. .... .. ...... .. .. ..... ......... .. ... .... .. .. .. ... ...................... .... .... .. ..... 13 

3.2 System Functions for the Server: ........ .......... .. ..................... .. .. ... ....... .... .. ... .. ... .. .. ..... ... ..... 14 

3.3 System Attributes: ............... .. .. ........... ..... ....... .. ............. .......... .. ...... ...... .... .. .... ... .. .... ..... .. .... 18 

CHAPTER 4 Use Cases ....... ..... ........... .... ........... .. ... .... .... .. ....... ............. . .................... .. . 19 

4.1 Use Case Diagram : .... ...... .. ........... .... ..... .... ...... .. .. ..... ..... .. ... .. ....... .. ...... .... .. .. .. ... ... ... ............. 20 

4 .2 Use Cases: ....... ....... ............................ ........ ..... ..... ...... ... .. ...... ... .... ... ...... .... .. .. .... ...... ..... ... ... .. .. 21 

4 .3 Use Cases in Expanded Format: ...... .. ..................... ........... ..... ... .. ...... .......................... ..... 22 

PART III Design 

CHAPTER 5 Class Design ... ..... .. ... .. ..... .... ... .. .. .... .. .... .. .... ..... ..... ... .... ... ...... ........ ........... 29 

5.1 Class D escriptions: ................ ............... ... .. ...... ... ...... ... .. .. ... .............. ... ......... .... ........... .. ... ... 30 

CHAPTER 6 Collaboration Diagrams ... .......... ... .... ..... ........ .... ...... ........ ..... .. .... .... .. .. ..... 34 

6.1 Collaboration Diagrams: ..... .. .. .. ......... ... ....... .. ............ .. ... ..... ........ .. ......... ..... .... ..... .... ........ .. 35 

PART IV Implementation 

CHAPTER 7 Mapping Design to Code ...... .. .. .... .. ......................... ... .. .. ...... .. ......... . ........ 42 

7 .1 Creating Class Definitions : .. .. ... ...... .. ....... .. ............. .. ...... .......... .. .. .. .. .. ....... ...... .......... ...... .. 43 

7.2 Class Definitions: .... .... ....................... ...... .. .. .. .. ..... ............... .. ... ..... .... .... ......... ... ........... ....... 43 

CHAPTER 8 Implementation Specific Detail ......... .... ....... ........ ............ .. .... ... ... ...... ...... 52 

8.1 How the system works: ... ... ..... .... ..... ................. .... ... .... ... ................ .. .. .... ......... ... 53 

8.2 Converting files to and retrieving them from XML: ........ .. ... ... .. .. ... ..... .. ..... ... .. .... 54 

vi 



· PART IV Testing 

CHAPTER 9 Test Cases ............. ... .. .. ...... ....... ... ............. . 

9 .1 Server Testing for Client Requests .............. .. ........ ........ ........... ................................... .... . 57 

9.2 Server Testing for Administration Client.. ........ .. .... ........................... .. ............... .... .... .... 60 

CHAPTER 10 Evaluation and Future Enhancement ...................................................... 62 

1 0.1 Evaluation .... .. ...... ... ... .............. ........ ..... ... .................. ........... ......... ..... ... .. ....... ... .............. .... 63 

10.2 Future Enhancement ....... .. ... .. .. .. ...... .. .. .. .... .. ... ....... ............... ....... ... ........ ........ ... ... ..... ....... 63 

PART V Appendices 

Appendix A-Process Model ........ ..... ..................... .. ............ ...... .......... ...... .................. 65 

Appendix B - Required Resources ....... .......................... ... ........... .. ............... ..... ........ .... 66 

Appendix C - Feasibi lity ............................. .... .... .......... .. ... .... ... ........... ................ .......... 67 

Append ix D - Tools and Technologies ............................. ... ....................... ............... ..... 69 

Appendix E Document Type Definitions ... ... ......................... .......... .. .. ............. ........... . 73 

Appendix F-- Glossary ............ ............... ... ...... .. ..... .. .. ... ........... ...... ........... .. ..... ............. 76 

Appendix F-- Bibliography ..... ...................................................... .................. ............... 80 



PART I 

Introduction 

1 



CHAPTER! 

Version Control Systems 

2 



Chapter 1- Version Control Systems 

1. 1 Version control systems: 

A versIon control system keeps a history of the changes made to a set of files . For a 

developer, that means being able to keep track of all the changes you 've made to a program 

during the entire time you 've been developing it. Have you ever lost a day' s work to an errant 

keystroke at the command line? A version control system gives you a safety net. 

Version control systems are valuable for anyone as they act as a safety net. But they' re 

usually used by software development teams. Developers working on a team need to be able 

to coordinate their individual changes; a central version control system allows that. 

1.1.1 Code central station 

Individual developers who want the safety net of a version control system can run one on 

their local machines. Development teams, however, need a central server all members can 

access to serve as the repository for their code. In an office, that's not a problem-- just place 

the repository on a server on the local network. 

1.1.2 Coordinating code 

In version control systems, a developer checks out a file, modifies it, then checks it back in. 

The developer who checks out a file has exclusive rights to modifY it. No other developer can 

check out the file-and only the developer who checked out the file can check in 

modifications. (There are, of course, ways for administrators to override that.) 



Chapter 1- Version Control Systems 

1.2 Microsoft Visual SourceSafe Overview 

Microsoft VSS helps one manage projects, regardless of the file type (text files , graphics 

files, binary files , sound files, or video files) by saving them to a database. When there is 

need to share files between two or more projects, these can be shared quickly and efficiently. 

When a file is added to VSS, the file is backed up on the database, made available to other 

people, and changes that have been made to the file are saved so that an old version can be 

recovered at any time. Members of a team can see the latest version of any file, make 

changes, and save a new version in the database. 

1.2.1 What Makes Visual SourceSafe Unique? 

Most source-control systems work well for individual source code files. However, almost all 

of them fail to establish relationships between files . This can pose a significant problem in an 

environment, where a single application can consist of multiple executable files and dynamic

link libraries built out of many source files, which in turn may be reused among many other 

applications. Today it is as important to manage the relationships between source files as it is 

to protect the contents of the source files themselves. 

Microsoft Visual SourceSafe version-control software solves this problem by combining the 

tasks of project management and source control. By focusing on projects as well as source 

files, Visual SourceSafe provides an elegant solution to problems not easily solved using 

standard, file-oriented source-control systems. 

1.2.2 Organizing Software Development by Project 

To understand the benefits of project-oriented source control, simply compare it to a file

oriented system. A standard version-control system (such as the UNIX utility RCS) is 

essentially a collection of tools that operate on individual files, controlling file access and 

updates and comparing previous versions. To operate on a group of files , you write a batch 

file or specify wildcards on the command line. 

Visual SourceSafe stores files in a central database on the network, rather than in an ordinary 

DOS directory. At the system level, this database appears as a black box. When viewed 

through Visual SourceSafe, however, the database is seen to contain all the source files and 

histories organized into project hierarchies. 

2 



Chapter 1- Version Control Systems 

When a user retrieves a file, Visual SourceSafe marks the file as checked out to by him in its 

database, then allows the user to make changes to the file on your machine. When the file is 

checked back in by the user, Visual SourceSafe updates its database. 

How is this any different from file-oriented source control? With each change, the Visual 

SourceSafe database records and tracks project information not available to file-oriented 

systems. Each time a file is added, modified, shared, moved or deleted from a project, Visual 

SourceSafe updates both the file and the project's history. One can use project history to 

simplify these tasks: 

• View the status of all the files in a specific project and all subordinate projects before 

building 

• Zoom in on a specific file change that might have caused a bug in a build on a certain 

date 

• Re-create any previous version of an entire application 

• Maintain source files that are shared among many applications 

• Determine which projects are affected by changing a file that is shared among many 

applications 

• Manage client-specific versions of a general application 

Attempting these tasks with file-oriented systems can be an incredible chore a frustrating 

impediment to software developers . The project-oriented version control in Visual 

SourceSafe streamlines the development process by making all of these tasks straightforward, 

as illustrated by the following scenarios. 

1.2.3 Preparing for a Build 

Suppose one is about to build a major application consisting of many components. Before 

starting the build, it must be made sure that no one is revising code at the last minute; or, in 

version-control terms, that no files in the entire system are checked out. 

A standard version-control system provides a tool for determining whether a file is checked 

out. This utility has to be used on every file in every directory that is being used for the build. 

Batch files and wildcards make the task easier, but in a complicated system, it can still be a 

big chore. 

3 



Chapter 1- Version Control Systems 

Visual SourceSafe, like other systems, can determine if a file is checked out. But it can also 

create a higher-level report: a list of all the checked-out files in a project. This feature 

becomes even more powerful when used recursively to include all subprojects in the current 

project. Visual SourceSafe checks every file in every relevant project and generates a list of 

every checked-out file . It is immediately known whether the build can be proceeded on not. 

1.2.4 Pinpointing Regressions 

File history reports are available in all version-control systems, including Visual SourceSafe. 

A file history lists each version of a file, from the most recent to the oldest, with information 

such as what happened to the file, who modified it, when the changes were made, and what 

comments were made. 

Despite their usefulness, file histories have severe limitations. For instance, suppose a feature 

that was working correctly last week breaks in this week's build of an application. Obviously, 

someone introduced this bug recently, but in what file? 

To tackle this question with a standard version-control system, a history report would have to 

be generated on a likely looking file to see if it had changed recently, and then one has to 

look through the changes. If the bug wasn't found, the process would be repeated with 

another file and so on. One might go through every file in the system this way and never find 

the critical change because the change actually added or deleted a file, which standard 

version-control systems don't track at all. 

With Visual SourceSafe, a report is generated on the project itself. For instance, Visual 

SourceSafe might report that COMMON.BAS was just modified; before that, 

OPENALL.FRM was changed; before that, FILESUPP.BAS was added to the project; and so 

on. Visual SourceSafe collates the changes that you would otherwise have to sort through 

manually, enabling the viewing of the order of changes over the past week. 

1.2.5 Re-Creating Previous Project Versions 

By tracking project history, Visual SourceSafe allows to quickly re-create previous versions 

of an entire application. This ability can help in resolving bugs reported from previous 

shipped versions, to make sure they were fixed in the version under development. 

For instance, suppose a client reports a printing problem in version 2. 03 of an application. 

That version of the application may have included version 10 of one file, version 15 of 

another, and so on - but that' s not a concern. By requesting the specific version of the project 

4 



Chapter 1- Version Control Systems 

from Visual SourceSafe, a complete, local copy of the application's source files used to build 

version 2.03 can be restored. 

To restore the proper source files with a standard version-control system, one would have to 

either archive the sources of each released version of the application separately, or track the 

specific file versions for each release. 

Either way, restoring the correct source files for a previous build becomes a tedious, manual 

process. 

1.2.6 Maintaining Reusable Code 

Most applications are developed around a common base of core code. These files typically 

are used over and over again in many applications and usually evolve over time, receiving 

bug fixes, performance improvements and new features. The benefits of reusing existing code 

are enormous, but so are the headaches when it comes to managing the organizational issues. 

One has to remember which applications are using each file and propagate every change to 

all the appropriate places. This task is only a minor annoyance when five applications reuse 

one file, but it gets quite complicated when 20 applications mix and match 50 reusable files. 

A standard version-control system can't help at all with this problem. Visual SourceSafe can 

automate it completely, however, because one file can exist simultaneously in many projects. 

Within its database, Visual SourceSafe stores each file only once. Each project that contains a 

file has a pointer to the location of the file in the database. All versions of the file are 

available to each project, and a project can freeze the version of a file to avoid introducing 

errors while another development team works on the reused code. To cite a common 

example, suppose there is a single source file that contains many procedures for printing 

reports. In Visual SourceSafe, each application that needs to print reports would share the 

file . If a bug is found, the file is updated from any project and the change is instantly 

propagated to every project that shares the file. Then Visual SourceSafe can report on which 

projects share the file, so it is known that which applications are affected and may need to be 

rebuilt. 

1.2.7 Creating Client-Specific Versions 

Another common source-control problem concerns clients who want applications customized 

to meet their specific needs. Essentially, there maybe many applications that share almost all 

of the same source files. Using standard source-control tools, tracking changes and keeping 

5 



Chapter 1- Version Control Systems 

builds straight can take more time than the programming. With Visual SourceSafe, a project 

can be created for each new client, indicating which files are shared and which files are 

unique. When working on a project, client-specific changes stay with the current project, and 

changes to shared files are propagated to all client versions. 

6 



CHAPTER 2 

System Overview 

7 



Chapter 2 - System Overview 

2.1 Limitations of SourceSafe: 

The major problems with Visual SourceSafe (VSS) are: 

• It cannot be used over the Internet. It can only be used over a local network. 

• It is platform specific. It can only be used with Windows 95, Windows 98, Windows 

NT, Windows 2000 operating systems. 

2.2 Overcoming the Limitations: 

This system overcomes these limitations by enabling distributed, cross-platform development 

teams to have fast and secure access to centralized SourceSafe databases via an Internet 

connection. The product is a client/server application with a GUI client similar to SourceSafe 

Explorer. 

The System consists of two parts: a Server and a Client. The Server is installed on the 

macmne with access to the file system on which the SourceSafe (VSS) database resides. 

Once installed there, the Server provides access to SourceSafe operations to Clients that 

connect using an Internet connection. The Server can be installed on a Windows NT12000 

platform. It runs in the background with no user interface of any kind. 

The Client is a GUI application that closely resembles the SourceSafe Explorer user 

interface. SourceSafe users should find the Client to be familiar and easy to use. Users can 

perform most SourceSafe operations in a similar fasmon. 

The Client can connect to any Server by simply specifying the location of that server. The 

Client and Server can communicate over any standard TCP/IP connection, including a PPP 

connection over a modem, an ISDN line, or an Ethernet connection on the same LAN as the 

Server. 

8 



Chapter 2 - System Overview 

2.3 Objectives: 

This system will solve the limitations in VSS by: 

• Providing SourceSafe operations to clients from any remote location over Internet. 

• Providing client that is platform-independent. Hence the SourceSafe operations could 

be accessed from operating systems other than the Windows family of operating 

systems. 

9 



Chapter 2 - System Overview 

2.4 Scope: 

The cross ~platform Version Control System (VCS) will be consisting of two parts: a 

cl ient part and a server part. 

2.4.1 VCS Server 

This server communicates with Visual SourceSafe (VSS) to fulfill requests those are sent 

by VCS client. VCS server keeps track of users, user authentication; perform all the 

operation relating to VSS and other similar things. 

Client communicates with server that performs tasks (automation) ranging from 

establishing connections between the client and SourceSafe Server to actual transfer of 

files and all the other tasks. 

10 



PART II 

Analysis 

11 



CHAPTER 3 

Requirements 

12 



Chapter 3 - Requirements 

3. 1 Requirement Specifications: 

Correct and thorough requirements specifications IS essential to a successful project. 

Requirements are a description of needs or desires for a product. The primary goal of the 

requirements phase is to identify and document what is really needed, in a form that clearly 

communicates to the client and to development team members. The challenge is to define the 

requirements unambiguously, so that the risks are identified and there are no surprises when 

the product is finally delivered. 

The requirements contain the following: 

• system functions 

• system attributes 

The overview statement and goals are self-explanatory. System functions are what a system is 

supposed to do; they are also called the functional requirements. Functions should be 

categorized in order to prioritize them and identify those that might otherwise be taken for 

granted (but which consume time and resources). The categories that have been included are 

evident and hidden. 

J Evident categOlY: Those functions are included in this category that a user is aware of. 

Hidden category: This category includes those functions that are not visible to the user like 

underlying technical services. 

I See [Craig98] page 42,43 

13 



Chapter 3 - Requirements 

3.2 System Functions for the Server: 

3.2.1 SourceSafe Database Functions: 

Ref# Function Category 

R1.1 Users must login with username and password. Evident 

R1.2 Server must open the SourceSafe database using the password and Hidden 

username sent to it by the client, retrieve the information in the 

database. 

3.2.2 Communication Functions: 

Ref # Function Category 

R2.1 Communication mechanisms between the client and the server Hidden 

must be provided. 

R2.2 Retrieve encoded file from the client and reconvert it to its original Hidden 

form . 

R2.3 Retrieve the filename and its path in the SourceSafe database from Hidden 

the client. 

R2.4 Retrieve new filename from the client. Hidden 

R2.5 Retrieve label for a file from the client. Hidden 

R2.6 Retrieve the request for the operation to be performed from the Hidden 

client. 

R2.7 Retrieve the parent project path and project name from the client. Hidden 

R2.8 Send the current information about the SourceSafe database to the Evident 

client upon client's request in an appropriate format. 

R2.9 Conveli the file that was checked out or gotten from the Evident 

SourceSafe database to an appropriate format and send it to the 

" , " , " 

14 



Chapter 3 - Requirements 

client that requested the operation. 

R2.10 Retrieve new username for the admin from the client. Hidden 

R2 .11 Retrieve username for the admin from the client. Hidden 

R2.12 Retrieve projects rights for a user from the client Hidden 

for admin. 

R2.13 Retrieve a user ' s password from the client for admin. Hidden 

R2 .14 In case of errors, send error information to the client. Evident 

R2.15 Send the details about projects and files III the Evident 

SourceSafe database to the client. 

R2 .16 Retrieve username and password from the client. Hidden 

3.2.3 Source Control Functions: 

Ref# Function Category 

R3.1 Based upon the filename, the request, the file and the parent project Evident 

path in the SourceSafe database retrieved from the client, add the 

file to SourceSafe database in the appropriate project. 

R3.2 Based upon the filename, the request, the file and the parent project Evident 

path in the SourceSafe database retrieved from the client; check in 

the file to SourceSafe database in the appropriate project. 

R3.3 Based upon the filename or project name, the request and its path Evident 

in the SourceSafe database retrieved from the client, delete the file 

or project. 

R3 .4 Based upon the filename or project name, the request and its path Evident 

in the SourceSafe database retrieved from the client, label the file 

or project. 

R3.5 Based upon the filename, the request, its path in the SourceSafe Evident 
+1 _ . 1 __ ... • . _.1 (". , . " . . . 1 . L _ . 1 ... "" 

15 



Chapter 3 - Requirements 

database retrieved from the client undo-checkout the file. 

R3 .6 Based upon the filename, the request, its path in the SourceSafe Evident 

database retrieved from the client checkout the file . 

R3 .7 Based upon the filename, the request, its path in the SourceSafe Evident 

database retrieved from the client get the fil e. 

R3 .8 Based upon the project name, the path of its parent project in the Evident 

SourceSafe database and the request from the client, create a new 

project in the specified project. 

R3 .9 Based upon the file name, its version, its path in the SourceSafe Evident 

database and the request from the client, get an older version of that 

file . 

R3 .10 Based upon the file name, its version, its path in the SourceSafe Evident 

database and the request from the client, roll-back to an older 

version of that file . 

R3 .11 Based upon the file name, its version, its path in the SourceSafe Evident 

database and the request from the client, show older versions of 

that file . 

3.2.4 Administrative Functions: 

Ref # Function Category 

R4.1 Based upon the username and request retrieved from client, add a Evident 

new user to the SourceSafe database. 

R4 .2 Based upon the username and request retrieved from client, delete a Evident 

user from the SourceSafe database. 

R4.3 Based upon the new username of a user and request retrieved from Evident 

the client, change the user's name in the SourceSafe database. 

16 



Chapter 3 - Requirements 

R4.4 Based upon the username of a user and request Evident 

retrieved from the client, change the user's 

rights in the SourceSafe's database. 

R4.5 Based upon the username of a user, the new Evident 

password and request retrieved from the client change the user ' s 

password. 

R4.6 Change the access rights of a user based upon the username, project Evident 

and request from the client. 

R4.7 Copy user access rights to the selected user based upon the user Evident 

names and request from the client. 

17 



Chapter 3 - Requirements 

3.3 System Attributes: 

• Access over the Internet: Product has to be developed such that it could be accessed 

over the Internet. 

• Final Date: Product has to be developed by the end of February 

• Extensibility: Product should be developed in such a way that it could be easily made 

web-based in future 

18 



CHAPTER 4 

Use Cases 

19 



Chapter 4 - Use Cases 

4.1 Use Case Diagram: 

Checkin files Checkout fi les 

I 
«extends» 

.1 create project undo checkout 
«extends» 

1 
\. 

Add fi les 
',,- «us~s~~use/s» 

---------«uses» ", 
'-

., Get files 
«uses» / 

«uses» 
, ~I --------------~ 

«uses» 
f----------------lL -' 

rem ov e projects/f iles source control ' rename file/project 
... -.... ....... 

~--- I .-- - --'''-----___ _ 

#,~-' --------:-.:- ----- _.... --- --... -

___ . ___ --- refresh project/files list -_______-_ 
\ ) -- _ •. --- -------.-~ .... - •• -. 'I 

T '--'- ---5-r 
-.~------ .. - ... , .---.-~~ 

VCSClient 
~ ... ---_ ...• .- SourceSafe 

I<ey 

~ Actor 

0 Use Case 

/ Association 

i Generalization 

~ Extends 

open database 
... ---

,_«uses» _.·-- _ ~«uses» ~--< 
-___.. -:j_----."'.:::- v ersion control ",.', 

I show his troy 

label version 

«uses» manage user «uses» 

-'-
add user 

«uses» 
.l.. 

remove user 

modify user 

20 



Chapter 4 - Use Cases 

4.2 Use Cases: 

An excellent way to understanding the requirements of a system is the creation of use cases. 

Use cases are dependent on having at least partial understanding of the requirements of the 

system, ideally expressed in a requirements specifications document. 

A use case is a narrative document that describes the sequence of events of an actor (an 

external agent) using a system to complete a process [Jacobson92]. These are the cases of 

using a system and not requirements or functional specifications, but they illustrate and imply 

requirements in the descriptions of the processes 

4.2.1 Use Case Formats: 

There are two types of use case formats . A high level format and an expanded use case 

format. Expanded use case formats are useful in order to obtain a deeper understanding of the 

processes and requirements. Expanded use cases are often done in a "conversational" style 

between the actors and the system [Wirfs-Brock93]. 

The typical course of events is the heart of the expanded format and this is where the 

expanded format differs from the high level format. The typical course of events describes in 

detail the conversation of interaction between the actors and the system. The alternative 

course of events, describes important alternatives or exceptions that may arise with respect to 

the typical course [Craig98]. 

Following are the important use cases in the expanded format: 

21 



Chapter 4 - Use Cases 

4.3 Use Cases in Expanded Format: 

Use case: Open Database 

Actors: user client/admin client, SourceSafe 

Purpose: Read SS repository and send this information to user client/admin client 

Overview: Client sends user name, password and requests opening the database from the 

system. System accesses the SourceSafe database and opens it if authorized. It then 

reads the database and sends information in the database to client in an appropriate ~ _:c:'_n",,:.~ . 
~."/ ... ~ \. " .... . ~ 

format. . '; ':'~'" 
\\ . . .,~ . 

Cross Ref: Functions: R1.1, R1.2, R2.1, R2.6, R2.8, R2.16, R2.14 " ',\ 

~:.: .' .. J 
,:.( /1 Typical Course of Events: 

Actor Action 

1. Client opens connection with 

the system. 

2. Client sends username and pass 

word to the server. 

4. SourceSafe returns the result of 

the operation. 

6. Client retrieves all the 

information. 

7. Client Closes the connection. 

Alternative Courses: 

. -c 
c . . ; . , ~ 
~$' 

.... , " ~ r 

System Response ~-:..::...;; ;;'" 

3. System invokes the SourceSafe database with the 

received user name and password. 

5. System then reads all the information of files and 

projects and returns it to the client in an appropriate 

format. 

• Line 4: Invalid username or password entered. Indicate error and stop. 

22 



Chapter 4 - Use Cases 

Use case: Create New Project 

Actors: user client/admin client, SourceSafe 

Purpose: Add a new project to the SourceSafe database 

Overview: Client sends the parent project path, the new project name and the request to the 

system which then accesses the SourceSafe database and makes the new entry in it. 

Cross Ref: Functions: R2.1 , R2.6, R2.7, R2.14, R3 .8 

Typical Course of Events: 

Actor Action System Response 

1. Client opens connection with 

the system. 

2. Client sends parent project 3. System accesses the SourceSafe database and adds 

path, the new project name and the new entry into it. 

request to the system. 

4. SourceSafe returns the result 5. System sends the indication to the client of success 

of the operation. or failure. 

6. Client retrieves all the 

information. 

7 . Client Closes the connection. 

23 



Chapter 4 - Use Cases 

Use case : Checl{ In File 

Actors: user client/admin client, SourceSafe 

Purpose: Check In a file to the SourceSafe database after having made changes to it. 

Overview: Client sends the file name, its path, the file in an encoded form to the system. 

The system decodes the file and saves it. It then checks in the file to SourceSafe database. 

Cross Ref: Functions: R2.1, R2.2, R2.3, R2.14, R3 .2 

Typical Course of Events : 

Actor Action System Response 

1. Client opens connection with 

the system. 

2. Client sends the file, its name 3. System retrieves this information, decodes the file 

and path. The file is in encoded to its original form and saves it. System then accesses 

form. the source safe and Checks In the file. 

4. SourceSafe returns the result 5. System sends the indication to the client of success 

of the operation. or fai lure. 

6. Client retrieves all the 

information. 

7. Client Closes the connection. 

24 



Chapter 4 - Use Cases 

Use case: Checl{ Out File 

Actors: user client/admin client, SourceSafe 

Purpose: Check Out a file from the SourceSafe database for making changes to it. 

Overview: Client sends the file name, its path and the request to the system. The system 

checks out the file. Encodes the file in an appropriate format and then sends it to the client. 

Cross Ref: Functions: R2.3 , R2.6, R2.9, R2 .1 4, R3.6 

Typical Course of Events: 

Actor Action System Response 

1. Client opens connection with 

the system. 

2. Client sends the request, file 3. System retrieves this information and Checks Out 

name and path to the system. the file from the SourceSafe database. 

4. SourceSafe returns the result 5. System sends the indication to the client of success 

of the operation. or failure . 

7. Client retrieves all the 6. System encodes the checked out file to a form 

information. appropriate for transmission and sends the file . 

8. Client Closes the connection. 

Alternative Course of action: 

Line 6: In case of error do not send the file. 

25 



Chapter 4 - Use Cases 

Use case: Manage User 

Actors: admin client, SourceSafe 

Purpose: Adds a user, deletes, modifies username or password and sets rights . 

Overview: Admin client sends the relevant information about the user and the request to the 

system. The system based upon the request adds user, deletes user or modifies the user. 

Cross Ref: Functions: R2.1 , R2.10, R2 .11, R2.13 , R2.14, R4 .1, R4.2, R4.3, R4.4, R4.5 

Typical Course of Events: 

Actor Action System Response 

1. Admin opens connection with 

the system. 

2. Admin sends the information 3. System retrieves this information and adds 

about the user such as user ' s name, deletes or modifies the user in the SourceSafe 

database and new password . 

4 . SourceSafe returns the result of 5. System sends the indication to the client of 

the operation. success or failure. 

6. Admin retrieves all the 

information. 

7. Admin Closes the connection. 

26 



Chapter 4 - Use Cases 

Use case: Manage Access Rights 

Actors: admin client, SourceSafe 

Purpose: Change access rights of a user by project or copy the access rights of one user to 

another user 's. 

Overview: Admin client sends the relevant information about the user and the request to the 

system. The system based upon the request copies the rights of one user to another ' s. 

Cross Ref: Functions: R2.1, R2 .11 , R2 .12, R2 .14, R4 .6, R4.7 

Typical Course of Events: 

Actor Action System Response 

1. Client opens connection with 

the system. 

2. Client sends the information 3. System retrieves this information and copies the 

about the user such as usernames, rights of one user to another's in the SourceSafe 

and their rights . database. 

4 . SourceSafe returns the result of 5. System sends the indication to the client of 

the operation. success or failure . 

6. Client retrieves all the 

information. 

7. Client Closes the connection. 

27 



PART III 

Design 

28 



CHAPTERS 

Class Design 

29 



Chapter 5 - Class Design 

5.1 Class Descriptions: 

5.1.1 Item: 

Purpose: To provide source control facilities for a project or file . 

Item 
?,..pm_item Name: _ bstr_ t 

1k>m_itemPath : _ bstr_t 
1k>m_parentPath : _ bstr_t 

1k>m_parentName : _bstr_t 

1?4>m_pltem : IVSSltemPtr 

<>checkl nO 
<>checkOutO 
<>deleteO 
~labelVersionO 
~undoCheckOutO 
~getLatestVersionO 
~getltemO 

5.1.2 Project: 

Purpose: To provide source control facilities that are related to project alone. 

Project 

~createProjectO 
<>addFileO 

30 



Chapter 5 - Class Design 

5.1.3 VSSDatabase: 

Purpose: To provide access to and retrieval of information from the SourceSafe database. 

VSSOatabase 
~iniPath : _ bstr_ t 
~m_pVSSDb : IVSSDatabase 

~openO 
~readVSSO 

5.1.4 User: 

Purpose: To provide for user related functions. 

User 
?vm_pUser : IVSSUserPtr 
~m_Name : _bstr_t 
~m_Password : _bstr_t 
~m_Permission : _ bstr_t 
~m_pProjList : projectRights 

~changePasswordO 

5.1.5 Administrator: 

Purpose: To provide for user related functions. 

Ad ministrator 

~addUserO 
~deleteUserO 
~editUserO 
~setP ro j ectRi 9 htsO 

31 



Chapter 5 - Class Design 

5.1 .6 XML: 

Purpose: To provide a base class for XMLReader and XMLWriter classes. 

XML 
~m_pXMLDoc : IXMLDOMDocument 
'l?¢m_pXMLElem ent : IXMLDOMElement 

5.1.7 XMLReader: 

Purpose: To provide facility for parsing XML and converting XML data to binary form. 

XMLReader 

~getAttributeO 
~getDataO 
~XML ToBinary 0 

5.1.8 XMLWriter: 

Purpose: To provide facility for generating XML and converting binary data to XML. 

XMLWriter 
~m_pAttList : attributeList 

<>setNodeO 
~setDataO 
~binaryToXMLO 

32 



5.2 Class Relationship Diagram: 

r=- I getsXML r-:-~ 
~lf~~e~rq~_u~~~s~tL~i~s~te~~~e~r ~ ___________ ~~==~~ 

.\ 1..1 
1..11..1 

recieves request 

Chapter 5 - Class Design 

uses uses ~ uses 

Key 

1..1 

~ 
VCSClient 
(from Use Case View) 

1..1 

Class 

Actor 

,~ssoc iat ion 

1 Generalization 

<> Aggregation 

1.: 

I lt.,~ I 
1.: . 

I 
uses 

1.: 1 
\ 
\ uses 

\ 

1..\JsSDatabase 

1.: 

33 



CHAPTER 6 

Collaboration Diagrams 

34 



Chapter 6 - Collaboration Diagrams 

6. 1 Collaboration Diagrams: 

Collaboration diagrams illustrate object interactions in a graph or network format. They 

illustrate the message interactions between classes in a class model. Following are the more 

important collaboration diagrams : 

6.1.1 Add a user 

1: getRequest( ) ,---------,2: processRequest( ) 

~ _____ > __ --I : L~~e~:~t ~ I '--XM- L-R-e-a-de---'rl 

: (Admin) 

I 
: Response 

Sender 
3: addUser( ) 

;t\ 
5: sendResponse() 

I 

: XMLWriter 

\V 

I---------------------j Administrator 
~ 

4. setNode( ) 

35 



6.1.2 Check in a file 

: Request 
Listener 

\ 
2: getAttribute() 

I 
1: getRequest() 

: XJ\Jl LReader 

: VCSClient 

Chapter 6 - Collaboration Diagrams 

6: setNode( ) I ~ It----~-----ll : XMLWriterl 

I 
7: sendResponse() 

\jI 

: Response 
Sender 

36 



6.1.3 Check out a fil e 

: VC Client 

I 
1: getRequest( ) 

~ 

Chapter 6 - Collaboration Diagrams 

5: setData( ) 
> 

: Response 1 ___________ -11 : XMLWriterl 
Sender < .. 

6: sendResponse( ) 

A\ 
4: setNode( ) 

I 

2: getAttribute( ) 3: checkOut( ) 

: Request 1---->------11 : xrv1LReaderl _____ > ____ 1 
Listener 

L--_-------' 

: Item 

37 



6.1.4 Create a new project 

2: getAttribute( ) 

: Request I----~ ___ [ : XMLReader[ 
Listener 

A\ 
1: getRequest( ) I 

Chapter 6 - Collaboration Diagrams 

: Response 
Sender 

Ii\ 
I 3: createProject( ) 5: sendResponse( ) 

\V I 

4: setNode( ) 

: Project ~ : X!v1 L Writer 

: VCSClient 

38 



Chapter 6 - Collaboration Diagrams 

6.1.5 Open Database 

~ ____ 1_: _g_et_ .. ~_ .. ~_ .. ~_~e_s_t_( _) ___ --j L~~~~:~t l 

: VCSClient 

: Response 
Sender 

A 
7: sendResponse( ) 

I : XMLWriterl 
....... .. ...................................... .. ..... 

6: readVSS( ) 
~ 

<C .. 
5: setNode( ) 

I 
2: processRequest( ) 

\V 

I~ · ~I L Rea:J 

3: openOatabase( ) 
4: readVSS( ) 

\V 

, -
VSSOatabase i 

39 



Chapter 6 - Collaboration Diagrams 

6.1.6 Set a user's rights by project 

Q 1: getRequest( ) 

A > 

: VCSClient 

: Response 
Sender 

Ii\ 
5: sendResponse( ) 

I 

2: getAttribute( ) 

: Request 1---->---1 : XMLReaderl 
Listener 

I 
3: setProjectRights( ) 

\]I 

: XMLWriter 1 . ! 
'---___ 1-------<----------1 Admi~trator 

4: setNode( ) 

40 



PART IV 

Implementation 

41 



CHAPTER 7 

Mapping Design to Code 

42 



Chapter 7 - Mapping Design to Code 

7.1 Creating Class Definitions: 

Implementation in an object-oriented programming language such as C++ requires source 

code for: 

• Class definitions 

• Method definitions 

At the very least, class diagrams depict the class name, superclasses, method signatures, and 

simple attributes of a class. This is sufficient to create a basic class definition in an object

oriented language. These class definitions in C++ are included below. 

7.2 Class Definitions: 

7.2.1 ItemClass: 

#ifndefItem h 

#define Item h 1 

#include "XMLReader.h" 

#include "XML Writer.h" 

class Item { 

public: 

ItemO; 

- ItemO; 

bool checkIn 0; 

bool checkOut 0; 

bool destroyO; 

bool labelVersion 0; 

bool undoCheckOut 0; 

bool getLatestVersion 0; 

bool getltem 0; 

43 



Chapter 7 - Mapping Design to Code 

//Get and Set Operations for XMLWriter and XMLReader 

const XMLWriter * get_the_XMLWriter 0 const; 

void set_the_XMLWriter (XMLWriter * value); 

const XMLReader * get_the_XMLReader 0 const; 

void set_the_XMLReader (XMLReader * value); 

protected: 

/ / Get and Set Operations for Class Attributes 

const _bstr_t get_mjtemName 0 const; 

void set_mjtemName Lbstr_t value); 

const _bstr_t get_mjtemPath 0 const; 

void set_mjtemPath Lbstr_t value); 

const _bstr_t get_m~arentPath 0 const; 

void set_m~arentPath Lbstr_t value); 

const _bstr_t get_m~arentName 0 const; 

void set_m~arentName Lbstr_t value); 

const void get_m~Item 0 const; 

void set_m~Item (void value); 

private: 

_bstr_t mjtemName; 

_bstr_t mjtemPath; 

_bsr_t m~arentPath; 

_bstr_t m~arentName; 

IVSSItem *m~Item; 

XMLWriter *the_XMLWriter; 

XMLReader *the _ XMLReader; 

44 



}; 

#endif 

7.2.2 Project Class: 

#ifndefProject_ h 

#define Project_h 1 

#include "Item.h" 

class Project: public Item{ 

public: 

ProjectO; 

~ProjectO ; 

Boolean createProject 0; 

Boolean addFile 0; }; 

#endif 

7.2.3 User Class: 

#ifndefUser h 

#define User h 1 

#include "XMLReader.h" 

#include "XMLWriter.h" 

class User { 

public: 

UserO; 

~UserO; 

bool changePassword 0; 

/ / Get and Set Operations 

Chapter 7 - Mapping Design to Code 

45 



Chapter 7 - Mapping Design to Code 

const Xl\1LWriter * get_the_Xl\1LWriter 0 const; 

void set_the_Xl\1LWriter (Xl\1LWriter * value) ; 

const Xl\1LReader * get_the_Xl\1LReader 0 const; 

void set_the_Xl\1LReader (Xl\1LReader * value); 

protected: 

II Get and Set Operations for Class Attributes 

const IVSSUserPtr get_m~User 0 const; 

void set_m~User (IVSSUserPtr value); 

private: 

II Get and Set Operations for Class Attributes 

const projectRights get_m~ProjList 0 const; 

void set_m~ProjList (projectRights value); 

II Data Members for Class Attributes 

IVSSUserPtr m~User; 

bstr t m Password; - - -

bstr t m Permission; 
- - -

projectRights m ~ProjList; 

Xl\1L Writer *the _ Xl\1L Writer; 

46 



XMLReader *the _ XMLReader; 

}; 

#endif 

7.2.4 Administrator Class: 

#ifndef Administrator h 

#define Administrator h 1 

#include "User.h" 

class Administrator : public User { 

public: 

AdministratorO; 

~AdrninistratorO ; 

bool addUser 0; 

bool deleteUser 0; 

bool editUser 0; 

bool setProjectRights 0; 

}; 

#endif 

7.2.5 VSSDatabase Class: 

#ifndefVSSDatabase h 

#define VS SDatabase h 1 

#include "XMLReader.h" 

#include "XMLWriter.h" 

class VSSDatabase{ 

public: 

VS SDatabaseO; 

Chapter 7 - Mapping Design to Code 

47 



~VSSDatabaseO ; 

Boolean open 0; 

void readVSS 0; 

I I Get and Set Operations 

canst X1vll..,Writer * get_the_X1vll..,Writer 0 canst; 

void set_the_X1vll..,Writer (X1vll..,Writer * value); 

const X1vll..,Reader * get_the_X1vll..,Reader 0 const; 

void set_the_X1vll..,Reader (X1vll..,Reader * value); 

private: 

II Get and Set Operations for Class Attributes 

const _bstr_t getjniPath 0 canst; 

void setjniPath Cbstr_t value); 

const IVSSDatabase get_m~VSSDb 0 canst; 

void set_m~VSSDb (IVSSDatabase value); 

private: 

I I Data Members for Class Attributes 

_bstr_t iniPath; 

IVSSDatabase m~VSSDb; 

XMLWriter *the_X1vll..,Writer; 

XMLReader *the _ X1vll..,Reader; 

}; 

#endif 

Chapter 7 - Mapping Design to Code 

48 



Chapter 7 - Mapping Design to Code 

7.2.6 XML Class: 

#ifndef XML h 

#define XML h 1 

class XML { 

public: 

virtual XMLO; 

virtual - XMLO; 

II Get and Set Operations for Associations 

const RequestListener * get_the_RequestListener 0 const; 

void set_the_RequestListener (RequestListener * value); 

protected : 

II Get and Set Operations for Class Attributes 

const IXMLDOMDocument get_m~XMLDoc 0 const; 

void set_m.-rXMLDoc (IXMLDOMDocument value); 

const IXMLDOMElement get_m~XMLElement 0 const; void set_m~XMLElement 

(IXMLDOMElement value); 

private: 

II Data Members for Class Attributes 

IXMLDOMDocument m ~XMLDoc; 

IXMLDOMElement m ~XMLElement; 

}; 

#endif 

49 



7.2.7 XMLReader Class: 

#ifndefXMLReader h 

#define XMLReader h 1 

#include "XML. h" 

class XMLReader : public XML { 

public: 

XMLReaderO; 

~XMLReaderO; 

Boolean getAttribute 0; 

Boolean getData 0; 

private: 

Boolean XMLToBinary 0; 

}; 

#endif 

Chapter 7 - Mapping Design to Code 

50 



7.2.8 XMLWriter Class: 

#ifndefXMLWriter h 

#define XMLWriter h 1 

#include "XML.h" 

class XML Writer: public XJ\.1L{ 

public: 

XJ\.1L WriterO; 

~ XML WriterO; 

Boolean setNode 0; 

Boolean setData 0; 

protected: 

bool binaryToXML 0; 

const attributeList get_ m ~AttList 0 const; 

void set_m~AttList (attributeList value); 

private: 

attributeList m ~AttList; 

}; 

#endif 

Chapter 7 - Mapping Design to Code 

51 



CHAPTER 8 

Implementation Specific Detail 

52 



Chapter 8 - Implementation Specific Details 

8. 1 How the system works: 

We know that the complete system is formed of a client and a server. The SourceSafe 

database resides at the machine where the server is installed. The client closely resembles the 

Visual SourceSafe. 

8.1.1 Request is made: 

What the client does is to send the requests to the server. These requests come in the form of 

XML2 For instance, for the login request, the client in-fact opens an ASP page named 

login.asp with an HTTP POST request to send the XML information to the server. 

8.1.2 ASP page is opened: 

As the result of the POST request, the ASP page uses the BinaryRead method to retrieve data 

sent to the server and stores it in a Safe Array of bytes. 

8.1.3 COM component is called: 

The COM component is called from with in the ASP page. This component is an in-server 

component that retrieves the Safe Array of bytes from the ASP page and converts it to XML. 

It then proceeds to extract the relevant information, such as the user name and password in 

this case. This information is then used for accessing the SourceSafe database by automation. 

The result of the operation is either success or failure so this information is converted to 

XML and sent to the ASP page. 

8.1.4 ASP page writes response: 

The ASP page writes the XML response to the client and closes. 

Thus the system works as above for different requests. 

2 Appendix D contains the DTDs for different XML files that have been used. 

53 



Chapter 8 - Implementation Specific Details 

8.2 Converting files to and retrieving them from XML: 

The fi le transfer between the client and the server also takes place in Xl\IIL. For instance, in 

case of checking out a file, the file is read from the secondary storage in binary format. This 

is then converted to base64 encoded form and attached to a node in the Xl\IIL file . Hence 

binary data is passed along in Xl\IIL as well. 

When a file is being added or checked in, then the base64 encoded information (which 

contains the file) is extracted, decoded and the file is saved in its original form on the 

secondary storage. 

54 



PART IV 

Testing 

55 



CHAPTER 9 

Test Cases 

56 



),1 Server Testing for Client Requests 

Test Case Expected Test Results Actual Requir 
Results ements 

.ogin with valid XML file is generated for the VSS Same as R1.1 

Jsername and Repository and is sent to the . expected R1.2 

>assword client. 

.ogin with invalid XML file is generated with the Same as R1.1 

Jsername error of "invalid user name". expected R2 .14 

.ogin with correct XML file is generated with the Same as R1.1 

Jsername but error of "invalid password". expected R2.14 

nvalid password 

:hecking out a file File is successful ly checked out, Same as R3.6 

rom a project converted to XML and sent to the expected R2.2 

client. 

:hecking in a file XML f ile is retrieved from the Same as R3.2 

o a project client. It is converted into the expected R2.9 

original file and checked in 

successful ly. 

\dd a file to the XML file is received from the Same as R3.1 

lroject when user client, converted to the original expected R2.9 

las add access file and is succes$fu lly added to 

ights. the SourceSafe repos itory. 

,dd a f ile when XML file is generated with the Same as R3.1 

Iser doesn't have error of "access denied" and is expected R2.9 . 

dd access rights sent to the client successfully. 

Idd a file to the XML file is generated with the Access is R3.1 

Iroject when user error of "access denied" and is denied but R2.14 

as read -only sent to the client successfu lly. error is not 

ccess to VSS sent to client 

. 57 



Create a project XML receivfid from the client is Same as R3.8 

parsed, re levant information is expected R2.1S 

extracted and project is 

successfully added 

Create a project XML file is generated with the Access is R3.8 

when user does error of "access denied" and is denied but R2.14 

not have Add sent to the cI ient successfu lIy. error is not 

access rights sent to client 

Create a project XML file is generated with the Access is R3.8 

when user has error of "access denied" and is den ied but R2.14 

Read -on ly access sent to the client successfu lly. error is not 

to VSS sent to client 

Deleting a XML received from the client is Same as R3. ,3 

file/ project parsed, re levant information is expected R2.1S 

extracted and fi le or project is 

successfully deleted. 

Deleting a fi le XML file is generated with the Access is R3.3 

when user does error of "access denied" and is denied but R2.14 

not have add sent to the cl ient successfu lly. error is not 

access r ights sent to cI ient 

Deleting a f ile if XML f ile is generated with the Same as R3.3 

user has, Read - error of "access denied" and is expected R2.14 

on ly access to VSS sent to the client successfu lly. 

Deleting a project XML fi le is generated with the Same as R3.3 

when user does error of "access denied" and is expected R2.14 

not have Add sent to the cl ient successfu lly. 

access rights 

Deleting a project XM L f ile is generated with the Access is R3.3 

when user has error of "access denied" and is den ied but R2.14 

Read -on ly access sent to the client successfu lly. error is not 

to VSS sent to cI ient 

58 



,-... ,JJUl-'L\.d . ./ - .1. v':) L '-U~V~ 

La beling a XM L rece ived f rom the cl ient is Same as R3.S 

file/project parsed, relevant info rm ation is expected R2.1S 

extracted and fi le or project is R2.S 

successfully labeled. 

Get latest version Latest vers ion of f il e is retrieved Same as R3.7 

of a f ile from the SourceSafe database, expected R2.3 

converted to XML and sent to t he 

client successfully . 

Get latest vers ion Latest version of f ile is retrieved Same as R3 .7 

of a f ile which is f rom t he SourceSafe database, expected R2.3 

checked out converted to XML and sent to the 

cl ient successfu lly. 

Get latest version XML fi le is generated wi t h t he Access is R3 .7 

:>f a f ile when user error of " access denied" and is denied but R2 .3 

Joes not have sent to the cl ient successful ly. error is not R2.14 

Read access ri ghts sent to cl ient 

::;et history of a f ile After recept ion and pars ing of the Same as R3.11 

Client request, a history of the f ile expected R2.3 

is retri eved from the SourceSafe 

database. It is converted to XML 

and sent to the cl ient. 

::;et history of a f ile Same as "Get history of a f ile" Same as R3.11 

Nhich is checked expected R2 .3 

Jut 

::;et earlier vers ion After reception and pars ing of t he Same as R3 .9 

Jf a f ile Client request t he earlier version expected R2.3 

of a f ile is gotten. It is converted 

to XM L and sent to the cl ient. 

59 



:J.2 Server Testing for Administration Client 

Test Case Evaluation Actual Require 
Results ments 

~dding a user User is successfully added to user Same as R4.1 

list expected R2.10 

~dding a user with XML fil e is generated with the Same as R4.1 

ncorrect verify error of "access denied" and is expected R2.14 

Jassword sent to the client successfully. 

~dding a user with User is successfully assigned Same as R4 .1 

3ssigning Read - Read -only access rights expected 

)n ly access 

:::hanging user User password is successfully Same as R4.S 

Jassword changed expected 

:::hanging user Error message is sent to the Error message R4.S 

Jassword with client in XML. is not sent R2.14 

Nrong password 

:::hanging admin Error message is sent to the Same as R4. S 

Jassword with client in XML. expected 

ncorrect current 

Jassword 

)eleting a VSS user User is successfully deleted form Same as R4.2 

user list expected R2.11 

:::hanging rights of User Read -only access rights are Same as R4.4 

3 user from Read- successfu lly changed to Read - expected R2.11 

mly to Read -Write Write R2.12 

:::hanging rights of User Read -Write access rights Same as R4.4 

3 user from Read - are successfully changed to expected R2.11 

Nrite to Read -only Read -only R2.12 

60 



,ssigning project Users rights successfully assigned Rights were R4.6 

ights to a user not R2.11 

successfu lly 

assigned 

:opying project Copying project rights successful Same as R4.7 

'ights of a user to expected R2.12 

mother 

61 



CHAPTER 10 

Evaluation and Future Enhancement 

62 



Chapter 10 - Evaluation and Future Enhancements 

10.1 Evaluation 

The system is providing SourceSafe operations to clients from any remote location over a 

LAN network using HTTP. 

We have tested the Client on both Linux and Windows and it is working properly. Hence the 

SourceSafe operations can access from operating systems other than the Windows family of 

operating systems. 

The system fulfills almost all the requirements accept assignment of user rights. 

GUI is very much similar to that of Visual SourceSafe Explorer except that Administrator 

and Client Explorer are merged for Admin. 

The server part has also been installed and tested on Windows 2000 Server. lIS has to be 

configured before the server can be used. The server has been accessed from both Linux and 

Windows and works properly and according to the requirements. 

10.2 Future Enhancement 

In future following enhancements are easily possible 

• The system could be made entirely web-based so that all these features could be 

available from within a web-browser 

• The server could be converted to a web service using SOAP 

• Data encryption could be used for better security. 

• Projects or files sharing could be added 

• Multiple check out could be permitted 

• Files merging could be added 

• Recursive SourceSafe operation on projects could be added 

• Fast searching for files and text in files could be added 

63 



PART V 

Appendices 

64 



Appendix A 

Process model 

The model that we have chosen for our project is the spiral model. It is an evolutionary 

process model that couples the iterative nature of prototypirig with the controlled and 

systematic aspects of linear sequential model. 

Software is developed in a series of incremental releases. During early iterat ions, the 

incremental release might be a paper model or prototype. During later iterations, increasingly 

more complete versions of the engineered system are produced . 

The model is suitable for our system as it allows developers to work independently. Further, 

in the beginning, the understanding of the system is low. As such, once the beginning spiral 

for concept development is complete, understanding of the whole system will increase. 

Requirements will become clarified; the knowledge of what's technically possible will also 

increase. The project will evolve as the process progresses thus early reaction to risks at each 

evolutionary level will also be possible. The software development process wi ll also be 

manageable due to the development of the project in stages. 

65 



Appendix B 

Required Resources 

Developer End: 

The minimum hardware required for the development of this system is two Intel Pentium 

class processor based computers. One computer, a Pentium-II, with at least 64 rvrn RAJv1 is 

required for the server while another computer at least Pentium-I 133 MHz would act as a 

client machine. These computers would have to be inter-connected using network-cards to 

simulate a TCP-IP network. 

The software required for the server will include a Windows 2000 server along with the 

installation of VC++ (including VSS as ves uses the VSS APIs) and Internet Information 

Services. At the client side the software required are Windows 2000 professional, Windows 

98/95 and Linux as these are the operating systems on which the client side of the system 

would be tested . Apart from these JDK 1.3 is also required. 

Server End: 

A Windows 2000 Advanced Server (lIS configured and online) and Visual Source Safe 

server installation is needed. 

66 



Appendix C 

Feasibility 

Operating System Consideration: 

For Server Operating System I considered Windows 2000 Server and Windows NT. I 

couldn't consider other operating systems such as Linux as the SourceSafe APIs that I have 

used come with Visual SourceSafe available in Visual Studio only installable on a Windows 

Operating System. 

I selected Windows 2000 Server as it is the current industry standard as well as contains 

improved features over Windows NT. In addition to this it has built-in support for COM+. 

Windows 2000 Server includes improved network, application, and Web services. It provides 

increased reliability and scalability, lowers the cost of computing with powerful, flexible 

management services, and provides the best foundation for running business applications. 

Economic Feasibility: 

The project is economical feasible as the specified technology is easily available. Our project 

would be geared towards software companies. Hence, most would already have Developer 

Studio installed along with which SourceSafe comes. 

Further software companies already have a LAN setup in their offices. So a server would 

always be present. Nowadays, few of the companies would be without a dedicated Internet 

connection. Hence there is no need for any extra hardware for this project and it can be 

integrated within the existing setup of the organization. 

Technical Feasibility: 

The technology needed to develop the system is available. The hardware setup of a single 

server and a client interconnected is also present. So is the software such as, VSS, ASP, 

win2000, Java etc. 

Any organization that already uses any component of the Developer Studio could easily use 

this system. 

67 



Operational Feasibility: 

The system would be invaluable for developers who travel a lot as well as for multiple- site 

development teams. Without such a setup it would be impossible for multiple developers to 

work on a project outside the LAN (intranet) setup of the organization . With this system 

developers could access and share the SourceSafe database from any geographical location 

hence making it an invaluable system to use especially for telecommuters and multiple-site 

development teams. Further developers could access the SourceSafe database from their 

homes. 

68 



Appendix D 

Tools and Technologies 

Windows 2000: 

In Windows 2000, the ASP built-in objects add methods that provide developers with 

enhanced program control, including improved server-side processing and error handling. 

Windows 2000 also includes version 5 of the script engine (VBScript.dll and JScript.dll), 

which provide more extensibility for ASP pages. 

Internet Information Services 5.0: 

Internet Information Services (lIS) 5.0 sports improvements for administration and 

application development. Building on the foundation of its predecessor, lIS 5.0 takes 

performance, reliability, and scalability to the next level. In addition to an engine overhaul for 

lIS, updates to core technologies improve the overall Active Server Pages experience. 

ASP: 

Microsoft® Active Server Pages is a server-side scripting technology that can be used to 

create dynamic and interactive Web applications. An ASP page is an HTML page that 

contains server-side scripts that are processed by the Web server before being sent to the 

user's browser. You can combine ASP with Extensible Markup Language (XML), 

Component Object Model (COM), and Hypertext Markup Language (HTML) to create 

powerful interactive Web sites. 

Server-side scripts run when a browser requests an .asp file from the Web server. ASP is 

called by the Web server, which processes the requested file from top to bottom and executes 

any script commands. It then formats a standard Web page and sends it to the browser. 

It is possible to extend your ASP scripts using COM components and XML. COM extends 

your scripting capabilities by providing a compact, reusable, and secure means of gaining 

access to information. You can call components from any script or programming language 

69 



that supports Automation. XML is a meta-markup language that provides a format to describe 

structured data by using a set of tags. 

COM+ and COM Components: 

COM+ currently encompasses two areas of functionality: a fundamental programming 

architecture for building software components (which was first defined by the original COM 

specification), plus an integrated suite of component services with an associated run-time 

environment for building sophisticated software components. Components that execute 

within this environment are called configured components. Components that do not take 

advantage of this environment are called un-configured components; they play by the 

standard rules of COM. While one can use the COM+ programming model without the 

component services and run-time model, much of the power of COM+ is realized when these 

two parts are used together. 

Components provide the following benefits to an ASP application : 

• Encapsulation of functionality and hiding of implementation details 

• Reusability (including reuse by different client applications) 

• Protection of intellectual property 

• Scalability (by allowing you to distribute your application across machines) 

• Configuration and deployment flexibility 

• Performance (especially when early binding is a significant factor) 

• Access to the system, such as Win32 API calls or any other low-level features of 

programrninglanguages 

• Strong typing (Visual Basic® Scripting Edition [VB Script] IS weakly typed, and 

JScript® isn't much better) 

• Separation of business logic from the user interface, or separation of the Web designer 

from the developer. 

70 



HTTP: 

This is the Internet protocol used by World Wide Web browsers and servers to exchange 

information. The protocol makes it possible for a user to use a client program to enter a URL 

(or click a hyperlink) and retrieve text, graphics, sound, and other digital information from a 

Web server. URLs of files on Web servers begin with http ://. 

There are two ways to send information to the server using ASP. One is the GET request and 

the other is POST. GET request has many limitations. We have used the POST request . 

A POST request contains entity data that is written to the server. The URI requested specifies 

the parent entity of the written data. For instance, you might POST an HTML file into the 

URI for a directory, or you might POST a database record into the URI for the database itself. 

This request actually contains entity data, so a number of headers describing the content 

apply here that you won't normally see in a request. In particular, the content-length header is 

required for POST request. 

A server may react in many different ways to a POST request depending on the application 

involved. Although it's easy to think of a POST request as a write, a successful POST doesn't 

need to store any persistent information on the server at all. It can just be a way of sending 

information to the server. 

XML: 

Extensible Markup Language is the universal language for data on the Web. It gives 

developers the power to deliver structured data from a wide variety of applications to the 

desktop for local computation and presentation. XML allows the creation of unique data 

formats for specific applications. It is also an ideal format for server-to-server transfer of 

structured data. 

XML compresses extremely well due to the repetitive nature of the tags used to describe the 

structure of the data. It is worth noting that compression is standard for HTTP 1.1 servers and 

clients, and XML automatically benefits from this . 

XML also solves the problem of transferring data between different platforms. XML adds a 

new, intermediate level of abstraction between the data source on one hand and the user 

interface on the other. This layer lets you access cross-platform data from any system that 

does XML. Since the data is completely separate from the user interface, you can perform 

client-side processing before displaying the data. 

71 



72 



Appendix E 

Document Type Definition (OrO) 

Document Type Definition (DTD) for items list 

<?xml version = "1 . O"?> 

< !DOCTYPE VSSProjects[ 

]> 

< IELEMENT VSSProjects (PROJECT, FILE)*> 

< !ELEMENT PROJECT (PROJECT, FILE)*> 

< !ATTLIST PROJECT 

> 

NameCDATA#REQUIRED 

Label CDATA #REQUIRED 

vssVersion CDATA #REQUIRED 

IsCheckedOut (truelfalse) #REQUIRED 

User CDATA#REQUIRED 

DateTime CDATA #REQUIRED 

< !ATTLIST FILE 

> 

Name CDAT A #REQUIRED 

Label CDATA #REQUIRED 

Version CDATA #REQUIRED 

User CDATA#REQUIRED 

IsCheckedOut (truelfalse) #REQUIRED 

DateTime CDATA #REQUIRED 

Size CDATA #REQUIRED 

73 



Document Type Definition (DTD) for request 

<?xm1 version="1.0" encoding="UTF-8"?> 

<!DOCTYPE VSSRequest[ 

]> 

<!ELEMENT VSSRequest (User, VSSItem» 

<!ELEMENT VSSItem (Data» 

<!ELEMENT Data (#PCDATA» 

<!ATTLIST VSSRequest 

Type CDATA #REQUIRED 

> 

<!ATTLIST User 

> 

name CDATA #REQUIRED 

password CDATA #REQUIRED 

<!ATTLIST VSSItem 

> 

name CDATA #REQUIRED 

path CDATA #REQUIRED 

Document Type Definition (DTO) for operation result 

<?xml version = "1.0"> 

<?DOCTYPE operation[ 

<!ELEMENT operation > 

<!ATTLIST operation 

result (successlfailure) #REQUIRED 

> 

]> 

74 



Document Type Definition (DTD) for user list 

<?xml version = "1 .0"> 

<?DOCTYPE VSSUsers[ 

]> 

<!ELEMENT VSSUsers (User)*> 

<!ELEMENT User (Project)*> 

<!ATTLIST User 

> 

NameCDATA#REQUIRED 

Password CDATA #REQUIRED 

Rights (ReadOnlyIReadWrite) #REQUIRED 

<!ATTLIST Project 

> 

NameCDATA#REQUIRED 

CheckedoutAccess (truelfalse) #REQUIRED 

AddAccess (truelfalse) #REQUIRED 

ReadAccess (truelfalse) #REQUIRED 

Destory Access (truelfalse) #REQUIRED 

75 



Appendix F 

Glossary 

A 

Access rights 

Levels of permission users are granted by the SourceSafe administrator to use the 

SourceSafe. The levels of access rights are Read, Check Out, Add, and Destroy. 

C 

Checked-in file 

File stored in the SourceSafe and unavailable for modification. 

Checked-out file 

File that has been reserved for work by a user. Users check out files to make changes to 

them. In the default configuration, SourceSafe allows only one user at a time to check out a 

file. Checking out a file copies its latest version into the user's working folder. 

Current project 

Project selected in the project pane of the VCS Explorer window. 

Current version 

Version of a file most recently stored in the SourceSafe. The current version has the highest 

version number of a file in SourceSafe. 

D 

Delete command 

Permanently removes deleted files and projects from the SourceSafe. Once destroyed, the 

items cannot be recovered. 

F 

File list 

List of files in the current project, which can be found in the file pane of the VCS Explorer 

window 

76 



H 

History 

Record of changes to a file since it was initially added to SourceSafe. With the file history, 

you can return to any point in the file's history and recover the file as it existed at that point. 

L 

Label 

User-defined name you can attach to a specific version number of a file or project. 

Log on 

Process of entering and verifying a user's name and password to access the SourceSafe 

P 

Parent project 

The project a file or subproject exists in. For example, the parent of the file $/Project/Abc.txt 

is $/Project and the parent of the project $/Project is the root ($/). 

Password 

Text string used as security to verify the identity of a user. A user password is often required 

to use the SourceSafe. 

Project 

Group of related files, typically all the files required to develop a software component. Files 

can be grouped within a project to create subprojects. Projects can be defined in any way 

meaningful to the user(s) . For example, one project per version, or one project per language. 

Projects tend to be organized in the same way as file directories . 

Project list 

List of all the projects available in the SourceSafe; the project list is found in the left pane of 

the VCS Explorer window. 

R 

Read-only file 

File marked as read-only in its file attributes. Such a file can be viewed in an appropriate text 

editor, but cannot be modified. VCS marks the file as read-only when you use the Check In 

and Get Latest Version commands. 

77 



Root project 

The highest-level project with the name $/ in the project list. All projects in a SourceSafe are 

subprojects of the root project. 

S 

Security 

SourceSafe has two levels of security: default security and project security. Default security 

provides two access rights : read/write and read-only. When project security is enabled, four 

access rights are available per user, per project: Read, Check Out, Add, and Destroy. Each 

succeeding right includes all rights preceding it. The Destroy access right provides unlimited 

access and is equivalent to Read/Write rights under default security. 

Source code control 

The management of a file's change history and the ftle's relation to a larger grouping of 

related files known as a project. Source code control is a vital part of the efficient 

development of software applications. SourceSafe is a project-oriented source code control. 

Subproject 

Project within a parent project. 

U 

User list 

List of users who can use the SourceSafe. The list is maintained by the SourceSafe 

administrator and displayed in VCS Administrator's main window. 

Username 

Unique identifying string for a given user. Used for logging on. 

v 
Version control 

SourceSafe maintains multiple versions of a file, including a record of the changes to the file 

from version to version. 

Version number 

Number that indicates the number of revisions a file has undergone since it was added to 

VSS . This number is displayed in the History dialog box. Version numbers are always 

whole numbers. 

78 



Version tracking 

Record keeping process of tracking a file's history from the initial version to the current 

version. Changes to a file are tracked as part of this process. 

VCS Administrator Client 

The client for the administrator with an additional menu for administrative tasks. 

ves Server 

The ASP pages that reside on the lIS along with the registered COM components. 

ves User Client 

The client for the normal users without the additional menu for administrative tasks. 

VCS User 

The developer who uses VCS Client Explorer to control his source and perform common 

VSS operations. 

W 

Working folder 

Specified folder on a user's local computer used to store files when they are checked out of 

the SourceSafe. A user makes changes to files in the working folder and then checks the 

modified files back into the SourceSafe for version tracking. 

79 



Bibliography 

1. [Craig98] Craig Larman. 1998, Applying UML and Fattern, PRENTICE HALL. 

2. [RumbaughOO] James Rumbaugh, Ivar Jacobson, Grady Booch. 2000, The Unified 

Modeling Language Reference Manual, ADDINSON-WESLEY. 

3. [Boggs99] Wendy Boggs, Michael Boogs. 1999, UML with Rational Rose, SYBEX 

4. [Sommerville96] Ian Sommerville. 1996, SofMare Engineering, ADDINSON

WESLEY 

5. [Pressman97] Roger S. Pressman. 1997, SO/Mare Engineering A Practitioner's 

Approach, McGRAW-HILL 

6. [Chris99] Chris Ullman, John Kauffman, David Syssman. 1999, Beginning ASP 3.0, 

WROX PRESS Ltd 

7. [MuellerOO] John Paul Mueller. 2000, Windows 2000, COM+, MTS & MSMQ 

Programming Bible, IDG Books Worldwide Inc. 

S. [Jacobson92] Jacobson, 1. 1992, Object-Oriented Software Engineering: A Use Case 

Driven Approach, ADDINSON-WESLEY. 

9. [\Virfs-Brock93] Wirfs-Brock, R. 1993, Desigining Scenarios: Making the Case for a 

Use Case Framework. Smalltalk Report Nov-Dec 1993. SIGS PUBLICATIONS. 

10. [AshOO] Ash Rofail, Vasser Shohoud. 2000, Mastering COM and COM+, SYBEX. 

11. The MSDN Library. 

80 


