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Preface 

 
The process of peristaltic transport of fluid is very common in several 
industrial and physiological applications. In physiology such process is 
particularly involved in movement of chime in the intestine, swallowing 
of food through esophagus, bile transport, urine transport from kidney to 
bladder etc. roller and finger pumps also operate under the principle of 
peristalsis. This activity is involved in corrosive fluid transport. A large 
number of theoretical investigations dealing with peristaltic flows of 
viscous and non-Newtonian fluids have been analyzed since the early 
attempts by Latham [1]. Some recent studies on the title may be seen in 
the refs. [2-15]. In all these investigations, the flow analysis have been 
conducted using one or more assumptions of  long wavelength, small 
wave number, low Reynolds number, small amplitude ratio etc. In [15] 
the authors have developed a mathematical model for the influence of 
wall properties on the peristaltic transport of viscous fluid in a channel. 
The constructed model is realistic physiologically from neuron-muscular 
properties of any smooth muscle. Motivated by such fact, the present 
dissertation is arranged as follows. 

Chapter one includes the basic definitions and laws relevant to the 
analysis of chapters two and three. Chapter two describes the peristaltic 
transport of viscous fluid in a channel with wall properties. Heat and 
mass transfer are present. The first order chemical reaction effects are 
considered. Chapter three extends the flow analysis in chapter two for 
the partial slip effects. Partial slip effect is formulated in terms of shear 
stress. Graphical results are displayed and discussed. Important 
conclusions have been pointed out. 
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Chapter 1

Basic definitions and equations

This chapter includes fundamental definitions and equations for the better understanding of the flow

analysis in the subsequent chapters

1.1 Basics of peristaltic transport

1.1.1 Peristalsis

The term peristalsis is coined from the Greek word "peristaltikos", which means clasping and

compressing. Therefore it is defined as a wave of relaxation and contraction to the walls of a

flexible conduit, thereby pumping the enclosed content.

1.1.2 Peristaltic transport

It is a sort of material transport induced by a progressive wave of area expansion or contraction

along the length of a distensible tube containing some content. It is defined as successive waves

of involuntary contraction relaxation passing along the walls of hollow tubular structures and

pumping the enclosed content onward.

1.1.3 Pumping

One specific feature of peristaltic transport is pumping phenomenon. The operation of a pump

of moving liquids from lower pressure to higher pressure under certain conditions is called
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pumping.

Positive and negative pumping

The pumping is termed as positive or negative depending on whether the mean flow rate θ is

positive or negative.

Adverse and favorable pressure gradient

If the pressure rise per wavelength (∆Pλ) is negative then pressure gradient is called favorable

otherwise adverse.

Peristaltic pumping

In this case pressure rise is adverse (∆Pλ > 0) and flow rate is positive (θ > 0).

Augmented pumping

Here pressure rise is favorable (∆Pλ < 0) and flow rate is positive (θ > 0).

Retrograde pumping

In this case the pressure rise is adverse (∆Pλ > 0) and flow rate is negative (θ < 0).

Free pumping

Here the flow rate is positive (θ > 0) but pressure rise is neither adverse nor favorable. In other

words ∆Pλ = 0.

Free pumping flux

The critical value of mean flow rate θ corresponding to ∆Pλ = 0 is called free pumping flux.

1.1.4 Bolus

Bolus is the volume of fluid confined in a closed streamline in the moving frame with the speed

of propagation i.e. wave frame.
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1.1.5 Trapping

Generally the shape of streamlines is approximately similar to that of the boundary wall in the

wave frame. However, under certain circumstances some of the streamlines driven and enclose

a bolus which is pushed forward along with the peristaltic wave with the wave speed. This

phenomenon is known as trapping.

1.2 Some basic equations

In this dissertation the flow is governed by the following fundamental expressions:

• Equation of continuity

• Equation of motion

• Energy equation

• Concentration equation

1.2.1 Continuity equation

The continuity equation is derived from the law of conservation of mass which says that matter

cannot be created or destroyed. Mathematically it can be stated into the form

∂ρ

∂t
+∇.(ρV) = 0. (1.1)

Here ρ denotes the density of fluid, V the velocity field and t the time. In the case of incom-

pressible fluid the Eq. (1.1) is reduced to

∇.V = 0. (1.2)

The above equation holds when the source/sink is absent in the control volume.

1.2.2 Equation of motion

This equation is the outcome of law of conservation of linear momentum which states that the

amount of momentum don’t alter inside a problem domain and can be changed only through
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the action of forces described by laws of motion. Its mathematical expression is

ρ
dV

dt
= divS+ ρf , (1.3)

where S is the Cauchy stress tensor and the second term on the R.H.S. is the body force. In

general the material derivative
d

dt
can be expressed as

d

dt
=

∂

∂t
+V.∇. (1.4)

1.2.3 Energy equation

The main idea of this equation is that when the fluid element moves along with the fluid, its

temperature changes as a result of heat conduction and heat production because of viscous

heating. We can express mathematically it by

ρCp

µ
∂

∂t
+V.∇

¶
T = κ∇2T + S.L. (1.5)

In above expression ρ the density, Cp the specific heat, κ the thermal conductivity, L the rate

of strain tensor and T the temperature of fluid.

1.2.4 Concentration equation

Mass diffusion is due to the concentration gradient and change in mass concentration is due to

diffusivity of mass and chemical reaction. We can express it as follows

µ
∂

∂t
+V.∇

¶
C = D∇2V + k1 (C − C0) , (1.6)

where C depicts the concentration, D the coefficient of mass diffusivity and k1 the chemical

reaction parameter respectively.
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1.3 Some dimensionless numbers

1.3.1 Reynolds number

The Reynolds number expresses the ratio of inertial forces to viscous forces (due to viscosity

of the fluid). The importance of Reynolds number is that it helps in determining whether the

flow is laminar or turbulent. Low Reynolds number gives laminar flow where prominent forces

are viscous and flow is characterized by smooth fluid motion while at high Reynolds number

where inertial forces are dominating turbulent flow occurs. For Re < 2300, the flow is laminar

and turbulent for Re > 4000. Flow is in transition when its value is between the mentioned

values. It is denoted by Re and can be expressed as

Re =
inertial forces

viscous forces
=

cd

ν
, (1.7)

where c denotes the velocity, d the length scale and ν the kinematic viscosity.

1.3.2 Grashof number

Grashof number, symbolized as Gr, is the ratio of the buoyancy forces (caused by the spatial

variation in fluid density due to temperature gradient) to viscous acting on the fluid. Free

convection is the tendency of a substance to migrate due to buoyant force. It commonly arises

in the study of situations involving natural convection. It can be written as

Gr =
buoyant forces

viscous forces
=

gβT (T1 − T0) d
2

νc
, (1.8)

in which g denotes the gravitational acceleration, βT thermal expansion coefficient and (T1−T0)

is the temperature difference. Note that for Gr >> 1, turbulent flow occurs since the viscous

forces are negligible and buoyant forces become dominant.

1.3.3 Prandtl number

It is the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. Mathemat-

ically we have

Pr =
momentum diffusivity

thermal diffusivity
=

μCp

κ
, (1.9)
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where μ denotes the dynamic viscosity, Cp the specific heat and κ the thermal conductivity.

1.3.4 Eckert number

Eckert number is the ratio of kinetic energy to enthalpy of the flow. It can be written as

Ec =
kinetic energy

enthalpy
=

c2

Cp(T1 − T0)
. (1.10)

1.3.5 Brinkman number

Brinkman number is a measure of the significance of the viscous heating (due to viscous dis-

sipation) comparative to the conductive heat transfer. It arises in circumstances where large

velocity changes occur over short distances such as lubricant flow. Mathematically we have

Br = Ec ∗ Pr = μc2

κ(T1 − T0)
. (1.11)

1.3.6 Amplitude ratio

It is the ratio of amplitude of peristaltic wave to the width of the channel.

� =
a

d
. (1.12)

1.3.7 Wave number

Wave number is the property of a wave and interpreted as the ratio of the width of the channel

to the wavelength. Its mathematical form is given by

δ =
d

λ
. (1.13)

1.4 Mechanisms of heat transfer

Heat transfer mechanism can be grouped into following categories:
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1.4.1 Conduction

Regions with high molecular kinetic energy will pass their thermal energy through direct mole-

cular collisions. This process is known as conduction.

1.4.2 Convection

The process in which the bulk motion of the fluid increases the heat transfer between the

solid surface and the fluid. In case of free convection, when heat conducts into a fluid at rest

it leads to a volumetric expansion. This results in a gravity-induced pressure gradient. The

expanded fluid then becomes buoyant and moves, thereby transporting heat by fluid motion

(i.e. convection) in addition to conduction. It is also called natural convection. Rising of hot

air is natural convection. When the fluid is forced to flow over the surface by external means,

forced convection occurs.

1.4.3 Radiation

It is the simplest way of heat transfer by electromagnetic waves not by moving molecules

(as in conduction and convection). Radiation is the only way through which heat can be

moved through a vacuum. In liquids and gasses, convection and radiation play vital role when

heat transfer is under consideration but convection is absent in case of solids and radiation is

negligible.

1.5 Mass transfer

In mass transfer, energy (including thermal energy) is moved from one place to another by the

physical transfer of a hot or cold object.

1.6 No slip vs partial slip condition

No slip condition for fluid in contact with the solid boundary states that the velocity of the fluid

relative to the boundary is zero. This is due to the viscous property of the fluids. We can define

this phenomenon physically as the particles which are adjacent to the boundary do not move
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along with the flow. This means that adhesion is stronger than cohesion. However there are

situations where this condition cannot be taken into account like fluid past a permeable wall,

rough and coated surfaces, emulsion, foam, slotted plates, polymer solutions, gas and liquid

flow in micro devices etc. In such cases slip is appropriate condition to be used.
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Chapter 2

Peristaltic motion in a compliant

walls channel with heat transfer and

chemical reaction

2.1 Introduction

The peristaltic transport of viscous fluid in a vertical symmetric channel is discussed. the

channel walls are compliant. Mathematical analysis is presented in the presence of heat and

mass transfer. The first order chemical reaction is considered. Analysis has been carried out not

for only long wavelength but also for low Reynolds number assumptions. Solution expressions

are developed for small Grashof number. The graphs are sketched for different parameters

appearing in the solution expressions. The contents of this chapter are a detailed review of

paper by Hayat et al. [15].

2.2 Physical model

We consider the two dimensional flow of an incompressible viscous fluid in a symmetric vertical

channel of width 2d. Sinusoidal waves of small amplitude a and long wavelength λ induces

flow in a channel. Moreover the channel walls are compliant in nature. We select rectangular

coordinates (x, y) with x−axis along the wave propagation and y−axis normal to it (see F ig.
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2.1.).

Fig. 2.1. Schematic diagram of the problem.

The channel walls can be expressed as

y = η (x, t) = +

∙
d+ a sin

2π

λ
(x− ct)

¸
at right wall, (2.1)

y = η (x, t) = −
∙
d+ a sin

2π

λ
(x− ct)

¸
at left wall. (2.2)

Here η is the wall displacement, d the mean half width of the channel, a the amplitude, wave-

length and speed of the wave are denoted by λ and c respectively. The velocity profile V for

two dimensional flow is

V = (u(x, y, t),v(x, y, t),0), (2.3)

where the velocity components in the fixed frame of reference in the longitudinal and transverse

directions are designated by u(x, y, t) and v(x, y, t) respectively.
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2.3 Problem formulation

The fundamental equations for the incompressible fluid are

divV = 0, (2.4)

ρ
dV

dt
= divS+ ρgβT (T − T0) + ρgβC (C − C0) , (2.5)

ρCp
dT

dt
= κ∇2T + S.L, (2.6)

dC

dt
= D∇2C − k1 (C − C0) , (2.7)

in which V is the velocity, ρ density of the fluid, S the Cauchy stress tensor, g the gravitational

acceleration, βT the coefficient of thermal expansion, βC the coefficient of concentration expan-

sion, Cp the specific heat at constant volume, κ the thermal conductivity, L the rate of strain

tensor, T, C and k1 denotes the temperature, concentration and chemical reaction parameter

and
d

dt
the material time derivative given by

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
. (2.8)

The expression of Cauchy stress tensor S in viscous incompressible fluid is

S =− pI+ μA1, (2.9)

in which p is the pressure, I the identity tensor, μ the dynamic viscosity and A1 represents the

first Rivlin-Ericksen tensor given by

A1 = L+ L
∗, (2.10)

with

L = (gradV), (2.11)
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where superscript ∗ indicates the matrix transpose. By Eqs. (2.4) and (2.11) one has

L =

⎡⎢⎢⎢⎣
ux uy 0

vx vy 0

0 0 0

⎤⎥⎥⎥⎦ , L∗ =
⎡⎢⎢⎢⎣

ux vx 0

uy vy 0

0 0 0

⎤⎥⎥⎥⎦ , (2.12)

where L is the velocity gradient and asterisk denotes transpose of matrix. Thus Eq. (2.10)

reduces to

A1 =

⎡⎢⎢⎢⎣
2ux uy + vx 0

vx + uy 2vy 0

0 0 0

⎤⎥⎥⎥⎦ . (2.13)

Using (2.13) in (2.9) we get

S =

⎡⎢⎢⎢⎣
−p+ 2μux μ (uy + vx) 0

μ (uy + vx) −p+ 2μvy 0

0 0 0

⎤⎥⎥⎥⎦ . (2.14)

Further we define

S.L =tr (SL) = Sxx + Sxy (uy + vx) + Syy. (2.15)

Substituting Eqs. (2.9)−(2.15) , the continuity, momentum, energy and concentration equations

in the presence of body force become

∂u

∂x
+

∂v

∂y
= 0, (2.16)

ρ

∙
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

¸
u = −∂p

∂x
+ μ

∙
∂2u

∂x2
+

∂2u

∂y2

¸
+ ρgβT (T − T0) + ρgβC (C − C0) , (2.17)

ρ

∙
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

¸
v = −∂p

∂y
+ μ

∙
∂2v

∂x2
+

∂2v

∂y2

¸
, (2.18)

ρCp

∙
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

¸
T = κ

∙
∂2T

∂x2
+

∂2T

∂y2

¸
+ μ

"µ
∂u

∂x
+

∂v

∂y

¶2
+ 2

µ
∂u

∂x

¶2
+ 2

µ
∂v

∂y

¶2#
,

(2.19)∙
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

¸
C = D

∙
∂2C

∂x2
+

∂2C

∂y2

¸
− k1 (C − C0) . (2.20)
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The corresponding boundary conditions for the flow are given by

u = 0, v = ±ηt at y = ±η = ±
∙
d+ a sin

2π

λ
(x− ct)

¸
, (2.21)

T =

½
T1
T0

¾
, C =

½
C1
C0

¾
at (y = ±η) , (2.22)

∂

∂x
L0 (η) =

∂p

∂x
= μ

∙
∂2u

∂x2
+

∂2u

∂y2

¸
+ρgβT (T − T0)+ρgβC (C − C0)−ρ

du

dt
at (y = ±η) , (2.23)

where an operator L0 is used to represents the motion of compliant walls with viscous damping

forces as follows:

L0 = −τ 0 ∂
2

∂x2
+m1

∂2

∂t2
+ d0

∂

∂t
. (2.24)

In the above expression τ 0 the longitudinal tension per unit width, m1 the mass per unit area

and d0 is the wall damping coefficient. Eliminating p from Eqs. (2.17) and (2.18) we get

ρ
d

dt

∙
∂u

∂y
− ∂v

∂x

¸
= μ

∙
∂

∂y

µ
∂2u

∂x2
+

∂2u

∂y2

¶
− ∂

∂x

µ
∂2v

∂y2
+

∂2v

∂y2

¶¸
+ ρgβT

∂T

∂y
+ ρgβC

∂C

∂y
. (2.25)

2.3.1 Non-dimensionalization

If Ψ (x, y, t) is the stream function then

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (2.26)

Now continuity equation is identically satisfied. We introduce the following non-dimensional

variables and parameters as follows:

x̄ =
x

λ
, ȳ =

y

d
, Ψ̄ =

Ψ

cd
, p̄ =

d2p

cμλ
, t̄ =

ct

λ
, (2.27)

γ = k1
d2

v
, θ =

T − T0
T1 − T0

, φ =
C − C0
C1 − C0

, η̄ =
η

d
.

Using the above transformations and dropping bars we get non-dimensional form of Eqs.

(2.19)− (2.25)

δRe
d

dt

£
δ2Ψxx +Ψyy

¤
= Ψyyyy + 2δ

2Ψxxyy + δ4Ψxxxx +Gr
£
θy +Nφy

¤
, (2.28)
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δPrRe
dθ

dt
= δ2

∂2θ

∂x2
+

∂2θ

∂y2
+Br

h
4δ2 (Ψxy)

2 +
¡
Ψyy − δ2Ψxx

¢2i
, (2.29)

δRe
dφ

dt
=
1

Sc

∙
δ2
∂2φ

∂x2
+

∂2φ

∂y2

¸
− γφ, (2.30)

Ψy = 0, θ =

½
1

0

¾
, φ =

½
1

0

¾
at y = ±η, (2.31)

∙
E1

∂3

∂x3
+E2

∂3

∂x∂t2
+E3

∂2

∂x∂t

¸
η =

∂3Ψ

∂y3
+ δ2

∂3Ψ

∂x2∂y
− δRe

dΨy

dt
+Gr [θ +Nφ] at y = ±η.

(2.32)

The dimensionless forms of η is

η(x) = (1 + � sin 2π (x− t)) . (2.33)

Here δ (= d/λ) is the wave number, � (= a/d) the amplitude ratio, γ
¡
= k1d

2/ν
¢
the chemical

reaction parameter (γ < 0 shows the generative chemical reaction and γ > 0 for destruc-

tive chemical reaction), Re (= cd/ν) the Reynolds number, Gr
¡
= gβT (T1 − T0) d

2/νc
¢
de-

picts the Grashof number, Br (= EcPr) shows the Brinkman number, Pr (= μCP/κ) the

Prandtl number, N (= βC (C1 − C0) /βT (T1 − T0)) represents the buoyancy ratio parame-

ter, Ec
¡
= c2/CP (T1 − T0)

¢
the Eckert number, Sc (= μ/ρD) the Schmidt number and E1¡

= −τd3/λ3μc
¢
, E2

¡
= m1cd

3/λ3μ
¢
and E3

¡
= d0d3/λ2μ

¢
are the non-dimensional elasticity

parameters respectively.

Invoking long wavelength and low Reynolds number assumptions Eqs. (2.28)− (2.32) ulti-

mately take the following forms

Ψyyyy +Gr
£
θy +Nφy

¤
= 0, (2.34)

∂2θ

∂y2
+Br (Ψyy)

2 = 0, (2.35)

1

Sc

∂2φ

∂y2
− γφ = 0, (2.36)

Ψy = 0, θ =

½
1

0

¾
, φ =

½
1

0

¾
at y = ±η = ± (1 + � sin 2π (x− t)) , (2.37)
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∙
E1

∂3

∂x3
+E2

∂3

∂x∂t2
+E3

∂2

∂x∂t

¸
η =

∂3Ψ

∂y3
+Gr [θ +Nφ] at y = ±η. (2.38)

2.4 Perturbation solution

We note that the resulting Eqs. are non-linear. It seems difficult to obtain the general solution

in closed form for arbitrary values of all parameters arising in these equations. Here our interest

lies in seeking the perturbation solution. Therefore we expand the flow quantities as follows:

Ψ = Ψ0 +GrΨ1 +O
¡
Gr2

¢
+ ...,

θ = θ0 +Grθ1 +O
¡
Gr2

¢
+ ...,

Z = Z0 +GrZ1 +O
¡
Gr2

¢
+ ...,

φ = φ0 +Grφ1 +O
¡
Gr2

¢
+ .... (2.39)

We seek the solution of the problem as a power series expansion in the small parameter Gr.

Using these expressions into Eqs. (2.34)−(2.38) and then comparing the coefficients one obtains

the following systems:

2.4.1 Zeroth order system

Ψ0yyyy = 0, (2.40)

θ0yy +Br (Ψ0yy)
2 = 0, (2.41)

1

Sc
φ0yy − γφ0 = 0, (2.42)

Ψ0y = 0, φ0 =

½
1

0

¾
, θ0 =

½
1

0

¾
, at y = ±η, (2.43)

∙
E1

∂3

∂x3
+E2

∂3

∂x∂t2
+E3

∂2

∂x∂t

¸
η = Ψ0yyy at y = ±η. (2.44)

2.4.2 First order system

Ψ1yyyy = −
£
θ0y +Nφ0y

¤
, (2.45)
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θ1yy = −2BrΨ0yyΨ1yy, (2.46)

1

Sc

∂2φ1
∂y2

− γφ = 0, (2.47)

Ψ1y = 0, θ1 = 0, φ1 = 0,

Ψ1yyy + [θ0 +Nφ0] = 0 at y = ±η. (2.48)

2.4.3 Zeroth order solution

The solution of the problem is given by

Ψ0 =
Ly

2

∙
y2

3
− η2

¸
, (2.49)

θ0 =
1

2

∙
1 +

y

η

¸
+

BrL2

12

£
η4 − y4

¤
, (2.50)

φ0 =
1

2

∙
coshN1y

coshN1η
+
sinhN1y

sinhN1η

¸
, (2.51)

where

N1 =
p
γSc, L = 8�π3

∙
E3
2π
sin 2π (x− ct)− (E1 +E2) cos 2π (x− ct)

¸
.

2.4.4 First order solution

The solution of the first order system is

Ψ1 = L1y + L2
y2

2
+ L3

y3

6
− y4

48η
+

BrL2y7

2520
− N

2N3
1

×
∙
sinhN1y

coshN1η
+
coshN1y

sinhN1η

¸
, (2.52)

θ1 = A1 +A2y −BrL

∙
L2

y3

3
+ L3

y4

6
− y5

40η
+

BrL2y8

1680

¸
+

BrLN

N3
1 coshN1η

×µ
y sinhN1y −

2 coshN1y

N1

¶
+

BrLN

N3
1 sinhN1η

×
µ
y coshN1y −

2 sinhN1y

N1

¶
, (2.53)

φ1 = 0, (2.54)
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where

L1 =
η2

4
+
7BrL2η6

180
+

β2BrL
2η5

6
+

N

2N2
1

,

L2 =
1

2η
∗
∙
N

N2
1

+
η2

6

¸
,

L3 = −1
2

µ
1 +

BrL2η4

6

¶
,

A1 = 2BrL

∙
L3η

4

12
+

BrL2η8

3360

¸
− 2BrLN

2N3
1 (coshN1η)

×
∙
η sinhN1η −

2 coshN1η

N1

¸
,

A2 =
2BrL

η

∙
L2η

3

6
− η4

80

¸
− 2BrLN

2ηN3
1 (sinhN1η)

×
∙
η coshN1η −

2 sinhN1η

N1

¸
.

Heat transfer coefficients at the zeroth and first orders are given by

Z0 = θ0y (η) ηx = ηx

µ
1

2η
− BrL2η3

3

¶
, (2.55)

Z1 = ηxθ1y (η) ,

= ηx

∙
A2 − 2BrL

½
L2

η2

2
+ L3

η3

3
− η3

16
+

BrL2η7

420

¾¸
+

ηxBrLN

N2
1 coshN1η

×
∙
η coshN1η −

sinhN1η

N1

¸
+

ηxBrLN

N2
1 sinhN1η

×
∙
η sinhN1η −

coshN1η

N1

¸
. (2.56)

2.5 Discussion

Graphical results have been displayed in order to explore the quantitative effects of sundry

parameters which the expressions of stream function Ψ, longitudinal velocity u = Ψ0 +GrΨ1y,

temperature θ, heat transfer coefficient Z and mass concentration φ includes. Particulary, the

role of compliant wall parameters, i.e. E1 the elastic tension in the membrane, E2 the mass per

unit area, and E3 the coefficient of viscous damping are described.

2.5.1 Analysis of velocity profile

Effect of different parameters on velocity profile is displayed in the Figs. 2.2 − 2.6. Here the

velocity increases when we increase the values of Gr and Br (shown in Figs. 2.2 and 2.3) . F ig.

2.4 indicates the effect of Schmidt number on the velocity. Velocity decreases for increasing

values of Sc. For the description of the effects of wall parameters, Fig. 2.5 is plotted. It shows
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that velocity increases as we increase elastic tension E1 and mass per unit area E2 whereas

it decreases as the viscous damping E3 increases. To observe the effect of chemical reaction

parameter γ, F ig. 2.6 is plotted. Obviously the velocity decrease when γ is increased.

2.5.2 Analysis of temperature profile

Figs. 2.7−2.11 depict the effect of different parameters on the temperature. Fig. 2.7 shows that

for increasing values of Gr the temperature increases. Similar behavior is noticed for increasing

values of Br (Fig. 2.8) . F ig. 2.9 studies the effect of Schmidt number on temperature. It shows

that temperature decreases with the increasing values of Sc. The effects of elastic tension E1,

mass per unit area E2 and viscous damping E3 are explained in Fig. 2.10. The graph shows

that by increasing the value of E1 the temperature rises. Similar behavior is shown by E2.

It reduces for increasing value of E3. To investigate the behavior of temperature for different

values of chemical reaction parameter γ, Fig. 2.11 is displayed. The temperature decreases for

increasing values of γ. From the comparison of the results we observe that parameters show

similar behavior for the velocity and temperature profiles.

2.5.3 Analysis of concentration distribution

The results in Figs. 2.12− 2.14 indicate the concentration distribution for the variations of Sc,

γ and �. Fig 2.12 displays that concentration field decreases with an increase in Sc. F ig. 2.13

illustrates that by increasing value of chemical reaction parameter γ, the concentration field

decreases. Effect of increasing value of � on the mass concentration is displayed in Fig. 2.14.

It is observed that mass concentration decreases for large values of �.

2.5.4 Heat transfer coefficient

To study the role of different parameters on heat transfer coefficient we have plotted Figs.

2.15 − 2.17. F ig. 2.15 shows that value of heat transfer coefficient decreases with the increase

of Gr.Whereas it shows opposite behavior in the case of Br (Fig. 2.16) .Wall properties effect

on heat transfer coefficient is illustrated in Fig. 2.17. For increasing values of E1 the heat

transfer coefficient. Similar effect is shown by E2. Whereas it decreases with the increase of
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E3. It is observed that effect of all parameters on heat transfer coefficient are similar to that of

temperature.

2.5.5 Trapping phenomenon

The formation of an internally circulating bolus of fluid by closed streamlines is shown in Figs

2.18−2.20. F ig. 2.18 (a) and 2.18 (b) show that the behavior is increasing behavior for x < 0.25

and it decreases for x > 0.25 when Gr increases. Figs 2.19 (a) and 2.19 (b) depict the effect

of Br on streamlines. We observed that effect is qualitatively similar to that of Gr. Fig. 2.20

illustrates that size of trapped bolus increases for increasing value of E1and E2.However such

size decreases for increasing value of E3.
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Fig. 2.2. Effect of Gr on u when Br = 1, γ = 0.1, E1 = 1, E2 = 0.5, E3 = 0.5, Sc = 1, N = 1,

x = 0.2, t = 0.1, � = 0.2.

F ig. 2.3. Effect of Br on u when E1 = 1, E2 = 0.5, E3 = 0.5, Gr = 0.1, Sc = 1, N = 1,

γ = 0.1, x = 0.2, t = 0.1, � = 0.2.
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Fig. 2.4. Effect of Sc on u when E1 = 0.3, E2 = 0.2, E3 = 0.1, Br = 1, Gr = 0.5, N = 10,

γ = 1, x = 0.2, t = 0.1, � = 0.2.

F ig. 2.5. Effect of parameters of wall properties on u when Gr = 0.2, Br = 1, Sc = 1, N = 1,

γ = 0.1, x = 0.2, t = 0.1, � = 0.2.
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Fig. 2.6. Effect of γ on u when E1 = 0.3, E2 = 0.2, E3 = 0.1, Br = 1, Sc = 1, N = 10,

Gr = 0.5, x = 0.2, t = 0.1, � = 0.2.

F ig. 2.7. Effect of Gr on θ when Sc = 1, E1 = 1, E2 = 0.5, E3 = 0.1, Br = 1, N = 1, γ = 1,

x = 0.2, t = 0.1, � = 0.2.
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Fig. 2.8. Effect of Br on θ when Gr = 0.01. E1 = 1, E2 = 0.5, E3 = 0.1, Sc = 1, N = 0.5,

γ = 0.1, x = 0.2, t = 0.1, � = 0.2.

F ig. 2.9. Effect of Sc on u when E1 = 0.03, E2 = 0.01, E3 = 0.01, Br = 1, Gr = 0.2, N = 10,

γ = 1, x = 0.2, t = 0.1, � = 0.2.
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Fig. 2.10. Effect of wall properties parameters on u when Gr = 0.01, Br = 1, Sc = 1,

N = 0.5, γ = 0.1, x = 0.2, t = 0.1, � = 0.2.

F ig. 2.11. Effect of γ on u when N = 10, E1 = 0.03, E2 = 0.01, E3 = 0.01, Br = 1, Sc = 1,

Gr = 0.2, x = 0.2, t = 0.1, � = 0.2.
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Fig. 2.12. Effect of Sc on φ when γ = 0.1, x = 0.2, t = 0.1, � = 0.2.

F ig. 2.13. Effect of γ on φ when Sc = 1, x = 0.2, t = 0.1, � = 0.2.
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Fig. 2.14. Effect of � on φ when γ = 2, Sc = 2, x = 0.2, t = 0.1.

F ig. 2.15. Variation of Gr on Z when γ = 1, E1 = 1, E2 = 0.5, E3 = 0.1, Br = 0.1, Sc = 1,

N = 1, t = 0.1, � = 0.2.
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Fig. 2.16. Variation of Br on Z when Gr = 0.01, Sc = 1, E1 = 1, E2 = 0.5, E3 = 0.1, N = 1,

γ = 1, t = 0.1, � = 0.2.

F ig. 2.17. Variation of wall properties on Z when Br = 0.01, Gr = 0.2, Sc = 2, N = 1, γ = 1,

t = 0.1, � = 0.2.
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(a) (b)

Fig. 2.18. Streamlines for E1 = 1, E2 = 0.2, E3 = 0.2, Br = 2, Sc = 2, N = 0.1, γ = 2, t = 0,

� = 0.1, (a) Gr = 0, (b) Gr = 0.02.

(a) (b)

Fig. 2.19. Streamlines for E1 = 1, E2 = 0.2, E3 = 0.2, Gr = 0.2, Sc = 2, N = 0.1, γ = 2,

t = 0, � = 0.1, (a) Br = 0, (b) Br = 0.2.
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(a) (b)

(c) (d)

Fig. 2.20. Streamlines for Gr = 0.02, Sc = 2, Br = 2, N = 0.1, t = 0, γ = 2, � = 0.1, (a)

E1 = 1, E2 = 0.1, E3 = 0.1 (b) E1 = 1.1, E2 = 0.1, E3 = 0.1

(c) E1 = 1, E2 = 0.2, E3 = 0.1 (d) E1 = 1, E2 = 0.1, E3 = 0.2.
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Chapter 3

Partial slip effect on the peristaltic

motion in a compliant wall channel

with heat transfer and chemical

reaction

3.1 Introduction

The purpose of this chapter is to address the influence of partial slip condition on peristaltic

transport of viscous fluid in a vertical channel. Resulting equations are solved using the pertur-

bation technique. Series expressions for velocity, temperature and heat transfer coefficient are

obtained. The effects of various embedded parameters on the velocity, temperature and heat

transfer coefficient have been pointed out. Streamlines are plotted and trapping phenomenon

is discussed.

3.2 Mathematical formulation

We investigate the two-dimensional flow of an incompressible viscous fluid in a vertical sym-

metric channel of width 2d. The waves are propagating on the channel walls with speed c. The
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wave shapes of the walls are expressed as

y = η (x, t) = +

∙
d+ a sin

2π

λ
(x− ct)

¸
at right wall, (3.1)

y = η (x, t) = −
∙
d+ a sin

2π

λ
(x− ct)

¸
at left wall, (3.2)

where a is the wave amplitudes, λ is the wavelength and t the time.

In the static frame of reference the slip conditions at the walls are defined as

uw − u (x, η, t) = β1 ∗ τxy, at y = +η,

u (x,−η, t)− uw = β1 ∗ τxy, at y = −η, (3.3)

where u (x, η, t) and uw are defined as longitudinal velocity and wall velocity respectively. τxy

is the shear stress, β1 is the dimensional slip parameter. Since the waves are travelling along

the distensible walls of the channel therefore

uw = 0,

and thus Eqs. (3.3) become

u (x, η, t) + β1 ∗ τxy = 0, at y = +η,

u (x,−η, t)− β1 ∗ τxy = 0, at y = −η. (3.4)

The thermal and concentration slip conditions can be defined as

T ± β2 ∗
∂T

∂y
=

½
T1
T0

¾
at y = ±η, (3.5)

C ± β3 ∗
∂C

∂y
=

½
C1
C0

¾
at y = ±η, (3.6)

where β2 and β3 are the dimensional thermal and concentration slip parameters and T1 and T0

are the temperature and C1 and C0 are the concentrations of the walls respectively.
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If Ψ (x, y, t) is the stream function then

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
, (3.7)

Now we define the following non-dimensional variables and parameters

x̄ =
x

λ
, ȳ =

y

d
, Ψ̄ =

Ψ

cd
, p̄ =

d2p

cμλ
, t̄ =

ct

λ
, η̄ =

η

d
,

γ = k1
d2

v
, θ =

T − T0
T1 − T0

, φ =
C − C0
C1 − C0

, β̄1 =
β1
d
, β̄2 =

β2
d
,

β̄3 =
β3
d
, δ =

d

λ
, � =

a

d
, γ =

k1d
2

ν
, Gr =

gβT (T1 − T0) d
2

νc
,

Re =
cd

ν
, Br = Ec ∗ Pr, Pr = μCP /κ, N =

βC (C1 − C0)

βT (T1 − T0)
, Sc =

μ

ρD
,

Ec =
c2

CP (T1 − T0)
, E1 =

−τd3
λ3μc

, E2 =
m1cd

3

λ3μ
, E3 =

d0d3

λ2μ
. (3.8)

Here δ is the wave number, � is the amplitude ratio, γ is the chemical reaction parameter , Gr

depicts the perturbation parameter, Pr the Prandtl number, Re the Reynolds number, Br shows

the Brinkman number, N represents the buoyancy ratio parameter, Ec is the Eckert number,

Sc is the Schmidt number and E1, E2 and E3 are the non-dimensional elasticity parameter.

β̄1 β̄2 and β̄3 are the non-dimensional velocity, thermal and concentration slip parameters

respectively.

Using non-dimensional variables, the governing mathematical problems are

δRe
d

dt

£
δ2Ψxx +Ψyy

¤
= Ψyyyy + 2δ

2Ψxxyy + δ4Ψxxxx +Gr
£
θy +Nφy

¤
, (3.9)

δPrRe
dθ

dt
= δ2

∂2θ

∂x2
+

∂2θ

∂y2
+Br

h
4δ2 (Ψxy)

2 +
¡
Ψyy − δ2Ψxx

¢2i
, (3.10)

δRe
dφ

dt
=
1

Sc

∙
δ2
∂2φ

∂x2
+

∂2φ

∂y2

¸
− γφ, (3.11)

Ψy ± β1

∙
∂2Ψ

∂y2
− δ2

∂2Ψ

∂x2

¸
= 0, θ ± β2

∂θ

∂y
=

½
1

0

¾
, φ± β3

∂φ

∂y
=

½
1

0

¾
,

∙
E1

∂3

∂x3
+E2

∂3

∂x∂t2
+E3

∂2

∂x∂t

¸
η =

∂3Ψ

∂y3
+ δ2

∂3Ψ

∂x2∂y
− δRe

dΨy

dt
+Gr [θ +Nφ] at y = ±η,

(3.12)
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where the dimensionless form of η is written as

η = (1 + � sin 2π (x− t)) .

Using long wavelength and low Reynolds number approximations, Eqs. (3.9)− (3.12) take the

forms

Ψyyyy +Gr
£
θy +Nφy

¤
= 0, (3.13)

∂2θ

∂y2
+Br (Ψyy)

2 = 0, (3.14)

1

Sc

∂2φ

∂y2
− γφ = 0, (3.15)

Ψy ± β1
∂2Ψ

∂y2
= 0, θ ± β2

∂θ

∂y
=

½
1

0

¾
, φ± β3

∂φ

∂y
=

½
1

0

¾
,

∙
E1

∂3

∂x3
+E2

∂3

∂x∂t2
+E3

∂2

∂x∂t

¸
η =

∂3Ψ

∂y3
+Gr [θ +Nφ] at y = ±η. (3.16)

3.3 Solution procedure

We are interested to find the solutions of flow quantities in terms of small Grashof number Gr.

Hence it is reasonable to expand the quantities as follows:

Ψ = Ψ0 +GrΨ1 +O
¡
Gr2

¢
+ ...,

θ = θ0 +Grθ1 +O
¡
Gr2

¢
+ ...,

Z = Z0 +GrZ1 +O
¡
Gr2

¢
+ ...,

φ = φ0 +Grφ1 +O
¡
Gr2

¢
+ .... (3.17)

Substituting above expressions into Eqs. (3.13) − (3.16), we get two systems of equations for

Gr0 and Gr1 as follows.
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3.3.1 Zeroth order system

The relevant problem at this order is

Ψ0yyyy = 0, (3.18)

θ0yy +Br (Ψ0yy)
2 = 0, (3.19)

1

Sc
φ0yy − γφ0 = 0, (3.20)

Ψ0y ± β1Ψ0yy = 0, θ0 ± β2θ0y =

½
1

0

¾
, φ0 ± β3φ0y =

½
1

0

¾
, at y = ±η,

∙
E1

∂3

∂x3
+E2

∂3

∂x∂t2
+E3

∂2

∂x∂t

¸
η = Ψ0yyy at y = ±η. (3.21)

3.3.2 First order system

At this order of system the subjected problem can be expressed as

Ψ1yyyy = −
£
θ0y +Nφ0y

¤
, (3.22)

θ1yy = −2Brψ0yyΨ1yy, (3.23)

1

Sc

∂2φ1
∂y2

− γφ = 0, (3.24)

Ψ1y ± β1Ψ1yy = 0, θ1 ± β2θ1y = 0, φ1 ± β3φ1y = 0,

Ψ1yyy + [θ0 +Nφ0] = 0 at y = ±η. (3.25)

3.3.3 Zeroth order solution

Here the solution expression are

Ψ0 =
Ly

2

∙
y2

3
− η2

¸
− Lβ1yη, (3.26)

θ0 =
1

2

∙
1 +

y

η + β2

¸
+

BrL2

12

£
η4 − y4

¤
+ β2BrL

2 η
3

3
, (3.27)
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φ0 =
1

2

∙
coshN1y

(coshN1η + β3N1 sinhN1η)
+

sinhN1y

(sinhN1η + β3N1 coshN1η)

¸
, (3.28)

N1 =
p
γSc, L = 8�π3

∙
E3
2π
sin 2π (x− ct)− (E1 +E2) cos 2π (x− ct)

¸
.

3.3.4 First order solution

Here the resulting expressions are

Ψ1 = L1y + L2
y2

2
+ L3

y3

6
− y4

48 (η + β2)
+

BrL2y7

2520

− N

2N3
1

×
∙

sinhN1y

(coshN1η + β3N1 sinhN1η)
+

coshN1y

(sinhN1η + β3N1 coshN1η)

¸
, (3.29)

θ1 = A1 +A2y −BrL

∙
L2

y3

3
+ L3

y4

6
− y5

40 (η + β2)
+

BrL2y8

1680

¸
+

BrLN

N3
1 (coshN1η + β3N1 sinhN1η)

×
µ
y sinhN1y −

2 coshN1y

N1

¶
+

BrLN

N3
1 (sinhN1η + β3N1 coshN1η)

×
µ
y coshN1y −

2 sinhN1y

N1

¶
, (3.30)

φ1 = 0, (3.31)
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with

L1 =
η2

4
+
7BrL2η6

180
+

β2BrL
2η5

6
+ 2β1η

µ
1

4
+
7BrL2η4

24
+

β2BrL
2η3

6

¶
− β1BrL

2η6

60

+
N

2N1 (coshN1η + β3N1 sinhN1η)

∙
coshN1η

N1
+ β1 sinhN1η

¸
,

L2 =
η3

12 (η + β1) (η + β2)
+

η2β1
4 (η + β1) (η + β2)

+
N

2N1 (η + β1) (sinhN1η + β3N1 coshN1η)

×
∙
sinhN1η

N1
+ β1 coshN1η

¸
,

L3 = −1
2

µ
1 +

BrL2η4

6
+
2β2BrL

2η3

3

¶
,

A1 = 2BrL

∙
L3η

4

12
+

BrL2η8

3360

¸
− 2BrLN

2N3
1 (coshN1η + β3N1 sinhN1η)

×
∙
η sinhN1η −

2 coshN1η

N1

¸
− β2

⎡⎣ −2BrLL3η33 − Br2L2η7

210 + N
2N2

1 (coshN1η+β3N1 sinhN1η)

×
³
η coshN1η − sinhN1η

N1

´
⎤⎦ ,

A2 =
2BrL

(η + β2)

∙
L2η

3

6
− η5

80 (η + β2)

¸
− 2BrLN

2N3
1 (η + β2) (sinhN1η + β3N1 coshN1η)

×
∙
η coshN1η −

2 sinhN1η

N1

¸
− β2
(η + β2)

×
∙
−BrLL2η2 +

BrLη4

8 (η + β2)
+

2BrLN

2N2
1 (coshN1η + β3N1 sinhN1η)

×
µ
η sinhN1η −

coshN1η

N1

¶¸
.

The heat transfer coefficients at the walls are given by

Z0 = ηxθ0y (η) = ηx

µ
1

2 (η + β2)
− BrL2η3

3

¶
, (3.32)

Z1 = ηxθ1y (η) ,

= ηx

∙
A2 − 2BrL

½
L2

η2

2
+ L3

η3

3
− η4

16 (η + β2)
+

BrL2η7

420

¾¸
+

ηxBrLN

N2
1 (coshN1η + β3N1 sinhN1η)

×
∙
η coshN1η −

sinhN1η

N1

¸
+

ηxBrLN

N2
1 (sinhN1η + β3N1 coshN1η)

×
∙
η sinhN1η −

coshN1η

N1

¸
. (3.33)
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3.4 Graphical results and discussion

This section is arrenged to scrutinize the quantitative effects of pertinent parameters which

include perturbation parameter Gr, Brinkman number Br, Schmidt number Sc, slip parameters

β1, β2 and β3, chemical reaction parameter γ and occlusion parameter ε respectively. In

particular the roles of wall parameters which are elastic tension in membrane E1, mass per

unit area E2 and the coefficient of viscous damping E3 are explained. This section is further

divided into five subsections consisting of the results for velocity, temperature, concentration,

heat transfer coefficient and trapping phenomenon.

3.4.1 Analysis of velocity profile

The velocity profile for various parameters of interest are displayed in the Figs 3.1− 3.8. It is

also interesting to note that the velocity profile is parabolic for fixed values of the parameters

and its magnitude is maximum near the centre of the channel. Fig 3.1 depicts the behavior

of velocity for different values of Gr where all other parameters are kept fixed. It is observed

that velocity increases for increasing value of Gr. The effect of Br on velocity is shown in Fig

3.2. It can be noticed that behavior is similar to Gr. Fig. 3.3 examines the effect of Sc on

velocity which shows decrease in velocity for increasing values of Sc. The variations of elastic

parameters E1, E2 and E3 are shown in Fig. 3.4. For increasing values of E1 and E2 the velocity

increases and for increasing values of E3, it decreases . F ig. 3.5 is plotted to see the effect of γ

on velocity profile. Decrease in velocity is observed for increasing values of γ. F igs. 3.6 − 3.8

are prepared to see the effect of slip parameters on velocity. Similar behavior is shown by β1

and β2 i.e. an increase in velocity is noted for increasing values whereas opposite behavior is

shown by β3 for increasing values.

3.4.2 Analysis of temperature profile

For the examination of the influence of different parameters on the temperature, we plotted

the Figs. 3.9− 3.16. F ig. 3.9 explains the effect of Gr on temperature. Rise in temperature is

noticed for increasing values of Gr. Similar effect is shown by Br in Fig. 3.10. To study the

influences of Sc and γ on temperature, Figs. 3.11 and 3.12 are prepared. One can observe that
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temperature decreases for increasing values of Sc and γ. F ig. 3.13 explores the effect of wall

parameters on temperature. It is noticed that temperature increases for larger values of E1 and

E2 whereas it decreases by increasing E3. F igs. 3.14− 3.16 are sketched to observe the effects

of slip parameters. Graphs reveal that for increasing value of β1 the temperature increases in

left part of channel and it decreases in right part. It is noticed that temperature increases for

increasing values of β2 and decreases for increasing values of β3 respectively.

3.4.3 Analysis of concentration distribution

Figs. 3.17 − 3.20 discuss the effect of sundry parameters on concentration distribution. It is

noticed from Figs. 3.17 and 3.18 that the concentration decreases as we increase the values

of Sc and γ. F igs. 3.19 and 3.20 are drawn to observe the effects of variation in ε and slip

parameters. It is seen that for large values of ε and β3, the concentration field decreases.

3.4.4 Heat transfer coefficient

In order to discuss the effects of different physical parameters on heat transfer coefficient Z,

Figs. 3.21− 3.26 are sketched. Figs. 3.21 and 3.22 depict that absolute value of heat transfer

coefficient decreases with an increase in Gr. However it increases with Br. It is seen that value

of heat transfer coefficient increases with the increase in the values of E1 and E2 whereas it

decreases by increasing E3 (see Fig. 3.23) . Effects of slip parameters are displayed in Figs.

3.24 − 3.26. Heat transfer coefficient increases with the increase in the values of β1 and β3

whereas it decreases by increasing β2.

3.4.5 Trapping phenomenon

Figs. 3.27 − 3.32 displays the effect of different physical parameters on the streamlines. Fig.

3.27 is drawn to study the effect of perturbation parameter. It is concluded that the size of

left trapped bolus increases with increase in Gr whereas size of right trapped bolus decreases.

Similar behavior is seen for Br (Fig. 3.28). The effect of elastic parameters on trapping can be

seen in Fig. 3.29. We notice increase in size of trapped bolus by increasing values of E1 and

E2 whereas trapping bolus decreases for increasing values of E3. Impact of slip parameters on

trapping is illustrated in the Figs. 3.30 − 3.32. It is shown in Fig. 3.30 that size and number
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of trapping bolus increase with increasing value of β1. Similar effect is seen for β2 (Fig. 3.31) .

Mixed behavior is observed for β3. i.e. size of left bolus increases and right bolus decreases with

the increase of β3.
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Fig. 3.1. Effect of Gr on u when γ = 0.1, E1 = 1, E2 = 0.5, E3 = 0.5, Br = 1, Sc = 1, N = 1,

β1 = 0.01 , β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.

F ig. 3.2. Effect of Br on u when Gr = 0.1, E1 = 1, E2 = 0.5, E3 = 0.5, Sc = 1, N = 1,

γ = 0.1, β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.3. Effect of Sc on u when N = 10, E1 = 0.3, E2 = 0.2, E3 = 0.1, Br = 1, Gr = 0.5,

γ = 0.1, β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.

F ig. 3.4. Effect of parameters of wall properties on u when Gr = 0.2, Br = 1, Sc = 1, N = 1,

γ = 0.1, β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.5. Effect of γ on u when E1 = 0.3, E2 = 0.2, E3 = 0.1, Br = 1, Sc = 1, N = 10,

Gr = 0.5, β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.

F ig. 3.6. Effect of β1 on u when E1 = 0.1, E2 = 0.5, E3 = 0.5, Br = 1, Sc = 2, N = 0.1,

Gr = 0.01, γ = 0.1, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.7. Effect of β2 on u when Br = 2, Sc = 1, E1 = 1, E2 = 0.5, E3 = 0.5, N = 0.1,

Gr = 0.1, γ = 0.1, β1 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.

F ig. 3.8. Effect of β3 on u when Gr = 0.1, γ = 1, E1 = 0.03, E2 = 0.01, E3 = 0.01, Br = 1,

Sc = 1, N = 10, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.9. Effect of Gr on θ when Br = 1, Sc = 2, E1 = 1, E2 = 0.5, E3 = 0.1, N = 1, γ = 1,

β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.

F ig. 3.10. Effect of Br on θ when E1 = 1, E2 = 0.5, E3 = 0.1, Gr = 0.01, Sc = 1, N = 0.5,

γ = 0.1, β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.11. Effect of Sc on θ when E1 = 0.03, E2 = 0.01, E3 = 0.01, Br = 1, Gr = 0.2, N = 10,

γ = 1, β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.

F ig. 3.12. Effect of γ on θ when E1 = 0.03, E2 = 0.01, E3 = 0.01, Br = 1, Sc = 1, N = 10,

Gr = 0.2, β1 = 0.01, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.13. Effect of parameters of wall properties on θ when Gr = 0.01, Br = 1, Sc = 1,

N = 0.1, γ = 0.1, β1 = 0.01, β2 = 0.01, β3 = 0.01, � = 0.2, x = 0.2, t = 0.1.

F ig. 3.14. Effect of β1 on θ when E1 = 0.04, E2 = 0.01, E3 = 0.02, Br = 1, Sc = 2, N = 10,

Gr = 0.5, γ = 1, β2 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.15. Effect of β2 on θ when E1 = 0.5, E2 = 0.1, E3 = 0.2, Br = 1, Sc = 2, N = 10,

Gr = 0.01, γ = 1, β1 = 0.01, β3 = 0.01, x = 0.2, t = 0.1, � = 0.2.

F ig. 3.16. Effect of β3 on θ when Sc = 3, N = 10, E1 = 0.1, E2 = 0.2, E3 = 0.2, Br = 2,

Gr = 0.5, γ = 0.1, β1 = 0.01, β2 = 0.01, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.17. Effect of Sc on φ when x = 0.2, t = 0.1, � = 0.2, γ = 0.1, β3 = 0.01.

F ig. 3.18. Effect of γ on φ when Sc = 1, � = 0.2, β3 = 0.01, x = 0.2, t = 0.1.
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Fig. 3.19. Effect of � on φ when γ = 2, Sc = 2, β3 = 0.01, x = 0.2, t = 0.1.

F ig. 3.20. Effect of β3 on φ when γ = 1, Sc = 3, x = 0.2, t = 0.1, � = 0.2.
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Fig. 3.21. Effect of Gr on Z when Sc = 1, N = 1, E1 = 1, E2 = 0.5, E3 = 0.1, Br = 0.1,

γ = 1, β1 = 0.01, β2 = 0.01, β3 = 0.01, t = 0.1, � = 0.2.

F ig. 3.22. Effect of Br on Z when E1 = 0.1, E2 = 0.5, E3 = 0.1, Gr = 0.01, Sc = 1, N = 1,

γ = 1, β1 = 0.01, β2 = 0.01, β3 = 0.01, t = 0.1, � = 0.2.
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Fig. 3.23. Effect of wall properties on Z when Br = 0.01, Gr = 0.2, Sc = 2, N = 1, γ = 1,

β1 = 0.01, β2 = 0.01, β3 = 0.01, t = 0.1, � = 0.2.

F ig. 3.24. Effect of β1 on Z when E1 = 0.02, E2 = 0.01, E3 = 0.02, Br = 3, Sc = 1, N = 10,

γ = 0.1, Gr = 0.05, β2 = 0.1, β3 = 0.1, t = 0.1, � = 0.2.
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Fig. 3.25. Effect of β2 on Z when E1 = 0.01, E2 = 0.07, E3 = 0.05, Br = 2, Gr = 0.03,

Sc = 3, N = 10, γ = 0.1, β1 = 0.1, β3 = 0.1, t = 0.1, � = 0.2.

F ig. 3.26. Effect of β3 on Z when E1 = 0.01, E2 = 0.02, E3 = 0.05, Br = 3, Gr = 0.03,

Sc = 2, N = 10, γ = 1, β1 = 0.1, β2 = 0.1, t = 0.1, � = 0.2.
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(a) (b)

Fig. 3.27. Streamlines for E1 = 1, E2 = 0.2, E3 = 0.2, Br = 2, N = 0.1, γ = 2, Sc = 2,

β1 = 0.01, β2 = 0.01, β3 = 0.01, t = 0, � = 0.1, (a) Gr = 0, (b) Gr = 0.02.

(a) (b)

Fig. 3.28. Streamlines for E1 = 1, E2 = 0.2, E3 = 0.2, Gr = 0.2, Sc = 2, N = 0.1, γ = 2,

β1 = 0.01, β2 = 0.01, β3 = 0.01, t = 0, � = 0.1, (a) Br = 0, (b) Br = 0.2.
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(a) (b)

(c) (d)

Fig. 3.29. Streamlines for Gr = 0.02, Sc = 2, Br = 2, N = 0.1, γ = 2, β1 = 0.01, β2 = 0.01,

β3 = 0.01, t = 0, � = 0.1 (a) E1 = 1, E2 = 0.1, E3 = 0.1 (b) E1 = 1.1, E2 = 0.1, E3 = 0.1 (c)

E1 = 1, E2 = 0.2, E3 = 0.1 (d) E1 = 1, E2 = 0.1, E3 = 0.2.
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(a) (b)

Fig. 3.30. Streamlines for E1 = 1, E2 = 0.2, E3 = 0.2, Gr = 0.01, Sc = 2, Br = 2, N = 0.1,

γ = 2, t = 0, � = 0.1, β2 = 0.01, β3 = 0.01, (a) β1 = 0, (b) β1 = 0.03.

(a) (b)

Fig. 3.31. Streamlines for E1 = 1, E2 = 0.2, E3 = 0.2, Gr = 0.01, Sc = 2, Br = 2, N = 0.1,

γ = 2, t = 0, � = 0.1, β1 = 0.01, β3 = 0.01, (a) β2 = 0, (b) β2 = 0.03.
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(a) (b)

Fig. 3.32. Streamlines for E1 = 1, E2 = 0.2, E3 = 0.2, Gr = 0.01, Sc = 2, Br = 2, N = 0.1,

γ = 2, t = 0, � = 0.1, β1 = 0.01, β2 = 0.01, (a) β3 = 0, (b) β3 = 0.03.

3.5 Conclusions

We have discussed the partial slip effects on peristaltic transport of viscous fluid in a verti-

cal symmetric channel. Effects of slip parameter on the longitudinal velocity, temperature,

concentration and trapping are investigated. The main points are listed below.

• The longitudinal velocity increases by increasing β1 and β2.

• Behavior of β3 on longitudinal velocity is quite opposite to that of β1 and β2.

• Temperature increases in the left part and decreases in the right part of the channel for

increasing values of β1.

• Temperature increases for increasing values of β2 and decreases by increasing β3.

• Concentration field decreases when slip parameter β3 is increased.

• The size of trapped bolus increases by increasing β1and β2.
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• Trapped bolus shows mixed behavior for β3 i.e. it increases for x < 0.25 and decreases

for x > 0.25.
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