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Chapter 0

Introduction

The non-Newtonian �uids �ow has earned signi�cant grandness due to its applications in indus-

try like polymers, plastic, petroleum, printing materials, soap, pharmaceuticals and rubber [1].

The �ow behavior of non-Newtonian �uid in microchannels is of mellow interest in pragmatic

applications such as sample collection, detection, reaction, dispensing, mixing, and separation

of various chemical and biological species in microchips incorporated with �uidic pumps, sen-

sors, and valves, as well as in capillary viscometer to evaluate the non-Newtonian viscosity of

biological and chemical polymeric solutions [2]. In hydraulic fracturing, �uids are used that

consist of chemical additives exhibiting properties of non-Newtonian �uids that might drasti-

cally in�uence hydraulic behavior of these �uids. Equally forceful alteration in injection rate,

wellhead pressure and hydraulic horse power requirement might result from these �uid proper-

ties [3]. The �ow of non-Newtonian �uids through in�atable as well as collapsible tubes plays a

vital role in bio�uid mechanics. Esophagus may be regarded as a tube connecting the stomach

and throat. The movement of liquids or food through human throat may be considered as

an example of non-Newtonian �uid �ow through a tube. The knowledge of the mechanisms

like esophageal and pharyngeal makes us able to the better treatment of such systems with

malfunctioning. Biological science of these systems is very complicated. The food and liquids

could have viscous non-Newtonian or viscous Newtonian or viscous and elastic non-Newtonian

�ow behavior; the latter possibly due to the presence of viscoelastic biopolymers [4]. Damir

Dominko and Matija Culo are of the view that one application of non-Newtonian �uid could be

a �exible military suit (Wikipedia). Inside the suit there would be some kind of non-Newtonian
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�uid which would remain in liquid state while the soldier stands still, moves or runs, but would

immediately go into the solid state when the bullet hits, acting as a sort of �exible bulletproof

armor. Non-Newtonian �uids could also be used in shoe manufacturing. The inside layer of the

shoes would be �lled with a non-Newtonian �uid. During standing, walking, or easy running,

when pressures which act on the shoe are weak, the non-Newtonian �uid would remain in a

liquid state and therefore the shoe interior would adapt the position and shape of the foot. This

would make non-Newtonian �uid sport shoes very comfortable. During fast running or other

activities which apply strong pressures on the foot, the non-Newtonian �uid would solidify at

places and prevent possible injuries. Again, the main hurdle in making such a shoe is �nding

a non-Newtonian �uid whose viscosity vs. stress dependence satis�es the above requirements.

In four-wheel drive vehicles the driving and non-driving shafts are connected by a mechanical

device called viscous coupling. The device consists of many circular plates with perforations.

Those plates are placed in a drum and �tted very close to each other. Inside the drum there

is a non-Newtonian �uid whose viscosity increases with shear stress. Plates are alternately

connected to the driving shaft at one end and non-driving shaft at the other. When a vehicle

moves without skidding, both shafts together with their connected plates rotate with the same

rotational speed. The non-Newtonian �uid remains in liquid state due to the absence of shear

between adjacent plates. But, in a situation in which the vehicle is skidding the di¤erence in

rotational speed of adjacent plates produces shear stress: the �uid abruptly increases its vis-

cosity (it responds much like a solid) and therefore transfers motion between plates. The end

e¤ect is a transfer of torque from driving to the non-driving shaft in other words, we switch

from a two-wheel to a four-wheel drive.

The �ow of non-Newtonian �uids in open channels is of great importance to the mining

industry. Fixed-shape open channels can transport ore slurries and tailings streams as a more

economic alternative to pumping, when the terrain allows. Currently the design of these �umes

is often done using crude estimates based on the conditions established for water with a limited

set of �eld observations. In the context of a tailings storage facility, self-formed channels at

su¢ cient gradient or slope will generate enough turbulence to maintain particles in suspension.

Also, a shallower gradient will reduce the turbulence intensity, which allows more solids to settle

in the channel bed. The study of non-Newtonian suspensions in open channels will provide the
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fundamental information about the design and operation of industrial channels for the transport

of mineral suspensions.

Due to extensive use of non-Newtonian �uid �ows in several technical and industrial processes,

scientists paid their attention towards di¤erent non-Newtonian �uid model �ows through dif-

ferent geometries. As for as literature survey is concerned, Rajagopal and Gupta [5] studied

an exact solution for the �ow of a non-Newtonian �uid past an in�nite plate. Rajagopal et

al. [6] discussed an existence theorem for the �ow of a non-Newtonian �uid past an in�nite

porous plate. Fetecau et al. [7] considered unsteady �ow of a second grade �uid between two

side walls perpendicular to a plate. Vieru et al. [8] found exact solutions corresponding to the

�rst problem of Stokes for Oldroyd-B �uids. The �rst problem of Stokes for Burgers��uids

was discussed by Vieru et al. [9]. Tan and Masuoka [10] examined Stokes �rst problem for an

Oldroyd-B �uid in a porous half space. Chen et al. [11] analyzed unsteady unidirectional �ow

of an Oldroyd-B �uid in a circular duct with di¤erent given volume �ow rate conditions. Ariel

et al. [12] probed �ow of a third grade �uid through a porous �at channel. Siddiqui et al. [13]

talked about some unsteady unidirectional �ows of a non-Newtonian �uid. Moving boundary

in a non-Newtonian �uid was viewed by Asghar et al. [14]. Hayat et al. [15] dissected an

oscillating hydromagnetic non-Newtonian �ow in a rotating system. Hayat et al. [16] studied

into Hall e¤ects on unsteady duct �ow of a non-Newtonian �uid in a porous medium. Nadeem

et al. [17] obtained numerical solutions of peristaltic �ow of a Je¤rey-six constant �uid with

variable MHD.

Viscosity is another physical property of �uids. "Viscosity is a measure of the resistance of

a �uid which is being deformed by either shear or tensile stress. In everyday terms (and for

�uids only), viscosity is thickness or internal friction" (Wikipedia). A large number of papers

have been discussed in which �uid viscosity is considered to be constant. In certain situations,

it is not necessary that the �uid viscosity is constant it may vary with distance, temperature

or pressure. For example in coal slurries the viscosity of the �uid vary with temperature.

In general the coe¢ cient of viscosity for real �uids are functions of temperature. In many

thermal transport processes, the temperature distribution with in the �ow �eld is not uniform,

i.e., the �uid viscosity may be changed noticeably if a large temperature di¤erence exists in

the system. Therefore, it is highly desirable to take into account the temperature dependent
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viscosity in momentum as well as in energy equation. Literature survey indicates that very

less attention has been given to the �ow of non-Newtonian �uids with variable viscosity. The

works of Massoudi and Christie [18], Pakdermirli and Yilbas [19]and Pantokratoras [20] may

be mentioned in this direction. One of non-Newtonian �uids models is Je¤ery-six constant

�uid. Aristov and Skul�skii [21], discussed this model of �uid in a plane channel. Nadeem et

al. [ 22] discussed e¤ects of partial slip on a fourth grade �uid with variable viscosity. Further,

Akbar et al. [ 23] discussed simulation of heat transfer on the peristaltic �ow of a Je¤rey-six

constant �uid in a diverging tube. Oldroyd 8-constant model is an important non-Newtonian

�uid model. Baris et al. [24] considered an Oldroyd 8-constant model to discuss the steady �ow

in a convergent channel. The couette, poiseuile and generalized couette �ows of an Oldroyd

8-constant magnetohydrodynamic �uid are discussed by Hayat et al. [25]. The problem dealing

with the steady �ow of an Oldroyd 8-constant �uid over a suddenly moved plate is considered

by Ellahi et al. [26]. In continuation, Ellahi et al. [27] discussed Oldroyd 8-constant �uid with

non-linear slip condition. A complex mathematical model known as Eyring-Powell �uid model

was developed by Powell and Eyring in 1944. Powell and Eyring [28] studied mechanism for the

relaxation theory of viscosity: This model is another addition to the regime of non-Newtonian

�uids.

Stretching is another important phenomena which plays a vital role in our daily life. The

�ow of a stretching plate is observed in a large number of industrial processes. Examples of

fabrication of adhesive tapes, the extrusion of plastic sheets and application of coating layers

onto rigid substrates may be mentioned in this regard. Polymer sheets are manufactured by

continuous extrusion of the polymer from a die to a windup roller [29]. A continuously moving

surface with a non-uniform velocity through the ambient �uid is constituted by the thin polymer

sheet. Flows caused by a continuously moving surface are encountered in many processes of

thermal and moisture treatment of materials, predominantly in processes involving continuous

pulling of a sheet through a reaction zone; as in crystalline materials, paper industries, in

textiles, in the manufacture of glass sheets and metallurgy. It is worth mentioning that many

metallurgical processes involve the cooling of continuous stripes or �laments by drawing them

through a quiescent �uid, and in the process of drawing, these strips are stretched [30-34]. In

view of these applications, stretching �ows with various geometries for both Newtonian and non-
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Newtonian �uids have been discussed analytically, numerically and experimentally by number

of researchers.

The �ow of a Newtonian �uid over a linear stretching surface was �rst studied by Crane [35].

Subsequently, various aspects of the �ow and/or heat transfer problems for stretching surfaces

moving in the in�nite �uid medium have been explored in many investigations [36-44]. In the

manufacture of metal and polymer solid cylinders, the material is usually in a molten phase

when thrust through an extrusion die and then cools and solidi�es some distance away from

the die. Experiments by Vleggaar [45] show that the velocity of the material is approximately

proportional to the distance, so these systems are often modeled as linearly stretching rods or

cylinders. Wang [46] has studied the steady �ow of a viscous and incompressible �uid outside of

a stretching hollow cylinder in an ambient �uid at rest. However, very less attention has been

given to the �ows of a non-Newtonian �uid due to a stretching cylinder with variable viscosity.

The �uids are necessary for heat transfer in engineering equipment.

Low thermal conductivity of conventional heat transfer �uids like water, oil, and ethylene

glycol mixture is a limitation in enhancing the performance and compactness of such engineer-

ing equipment. To overcome this di¢ culty, there is need to �nd advanced heat transfer �uids

with higher conductivity. Recent simulations of the cooling system of a large truck engine pre-

dicts that replacement of the conventional engine coolant (ethylene glycol-water mixture) by a

nano�uid would provide remarkable advantages by removing more heat from the engine. Hence,

there is strong motivation in the use of nano�uids for any process that uses process heat that

needs cooling, i.e., engines, heat treating, rubber manufacturing, etc. Processing time could be

minimized using nanoparticles in water compared to using water to cool from processing tem-

peratures. Recently, a special attention has been given to the nano�uids. The term nano�uid

was introduced by Choi 1995; means a liquid containing a suspension of submicron solid parti-

cles (nano particles). The major advantage of nano�uids is thermal conductivity enhancement

(see Masuda et. al 1993;). The major use of nano�uids technology is in advance nuclear sys-

tems. A comprehensive study about natural convection of nano�uids have been examined by

Putra et. al [47]. They [47] experimentally discussed the natural convection of nano�uids inside

horizontal cylinder heated from one end and cooled from the other end. Kuznetsov and Nield

[48] have examined the natural convective boundary layer �ow of a nano�uid past a vertical
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plate. In another study, Kuznetsorv and Nield [49] have reported the thermal instability in a

porous medium layer saturated by a nano�uid. A numerical study about boundary layer �ow

of a nano�uid past a stretching sheet have been presented by Khan and Pop [50]. However,

non-Newtonian nano�uid �ows with variable viscosity are very rare. Keeping in mind the above

highlights the purpose of present thesis is to discuss the e¤ects of variable viscosity for di¤erent

non-Newtonian �uid models in di¤erent physical geometries. Motivated from the above impor-

tant studies the present thesis is arranged as follow: In chapter zero brief literature survey is

highlighted.

In chapter one, we discuss the �ow of a Je¤rey-six constant incompressible �uid between

two in�nite coaxial cylinders in the presence of heat transfer analysis. The governing equa-

tions of Je¤rey-six constant �uid along with energy equation have been derived in cylindrical

coordinates. The highly nonlinear equations are simpli�ed with the help of nondimensional

parameters and then solved analytically with the help of homotopy analysis method (HAM)[51]

for two fundamental �ows namely Couette and Generalized Couette �ow. The content of this

chapter is published in Communications in Theoretical Physics. 56(2011)345� 351:

Chapter two is devoted to the study of �ow of an Oldroyd 8-constant �uid with variable

temperature dependent viscosity between coaxial cylinders. The analytic solutions are obtained

by using homotopy analysis method (HAM). The content of this chapter is published in

Communications in Theoretical Physics 56(2011)933� 938:.

The �ow of a third grade �uid between two coaxial cylinders with temperature dependent

viscosity has been examined in chapter three. The medium is considered to be porous. Two

types of geometrical problems with Reynolds�and Vogel�s viscosity models are taken into ac-

count. In �rst case the motion of the �uid is due to a constant pressure gradient and a movement

of inner cylinder while the outer cylinder is kept �xed. In second case we considered that the

inner cylinder is �xed while the disturbance in the �uid comes due to the constant pressure

gradient and the movement of outer cylinder. Analytical solutions have been calculated us-

ing homotopy analysis method (HAM) for temperature and velocity equations. The numerical

solution of the problem has also been computed by shooting method.

In chapter 4, we have focused our attention to highlight the study of non-Newtonian

nano�uid between coaxial cylinders with variable viscosity. Analytical solutions are com-
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puted with the help of HAM technique. The content of this chapter is published in ZNA.

67a(2011)255� 261:

In chapter 5, an analytical treatment of a steady boundary layer �ow of an Eyring-Powell

model �uid due to a stretching cylinder with temperature dependent variable viscosity is dis-

cussed. This work is accepted in Scientia Iranica.

Chapter 6 is devoted to describe the study of boundary layer �ow of a Walter�s B �uid

due to a stretching cylinder with temperature dependent variable viscosity. The content of this

chapter is submitted for publication in communication in mathematical physics.

Chapter 7 is developed to study the �ow of a hyperbolic tangent �uid due to a stretching

cylinder with temperature dependent variable viscosity. This work is submitted for possible

publication in computer physics communication.
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Nomenclature
V Velocity

S Extra stress tensor

� Cauchy stress tensor

� Density of the �uid

� Viscosity

� Transpose

a Radius of tube

c A constant with positive value

am; bm; cm Material constants of Je¤rey-six constant �uid

�3; �4 Oldroyd 8-constant parameters

�6 Je¤rey �uid parameter

Re Reynold number

DT Thermophoretic di¤usion coe¢ cient

� Thermal conductivity

Nb Brownian motion parameter

Nt Thermophoresis parameter

�1; c1 Material constant of Eyring Powell �uid

DB Brownian di¤usion coe¢ cient

E;F;G; J Material constant of Je¤rey six-constant �uid model

Gr Grashof number

Cp Speci�c heat

w Velocity component in z-direction

E1; E2 Eyring Powell �uid parameters

Ec Eckert number

�2 The delay time

�; � Viscosities

A Vogel�s model parameter

�p Density of particle
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I The identity tensor

A1 The �rst Rivlin-Ericksen tensor

D
Dt The contravarient convected derivative

� Volumetric expansion coe¢ cient of the �uid

�3 Dimensional third grade parameter

� The dimensionless non-Newtonian parameter

�1 The ratio of relaxation to retardation times

�2 The retardation time

R0 Inward cylinder radius

R1 Outward cylinder radius

�11 Relaxation time

t Time

p Pressure

�5 Walters�B �uid parameter

v0 Constant velocity of the inner cylinder

q Embedding parameter

Pr Prandtl number

M Reynolds�model viscosity parameter

C;C�; B Constants of Vogel�s model

b A constant

� Temperature in dimensional form

P Porous medium parameter

g Gravitational force

�3 Thermal di¤usivity

�1 Porosity

W Antisymmetric part of velocity gradient

� Nanoparticle fraction

(�c)p The heat capacity of the nanoparticle material
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Chapter 1

Flow of a Je¤ery-six constant �uid

in cylinders

1.1 Introduction

The current chapter handles �ow of a Je¤ery-six constant �uid through annulus region of two

concentric cylinders in the presence of heat transfer analysis. The arising non linear partial dif-

ferential equations are simpli�ed by using nondimensional parameters. Two fundamental �ows

namely Couette and Generalized Couette �ow are studied. The e¤ects of emerging parameters

are discussed through graphs. To see the series solution�s convergence we portrait h-curves.

1.2 Mathematical model

We consider �ow of a Je¤rey-six constant �uid through annulus region of two concentric cylin-

ders. The equations which govern the problem are given by

r:V = 0; (1.1)

�
dV

dt
= div � ; (1.2)
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�Cp
dT

dt
= � :L+ kr2T; (1.3)

where � is density, V is velocity vector, Cp denotes speci�c heat; T is temperature and � is the

Cauchy stress tensor, which is di¤erent for di¤erent �uid models.

The stress tensor for Je¤rey-six constant �uid is de�ned as [21]

� + �11Fa?b?c?� = �(D+ �2Fa?b?c?D); (1.4)

or is written in an expanded from as

� + �11[
d�

dt
�W:� + � :W + a?(� :D+D:� ) + b?� : DI + c?D tr� ] = 2�[D

+�2(
dD

dt
�W:D+D:W + 2a?D:D+ b?D : DI)]: (1.5)

In the above equation, rV = D +W is the velocity gradient, D = (rV� +rV)=2 is

the symmetric part of velocity gradient; W = (rV� �rV)=2 is the antisymmetric part of

velocity gradient:

For the problem under consideration we take the velocity and temperature distribution of

the form

V = [0; 0; v(r)]; T = T (r): (1.6)

In the light of Eqs. (1:5) and (1:6), continuity equation (1:1) is identically satis�ed, mo-

mentum and energy equations become

�
d2v

dr2
+ 2A�3

@p

@z

�
dv

dr

�2
+ (2HA�3 +A

�
2 +A

�
4)
�

r

�
dv

dr

�3
(2HA�3 +A

�
2 +A

�
4)

+
�
HA�23 +A

�
1

� �
r

�
dv

dr

�5
+ (2HA�3 + 3A

�
2 + 3A

�
4)�

d2v

dr2

�
dv

dr

�2
+
�

r

dv

dr

�A�23
@p

@z

�
dv

dr

�4
+

�
dv

dr

�4��
HA�23 + 5A

�
1

�
�
d2v

dr2
+
�
HA�23 +A

�
1

�
�
d�

dr

dv

dr

�
= 0; (1.7)
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�H

�
dv

dr

�2
+
�[(1�H)

�
dv
dr

�2
+A�4

�
dv
dr

�4
]

1 +A�3
�
dv
dr

�2 � �[1
r

dT

dr
+
d2T

dr2
] = 0; (1.8)

where

H =
�2
�11

; A�4 =
�2
2
(a? + b? � 1) (1 + a? + c?) (�2 � �11);

A�3 =
�11
2
f�11 (1� a? � c?) (1 + a? + b?)� b?c?�11 � �2 (1 + a? + c?) (a? + b? � 1)g ;

A�2 =
1

2
(�11 � �2) f�1 (1� a? � c?) (1 + a? + b?)� b?c?�11 � �2 (1 + a? + c?) (a? + b? � 1)g ;

A�1 =
�11�2
4

(a? + b? � 1) (1 + a? + c?) (�2 � �11)(�11 (1� a? � c?) (1 + a? + b?)� b?c?�11

��2 (1 + a? + c?) (a? + b? � 1)): (1.9)

Moreover, a?; b? and c? are constants.

1.3 Couette �ow

Consider the �ow which is bounded by two in�nite cylinders. Only the inner cylinder�s motion

is responsible for the �ow. The walls of both the cylinders are heated with temperatures To

and T1 respectively.

The associated boundary conditions are

v (R0) = v0, T (R0) = T0; v (R1) = 0; T (R1) = T1 (1.10)

where R0 is the radius of the inner cylinder, R1 is the radius of outer cylinder and v0 is the

constant velocity of inner cylinder.

Introducing the following nondimensional variables

�r =
r

R0
; F =

A�1v
4
0

R40
; G =

A�2v
2
0

R20
; � =

T � T1
To � T1

; b =
R1
R0
; C1 =

@p

@z
; E =

A�3v
2
0

R20
; (1.11)

C =
C1R

2
0

��v0
;� =

�2�v0
�(To � T1)

;
�
v =

v

v0
;
�
� =

�

��
; J =

A�4v
2
0

R20
; (1.12)
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Fig. 1a: Geometry of the problem.

Substituting Eq. (1.11) into Eqs. (1.7), (1.8) and boundary conditions (1.10), we obtain the

following equations after dropping bars,

�
�

r
(J +G+ 2EH)

dv

dr
+ � (3J + 3G+ 2EH)

��
dv

dr

�2
+�
d2v

dr2
+
�

r

�
E2H + F

��dv
dr

�5
+ �

�
E2H + 5F

� d2v
dr2

�
dv

dr

�4
+
�

r

dv

dr
= 0; (1.12)

��

�
dv

dr

�2
+ � (J + EH) �

�
dv

dr

�4
+
1

r

d�

dr
+
d2�

d2r
�
�
E

r
+ E

d2�

d2r

��
dv

dr

�2
= 0; (1.13)

v(1) = �(1) = 1: (1.14)

v(b) = �(b) = 0. (1.15)
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1.4 Solution of the problem

The solution of above boundary value problem have been computed analytically adopting ho-

motopy analysis method. For series solution we take the initial estimate

v0 (r) =
(b� r)
(b� 1) ; (1.16)

�0 (r) =
(b� r)
(b� 1) : (1.17)

The auxiliary linear operators are de�ned as

$vel (v) = v
00; (1.18)

$temp (�) = �
00; (1.19)

possessing

Lvel(A11 +B1r) = 0; (1.20)

Ltemp(A12 +B2r) = 0; (1.21)

where A11; A12 , B1 and B2 are constants and $vel and Ltemp stands for linear operators for

velocity and temperature.

If q 2 [0; 1] is an embedding parameter then the problems at the zero and mth order are

respectively given by

(1� q)Lvel[�v(r; q)� v0(r)] = q~Nv[�v(r; q); ��(r; q)]; (1.22)

(1� q)Ltemp[��(r; q)� �0(r)] = q~N�[�v(r; q); ��(r; q)]; (1.23)

Lvel[vm(r)� �mvm�1(r)] = ~Rv(r); (1.24)

Ltemp[�m(r)� �m�m�1(r)] = ~R�(r); (1.25)

�v(1; q) = ��(1; q) = 1; (1.26)

�v(b; q) = ��(b; q) = 0: (1.27)
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�vm(1; q) = ��m(1; q) = 0; (1.28)

�vm(b; q) = ��m(b; q) = 0; (1.29)

where

Nv[�v(r; q)] = �
r
dv
dr +

�
r (J +G+ 2EH)

�
dv
dr

�3
+ �

r

�
E2H + F

� �
dv
dr

�5
+�
d2v

dr2
+

 
�
�
E2H + 5F

� d2v
dr2

�
dv

dr

�2
+ � (3J + 3G+ 2EH)

d2v

dr2

!�
dv

dr

�2
; (1.30)

N�[�v(r; q); ��(r; q)] = ��
�
dv
dr

�2
+ � (J + EH) �

�
dv
dr

�4
�1
r

d�

dr
� d

2�

dr2
� E
r

�
dv

dr

�2
� Ed

2�

dr2

�
dv

dr

�2
; (1.31)

Rv = �
r v

0
m�1 +

�
r (J +G+ 2EH)

m�1P
k=0

kP
l=0

v
0
m�1�kv

0
k�lv

0
l

+
�

r

�
E2H + F

�m�1X
k=0

kX
l=0

lX
s=0

sX
j=0

v
0
m�1�kv

0
k�lv

0
l�sv

0
s�jv

0
j

+�
�
E2H + 5F

�m�1X
k=0

kX
l=0

lX
s=0

sX
j=0

v
0
m�1�kv

0
k�lv

0
l�sv

0
s�jv

00

j

+� (3J + 3G+ 2EH)
m�1X
k=0

kX
l=0

v
0
m�1�kv

0
k�lv

00

l + �v
00

m�1; (1.32)

R� = ��
m�1P
k=0

v
0
m�1�kv

0
k + � (J + EH) �

m�1P
k=0

kP
l=0

lP
s=0

v
0
m�1�kv

0
k�lv

0
l�sv

0
s

�1
r
�
0
m�1 � �

00

m�1 �
E

r

m�1X
k=0

v
0
m�1�kv

0
k � E

m�1X
k=0

kX
l=0

v
0
m�1�kv

0
k�l�

00
l : (1.33)

The solution of Eqs.(1:32) and (1:33) using Mathematica are obtained in the form

vm (r) =

m+1X
n=0

am;nr
n; �m (r) =

m+2X
n=0

dm;nr
n;m � 0: (1.34)
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1.5 Generalized Couette �ow

Let us consider the �ow of a Je¤rey-six constant �uid with constant viscosity bounded by two

in�nite coaxial cylinders. The movement of inner cylinder and constant pressure gradient are

responsible for the occurrence of disturbance in the �uid. The nondimensional momentum and

energy equations in the presence of pressure are de�ned as

�

r
(J +G+ 2EH)

�
dv

dr

�3
+

�
�
�
E2H + 5F

� d2v
dr2

+
�

r

�
E2H + F

��dv
dr

���
dv

dr

�4
� C

+�
d2v

dr2
+
�dv

rdr
+

 
� (3J + 3G+ 2EH)

d2v

dr2
� CE2

�
dv

dr

�2
� 2C

!�
dv

dr

�2
= 0: (1.35)

��

�
dv

dr

�2
+ � (J + EH) �

�
dv

dr

�4
+
1

r

d�

dr
+
d2�

dr2
� E

�
1

r
+
d2�

dr2

��
dv

dr

�2
= 0: (1.36)

The corresponding boundary conditions are de�ned in Eqs. (1:14) and (1:15) : Initial guesses

and auxiliary linear operators are de�ned in Eqs. (1:16) to (1:19) for HAM solution.

If q 2 [0; 1] is an embedding parameter and ~ is auxiliary parameter then the problems at

the zero and mth order are respectively given by

(1� q)Lvel[�v(r; q)� v0(r)] = q~Nvel[�v(r; q); ��(r; q)]; (1.37)

(1� q)Ltemp[��(r; q)� �0(r)] = q~Ntemp[�v(r; q); ��(r; q)]; (1.38)

Lvel[vm(r)� �mvm�1(r)] = ~Rvel(r); (1.39)

Ltemp[�m(r)� �m�m�1(r)] = ~Rtemp(r); (1.40)

�v(1; q) = ��(1; q) = 1; (1.41)

�v(b; q) = ��(b; q) = 0; (1.42)

�vm(1; q) = ��m(1; q) = 0; (1.43)

�vm(b; q) = ��m(b; q) = 0; (1.44)
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where

Nvel[�v(r; q)] =
�
�
r (J +G+ 2EH)

dv
dr + � (3J + 3G+ 2EH)

d2v
dr2

� �
dv
dr

�2
�
 
CE2

�
dv

dr

�2
+ 2C � �

�
E2H + 5F

� d2v
dr2

�
dv

dr

�2!�dv
dr

�2
� C

+�
d2v

dr2
+
�2

r2
�
E2H + F

��dv
dr

�5 dv
dr
; (1.45)

Ntemp[�v(r; q); ��(r; q)] = ��
�
dv
dr

�2
+ � (J + EH) �

�
dv
dr

�4 � 1
r
d�
dr

�d
2�

dr2
�
�
E

r
+ E

d2�

dr2

��
dv

dr

�2
; (1.46)

Rvel = �
r v

0
m�1 +

�
r (J +G+ 2EH)

m�1P
k=0

kP
l=0

v
0
m�1�kv

0
k�lv

0
l � C

+
�

r

�
E2H + F

�m�1X
k=0

kX
l=0

lX
s=0

sX
j=0

v
0
m�1�kv

0
k�lv

0
l�sv

0
s�jv

0
j � 2C

m�1X
k=0

v
0
m�1�kv

0
k

+� (3J + 3G+ 2EH)
m�1X
k=0

kX
l=0

v
0
m�1�kv

0
k�lv

00

l � CE2
m�1X
k=0

kX
l=0

lX
s=0

v
0
m�1�kv

0
k�lv

0
l�sv

0
s

+�
�
E2H + 5F

�m�1X
k=0

kX
l=0

lX
s=0

sX
j=0

v
0
m�1�kv

0
k�lv

0
l�sv

0
s�jv

00

j + �v
00

m�1; (1.47)

R� =
�
��� E

r

�m�1P
k=0

v
0
m�1�kv

0
k + � (J + EH) �

m�1P
k=0

kP
l=0

lP
s=0

v
0
m�1�kv

0
k�lv

0
l�sv

0
s

�1
r
�
0
m�1 � �

00

m�1 � E
m�1X
k=0

kX
l=0

v
0
m�1�kv

0
k�l�

00
l : (1.48)

By Mathematica the solutions of Eqs. (1:47) and (1:48) can be written as

vm (r) =

2m+1X
n=0

a0m;nr
n; �m (r) =

2m+1X
n=0

d0m;nr
n; m � 0; (1.49)

where a0m;n and d
0
m;n are constants to be determined by substituting (1.49) into (1.37)

-(1.38).
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1.6 Graphical results and discussion

To report the convergence of the obtained series solutions and the e¤ects of sundry parameters

in the present investigation, we have plotted Figs. 1.1 to 1.10. Figs. 1.1 to 1.3 are prepared

to see the convergence region. Figs. 1.1 and 1:2 correspond to Couette �ow, where as Fig. 1:3

relates to Generalized Couette �ow. Fig. 1:4 depicts the temperature pro�le for Generalized

Couette �ow for di¤erent values of J . The increment in J means increasment in velocity of

inner cylinder. Since inner cylinder is moving in the direction parallel to motion of the �uid.

The velocity of �uid particles increases. The kinetic energy depends upon the velocity. The

rise in velocity would rise the average kinetic energy of the system. As temperature depends

upon kinetic energy i.e. temperature is directly proportional to kinetic energy. Consequently,

temperature of the �uid rises up. This is what we are observing in Fig. 1:4:

Fig. 1:5 shows in�uence of variation of E on temperature distribution for Generalized

Couette �ow. Since E is directly proportional to square of velocity of inner cylinder. When E

is increasing, it indicates that velocity of inner cylinder enhancing the velocity of �uid particles.

The kinetic energy of system is directly proportional to the square of average velocity of �uid

particles. Thus, we come across the conclusion that kinetic energy of the system as a whole is

increasing. This enhancement in kinetic energy in�uences temperature in such a way that it

rises up. Fig. 1:6 is plotted in order to see the velocity variation for Generalized Couette �ow

for C. It is depicted that velocity �eld decreases as C increases. Since pressure is in a direction

opposite to the �ow. So as the pressure opposes the motion. The �uid velocity decreases due

to rise in pressure.

Fig. 1:7 shows velocity �eld for Generalized Couette �ow for F . It is seen that velocity

decreases as F increases. Fig. 1:8 shows the velocity variation for Couette �ow for J . It is

depicted that velocity increases as J increases. When J is increasing , it is evident that it

is because of enhancement in velocity of inner cylinder i.e. the average velocity of the �uid

particles increases. As a result, velocity of the �uid rises. Fig. 1:9 is prepared to observe the

velocity variation for Generalized Couette �ow for di¤erent values of J . Observation reveals

that velocity increases as J increases. Increase in J means, inner cylinder is moving with greater

speed i.e. disturbance in the �uid is increased. Since the motion of the �uid and movement

of the cylinder are along the same direction. So as a result velocity of �uid increases. This is
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what we are observing in Fig. 1:9: Fig. 1:10 is plotted to see velocity distribution for various

values of G.

1.7 Conclusions

In this chapter, we have investigated analytically the �ow of a Je¤rey-six constant incom-

pressible �uid between two in�nite coaxial cylinders. The highly non-linear problem is solved

analytically by powerful technique homotopy analysis method. E¤ects of emerging parameters

on the �ow and temperature pro�les are examined. The following conclusions are drawn.

1. Temperature pro�les increase with the increase of J and E for Generalized Couette �ow.

2. Velocity increases with the increase of J for Generalized Couette �ow.

3: An increment in parameters C; F and G reduces velocity for Generalized Couette �ow.

4: The increase of parameter J leads to the decrease of temperature pro�le for Couette �ow.

5. Velocity increases with the increase of J for Couette �ow.

Fig. 1:1. h-curve for velocity for Couette �ow.
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Fig. 1:2. h-curve for temperature for Couette �ow.

Fig. 1:3. h-curve for temperature for Generalized Couette �ow.
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Fig. 1:4. Temperature distribution for Generalized Couette �ow for J .

Fig. 1:5. Temperature distribution for Generalized Couette �ow for E.
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Fig. 1:6. Velocity distribution for Generalized Couette �ow for C.

Fig. 1:7. Velocity distribution for Generalized Couette �ow for F .
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Fig. 1:8. Velocity distribution for Couette �ow for J .

Fig. 1:9. Velocity distribution for Generalized Couette �ow for J .
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Fig. 1:10. Velocity distribution for Generalized Couette �ow for di¤erent

values of G.
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Chapter 2

Analytical treatment of Generalized

Couette �ow of an Oldroyd

8-constant �uid bounded by two

concentric cylinders with variable

viscosity

2.1 Introduction

The present chapter investigates the study of the steady �ow of an Oldroyd 8-constant �uid

model with temperature dependent viscosity lying between concentric cylinders. The movement

of inner cylinder is prescribed in the axial direction and pressure gradient cause the �uid �ow

where as the outward cylinder remains at rest. Besides this, the heat transfer e¤ects are also

taken into account. Two models of temperature dependent viscosity are studied in order

to comprehend variable viscosity e¤ects. The governing equations are simpli�ed by a suitable

similarity transformation. An analytical solution of non linear problem is obtained by using

HAM. Graphical results for various parameters are presented and discussed.
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2.2 Mathematical equations

The constitutive equation for Oldroyd 8-constant �uid is given by

� = S� pI; (2.1)

in which p is pressure, I is identity tensor and extra stress tensor S is stated as

S+�1
DS

Dt
+
�3

2
(SA1+A1S)+

�5
2
(trS)A1+

�6
2
[(trS)A1]I = �

�
A1 + �2

DA1
Dt

+ �4A
2
1 +

�7
2
[(trA21)A1]I

�
;

(2.2)

where

A1 = L1 + L
�;L = gradV; (2.3)

in which A1 is �rst Rivlin-Ericksen tensor and �i (i = 1 � 7) are material parameters of �uid

which are assumed to be constant. The contravarient convected derivative D / Dt for steady

�ow is de�ned as
DS

Dt
= (V:r)S� LS� SL�: (2.4)

We take the velocity and stress as

V(r) =

0BBB@
0

0

v

1CCCA ; S (r) =
26664
Srr Sr� Srz

S�r S�� S�z

Szr Sz� Szz

37775 : (2.5)

In the light of Eq:(2:5), the equation of continuity is satis�ed identically and Eqs. (2:1 to 2:5)

take following form
@p

@r
=
1

r

d

dr
(rSrr)�

S��
r

(2.6)

1

r

@p

@�
=
1

r2
d

dr

�
r2Sr�

�
; (2.7)

@p

@z
=
1

r

d

dr
(rSrz) ; (2.8)

Srr + (�3 + �6)Srz
dv

dr
= �(�4 + �7)(

dv

dr
)2; (2.9)
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Sr� +
�3

2
Sz�

dv

dr
= 0; (2.10)

Srz +
(�3 + �5)

2
(Srr + Szz)

dv

dr
+
�5
2
S��

dv

dr
� �1Srr

dv

dr
= �

dv

dr
; (2.11)

S�� + �6Srz
dv

dr
= ��7(

dv

dr
)2; (2.12)

S�z +
(�3 � 2�1)

2
S�r

dv

dr
= 0; (2.13)

Szz + (�3 + �5 � 2�1)Srz
dv

dr
= �(�4 + �7 � 2�2)(

dv

dr
)2: (2.14)

Eqs. (2:9)� (2:14) yield

Sr� = S�z = 0; (2.15)

Srr =
�(�4 + �7 � �3 � �6)

�
dv
dr

�2
1 + �2

�
dv
dr

�2 +
�f(�4 + �7) �2 � (�3 + �6) �1g

�
dv
dr

�4
1 + �2

�
dv
dr

�2 ; (2.16)

Srz =
�dvdr + ��1

�
dv
dr

�3
1 + �2

�
dv
dr

�2 ; (2.17)

S�� =
� (�7 � �6)

�
dv
dr

�2 � � (�7�2 � �6�1) �dvdr �4
1 + �2

�
dv
dr

�2 ; (2.18)

in which

�1 = �1 (�4 + �7)� (�3 + �5) (�4 + �7 � �2)�
�5�7
2
;

�2 = �1 (�3 + �6)� (�3 + �5) (�3 + �6 � �1)�
�5�6
2
:

2.3 Physical model

Considering the same geometry (see Fig. 1 (a) ), the steady �ow of an Oldroyd 8-constant �uid

with variable temperature dependent viscosity is focused. From Eqs. (2:5) to (2:7) and (2:15),

imply
@p

@r
=
1

r

d

dr
(rSrr)�

S��
r
; (2.19)

1

r

@p

@�
= 0; (2.20)

@p

@z
=
1

r

d

dr
(rSrz) : (2.21)
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The z di¤erential of pressure is constant since the �ow is due to a constant pressure gradient

and the motion of the inward cylinder. From Eq. (2:21), the velocity �eld is determined. The

pressure �eld is determined from Eq. (2:19): The momentum and energy equations are given

by

1

r

d

dr

"
1

r

 
�dvdr + ��1

�
dv
dr

�3
1 + �2

�
dv
dr

�2
!#

=
@p

@z
; (2.22)

�
�
dv
dr

�2
+ ��1

�
dv
dr

�4
1 + �2

�
dv
dr

�2 + k[
1

r

dT

dr
+
d2T

dr2
] = 0: (2.22a)

The corresponding boundary conditions are

v(R0) = v0; T (R0) = T0;

v(R1) = 0; T (R1) = T1: (2.23)

Using dimensionless parameters

v� =
v

v0
; �� =

�
�

�
; r� =

r

R0
; z� =

z

R0
; ��1 =

�1

(R0=v0)
2 ; �

�
2 =

�2

(R0=v0)
2 . (2.24)

Eqs. (2:22) to (2:24), after dropping asterisks, take the form

�
dv

dr
+ r

�
3�(�3 + �4)

d2v

dr2
� 2C�4

��
dv

dr

�2
+ r (�4 + �3)

�
�

r
+
d�

dr

��
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�3
� Cr

+r
�
(5��3�4

d2v
dr2
� C�24) + r�d

2v
dr2
+ �3�4(

�
r +

d�
dr )
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� �
dv
dr

�4
+ r d�dr

dv
dr = 0; (2.25)

r��

�
dv

dr

�2
+ r���3

�
dv
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�4
+
d�

dr

�
1 + �4

dv

dr

�
+ r

d2�

dr2
+ �4r

dv

dr

d2�

dr2
= 0; (2.26)

v(1) = �(1) = 1; v(b) = �(b) = 0; (2.27)

in which

�3 =
�1v

2
0

R20
; �4 =

�2v
2
0

R20
; C =

R20C1
u�v0

; b =
R1
R0
; C1 =

@p

@z
; � =

v0�
2
�

�(T1 � To)
: (2.28)
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2.4 Series Solutions for Reynolds�model

In this case, temperature dependent viscosity is given as[18]

� = e�M�: (2.28a)

Using Maclaurin�s series Eq. (2:28a) takes the form

� = 1�M� +O(�2): (2.28b)

Invoking Eq. (2:28b) into Eqs. (2:25) to (2:27), one has
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dr

�2
� �M
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�2
+ ��3

�
dv

dr

�4
�M��3
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�
1

r
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�4
r
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�
+
d2�

dr2

�
1 + �4

dv

dr

�
= 0: (2.30)

For HAM solution, we choose the following initial guesses

v0 (r) =
(b� r)
(b� 1) ; (2.31)
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�0 (r) =
(b� r)
(b� 1) : (2.32)

The auxiliary linear operators are in the form

$vel (v) = v
00; (2.33)

$temp (�) = �
00; (2.34)

which satisfy

Lvel(A31 +B33r) = 0; (2.35)

Ltemp(A32 +B34r) = 0; (2.36)

where A31; A32; B33; B34 are the constants.

The zeroth and mth order deformation equations for the present �ow problem are stated as

(1� q)Lvel[ �v(r; q)� v0 (r)] = q~Nvel[ �v (r; q); ��(r; q)]; (2.37)

(1� q)Ltemp[ ��(r; q)� �0 (r)] = q~Ntemp[ �v (r; q); ��(r; q)]; (2.38)

Lvel[vm(r)� �mvm�1(r)] = ~Rvel(r); (2.39)

Ltemp[�m(r)� �m�m�1(r)] = ~Rtemp(r); (2.40)

�v(1; q) = ��(1; q) = 1; (2.41)

�v(b; q) = ��(b; q) = 0; (2.42)

�vm(1; q) = ��m(1; q) = 0; (2.43)

�vm(b; q) = ��m(b; q) = 0; (2.44)
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where
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Ntemp[ �v (r; q); ��(r; q)] = �
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dv
dr

�2
+ ��3

�
dv
dr

�4
�M��3

�
dv

dr

�4
+
1

r

d�

dr
+
�4
r

d�

dr

dv

dr
+
d2�

dr2
+ �4

dv

dr

d2�

dr2
; (2.46)

By Mathematica the solutions of Eqs. (2:45) and (2:46) can be written as

vm (r) =

3mX
n=0

�m;nr
n; m � 0; �m (r) =

3m+1X
n=0

Tm;nr
n; m � 0: (2.47)

2.5 Series solutions for Vogel�s model

The non-dimensional form of viscosity is given by[18]

� = � exp

�
A

(B + �)
�T1

�
; (2.48)

which by Maclaurin�s series reduces to

� =
C

C�
(1� A�

B2
); (2.49)

where C� =
C

exp
�
A
B � T1

� ; � = exp(T1) (2.50)
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With the help of Eq. (2:48), Eqs. (2:25) and (2:27) become
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By adopting the similar procedure as discussed earlier the solution of this case is straightforward

written as:

v =
X

vm (r) =

3mX
n=0

�
0
m;nr

n; m � 0;

� =
X

�m (r) =

3m+1X
n=0

�
0

m;nr
n; m � 0; (2:53)

where �
0
m;n and �

0

m;nare constants.

2.6 Graphical results and discussion

We plotted Figs. 2:1 to 2:11 to check the convergence and in�uence of various parameters

The convergence regions of these series are strongly dependent upon the non-zero auxiliary

parameters ~ which can be adjusted and controlled by means of a proper value of ~: To see

the range of admissible value of ~; ~�curves are plotted. Fig. 2:1 corresponds to Reynolds�

model where as Fig. 2:2 relates to Vogel�s model. Fig. 2:3 depicts the velocity variation for

Reynolds�model for M . It is noted that velocity increases as M increases. The relation (2:28b)
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explains that by increasing M , viscosity of �uid decreases i.e. opposing forces are reduced. As

a consequence, the �uid moves with greater velocity. That is what we are observing in Fig. 2:3:

Fig. 2:4 shows the temperature variation for �4 for Reynolds�model. It can be seen that

temperature increases as �4 increases. Since �4 depends upon speed of cylinder. When �4 is

increased, it means that cylinder is moving fast. Since the movement of the cylinder is along

the motion of the �uid. So velocity of �uid particles increases. As a result the kinetic energy

of the �uid rises. Hence as a consequence, temperature of the �uid increases. This is the case,

we are observing in Fig. 2:4:

Fig. 2:5 is plotted in order to see the velocity variation for Reynolds�model for �4, it is

observed that velocity decreases as �4 increases. Figs. 2:6 to 2:11 correspond to Vogel�s model.

Fig. 2:6 studies the velocity variation for Vogel�s model for C. It is seen that velocity decreases

as C increases. Fig. 2:7 reveals the temperature variation for Vogel�s model for C. It is studied

that temperature increases as C increases. Since the pressure gradient is taken negative here,

it means it opposes the motion of the �uid particles. The motion of the �uid experiences

opposition. As a result the kinetic energy of the system decrease with rise of C: Fig. 2:8 is

prepared to observe the velocity variation for Vogel�s model for B. It is obvious from relation

(2:49) that viscosity increases with rise of B i.e. the viscous forces become stronger. The �uid

particles experience more opposing forces. The velocity of �uid reduces.

Fig. 2:9 is plotted to see the temperature variation for Vogel�s model for B. The relation

for velocity given by Vogel�s model shows that viscosity increases as B increases. The viscous

forces slow down the motion of the �uid particles i.e. the average speed of �uid particles reduces.

This factor is responsible for reduction of the velocity of �uid. As kinetic energy of a system

is directly proportional to the square of velocity. The average kinetic energy of the system

decreases. Since temperature of the system is dependent upon kinetic energy. Consequently,

temperature of the system reduces. Fig. 2:10 presents the velocity variation for Vogel�s model

for A. Fig. 2:11 gives the temperature variation for Vogel�s model for A.
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2.7 Conclusions

This chapter investigates analytically the �ow of an Oldroyd 8-constant �uid with variable

temperature dependent viscosity between coaxial cylinders. The highly non-linear problem is

solved analytically by powerful technique homotopy analysis method. E¤ects of the various

emerging parameters on velocity and temperature distribution are examined. The following

conclusions are drawn.

1. Temperature distribution increases with the increase of �4 for Reynolds�model.

2. Velocity increases with the increase of viscosity parameter M for Reynolds�model for an

Oldroyd 8-constant �uid.

3: Velocity �eld decreases with rise of viscosity parameter C and B for Vogel�s model and

increases with the increase of A.

4: Increase of viscosity parameter A and C leads to the increase of temperature pro�le for

Vogel�s model and the pro�le decreases with rise of viscosity parameter B.

5. Velocity decreases with the increase of �4 for Reynolds�model.

Fig. 2:1. h-curve for Reynolds�model for temperature distribution.
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Fig. 2:2. h-curve for Vogel�s model for temperature distribution.

Fig. 2:3: Velocity distribution for M for Reynolds�model
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Fig. 2:4. Temperature �eld for �4 for Reynolds�model.

Fig. 2:5: Velocity �eld for �4 for Reynolds�model
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Fig. 2:6. Velocity �eld for C for Vogel�s model.

Fig. 2:7. Temperature �eld for C for Vogel�s model.
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Fig. 2:8. Velocity �eld for B for Vogel�s model.

Fig. 2:9. Temperature �eld for B for Vogel�s model.
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Fig. 2:10. Velocity pro�le for A for Vogel�s model.

Fig. 2:11: Temperature distribution for A for Vogel�s model.
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Chapter 3

Analytical and numerical treatments

of Generalized Couette �ow through

cylinders with variable viscous

properties

3.1 Introduction

In this chapter, we have presented the �ow with temperature dependent viscosity. The medium

is assumed to be porous. Two types of geometrical problems with Reynolds� and Vogel�s

viscosity models are taken into account. In �rst case the motion of the �uid is because of a

constant pressure gradient and a movement of inward cylinder while the outward cylinder is in

the state of rest. In second problem we considered that the inward cylinder is �xed while the

disturbance in the �uid comes because of the constant pressure gradient and the movement of

outward cylinder. The governing equations are �rst simpli�ed and then solved numerically and

analytically. The numerical treatments are found by adopting shooting technique and analytical

solutions are calculated by adopting homotopy analysis method. The comparison of both

solutions are also presented. It is concluded that by taking � = 1 and � = r; the results

for the constant as well as space viscosity may be achieved. By assuming � = 0 or � ! 1
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results for non porous medium may be attained. Results obtained by shooting method and

homotopy analysis method are in good agreement.

3.2 Modeling of the problem

We consider an incompressible �ow of a third grade �uid between two coaxial cylinders. The

�uid saturates the porous medium. The viscosity of the �uid is considered to be temperature

dependent. The equations which govern the �ow of the �uid in the presence of Darcy resistance

along with heat transfer take the form

�
dV

dt
= div � +R; (3:1)

�Cp
dT

dt
= � :L+ kr2T; (3:2)

where � is the speci�c heat. The Cauchy stress tensor � for third grade �uid is de�ned as

� = �p1I+�A1+�41A2+�42A21+�1A3�2(A1A2 +A2A1)+�3(trA21)A1; (3:3)

where � is dynamic viscosity, �41; �42; �1; �2 and �3 are constants. It is to be noted that the

coe¢ cients �; �41; �42; �1; �2 and �3 satisfy the following conditions

��0; �41 � 0; j�41 + �42j �
p
24��3; �1 = �2 = 0; �3 � 0: (3:4)

The Rivilin -Ericksen tensors A1; A2 and A3 are obtained through following expressions

A1 = (rV)� +rV; (3:5)

An =
dAn
dt

+An�1L+ L
�An�1; n > 1; (3:6)

L =rV =gradV: (3:7)
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The Darcy resistance for third grade �uid model is stated as [10]

Rz = �
�1
�2

 
�+ �

�
dv

dr

�2!
V: (3:8)

Making use of velocity �eld de�ned in chapter one, the required equations of motion and energy

are de�ned as

1

r

d

dr

�
r�
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dr

�
+
2�3
r
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dr

�
r(
dv

dr
)3
�
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�2

 
�+ �

�
dv

dr

�2!
v =

@
^
p

@z
; (3:9)

�

�
dv

dr

�2
+ 2�3

�
dv

dr

�4
+ �

�
1

r

d

dr

�
r
dT

dr

��
= 0; (3:10)

where
^
p = p1 � �42

�
dv

dr

�2
: (3:11)

We have considered two types of �ow problems between coaxial cylinders.

3.2.1 Case 1: Motion of an inner cylinder

In this case, the motion of the �uid is because of a constant pressure gradient and movement

of inward cylinder while the outward cylinder is at rest, the boundary conditions are

v (R0) = v0, T (R0) = T; (3:12)

v (R1) = 0; T (R1) = T1:

3.2.2 Case 2: Movement of outer cylinder

Here, we consider that the inner cylinder is �xed while the disturbance in the �uid comes

because of the constant pressure gradient and the movement of outward cylinder. The boundary

conditions for this case are de�ned as

v (R0) = 0, T (R0) = T0, (3:13)

v (R1) = v0; T (R1) = T1,
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The dimensionless forms of equations describing motion and energy are

r
d�

dr

dv

dr
+ �(

dv

dr
+ r

d2v

dr2
) + �(

dv

dr
)2(
dv

dr
+ 3r

d2v

dr2
)� rP [�+ �(dv

dr
)2]v = rC; (3:14)

r
d2�

dr2
+
d�

dr
+ r�(

dv

dr
)2(�+ �(

dv

dr
)2) = 0: (3:15)

(case 1)

v(1) = �(1) = 1; v(b) = �(b) = 0; (3:16)

(case 2)

v(1) = �(b) = 0; v(b) = �(1) = 1: (3:17)

The nondimensional quantities used in the above equations are de�ned as

�r =
r

R0
; � =

v0�
2
0

(T0 � T1)�
; � =

(T1 � T )
(T1 � T0)

; b =
R1
R0
; � =

2v20�3
R20�0

; (3:18)

C1 =
@p1
@z
; P =

�1
R20�2

; C =
C1R

2
0

�0v0
; v =

�
v

v0
; � =

�
�

�0
:

Here �0; T1; v0; �3 and � are reference viscosity, a reference temperature (the bulk mean �uid

temperature), reference velocity, dimensional third grade parameter and the dimensionless non-

Newtonian parameter. P is porous medium parameter, �1 is porosity and k2 is the permeability

[52].

3.3 Solution of the problem

Reynolds and Vogel�s models of viscosity are considered for the current analysis, both the

models are de�ned in previous chapter, therefore to avoid repetition the governing equations

for third grade �uid for both the viscosity models are directly written as

(For Reynolds model)

1

C

dv

dr
+
r

C

d2v

dr2
� M�

C

dv

dr
� Mr
C

d�

dr

dv

dr
� Mr�

C

d2v

dr2
+
�

C
(
dv

dr
)3

+
3r�

C

d2v

dr2
(
dv

dr
)2 +

MrPv�

C
� rPv

C
� rP�

C
(
dv

dr
)2v = r; (3:19)
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r

�

d2�

dr2
+
1

�

d�

dr
+ r

�
1�M� + �(dv

dr
)2
�
(
dv

dr
)2 = 0: (3:20)

(For Vogel�s model)

B2
dv

dr
+B2r

d2v

dr2
�A�dv

dr
+
3rB2C��

C

d2v

dr2
(
dv

dr
)2

�Ard�
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dv

dr
�Ar�d

2v

dr2
+
�rB2C�

Cr
(
dv

dr
)3 � rB2Pv

+ArPv� � rB
2PC��

C
(
dv

dr
)2v � rB2C� = 0; (3:21)

rB2C�
d2�

dr2
+B2C�

d�

dr
+ rB2C�(

dv

dr
)2 �ArC��(dv

dr
)2 + rB2C���(

dv

dr
)4 = 0: (3:22)

The solution of above coupled equations have been found analytically by homotopy analysis

method. For HAM solution we require the following initial guesses for both the problems

(for case1)

v0 (r) = �0 (r) =
(r � b)
(1� b) ; (3:23)

(for case 2)

v0 (r) = �0 (r) =
(r � 1)
(b� 1) : (3:24)

The auxiliary linear operators are

$vel (v) = v
00; $temp (�) = �

00; (3:25)

which satisfy

Lvel(A41 +B41r) = 0; Ltemp(A42 +B42r) = 0; (3:26)

and A41; A42; B41; B42 are the constants.

Adopting the technique as discussed earlier, the HAM solution is directly de�ned as

(For Reynolds�model)

vm (r) =

4m+1X
n=0

&m;nr
n; m � 0; �m (r) =

4mX
n=0

{m;nrn; m � 0; (3:27)
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(For Vogel�s model)

vm (r) =

4m+1X
n=0

& 0m;nr
n; m � 0; �m (r) =

4mX
n=0

{0m;nrn; m � 0; (3:28)

where &m;n; {m;n; & 0m;n and {0m;n are constants and the numerical data of these expression are

shown through graphs in the discussion section.

3.4 Numerical solution

In the absence of dissipation, Eq. (3:19) reduces to

1

M

dv

dr
� r

b� 1
dv

dr
�
�
r � 1
b� 1

�
dv

dr
� r

�
r � 1
b� 1

�
d2v

dr2
+ rPv

�
r � 1
b� 1

�
+
r

M

d2v

dr2
+
�

M
(
dv

dr
)3 � rP�

M
(
dv

dr
)2v � rPv

M
+
3r�

M

d2v

dr2
(
dv

dr
)2 =

rC

M
: (3:29)

Second order di¤erential Eq. (3:29) subject to the boundary conditions (3:16) is solved numer-

ically by adopting shooting technique. The results are computed in a form of numerical data

which is presented and compared with the analytical solution in Table 3:1.

3.5 Graphical results and discussion

The convergence of the achieved series solutions and the in�uence of pertinent parameters in

the present investigation are reported through Figs. 3.1 to 3:14: The convergence regions in the

HAM solutions are strongly dependent upon the non-zero auxiliary parameters ~ which can be

adjusted and controlled by means of a proper value of ~: The convergence region for velocity

distribution for Reynold�s model is depicted in Fig. 3:1. One has the liberty to choose any

value of ~ in the region between �0:4 and �0:9: Convergence region is su¢ cient and meets the

required criteria for a suitable choice of value of ~.

Fig. 3:2 exhibits temperature distribution for the Reynolds�model. Increase in values of �

means particles get momentum. The viscous forces become weak as compared to momentum

forces. The velocity and hence average kinetic energy of the �uid is enlarged. The system

gains temperature. Fig. 3:3 shows comparison of models for C = �1 for velocity pro�le. It is
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evident that graph obtained for Reynolds�model is almost a straight line where as in the case

of Vogel�s�model, it is a curve.

Fig. 3:4 depicts velocity distribution. The velocity graph for C = �1 is almost a straight

line where as graphs for C = �1:5 and C = �2:5 are parabolic curves. We see that velocity

decreases form 1 to 0 for pressure gradient C = �1 and this graph has 1 as maximum value at

r = 1: Where as for pressure gradient C = �2:5 graph has 1:15 as maximum value at r = 1:2:

The linear behavior shifts to non-linear for C = �1:5 and C = �2:5: We observe, reduction in

the pressure enhances the motion and causes non-linear behavior. That is what we see in the

daily life as well. Fig. 3:5 gives comparison of velocity pro�le as obtained by shooting method

and homotopy analysis method for b = 2; M = 1; P = 1, � = 1. Solutions are in excellent

agreement.

Fig. 3:6 reveals temperature distribution. Linear behavior is observed for small values of

� but graphs become more non-linear for � = 3 and � = 5: Large �;enlarges velocity of the

�uid particles which in return enhances their kinetic energy. Thus, as a consequence the system

gains temperature. Comparison of models for � = 3 for temperature distribution is mentioned

in Fig. 3:7. Temperature distribution gets maximum value 1 at r = 1 as observed in the case

of Reynolds�model. Where as in Vogel�s model of viscosity the temperature distribution gets

maximum value 1:18 at r = 1:35: Reynolds�model shows that temperature varies directly with

the radius of the pipe. However, this is not the case as Vogel�s model predicts. Vogel�s model

gives non-linear behavior between temperature and the radius of the pipe.

Fig. 3:8 is plotted to have a look of velocity distribution for pressure gradient C in the case of

Vogel�s model. Velocity pro�le decreases as pressure gradient C increases. We can conclude that

for C < 0, velocity pro�le decreases as pressure gradient C increases. Temperature distribution

for � for Vogel�s model is given in Fig. 3:9. For � = 3 temperature is maximum at r = 1:35 and

minimum at r = 2 where as for � = 1 temperature is maximum at r = 1 and minimum at r = 2:

The graphs for � = 2 and � = 3 show that temperature variation is non-linear. Temperature

variation due to �; near the inner cylinder is more sensitive. The temperature of the �uid near

the outer cylinder is less non-linear because temperature as well as velocity of the cylinder is

zero. Fig. 3:10 is displayed for velocity �eld for the case Vogel�s model. Fig. 3:11 presents

velocity distribution for B for the Vogel�s model. Fig. 3:12 shows temperature pro�le for B for
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the Vogel�s model. Fig. 3:13 is plotted to study velocity pro�le for P for the Vogel�s model.

Fig. 3:14 is prepared to see temperature pro�le for P for the Vogel�s model.

Table 3:1: Comparison of solutions for velocity using HAM and Shooting method

when b = 2; M = 1; P = 1, � = 1

r(radius) v(velocity)(HAM ) v(velocity) (Shooting method ) Di¤erence

1 1.000000 1.000000 0.000000000

1.05 0.950000 0.957560512 0.007560512

1.10 0.900000 0.909963285 0.009963285

1.15 0.850000 0.859595377 0.009595377

1.20 0.800000 0.807452390 0.007452390

1.25 0.750000 0.754144495 0.004144495

1.30 0.7000000 0.700103718 0.000103718

1.35 0.650000 0.645663061 0.004336939

1.40 0.600000 0.591094980 0.00890502

1.45 0.550000 0.536633036 0.013366964

1.50 0.500000 0.482485455 0.017514545

1.55 0.450000 0.428844374 0.021155626

1.60 0.400000 0.375892692 0.024107308

1.65 0.350000 0.323809570 0.02619043

1.70 0.300000 0.272775248 0.027224752

1.75 0.250000 0.222975646 0.027024354

1.80 0.200000 0.174607142 0.025392858

1.85 0.150000 0.127881943 0.022118057

1.90 0.100000 0.083034529 0.016965471

1.95 0.050000 0.040329801 0.009670199

2.00 0.000000 0.000073869 0.000073869

3.6 Conclusions

In this chapter, we have investigated numerically and analytically the �ow of �uid between

coaxial cylinders with temperature dependent viscosity through porous medium. The highly
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non-linear problem is solved numerically with the help of shooting method and analytically

by powerful technique homotopy analysis method. E¤ects of the various parameters such as

Prandtl number �, viscosity parameter M , the dimensionless non-Newtonian parameter � and

porous medium parameter P on the �ow and temperature pro�les are examined. From the

present analysis, it is noted that:

1. From the present study it is found that by assuming � = 1 and � = r; the results for the

case of constant as well as space viscosity can be attained.

2. The results for non-porous medium can be achieved by letting � = 0 or �!1:

3. Results obtained by shooting method and homotopy analysis method are in good agree-

ment.

4. Temperature pro�les increase with the increase of � and � for Reynolds�model.

5. Velocity increases with the increase of B and P for Vogel�s model.

6: Velocity decreases with the increase of C and Brinkman number for Vogel�s model.

7: The increase of Brinkman number and P leads to the increase of temperature for Vogel�s

model and the pro�le decreases with rise of viscosity parameter B.

Fig. 3:1: h-curve for velocity distribution for Reynolds�model.
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Fig. 3:2: Temperature distribution for � for the Reynolds�model.
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Fig. 3:3: Comparison of models for velocity distribution.
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Fig. 3:4: Velocity distribution for C for the Reynolds�model.
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Fig. 3:5: Comparison of methods.
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Fig. 3:7: Comparison of models for � = 3 for temperature distribution.
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Fig. 3:8: Velocity distribution for C for the Vogel�s model.

Fig. 3:9 : Temperature distribution for � for Vogel�s model.
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Fig. 3:10: Velocity distribution for � for Vogel�s model.

Fig. 3:11: Velocity distribution for B for the Vogel�s model.
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Fig. 3:12: Temperature distribution for B for the Vogel�s model.

Fig. 3:13: Velocity distribution for P for the Vogel�s model.
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Fig. 3:14: Temperature distribution for P for the Vogel�s model.
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Chapter 4

An analytical treatment of

Generalized Couette non-Newtonian

nano�uid �ow with variable viscosity

4.1 Introduction

In the present chapter, we have focused our attention to highlight the study of non-Newtonian

nano�uid between coaxial cylinders with variable viscosity. The governing equations of non-

Newtonian �uid with variable viscosity along with energy and nanoparticles are given. The

coupled nonlinear equations have been solved analytically adopting homotopy analysis method.

The expressions of velocity, temperature and nanoparticles functions are discussed graphically

for emerging physical parameters.

4.2 Problem statement

Considering the same geometry as discussed in chapter 2. The �ow is induced by a constant

pressure gradient and motion of an inner cylinder. The outer cylinder is kept �xed. The heat

transfer analysis is also taken into account. The governing equations for the conservation of
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total mass, momentum, thermal energy and nanoparticles respectively are de�ned as

r:V = 0; (4:1)

�f
dV

dt
= �rp+r:� + [��p + (1� �)f�f (1� �(T � T1))g]g; (4:2)

(�c)f (
@T

@t
+V:rT ) =kr2T+(�c)p[DB5�:rT+(DT =T1)rT :rT ]; (4:3)

@�

@t
+V:r�=DBr2�+(DT =T1)r2T ; (4:4)

where �f is the density of the base �uid, �p is the density of the particles, � is volumetric volume

expansion coe¢ cient of the nano�uid, V is the velocity vector, p is the mechanical pressure, �

is the nanoparticle fraction; T is the temperature and � is the Cauchy stress tensor for third

grade �uid de�ned in previous chapter, (�c)f is heat capacity of �uid, (�c)p is heat capacity of

the nanoparticle material and � is thermal conductivity.

We choose

V = [0; 0; v(r)]; T = T (r); � = �(r): (4:5)

With the help of Eqs. (4:5) equation of continuity (4:1) is identically satis�ed, momentum,

energy and nanoparticles equations take the form

@p

@�
= 0; (4:6)

1

r

@

@r
(2r�1(

@v

@r
)2 +

1

r

@

@r
(r�2(

@v

@r
)2) =

@p

@r
; (4:7)

1

r

@

@r
(r�(

@v

@r
)2 +

1

r

@

@r
(r2�3(

@v

@r
)3) + [(�p � �f1)(�� �0) + (1� �1)�f1�(T � T1)]g =

@p

@z
; (4:8)

(�+ (�c)p(DT =T1))
@2T

@r2
+
�

r

@T

@r
+ (�c)pDB

@�

@r

@T

@r
= 0; (4:9)

DB(
@2�

@r2
+
1

r

@�

@r
) +DT =T1(

@2T

@r2
+
1

r

@T

@r
) = 0: (4:10)
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Using the following nondimensional quantities in the above equations

r =
�r

R
; � =

(
�
T � T1)
(T0 � T1)

; � =
(
�
�� �1)
(�0 � �1)

; b =
R1
R0
; � =

2�3v
2
0

R2�0
;

C1 =
@p

@z
; Br =

�
�p � �f1

�
R2 (�0 � �1) g
�0v0

; C =
C1R

2

�0v0
;

v =

�
v

v0
; � =

�
�

�0
; Gr =

(1� �1) �f1R2 (T0 � T1) g
�0v0

;

Nt =
(�c)pDT (T0 � T1)

(�c)f �T0
; Nb =

(�c)pDB (�0 � �1)
(�c)f �

: (4:11)

Making use of Eq. (4:11), Eqs. (4:6) to (4:10) take the following form

r

Gr�

d�

dr

dv

dr
+

�

Gr�

�
dv

dr
+ r

d2v

dr2

�
+

�

Gr�

�
dv

dr

�2�dv
dr
+ 3r

d2v

dr2

�
+
rBr�

Gr�
� rC

Gr�
+ r = 0; (4:12)

d2�

d2r
(r�+ r�1Nt) +

�
�+ rNb

d�

dr

�
d�

dr
= 0; (4:13)

r

�
Nb

Nt

d2�

d2r
+
d2�

d2r

�
+
Nb

Nt

d�

dr
+
d�

dr
= 0: (4:14)

The corresponding boundary conditions are

v(1) = �(1) = �(1) = 1; (4:15)

v(b) = �(b) = �(b) = 0: (4:16)

4.3 Solution of the problem

The governing equations for both the viscosity models (discussed in previous chapter) are

(For Reynolds model)

�
1

r
� M
r
� �Md�

dr

�
dv

dr
+
d2v

dr2
(1�M�) +

�
�

r

dv

dr
+ 3�

d2v

dr2

�
(
dv

dr
)2 +Gr� +Br� = C; (4:17)

(r�+ r�1Nt � r�1M�Nt)
d2�

dr2
+

�
(rNb+ r�MNb)

d�

dr
+ �

�
d�

dr
= 0; (4:18)
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(Nb+NbM�)
d2�

dr2
+ (Nt�NtM�) d

2�

dr2
+

�
Nb

r
+
NbM�

r

�
d�

dr
�
�
NtM�

r
� Nt

r

�
d�

dr
= 0:

(4:19)

(For Vogel�s model)

�
C

rC�
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�
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�
r�+

r�1NtC

C�
� r�1ACNt�

B2C�

�
d2�

dr2
+

�
�+

rNbC

C�
d�

dr

�
d�

dr
+ r

ACNb�

B2C�
d�

dr

d�

dr
= 0; (4:21)
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CNb
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CNb
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1

r
+
ACNb�

B2rC�
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�ACNt�
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�
NtC

S
� ACNt�

B2C�

�
d2�
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= 0: (4:22)

The solution of above equations have been found analytically by homotopy analysis method.

For HAM solution we require the following initial guesses

v0 (r) =
(b� r)
(b� 1) ; (4:23)

�0 (r) =
(b� r)
(b� 1) ; (4:24)

�0 (r) =
(b� r)
(b� 1) : (4:25)

The auxiliary linear operators are

$vel (v) = v
00; $temp (�) = �

00; $�r (�) = �
00; (4:26)

which satisfy

Lvr(A51 +B51r) = 0; (4:27)

L�r(A52 +B52r) = 0; (4:28)

here A51; A52; A53; B51; B52; B53 are the constants.
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Adopting the similar procedure as discussed earlier, the HAM solution is straightforward

written as

(For Reynolds model)

v =
X

vm (r) =
3m+1X
n=0

am;nr
n; m � 0;

� =
X

�m (r) =

3m+1X
n=0

dm;nr
n; � =

X
�m (r) =

3mX
n=0

em;nr
n;m � 0: (4:29)

(For Vogel�s model)

v =
X

vm (r) =
3m+1X
n=0

a
0
m;nr

n; m � 0;

� =
X

�m (r) =
3m+1X
n=0

d0m;nr
n; � =

X
�m (r) =

3mX
n=0

e0m;nr
n;m � 0 (4:30)

where am;n, dm;n, em;n; a0m;n , d
0
m;nand e

0
m;n are constants.

4.4 Graphical results and discussion

The convergence of achieved series solutions and in�uence of pertinent parameters in the present

investigation are reported through Figs. 4:1 to 4:13. The e¤ects of Nt, Nb, A and B on velocity,

temperature and nanoparticles concentration pro�les are observed. Figs. 4:1 to 4:3 have been

plotted for Reynolds�model. Fig. 4:1 is prepared to see the convergence region for velocity

pro�le. Fig. 4:2 is prepared to highlight the convergence region for temperature pro�le. Fig.

4:3 presents the convergence region for the nanoparticles concentration pro�le. Figs. 4:4 to 4:6

are prepared to check the convergence region for the nanoparticles concentration, temperature

and velocity pro�les for the Vogel�s model.

Fig. 4:7 has been plotted for Reynolds�model. Fig. 4:7 is displayed for the nanoparticles

concentration distribution when di¤erent values of Nt are used. It can be seen that with an

increase in Nt the nanoparticles concentration pro�le decreases. Figs. 4:8 to 4:13 have been

plotted for Vogels�model. Fig. 4:8 is plotted for the temperature for A. The relation (2:49)

63



explains the fact that viscosity decreases with rise of A: When we increase A, viscous forces

become weaker. The �uid particles face less opposition. Ultimately, the velocity of �uid particles

increases. This increase in the velocity is responsible for enhancement in average kinetic energy

of the particles. As temperature measures the kinetic energy of the system. Consequently,

temperature of �uid rises up.

Fig. 4:9 is prepared in order to observe the behavior of the nanoparticles concentration

distribution for A. It is noted that nanoparticles concentration distribution decreases with

increase in A. As discussed above, when we increase A, viscous forces become weaker. The

mutual distance between the particles increases. Mass per unit volume reduces. That is why

nanoparticles concentration distribution decreases with increase in A. Fig. 4:10 predicts the

nanoparticles concentration pro�le for B: The nanoparticles concentration pro�les increases

with rise in B: The relation (2:49) describes the fact that viscosity increases with rise of B:

When we increase B, viscous forces become stronger. The �uid particles face more opposition.

The mutual distance between the particles decreases. Mass per unit volume increases. That is

why nanoparticles concentration distribution increases with increase in B.

Fig. 4:11 predicts temperature distribution for B. It is observed that temperature decreases

with rise in B. As explained earlier, the relation (2:49) describes the fact that viscosity increases

with rise of B: When we increase B, viscous forces become stronger. The �uid particles face

more opposition. The velocity of �uid reduces. Since kinetic energy and velocity are directly

proportional. The average kinetic energy of the system reduces. As temperature and kinetic

energy of a system are strongly linked i.e. temperature is a measure of average kinetic energy of

a system. Consequently, the temperature of the �uid decreases with rise in B: The velocity �eld

is presented in Fig. 4:12 for B: Fig. 4:13 reveals the nanoparticles concentration distribution

for Nt.

4.5 Conclusions

In this chapter, we have studied non-Newtonian nano�uid between coaxial cylinders with vari-

able viscosity. The governing equations of non-Newtonian �uid with variable viscosity along

with energy and nanoparticles are presented. The coupled nonlinear equations have been solved
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analytically with the help of HAM. E¤ects of the various parameters on the �ow and tempera-

ture pro�les are examined. The following conclusions are drawn.

1. The nanoparticles concentration leads to decrease by increasing thermophorsis parameter

for Reynolds model.

2: Temperature �eld decreases by the increase of viscosity parameter B for Vogel�s model.

3: The increase of B and thermophorsis parameter lead to the increase of nanoparticles

concentration pro�le for Vogel�s model and the pro�le decreases with rise of viscosity parameter

A.

4. Temperature increases with the increase of A for Vogel�s model.

5. The nanoparticles concentration pro�le decreases with rise of viscosity parameter A for

the case of Vogel�s model.

Fig. 4:1: h-curve for velocity distribution for the Reynolds�model.
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Fig. 4:2: h-curve for temperature distribution for the Reynolds�model.

Fig. 4:3: h-curve for the nanoparticles concentration distribution for the

Reynolds�model.
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Fig. 4:4: h-curve for the nanoparticles concentration distribution for the

Vogel�s model.

Fig. 4:5: h-curve for temperature distribution for the Vogel�s model.
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Fig. 4:6: h-curve for velocity distribution for the Vogel�s model.

Fig. 4:7: The nanoparticles concentration distribution for Nt for Reynolds�

model.
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Fig. 4:8. Temperature variation along radial distance for various values of

A for Vogel�s Model.

Fig. 4:9. The nanoparticles concentration distribution for A for Vogel�s

Model.
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Fig. 4:10. The nanoparticles concentration distribution for B for Vogel�s

Model.

Fig: 4:11. Temperature distribution for B for Vogel�s Model.
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Fig. 4:12: Velocity distribution for B for Vogel�s model.

Fig. 4:13. The nanoparticles concentration distribution for Nt for Vogel�s

Model.

71



Order of approximation
���v00(1)��� ����00(1)��� ����00(1)���

5 1.52960 1.42838 0.005

10 1.53939 1.44088 0.006

15 1.53917 1.44093 0.006

20 1.53917 1.44093 0.006

25 1.53917 1.44093 0.006

30 1.53917 1.44093 0.006

35 1.53917 1.44093 0.006

Table : 4:1. Convergence table for Reynolds�model for M = 0:1, � = 0:001; Gr = 0:1; � = 1;

�1 = 1; Br = 0:1; h� = �0:70; h� = �0:75; hv = �0:65; Nt = 0:1; C = �0:1.
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Chapter 5

Boundary layer �ow of an

Eyring-Powell model �uid due to a

stretching cylinder with variable

viscosity

5.1 Introduction

The present investigation consists of an analytical treatment of a steady boundary layer �ow of

an Eyring-Powell model �uid due to a stretching cylinder with temperature dependent variable

viscosity. The governing two dimensional nonlinear partial di¤erential equations of momentum

and energy are simpli�ed using usual similarity transformations and are solved by a powerful

technique homotopy analysis method. The physical features of various parameters intrinsic to

the problem are discussed through graphs.

5.2 Description of the problem

Consider �ow of an incompressible Eyring-Powell model �uid through a tube of radius a. The

�ow is due to stretching of the tube in axial direction. The axis of tube is taken along z-axis.

The ambient �uid temperature is T1 and Tw is temperature at tube surface. The equations
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which govern the problem are
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u
@T

@r
+ w

@T

@z
= �3

�
@2T

@r2
+
1

r

@T

@r

�
: (5:4)

The corresponding boundary conditions are de�ned as

u = 0; T = Tw; w = ww; at r = a (5:5)

w ! 0; T ! T1; as r !1;
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Fig. 5a: Geometry of the problem.

where u is the velocity component along radial direction and w is velocity along axial directions.

Here ww = 2cz in which c is a constant. Further �3; �; �; T and � are thermal di¤usivity, the

kinematic viscosity, �uid density, �uid temperature and viscosity of the �uid. Introducing the

following similarity transformations

� =
�r
a

�2
; u =

�caf (�)
p
�

; w = 2czf 0 (�) ; � =
T � T1
Tw � T1

: (5:6)

Using the boundary layer approach and nondimensional parameters de�ned in last chapter, we

arrive at
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�
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A�2ff 0f 00 � 16A�2f
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�
ff 0f 000 �
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+ 4 (�+ E1) �
3f 000 � 304

3
A�2ff 0f 00 � 352

3
A�3f 0(f 00)2

+
176

3
A�2f 00(f 0)2 + 64A�f(f 00)2 + 32A� (f)2 f 00 � 32A�3
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f 0
�2
f 000 + 32A�3f 0f 00

+16A�ff 0f 00 + �Re �2
�
ff 00 � f 02

�
+ 8�3 @�@� f

00 � 8
3Af

2f 00 = 0; (5:7)

��00 + (1 + RePr f) �0 = 0; (5:8)

where

Re =
ca2

2�
, Pr =

�

�3
; E1 =

1

���c1
; E2 =

c3

��� (c1)
3 : (5:9)
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The boundary conditions in dimensionless form are

f (1) = 0; f
0
(1) = 1; � (1) = 1; f 0 (1) ! 0; � (1)! 0: (5:10)

5.3 Series Solutions for Reynolds model

Invoking Eq. (2:28b) into Eqs. (5:7) to (5:8), one has
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�
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�
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��00 + (1 + RePr f) �0 = 0: (5:12)

Since Eqs. (5.11) and (5.12) are highly nonlinear ordinary di¤erential equations, their exact

solutions are impossible therefore we are interested to compute their analytical solutions with

the help of powerful technique homotopy analysis method.

For HAM solution, we choose the following initial estimate

f0 = 1� e1�� (5:13)

�0 = e
1��; (5:14)

and the linear operators are chosen as

L(f) = f 000 + f 00 ; (5:15)

L(�) = �00 + �0: (5:16)
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Zeroth order deformation problem is de�ned as

(1� q)Lf [f(�; q)� fo(�)] = q~Nf [f(�; q); �(�; q)]; (5:17)
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N�[f(�; q); �(�; q)] = ��
00 + (1 + RePr f) �0: (5:22)

The mth order deformation equations are de�ned as

Lf [fm(�)� �mfm�1(�)] = ~Rf (�); (5:23)

L�[�m(�)� �m�m�1(�)] = ~R�(�); (5:24)

where
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; (5:25)
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It is found that fm(�) and �m(�) can be written as
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The solution thus can be de�ned as
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5.4 Series solutions for Vogel�s model

Invoking Eq. (2:49), Eqs. (5:7) and (5:8) become
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��00 + (1 + RePr f) �0 = 0: (5:32)

The solution of this case is straightforward written as:

fm(�) =
mX
n=0
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l=0

b
00
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3ne(2l+1)�(3n+1)�; (5:33)

�m(�) =
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l=0

c
00
m;n�

3ne2l�3n�; m � 0;

where b
00
m;n and c

00
m;n are constants.

5.5 Graphical results and discussion

In order to report the e¤ects of sundry parameters in the present investigation we plotted Figs.

5:3 to 5:11: Fig. 5:1 is prepared to see the convergence region for velocity for Reynolds�model.

Fig. 5:2 is prepared to highlight the convergence region for temperature for Reynolds�model.

Fig. 5:3 exhibits velocity pro�le for Re for Reynolds�model. It can be seen that velocity

decreases as Re increases. Fig. 5:4 gives temperature pro�le for Pr for Reynolds� model.

The temperature pro�les for air (Pr = 0:7) and for water (Pr = 7) can be observed here. The

temperature pro�le decreases from 1 to zero as � increases from 1 to 1. The �uid temperature

depends upon the distance from surface of the tube. The �uid temperature attains maximum

value at the surface of the tube. It is to note that temperature pro�le decreases with increase
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in Pr. In Fig. 5:5 temperature pro�le for Re for Reynolds�model can be seen.

Fig. 5:6 presents velocity pro�le for C for Vogel�s model. With the increase of pressure

gradient the �uid particles are accelerated in axial direction. Since particles are forced in the

same direction as that of motion of �uid and movement of inner cylinder, ultimately the velocity

of the �uid rises. That is what we are observing in Fig. 5:6: E¤ects of Re on velocity pro�le for

Vogel�s model are displayed in Fig. 5:7. The velocity decreases as we increase the values of Re :

Fig. 5:8 reveals velocity pro�le for E1 for Vogel�s model. The velocity �eld decreases as we

increase the values of E1. Temperature distribution for E2 is displayed in Fig. 5:9: It is noted

that temperature decreases with increase in E2: The temperature decreases from 1 to zero as

the �uid gets away from outer surface of cylinder. Maximum temperature is attained at the

surface of the tube. Temperature distribution for Pr is shown in Fig. 5:10: It is observed that

the temperature decreases with increase in Pr : As we have seen in case of E2, temperature

decreases from 1 to zero as the �uid gets away from outer surface of cylinder. Maximum

temperature is attained at the surface of the tube. Fig. 5:11 gives temperature pro�le for Re

for Vogel�s model. It can be seen that temperature decreases with increase in Re.

5.6 Conclusions

In this chapter, we have investigated analytically the heat transfer �ow of an Eyring-Powell

model �uid due to a stretching cylinder. E¤ects of the various parameters such as Re, E2; M;

C; A; E1 and Pr are examined: It is concluded that:

1. The velocity decreases from 1 to zero as � increases from 1 to 1:

2. Temperature decreases from 1 to zero as � increases from 1 to 1:

3. The similarity pro�le f(�) increases from zero.

4. The similarity pro�le f 0(�) decreases from unity.

5. The thermal boundary layer decreases with increased Prandtl number and Reynolds

number.
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Fig. 5:1: h-curve for velocity for Reynolds�model.

Fig. 5:2: h-curve for temperature for Reynolds�model.
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Fig. 5:3: Velocity distribution for Re for Reynolds�model.

Fig. 5:4: Temperature distribution for Pr for Reynolds�model.

82



Fig. 5:5: Temperature distribution for Re for Reynolds�model

Fig. 5:6: Velocity distribution for C for Vogel�s model.
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Fig. 5:7: Velocity distribution for Re for Vogel�s model.

Fig. 5:8: Velocity distribution for E1 for Vogel�s model.
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Fig. 5:9: Temperature distribution for E2 for Vogel�s model.

Fig. 5:10: Temperature distribution for Pr for Vogel�s model.
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Fig. 5:11: Temperature distribution for Re for Vogel�s model.
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Chapter 6

Boundary layer �ow of a Walter�s B

�uid due to a stretching cylinder

with temperature dependent

viscosity

6.1 Introduction

This chapter presents study of boundary layer �ow of a Walter�s B �uid due to a stretching

cylinder with temperature dependent variable viscosity. The e¤ects of heat transfer are also

discussed. The governing equations have been transformed into non-linear ordinary di¤erential

equations with the help of a suitable similarity transformation and then the reduced nonlin-

ear boundary value problem is solved analytically by a powerful technique homotopy analysis

method. Two models are considered to analyze e¤ects of variable viscosity on two dimensional

steady boundary layer �ow. For the validity of homotopy analysis method solution h-curves are

plotted. The graphical results are obtained to gauge the e¤ects of various parameters intrinsic

to the problem.
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6.2 Description of the problem

The governing equations are
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The boundary conditions are de�ned through Eq. 5:5:Introducing the following similarity trans-

formations
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�2
; u =

�caf (�)
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: (6:4a)

The dimensionless problem which can describe the boundary �ow is given by
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The boundary conditions in dimensionless form are

f (1) = 0; f
0
(1) = 1; � (1) = 1; f 0 (1) ! 0; � (1)! 0: (6:8)

6.3 Solution of the problem

Reynolds and Vogel�s models of viscosity are considered for the current analysis, both the

models are de�ned in previous chapters, therefore to avoid repetition the governing equations

for Walter�s B �uid for both the viscosity models are directly written as

(For Reynolds model)
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(For Vogel�s model)
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Using the initial guesses and linear operators de�ned in Eqs. (5:13) to (5:16), HAM solution

for both models can be written as
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fm(�) =

2mX
n=0

mX
l=0

b
0000
m;n�

nel�n�;

�m(�) =

mX
n=1

mX
l=0

c
0000
m;n�

2(n�1)el�(2n+1)�; m � 0; (6:13)

where b000m;n; b
0000
m;n,c

000
m;n and c

0000
m;n are constants.

6.4 Graphical results and discussion

In order to report the convergence of the obtained series solutions and the e¤ects of sundry

parameters in the present investigation we plotted Figs. 6:1 to 6:16. Figs. 6:1 to 6:2 are prepared

to see the convergence region. Fig. 6:1 is plotted to see the convergence region for velocity for

Reynolds�model. Fig. 6:2 is prepared to highlight the convergence region for temperature for

Reynolds�model. Fig. 6:3 shows the velocity variation for Ec for Reynolds�model. It can be

seen that velocity increases as Ec increases. Fig. 6:4 is displayed to see the velocity variation

for Reynolds�model for M , it is depicted that velocity decreases as M increases. Fig. 6:5

presents velocity distribution for Pr for Reynolds�model. The velocity increases with increase

in Pr :

Fig. 6:6 reveals velocity pro�le for Re for Vogel�s model. The velocity decreases with

increase in Re : Fig. 6:7 shows the temperature variation for �5 for Reynolds�model. It can

be seen that velocity decreases as �5 increases. Fig. 6:8 gives the temperature variation for M

for Reynolds�model. It can be seen that temperature decreases as M increases. Fig. 6:9 is

displayed to see the velocity variation for Vogel�s model for Ec. It can be seen that velocity

decreases with increase in Ec: Fig. 6:10 exhibits the velocity variation for Vogel�s model for Pr.

It is observed that velocity decreases with increase in Pr : Fig. 6:11 depicts velocity pro�le for

Re for Vogel�s model. It is noted that velocity increases with increase in Re :

Fig. 6:12 presents temperature pro�le for �5 for Vogel�s model. The temperature decreases

with increase in �5. Fig. 6:13 reveals temperature pro�le for Ec for Vogel�s model. It is depicted

that temperature decreases as Ec increases. Fig. 6:14 is plotted to see the temperature pro�le

variation for C for Vogel�s model. Fig. 6:15 reveals temperature pro�le for A for Vogel�s model.

It is seen that temperature increases as A increases. The relation (2:49) explains the fact that
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viscosity decreases with rise of A: When we increase A, viscous forces become weaker. The

�uid particles face less opposition. Ultimately, the velocity of �uid particles increases. This

increase in the velocity is responsible for enhancement in average kinetic energy of the particles.

As temperature measures the kinetic energy of the system. Consequently, temperature of �uid

rises up.

Fig. 6:16 reveals temperature pro�le for Pr for Vogel�s model. It is seen that temperature

decreases as Pr increases. The temperature decreases from 1 to zero as the �uid gets away from

outer surface of cylinder. Maximum temperature is attained at the surface of the tube.

6.5 Conclusions

In this chapter, we have investigated analytically the heat transfer �ow of a Walter�s B �uid due

to a stretching cylinder. The highly non-linear problem is then solved by homotopy analysis

method. E¤ects of the various parameters are examined: It is concluded :

1. The velocity pro�le decreases with increase in Re, �5 and M in case of Reynolds�model

and it decreases with increase in Ec and Pr.

2. In Reynolds�model the temperature pro�le decreases with increase in �5 and M:

3. Reynold number Re; �5 and A lead to increase the velocity pro�le in Vogel�s model

where as this pro�le decreases with increase in Ec and Pr. It means e¤ects of Ec and prandtl

number on velocity are almost similar in both viscosity models.

4. The temperature pro�le increases with increase in A: This pro�le decreases with rise in

Ec, �5 and prandtl number in Vogel�s model.
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Fig. 6:1: h-curve for velocity pro�le for Reynolds�model.

Fig. 6:2: h-curve for temperature pro�le for Reynolds�model.
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Fig. 6:3: Velocity distribution for Ec for Reynolds�model.

Fig. 6:4: Velocity distribution for M for Reynolds�model.
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Fig. 6:5: Velocity distribution for Pr for Reynolds�model.

Fig. 6:6: Velocity distribution for Re for Reynolds�model.
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Fig. 6:7: Temperature distribution for �5 for Reynolds�model.

Fig. 6:8: Temperature distribution for M for Reynolds�model.
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Fig. 6:9: Velocity distribution for Ec for Vogel�s model.

Fig. 6:10: Velocity distribution for Pr for Vogel�s model.
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Fig. 6:11: Velocity distribution for Re for Vogel�s model.

Fig. 6:12: Temperature distribution for �5 for Vogel�s model.

97



Fig. 6:13: Temperature distribution for Ec for Vogel�s model.

Fig. 6:14: Temperature distribution for C for Vogel�s model.
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Fig. 6:15: Temperature distribution for A for Vogel�s model.

Fig. 6:16: Temperature distribution for Pr for Vogel�s model.
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Chapter 7

Boundary layer �ow of a hyperbolic

tangent �uid due to a stretching

cylinder with temperature

dependent viscosity

7.1 Introduction

The objective of this chapter is to present investigation consisting of an analytical solution of

a steady boundary layer �ow of a hyperbolic tangent �uid due to a stretching cylinder with

temperature dependent variable viscosity. The two dimensional boundary layer equations of

hyperbolic tangent �uid are modelled in cylindrical coordinates. The governing partial di¤er-

ential equations have been transformed into non-linear ordinary di¤erential equations with help

of usual similarity transformations. Non-linear ordinary di¤erential equations attained in this

way are then solved by a powerful technique homotopy analysis method. To highlight e¤ects

of variable viscous properties on boundary layer �ow two models of variable viscosity, namely,

Reynolds�and Vogel�s model are taken into account. The h-curves are drawn in order to check

convergence. The e¤ects of emerging parameters intrinsic to the problem are studied by plotting

graphs.
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7.2 Description of the problem

The governing equations are
@(rw)
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+
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The boundary conditions are de�ned through Eq. 5:5: Introducing the following similarity

transformations

� =
�r
a

�2
; u =

�caf (�)
p
�

; w = 2czf 0 (�) ; � =
T � T1
Tw � T1

: (7:4a)

The dimensionless problem which can describe the boundary �ow is given by

2�� (1� n2)
�
�f 000 + f 00

�
+Re �

�
ff 00 � f 02

�
+ 4
p
2n2We��f

00 �2f 000 + f 00� = 0; (7:5)

��00 + (1 + RePr f) �0 = 0; (7:6)

where

We =
�c

a
; Re =

ca2

2�
, Pr =

�

�3
: (7:7)

The boundary conditions in dimensionless form are

f (1) = 0; f
0
(1) = 1; � (1) = 1; f 0 (1) ! 0; � (1)! 0: (7:8)
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7.3 Solution of the problem

The governing equations for hyperbolic tangent �uid for Reynolds� and Vogel�s models of

viscosity are directly written as

(For Reynolds�model)
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(For Vogel�s model)

2C (1� n2) �
C�

�
�f 000 + f 00

�
� 2A�C (1� n2) �

B2C�
�
�f 000 + f 00

�
+Re �

�
ff 00 � f 02

�
+
4
p
2n2�CWe

C�
f 00
�
2f 000 + f 00

�
� 4

p
2An2�C�We

B2C�
�
2f 000f 00 + (f 00)2

�
= 0; (7:10)

��00 + (1 + RePr f) �0 = 0; (7:11)

Using the initial guesses and linear operators de�ned in Eqs. 5:13 to 5:16, HAM solution for

above mentioned models can be written as

fm(�) =
mX
n=0

mX
l=0
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where 
m;n; �m;n; �
0
m;n and 


0
m;nare constants.
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7.4 Graphical results and discussion

To report the convergence of the obtained series solutions and the e¤ects of sundry parameters

in the present investigation we plotted Figs. 7:1 to 7:10. The convergence regions in the

HAM solutions are strongly dependent upon the non-zero auxiliary parameters ~ which can be

adjusted and controlled by means of a proper value of ~: To see the range of admissible value of

~; ~�curves are displayed in Figs. 7.1 to 7.3: Figs. 7:1 and 7:2 correspond to Reynolds�model.

The horizontal line in Fig. 7:1 shows the convergence region for velocity and Fig. 7:2 depicts

the convergence region for temperature. Fig. 7:3 is prepared for h-curve for temperature pro�le

for Vogel�s model.

Fig. 7:4 predicts velocity pro�le for Re for Reynolds�model. It is observed that velocity

decreases as Re increases. Fig. 7:5 presents temperature pro�le for Pr for Reynolds�model. It

is noted that temperature decreases as Pr increases. The temperature pro�le decreases from

1 to zero as � increases from 1 to 1. The �uid temperature depends upon the distance from

surface of the tube. The �uid temperature attains maximum value at the surface of the tube.

Fig. 7:6 shows temperature pro�le for Re : As we have seen in case of Pr, the temperature

pro�le decreases from 1 to zero as � increases from 1 to 1. The �uid temperature depends

upon the distance from surface of the tube. The �uid temperature attains maximum value

at the surface of the tube. Fig. 7:7 is displayed to examine velocity pro�le for C for Vogel�s

model. In this case velocity decreases with increase in C. Fig. 7:8 gives velocity pro�le for

Re for Vogel�s model. Velocity pro�le decreases as Re increases. The velocity pro�le decreases

from 1 to zero as � increases from 1 to 1. The �uid velocity depends upon the distance from

surface of the tube. The �uid velocity attains maximum value at the surface of the tube.

Fig. 7:9 studies temperature pro�le for Pr for Vogel�s model. It is noted that temperature

decreases as Pr increases. Fig. 7:10 exhibits temperature pro�le for Re for Vogel�s model. It

is seen that temperature decreases as Re increases.

7.5 Conclusions

In this chapter, we have investigated analytically the heat transfer �ow of a hyperbolic tangent

�uid due to a stretching cylinder with variable viscosity. The governing equations have been
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transformed into non-linear ordinary di¤erential equations using similarity transformations.

The homotopy analysis method is employed to get the series solution of thus obtained highly

non-linear problem. E¤ects of the involved parameters are examined with the help of graphs:

It is concluded that:

1. The velocity and f(�) pro�les decrease with increase in Re and We:

2. Temperature pro�le increases with rise in B; C� and We:

Fig. 7:1: h-curve for velocity pro�le for Reynolds�model.
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Fig. 7:2: h-curve for temperature pro�le for Reynolds�model.

Fig. 7:3: h-curve for temperature pro�le for Vogel�s model.
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Fig. 7:4: Velocity pro�le for di¤erent values of Re for Reynolds�model.

Fig. 7:5: Temperature pro�le for Pr for Reynolds�model.
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Fig. 7:6: Temperature pro�le for Re for Reynolds�model.

Fig. 7:7: Velocity distribution for C for Vogel�s model.
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Fig. 7:8: Velocity distribution for Re for Vogel�s model.

Fig. 7:9: Temperature pro�le for Pr for Vogel�s model.
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Fig. 7:10: Temperature pro�le for Re for Vogel�s model.
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Chapter 8

Conclusions

The main points of this thesis can be summarized as follows:

1. Results obtained by shooting method and homotopy analysis method are in good agree-

ment.

2. Velocity �eld increases with rise of pressure gradient for Generalized Couette �ow for

Je¤ery-six constant �uid.

3. Velocity �eld decreases with rise of viscosity parameter for Vogel�s model for an Oldroyd

8-constant �uid.

4. Temperature pro�le decreases with rise of viscosity parameter for Vogel�s model for an

Oldroyd 8-constant �uid.

5. It is found that by assuming � = 1 and � = r; the results for the case of constant as well

as space viscosity can be attained for third grade �uid �ow with variable viscous properties.

6. Velocity increases with the increase of porous medium parameter for Vogel�s model for

third grade �uid.

7. Velocity increases with the increase of Brinkman number for Vogel�s model for third

grade �uid.

8. Temperature increases with the increase of Brinkman number for Vogel�s model for third

grade �uid.

9. Velocity increases with the increase of viscosity parameter for Reynolds�model for an

Oldroyd 8-constant �uid.

10. Temperature increases with the increase of Brinkman number for Reynolds�model for
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third grade �uid.

11. Temperature increases with the increase of porous medium parameter for Vogel�s model

for third grade �uid.

12. It is obsreved that velocity increases with the increase of brownian motion parameter

for Reynolds�model for non-Newtonian nano �uid �ow.

13. Nanoparticle concentration pro�le increases with the increase of thermophoresis para-

meter for Vogel�s model for non-Newtonian nano �uid �ow.

14. Nanoparticle concentration pro�le increases with the increase of brownian motion pa-

rameter for Reynolds�model for non-Newtonian nano �uid �ow.

15. Nanoparticle concentration pro�le decreases with the increase of thermophoresis para-

meter for Reynolds�model for non-Newtonian nano �uid �ow.

16. The thermal boundary layer decreases with increased Prandtl number and Reynolds

number in case of Eyring-Powell model �uid �ow due to stretching cylinder.

17. E¤ects of prandtl number and Reynolds number on velocity pro�le are opposite in case

of Reynolds�model for Walter�s B �uid �ow.

18. E¤ects of viscosity parameter on velocity and temperature pro�les are similar in case

of Reynolds�model for Walter�s B �uid �ow.
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