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Preface 
 
 
 In recent years, the analysis of non-Newtonian fluids has acquired great importance. In industrial 

and technological applications, non-Newtonian fluids are now acknowledged as more appropriate 

than Newtonian fluids. The governing equations which arise in case of non-Newtonian fluids are 

more complicated, of higher order and more non-linear compared to Navier-Stokes equations. In 

such case, one needs additional boundary conditions for obtaining a unique solution. Rajagopal 

[1,2] discussed the issue of additional boundary conditions regarding the existence and 

uniqueness of the solution. Although the flow characteristics of non-Newtonian fluids are more 

complex, still such fluids are on the leading edge of research in fluid mechanics. 

    The boundary layer flows over a stretching sheet have attracted the attention of many 

investigators because of their wide applications. Such flows encounter in metal extrusion, metal 

spinning, continuous stretching of plastic films and artificial fibers, in the manufacture of 

crystalline materials, polymeric sheets and sheet glass. Sakiadis [3] was probably the first to study 

the boundary layer flow over a stretched surface moving with a constant velocity. Later on, Crane 

[4] reported analytical solution of boundary layer flow of an incompressible viscous fluid over a 

stretching sheet. Schowalter [5] considered the case of the boundary layer flow of non-Newtonian 

power-law fluid and gave the equations governing the self similar flow of pseudoplastic fluid. 

Followed by this, many investigators such as Chen and Char [6], Rajagopal [7] and Banks [8] 

considered the various aspects of the related problem of a stretched sheet with a linear velocity 

and different thermal boundary conditions. The work on the unsteady boundary layer flows is 

very scarce in the literature. Much importance has been given to steady flow problems. However, 

unsteady boundary-layer flows due to an impulsively stretching surface were investigated by 

some researchers [9-12]. 

Magnetohydrodynamics (MHD) flow is continuing to be an interesting area of research due to its 

practical applications in chemical engineering, electrochemistry and polymer processing. Initially, 

the MHD flows of non-Newtonian fluids were studied by Sarpkaya [13]. The MHD flow over a 

stretching surface was studied by a number of researchers [14-17]. 

    The work on axisymmetric flow over a radial stretching sheet [18-20] is very scarce in the 

literature. Motivated by the aforementioned facts, the objective of the present dissertation is 

therefore to investigate the unsteady MHD axisymmetric flows of power-law fluid over a radially 

stretching sheet. 

    The entire work in the dissertation has been divided into two chapters. 



    Chapter 1 contains the review of the work by Xu and Liao [21]. In this chapter the analytical 

solutions for unsteady magnetohydrodynamic flows of non-Newtonian fluids over a stretching 

plate are constructed. The analytical solutions are obtained by using the homotopy analysis 

method (HAM) [22-24], which are valid for all values of the dimensionless time. The impact of 

the emerging flow parameters on the velocity is highlighted and examined graphically. 

    Chapter 2 discusses the unsteady MHD axisymmetric flow of power-law fluid over a radially 

stretching sheet. The axisymmetric flow equations are reduced by the help of similarity 

transformations and then solved analytically via homotopy analysis method. Finally, the influence 

of the emerging flow parameters are plotted and discussed. 
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Chapter 1

Series solutions of unsteady

magnetohydrodynamic �ow of

non-Newtonian �uids caused by an

impulsively stretching plate

1.1 Introduction

This chapter describes the unsteady, incompressible, magnetohydrodynamic viscous �ow of non-

Newtonain �uids caused by an impulsively stretching plate under the in�uence of a transverse

magnetic �eld. By using similarity transformations, the modeled non-linear partial di¤erential

equations in three independent variables are reduced to a single partial di¤erential equation

in two independent variables. An analytical technique, namely the homotopy analysis method

(HAM) is used to give analytic solution. The analytic series solutions are uniformly valid for

all non-dimensional time 0 � � < +1, in the whole spatial region 0 � � < 1. Finally,

the in�uence of various emerging �ow parameters are shown and discussed. This chapter is a

detailed review of a paper by Xu and Liao [21] :
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1.2 Formulation of the problem

Consider the unsteady, two-dimensional magnetohydrodynamic �ow of non-Newtonian �uids

caused by an impulsively stretching plate. The �uid is assumed to be electrically conducting,

obeying the power-law model in the presence of a transverse magnetic �eld. The �at rigid plate

is in xz�plane and the �ow being con�ned to y > 0.

The governing equations for unsteady MHD �ows are given as follows

divV = 0; (1.1)

�
dV

dt
=r �T+ J�B; (1.2)

whereV is the velocity vector, T the Cauchy stress tensor, J the current density andB = B0+b,

the total magnetic �eld with b the induced magnetic �eld and B0 the applied magnetic �eld.

It is assumed that the magnetic Reynolds number is small so that the induced magnetic �eld

is neglected in comparison to the applied magnetic �eld, so that B = B0:

Figure 1:1: Physical model for the planar stretching

sheet.
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By generalized Ohm�s law

J =� (E+V �B) ; (1.3)

where � and E denote the electrical conductivity and the total electrical �eld, respectively.

In the present case, we have assumed that the electric �eld is absent, therefore, Eq. (1:3)

becomes

J =� (V �B) : (1.4)

For an electrically conducting �uid, the Maxwell equations are

r �B = 0; r�B = �0J; r�E = 0; (1.5)

where �0 is the magnetic permeability.

The velocity pro�le in the present case will be

V = [u (x; y; t) ; v (x; y; t) ; 0] ; (1.6)

where t denotes the time while u and v are the velocity components in the x� and y�directions,

respectively.

The transverse magnetic �eld is applied in the positive y�direction, normal to stretching

surface throughout the �uid �ow. The magnetic �eld is of the form

B = [0; B0; 0] ; (1.7)

where B0 is the magnitude of B0:

Now

V �B =

26664
{̂ |̂ k̂

u v 0

0 B0 0

37775 ; (1.8)

where {̂, |̂ and k̂ are the unit vectors along the x�, y� and z�directions, respectively, and

therefore

V �B =uB0k̂; (1.9)
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and

(V �B)�B =

26664
{̂ |̂ k̂

0 0 uB0

0 B0 0

37775 ; (1.10)

or

(V �B)�B = �B20u{̂: (1.11)

The Lorentz force in Eq. (1:2) becomes

J�B =� (V �B)�B: (1.12)

Using Eq. (1:11) in Eq. (1:12), it follows that

J�B = ��B20u{̂: (1.13)

The Cauchy stress tensor for non-Newtonian power-law �uids is de�ned as

T = �pI+ S; (1.14)

where p is the pressure, I the identity tensor and S the extra stress tensor given by

S =K

24�����
r
1

2
tr
�
A21
������
n�1
35A1: (1.15)

In Eq. (1:15), K is the consistency coe¢ cient, n the power-law index and A1 the �rst Rivlin-

Erickson tensor which is de�ned as

A1 = gradV+(gradV)
T ; (1.16)

with

gradV =

26664
@u
@x

@u
@y 0

@v
@x

@v
@y 0

0 0 0

37775 ; (1.17)
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and

(gradV)T =

26664
@u
@x

@v
@x 0

@u
@y

@v
@y 0

0 0 0

37775 : (1.18)

Using Eqs. (1:17) and (1:18) in Eq. (1:16) ; we get

A1 =

26664
2@u@x

@u
@y +

@v
@x 0

@u
@y +

@v
@x 2@v@y 0

0 0 0

37775 ; (1.19)

A21 =

26664
4
�
@u
@x

�2
+
�
@u
@y +

@v
@x

�2
2@u@x

�
@u
@y +

@v
@x

�
+ 2@v@y

�
@u
@y +

@v
@x

�
0

2@u@x

�
@u
@y +

@v
@x

�
+ 2@v@y

�
@u
@y +

@v
@x

�
4
�
@v
@y

�2
+
�
@u
@y +

@v
@x

�2
0

0 0 0

37775 ; (1.20)

tr
�
A21
�
= 4

�
@u

@x

�2
+ 2

�
@u

@y
+
@v

@x

�2
+ 4

�
@v

@y

�2
; (1.21)

����12 tr �A21�
����n�12 =

�����2
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2
+ 2

�
@v

@y

�2�����
n�1
2

: (1.22)

Now putting Eqs. (1:19) and (1:22) in Eq. (1:15)

S =K

�����2
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2
+ 2

�
@v

@y

�2�����
n�1
2

26664
2@u@x

@u
@y +

@v
@x 0

@u
@y +

@v
@x 2@v@y 0

0 0 0

37775 : (1.23)

With the help of the above relation, Eq. (1:14) becomes

T = �pI+K
�����2
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2
+ 2

�
@v

@y

�2�����
n�1
2

26664
2@u@x

@u
@y +

@v
@x 0

@u
@y +

@v
@x 2@v@y 0

0 0 0

37775 : (1.24)
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The Cauchy stress tensor can also be written as

T =

26664
�xx �xy �xz

�yx �yy �yz

� zx � zy �zz

37775 ; (1.25)

where �xx; �yy; �zz are the normal stresses and �xy; �yz; �xz are the shear stresses.

The comparison of Eqs. (1:24) and (1:25) gives

�xy = �yx = K

�����2
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2
+ 2

�
@v

@y

�2�����
n�1
2 �

@u

@y
+
@v

@x

�
; (1.26)

�xz = �yz = � zx = � zy = �zz = 0; (1.27)

�xx = �p+2K
�����2
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2
+ 2

�
@v

@y

�2�����
n�1
2 @u

@x
; (1.28)

�yy = �p+2K
�����2
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2
+ 2

�
@v

@y

�2�����
n�1
2 @v

@y
: (1.29)

For two-dimensional �ow, Eq. (1:1) becomes

@u

@x
+
@v

@y
= 0: (1.30)

The x� and y�components of Eq. (1:2) are

�

�
@u

@t
+ u

@u

@x
+ v

@u

@y

�
=
@�xx
@x

+
@�xy
@y

� �B20u; (1.31)

�

�
@v

@t
+ u

@v

@x
+ v

@v

@y

�
=
@�yx
@x

+
@�yy
@y

: (1.32)

Using the relations mentioned in Eqs. (1:26) to (1:29), the x� and y�components of the
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momentum equation becomes

�

�
@u

@t
+ u

@u

@x
+ v

@u

@y

�
= �@p

@x
+ 2K

@

@x

264@u
@x

�����4
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2�����
n�1
2

375
+K

@

@y

264�@u
@y
+
@v

@x

� �����4
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2�����
n�1
2

375
��B20u; (1.33)

�

�
@v

@t
+ u

@v

@x
+ v

@v

@y

�
= �@p

@y
+K

@

@x

264�@u
@y
+
@v

@x

� �����4
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2�����
n�1
2

375
+2K

@

@y

264@v
@y

�����4
�
@u

@x

�2
+

�
@u

@y
+
@v

@x

�2�����
n�1
2

375 : (1.34)

Equations (1:30), (1:33) and (1:34) can be written in dimensionless form by using the following

relations

u� =
u

U
; v� =

v

U
; x� =

x

L
; y� =

y

L
; p� =

p

�U2
and t� =

tU

L
; (1.35)

where L is the characteristic length and U the stretching velocity.

Using Eq. (1:35) in Eqs. (1:30), (1:33) and (1:34) we get

@u�

@x�
+
@v�

@y�
= 0; (1.36)

@u�

@t�
+ u�

@u�

@x�
+ v�

@u�

@y�
= �@p

�

@x�
+ 2�

@

@x�

264@u�
@x�

������ 4
�
@u�

@x�
�2
+
�
@u�

@y�

�2
+
�
@v�

@x�
�2
+ 2@u

�

@y�
@v�

@x�

������
n�1
2

375

+�
@

@y�

2664�@u�@y�
+
@v�

@x�

� ������ 4
�
@u�

@x�
�2
+
�
@u�

@y�

�2
+
�
@v�

@x�
�2
+ 2@u

�

@y�
@v�

@x�

������
n�1
2
3775

�Hau�; (1.37)
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@v�

@t�
+ u�

@v�

@x�
+ v�

@v�

@y�
= �@p

�

@y�
+ �

@

@x�

264�@u�
@y�

+
@v�

@x�

� ������ 4
�
@u�

@x�
�2
+
�
@u�

@y�

�2
+
�
@v�

@x�
�2
+ 2@u

�

@y�
@v�

@x�

������
n�1
2

375

+2�
@

@y�

264@v�
@y�

������ 4
�
@u�

@x�
�2
+
�
@u�

@y�

�2
+
�
@v�

@x�
�2
+ 2@u

�

@y�
@v�

@x�

������
n�1
2

375 ; (1.38)

where

� =

K
�

LU

�
U

L

�n�1
; (1.39)

and

Ha =
�

�

L

U
B20 ; (1.40)

are the dimensionless parameters.

In standard boundary layer assumptions, t, x, p and u are of order 1 while v and y are of

order �, where � is the boundary layer thickness. The dimensionless parameter � is of order �n+1.

Thus the boundary layer approximation of Eqs. (1:36), (1:37) and (1:38) in the dimensional

form yields
@u

@x
+
@v

@y
= 0; (1.41)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �1

�

@p

@x
+
K

�

@

@y

 ����@u@y
����n�1 @u@y

!
�
�
�B20
�

�
u; (1.42)

0 = �1
�

@p

@y
: (1.43)

As y !1, no disturbance is found above the boundary layer so we take velocity equal to zero;

that is,

t > 0 : u! 0 as y ! +1: (1.44)

Using Eq. (1:44) in Eq. (1:42) ; we �nally have

0 = �1
�

@p

@x
: (1.45)
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Now the pressure gradient is set equal to zero in Eq. (1:42), by using Eq. (1:45) ; and we have

@u

@t
+ u

@u

@x
+ v

@u

@y
=
K

�

@

@y

 ����@u@y
����n�1 @u@y

!
�
�
�B20
�

�
u: (1.46)

In the present case we take @u
@y < 0 (a detailed discussion regarding the sign of

���@u@y ��� is made by
Mahapatra et al. [25]).

@u

@t
+ u

@u

@x
+ v

@u

@y
= �K

�

@

@y

�
�@u
@y

�n
�
�
�B20
�

�
u: (1.47)

The resulting form of mass and momentum conservation equations are as follows

@u

@x
+
@v

@y
= 0; (1.48)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �K

�

@

@y

�
�@u
@y

�n
�
�
�B20
�

�
u: (1.49)

The corresponding initial and boundary conditions are

t � 0 : u = v = 0 at y � 0, �1 < x < +1; (1.50)

t > 0 : u = Cx, v = 0 at y = 0; (1.51)

t > 0 : u! 0 as y ! +1; (1.52)

where C is a positive constant.

We use the following similarity transformations

	 =

�
K�

�C1�2n

� 1
n+1

x
2n

(n+1)F (�; �) ; (1.53)

and

� = y

�
�C2�n

K�

� 1
n+1

x
(1�n)
(1+n) ; (1.54)

� = 1� exp (��) , � = Ct; (1.55)
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where 	 denotes the stream function de�ned as

u =
@	

@y
and v = �@	

@x
; (1.56)

and � and � are the transformed dimensionless independent variables and � the dimensionless

time.

Using the above transformations, Eq. (1:56) yields

u = Cx
@F (�; �)

@�
; (1.57)

v = �
�
2n

n+ 1

��
K�

�C1�2n

� 1
n+1

x
(n�1)
(n+1)F (�; �)�

�
1� n
1 + n

�
Cy
@F (�; �)

@�
: (1.58)

From Eqs. (1:57) and (1:58), we can calculate the following quantities

@u

@t
= C2x (1� �) @

2F (�; �)

@�@�
�
�

1

1 + n

�
C2x���1 (1� �) @

2F (�; �)

@�2
; (1.59)

@u

@x
= C

@F (�; �)

@�
+ C�

�
1� n
1 + n

�
@2F (�; �)

@�2
; (1.60)

@u

@y
= Cx

�
�C2�n

K�

� 1
n+1

x
(1�n)
(1+n)

@2F (�; �)

@�2
; (1.61)

@�xy
@y

= nC2x���1
�
�@

2F (�; �)

@�2

�n�1
@3F (�; �)

@�3
: (1.62)

Using Eqs. (1:57) to (1:62), the continuity equation (1:48) is identically satis�ed while Eq.

(1:49) takes the following form

(1� �)
�

�

n+ 1

@2F

@�2
� � @

2F

@�@�

�
+ �

"
2n

n+ 1
F
@2F

@�2
�
�
@F

@�

�2
�M@F

@�

#

+n

�
�@

2F

@�2

�n�1
@3F

@�3
= 0; (1.63)

where F is the dimensionless stream function, @F@� the dimensionless velocity andM the magnetic
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parameter de�ned as

M =
�B20
�C

: (1.64)

The boundary conditions are transformed as follows

F (0; �) = 0; (1.65)

@F (�; �)

@�

����
�=0

= 1; (1.66)

@F (�; �)

@�

����
�!+1

= 0: (1.67)

The skin friction coe¢ cient Cf (�) at the wall is

Cf (�) =
�w

� (Cx)2
= �

� n
(n+1) [�F�� (0; �)]nRe�

1
(n+1) ; (1.68)

where �w is the local wall shear stress and Re the local Reynolds number de�ned as

Re = (Cx)2�n
xn�
K
�

� : (1.69)

1.2.1 Exact solution of Rayleigh type equation

When � = 0 and n = 1, Eq. (1:63) becomes Rayleigh type of equation

@3F

@�3
+
�

2

@2F

@�2
= 0; (1.70)

subject to boundary conditions

F (0; 0) = 0; (1.71)

@F (�; �)

@�
= 1 at � = 0, � = 0, (1.72)

@F (�; �)

@�
= 0 as � ! +1, � = 0: (1.73)
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Thus, Eq.(1:70) has the exact solution given by

F (�; 0) = � erf c
��
2

�
+

2p
�

�
1� exp

�
��

2

4

��
: (1.74)

1.2.2 Exact solution of Crane type di¤erential equation

When � = 1, corresponding to � ! +1 and n = 1, Eq. (1:63) becomes Crane type di¤erential

equation
@3F

@�3
+ F

@2F

@�2
�
�
@F

@�

�2
�M@F

@�
= 0; (1.75)

with the corresponding boundary conditions

F (0; 1) = 0; (1.76)

@F (�; �)

@�
= 0 at � = 0, � = 1; (1.77)

@F (�; �)

@�
= 0 as � ! +1, � = 1: (1.78)

The exact solution of Eq.(1:75) is

F (�; 1) =
1� exp

�
�
p
1 +M�

�
p
1 +M

: (1.79)

1.3 Analytic solution by homotopy analysis method

We can express F (�; �) by a set of base functions

n
�k�m exp (�n�) j k � 0, n � 0, m � 0

o
; (1.80)

in the form of following series

F (�; �) =
+1X
k=0

+1X
m=0

+1X
n=1

akm;n�
k�m exp (�n�) ; (1.81)

in which akm;n is a coe¢ cient.

Invoking the Rule of solution expressions for F (�; �) and with the help of boundary condi-
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tions we choose

F0 (�; �) = 1� exp (��) ; (1.82)

as the initial approximation to F (�; �) : We de�ne the auxiliary linear operator as

L [� (�; �; q)] = @3�

@�3
� @�
@�
; (1.83)

which satis�es the following property

L [C1 exp (��) + C2 exp (�) + C3] = 0; (1.84)

where Ci (i = 1� 3) are the arbitrary constants.

1.3.1 The zeroth-order deformation equation

Let ~ be a non-zero auxiliary parameter and q 2 [0; 1] is an embedding parameter then the

zeroth order deformation problem is

(1� q)L [� (�; �; q)� F0 (�; �)] = q~N1 [� (�; �; q)] ; (1.85)

� (0; �; q) = 0;
@� (�; �; q)

@�
= 1 at � = 0; (1.86)

@� (�; �; q)

@�
= 0 as � ! +1; (1.87)

where N1 is the non-linear operator de�ned as

N1 [� (�; �; q)] = (1� �)
�

�

n+ 1

@2�

@�2
� � @

2�

@�@�

�
+ n

�
�@

2�

@�2

�n�1
@3�

@�3

+�

"
2n

n+ 1
�
@2�

@�2
�
�
@�

@�

�2
�M@�

@�

#
: (1.88)

Obviously for q = 0 and q = 1, we, respectively, have

� (�; �; 0) = F0 (�; �) and � (�; �; 1) = F (�; �) : (1.89)
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As q increases from zero to unity; � (�; �; q) varies from initial guess F0 (�; �) to �nal solution

F (�; �). By using the Taylor�s theorem and Eq.(1:89) we can expand � (�; �; q) in the Taylor�s

series of an embedding parameter q as follows

� (�; �; q) = � (�; �; 0) +
+1X
m=1

Fm (�; �) q
m; (1.90)

where

Fm (�; �) =
1

m!

@m� (�; �; q)

@qm

����
q=0

: (1.91)

The convergence of the series in Eq. (1:90) depends upon the value of ~. We properly choose

the value of ~ such that the series mentioned in Eq. (1:90) is convergent at q = 1 then due to

Eq. (1:89), the solution series is

F (�; �) = F0 (�; �) +
+1X
m=1

Fm (�; �) : (1.92)

1.3.2 The mth-order deformation equation

We can obtain the mth-order deformation equation by di¤erentiating the zeroth-order defor-

mation Eq. (1:85) m times with respect to q and then dividing by m! and �nally setting q = 0,

as follows

L[Fm (�; �)� �mFm�1 (�; �)] = ~Rm1(~Fm�1): (1.93)

The boundary conditions for mth-order deformation equation are

Fm (0; �) = 0;
@Fm (�; �)

@�
= 0 at � = 0; (1.94)

@Fm (�; �)

@�
= 0 as � ! +1; (1.95)

where in Eq. (1:93), Rm1(~Fm�1) and �m are given as

Rm1(~Fm�1) =
1

(m� 1)!
@m�1N1 [� (�; �; q)]

@qm�1

����
q=0

; (1.96)
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and

�m =

8<: 0, m � 1;

1, m > 1:
(1.97)

As Rm1(~Fm�1) depends on the integer power-law index n. When n = 1, we have

Rm1(~Fm�1) = (1� �)
�
�

2

@2Fm�1
@�2

� � @
2Fm�1
@�@�

�
+
@3Fm�1
@�3

+ �

"
m�1X
i=0

Fi
@2Fm�1�i
@�2

�
m�1X
i=0

@Fi
@�

@Fm�1�i
@�

�M@Fm�1
@�

#
; (1.98)

when n = 2, it reads

Rm1(~Fm�1) = (1� �)
�
�

3

@2Fm�1
@�2

� � @
2Fm�1
@�@�

�
� 2B1m�1 + �

"
m�1X
i=0

4

3
Fi
@2Fm�1�i
@�2

�
m�1X
i=0

@Fi
@�

@Fm�1�i
@�

�M@Fm�1
@�

#
; (1.99)

when n = 3, it holds

Rm1(~Fm�1) = (1� �)
�
�

4

@2Fm�1
@�2

� � @
2Fm�1
@�@�

�
+ 3

m�1X
i=0

A1i
@3Fm�1�i
@�3

+ �

"
m�1X
i=0

3

2
Fi
@2Fm�1�i
@�2

�
m�1X
i=0

@Fi
@�

@Fm�1�i
@�

�M@Fm�1
@�

#
; (1.100)

when n = 4, we get

Rm1(~Fm�1) = (1� �)
�
�

5

@2Fm�1
@�2

� � @
2Fm�1
@�@�

�
� 4

m�1X
i=0

A1iB
1
m�1�i + �

"
m�1X
i=0

8

5
Fi
@2Fm�1�i
@�2

�
m�1X
i=0

@Fi
@�

@Fm�1�i
@�

�M@Fm�1
@�

#
; (1.101)

where

A1j =

jX
i=0

@2Fi
@�2

@2Fj�1
@�2

; (1.102)
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B1j =

jX
i=0

@2Fi
@�2

@3Fj�1
@�3

: (1.103)

Let F �m (�; �) be a special solution of Eq. (1:93) corresponding to the boundary conditions in

Eqs. (1:94) and (1:95). We have its general solution given as

Fm (�; �) = F
�
m (�; �) + C1 exp (��) + C2 exp (�) + C3; (1.104)

where the coe¢ cients Ci (i = 1� 3) are determined by

C2 = 0, C1 =
@F �m (�; �)

@�

����
�=0

, C3 = �C1 � F �m (0; �) : (1.105)

The linear Eq. (1:93) with the boundary conditions in Eq. (1:94) and (1:95), can be solved in

the order m = 1; 2; 3; ::: by the help of the symbolic computation software like Mathematica.
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1.4 Results and discussion

In �gures 1:2 to 1:4; the e¤ects of di¤erent values of the magnetic parameter M on the velocity

pro�le are observed for di¤erent values of the power-law index. It is observed that the �uid

velocity decreases near the plate by increasing the value of M . Thus, the boundary layer

decreases for increasing value of the magnetic parameter.

The physical layout of the boundary layer structure which developes near the sheet can

be observe by having a glimpse at the velocity pro�le. The behavior of velocity pro�le as a

function of � for some di¤erent values of M and n is shown in �gures 1:5 to 1:8. These �gures

reveal that with the increase in the dimensionless time � , the velocity pro�le and boundary

layer thickness increases. Thus it is seen that as � increases from zero to1, the velocity pro�le

develop rapidly.

The variations of velocity pro�les for di¤erent values of M at the same dimensionless time

� = 0:1 and � = 0:5 when n = 3 are shown in �gures 1:9 and 1:10, respectively. These �gures

elucidate that the velocity pro�le decreases for increasing values of the magnetic parameter M .

Thus, it reveals that the �ow for large value of the magnetic parameter develops more slowly.

The in�uence of the power-law index n on the velocity distribution for di¤erent values of

the magnetic parameter M are shown in �gures 1:11 and 1:12. These �gures show the velocity

pro�les at � = 0:1 for some �xed value of M with increasing power-law index n. These �gures

depict that the velocity pro�le tends to steady state more quickly as n enlarges.

Figures 1:13 and 1:14 are plotted to see the variation of the skin friction coe¢ cient for �xed

values of either the power-law index n or the magnetic parameter M; respectively. Figure 1:13

indicates that as the values of the power-law index n increases, the skin friction coe¢ cient

increases at the same dimensionless time � 2 (0;+1): Further, it is observed through �gure

1:14 that for �xed value of n and at the same dimensionless time � , the skin friction coe¢ cient

increases as the value of magnetic parameter M enlarges. All the above analytic results are

plotted at ~ = �1=4:

18



0 1 2 3 4 5
­0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η

F η
(η

,1
)

M = 2, 1, 0

Figure 1:2: The variation of F�(�; 1) when M = 0; 1; 2 and

n = 1:
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Figure 1:3: The variation of F�(�; 1) when M = 0; 1; 2 and

n = 2:
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Figure 1:4: The variation of F�(�; 1) when M = 0; 1; 2 and

n = 3:
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Figure 1:5: The variation of the velocity pro�le F�(�; �) when

n = 2 and M = 1:
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Figure 1:6: The variation of the velocity pro�le F�(�; �) when

n = 2 and M = 2:
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Figure 1:7: The variation of the velocity pro�le F�(�; �) when

n = 3 and M = 1:
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Figure 1:8: The variation of the velocity pro�le F�(�; �) when

n = 3 and M = 2:
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Figure 1:9: The variation of the velocity pro�le F�(�; �) when

n = 3 and M = 0; 1; 2 at � = 0:1:
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Figure 1:10: The velocity pro�le F�(�; �) when n = 3 and

M = 0; 1; 2 at � = 0:5:
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Figure 1:11: The velocity pro�le F�(�; �) when M = 0 and

n = 1; 2; 3; 4 at � = 0:1:
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Figure 1:12: The velocity pro�le F�(�; �) when M = 1 and

n = 1; 2; 3; 4 at � = 0:1:
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Figure 1:13: The variation of the skin friction coe¢ cient as a

function of � for di¤erent power-law index n when M = 2:
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Chapter 2

Unsteady MHD axisymmetric �ow

of power-law �uids over a radially

stretching sheet

2.1 Introduction

The aim of this chapter is to analyze the unsteady, axisymmetric MHD �ow of power-law

�uids over a radially stretching sheet. The governing partial di¤erential equations in three

independent variables are converted into a single highly non-linear partial di¤erential equation

in two independent variables. Analytic solution valid for all time, in the whole spatial region

0 � � <1, has been derived by employing the homotopy analysis method (HAM). Finally, the

in�uence of various emerging parameters are plotted and discussed in detail.

2.2 Mathematical formulation

Let we consider the unsteady, two-dimensional magnetohydrodynamic �ow of an incompressible

non-Newtonian �uid over a stretching sheet. The �uid obeys the power-law model in the

presence of a transverse magnetic �eld. We take the cylindrical polar coordinates (r; �; z)

for mathematical modelling. The sheet is placed in the plane z = 0, i.e., in r��plane and is

stretched in the radial direction and the �ow is con�ned to z > 0. The �ow will have rotational
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symmetry due to which all the physical quantities will be independent of �.

The governing equations of the problem are given by Eqs. (1:1) and (1:2) whereas the

Cauchy stress tensor for power-law �uids is de�ned through Eqs. (1:4) and (1:5).

Figure 2:1: Physical model for the radial stretching sheet.

According to the assumption of axisymmetric �ow, v = 0 so velocity �eld is de�ned as

V = [u(r; z; t); 0; w(r; z; t)]; (2.1)

where u and w are the velocity components in the r� and z� directions, respectively, while t

denotes the time.

As

gradV =

26664
@u
@r

1
r
@u
@� �

v
r

@u
@z

@v
@r

1
r
@v
@� +

u
r

@v
@z

@w
@r

1
r
@w
@�̂

@w
@z

37775 : (2.2)
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For the present case, we have

gradV =

26664
@u
@r 0 @u

@z

0 u
r 0

@w
@r 0 @w

@z

37775 ; (2.3)

(gradV)T =

26664
@u
@r 0 @w

@r

0 u
r 0

@u
@z 0 @w

@z

37775 : (2.4)

Using Eqs. (2:3) and (2:4) in Eq. (1:16) ; we obtain

A1 =

26664
2@u@r 0 @u

@z +
@w
@r

0 2ur 0

@u
@z +

@w
@r 0 2@w@z

37775 ; (2.5)

A21 =

26664
4
�
@u
@r

�2
+
�
@u
@z +

@w
@r

�2
0 2@u@r

�
@u
@z +

@w
@r

�
+ 2@w@z

�
@u
@z +

@w
@r

�
0 4

�
u
r

�2
0

2@u@r
�
@u
@z +

@w
@r

�
+ 2@w@z

�
@u
@z +

@w
@r

�
0 4

�
@w
@z

�2
+
�
@u
@z +

@w
@r

�2
37775 ; (2.6)

tr
�
A21
�
= 4

�
@u

@r

�2
+ 4

�u
r

�2
+ 4

�
@w

@z

�2
+ 2

�
@u

@z
+
@w

@r

�2
; (2.7)

����12 tr �A21�
����n�12 =

�����2
�
@u

@r

�2
+ 2

�u
r

�2
+ 2

�
@w

@z

�2
+

�
@u

@z
+
@w

@r

�2�����
n�1
2

: (2.8)

Putting Eqs. (2:5) and (2:8) in Eq. (1:15), we get

S =K

�����2
�
@u

@r

�2
+ 2

�u
r

�2
+ 2

�
@w

@z

�2
+

�
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+
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�2�����
n�1
2

26664
2@u@r 0 @u

@z +
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0 2ur 0

@u
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@r 0 2@w@z

37775 :
(2.9)
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By using the above result, Eq. (1:14) becomes

T = �pI+K
�����2
�
@u

@r

�2
+ 2

�u
r

�2
+ 2

�
@w

@z

�2
+

�
@u
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�2�����
n�1
2

26664
2@u@r 0 @u

@z +
@w
@r

0 2ur 0

@u
@z +

@w
@r 0 2@w@z

37775 :
(2.10)

The Cauchy stress tensor can also be written as

T =

26664
�rr � r� � rz

� �r ��� � �z

� zr � z� �zz

37775 ; (2.11)

where, �rr; ���; �zz denote the normal stresses and � r�; � �r; � z� are the shear stresses.

On comparing Eqs. (2:10) and (2:11), we get the following results

� rz = � zr = K

�����2
�
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�2
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�u
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+
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�2�����
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�
; (2.12)

� r� = � �r = � �z = � z� = 0; (2.13)
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For the case of two-dimensional �ow, the equation of continuity (1:1) reduces to

@u

@r
+
u

r
+
@w

@z
= 0: (2.17)

From Eq. (1:2), we �nd the equation of radial momentum as

�

�
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�
=
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and the equation of axial momentum as
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Using the relations mentioned in Eqs. (2:12) to (2:16), the r� and z�components of the

momentum equation become
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The above equations can be written in dimensionless form by using the following relations

u� =
u

U
; w� =

w

U
; r� =

r

L
; z� =

z

L
; p� =

p

�U2
and t� =

tU
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; (2.22)

where L is the characteristic length and U the stretching velocity.

Upon making use of Eq. (2:22) in Eqs. (2:17), (2:20) and (2:21) we obtain
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30



@u�

@t�
+ u�

@u�

@r�
+ w�

@u�

@z�
= �@p

�

@r�
+ 2�

1

r�
@

@r�

264r�@u�
@r�

������ 4
�
@u�

@r�
�2
+ 4

�
u�

r�
�2

+4 u
�

r�
@u�

@r� +
�
@u�

@z� +
@w�

@r�
�2
������
n�1
2

375
+�

@

@z�

264�@u�
@z�

+
@w�

@r�

� ������ 4
�
@u�

@r�
�2
+ 4

�
u�

r�
�2

+4 u
�

r�
@u�

@r� +
�
@u�

@z� +
@w�

@r�
�2
������
n�1
2

375
�Hau�; (2.24)

@w�

@t�
+ u�

@w�

@r�
+ w�

@w�

@z�
= �@p

�

@z�
+ �

1

r�
@

@r�

264r��@u�
@z�

+
@w�

@r�

� ������ 4
�
@u�

@r�
�2
+ 4

�
u�

r�
�2

+4 u
�

r�
@u�

@r� +
�
@u�

@z� +
@w�

@r�
�2
������
n�1
2

375
+2�

@

@z�

264@w�
@z�

������ 4
�
@u�

@r�
�2
+ 4

�
u�

r�
�2

+4 u
�

r�
@u�

@r� +
�
@u�

@z� +
@w�

@r�
�2
������
n�1
2

375 ; (2.25)

where the dimensionless parameters � and Ha are de�ned as

� =
K

�LU

�
U

L

�n�1
; (2.26)

Ha =
�

�

L

U
B20 : (2.27)

Under the standard boundary layer assumptions, t, r, p and u are of order 1 while w and z

are of order �, where � is the boundary layer thickness. The non-dimensional parameter � is of

order �n+1. Therefore the boundary layer approximation of Eqs. (2:23), (2:24) and (2:25) in

the dimensional form yields
@u

@r
+
u

r
+
@w

@z
= 0; (2.28)
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0 = �1
�

@p

@z
: (2.30)

As z !1, no disturbance is found above the boundary layer and the velocity is zero there and
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hence

t > 0 : u! 0 as z ! +1; (2.31)

and

0 = �1
�

@p

@r
: (2.32)

By using Eq. (2:32), the pressure gradient term in Eq. (2:29) is set equal to zero. Thus we

obtain the following governing equation

@u

@t
+ u

@u

@r
+ w

@u

@z
=
K

�

@

@z

 ����@u@z
����n�1 @u@z

!
�
�
�B20
�

�
u: (2.33)

Here we take @u
@z < 0 (c.f: Chapter 1), so Eq. (2:33) result in
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Thus the governing equations for the present problem are as follows
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The relevant initial and boundary conditions are:

t � 0 : u = w = 0 at z � 0, �1 < r < +1; (2.37)

t > 0 : u = Cr, w = 0 at z = 0; (2.38)

t > 0 : u! 0 as z ! +1; (2.39)

where C is a positive constant.

Let 	 denotes the stream function de�ned as

	 =

�
K�

�C1�2n

� 1
n+1

r
(3n+1)
(n+1) F (�; �) ; (2.40)
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� 1
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(1+n) ; (2.41)

� = 1� exp (��) , � = Ct; (2.42)

where � and � are the transformed non-dimensional independent variables and � the non-

dimensional time and
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Using the transformations de�ned in Eqs. (2:40)� (2:42), Eq. (2:43) results in
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; (2.44)
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By the help of Eqs. (2:44) and (2:45), we can calculate the following quantities
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In view of Eqs. (2:44) to (2:49), the continuity equation (2:35) is identically satis�ed and Eq.

(2:36) takes the form
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where F is the dimensionless stream function, @F@� the dimensionless velocity andM the magnetic
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parameter de�ned by

M =
�B20
�C

: (2.51)

The transformed boundary conditions are as follows

F (0; �) = 0; (2.52)

@F (�; �)

@�
= 1 at � = 0; (2.53)

@F (�; �)

@�
= 0 as � !1: (2.54)

We know that the skin friction coe¢ cient Cf (�) at the wall is given by

Cf (�) =
�w

� (Cr)2
= �

� n
(n+1) [�F�� (0; �)]nRe�

1
(n+1) : (2.55)

where �w is the local wall shear stress and Re the local Reynolds number de�ned by

Re = (Cr)2�n
rn�
K
�

� : (2.56)

2.3 Analytic solution by homotopy analysis method

We can express the velocity distribution F (�; �) by a set of base functions of the form

n
�k�m exp (�n�) j k � 0, n � 0, m � 0

o
; (2.57)

in the form of following series

F (�; �) =
+1X
k=0

+1X
m=0

+1X
n=1

akm;n�
k�m exp (�n�) ; (2.58)

in which akm;n is a coe¢ cient. By the Rule of solution expressions for F (�; �) and with the help

of boundary conditions, we choose F0 (�; �) as the initial approximation to F (�; �)

F0 (�; �) = 1� exp (��) : (2.59)
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We further de�ne the following auxiliary linear operator

L [� (�; �; q)] = @3�

@�3
� @�
@�
; (2.60)

which satis�es the property given as

L [C4 exp (��) + C5 exp (�) + C6] = 0; (2.61)

where Ci (i = 4� 6) are the arbitrary constants.

2.3.1 The zeroth-order deformation equation

Let ~ be a non-zero auxiliary parameter and q 2 [0; 1] is an embedding parameter then the

zeroth order deformation problem satis�es

(1� q)L [� (�; �; q)� F0 (�; �)] = q~N2 [� (�; �; q)] ; (2.62)
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where N2 is the non-linear operator given by
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For q = 0 and q = 1, we, respectively, have

� (�; �; 0) = F0 (�; �) , � (�; �; 1) = F (�; �) : (2.66)

As q increases from zero to unity; � (�; �; q) deforms from initial guess F0 (�; �) to �nal solution

F (�; �). Then by Taylor�s theorem and Eq.(2:66) we can expand � (�; �; q) in the Taylor�s series
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of an embedding parameter q as

� (�; �; q) = � (�; �; 0) +
+1X
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m; (2.67)
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Since the convergence of the series (2:67) depends upon ~ so we properly choose the value of ~

in such a way that the series (2:67) is convergent at q = 1 and due to Eq. (2:66), the solution is

F (�; �) = F0 (�; �) +

+1X
m=1

Fm (�; �) : (2.69)

2.3.2 The mth-order deformation equation

Di¤erentiating the zeroth-order deformation Eq. (2:62) m times with respect to q and then

dividing by m! and �nally setting q = 0, we obtain the mth-order deformation equation given

as

L[Fm (�; �)� �mFm�1 (�; �)] = ~Rm2(~Fm�1): (2.70)

The boundary conditions for mth order deformation equation are
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where in the above equation, Rm2(~Fm�1) is given by

Rm2(~Fm�1) =
1

(m� 1)!
@m�1N2 [� (�; �; q)]

@qm�1

����
q=0

; (2.73)
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Since Rm2(~Fm�1) depends on the power-law index n. For n = 1, we have
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when n = 2, it gives
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when n = 3, it reads
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when n = 4, we obtain
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The general solution of Eq. (2:70) corresponding to the boundary conditions in Eqs. (2:71) and

(2:72) is given by

Fm (�; �) = F
�
m (�; �) + C4 exp (��) + C5 exp (�) + C6; (2.80)

where F �m (�; �) be a special solution and the constants Ci (i = 4� 6) are determined by

C5 = 0, C4 =
@F �m (�; �)

@�

����
�=0

, C6 = �C4 � F �m (0; �) : (2.81)

The linear di¤erential Eq. (2:70) with the boundary conditions (2:71) and (2:72) can be solved in

the order m = 1; 2; 3; ::: with the help of any symbolic computation software like Mathematica.

In this work the optimal values of the convergence control parameter is choosen by mini-

mizing the discrete squared residual given by

Ef;m =
1

N + 1

NX
j=0

"
Nf

 
mX
i=0

Fj (i M �)
!#2

: (2.82)
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2.4 Results and discussion

In this chapter, we have considered the axisymmetric �ow of an MHD power-law �uids over a

radially stretching sheet. The analytical solution of the time-dependent non-linear problem is

constructed using the homotopy analysis method. The e¤ects of various physical parameters

are studied and shown graphically.

The e¤ects of di¤erent values of the magnetic parameter M on the velocity pro�le are

observed for the di¤erent value of the power-law index through the �gures 2:2 to 2:4. An

inspection of these �gures reveals that the magnetic parameter M plays an important role.

From the �gures, it is noted that the velocity pro�le decreases near the plate by increasing value

of M for �xed value of n. Consequently, the boundary layer thickness decreases substantially.

Figures 2:5 to 2:8 depict the behavior of velocity pro�le as a function of � for di¤erent values

ofM and n. By analyzing the graphs, it reveals that as � increases from zero to1, the velocity

pro�les develop rapidly. These �gures show that the velocity pro�le increases with the increase

in the dimensionless time � . It is further noticed that the e¤ect of increasing value of � also

increases the boundary layer thickness.

In �gures 2:9 and 2:10 the variations of velocity pro�le for di¤erent values of M , when

n = 3; at the dimensionless time � = 0:1 and � = 0:5 are shown, respectively. These �gures

also portrait the boundary layer structure for di¤erent values of the magnetic parameter M .

It is evident from these �gures that the velocity pro�le decreases with increasing values of M

for both times. These �gures reveal that the �ow develops more slowly for higher value of the

magnetic parameter for small time.

Figures 2:11 and 2:12 display the e¤ects of the power-law index n on the velocity pro�le

F�(�; �) for two di¤erent values of the magnetic parameter M . Further, the velocity pro�les at

� = 0:1 for some �xed value of M with increasing power-law index n are shown in these �gures.

From these �gures, it is clear that as n increases the velocity pro�le tends to steady state more

quickly for both hydrodynamic and hydromagnetic cases.

The variation of the skin friction coe¢ cient with several sets of physical parameters is shown

in �gures 2:13 and 2:14: In order to see the variation of the skin friction coe¢ cient for a �xed

value of either the power-law index n or the magnetic parameter M �gures 2:13 and 2:14 are

respectively, plotted. These �gures, elucidate that as the values of the power-law index n
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increases, the skin friction coe¢ cient increases at the same dimensionless time � 2 (0;+1):

Moreover, the skin friction coe¢ cient increases as the value of the magnetic parameter M

increases for �xed value of n and at the same dimensionless time � .
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Figure 2:2: The variation of F�(�; 1) when M = 0; 1; 2 and

n = 1:
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Figure 2:3: The variation of F�(�; 1) when M = 0; 1; 2 and

n = 2:
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Figure 2:4: The variation of F�(�; 1) when M = 0; 1; 2 and

n = 3:
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Figure 2:5: The variation of the velocity pro�le F�(�; �) when

n = 2 and M = 1:
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Figure 2:6: The variation of the velocity pro�le F�(�; �) when

n = 2 and M = 2:

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

ηξ1/4

F η( η
, ξ

)

τ = 0.01, 0.05, 0.1, 0.25, 10

Figure 2:7: The variation of the velocity pro�le F�(�; �) when

n = 3 and M = 1:
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Figure 2:8: The variation of the velocity pro�le F�(�; �) when

n = 3 and M = 2:
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Figure 2:9: The variation of the velocity pro�le F�(�; �) when

n = 3 and M = 0; 1; 2 at � = 0:1:
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Figure 2:10: The velocity pro�le F�(�; �) when n = 3 and

M = 0; 1; 2 at � = 0:5:
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Figure 2:11: The velocity pro�le F�(�; �) when M = 0 and

n = 1; 2; 3; 4 at � = 0:1:
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Figure 2:12: The velocity pro�le F�(�; �) when M = 1 and

n = 1; 2; 3; 4 at � = 0:1:
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Figure 2:13: The variation of the skin friction coe¢ cient as a

function of � for di¤erent power-law index n when M = 2:
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Figure 2:14: The variation of the skin friction coe¢ cient as a

function of � for di¤erent parameter M when n = 2:
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2.5 Conclusions

The work in this chapter dealt with non-linear problem for unsteady MHD �ow of non-

Newtonian �uids over a stretching sheet. By using suitable similarity transformations, the

modelled non-linear partial di¤erential equations in three-independent variables are converted

into a single partial di¤erential equation in two-independent variables. The analytical solution

for problem of unsteady, axisymmetric MHD �ow of power-law �uids over a radially stretching

sheet was found by using the HAM. The e¤ects of various emerging parameters were observed

from several graphs.

The main �ndings could be listed as:

� As � varies from zero to 1, the velocity pro�les developed more rapidly.

� The increasing values of the magnetic parameter showed that the �ow developed more

slowly.

� The velocity pro�les tended to steady state more quickly as the value of power-law index

n enlarged.

� The skin friction coe¢ cient has increased when the value of the power-law index n in-

creased for �xed values of the magnetic parameter M and the dimensionless time � :

� The skin friction coe¢ cient has increased as the values of the magnetic parameter M

enlarged at the same dimensionless time and for the same power-law index n:
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