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Abstract 

The study of nonlinear fluid flows (having complex geometries) has many applications in 

industrial engineering e.g. construction of, paper production, polymer sheet, glass fabric , hot 

rolling and petroleum production. Focus of present study is on mathematical modelling for 

boundary layer flow having different geometries in a non-Newtonian viscosity model. This study 

involves four models namely (Carreau, Carreau-Yasuda, Williamson and Maxwell models). Our 

main concern will be the analysis of non-Newtonian fluids within the boundary layer. For fluids 

with share-rate dependent viscosity the base flow has no longer analytic solutions for the Naiver

Stoke equations. However, for a large value of Reynolds number the flow inside the boundary 

layer can be determined via a similarity solution. The solution of the modelled differential 

equations is computed by using moderate and well-known numerical technique name ly shooting 

method. The different governing physical parameter are utilized to control the motion of fluid. 

Skin friction coefficient, Nusselt number and Sherwood number are calculated in order to examine 

the flow behavior near the surface of the sheet, rotating surface and disk. A comparison has been 

made with the previous published literature in order to check the accuracy of the method. 

Conclusion is drawn based on entire study. 

This thesis comprises 9 chapters by including introduction as zero chapter. Research background 

and the objectives are stated at the end of this chapter. 

Chapter 1 is dedicated to investigating the effects of variable viscosity on MHO Carreau 

nanofluid flow along a nonlinear stretching surface in the presence of thermal stratified medium . 

Generalized Fourier's and Fick's laws are used in order to examine the heat and mass transport 

phenomena. Near the surface of the plate mass flux is assumed to be zero. The contents of this 

paper are published in the Journal of the Brazilian Society of Mechanical Sciences and 

Engineering. (2018) 40: 457. http5://doLorg/l0.l007/540430-018-1371-6. 

Chapter 2 is devoted to acquiring non-similar solutions for the behavior of slip conditions on 

steady MHO Carreau-Yasuda fluid flow over a rotating disk. In order to examine the heat transfer 

phenomena superior form of Fourier's law is used and the conductivity of the fluid is assumed to 

be changeable. The contents of this chapter are published in Journal of the Brazilian Society of 

Mechanical Sciences and Engineering, 412(2019):78. 



Chapter 3 deal with transient MHD Carreau-Yasuda nanofluid flow produced by impulsively 

started rotating disk in the occurrence of Darcy-Forchheimer and chemical reactive species 

considering conventional Fourier's and Fick's laws . The findings are accepted in Canadian 

journal of Physics, 97(2019) 670-677. 

Variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching 

sheet with variable thickness is addressed in chapter 4. Variable viscosity is assumed to vary as a 

linear function of temperature. The contents of chapter 4 are published in Results in Physics, 

8(2018) 862-868. 

Chapter 5 is presented to elaborate the effects of temperature dependent viscosity and doubl e 

stratification is also assumed by taking Williamson fluid model. The contents of thi s chapter are 

published in International Journal of Heat and Mass Transfer, 126(2018) 941-948. 

Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along 

with solar radiation and thermal conductivity is discussed in chapter 6. After boundary layer 

approximation, the governing equations are achieved (namely Maxwell upper convected material 

derivative, thermal and concentration diffusions). The contents of this chapter are accepted in 

Chinese Journal of Chemical Engineering, (2019) doLorg/10.1016/j.cjche.2018.12.023. 

Chapter 7 is written to analysis the behavior of transformed internal energy change 111 

magnetohydrodynamic Maxwell nanofluid flow over a stretching sheet along with Arrhenius 

activation energy and chemical reaction. The contents this chapter are accepted in European 

Physical Journal of Plus, (2019) 134: 198. doLorg/10.1140/epjp/i2019-12563-8. 

Chapter 8 addresses the heat and mass diffusion (Cattaeno-Christov model) upper convected 

Maxwell nanomaterials passed by a linear stretched surface (slip surface) near the stagnation point 

region. Improved form of Fourier's and Fick's laws are employed to investigate heat and mass 

diffusion phenomena. The contents of this chapter are accepted in Journal of the Brazilian 

Society of Mechanical Sciences and Engineering, (2019) 41: 138. doLorg/10.1007/s40430-019-

1620-3. 
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Nomenclature 

List of symbols 

V Velocity field 

S extra stress tensor 

't' Cauchy stress tensor 

U,V, w velocity component 

x,y,z space coordinates 

r,e, z cylindrical space coordinates 

u,., ve ' W z cylindrical space coordinates 

q,. radiative heat flux 

j lTIaSS flux 

Pf density of liquid 

p pressure 

I identity tensor 

C p specific heat 

T heat capacity ratio 

(pc)p effective heat capacity of nanopartic1es 

(pc)f heat capacity of fluid 

DB Brownian diffusion coefficient 

DT thermophoresis diffusion coefficient 

P density 

iii 



m Stretching index 

r time c onstant 

(J electrical conductivity of the fluid 

J-l(T) temperature dependent viscosity 

Tw temperature at the ~all 

C w concentration at the ~all 

T fluid temperature 

C fluid concentration 

T = free stream temperature 

C oo free concentration 

~ independent similarity variable 

77 similarity variable 

St thermal stratification 

Sc solutal stratifications 

Ha 2 Hartmann n u mber 

We 2 Weissenberg nUlnber 

Pr Prandtl number 

Nb Bro~nian mutation parameter 

Nt T hermophoresis parameter 

S temperature dependent viscosity 

Sl concentration dependent viscosity 

6 t thennal buoyance 

6 e concentration buoyancy 

ex Wall thickness parameter 
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lj/ Stream function 

v kinematic viscosity 

J-l dynamic viscosity 

a,b constant 

J-lo zero shear rate viscosity 

J-loo infinity shear rate viscosity 

V differential operator 
0 

y second order invariant tensor 

d fluid parameter 

k f thermal conductivity 

VT temperature gradient 

VC concentration gardened 

Ho (x) non-uniform magnetic field 

Ho magnetic field strength 

A, slip parameter 

~ tangential slip parameter 

A porosity parameter 

Am fluid relax ation parameter 

K(T) temperature dependent thermal conductivity 

& thermal conductivity paran1.eter 

n angular velocity 

K chemical reaction parmneter 
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Grx Local Grashof number due to thermal 

Grx* Local Grashof number due to counteraction 

b l temperature dependent viscous parmneter 

b2 temperature dependent thermal conductivity parameter 

To reference temperature 

Co reference concentration 

R radiation parameter 

Ec Eckert number 

J current density 

q,. heat flux 

A ratio parameter 

kD absorption constant ( ::: ) 

k 8.61xlO-s Boltz-mann constant 
aD Stefan Boltz-mann constant 

Ea activation energy 

f.1e magnetic permeability 

C f Skin friction coefficient 

Nu Nusselt number 

Sh Sherwood number 

Rex Reynolds number 

f reduce stream function 
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Fc inertia factor 

r inclined angle 

() ditnensionless temperature 

eft ditnensionless concentration 

Le Lewis n1llllber 

n po"Wer la"W index 

Tw "Wall shear stress 

qw heat surface flux 

J w mass flux 

f3 e lTIaSS di:ffUsion 

f3T thermal di:ffUsion 

g magnitude of the gravity 

r thermal propriety of fluid 

8 location of viscosity 

(}r variable viscosity 
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Chapter 0 

Introduction 

0.1 Overview 

This work pertains the theoretical and numerical study of nonlinear different ial equations for 

Newtonian and non-Newtonian fluids. This chapter provides an overview of different physical 

aspects along with diflerent fluid models. 

0.2 Research background 

The differential equations of non-Newtonian flu ids are generally of higher order and difficult 

to solve. Since these are highly non-linear as compare to Navier-Stokes equations. The non

Newtonian power law viscosity model has some limitations, i.e. it cannot predict sufficient 

information about the viscosity at low or very high shear rates. To overcome this defficiency 

another viscosity model (for large and very small shear rates) was presented by Carre au [1]. 

Present model was very accurate to predict the pseudoplastic and dilatant characteristics of 

fluids by utilizing the different values of power law exponents. Due to its huge app lications, 

the Carreau fluid model has got great interest of various investigators and engineers during t.he 

last few years. Bush and Phan-Thien [2] and Chhapra and Uhlherr [3] analyzed the Aow of 

Carreau fluid on sphere. Vajravelu et al. [4] examined the peristatic Aow of Carreau Auid in 

a non-uniform channel with heat and mass assignment. Akbar and Nadeem [5] discussed the 

blood flow study of Carreau fluid model in tapered artery with stenosis . Analytical results were 
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calculated for resistance impedance, velocity, shear stress and wall shear stress at t he st enosis. 

The blood flow as Carreau fluid in a two dimensional straight tube was presented by Tabakova 

et al. [6]. Hayat et al. [7] studied the st agnation point flow for Carreau fluid persuaded by 

movement of stretching surface. The Carreau fluid model for different geometries and physical 

aspects was considered by many scholars (see refs . [8-10]) . 

Carreau-Yasuda model is well known rheological model utilized to approximate the steady 

viscosity in non-Newtonian models (named by Carreau-Yasuda [11]). This model predicts the 

shear thinning and thickening behavior. In present problems, usually it is assume t hat infini te 

shear rate viscosity is equal to zero. It is worth revealing here that this model is converted 

into Carreau fluid model when the value of the fluid parameter is taken as two and for t ime 

constant equals to zero or power law index equals to one. It will behave like Newtonian fluid . 

Pseudoplastic is a concept utilized to refer the viscosity reduction due to raise in deform ation 

rate. It is attributed to t he Caurreau Yasuda model proposed in literature [12-15] . Khechiba 

et al. [16] deliberated the effects of Carreau-Yasuda rheological parameters on free convection 

horizontal permeable cavity. Salahuddin et al. [17] discussed t he numerical and theoretical 

study of free stream squeezed flow of Carreau Yasuda fluid flow due to a sensor surface under 

the magnetic field. Tanveer et al. [18] discussed the force and free convection for peristalses 

of Caurreu Yasuda nanofluid saturating by permeable space in cured channel. Khan et al. 

[1 9] scrutinized the signific3Jlce of chemical reaction against hydromagnetic Can eau Yasuda 

nanofluid flow due to nonlinear stretching surface under t he zero normal flux. Kefayati and 

Tang [20] discussed the thermosolutal free convect ion and entropy generation of non-Newtonian 

Caureau Yasuda fluid and solved the problem via Lattice Boltzmann technique. 

Williamson fluid is one of the type of non-Newtonian fluids having pseudoplastic property. 

This model was introduce by Williamson [21] . Thin layer of the W illiamson fluid due to in

clined solid surface along with gravitational fi eld was presented by Lyubimov and Perminov 

[22]. Nadeem et al. [23] considered the two dimensional flow of Williamson fluid flow due to 

a stretched surface. Kothandapani and Prakash [24] designated the theoretical examination of 

peristaltic flow of Williamson nanoliquid in tapered asymmetric channel under the action of so

lar radiation. The electro-osmotic flow of Williamson ionic nanofluid in occurrence of peristalt ic 

propulsion was examined by Prakash and Tripathi [25]. Khan et al. [26] analyzed the change in 
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viscosity of Williamson fluid flow induced by a nonlinear stretching surface. Variable viscosity 

was assumed to be temperature dependent and due to stratified medium , variable viscosity also 

depends upon thermal diffusion . Lyubimove et al. [27] analyzed the linear polarized high fre

quency t rembling on the quasi-equilibrium municipal stabili ty of an infinite layer of Will iamson 

fluid How between two rigid parallel plates. Khan et a l. [28] scrutinized t he computaJional 

aspect of chemical response on W illiamson nanofluid flow over a variable thicked surface. 

The dynamics of material having characteristics of viscosity and elasticity when undertaken 

deformation is a fundamental area in fluid dynamics. This kind of flui d (Maxwell flu id) has 

gained attention of numerous researchers due to its number of industrial and technical applica

tions. J ames Clerk Maxwell initiat ed Maxwell fluid in 1867 and the knowledge was familiarized 

by J ames Oldroyd few years later (see Christopher [29]) . Adegbie et al. [30] scrutinized the 

numerical solution of Maxwell fluid induced by a stretching surface along with temperature de

pendent viscosity and t hermal stratified medium. Mahsud et al . [31] investigated t he unsteady 

two dimensional boundary layer flow of frictional derivative Maxwell fluid . Liu and Liu [32] 

investigat ed the boundary layer flow of upper convected fr actional Maxwell fluid flow due to 

stretching surface with variable thickness. A numerical L1- technique was assumed to solve 

nonlinear differential system of the boundary values problem. Poungthong et al. [33] discussed 

the analytic solut ion for t he comparative strength of m th harmonics Maxwell fluid fl ow. Khan 

et al. [34] illustrated t he t hermal diffusion stagnation point fl ow of Maxwell fluid over a linear 

stretching surface with solar radiation. Na et al. [35] presented the concept. of fi ni te clement 

time domain Maxwell solver for the study of revolving geometries. 

Fourier [36] verified the formula to visualize the mechanism of heat transference known as 

"Fourier 's law of heat conduction". This clearly specifies that an initial disturbance would 

instantaneously affect the coordinated flow. Cattaneo [37] extended the Fourier rela tion of heat 

conduction by considering the addit ional parameter known as relaxation t ime. Christov [38] 

created amendment in Catt aneo theory by utilizing the t ime Oldroyd 's upper convective time 

derivation formula . Khan et al. [39] scrutinized the inspection of boundary layer heat and mass 

transfer (Cattaneo-Christov model) due to inclined stretching surface under the magnetic field. 

Ibrahim et al. [40] numerically explored the boundary layer flow of a rotating Eyring-Powell 

nanofluid. Khan et al. [41] analyzed the problem of Cattaneo-Chirstov mass and heat flux 
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model along with thermal and solutal stratification on Carreau fluid flow due to a stretching 

surface under the variable viscosity effect. 

The nanofluids consist of small particles of diameter sized from 1 to 100 nm and these 

particles include oxides, metals , non-metals and carbides (see [42]) . The phenomenon of thermal 

conductivity improvement due to nanofluid has been presented by Masuda et al. [43J. Bia et al. 

[44J analyzed the stagnation point flow of the Maxwell nanofluid induced by a stretching surface 

under the convective boundary conditions. Viscous dissipation as well as thermal radiation in 

the Maxwell nanofluid flow was presented by Nayak [45J. Shen at al. [46J proposed a new 

mathematical model of heat diffusion MHD Maxwell nanofluid flow due to a vertical plate. Li 

et al. [47J numerically investigated the heat transfer characteristics offree convection in variable 

thermal nanofluid. 

The word activation energy was first ly proposed by Swedish scientist Svante Arrhenius in 

1889. Activation energy can also be presented as the smallest energy to create a chemical 

reaction. This energy is mostly convenient in the areas related to oil reservoir engineering, 

water emulsions and geothermal engineering. Boundary layer fl ow with chemical react ion was 

published by Bestman [48J. Awad et al. [49J designated the spectral relaxat ion method to solve 

the highly nonlinear coupled differential equat ions of unsteady rotating viscous fluids along with 

Arrhenius activation energy and binary chemical reaction. Hsiao [50J discussed the activat ion 

energy, viscous dissipation and free convention of a viscoelastic Carreau nanofluid flow near 

the stagnation point. Hamied et al. [51 J exemplified the effects of activation energy and heat 

absorption on unsteady Williamson fluid flow produced by stretching cylinder in the presence 

of nanomaterials. 

The behavior of fluid motion close to stagnation region of solid surface arises in both sit

uations of fixed and movable body. The researchers have paid strong attention due to its 

several applications in industry like flows over a submarines and tips of aircraft. Hiemenz [52J 

firstly characterized the stagnation point flow of steady incompressible v iscous fluid and subse

quently initiated exact solutions. Homann [53J further improved this work [54J for axisymmetric 

case. Merkin and Pop [55J deliberated the stagnation point flow of stretching/ shrinking surface 

with exothermic surface reaction. Mahapatra and Sidui [56J exemplified the unsteady non

axisymmetric stagnation point flow due to a stretching/shirking surface. Tuner and Wedman 
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[57] considered the problem of two impinging Howarth stagnation point regions. 

Thermal conductivity and fluid viscosity were supposed to be constant throughout the 

boundary layer problems. Although , it is found that the physical characteristics of the fluid 

changes with t emperature significant ly . The intensifications of temperature leads to a local 

improve in the transport phenomena by decreasing the viscosity across the momentum bound

ary and so the heat transport rate a t the wall is also afFected . High shear ra te leads to the high 

temperature that is produced within the fluid . Anyakoha [58] analysed that in fluid dynamics , 

the property in which temperature increases is t hermal conductivity and viscosity presented . 

Xun et a1. [59] obtained the numerical solutions of bioconvection rotating system between two 

rotating plates occupied by nanofluid with temperature dependent thermal conductivity and 

viscosity. Hayat et a1. [60] discussed the thermal conductivity and temperature dependent vis

cosity in the force and free convention flow of viscous fluid over an exponent ially stretching sheet 

with heat t ransport. Kameyama and Yamamoto [61] used the improved numerical experiments 

of thermal convention compressible fluid flow by systematically varying thermal conductivity 

and viscosity. The temperature dependent variables i.e. viscosity and thermal conductivity of 

graphene quantum dots nanometers were presented by Sedaghat and Yousefi [62]. Sunil et a1. 

[63] discussed the couple stress fluid saturating permeable sheet with pressure and temperature 

dependent viscosity. 

Stratification is an essential aspect in temperature and concentration diffusions and it has 

been analyzed by different researchers. It arises in How field induced by temperature difk rence, 

concentration variation or fluid with different densities. Robert and Lackey [64] mathemat ically 

exemplified how to exclude thermal stra tification in oceans through compressed air sys tem, 

Sohut et al. [65] elaborat ed the double stratification influence of boundary layer flow towards a 

stretching cylinder with chemical reaction and heat generation. Daniel et a l. [66] discussed the 

solar radiation and Joule heating impact on IvlHD nanofluid flow due to nonlinear stretching 

surface with thermal and solutal stratifications. Kandasamy et al. [67] deduced that thermal 

and solutal stratifications changes heat and mass diffusions induced due to nanomaterials over 

a permeable vertical plate. 

Magnetohydrodynamic flow of an electrical conducting fluid generated by the deformation 

of wall surface are quite prominent and motivating in modern metal work and in metallurgy. 
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In addition, such kind of fluids are advented in industrial apparatus like MHD creator, cooling 

of nuclear reactor , gas turbines, petroleum industries, pumps, crystal growth, power generator , 

etc. Khan et al. [68] explored the numerical solution of the temperature dependent viscosity and 

inclined force impact on Williamson nanofluid flow due to stretching surface. Rana et al. [69] 

exemplified the analytical approach to examine the dual solutions of Jeffery fluid with Ohmic 

heating, magnetic field and viscous dissipation. Sheikhoeslami [70] designated the magnetic 

force on non-Newtonian nanofluid flow. Alamri et al. [71] illustrated the magnetohydrodynamic 

effect of heat transfer on second grade fluid flow associated with the mass transfer. Hosseini et 

al. [72] examined the entropy phenomena on MHD fluid flow with heat generation. 

Viscous dissipation and solar radiation modification in temperature distribution playa sig

nificant role in many energy sources. The influence of viscous dissipation depends upon weather 

the plate is being heated or cooled. Many researchers examined heat transfer fluid fiow over an 

expanded surface in the presence of solar radiation and viscous dissipation. Nayak [73] reported 

three dimensional MHD flow of heat transfer analysis along with solar radiation as well as vis

cous dissipation over a shirking sheet. Pandey and Kumar [74] illustrated the solar radiation on 

MHD flow of Cu-water nanomaterials past a wedge along with viscous dissipation and chemical 

reaction. The solar radiation and viscous dissipation effects on unsteady magnetodyrodynamic 

two dimensional boundary layer flow were presented by Devi and Kumari [75] . Kumar et al. 

[76] discussed the combine effects of thermal radiation and viscous dissipation on MHD three 

dimensional Oldroyd B nanoliquid. 

0.3 Objectives 

The objectives of this thesis are: 

• to develop mathematical models representing different fluids flow. 

• to solve the boundary layer related fiow problems with different physical geometr ies. 

• to compute these problems numerically by employing different numerical methods. 
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Chapter 1 

An immediate change in viscosity of 

Carreau nanofluid due to double 

stratified medium: Application of 

Fouries's and Fick's Laws 

This chapter extends the effect of variable viscosity and thermal diffusion on MHD Carreau 

nanofluid flow along a nonlinear stretching surface in the presence of thermal stratified medium. 

Generalized Fourier's and Fick's laws are used in order to examine the heat and mass transport 

phenomena. Near the surface of the plate, mass flux is assumed to be zero. The governing 

boundary layer equations are modelled and renovated into nonlinear ODE's by using similarity 

transformation and numerical solut ion is calculated via shooting method (coefficients upgraded 

by Cash and Carp). Plots and tables representing friction factor , velocity distribution , tem

perature and concentration distributions are discussed. Conclusions are made on the basis of 

entire examinations and it is found that the velocity profile enhances on enhanc ing values 0[' 

Weissenberg number and thermal buoyancy parameter while thermal buoyancy shows opposite 

behavior for temperature distribution. Moreover, concentration profile diminishes for enha ncing 

values of solutal stratification parameter and concentration buoyancy parameter. 
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1.1 Mathematical analysis 

1.1.1 Flow analysis 

Consider a mathematical model for two dimensional boundary layer Carreau nanofluid flow over 

a continuously nonlinear stretching sheet with variable thickness. The velocity of stretched plate 

is denoted by Uw = Uo (x +b)m-l, here m is the stretching index, b is the dimensionless constant 

and Uo is reference stret ching rate. Suppose that the thickness of sheet is y = A( x + b) l-;m . It is 

further assumed that m i=- I , because for m = I , the problem reduces to a flat sheet . Magnetic 

field of strength Ho is applied normal to the sheet (as illust rated in Fig. l.1) . 

, v 

x.u 

u = Uw= U oex + b)"', 

Fig. l.l. Geometrical illustration of the model. 

Under the above assumptions and boundary layer approximations the main governing equa

tions (Carreau fluid model, energy and concentration) are given as: 

Continuity Equation 

Momentum Equation 
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Energy and Concentration equations 

The Cattaneo-Christov model has been used to deliberate the impact of thermal and con

centration diffusions as the relaxation mass and heat flux respectively. By using extended form 

of Fourier 's and Fick's laws , the nanofluid equations take the following form: 

q + AT [Otq + V. (Vq) - q. (VV) + (V.V)q] = -kfVT, (1.3) 

J + Ac [OtJ + V. (VJ) - J . (VV) + (V.V)J] = -DBVC, (1.4) 

If V.q = 0, V .J = 0; and for steady state model %'t = 0, ~~ = O. The new equations are: 

q + AT [V.Vq - q .VV] = - kfVT, (1.5) 

J + AO [V.VJ - q .VJ] = - DBVC, (1.6 ) 

For two dimensional flow, the energy and concentration eqs. (1.5) and (1.6) takes the 

following form 

1£OxC + vOyC + AO [oxC (1£ox1£ + vOy1£) + OyC (1£oxv + voyv) + 1£20X3;C+v20yyC + 2uvo"yC] 

DT 
DBOyyT + Too oyyT. (1.8) 

The specified boundary conditions of the present problem takes the form 
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u(x,y) 

u(x,y) 

Uw(X) = Uo(x + b)"', v(x, y) = 0, T(x, y) = Tw , DBOyC + DT oyT = 0 at y = A(x + b) ' 2
m

, 
Too 

----> 0, T(x,y) ----> Too, C(x,y) ----> Coo as y ----> 00. (1.9; 

Here (u, v) are the velocity components along the (x , y) directions respectively, r is the time 

constant, p is the fluid density, Uo is the stretching velocity rate, (J is the electrical conductivity 

of the fluid, p, (T) is the temperature dependent viscosity, Tw(x, y) is known as temperature at 

the wall, Cw(x, y) is known as ambient concentration at the wall , T and C are the temperature 

and concentration respectively, Cp is the specific heat, DB is the mass diffusivity, Too is the free 

temperature and DT is known as thermophoresis diffusivity. In order to justify the variation in 

viscosity due to inside friction between fluid particles and the stretching surface, temperature 

dependent viscosity model used by Ajayi et al. [78] and [79] is implemented to sort out the 

problem. 

p,(T) = p,o[al+h(Tw - T)], 

8(ry) = T-Too , <1>(77)= C-Coo. 
Tw - To Cw - Co 

Due to double stratifications Tw and Cw take the form 

1 -1n I - Tn 
To + ml(x + b)~ , Too = To + m2(x + b)-2- , 

1-1n 1 -1TL 

CO + m3(x + b)-2- , Coo = Co + m4(x + b)-2-' 

Using Eq. (1.12), Eq. (1.11) becomes 

Tw - T 
I - Tn 

(1 - 8(ry))(Tw - To) - m2(x + b)-2- , 

Cw-C 
l -rn 

(1 - <1>(77))(Cw - Co) - m4(x + b)-2- . 

From double stultifications, valid relation can easily be achieved as 
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b1 (Tw - To) 

b2 (Cw - Co) 

b1m 1(X + b) 1-;=, 
1 -TH 

b2m3(X + b)-2- , (1.14) 

here To and Co are known as reference temperature and concentration. A significant two 

differences in (Tw - To) , (Too - To) , (Cw - Co) and (Coo - Co) can easily be calculated from above 

equations. In view of this, it is usable to define temperature dependent viscous parameter ~ by 

considering in Eq. (1.14). The ratio of the two terms in Eq. (1.14) produce the stratification 

parameters St and Sc. 

b1 (Tw - To) 

b2 (Cw - Co) 

(, b1 (Too - To) = (St, St = m 2
, 

m1 

(1 b2 (Coo - Co) = (Se, Se = m4. 
m3 

(1.15) 

The similarity variable can be speculated in the following form 

(m ~ l)Uo (x + b)'n; l , 'Ij; = [ 2vUo F(17)] (x + b) "';1 , 
Y v m+ 1 

u Uo(x + b)mF' (1]) , v = - ((m + 21)VUo) ~ [F (17) + 1]: ~ ~ FI] (x + b) "';1 . (1.16) 

Eq. (1.1) is identically satisfied. After substituting Eq. (1.16) into (1.2), (l. 7) and (1.8) 

one can obtain the following system of nonlinear differential equations: 

(a+( -(8 - St() (1 + 3 (11, - 1) We2 FII) Fill _ ~ (F')2 _( (1 + We2 (11, - 1) (FII)2) 8 ' F" 
2 m+ 1 2 

+F'F" - 2Ha
2 

F' = 0 
m+1 ' 

( 1.17) 
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(
l -m) - Pr 1 + m F'St = 0, (1.18) 

<Il" + ~: 8" +Pr [Le<lll F(7]) - Le C ~:) F' Se + be en ~ 3) F' F(7]) - (n ~ 1) F2(7])<Il II
)] = 0, 

(1.19) 

Using (1.16), the associated boundary conditions are 

F' () (m - 1) () I I 
1, Fa =( )a, 8a =1, Nb<ll+Nt8=0,at17=a, l+m 

F' ----+ 0, 8 ----+ 0, <Il ----+ 0, as 7] = a ----+ 00, (1.20) 

Here wall thickness parameter a = A (Uo(~+l)), In order to transform the required 

equations and Neumann boundary conditions , define F(1]) = f(E, - a) = f( E,), B(E,) = B( E, - a) = 

8(1]) and ¢ (E,) = ¢(E, - a) = <Il(7]) which gives 

+f'f" - 2Ha
2 
f' = 0, 

m+1 
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8" + Pr [Nb¢'8' + 8' !(T/) + Nt (8,) 2 + bt ((n ; 3) f' !(T/) _ (n; 1) !2(T/)811
) ] 

- Pr C ~ :) f'St = 0, (1.22) 

¢" + Nt 8" + PI' [Le¢'! (T/) - Le (1 - m) f' S e + be (( n - 3) f' f (T/) _ (n - 1) f2 (r/) ¢II)] = 0, M l +m 2 2 

!(T/) ~~7: ~~) , !' = 1, 8(T/) = 1, Nb¢' + Nt8' = 0, at T/ = 0, 

f' -> 0, 8 -> 0, ¢ -> ° as T/ = 00, 

(1.23) 

(1.24) 

where ( = b1 (Tw - To) is temperature dependent viscosity, (1 = b2 (Ow(x , y) - 00) concentration 

dependent viscosity, St = !!!:2. is thermal stratifi cation , Se = ~ is solutal stratification pa-
rrt ! rn3 

rameter , Ha2 = PUo(::C)m 1 is Hartmann number, be = AeUO( X + b)m- 1 concentration buoy-

2 /(m+1)U3(x+b)3m - l /1l' 
ancy parameter, We = V °i" is Weissenberg number , Pr = T is Prandtl num-

ber, bt = AtUo(X + b)rn- 1 thermal buoyancy parameter, Nt = rDtg:,:To) is thermophoresis 

parameter, Le = D" is Lewis number and Nb = rD/3(Cw -Co ) is Brownian motion parameter. 
B " 

1.1.2 Physical quantity of interest 

Physical quantity near the wall i.e the frict ion factor coefficient (0/) is defined via the following 

relation: 

Tw 
0/=--== pJmt 1 

' 

here T w denotes the shear stress which is defined as: 
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TW = J.L [8y u + r 2(n - 1) (8YU)3] l -m . 

2 y=A(x+b)-r 
(1.26) 

The dimensionless fract ion factor coefficient (C f) is given by 

(1.27) 

/u (x+b)m - l 
where R ex = V 0 1/ denotes local Reynolds number. 

1.2 Numerical Procedure 

In this section, an effective computational scheme Runge-Kutta Fehlberg method has been 

implemented to calculate the solution of eqs. (1.21)-(1.23) subject to the Neumann boundary 

conditions (1.24). The differential equations are of 3rd order in !(f;,) , 2nd order in e (f;,) and 

¢ (f;,). First converte into a system of simultaneous first order ordinary differential equations. 

In order to solve this system by utilizing Runge-Kutta Fehlberg method , we need three more 

missed initial conditions. However, the values of l' (f;,) , e (f;,) and ¢ (f;,) are known when f;, ----+ 00 . 

These end conditions are utilized in order to achieve unknown initial conditions at f;, = O. The 

most important st ep of this technique is to choose the suitable finite values far field boundary 

conditions. The convergent criteria and step size are t aken to be 0.00001 and 10- 6 respectively. 

1. 3 Results and discussion 

Shooting technique is used to solve the ODEs for Carreau nanofluid over a nonlinear stretching 

sheet by using Cattaneo-Christov heat and mass flux models. The related physical parameters 

like wall thickness parameter , temperature dependent fluid dynamic viscosity, power law index, 

Weissenberg number , Prandtl number , Brownian motion, Hartmann number, Lewis number, 

thermal stratification parameter , thermophore tic parameter, solutal concentration parameter 

and stretching index parameter are computationally deliberated in this section. Fig. 1.2 depicts 

the vibration in Hartman number H a2 on horizontal velocity profile. It is obvious that by 
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enhancing the vertical velocity profile , reduction near the wall and quickly intensifications 

close to the stretching sheet is noticed. Lorentz force which acts as a retarding force tends 

to increase the frictional resistance that causes decrease in boundary layer thickness. In case 

of variable thickness, the momentum boundary layer rises. Fig. 1.3 illustrates the variations 

in wall thickness parameter a on vertical velocity profile for 'In > 1 and 'In < 1. It is clear 

that the velocity close to plate increases as thickness parameter a increases for 'In < 1 and 

reverse behavior is noticed for 'In > 1. Also, increase in wall thickness a causes increase 

in thermal boundary layer . Fig. 1.4 shows t he variation in horizontal velocity profile for 

different values of temperature dependent plastic dynamic viscosity E. It is obvious that for 

large values of E, transverse vertical velocity profile close to free stream and the horizontal 

velocity distribution near the smface increases. Fig. 1.5 designates the physical behavior of 

power law index (nonlinearity index) 11, on velocity profile. Large values of power law index 

11, results an intensification in vertical velocity profile. In this case the flow moves away from 

the stretchable smface in the velocity field. Fig. 1.6 is designed to demonstrates the impact 

of Weissenberg number We2 on vertical velocity profile. This graph obviously shows that for 

shear thickening fluid , velocity profile rises monotonically with improved values of Weissenberg 

number vVe2 . 

go.s 
.~ 

0.4 

0.3 

0.2 

0.1 

-- lIu' = /.O 
-- J-1a! = /./ 
--1101 = 1.2 

we' =" .. 0.5, ,, " 1.1, ~ = 1.0, u: - '" -$, .. Sc = 0. /, 
Pr = 1./ . L, - 1.0, N . .. :V, "" lil .. lic " 0.1 

Fig. 1.2. Influence of Ha2 on f' (E) . 
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~ 0.5 ...... 
0.4 

0.3 

0.2 

0.1 

--- 11=0./ 
--- a= 0.5 
--- a= 0.9 

11';/ = tr "' 0.5, 11 = 1.1, Hu l 
"' ; '" 1.0, III =SI=Sc '" 0.1, 

Pr '" 1./. LI! = /.0, N. '" N, = St = 6c = 0. / 

Fig. 1.3. Influence of a on i' (~) . 

~0.5 ...... 
0.4 

0.3 

0 .2 

0 .1 

JY,,: ." ' I '" 0.5, n = /.1, I/a l = /.0, II "" In = St '" Sc = 0. / . 
/'r = 1.1, U = 1.0 . . V

I
., .V, '" 151 = (ie = 0. / 

Fig. 1.4. Influence of ( on f' (0. 
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§]' O'" 
-- 11 - / .5 
-- ,, - 1.9 

~:~ ~~/.=L~·: 1.; ~~: ~,,~ .!,;: : ;; : ~~;. sc .. 0. / , 

. ~0.5 
0.4 

0.3 

0.2 . 

0.1 

Fig. 1.5. Influence of n on J' (.;) . 

0.6 

.~O.5 
0.4 

0.3 

0 .2 : 

0 .1 

__ Wel_ fl. 1 
__ We1 " 1.5 

-- W'/'" 2.9 

~ = 1.0, {/ '" 0.5, n -"". J, lff' " J.o, u - III - SI ", ,lie " 0.1. 
"" ,., 1.1, L.· " 1.0. 'Vl - .V, " 51" 0," " 0.1 

Fig. 1.6. Influence of We2 on J' (.;) . 

In Fig. 1. 7 depicts the variation in Prandtl number Pr on temperature profile. The graph 

shows that by increasing Pr the thermal boundary layer thickness becomes greater than bound

ary layer thiclmess. Figs . 1.8 and 1.9 are plotted to observe the behavior of Brownian motion 

Nb and thermophoresis Nt on temperature profile. It is seen that for large values of N" and 

Nt the temperature distribution increases i. e. strong Brownian motion N" and thermophoretic 

Nt diffusion leads to intensification in temperature. F ig. 1.10 is plotted to scrutinize the 
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variations in temperature field for various values of therma l stratifications St. The convective 

potential that coincides with nonlinear stretching sheet and temperature profile t hat reduces by 

enhancing St. In view of this, both thermal boundary layer t hickness and temperature profile 

decreases for large values of St. Fig. 1.11 shows that for large values of at temperature profile 

reduces. Physically, for large values of at , particles reflect non-conducting act i. e. particles 

need additional time to transfer heat which responses with decrease in temperature profile. It 

is noticed that the temperature diminishes for large values of at, so the viscosity of the fluid 

slightly enhances. 

0.6 

~ O.5 
a> 

0.4 

0 .3 

0.2 

0 .1 

t;; "" / .O, a = 0,5,11 - 1. 1, l/u J" I.0, 1l. = m =S, .. Sc '" 0.1, 
If'/ = ::.11, Lr " 1.0, N~ " N, " 01 " Bc '" 0./ 

Fig. 1.7. Influence of PI' on f) (0. 

0.7 

0 .6 

~ 0.5 

0.4 

0.3 

0.2 

0.1 

--N.""O. I 
-- N, = f),j 

--N,"'O. fJ 

IV,} "" (I " a,5,t; _ /luI . 1.0. a - m =Sc = O. I,n " 1. 
/',. "" / . /, Lr " 1.0, S I " .V, " S, .. lie = 0./ 

Fig. 1.8. Influence of Nb on f) (~) . 
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0.7 

0 .6 

~ 0 .5 
'" 

0.4 

0.3 

0.2 . 

0 .1 

1I't'1 "" II = 0.5, /I >< 1 . 2. ~ - 11(/ - 1.0, u " m - SC - 0.1, 
IJr = 1.1. U = 1.0, .V~ - S/ - nt - ne" · 0.1 

Fig. 1.9. Influence of Nt on e (0 . 

0.6 

~O.5 
'" 

0.4 

0.3 

0 .2 

0 .1 

___ S, a O. 1 

--- .\'1 = 0.3 
--- S' ~ O. 5 

Fig. 1.10. Influence of Ot on e (0. 
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0.6 

~ O .5 -
<I> 

0 .4 

0 .3 . 

0.2 

0.1 . 

-- lit = O. J 
--r.l o:: O.J 
-- 6t " 0.5 

(I '"' O,j ,t, '" 1/,,' '" 1.0, If,: - u - III =Sc = 0.1, ,, " 1.1, 
p,. ,. 1.1, 1.1' - 1.0, Sf " ,V, - N . ... (,c =- 0. / 

Fig. 1.11. Influence of 8t on B (0. 

In Fig. 1.12 shows that the nanoparticle concentration profile decreases significantly for large 

values of Lewis number Le. Enhanced values of Lewis number Le reduces Brownian motion 

diffusion coefficient. The concentration profile enhances for large values of Lewis number Le . 

Fig. 1.13 examines the variation in solutal stratification parameter Se on concentration profile. 

It is noticed that concentration decreases with an increase in solutal stratification parameter 

Se. Fig. 1.14 examines the variation of oe on concentration profile. Higher disturbance is 
I 

observed for oc = 0.0. Fig. 1.15 shows the variation of H a2 and W e2 on C f Re~ . For large 
I 

values of Hartmann number H a2 , C f Re1 increases. Table 1.1 displays the variat ion of friction 

factor in tabulated form for unlike values Hartmann number , thermal stratificat ion parameter, 

temperature dependent viscosity and vVeissenberg number. Comparison of present results with 

pervious literature of Acharya et al. [80J and Khan and Pop [81J has been shown in Table 1.2. 
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Fig. 1.12. Influence of Le on ¢; (~). 

ii:b.15 
-<r 

0.1 

0,05 

--- Sc=O.50 
--- .'\c= 0.55 
--- Sc= O.51J 

If't" " /1 - 0.5, /1 = 1. 1, /](/ - J. O, a '" 11/ - Sr .. !;- 0. 1, 
I'r '" 1.1, Lt' '''' 1.0, N, '" N, = li / = ~c = 0. 1 

Fig. 1.13. Influence of Se on ¢; (~). 
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€O.15 .... 

0.1 

--- oc = O. 1O 
--- Be = 0. /5 
--- ~c "" O. 19 

11'/ '" Sc '" Sf '" II "" O.j,,, = 1.1, (, = 1.0, U '" 0.1, Lt = 1.1, 
Pr '" 1.1. llti '" 1.0, A', = 0.1, nf "" N. = O.I.lil '" 0.5 

0.05 

Fig. 1.14. Influence of eSc on ¢ (0. 

0.3 ~""""""""'''''''1 'c.5-'-........ ---~2---................... -:2;';. 5:-'--'-......... ..., 
We1 

Fig. 1.15. Skin friction coefficient for various values of We2 and Ha2 . 
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Table 1.1. Computational results of CfRei for different values of Ha2
, (, St and 

We2 When a = 0.5 , m = 0.1 , n = 1.2 and a = 0.9. 

Ha2 ( St We2 11 CjRe/ 

0.1 1.0 1.2 0.5 11 1.8811 

0.2 11 2.1020 

1 0.3 2.3199 

II 0.1 1.0 1.2 0.5 1.8811 

II 1.1 1.7860 

1.2 1.6988 

0.1 1.0 1.2 0.5 1.8811 

1.3 1.9001 

1.4 1.9200 

0.1 1.0 1.2 0.5 1.8811 

II II I 0.6 1.8886 

II II II 0.7 1.8963 

I I 2 
Table 1.2. Comparison of -B (0) and - if; (0) with pervious literature when W e = ~ = 0.5 , 

a = m = Nb = Nt = St = 0.1, Jt = Jc = O.O.and Le = Pr = 1.0. 

Nt 

0.1 II 0.952432 II 0.9524 2.1294 II 0.9527 2.1296 

0.2 11 0.693211 2.273201 II 0.6932 2.2732 II 0.6928 2.1786 

0.3 11 0.520147 2.528633 II 0.5201 2.5286 II 0.5221 2.5286 

0.4 11 0.402631 2.795216 II 0.4026 2.7952 II 0.4031 2.7887 

0.5 11 0.321149 3.035100 II 0.3211 3.0351 II 0.3529 3.0363 
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Chapter 2 

Impact of enhancing diffusion on 

Carreau-Yasuda fluid flow over a 

rotating disk with slip conditions 

A non-similar solutions to study the behavior of slip conditions for a steady MHD Carreall

Yasuda fluid flow over a rotating disk are presented in this chapter. In order to examine the 

heat transfer phenomena superior form of Fourier 's law is used and the conductivity of the fluid 

is assumed to be changeable. The non-linear partial differential equations representing fluid 

flow and the related thermal field are written in the non-dimensional ordinary differential form 

by using suitable transformations. The non-dimensional set of coupled ordinary differential 

equations is solved through RK method . The impact of various nondimensional physical para

meters on velocity and t emperature fields is explored. The numerical results of resistant force 

in terms of the skin friction coefficient are revealed graphically for various physical parameters 

involved in the model. 
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2.1 Mathematical formulation 

2.1.1 Flow analysis 

The physical model for steady three dimensional axisymmetric flow of Carreau-Yusuda fluid due 

to a rotating disk in the presence of a uniform magnetic field applied along z positive directions 

is shown in Fig. 2.1. Heat transport characteristics are examined by taking variable thermal 

conductivity and by using Cattaneo-Charistov heat flux model. The governed equations are in 

cylindrical coordinate form. 

111 

u 

Fig. 2.1. Physical schematic diagram. 

The extra stress tensor for Carreau-Yasuda fluid model is: 

(2. 1) 

here T, flo and floo denotes extra stress tensor, zero and infininte coeficient vitlcosity respec

tively. rd is time constant, d is fluid parameter, n is the power law index, Al = L + Li = 

(VV) + (VV)t is the kinematical tensor , V differential operator and 7 = j~tTAr is second 

order invariant symmetric part of the velocity gradient. Suppose that the infinite shear rate 

viscosity floo = 0 and by using first order Binomial series approximation eq. (2.1) reduces to 
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(2.2) 

under the above assumptions , the governing equations for Carreau-Yasuda fluid model in 

Cylinderical polar coordinates are given as 

T1'1' 2/-Lo (1 + 1: n(r~)d) 81'u, T1'O = TOr = /-Lo [(1 + 1: n (r~/) (~80u + 8rv -~) 1 ' 

TOO 2 [fLO (1 + 1: n(r~)d) (~80V +;) ] , Trz = Tn = P,o [ (1 + 1: n(r,/) (8zv, + 81'1.1,)] ) 

T zz 2 [/-LO (1 + 1: n(r~)d) 8zW] , Toz = TzO = /-Lo [(1 + 1: n(r~)d) (~80W + 8zV)] , (2.3) 

here 

,= (2.4) 

The governing continuity, momentum (Carreau-Yasuda model) and heat equations are 

(2.5) 

(2.6) 

( a vu 8) a T 1'0 2 P u ,.V+-:;:+w zV = rTrO+8zTzO+2-:;:--VIIHo , (2.7) 

(2.8) 

here velocity vectors V = [U, v , w] are in r, Band z directions , respectively v is the 

kinematic viscosity, n is the power law index, r is the t ime constant and p is the density. 
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The new version of Fourier's law is 

q + AT [otq + V. (Vq) - q. (VV) + (V.V)q] = - kfVT, (2.9) 

Fourier first proposed (see 'Winterton [82]) the heat conduction model based on the temper

ature distribution, by implimenting the above assumptions we have V.q = 0 and %r = 0, the 

above equation reduces to 

q + AT [V.Vq - q.VVl = -kfVT, (2 .10) 

where a is temperature based thermal conductivity, k f is generally supposed to be constant. 

Now, the energy equation in cyliderical coordinates will be 

uorT + wozT + AT [(uoru + wOzu) arT + (uorw + wOzw) ozT + u2ort·T+w2ozzT + 2uworzT] 
1 
-Or (Tk (T) arT) + oz (aozT) , (2. 11) 
l' 

the boundary conditions for adopted problem are 

Applying transformations: 

en I ~ (T - Too) ry = V 2-;:;- , U = Tn! (ry), v = Tng(77) , Z = -v2nv!(ry), k(T) = koo 1 + c
Tw 

_ Too ' 

(2.12) 
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Using the above similarity transformations the governing equations are converted into the 

following form: 

21'" + {1'" ~2 + (~) -2 [14 (1") 2 ~~ + 2 (g') 2 l' + Re 2 ( (1") 21'" + g' gil 1") ] } 

2g" + { ~2 gil + (~) -2 [12 (1") 2 l' g' + Re 2 ( (I") 2 1'" g' + (g') 2 gil) ] } 

(2, 14 ) 

(1 + c:B)B" + PI' fB' + c: (B') 2 - 25t (fB'1' + f 2 8") = 0, (2 ,15) 

and the boundary conditions will be 

f(O) s , l' = 1" [1 + (n: 1)Wed[12 (1,) 2 + 2 Re ((111) 2 (9,) 2) AI] , 

g(O) 1 + g' [1 + (n: 1)Wed[1 2 (1,) 2 + 2 Re ((111) 2 (g') 2)] A2, B(O) = 1, at 'TJ = 0, 

l' ---4 0, 8 ---4 0, P ---4 00, as 'TJ ---4 00 . (2.16) 

Where, velocity slip parameter Al = K 1P,ofifj, Hartmann number Ii a2 = apr;'J, tangentia l 

slip parameter A2 = K 2P,ofifj, Weissenberg number W ed = (nr)d, Reynolds number Re = 

n~.2, Prandtl number Pr = !!f- and thermal relaxtion parameter 5t = Atn. 

The pressure can be initiated from eq, (2,8) as given by 
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pi = {~2 I" + ( :y ) -2 [48 (1") l' + Re (4 (1") 1"1 + 4 (gl) gil) - (1") 2 _ (gl) 2] } 

x ( (n : 1) (1 + d) wed) + 2f l' + 21". (2.] 7) 

It is observed that the pressure do not depends upon T' and e. Generally speaking, t here is 

no solutions available for above transformed equations (see Ref. [83]). 

The essential physical quantity of interest i. e. reaction factor coefficients (GI , Gy ) in di

mensionless form can be written as 

(2.18) 

(2.19) 

where Rex = ~. 

2.2 Numerical Procedure 

The PDEs are renovat ed into ODEs by using suitable similarity transformations. These trans

formed eqs. (2.14) to (2 .16) are nonlinear differential equations. Therefore, the system of 

equations is difficult to solve analytically. Thus, eqs. (2.14) to (2.16) along with the boundary 

condtions (2.17) are solved numerically by using upgraded form of Fehlberg method (Cash and 

Karp) . 

2.3 Results and discussion 

The set of dimensionless non-lineal' ODEs [i .e. eqs . (2.14) to (2.16)] under the boundary 

conditions (2.17) are solved numerically by using shooting method. Fig. 2.2 presents the 
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influence of Hartmann number H a2 on velocity profile. A Lorentz force that was named drag

like force is generated normal to t he flow. It is clear that the velocity profile moderates by 

increasing Hartmann number H a2 . It is important to mention that by increasing resistance 

on the material causes the heat to be created in the fluid . Fig. 2.3 describes the influence of 

Weissenberg number VVed on the velocity profile. It is clear from this figure that enhancement in 

Weissenberg number W ed tends to reduce velocity profile. F ig. 2.4 illuminates a very important 

effect of radial slip parameter A on velocity profile. It is not iced that the velocity fluid enhances 

by enhancing radial slip parameter A. Fig. 2.5 presents t he variation of nonli near st.retching 

index n on velocity profile. It is also observed that by enhancing nonlinear stretching index n 

rises the velocity profile. Fig. 2.6. illustrates the variation of the fluid parameter cl on velocity ' 

profile. It is found that the fluid parameter cl increases by increasing velocity profile. 

0.5 r· --------;::======;] 
0.45 

0.15 

0.1 

0.05 

__ HalaO. } 

__ lIa' ''0. 3 
__ lIa1 " 0.5 

Fig. 2.2. Variat ion of Ha2 number on /,(7)). 
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0.5.--------.,... _____ -1 

--- w~~ '" (J. / O 
--- lVe4

,.. 0. /5 
0.45 . 

0.4 . --- lVe~"" 0. 19 

0.35 

0.3 

~25 . 

0.2 

0.15 . 

0.1 

0.05 

Fig. 2.3. Variation of W e2 number on j'('f)). 

0.5r· ---------;====::::;'1 
0.45 . ---i., - O,/ 

--- i., - 0,5 
0.4 --- i,, - 0.9 

0.35 . 

0.3 

~25 . 

0.2 . 

0.15 . 

0.1 

0.05 

F ig. 2.4. Variation of A1 on 1" ('f)) . 
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0.5r--------;::=====1I 

0.45 

0.4 

0.35 

0.3 

:?o.25 
'-, 

0.2 

0.15 

0.1 

0.05 

--1/ = 1. 1 
__ 11 03 /. 1 

Fig. 2.5. Variation of power law index n on 1'(7]) . 

0.5r------r =====il 

0.45 

Fig. 2.6 . Variation of don l' (7]) . 

Fig. 2.7 indicates the influence of relaxation parameter 5i on temperature distribution. It is 

observed from this figure that by increasing the values of relaxation parameter 5/., heat ass ign

ment reduces, as a results rotating thermal boundary layer and temperature profile reduces. 

F\'om fig. 2.8 it is seen that for larger values of Prandtl number Pr, temperature distribu

tion diminishes. An increase in Prandtl number Pr reduces the thermal diffusivity and t hus 

temperature of the fluid reduces. Fig. 2.9. shows the behavior of thermal conductivity E in 

temperature distribution. It is found that the thermal conductivity pa rameter E enhances by 

increasing temperature profile. Table 2.1 shows the behavior of friction factor (C J, Cg ) respec-
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t ively for different numerical values of physical parameters . For validat ion of current numerical 

scheme, the results are compared with Lin and Lin [84]. The outcomes of the current numerical 

results are in better agreement with previous results (shown in Table 2 .2) . 

l r· -------------r======~ 
0.9 ---- 6, = 0. / 

---- 6,"" 0.3 

0.8 : ---- 0, = 0.5 

F ig. 2.7. Varia t ion of OL on () (7)). 

0.9 

0 .8 

0.7 

0.6 

~O.5 

0 .4 

0 .3 

0.2 

0.1 

Fig. 2.8. Variation of Pr number on () (7)) 
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0.9 
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0.7 . 

0.6 

£0.5 
'" 

0.4 
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0.2 

0.1 

Fig. 2.9. Variation of € on B (ry) 
e 

Table 2.1: Numerical values of C j ReI for physical parameters vVed , Re and n while 

keeping d = 0.1. 

II n 
I 

II Cy Re~ II Wed Re CjReI 

0.1 0.1 II 1.1 0.0081 1.1100 

0.2 II 1.2725 1.2512 

0.3 II 2.1018 1.4128 

0.1 0.2 11 1.1 4.5677 2.6116 

0.4 11 6.0158 2.6179 

0.611 8.5781 2.6279 

0.1 0.1 II 1.2 0.0825 2.8721 

II 1.3 0.1218 3.1326 

II 1.4 0.2465 3.3931 
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Tables 2 .2: Comparsion of Prandtl number with Lie et al. [84] when W ed = n = d = 6t = 

Al = A2 = Ha = 0 and E = 0.5. 

Pr Lin et al. [84] 1 P resent results II 

0.001 0.88600 0.88690 II 
0.01 0.87658 0.87662 II 
0.1 0.81614 0.81625 I 
0.72 I 0.65512 0.65521 

1.0 II 0.62902 0.62913 

10 II 0.56095 0. 56170 II 
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Chapter 3 

Implementation of 

Darcy-Forchheimer effect on 

magnetohydrodynamic Carreau 

Yasuda nanofluid flow: Application 

of Von Karman 

This chapter configm es the problem on MHD flow in Carreau-Yasuda nanoflui d produced b\' 

impulsively started rotating disk in the occurrence of Darcy-Forchheimer and chemical reactive 

specie by employing conventional Fomier 's and Fick 's laws. Fourier introduced a model that 

relates heat transfer mechanism, but its major drawback is that it creates a parabolic heat 

equation which means that initial disturbance is felt through the entire scheme. The theory is 

constructed by adding time relaxation term to Fourier 's law of heat conduction which permits 

the transferences of thermal in the form of heat waves with finite speed. Christov utilized 

Oldroyed 's upper convective derivative in contrast of time derivative in Maxwell-Cattaneo's 

model in order to employ the material invariant analysis. Appropriate transformations are 

used to renovate the constitutive equations into nonlinear ODEs and then worked out by using 

improved form of Ruge-Kutta method . The deviation in flow field due to velocity, friction 
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factor , temperature, heat diffusion rate , nanopar t icle concentration and mass transfer rate is 

analyzed subsequent for various ambient parameters appearing in t he problem. The results of 

the study reveal that Weissenberg number appearing in the equations lead to decelera te the 

radial and tangential velocit ies while the power law index tends to accelerate the radial and 

tangential velocities. 

3.1 Formulation and solutions of the problem 

3.1.1 Flow fourmulation 

Consider the steady 3-D axisymmetric Carreau-Yasuda nanofluid flow over a. rotat ing disk wit h 

Cattaneo-Christov mass and heat flux models. The flow is generated via disk rotating with 

constant angular velocity n. An external magnetic field Ho is applied normal to t he plan disk. 

A schematic diagram of the physical configuration is shown in Fig. 3.1. Uniform concentration 

Cw and temperature Tw is presumed at the surface of rotating disk. The free stream temperature 

and ambient concentration are assumed to be Too and Coo . 

u" 

Fig. 3.1. Schematic diagram of physical model . 

3.1.2 Rheological model for Carreau yasuda 

The Cauchy stress tensor of Carreau-Yasuda rheological model is 
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(3. 1) 

here T, /-Loc and /-La denotes extra stress t ensor, infinite and zero shear rate viscosities re

spectively. d is fluid parameter, rd is the materials parameter , n is the power law index, 

Al = L + Lt = (V'V) + (V'V)t is the ratio of the strain tensor , \l differential operator and 

~ = J~tr(Af) is second order invariant strain tensor. Moreover , it is worth mentioning t hat 

this model reduces to Carreau fluid model when d = 2 and in simila r way reduces t.o visco lls 

fluid model when n = 101' r = O. Suppose that the infinite shear rate , viscosity is zero (/1. =-= 0 ) 

and by using binomial series eq. (3.1) becomes 

[ (
I n . d) ] T = /-La 1 + -d-(r')') AI , (3.2) 

Carreau-Yasuda fluid model in Cylinderical polar coordinates become 

T 1'1' 2/-Loo"u (1 + 1 : n (r~) d) , TO,. = T,.O = /-La [ (1 + 1 : n (r~) ') (~OOU + O"V - ~) ] , 

Toe 2 [/-La (~oov+;) (1 + 1 :n(r~)d)] , Tz,. = T"z = /-La [(1 + 1 :n(r~)l) (OzU+ O,.U)] , 

Tzz 2 [/-LOOZW (1 + 1 d n(r~)d) ] , TzO = Toz = /-LO [(~OOW + Ozv) (1 + 1 d n(r~)d)] , (3.3) 

where 

')'= (3 ,1\ ) 

The continuity and momentum equations are 

(3.5) 
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(3 .7) 

(
OW OW) Trz J-tFs Fs 2 

P 1£ or + W OZ = OzP - O,.T1'% + -:;:- + OzTzz - W K * - P ..fK*W . (3.8) 

Here velocity field V = [1£ , v, w] is in T , e and z directions, respectively. :!if. is the interia.l 

factor , v is the kinematic viscosity and p is density. The extended Fourier 's and Fick's lall's 

take the following form: 

q + AT [Otq + V. (Vq) - q. (VV) + (V.V)q] = - kfVT, (3.9) 

J + Ac [EhJ + V. (VJ) - J . (VV) + (V.V)J] = - DBVC, (3.10) 

By implimenting V .q = 0, V .J = 0, ~ = ° and ~~ = 0, the above equations become 

q + AT [V.Vq - q.VV] = - kfVT, (3.11) 

J + AC [V.VJ - q.VJ] = - DBVC, (3.12) 

Now the energy and concentration equations in cylindrical coordinates become 

1£orT + wozT + AT [(1£01' 1£ + wOz1£) arT + (uo, .w + wOzw) ozT+w2 ozzT + 1l
2 o,.,.T + 2'11.'IlIo,."T j 

ex ( O,.,.T + ~o,.T + OzzT) + T [DB (orTO,.C + ozTozC) + ~T ((o,.T) 2 + (Oz T )2 )] , (3. 13) 
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UOrC + WOzC + AT [(UOru + WOzu) o,.C + (UOrW + WOzw) OzC+w20zz C + v 20,.,.C + 2'/1 wo,·z C] 

DB ( OrrC + ~O,.C + OzzC ) + ~: [( orrT + ~OrT + OzzT ) ] - kr(C - Coo). (3 .14) 

Here (J = Ok is the thermal diffusion, D T is the thermophoresis diffusivity, Cp is t he specific 
P p 

heat , DB is the molecular diffusivity and T = «pc? , is t he nanoparticles heat capacity. pc f 
The transformations are 

ry = .fl!, u = rDf' , v = rDg(ry), z = -J2Dvf(ry) , 

(3.15) 

Using the above similarty transformations the governing equations are converted in to t he 

following form: 

21''' + {fill ~2 + (:y) - 2 [14 (1'") 2 f' + 2 (gl)2 l' + Rc ( (/ 11 )2 /'" + g' gil /" ) ] } 

2g" + { ~2 gil + (:y) - 2 [1 21' (til) 2 gl + Re ( (til) 2 1'"9' + (gl) 2 gil) ] } 

(3.17) 

(~. l R ) 
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¢"+ ~~811 +PrLe [¢11 - K¢-be (1I'¢/ +f2¢II)l = 0, (3. 19) 

the boundary conditions will be 

1(0) s , l' = 0, g(O) = 1, 8(0) = 1, ¢(O) = 1, at 17 = 0, 

l' ---t 0, 8 ---t 0, ¢ ---t 0, P ---t 00, as 1/ ---t 00. (3.20) 

2 
Where the dimensionless parameters are Hartmann number H a2 = (]':~Q, porosity pat"ame-

tel' A = ~:fl> inertia parameter Fe = Jk.r, ' iVeissenberg number Wed = (Or)d , Brownian 

moment parameter Nb = rDB(C::-C=) , Reynolds number Re = n~2, concentration buoy

ancy parameter be = AeO, Prandtl number Pr = 1!!f, thermal buoyancy parameter bt = 

AtO, chemical reactive specie K = ~, Lewis number Le = 58 and thermophoresis parameter 

N - rD,(Tw-T= ) 
t - vT= . 

T he pressure can be calculated from eq. (3.8) , which gives 

pi = + { ~2 f" + (:y) - 2 [48 (1") 1" + Re (4 (1") /'" + 4 (g') gil) - (gl) 2 - (I") 2] } 

x ( (n : 1) (1 + d) wed) - 1 (A + 1 F(J + 2 (1" + 11') . (3.21) 

The essential physical quantities of interest i.e. reaction factor coeffi cient (Cf ' C9 ) in 

dimensionless form can be written as 

Cf Re,ll = hi" [1 + Wed (71, - 1) )(11)2 + Re (1" + gl)] , 
d ry=o 

C9 Re,ll = hg' [1 + W ed (71,: 1) )(11)2 + Re (i" + gl)] 77= 0 ) (3 .22) 

where R ex = jDi!-. 
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3.2 Numerical Procedure 

To solve the eqs. (3 .17)-(3.19) associated with Neumann boundary conditions (3.20) , upgraded 

form of Runge-Kutta method (Cash and Karp) is implemented. Firstly, the boundary value 

problem is transformed into system of initial value problems. Then, fifth order Runge-Kutta 

technique is implemented to solve the corresponding initial value problems. The accuracy in 

numerical solution is controlled by assuming that tolerance error must be less t han 10- 6 . 

3.3 Results and discussion 

The solutions of the dimensionless eqs. (3.17)-(3.19) along with boundary conditions (3.20) are 

calculated by manipulating shooting procedure (Cash and Carp) . Consequence of different flow 

governing parameters on velocity f'(ry) , temperature () (ry) and concentration if> (ry) has been 

calculated. The values of engineering concern i.e. local friction factor has been calculated 

for different regulatory parameters of a flow field. Figs. (3.2) and (3 .3) display the graphical 

behavior of Hartmann number Ha2 on f'(ry) and g(ry). It is observed that by enhancing Hartman 

number Ha2 , 1'(ry) and g(ry) reduces. Lorentz force produces a retarding force which tends 

to strengthen the frictional resistance of fluid particles, causing reduction in f ' (ry) and g(ry) . 

Fig. 3.4 depicts that velocity profile enhances on increasing Weissenberg number W ed. Here 

for greater Weissenberg number W ed, the radial velocity increases close to disk that allow 

additional fluid particles to pass through. As a result velocity profile l' (ry) increases. Fig. 3.5 

examines the behavior of Weissenberg number VVed on tangential velocity 9 (17) . It is seen that 

by enhancing Weissenberg number Wed tangential velocity, 9 (ry) reduces. Fig. 3.6 portrays the 

influence of power law index n on f' (ry). To strengthen values of power law index n , velocity 

profile magnifies. It is clear from sketch that velocity profile enhances by enhancing power 

law index n . Fig. 3.7 illustrates the variation on velocity profile 1'(ry) for different values 

of inertia factor Fe. For higher values of inertia factor Fe, the velocity profile f ' (77) reduces. 

Fig. 3.8 illustrates the variation of fluid parameter d on velocity profile. For higher values of 

fluid parameter d, the velocity distribution increases. Fig. 3.9 illustrates the variation of local 

porosity parameter A on velocity distribution l' (ry). It is observed that for higher values of 

the local porosity parameter A, the velocity profile declines near the disk. Fig. 3.10 examines 
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the nature of Prandtl number Pr on temperature distributions. Prandtl number Pr is the ratio 

of momentum to thermal diffusivity. It is clear that for improved values of Prandtl number 

Pr temperature profile reduces. Figs . 3.11 and 3.12 represent the behavior of Nb and Nt 

on temperature profile. It is evident that strong values of Nb and Nt lead to enhance the 

temperature profiles. Fig. 3.13 shows that enhancement in 5t causes reduct ion in temperature 

profile. Physically, this clarifies that as we increase bt , particles esteem non-conducting ac t, 

i.e. particles take essential extra time to create heat among material which is responsible 

for reduction in temperature profile e ('r/). Fig. 3.14 shows that nanoparticle concentrat ion 

¢('r/) diminishes for large values of Lewis number Le. Fig. 3.15 reveals the influence of f( on 

concentration ¢(17). It is seen that by enhancing chemical rection f( the concentration profi le 

diminishes. Fig. 3. 16 represents the variation of Oc on concentration profile. Higher distribution 

is observed for Oc = 0.0. i. e. classical Fide 's law of diffusion. A comparison of current task with 

pervious published work is presented in Table 3.1. It can be seen that the present numerical 

values show outstanding match with Acharya et a1. [80]. Using numerical calculations, local 

friction factor coefficient results are presented in a tabular form (see Table 3.2). 

0.3r--------;======j 
--J-/(/ "' O.I 
-- I-It/ - O.l 

0.25 -- fh/ = O.5 

0.2 

Fig. 3.2. Variation of Ha2 on l' ('r/) 
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F ig. 3.3. Variation of H a2 number on 9 (77) 
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--- /fill = 0.09 
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Fig. 3.4. Variation of W ed on /(77), 
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--- We04 = O.OI 
--- 11',./ = 0.05 
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0 .3 
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0 .1 

Fig. 3.5. Variation of W ed number on 9 (77) . 

0.3r----------;:=====il 

Fig. 3.6. Variation of power law index 17, on 1'(77). 
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0.35 r --------r=======iI 

F ig. 3.7. Variat ion of inertia factor F e on 1'(7/). 

0.3F"-----------,=== ==" 
--- d .. O. ! 
--- d 0.2 

0.25 --- .I "' O. -J 
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F ig. 3.8. Variation of fluid paramet er don 1'('r}) . 
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0.35 r ---------;::========:::::;, 

Fig. 3.9. Variation of porosity parameter A on 1'(77)· 
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Fig. 3.10. Variation of Prandtl number Pr on 8(7]). 
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Fig. 3.11. Variation of Nb on e (1]) . 

--- .\'/ = 0.1 
--- ,VI -= 0.5 
--- ,v' - O.8 

Fig. 3.12. Variation of Nt on e (17) . 
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0.1 . 

oo~~~~~~~~~---+~~ 

Fig. 3. 13. Variation of Ot on 8(17). 

Fig. 3. 14. Variation of Le on cj> (1J) . 
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--- A."= O. I 
--- 1: - 0.5 
--- 1: - 1.0 

F ig. 3. 15. Variation of [( on ¢(TJ). 

--- 0, - 0.1 
--- ~, · 0. 5 
--- 6~- I.O 

F ig. 3. 16. Var iation of 6c on ¢ (77). 
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Table 3.1: Comparison of the current results with previous studies when Nt d 

0.1 , Re = Fe = W ed = K = n = Le = 0.0 and Pr = 1.0. 

Nt Acharya et al. [80] II Present work II 
0.1 0.9524 II 0.9524 II 
0.2 0.6932 II 0.6938 

0.3 I 0.2501 II 0.2511 

0.5 II 0.4026 II 0.4026 

0.6 II 0. 3211 II 0.3231 

Table 3.2: Numerical values of f" (0) and g'(O ) when Nt = N iJ = Re = Fe = W e" = l( = 

0. 1, Pr = 1.0, Le = 0.8 and n = 1.1. 

1 1 

Ha2 d A Cf Re';;-"2 Cg Re';;-"2 

0.5 0.1 0.1 05369 0.2769 

0.6 0.5415 0.2654 

0.7 0.5439 0.2565 

0.5 0.1 I 0.1 0.5369 0.2769 

II 0.2 0.5888 0.2231 

II 0.3 0.6026 0.2092 

II 0. 5 0.1 0.1 0.5369 0.2769 

II I 0.4 0.5449 0.2495 

II 11
0.7 0.5424 0. 2353 
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Chapter 4 

Heat and mass transfer of 

Williamson nanofluid flow yield by 

an inclined Lorentz force over a 

nonlinear stretching sheet 

This chapter focus to explore the computational solution of variable viscosity and inclined 

Lorentz force effects on Williamson nanofluid over a stretching sheet. The Williamson model 

is nearly equal to blood as it almost describes the nature of blood flow. Variable viscosity is 

assumed to vary as a linear function of temperature. The basic mathematical modelled problem 

i.e. system of PDE's is converted into nonlinear ODE's by applying suitable transformations. 

To compute numerical solution of the problem an efficient numerical technique shooting is 

employed. Characteristics of controlling different parameters are plotted to visualize various 

physical constraints. Additionally, friction factor coefficient, Nusselt number and Sherwood 

number are presented in the form of graphs and tables. 
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4.1 Mathematical formulation 

Let us consider a mathematical model for two dimensional boundary layer How of \VilliC\,mson 

nanoHuid over a continuously nonlinear stretching sheet with vari able viscosity. T he plate 

is stretched with velocity Uw = Uo( x + b)m- l , where Uo is reference stretching rate, m is 

the stretching velocity index and b is the dimensionless constant. The sheet is considered 
I - n1 

at y = A(x + b)~, where A is very small constant. Further , it is assumed that the model 

must be satisfied only for m =f=. 1, because for m = 1, it reduces to fl at sheet. Magnetic field of 

strength Ho(x) is applied along normal direction of flow at an angle 'Y from sheet (as shown in 

Fig. 4.1) . 

o 

Fig. 4.1. Schematic representation of t he problem. 

4.1.1 Rheological formation of Williamson model 

The Cauchy stress tensor for Williamson fluid model is defined as 

S = - PI+T , ( 4. 1) 

(
fLo - fLeo ) 

T = fLeo + 0 A l , 
1 - f 'Y 

( 4.2) 

where 

~ = /fr, 7r = trace (AT), 
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in which S is the extra tensor , I is the identity tensor, P is the Hydrostatic pressure, T is 

the Cauchy tensor, J..Lo denotes limit ing viscosity at zero shear rate, J..L oo represents shear rate at 

infinite , r > 0 is a t ime constant , Al = (VV) + (VV)l = L + L/' is the first Rivlin-Ericksen 

tensor. 

Where, we have assumed the case for which J..Loo = 0 and r~ < 1. Eq, (4 ,2) bccomcs 

( 4.4) 

using binomial expansion, we get 

T =J..Lo (1 + r~) AI, (4,5) 

4.1.2 Problem formulation 

Under these assumptions and boundary layer approximations the governing equations i. e, 

W illiamson nanofluid momentum, energy and concentration equation becomes: 

1 r rJ2 
- ay (Jl(T)ayu) + -- [ay (J..L(T)ayu) ay'/l,] 
p p 

2 aHJ 
+g(3T (T - Too) + g(3c (C - Coo) - sin (r)u-, 

p 
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( 4,6) 

(4,7) 

(4,8) 

(4,9) 



the specified boundary conditions are assumed at variable thicked stretching sheet 

I - Tn l - m 
U( x + A(x + b)-2-) Uw( X) = UO( X + b)"'\ V(X + A(x + b)-2-) = 0, T = Tw, C = Ow , at y = A(:r. + 

Here (u , v) are the velocity components along (x , y) directions respectively, p.(T) is t he 

variable viscosity, p is the density, f3c and f3T are the coefficients of mass and thermal difhlsion, 

I is the inclined angle, (Y is the electric conductivity, Ho is the magnetic field strength, 9 is the 

magnitude of t he gravity, C and T are the fluid concentration and temperature, Till and T= are 

the surface and ambient temperature respectively, Ow and C= are the fluid concentration near 

and for away the surface and kr is the chemical react ion. The temperature dependent variable 

viscosity is define as (see Ref. [85]) 

or 

(~) = _1 [1 + r[T - T= ], 
jJ, jJ,= 

1 
- = (j(T - T,.), 
jJ, 

(4.11) 

( 4. 12) 

here Tr = T = - 1 and (j = ...I...- are constants and these values depend on the location 
r /-Leo 

state, jJ,= is the dynamic viscosity of t he free stream and T is the thermal property of the fl uid . 

Generally (j > 0 for a liquid and for gases (j < O. 

The governing equations (PDE's) are converted into ODE's with the help of fo llow ing (rans

formations ( see Ref. [86]) 

1] y /(m+1)UO( x+ b) ffi; 1, 'I/J= [J 2I.1UOF (1]) ] (x+b)m;l , V 21.1 m + 1 

u Uo(x+ b)1nF'(1]) , V=- ((m+1 )I.IUo)! [F(77)+1]m - 1F'(1] )] (x +b) m;l, 
2 m+1 

e (77) T - T= if. ( ) = C - C= (4.13) 
Tw- T=' '*' 1] Cw - C=' 
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Eq. (4.6) is identically satisfied , now via substituting eq. (4.13) , eqs. (4.7)-(4.9) gives the 

following nonlinear differential equations: 

( 8r ) (1 + 2We2F // )F//' -~ (F') 2 + FF// + (1 + F//W e) 
8 r - 8 m + 1 

8 
x r 2 8 'F//+Ac(8+Ar<1»-sin2 (,)Ha2 F' = O, 

(8 r - 8) 
(4. 14) 

(4.15) 

II Nt 
<1> + - ·8// + Pr Le<1>' F - LePr K<1> = O. 

Nb 
( 4.16) 

Using eq. (4.10), the associated boundary conditions are transformed to 

F' (1 - m) 
I , F(o:) = ( ) 0:, 8(0:) = I , <1>(0:) = I , at 0: = 0, 

l +m 
F' 0, 8 (0: ) = 0, <1>(0:) = 0, as 0: --7 00 . ( ~.17 ) 

Here 0: = AJUo("+~1(m+l) is wall thickness parameter. In order to transiorlTl the recplircd 

equations and Neumann boundary conditions a new set of variables is defined as F(17) = I(E, -

0:) = f(~), 8(1]) = 8(~ - 0:) = 8(0 and <1>(1]) = ¢ (E, - 0:) = ¢(~) which gives 

(4. 19) 
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¢" + ~: 0" + P r Le [J' ¢' - K¢] = 0, ( 4.20) 

a(1 - m) , 
f ( ) , f = I , O(r,) = I , ¢(T,) = I , at ~ = 0, 

l +m 

l' ---> 0, 8 (7J) ---> 0, ¢( 7J) ---> 0, as ~ = 00, (4 .21) 

where Or = TT,.-T.T.!Xl = - 1 is the variable viscosity parameter, H(~2 = aHa w - 00 r (Tw - Too ) pUo(1:+h) m I 

h IJ b W 2 (m + l )U3(1+ h)3m- l . W . b 1 C is t e . .lartmann num er, e = . °2; IS thc clsscn crg num )C l" , T :}" = 

(gf3TUJr:;b~~l l) is the local Grashof number , AT = ff:l~xx t he mixed convection paramctcr, 

C*T = g{3T (C-CO) is the local Grashof number due to concentration AC = COrT is the ratio of 
x UJ(x+b)2m 1 , Crx 

thermal to concentration buoyancy force, K = (m+l)Jo«~·+b)m 1 is t he chemical reactive species, 

P r = T is t he Prandtl number , Nt = Dt(Tw;;Too )r is t he thermophoresis parameter, Le = DB is 

the Lewis number and Nb = DB(C1~-Coo )r is the Brownian motion parameter. 
/.I 00 

For physical quantities near the wall i. e. the friction factor coefficient , rate of heat and mass 

transfer are given by 

Cf (~! ) ~ { /~ 0 [!"(") + W e' U"(ry ))' ] J (m; 1) } "~o . (4.22) 

Nu Re:/ = _j(m; 1) 0' (0), S hRe:/ = _ J(m; 1) ¢'(O). (4.23) 

1 

( 
Uo(x+b)m- l ) 2 Here Rex = /.I • 

4.2 Numerical procedure 

Numerical solutions of highly nonlinear differential system i.e. Eqs. (4. 18)- (4.20) along with 

Neumann boundary conditions (4.21) are solved via shooting technique. Among some othcr 

numerical scheme, the shooting method is more flexible for the reason that the ini tial guesses 

control the convergence criteria. The main steps to achieve the computational solution via 

shooting method are as follows: 

60 



1. Reduce eqs. (4.18)-(4.20) to a system of 1st order ordinary differential equations. 

2. Insert the t hree missing initial approximations. 

3. Finally, solve the reduced system of first order equations via Rung-Kutta method . 

4. Compute boundary residuals (difference between given and computed values at the 

end point boundary conditions), if these residuals are less than the error tolerance i. e. 10- 6 , 

then we get the solutions, on the other hand modify the initial guesses wit h Newtons method. 

5. Repeat these steps, unless computed solutions satisfy the convergence criteria. 

4.3 Results and discussion 

The major focus of this chapter is to scrutinize the impact of double stratificat ion alld incli ned 

Lorentz force on W illiamson nanofluid flow past a nonlinear stretching sheet with variab le 

thickness. The governing equations i.e. eqs. (4.18)-(4.20) together with Neumann boundary 

conditions (4.21) are solved numerically via shooting scheme. Fig. 4.2 represents the behavior 

of inclined angle 'Y on velocity distribution. It is observed that inclined angle 'Y declines the 

velocity profile. Fig. 4.3 illustrates the variation of wall t hickness parameter ex on velocity 

distribution. It is seen that on increasing values of wall thickness parameter ex, fluid velocity 

diminishes. Because it is observed that for higher values of ex, viscoelastic impact increases over 

stretchable surface (which repels layer thiclmess) and then velocity distribution decreases. Fig. 

4.4 examines the infiuence of Hartmann number H a2 on velocity. It is clear t hat the velocity 

reduces with increase in the Hartmann number H a2 . Since the claim of transverse magnetic fi eld 

produces a drag-like force (Lorentz force), which opposes the fluid motion and velocity gradient. 

Fig. 4.5 deliberates t he influence of variable viscosity B" on velocity dist ri but ion . From fi g 4.5, 

it is seen that the velocity profile reduces with enhancement in variable viscosity parameter 

BT . It could be seen that t he enhancement in variable viscosity parameter causes reduct ion 

in boundary layer thickness. F ig. 4.6 illustrates the impact of Weissenberg number W e2 
OIl 

velocity distribution. It is noticed that the velocity gradient enhances by changing t he values 

of Weissenberg number W e2 . Fig. 4.7 examines the influence of mixed convection parameter 

AT on velocity profile. This figure exhibits that the velocity distribution and boundary layer 

thickness enhances by enhancing AT. Because large values of AT provide a strong buoyance 
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force which leads to enhance the velocity. F ig. 4.8 illustrates t hat the velocity profile enhances 

against AG. Because AG is t he ratio between thermal and concent ration buoyancy forces. T he 

t hermal buoyancy ratio parameter enhances as a result velocity profile growup. 

0.4 

0 .3 

0.2 

0 .1 

-- y .. rtlJ 
--y .. 1tl'6 
-- y"'111'9 

0, ;; rJ,l. Hul
:: 0.5, iT c: 1 . .1, Wel .. It. - J.

t 
.... 0. 1, 

p, == / . / , I. e = 1.5, N, = N, = m = K = 0.1 

Fig. 4.2. Influence of inclined angle, on 1'(0. 

Fig. 4.3. Infl uence of a on 1" (0 . 
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~ 0.5 ...... 
0 .4 

0.3 

0.2 

0.1 

--- 0,= 0..1 
--- 0, ::: 0.6 
--- 0,=0.8 

H il l "" 0.3, y= nl4 i, r'" 1.5, = !Vel .. <l "" )'r = 0.1, 
Pr '" 1.1. Lt! = 1.5, N. '" N, = m = K ... {J. / 

Fig. 4.5. Influence of Or on l' ( ~) . 
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Fig. 4.6 . Influence of We2 number on l' (0 · 
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Fig. 4.7. Influence of AT on l' (.;) . 
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Fig. 4.8. Influence of AG on l' (~) . 

Fig. 4.9 scrutinizes the effect of Prandtl number Pr on fluid t emperature. Since Prandtl 

number is related to the momentum diffusion and thermal diffusion in the boundery layer 

regime. Thus the thermal boundary layer in the temperature distribution reduces by enhancing 

the values of Prandtl number Pr. Fig. 4.10 characterizes the effect of Brownian motion Nb on 

temperature profile. Temperature constantly reduces against increasing values of Brownian 

motion parameter Nb. Fig. 4.11 illustrat es the variation of thermophoretic para.meter N, 011 

temperature profile. It is validates the fact that the thermophore tic parameter enhances the 

temperature profile. Because thermophoretic phenomenon transferred nanoparticles from hot 
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surface to cold region due to this temperature of the fluid enhances. 

0.9 
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Fig. 4.9. Influence of Pr number on e (~) . 
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Fig. 4. 10. Influence of Nb on e (~) . 
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Fig. 4.11 . Influence of Nt on e (0. 

Fig. 4.12 gives t he variation in concentration distribut ion for several values of Lewis number 

Le. It is seen that the Lewis number Le reduces the concentration profile substantially. Because 

by enhancing the Lewis number Le, it reduces the concentration rate diffusivity and hence 

concentration profile. Fig. 4.13 exemplifies the fluid concentration profile for different values of 

chemical reactive species parameter K . It is found that the chemical reactive species parameter 

K enhances the concentration profile. Fig. 4.14 displays that the wall friction factor decreases 

for enhancing values of Weissenberg number \tV e2 while it increases with increase in Hartmann 

number Ha2 . F ig. 4. 15 examines the heat transfer rate for distinct values of Prand tl number 

Pr and thermophoresis parameter Nt. It is found that the heat transfer rate increases for 

large values of Prandtl number PI' on the other hand thermophoresis parameter N t declines it. 

Tables 4.1-4.3 demonstrate the local friction factor coefficient, heat and mass transfer rates 

for various values of Hartmann number, Weissenberg number, Prandtl number , thermophoret ic 

paramet er , Lewis number and chemical reactive species parameter. The behav ior of different. 

physical parameters is demonstrated from these tables . 
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Table 4.1: Numerical values of wall friction factor for different values of W e2 and H a2 

when Br = 0.3, AG = 1.5, m = K = N t = Nt = 0.1 , PI' = 1.5, 'Y = ~ and a = 0.9 . 

II Ha
2

11 We
2 

I 

Cj ReI 

II 0.1 II 0.1 0.4263 

11
0.2 0.4322 

I 0.3 0.4430 

0.1 I 0.2 0.4062 

0.2 0.4119 

0.3 0.4207 

0.1 0.3 0.3883 

0.2 0.3869 

II 0.3 0.3883 

- 1 

Table 4.2: Computational values of heat transfer rat e i. e. (- NuRe,? ) for different values 

of Nt and Pr . 

Nt PI' II -NuRe/ 

0.1 1.1 0.8348 

1.2 0.7767 

1.3 0.7227 

0.2 1.1 0.8871 

1.2 0.7905 

1.3 0.7292 

0. 3 1.1 0.8348 
I 

II 
1.2 0.7767 II 

II 
1.3 0.7227 

II 
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Table 4.3: Numerical values of mass t ransfer rate i.e. (-¢' (O)) against unlike values 

of K and Le. 
I 

-ShR.ex
2 

II 0.1 11 l.1 l. 3442 

II 0. 2 1 l. 3800 

0. 3 l. 4153 

0.1 l.2 l.3585 

0.2 l.3949 

0.3 l.4310 

0.1 l.3 l.3750 II 
0.2 l.4122 

" 
0.3 l.4490 II 
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Chapter 5 

Change in viscosity of Williamson 

nanofluid flow due to thermal and 

solutal stratifications 

This chapter deliberates the computational aspects of variable viscosity on Williamson nanofluid 

over a non-linear stretching sheet. Viscosity is a basic property of fluids that plays improtant role 

in different ways like printing and coating, petroleum, beverages and food , industiral chemisty, 

power , organic chemsity, environment , etc. In rheological science viscosity is clasp as a function 

of either pressure or temperature. In this chapter viscosity of the fluid is assumed to be depen

dent on temperature and due to thermal stratification, viscosity of the fluid also depends upon 

thermal diffusion. The basic mathematical problem (system of PDEs) is converted into non

linear ODEs via suitable trasformations. Computational solutions of the problem are achieved 

through efficient numerical approach (shooting method). Characteristics of controlling para

meters are plotted for concentration , velocity and temperature gradients. Furt hermore , frict ioll 

factor coefficient, heat and mass diffusion rates are presented through graphs and tab les. Con

clusions are made on the basis of entire investigat ion and it is seen that velocity profile reduces 

for large values of variable viscosity and thermal stratification parameters while thermal strat

ification parameter shows opposite behavior for t emperature profile. Moreover , concentration 

profile is expected to reduce on enhancing values of Lewis number and increases for large values 
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of stretching velocity parameter. 

5.1 Mathematical analysis 

Let us consider a mathematical model for two dimensional b oundary layer flow of Williamson 

nanofluid flow over a cont inuously nonlinear stretching surface with variable dynamic viscosity. 

The plate is stretched with velocity Uw = Uo (x +b)m- l . The surface is taken at y = A(X+b) 1-;"', 

where A is very small constant , 'In is the stretching index, Uo is the stretching ra te and b is t he 

dimensionless constant . Further it is assumed that the model must be fulfilled only fo r 717, =I- 1, 

because for 'In = 1, it reduces to flat surface. A uniform external magnetic fi eld Ho is app lied 

in normal direction of flow, vertical to the sheet (as illustrated in Fig. 5. 1) 

Under these assumptions and boundary layer approximat ions the governing equat ions (\Vill iRlllson 

nanofluid model, energy and concent ration equations) become: 

, v 

x. u 

u = Uw = Uo(x + b )771, 

Fig. 5.1. Geometry of the problem . 

O"u + OyV = 0, (5. 1) 
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(5.3) 

(5.4) 

the specified boundary conditions are 

l - l ll 

U(X + y) = UW(X) = Uo(X + b)m , v(x + y) = 0, T( x, y) = Tw, C(x , y) = c.w at y = A(x + b)-2-, 

u(x, y) -> 0, T( x, y) -> Too, C(x, y) -> Coo as y -> 00 . (5 .5) 

Here (u , v) are the components of velocity in radial and axial directions respectively, ~£oo 

is the infinite shear viscosity, M is the temperature based dynamic viscosity, p is the dens ity. 

Tw is denotes the temperature of wall , a is electrical conduct ivity of t he liquid , C", is known as 

ambient concentration at the wall , C and T are t he concentration and temperature respect ivel)'. 

Cp is the specific heat , DB is the mass diffusivity, Too is the free temperature and DT is known 

as thermophoresis diffusivity. In order to justify the nature of viscosity due to inside friction 

between particles and t he st retching surface , consider a mathematical model in which viscosity 

depends on temperature (used by Aj ayi et al. [78]) with appropriate similarity variables defined 

as 

(5 .6) 

and 

8() T - Too <p(~ ) = C - Coo . 
- ~ = Tw - To ' Cw - Co 

(5. 7) 

The main PDEs are reduced into ODEs by using following t ransform ations 

1- 1n I - m 

To + ml(x + b)~ , Too = To + mdx + b)-2-' , 

(5.8) 
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Using Eq. (5.8) we get 

Tw - T 
l - ln 

(1 - 8)(Tw - To) - m2(x + b)-2- , 

Cw-C 
l - m 

(1 - <I»(Cw - Co) - m4(x + b)- 2-. 

From thermal stratification model , the valid relation can easily be achieved as 

bl (Tw - To) 

b2 (Cw - Co) 

I - m l - m 

bIml(X + b)-2-, bl (Too - To) = bIm2(X + b)-2- , 

1 - 711. 1 - 01. 
m3(X + b)-2- , b2 (Coo - Co) = m 4(X + b)-2-. 

Here To and Co are known as reference temperature and concentration. 

From Eq. (5.10) we get 

bl (Tw - To) 

bdCw - Co) 

(, 

(, 

m2 
bI (Too - To ) = (S" St = - , 

17t j 

b2 (Coo - Co) = (Se, S e = m4. 
m3 

By using the following similarity variables 

(5 .9) 

(5.10) 

(5.11) 

The continuity eq. (5. 1) is identically satisfied, now by substituting eq. (5.9) into eqs. 

(5.2)-(5.4) we get the transformed ODEs 
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2n~ 211a2 
(a+( - ( 8 -St() (1 +2W e2 F")FIII --- (F') 2 + FF/I - ( (1 + W e2 F/I) 8 'F/I - --F' = 0, 

m+ 1 m+ 1 

q>" + ~: 8" + [pr Leq>' F - Le C ~ :) F' SC] = 0, 

using eq . (5.5), the boundary conditions will be 

F' (0'.) 

F' (0'.) 

(m - 1) 
1, F( O'. ) = ( )0'., 8(0'. ) = 1, q>(0'.) = 1, at 0'. = 0, 

l +m 
0, 8 (0'.) = 0, q> (0'.) = 0, as 0'. ----) 00. 

(5. 13) 

(5 .14) 

(5. 15) 

(5. 16) 

In order to convert the required differential equations and Neumann boundary, put F (77 ) = 

J(r/ - 0'.) = J(~), 8(r/) = 8(~ - 0'.) = 8(~) and q>(r/) = q>(~ - 0'.) = h(~), we get 

8" + Pr [8' J + Nb¢'8' - (1 - m) f' S t + N t (B') 2] = 0, (5 .18) 
l+m 

¢" + NN t 8 + Pr [LeJ¢' + /1 - Le (1 - m) f' SC] = 0, (5. 19) 
Ii 1 +m 

0'.(m-1) , 
J(T] ) (1 + m ) , J = 1, 8(T] ) = 1, ¢(T] ) = 1, at '; = 0, 

f' ----) 0, 8 (T]) = 0, ¢(T]) = 0, as T] = 00, (5.20) 
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where b1 (Tw - To) = ( is temperature dependent viscosity, a: = A ( UO (~~+ l ) ) 0 .5 is wall 

t hickness parameter Nb = TDB(Cw - Co) is Brownian motion parameter H a 2 = uH6 is 
' II ' pUo(x+b)nt I 

uc 2 I (m+l)UJ(x+b)Jm - 1 
Hartmann number , PI' = T is Prandtl number , vVe = V °211 IS Welssenberg 

number , Nt = TDtV,w-To) is thermophoresis parameter and Le = D/I is Lewis number. 
= /1 B 

To obtain physical interests near the wall i.e. the friction factor coefficient, heat and mass 

diffusion rates, the following relations are used: 

Su = (x + b)Jw . 

Pjmf 
(5.21) 

Here Tw denotes the shear stress or skin friction , qw and Jw denotes the heat and mass 

diffusions near the wall, where T w, f]w and Jw are defined as: 

After using the scaling variables , friction factor, Nusselt and Shcrwood numbcrs tram fol'mcd 

into : 

(5.23) 

- 1 - I 

NuRex
2 = - 8'(0) , S hRei = -<// (0) . (5 .24) 

5.2 Numerical procedure 

Numerical solutions for nonlinear self-similar differential system i. e. eqs. (5.17)-5.19) aJong with 

boundary conditions (5.20) are solved numerically by utilizing RK-4 procedure in conjunction 

with shooting technique. Among some other numerical techniques, shooting method is more 

adaptable because initial guesses control the convergence criteria . The main steps to achieve 

the numerical solutions by shooting technique are as follows: 
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1. Convert eqs. (5.17)-(5. 19) into a system of pt order ordinary differential equations. 

2. Use the end conditions to generate three unknowns. 

3. F inally, solve the first order system via Runge-Kutta method . 

4. Calculate the boundary layer residuals, if these residuals are less than error to lerances 

i.e. 10- 6 , than solut ion will be achieved, otherwise we modify ini t ial guesses with Newton 's 

method. 

5. This procedure is repeated until it satisfies the convergence criter ia i.e. 0.0001. 

5.3 Results and discussion 

This section describes the impact of different emerging parameters i.e, t hermal stratification St, 

Weissenberg number W e2 , Prandtl number Pr, viscosity paramet er (, thermophoretic parameter 

Nb , Hartmann number Ii a2 and Lewis number Le on velocity profile, skin fri ct ion, Sherwood 

number, temperature profile, Nusselt number and concentration profile. F ig. 5.2 presents the 

variation in stretching velocity m on f ' (7]) profile. Figure shows t hat t he ve locity dist ribution 

improves by incrementing the stretching velocity index m . The phys ical reason behind t his is 

that on enhancing velocity, stretching rate m generates extra forces in the direction of Row. 

causing enhancement in velocity profile. F ig. 5.3 illustrates the varia tions in wall t hi ckness 

parameter a on velocity distribution. It is found that by enhancing the values of Ct velocity 

profile reduces. Because for large values of wall thickness parameter a, the thickness of the shed 

increases, so resistance is created between t he fluid particles in t he direction of flow causing 

reduction in velocity profile. It is found that the velocity close the sheet reduces as that is 

a enhances for m < 1 and opposite behavior is noticed for m > 1. Fig. 5.4 shows the impact 

of Ha2 number on velocity profile. It is found that t he velocity declines for large values of Ha2 

number. Because large values of Ha2 number produces a drag-like force (Lorentz force) which 

converges the fluid motion in the direction of flow and velocity gradient . Fig. 5.5 represents 

the variation in thermal stratification St on horizontal velocity distribution. It is noticed that 

the horizontal velocity profile reduces for large values of thermal stratification St. Fig. 5.6 

scrut inizes the influence of Weissenberg number of W e2 on velocity situation. It is clear that 

velocity gradient decreases by increasing the values of W e2 . Because Weissenberg number \tF e2 
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enlarges t he relaxation t ime of the materia l which produces resistance to flow, so reduction in 

velocity is noticed . F ig. 5.7 examines t he variation in viscosity parameter ( on velocity profi le. 

It can be examined that enhancement in the magnitude of temperature dependent viscosity ( 

causes reduction in velocity profile. Because due to increase in viscosity parameter the Auie! 

become more thick causing reduction in velocity profile. 
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Fig. 5.3. Influence of a on i' (~) . 

79 



0.9 ___ /lu J;; (J.1 

--- /lu ]'" 0.4 
--- lIu! = fJ.7 

We: = 1I l.t ... ~ - .'il .. III '" 0 I , l'r I f . 
I • .: .. 1.2. N. ~ Nt " Sc 0.1 

Fig. 5.4. Influence of Ha2 number on l' (~) . 

0.9 

0.8 

--- SI =O. I 
--- .\'1 = 0,3 
--- ","t a O.S 

lJ'el _ a _ a. = < " m = flo' · 0.1. Pr .. 1. / , 
Le ... 1.2. N& = N, - sc '" 0. / 
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Fig. 5.8 is plotted to see the behavior of P randtl number Pr on temperature profile. Pralldt l 

number Pr relates momentum and thermal diffusions in the boundary layer region. The tem

perature and thermal boundary layer decreases due to reduction in thermal difFusion. Fig. 5.9 

is plotted to see the nature of Brownian motion Nb on temperature profile. Temperature con

sistently increases by enhancing values of Brownian moment parameter Nb . It is due to the fact 

that increase in Nb accelerates collision among fluid particles and thus temperature enhances. 
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Fig. 5.10 is plotted to observe t he nature of thermophoretic parameter Nt on temperature 

profile. It is clear that the thermophoretic parameter Nt rises the temperature distribution. 

Because nanoparticles transfer heat from hot to cold region causing temperature of the fluid to 

increase. Fig. 5. ll deliberates the impact of St on temperature profile. It is due to the fact 

that temperature is increasing function of thermal stratification St. Because thermal boundary 

diminishes for large values of the thermal stratification St. 
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0 .3 

0 .2 . 

0 .1 

-- Pr :c: J. 1 
-- P, = I .l 
-- Pr :c: J,3 

'vi = U =(1"" ~ "" S,'" m = 0. / ,(1 ] = 0.5 , 
I.e = 0.5, Nt'" N,"" .\'c'" 0. / 

Fig. 5.8. Influence of PI' on () (0 . 
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Fig. 5.9. Influence of N" on () (() . 
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0.2 
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Fig. 5.11. Influence of St on () (0. 

The distinction on concentration for various values of Lewis number Le is seen in fig. 5.12. 

View in this case is that for large values of Le declines in concentration distribution. Because for 

large values of Lewis number Le mass diffusivity reduces ncar the boundary layer region causing 

reduction in concentration profile. Fig. 5.13 illustrates the fluid concentration distribuLion 

for changing values of stretching index m . It is found that stretching velocity 'm rises Lhe 

concentration profile due to enhancement of fluid particles near the surface of plate . Fig. 5.14 
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shows the heat diffusion rate for unlike values of Pl'. It is clear from this plot that the behavior 

of heat diffusion rate decays for higher values of Prandtl number Pro Tables 5 .1-5.3 illustrate 

the local friction factor , heat and mass diffusion rates for unlike values of \Veissenberg nllmhcr 

v\le2, P randtl number Pr, thermophore tic parameter Nt, Hartmann number Hc~2, Lew is nU Jl1ber 

Le and t hermal stra tification St. 
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Fig. 5. 12. Influence of Le on ¢ (~) . 
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Fig. 5.14. Influence of Nt and Pr on NuRe~ . 

Table 5.1: Computational results of wall fri ction factor for unlike values of (, bt , H a2 and 

a when Tn = 0.5, Nt = Nb = L e = Se = vVe2 = 0.1, Pr = 0.1 and a = 0.9. 

II 
1 

( St Ha2 a CfRe~ 

0.1 0.1 0.1 0.9 I 1.2104 

0. 2 0.8276 

0. 3 0.5984 

0.1 0.1 0.1 0.9 1.2104 

0.2 1.2569 

0.3 1.3064 

0.1 0.1 0.1 0.9 1.2104 

I 0. 2 1.1112 

0. 1 0.9527 

0.1 0.1 0.1 0.9 1.2104 

1.0 1.2769 

1.1 1.3163 
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- 1 

Table 5.2: Numerical values of heat diffusion rate i.e. (-Nu Re;;?) for unlike values of 

Pr , Nt and St . 

II Nt Pr 
I 

St -NuRe;;? 

II 0.1 1.1 0.1 0.5047 

II 0.2 0.5536 

0.3 0.7530 

0.1 1.1 0.1 0.5047 

1. 2 I 0. 5336 

1.3 0.5615 

0.1 1.1 0.1 0.5047 

0.2 0.5718 

0.3 I 0.5309 

Table 5.3: Computational results of mass transfer rate i.e. (-4>' (0)) for different values 

of Le, Pr and St 

II Le II Pr II St II-ShRe1 

0.1 1.1 II 0.1 1.1676 

0.2 II l.2013 

0.3 II l.2495 

0.1 1.1 I 0.1 I 1.1676 

l.2 II 1.1701 

1.3 II l.1727 

0.1 1.1 0.1 II l.1676 

0.2 11 l.1670 

II 0.3 11 l.1662 
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Chapter 6 

Change in internal energy of 

thermal diffusion stagnation point 

with Maxwell nanofluid flow along 

with solar radiation and thermal 

conductivity 

This chapter concerns the characteristics of heat and mass transfer in upper convected Maxwell 

fluid flow over a linear stretching sheet with solar radiation, viscous d issipation and temperature 

based viscosity. After boundary layer approximation , the governing equations are achieved 

(namely Maxwell , upper convected material derivative, thermal and concentrat ion diffusions). 

By using the self-similarity transformations the governing PDEs are converted into nonlinear 

ODEs and solved by RK-4 method in combination with Newton Raphson (shoot ing technique). 

The effects of developed physical parameters on velocity, temperature, concentration , fract. ion 

factor , heat and mass diffusions are exemplified through graphs and tabular form and are 

deliberated in detail. Numerical values of fraction factor, heat and mass transfer rates with 

several parameters are computed and examined. 
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6.1 Mathematical formulation 

Let us consider thermal radiation, thermal conductivity, viscous dissipation and chemical re

action on two dimensional laminar steady heat and mass transfer flow of an electrically con

ducting upper convected Maxwell nanofluid flow passed by a linear stretching surface placed in 

x-direction and y-axis is vert ical to the sheet with stagnation point at the or igin (as illustrated 

in Fig. 6.1) . It is assumed that the sheet is stretching with linear velocity u = Uw(x ) = ex and 

the free stream velocity is u = ue (x ) = ax, here a and c are positive constants. The tempera

ture at the surface is conserved a t Tw and Too for away from the plate, and same assumpt ion 

for nanoparticle volume fraction Cw and Coo . An external magnetic fi eld Ho normal to the 

stret ching sheet is applied . 

Fig. 6.1. Schematic representation of the problem. 

From the above basic assumptions , the required governing equations are as fo llow: 

(6.1) 

1 ap,~H6. ) p,F,. pF" 2 
= - -OxP+Oy (p,OyU) - --- (U + AVOyU - -K U- rr:;;:1/, , 

p p p * v J(* 

(6.2) 
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by 

due to hydrostatic and magnetic pressure gradient the force will be in equi librium 3.':i given 

Hence, eq. (6.2) becomes 

now energy and concentrat ion equations are 

the boundary condition are given as 

u(x,y) 

T( x, y) 

u(x,y) 

Uw(x) = ax, v(x, y) = 0, 

Tw(x) = Too + bx, C(x, y) = Cw = Coo + bx, at y = 0, 

ue(x) = ex, T(x, y) = Too, C(x, y) = Coo, as y -7 00. 

The temperature based viscosity (see Ref. [87]) is 

and the temperature based thermal conductivity is given as 

( 
T - Too ) 

k = koo 1 + € Tw _ To ' 
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(6 .3) 

(6.6) 

(6 .7) 

(6.8) 

(6.9 ) 



where Q1' is the radiative heat flux, ut ilizing the Rosseland approximation for rad iat ion 

(see Ref. [88]) , we get 

(6. 10) 

expressing T4 by ut ilizing Taylor 's series term about T= and neglecting higher order terms 

(6. 11) 

using Eq. (6.10) and Eq. (6.11) 

(6. 12) 

here J.La is the fluid viscosity, Fs is the inertial factor, K* is t he permeabili ty, kr is t he rate 

of chemical reaction , ma is t he variation viscosity, kO is t he absopation constant , CVO is the 

Stefan-Boltzman constant , (1./" v) are the velocity components along the (:1;, y) direct ions, (i 

is the density, J.Le is the magnetic permeability velocity, (5 is the electrical conductivity, A is 

the Maxwell fluid parameter , v is the kinematic viscosity, k represents thermal conduct. ivity. 

D B is the Brownian motion, T = ((pc)) s is the ratio of nanopartical heat capacit.y and base Ouid 
pc f 

thermal capacity, CVj = (P/)")f represents thermal diffusion, T.II(X, y) is known as temperature 

at t he wall , Cw(x, y) is known as concentration at the wall , T and C are the temperature and 

concentration of the fluid respectively, Cp is t he specific heat, T = and C= are the free stream 

temperature and concentration. Temperature of the sheet is Tw = T= + bx, for heated surface 

b > 0 so Tw > T= and for cooled surface b < 0 and Tw < T, b is a constant and DT is known 

as thermophoresis diffusivity 

The similarity variables give the dimensionless quantities 

Incompressibility condition (6.1) is automatically satisfied and eqs. (6.4)-(6.6) takes the 

following nonlinear differential form 
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(1 + (8) 1''' + (8' 1" + 1'1" - (1,)2 + Am (2f('I7) 1' 1" - (J('I7))2 1''') + Ha2 (1 - f' + AmI'r ) 

- (1 + (8) AI' - Fe (1') 2 + 1 = 0, 

using (6.12) , the associated boundary conditions are 

c f' ----> - , 8 ----> 0, ¢ ----> 0, as 1) ----> 00 . 
a 

(6.14) 

(6 .16) 

( 6.17) 

where fluid relaxation parameter is Am = Aa, local inertia factor is Fc = ~, Hartmann 

number is H a2 = l-ieHo #a, porosity parameter is A = a~.' Prandtl number is Pr = e, ra

diation parameter is R = 16~:~! , (= e-(Tw-Too ) variable viscosity parameter , thermophore-

. . N TDt(T, -Tol E 1 b' E u
2 

c2x L' b SIS parmneter IS t = w < c mrt nUln er IS C = e = - eWlS num er T oo v ' (Tw-Too )cp bep , 

is Le = D'" , Brownian motion parameter is Nb = TDB (Cw-Co) and chemical reactive species is 
B v 

&. 
a 

Friction factor coefficient (C J) is defined as: 

CJ = T .
u
; = ReY [1" (0) + Am(J' (0) 1" (0) + f (0) 1''' (0))] , 

PUe 
( 6.18) 

here T w denotes the wall shear stress 
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(6. 19) 

The Nusselt number is defined as 

(6 .20) 

The mass transfer rate is defined as 

J llI = - DB (8yC)y=o , =} Shx = D B (;:w:, Tc:xo) = - ReY ¢ ' (O). 

Where R ex = 1le (x) is local Reynolds number . 

6.2 Numerical Procedure 

Nonlinear differential eqs. (6.14)-(6.16) with boundary condit ion (6.17) are solved by a conve

nient Runge-Kutta based shooting technique. Among some other numerical methods, shooting 

method (Cash and karp) is more flexible for the aim that the initial guesses cont rol the conver

gent criteria . The main steps are as follows : 

1. Reduce differential eqs. (6.14)-(6.16) into a system of first order different ial form. 

2. Insert the three unknown initial approximation. 

3. Finally, solved the converted system of 1st order equations by Runge-Kutta based 

shooting scheme. 

4. The unfamiliar unknown initial conditions have been approximated with Newton 's 

method in such a way t hat the residuals are less than error i.e 10- 6 . 

5. The computational solution is repeated until convergent criteria is not satisfi ed . 

6.3 Results and discussion 

In the current section , the governing phyical parameters and numerical results are illustrated 

through figures and tables. Figs. (6 .2-6.6) describe the physical behavior of non-dimesnional 
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velocity subject to Hartmann number, porosity parameter, inertia factor , fluid relaxation para

meter and temperature based fluid viscosity parameter. Fig. 6.2 represents the velocity profi le 

for several values of Hartmann number H a2 . It is analyzed from this figure that by enhancing 

values of Hartmann number H a2 decelera tes the velocity profile. Fig. 6.3 illustra tes the influ

ence of velocity graph for various values of porosity paramet er A. It is seen that by rising the 

values of porosity parameter A declines the velocity profile. Because the permeability enhances 

the resistance of the permeable sheet which tends to decrease the velocity profile. Fig. 6.4 

illustrates the variation in inertia factor Fe on velocity profile. It is obvious that improvement 

in values of Fe sorts a resistive force which decelerates the velocity plot. Fig. 6.5 describes 

the variation on velocity profile for corresponding values of fluid relaxation parameter Am· It 

is clear from this figure that the momentum boundary layer thickness reduces by increasing 

the fluid relaxation parameter Am and consequently induces an intensifications in the absolute 

values of the velocity profile at the surface. Fig. 6.6 examines the effect of temperature ba.'3ed 

fluid viscosity ( on velocity profile. It can be analyzed that the velocity profi.le enhances by 

enhancing the temperature based fluid viscosity parameter C. 

0.4 

0.3 

0.2 

__ lIu J = fJ. J 
__ fJu l= O.J 
__ Hu l= O.S 

i ... "" 0. 1, I'r = 2. 1, t = s= R - 0. 1, 1':- 1. 1, 
/.,. - 1.1 ,,,, - 0, 1, Ec " "'- ""O. J,).=O.J 

Fig. 6.2. Outcome of Ha2 on f' (TJ) . 
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--- ). = 0.5 
---). = (I. fJ 
---)..= / . .1 

) ... - 0. 1 " 0. / , / ', - 1. / . coo R oo 0. / , f:" 1.1, 
I. r - 1. / , A '" 1;- 0. / . Ec '" A' - lIa' - 0. / 

Fig. 6.3. Outcome of A on /' (T/ ) . 
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0.3 

0 .2 

- --F. "" I . I 
--- Fe"' I.H 
--- F."' 1.5 

i,. " 0. ' - 0. / , 1', - 1. / , r. " R " flu' .. (J, I , 
I.C' '' / . 1, .. 1 '" Coo 0. 1. /:.:,, - A'- 0. 1, }.- 0,1 

Fig. 6.4. Outcome of Fe on /' (T/) . 
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§ill'.' 0.1 
--1." 0,1 

-- ("' 0,5 

IIr/ .. 0. 1 - 0. / , I 'r " 1 1. I: '" n- 0. / , f: " I I . 
IA - /. / .. 1- too 0. / , Et- - K - OJ. i.'" 0.1 

Fig. 6.5 . Outcome of A on l' (TJ) . 
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0.3 

0.2 

i .. .. 0. 1, /1, _ 1. / . £- R oo 11- N. - 0. 1, F.- 1. / , 
L~ - 1.1, flu " 0. 1, £c - N, - K - 0. 1, ).- 0.1 

Fig. 6.6. Outcome of ( on l' (TJ). 

The disparity in temperature distribution with reference to similarity variables such as 

Prandtl number , Brownian motion factor , thermophoresis constraint , thermal radiation pa

rameter, Eckert number and small parameter are presented in Figs. (6.7-6.12). It is perceived 

that Fig. 6.7 represents the temperature distribution for corresponding values of Pr. By en

hancing the values of PI' reduces the temperature profile and also reduces thermal boundary 

layer thickness. Fig. 6.8 illustrat es the deviation on temperature for different values of Nb . It 

can be seen as Nb enhances the mass diffusivity rises which leads to increase the temperature 
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profile in the boundary layer segment . F ig. 6.9 shows t he variation of Nt on temperature pro

file. It is found that for improved values of Nt temperature distribution also top ups. Because 

increase in the values of Nt, generates the rise in the thennophoresis force which has trend 

to move nanomaterials from hot surface to the cold surface. Fig. 6. 10 establishes the effect 

of Eckert number Ee on temperature profile. It is clear that the kinetic motion increases by 

increasing the energy enthalpy which enhances the temperature profile. F ig. 6.11 d isplays t.he 

influence of thermal radiat ion R on temperature distribu tion. It is seen that the Lempera Lure 

profile rises due to fact that t he conduction effects of the nanoliquid enhances in the occur rence 

of t hermal rad iation R. Therefore for large values of radiation parameter R surface becomes 

more heated, which causes heat transfer rate within boundary layer region to increase. It is 

also clear that the thermal boundary layer rises by increasing the radiation parameter R. Fig. 

6.12 examines the influence of small parameter c on temperature distribution. It is noticed that 

enhance in small parameter c corresponding to improve the kinetic energy of the fluid material 

which enhances variation of thermal characteristics. 

0.7 

0.6 . 

£ 0.5 
'" 

0.4 

0 .3 

0.2 

0.1 

--Pr -= I .l 
-- Pr = /.J 
-- Pr:: l .5 

i ... .. 0. 1, F,.c a R " 1/0
1

_ 0. 1, ;. - 0.1, 
l.e - I. I,. I -!;- 0. 1. Ec: - A' · 0. 1, 

Fig. 6.7. Outcome of PI' on () ('T}) . 
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Fig. 6.8. Outcome of Nb on () (7/) . 
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Fig. 6.9, Outcome of Nt on () (17) . 
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Fig. 6.10. Outcome of Ee on e ("7). 
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Fig. 6.12. Outcome of c on () (77) . 

The behavior of nanoparticles concentration against Lewis number and chemical reaction 

are discussed in figs. 6.13-6.14. It is apparent that fig . 6.13 scrutinizes the influence of Lewis 

number Le on concentration profile. It can be examined that the concentration profile reduces 

significantly for developing values of Lewis number Le. Fig. 6.14 reveals the influence of 

chemical reactive species K on concentration profile. It is seen that for extensive values of K , 

concentration profile reduces. 

Figs. 6.15 and 6.16 show skin friction coefficient and heat transfer rate for different values 

of variable viscosity parameter ( and Eckert number Ec along H a2 and Pr. It is clear that 

the reduction in fr action factor and heat transfer rate is noticed for enhanced values of ( and 

Ec. F ig. 5.17 represents the nature of mass transfer rate for several values of chemical reaction 

K along Le. It is found that the mass transfer rate increases for increasing values of chemical 

reaction K . 

Tables 6.1 and 6.2 demonstrate the deviation in several physical parameters for friction fac-
1 - 1 

tor Cj Re~ and heat transfer rate NuRei . It is found that reduction is noticed for rising values 

of variable viscosity parameter ( , inertia factor Fe, porosity parameter '\ , Ecker t number Ec and 

thermophoresis parameter Nb and increase is not iced for H a2 and Pr. Table 6.3 des igna.tes the 
- 1 

numerical results on the mass transfer rate ShRex
2 for several physical parameter. It can be an

- 1 

alyzed that the mass transfer rate ShRex
2 is enhancing function for increasing para.meters Lc, 
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K and N b . For the justification of current numerical scheme, the resu lts are compared with Afify 

and E lgazery [89J in a limiting case for Ec = R = t = Ga = FR = 0.1, Nb = 0.1, Nt = 0. 5, and 

Pr = Le = 1.0. The numerical results show good agreement as demonstrated in Table 6.4 . 

Further the numerical outcomes are also compared with Khan and Pop [81J in Table 6.5. 
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Fig. 6.13. Outcome of Le on ¢ ('T/) . 
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Fig. 6.14. Outcome of K on ¢ ('T/) . 
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Fig. 6.15. Outcome of ( and Ha2 on skin fri ction coeffi cient . 
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Fig. 6.16 . Outcome of Ec and Pr on Nusselt number. 
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Fig. 6.17. Outcome of J( and L e on Nusselt number. 

Table 6.1: Numerical results of [1" (0) + Am(1' (0) 1" (0) + f (0) 1'" (O))J for different values 

of H a2
, (, F,. and A when Am = 0.1 , Nt = 0.5 , Nb = Ec = c = K = 0.1, Pr = 2.1 and Le = 1.5. 

Ha II ( F c A II -Cf Rei II 
0.1 0.1 1.1 0.1 111. 2473 II 
0. 2 1. 2862 

II 

0. 3 1. 3243 
II 

0.1 0.1 1.1 1.1 1.2473 I 
0.2 1.3278 

II 1 0. 3 1.1314 

II 0.1 0.1 1.1 1.1 1 1.2473 

II 
1.2 1.2709 

I 1.3 1.2941 

0.1 0.1 1.1 0.1 1.2473 

0.2 1.2835 

0.3 1.3189 
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Table 6.2: Computational results of -(1 + c:@ (0) + ! R)e'(O) for unlike values of Pr, Ee,and 

Nt when Am = Nb = Ee = H a2 = (= A = K = Fr = 0.1, ( = 0.9 and Le = 1.1. 

Pr II Ec Nt I 
I 

II -Nu Re~ 

1.1 II 0.1 0.1 0.5734 II 
1.2 0. 6024 I 

11.3 0.6299 

0.1 I 0.1 0.1 1 0. 5734 

II 0.2 0.5311 

II 0.3 1 0.4886 I 
0.1 II 0.1 0.1 0.5734 II 

II 0.2 I 0.5541 II 
II I 0.3 11 0.5354 II 

Table 6.3: Numerical result s of -¢' (0) for corresponding values of Le, K and Nb· 

Le K II Nb II -ShRe~ II 
1.1 0.1 I 0.1 I 0.5707 II 
1.2 0.6189 II 
1.3 0.6651 II 
0.1 0.1 I 0.1 1 0. 5707 II 

0.2 11 0.6711 II 
0.3 11 0.7610 II 

0.1 0.1 II 0.1 I 0.5707 II 
II 0.2 11 0.6090 II 
II 0.3 11 0.6815 II 
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1 

Table 6.4: Comparison of the friction factor C f ReJ for various values Am and H a2 when 

Nb = 0.1. 

II Am Ha2 Afify et al. [89] II Prsent Results II 

II 0.5 0.0 -1.68935 11 -1.4593 II 
II 0. 5 0.1 -1.69715 -1.5516 II 

0.5 0.2 -1.72034 -1.7131 

0.5 0.3 -1. 75830 -1.7403 

0.0 0.1 -1.00499 -1.0112 

0.1 0.2 -2.49440 1-2.4326 

Table 6.5: Numerical comparison of heat t ransfer rate - 8' (0) and mass t ra.nsfer ra.te -q/ (0) 

when Pr = 10 and Nb = 0.1 

0.1 0.9524 2.1294 0.9834 2.0184 

0.2 0.6932 2.2732 0.7821 2.1531 

0.3 0.5201 2.5286 0.5789 2.4871 

I 0.4 0.4026 2.7952 0.4001 2.7831 

II 0.5 0.3211 3.0351 0.3301 3.0021 
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Chapter 7 

Arrhenius activation in MHD 

radiative Maxwell nanoliquid flow 

along with transformed internal 

energy 

In this chapter, theoretical study is performed to analysis the behavior of transformed internal 

energy in magnetohydrodynamic Maxwell nanofiuid fiow over a stretching sheet along with 

Arrhenius activation energy and chemical reaction. The suitable similarity transformations 

are used to convert the constitute governing nonlinear PDEs into ODEs. Runge-Kutta based 

shooting approach is used in order to yield the numerical solut ion of the differential system. 

The effects of involved physical parameters are explored through graphical investigations. The 

numerical results of skin friction coefficient, rate of heat and mass transport are analyzed 

through graphs and tables. The temperature distribution is explored with the variation in 

Eckert number, small para.meter, Brownian parameter, thermophoresis parameter and thermal 

radiation parameter , and Prandtl number. Moreover , the concentration profi le also studied with 

the increase in Lewis number . Achieved numerical results will be compared with the obLaieci 

results in limiting cases. 
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7.1 Mathematical analysis 

7.1.1 Preservation of mass, momentum, energy and concentration 

Let us consider Arrhenius activation energy and viscous dissipation on two dimensional, laminar 

heat and mass transfer flow in an electrical conducting upper convected Maxwell nanoflui d flow 

passed by a linear stretched surface. Stagnation point occurs at the origin as shown in F ig. 7.1. 

It is assumed that the stretching velocity at the surface is u = Uw(x) = ex and the free stream 

velocity is 'U = ue(x ) = ax, here a and e are positive constants. The temperature at the surface 

is Tw and Too for away from the plate and same asswnptions for nanoparticle volume fractions 

(Cw and Coo) . An external magnetic field Ho is applied normal to the sheet. 

y 

Fig. 7.1. Geometry of the problem. 

Under these approximations the required equations are: 

Continuity: 

divV = 0, (7.1) 

Momentum: 
eN . Pdt = - VP +dlVS+J x Ho , (7.2) 
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The upper-convected Maxwell (UCM) fluid Cauchy stress tensor is given by 

DS 
T = - PI + S , where S+A Dt = /-lAI' ( 7.3) 

in which T is the Cauchy tensor , S is the extra tensor , /-l is the dynamic viscosity, J is the 

current density, A is the relaxation parameter , Al = (VV) + (VV)" is the first Rivlin-Ericksen 

tensor, V = [u(x, y) , v(x , y), OJ is the velocity, H = [0 , Ha, OJ is the external magnetic field , P is 

the Hydrosta tic pressures and gt is the contravariant convected derivative and is denoted by 

Eq. (7.2) can be written as 

DS = dS _ (VV) S _ S(VV)t 
Dt & ' 

after these assumptions the governing Maxwell model becomes 

(7.4) 

[ 
2 2 ] 1 (J/-l~H5 ( a) ( 8) uOxu + vOyu + A U oxxu + v OyyU + uvoxyu = --oxP + VOyyU - --- U + AV yU, 7. 

p p 

due to hydrostatic and magnetic pressure gradient, the forces will be in equilibrium , as given 

by 
1!:l P _ dUe (J/-l~H5 --Ux - U e - + ---Ue , 
p dx p 

(7.9) 

hence, eq. (7.8) becomes 
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O 0 [ 20 20 ] dUe (J"I),~H6 
U xU + V yU + A U xxU + V yyU + UVOxyu = - U e dx + //OyyU - --p- (u - U e + AVOyU,) , 

(7,10) 

Energy: 

Temperature based thermal conductivity is (see Ref. [34]) 

( 
T-T ) 

k = kCXJ 1 + c Tw _ ~ , (7,11) 

where qr is the radiative heat flux, utilizing the Rosseland approximation for radiation term 

we get 

(7,12) 

By expanding T4 after utilizing Taylor's series about TCXJ and by taking higher order terms 

negligible, we get 

(7,13 ) 

Using eqs, (7 ,12) and (7, 13) one can write 

and the energy equation becomes 

Concentration: 

Arrhenius law in general form is (see Ref. [51]): 
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The balanced nanoconcentration equation is 

The boundary conditions are 

u(x,y) 

T( x, y) 

u(x,y) 

Uw(x) = ax + koyu, v(x , y) = 0, 

Tw(x) = Too + bx, C(x, y) = C," = Coo + bx , a.t y = O. 

Ue(x) = ex, T(x, y) = Too , C(x, y) = Coo a.s y ---> 00 . 

(7.16) 

(7.17) 

(7.18) 

Here A = ~ is the ratio parameter , J.L is the fluid viscosity, k = 8.61 X 10- 5 is the boltz

mann constant , J(B is the pre-exponential constant (J~:CW), J(A is the rate constant of chemical 

reaction( s!c)' kO is the absopation constant, (x0 is the Stefan-Boltzman constant (u, v) are 

the velocity components along the (x, y) directions, Ea is the activation energy (eV) , p is 

the density, P'e is the m ag11etic permeability velocity, (J is the electrical conductivity, A is the 

Maxwell fluid parameter , v is the kinematic viscosity, k represents thermal conductivity, DB is 

the Brownian motion, T = (((lc)), is the ratio of nanoparticals heat capacity and base fluid ther-
(lC f 

mal capacity, (Xf = ((I~";)f represents thermal diffusion, T,Ax,y) is known as temperature at 

the wall, C1/}(x, y) is known as concentration at the wall, T and C are the temperature and 

concentration of the fluid respectively, Cp is the specific heat , Too and Coo is the temperature 

and concentration at free stream. Temperature of the sheet is Tw = Too + bx , for heated surface 

b > 0 that is Tw > Too and for cooled surface b < 0 and Tw < Too , b is a constant and Or is 

known as thennophOl'esis diffusivity. 

The following variables reduce the above equations into dimensionless quantit.ies: 
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Incompressibility condition (7.1) is automatically satisfied and eqs. (7.10), (7.15) and (7.17) 

take the following form : 

(7.21) 

(7.22) 

using (7.18), the associated boundary conditions become 

f' ---7 A , () ---7 0 , ¢ ---7 0, as TJ ---7 00. (7.23) 

Where, fluid relaxation parameter is Am = Aa, chemical reaction rate of constant is J( = 

~(Tw-T=)W, Hartmann number is Ha2 = J.LeHOj:;. , Prandtl number is Pr = C ' radiation 

t . R 4QOT 3 tl h· t · N rDt(Tw-Too ) d· . 1 t· parame er IS =~, lermop oresls parame er IS t = Too/.l' ImenSlOn ess ac 1-

vation energy parameter is E = k(T,~~Too )' Eckert number is Ec = (Tw -ufoo )c
p

' Lewis number 

is Le = DQ and Brownian motion parameter is Nb = rDB(Cw-Coo ). 
B /.I 
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7.1.2 D eclaration of curiosity 

Skin friction coefficient 

Mathematically, it is defined as: 

T - 1 

Cf = -; = Rei [1" (0) + )..'II.(f' (0) 1" (0) + f (0) 1'" (0))] , 
pUe 

(7.24) 

where Tw denotes t he wall shear stress, given as : 

(7.25) 

N usselt number 

T he Nusselt number is defined as : 

(7.26) 

Sherwood number 

T he average mass t ransfer rate is defined as: 

_ (!'l) . _ -Jwx _ -;1 '() 
.Jw - - DB uyC 11 = 0 ' ==? S ltx - DB (Tw _ Too ) - - Rex ¢ 0 . 

Where Rex = 7./'e (x) is local Reynolds number . 

7.2 Numerical Procedure 

Shooting method is implemented for current problem and nonlinear different ial eqs. (7.20)

(7.22) along wit h boundary conditions (7.23) are solved t hrough Runge-Kutta Fehlberg ap

proach. The boundary value problem is converted into a system of init ia l value problems. 

Guess the missing initial conditions and than by using Newt on 's method the required boundary 

condit ions are achieved . The procedure is repeated unt il the required accuracy 10- 6 is achieved . 
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7.3 Results and discussion 

T he reduced ordinary differential eqs. (7.20)-(7.22) with boundary conditions (7.23) are solved 

by using Runge-Kutta-Fehlberg method known as Cash and Karp . T he results are achieved 

for fluid relaxation parameter , Hartmann number and slip parameter on velocity, temperature 

and concentration profiles . Fig. 7.2 illustrates t he behavior of nanoliquid velocity on )1] . It 

can be illustrat ed fTom this figure that intensification in slip parameter )1] correspondes Lo the 

reduction in velocity. Fig. 7.3 illuminates a very significant effect of Hartmann number /-/ 0.2 

on velocity profile. For each value of Hartmann number H 0.2 , t he velocity profil e reduces. In 

fact the transverse magnetic field generates t he Lorentz fo rce which causes reduction in velocity 

profile. Fig. 7.4 illustrates the fluid relaxation parameter Am on flow velocity. It can be 

investigat ed that the velocity profile reduces for increasing values of fluid relaxation parameter 

.. 0.5 
.~ -

0.4 

0 .3 

0.2 

--'-, "" 0,01 
-- )'1= 0.05 
--),,"'0.09 

I'T - 2. 1, Lt: "" 1.1, Il l" " U.S,A " R "" 0.1, 
& - c" } .• -IV, - E - A, - 0. 1 

Fig. 7.2 . Outcome of Al on .f' (-,.,) . 
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0.4 

0 .3 

0.2 

__ 11"1"" 0. 1 

-- HuJ:: O..J 
-- lfu

1 = 0.5 

Fig. 7.3. Outcome of Ha2 number on l' ('T}). 

0.9r-------r======1l 

0.4 

0.3 

0.2 

-- } ... = o, } 
-- ).= O .. i 
-- ,.:= 0.5 

PI - 1. / , L~ - 1. / , A, · 0.5, .'1 " £ - 0. 1, H - 0.1, 
Ec " I: ""' 1/1/ .. 0.1, N. " O.J , N, - 0.1 

Fig. 7.4. Outcome of Am on l' (77) . 

Fig. 7.5 represents the behavior of P randtl number Pr on temperature graph. It is obvious 

that the rising values of Prandtl number PI' on the temperature profile is reducing. Clearly 

illustrated hom this figure that the thermal boundary layer weakens, as on increasing the values 

of Prandtl number PI. The lower values of Prandtl number Pr are corresponding to enhance the 

thermal conductivity. Therefore thermal region layer becomes thicker and rate heat transport 

reduces t he Prandtl number Pro Fig. 7.6 describes the variation of thermal radiation R on 
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temperature graph. It shows that the temperature enhances by enhancing thermal radiation 

parameter R. The temperature profile reduces with increase of thermal radiation R . Fig. 

7.7 shows the temperature profile for several values of Eckert number Ec. It is seen that for 

large values of E c the temperature profile reduces. Fig. 7.8 depicts the variation of small 

parameter c on temperature profile. Layer thickness and temperature are improved by large 

values of c . Figs. 7.9 and 7.10 illuminate a very important effect of Nb and N I. on temperature 

profile. It is observed that the temperature profiles increases by increasing the values of N" 

and Nt. Physically, with rise in the values of Nt generates the thermophoresis force, helping 

nanomaterials to move from the hot surface to cold one. 

0.7 

0.6 

::EO.5 
'" 

0.4 

0 .3 

0.2 . 

0.1 . 

-- Pr = / . / 
-- Pr = / .J 
-- Pr = / .5 

I.t' - J.O, lIa: " ) ... .. N, • D. I , N, " 0.5, 
Ec - Il - c - >./" £ - K - ,1- 0. 1 

OO~·~~~~~~~~~~~~ 

Fig. 7.5. Outcome of Pr on e (rJ) . 
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0.7 . 

0.6 . 

~O.5 
0.4 

0.3 

0.2 

0.1 

--- I::c"" O.1 
--- EC"" (}.5 
--- £c"' 0.9 

1', - 1. 1, L~ - J.O, }' .. " O.J, Nt " J/uJ 
.. 0. 1, 

/1.', - O.i , I,, · R - t ... E - .-t = A' - 0.1 

F ig. 7.6. Outcome of Ee on e ('T}) . 

0.7 

0.6 . 

~0.5 . 

'" 
0.4 

0.3 

0.2 

0 .1 

1', - J. J ,L~ - I. O, l1aJ - J ... "" O.J , "'. - O.S. 
N," 0.1, Ec - i. l - c" E - A = A' " 0. 1 

Fig. 7.7. Outcome of R on e ('T}) . 
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0.6 

::EO.S 
'" 

0.4 

0 .3 

0 .2 

0.1 

o .. 

§]], = 0.1 
--- r. = O.1 
--- 1: = 0.1 

F ig. 7.8. Outcome of c on e ('17) . 

0.7 

0 .6 

:EO.S 
'" 

0.4 . 

0 .3 

0.2 

0 .1 

--- N.",, (J, I 
--- N.= O.J 
--- N. = O.5 

l 'r - 1. I, I. t " 1. 0,1:: - lIu1 
.. 0. 1, i ... " D.J , 

"', " O.S, II - He " H - r. - K " i., - 0. 1 

Fig. 7.9. Outcome of Nb on e ('17) . 
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0.7 

0.6 

~O.5 
0.4 

0 .3 

0.2 

0 .1 

I'T '" 1. 1, I. ~ - 1.0, 111/ - '_ .. - ,v, ,,, 0. 1. 
Ee " H. - c .. E - }., -,I - K - 0. 1 

Fig. 7.10. Outcome of Nt on e (1)). 

The influence of Lewis number L e on concentration profile is shown in Fig. 7.11 . Lewis 

number Le mostly depends on the coefficient of concentration diffusion. Large values of Lewis 

number L e reduces the concentration diffusion . Figs. 7.12 and 7. 13 descr ibe the nature of CO]1-

certation profiles for various values of chemical reaction and non-dimensional activation energy. 

Activation energy is insignificant amount of molecules or atoms in a system in order to ini t.i a te 

t he chemical reaction. For chemical reaction to continue at a reasonable rate , there mllst. ex ist C\ 

considerable number of atoms with energy equal to activation energy or greaLer than ac ti vaL ioll 

energy. From eq. (7.17) it is apparant that the reduction in concentrat ion profile is not iced 

for large values of non-dimensional activation parameter E. Also the concentration profi le re

duces on improving values of chemical reaction parameter K (see in Fig. 7.13). Physically the 

ingesting reactive species increases on increasing the chemical reactor parameter K . T he con-

centration profile reduces by enhancing the chemical reaction . Fig. 7.14 exhibits the behavior 

on fri ction factor for corresponding values of slip parameter AI . It can be analyzed that higher 

values of slip parameter Al causes decline in the Hartmann number H a2 . The Eckert number 

Ec is plotted against the Prandtl number PI' (as displayed in Fig. 7.15) . It can be observed 

that Eckert number Ec is an enhancing function of the Prandtl number . 
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0.6 

~O.5 
0.4 . 
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0.1 . 

--- L~ - J . I 
--- I.t!'"' J.) 
---1.t!= / .5 

/', - 1. / ,; ... - o.J, lIu l _.V . .. "'. _ 0. 1, 
f;': - If .. t'" ),/ '" E '" Ii '" I I '" 0. / 

Fig. 7.11. Outcome of Le on ¢ (T)). 

0.6 . 

? : 
~O.5 

0.4 : 

0 .3 

0.2 

0. 1 

--- K " O. I 
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F ig. 7.12. Outcome of J( on ¢ (T)) . 
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1', - J . I , I~ - I. O, Jltl - N. - N,"" 0. / , 
i .• - O.J , f~ - R - c· i,, · K " ", '"' 0. 1 
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F ig. 7.13. Outcome of E on ¢ (TJ) . 
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Fig. 7.14. Outcome of J( and Ha2 number on skin fT iction coeffi cient. 
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Fig. 7.15. Outcome of Ec and Pr number on Nusselt number. 

Table 7.1 calculates the numerical values offriction factor coefficient [1" (0) + Am (I' (0) r (0) + f (0) .r 
for different values of involving physical parameters Am, H a and AI. This table validates that 

Ha2 and Am i.e. both parameters enhance the friction factor [J" (0) + Am(J' (0) J" (0) + f (0) /," (0))]) , 

on the other hand enhancing the slip paramet er k causes the reduction in friction factor 

[J" (0) + Am(J' (0) J" (0) + f (0) fill (0))]. Table 7.2 shows the numerical values of heat trans

fer rate (1 + ce + ! R)e'(O) for several values of included physical parameters Pr, R , Ec and 

c. This table analyzed that increasing t he values of three parameters Pr, R and c, enhances 

the friction factor coefficient in the absolute sense, but by increasing the values of Eckert 

number , the heat transfer rate (1 + Am) J"(O) reduces. Table. 7.3 shows the mass transfer 
- 1 

rate S h Re:; for unlike values of Le, K , Nt and N b. It can b e examined from this table 
- I 

that the mass transfer rate Sh Rex
2 increases at the surface for the corresponding values of 

Le = 1.1 , 1.2, 1.3 and K = Nb = 0.1 , 0.2, 0.3 , on t he other hand, the mass transfer rate 
- I 

Sh R ex
2 decreases for corresponding values of Nt = 0.1, 0. 2, .0.3. To check the accuracy of our 

current study we have computed the numerical values of -e' (O) and 4> (0) for un li ke values of N, 

fixing Nb = 0.1, PI' = 1.0, c = Am = Ha = R = Ec = K = Al = E = Le = 0.0. These values 

are recruited in Table 7.4 and compared these numerical values with Acharya et al. [80]. 
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Table 7.1: Numerical results of [f" (0) + Am(j' (0) f" (0) + f (0) /," (0))] for unlik values 

of Ha , Am = 0.1 , Nt = 0.5 , Nb = Ec = E: = [{ = 0.1 , and Pr = Le = l.l. 

Ha2
1 

1 
Al Am -CfRe~ 

0.1 0.1 0.1 0.9120 

0. 2 0.9606 

0.3 l.0069 

0.1 0.1 0.1 0.9120 

I 0.2 0.8606 

II II 0.3 I 0.7240 

II 0.1 II 0.1 II 0.1 0.9120 

Table 7.2: Compositional results of -(1 + E: B + ~R)B' (O ) with pervious literature when 

Am = Nb = Ec = Ha = E: = [{ = 0.1 and Le = l.l. 

1 

Pr Ec R E: NuRex
2 

l.1 0.1 0.1 0.1 0. 5928 

l.2 0.6216 

l.3 I I 0.6490 

l.1 0.1 0.1 0.1 0.5928 

0.2 0.5656 

0.3 0.5383 

l.1 0.1 0.1 0.1 0.5928 

0.2 I 0.6234 

0.3 0.6557 

l.1 0.1 0.1 0.1 0.5928 

0. 2 0.6079 

0.3 0. 5790 
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Table 7.3: Numerical results of _¢' (0) for corresponding values of Le, K . Nt and N b . 

II Nt II Nb 
[ 

Le K ShR.ex
2 

1.1 0.1 II 0.1 II 0.1 0.4971 

1.2 I 0.5428 

1.3 0.5867 

1.1 0.1 0.1 0.1 0.4971 

0.2 0.5760 

0. 3 0.6510 

1.1 0.1 0.1 0.1 0.4971 

0.2 0.2879 

0.3 0.1025 

1.1 0.1 0.1 0.1 0.4971 

0.2 0.6260 

0.3 0. 6692 

Table. 7.4: Comparison of the numerical results by utilizing the current technique with 

Acharya et al. [80] . 

0.1 0.9524 2. 1294 0.9634 2.0153 

0.2 0.6932 2.2740 0.7721 2.1421 

0.3 0.5201 2.5287 0.5685 2.4561 

0.4 0.4026 2.7952 0.4032 2.7620 

11 0.5 0.3211 3.0352 0.3201 3.0135 
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Chapter 8 

Generalized diffusion effects on 

Maxwell nanofluid stagnation point 

flow over a stretchable sheet with 

slip conditions and chemical reaction 

This chapter expands the previous work by adding the heat and mass diffusion (Cat,tanco~ 

Christov model) of the upper convected Maxwell nanomaterial passed by a linear stretchcd 

surface (slip surface) near the stagnation point region. Conventional Fourier 's and Fick 's laws 

are employed to investigate heat and mass diffusion phenomena. Using the similarity trans

formations the governing PDEs are rendered into ODEs along with boundary conditions. The 

obtained boundary value problem is solved numerically by using Runge-Kutta method along 

with shooting technique (Cash and Karp) . Effects of embedded parameters, namely, fluid re

laxation parameter, Hartmann number, Brownian moment , thennophoresis parameter , thermal 

relaxation parameter, Lewis number, chemical reaction, concentration relaxation parameter and 

slip parameter on velocity, t emperature and concentration distributions are deliberated through 

graphs. The skin fri ction coefficient is deliberated and their numerically values are access ible 

through graphs and table. Also the comparison between present and published va lues is made 

at the end. 
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8.1 Mathematical formulation 

Let us consider two dimensional laminar steady heat and mass transfe r fl ow of an electrically 

conducting Maxwell nanofluid passing by a linear stretched surface placed along x-axis and 

y-axis, vertical to the sheet with stagnation point at the origin (as illustrated in F ig. 8.1). T he 

free stream velocity is U = ue(x) = ex and t he stretched velocity U = Uw(x) = ax , here a and 

e are positive constants . The temperature at the surface is conserved at Til) and Too far away 

from the plate . In a similar manner, the nanoparticle volume fractions are Cw and Coo . An 

external magnetic field Ho is applied normal to the sheet. 

I~ 
! X 

Fig. 8. 1. Geometry of the problem. 

Under the above assumptions the required equations are as follows: 

B"u + Byv = 0, (8.1) 

Here p is the density, I-Le is the magnetic permeabili ty velocity, a is t he electrical conductivity, 

A is the Maxwell fluid parameter and // is the kinematic viscosity. Due to hydrostatic and 
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magnetic pressure gradient the force will be in equilibrium as given by 

(8.3) 

Hence, eq. (8.2) becomes 

The classical form of Fourier's and Fick's laws with the Cattaneo-Christove equations takes 

the following form: 

q + AT [Otq + V . (Vq) - q. (VV) + (V .V)q] = - kjVT, (8.4) 

J + Ac [Ot J + V. (VJ) - J. (VV) + (V.v)J] = - DBVC, (8.5) 

By assuming that V.q = 0, V.J = 0, and for steady st ate ~ = 0, ~~ = 0, the revised 

equations are: 

q + AT [V .Vq - q .VV] = - k jVT, (8. G) 

J + AG [V.VJ - q .VJ] = - D BV C. (8. 7) 

Now in component form, energy and concentration equations (eqs. (8.7) and (8.8) ) take the 

following form 
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where Ox = tx and Oy = ty' 

The specified boundary conditions of the current problem takes the form 

1£(x , y) 

T( x, y) 

1£(x,y) 

Uw(x) = ax + gOyU, v(x, y) = 0, 

Tw = T(X) + bx, C(x , y) = Cw = C(X) + bx, at y = 0, 

1£e(x) = ex , T(x, y) = T(X) , C(x , y) = C(X) as Y -> 00. (8.10) 

Here (1£, v) are the velocity components along the (x , y) directions. q and J are the 

normal heat and mass flux respectively, k! represents the thermal conductivity, DB is the 

Brownian motion, AT , AC are the relaxation parameters for thermal and concentration, ex! = 

t~~~; is the ratio of nanopartical heat capacity and base fluid thermal capacity, ex! = (P;;)! 
represents thermal diffusion , Tw(x , y) is known as temperature at the wall , Cw(x , y) is known 

as concentration at the wall, T and C are the temperature and concentration of the fluid 

respectively, Cp is the specific heat , C(X) and T(X) are the concentration and temperature a t free 

streams. Temperature of the sheet is Tw = T(X) + bx, for heated surface b > 0 so, Till > T(X) and 

for cooled surface b < 0 and Tw < T(X),where b is a constant. 

The similarity variables are used to transform these PDEs into dimensionless form: 

~ 
T - T(X) C - C(X) o·t/J o·t/J 

7] = y - , e (7]) = T _ T, , ¢ (7]) = C _ C ,u = -0 ' v = - -0 . ' 
LI w (X) 'UJ (X) Y X 

(8 .11 ) 

substitut ing Eq. (8 .11) into Eqs. (8.1) , (8.4), (8.8) and (8.9), we get: 
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(8 .13) 

(8. 14) 

and the associated boundary conditions are modified to: 

1" 1 + Ad", f(ry) = 0, e(ry) = 1, ¢(ry ) = 1, at ry = 0, 

1" ----) A , e ----) 0, ¢ ----) 0, as ry ----) 00. (8. 15) 

Here fluid relaxation parameter is Am = Aa, Hartmann number is H a2 = J..leHo G , concentration V po. 

relaxation parameter is be = aAc, ratio parameter is A = .£, Lewis number is Le = D'" , ther-
a B 

mal relaxation parameter is bt = aAT , thermophoresis parameter is Nt = rDt(~w-T=), Prandtl 
= /.1 

number is Pr = y , Brownian motion parameter is Nb = rDB(C;-C= ) , slip parameter is 

Al = g~ and chemical reactive species is K = ~. 

Friction factor coefficient (C f) is defined as: 

Cf = !3!!... = ReY [1" (0) + Arn(j" (0) 1" (0) + f (0) 1'" (O))J . 
pu~ 

Here T w denotes the wall shear stress, which is: 

R ex = U e (x) is local Reynolds number . 

8.2 Numerical procedure 

(8. 16) 

(8.17) 

Numerical solution of the nonlinear differential eqs. (8.12)-(8 .14) along wi th N oumann boundary 

conditions (8.15) is achieved by applying the shooting method with Runge-Kutta integration 

technique for various values of parameters. Let Yl = f , Y2 = 1", Y3 = f" , Y4 = e, Y5 = e', Y6 = 

¢ and Y7 = ¢' . 
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Hence t he leading equations become 

Yl = Y~ , (8 .18) 

, 
Y2 = Y3, (8. 19) 

(8 .20) 

Y~ = Ys, (8.21 ) 

(8 .22) 

, 
Y6 = Y7, (8 .23) 

(8 .24) 

and subsequent initial conditions are: 

Yl (0) 0, Y2 (0) = 1 + AIY2, Y4 (0) = I , Y6 (0) = I , 

Y2 ('1']) ----+ A, Y4 ('1'] ) ----+ 0, Y6 ('1']) ----+ 0 when 'I'] ----+ 00 . (8 .25 ) 

This t echnique is successfully used to solve different problems rela ted to t he boundary layer 

fiow. The boundary conditions at 1'(7/) , 8("/) and ¢C,/ ) as 'I'] --> 00 are converted into filli te 

interval length (here it is 17 = 5). Inser t three initial guesses to 1" (0) , 8'(0) and ¢ ' (O) for 

approximat e solutions. Here the step size and convergence criteria are chosen to be 0.001 and 

10- 6 (in a ll cases) . 
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8.3 Results and discussion 

Main efforts of this work are to examine the influence of magnetic field and stagnation point 

Maxwell nanofluid flow due to a linear stretching surface with slip conditions. The governing 

differential eqs. (8.12)-(8.15) along with corresponding boundary conditions (8.16) are solved 

numerical by implying shooting procedure (Cash and Karp). Fig. 8.2 represents the change in 

velocity profile for distinct values of Hartmann number H a2 . From this figure, enhancement in 

H a2 results to decrease in velocity profile. Since the Hartmann number H a represents the ratio 

of MHD force to viscous force, hence enhancement in H a2 leads to stronger the MHD force , 

which declarants the velocity motion. Fig. 8.3 depicts the variation of slip parameter )1] on 

velocity profile. The influence of slip parameter Al significantly enhances the velocity profile. 

Fig. 8.4 illustrates the variation of fluid relaxation parameter Am on velocity profile. It can be 

analyzed that the velocity of the fluid reduces by enhancing the fluid relaxation paramet.er A/ll. ' 
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0.4 

0.3 

0.2 

-- /10 ' '''0. 1 
-- lIu: "" 0.3 
__ Jlu1 ""O.5 

i. .. - O.J, P, - I . J, Le - J.o.,v, ·,'\l. - (J. I , 
b,- II, - A - }.. , . K - 0./ 

Fig. 8.2. Outcome of Ha2 on l' (7]) .Fig. 
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Fig. 8.4. Outcome of Am on f' ('17) . 

Fig. 8.5 represents the change in temperature distribution for distinct values of Nt. It is 

found that by enhancing Nt, the temperature distribution also increases. Fig. 8.6 depicts the 

variation of Brownian motion parameter Nb on temperature distribution. It can be analyzed 

that by increasing Nb , the mass dift'usivity trek up which leads to enhance the temperature and 

the boundary layer thickness. Fig. 8.7 shows the behavior of Prandtl number PI' on tempern.ture 

profile. It is found that the temperature profile reduces on rising values of Prandtl number PI' . 
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Fig. 8.8 presents the deviation of t emperature profile for distinct values of bt . It is seen 

that by enhancing t hermal relaxation parameter bt fluid part icles require more time to heat the 

boundary layer region, as a result temperature profile reduces . Fig. 8.9 displays the effect of 

relaxation parameter bt on concentration distribution. F\'om this figure it is observed that by 

increasing the relaxation parameter bt the concentration profile reduces. Fig. 8. 10 represents 

the variation on concentra tion profile for different values of chemical reaction 1(. It is fo und 

that for large values of chemical reaction parameter 1( t he concentration profile reduces. F ig. 

8. 11 represents the influence of Lewis number Le on nanoconcentration profil e. It is found tha.t 

the higher values of Lewis number L e leads to reduce the mass diff'usivity, so the concent ra.tioll 
1 

profile reduces. Figs. 8. 12 and 8.13 validate the distribu t ion of skin fri ction coeffi cient CJ Rei 

with respect to Hartmann number H a2 and for several values of slip parameter k and fluid 
1 

relaxation parameter Am. It is very important to see that the skin friction coeffi cient CJ R.eI 

enhances by enhancing the values of slip parameter k but decreases by increasing the fluid 

relaxation parameter Am. Table 8.1 shows that the fraction factor r ise due to increase in 

Hartmann number H a2 and fluid relaxation parameter A,n and opposite behavior is noticed 

for slip parameter k. The achieved results are in good agreement with Afify and Elgazery 

[89] for different values of H a2 and Am as shown in Table. 8.2 . To detention accuracy of 

our present analysis we have calculated the numerical values for different values of N t fixing 

Nb = 0.1 , L e = PI' = 10 and Am = H a2 = k = S t = bt = be = J( = A = 0.0. vVe have recruited 
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the values in Table 8.3 and compared those numerical values with Hsiao [90] . 
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Fig. 8.9. Outcome of be on ¢ (77) . 
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1 

Table 8.1: Computational results of Cf Re~ for difl:'erent values of Ha2 , Al and Am when 

K = A = Nb = 0.1, L e = 1.0, 8e = 8t = 0.0, Nt = 0.5, and Pr = 1.1. 

II 0.1 0.1 0.1 0.9097 

0.2 0.9559 

0.3 0.9999 

0.1 0.1 0.1 0.9097 

0.2 0.8042 

0.3 0.7225 

0.1 0.1 0.00 0.8918 

0.05 0.9008 

II 0.09 0.9097 

Table 8 .2: Comparison of [1" (0) + Am(J' (0) 1" (0) + f (0) 1'1/ (O))J with pervious litera ture 

when Nb = Al = St = 0.1 , bt = 8e = K = A = 0.0, Nt = 0.5 and L e = P I' = 1.0. 

Am Ha2 II Afify et al. [89J Present results 

0.5 0.0 -1.68935 -1.6752 

0.5 0.1 -1.69715 -1.6821 

0.5 0.2 -1.72034 11 -1.7000 

0.5 0.3 -1.75830 11 -1.7321 

0.0 0.1 -1.00499 11 -1.0001 

0.1 0.1 -2.49440 11 -2.1898 
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Table 8.3: Comparison of -(;)'(0) and -cj;' (O)with pervious literature when Am = Ha2 = 

Al = St = t5t = oe = K = A = 0.0, Nt = 0.1 and Le = PI' = 10. 

0.1 -0.9524 -2.1526 

0.2 -0.6932 -2.2945 

0.3 -0.5201 -2.5287 -0.5018 -2.5002 

0.4 -0.4026 -2.7952 -0.4022 -2.7590 

0.5 -0.3211 -3.0352 -0.3462 -3.0617 
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Chapter 9 

Conclusions 

In this thesis boundary layer flow of non-Newtonian fluids having complex geometries are con

sidered , we have presented the base flow solutions for different non-Newtonina fluid models. 

In each case, we non-dimensionlised t he governing cont inuity, Navier-Stokes, energy and mass 

equations by using suitable transformations and boundary- layer approximation in order to de

termine the main governing equations. T he solut ions of the modelled different ial equations are 

computed by using moderate and well-known numerical technique namely shooting method . 

The different governing physical parameters are utilized to cont rol the motion of flui d . Skin 

friction coefficient , Nusselt number and Sherwood number are calculated in order to examine 

the flow behavior near t he surface. A comparison has been made with the previous published 

literature in order to check t he accuracy of t he method. T he following conclusions are drawn 

based on entire study: 

• Velocity profile enhances for large values of Wall thickness (0:), Weissenberg number 

(We2), plastic dynamic viscosity (0 and power law index (11,) . 

• Velocity profile reduces for large values of Hartman number (H a2
) . 

• Velocity profile enhances by enhancing fluid parameter (d) , Weissenberg number (Wed) , 

t angent ial slip condition (>'1 ) and nonlinear st retching index (11,). 

• It is clear t hat the impact of inclined angle ,,(, wall thickness parameter 0:, variable viscosity 

e,. and Hartmann number H a2 decelerates t he velocity. 
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• For la rge values of mixed convection parameter A and Weissenberg number VV e2 , t he 

velocity profile increases. 

• It is clear that the wall t hickness parameter a and Hartmann number H a2 decreases the 

velocity profile. 

• For large values of Weissenberg number vVe2 and temperature dependent viscosity (, the 

velocity profile decreases. 

• Due to increase in variable viscosity ( and fluid relaxation parameter Am, the velocity 

profile enhances. 

• Velocity profiles reduces for Al = Ha2 = 0.1, 0.3 , 0.5, and Am = 0.1, 0.4, 0.6. 

• An intensification in the Hartmann number H a2 , porosity parameter A and inertia factor 

Fc is noticed. 

• Temperature profile reduces by increasing thermal stratification (St) and Prandtl number 

(Pr). 

• High temperature is obtained for large values of thermophoretic parameter (Nt ) and 

Brownian motion (Nb). 

• For numerous values of thermal buoyance parameter (6e ) and Prand t l number (Pr). t he 

temperature distribution reduces. 

• By using generalized Fourier's law, favorable decrease in temperature profil e is observed. 

• For numerous values of Prandtl number (Pr) and relaxation parameter (6t) temperature 

profile reduces. 

• The influence of variable thermal conductivity (c) increases causes by increase in temper

ature profile. 

• By using classical Fourier 's law, significant reduction in temperature profile is observed. 

• Temperature profile increases by increasing the values of Eckert number E e, radiation 

parameter R, Brownian motion Nb, thermal conductivity parameter c and thermophoresis 

parameter Nt. 
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• Large values of Lewis number (Le) and solutal stratification (Sc) causes decay in concen

tration. 

• Higher values of chemical reactive species (K) , concentration buoyancy pa.rameter (6(,) 

and Lewis number (Le) causes decay in concentration. 

• Using generalized Fick's law, reduction in concentra.tion profile is noticed. 

• Concentration profiles reduce for increasing values of chemical react ive specie::; J( and 

Lewis number Le. 

• Concentration profile shows favorable reduction due to rise in Lewis number Le, chemical 

reaction K and activation energy Ea. 

• For increasing values of chemical reaction K , Prandtl number Pr , thermal relaxation 

parameter 6t , concentration relaxation parameter 6e and Lewis number Le reduces the 

concentration and temperature profiles. 

• The local friction coefficient (c J Rei) increases for large values of Hartmann number 

(Ha2). 

• ~rall fr iction factor coefficient increases for large values of Hartmann number H a2 . 

• Skin friction coefficient enhances for large values of H a2 . 

• Reduction in friction factor is noticed for enhancing values of sli p parameter A. 

I 

• Skin friction coefficient C J Re~ reduces for large values of slip parameter Al but opposing 

behavior is noticed for fluid relaxation parameter Am. 

• For large values of Prandtl number Pr the heat transport rate reduces. 

• For large values of variable viscosity parameter ( and Eckert number Ec the fri ction factor 

and heat transfer rate reduces. But the opposite behavior is noticed in mass transfer rate . 

• Heat transfer rate rises by increasing the values of Ecker t number Ec. 
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