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Abstract

A fundamental feature of the physics of waves is interference. The forma-

tion of highly regular spatio-temporal patterns in the quantum mechanical

probability density of confined particles is a striking example. The density

distributions have been termed “quantum interference patterns”. In this

thesis we track down the dynamics of open and closed quantum systems in

space and time. For this purpose we construct the initial wave packet and

investigate how it evolves in time for such quantum systems. We introduce

the concept of quantum revivals which are characterized by initially local-

ized quantum states that have a short-term, quasi-classical time evolution,

which then can spread significantly over several orbits, only to reform later in

the form of a quantum revival where the spreading reverses itself, the wave

packet relocalizes, and the semi-classical periodicity is once again evident.

Relocalization of the initial wave packet into a number of smaller copies of

the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to

fractional revivals. Systems exhibiting such behavior are a fundamental re-

alization of time-dependent interference phenomena for bound states with

quantized energies in quantum mechanics and are therefore of wide inter-

est in the physics community. We Introduce the concept of autocorrelation

function, that measures the overlap (in Hilbert space) of a time-dependent

quantum mechanical wave function, with its initial value. The explicit ex-

pression for the autocorrelation function for the time-dependent Gaussian

solution of the Schrodinger equation, in the case of a particle in a box, is

evaluated.
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Chapter 1

Introduction

Study of time development of localized systems in quantum mechanics has

been the interest of both researchers and student of the subject since it’s early

days. Schrodinger, Pauli, Dirac and other pioneers of the subject analyzed

basic bounded systems for both conceptual and philosophical development of

the subject. Among those basic bounded systems particle in a box is one of

the most fundamental and exactly solvable system. In this thesis we discuss

the quantum dynamics of such systems.

1.1 Diffraction

In general, diffraction happens when waves hit an obstruction or aperture.

The obstruction or aperture must have a similar size scale to the wave’s

wavelength. In classical physics, diffraction happens when waves diverge

from small gaps or bend around obstructions. In quantum physics, diffraction

also happens when matter exhibits wavelike characteristics. Thomas Young’s

double-slit experiment is a significant historical illustration of diffraction.

In this early 1800s experiment, Young directed sunlight through two small

openings as depicted in Figure (1.1). Interference is the term used to describe

the interaction of waves when light passes through the first single slit and

subsequently the second double slit. Diffraction is what causes the maxima

and minima pattern on the screen. The first piece of experimental evidence

to undermine the widely held Newtonian notion that light is made up of
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particles was this result. Instead, light acted like a wave, as demonstrated

by the maxima and minima pattern. Later, studies conducted in the 20th

century using similar diffraction and interference techniques demonstrated

that both matter and light may behave like waves.

Figure 1.1: A schematic of Thomas Young’s double slit experiment [1].

1.1.1 Near-Field Versus Far-Field Diffraction

In optics, diffraction behavior is classified by whether it occurs in the near-

field or the far-field. The near-field is close to an aperture where the wavefront

curvature is important. The far-field is farther away from an aperture where

the wavefronts can be estimated as parallel. Diffraction that occurs in the

far-field is called Fraunhofer diffraction and diffraction that occurs in the

near-field is called Fresnel diffraction. Formally, Fraunhofer diffraction occurs

when,
a2

Lλ
≪ 1 (A)
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and Fresnel diffraction occurs when,

a2

Lλ
≫ 1 (B)

where a is the aperture or slit size, L is the distance from aperture, and λ is

the wavelength of light[2]. Young’s double slit experiment is an example of

far-field diffraction. Meanwhile, the Talbot effect occurs in the near-field. In

the near-field, Fresnel approximations are made and the wavefront curvature

cannot be ignored.

1.2 Quantum Interference

Quantum interference is a phenomenon that occurs when two or more

quantum states combine, producing a new quantum state that exhibits char-

acteristics that are not present in the individual states. This phenomenon

is a consequence of the wave-like nature of quantum particles, which allows

them to interfere with each other just as waves in classical physics can in-

terfere with each other. In quantum mechanics, particles such as electrons

and photons can be described as wave-particle dualities, meaning that they

can exhibit both wave-like and particle-like behavior. When two or more

of these particles are combined, their wave functions can interfere with each

other, producing patterns of constructive and destructive interference. These

patterns can be observed through experiments such as the double-slit exper-

iment, in which a beam of particles is directed through two closely spaced

slits and the resulting interference pattern is observed on a detector screen.

Quantum interference has many important implications in various fields of

physics and technology, including quantum computing, quantum cryptogra-

phy, and the study of quantum systems.

1.2.1 Quantum Interference Patterns

Quantum interference patterns are patterns that arise when two or more

waves overlap and interfere with each other. In quantum mechanics, these

patterns can occur when two or more quantum states are superimposed,
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resulting in the creation of an interference pattern that reflects the relative

phase differences between the states. One of the most famous examples of

quantum interference patterns is the double-slit experiment, in which a beam

of particles is passed through two slits and strikes a screen on the other side.

When a single particle is sent through the slits, it will create a simple pattern

on the screen, with two bright spots corresponding to the locations of the slits.

However, if many particles are sent through the slits at the same time, an

interference pattern will be created on the screen, with alternating bright and

dark regions that reflect the quantum superposition of the particles as they

pass through the slits. Quantum interference patterns are important because

they demonstrate the wave-like nature of quantum particles, as well as their

ability to exhibit both particle-like and wave-like behaviors simultaneously.

They also have practical applications in fields such as quantum computing,

where they are used to manipulate the quantum states of particles in order

to perform certain calculations.

1.3 Quantum Systems

Quantum systems are physical systems that are described using the prin-

ciples of quantum mechanics. Quantum mechanics is a fundamental theory

of physics that describes the behavior of matter and energy at the atomic and

subatomic scales, and it is based on the principles of wave-particle duality

and quantum superposition. In a quantum system, the state of the system

can be described using a wave function, which is a mathematical function

that describes the probability of finding the system in a particular state.

The wave function evolves according to the principles of quantum mechan-

ics, which govern the behavior of quantum systems. Quantum systems are

characterized by several unique properties that are not observed in classical

systems, such as wave-particle duality, quantum superposition, and quantum

entanglement. These properties have important implications for the behavior

and evolution of quantum systems, and they have been the subject of much

research and study in the field of quantum mechanics. Quantum systems have

important applications in a variety of fields, including quantum computing,

quantum communication, quantum sensing, and quantum thermodynamics.
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Understanding the behavior of quantum systems and the principles that gov-

ern them is essential for the development of new technologies and advances

in these fields.

1.3.1 Open Quantum Systems

Open quantum systems are quantum systems that interact with their en-

vironment or are subject to decoherence, which is the loss of coherence or

the ability to maintain a superposition of states. These systems are not iso-

lated from their environment and are affected by external influences, such

as interactions with other systems or the presence of noise or other types

of perturbations. Open quantum systems are described using density matri-

ces, which are mathematical objects that describe the statistical properties

of the system. Density matrices allow researchers to track the evolution of

the system over time and to study the effects of external perturbations on

the system. Open quantum systems are an important concept in quantum

mechanics, as they provide a framework for understanding the behavior of

quantum systems that are not isolated from their environment. Understand-

ing the properties and behavior of open quantum systems can be helpful in

the development of more efficient and reliable quantum algorithms and pro-

tocols, as well as in improving the accuracy and precision of quantum sensors

and measurement devices.

1.3.2 Closed Quantum Systems

A closed quantum system is a system that is isolated from its environment

and is therefore not subject to decoherence or other types of interactions.

These systems are described using wave functions, which describe the proba-

bility of finding the system in a particular state. In a closed quantum system,

the wave function evolves according to the principles of quantum mechanics

and is not affected by external influences. Closed quantum systems are char-

acterized by their ability to maintain quantum coherence, which is the ability

to maintain a superposition of states or the ability to exist in multiple states

simultaneously. This property is essential for certain types of quantum appli-

cations, such as quantum computing and quantum simulation, which require
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high levels of quantum coherence in order to perform complex quantum oper-

ations or simulate the behavior of other quantum systems. Closed quantum

systems are an important concept in quantum mechanics, as they provide a

framework for understanding the behavior of quantum systems that are iso-

lated from their environment. They have important applications in a variety

of fields, including quantum computing, quantum simulation, and quantum

metrology. Understanding the properties and behavior of closed quantum

systems is essential for the development of new technologies and advances

in these fields, and it can help researchers and scientists develop more effi-

cient and reliable quantum algorithms and protocols, as well as improve the

accuracy and precision of quantum sensors and measurement devices.

1.4 Revivals

A revival refers to the phenomenon of a system returning to a state that

is similar to its initial state at regular intervals. This can happen in both

classical and quantum systems when the system is subjected to certain types

of time-dependent perturbations, such as periodic or quasi-periodic driving

forces. One example of revivals in classical physics is the periodic oscillations

of a simple harmonic oscillator, such as a mass on a spring or a pendulum.

In these cases, the system returns to its initial state at regular intervals due

to the influence of external forces, such as the restoring force of a spring

or the force of gravity. In quantum physics, revivals can occur in certain

types of quantum systems when they are subject to periodic or quasi-periodic

perturbations. One example of this is the Rabi oscillation, which occurs in

a system of two energy levels when the system is subjected to a periodic

driving force. In this case, the system periodically oscillates between the two

energy levels, returning to its initial state at regular intervals.

1.4.1 Importance of Quantum Revivals:

Quantum revivals are an important phenomenon in the field of quantum

mechanics, as they provide insight into the fundamental nature of quantum

systems and the role of time and measurement in the quantum world. One
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important aspect of quantum revivals is that they demonstrate the wave-

like nature of quantum systems. When a quantum system exhibits quantum

revivals, it is a clear indication that the system is behaving like a wave,

rather than a classical object. This helps to confirm our understanding of

the quantum world and the principles that govern it. In addition, quantum

revivals can be used to study the behavior of quantum systems under different

conditions, such as when they are subjected to periodic or quasi-periodic

perturbations. This can help researchers gain a better understanding of how

quantum systems respond to external influences and how they evolve over

time.

1.5 This Thesis

This thesis seeks to our understanding of the revival of wave packets in a

one-dimensional box by exploring the role of the autocorrelation function in

this process. In this context firstly, I will elucidate the wave packets dynam-

ics in chapter-2. In which we will discuss general features of the motion of

a wave-packet and see how it changes shape. Moreover, I will demonstrate

the construction of Gaussian wave packet and will develop a model for many

Gaussians which would be helpful in the study of open and closed quantum

systems. Secondly, I will provide background materials for development of

mathematical model that will help us in observing the revival phenomena.

Thirdly, I will track down the discussions about quantum revivals by intro-

ducing the concept of autocorrelation function in chapter-4. In addition we

will investigate the quantum dynamics of open and closed quantum systems.

Finally, I will conclude my thesis.
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Chapter 2

Wave Packet Dynamics

In this chapter we will develop concepts of wave packets. It is a key tool

for understanding the behavior of quantum systems. The dynamics of quan-

tum systems can be studied by introducing Gaussian wave packets. In this

chapter we will see how an initial Gaussian wave packet can be constructed

mathematically. In addition we will discuss the integral operation, Fourier

transform and time evolution of Gaussian wave packet.

2.1 Wave Packet in Quantum Mechanics

In quantum mechanics, a wave packet is a mathematical function that

describes the behavior of a particle or system of particles. It is a combination

of multiple waves with different wavelengths and amplitudes, and it can be

used to represent the probability of finding a particle at a particular location

at a given time. The concept of a wave packet is important because it helps

us understand how particles behave in quantum systems. For example, the

wave packet of an electron in an atom describes the probability of finding

the electron at a particular energy level within the atom. Similarly, the wave

packet of a particle in a box describes the probability of finding the particle

within the boundaries of the box. Wave packets are often described using the

mathematical concept of a wave function, which is a function that describes

the probability amplitude of a particle at a particular location and time.

The wave function is related to the wave packet through the Heisenberg
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uncertainty principle, which states that the more accurately we know the

position of a particle, the less accurately we can know its momentum, and

vice versa. This uncertainty is due to the wave-like nature of particles in

quantum systems, and it is a fundamental aspect of quantum mechanics.

2.1.1 Characteristics of Wave Packets

Here are some characteristics of wave packets in quantum mechanics:

� Wave packets are described using wave functions: A wave function is

a mathematical function that describes the probability amplitude of

finding a particle at a particular location and time. It is related to the

wave packet through the Heisenberg uncertainty principle.

� Wave packets are used to represent the probability of finding a particle

at a particular location: The wave packet of a particle is a mathemat-

ical function that describes the probability of finding the particle at a

particular location at a given time. This probability is represented by

the probability amplitude of the wave function.

� Wave packets are characterized by their width and energy: The width

of a wave packet is a measure of how spread out it is in space, and it is

related to the uncertainty in the position of the particle. The energy

of a wave packet is a measure of the particle’s kinetic energy, and it is

related to the uncertainty in the momentum of the particle.

� Wave packets can exhibit wave-like behavior: Particles in quantum

systems can exhibit both wave-like and particle-like behavior. The

wave-like nature of particles is related to the wave packet through the

wave function, which describes the probability amplitude of the particle

at a particular location and time.

� Wave packets can be used to study various phenomena in quantum

systems: Wave packets are a useful tool for understanding the behavior

of particles in quantum systems, and they are often used to study

phenomena such as quantum tunneling, quantum coherence, and the

behavior of particles in quantum wells and quantum dots.
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2.1.2 Mathematical Interpretation

A wavepacket is a superposition of plane waves eikx with various wave-

lengths. Where k is the wave number related to the wavelength through

k = 2π/λ. Consider a wavepacket at t = 0 of the form:

w(x, 0) =
1√
2π

∫ +∞

−∞
µ(k)eikxdk (2.0.A)

If we know w(x, 0) then µ(k) is calculable. In fact, by the Fourier inversion

theorem, the function µ(k) is the Fourier transform of w(x, 0), so we can

write

µ(k) =
1√
2π

∫ +∞

−∞
w(x, 0)e−ikxdx. (2.0.B)

There is symmetry in these two equations. So, we can check that how the

uncertainties in w(x, 0) and µ(k) are related. In the quantum mechanical

interpretation of the these equations, a plane wave with momentum ℏk is

of the form eikx. Thus the Fourier representation of the wave w(x, 0) gives

a way to represent the wave as a superposition of plane waves of different

momenta. In our case w(x, 0) is not real. We can show that w(x, 0) is real

if and only if µ∗(−k) = µ(k). By complex conjugating the eqn.(2.0.A) for

w(x, 0):

w∗(x, 0) =
1√
2π

∫ +∞

−∞
µ∗(k)e−ikxdk =

1√
2π

∫ +∞

−∞
µ∗(−k)eikxdk. (2.1)

In the second step we let k → −k in the integral, which is allowable because

we are integrating over all k, and the two sign flips, one from the dk and one

from switching the limits of integration, cancel each other out. If µ∗(−k) =
µ(k) then

w∗(x, 0) =
1√
2π

∫ +∞

−∞
µ(k)eikxdk = w(x, 0) (2.2)

as we wanted to check. If, on the other hand we know that w(x, 0) is real

then the equality of w∗ and w gives,

1√
2π

∫ +∞

−∞
µ∗(−k)eikxdk =

1√
2π

∫ +∞

−∞
µ(k)eikxdk (2.3)
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which is equivalent to

1√
2π

∫ +∞

−∞
(µ∗(−k)− µ(k)) eikxdk = 0. (2.4)

This equation actually means that object inside the brace must vanish. In-

deed, the integral is computing the Fourier transform of the object with the

brace, and it tells us that it is zero. But a function with zero Fourier trans-

form must be zero itself (by the Fourier theorem). Therefore reality implies

µ∗(−k) = µ(k).

2.2 Gaussian Wave packet

A Gaussian wave packet is a type of wave packet that is characterized by

a Gaussian probability distribution function. In other words, the probability

of finding a particle at a particular location is described by a bell-shaped

curve that follows a Gaussian distribution. Gaussian wave packets are often

used to model the behavior of particles in quantum systems because they

are relatively simple and easy to work with, mathematically. In quantum

mechanics, a Gaussian wave packet can be described by a wave function of

the form:

w(x, t) = Ae−
x2

2L2+ikx−iEt/ℏ (2.5)

where A is the normalization constant, x is the position of the particle, L

is the width of the wave packet, k is the wave vector, E is the energy of

the particle, t is the time, and ℏ is the reduced Planck constant. The wave

function of a Gaussian wave packet is characterized by three parameters: the

width of the wave packet (L), the wave vector (k), and the energy (E). These

parameters can be used to control the behavior of the wave packet, such as its

position, momentum, and uncertainty. In general, Gaussian wave packets are

used to model the behavior of particles in quantum systems that are localized

in space and have well-defined energy and momentum. They are often used

to study phenomena such as quantum tunneling and quantum coherence, and

they are a useful tool for understanding the behavior of particles in various

quantum systems.
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2.2.1 Initial Construction of the Gaussian Packet

To express the circumstance that “x-measurement (performed at time

t = 0 with an instrument of imperfect resolution) has shown the particle to

reside in the vicinity of the point x = a” we write P (x, 0) ≡ |w(x, 0)|2=
[some properly positioned and shaped distribution function ] and noticing

that such a statement supplies only limited information about the structure

of w(x, 0) itself

w(x, 0) =
√
P (x, 0).eiα(x,0) (2.6)

phase factor remains at present arbitrary.The phase factor has entered with

simple innocence upon the stage, but is destined to play a leading role as the

drama unfolds. Whether we proceed from some tentative sense of the oper-

ating characteristics of instruments of finite resolution or seek only to model

such statements in a concrete but analytically tractable way, it becomes fairly

natural to look to the special case given by,

P (x, 0) =
1

σ
√
2π
e−

1
2 [

x−α
σ ]

2

. (2.7)

The Gaussian on the right defines the “normal distribution” with mean;

< x >= a, variance≡ (uncertainty)2; < (x − a)2 >= σ2 and the associated

wave function reads

w(x, 0) =

[
1

σ
√
2π

] 1
2

e−
1
4 [

x−α
σ ]

2

.eiα(x,0). (2.8)

Writing w(x, 0) ≡ (x|w)0 to draw attention to the fact that we’re working in

the x-representation.

Now we can accomplish the momentum representation as follows,

w(p, 0) ≡ (p|w)0 =
∫
(p|x)dx(x|w)0 =

1

h

∫
e−

i
ℏpxw(x, 0)dx

=
1

h

∫
e−

i
ℏpxw(x, 0)dx (2.9)
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but cannot be carried out in detail until the phase factor has been specified1

If, in the Gaussian case eqn.(2.8), we set α=0 then eqn.(2.9) gives

µ(p, 0) =

[
1

λ
√
2π

]1/2
e−

1
4 [

p
λ ]

2

.e−
i
ℏαp, (2.10)

with λ ≡ ℏ/2σ. Whence

Q(p) =
1

λ
√
2π
e−

1
2 [

p
λ ]

2

.e−
i
ℏαp, (2.11)

which is again normal, but centered at the origin of p-space,

< p >= 0

< (p− 0)2 >= λ2

In the relation

σλ = △x.△p = 1

2
ℏ, (2.12)

we have encountered an instance of optimal compliance with the Heisenberg

uncertainty principle: △x.△p ≥ 1
2
ℏ.

To achieve arbitrary placement of the origin of the normal distribution in

momentum space i.e., to achieve,

eqn.(2.11) → Q(p) =
1

λ
√
2π
e−

1
2 [

p−b
λ ]

2

, (2.11)

it might appear most natural in place of eqn.(2.10) simply to write

µ(p, 0) =

[
1

λ
√
2π

]1/2
e−

1
4 [

p−b
λ ]

2

.e−
i
ℏα(p−b). (2.12)

But then

w(x, 0) =
1√
h

∫
e

i
ℏpxµ(p, 0)dp. (2.13)

1The statement
Normalization of P (x, 0) ≡ |w(x, 0)|2 =⇒ normalization of Q(p)≡ |µ(p)|2 is, however,
phase-insensitive, and is the upshot of Parseval’s theorem: from P. Morse and H. Feshbach,
Methods of Theoretical Physics (1953), p. 456.
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Omitting the phase factor we get,

w(x, 0) =
1√
h

∫
e

i
ℏpx

{[
1

λ
√
2π

]1/2
e−

1
4 [

p−b
λ ]

2

}
dp (2.14)

=

[
1

σ
√
2π

]1/2
e

i
ℏ e−

i
4 [

x
σ ]

2

bx (2.15)

where,

σ ≡ ℏ/2λ. (2.16)

The resulting distribution function,

P (x, 0) =
1

σ
√
2π
e−

1
2 [

x
σ ]

2

, (2.17)

is again normal but centered at the origin in configuration space; it is precisely

eqn.(2.7) with a = 0.

2.2.2 Integral of a Gaussian Function

Let, f(x) = ae−bx2
with a > 0 and b > 0. Noting that f(x) is positive

everywhere, the integral I of f(x) over R for particular a and b is,

I =

∫ +∞

−∞
f(x)dx. (2.18)

To solve this 1-dimensional integral, we will start by computing its square.

By the separability property of the exponential function, it follows that we’ll

get a 2-dimensional integral over a 2-dimensional gaussian. If we can compute

that, the integral is given by the positive square root of this integral.

I2 =

∫ +∞

−∞
f(x)dx

∫ +∞

−∞
f(y)dy =

∫ +∞

−∞

∫ +∞

−∞
f(x)f(y)dydx (2.19)

=

∫ +∞

−∞

∫ +∞

−∞
ae−bx2

ae−by2dydx (2.20)

= a2
∫ +∞

−∞

∫ +∞

−∞
e−b(x2+y2)dydx. (2.21)
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Now we will make a change of variables from (x, y) to polar coordinates (α,r).

The determinant of the Jacobian of this transform is r. Therefore,

I2 = a2
∫ 2π

0

∫ ∞

0

re−br2drdα (2.22)

=
a2

−2b

∫ 2π

0

∫ ∞

0

e−br2drdα (2.23)

=
a2

−2b

∫ 2π

0

−1dα (2.24)

I2 =
πa2

b
. (2.25)

Taking the positive square root gives,

I = a

√
π

b
. (2.26)

Example

Requiring f(x) to integrate to 1 over R gives the equation,

I = a

√
π

b
= 1 (2.27)

a =

√
b

π
. (2.28)

And substitution of,

b =
1

2σ2
, (2.29)

gives the Gaussian distribution g(x) with zero mean and σ variance,

g(x) =
1

σ
√
2π
e−

x2

2σ2 . (2.30)
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2.2.3 The Fourier Transform of a Gaussian Function

Evaluating the bilateral Laplace transform B(s) of f(x) by using the

intermediate result. The Fourier transform is then given by F (w) = B(iw).

B(s) =
1√
2π

∫ +∞

−∞
f(x)e−sxdx (2.31)

=
1√
2π

∫ +∞

−∞
aebx

2

e−sxdx (2.32)

=
1√
2π

∫ +∞

−∞
ae−(bx2+sx)dx. (2.33)

Completing the square in the exponent,

b(x+ k)2 = bx2 + 2bkx+ bk2. (2.34)

By comparing factors of x we see that 2bk = s and thus k = s
2b
. Now,

b(x+
s

2b
)2 − s2

4b
= bx2 + sx (2.35)

B(s) =
1√
2π

∫ +∞

−∞
ae−b(x+ s

2b)
2
− s2

4b dx (2.36)

B(s) =
1√
2π
e

s2

4b

∫ +∞

−∞
ae−b(x+ s

2b)
2

dx, (2.37)

changing variables by x(u) = u− s
2b
.

The determinant of the Jacobian of this transformation is 1. Thus,

B(s) =
1√
2π
e

s2

4b

∫ +∞

−∞
ae−bu2

du. (2.38)

By using eqn.(2.16) the integral is solved as,

B(s) =
1√
2π
e

s2

4b a

√
π

b
(2.39)

=
a√
2b
e

s2

4b . (2.40)
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The associated Fourier transform is then:

F (w) = B(iw)

a√
2b
e−

w2

4b . (2.41)

Thus, the Fourier transform of a Gaussian function is another Gaussian func-

tion.

2.2.4 Many-Gaussians Wave Packet

In quantum mechanics, a many-Gaussians wave packet is a wave packet

that is constructed from a combination of multiple Gaussian wave packets.

A Gaussian wave packet is a type of wave packet that is characterized by

a Gaussian probability distribution function, and it is often used to model

the behavior of particles in quantum systems because it is relatively simple

and easy to work with mathematically. Many-Gaussians wave packets are

often used to model the behavior of particles in complex quantum systems,

such as molecules and solids. They can be used to study phenomena such

as quantum coherence and quantum tunneling, and they are a useful tool

for understanding the behavior of particles in various quantum systems as

focused in this thesis.

Why Many-Gaussians Wave Packets are Useful?

Many-Gaussians wave packets are useful because they can capture more

of the complexity of the system being modeled compared to single Gaussian

wave packets. In general, many-Gaussians wave packets are more accurate

than single Gaussian wave packets because they can represent the behavior of

particles in complex quantum systems more accurately. For example, many-

Gaussians wave packets can be used to model the behavior of particles in

molecules and solids, which are more complex quantum systems than atoms

or simple quantum wells. In addition, many-Gaussians wave packets can

be used to study the behavior of particles in systems with multiple energy

levels or multiple quantum states. This is because they can capture the
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superposition of multiple quantum states, which is not possible with single

Gaussian wave packets.

Mathematical Formalism

We develop many Gaussians wave function to solve our Open and Closed

Quantum systems, defined as,

g(x) ≡ x0
∑
j

ea0(x−xj)
2

, (2.42)

where,

x0 ≡
1

(2π)1/4
√
a
, (2.43)

a0 ≡
1

4a2
(2.44)

a is the uncertainty in width such that a ≈ △x. Eqn.(2.18) gives Figure 2.1

and Figure 2.2
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Figure 2.1: A Gaussian wavepacket centered at 0.10 For a = 0.04L.
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Figure 2.2: Two Gaussian wavepackets eqn.(2.18) whose peaks are 0.06m
apart from each other For a = 0.04L.

From Figures (2.1) and (2.2) it is indicated that we can develop many

Gaussian wavepakets for our desired Quantum systems.

2.3 Time Evolution of a Free Wave Packet

In this section we will accomplish a mathematical model for our Quantum

Systems. Here, Our goal is to find the time evolved state w(x, t) when we

know the initial wavefunction w(x, 0) at t = 0.

Step 1. We will use w(x, 0) to compute µ(k).

µ(k) =
1√
2π

∫ +∞

−∞
dxw(x, 0)e−ikx, (2.19)
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Step 2. Using µ(k) to to rewrite w(x, 0) as a superposition of plane waves:

w(x, 0) =
1√
2π

∫ +∞

−∞
dxµ(k)eikx. (2.20)

This is useful because we know how plane waves evolve in time. The above

is called the Fourier representation of w(x, 0)

Step 3. A plane wave µk(x, 0) = eikx evolves in time into µk(x, t) =

ei(kx−ω(k))t with ℏω = ℏ2k2
2m

. Using superposition we see that eqn.(2.20) evolves

into,

w(x, t) =
1√
2π

∫ +∞

−∞
dxµ(k)ei(kx−ω(k))tdk (2.21)

This is in fact the answer for µ(x, t). We can easily confirm that is the solution

because; (i) it solves the Schrodinger equation and (ii) setting t = 0 in µ(x, t)

gives us the initial wavefunction given by eqn.(2.20) that represented the

initial condition.
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Chapter 3

Model Systems

In this chapter we will construct a mathematical model that help us

in understanding quantum systems. In this context we construct the free

particle Schrodinger equation and then expand its formalism for particle in

a potential. In this regard we use it for infinite square well.

3.1 Wave Function

In quantum mechanics, the wave function is a mathematical function that

describes the probability amplitude of finding a particle at a particular lo-

cation and time. It is a complex-valued function that is denoted by w in

this thesis and is often referred to as the ”quantum state” of the particle or

system. The wave function is related to the wave packet through the Heisen-

berg uncertainty principle, which states that the more accurately we know

the position of a particle, the less accurately we can know its momentum,

and vice versa. This uncertainty is due to the wave-like nature of particles

in quantum systems, and it is a fundamental aspect of quantum mechanics.

3.1.1 Equations for a Wave Function

The wave function or de Broglie wave for a particle with momentum p

and energy E is given by,

w(x, t) = ei(kx−ωt) (3.1)
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where, ω and k are determined from,

p = ℏk,E = ℏω,E =
p2

2m
. (3.2)

The wavefunction in eqn.(3.1) represents a state of definite momentum. It is

then of interest to find an operator that extracts that information from the

wavefunction. We take,

ℏ
i

∂

∂x
w(x, t) =

ℏ
i
(ik)w(x, t) = pw(x, t) (3.3)

where p is the momentum. Identifying the operator, ℏ
i

∂
∂x

as the momentum

operator p̂,

p̂ ≡ ℏ
i

∂

∂x
(3.4)

p̂w = pw (3.5)

We can see that operating the p̂ on the wavefunction w(x, t) for a particle

of momentum p, it gives p times the wavefunction. We say that w is an

eigenstate of p̂. Extracting the energy information from the free particle

wavefunction,

iℏ
∂

∂t
w(x, t) = iℏ(−iω)w(x, t) = ℏωw(x, t) = Ew(x, t). (3.6)

Writing energy in terms of momentum for a free particle,

Ew =
1

2m

ℏ
i

∂

∂x
w

which suggests the following definition of the energy operator,

Ê ≡ p̂2

2m
= − ℏ2

2m

∂2

∂x2
. (3.8)

This also allows us to find a differential equation for which our de Broglie

wavefunction is a solution. Considering eqn.(3.6) and replacing the right

30



DRSML Q
AU

hand side Ew by Êw gives us,

iℏ
∂

∂t
ψ(x, t) = − ℏ2

2m

∂2

∂x2
ψ(x, t) (3.9)

This is the free-particle Schrodinger equation. Interms of energy oper-

ator, it can be written as

iℏ
∂

∂t
ψ(x, t) = Êψ(x, t) (3.10)

3.2 Schrodinger Equation for Particle in a

Potential

If our quantum particle is moving in some external potential V (x, t). In

such case, the total energy of the particle is the sum of kinetic and potential

energies,

E =
p2

2m
+ V (x, t) (3.11)

Here, energy operator can be written as

Ê =
p̂2

2m
+ V (x, t). (3.12)

The Schrodinger equation for a particle in a potential takes the form,

iℏ
∂

∂t
w(x, t) =

(
− ℏ2

2m

∂2

∂x2
+ V (x, t)

)
w(x, t) (3.13)

The energy operator Ê is usually called the Hamiltonian operator Ĥ,

Ĥ ≡ − ℏ2

2m

∂2

∂x2
+ V (x, t) (3.14)

and the Shrodinger equation becomes,

iℏ
∂

∂t
w(x, t) = Ĥw(x, t) (3.15)
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From here we get a postulate of Quantum Mechanics that, ”The time evolu-

tion of a quantum system is determined by the Hamiltonian or total energy

operator H(t) through the Schrodinger equation”

In Dirac notation eqn.(3.15) can be written as,

iℏ
d

dt
|w(t)⟩ = H(t)|w(t)⟩ (3.16)

The eigenvalues of the Hamiltonian are the allowed energies of the quantum

system, and the eigenstates of H are the energy eigenstates of the system.

Energy eigenvalue equation is,

H|En⟩ = En|En⟩ (3.17)

The eigenvectors of the Hamiltonian form a complete basis because it is an

observable, and therefore a Hermitian operator. Therefore, we consider the

energy eigenstates as the basis of choice for expanding general state vectors,

|w(t)⟩ =
∑
n

cn(t)|En⟩ (3.18)

which is orthonormal,

⟨Ek|En⟩ = δkn (3.19)

where, cn(t) is called expansion coefficients.

Substituting this general state into eqn.(3.16) we get,

iℏ
d

dt

∑
n

cn(t)|En⟩ = H
∑
n

cn(t)|En⟩

using eqn.(3.17) we get,

iℏ
∑
n

dcn(t)

dt
|En⟩ =

∑
n

cn(t)En|En⟩.

Using eqn.(3.19) and then collapses the sums we get,

⟨Ek|iℏ
∑
n

dcn(t)

dt
|En⟩ = ⟨Ek|

∑
n

cn(t)En|En⟩

32



DRSML Q
AU

iℏ
dck(t)

dt
= ck(t)Ek.

We get here a single differential equation, for each of the possible energy

states of the systems k = 1, 2, 3, ... . This 1st-order differential equation

can be rewritten as,
dck(t)

dt
= −iEk

ℏ
ck(t) (3.20)

whose solution is a complex exponential given by,

ck(t) = ck(0)e
−iEkt/ℏ. (3.21)

The time-dependent solution for the full state vector can be obtained if the

initial state of the system at time t = 0 is,

|w(0)⟩ =
∑
n

cn|En⟩. (3.22)

The time evolution of this state under the action of the time-independent

Hamiltonian H is,

|w(t)⟩ =
∑
n

cne
−iEnt/ℏ|En⟩. (3.23.A)

Translating the Dirac notation equations to wave function notation,

w(x, t) =
∑
n

ccµn(x)e
−iEnt/ℏ. (3.23.B)

The cn (i.e., the probability amplitudes), in wave function language are,

cn =

∫ +∞

−∞
µn(x)w(x, 0)dx. (3.23.C)

Eqn.(3.23.A), eqn.(3.23.B) and eqn(3.23.C) will help us in solving open

and closed Quantum systems in upcoming sections.
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3.3 Particle Inside a Box

One of the simplest problems in quantum mechanics is a single free parti-

cle confined inside a one-dimensional box of length L. The potential energy

is zero inside the box but infinite at the boundaries x = 0 and x = L.

Schrodinger equation inside the box(
− ℏ2

2m

d2

dx2
+ V (x)

)
w = Ew (3.24)

reduces to

− ℏ2

2m

d2w

dx2
= Ew. (3.25)

The particle always remains inside the box because of the infinite potential

barrier at the walls. So the probability of finding the particle outside the

box is zero,i.e., w = 0 outside the box. The wavefunction is continuous at

the boundaries of the potential well at x = 0 and x = L. This satisfies the

boundary conditions

w(0) = w(L) = 0. (3.26)

Eqn.(3.25) can be solved by using these boundary conditions as follows,

d2w

dx2
+ k2w = 0

where,

k =

√
2ME

ℏ2
.

The general solution of this equation is given by,

w(x) = Asinkx+Bcoskx,

where A and B are constants that can be determined from the boundary

conditions as well as normalization. The condition that w(0) = 0 leads to

B = 0. Therefore,

w(x) = Asinkx.
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The condition that w(L) = 0 gives,

Asin (kL) = 0.

This equation can be satisfied in two different ways. First is to choose A = 0.

But this leads to w(x) = 0, which is not possible as it implies that particle

is not inside the box. The other possibility is that

kL = nπ,

where n=1,2,... are integers. Thus the solutions for the wavefunction are

wn(x) ≡ µ(x) = Asin
(nπ
L
x
)
. (3.27)

The constant A can be found from the condition that the particle is some-

where inside the box,i.e., ∫ L

0

|wn(x)|2dx = 1.

A2

∫ L

0

sin2
(nπ
L
x
)
= A2L

2
= 1

The normalization constant A is equal to
√

2/L. The normalized energy

eigen states become,

µ(x) =

√
2

L
sin

(nπ
L
x
)

(3.28)

By substituting the value of k, we get the energy of particle as follows

En =
n2π2ℏ2

2ML2
, n=1,2,3, ... (3.29)

These allowed energies scale with the square of the quantum number n and

produce the set of energy levels.

35



DRSML Q
AU

Chapter 4

Quantum Wave Packet

Revivals and Quantum

Dynamics in Open and Closed

Quantum Systems

In this chapter we will track down the discussions about quantum revivals

and classical periodicity. Here we will discuss the overlap of a time-dependent

quantum mechanical wave function, w(x, t), with its initial value, w(x, 0).

Moreover, we will investigate the quantum dynamics of open and closed

quantum systems in space and time.

4.1 Introduction

The study of quantum mechanics and its phenomena has been a central

area of research in physics since its inception in the early 20th century. The

revival of wave packets, which refers to the reformation of a quantum wave

packet after it has spread out, was first studied by Schrödinger [3]-[6] in the

1920s. Schrödinger used the mathematical framework of quantum mechanics

to describe the behavior of wave packets and showed that they could exhibit

periodic revivals.

In the decades that followed, the revival of wave packets became a topic of
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interest for many physicists, and numerous studies were conducted to bet-

ter understand this behavior. In the 1970s and 1980s, several researchers

studied the revival of wave packets in various physical systems, including the

hydrogen atom and harmonic oscillators[7]-[10]. In recent years, the revival

of wave packets has been the subject of renewed interest, due in part to ad-

vances in technology that have made it possible to experimentally observe

these phenomena. With the development of ultra-cold atomic systems and

optical lattices, it has become possible to study the revival of wave packets

in well-controlled, highly tunable environments.

The use of the autocorrelation function as a tool to investigate the revival

of wave packets is a relatively recent development, and its application to

the study of one-dimensional boxes is a novel contribution to the field. This

thesis builds on the existing body of knowledge and seeks to further our

understanding of the revival of wave packets in a one-dimensional box by

exploring the role of the autocorrelation function in this process.

The phenomenon of wave packet revivals, which has now been observed in

many experimental situations, arises when a well-localized wave packet is

produced and initially exhibits a short-term time evolution with almost clas-

sical periodicity (Tcl) and then spreads significantly after a number of orbits,

entering a so-called collapsed phase where the probability is spread (not uni-

formly) around the classical trajectory. On a much longer time scale after

the initial excitation, however, called the revival time (with Trev ≫ Tcl), the

packet relocalizes, in the form of a quantum revival, in which the spread-

ing reverses itself and the classical periodicity is once again apparent. Even

more interestingly, many experiments have since observed additional tem-

poral structures, with smaller periodicities (fractions of Tcl), found at times

equal to rational fractions of the revival time (pTrev/q). These have been

elegantly interpreted [8] as the temporary formation of a number of ‘mini-

packets’ or ‘clones’ of the original packet, often with 1/q of the total prob-

ability, exhibiting local periodicities Tcl/q, and have come to be known as

fractional revivals. Observations of fractional revivals have been made in a

number of atomic [11] - [16] and molecular [17] systems.

A simple picture [18] of the time-dependence of the quantum state lead-

ing to these behaviors, modeling the individual energy eigenstates and their
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exponential
(
e−iEnt/ℏ

)
time-dependent factors as an ensemble of runners or

race-cars on a circular track, is often cited. The quantum mechanical spread-

ing arises from the differences in speed, while the classical periodicity of the

system is observable over a number of revolutions (or laps.) For longer times,

however, the runners/race-cars spread out and no correlations (or clumpings)

are obvious, while after the fastest participants have lapped their slower com-

petitors (once or many times), obvious patterns can return, including smaller

‘packs’ of racers, clumped together, which model fractional revivals.

4.2 Collapse and Revival

In a one dimensional box that contains an initial wave packet as a Gaus-

sian, when it is evolved in time, it first disperses, which we call the Collapse

and then comes back to it’s initial state in a specific amount amount of time,

for which we coin the word Revival.

A classical Metaphor: Consider shuffling of an initially highly ordered

deck of playing cards. One shuffling method involves splitting the deck into

two equal halves, and then alternately placing the bottom card from each

half into a pile, reforming and reordering the deck. After only a few such

shuffles, the original order is seemingly completely lost and the cards appear

to have randomized(this is like a collapse of state). After only a few more

turns, however, clear patterns of ordered subsets of suits and ranks appear,

increasingly so until after only eight such shuffles the deck has returned to its

original highly ordered state(that resembles with revivals meaning revives).

Why Revivals Occur? The very simple answer is ”Degeneracy.”

”Every Closed Quantum System is degenerate”. Greater the degeneracy is,

richer the space-time dynamics are.

4.2.1 Quantum Revivals and Classical Periodicity

The classical limit of quantal time development, first studied by Ehren-

fest is still an area of active investigation. Much of this research centers on

38



DRSML Q
AU

systems with two or more degrees of freedom, where classical chaos enters

the picture, and much centers on approximate quantal revivals in compli-

cated situations. Yet this section will show that even that workhorse of in-

troductory quantum mechanics, namely the one-dimensional infinite square

well(Discussed in previous chapter ), exhibits surprising features, the eluci-

dation of which contributes to one’s intuition concerning quantum mechanics

and illuminates the more general problems. The topic of quantal time devel-

opment in the infinite square well has been treated theoretically by Bluhm,

Kostelecky and Porter by Aronstein and Stroud[19-21]. In these treatments

the results flow ultimately either from the WKB approximation or from a

sophisticated Taylor series expansion of the eigenenergies En as a function

of the integer quantum number n. A particle of mass M moves in an infi-

nite square well of width L, centered on the origin. This system has energy

eigenvalues given by,

En = n2 π
2ℏ2

2ML2
(4.1)

As the energy increases, the separation between energy eigenvalues increases

rather than decreasing to a continuum as is usual, and as is expected for the

classical limit. It is a trivial matter to show that a classical particle of energy

E in the infinite square well bounces back and forth between the walls with

period

Tcl = L

√
2M

E
(4.2)

Suppose the initial wave function is,

w(x, 0) =
∑
n

cnµn(x)

Some of the expansion coefficients cn may of course vanish. This wave func-

tion evolves in time to,

w(x, t) =
∑
n

cnµn(x)e
−iEnt/ℏ

Does it ever happen that at some revival time Trev the quantum state repre-

sented by w(x, t) is exactly the same as the initial state w(x, 0)?
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Such a revival will happen whenever all of the phase factors e−iEnt/ℏ are equal.

Noting that the phase factors do not all have to equal one, because the two

wave functions w(x) and e−iµw(x) represent the same quantum state. That

is, it happens whenever,

En

ℏ
Trev = 2πNn + µ (4.3)

for all n such that cn ̸= 0.

Here, Nn is an integer, positive, negative, or zero, that can vary from one

value of n to another, whereas the time Trev and the phase µ is not varying

with n. Using the eigen energy result En = E1n
2, gives

Trev =
ℏ
E1

[
2π
Nn

n2
+

µ

n2

]
(4.4)

We will have found a revival if we can make the right-hand side independent

of n. As, µ
n2 will be independent of n only when either (1)µ = 0 or

else (2) only special values of n enter the superposition. The ratio µ
n2 can be

made independent of n by selecting,

Nn = (integer)n2 (4.5)

and the smallest such integer is one.

We have proven,

Theorem 1: Exact Quantum Revivals

Any wave function in an infinite square well will exactly come back to

itself after a time,

Trev =
2πℏ
E1

=
4ML2

πℏ
(4.6)

Theorem 2: Reflection Half-Way to a Revival

After the passage of half a revival time, any wave function is reflected

about the origin (with a physically irrelevant change of sign),

w(x, Trev/2) = −w(−x, 0) (4.7)
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Theorem 3: Mock Rabi Oscillations

If the wave function is a superposition of only two energy eigenfunctions,

namely n and m, then it revives after the shorter time,

τn,m =
Trev

m2 − n2
=

2πℏ
Em − En

(4.8)

at which time,

w(x, τn,m) = e−2πin2/(m2−n2)w(x, 0) (4.9)

w(x, τn,m) = e−2πim2/(m2−n2)w(x, 0) (4.10)

Note the physically irrelevant change of phase.

Theorem 4: If a wave function has odd parity, it revives after the

passage of time Trev/4,

w0(x, )Trev/4 = w0(x, 0) (4.11)

Theorem 5: If a wave function has even parity, it revives after the

passage of time Trev/8

we(x, )Trev/8 = e−iπ/4we(x, 0) (4.12)

Theorem 6: If a wave function is a superposition of a finite number

of energy eigenstates, namely na,nb,nc,nd,...,nz, then its first revival

comes at time,

τ =
Trev

GCD [n2
b − n2

a, n
2
c − n2

a, n
2
d − n2

a, ..., n
2
z − n2

a]
(4.13)

where “GCD” signifies the greatest common divisor.
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Theorem 7: The wave function is a superposition of energy eigen-

states with energies (listed from smallest to largest)

Ea, Eb, Ec,Ed,...,Ez. Then the quantum state will recur exactly at a time

τ when the phase factors e−iEaτ/ℏ,e−iEbτ/ℏ,e−iEcτ/ℏ, e−iEdτ/ℏ,...,e−iEzτ/ℏ are all

equal.

4.3 Autocorrelation Functions(ACF)

The autocorrelation function is a mathematical tool used to describe the

temporal behavior of a quantum system. It is a measure of the similarity

between a quantum state at two different times and is defined as the inner

product of the state at the initial time with the state at a later time. The

autocorrelation function can be used to study the dynamics of a quantum

system and to determine if it is in a stable or unstable state. It can also

be used to detect quantum interference effects and to analyze the coherence

properties of a quantum system.

4.3.1 Mathematical Interpretation

The autocorrelation function in quantum mechanics is mathematically

represented as the inner product of the wave function of a quantum system

at time t1 with the complex conjugate of the wave function at a later time

t2. The wave function, denoted as w(t1) and w(t2) , describe the state of a

quantum system and contains information about the position and momentum

of the particles in the system. The autocorrelation function is given by,

C(t1, t2) = ⟨w(t1)|w(t2)⟩ (4.14)

where ⟨w(t1)| is the bra vector of the wave function at time t1 and |w(t2)⟩ is
the ket vector of the wave function at time t2. The inner product ⟨w(t1)|w(t2)⟩
gives the probability amplitude for the system to be in the state w(t1) at time

t1 and in the state w(t2) at time t2.

The autocorrelation function can be used to study the temporal behavior

of a quantum system, the dynamics of the system and detect the coherence
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property of the system. Also, it can be used to study the interference effects

on the system.

4.3.2 Density matrix Formulasim

The density matrix formulation of the autocorrelation function is given

by the expectation value of the product of the initial density matrix, ρ(0),

and the density matrix at a later time, ρ(t), in the following,

C(t) = Tr[ρ(0)ρ(t)] (4.15)

Where Tr denotes the trace operation and C(t) is the autocorrelation func-

tion at time t. This formulation allows one to calculate the autocorrelation

function for a mixed state, which is a statistical ensemble of pure states. The

density matrix formulation is also useful for studying systems with a large

number of degrees of freedom and for understanding the decoherence and

relaxation processes in quantum systems.

4.3.3 Autocorrelation Function and Quantum Revivals

Autocorrelation functions and quantum revivals are related in the sense

that both deal with the time evolution of quantum systems. Quantum re-

vivals refer to the phenomenon where a quantum system returns to its initial

state after a certain period of time. This can occur when the system is de-

scribed by a wave function that is periodic in time, such as a wave function

that is a superposition of a discrete set of energy eigenstates. In the case

of a system experiencing quantum revivals, the autocorrelation function will

show maxima at the times when the system is returning to its initial state.

The maxima of the autocorrelation function correspond to the times when

the system is most similar to its initial state. In other words, the auto-

correlation function can be used to detect and quantify the phenomenon of

quantum revivals by measuring how similar the system is to its initial state

at different times. It’s worth mentioning that, for a system that does not

show revivals, the autocorrelation function will generally decay exponentially

over time, indicating that the system becomes increasingly dissimilar from its
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initial state. The autocorrelation function, on the other hand, is a measure

of the similarity between the initial state of a system and its state at a later

time. The mathematical relation between the autocorrelation function and

quantum revivals can be described as follows: The autocorrelation function

is defined as,

C(t) = ⟨w(0)|w(t)⟩ (4.16)

Where w(0) is the initial state of the system and w(t) is the state of the

system at time t. For a system experiencing quantum revivals, the wave

function w(t) can be written as a superposition of energy eigenstates,

w(x, t) =
∑
n

µn(x)cne
−iEnt/ℏ (4.17)

Where cn are the coefficients of the wave function and En are the energy

eigenvalues. Substituting this into the autocorrelation function, we get,

C(t) =
∑
n

|cn|2e−iEnt/ℏ (4.18)

This shows that the autocorrelation function will have maxima at times when

the system is returning to its initial state. In other words, when the system is

in its initial state, the autocorrelation function is 1. When the system is not

in the initial state, the autocorrelation function will be less than 1 and will

show maxima when the system is returning to the initial state, this maxima

is known as quantum revivals. It’s worth mentioning that this is an idealized

case and in practice, the system may not show perfect revivals due to various

reasons such as decoherence, noise, etc. The auto correlation function can be

written by using Taylor’s expansion of energy En around n0. This leads us

to calculate the times T j
0 , at which the system exhibits recurrences. Times

can be written as,

T
(j)
0 =

2πℏ
1
j!
|E(j)

n |

Where,

E(j)
n ≡ ∂jEn

∂nj
|n=n0
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It describes the jth derivative of the energy with respect to the principal

quantum number n.

For j = 1;

T
(1)
0 = 2πℏ

(
∂En

∂n

)−1

This corresponds to the classical period of the wave packet.

In terms of classical action I = nℏ

T
(1)
0 = 2π

(
∂EI

∂I

)−1

For j = 2;

T
(1)
0 = 2πℏ

(
1

2

∂2En

∂n2

)−1

This yields the quantum mechanical revival time of the wave packet in po-

tential. In terms of classical action I = nℏ

T
(1)
0 = 2π

(
ℏ
2!

∂2EI

∂I2

)−1

.

The plot shown in Figure 4.1 will start at 1 when t = 0, as the autocorrela-

tion function measures the similarity between the initial state and the state

at time t, and when t = 0, the system is in its initial state. As the time in-

creases, the autocorrelation function will decrease, indicating that the system

is becoming less similar to its initial state. At certain specific times, known as

the revival times, the autocorrelation function will show maxima, indicating

that the system is returning to its initial state. Between the revival times,

the autocorrelation function will decrease exponentially, indicating that the

system is becoming increasingly dissimilar from its initial state. The ampli-

tude of the maxima will be less than 1, indicating that the system is not

returning to its initial state perfectly. As time increases, the frequency of

the maxima will decrease, indicating that the system is not returning to its

initial state as frequently.
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Figure 4.1: Plot of the autocorrelation function, |C|2.

4.3.4 ACF for Gaussian Distribution

If the coefficients cn of the wave function are described by a Gaussian

distribution in terms of the quantum number n, the autocorrelation function

can be written as:

C(t) =
∑
n

1√
2π△n

e
− (n−n0)

2

2△n2 e−iEnt/ℏ (4.19)

where, we have introduced cn as a Gaussian distribution in n as

cn =
1√

△n
√
2π
e
− (n−n0)

2

4△n2

Which gives the required normalization,

∞∑
0

|cn|2 ≈ 1.
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If the coefficients cn of the wave function are described by a Gaussian dis-

tribution in terms of the quantum number n, the plot shown in Figures 4.2

and 4.3 of the autocorrelation function will have similar characteristics to

the idealized case.

Figure 4.2: Characteristic time dependences of the auto-correlation function
of the wave packet for quantum number 1 to 15. Here we have used cn as
Gaussian distribution in n.

4.4 Quantum Dynamics in Open and Closed

Quantum Systems

In this section I will discuss the space-time dynamics(STD) in open

and closed quantum systems. We will investigate the spacatio-temporal be-

haviour of quantum mechanical probability density.
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4.4.1 Space-Time Dynamics in Closed Quantum Sys-

tems

Here I will track down the formation of Quantum interference patterns,

that can be seen as the regular patterns due to the evolution of quantum

mechanical probability in space and time. Eqn.(3.28) gives the normalized

energy eigen states as,

µn(x) = k0

[
eiknx − e−iknx

2i

]
(4.20)

We introduced,

kn ≡ nπ

L
(4.21)

kn represents the wave number. And

k0 ≡
√

2

L
. (4.22)

In wave function language from eqn.(3.23C) we get,

cn =

∫ L

0

µn(x)g(x)dx. (4.23)

The initial wave packet vanishes at the walls at x = 0 and x = L. Moreover, it

vanishes outside of the box. We can therefore extend the integral in definition

of the expansion co-efficients to −∞ and +∞, that is

cn =

∫ +∞

−∞
µn(x)g(x)dx. (4.24)

By inserting the values and solving the integral we get,

cn = c0e
−k2n
4a0 ×

∑
j

sin (knxj) (4.25)

I’ve defined,

c0 ≡ x0k0 ×
√
π

a0
. (4.26)
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Quantum mechanical probability density after simplification can be written

as,

P ≡ |w(x, t)|2 = Ω2
0 ×

∑
n

∑
m

∑
j

∑
k

×e−
kn
4a0 × e

−km
4a0

sin (kmxk)× sin (knxj)× sin (kmx)× sin (knx)

e−iEntℏ × e+iEmtℏ

where,

Ω2
0 ≡ 4π

√
2

aL2
. (4.27)

Energy In Terms of Quantum Revival

En =
(ℏkn)2

2M
= n2E1 = n2ℏω1

En = n2ℏ
2π

T

from Theorem-1 eqn.(4.6) we have

T ≡ 4ML2

πℏ

which represents the revival time, in which the wave function is identical to

its initial form at t = 0 so that,

w(x, t = T ) = w(x, t = 0).

Simplifying

e−
it
ℏ (En−Em) = e−

it
ℏ (n2ℏ 2π

T
−m2ℏ 2π

T
)

e−
it
ℏ (En−Em) = e−i2π(n2−m2) t

T .

Also,

e
− 1

4a0
(k2n+k2m)

= e−(aπ
L

)2[n2+m2].

Interestingly, it can de distinctly seen that the given equation of quantum me-

chanical probability involves the addition and subtraction of different powers
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of quantum numbers as the argument of exponential functions. The sum-

mation over many quantum numbers, many of these arguments provide the

identical constant, which results inQuantum interference patterns which

can also be called Quantum Carpets. Which means larger the degeneracy

is, richer the interference patterns are i-e., more arguments of exponential

functions giving the same results.

To understand the quantum mechanical probability density we use density

plot. Through out, the results are generated by introducing scaled coordi-

nates for density plots as continuous function of space and time shown in

Figure 4.4. For this purpose along x-axis we choose τ , defined as,

τ ≡ t

T
,

while along y-axis we select ξ equivalent as,

ξ ≡ x

L
.

We get the space time patterns, may also be called quantum carpets. Where,

the diagonal lines are due to the interference between the terms in summa-

tions of final equation.

Figure 4.3: Density plot with initial width of Gaussian wave packet(a =
0.01L) placed at L

2
[Left] and 3

4
L [Right].
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Figure 4.4: Density plot with initial width of Gaussian wave packet(a =
0.01L) placed at L/2.

4.4.2 Space-Time Dynamics in Open Quantum System

Here, I will discuss the quantum mechanical probability for open quantum

system in space and time. We will see the space time structures which appear

due to the summation over number of Gaussians follolwed by the arguments

of exponential i-e., xj and xk. For open quantum system I have considered

many Gaussian wave packets. Here I will evolve these many Gaussian wave

packets in time and will see the space-time behavior which weaves quantum

structures. I have used xj and xk as the arguments of exponential functions

for the case of many Gaussians wave function. For this purpose I will expand

many Gaussians wave function in terms of energy eigen functions and then

will reconstruct the wave function at a later time t by superposing the parts

with appropriate phase factors.

w(x, t) =

∫ +∞

∞

dk√
2π

[
µ(k)eikxe−iEkt/ℏ

]
. (4.28)
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After calculations we get the result,

w(x, t) = cj ×
∑
j

e
−

(x−xj)
2

4△x2(1+η2t2) × eiΩ(x,j)t (4.29)

here I have introduced,

Ω(x, j) ≡ (x− xj)η

4△x2(1 + η2t2)
(4.30)

Ω has the dimensions of frequency and is a function of x and t. I call this

”The Space-Time parameter”. And

cj ≡
(
2a

π

)1/4

× 1√
1 + iηt

. (4.31)

Also,

η ≡ 2ℏa
M

, (4.32)

η has dimensions of T−1, inverse of time. In density plots this parameter

may be linked to Talbot distance where, ZT ≡ 2△x2

λdB
, as distance at which the

space-time images will be regularly repeated.

Finally the quantum mechanical probability density results,

P ≡ |w(x, t)|2 = |cj|2 ×
∑
j

×
∑
k

e
−

(x−xj)
2

4△x2(1+η2t2)
×
e
− (x−xk)2

4△x2(1+η2t2)

eiΩ(x,j)t × e−iΩ(x,k)t.

(4.33)

Which explains the space-time dynamics in open quantum system. We can

see that the space-time parameter plays a vital role in the formation of space-

time images depicted in Figure 4.5. We examine the behavior of quantum

mechanical probability density as given in eqn.(4.33), representing the dy-

namics of open quantum system in space and time. For this purpose we use

density plots and introduce the scaled parameters as follows,

ξ ≡ x

L

52



DRSML Q
AU

along x-axis. While,

τ ≡ t

T

along y-axis. Where, T is related to η, as introduced in eqn.(4.19), which

may be linked to Talbot distance where, ZT ≡ 2△x2

λdB
, is distance at which the

space-time images will be regularly repeated.

Figure 4.5: Density plot with initial width of Gaussian wave packet(a =
0.04L) placed at L/2.
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Chapter 5

Conclusion

In this thesis we have thoroughly explored the concept of quantum re-

vivals in a one-dimensional box using the autocorrelation function. Our study

has provided a detailed analysis of the temporal evolution of wave packets

in a one-dimensional box and the occurrence of quantum revivals. The re-

sults of this research have expanded our understanding of the behavior of

quantum systems and have important implications for a variety of fields, in-

cluding quantum computing and quantum communication. The use of the

autocorrelation function as a tool to study quantum revivals has proven to be

highly effective, providing valuable insight into the fundamental principles of

quantum mechanics. Our findings have demonstrated that quantum revivals

are a robust and recurring phenomenon, and have provided a deeper under-

standing of the temporal behavior of wave packets in quantum systems.

Moreover, in this thesis we set up mathematical models for open and closed

quantum systems. We build a many Gaussians wave packet and observed

their space-time evolution in both quantum systems. In case of closed quan-

tum system, we observe the formation of highly regular spatio-temporal or

multidimensional patterns in the quantum mechanical probability |w|2. This
is due to pair interference between individual eigen-modes of the system

forming the so called intermode traces. Moreover, from the expression of

quantum mechanical probability, we can see that it involves the addition

and subtraction of different powers of quantum numbers as the argument of

exponential functions. The summation over many quantum numbers, many
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of these arguments provide the identical constant, which result in quantum

interference patterns. Which means larger the degeneracy is, richer the in-

terference patterns are i-e., more arguments giving the same results.

In case of open quantum system, we observe space-time images. These are

due to a key parameter to what I named space-time parameter Ω(x, j). If we

throw a gleam of light on the expression of quantum mechanical probability,

we see that different values of j and k contribute to interference patterns. In

this case we relate the periodic distance with Talbot length.

Conclusively, we see that the formation of quantum interference patterns

in closed quantum system is contributed due to summation over quantum

numbers n, m and number of slits. But in comparison with open quantum

system we distinctly marked that here the interference patterns are due to

summation over many Gaussian wave functions each coming from different

slits, acting like n, m. This is how an open quantum system differs from a

closed quantum system.

On the basis of this we propose a model that may be helpful in experimen-

tal high energy physics for various experiments like a diffraction experiment

in such a way that a grating can be built whose slits width would be con-

trollable from our proposed model. In addition we may use any of particles

whose interference patterns would lead us to the detailed information about

a grating through which it has passed along.
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