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Preface

Several types of research on the qualitative study of nonlinear models have appeared
in applied mathematics in past few decades. Moreover, these investigations are mainly
focused on theoretical results instead of applications. In this thesis, we are aimed to
contribute some research in the qualitative study of nonlinear mathematical models in
applied mathematics. In our work, the adopted approach for the qualitative study is
simple and easy to understand for readers interested in the qualitative study of nonlinear
models, which we encounter in mathematical biology, mathematical ecology, mathemat-
ical chemistry and engineering. We have also provided some new theoretical results on
the boundedness of solutions, existence of fixed points, stability analysis, bifurcation and
chaos control. These significant results were not available in the literature before. It is
necessary to analyze the qualitative behaviour of various mathematical models to under-
stand complexities aligned with the qualitative study of dynamical systems. These models
may be discrete-time or continuous-time models, depending upon the situation. Many
biological and chemical interactions such as prey-predator interactions, plant-herbivore
interactions, host-parasite interactions and several interactions are described using dis-
crete and continuous-time models. For example, these models are often used to describe
the properties of an epidemic when it arrives in a community and to forecast under
which circumstances it will be continued or wiped out from that community. Discrete-
time mathematical models are easy to analyze and have rich dynamics compared to their
continuous-time counterparts. Hence, it is interesting to analyze the dynamics of such
discrete-time mathematical models. In this work, we consider some nonlinear mathe-
matical models in continuous form and then discuss the qualitative behaviour of their
discrete-time counterparts.

Furthermore, we have used four different discretization techniques: piecewise argu-
ments, Euler’s forward method, nonstandard finite difference scheme, and fractional order
discretization. The boundedness character of every positive solution of obtained systems
is discussed, and the existence of a positive fixed point is discussed for every system. It is
shown that each system undergoes the Neimark-Sacker bifurcation about its positive fixed
point. Moreover, some mathematical models also show the existence of period-doubling
bifurcation and chaos. It is shown that whenever a discrete-time mathematical model is
obtained using a nonstandard finite difference scheme, it is dynamically consistent and
exhibits similar dynamics as its continuous-time counterpart. In addition, two gener-
alized hybrid control techniques are presented to overcome the chaos and inconsistent
behaviour of mathematical systems. A comparison of generalized hybrid techniques with
the old hybrid method shows the effectiveness and wide range of generalized hybrid con-
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trol techniques. Finally, some surprising numerical examples are provided to show some
exceptional dynamics of discrete-time mathematical models and to justify our theoretical
discussion. Let us briefly describe the content of every chapter.

Chapter 1. Introduction and Preliminaries. In this chapter, we focus on the
basic theory of the dynamical system. Moreover, some beneficial results for the qualitative
study of dynamical systems are provided in this chapter.

Chapter 2. Bifurcation analysis of a discrete-time four-dimensional cubic
autocatalator chemical reaction model with coupling through uncatalyzed re-
actant. The continuous four-dimensional cubic autocatalator chemical reaction model
is examined in this chapter. Using Routh-Hurwitz stability criteria, our major goals are
to develop parametric requirements for the local stability of the continuous system and
assess if a positive fixed point exists. Using Euler’s forward approach and a nonstandard
difference scheme, we discretize the continuous model to provide a discrete-time equiva-
lent of the four-dimensional model. We also look at the prerequisites for the positive fixed
point’s local asymptotic stability in the discrete-time system. Using a generic method
for Neimark-Sacker bifurcation analysis, our research shows that the system exhibits a
Neimark-Sacker bifurcation at the positive fixed point. In addition, depending on the
bifurcation parameter values, we find chaotic dynamics in the discrete-time version of a
simplified four-dimensional system. We provide a generalized hybrid control technique
that combines parameter perturbation and feedback control to address the Neimark-
Sacker bifurcation and chaos. Finally, we offer a number of numerical illustrations to
support the conclusions drawn from theory in this chapter. The findings of this chapter
have recently been published in an extreme international journal.

Chapter 3. Bifurcation analysis of a discrete-time
phytoplankton-zooplankton model with Holling type-II response and toxicity.
The interaction between phytoplankton and zooplankton plays a vital role in ecology.
In this field, discrete-time mathematical models are commonly employed to understand
the dynamics of phytoplankton-zooplankton interactions, where generations do not over-
lap, and new age groups replace older ones at regular intervals. This chapter focuses
on converting a continuous-time phytoplankton-zooplankton model into a discrete-time
counterpart using a dynamically consistent nonstandard difference scheme to ensure the
models’ dynamical consistency. Additionally, the chapter explores boundedness condi-
tions for all solutions and establishes the existence of a exceptional positive fixed point.
The linearized stability of the obtained system is analyzed with respect to all of its fixed
points, and the presence of a Neimark-Sacker bifurcation around the one and only positive
equilibrium is demonstrated under specific mathematical circumstances. To control the
Neimark-Sacker bifurcation, a comprehensive hybrid control method is applied. Several
numerical examples are provided to illustrate the abstract outcomes and match up to the
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dynamics of the discrete-time model with its continuous counterpart.
Moreover, the numerical study shows that both the obtained system and its continuous-

time counterpart exhibit stability for the same parameter values and instability for the
identical parametric values. This consistency in dynamical behavior is evident from the
numerical study. Finally, the chapter concludes with a comparison between the modified
hybrid method and the previous method. We have published this chapter in a high-quality
international journal.

Chapter 4. Bifurcation analysis of a discrete-time compartmental model
for hypertensive or diabetic patients exposed to COVID-19. In this chapter,
we investigate a mathematical model concerning hypertensive or diabetic patients who
are exposed to COVID-19. The model is constructed using a set of first-order nonlinear
differential equations. To discretize the continuous system, we utilize piecewise constant
arguments. We derive local stability conditions for the equilibrium points of the resulting
discrete-time mathematical system. Furthermore, we explore the occurrence of period-
doubling bifurcation and chaos in the absence of an isolated population. Notably, our
system exhibits instability and chaos when the quarantined compartment is empty, which
holds biological significance. Additionally, we study the existence of Neimark-Sacker
bifurcation at the endemic equilibrium point.

Moreover, through numerical simulations, we observe that the discrete-time mathe-
matical system undergoes period-doubling bifurcation around the endemic equilibrium.
To control both the period-doubling bifurcation and Neimark-Sacker bifurcation, we em-
ploy a generalized hybrid control methodology. The model serves to emphasize the epi-
demiological importance of quarantine by illustrating chaos and oscillation within the
context of the COVID-19 environment. The results of this chapter are published in an
international journal of high quality.

Chapter 5. Dynamics of a discrete-time fractional-order phytoplankton-
zooplankton model with Holling type-II response. This chapter is devoted to the
qualitative study of a continuous-time phytoplankton-zooplankton model with Holling
type-II response. Furthermore, we obtained its discrete-time counterpart by using a
fractional-order discretization method. The local stability of the obtained system about
all of its equilibrium points is discussed. It is proved that the system experience Neimark-
Sacker bifurcation about positive equilibrium point under some mathematical conditions.
The Neimark-Sacker bifurcation is controlled using two modified hybrid control tech-
niques. Finally, at the end of this chapter, some interesting numerical examples are
provided to support our theoretical discussion and explore the effectiveness and feasibil-
ity of newly designed control strategies. In addition, a comparison of modified hybrid
techniques with the existing hybrid approach is given. This chapter is submitted in an
international peer-review journal.
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Chapter 6. Bifurcation analysis and control of chaos in a discrete-time two-
trophic plant-herbivore model and dynamical consistency of a nonstandard
difference scheme.In this final chapter, we explore the dynamics of two discrete-time
plant-herbivore models. The discrete-time model is obtained by applying Euler’s forward
method to convert a continuous-time plant-herbivore model. To ensure the dynamic
consistency of the discrete-time model, we employ a nonstandard difference scheme.

Furthermore, we discuss the local stability of the system and establish the existence
of bifurcation around the positive equilibrium under specific mathematical conditions. In
order to effectively manage the occurrence of bifurcation and chaos, we develop a mod-
ified hybrid technique. To validate our findings and demonstrate the reliability of the
nonstandard difference scheme, we provide several numerical examples at the conclusion
of the chapter. The results of this chapter are published in an international journal of
high quality.

Every chapter encloses some theorems on a qualitative study of different models, and
we have delivered proofs for most of them. The explanations of the literature of each
chapter are summarized at the end of each chapter. Moreover, all references for our
study are provided in the bibliography section. This bibliography aims mainly to provide
a reader with information on further reading. The symbol 2 marks the conclusion of a
theorem’s proof.
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Chapter 1

Introduction and Preliminaries

The concept of a dynamical system is the precise formalization of the common logical
theory of a deterministic method. The upcoming and past states of several physical,
chemical, ecological, biological, economic, and yet societal systems can be predicted to a
definite degree by knowing their existing situation and the laws leading their development,
followed by the condition that these laws do not transform with the passage of time.
Moreover, for solving a dynamical system, an initial point must be given so that it is
probable to govern all of its upcoming points. A group of points is recognized as an orbit
or a trajectory. Before the arrival of computers, concluding about any trajectory or orbit,
it was required to calculate them through some standard methods. These methods were
straightforward to apply while solving a linear dynamical system. However, finding the
solution of nonlinear dynamical systems by applying these methods was not easy [1].

Mathematical approaches applied to electrical calculating machines have shortened
the job of defining the trajectories of a mathematical system. Moreover, it is easy to
know their solution trajectories when dealing with a simple dynamical system. However,
large numbers of these systems are too complex to understand entirely in terms of distinct
orbits. The complexity arises because the structures considered may only be acknowl-
edged roughly, the mathematical parameters of the structure might not be recognized
exactly, or expressions may perhaps be absent from the equations. The estimates are
used to question the rationality or significance of mathematical solutions [2]. These ques-
tions are answered by introducing various techniques in the stability theory of dynamical
systems, such as structural stability, Lyapunov stability, or some other techniques. By
stability of the dynamical system, we mean that there may be an initial point for which
the orbits or trajectories are comparable. In addition, the process for matching trajec-
tories to create the equivalence among them varies with the different ideas of stability
theory [3]. The nature of orbit or trajectory could be more important than any specific
trajectory. Several trajectories may cover up different solutions of a dynamical system,
and some of them may be periodic. In applications, it is frequently needed to count these
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types of trajectories or to preserve the whole structure inside a specific trajectory.
Categorizing entirely possible trajectories leads us to the qualitative analysis of a

dynamical system, to be precise, properties that remain unchanged by changing coordi-
nates. If we take the nature of orbits as a function of any parameter, it may fulfil an
application’s criteria. For example, when the value of a parameter is minutely changed
from the original value, the dynamical systems could experience the bifurcation, where
the dynamical system changes its qualitative behaviour. For instance, it may change its
periodic behaviour to irregular motion or see some random and irregular trajectories of
the system. In such situations, it could be required to calculate the average, utilizing
a lengthy trajectory or multiple dissimilar trajectories. These averages and means are
well-defined for ergodic dynamical systems, and a supplementary and comprehensive un-
derstanding has been necessary for hyperbolic dynamical systems [4]. Knowing about
the probabilistic features of dynamical systems leads us to establish the fundamentals of
chaos and statistical mechanics [4]. To study some attractive models in discrete-time and
continuous-time dynamical systems, we refer the readers to [5-8].

1.1 Some discretization techniques

It is appropriate to explore the dynamics of any biological model by difference equations
instead of differential equations when dealing with non-overlapping generations. Further-
more, there is better observation and analysis of chaos in any mathematical system by
using difference equations instead of differential equations [9]. Hence, it is interesting
to study some mathematical models in discrete form. Recently, Ghanbari and Gï£¡mez-
Aguilar [10] have discussed the dynamics of the nutrient-phytoplankton-zooplankton sys-
tem with variable-order fractional derivatives. Moreover, the authors in [11] have explored
the existence of chaos in a cancer model using fractional derivatives through exponential
decay and Mittag-Leffler law. Beigi et al. [12] have discussed the use of reinforcement
learning for effective vaccination strategies of coronavirus disease 2019 (COVID-19). The
authors in [13] have analyzed the role of zooplankton dynamics for Southern Ocean phy-
toplankton biomass and global biogeochemical cycles. We refer the interested reader to
[13-15] for further detail on the analysis of various dynamical systems. There are various
mathematical techniques for converting the systems of differential equations to their cor-
responding discrete counterparts. To achieve this goal the usual way is to apply standard
difference schemes such as:

• Euler method [16]

• Runge-Kutta method [17]

• Method of piecewise arguments [18]
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• Method of Fractional order derivatives [106]

• Nonstandard finite difference schemes [20].

However, numerical inconsistency is experienced with the application of usual finite dif-
ference methods. Hence, to avoid this numerical inconsistency, one can apply Micken’s
nonstandard finite difference method [20]. In general, whenever a discretization method is
used to convert any continuous-time mathematical system into its discrete counterpart,
it aims to preserve the following properties of the respective continuous-time system:
positivity of results, boundedness, stability of equilibrium points and bifurcations.

1.2 Existence of fixed points

In general, studying the dynamics of a nonlinear mathematical model by its exact solution
is almost impossible. However, their qualitative study gives us an additional way to study
their dynamics. For this type of study, the usual way is to find their fixed points and
then discuss the properties of their constant solutions [18]. A dynamical system may
have more than one fixed point: the trivial fixed point, boundary fixed points and the
unique positive fixed point. From the application point of view, the only one is of central
importance: the unique positive fixed point. To find the number of positive real roots of
any algebraic equation, we have the following lemma:

Lemma 1.2.1. [21] Assume that F1(X) = c0+c1X+.....+cm−2X
m−2+cm−1X

m−1+cmX
m

be a mapping with coefficients from real numbers. Formerly, the number of roots for F1

maybe same as the number of sign variations for F1(X) or not more than a positive
even integer. Additionally, if the F1(X) sign varies once, then F1 has a precisely unique
positive real solution.

Moreover, the unique positive fixed point may or may not be in closed form (see
[22-24]). To prove the existence of the unique positive fixed point of any particular two-
dimensional dynamical system and the boundedness of every positive solution, we have
the following lemma.

Lemma 1.2.2. [38] Let ζm fulfills ζm+1 ≤ ζmexp(A(1 − Bζm)) for each m ∈ [m1,∞)

where ζ0 > 0, with A,B > 0. Then,

lim
m−→∞

supζm ≤
1

AB
exp(B − 1).

Discrete-time dynamical systems are effortlessly implementable for stepwise computer
simulations, and they are repeatedly appropriate for modeling investigational statistics
that are approximately at all times or previously discrete. In addition, they can symbolize
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sudden change in the system’s states and probably disordered dynamics, by means of less
variables when compared to their continuous-time counterparts [39]. An orbit is the most
superficial kind of any fixed point. For the stability state of any mechanical system, a
small momentum given to that system results in a restricted motion, for instance, slight
swinging, as in the case of a plumb. Moreover, a steady equilibrium state is also stable
in an asymptotic manner in any damped system [25].

1.3 Local stability analysis

In the case of a linear system, there are many suitable checks for stability. However, in the
case of any nonlinear system, the stability can frequently be concluded from its linearized
stability [26-28]. The permanency of an orbit in any dynamical system characterize
whether neighbouring (i.e., perturbed) trajectories will stay in a locality of that orbit
or be resisted away from it. However, in the case of asymptotic stability, we are also
concerned with characterizing the pull of adjacent orbits to this trajectory in the major-
time limit [26]. Hence, we have the following lemma for the dynamical study of linearized
stability of any two-dimensional discrete-time mathematical system.

Lemma 1.3.1. [39] Let M(ξ) = ξ2 − Trξ +Dt, M(1) > 0 and (x, y) be any equilibrium
point of any 2-dimensional discrete-time system. In addition, if ξ1, ξ2 are root of M(ξ) =

0, then:
(a) |ξ1| < 1 and |ξ2| < 1 ⇔ M(−1) > 0 and Dt < 1;
(b) 1 < |ξ1| and 1 < |ξ2| ⇔ M(−1) > 0 and Dt > 1;
(c) |ξ1| < 1 and |ξ2| > 1 or (|ξ1| > 1 and |ξ2 < |1) ⇔ M(−1) < 0;
(d) ξ1 and ξ2 represent complex conjugates with |ξ1| = 1 = |ξ2| ⇔ Tr2 − 4Dt < 0

and Dt = 1.
(e) ξ1 = −1 and |ξ2| 6= 1 ⇔ M(−1) = 0 and Dt 6= 1,−1;
As ξ1 and ξ2 are characteristic values of M(ξ) = 0, then the point (x, y) is sink if

|ξ1| < 1 and |ξ2| < 1. Furthermore, it is stable locally asymptotically. The point (x, y) is
known as source (repeller) if |ξ1| > 1 and |ξ2| > 1, and it provides un-stability condition
for the given system. The point (x, y) is a saddle point if |ξ1| < 1 and |ξ2| > 1 or
(|ξ1| > 1 and |ξ2| < 1). Finally, (x, y) is pronounced as non-hyperbolic if condition (d) or
(e) is satisfied. Where Tr and Dt are respectively trace and determinants of any 2 × 2

jacobian matrix.

In addition, for the study of linearized stability in the dimension higher than two, we
have the following result from [40].

Lemma 1.3.2. [40] Assume the fourth degree characteristic equation

ρ4 + d1ρ
3 + d2ρ

2 + d3ρ+ d4 = 0, (1.3.1)

4



DRSML Q
AU

where d1, d2, d3, d4 ∈ <. Additionally, let ρ1, ρ2, ρ3, ρ4 are roots of (1.3.1) and D1 be any
open disk of radius one. Then, the necessary and sufficient conditions that ρ1, ρ2, ρ3, ρ4 ∈
D1 are given as:

|d3 + d1| < 1 + d4 + d2, |d3 − d1| < 2(1− d4), d2 − 3d4 < 3,

and
d4 + d2 + d2

4 + d2
3 + d2

4d2 + d4d
2
1 < 1 + 2d4d2 + d3d1 + d4d3d1 + d3

4.

The qualitative study of a dynamical system leads us to conclude whether it is stable
or unstable(experiences the bifurcation). Bifurcation is the mathematical phenomenon
produced in any system due to a minimal change in the system’s stability. Mathemati-
cally, bifurcation arises when parameters change in the fixed point’s small neighbourhood.
Moreover, for the additional study of the bifurcation concept and recognizing this fan-
tastic behaviour of a discrete-time mathematical system, one can see [27-31].

1.4 Bifurcation analysis

A discrete-time mathematical system may experience many types of bifurcations from
which the most common are period-doubling bifurcation and Neimark-Sacker bifurcation.
In any dynamical system, a period-doubling bifurcation arises as soon as a slight variation
in a system’s parameters sources a new broken trajectory from a present periodic trajec-
tory. The fresh one takes double the period of the original. Moreover, to study this type of
bifurcation concept, the centre manifold theorem is applied after applying standard forms
to display the presence and path of this type of bifurcation. Recently, period-doubling
bifurcation related to the discrete-time systems has been studied by many authors[32-
35]. In addition, closed invariant circles are formed due to Neimark-Sacker bifurcation.
Similarly, an individual can locate some isolated periodic orbits as well as tracks that
narrowly cover the invariant circle. A supercritical or subcritical bifurcation results in a
stable or unstable closed invariant curve. We have the following clear standard for Hopf
bifurcation to analyze the Neimark-Sacker bifurcation in any dynamical system of order
higher than two [35]. An individual can study Neimark-Sacker bifurcation through this
standard without finding the eigenvalues.

Lemma 1.4.1. (see [35]) Let SM+1 = fδ(SM), is any N-dimensional system and δ ∈ < is
a bifurcation parameter. Moreover, assume that S∗ is any fixed point of fδ. Let Gδ(λ) be
the characteristic equation of matrix J(S∗) = (Kij)N×N of N-dimensional map fδ. Then,
Gδ(λ) is given as

Gδ(λ) = λN + r1λ
N−1 + r2λ

N−2 + ........+ rN−1λ+ rN (1.4.1)
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with ri = ri(δ, S), for i ∈ I, where I = {1, 2, 3, ...., N} and S is control parameter, which
is to be determined. Let Ω±0 (δ, S) = 1,Ω±1 (δ, S),Ω±2 (δ, S), .....,Ω±N(δ, S). be the sequence
of determinants defined by Ω±i (δ, S) = det(R1 ±R2), for i ∈ I, where I = {1, 2, 3, ...., N}
with

R1 =


1 r1 r2 .... ri−1

0 1 r1 .... ri−2

0 0 1 .... ri−3

.... .... .... .... ....

0 0 0 .... 1

 (1.4.2)

R2 =


rN−i+1 rN−i+2 .... rN−1 rN

rN−i+2 rN−i+3 .... rN 0

rN−i+3 rN−i+4 .... 0 0

.... .... .... .... ....

rN 0 0 .... 0

 . (1.4.3)

In addition, we have:

C1 : Ω−N−1(δ0, S) = 0,Ω+
N−1(δ0, S) > 0,Gδ0(1) > 0, (−1)NGδ0(−1) > 0

, 0 < Ω±i (δ0, S), for i ∈ I1, where I1 = {N − 3, N − 5, N − 7, ...., 1} or i = N −
3, N − 5, N − 7, ...., 2 when N is even or odd respectively.

C2 : 0 6=
[
d
dδ

(Ω−N−1(δ, S))
]
δ=δ0

C3 : Resonance condition cos(2π
n

) = ψ, or ψ 6= cos(2π
n

), where n ∈ N with n ≥ 3 and

ψ =
−1+0.5Gδ0 (1)Ω−

N−3(δ0,S)

Ω+
N−2(δ0,S)

. Then, the Neimark-Sacker bifurcation exists at δ0.

Under the effects of any bifurcation, the dynamical system may have chaotic dynamics.
If the system is in the continuous form, then it must have a dimension greater than two,
but in the case of discrete-time systems, chaos can be experienced in the least dimension,
namely, one dimension [9].

1.5 Chaos control

Specifically in the case of population models, especially when these models are connected
to biological interactions and the breeding of various species, the control of bifurcation
and chaos in mathematical models is thought to be a crucial component for dynamical
systems. Since the population must not encounter any abnormal circumstances in order
to survive, discrete-time mathematical systems are more difficult to study in the context
of population models than continuous ones. Therefore, it is necessary to employ a chaos-
controlling strategy to prevent these abnormalities. There are numerous well-known
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methods that have been developed throughout the years to manage chaos in any discrete
dynamical system. These techniques use feedback control and parameter perturbation to
steer erratic and unstable trajectories in the direction of stable trajectories. Ott et al.
[36] provided the OGY approach, which is the most effective and well-known method in
the realm of chaos, to regulate period-doubling bifurcation. Later, a number of control
techniques were created, [22]. As a result, we talk about the qualitative analysis of sev-
eral mathematical models in our work. The main topics we covered were boundedness,
fixed points, linearized stability, period doubling-bifurcation, Neimark-Sacker bifurca-
tion, and chaos control. Furthermore, the Jury condition is applied to talk about the
linearized stability. Standard bifurcation theory is applied to the investigation of period
doubling-bifurcation and Neimark-Sacker bifurcation. Additionally, several currently uti-
lized techniques as well as some newly created techniques are used to control bifurcations
and chaos.
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Chapter 2

Bifurcation Analysis of a Discrete-Time
Four-Dimensional Cubic Autocatalator
Chemical Reaction Model with
Coupling Through Uncatalysed
Reactant

In this chapter, we consider a continuous-time four-dimensional cubic autocatalator chem-
ical reaction model. We obtained a consistent discrete-time counterpart of the four-
dimensional cubic autocatalator chemical reaction model by using a nonstandard differ-
ence scheme. Mainly, we investigate the existence of fixed points, local stability of fixed
points, the existence of Neimark-Sacker bifurcation and chaos control. The results of this
chapter are published in an extreme international journal (see [41]). Leach et al. [42]
have considered a prototype two-cell model using the feedback scheme in every cell being
centered on the cubic autocatalator reaction, which is given as

A+ 2B → 3B rate k0p,

P → A rate k1ab
2,

B → C rate k2b.

(2.0.1)

One may obtain a modified version of (2.0.1) by addition of the uncatalysed phase, which
is defined as follows: {

A→ B rate k3a, (2.0.2)

where the concentrations of the reactants A,B and P are respectively represented by
a, b and p. In addition, ki(i = 0, 1, 2, 3) are rate constants [42]. Here, we consider the
condition that there is a semi-permeable coating between the cells which permits diffusion
of only one from the reactant classes B or A at any instant. Moreover, the overall
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reaction is catalyzed by using the condition that reactant A is produced by an only
first-order decline from its originator P . It is assumed that the production of A from its
originator P at the rate k1ab

2 is comparatively a slow process. Due to the supposition that
the primary concentration of P, explicitly p0, is more significant than the intermediates
B and A [46]. In these situations, it is standard to consider the "pooled-chemical"
estimations and make the additional supposition that the concentration of P remains the
same through its primary value p0. Additionally, it is considered that the rate-defining
stage, namely, the primary autocatalytic step (A+2B → 3B), is faster as compared to the
uncatalyzed reaction step. However, this additional reaction can significantly influence
the total behaviour of the system. A few decades earlier, the authors in [45-50] have
widely studied the separated reaction model (2.0.1) in a well-stirred scheme under the
effects of pooled-chemical estimation. The authors in [48] and [43] have revealed that
this reaction system can show complex behaviour designs.

The authors in [51] have discussed the consequences of the slow decline of the an-
tecedent P on the overall solution. The authors in [42] have extended the work of [52]
on this dual-cell problem centred on the cubic-autocatalator response system (2.0.1).
Moreover, in their extended work, they have discussed some consequences that the addi-
tional uncatalyzed response stage (2.0.2) had on the inclusive behaviour of the reaction.
Merkin et al. [47] have shown that with a comparatively small influence, this additional
step can ensure a crucial effect on the result of the uncoupled system by keeping the result
restricted, by not letting the concentration of B → 0 (although it can turn out to be neg-
ligible). Adding this additional stage to the uncoupled system has an extreme impact on
the oscillatory behaviour, keeping the oscillatory response restricted all over and giving
rise to an extra point of Hopf bifurcation. The authors in [52] have presented a complete
study of complexity in the dynamical behavior wherever the non catalyzed stage was not
involved. Moreover, the authors in [42] have not presented the complete study of com-
plexity in the dynamical behaviour that can ascend due to secondary bifurcations. The
equations leading this dual-cell combined system are under the pooled-chemical estimate
for the reactant P (see [42]).

da1

dt1
=k0p0 − k1b

2
1a1 − k3a1 +Da(a2 − a1),

db1

dt1
=k1b

2
1a1 + k3a1 − k2b1 +Db(b2 − b1),

da2

dt1
=k0p0 − k1b

2
2a2 − k3a2 +Da(a1 − a2),

db2

dt1
=k1b

2
2a2 + k3a2 − k2b2 +Db(b1 − b2),

(2.0.3)

where the diffusion coefficients for autocatalyst B and reactant A are Db and Da re-
spectively through the membrane separating the two cells. Furthermore, to made the
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non-dimensional system of equations from (6.0.1), we consider the following transforma-
tions [52]: 

xi = ai

√
k1

k2
,

yi = bi

√
k1

k2
,

(i = 1, 2), t = k2t1.

(2.0.4)

The terms arising from the decline of the antecedent P give growth to a positive dimen-
sionless parameter

µ =
k0p0

k2

√
k1

k2

.

The addition of the uncatalysed stage gives rise to a dimensionless parameter r = k3

k2
,

which will, in common, take comparatively lesser values. The combination through B

and A give rise to the real numbers β = Db
k2

and α = Da
k2
, respectively. Moreover, under

these assumptions, the system (6.0.1) takes the following form:

dx1

dt
=µ− x1y

2
1 − rx1 + α(x2 − x1),

dy1

dt
=x1y

2
1 − y1 + rx1 + β(y2 − y1),

dx2

dt
=µ− x2y

2
2 − rx2 + α(x1 − x2),

dy2

dt
=x2y

2
2 − y2 + rx2 + β(y1 − y2),

(2.0.5)

with xi, yi ≥ 0 for every value of i = 1, 2 (see [52]). Some characteristics of the most
common case α 6= β 6= 0 for system (2.0.5) are considered by Ashkenaz et al. [53].
Moreover, the authors in [42] have discussed some qualitative results of the system (2.0.5)
by letting pairing either through B or A only. Formerly, it was explained by Lech et al.
[42] that, when pairing is considered by using reactant A only, we must have to take
β = 0, similarly for pairing through autocatalyst B, we have to take α = 0 in the system
(2.0.5). Here, we consider the coupling in the system (2.0.5) through autocatalyst B by
taking α = 0. In this case the system (2.0.5) takes the following form:

du

dt
=µ− uv2 − ru,

dv

dt
=uv2 + ru− v + β(z − v),

dw

dt
=µ− wz2 − rw,

dz

dt
=wz2 + rw − z + β(v − z),

(2.0.6)

where x1 = u, x2 = w, y1 = v and y2 = z. Din [6] have discussed the rich dynamics of
a discrete-time version of a glycolysis model. Din et al. [7] have considered a discrete-
time chlorine dioxide-iodine-malonic acid model for study and discussed the complexity
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in that mathematical system. In the case of non-overlapping generations, discrete-time
mathematical systems give more efficient computational results than their counterparts
in the continuous form [54]. Mainly, global stability of system, boundedness of solutions,
local asymptotic stability, persistence of solutions and the existence of periodic positive
results can be discussed more effortlessly in the case of discrete-time models [56].

2.1 Discretization of model

The main benefit of the nonstandard finite difference schemes is to maintain the signifi-
cant characters of their respective continuous systems. Moreover, the formation of these
types of difference schemes is not straightforward, and there is no usual way for their
construction, which is probably considered a significant drawback of nonstandard differ-
ence schemes [30]. Hence, studying the dynamics of a discrete-time version of (2.0.6) is
interesting. By using Euler’s forward method, we get the following discrete-time version
of the system (2.0.6)

un+1 =un + η
(
a− unv2

n − bun
)
,

vn+1 =vn + η
(
unv

2
n + bun − vn + c(zn − vn)

)
,

wn+1 =wn + η
(
a− wnz2

n − bwn
)
,

zn+1 =zn + η
(
wnz

2
n + bwn − zn + c(vn − zn)

)
,

(2.1.1)

where 0 < η < 1. To understand a similar type of discretization, one can study [37-41].
Moreover, by applying a nonstandard finite difference scheme (see Mickens [20]), we get
the following form of system (6.1.2).

un+1 =
(un + ηµ)

(1 + η (v2
n + r))

,

vn+1 =
vn + η (unv

2
n + run + βzn)

(1 + η(1 + β))
,

wn+1 =
(wn + ηµ)

(1 + η (z2
n + r))

,

zn+1 =
(zn + η (wnz

2
n + rwn + βvn))

(1 + η(1 + β))
.

(2.1.2)

2.2 Existence of fixed points

From system (2.1.2) one can get the positive fixed point (u∗, v∗, w∗, z∗). Additionally,
(u∗, v∗, w∗, z∗) represents the unique positive fixed point of system (2.1.2). Furthermore,
this fixed point is given as:

(u∗, v∗, w∗, z∗) =

(
µ

r + µ2
, µ,

µ

r + µ2
, µ

)
.

11



DRSML Q
AU

In order to study the stability analysis of system (2.1.2) about the positive fixed point
(u∗, v∗, w∗, z∗), we have the next theorem. This theorem provides us with a necessary and
sufficient condition for all the roots of a real fourth-order polynomial to have a magnitude
less than one (see Theorem 1.5 of [40]).

Theorem 2.2.1. Consider the following biquadratic equation with real coefficients

ρ4 + d1ρ
3 + d2ρ

2 + d3ρ+ d4 = 0. (2.2.1)

Then, by applying Lemma 1.3.2, the necessary and sufficient conditions that all the
roots of (2.2.1) lie inside the disk of unit radius are given as follows:

|d3 + d1| < 1 + d4 + d2,

|d3 − d1| < 2(1− d4),

d2 − 3d4 < 3,

d4 + d2 + d2
4 + d2

3 + d2
4d2 + d4d

2
1 < 1 + 2d4d2 + d3d1 + d4d3d1 + d3

4,

(2.2.2)

where 

d1 = −
(

2
1+Sη

+
2(S+2ηµ2)

ST

)
,

d2 =
(S+2ηµ2)

2

S2 +
ST (4+T+4Sη)+4Tη(1+Sη)(2+Sη)µ2

S(1+Sη)2
−β2η2

T 2 ,

d3 =
2S2((1+Sη)(1−β2η2)−T)−4Sη(1+Sη)(2+T+Sη)µ2−8η2(1+Sη)2µ4

S2T 2(1+Sη)2 ,

d4 =
S2(1−β2η2)+4Sη(1+Sη)µ2+4η2(1+Sη)2µ4

S2T 2(1+Sη)2 ,

S = r + µ2 and T = 1 + η + βη.

(2.2.3)

Proof. Let J(u∗,v∗,w∗,z∗) be the jacobian matrix of system (2.1.2) about
(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)
then J(u∗,v∗,w∗,z∗) has the following mathematical form

J(u∗,v∗,w∗,z∗) =


1

1+ηS
− 2ηµ2

S(1+ηS)
0 0

ηS
T

1+ 2ηµ2

S

T
0 βη

T

0 0 1
1+ηS

− 2ηµ2

S(1+ηS)

0 βη
T

ηS
T

1+ 2ηµ2

S

T

 . (2.2.4)

The characteristic equation of J(u∗,v∗,w∗,z∗) is given as

ρ4 + d1ρ
3 + d2ρ

2 + d3ρ+ d4 = 0,

where d1, d2, d3, d4 are given in (2.2.3). Finally, by applying Theorem 2.2.1, the pos-
itive fixed point

(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
remains stable locally asymptotically if the following
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conditions are fulfilled:
|d3 + d1| < 1 + d4 + d2,

|d3 − d1| < 2(1− d4),

d2 − 3d4 < 3,

d4 + d2 + d2
4 + d2

3 + d2
4d2 + d4d

2
1 < 1 + 2d4d2 + d3d1 + d4d3d1 + d3

4.

2.3 Local stability analysis

Assume that J∗(u∗, v∗, w∗, z∗) be jacobian matrix of system (2.0.6) about
(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)
then J∗(u∗, v∗, w∗, z∗) has the following mathematical form:

J∗(u∗, v∗, w∗, z∗) =


−r − µ2 − 2µ2

r+µ2 0 0

r + µ2 1− β − 2r
r+µ2 0 β

0 0 −r − µ2 − 2µ2

r+µ2

0 β r + µ2 1− β − 2r
r+µ2

 .

Additionally, let F (ξ) = 0 be characteristic equation obtained from J∗(u∗, v∗, w∗, z∗) then
it is given as follows:

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0, (2.3.1)

where

co = (r + µ2)
2

(1 + 2β),

c1 = 2 ((2r(1 + β)− 1)µ2 + r(1 + r + (2 + r)β) + (1 + β)µ4) ,

c2 = r(4 + r + 4β) + 2(r + 2β)µ2 + µ4 + 1− 2β + 4r2

(r+µ2)2 + 4r(−1+β)
r+µ2 ,

c3 = 2
(
µ2 + r + β − 1 + 2r

r+µ2

)
,

c4 = 1.

(2.3.2)

Now, by using Routh-Hurwitz stability criteria for four dimensional system we have the
following Routh array [55]:

Ra =


c4 c2 c0 0

c3 c1 0 0
c2c3−c1c4

c3
c0 0 0

−c0c23+c1(c2c3−c1c4)

c2c3−c1c4 0 0 0

c0 0 0 0

 ,

where ci for i = 0, 1, 2, 3, 4 are given in (2.3.2). For stability of system (2.0.6) about(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
, it is necessary that all the elements in the first column of Ra have

same sign [55]. Hence, we have the following result for the local stability of system
(2.0.6) about

(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
.
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Theorem 2.3.1. [55] Assume the fourth degree characteristic equation

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0, (2.3.3)

where c0, c1, c2, c3 and c4 are given in (2.3.2). Additionally, let ξ1, ξ2, ξ3, ξ4 are roots
of (2.3.6) and D2 be any open disk of radius one. Then, the necessary and sufficient
conditions that ξ1, ξ2, ξ3, ξ4 ∈ D2 are given as:

c0 > 0,

c3 > 0,

c1 (c2c3 − c1c4)− c0c
2
3 > 0,

c4 > 0.

(2.3.4)

Theorem 2.3.2. Assume the fourth degree characteristic equation

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0. (2.3.5)

Additionally, let ξ1, ξ2, ξ3, ξ4 are roots of (2.3.5) and D2 be any open disk of radius one.
Then, ξ1, ξ2, ξ3, ξ4 ∈ D2 if and only if β > 0, r > 0 and µ ≥ 1.

Proof. Assume that J∗(u∗, v∗, w∗, z∗) be the jacobian matrix of system (2.0.6) about
(u∗, v∗, w∗, z∗). In addition, suppose F (ξ) = 0 be the characteristic equation obtained
from J∗(u∗, v∗, w∗, z∗). Then, F (ξ) = 0 can be specified as follows

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0, (2.3.6)

where c0, c1, c2, c3 and c4 are given in (2.3.2). Moreover, from J∗(u∗, v∗, w∗, z∗) we have
co = (1 + 2β) (r + µ2)

2
,

c1 (c2c3 − c1c4)− c0c
2
3 = −4(1 + 2β) (r(1 + r + β) + (−1 + 2r + β)µ2 + µ4)

2
+ α1(α2 + c3α3),

c3 = 2
(
−1 + r + β + µ2 + 2r

r+µ2

)
,

c4 = 1,

(2.3.7)
with

α1 = 2 ((2r(1 + β)− 1)µ2 + r(1 + r + (2 + r)β) + (1 + β)µ4) ,

α2 = −2 ((2r(1 + β)− 1)µ2 + r(1 + r + (2 + r)β) + (1 + β)µ4) ,

α3 = 1− 2β + r(4 + r + 4β) + 2(r + 2β)µ2 + µ4 + 4r2

(r+µ2)2 + 4r(−1+β)
r+µ2 .

(2.3.8)

Finally, if we have β > 0, r > 0 and µ ≥ 1 then we have

c0, c1 (c2c3 − c1c4)− c0c
2
3, c3 > 0.

Consequently, all the conditions of array (2.3.4) are satisfied. Which completes the proof
of theorem.
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2.4 Bifurcation analysis

In this section, we examine the parametric situations for the existence of Neimark-Sacker
bifurcation about the positive fixed point (u∗, v∗, w∗, z∗) of system (2.1.2).

2.4.1 Neimark-Sacker bifurcation

By using Lemma 1.4.1 one has the following result for the existence of Neimark-Sacker
bifurcation for positive fixed point (u∗, v∗, w∗, z∗) of system (2.1.2).

Theorem 2.4.1. If the next conditions are satisfied, the positive fixed point (u∗, v∗, w∗, z∗)

of the system (2.1.2) experiences the Neimark-Sacker bifurcation

1± d4 > 0,

1 + d4
3 − d4

2 (1 + d2)− d1
2d4 + 2d2d4 +−d4 − d2 − d3

2 + d1d3 (1 + d4) = 0,

1− d4
3 − d4

2 − d1
2d4 + d4 + d2 − d3

2 − d2d
2
4 − d1d3 (1− d4) > 0,

1 + d1 + d2 + d3 + d4 > 0,

1− d1 + d2 − d3 + d4 > 0,

(2.4.1)

where d1, d2, d3 and d4 are provided in (2.2.3).

Proof. By using Lemma 1.4.1, for a discrete-time mathematical system of 4-dimension,
we have 

A1 =

 1 d1 d2

0 1 d1

0 0 1

 ,

A2 =

 d2 d3 d4

d3 d4 0

d4 0 0

 .

Moreover, we get the following inequalities and equations:

�±1 (η) = 1± d4 > 0,

�−3 (η) = 1 + d4
3 − d4

2 (1 + d2)− d1
2d4 + 2d2d4 +−d4 − d2 − d3

2 + d1d3 (1 + d4) = 0,

�+
3 (η) = 1− d4

3 − d4
2 − d1

2d4 + d4 + d2 − d3
2 − d2d

2
4 − d1d3 (1− d4) > 0,

Fη(1) = 1 + d4 + d3 + d2 + d1 > 0,

(−1)4Fη(−1) = 1− d4 + d2 − d3 + d1 > 0,

(2.4.2)
which confirms the existence of Neimark-Sacker bifurcation in system (2.1.2) about(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)
, whenever η is taken as bifurcation parameter.
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2.5 Chaos control

In this part of chapter, we apply a generalized hybrid control technique which is based
on state feedback along with parameter perturbation.

2.5.1 A modified technique for chaos control

We consider the following system

sn+k = θ3g(k)(sn, ω) + (1− θ3)sn (2.5.1)

where k ∈ N , sn ∈ Rn, n ∈ Z and 0 < θ < 1 is control parameter and g(k) is kth iteration
of g(.). Applying technique (2.5.1) on model (2.1.2) we get the following controlled model:

un+1 =θ3 (un + ηµ)

(1 + η (v2
n + r))

+ (1− θ3)un,

vn+1 =θ3vn + η (unv
2
n + run + βzn)

(1 + η(1 + β))
+ (1− θ3)vn,

wn+1 =θ3 (wn + ηµ)

(1 + η (z2
n + r))

+ (1− θ3)wn,

zn+1 =θ3 (zn + η (wnz
2
n + rwn + βvn))

(1 + η(1 + β))
+ (1− θ3)zn.

(2.5.2)

The variational matrix J∗ for (2.5.2) about (u∗, v∗, w∗, z∗) =
(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)
is given

as:

J∗ =



1 + θ3
(
−1 + 1

1+η(r+µ2)

)
− 2ηθ3µ2

(r+µ2)(1+η(r+µ2))
0 0

ηθ3(r+µ2)
1+η+βη

1− θ3 +
θ3

(
1+ 2ηµ2

r+µ2

)
1+η+βη

0 j11

0 0 j12 − 2ηθ3µ2

(r+µ2)(1+η(r+µ2))

0 βηθ3

1+η+βη

ηθ3(r+µ2)
1+η+βη

1− θ3 +
θ3

(
1+ 2ηµ2

r+µ2

)
1+η+βη


.

Where j11 = βηθ3

1+η+βη
and j12 = 1+θ3

(
1

1+η(r+µ2)
− 1
)
. Finally, we have the following result

related to the local stability analysis of controlled system (2.5.2) about (u∗, v∗, w∗, z∗) =(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
.

Theorem 2.5.1. Consider the following polynomial equation with real coefficients

ρ4
1 + d∗1ρ

3
1 + d∗2ρ

2
1 + d∗3ρ1 + d∗4 = 0, (2.5.3)

where (2.5.3) is obtained from J∗. Then, necessary and sufficient conditions that all the
roots of (2.5.3) lie inside the disk of unit radius are given as follows:

1 + d∗4 + d∗2 > |d∗3 + d∗1|, |d∗3 − d∗1| < 2(1− d∗4), d∗2 − 3d∗4 < 3,

and
d∗4 + d∗2 + d∗4

2 + d∗3
2 + d∗4

2d∗2 + d∗4d
∗
1

2 < 1 + 2d∗4d
∗
2 + d∗3d

∗
1 + d∗4d

∗
3d
∗
1 + d∗4

3.
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2.6 Numerical simulations

In this part of thesis, the numerical study of dynamics of (2.1.2) is provided.

Example 2.6.1. Assume that r = 0.0698, β = 0.3469, µ = 0.97993 , u0 = 0.954166, v0 =

0.97993, w0 = 0.954166, z0 = 0.97993 and η ∈ (0, 1]. Then, the mathematical system
(2.1.2) takes the following form:

un+1 =
(un + η0.97993)

(1 + η (v2
n + 0.0698))

,

vn+1 =
vn + η (unv

2
n + 0.0698un + 0.3469zn)

(1 + η(1 + 0.3469))
,

wn+1 =
(wn + η0.97993)

(1 + η (z2
n + 0.0698))

,

zn+1 =
(zn + η (wnz

2
n + 0.0698wn + 0.3469vn))

(1 + η(1 + 0.3469))
.

(2.6.1)

Additionally, in this case the one and only positive fixed point is
(0.954166, 0.97993, 0.954166, 0.97993). For aforementioned values of parameters one can
obtain the jacobian matrix J(0.954, 0.979, 0.954, 0.979) as follows:

J(0.9541, 0.9799, 0.9541, 0.9799) =


0.75761 −0.438739 0 0

0.225572 1.11334 0 0.075967

0 0 0.75761 −0.438739

0 0.075967 0.225572 1.11334

 .

The characteristic polynomial P (ρ) calculated from J(0.95416, 0.9799, 0.95416, 0.9799) is
given by

P (ρ) = 0.884894− 3.5178ρ+ 5.37959ρ2 − 3.74191ρ3 + ρ4. (2.6.2)
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(a) (b)

(c) (d)

Figure 2.1: Bifurcation diagrams for system (2.1.2) for r = 0.0698, β = 0.3469, µ =

0.97993, u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and η ∈ (0, 1]

Moreover, roots of P (ρ) = 0 are given as ρ1 = 0.897493 − 0.28178ι, ρ2 = 0.897493 +

0.28178ι, ρ3 = 0.97346−0.228858ι and ρ4 = 0.97346+0.228858ι, with |ρ3,4| = 1, |ρ1,2| 6= 1,

d1 = −3.7419, d2 = 5.37958, d3 = −3.5178, and d4 = 0.884893. In addition, we have

�+
1 (η) = 1 + d4 = 1.88489 > 0,

�−1 (η) = 1− d4 = 0.115107 > 0,

�−3 (η) = 1− d4 − d2 − d3
2 + d4

3 − d4
2 (1 + d2)− d1

2d4 + 2d2d4 + d1d3 (1 + d4) = 0,

�+
3 (η) = 1 + d4 + d2 − d3

2 − d4
3 − d4

2 − d1
2d4 − d2d

2
4 − d1d3 (1− d4) = 0.0761663 > 0,

Fη(1) = 1 + d1 + d2 + d3 + d4 = 0.00477238 > 0,

(−1)4Fη(−1) = 1− d1 + d2 − d3 + d4 = 4.52418 > 0.

Hence, all the conditions for existence of Neimark-Sacker bifurcation is satisfied (see
Theorem 2.4.1). In this case the graphical behavior of each concentration variable is
shown in Fig. 2.1. In Fig. 2.2 some phase portraits are given for variation of η in
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(0, 1]. Hence, it can be easily seen that there exists the Neimark-Sacker bifurcation when
η certainly passes through η = 0.310602 (see Fig. 2.2).

(a) (b)

(c)

Figure 2.2: Phase portraits for system (2.1.2) for r = 0.0698, β = 0.3469, µ = 0.97993 ,
u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and η ∈ (0, 1]

Example 2.6.2. Assume that η ∈ (0, 1], r = 0.0698, β = 0.3469, µ = 0.97993 , u0 =

0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and θ ∈ (0, 1]. Then, the mathemat-
ical system (2.5.2) takes the following form:

un+1 =θ3 (un + η0.97993)

(1 + η (v2
n + 0.0698))

+ (1− θ3)un,

vn+1 =θ3vn + η (unv
2
n + 0.0698un + 0.3469zn)

(1 + η(1 + 0.3469))
+ (1− θ3)vn,

wn+1 =θ3 (wn + η0.97993)

(1 + η (z2
n + 0.0698))

+ (1− θ3)wn,

zn+1 =θ3 (zn + η (wnz
2
n + 0.0698wn + 0.3469vn))

(1 + η(1 + 0.3469))
+ (1− θ3)zn.

(2.6.3)
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Additionally, in this case the one and only positive fixed point is
(0.954166, 0.97993, 0.954166, 0.97993). For aforementioned values of parameters one can
obtain the jacobian matrix J(0.954, 0.979, 0.954, 0.979) as follows:

J(0.95416, 0.9799, 0.9541, 0.9799) =


0.691371 −0.558636 0 0

0.270997 1.13617 0 0.0912651

0 0 0.691371 −0.558636

0 0.0912651 0.270997 1.13617

 .

The characteristic polynomial P (ρ) calculated from J(0.954166, 0.97993, 0.954166, 0.97993)

is given by

P (ρ) = 0.873804− 3.41293ρ+ 5.20537ρ2 − 3.65508ρ3 + ρ4. (2.6.4)

Moreover, in this case the equilibrium point (0.954166, 0.97993, 0.954166, 0.97993) of sys-
tem (2.6.3) is stable for

0 < θ < 0.8809233539967847.

In this case the graphical behavior of each concentration variable is shown in Fig. 2.4.
Hence, it can be easily seen that bifurcation is controlled for maximum range of controlled
parameter θ for η ∈ (0, 1] (see Fig. 2.4). Moreover, in Fig. 2.3 some phase portraits
are given for variation of θ in (0, 1]. Hence, it can be easily seen that there exists the
Neimark-Sacker bifurcation when θ certainly passes through θ = 0.8809233539967847

(see Fig. 2.3). In addition, there is no chance of Neimark-Sacker bifurcation for θ ∈
(0, 0.8809233539967847) (see Fig. 2.3(a-c)), and for θ ∈ (0.8809233539967847, 1) the
existence of Neimark-Sacker bifurcation in system (2.6.3) can be seen easily (see Fig.
2.3(d-f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Phase portraits for system (2.6.3) for η ∈ (0, 1], r = 0.0698, β = 0.3469, µ =

0.97993 , u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and θ ∈ (0, 1]
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(a) (b)

(c) (d)

Figure 2.4: Controlled diagrams for system (2.6.3) for η ∈ (0, 1], r = 0.0698, β =

0.3469, µ = 0.97993, u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and
θ ∈ (0, 1]

Example 2.6.3. Assume that r = 0.0698, β = 0.3469, µ = 0.9999 , u0 = 1.0007, v0 =

0.97993, w0 = 1.0007, z0 = 0.97993. Then, the mathematical system (2.0.6) takes the
following form:

du

dt
=0.97993− uv2 − 0.0698u,

dv

dt
=uv2 + 0.0698u− v + 0.3469(z − v),

dw

dt
=0.97993− wz2 − 0.0698w,

dz

dt
=wz2 + 0.0698w − z + 0.3469(v − z),

(2.6.5)

Additionally, in this case the one and only positive fixed point is (1.0007, 0.979, 1.0007, 0.979).

For aforementioned values of parameters one can obtain the jacobian matrix
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J(1.0007, 0.9793, 1.0007, 0.9793) as follows:

J(1.0007, 0.9793, 1.0007, 0.9793) =


0.505244 −0.990902 0 0

0.417249 1.26176 0 0.147812

0 0 0.505244 −0.990902

0 0.147812 0.417249 1.26176

 .

The characteristic polynomial P (ρ) calculated from J(1.0007, 0.9793, 1.0007, 0.9793) is
given by

P (ρ) = 1.09892− 3.692ρ+ 5.20237ρ2 − 3.53402ρ3 + ρ4. (2.6.6)

In this case the graphical behavior of each concentration variable is shown in Fig. 2.5.
Moreover, in Fig. 2.6 some phase portraits are given for different values of r. It can be
easily seen that there exists the system (2.6.5) remains stable about one and only fixed
point (1.0007, 0.9793, 1.0007, 0.9793). In addition, a three dimensional phase portrait is
given in Fig. 2.6a.

(a) (b)

(c) (d)

Figure 2.5: Plots of system (2.6.5) for r = 0.0698, β = 0.3469, µ = 0.9999, u0 =

1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993
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(a) (b)

(c) (d)

Figure 2.6: Phase portraits for system (2.6.5) for r = 0.0698, β = 0.3469, µ = 0.9999,

u0 = 1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993

Example 2.6.4. Assume that r = 0.01275, β = 0.3469, µ = 0.95993, u0 = 1.0007, v0 =

0.97993, w0 = 1.0007, z0 = 0.97993. Then, from mathematical system (2.0.6) we get
the one and only positive fixed point (1.0007, 0.9793, 1.0007, 0.9793) of system (2.0.6).
Moreover, for these values of parameters one can obtain the following jacobian matrix
J(1.0007, 0.9793, 1.0007, 0.9793) as follows:

J(1.0007, 0.9793, 1.0007, 0.9793) =


0.506839 −1.0004 0 0

0.414595 1.26712 0 0.147812

0 0 0.506839 −1.0004

0 0.147812 0.414595 1.26712

 .

The characteristic polynomial P (ρ) calculated from J(1.0007, 0.9793, 1.0007, 0.9793) is
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given by
P (ρ) = 1.1116− 3.72793λ+ 5.23903λ2 − 3.54791λ3 + λ4. (2.6.7)

In this case the graphical behavior of each concentration variable is shown in Fig. 2.7.
Moreover, in Fig. 2.8 some phase portraits are given for variation of r. Hence, it can
be easily seen that there exists the Hopf bifurcation for system (2.5) about one and only
fixed point (1.0007, 0.9793, 1.0007, 0.9793) when the parameter r certainly passes through
0.01275. In addition, a three dimensional phase portrait is given in Fig. 2.8a.

(a) (b)

(c) (d)

Figure 2.7: Plots of system (2.0.6) for r = 0.01275, β = 0.3469, µ = 0.95993, u0 =

1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993
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(a) (b)

(c) (d)

Figure 2.8: Phase portraits for system (2.0.6) for r = 0.01275, β = 0.3469, µ = 0.95993 ,
u0 = 1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993.

2.7 Concluding remarks

We have studied a two-cell joined cubic autocatalator chemical reaction model [42]. Ad-
ditionally, during the construction of the basic structure of the model, feedback in every
cell is centred on the cubic autocatalator under the effects of pooled-chemical estima-
tions. We have considered the pairing among the cells through autocatalyst B. We have
examined the local stability of a continuous system described by equation (2.0.6) using
Routh-Hurwitz stability criteria. To obtain a discrete-time representation of the four-
dimensional cubic autocatalator chemical reaction model (2.0.6), we discretized the model
using Euler’s forward method and a nonstandard difference scheme, ensuring consistency
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between the continuous and discrete formulations.
By considering the pairing among the cells based on autocatalyst B, we have estab-

lished the existence of a unique fixed point for the system (6.1.2). We have then analyzed
the parametric conditions required for the local asymptotic stability of the system (6.1.2)
around its positive fixed point. Furthermore, we have demonstrated the occurrence of
Neimark-Sacker bifurcation at the positive fixed point of the system (6.1.2) by employing
a well-recognized standard for Neimark-Sacker bifurcation analysis, with the bifurcation
parameter η playing a crucial role.

In the discrete-time counterpart (6.1.2) of the original four-dimensional system (2.0.6),
we have observed the emergence of chaotic dynamics at different levels of the bifurcation
parameter η. To effectively manage the Neimark-Sacker bifurcation and chaos, we have
devised a generalized hybrid control scheme that combines parameter perturbation and
feedback control. The control scheme incorporates the control parameter θ to regulate
the system’s behavior. Finally, we provided some numerical examples to demonstrate
theoretical results. From a numerical study of (2.0.6) and (2.1.2), one can see that the
system (2.0.6) remains stable for β, r > 0 and µ = 1, whereas the system (2.1.2) remains
unstable under these parametric conditions. Moreover, through the numerical study
of the system (2.1.2), one can see that there is no chance for the existence of period-
doubling bifurcation, which verifies the consistency of nonstandard difference scheme [20]
for mathematical system (2.0.6).
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Chapter 3

Bifurcation Analysis of a Discrete-Time
Phytoplankton-Zooplankton Model
with Holling Type-II Response and
Toxicity

This chapter is related to the qualitative study of a phytoplankton-zooplankton model
using a dynamically consistent nonstandard difference scheme. Moreover, in the qualita-
tive study, discussion on the boundedness of every solution, the local stability analysis,
the existence of Neimark-Sacker bifurcation and the control of the Neimark-Sacker bifur-
cation are part of this chapter. This chapter is published in an international peer-review
journal (see [57]).

The study of mathematical models for population dynamics has been considered as
a critical area in abstract ecology from the time when the famous Lotka-Volterra model
is presented [58]. The learning of organism movement and spreading has to turn out
to be a fundamental element for understanding a chain of ecological interrogations as-
sociated with the spatiotemporal study of dynamics of populations [59]. Planktons are
enormously flexible in abundance, both temporally and spatially. Plankton variability de-
pends on natural and physical procedures for the spatial structure. Biological processes
include, for instance, development, grazing and behaviour, and physical practices include,
for instance, mixing and lateral stirring and nonlinearity of ecosystems, which entirely
contribute to the spatial organization in plankton allocations [60]. Plankton refers to the
spontaneously moving and faintly swimming organisms in marine ecology. Commonly,
plankton is divided into two species: the phytoplankton species and the zooplankton
species. Phytoplankton species are tiny in their size with a single-celled structure [61].
Phytoplankton is beneficial for aquatic life, and they produce half of the oxygen in the
world through photosynthesis. Phytoplankton population exert a universal-scale effect on
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the atmosphere by transporting CO2 from water surface to the depth of oceans. Mainly,
this process happens due to their death, sinking and primary production [61]. It is ob-
served that algal species rise abundantly in damped, wet and marine environments. The
stages of speedy growth, slow stagnation and accelerated decline in cells collectively create
an algal bloom. These phenomena of accelerated variation in the density of the phyto-
plankton population are the central trait in the plankton ecosystem [61]. Even though
the sudden emergence and disappearance of blooms are not apparent, but the undesirable
effect of damaging algal blooms on the health of humanity, aquatic life and fisheries trade
can be seen easily [61].

On the incidence of blooms, phytoplankton and zooplankton interact with each other,
and the study of this interaction is the point of focus of many scientific investiga-
tions [62]. Phytoplankton produces toxic materials to avert predations by their preda-
tors(zooplankton). Furthermore, this has been the topic of interest of many researchers
for many decades. Mathematical modelling of interactions between plankton species pro-
vides us with an essential, optional method in improving the knowledge of any individual
related to the biological and physical mechanisms concerning the ecological study of
plankton population [62]. The authors in [63] have considered a plankton-nutrient model
related to the aquatic environment by consideration of planktonic blooms. In [64] the au-
thors have examined the influence of periodicity and seasonality on planktonic dynamics.
In [65] the authors have presented two mathematical models connected to the plankton
ecosystem along with a strong representation of viral septic phytoplankton and viruses.
The authors in [66] have contemplated the effect of predation on competitive elimination
and the coexistence of competitive predators. Moreover, they presented and explored a
one-phytoplankton two-zooplankton model and the harvesting consideration.

Huppert et al. [67] have considered a nutrient-phytoplankton model to examine the
dynamical behaviour of phytoplankton blooms. In [68] the authors have presented a
zooplankton-phytoplankton model with harvesting. Moreover, it has been emphasized
that excessive exploitation can result in the extinction of populations, whereas responsible
harvesting practices promote the long-term viability of both populations. Additionally,
there have been extensive research efforts dedicated to investigating various aspects of
phytoplankton-zooplankton models, such as nutrient sources, the toxic effects of plankton
species, species survival, and the implications of harvesting [76-80]. When examining the
dynamics of phytoplankton-zooplankton models, it is crucial to take into account the
inclusion of a lag in toxin production. The authors in [74] have presented a mathematical
model including time lag in toxin deliverance by phytoplankton. The work done in
[80-83] motivated us to study the dynamics of a phytoplankton-zooplankton population
model with toxicity. Moreover, the toxic substance is released by phytoplankton and
sometimes by other external sources. We consider the basic phytoplankton-zooplankton
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model presented by Chattopadhyay et al. [78]. Furthermore, this mathematical model is
based on the following conditions.

• We consider that z(t) and p(t) are sizes of zooplankton and phytoplankton popula-
tions, respectively.

• Zooplankton population eats phytoplankton population and then recycle into their
own community. The functional response αp(t)z(t)

a+p(t)
represents the predation rate

of zooplankton population on phytoplankton species. Moreover, this predation
increases the growth rate of zooplankton and this growth rate is represented by the
term βp(t)z(t)

a+p(t)
.

• We assume that the zooplankton population becomes infected by eating the infected
phytoplankton population. Additionally, the infection in phytoplankton may be
produced due to external toxic substances (see [78]).

• We assume that the infection in phytoplankton may be produced due to external
toxic substances (see [78]).

• Phytoplankton population has logistic growth [79] in the absence of zooplankton
population, where r is their exponential rate of growth and k is the maximum
carrying capacity of the environment.

Under these conditions we have the following phytoplankton-zooplankton model [78]:dp
dt

= rp(t)(1− p(t)
k

)− αf(p(t))z(t),

dz
dt

= βf(p(t))z(t)− δz(t)− ρg(p(t))z(t).
(3.0.1)

Kuang [80] have inspected the limit cycle behaviour in Gauss-type predator-prey systems
with Holling type-II response [81]. In addition, he revealed that the study of dynamical
properties of predator-prey models using the Holling type response function is better than
the study of dynamics of predator-prey models without using Holling response. Generally,
Holling type-II response is modelled and described by using rectangular hyperbola, and
its mathematical form is given as:

ϕ(x) =
x

a+ x
,

where a is any constant. By using Holling type-II response we get the following mathe-
matical form of system (3.0.1):dp

dt
= rp(t)(1− p(t)

k
)− α p(t)

a+p(t)
z(t),

dz
dt

= β p(t)
a+p(t)

z(t)− δz(t)− ρ p(t)
a+p(t)

z(t).
(3.0.2)
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• Next, we assumed that phytoplankton’s time lag for the production and mediation
of toxic substances is zero.

• We are introducing the catchability coefficients q1 and q2 for phytoplankton and
zooplankton populations, respectively. Generally, the functional form for harvesting
is expressed by using the hypothesis of catch-per-unit-effort [82].

• Moreover, introducing E as the parameter for combined effort for harvesting of
population [82].

Then, under these modifications the system (3.0.2) takes the following mathematical
form: dp

dt
= rp(t)(1− p(t)

k
)− α p(t)

a+p(t)
z(t)−m1p

3(t)− q1Ep(t),

dz
dt

= β p(t)
a+p(t)

z(t)− δz(t)− ρ p(t)
a+p(t)

z(t)−m2z
2(t)− q2Ez(t),

(3.0.3)

where the parameters in system (3.0.3) are non-negative and defined as follows:
a: constant of partial capturing saturation.
α: maximal takeover rate of zooplankton on phytoplankton.
β: conversion rate of phytoplankton-zooplankton(β < α).
ρ: toxicity rate of phytoplankton per unit biomass.
δ: natural rate of death of zooplankton population.
Moreover, the term m1p

3(t) appearing in the system (3.0.3) represents the infection
produced in the phytoplankton population due to an external toxic substance. In addi-
tion, d2

dp2 (m1p
3) = 6m1p > 0 shows an accelerating growth of toxic substance parallel to

phytoplankton population. Approximately every individual in the phytoplankton pop-
ulation is increasingly consuming toxic substances. However, the reduction of grazing
by zooplankton due toxicity effect is represented by the term m2z

2(t). Furthermore, the
toxicity effect on zooplankton population is less than phytoplankton population, where
m1 and m2 are toxicity coefficients with 0 < m2 < m1 [82]. Additionally, if we assume
that m2 = 0 and m1 = m, then from (3.0.3) we have

dp

dt
= rp(t)(1− p(t)

k
)− α p(t)

a+ p(t)
z(t)−mp2(t),

dz

dt
= β

p(t)

a+ p(t)
z(t)− δz(t)− ρ p(t)

a+ p(t)
z(t),

(3.0.4)

where, d2

dp2 (mp2) = 2 > 0 shows an accelerating growth of toxic substance parallel to
phytoplankton population.
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3.1 Discretization of model

By using Euler’s forward method with step size h we have the following discrete-time
version of (3.0.3):pn+1 = pn + h(rpn(1− pn+1

k
)− α pn+1

a+pn
zn −m1p

2
npn+1 − q1Epn+1),

zn+1 = zn + h(β pn
a+pn

zn − δzn+1 − ρ pn
a+pn

zn+1 −m2znzn+1 − q2Ezn+1),
(3.1.1)

But, numerical inconsistency is experienced with the application of usual finite difference
methods. Hence, to avoid this numerical inconsistency, one can apply nonstandard finite
difference method given by Mickens [20]. Hence, by taking into account the original
dynamical properties of model (3.0.3), a discrete-time model from (3.0.3) is obtained by
using Mickens type non-standard scheme such that it will remain dynamically consistent
[30]. Implementing the Mickens type nonstandard scheme on model (3.0.3) we get the
following discrete-time mathematical model:

pn+1−pn
h

= rpn(1− pn+1

k
)− α pn+1

a+pn
zn −m1p

2
npn+1 − q1Epn+1,

zn+1−zn
h

= β pn
a+pn

zn − δzn+1 − ρ pn
a+pn

zn+1 −m2znzn+1 − q2Ezn+1,
(3.1.2)

where h > 0 is taken as step size for nonstandard scheme. Furthermore, (3.1.2) can be
written into the following mathematical form:pn+1 = (1+hr)pn

1+h( r
k
pn+ αzn

a+pn
+m1p2

n+q1E)
,

zn+1 =
(1+h βpn

a+pn
)zn

1+h( ρpn
a+pn

+δ+m2zn+q2E)
.

(3.1.3)

Moreover, our model (3.1.3) looses its biological consistency whenever β < ρ (see [82]),
which is impossible biologically. Hence, for rest of our chapter, we assume that a > k

and β > ρ.

3.2 Boundedness of solutions

Suppose that p0 > 0 and z0 > 0, then each solution (pn, zn) of the mathematical system
(3.1.3) must satisfies pn > 0 and zn > 0 for all n ≥ 0. Then, from first equation of system
(3.1.3) it follows that

pn+1 ≤
(1 + hr)pn

1 + hr
k
pn

, (3.2.1)

consequently, on solving (3.2.1) and then by applying limit we get

lim
n−→∞

suppn ≤ k, (3.2.2)
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for all n ≥ 0. In the same way, from second equation of system (3.1.3) we get

zn+1 =
(1 + h βpn

a+pn
)zn

1 + h( ρpn
a+pn

+ δ +m2zn + q2E)

≤
(1 + h βk

a+k
)zn

1 + h( ρk
a+k

+m2zn)
.

Hence, one can obtain the upper bound for zooplankton population as

lim
n→∞

supzn ≤
k(β − ρ)

m2(k + a)
, (3.2.3)

for all n ≥ 0. Finally, we have the following theorem about the boundedness of all solutions
of (3.1.3)

Theorem 3.2.1. Assume that 0 < p0 ≤ k and 0 < z0 ≤ k(β−ρ)
m2(k+a)

, then for all n ≥ 0,

every positive solution (pn, zn) of system (3.1.3) is bounded and contained in the set
[0, k]×

[
0, k(β−ρ)

m2(k+a)

]
, whenever β > ρ.

3.3 Existence of fixed points

In order to obtain equilibrium points from system (3.1.3), we consider the following two
dimensional system of equations:

p =
(1+hr)p

1+h( r
k
p+ αz

a+p
+m1p2+q1E)

,

z =
(1+h

βp

a+p
)z

1+h(
ρp

a+p
+δ+m2z+q2E)

.
(3.3.1)

On solving (3.3.1) on can get the following equilibrium points: (0, 0) which is extinction

point for both populations, (

√
4k2m1r+r2−4Ek2m1q1−r

2km1
, 0) which is extinction equilibrium for

zooplankton population and the unique positive equilibrium (p, z). Additionally, the first

component of equilibrium point (

√
4k2m1r+r2−4Ek2m1q1−r

2km1
, 0) remains positive for r > Eq1.

Now, the existence and uniqueness of (p, z) can be studied as follows. We consider the
following system of equations

p =
(1+hr)p

1+h( r
k
p+ αz

a+p
+m1p2+q1E)

,

z =
(1+h

βp

a+p
)z

1+h(
ρp

a+p
+δ+m2z+q2E)

.
(3.3.2)

Furthermore, from (3.3.2) we get the following pair:

p =
a(β − ρ)

(β − ρ)− (δ +m2z + q2E)
− a, z =

(a+ p)(r − rp

k
−m1p

2 − q1E)

α
.
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From aforementioned pair, we can write

F (p) =
a(β − ρ)

(β − ρ)− (δ +m2f(p) + q2E)
− a− p, (3.3.3)

where

f(p) =
(a+ p)(r − rp

k
−m1p

2 − q1E)

α
, (3.3.4)

with
f(0) =

a(r − q1E)

α
> 0,

and
F (0) =

a(δ +m2f(0) + q2E)

(β − ρ)− (δ +m2f(0) + q2E)
> 0.

Furthermore, at upper bound and for each λ ∈ (0, k] , if we have (β− ρ) > (δ+m2f(λ) +

q2E) then

F (λ) =
a(δ +m2f(λ) + q2E)

(β − ρ)− (δ +m2f(λ) + q2E)
− λ < 0,

where
f(λ) = −(a+ λ)(m1r

2 + q1E)

α
< 0.

Hence, F (p) = 0 has at least one positive real root in [0, k] . Furthermore, it can be seen
that

F ′(λ) = −1 +
a(β − ρ)(m2f

′(λ))

((β − ρ)− (δ +m2f(λ) + q2E))2 < 0,

where

f ′(λ) = −
(a+ λ)( r

k
+ 2m1λ)

α
+
r − rλ

k
−m1λ

2 − q1E

α
< 0,

whenever
r − q1E < (

r

k
+m1λ)λ

for every λ ∈ [0, k] . Hence, the equation F (p) = 0 has one and only positive solution in
[0, k] .

Theorem 3.3.1. Assume that 0 < p0 ≤ k and 0 < z0 ≤ k(β−ρ)
m2(k+a)

, then for

r − q1E < (
r

k
+m1λ)λ

and
r > q1E,

there exists a unique positive constant solution (p, z) of system (3.1.3) in [0, k]×
[
0, k(β−ρ)

m2(k+a)

]
if and only if for each λ ∈ (0, k] we have

(β − ρ) > (δ +m2f(λ) + q2E).

In addition, for λ = 0

(β − ρ) < (δ +m2f(λ) + q2E).
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3.4 Local stability analysis

In order to discuss the stability analysis of system (3.1.3) about all of its equilibrium
points we have to use Lemma 1.3.1. We compute the variational matrix V(p,z) of the
system (3.1.3) about each of its fixed point (p, z). Moreover, V(p,z) is given by

V(p,z) =

[
j11 j12

j21 j22

]
.

In addition, the characteristic polynomial M(ξ) of V(p,z) is:

M(ξ) = ξ2 − Trξ +Dt, (3.4.1)

where
Tr = (j11 + j22),

and
Dt = j11j22 − j12j21.

Firstly, we will scrutinize the stability of system (3.1.3) about population free equilibrium
point (0, 0). The variational matrix V(p,z) for system (3.1.3) evaluated at (0, 0) is given
by;

V(0,0) =

(
1+hr

1+Ehq1
0

0 1
1+hδ+Ehq2

)
.

Furthermore, V(0,0) is a triangular matrix. Hence, the system (3.1.3) has two eigenvalues
related to the population free equilibrium point (0, 0) which are given by ξ1 = 1+hr

1+Ehq1
and

ξ2 = 1
1+hδ+Ehq2

. Where, ξ1 and ξ2 are roots of characteristic equation of matrix V(0,0). It
is clear that |ξ2| = | 1

1+hδ+Ehq2
| < 1 for all parametric values. Now, by considering the

condition |ξ2| < 1, and by using Lemma 1.3.1, we describe the stability conditions for
system (3.1.3) about (0, 0).

Proposition 3.4.1. Let ξ1 and ξ2 be roots of the characteristic equation of matrix V(0,0)

and |ξ2| < 1 for all parametric values. Let (0, 0) be a population free fixed point of system
(3.1.3) then (0, 0) is sink and saddle if and only if we have r < Eq1 and r > Eq1,
respectively.

Next, we will explore the local stability of system (3.1.3) about the zooplankton free
equilibrium

(

√
4k2mr+r2−4Ek2mq1−r

2km
, 0). Clearly, the first component in order pair

(

√
4k2mr+r2−4Ek2mq1−r

2km
, 0) is positive if and only if r > q1E. Let V1(

√
4k2mr+r2−4Ek2mq1−r

2km
, 0)

be the variational matrix of two dimensional system (3.1.3) about the zooplankton free
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equilibrium (

√
4k2mr+r2−4Ek2mq1−r

2km
, 0), then V1(

√
4k2mr+r2−4Ek2mq1−r

2km
, 0) has the following

mathematical form:

V1(x, 0) =

 k2(1+hr)(1+Ehq1−hm1x2)
(k+Ehkq1+hx(r+km1x))2 − hk2(1+hr)αx

(a+x)(k+Ehkq1+hx(r+km1x))2

0 a+x+hβx
a+ahδ+x+h(δ+ρ)x+Ehq2(a+x)

 ,

where x =

√
4k2mr+r2−4Ek2mq1−r

2km
. Moreover, V1(x, 0) has the following characteristic poly-

nomial:

M(ξ) = ξ2 − Tr[V1(x, 0)] +Det[V1(x, 0)], (3.4.2)

with
Tr[V1(x, 0)] =

a+ x+ hβx

a+ ahδ + x+ h(δ + ρ)x+ Ehq2 (a+ x)

+
k2(1 + hr) (1 + Ehq1 − hm1x

2)

(k + Ehkq1 + hx (r + km1x)) 2

and

Det[V1(x, 0)] =

k2(1 + hr) (a+ x+ hβx) (1 + Ehq1 − hm1x
2)

(a+ ahδ + x+ h(δ + ρ)x+ Ehq2 (a+ x)) (k + Ehkq1 + hx (r + km1x)) 2
.

Hence, one can have the following proposition about the local stability of system (3.1.3)

about the zooplankton free equilibrium (

√
4k2m1r+r2−4Ek2m1q1−r

2km1
, 0) by using Lemma 1.3.1.

Proposition 3.4.2. Let ξ1 and ξ2 be characteristic roots of (3.4.2) and r > q1E. Addi-

tionally, if (

√
4k2m1r+r2−4Ek2m1q1−r

2km1
, 0) = (x, 0) be a zooplankton free constant solution of

(3.1.3) then:

• (x, 0) remains inside the unit disk if and only if∣∣1 + Ehq1 − hm1x
2
∣∣ < (k + Ehkq1 + hx (r + km1x)) 2

k2(1 + hr)
, (3.4.3)

and

βx < aδ + (δ + ρ)x+ Eq2 (a+ x) . (3.4.4)

• (x, 0) will lie outside the unit disk if and only if∣∣1 + Ehq1 − hm1x
2
∣∣ > (k + Ehkq1 + hx (r + km1x)) 2

k2(1 + hr)
(3.4.5)

and

βx > aδ + (δ + ρ)x+ Eq2 (a+ x) . (3.4.6)
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• (x, 0) is a saddle point if and only if one of the following pair of the inequalities
(3.4.4) and (3.4.5) or (3.4.3) and (3.4.6) is satisfied.

• (x, 0) is non hyperbolic if and only if one of the following is satisfied:

∣∣1 + Ehq1 − hm1x
2
∣∣ =

(k + Ehkq1 + hx (r + km1x)) 2

k2(1 + hr)

or

aδ + (δ + ρ− β)x+ Eq2 (a+ x) = 0.

Finally, we are remained with some analysis related to the local stability of system
(3.1.3) about the one and only positive fixed point (p, z). Moreover, all parametric con-
ditions for the existence of non extinction fixed point (p, z) are given in Theorem 3.2.1
and Theorem 3.3.1. One can calculate the jacobian matrix V2(p, z) of the system (3.1.3)
about (p, z) as follows:

V2(p, z) =

 k2(1+hr)
(
(a+p)

2
(1+Ehq1−hm1p2)+hα(a+2p)z

)
((a+p)(k+Ehkq1+hp(r+km1p))+hkαz)2

− hαp

(1+hr)(a+p)
hz(−β+δ+ρ+Eq2+m2z)2

a(β+hβδ−ρ+Ehβq2+hβm2z)
β+hβδ−ρ+Ehβq2+hρm2z
β+hβδ−ρ+Ehβq2+hβm2z

 .

where
z =

(
a+ p

α

)(
r − r

p

k
−m1

(
p
)2 − q1E

)
and

p =
a(β − ρ)

(β − ρ)− (δ +m2z + q2E)
− a.

Let M(ξ) be the characteristic polynomial for the matrix V2(p, z) with

σ = (−β + δ + ρ+ Eq2) ≥ 0, φ = (β + hβδ − ρ+ Ehβ) , (1 + hr) = ηq2 > 0,

ψ = β + ρ, and θ =
((
a+ p

) (
k + ehkq1 + hp

(
r + km1p

))
+ hkαz

)
2,

then we have

Tr = 1−
hp
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
kη
(
a+ p

) +
φ+ hρm2z

φ+ hβm2z
,
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and

Dt =
1

akη
(
a+ p

)
(φ+ hβm2z)

(
a2kη (φ+ hρm2z)

)
− 1

akη
(
a+ p

)
(φ+ hβm2z)

(
2ahp2 (r + akm1) (φ+ hρm2z)

)
+

akp

akη
(
a+ p

)
(φ+ hβm2z)

(
(a
h

k
r − hr − η)φ+ Ehq1 (φ+ hρm2z)

)
−

akp

akη
(
a+ p

)
(φ+ hβm2z)

(
3hm1p

2 (φ+ hρm2z)
)

+
hzp

akη
(
a+ p

)
(φ+ hβm2z)

((a(−ahr + hkr + kη)ρ+ hkαz (2σ +m2z)))

+
hzp

akη
(
a+ p

)
(φ+ hβm2z)

(
hkασ2

)
.

Taking into account the work done in previous section and by considering the Theorem
3.3.1, it follows that

M(1) =
h2pz

(
m2

(
a(β − ρ)

(
Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
+ 2kασz + kαm2z

2
))

akη
(
a+ p

)
(φ+ hβm2z)

+
h2pz (kασ2 +m2a(β − ρ)(a− k)r)

akη
(
a+ p

)
(φ+ hβm2z)

> 0,

and

M(−1) =
−2aφp

akη
(
a+ p

)
(φ+ hβm2z)

(
2kη − Ehkq1 − hp

(
2r + km1

(
2a+ 3p

)))
+

2akη − p (h(a− k)r)

akη
(
a+ p

)
(φ+ hβm2z)

(2aφ+ hzaψm2)

+
hzaψm2p

akη
(
a+ p

)
(φ+ hβm2z)

(
2kη − Ehkq1 − hp

(
2r + km1

(
2a+ 3p

)))
+

h2kασpz

akη
(
a+ p

)
(φ+ hβm2z)

(
σ + 2m2z +m2

2z
2
)
.

Hence, the local stability of system (3.1.3) about (p, z) can be studied with the help of
Lemma 1.3.1 and the following proposition:

Proposition 3.4.3. Let a > k and β > ρ, then (p, z) is a positive constant solution of
(3.1.3). In addition, suppose

κ = 2akη − p
(
h(a− k)r − 2kη + Ehkq1 + hp

(
2r + km1

(
2a+ 3p

)))
then (a) The point (p, z) remains inside the unit disk if and only if

κ >
h2kασpz (σ + 2m2z +m2

2z
2)

(2aφ+ hzaψm2)
and Dt < 1.
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(b) The point (p, z) is repeller if and only if

κ >
h2kασpz (σ + 2m2z +m2

2z
2)

(2aφ+ hzaψm2)
and Dt > 1.

(c) The point (p, z) is a saddle point if and only if

κ <
h2kασpz (σ + 2m2z +m2

2z
2)

(2aφ+ hzaψm2)
.

(d) The point (p, z) is non-hyperbolic if and only if

h =

aφp
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
+ akη(β − ρ)m2

(
a+ p

)
z

pz
(
kασ2 −m2

(
aρ
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
− 2kασz − kαm2z2

)) ,
(3.4.7)

and
hp
(
Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
(φ+ hρm2z) + hp(a− k)r

6=2 (φ+ hρm2z) kη
(
a+ p

)
,

(3.4.8)

hp
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
(φ+ hρm2z)

6= (φ+ hρm2z) kη
(
a+ p

)
.

(3.4.9)

3.5 Bifurcation analysis

In this section, we use standard theory of bifurcation for the study of Neimark-Sacker
bifurcation of system (3.1.3) at (p, z) (see [87-98]).

3.5.1 Neimark-Sacker bifurcation

Let ξ1 and ξ2 be roots of (3.4.1), then both of these roots are complex with modulus
one if (p, z) is a non-hyperbolic fixed point under condition (d) of Proposition 3.4.3.
Hence, (3.1.3) experiences the Neimark-Sacker bifurcation when parameters given in sys-
tem (3.1.3) vary in the small neighborhood of the following set:

0∗ =
{
α, β, a, k, r, δ, ρ,m1,m2, q1, q2, E ∈ <+ : h ∈ (0, 1)

}
,

and (3.4.8) and (3.4.9) are satisfied. Let (α, β, a, k, r, δ, ρ,m1,m2, q1, q2, E) ∈ 0∗ with

h =

aφp
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
+ akη(β − ρ)m2

(
a+ p

)
z

pz
(
kασ2 −m2

(
aρ
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
− 2kασz − kαm2z2

)) ,
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then system (3.1.3) can be written as(
p

z

)
→

 (1+hr)p
1+h( r

k
p+ αz

a+p
+m1p2+q1E)

(1+h βp
a+p

)z

1+h( ρp
a+p

+δ+m2z+q2E)

 . (3.5.1)

Assume that (α, β, a, k, r, δ, ρ,m1,m2, q1, q2, E) ∈ 0∗ and by taking h̆ as bifurcation pa-
rameter, we get the following form of system (3.5.1):

(
p

z

)
→

 (1+(h+h̆)r)p

1+(h+h̆)( r
k
p+ αz

a+p
+m1p2+q1E)

(1+(h+h̆) βp
a+p

)z

1+(h+h̆)( ρp
a+p

+δ+m2z+q2E)

 . (3.5.2)

where |h̆| � 1 is very small perturbation parameter. Next, we assume that

P = p− p, Z = z − z,

then the map (3.5.1) takes the following mathematical form:(
P

Z

)
→

(
v11 v12

v21 v22

)(
P

Z

)
+

(
f̌(P,Z)

ǧ(P,Z)

)
, (3.5.3)

where

f̌(P,Z) = v13P
2 + v14PZ + v15Z

2 + v16P
3 + v17P

2Z + v18PZ
2

+ v19Z
3 +O ((|P |+ |Z|)4),

ǧ(P,Z) = v23P
2 + v24PZ + v25Z

2 + v26P
3 + v27P

2Z + v28PZ
2

+ v29Z
3 +O ((|P |+ |Z|)4).

Moreover, the coefficients vij for i = 1, 2, ..., 9 and j = 1, 2, ....., 9 are

v11 =
k2(1 + h∗r)

(
(a+ p)2 + h∗(a+ 2p)zα + h∗(a+ p)2

(
−p2m1 + Eq1

))(
(a+ p)(k + h∗pr) + h∗kzα + h∗k(a+ p)

(
p2m1 + Eq1

))
2

,

v12 =
h∗p(1 + h∗r)α

(a+ p) (1 + x1) 2
,

v13 =
h∗2p(1 + h∗r)

(
r
k
− zα

(a+p)2 + 2pm1

)
2

(1 + x1) 3
−
hp(1 + h∗r)

(
2zα

(a+p)3 + 2m1

)
2 (1 + x1) 2

−
h∗(1 + h∗r)

(
r
k
− zα

(a+p)2 + 2pm1

)
(1 + x1) 2

,
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v14 =
2h∗2p(1 + h∗r)α

(
r
k
− zα

(a+p)2 + 2pm1

)
(a+ p) (1 + x1) 3

+
h∗p(1 + h∗r)α

(a+ p)2 (1 + x1) 2

− h∗(1 + h∗r)α

(a+ p) (1 + x1) 2
, v15 =

h∗2p(1 + h∗r)α2

(a+ p)2 (1 + x1) 3
,

v16 = −
h∗3p(1 + h∗r)

(
r
k
− zα

(a+p)2 + 2pm1

)
3

(1 + x1) 4
−
h∗(1 + h∗r)

(
2zα

(a+p)3 + 2m1

)
2 (1 + x1) 2

+
h∗2(1 + h∗r)

(
r
k
− zα

(a+p)2 + 2pm1

)
2

(1 + x1) 3
+

h∗p(1 + h∗r)zα

(a+ p)4 (1 + x1) 2

+
h∗2p(1 + h∗r)

(
2zα

(a+p)3 + 2m1

)(
r
k
− zα

(a+p)2 + 2pm1

)
(1 + x1) 3

,

v17 = −
3h∗3pα(1 + h∗r)

(
r
k
− zα

(a+p)2 + 2pm1

)
2

(a+ p) (1 + x1) 4
−

h∗p(1 + h∗r)α

(a+ p)3 (1 + x1) 2

−
2h∗2pα(1 + h∗r)

(
r
k
− zα

(a+p)2 + 2pm1

)
(a+ p)2 (1 + x1) 3

+
h∗(1 + h∗r)α

(a+ p)2 (1 + x1) 2

+
h∗2pα(1 + h∗r)

(
2zα

(a+p)3 + 2m1

)
(a+ p) (1 + x1) 3

+
2h∗2α(1 + h∗r)

(
r
k
− zα

(a+p)2 + 2pm1

)
(a+ p) (1 + x1) 3

,

v18 = −
3h∗3p(1 + hr)α2

(
r
k
− zα

(a+p)2 + 2pm1

)
(a+ p)2 (1 + x1) 4

−
2h∗2p(1 + h∗r)α2

(a+ p)3 (1 + x1) 3

+
h∗2(1 + h∗r)α2

(a+ p)2 (1 + x1) 3
, v19 = −

h∗3p(1 + h∗r)α3

(a+ p)3 (1 + x1) 4
,

v21 =
ah∗z (β + h∗βδ − ρ+ h∗zβm2 + Eh∗βq2)(

a+ p+ ah∗δ + h∗p(δ + ρ) + h∗(a+ p) (zm2 + Eq2)
)

2
,

v22 =
(a+ p+ h∗pβ)

(
a+ p+ ah∗δ + h∗p(δ + ρ) + Eh∗(a+ p)q2

)(
a+ p+ ah∗δ + h∗p(δ + ρ) + h∗(a+ p) (zm2 + Eq2)

)
2

,

v23 = −ah
∗z (1 + h∗(δ + ρ) + h∗zm2 + Eh∗q2) (β + h∗βδ − ρ+ h∗zβm2 + Eh∗)(

a+ p+ ah∗δ + h∗p(δ + ρ) + h∗(a+ p) (zm2 + Eq2)
)

3
,

v24 =
2h∗2z

(
1 +

h∗pβ

a+p

)(
− pρ

(a+p)2 + ρ
a+p

)
m2

(1 + x2) 3
−
h∗
(

1 +
h∗pβ

a+p

)(
− pρ

(a+p)2 + ρ
a+p

)
(1 + x2) 2

−
h∗z

(
− h∗pβ

(a+p)2 + h∗β
a+p

)
m2

(1 + x2) 2
+
− h∗pβ

(a+p)2 + h∗β
a+p

1 + x2

,
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v25 =
h∗(a+ p)(a+ p+ h∗pβ)m2

(
a+ p+ ah∗δ + h∗p(δ + ρ) + Eh∗(a+ p)q2

)(
a+ p+ ah∗δ + h∗p(δ + ρ) + h∗(a+ p) (zm2 + Eq2)

)
3

,

v26 = −
h∗3z

(
1 +

h∗pβ

a+p

)(
− pρ

(a+p)2 + ρ
a+p

)3

(1 + x2) 4
−
h∗z

(
1 +

h∗pβ

a+p

)(
6ρ

(a+p)3

)
6 (1 + x2) 2

+
h∗2z

(
− h∗pβ

(a+p)2 + h∗β
a+p

)(
− pρ

(a+p)2 + ρ
a+p

)2

(1 + x2) 3

−
h∗z

(
− h∗pβ

(a+p)2 + h∗β
a+p

)(
2pρ

(a+p)3 − 2ρ
(a+p)2

)
2 (1 + x2) 2

+
z
(
− 6h∗pβ

(a+p)4 + 6h∗β
(a+p)3

)
6 (1 + x2)

+
h∗2z

(
1 +

h∗pβ

a+p

)(
2pρ

(a+p)3 − 2ρ
(a+p)2

)(
− pρ

(a+p)2 + ρ
a+p

)
(1 + x2) 3

,

v27 =
ah∗z (1 + h∗(δ + ρ) + h∗zm2 + Eh∗q2) 2 (h∗βδ − ρ+ h∗zβm2 + Eh∗)(

a+ p+ ah∗δ + h∗p(δ + ρ) + h∗(a+ p) (zm2 + Eq2)
)

4
,

v28 = −
3h∗3z

(
1 +

h∗pβ

a+p

)(
− pρ

(a+p)2 + ρ
a+p

)
m2

2

(1 + x2) 4
−
h∗
(
− h∗pβ

(a+p)2 + h∗β
a+p

)
m2

(1 + x2) 2

+
2h∗2

(
1 +

h∗pβ

a+p

)(
− pρ

(a+p)2 + ρ
a+p

)
m2

(1 + x2) 3
+
h∗2z

(
− h∗pβ

(a+p)2 + h∗β
a+p

)
m2

2

(1 + x2) 3
,

v29 =
h∗2(a+ p)2(a+ p+ h∗pβ)m2

2

(
ah∗δ + h∗p(δ + ρ) + Eh∗(a+ p)q2

)(
a+ p+ ah∗δ + h∗p(δ + ρ) + h∗(a+ p) (zm2 + Eq2)

)
4

,

with

x1 = h∗
(
pr

k
+

zα

a+ p
+ p2m1 + Eq1

)
x2 = h∗

(
δ +

pρ

a+ p
+ zm2 + Eq2

)
, h∗ = (h+ h̆).

The characteristic equationM(ξ) = 0 obtained from jacobian matrix of the mathematical
system (3.5.3) about (0, 0) can be given as:

ξ2 − Tr(h̆)ξ +Dt(h̆) = 0, (3.5.4)

where

Tr(h̆) = 1−
h̄p
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
kη
(
a+ p

) +
φ+ h̄ρm2z

φ+ h̄βm2z
,
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and

Dt(h̆) =
1

akη
(
a+ p

) (
φ+ h̄βm2z

) (a2kη
(
φ+ h̄ρm2z

))
− 1

akη
(
a+ p

) (
φ+ h̄βm2z

) (2ah̄p2 (r + akm1)
(
φ+ h̄ρm2z

))
+

akp

akη
(
a+ p

) (
φ+ h̄βm2z

) ((a
h̄

k
r − h̄r − η)φ+ Eh̄q1

(
φ+ h̄ρm2z

))
−

akp

akη
(
a+ p

) (
φ+ h̄βm2z

) (3h̄m1p
2
(
φ+ h̄ρm2z

))
+

h̄zp

akη
(
a+ p

) (
φ+ h̄βm2z

) ((a(−ah̄r + h̄kr + kη)ρ+ h̄kαz (2σ +m2z)
))

+
h̄zp

akη
(
a+ p

) (
φ+ h̄βm2z

) (h̄kασ2
)
,

where h̄ = h + h̆. As (α, β, a, k, r, δ, ρ,m1,m2, q1, q2, E) ∈ 0∗, then roots of (3.5.4) are
pair of complex numbers ξ1 and ξ2 such that |ξ1| = |ξ2| = 1. Then immediately it can be
seen that:

ρ̌(h̆) =
Tr(h̆)

2
+
i

2

√
4Dt(h̆)− Tr2(h̆).

Furthermore, one can have ρ̌m(0) 6= 1 ∀ m ∈ {1, 2, 3, 4} if and only if

Tr(h̆) = 1−
h̄p
(
(a− k)r + Ekq1 + p

(
2r + km1

(
2a+ 3p

)))
kη
(
a+ p

) +
φ+ h̄ρm2z

φ+ h̄βm2z
6= ±2, 0, 1.

(3.5.5)
Since (α, β, a, k, r, δ, ρ,m1,m2, q1, q2, E) ∈ 0∗, and (3.4.8), (3.4.9) are satisfied, the con-
dition (3.5.5) is automatically satisfied and

|ξ1| = |ρ̌(h̆)| =
√
Dt(h̆),

d
√
Dt(h̆)

dh̆


h̆=0

6= 0.

Finally, to convert the linear part of (3.5.3) into canonical matrix form at h̆ = 0, we
consider the following similarity transformation:(

P

Z

)
=

(
v12 0

`− v11 −℘

)(
X

Y,

)
. (3.5.6)

where
` =

Tr(0)

2
,

and

℘ =

√
4Dt(0)− Tr2(0)

2
.
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Then, from (3.5.6) we have(
X

Y

)
=

(
1
v12

0
`−v11

℘v12
− 1
℘

)(
P

Z.

)
. (3.5.7)

By using transformation (3.5.6), one has the next authoritative form of system (3.5.3):(
X

Y

)
→

(
` −℘
℘ `

)(
X

Y

)
+

(
F̆ (X, Y )

Ğ(X, Y )

)
, (3.5.8)

where

F̆ (X, Y ) =
v16P

3

v12

+
v17P

2Z

v12

+
v13P

2

v12

+
v18PZ

2

v12

+
v14PZ

v12

+
Z3v19

v12

+
Z2v15

v12

+ O
(
(|X|+ |Y |)4

)
,

Ğ(X, Y ) =

(
(`− v11) v16

v12℘
− v26

℘

)
P 3 +

(
(`− v11) v17

v12℘
− v27

℘

)
P 2Z

+

(
(`− v11) v13

v12℘
− v23

℘

)
P 2 +

(
(`− v11) v18

v12℘
− v28

℘

)
PZ2

+

(
(`− v11) v14

v12℘
− v24

℘

)
PZ +

(
(`− v11) v19

v12℘
− v29

℘

)
Z3

+

(
(`− v11) v15

v12℘
− v25

℘

)
Z2 +O

(
(|X|+ |Y |)4

)
,

where P = v12X and Z = (`−v11)X−℘Y . Hence, by standard theory of normal form for
analysis of bifurcation, one can calculate the first Lyapunov exponent at (X, Y ) = (0, 0)

as follows:

Ω =

([
−Re

(
(1− 2ξ1)ξ2

2

1− ξ1

θ20θ11

)
− 1

2
|θ11|2 − |θ02|2 +Re(ξ2θ21)

])
h̆=0

,

where
θ20 =

1

8

[
i
(
ĞXX − ĞY Y − 2F̆XY

)
− F̆Y Y + F̆XX + 2ĞXY +

]
,

θ11 =
1

4

[
i
(
ĞXX + ĞY Y

)
+ F̆XX + F̆Y Y +

]
,

θ02 =
1

8

[
i
(
ĞXX − ĞY Y + 2F̆XY

)
− F̆Y Y + F̆XX − 2ĞXY +

]
,

θ21 =
1

16

(
F̆XXX + F̆XY Y + ĞXXY + ĞY Y Y

)
+

i

16

(
ĞXXX + ĞXY Y − F̆XXY − F̆Y Y Y

)
.

Due to aforementioned analysis, one can have the following theorem (See [28-33]).
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Theorem 3.5.1. Assume that (3.4.7), (3.4.8) and (3.4.9) are satisfied and Ω 6= 0, then
the unique positive fixed point (p, z) of mathematical system (3.1.3) undergoes Neimark-
Sacker bifurcation. Additionally, if Ω < 0, then for h > h̆ an attracting invariant closed
curve bifurcates from fixed point (p, z) and if if Ω > 0, then for h < h̆ a repelling invariant
closed curve bifurcates from fixed point (p, z).

3.6 Chaos control

In this section, we have discussed two different methods for controlling the Neimark-
Sacker bifurcation in the system (3.1.3).

3.6.1 A modified technique for chaos control

We consider the following n-dimensional discrete-time dynamical system:

Zn+k = L3g(~)(Zn, µ) + (1− L3)Zn (3.6.1)

with Zn ∈ <n, n ∈ Z, ~ ∈ Z, µ ∈ < is a bifurcation parameter and 0 < L < 1 is a control
parameter. In addition, g(~) is kth value of g(.). By application of (3.6.1) on system
(3.1.3) we get the following system:pn+1 = L3( (1+hr)pn

1+h( r
k
pn+ αzn

a+pn
+m1p2

n+q1E)
) + (1− L3)pn,

zn+1 = L3(
(1+h βpn

a+pn
)zn

1+h( ρpn
a+pn

+δ+m2zn+q2E)
) + (1− L3)zn.

(3.6.2)

Furthermore, the system (3.6.2) and system (3.1.3) have same constant solutions. Addi-
tionally, the jacobian matrix of (3.6.2) about (p, z) is given as follows: 1− hL3p((a−k)r+ekq1+p(2r+km1(2a+3p)))

k(1+hr)(a+p)
− hL3αp

(1+hr)(a+p)
hL3z(−β+δ+ρ+eq2+m2z)2

a(β+hβδ−ρ+ehβq2+hβm2z)

β+hβδ−ρ+ehβq2+h(β−L3β+L3ρ)m2z

β+hβδ−ρ+ehβq2+hβm2z

 . (3.6.3)

The following theorem describes the necessary and sufficient condition for local stability
of the system (3.6.2) about (p, z) .

Theorem 3.6.1. The positive constant solution (p, z) of the system (3.6.2) is stable
locally asymptotically ⇐⇒ the following inequality holds true.

| Tr |< 1 +Dt < 2,

where, Tr and Dt are trace and determinant of (3.6.3) respectively.
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3.6.2 Hybrid technique for chaos control

In this subsection, we apply the hybrid technique [95] on the system (3.1.3) to control the
Neimark-Sacker bifurcation. Moreover, this method is used as control strategy by many
researchers for controlling the period-doubling bifurcation, Neimark-Sacker bifurcation
and chaos under the effects of period-doubling bifurcation (see [100-104]). By application
of hybrid method [95] on the system (3.1.3) we get the following system:pn+1 = S1( (1+hr)pn

1+h( r
k
pn+ αzn

a+pn
+m1p2

n+q1E)
) + (1− S1)pn,

zn+1 = S1(
(1+h βpn

a+pn
)zn

1+h( ρpn
a+pn

+δ+m2zn+q2E)
) + (1− S1)zn,

(3.6.4)

where, 0 < S1 < 1 is a control parameter. Furthermore, the system (3.6.4) and system
(3.1.3) have same constant solutions. Additionally, the jacobian matrix of (3.6.4) about
(p, z) is given as follows: 1− hS1p((a−k)r+ekq1+p(2r+km1(2a+3p)))

k(1+hr)(a+p)
− hS1αp

(1+hr)(a+p)
hS1z(−β+δ+ρ+eq2+m2z)2

a(β+hβδ−ρ+ehβq2+hβm2z)
β+hβδ−ρ+ehβq2+h(β−S1β+S1ρ)m2z

β+hβδ−ρ+ehβq2+hβm2z

 . (3.6.5)

3.7 Numerical simulations

In this section, the numerical study of dynamics of (3.1.3) is provided. Particularly, in
this section we will study the existence and direction of Neimark-Sacker bifurcation by
using numeric values of parameters.

Example 3.7.1. Assume that a = 2.0099, q1 = 0.0189, q2 = 1.2994, r = 10.5923, E =

0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 = 0.6222,m2 =

0.4422, p0 = 0.105348, z0 = 6.8884251 and h ∈ (0, 1]. In this case the extinction equi-
librium and non extinction equilibrium for zooplankton population are (x, 0)=(1.26553, 0)

and (p, z) = (0.1053484, 6.888425) respectively. Then, from system (3.1.3) we have

lim
n−→∞

suppn ≤ k = 1.3997,

for all n ≥ 0. Then, by using the value k = 1.3997 in second equation of system (3.1.3)
we get

lim
n→∞

supzn ≤
k(β − ρ)

m2(k + a)
= 81.61590194902372,

for all n ≥ 0. Hence, we have (0.1053484, 6.888425) ∈ [0, k] ×
[
0, k(β−ρ)

m2(k+a)

]
for β > ρ,

which verifies Theorem 3.2.1. Additionally, we have

f(0) =
a(r − q1E)

α
= 7.084113606170539 > 0
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and
F (0) =

a(δ +m2f(0) + q2E)

(β − ρ)− (δ +m2f(0) + q2E)
= 0.10754185654404144 > 0.

Furthermore, for λ = 1.3997 we have (β − ρ) = 88.34599 and (δ + m2f(λ) + q2E) =

4.465067496648613 then (β − ρ) > (δ +m2f(λ) + q2E) and we get

F (λ) =
a(δ +m2f(λ) + q2E)

(β − ρ)− (δ +m2f(λ) + q2E)
− λ = −1.2921581434559586 < 0,

where
f(λ) = −(a+ λ)(m1r

2 + q1E)

α
= −79.36413532682512 < 0.

Moreover, we have

F ′(λ) = −1 +
a(β − ρ)(m2f

′(λ))

((β − ρ)− (δ +m2f(λ) + q2E))2 = −1.0580185510185083 < 0,

where

f ′(λ) = −
(a+ λ)( r

k
+ 2m1λ)

α
+
r − rλ

k
−m1λ

2 − q1E

α
= −10.993342080620321 < 0,

which verifies Theorem 3.3.1.

Example 3.7.2. Assume that a = 2.0099, q1 = 0.0189, q2 = 1.2994, r = 10.5923, E =

0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 = 0.6222,m2 =

0.4422, p0 = 0.105348, z0 = 6.8884251 and h ∈ (0, 1]. Then, the mathematical system
(3.1.3) takes the following form:

pn+1 = (1+10.5923h)pn
1+h( 10.5923

1.3997
pn+ 2.9999zn

2.0099+pn
+0.6222p2

n+0.0188)
,

zn+1 =
(1+h 98.499pn

2.0099+pn
)zn

1+h( 10.5842pn
2.0099+pn

+0.0384+0.4422zn+1.2941)
.

(3.7.1)

Additionally, in this case the extinction equilibrium and non extinction equilibrium for
zooplankton population are (x, 0)=(1.26553, 0) and (p, z) = (0.1053484, 6.888425) respec-
tively. In this case the graphical behavior of both population variables is shown in Figure
3.2. In addition, Figure 3.2c represent the maximum Lyapunov exponent for system
(3.7.1). In Figure 3.3 some phase portraits are given for variation of h in (0, 1]. Hence,
it can be easily seen that there exists the Neimark-Sacker bifurcation when h certainly
passes through h = 0.38022 (see Figure 3.3b). For aforementioned values of parame-
ters, the jacobian matrix V2(p, z) for system (3.7.1) is given as follows:

V2(0.1053484433, 6.88842511) =

(
0.9751639697174742 −0.01143564868241927

36.869495419357726 0.5871690414953413

)
.

The characteristic equation M(ξ) = 0 for V2(0.1053484433, 6.88842511) is

ξ2 − 1.8038899298174336ξ + 1 = 0. (3.7.2)
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On solving (3.7.2) one can get ξ1 = 0.7811665056064 + 0.6196705420078i and ξ2 =

0.7811665056064− 0.6196705420078i with |ξ1| = |ξ1| = 1. In addition, we have

M(−1) = 3.556545701326458 > 0

and
M(1) = 0.43187967890082724 > 0.

From (3.5.3) we have

f̆(P,Z) = 0.105348 + 0.974755P − 0.0116237Z − 0.256573P 2 − 0.099269PZ

+ 0.001282Z2 − 0.142822P 3 + 0.10288P 2Z + 0.010039PZ2

− 0.000141506Z3 +O ((|P |+ |Z|)4),

and

ğ(P,Z) = 6.88842 + 0.574993Z + 37.95688P − 43.12450P 2 + 3.450296PZ

− 0.0354763Z2 + 48.99565P 3 − 2.366456P 2Z − 0.1893441PZ2

+ 0.00218884Z3 +O ((|P |+ |Z|)4).

Finally, when system (3.5.3) is converted into canonical form (3.5.6) then we obtain the
following matrix:[

1
v12

0
`−v11

℘v12
− 1
℘

]
=

 −0.01143564869 0

−0.1939974644 −0.6196705420078615


with [

1
v12

0
`−v11

℘v12
− 1
℘

]−1

=

 −87.4458482512197577 0.0

27.3762776879404903 −1.61376075222132043

 .
Furthermore, from (3.5.8) we have

F̆ (X, Y ) = 22.073323320819P 2 + 8.5402951060818PZ − 0.1103358266003Z2

+ 12.2871550765P 3 − 8.85102538857P 2Z − 0.8636988319698PZ2

+ 0.012173994624Z3 +O ((|X|+ |Y |)4)

and

Ğ(X, Y ) = 61.114564266701P 2 − 8.141785570023PZ + 0.0908219975961Z2

− 81.22561954155P 3 + 6.52880078485P 2Z + 0.571452207625PZ2

− 0.0072969596695Z3 +O ((|X|+ |Y |)4).
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Figure 3.1: Plots for F̆ (X, Y ) and Ğ(X, Y ) for a = 2.0099, q1 = 0.0189, q2 = 1.2994, r =

10.5923, E = 0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 =

0.6222,m2 = 0.4422 and h ∈ (0, 1]

Additionally, plots for F̆ (X, Y ) and Ğ(X, Y ) with solution at (0, 0) are represented in
Figure 3.1a and Figure 3.1b respectively. where P = (−0.1162370758)X and Z =

(−0.1998810610)X − (0.6334408575)Y. Finally, we get

θ20 =
1

8

[
F̆XX + i

(
ĞXX − ĞY Y − 2F̆XY

)
− F̆Y Y + 2ĞXY +

]
= 0.005831− 0.019066i,
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θ11 =
1

4

[
i
(
ĞXX + ĞY Y

)
+ F̆Y Y + F̆XX

]
= −0.01195 + 0.013959i,

θ02 =
1

8

[
i
(
ĞXX − ĞY Y + 2F̆XY

)
− F̆Y Y + F̆XX − 2ĞXY +

]
= 0.02389− 0.00182i,

θ21 =
i

16

(
ĞXY Y + ĞXXX − F̆XXY − F̆Y Y Y

)
+

1

16

(
F̆XXX + F̆XY Y + ĞXXY + ĞY Y Y

)
= 0.00755 + 0.00574i.

and

Ω =

([
−Re

(
(1− 2ξ1)ξ2

2

1− ξ1

θ20θ11

)
− 1

2
|θ11|2 − |θ02|2 +Re(ξ2θ21)

])
ĥ=0

= −0.00138464412 < 0.

Hence, the condition for existence of Neimark-Sacker bifurcation is satisfied ( see Theo-
rem 3.5.1).

Example 3.7.3. This example is related to the study of control of Neimark-Sacker bifur-
cation by using generalized hybrid technique (3.6.1). To show effectiveness of generalized
technique we have used the values of parameters same as we have used in Example 3.7.1.
Consider the following systems of difference equations

pn+1 = L3( (1+10.5923h)pn
1+h( 10.5923

1.3997
pn+ 2.9999zn

2.0099+pn
+0.6222p2

n+0.0188)
) + (1− L3)pn,

zn+1 = L3(
(1+h 98.499pn

2.0099+pn
)zn

1+h( 10.5842pn
2.0099+pn

+0.0384+0.4422zn+1.2941)
) + (1− L3)zn.

(3.7.3)

where a = 2.0099, q1 = 0.0189, q2 = 1.2994, r = 10.5923, E = 0.9959, k = 1.3997, β =

98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 = 0.6222,m2 = 0.4422, h = 0.699909. In
addition, 0 < L < 1 is the control parameter. Furthermore, for system (3.7.3) we have
(p, z) = (0.1053484433, 6.88842511), which is unique positive constant solution of origi-
nal system (3.1.3). Additionally, controlled diagrams for zooplankton and phytoplankton
populations by using models (3.7.3) respectively shown in Figure 3.4b and Figure 3.4a.
Finally, it can be seen that the stability of initial system (3.1.3) is victoriously regained
for large range of control parameter by using generalized hybrid control method (see Fig-
ure 3.4).

Example 3.7.4. This example is related to the study of control of Neimark-Sacker bi-
furcation by using hybrid technique [95] of control. Consider the following systems of
difference equations

pn+1 = S1( (1+10.5923h)pn
1+h( 10.5923

1.3997
pn+ 2.9999zn

2.0099+pn
+0.6222p2

n+0.0188)
) + (1− S1)pn,

zn+1 = S1(
(1+h 98.499pn

2.0099+pn
)zn

1+h( 10.5842pn
2.0099+pn

+0.0384+0.4422zn+1.2941)
) + (1− S1)zn.

(3.7.4)
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(a) Bifurcation diagram for pn.

(b) Bifurcation diagram for zn.

(c) MLE for system (3.1.3).

Figure 3.2: Plots of system (3.1.3) for a = 2.0099, q1 = 0.0189, q2 = 1.2994, r =

10.5923, E = 0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 =

0.6222,m2 = 0.4422 and h ∈ (0, 1)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Phase portraits of system (3.1.3) for a = 2.0099, q1 = 0.0189, q2 = 1.2994, r =

10.5923, E = 0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 =

0.6222,m2 = 0.4422 and h ∈ (0, 1]

.
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(a) (b)

Figure 3.4: Controlled diagrams for system (3.7.3) for a = 2.0099, q1 = 0.0189, q2 =

1.2994, r = 10.5923, E = 0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ =

10.5842,m1 = 0.6222,m2 = 0.4422, h = 0.699909 and L ∈ (0, 1]

(a) (b)

Figure 3.5: Controlled diagrams for system (3.7.4) for a = 2.0099, q1 = 0.0189, q2 =

1.2994, r = 10.5923, E = 0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ =

10.5842,m1 = 0.6222,m2 = 0.4422, h = 0.699909 and S1 ∈ (0, 1)

where a = 2.0099, q1 = 0.0189, q2 = 1.2994, r = 10.5923, E = 0.9959, k = 1.3997, β =

98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 = 0.6222,m2 = 0.4422, h = 0.699909. In
addition, 0 < S1 < 1 is the control parameter. Furthermore, for system (3.7.4) we have
(p, z) = (0.1053484433, 6.88842511), which is unique positive constant solution of origi-
nal system (3.1.3). Additionally, controlled diagrams for zooplankton and phytoplankton
populations for system (3.7.4) are respectively shown in Figure 3.5b and Figure 3.5a.
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Table 3.1: Comparison between modified hybrid method (3.6.1) and hybrid method [95]
for L, S1 ∈ (0, 1] and a = 2.0099, q1 = 0.0189, q2 = 1.2994, r = 10.5923, E = 0.9959, k =

1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 = 0.6222,m2 = 0.4422, h ∈
(0, 1]

h ∈ (0, 1] Controlled interval I1 for (3.7.3) Controlled interval I2 for (3.7.4)
0.48889569 0 < L < 0.99288325491279 0 < S1 < 0.97880134847096

0.58889569 0 < L < 0.983282763587931 0 < S1 < 0.95068201684448

0.68889569 0 < L < 0.97635403882826 0 < S1 < 0.93072628972275

0.78889569 0 < L < 0.97111704728074 0 < S1 < 0.91582972183557

0.88889569 0 < L < 0.96701917628990 0 < S1 < 0.90428485868004

0.98889569 0 < L < 0.96372500134675 0 < S1 < 0.89507489723917

Example 3.7.5. In this example a comparison between generalized hybrid method and
hybrid method [95] is given. From Example 3.7.3, and Example 3.7.4 we have con-
sidered two discrete-time mathematical models (3.7.3) and (3.7.4) respectively. Moreover,
in this case we have taken L, S1 ∈ (0, 1] and a = 2.0099, q1 = 0.0189, q2 = 1.2994, r =

10.5923, E = 0.9959, k = 1.3997, β = 98.499, α = 2.9999, δ = 0.0384, ρ = 10.5842,m1 =

0.6222,m2 = 0.4422, h ∈ (0, 1].

Form both systems (3.7.3) and (3.7.4) we get (p, z) = (0.1053484433, 6.88842511) as
unique positive fixed point. Additionally, from Table 3.1 one can observe that |I1| > |I2|
for each variation of parameter h in (0,1]. Where I1 and I2 are controlled intervals
corresponding to controlled systems (3.7.3) and (3.7.4), respectively. Hence, it can be
seen from Table 3.1 that generalized hybrid method (3.6.1) is much better then the old
hybrid method [95].

Example 3.7.6. In this example, we study a comparison between the dynamics of system
(3.0.3) and (3.1.3). For case (i) we take a = 2.1, q1 = 0.09, q2 = 0.3, r = 1.5, c = 0.14, k =

100, β = 0.5, α = 0.69, δ = 0.001, ρ = 0.1,m2 = 0.021 and m1 = 0.06, then we get the
fixed point (p, z) = (2.3059, 7.38854) which is unique positive constant solution of (3.0.3)
and (3.1.3). Moreover, for initial conditions p0 = 2.3059 and z0 = 7.38854, Figure 3.6a
and Figure 3.7b are plotted for system (3.1.3) and (3.0.3) respectively. Consequently,
it can be seen that system (3.1.3) and (3.0.3) are stable at (p, z) = (2.3059, 7.38854),

for m1 = 0.06 (see Figure 3.6a and Figure 3.7b). In addition, for case (ii) we take
m1 = 0.025 and a = 2.1, q1 = 0.09, q2 = 0.3, r = 1.5, c = 0.14, k = 100, β = 0.5, α =

0.69, δ = 0.001, ρ = 0.1,m2 = 0.021, we get the fixed point (p, z) = (2.8059, 8.8854) which
is unique positive constant solution of (3.0.3) and (3.1.3). Hence, it can be seen that both
systems (3.0.3) and (3.1.3) are unstable at (p, z) = (2.8059, 8.8854) (see Figure 3.6b and
Figure 3.7a). Finally, Figure 3.6c and Figure 3.6d shows the existence of Neimark-
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Sacker bifurcation in system (3.1.3) for lower values of step-size h. Additionally, Figure
3.7c and Figure 3.7d shows that both variables p(t) and z(t) from system (3.0.3) are
unstable at (p, z) = (2.8059, 8.8854) (see [82]).

(a) Phase portrait for m1 = 0.06 (b) Phase portrait for m1 = 0.025

(c) Bifurcation diagram for m1 = 0.025 (d) Bifurcation diagram for m1 = 0.025

Figure 3.6: Bifurcation diagrams and phase portraits for system (3.1.3) for a = 2.1, q1 =

0.09, q2 = 0.3, r = 1.5, c = 0.14, k = 100, β = 0.5, α = 0.69, δ = 0.001, ρ = 0.1,m2 = 0.021

and h = 0.0399909

3.8 Concluding remarks

We study the dynamics of a discrete-time phytoplankton-zooplankton model [82]. Firstly,
by implementing nonstandard difference scheme we obtained a discrete-time version of the
model presented in [82]. It is proved that each solution of system (3.1.3) is bounded and
contained in a rectangular region (see Theorem 3.2.1). Moreover, it is shown that there
exist a unique positive fixed point of system (3.1.3) which is contained in that rectangular
region (see Theorem 3.3.1). In addition, local stability of system (3.1.3) about each
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(a) Phase portrait for m1 = 0.025

(b) Phase portrait for m1 = 0.06

(c) Plot of p(t) for m1 = 0.025 (d) Plot of z(t) for m1 = 0.025

Figure 3.7: Plots and phase portraits for system (3.0.3) for a = 2.1, q1 = 0.09, q2 =

0.3, r = 1.5, c = 0.14, k = 100, β = 0.5, α = 0.69, δ = 0.001, ρ = 0.1 and m2 = 0.021.

of its fixed point is discussed. To prove complexity in mathematical system (3.1.3), the
existence of Neimark-Sacker bifurcation for unique positive fixed point is shown math-
ematically. Neimark-Sacker bifurcation is effectively controlled by using two different
methods, namely, generalized hybrid control method and hybrid control method [95]. In
order to verify our theoretical investigations, a comprehensive numerical simulation is
provided at the end of chapter. In Example 3.7.2 the numeric validation of Theorem
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3.2.1 and Theorem 3.3.1 is provided. It is numerically and graphically shown that sys-
tem (3.1.3) experiences the Neimark-Sacker bifurcation for large range of step-size h. In
addition, two examples are provided related to the control of Neimark-Sacker bifurcation.
In order to provide a clearer understanding of our theoretical findings and to compare the
dynamics between the discrete-time model (5.1.3) and its continuous counterpart (3.0.2),
we present a set of numerical examples. Additionally, we conduct a numerical study,
specifically in Example 3.7.6, where we observe that the obtained system (5.1.3) and
its continuous-time counterpart (3.0.2) exhibit stability for the same parameter values,
and conversely, they demonstrate instability for corresponding parametric values. This
numerical analysis serves as additional evidence to support the observed dynamical con-
sistency in our derived system (5.1.3). For the study of both cases in Example 3.7.6,
the parametric values are taken from [82]. It is shown that system (3.0.3) and (3.1.3) are
stable for the values of m1 greater than or equal to m1 = 0.06 and these systems are un-
stable whenever m1 < 0.06. In addition, our numerical study showed that the generalized
hybrid method (3.6.1) is superior then hybrid method [95]. In addition, it is based on
feedback control and it has brought back the stability of system (3.1.3) for large ranges
of parameters. Moreover, from numerical study can be seen that the generalized hybrid
method (3.6.1) is suitable for controlling the Neimark-Sacker bifurcation. At last, a com-
parison between generalized hybrid method (3.6.1) and hybrid method [95] is provided in
Table 3.1. Moreover, from Figure 3.4, Figure 3.5 and Table 3.1 it can be seen that
the generalized hybrid control technique have restored the stability of the system (3.1.3)
for maximum range of control parameter.
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Chapter 4

Bifurcation Analysis of a Discrete-Time
Compartmental Model for
Hypertensive or Diabetic Patients
Exposed to COVID-19

Here, we consider a continuous-time model for COVID-19 transmission. We consider three
mutually exclusive classes, namely, susceptible class (A): which is tested for diabetes or
hypertension, exposed class (B), and quarantined class (C). Moreover, all parametric
values related to our mathematical system are provided in Table 4.1. The findings of
this chapter are published in a top-quality international journal (see [18]). Under these
considerations, we have the following model

A′(t) = KA(t)− δ1A(t)B(t)− δ2A(t)B(t)

α + A(t)
− δ4A(t)C(t)

b+ A(t)
− dA2(t),

B′(t) = δ1A(t)B(t) +
β2A(t)B(t)

α + A(t)
− δ3B(t)C(t)

γ +B(t)
− dB(t),

C ′(t) =
r1δ3C(t)B(t)

γ +B(t)
+
r2δ4A(t)C(t)

β + A(t)
− dC(t),

(4.0.1)

with, A ≥ 0, B ≥ 0, and C ≥ 0. Here, parameter K represents the birth rate for a
new individual. In addition, the death rate for each individual in their particular class is
represented by a uniform rate parameter d. δ2AB

α+A
represents the saturated rate where α

is the constant of saturation, and δ2 is the infection force, as shown in the following flow
diagram:
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Notations Clarification Parametric values
K Birth rate +ve Assumed
δ1 Transmission rate of individuals from A −→ B 0.9 Calculated
δ2 Infection rate 0.001 Assumed
δ3 Rate at which exposed persons get quarantined 0.80 Calculated
δ4 Rate at which susceptible persons get quarantined 0.60 Calculated
α, β, γ Half-saturation constants 2, 10, 0.4 Assumed
r1, r2 Conversion efficiency 1, 2 Assumed

Table 4.1: Definitions of parameters and their respective values

Figure 4.1: Flow diagram representing the shifting of any individual from one class to
other class.

.

The study conducted in [101] examines the qualitative behavior of model (4.0.1)
through the application of the Z-control technique for chaos control. Furthermore, the
authors delve into the exploration of various foundational models related to Z-control.
These include a comprehensive model proposed by Samanta [96] and a prey-predator
model investigated by Alzahrani et al. [97].

4.1 Discretization of model

In [98], the authors have explained that Euler’s forward method is not appropriate for
discretizing every continuous-time dynamical system. Moreover, it violates the consis-
tency of the original model, and different types of bifurcations occur for the maximum
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range of the step-size parameter. Hence, a different discretization technique must be re-
quired to eliminate this lack, which is as follows: Supposing that the ordinary evolution
rates in every compartment vary at the fixed lag of time. Then by using the technique of
piecewise constant arguments (see [99]) for differential equations, system (4.0.1) can be
written as:

1

A(t)
A′(t) = K − δ1B(t)− δ2B(t)

α + A(t)
− δ4C(t)

b+ A(t)
− dA(t),

1

B(t)
B′(t) = δ1A(t) +

β2A(t)

α + A(t)
− δ3C(t)

γ +B(t)
− d,

1

C(t)
C ′(t) =

r1δ3B(t)

γ +B(t)
+
r2δ4A(t)

β + A(t)
− d,

(4.1.1)

with [t] as integer part of t and t ∈ (0, 1). In addition, by taking integration of system
(4.1.1) on [m,m+ 1) with m ∈W one have the following system:

A(t) = Ame
[K−δ1Bm− δ2Bm

α+Am
− δ4Cm
b+Am

−dAm](t−m),

B(t) = Bme
[δ1Am+

β2Am
α+Am

− δ3Cm
γ+Bm

−d](t−m),

C(t) = Cme
[
r1δ3Bm
γ+Bm

+
r2δ4Am
β+Am

−d](t−m).

(4.1.2)

Formally, by taking limit t −→ m+ 1, we have the next from of system (4.1.2):

Am+1 = Ame
K−δ1Bm− δ2Bm

α+Am
− δ4Cm
b+Am

−dAm ,

Bm+1 = Bme
δ1Am+

β2Am
α+Am

− δ3Cm
γ+Bm

−d,

Cm+1 = Cme
r1δ3Bm
γ+Bm

+
r2δ4Am
β+Am

−d.

(4.1.3)

4.2 Boundedness of solutions

This section focuses on proving the boundedness of all positive solutions (Am, Bm, Cm).
To achieve this goal, we introduce the following lemma.

Lemma 4.2.1. Each solution (Am, Bm, Cm) of the system (4.1.3) is uniformly bounded,
whenever for any finite Υ ∈ <, we take

lim
m−→∞

supBm ≤ Υ.

Proof. Let A0 > 0, B0 > 0 and C0 > 0 then every solution (Am, Bm, Cm) of mathematical
system (4.1.3) fulfills Am > 0, Bm > 0 and Cm > 0 for every m ≥ 0. Primarily, from
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leading equation of the system (4.1.3) one can write

Am+1 = Amexp(K − δ1Bm −
δ2Bm

α + Am
− δ4Cm
β + Am

− dAm)

≤ Amexp(K − δ1Bm −
δ2Bm

α + Am
− dAm)

≤ Amexp(K − dAm)

= Amexp(K(1− d

K
Am)).

Then, by using Lemma 1.2.2 we have

lim
m−→∞

supAm ≤
1

d
exp(K − 1) = z(say).

From last equation of the system (4.1.3) we get

Cm+1 = Cmexp(
r1δ3Bm

γ +Bm

+
r2δ4Am
β + Am

− d)

≤ Cmexp(
r1δ3

γ + Υ
+
r2δ4(K − δ1Υ− δ2Υ

α+z −
δ4Cm
β+z )

dβ
)

≤ Cmexp(
r1δ3Υ

γ + Υ
+
r2δ4K

dβ
− r2δ

2
4K

dβ(β + z)
Cm)

= Cmexp

(
(dKβr1δ3 + r2δ4K(γ + Υ))

dβ(γ + Υ)

(
1− r2δ

2
4K(γ + Υ)Cm

(β + z)(dΥβr1δ3 + r2δ4K(γ + Υ))

))
.

By using Lemma 1.2.2 we have

lim
m−→∞

supCm ≤
1

r2δ2
4K

dβ(β+z)

exp

(
(dΥβr1δ3 + r2δ4K(γ + Υ))

dβ(γ + Υ)
− 1

)
.

By using the method of mathematical induction, one has the following lemma.

Lemma 4.2.2. Let us assume 0 < A0 <
1
d
exp(K − 1), with 0 < B0 < K and

0 < C0 <
1

r2δ2
4K

dβ(β+z)

exp

(
(dΥβr1δ3 + r2δ4K(γ + Υ))

dβ(γ + Υ)
− 1

)
,

then [0, 1
d
exp(K− 1)]× [0,Υ]× [0, 1

r2δ
2
4K

dβ(β+z)

exp
(

(dΥβr1δ3+r2δ4K(γ+Υ))
dβ(γ+Υ)

− 1
)

] each result of the

system (4.1.3) the form (Am, Bm, Cm) is invariant.
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4.3 Existence of fixed points

In this part of thesis, we consider fixed points (A,B,C) of the system (4.1.3), obtained
from the following mathematical system:

A∗ = A∗eK−δ1B
∗− δ2B

∗
α+A∗−

δ4C
∗

b+A∗−dA∗
,

B∗ = B∗eδ1A
∗+

β2A
∗

α+A∗−
δ3C

∗
γ+B∗−d,

C∗ = C∗e
r1δ3B

∗
γ+B∗ +

r2δ4A
∗

β+A∗ −d.

(4.3.1)

From system (4.3.1) individual can have six fixed points (0, 0, 0), (K
d
, 0, 0), (0, γd

r1δ3−d ,
γdr1
d−r1δ3 ),

( dβ
(r2δ4−d)

, 0, βr2(Kr2δ4−βd2−d)
(r2δ4−d)2 ), (Ā, B̄, 0), and positive fixed point (A∗, B∗, C∗).

Remark 4.3.1. The fixed point (0, γd
r1δ3−d ,

γdr1
d−r1δ3 ) of system (4.1.3) does not exist as for

every r1, δ3, d > 0 one of its components from γd
r1δ3−d or γdr1

d−r1δ3 becomes negative.

Assume the following jacobian matrix

J =

 l11 l12 l13

l21 l22 l23

l31 l32 l33


of system (4.1.3) about (A∗, B∗, C∗). Then, from J in consequence we get

G(ψ) = ψ3 − S1ψ
2 + S2ψ − S3, (4.3.2)

with
S1 = (l11 + l22 + l33),

S2 = L11 + L22 + L33,

and
S3 = det(J).

Where, the minor determinants L11, L22 and L33 are obtained from variational matrix
J. Firstly, we analyze the stability of fixed point (0, 0, 0). The variational matrix J1 for
fixed point (0, 0, 0) is specified as

J1 =

 eK 0 0

0 1
ed

0

0 0 1
ed

 .

Additionally, from J1 we have ψ1 = eB, ψ2 = 1
ed

and ψ3 = 1
ed
, with |ϕ1| > 1 and

|ψ2| = |ψ3| < 1 for all values of parameters. Hence, we have the following result about
the stability of (0, 0, 0).
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Proposition 4.3.1. Assume that (0, 0, 0) be any fixed point of (4.1.3) then for each value
of K, d > 0 it remains unstable.

Next, we study the stability of system (4.1.3) about (K
d
, 0, 0). The jacobian matrix

J2 about (K
d
, 0, 0) is specified as:

J2 =


1−K −Kδ1

d
− Kδ2

K+αd
− Kδ4
K+βd

0 e−d+
Kδ1
d

+
Kδ2
K+αd 0

0 0 e−d−
Kr2δ4
K+βd

 .

Then, from characteristic polynomial G(ψ) of J2 we have three solutions, namely, ψ1 =

1−K, ψ2 = 1

e
d−Kδ1

d
− Kδ2
K+αd

and ψ3 = 1

e
d+

Kr2δ4
K+βd

. Formally, we conclude the following result.

Proposition 4.3.2. Assuming the fixed point (K
d
, 0, 0) of system (4.1.3) we have;

• The point (K
d
, 0, 0) remains stable for |ψ1|, |ψ2|, |ψ3| < 1 ⇐⇒

0 < K < 2 and d2(K + αd) > K(δ1(K + αd) + dδ2).

• The fixed point (K
d
, 0, 0) remains unstable for every

K > 2.

Figure 4.2: Stability region for (K
d
, 0, 0) for α = 2, β = 10, δ1 = 0.99, γ = 0.4, δ2 =

0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2 , K ∈ (0, 1), d ∈ (0, 2) with A0 = 0.995, B0 =

0.38855 and C0 = 0.3455.

.
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(
βd

r2δ4−d , 0,
βr2(Kr2δ4−d(K+βd))

(d−r2δ4)2

)
for α = 2, β = 10, δ1 = 0.99, γ =

0.4, δ2 = 0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2 , K ∈ (0, 1), d ∈ (0, 2) with A0 =

0.995, B0 = 0.38855 and C0 = 0.3455.

.

By considering the fixed point
(

βd
r2δ4−d , 0,

βr2(Kr2δ4−d(K+βd))
(d−r2δ4)2

)
of system (4.1.3) we get

the following jacobian matrix:

J3 =


1 + d(K+βd)

r2δ4
+ 2βd2

d−r2δ4 βd
(

δ1
d−r2δ4 + δ2

αd−βd−αr2δ4

)
− d
r2

0 e
−d+

βdδ1
−d+r2δ4

+
βdδ2

(β−α)d+αr2δ4
+
βr2δ3(d(K+βd)−Kr2δ4)

γ(d−r2δ4)2 0
e−2d(d(K+βd)−Kr2δ4)

δ4
−βe−2dr1r2δ3(d(K+βd)−Kr2δ4)

γ(d−r2δ4)2 e−2d

 .

The roots of G(τ) = 0 are

τ1 =
1

e
d− βdδ1

r2δ4−d
− βdδ2

(β−α)d+αr2δ4
−βr2δ3(d(K+βd)−Kr2δ4)

γ(d−r2δ4)2

,

τ2, τ3 =
(α11 ±

√
α12 + α13)

e2d2r2δ4 (d− r2δ4)
,

where, G(τ) = 0 is characteristic equation of J3 and

α11 = e2dd2(K + βd) + d
(
1 + e2d(1−K + βd)

)
r2δ4 −

(
1 + e2d

)
r2

2δ
2
4,

α12 =
(
e2dd2(K + βd) + r2δ4

(
d+ e2dd(1−K + βd)−

(
1 + e2d

)
r2δ4

))
2,

and

α13 = (d2(1 + d)(K + βd)− r2δ4 (d(K − 1 + 2Kd+ β(d− 1)d) + (Kd− 1)r2δ4))(
4e2dr2δ4 (r2δ4 − d)

)
.

(4.3.3)
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Proposition 4.3.3. Taking the fixed point
(

βd
r2δ4−d , 0,

βr2(Kr2δ4−d(K+βd))
(d−r2δ4)2

)
of system (4.3.1)

and τ1, τ2 and τ3 as roots of J3 we find
(

βd
r2δ4−d , 0,

βr2(Kr2δ4−d(K+βd))
(d−r2δ4)2

)
stable

d >
βdδ1

r2δ4 − d
+

βdδ2

(β − α)d+ αr2δ4

+
βr2δ3 (d(K + βd)−Kr2δ4)

γ (d− r2δ4) 2

and

|
(
α11 ±

√
α12 + α13

)
| < e2d2r2γ4 (d− r2δ4)

with d > r2δ4 and α11, α12, and a13 are specified in (4.3.3).

From a biological view, we must have to find a positive result of (4.3.1). Hence, we do
care to find at least a positive solution of the system (4.3.1). Formally, from the system
(4.3.1), we have

B∗ = −γ
(

1 +
r1δ3(β + A∗)

d(β + S∗) + r2δ4 + A∗ − r1δ3(β + A∗)

)
and

Q∗ =
−(γ +B∗)

δ3

(
d−

(
δ1 +

δ2

(α + A∗)

)
A∗
)
,

such that A∗ is obtained from the cubic equation:

h(t) = E11t
3 + F11t

2 +G11t+H11, (4.3.4)

with

E11 = d(r1δ3 + r2δ4 − d),

F11 = (K − (α + β)d)(d− r1δ3)− (K − αd)r2δ4 + γδ1(d+ (r1 − r2)δ4),

G11 = ((α + β)K − αβd)(d− r1δ3)− (γdr1 + αKr2)δ4 + (d+ (r1 − r2)δ4)γδ2

+((α + β)d+ α(r1 − r2)δ4)γδ1,

H11 = (αβ(K + γδ1) + γβδ3)d− αr1(βKδ3 + dγδ4).

(4.3.5)
From Lemma 1.2.1, we get the following lemma for presence of the positive real solution
of equation h(t) in (4.3.4).

Lemma 4.3.1. There exist one and only positive real root of polynomial h(t) given in
(4.3.4) ⇐⇒ one of the following is satisfied: i. E11 < 0, F11 < 0, G11 < 0, H11 > 0.

ii. E11 < 0, F11 > 0, G11 > 0, H11 > 0.

Lemma 4.3.2. Assume that A∗ is any solution of (4.3.4). Then, from Lemma 4.3.1,
one can see that the system (4.0.1) has only one positive solution if conditions

r1δ3 + r2δ4 < d < (r2 − r1)δ4

and
K < d

are satisfied.
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Proof. The positive fixed point of (4.1.3) satisfies the algebraic equations that are similar
to its counterpart in continuous form (see (4.0.1)). For system (4.0.1), the validation is
given in [101].

4.4 Local stability analysis

Consider the variational matrix J4 of system the (4.1.3) about fixed point (A∗, B∗, C∗).

J4 =


1 + A∗

(
δ2B∗

(α+A∗)2−d + δ4C∗

(β+A∗)2

)
−A∗

(
δ1 + δ2

α+A∗

)
− δ4A∗

β+A∗

B∗(αδ2+δ1(α+A∗)2)
(α+A∗)2

(γ+B∗)2+δ3B∗C∗

(γ+B∗)2 − δ3B∗

γ+B∗

− βr2δ4C∗

(β+A∗)2
γr1δ3C∗

(γ+B∗)2 1

 . (4.4.1)

Moreover, the following theorem offers us an essential condition for all of the solutions of
any fundamental equation of degree 3 to have mod one (see, Theorem 5 from [100]).

Theorem 4.4.1. Let us consider the following third-degree equation

G(ψ) = ψ3 − S1ψ
2 + S2ψ − S3, (4.4.2)

with S1, S2, S3 ∈ <. Then, every root of (4.4.2) remain in the interior of a unit disk ⇐⇒
|S1 + S3| < 1 + S2,

|S1 − 3S3| < 3− S2,

S3
2 + S2 − S1S3 < 1.

(4.4.3)

Theorem 4.4.2. The endemic fixed point (A∗, B∗, C∗) of the dynamical system (4.1.3)
is stable locally and asymptotically if we have:

|S1 + S3| < 1 + S2,

|S1 − 3S3| < 3− S2,

S3
2 + S2 − S1S3 < 1.

where
S1 = 3 + δ3B∗C∗

µ2 +
(
δ2B∗

ε2
+ δ4C∗

η2 − d
)
A∗,

S2 = 3 +
γr1δ2

3B
∗C∗

µ3 + A∗
(

(ε3δ2
1+ε(2+(α+ε)δ1)δ2+αδ2

2)B∗

ε3
− 2d+ δ4C

∗
(
η−βr2δ4

η3 + 1
(η)2

))
+
ε3B∗C∗(ε2−dε24C∗A∗+(2ε2+(δ2B∗−dε2)A∗)(η)2)

ε2µ2(η)2 ,

(4.4.4)
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

S3 = 1
ε3η3µ3 (ε3η3 (µ3 + δ3 (µ+ γr1δ3)B∗C∗))

+ 1
ε3η3µ3 ((η3µ3 (ε3δ2

1 + ε (1 + (α + ε)δ1) δ2 + αδ2
2)B∗ − dε3))

− ε
ε3η3µ3 (βε2µ3r2δ

2
4 + η3δ3 (µ+ γr1δ3)B∗ (dε2 − δ2B

∗))

+ 1
ε3η3µ3 (ηµδ4 (−µ2ε2 + (βεµr2 (εδ1 + δ2) + γηr1 (ε2δ1 + αδ2)) δ3B

∗)C∗)

+µ3δ3δ4
ε3η3ε3

(γηr1δ3 + µ (η − βr2δ4))B∗ (C∗)2A∗,

a+ A∗ = ε,

b+ A∗ = η,

and

µ = d+B∗.

(4.4.5)

Proof. Now, we have the next variational matrix of system (4.1.3) about (A∗, B∗, C∗)

J4 =


1 + A∗

(
δ2B∗

(α+A∗)2−d + δ4C∗

(β+A∗)2

)
−A∗

(
δ1 + δ2

α+A∗

)
− δ4A∗

β+A∗

B∗(αδ2+δ1(α+A∗)2)
(α+A∗)2

(γ+B∗)2+δ3B∗C∗

(γ+B∗)2 − δ3B∗

γ+B∗

− βr2δ4C∗

(β+A∗)2
γr1δ3C∗

(γ+B∗)2 1

 .

Formally, the characteristic equation G(ψ) from J4 is specified as:

G(ψ) = ψ3 − S1ψ
2 + S2ψ − S3, (4.4.6)

where S1, S2 and S3 are specified in (4.4.4) and (4.4.5). Hence, from Theorem 4.4.1,
one can see that the positive fixed point of the dynamical system (4.1.3) is stable locally
and asymptotically if we have: 

|S1 + S3| < 1 + S2,

|S1 − 3S3| < 3− S2,

S3
2 + S2 − S1S3 < 1.

4.5 Bifurcation analysis

In this part of thesis, we are focused on the analysis of bifurcation of the system (4.1.3)
when evaluated at (A∗, B∗, C∗). All conditions for the presence of (A∗, B∗, C∗) are pro-
vided in Lemma 1.2.2 and Lemma 4.3.2. Moreover, this part of thesis is related to the
study of period-doubling bifurcation experienced by system (4.1.3) about its quarantined
free fixed point.

4.5.1 Period-doubling bifurcation

In recent times, many researchers have studied the period-doubling bifurcation in the
qualitative analysis of discrete-time mathematical models (see [103-108]). Under the
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suppositions that K > d and CM → 0,∀M, we study the following set:

Ω1 = {α,K, γ, δ1, δ2 ∈ <+ : d = f(A,B, α,K, γ, δ1, δ2)}.

Then, the fixed point (A,B, 0) of system (4.1.3) experiences the period-doubling bifurca-
tion such that d is taken as bifurcation parameter, and it varies in a slight neighborhood
of d̂, which is given as

d̂ = f(A,B, α,K, γ, δ1, δ2).

Besides, the system (4.1.3) is categorized uniformly employing the following mapping:(
A

B

)
→

(
AeK−δ1B−

δ2B
α+A

−dA

Beδ1A+
δ2A
α+A

−d

)
. (4.5.1)

To argue and investigate the period-doubling bifurcation for fixed point (A,B, 0) of
(4.5.1), we assume that α,K, γ, δ1, δ2, d̂ ∈ Φ1. At that time, it seems that(

A

B

)
→

(
AeK−δ1B−

δ2B
α+A

−d̂A

Beδ1A+
δ2A
α+A

−d̂

)
. (4.5.2)

By letting d̄ as a bifurcation parameter, the perturbation of map (4.5.2) can be defined
with the following map: (

A

B

)
→

(
AeK−δ1B−

δ2B
α+A

−(d̂+d̄)A

Eeδ1A+
δ2A
α+A

−(d̂+d̄)

)
(4.5.3)

with |d̄| � 1, is a least perturbation parameter. By letting X = A−A and Y = B −B.
Then, by using (4.5.3) we get the following mapping:(

X

Y

)
→

(
κ11 κ12

τ21 τ22

)(
X

Y

)
+

(
g1(X, Y, d̄)

g2(X, Y, d̄)

)
, (4.5.4)

where, the fixed point of (4.5.4) is at (0, 0) and we have

g1(X, Y, d̄) = κ13X
2 + κ14XY + κ15Xd̄+ κ16Y

2 + κ17µ̄Y + κ18µ̄
2 + κ19X

3 + κ20X
2Y

+ κ21d̄X
2 + κ22XY

2 + κ23XY d̄+ κ24Xd̄
2 + κ25Y d̄

2 + κ26d̄
3

+ O
(
(|X|+ |Y |+ |d̄|)4

)
,

g2(X, Y, d̄) = τ13X
2 + τ14XY + τ15Y d̄+ τ16d̄

2 + τ17X
3 + τ18X

2Y + τ19d̄X
2 + τ20d̄XY

+ τ21d̄
2X + τ22Y d̄

2 + τ23d̄
3 +O

(
(|X|+ |Y |+ |d̄|)4

)
,
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with 
κ11 = A

(
Bδ2

(α+A)2 − d̄
)
, κ12 = −A

(
δ1 + δ2

α+A

)
,

κ13 = 1
2

(
d̄(Ad̄− 2) +

Bδ2(2(α+A)(α−A(α+A)d̄)+BAδ2)
(α+A)4

)
,

κ14 =
(
−δ1 − δ2

α+A

)
+ Aδ2

(α+A)2 + A
(

δ2B
(α+A)2 − d̄

)(
−δ1 − δ2

α+A

)
,

κ15 = A
(
Ad̄− 2− BAδ2

(α+A)2

)
,

κ16 =
A((α+A)δ1+δ2)2

2(α+A)2 , κ17 =
A

2((α+A)δ1+δ2)
α+A

, κ18 = A
3

2
,

κ19 = 1
6

(
Bδ2(3(α+A)2(−2α−2α(α+A)d̄+A(α+A)2d̄2)+Bδ2(−3(α+A)(−α+A+A(α+A)d̄)+BAδ2))

(α+A)6

)
+1

6

(
d̄2(3− Ad̄)

)
,

κ20 = δ2
(α+A)2 +

(
δ2B

(α+A)2 − d̄
)(
−δ1 − δ2

a+S

)
− Sβ2

(a+S)3 −
Sβ2E(−β1− δ2

α+A)
(α+A)3 +

A
(

δ2B

(α+A)2
−d̄

)
δ2

(α+A)2

+1
2
A
(

δ2B
(α+A)2 − d̄

)
2
(
−δ1 − δ2

α+A

)
,

κ21 = −1 + BA2δ2
(α+A)3 + 2A

(
d̄− Bδ2

(α+A)2

)
− 1

2
A

2
(
d̄− Bα2

(α+A)2

)
2,

κ22 = −((α+A)δ1+δ2)((α+A)3(−1+Ad̄)δ1+(α+A)(−α+A+A(α+A)d̄−BAδ1)δ2−BAδ2
2)

2(α+A)4 ,

κ23 = 2A
(
δ1 + δ2

α+A

)
− A

2

(α+A)2 + A
2
(

δ2B
(α+A)2 − d̄

)(
δ1 + δ2

α+A

)
,

κ24 = 1
2
A

2
(

3− Ad̄+ BAδ2
(α+A)2

)
,

κ25 = −A
3((α+A)δ1+δ2)

2(α+A)
, κ26 = −A

4

6
,

τ11 = B
(
δ1 + αδ2

(α+A)2

)
, τ12 = 1, τ13 =

B((α+A)4δ2
1+2α(α+A)(−1+(α+A)δ1)δ2+α2δ2

2)
2(α+A)4 ,

τ14 = δ1 + αδ2
(α+A)2 ,

τ15 = −1, τ16 = B
2
, τ17 =

B(−6A(α+A)2δ2+6(α+A)3δ2−6α(α+A)δ2((α+A)2δ1+αδ2)+((α+A)2δ1+αδ2)3)
6(α+A)6 ,

τ18 =
−2α(α+A)δ2+((α+A)2δ1+αδ2)2

2(V+A)4 , τ19 = −B((α+A)4δ2
1+2α(α+A)((α+A)α1−1)δ2+α2δ2

2)
2(α+A)4 ,

τ20 = −δ1 − αδ2
(α+A)2 , τ21 = 1

2
B
(
δ1 + αδ2

(α+A)2

)
, τ22 = 1

2
, τ23 = −B

6
.

Let ψ1 and ψ2 are characteristic roots for system (4.5.2) then, we get the next translation;(
X

Y

)
= N

(
U

V

)
, (4.5.5)

where

N =

 −A(δ1 + δ2
α+A

)
−A

(
δ1 + δ2

α+A

)
Ad̄− BAδ2

(α+A)2 − 1 ψ2 − A
(

Bδ2
(α+A)2 − d̄

) 
be a nonsingular matrix. With the application of transformation (4.5.5), the equation
(4.5.4) becomes: (

U

V

)
→

(
−1 0

0 ψ2

)(
U

V

)
+

(
f(U, V, d̄)

g(U, V, d̄)

)
, (4.5.6)
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where

f(U, V, d̄) =

(
(ψ2 − κ11)κ26

κ12 (ψ2 + 1)
− τ23

ψ2 + 1

)
d̄3 +

(
(ψ2 − κ11)κ24

κ12 (ψ2 + 1)
− τ21

ψ2 + 1

)
d̄2X

+

(
(ψ2 − κ11)κ25

κ12 (ψ2 + 1)
− τ22

ψ2 + 1

)
d̄2Y +

(
(ψ2 − κ11)κ18

κ12 (ψ2 + 1)
− τ16

ψ2 + 1

)
d̄2

+

(
(ψ2 − κ11)κ21

κ12 (ψ2 + 1)
− τ19

ψ2 + 1

)
d̄ X2 +

(
(ψ2 − κ11)κ23

κ12 (ψ2 + 1)
− τ20

ψ2 + 1

)
d̄ XY

+
(ψ2 − κ11)κ15d̄ X

κ12 (ψ2 + 1)
+

(
(ψ2 − κ11)κ17

κ12 (ψ2 + 1)
− τ15

ψ2 + 1

)
Y d̄

+

(
(ψ2 − κ11)κ19

κ12 (ψ2 + 1)
− τ17

ψ2 + 1

)
X3 +

(
(ψ2 − κ11)κ20

κ12 (ψ2 + 1)
− τ18

ψ2 + 1

)
X2Y

+

(
(ψ2 − κ11)κ13

κ12 (ψ2 + 1)
− τ13

ψ2 + 1

)
X2 +

(ψ2 − κ11)κ22XY
2

κ12 (ψ2 + 1)

+

(
(ψ2 − κ11)κ14

κ12 (ψ2 + 1)
− τ14

ψ2 + 1

)
XY +

(ψ2 − κ11)κ16Y
2

κ12 (ψ2 + 1)

+ O
(
(|U |+ |V |+ |d̄|)4

)
,

g(U, V, d̄) =

(
(1 + κ11)κ26

κ12 (ψ2 + 1)
+

τ23

ψ2 + 1

)
d̄3 +

(
(1 + κ11)κ24

κ12 (ψ2 + 1)
+

τ21

ψ2 + 1

)
d̄2X

+

(
(1 + κ11)κ25

κ12 (ψ2 + 1)
+

τ22

ψ2 + 1

)
d̄2Y +

(
(1 + κ11)κ18

κ12 (ψ2 + 1)
+

τ16

ψ2 + 1

)
d̄2

+

(
(1 + κ11)κ21

κ12 (ψ2 + 1)
+

τ19

ψ2 + 1

)
d̄ X2 +

(
(1 + κ11)κ23

κ12 (ψ2 + 1)
+

τ20

ψ2 + 1

)
d̄ XY

+
(1 + κ11)κ15d̄ X

κ12 (ψ2 + 1)
+

(
(1 + κ11)κ17

κ12 (ψ2 + 1)
+

τ15

ψ2 + 1

)
Y d̄

+

(
(1 + κ11)κ19

κ12 (ψ2 + 1)
+

τ17

ψ2 + 1

)
X3 +

(
(1 + κ11)κ20

κ12 (ψ2 + 1)
+

τ18

ψ2 + 1

)
X2Y

+

(
(1 + κ11)κ13

κ12 (ψ2 + 1)
+

τ13

ψ2 + 1

)
X2 +

(1 + κ11)κ22XY
2

κ12 (ψ2 + 1)

+

(
(1 + κ11)κ14

κ12 (ψ2 + 1)
+

τ14

ψ2 + 1

)
XY +

(1 + κ11)κ16Y
2

κ12 (ψ2 + 1)

+ O
(
(|U |+ |V |+ |d̄|)4

)
,

where
κ12(V + U) = X, (ψ2 − κ11)V − (1 + κ11)U = Y.

Let 0c(0, 0, 0) be the center manifold of (4.5.6) anticipated at (0, 0) in a least neighbor-
hood of η̄ = 0. At that time 0c(0, 0, 0) can be expected as follows:{

(U, V, d̄) ∈ R3 : V = K11U
2 +K12Ud̄+K13d̄

2 +O
(
(|d̄|+ |U |)3

)}
= 0c(0, 0, 0),

70



DRSML Q
AU

where

K11 =
1

1− ψ2

((
(1 + κ11)κ13

κ12 (ψ2 + 1)
+

τ13

ψ2 + 1

)
κ12

2 −
(

(1 + κ11)κ14

κ12 (ψ2 + 1)
+

τ14

ψ2 + 1

)
κ12 (1 + κ11)

)
+

1

1− ψ2

(1 + κ11)κ16 (1 + κ11)2

κ12 (ψ2 + 1)
,

K12 =
1

1− ψ2

(
(1 + κ11)κ15

ψ2 + 1
−
(

(1 + κ11)κ17

κ12 (ψ2 + 1)
+

τ15

ψ2 + 1

)
(1 + κ11)

)
,

K13 =
1

1− ψ2

(
(1 + κ11)κ18

κ12 (ψ2 + 1)
+

τ16

ψ2 + 1

)
.

Hence, the restricted map to 0c(0, 0, 0) is described as follows:

F : U → −U +G11U
2 +G12Ud̄+G13U

2d̄+G14Ud̄
2 +G15U

3 +O
(
(|U |+ |d̄|)4

)
,

where

G11 =

(
(ψ2 − κ11)κ13

κ12 (ψ2 + 1)
− τ13

ψ2 + 1

)
κ12

2 −
(

(ψ2 − κ11)κ14

κ12 (ψ2 + 1)
− τ14

ψ2 + 1

)
κ12 (1 + κ11)

+
(ψ2 − κ11)κ16 (1 + κ11)2

κ12 (ψ2 + 1)
,

G12 =
(ξ2 − θ11) θ15

ξ2 + 1
−
(

(ξ2 − θ11) θ17

θ12 (ξ2 + 1)
− φ15

ξ2 + 1

)
(1 + θ11) ,

G13 =

(
(ψ2 − κ11)κ21

κ12 (ψ2 + 1)
− τ19

ψ2 + 1

)
κ12

2 −
(

(ψ2 − κ11)κ23

κ12 (ψ2 + 1)
− τ20

ψ2 + 1

)
κ12 (1 + κ11)

+
(ψ2 − κ11)κ15K1

ψ2 + 1
+

(
(κ2 − κ11)κ17

κ12 (ψ2 + 1)
− τ15

ψ2 + 1

)
(ψ2 − κ11)K1

+ 2

(
(ψ2 − κ11)κ13

κ12 (ψ2 + 1)
− τ13

ψ2 + 1

)
κ12

2K2 +

(
(ψ2 − κ11)κ14

κ12 (ψ2 + 1)
− τ14

ψ2 + 1

)
κ12 (ψ2 − κ11)K2

−
(

(ψ2 − κ11)κ14

κ12 (ψ2 + 1)
− τ14

ψ2 + 1

)
κ12K2 (1 + κ11)− 2

(ψ2 − κ11)κ16 (1 + κ11) (ψ2 − κ11)K2

κ12 (ψ2 + 1)

G14 =

(
(ψ2 − κ11)κ24

κ12 (ψ2 + 1)
− τ21

ψ2 + 1

)
κ12 −

(
(ψ2 − κ11)κ25

κ12 (ψ2 + 1)
− τ22

ψ2 + 1

)
(1 + κ11)

+
(ψ2 − κ11)κ15K2

ψ2 + 1
+

(
(ψ2 − κ11)κ17

κ12 (ψ2 + 1)
− τ15

ψ2 + 1

)
(ψ2 − κ11)K2

+ 2

(
(ψ2 − κ11)κ13

κ12 (ψ2 + 1)
− τ13

ψ2 + 1

)
κ12

2K3 − 2
(ψ2 − κ11)κ16 (1 + κ11) (ψ2 − κ11)K3

κ12 (ψ2 + 1)

+

(
(ψ2 − κ11)κ14

κ12 (ψ2 + 1)
− τ14

ψ2 + 1

)
κ12 (ψ2 − κ11)K3

−
(

(ψ2 − κ11)κ14

κ12 (ψ2 + 1)
− τ14

ψ2 + 1

)
κ12K3 (1 + κ11) ,
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G15 =
(ψ2 − κ11)κ26

κ12 (ψ2 + 1)
+

(ψ2 − κ11)κ15K3

ψ2 + 1
+

(
(ψ2 − κ11)κ17

κ12 (ψ2 + 1)
− τ15

ψ2 + 1

)
(ψ2 − κ11)K3

− τ23

ψ2 + 1
.

Finally, we get the following numbers:

l1 =

(
∂2g1

∂U∂d̄
+

1

2

∂F

∂d̄

∂2F

∂U2

)
(0,0)

=
((1 + κ11)κ17 − κ12κ15) (κ11 − ψ2) + (1 + κ11)κ12τ15

κ12 (1 + ψ2)
6= 0,

and

l2 =

((
1

2

∂2F

∂U2

)2

+
1

6

∂3F

∂U3

)
(0,0)

= G11
2 +G15 6= 0.

Hence, by the study as mentioned above, we have the next conclusive theorem related to
bifurcation of system (4.1.3) about (A,B, 0).

Theorem 4.5.1. If l1 6= 0, then the system (4.1.3) experiences the period-doubling bifur-
cation about the quarantined free equilibrium (A,B, 0) when the parameter d varies in the
least neighborhood of d̄. Moreover, if 0 > l2 then the period-two trajectories that bifurcate
from (A,B, 0) are stable, and if 0 > l2, then these trajectories are unstable.

4.5.2 Neimark-Sacker bifurcation

Here, we will discuss the complex behaviour of the system (4.1.3) about (A∗, B∗, C∗).

In addition, for this study, we have to show the existence of Neimark-Sacker bifurcation
in the system (4.1.3) about (S∗, E∗, Q∗). For the study of Neimark-Sacker bifurcation
the standard theory of bifurcation is used (see Chapter 2: Section 2.3). Hence,
by using an obvious standard of bifurcation [35], it is easy to observe that the system
(4.1.3) experiences the Neimark-Sacker bifurcation for parameter d without finding any
eigenvalue (see Lemma 1.4.1 ).

Theorem 4.5.2. The positive fixed point of system (4.1.3) experiences the Neimark-
Sacker bifurcation if the following conditions are satisfied:

S3(S1 − S3) + 1− S2 = 0,

−S3(S1 − S3) + 1 + S2 > 0,

1 + S1 + S2 + S3 > 0,

1− S1 + S2 − S3 > 0

where, S1, S2 and S3 are provided in (4.4.4) and (4.4.5).
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Proof. By using Lemma 1.4.1, for m = 3, and considering the characteristic equation
(4.4.2) of the system (4.1.3) evaluated at its positive fixed point, we get the following
equalities and inequalities:

∆−2 (d) = 1− S2 + S3(S1 − S3) = 0,

∆+
2 (d) = 1 + S2 − S3(S1 + S3) > 0,

Hd(1) = 1 + S1 + S2 + S3 > 0,

(−1)3Hd(−1) = 1− S1 + S2 − S3 > 0.

Remark 4.5.1. By taking d as a bifurcation parameter, the arithmetical rule Neimark-
Sacker bifurcation can be established by finding the solutions of equation ∆−2 (µ) = 0.

4.6 Chaos control

This section is related to the control of the chaos and Neimark-sacker bifurcation. Fur-
thermore, a modified hybrid control method (see [22]) is used for the system (4.1.3). In
addition, this technique is appropriate to use for every discrete-time system experienc-
ing chaos and period-doubling bifurcation. For the further study of the modified hybrid
method, one can see Chapter 2: Section 2.4.

4.6.1 A modified technique for chaos control

By application of modified hybrid control method on the system (4.1.3) we get the fol-
lowing system:

Am+1 = h3(Ame
K−δ1Bm− δ2Bm

α+Am
− δ4Cm
β+Am

−dAm) + (1− h3)Am,

Bm+1 = h3(Bme
δ1Am+

δ2Am
α+Am

− δ3Cm
γ+Bm

−d) + (1− h3)Bm,

Cm+1 = h3(Cme
r1δ3Bm
γ+Bm

+
r2δ4Am
β+Am

−d) + (1− h3)Cm

(4.6.1)

Furthermore, the system (4.6.1) and (4.1.3) have same fixed points. Moreover, the vari-
ational matrix of (4.6.1) about (S∗, E∗, Q∗) is specified as:

1 + h3A∗
(
d− δ2e∗

(α+A∗)2 − δ4C∗

(β+A∗)2

)
−h3A∗

(
δ1 + δ2

α+A∗

)
−h3δ4A∗

β+A∗

h3B∗(αδ2+δ1(α+A∗)2)
(α+A∗)2 1− h3 +

h3((γ+B∗)2+δ3B∗C∗)
(γ+B∗)2 − δ3δ3B∗

γ+B∗

−βh3r2δ4C∗

(β+A∗)2
γh3r1δ3C∗

(γ+e∗)2 1

 . (4.6.2)

The positive fixed point (A∗, B∗, C∗) of the system (4.6.1) is locally asymptotically stable
if every solution of the characteristic equation of (4.6.2) lies in the interior of D. Where
D is an open disk of radius one.
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4.7 Numerical simulations

This section provides the numerical study for the system (4.1.3). Moreover, this study
directly verifies our theoretical analysis and analytic results: which we have proved in
previous sections of this chapter.

Example 4.7.1. Let α = 2, β = 10, δ1 = 0.99, γ = 0.4, δ2 = 0.01, δ3 = 0.80, δ4 =

0.60, r1 = 1, r2 = 2 and K > 0. Then, the system (4.1.3) can be specified as:

Am+1 = Ame
K−0.99Bm− 0.01Bm

2+Am
− 0.60Cm

10+Am
−dAm ,

Bm+1 = Bme
0.99Am+ 0.01Am

2+Am
− 0.80Cm

0.4+Bm
−d,

Cm+1 = Cme
0.80Bm
0.4+Bm

+
2(0.60)Am

10+Am
−d,

(4.7.1)

where A0 = 0.91059, B0 = 0.38854, C0 = 0.3549 are primary conditions and d > 0. In
this case bifurcation diagram for Am and Bm are respectively shown in (Fig. 4.7a) and
(Fig. 4.7b). In addition, MLE for the presence of bifurcation is provided in (Fig.4.7c).
In (Fig. 4.6), some phase portraits are provided for some values of d > 0. It can be
seen that there exist the Neimark-Sacker bifurcation for a maximum range of bifurcation
parameter d. For values as mentioned earlier of parameters one can obtain the jacobian
matrix J3 is as follows:

J3 =

 1 + 0.91059(0.0021294− d) −0.904613 −0.0500756

0.286336 1.1728 −0.335248

−0.0357759 0.239551 1

 .

Furthermore, the equation G(ψ) = 0 for J3 have the following coefficients:

S1 = 3.17946− 0.91059d,

S2 = 3.68735− 1.97853d,

and
S3 = 1.58237− 1.1377d.

In addition, the fixed point (A∗, B∗, C∗) remains locally asymptotically stable if and only if
we have d ∈ (0.37858611389735736, 1.0675487017977925). In addition, the positive fixed
point (A∗, B∗, C∗) undergoes the Neimark-Sacker bifurcation if we have

d ∈ (1.0675487017977952, 2.3456458284152606).
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(a) Bifurcation diagram for Am (b) Bifurcation diagram for Bm

(c) Lyapunov exponents for system (4.1.3)

Figure 4.4: Bifurcation diagrams for system (4.1.3) for K > 0, d > 0, α = 2, β = 10, δ1 =

0.99, γ = 0.4, δ2 = 0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2, with A0 = 0.91059, B0 =

0.38854, and C0 = 0.3549.

Figure 4.5: 3-dimensional portrait for system (4.7.4) for α = 2, β = 10, δ1 = 0.99, γ =

0.4, δ2 = 0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2, K > 0, d > 0 and A0 = 1.35, B0 =

0.31, C0 = 0.75.

.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Phase portraits of system (4.1.3) for K > 0, d > 0, α = 2, β = 10, δ1 =

0.99, γ = 0.4, δ2 = 0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2, with A0 = 0.91059, B0 =

0.38854, and C0 = 0.3549.

.

Example 4.7.2. Let α = 2, β = 10, δ1 = 0.99, γ = 0.4, δ2 = 0.01, K > d and Cm →
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0,∀m. Formally, the system (4.1.3) can be described as:

Am+1 = Ame
K−0.99Bm− 0.01Bm

2+Am
−dAm ,

Bm+1 = Bme
0.99Am+ 0.01Am

2+Am
−d

(4.7.2)

with A0 = 1.4391059 and B0 = 1.138854 are initial values. In this case the plots of Am and
Bm are given in Fig. 4.7a and Fig. 4.7b. Additionally, the quarantine free fixed point
(A,B, 0) undergoes the period-doubling bifurcation for d ∈ (1.269970179, 1.9887756458).

(a) Bifurcation diagram for Am (b) Bifurcation diagram for Bm

Figure 4.7: Period-doubling bifurcation in system (4.1.3) for α = 2, β = 10, δ1 = 0.99, γ =

0.4, δ2 = 0.01, K > d and Cm → 0,∀m and A0 = 1.4391059 and B0 = 1.138854

Example 4.7.3. For system (4.1.3), let β = 10, α = 2, 0.99 = δ1, γ = 0.4, δ2 = 0.01, δ3 =

0.80, δ4 = 0.60, r1 = 1, r2 = 2, K > 0, d > 0 with primary conditions are A0 = 1.35, B0 =

0.31, and C0 = 0.75. Then, in this case plot of Am is shown in (Fig. 4.8). Moreover,
the system (4.1.3) experiences the period-doubling bifurcation for bigger values of d (see
Fig. 4.8a). In addition, the presence of chaos for Am is specified in (Fig. 4.8b).

Example 4.7.4. Assume that β = 10, α = 2, 0.99 = δ1, γ = 0.4, δ2 = 0.01, δ3 = 0.80, δ4 =

0.60, r1 = 1, r2 = 2 and K > 0. Then, the mathematical system (4.6.1) is specified as:

Am+1 = h3(Ame
K−0.99Bm− 0.01Bm

2+Am
− 0.60Cm

10+Am
−dAm) + (1− h3)Am,

Bm+1 = h3(Bme
0.99Am+ 0.01Am

2+Am
− 0.80Cm

0.4+Bm
−d) + (1− h3)Bm,

Cm+1 = h3(Cme
0.80Bm
0.4+Bm

+
2(0.60)Am

10+Am
−d) + (1− h3)Bm,

(4.7.3)

with d > 0, h ∈ (0, 1), A0 = 0.91059, B0 = 0.38854 and C0 = 0.3549. In this case the
controlled plots for Am and Bm are shown in (Fig. 4.9). Hence, one can see that the
Neimark-Sacker bifurcation has been controlled for large range of control parameter h.
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(a) Bifurcation diagram for Am (b) Chaotic plot for Am

Figure 4.8: Plots for system (4.1.3) for α = 2, β = 10, δ1 = 0.99, γ = 0.4, δ2 = 0.01, δ3 =

0.80, δ4 = 0.60, r1 = 1, r2 = 2, K > 0, d > 0 with A0 = 1.35, B0 = 0.31, and C0 = 0.75.

(a) Bifurcation diagram for Am (b) Bifurcation diagram for Bm

Figure 4.9: Control diagrams for system (4.6.1) for α = 2, β = 10, δ1 = 0.99, γ =

0.4, δ2 = 0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2, K > 0, d > 0 and A0 = 0.91059, B0 =

0.38854, C0 = 0.3549.

Example 4.7.5. Let us assume α = 2, β = 10, δ1 = 0.99, γ = 0.4, δ2 = 0.01, δ3 =

0.80, δ4 = 0.60, r1 = 1, r2 = 2 and K > 0 in system (4.6.1). Formally, for b > 0 with
primary values A0 = 1.35, B0 = 0.31, and C0 = 0.75 the behavior of Am is shown in (Fig.
4.10). Hence, the period-doubling bifurcation is controlled for maximum range of control
parameter h. In addition, from (Fig. 4.10b) it is obvious that the chaos in mathematical
system (4.6.1) has been controlled efficiently for maximum range of control parameter h.
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(a) Controlled diagram for Am

(b) Controlled plot for Am

Figure 4.10: Controlled plots for (4.6.1) for β = 10, α = 2, 0.99 = δ1, 0.4 = γ, δ2 =

0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2 , K > 0, d > 0 and A0 = 1.35, B0 = 0.31, C0 =

0.75.

Example 4.7.6. Assume that β = 10, α = 2, 0.99 = δ1, 0.4 = γ, δ2 = 0.01, δ3 = 0.80, δ4 =

0.60, r1 = 1, r2 = 2 and K > 0. Then, from system (4.0.1) we get:

A′(t) = KA(t)− 0.99A(t)B(t)− 0.01A(t)E

2 + A(t)
− 0.60A(t)C(t)

10 + A(t)
− dA(t)2,

B′(t) = 0.99A(t)B(t) +
0.01A(t)B(t)

2 + A(t)
− 0.80B(t)C(t)

0.4 +B(t)
− dB(t),

C ′(t) =
1(0.80)C(t)B(t)

0.4 +B(t)
+

2(0.60)A(t)Q

10 + A(t)
− dC(t).

(4.7.4)

From (Fig. 4.5), it is clear that the system (4.7.4) is stable for d ≤ 1. Moreover, in
(Fig. 4.11) the stable plots for every variable, that is, A(t), B(t) and C(t) are specified
in (Fig. 4.11a),(Fig. 4.11b) and (Fig. 4.11c) respectively. In addition, some phase
portraits are also provided in (Fig. 4.11). Finally, it can be observed that the system
(4.7.4) experiences an unstable behaviour if the death parameter d exceeds 1.
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(a) (b)

(c) (d)

(e)

(f)

Figure 4.11: Some plots and phase portraits for system (4.7.4) for β = 10, α = 2, 0.99 =

δ1, 0.4 = γ, δ2 = 0.01, δ3 = 0.80, δ4 = 0.60, r1 = 1, r2 = 2 , K > 0, d > 0 and A(0) =

1.35, B(0) = 0.31, C(0) = 0.75.

.
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4.8 Concluding remarks

We discussed the dynamics of a discrete-time mathematical system for people suffering
from diabetes or hypertension and then exposed to coronavirus. For the study of the
continuous-time counterpart of our system with Z-control, an individual can see [101].
Firstly, by implementing the method of piecewise constant arguments, we obtained a
discrete counterpart of the mathematical system (4.0.1). Moreover, for this chapter, we
have taken a case study from India with an initial stage of the coronavirus pandemic at
the start of the year 2020 [101]. By taking the situation that the exposed population
(B) always stay finite, the boundedness for each solution of the system (4.1.3) is shown.
A strong result for boundedness is provided in section 4.2. The stability analysis of
the system (4.1.3) about each of its fixed points is discussed in section 4.3. Moreover,
some mathematical conditions related to the presence of positive fixed points are given
in Section 4.3. In Section 4.4, the linearized stability of (4.1.3) about its positive fixed
point is discussed. It is revealed that for Cm → 0,∀m, the system (4.1.3) experiences
chaos and period-doubling bifurcation (see Section 4.5). In the direction to show the
complexity in the system (4.1.3), the presence of Neimark-Sacker bifurcation for positive
fixed point is proved. A stability association of discrete-time system (4.1.3) with its con-
tinuous counterpart (4.0.1) for parameter d is provided in Example 4.7.1 and Example
4.7.3. One can see that our discrete-time system experiences chaos whenever an exposed
person to COVID-19 does not isolate himself, to be exact, for Cm → 0,∀m. Hence, the
system (4.1.3) represents a chaotic system under these conditions, but for system (4.0.1),
if C(t)→ 0, then system (4.0.1) decreases to a 2-dimensional continuous system, wherein
chaos can never be experienced (see [9]). Therefore, our discrete-time mathematical sys-
tem (4.1.3) will stay bounded when B is bounded, and it becomes unbounded when B is
unbounded. Additionally, quarantine is necessary for a person infected by coronavirus,
such that the system (4.1.3) remains stable.
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Chapter 5

Dynamics of a Discrete-Time
Fractional-Order
Phytoplankton-Zooplankton Model
with Holling Type-II Response

This chapter examines qualitative findings related to a discrete-time model of phytoplankton-
zooplankton dynamics, which incorporates the Holling type-II response. The discrete-
time model is obtained by discretizing a continuous-time model using fractional order
techniques. The stability of the resulting system is analyzed locally for all equilibrium
points, and the presence of a Neimark-Sacker bifurcation around the positive equilibrium
is demonstrated based on specific mathematical conditions. To address this bifurcation,
two modified hybrid control techniques are proposed. Additionally, numerical examples
are presented to validate the theoretical analysis, evaluate the effectiveness and feasibil-
ity of the newly developed control strategies, and compare them with an existing hybrid
technique.. The findings of this chapter are submitted in an extreme international journal.

5.1 Discretization of model

There are many mathematical methods available for discretization of any mathematical
model from continuous form to discrete form. Some of them are the following:

• Euler method

• Method of piecewise arguments

• Nonstandard finite difference schemes

• Runge-Kutta method
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• Method of Fractional order derivatives.

However, the fractional order differential equations (FOD) provides us a useful tool for
modeling genetic effects and many other processes of nature [102]. Many scientific phe-
nomena are modeled by using fractional derivatives such as nonlinear oscillations of
earthquake, wave propagation models, hydrologic models and diffusion of wave mod-
els [112-114]. Moreover, the study of many natural interactions by FOD is much better
than integer order differential equations [102]. Therefore, many researchers have used
fractional order differential equations for dynamical study of population models in math-
ematical biology [115-118]. There are many well known definitions for fractional order
derivatives. Among them the most favorable and useful definition is given as follows
[109]: {

Dαg(t) = ,n−αDng(t)ג

D ≡ d
dt
,

(5.1.1)

where, n ∈ Z+, and α ∈ (n−1, n) is order of of fractional derivative of g(t). θג represents
the θ ordered Riemann-Liouville operator [109], which has the following mathematical
form:

θf(t)ג =
1

Γ(θ)

∫ t

0

(t− ε)θ−1f(ε)dε, θ > 0.

Here, Γ(θ) is Euler’s gamma function. By applying operator (5.1.1) on system (3.0.2),
we get the following system{

Dαp(t) = rp(t)(1− p(t)
k

)− β p(t)
γ+p(t)

z(t),

Dαz(t) = b p(t)
γ+p(t)

z(t)− δz(t)− ρ p(t)
γ+p(t)

z(t), t > 0,
(5.1.2)

where p0 > 0 and z0 > 0 are initial conditions. Now, proceeding the discretization by
using piecewise arguments (see [29-31]), we get{

Dαp(t) = rp([t/s]s)(1− p([t/s]s)
k

)− β p([t/s]s)
γ+p([t/s]s)

z([t/s]s),

Dαz(t) = b p([t/s]s)
γ+p([t/s]s)

z([t/s]s)− δz([t/s]s)− ρ p([t/s]s)
γ+p([t/s]s)

z([t/s]s).
(5.1.3)

Suppose that t ∈ [0, s), then t/s ∈ [0, 1), and we have{
Dαp(t) = rp0(1− p0

k
)− β p0

γ+p0
z0,

Dαz(t) = b p0

γ+p0
z0 − δz0 − ρ p0

γ+p0
z0, t ∈ [0, s).

(5.1.4)

On solving (5.1.4), we get the following solution p1(t) = p0 + tα

αΓ(α)

(
rp0(1− p0

k
)− β p0

γ+p0
z0

)
,

z1(t) = z0 + tα

αΓ(α)

(
b p0

γ+p0
z0 − δz0 − ρ p0

γ+p0
z0

)
.

(5.1.5)

For second iteration, we take t ∈ [s, 2s) then t/s ∈ [1, 2). Hence, we have{
Dαp(t) = rp1(1− p1

k
)− β p1

γ+p1
z1,

Dαz(t) = b p1

γ+p1
z1 − δz1 − ρ p1

γ+p1
z1, t ∈ [s, 2s).

(5.1.6)
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On solving (5.1.6) we get the following solution p1(t) = p1(s) + (t−s)α
αΓ(α)

(
rp1(s)(1− p1(s)

k
)− β p1(s)

γ+p1(s)
z1(s)

)
,

z1(t) = z1(s) + (t−s)α
αΓ(α)

(
b p1(s)
γ+p1(s)

z1(s)− δz1(s)− ρ p1(s)
γ+p1(s)

z1(s)
)
.

(5.1.7)

Repeating this process of discretization n times, we get the following system
pn+1(t) = pn(ns) + (t−ns)α

αΓ(α)

(
rpn(ns)(1− pn(ns)

k
)− β p1(s)

γ+pn(ns)
zn(ns)

)
,

zn+1(t) = zn(ns) + (t−ns)α
αΓ(α)

(
b pn(ns)
γ+pn(ns)

zn(ns)− δzn(ns)− ρ p0

γ+pn(ns)
zn(ns)

)
,

t ∈ [ns, (n+ 1)s).

(5.1.8)

In addition when t/s→ n+ 1, then system (5.1.8) takes the following form: pn+1 = pn + sα

αΓ(α)

(
rpn(1− pn

k
)− βpnzn

γ+pn

)
,

zn+1 = zn + sα

αΓ(α)

(
bpnzn
γ+pn

− δzn − ρpnzn
γ+pn

)
.

(5.1.9)

The remaining part of the chapter is aimed at: the existence of fixed points and local
stability analysis of system (5.1.9), the existence of Neimark-Sacker bifurcation about
the positive fixed point of system (5.1.9), the control of Neimark-Sacker bifurcation in
the system (5.1.9) by using a modified control strategy, some numerical simulation which
strengthens our theoretical discussion.

5.2 Existence of fixed points

In order to obtain fixed points of the system (5.1.9), we consider the following two di-
mensional system of equations:

sα

αΓ(α)

(
rp∗(1− p∗

k
)− βp∗z∗

γ+p∗

)
= 0,

sα

αΓ(α)

(
bp∗z∗
γ+p∗

− δzn − ρp∗z∗
γ+p∗

)
= 0.

(5.2.1)

On solving system (5.2.1) one can obtain three fixed points, (p0, z0) = (0, 0), (p1, z1) =

(k, 0) and (
γδ

b− δ − ρ
,
rγ(ρ− b)(kδ − bk + γδ + kρ)

kβ(b− δ − ρ)2

)
= (p∗, z∗).

Furthermore, if 
ρ+ δ < b,

and

γδ < (b− δ − ρ)k,

(5.2.2)

then, p∗ > 0 and z∗ > 0. In order to discuss the stability of the system (5.1.9) about
these fixed points, we compute the variational matrix J(p,z) of the system (5.1.9) about
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each of its fixed point (p, z). Moreover, J(p,z) is

J(p,z) =

[
j11 j12

j21 j22

]
.

In addition, the characteristic polynomial H(ξ) = 0 of J(p,z) is:

H(ξ) = ξ2 − Tξ +D, (5.2.3)

where
T = (j11 + j22),

and
D = j11j22 − j12j21.

5.3 Local stability analysis

Firstly, we study the stability conditions for (5.1.9) about the fixed point (p0, z0). The
matrix J(p,z) evaluated at (p0, z0) is given by;

J(p0,z0) =

[
1 + rsα

Γ(1+α)
0

0 1− sαδ
Γ(1+α)

]
.

Furthermore, J(p0,z0) has the following characteristic equation:

H(ξ) = ξ2 − ξ
(

2 +
sα(r − δ)
Γ(1 + α)

)
+

(rsα + Γ(1 + α)]) (−sαδ + Γ(1 + α))

Γ2(1 + α)
.

H(ξ) = 0 has two characteristic values, namely ξ1 = rsα+Γ(1+α)
Γ(1+α)

and ξ2 = −sαδ+Γ(1+α)
Γ(1+α)

.
Moreover, it is clear that |ξ1| > 1 for all parametric values. Hence, by using Lemma
1.3.1 and by considering the condition |ξ1| > 1 as a true condition, we are now able to
describe stability conditions for (5.1.9) about (p0, z0).

Proposition 5.3.1. Let (p0, z0) = (0, 0) be an equilibrium point of system (5.1.9) then
(p0, z0) is source and saddle iff conditions Γ(1+α) > sαδ and 2Γ(1+α) < sαδ respectively
holds true.

Next, our task is to explore of the local stability of system (5.1.9) about the point
(p1, z1). Let J(p1,z1) be the jacobian matrix of system (5.1.9) about the fixed point (p1, z1),

then J(p1,z1) has the following mathematical form:

J(p1,z1) =

[
1− rsα

Γ(1+α)
− ksαβ

(k+γ)Γ(1+α)

0 1 + sα(bk−(k+γ)δ−kρ)
α(k+γ)Γ(α)

]
.
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Moreover, from J(p1,z1) we can get the following characteristic polynomial:

H(ξ) = ξ2 − ξ
(

2 +
sα(bk − (k + γ)(r + δ)− kρ)

(k + γ)Γ(1 + α)

)
− (sα(bk − (k + γ)δ − kρ) + α(k + γ)Γ(α)) (rsα − Γ(1 + α))

(k + γ)Γ2(1 + α)
.

Hence, by using Lemma 1.3.1, one can write the following proposition about the local
stability of (5.1.9) about (p1, z1) = (k, 0).

Proposition 5.3.2. Let (p1, z1) = (k, 0) be a fixed point of system (5.1.9), then:

• The point (p1, z1) is stable if and only if
rsα < 2Γ(1 + α) and sαbk + (k + r) (sαδ + 2Γ(1 + α)) > kρ,

or rsα > 2Γ(1 + α), and sαbk + (k + r) (sαδ + 2Γ(1 + α)) < kρ,

and(
sα (b−ρ)

k+γ
+ Γ(1 + α)− δsα

)
(rsα − Γ(1 + α)) < Γ2(1 + α).

• The point (p1, z1) is unstable if and only if
rsα < 2Γ(1 + α) and sαbk + (k + r) (sαδ + 2Γ(1 + α)) > kρ,

or rsα > 2Γ(1 + α), and sαbk + (k + r) (sαδ + 2Γ(1 + α)) < kρ,

and(
sα (b−ρ)

k+γ
+ Γ(1 + α)− δsα

)
(rsα − Γ(1 + α)) > Γ2(1 + α).

• The point (p1, z1) is saddle point if and only if

(rsα − 2Γ(1 + α)) (sα(bk − (k + γ)δ − kρ) + 2(k + γ)Γ(1 + α)) > 0.

• The point (p1, z1) can never be non hyperbolic fixed point.

Ultimately, we have some results related to the local stability of system (5.1.9) about
(p∗, z∗) = ( γδ

b−δ−ρ ,
rγ(ρ−b)(kδ−bk+γδ+kρ)

kβ(δ+ρ−b)2 ). Furthermore, both components of (p∗, z∗) are pos-
itive if and only if (5.2.2) remains true. One can calculate the jacobian matrix J(p∗,z∗) of
the system (5.1.9) about (p∗, z∗) as follows:

J(p∗,z∗) =

[
1 + rsαδ(b(−k+γ)+(k+γ)δ+(k−γ)ρ)

k(b−ρ)(−b+δ+ρ)Γ(1+α)
− sαβδ
bαΓ(α)−αρΓ(α)

rsα(bk−γδ−k(δ+ρ))
kαβΓ(α)

1

]
.

Let (5.2.3) is characteristic polynomial obtained from matrix J(p∗,z∗), where

T = 2 +
rsαδ(b(−k + γ) + (k + γ)δ + (k − γ)ρ)

k(b− ρ)(−b+ δ + ρ)Γ(1 + α)
,
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and

D = 1 +
rsαδ

(
−sα(−bk + γδ + k(δ + ρ)) + (b(−k+γ)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

−b+δ+ρ

)
k(b− ρ)Γ2(1 + α)

.

By considering that (5.2.2) is true, and by performing some mathematical calculations it
follows that:

H(1) =
rs2αδ(γ − bk + δ + k(δ + ρ))

k(ρ− b)Γ2(1 + α)
> 0,

and

H(−1) = 4 +
rsαδ

(
−sα(−bk + γδ + k(δ + ρ)) + 2(b(−k+γ)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

−b+δ+ρ

)
k(b− ρ)Γ2(1 + α)

.

Hence, the local stability of system (5.1.9) about (p∗, z∗) = ( γδ
b−δ−ρ ,

rγ(ρ−b)(kδ−bk+γδ+kρ)
kβ(δ+ρ−b)2 )

can be studied by using the following proposition (see Lemma 1.3.1).

Proposition 5.3.3. Let (5.2.2) remains true, then (p∗, z∗) = ( γδ
b−δ−ρ ,

rγ(ρ−b)(kδ−bk+γδ+kρ)
kβ(δ+ρ−b)2 )

is positive fixed point of (5.1.9). In addition, suppose

κ = 2 (b(γ − k) + γ(δ − ρ) + k(δ + ρ)) Γ(1 + α),

then:

• The point (p∗, z∗) is stable fixed point if and only if

b(γ − k) + r(δ − ρ) + k(δ + ρ) < k(ρ− b)Γ(1 + α) and κ < 0.

• The point (p∗, z∗) is unstable fixed point if and only if

b(γ − k) + r(δ − ρ) + k(δ + ρ) < k(ρ− b)Γ(1 + α) and κ > 0.

• The point (p∗, z∗) is saddle fixed point if and only if

κ
δ+ρ−b < 4k(ρ− b)Γ2(1 + α),

• The point (p∗, z∗) is non-hyperbolic if and only if

s =
(

(b(−k+γ)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)
(−b+δ+ρ)(−bk+γδ+k(δ+ρ))

) 1
α
,

and

4k(b− ρ)(−bk + γδ + k(δ + ρ))(−b+ δ + ρ)2 + rδ(b(−k + γ) + γ(δ − ρ) + k(δ + ρ))2 < 0.

(5.3.1)
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.

Remark 5.3.1. The system (5.1.9) can never experiences the period-doubling bifurcation
as H(−1) < 0 for all a, b, r, k, γ, δ, ρ, β > 0.

We have the following theorem for the possible validation of Remark. 5.3.1.

Theorem 5.3.1. Assume that (5.2.2) holds true and ( γδ
b−δ−ρ ,

rγ(ρ−b)(kδ−bk+γδ+kρ)
kβ(δ+ρ−b)2 ) be one

and only positive fixed point of system (5.1.9) and

H(−1) = 4 +
rsαδ

(
−sα(γδ − bk + k(δ + ρ)) + 2(b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ+ρ−b

)
k(b− ρ)Γ2(1 + α)

.

Then H(−1) < 0 for each value of parameters given in (5.1.9). Consequently, H(−1) is
decreasing for all a, b, r, k, γ, δ, ρ, β > 0.

Proof. Assume that (5.2.2) holds true and ( γδ
b−δ−ρ ,

rγ(ρ−b)(−bk+kδ+γδ+kρ)
kβ(−b+δ+ρ)2 ) be one and only

positive fixed point of system (5.1.9) and

H(−1) = 4 +
rsαδ

(
−sα(γδ − bk + k(δ + ρ)) + 2(b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ+ρ−b+

)
k(b− ρ)Γ2(1 + α)

.

Then H(−1) < 0 if and only if

4 +
rsαδ

(
−sα(γδ − bk + k(δ + ρ)) + 2(b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ+ρ−b

)
k(b− ρ)Γ2(1 + α)

< 0 (5.3.2)

5.4 Bifurcation analysis

Here, we will discuss the Neimark-Sacker bifurcation experienced by system (5.1.9) about
(p∗, z∗) under some mathematical conditions.

5.4.1 Neimark-Sacker bifurcation

Let ξ1 and ξ2 are roots of (5.2.3), then both of these roots are complex conjugates with
unit modulus if (p∗, z∗) is non-hyperbolic fixed point under the last condition (5.3.1)
of Proposition 5.3.3. Hence (5.1.9) experiences the Neimark-Sacker bifurcation when
(5.3.1) is satisfied and parameters given in system (5.1.9) are varied in the small neigh-
borhood of the following set:

0∗ =

{
α, β, b, k, r, s, γ, δ, ρ ∈ <+, s =

(
(b(γ − k) + γ(δ − ρ) + k(δ + ρ))Γ(1 + α)

(δ + ρ− k)(γδ − bk + k(δ + ρ))

) 1
α

}
.
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Where, s ∈ (0, 1]. Let (α, β, b, k, r, s, γ, δ, ρ) ∈ 0∗ with s1 =
(

(b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)
(δ+ρ−k)(γδ−bk+k(δ+ρ))

) 1
α

then system (5.1.9) can be written as;(
p

z

)
→

 p+
sα1

αΓ(α)

(
rp(1− p

k
)− βpz

γ+p

)
z +

sα1
αΓ(α)

(
bpz
γ+p
− δz − ρpz

γ+p

)  . (5.4.1)

Consider the perturbation of (5.4.1) by using the parameter ŝ. Moreover, by taking ŝ as
bifurcation parameter we get the following form of system (5.4.1):(

p

z

)
→

 p+ (s1+ŝ)α

αΓ(α)

(
rp(1− p

k
)− βpz

γ+p

)
z + (s1+ŝ)α

αΓ(α)

(
bpz
γ+p
− δz − ρpz

γ+p

)  , (5.4.2)

where, |ŝ| � 1. Next, we consider that X = p− γδ
b−δ−ρ , Y = z− rγ(ρ−b)(kδ−bk+γδ+kρ)

kβ(−b+δ+ρ)2 , then
the map (5.4.1) is changed into the following form:(

X

Y

)
→

(
v11 v12

v21 v22

)(
X

Y

)
+

(
j1(X, Y )

j2(X, Y )

)
, (5.4.3)

where

j1(X, Y ) = v13X
2 + v14XY + v15X

3 + v16X
2Y +O ((|X|+ |Y |)4),

j2(X, Y ) = v23X
2 + v24XY + v25X

3 + v26X
2Y +O ((|X|+ |Y |)4),

v11 = −(s1 + ŝ)αr(γ bδ + γδ2 − γδρ− bδk + δ2k + δkρ)

(b− δ − ρ) k (b− ρ)αΓ(α)

+
αΓ(α)k(b2 + bδ + 2bρ− δρ− ρ2)

(b− δ − ρ) k (b− ρ)αΓ(α)
,

v12 = − (s1 + ŝ)αβ δ

αΓ(α) (b− ρ)
,

v13 =
(s1 + ŝ)α

α Γ(α)

(
− r
k

+
(bkr − γ δ r − δ kr − krρ) (b− δ − ρ)

(b− ρ)2 kγ

)
,
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v14 = −(s1 + ŝ)αβ (b− δ − ρ)2

(b− ρ)2 αγΓ(α)
,

v15 =
(s1 + ŝ)αr (−bk + δ γ + δ k + kρ) (b− δ − ρ)2

αΓ(α) (b− ρ)3 kγ2
,

v16 =
(s1 + ŝ)αβ (b− δ − ρ)3

αΓ(α) (b− ρ)3 γ2
, v21 = −(−bk + δ γ + δ k + kρ) (s1 + ŝ)αr

kβΓ(α)α
,

v22 = 1, v23 =
(b− δ − ρ) (−bk + δ γ + δ k + kρ) r(s1 + ŝ)α

(b− ρ) kβ γ αΓ(α)
,

v24 =
(b− δ − ρ)2 (s1 + ŝ)α

(b− ρ)αΓ(α)γ
,

v25 = −(b− δ − ρ)2 (−bk + δ γ + δ k + kρ) r(s1 + ŝ)α

(b− ρ)2 kβ γ2αΓ(α)
,

v26 = −(b− δ − ρ)3 (s1 + ŝ)α

(b− ρ)2 γ2αΓ(α)
.

The characteristic equation H(ξ) = 0 generated by the jacobian matrix of (5.4.3) about
(0, 0) can be given as:

ξ2 − T (ŝ)ξ +D(ŝ) = 0, (5.4.4)

where

T (s1) = 2 +
r(s1 + ŝ)αδ(b(γ − k) + (k + γ)δ + (k − γ)ρ)

k(b− ρ)(δ + ρ− b)Γ(1 + α)
,

and

D(s1) = 1 +
r(s1 + ŝ)αδ

(
−sα(γδ − bk + k(δ + ρ)) + (b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ+ρ−b

)
k(b− ρ)Γ2(1 + α)

.

Assume that (α, β, b, k, r, s, γ, δ, ρ) ∈ 0∗, then the complex roots for (5.4.4) are computed
as follows:

ξ1 =
T (s1)− i

√
4D(s1)− T 2(s1)

2

and

ξ1 =
T (s1) + i

√
4D(s1)− T 2(s1

2
.

Then it easily follows that

| ξ1 |=| ξ2 |=

√√√√
1 +

r(s1 + ŝ)αδ
(
−sα(γδ − bk + k(δ + ρ)) + (b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ+ρ−b

)
k(b− ρ)Γ2(1 + α)

.
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Moreover, we get

d

ds1


√√√√

1 +
r(s1 + ŝ)αδ

(
−sα(γδ − bk + k(δ + ρ)) + (b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ+ρ−b

)
k(b− ρ)Γ2(1 + α)


s1=0

=

− rŝα−1αδ(b(γ − k) + γ(δ − ρ) + k(δ + ρ))

2k(b− ρ)(b− δ − ρ)Γ1+α

√
1 +

rŝαδ
(

(−ŝ)α(γδ−bk++k(δ+ρ))+
(b(γ−k)+γ(δ−ρ)+k(δ+ρ))Γ1+α

δ−b+ρ

)
k(b−ρ)Γ2

1+α

6= 0.

Since |T (0)| < 2 as (α, β, b, k, r, s, γ, δ, ρ) ∈ 0∗. Moreover, a simple computation yields
that

T (0) = 2 +
rŝαδ(b(γ − k) + (k + γ)δ + (k − γ)ρ)

k(b− ρ)(δ + ρ− b)Γ(1 + α)
,

and we suppose that T (0) 6= 0 and T (0) 6= 1, that is,

rŝαδ(b(γ − k) + γ(δ − ρ) + k(δ + ρ)) 6= −2k(b− ρ)(δ − b+ ρ)Γ(1 + α), (5.4.5)

and

rŝαδ(b(γ − k) + γ(δ − ρ) + k(δ + ρ)) 6= −k(b− ρ)(δ + ρ− b)Γ(1 + α). (5.4.6)

Suppose that (5.4.5) and (5.4.6) holds and (α, β, b, k, r, s, γ, δ, ρ) ∈ 0∗, then it follows
that T (0) 6= ±2, 0, 1, that is, ξm1 , ξm2 6= 1 for all m ∈ {1, 2, 3, 4} at s1 = 0. Therefore, both
roots of (5.4.4) do not lie in the intersection of the unit circle with the coordinate axes
when s1 = 0. Furthermore,we suppose that ` = T (0)

2
, and ℘ = 1

2

√
4D(0)− T 2(0). Then

to convert (5.4.3) into normal form, we consider the next similarity transformation:(
X

Y

)
=

(
v12 0

`− v11 −℘

)(
φ

ψ

)
. (5.4.7)

By using transformation (5.4.7), one has the next authoritative form of system (5.4.3):(
φ

ψ

)
→

(
` −℘
℘ `

)(
φ

ψ

)
+

(
f̆(φ, ψ)

ğ(ϕ, ψ)

)
, (5.4.8)

where
f̆(φ, ψ) =

v15X
3

v12

+
v16X

2Y

v12

+
v13X

2

v12

+
v14XY

v12

+O
(
(|φ|+ |ψ|)4

)
,

ğ(ϕ, ψ) =

(
(`− v11) v15

v12℘
− v25

℘

)
X3 +

(
(`− v11) v16

v12℘
− v26

℘

)
X2Y

+

(
(`− v11) v13

v12℘
− v23

℘

)
X2 +

(
(`− v11) v14

v12℘
− v24

℘

)
Y X

+ O
(
(|φ|+ |ψ|)4

)
.
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Where 
X = v12φ,

and

Y = (`− v11)φ− ℘ψ.
Hence, we have the following non-zero real quantities:

Ω =

([
−Re

(
(1− 2ξ1)ξ2

2

1− ξ1

θ20θ11

)
− 1

2
|θ11|2 − |θ02|2 +Re(ξ2θ21)

])
ŝ=0

,

where 

θ20 = 1
8

[
f̆φφ − f̆ψψ + 2ğφψ + i

(
ğφφ − ğψψ − 2f̆φψ

)]
,

θ11 = 1
4

[
f̆φφ + f̆ψψ + i (ğφφ + ğψψ)

]
,

θ02 = 1
8

[
f̆φφ − f̆ψψ − 2ğφψ + i

(
ğφφ − ğψψ + 2f̆φψ

)]
,

θ21 = 1
16

[
f̆φφφ + f̆φψψ + ğφφψ + ğψψψ + i

(
ğφφφ + ğφψψ − f̆φφψ − f̆ψψψ

)]
.

Hence, by aforementioned analysis we are now able to discuss the existence and di-
rection of Neimark-Sacker bifurcation in shape of the following theorem [112-118].

Theorem 5.4.1. Assume that (5.4.5) and (5.4.6) holds true, whenever s varied in small
neighborhood of

ŝ =

(
(b(γ − k) + γ(δ − ρ) + k(δ + ρ))Γ(1 + α)

(δ + ρ− b)(γδ − bk + k(δ + ρ))

) 1
α

.

Moreover, let (
γδ

b− δ − ρ
,
rγ(ρ− b)(kδ − bk + γδ + kρ)

kβ(b− δ − ρ)2

)
= (p∗, z∗),

be unique positive fixed point of system (5.1.9), then the positive fixed point (p∗, z∗) moves
randomly in invariant closed curves produced due to Neimark-Sacker bifurcation. Addi-
tionally, if Ω < 0, (Ω > 0), respectively, then for s > ŝ an attracting and for s < ŝ a
repelling invariant closed curve bifurcate from fixed point.

5.5 Chaos control

To control inconsistent, accidental and irregular behavior of any biological system, chaos
control is well thought-out to be an applied tool for evading this complex and chaotic
behavior. For additional details associated to biological significance of chaos control and
its applied use in the actual world, we mention to [22]. In this part thesis, we use a
simple chaos control method for system (5.1.9). Furthermore, there are many chaos
control techniques for discrete dynamical systems. For additional details connected to
these methods, we refer a reader to [105-110].
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5.5.1 A modified technique for chaos control

We consider a generalized hybrid control technique [22] on system (5.1.9). The generalized
hybrid control method [22] is centered on parameter perturbation and a state feedback
control technique. By implementing generalized hybrid control methodology (with control
parameter 0 < µ < 1) to system (5.1.9) we get:

pn+1 = µ3

(
pn +

sα

αΓ(α)

(
rpn(1− pn

k
)− βpnzn

γ + pn

))
+ (1− µ3)pn,

zn+1 = µ3

(
zn +

sα

αΓ(α)

(
bpnzn
γ + pn

− δzn −
ρpnzn
γ + pn

))
+ (1− µ3)zn.

(5.5.1)

Then, system (5.5.1) is controllable provided that its fixed point(
γδ

b− δ − ρ
,
rγ(ρ− b)(kδ − bk + γδ + kρ)

kβ(b− δ − ρ)2

)
= (p∗, z∗),

is locally asymptotically stable. Additionally, the jacobian matrix for system (5.5.1) at
its positive fixed point (p∗, z∗) is calculated as follows:[

1 + rsαδµ3(b(−k+γ)+(k+γ)δ+(k−γ)ρ)
k(b−ρ)(−b+δ+ρ)Γ(1+α)

− sαβδµ3

bαΓ(α)−αρGamma(α)
rsαµ3(bk−γδ−k(δ+ρ))

kαβΓ(α)
1

]
.

Theorem 5.5.1. The positive constant solution (p∗, z∗) of system (5.5.1) is stable locally
asymptotically ⇐⇒ the following inequality holds true.

| 2+
rsαδ(b(γ − k) + (k + γ)δ + (k − γ)ρ)µ3

k(b− ρ)(δ + ρ− b)Γ(1 + α)
|

< 2 +
rsαδµ3

(
(b(−k+γ)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ−b+ρ − sα(γδ − bk + k(δ + ρ))µ3
)

k(b− ρ)Γ2(1 + α)
,

and
(b(γ − k) + γ(δ − ρ) + k(δ + ρ))Γ(1 + α)

δ − b+ ρ
< sα(γδ − bk + k(δ + ρ))µ3.

Now, we are presenting another modified technique for controlling the bifurcation
and chaos. Consider the following generalized hybrid control technique by applying state
feedback along with parameter perturbation;

Zn+k = sinµm1 g
(~)(Zn, η) + (1− sinµm1 )Zn (5.5.2)

where ~ > 0 is in Z and 0 < µ1 < 1 is parameter for controlling the bifurcation appearing
in (5.5.2). In addition, g(~) is kth iterative value of g(.). By application of (5.5.2) for
m = 1 on system (5.1.9) we get the following controlled system;

pn+1 = sinµ1

(
pn +

sα

αΓ(α)

(
rpn(1− pn

k
)− βpnzn

γ + pn

))
+ (1− sinµ1)pn,

zn+1 = sinµ1

(
zn +

sα

αΓ(α)

(
bpnzn
γ + pn

− δzn −
ρpnzn
γ + pn

))
+ (1− sinµ1)zn.

(5.5.3)
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Then, system (5.5.1) is controllable provided that its fixed point (p∗, z∗), is locally asymp-
totically stable. Additionally, the jacobian matrix for system (5.5.3) at its positive fixed
point (p∗, z∗) is calculated as follows[

1 + rsαδ(b(−k+γ)+(k+γ)δ+(k−γ)ρ) sinµ1

k(b−ρ)(−b+δ+ρ)Γ(1+α)
− sαβδ sinµ1

bαΓ(α)−αρΓ(α)
rsα(bk−γδ−k(δ+ρ)) sinµ1

kαβΓ(α)
1

]
. (5.5.4)

The following theorem describes the necessary and sufficient condition for local stability
of the system (5.5.3).

Theorem 5.5.2. The positive constant solution (p∗, z∗) of system (5.5.3) is stable locally
asymptotically ⇐⇒ the following inequality holds true.

| 2+
rsαδ(b(γ − k) + (k + γ)δ + (k − γ)ρ) sinµ1

k(b− ρ)(δ + ρ− b)Γ(1 + α)
|

< 2 +
rsαδ sinµ1

(
(b(−k+γ)+γ(δ−ρ)+k(δ+ρ))Γ(1+α)

δ−b+ρ − sα(γδ − bk + k(δ + ρ)) sinµ1

)
k(b− ρ)Γ2(1 + α)

,

and

(b(γ − k) + γ(δ − ρ) + k(δ + ρ))Γ(1 + α)

δ − b+ ρ
< sα(γδ − bk + k(δ + ρ)) sinµ1.

5.6 Numerical simulations

Example 5.6.1. Assume that ρ = 0.599, b = 2.459, k = 1.77, β = 2.999, r = 1.992, α =

0.29, γ = 2.84, δ = 0.22 and s ∈ (0, 1]. Then, the mathematical system (5.1.9) takes the
following form: pn+1 = pn + s0.29

0.29Γ(0.29)

(
1.992pn(1− pn

1.77
)− 2.999pnzn

2.84+pn

)
,

zn+1 = zn + s0.29

0.29Γ(0.29)

(
2.459pnzn
2.84+pn

− 0.22zn − 0.599pnzn
2.84+pn

)
,

(5.6.1)

where p0 = 0.380975609 and z0 = 1.6789467026 are initial conditions. By substitution
of these parametric values one can get (p∗, z∗) = (0.380975609, 1.6789467026). In ad-
dition, in this situation the graphical behavior of both population variables is shown in
(Fig. 5.2). In addition, graphical representation of both population shows the clear
existence of Neimark-Sacker bifurcation. (Fig. 5.2c) represents the maximum Lya-
punov exponent for system (5.6.1). Moreover, by variation of s in (0, 1] the system
(5.1.9) have shown interesting graphical behaviors, which are represented in (Fig. 5.1).
Hence, it can be seen that the Neimark-Sacker bifurcation exists there when the pa-
rameter s positively crosses the value s = 0.3267952585158358 (see Fig. 5.1b). If
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H(ξ) = 0 represents the characteristic equation of system (5.6.1) about the constant solu-
tion (p∗, z∗) = (0.38097560975, 1.67894670261), then for these parametric values H(ξ) = 0

has the following form

ξ2 − 1.8038899298174336ξ + 1 = 0. (5.6.2)

On solving (5.6.2) one can get ξ1 = −0.901944964908 − 0.431850993139i and ξ2 =

−0.901944964908 + 0.431850993139i with |ξ1| = |ξ1| = 1. Moreover, by performing some
mathematical calculation one can obtain

j1(X, Y ) = 0.3809756100 + 0.803889929X + 0.467832335Y − 0.5609220775X2

−0.66020699XY − 0.1068420362X3 + 0.2287371932X2Y

+O ((|X|+ |Y |)4),

j2(X, Y ) = 1.66899367 + 0.9940718649Y + 0.667846157X − 0.199557365X2

+0.397776865XY + 0.05928696739X3 − 0.1188586660X2Y

+O ((|X|+ |Y |)4),

f̆(φ, ψ) = −0.2283767669X3 + 0.4889298488X2Y − 1.198980992X2

−1.411204274Y X +O ((|φ|+ |ψ|)4),

and

ğ(φ, ψ) = −0.02634731643X3 + 0.05380418835X2Y + 0.02644756442X2

−0.1729444352Y X +O ((|φ|+ |ψ|)4),

where 
X = v12φ,

and

Y = (`− v11)φ− ℘ψ.

Furthermore, we have

θ20 = 1
8

[
f̆φφ − f̆ψψ + 2ğφψ + i

(
ğφφ − ğψψ − 2f̆φψ

)]
= −0.0730534− 0.071814i,

θ11 = 1
4

[
f̆φφ + f̆ψψ + i (ğφφ + ğψψ)

]
= −0.163577− 0.00107252i,

θ02 = 1
8

[
f̆φφ − f̆ψψ − 2ğφψ + i

(
ğφφ − ğψψ + 2f̆φψ

)]
= −0.0905237 + 0.0707415i,

θ21 = 1
16

[
f̆φφφ + f̆φψψ + ğφφψ + ğψψψ + i

(
ğφφφ + ğφψψ − f̆φφψ − f̆ψψψ

)]
= −0.00546991 + 0.00519792i

and

Ω =

([
−Re

(
(1− 2ξ1)ξ2

2

1− ξ1

θ20θ11

)
− 1

2
|θ11|2 − |θ02|2 +Re(ξ2θ21)

])
ŝ=0

= −0.01864 < 0.

Hence, we have Ω < 0, which provides us with numerical proof for the presence of the
Neimark-Sacker bifurcation as we have argued in Theorem 5.4.1.
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(a) Phase portrait for s = 0.3367952585 (b) Phase portrait for s = 0.3267952585

(c) Phase portrait for s = 0.4567952585 (d) Phase portrait for s = 0.3667952585

(e) Phase portrait for s = 0.5667952585 (f) Phase portrait for s = 0.8567952585

Figure 5.1: Phase portraits for system (5.6.1) for ρ = 0.599, b = 2.459, k = 1.77, β =

2.999, r = 1.992, α = 0.29, γ = 2.84, δ = 0.22 and s ∈ (0, 1] with initial conditions
p0 = 0.380975609 and z0 = 1.6789467026.

.
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(a) Bifurcation diagram for pn (b) Bifurcation diagram for zn

(c) MLE for system (5.6.1)

Figure 5.2: Plots for system (5.6.1) for ρ = 0.599, b = 2.459, k = 1.77, β = 2.999, r =

1.992, α = 0.29, γ = 2.84, δ = 0.22 and s ∈ (0, 1] with initial conditions p0 = 0.380975609

and z0 = 1.6789467026.

Example 5.6.2. Consider the following systems of difference equations pn+1 = sinµ1

(
pn + 0.79525851583580.29

0.29Γ(0.29)

(
1.992pn(1− pn

1.77
)− 2.999pnzn

2.84+pn

))
+ (1− sinµ1)pn,

zn+1 = sinµ1

(
zn + 0.79525851583580.29

0.29Γ(0.29)

(
2.459pnzn
2.84+pn

− 0.22zn − 0.599pnzn
γ+pn

))
+ (1− sinµ1)zn,

(5.6.3)
and pn+1 = µ3

(
pn + 0.79525851583580.29

0.29Γ(0.29)

(
1.992pn(1− pn

1.77
)− 2.999pnzn

2.84+pn

))
+ (1− µ3)pn,

zn+1 = µ3
(
zn + 0.79525851583580.29

0.29Γ(0.29)

(
2.459pnzn
2.84+pn

− 0.22zn − 0.599pnzn
2.84+pn

))
+ (1− µ3)zn,

(5.6.4)
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(a) Plot of pn for system (5.6.4) (b) Plot of zn for system (5.6.4)

(c) Plot of pn for system (5.6.3) (d) Plot of zn for system (5.6.3)

(e) Plot of pn for system (5.7.1) (f) Plot of zn for system (5.7.1)

Figure 5.3: Controlled diagrams for ρ = 0.599, b = 2.459, k = 1.77, β = 2.999, r =

1.992, α = 0.29, γ = 2.84, δ = 0.22 and s ∈ (0, 1] with initial conditions p0 = 0.380975609

and z0 = 1.6789467026.

where ρ = 0.599, b = 2.459, k = 1.77, β = 2.999, r = 1.992, α = 0.29, γ = 2.84, δ =
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0.22, s = 0.7952585158358. In addition, µ ∈ (0, 1], µ1 ∈ (0, 1] and µ∗ ∈ (0, 1] are
parameters used for controlling the bifurcation.

(a) Plot for system (5.6.3) for µ1 ∈
(0, 1]

(b) Plot for system (5.6.4) for µ ∈
(0, 1]

(c) Plot for system (5.7.1) for µ∗ ∈
(0, 1]

Figure 5.4: Controlled regions for ρ = 0.599, b = 2.459, k = 1.77, β = 2.999, r =

1.992, α = 0.29, γ = 2.84, δ = 0.22, and s ∈ (0, 1] with initial conditions p0 = 0.380975609

and z0 = 1.6789467026.

Furthermore, for both systems (5.6.3) and (5.6.4) we get (p∗, z∗)=(0.380976, 1.67895)

which is the unique positive fixed point of original system (5.1.9). Controlled regions
for both populations are graphically shown in Fig. 5.3. Furthermore, controlled figures
for phytoplankton and zooplankton populations by using models (5.6.3) and (5.6.4) are
respectively shown in Fig. 5.3a, Fig. 5.3b and Fig. 5.3c, Fig. 5.3d. Where, the
controlled figures for phytoplankton and zooplankton populations by using hybrid method
are shown in Fig. 5.3e and Fig. 5.3f respectively. Finally, it can be easily experienced
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that by using generalized schemes stability of initial system (5.1.9) is gloriously reclaimed
for enormous range of control parameter µ (see Fig. 5.3).

Example 5.6.3. Let ρ = 0.599, b = 2.459, k = 3.77, β = 2.999, r = 1.992, α = 0.29, γ =

2.84, and δ = 0.22. Then from system (3.0.2) we get (p∗, z∗)=(0.380976, 1.917895). More-
over, by taking the initial conditions p0 and z0 in the least neighborhood of (p∗, z∗) an
unstable behavior of continuous-time mathematical system (3.0.2) can be seen easily. In
addition, the unstable plots for p(t) and z(t) are given in Fig. 5.5a and Fig. 5.5b re-
spectively and the Hopf curve for the corresponding system is given in Fig. 5.5c. Hence,
it is clear that our continuous-time system (3.0.2) experiences the Hopf bifurcation for
similar values of the parameters as we have used for system (5.6.1) , which shows the
consistency of discretizing technique for our model.

(a) Plot of p(t) for system (3.0.2) (b) Plot of z(t) for system (3.0.2)

(c) Phase portrait for system (3.0.2)

Figure 5.5: Plots of system (3.0.2) for ρ = 0.599, b = 2.459, k = 3.77, β = 2.999, r =

1.992, α = 0.29, γ = 2.84, and δ = 0.22 with initial conditions p0 = 0.380975609 and
z0 = 1.91789467026.
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Value of s I1 I2 Length of I1 Length of I2

0.595258515 µ∗ ∈ (0, 0.840379282) µ1 ∈ (0, 0.9979821) 0.8403792828 0.997982102
0.695258515 µ∗ ∈ (0, 0.803373560) µ1 ∈ (0, 0.9979821) 0.8033735602 0.997982103
0.795258515 µ∗ ∈ (0, 0.772667332) µ1 ∈ (0, 0.8830322) 0.7726673328 0.883032240
0.895258515 µ∗ ∈ (0, 0.746577526) µ1 ∈ (0, 0.8416977) 0.74657752698 0.841697792
0.995258515 µ∗ ∈ (0, 0.723999981) µ1 ∈ (0, 0.8095833) 0.72399998114 0.809583311

Table 5.1: Comparison between modified hybrid method (5.6.3) and old hybrid method
for s ∈ (0, 1] and ρ = 0.599, b = 2.459, k = 1.77, β = 2.999, r = 1.992, α = 0.29, γ =

2.84, δ = 0.22 with initial points x0 = 0.380976, y0 = 1.67895

5.7 Concluding remarks

We study some dynamical properties of a phytoplankton-zooplankton model [78]. Firstly,
by applying a fractional-order discretization method, we obtained a discrete-time version
of the mathematical model presented by Chattopadhyay et al. [78]. Consequently, we get
some mathematical results related to the presence of a unique positive fixed point. In ad-
dition, the local stability of obtained mathematical system (5.1.9) about each of its fixed
points is discussed. The existence of Neimark-Sacker bifurcation for a unique positive
fixed point is shown mathematically to show the complex behaviour of the mathemati-
cal system (5.1.9), and some exceptional numerical examples are provided. It is shown
that the system (5.1.9) numerically experiences the Neimark-Sacker bifurcation for an
extensive range of parameter s. It is also shown that the continuous-time system (3.0.2)
experiences the Hopf bifurcation for similar values of the parameters, which shows the
consistency of discretizing technique for our model (see Fig. 5.5). Neimark-Sacker bifur-
cation is successfully controlled by using three different chaos controlling methods. Our
numerical studies have shown that the generalized hybrid methods (5.6.3) and (5.6.4) are
improved than hybrid method [95]. In addition, these are based on feedback control and
bring back the system’s stability for an extensive range of parameters. Moreover, from
the numerical study, it is seen that the generalized hybrid methods (5.6.3) and (5.6.4)
are more suitable for controlling the Neimark-Sacker bifurcation. Finally, to show the
effectiveness of modified techniques, a comparison with the old hybrid control technique
[95] is given. By applying the old hybrid method [95] on (5.1.9) and considering the para-
metric values as in Example 5.6.2, we get the following two-dimensional mathematical
system: pn+1 = µ∗

(
pn + 0.79525851583580.29

0.29Γ(0.29)

(
1.992pn(1− pn

1.77
)− 2.999pnzn

2.84+pn

))
+ (1− µ∗)pn,

zn+1 = µ∗
(
zn + 0.79525851583580.29

0.29Γ(0.29)

(
2.459pnzn
2.84+pn

− 0.22zn − 0.599pnzn
2.84+pn

))
+ (1− µ∗)zn,

(5.7.1)
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Value of s I1 I3 Length of I1 Length of I3

0.595258515 µ∗ ∈ (0, 0.84037928) µ ∈ (0, 0.94368078) 0.84037928282 0.94368078
0.695258515 µ∗ ∈ (0, 0.80337356) µ ∈ (0, 0.92962082) 0.80337356026 0.92962082
0.795258515 µ∗ ∈ (0, 0.77266733) µ ∈ (0, 0.91762277) 0.77266733280 0.91762277
0.895258515 µ∗ ∈ (0, 0.74657752) µ ∈ (0, 0.90717617) 0.74657752690 0.90717617
0.995258515 µ∗ ∈ (0, 0.72399998) µ ∈ (0, 0.89793765) 0.72399998114 0.89793765

Table 5.2: Comparison between modified hybrid method (5.6.4) and old hybrid method
for s ∈ (0, 1] and ρ = 0.599, b = 2.459, k = 1.77, β = 2.999, r = 1.992, α = 0.29, γ =

2.84, δ = 0.22 with initial points x0 = 0.380976, y0 = 1.67895

where µ∗ ∈ (0, 1] is a control parameter. The bifurcation diagrams for controlled systems
(5.6.3), (5.6.4) and (5.7.1) are respectively shown in Fig. 5.3. It is seen from Fig. 5.3
that generalized techniques are much effective than old hybrid techniques. In addition,
numerical comparison of generalized control techniques with old hybrid method is given
in Table. 5.1 and Table. 5.2. In Table. 5.1 and Table. 5.2, I1 represents the
controlled interval for system (5.7.1) and controlled intervals for system (5.6.3) and (5.6.4)
are respectively represented by I2 and I3. It can be seen from these tables that modified
models (5.6.3) and (5.6.4) have greater lengths of controlled intervals as compared to
the old hybrid system (5.7.1). Moreover, if controlling techniques (5.6.3) and (5.6.4)
are applied to (5.1.9) then controlled regions for systems (5.6.3), (5.6.4) and (5.7.1) are
respectively shown in Fig. 5.4a, Fig. 5.4b and Fig. 5.4c. Hence, it can be seen from
figures Fig. 5.4a and Fig. 5.4b that the regions formed by using generalized techniques
contain the top part of the figure as a controlled region. Hence, from the graphical and
tabular comparison of controlling techniques, the feasibility and effectiveness of newly
designed hybrid techniques can be seen easily.
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Chapter 6

Bifurcation Analysis and Control of
Chaos in a Discrete-Time Two-Trophic
Plant-Herbivore Model and Dynamical
Consistency of a Nonstandard
Difference Scheme

The findings of this chapter are published in a top-quality international journal (see [83]).
Baldwin et al. [84] have discussed the unpredictable signalling in plant-herbivore inter-
actions. As plants are leaders of gas interchange, not simply precisely structuring jungles
from gases reserved from the atmosphere but also discharging complex posies of impulsive
carbon-based compounds (VOCs) back into the atmosphere. This extraordinary aptitude
fuels the probability that plants connect through impulsive signals. Generally, the word
’communication’ is a burdened word that means unlike things to different investigators;
most would agree with the marginal necessity that info is swapped over, nevertheless of
’intent’ or suitability significance for each party. Scientists observed twenty years ago that
herbivore attacks on plants, as well as nearby plants, cause alterations in the struggle of
the affected plants. This also impacts the production of specific compounds that aid in
the defense against herbivores. Various studies have suggested that the most effective way
of communication in this situation is through the transmission of information through
the air or other mediums. This has led to the popular term "speaking trees" being used
in the media. However, considering that neighboring plants compete for resources and
it is unlikely to be advantageous for them to share information with their adversaries, a
more appropriate term for this phenomenon would be "snooping elms." Articles printed
in the last two decades have been emphasised in examinations [107-110] and have renewed
attention in these singularities. Plant defences against herbivores by the induced role of
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the defence is the main topic of focus in ecological science. These defences are activated
in plants when they are attacked by herbivores [87]. Induced defences are often grouped
into two types: direct and indirect defences. Natural defences by plants are extraction
of toxic chemicals, digestibility reducers, poisonous flowers and spines. It is documented
that natural defences of plants are observed in more than 100 plant species within their
Thirty-four families and these defences have been reported since 1970 [88]. Previous
research on natural plant defences shows that plant fitness increases due to herbivore-
induced chemical changes [111-117]. On the other hand, indirect protection of plants
involves third parties like predators and parasitoids. An illustration of indirect defence is
the pull of ants towards plants in search of food.An evident loss in seed production can
be seen easily [92].

In a two-trophic plant-herbivore system, an evident loss in seed production can be
seen easily [87]. However, parasitoids might act as a steadying mediator in the plant-
herbivore system, and a positive increment in seed production can be seen easily [118-120].
It is necessary for survival in the ecosystem that plants and herbivores coexist naturally.
Furthermore, nonlinear mathematical models often describe this coexistence [87]. When
an ecosystem is disturbed by any factor, it creates a disturbance in the environment [94].
For example, in the absence of herbivore species, the plant population increases without
any bound. Hence, in this article, we analyze a two-trophic plant-herbivore interaction
model [87]. Let us denote the density of plants by x(t) and the density of herbivores
by y(t) at any time t. When there is no herbivore population, then logistically, plant
population increases; Where r is their inherent degree of growing and k is the carrying
ability of the environment for plant species. We assume that the rate at which herbivores
eat plants is proportional to the product x(t)y(t) and is represented by α. Additionally,
assume that β is the conversion factor for herbivores and s means their death rate. Then,
under these assumptions, we are now able to write the mathematical form of the two-
trophic plant-herbivore model [87]:

dx

dt
=

(
r

(
1− x(t)

k

)
− αx(t)

)
x(t),

dy

dt
= (βx(t)− s) y(t).

(6.0.1)

Understanding the dynamic relationships between herbivores and plants helps us pro-
tect the environment. Hence, the fantastic diversity in the dynamical behaviour of these
species attract many researchers; Resulting in some existing theocratical models related
to herbivore-plant interactions [119-121]. Furthermore, these theoretical models study
plant-herbivore interactions using differential and difference equations [121]. Modelling
these interactions by differential and difference equations allows us to explore the com-
plex behaviour produced in these interactions. Moreover, in the case of non-overlapping
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generations, the study using discrete-time models is more feasible and has richer dy-
namics [91-94]. A significant number of researchers use discrete-time models to explore
plant-herbivore interactions. For the study of some motivating dynamical properties of
plant-herbivore interactions, we refer the reader to [116-121]. In the current article, our
purpose is to describe the dynamics of the plant-herbivore model (6.0.1), which is pre-
sented by Chattopadhyay et al. [87] in differential form. Afterwards, Kartal [99] have
given a comparison between discrete-time and continuous-time models by using model
(6.0.1). This work presented strong dynamical conditions and a modified chaos control
technique to further explain the model (6.0.1). Mukherjee et al. [110] studied the dy-
namical properties produced in a plant-herbivore model with Holling type-II response
[81].

6.1 Discretization of model

According to Strogatz [9], chaos occurs in a continuous system when it is at least 3-
dimensional. Therefore, it is clear that chaos ceased to exist in the system (6.0.1), chaos
ceased to exist. HoIn the case of discrete-time maps, chaos can be observed in one
dimension. Therefore, it is necessary and interesting to study the qualitative behavior of
the discrete-time version of system (6.0.1). By using Euler’s forward method with a step
size of h, we obtain the following discrete-time formulation of (6.0.1):

xn+1 =xn + h

(
rxn −

rx2
n

k
− αxnyn

)
,

yn+1 =yn + h (βxnyn − syn) .

(6.1.1)

Furthermore, to understand a similar type of discretization, one can study [91-94]. Shabir
et al. [30] studied the dynamical consistency of a prey-predator model by using Mickens
[20] non-standard difference scheme. Additionally, the author compares the continuous-
time prey-predator model with a discrete-time prey-predator model to analyze this dy-
namical behaviour. Hence, by applying a non-standard difference scheme [20] on the
model (6.1.1), we get the following form of system (6.1.1):

xn+1 =
xn (1 + rh)

1 + rh
k
xn + αhyn

,

yn+1 =
yn (1 + βhxn)

1 + sh
.

(6.1.2)

Where 0 < h < 1 is step size. The authors in Din et al. [6] and Din et al. [7] have
explored the dynamics of two discrete-time models. Additionally, by taking step size h
as a bifurcation parameter, the author has discussed two different discrete-time models’
stability and bifurcation analysis. Furthermore, the author has shown that step size h
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can not be used as a controlling parameter for bifurcation in the OGY method [36].
Therefore, we have introduced a modified hybrid control methodology to conquer this
deficiency for controlling bifurcation.

6.2 Existence of fixed points

Assume that, xn+1 = xn = x∗ and yn+1 = yn = y∗. Then system (6.1.1) becomes

rx∗ −
rx2
∗
k
− αx∗y∗ = 0,

βx∗y∗ − sy∗ = 0.

(6.2.1)

On solving system (6.2.1) one can obtain three fixed points, p0 = (0, 0), p1 = (k, 0) and
the unique positive fixed point p =

(
s
β
, r(kβ−s)

kαβ

)
exists if kβ > s. Let

FJ(p) =

[
a11 a12

a21 a22

]

be the variational matrix about p. Then characteristic polynomial H(ω) of matrix FJ(p)

is:
H(ω) = ω2 − A1ω + A2, (6.2.2)

where
A1 = (a11 + a22),

and
A2 = a11a22 − a12a21.

6.3 Local stability analysis

Firstly, we explore the stability analysis of the trivial fixed point p0. The Jacobian matrix
FJ(p0) about fixed point p0, is given by;

FJ(p0) =

[
1 + hr 0

0 1− hs

]
.

The characteristic polynomial H(τ) obtained from matrix FJ(p0) is given by;

H(τ) = τ 2 − (2 + h(r − s)) τ + (1 + hr)(hs− 1).

In addition, H(τ) = 0 has two roots, namely τ1 = 1 + hr and τ2 = 1 − hs, such that
|τ1| > 1 remains true for all parametric values. By using Lemma 1.3.1 we conclude the
following proposition about the local stability of p0.
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Proposition 6.3.1. Let p0 = (0, 0) be a fixed point of (6.1.1) then;

• The point p0 is exterior of unit disk if and only if

hs > 2.

• The point p0 is saddle point if and only if

0 < hs < 2

• The point p0 is non-hyperbolic fix point if and only if

hs = 2.

Next, our goal is to explore the local stability of system (6.1.1) about p1 = (k, 0). The
matrix of variation FJ(p1) evaluated about p1 can be calculated as:

FJ(p1) =

[
1− hr −hkα

0 1− hs+ hkβ

]
.

Moreover, in this case the quadratic characteristic polynomial H(%) obtained from FJ(p1)

is given by

H(%) = %2 − (2− h(r + s− kβ)) %+ (hr − 1(h(s− kβ)− 1).

Clearly, H(%) = 0 has two roots namely, %1 = 1− hs and %2 = 1− hs+ hkβ. Hence, one
has the following proposition for the local stability of p1 = (k, 0).

Proposition 6.3.2. Let p1 = (k, 0) be a fixed point of (6.1.1) then:

• The point p1 is interior of unit disk if and only if

0 < hs < 2 and − 2 < h(kβ − s) < 2.

• The point p1 is exterior of unit disk if and only if

hs > 2 and kβ > 2.

• The point p1 is saddle point if and only if

hs > 2 and − 2 < h(kβ − s) < 2 or 0 < hs < 2 and kβ > s.

107



DRSML Q
AU

• The point p1 is non-hyperbolic if and only if

hs = 2 and kβ > 0.

Finally, we have some results related to the local stability of system (6.1.1) about
p =

(
s
β
, r(kβ−s)

kαβ

)
. Let FJ(p) be the matrix of variation for system (6.1.1) about p. Then

FJ(p) has the following mathematical form:

FJ(p) =

(
1− hrs

kβ
−hsα

β
hr(−s+kβ)

kα
1

)
.

Assume that
A1 = 2− hrs

kβ
,

and
A2 =

kβ + hrs(hkβ − 1− hs)
kβ

and (6.2.2) is the characteristic polynomial obtained from matrix FJ(p) and kβ > s.

Then, by performing some mathematical operations it follows that:

H(1) =
h2rs(kβ − s)

kβ
> 0,

and

H(−1) =
4kβ + hrs(hkβ − 2− hs)

kβ
.

Hence, by using Lemma 1.3.1 we have the next proposition about the local stability of
system (6.1.1) about p =

(
s
β
, r(kβ−s)

kαβ

)
.

Proposition 6.3.3. Let p =
(
s
β
, r(kβ−s)

kαβ

)
be unique positive fixed point of (6.1.1) then:

• The point p is the point of suction if and only if

hrs(2 + hs) < kβ(4 + h2rs) and kβ > s.

• The point p is repeller if and only if

hrs(2 + hs) < kβ(4 + h2rs) and 1 + hs < hkβ.

• The point p is saddle point if and only if

hr > 2
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• The point p is non-hyperbolic if and only if one of the particular condition holds:

1.

h =
rs−

√
r2s2 + 4krs2β − 4k2rsβ2

krsβ − rs2

and

hkβ 6= 1 + hs, hrs(hkβ − 1− hs) 6= −2kβ.

2.

rs+ 4kβ(s− kβ) < 0 and h =
1

kβ − s
.

Assume that s < kβ, then the system (6.1.2) have three equilibrium points, trivial
equilibrium p0 = (0, 0), boundary equilibrium p1 = (k, 0) and the unique positive equilib-
rium p =

(
s
β
, r(kβ−s)

kαβ

)
. Furthermore, one can see that p0 and p1 are always saddle points.

In order to study the behavior of (6.1.2) about p, we assume that F (p) be the variational
matrix of system (6.1.2) about p such that:

F (p) =

(
1− hrs

kβ+hkrβ
− hsα
β+hrβ

−hrs−hkrβ
kα+hksα

1

)
.

The second degree characteristic polynomial P(ω) calculated by using F [p] is given as:

P(ω) = ω2 −
(

2− hrs

kβ + hkrβ

)
ω +

k(1 + h(r + s+ 2hrs))β − hrs(1 + 2hs)

k(1 + hr)(1 + hs)β
. (6.3.1)

Furthermore, by performing some suitable algebraic manipulation it follows that

P(1) =
h2rs(kβ − s)

k(1 + hr)(1 + hs)β
> 0, (6.3.2)

P(−1) =
k (4 + 5h2rs+ 4h(r + s)) β − hrs(2 + 3hs)

k(1 + hr)(1 + hs)β
> 0, (6.3.3)

P(0) =
−hrs(1 + 2hs) + k(1 + h(r + s+ 2hrs))β

k(1 + hr)(1 + hs)β
. (6.3.4)

From (6.3.2) it is clear that P(1) > 0 if and only if kβ > s. Furthermore, for kβ > s we
have

k
(
4 + 5h2rs+ 4h(r + s)

)
β > hrs(2 + 3hs)

Remark 6.3.1. As P(−1) > 0, hence there is no chance of period doubling bifurcation
for system (6.1.2) about its unique positive fixed point p (see [30]).
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Hence, by using Lemma 1.3.1 and considering the relations between roots and co-
efficients of second degree algebraic equation, we have the next result that describes the
local stability of the system (6.1.2) about p.

Proposition 6.3.4. Let p be unique positive fixed point of (6.1.2) then:

1. p is interior of unit circle if and only if

kβ
(
4 + 5h2rs+ 4h(r + s)

)
> hrs (2 + 3hs) and 1 + hs > 0.

2. p is the exterior of the unit circle if and only if

kβ
(
4 + 5h2rs+ 4h(r + s)

)
> hrs (2 + 3hs) and kβh > 1 + 2hs.

3. p is non-hyperbolic if and only if

h =
1

kβ − 2s
and s (5hrs+ 4s+ r) < 4k2β2 (1 + hr) .

6.4 Bifurcation analysis

This section is related to the bifurcation analysis of the system (6.1.1) about its positive
fixed point p.

6.4.1 Period-doubling bifurcation

Let us assume that (6.2.2) be characteristic equation of (6.1.1) about p. Additionally,
assume that ω1 and ω2 are roots of (6.2.2). Then by using Lemma 1.3.1 one can see
that ω1 = −1 and |ω2| 6= 1, if part (1) of Proposition 6.3.3 holds. Consequently, the
system (6.1.1) experiences the period-doubling bifurcation when the parameters in (6.1.1)
vary in the least neighborhood of the following set:

BS1 = {α, β, s, r, k ∈ <+ : h =
rs−

√
r2s2 + 4krs2β − 4k2rsβ2

krsβ − rs2
, A2 6= 1,−1},

Moreover, ω1 and ω2 are conjugate complex numbers with unit magnitude if the condition
(2) of Proposition 6.3.3 is satisfied. Thus the system (6.1.1) undergoes Neimark-Sacker
bifurcation when the parameters in (6.1.1) vary in the least neighborhood of the following
set:

BS2 =

{
α, β, s, r, k ∈ <+ : rs+ 4kβ(s− kβ) < 0, h =

1

kβ − s

}
.
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Firstly, we will analyze the flip bifurcation of (6.1.1) about p. Let (α, β, s, r, k) ∈ BS1 are

taken arbitrarily and h =
rs−
√
r2s2+4krs2β−4k2rsβ2

krsβ−rs2 . Then the mathematical system (6.1.1)
can be defined by the next two-dimensional mapping:(

x

y

)
→

(
x+ h

(
rx
(
1− x

k

)
− αxy

)
y + h (βxy − sy)

)
. (6.4.1)

Taking h̄ as small parameter for bifurcation, then the perturbation of mapping (6.4.1)
can be described by the next map:(

x

y

)
→

(
x+ (h+ h̄)

(
rx
(
1− x

k

)
− αxy

)
y + (h+ h̄) (βxy − sy)

)
, (6.4.2)

where |h̄| � 1, is a small parameter for perturbation. Taking H = x − s
β
and P =

y − r(kβ−s)
kαβ

, then the mapping (6.4.2) is transformed into the following form:(
H

P

)
→

(
z11 z12

z21 z22

)(
H

P

)
+

(
f1(H,P, h̄)

f2(H,P, h̄)

)
(6.4.3)

where

f1(H,P, h̄) = z13H
2 + z14Hh̄+ z15HP + z16h̄P + z17HPh̄+ z18h̄H

2

+ O
(
(|H|+ |P |+ |h̄|)4

)
,

f2(H,P, h̄) = z23Hh̄+ z24HP + z25HPh̄+O
(
(|H|+ |P |+ |h̄|)4

)
,{

z11 = βk−hrs
β k

, z12 = −hα s
β
, z21 = hr(β k−s)

kα
, z22 = 1, z13 = −hr

k
, z14 = − rs

β k
,

z15 = −hα, z16 = −α s
β
, z17 = −α, z18 = − r

k
, z23 = r(β k−s)

kα
, z24 = hβ, z25 = β.

Next, we consider the following translation:(
H

P

)
= T

(
u

v

)
(6.4.4)

where T =

(
z12 z12

−ς ζ

)
be a nonsingular matrix along with transformation (6.4.4),

then the map (6.4.3) can be written as:(
u

v

)
→

(
−1 0

0 ω2

)(
u

v

)
+

(
f(u, v, h̄)

g(u, v, h̄)

)
, (6.4.5)

with

f(u, v, h̄) =
ζz18H

2h̄

z12η
+
ζz13H

2

z12η
+

(
ζz17

z12η
− z25

η

)
HPh̄

+

(
ζz15

z12η
− z24

η

)
HP +

(
ζz14

z12η
− z23

η

)
h̄H +

ζz16h̄P

z12η

+ O
(
(|u|+ |v|+ |h̄|)4

)
,
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g(u, v, h̄) =
ςz18H

2r

z12η
+
ςz13H

2

z12η
+

(
ςz17

z12η
+
z25

η

)
HPh̄

+

(
ςz15

z12η
+
z24

η

)
HP +

(
ςz14

z12η
+
z23

η

)
h̄H +

ςz16h̄P

z12η

+ O
(
(|u|+ |v|+ |h̄|)4

)
,

where

H = z12(u+ v), P = −ςu+ ζv, ζ = (ω2 − z11), ς = (1 + z11), η = ω2 + 1.

Assume that Cm(0, 0, 0) be the center manifold of (6.4.5) intended at (0, 0) in a smallest
neighborhood of h̄ = 0, formerly Cm(0, 0, 0) can be estimated as follows:

Cm(0, 0, 0) =
{

(u, v, h̄) ∈ R3 : v = m1u
2 +m2uh̄+m3h̄

2 +O
(
(|h̄|+ |u|)3

)}
,

where
m1 =

1

1− ω2

(
ςz12z13

η
−
(
ςz15

z12η
+
z24

η

)
z12ς

)
,

m2 =
1

1− ω2

((
ςz14

z12η
+
z23

η

)
z12 −

ςz16ς

z12η

)
, m3 = 0.

Hence, we have the following restricted map to the centre manifold Cm(0, 0, 0) and de-
scribe it as follows.

G : u→ −u+ k1u
2 + k2uh̄+ k3u

2h̄+ k4uh̄
2 + k5u

3 +O
(
(|u|+ |h̄|)4

)
,

where

k1 =
ζz12z13

η
−
(
ζz15

z12η
− z24

η

)
z12ς,

k2 =

(
ζz14

z12η
− z23

η

)
z12 −

ζz16ς

z12η
,

k3 =
ζz12z18

η
+ 2

ζz12z13m2

η
−
(
ζz17

z12η
− z25

η

)
z12ς

+

(
ζz15

z12η
− z24

η

)
z12ζm2 −

(
ζz15

z12η
− z24

η

)
z12m2ς

+

(
ζz14

z12η
− z23

η

)
z12m1 +

ζ2z16m1

z12η
,

k4 =

(
ζz14

z12η
− z23

η

)
z12m2 +

ζ2z16m2

z12η
,

k5 =
2ζz12z13m1

η
+

(
ζz15

z12η
− z24

η

)
z12m1ζ

−
(
ζz15

z12η
− z24

η

)
z12m1ς.
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Next, we have the following real numbers:

l1 =

(
∂2f

∂u∂h̄
+

1

2

∂G

∂h̄

∂2G

∂u2

)
(0,0)

=

(
ζz14

z12η
− z23

η

)
z12 −

ζz16ς

z12η
6= 0,

l2 =

((
1

2

∂2G

∂u2

)2

+
1

6

∂3G

∂u3

)
(0,0)

= k5 + k2
1 6= 0. (6.4.6)

Hence, by the study as mentioned above, we have the next conclusive theorem related to
the existence of period-doubling bifurcation of system (6.1.1) about p.

Theorem 6.4.1. Suppose equation (6.4.6) is met. Under these conditions, as the step
size h varies within a small neighborhood around h̄, the system (6.1.1) exhibits a period-
doubling bifurcation. This bifurcation occurs specifically around the positive fixed point
p. Furthermore, the stability of the period-two orbits originating from p depends on the
value of l2: if l2 > 0, the orbits are stable, while if l2 < 0, they are unstable.

6.4.2 Neimark-Sacker bifurcation

Next, we deduce some results for the existence and direction of Neimark-Sacker bifurca-
tion. By using Lemma 1.3.1, it follows that the characteristic equation H(ω) = 0 has
two complex roots with modulus one, if condition (2) of Proposition 6.3.3 is satisfied.
Hence the unique positive fixed point p of mathematical system (6.1.1) experiences the
Neimark-Sacker bifurcation if parameters in (6.1.1) vary in the smallest neighborhood of
BS2. Let (α, β, k, s, r, h) ∈ BS2 then system (6.1.1) can be written as;(

x

y

)
→

(
x+ h1

(
rx
(
1− x

k

)
− αxy

)
y + h1 (βxy − sy)

)
. (6.4.7)

Since (α, β, k, s, r, h1) ∈ BS2 and h1 = 1
kβ−s . Taking h̃ as bifurcation parameter and

considering the perturbation of (6.4.7) we get the following mathematical system:(
x

y

)
→

(
x+ (h1 + h̃)

(
rx
(
1− x

k

)
− αxy

)
y + (h1 + h̃) (βxy − sy)

)
, (6.4.8)

where |h̃| � 1 is taken as small perturbation parameter. Next, we assume that H =

x− s
β
, P = y − r(kβ−s)

kαβ
, then the map (6.4.7) is changed into the following mathematical

form: (
H

P

)
→

(
s11 s12

s21 s22

)(
H

P

)
+

(
g1(H,P )

g2(H,P )

)
, (6.4.9)
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where

g1(H,P ) = s13H
2 + s14HP +O ((|H|+ |P |)4),

g2(H,P ) = s23HP +O
(
(|H|+ |P |)4

)
,

s11 =
βk − (h1 + h̃)rs

β k
, s12 = −(h1 + h̃)α s

β
, s21 =

(h1 + h̃)r (β k − s)
kα

,

s22 = 1, s13 = −(h1 + h̃)α, s14 = −(h1 + h̃)α, s23 = (h1 + h̃)β.

The second degree characteristic equation H(ω) = 0 of variational matrix of system
(6.4.9) estimated at the origin (0, 0) can be defined as follows:

ω2 − S(h̃)ω +M(h̃) = 0, (6.4.10)

where

S(h̃) = 2−

(
h̃+ h1

)
rs

kβ
, M(h̃) =

kβ +
(
h̃+ h1

)
rs
((
h̃+ h1

)
kβ − 1−

(
h̃+ h1

)
s
)

kβ
.

Since (α, β, s, k, r, h1) ∈ BS2. Then, the zeros ω1 and ω2 of (6.4.10) are complex conjugates
with unit modulus such that ω1 = ω2. As ω1 is the root of (6.4.10) then it has the following
mathematical form:

ω1 =
S(h̃)

2
+
i

2

√
4M(h̃)− S2(h̃).

By performing some mathematical operations it follows that;

|ω1| =
√
M(h̃),

with d
√
M(h̃)

dh̃


h̃=0

=
rs (β h1k − h1s− 1) + h1rs (kβ − s)

2kβ
√

kβ+h1rs(β h1k−h1s−1)
kβ

6= 0. (6.4.11)

Additionally, it follows that |ω1| = 1, but ωm1 , ωm2 6= 1 for all m ∈ {1, 2, 3, 4} if and only
if S(0) 6= ±2, 0, 1. Thus, when h̃ = 0 and the given conditions hold true, the zeros of
equation (6.4.10) will consistently lie outside the intersection area of the unit circle and
the coordinate axes.

2kβ 6= hrs, kβ 6= hrs. (6.4.12)

Since (α, β, s, k, r, h1) ∈ BS2, we get 0 < S(0) < 2. Thus condition (6.4.12) is satis-
fied automatically. Moreover, we assume that the condition (6.4.11) is satisfied: Then,
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the canonical form of (6.4.9) at h̃ = 0 can be obtained by taking γ = S(0)
2
, δ =

1
2

√
4M(0)− S2(0) and assuming the following similarity transformation:(

H

P

)
=

(
s12 0

γ − s11 −δ

)(
u

v

)
. (6.4.13)

By using transformation (6.4.13), one has the next authoritative form of system (6.4.9):(
u

v

)
→

(
γ −δ
δ α

)(
u

v

)
+

(
f̃(u, v)

g̃(u, v)

)
, (6.4.14)

where
f̃(u, v) =

Ps14H

s12

+
s13H

2

s12

+O
(
(|u|+ |v|)4

)
,

g̃(u, v) =
(γ − s11) s13H

2

s12δ
+

(
(γ − s11) s14

s12δ
− s23

δ

)
PH +O

(
(|u|+ |v|)4

)
.

Where, H = s12u and P = (γ − s11)u− δv. Hence, we define the following non-zero real
numbers:

z =

([
−Re

(
(1− 2ω1)ω2

2

1− ω1

ξ20ξ11

)
− 1

2
|ξ11|2 − |ξ02|2 +Re(ω2ξ21)

])
h̃=0

,

where
ξ20 =

1

8

[
f̃uu − f̃vv + 2g̃uv + i

(
g̃uu − g̃vv − 2f̃uv

)]
,

ξ11 =
1

4

[
f̃uu + f̃vv + i (g̃uu + g̃vv)

]
,

ξ02 =
1

8

[
f̃uu − f̃vv − 2g̃uv + i

(
g̃uu − g̃vv + 2f̃uv

)]
,

ξ21 =
1

16

[
f̃uuu + f̃uvv + g̃uuv + g̃vvv + i

(
g̃uuu + g̃uvv − f̃uuv − f̃vvv

)]
.

Hence, the aforementioned analysis gives us the following significant result for direction
and existence of Neimark-Sacker bifurcation [111]

Theorem 6.4.2. The unique positive fixed point
(
s
β
, r(kβ−s)

kαβ

)
experiences the Neimark-

Sacker bifurcation, whenever h changes in least neighborhood of h1 = 1
kβ−s . In addition,

if z < 0, (z > 0), respectively, then an attracting or repelling invariant closed curve
bifurcates from the equilibrium point for h > h1(h < h1), respectively.

Now, we have some results related to the existence and direction of Neimark-Sacker
bifurcation in system (6.1.2). One can notice that the roots of the characteristic equation
(6.3.1) are complex conjugates with modulus one if condition (3) of Proposition 6.3.4
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is satisfied. Hence, the positive fixed point of the model (6.1.2) experiences the Neimark-
Sacker bifurcation if parameters vary in the neighbourhood of the following set

ℵS =

{
α, β, s, r, k ∈ <+ : with s (5hrs+ 4s+ r) < 4k2β2 (1 + hr) and h =

1

kβ − 2s

}
.

Let
(
α, β, s, r, k, h̄

)
∈ ℵS then the system (6.1.2) is defined by the next mathematical

form (
x

y

)
→

 x(1+h̄r)
1+ rh̄

k
x+αh̄y

y(1+βh̄x)
1+h̄s

 . (6.4.15)

Where h̄ = h = 1
kβ−2s

. Let |h̃| � 1 be a perturbation parameter, then map (6.4.15) can
be expressed as: (

x

y

)
→

 x(1+(h̄+h̃)r)
1+

r(h̄+h̃)
k

x+α(h̄+h̃)y

y(1+β(h̄+h̃)x)
1+(h̄+h̃)s

 . (6.4.16)

Next, under transformations (H,P ) =
(
x− s

β
, y − r(kβ−s)

kαβ

)
, the mathematical map (6.4.16)

is reshaped into the following mathematical map:(
H

P

)
→

(
r11 r12

r21 r22

)(
H

P

)
+

(
R1(H,P )

R2(H,P )

)
, (6.4.17)

where

R1(H,P ) = r13H
2 + r14HP + r15P

2 + r17H
3 + r17H

2P + r18HP
2 + r19P

3

+ O
(
(|H|+ |P |)4

)
, R2(H,P ) = r23HP +O

(
(|H|+ |P |)4

)
,

and 
r11 = β hkr−hrs+β k

β k(hr+1)
, r12 = − αhs

β (hr+1)
, r21 = hr(β k−s)

kα (hs+1)
, r22 = 1,

r13 = − (β hkr−hrs+β k)hr

k2β (hr+1)2 , r14 = − (β hkr−2hrs+β k)hα

kβ (hr+1)2 , r15 = h2α2s
β (hr+1)2 ,

r16 = (β hkr−hrs+β k)h2r2

k3β (hr+1)3 , r17 = (2β hkr−3hrs+2β k)αh2r

k2β (hr+1)3 ,

r18 = (β hkr−3hrs+β k)h2α2

kβ (hr+1)3 , r19 = − h3α3s
β (hr+1)3 , r23 = β h

hs+1
.

The characteristic equation P(ω) = 0 of Jacobian matrix F (p) of map (6.4.17) computed
at (0, 0) can be described as follows:

ω2 −M1(h̃)ω +M2(h̃) = 0 (6.4.18)

where

M1(h̃) = 2− (h̄+ h̃)rs

kβ + (h̄+ h̃)krβ
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and

M2(h̃) =
−(h̄+ h̃)rs(1 + 2(h̄+ h̃)s) + k(1 + (h̄+ h̃)(r + s+ 2(h̄+ h̃)rs))β

k(1 + (h̄+ h̃)r)(1 + (h̄+ h̃)s)β
.

Since
(
α, β, s, k, r, h̄

)
∈ ℵS. Then roots of P(ω) = 0 are calculated as follows:

ω1, ω2 =
M1(h̃)

2
± i

2

√
4M2(h̃)−M2

1 (h̃).

Therefore, we have

|ω1| = |ω2| =
√
M2(h̃),

d
√
M2(h̃)

dh̃


h̃=0

=
rs (β h2kr + β h2ks− rsh2 − 2h2s2 + 2 β hk − 4hs− 1)

2k (hr + 1)2 (hs+ 1)2 β
(√

2β h2krs−2 rs2h2+β hkr+β hks−rsh+kβ
k(hr+1)(hs+1)β

) 6= 0.

Since
(
α, β, s, k, r, h̄

)
are in ℵS, this implies that 0 < M1(0) < 2. As a result M1(0) 6=

±2, 0, 1 gives ωm1 , ωm2 6= 1 for all m = 1, 2, 3, 4 at h̃ = 0. Thus, roots of (6.4.18) do not
lie in the intersection of the unit circle with the coordinate axes at h̃ = 0 and if the next
condition holds true:

2kβ (1 + hr) 6= hrs, kβ (1 + hr) 6= hrs. (6.4.19)

Assume that γ = M1(0)
2

, δ = 1
2

√
4M2(0)−M2

1 (0), then normal form of (6.4.17) at h̃ = 0

can be expressed as: (
H

P

)
=

(
r12 0

γ − r11 −δ

)(
u

v

)
. (6.4.20)

Hence, by using map (6.4.20) one can obtain the next map:(
u

v

)
→

(
γ −δ
δ γ

)(
u

v

)
+

(
g̃1(u, v)

g̃2(u, v)

)
, (6.4.21)

where

g̃1(u, v) =
r16H

3

r12

+
r17H

2P

r12

+
r13H

2

r12

+
r18HP

2

r12

+
r14HP

r12

+
r19P

3

r12

+
r15P

2

r12

+ O
(
(|u|+ |v|)4

)
,

g̃2(u, v) =
(γ − r11) r16H

3

r12δ
+

(γ − r11) r17H
2P

r12δ
+

(γ − r11) r13H
2

r12δ
+

(γ − r11) r18HP
2

r12δ

+

(
(γ − r11) r14

r12δ
− r23

δ

)
HP +

(γ − r11) r19P
3

r12δ
+

(γ − r11) r15P
2

r12δ

+ O
(
(|u|+ |v|)4

)
,
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where H = r12u and P = (γ − r11)u − δv. Therefore, we define the next nonzero real
number:

z =

([
−Re

(
(1− 2ω1)ω2

2

1− ω1

τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 +Re(ω2τ21)

])
h̃=0

,

where
τ20 =

1

8
[g̃1uu − g̃1vv + 2g̃2uv + i (g̃2uu − g̃2vv − 2g̃1uv)] ,

τ11 =
1

4
[g̃1uu + g̃1vv + i (g̃2uu + g̃2vv)] ,

τ02 =
1

8
[g̃1uu − g̃1vv − 2g̃2uv + i (g̃2uu − g̃2vv + 2g̃1uv)] ,

τ21 =
1

16
[g̃1uuu + g̃1uvv + g̃2uuv + g̃2vvv + i (g̃2uuu + g̃2uvv − g̃1uuv − g̃1vvv)] .

Finally, we have the following theorem.

Theorem 6.4.3. Whenever h varies within a small neighborhood of h̄ = 1
kβ−2s

, a Neimark-

Sacker bifurcation occurs at
(
s
β
, r(kβ−s)

kαβ

)
. Additionally, if z < 0 (z > 0), an attracting

(repelling) invariant closed curve emerges from the equilibrium point for h > h̄ (h < h̄)
respectively.

6.5 Chaos control

This section has discussed a generalized hybrid control technique by applying state feed-
back and parameter perturbation. Moreover, this technique controls the chaos and
Neimark-Sacker bifurcation experienced by the system ((6.1.1)) about its positive fixed
point.

6.5.1 A modified technique for chaos control

In this scenario, we consider a hybrid control technique that combines state feedback and
parameter perturbation. The technique is described by the equation below:

sn+k = θ3g(k)(sn, ξ) + (1− θ3)sn (6.5.1)

Here, k is a positive integer, 0 < θ < 1 is a parameter used to regulate the bifurcation
in (6.5.1). Furthermore, g(k) represents the kth iterative value of the function g(.). By
applying the control strategy (6.5.1) on (6.1.1) and (6.1.2) respectively, one can get the
following discrete-time mathematical systems:

xn+1 =θ3

(
xn + h

(
rxn −

rx2
n

k
− αxnyn

))
+ (1− θ3)xn,

yn+1 =θ3 (yn + h (βxnyn − syn)) + (1− θ3)yn,

(6.5.2)
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and

xn+1 =θ3

(
xn (1 + rh)

1 + rh
k
xn + αhyn

)
+ (1− θ3)xn,

yn+1 =θ3

(
yn (1 + βhxn)

1 + sh

)
+ (1− θ3)yn,

(6.5.3)

where 0 < θ < 1 is control parameter. Furthermore, controlled systems (6.5.2) and
(6.5.3) are fixed point preservers and their constant solution is same as original system.
The variational matrices for (6.5.2) and (6.5.3) evaluated at unique positive fixed point(
s
β
, r(kβ−s)

kαβ

)
are respectively: (

1− hrsθ3

kβ
−hsαθ3

β
hr(kβ−s)θ3

kα
1

)
(6.5.4)

and (
1− hrsθ3

kβ+hkrβ
− hsαθ3

β+hrβ
hr(kβ−s)θ3

k(1+hs)α
1

)
. (6.5.5)

The following result properly describes the conditions for local asymptotic stability of
one and only positive fixed point

(
s
β
, r(kβ−s)

kαβ

)
of the controlled system (6.5.2) and (6.5.3).

Theorem 6.5.1. The fixed point
(
s
β
, r(kβ−s)

kαβ

)
of mathematical system (6.5.2) is locally

asymptotically stable if and only if the next condition holds true.

2 > 1 + q >| p |,

where, p and q are trace and determinant of (6.5.5), respectively. Furthermore, let

| p1 |< 1 + q1 < 2,

then the equilibrium
(
s
β
, r(kβ−s)

kαβ

)
of controlled system (6.5.3) is locally asymptotically

stable. Where, trace and determinant of (6.5.4) are respectively represented by p1 and q1.

6.6 Numerical simulations

Example 6.6.1. Let α = 0.4, β = 2, s = 1.999, k = 1, r = 2.999 and 0 < h < 1, in
this case we have the following form of system (6.1.1);

xn+1 =xn + h (2.999xn(1− xn)− 0.4yn) ,

yn+1 =yn + h (2xnyn − 1.999yn) .
(6.6.1)

Moreover, in this case the system (6.6.1) has unique positive equilibrium point p =

(0.9995, 0.00265075). Additionally, the system (6.6.1) experiences the period-doubling
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bifurcation for population variable xn and its corresponding bifurcation diagram is given
in (Fig. 6.1a) and the maximum Lyapunov exponent is shown in (Fig. 6.1b). Next,
H(−1) = 0, implies that h = 0.667445 and then by performing some critical computa-
tion we have the following consequences for the existence and direction of period-doubling
bifurcation. In view of standard theory of period-doubling bifurcation and by consider-
ing aforementioned parametric values one can get the following real numbers: m1 =

3.559135287, m2 = −13.47513858, m3 = 0, k1 = 0.5315796793, k2 = −2.98750466, k3 =

−11.156205, k4 = −0.46650738, k5 = 3.157005021. Hence, we have: l1 = −2.987504665 6=
0 and l2 = 3.439581976 > 0. Clearly, l2 > 0, then the period-two orbits that bifurcate from
p = (0.9995, 0.00265075) are stable.

(a) (b)

Figure 6.1: Bifurcation diagram and MLE for system (6.6.1)

Example 6.6.2. Let β = 1.299, α = 2.599, s = 1.099, k = 2.099, r = 2.495 and
0 < h < 1. Then the discrete-time system (6.1.1) takes the following mathematical form:

xn+1 =xn + h
(

2.495xn(1− xn
2.099

)− 2.599yn

)
,

yn+1 =yn + h (1.299xnyn − 1.099yn) .
(6.6.2)

In this case we get p = (0.8460354119, 0.5730475087) and plots of xn and yn are given in
(Fig. 6.2). Additionally, one can see that the system (6.6.2) experiences the Neimark-
Sacker bifurcation for both population variables. Moreover, the maximum Lyapunov ex-
ponent is shown in (Fig. 6.2c) and phase portraits for different values of the bifurcation
parameter h are shown in (Fig. 6.3 and Fig. 6.4). One can see from Fig. 6.3a that
when h passes through h = 0.6144011954 then the system (6.6.2) experiences the Neimark-
Sacker bifurcation about p . Furthermore, for h = 0.9920911954 and h = 0.9344011954

chaotic attractors are shown which is the confirmation for the existence of chaos produced
in system (6.1.1) (see Fig. 6.4g and Fig. 6.4h). The characteristic polynomial of
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system (6.1.1) computed at fixed point p = (0.8460354119, 0.5730475087) is given by

H(ω) = ω2 − 1.382127730ω + 1.

Then, roots of H(ω) = 0 are ω1,2 = 0.6910638648±0.7227937010i with |ω1| = 1 = |ω2|. As
(β, α, s, k, r, h) = (1.299, 2.599, 1.099, 2.099, 2.495, 0.6144011954) ∈ BS2 and S(0) =

1.382127730 thus condition (6.4.12) is satisfied. Moreover, some careful calculation gives

τ20 =
1

8
[g̃1uu − g̃1vv + 2g̃2uv + i (g̃2uu − g̃2vv − 2g̃1uv)] = −0.0228964− 0.120618i,

τ11 =
1

4
[g̃1uu + g̃1vv + i (g̃2uu + g̃2vv)] = 0.246659 + 0.335853i,

τ02 =
1

8
[(g̃2uu − g̃2vv + 2g̃1uv) i+ g̃1uu − g̃1vv − 2g̃2uv] = 0.269555 + 0.456471i,

ξ21 =
1

16
[(g̃2uuu + g̃2uvv − g̃1uuv − g̃1vvv) i+ g̃1uuu + g̃1uvv + g̃2uuv + g̃2vvv] = 0,

and

z =

([
−Re

(
(1− 2ω1)ω2

2

1− ω1

τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 +Re(ω2τ21)

])
h̃=0

= −0.270617 < 0.

which proves the correctness of Theorem 6.4.2.

(a) (b)

(c)

Figure 6.2: Bifurcation diagrams and MLE for system (6.6.2)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Phase portraits for system (6.1.1) for 0 < h < 1 with β = 1.299, α =

2.599, s = 1.099, k = 2.099, r = 2.495 and initial conditions x0 = 0.8460354119, y0 =

0.5730475087

.

Example 6.6.3. Let β = 0.999, α = 0.599, s = 1.679, k = 5.999, r = 9.95 and
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0 < h < 1. Then, the system (6.1.2) has the following mathematical form:

xn+1 =
xn (1 + 9.95h)

1 + (9.95)h
5.999

xn + 0.599hyn
,

yn+1 =
yn (1 + 0.999hxn)

1 + 1.679h
.

(6.6.3)

In this case p = (1.680680681, 11.89727313) and plots of xn and yn are given in (Fig.
6.5). Additionally, it can be seen from (Fig. 6.5) that both population undergoes
Neimark-Sacker bifurcation and their maximum Lyapunov exponent is shown in (Fig.
6.5c). Moreover, some phase portraits for different values of the bifurcation parameter
h are shown in (Fig. 6.6). One can observe that the system (6.6.3) experiences the
Neimark-Sacker bifurcation about p = (1.680680681, 11.89727313) when h passes through
h = 0.3795064973 (see Fig. 6.6a). The characteristic polynomial related to the jacobian
matrix of system (6.6.3) computed at fixed point p = (1.680680681, 11.89727313) is given
by

P(ω) = ω2 − 1.778498755ω + 1.

Then, roots of P(ω) = 0 are ω1,2 = 0.8892493774±0.4574227192i with |ω1| = 1 = |ω2|. As
(β, α, s, k, r, h) = (0.999, 0.599, 1.679, 5.999, 9.95, 0.3795064973) ∈ ℵS and M1(0) =

1.778498755 : thus condition (6.4.19) is satisfied. Moreover, some careful calculation
gives us

τ20 = 1
8

[g̃1uu − g̃1vv + 2g̃2uv + i (g̃2uu − g̃2vv − 2g̃1uv)] = 0.0000551415− 0.00223878i,

τ11 = 1
4

[g̃1uu + g̃1vv + i (g̃2uu + g̃2vv)] = −0.00258243 + 0.00160671i,

τ02 = 1
8

[g̃1uu − g̃1vv − 2g̃2uv + i (g̃2uu − g̃2vv + 2g̃1uv)] = 0.0073498 + 0.00622883i,

ξ21 = 1
16

[g̃1uuu + g̃1uvv + g̃2uuv + g̃2vvv + i (g̃2uuu + g̃2uvv − g̃1uuv − g̃1vvv)] =

0.0000356238 + 0.0000688866i.

and

z =

([
−Re

(
(1− 2ω1)ω2

2

1− ω1

τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 +Re(ω2τ21)

])
h̃=0

= −0.0000456766 < 0.

which verifies the Theorem 6.4.3.
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(a)

(b)

(c)

Figure 6.5: Bifurcation diagrams and MLE for system (6.6.3)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Phase portraits for system (6.6.3) for 0 < h < 1 with β = 0.999, α =

0.599, s = 1.679, k = 5.999, r = 9.95 and initial conditions x0 = 1.680680681, y0 =

11.89727313.
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Example 6.6.4. This example is concerned to the modified hybrid control of Neimark-
Sacker bifurcation. By applying the generalized control technique for controlling the
Neimark-Sacker bifurcation, we have the following mathematical scheme;

xn+1 =θ3

(
xn + 0.75011954

(
2.495xn −

2.495x2
n

2.099
− 2.599xnyn

))
+ (1− θ3)xn,

yn+1 =θ3 (yn + 0.75011954 (1.299xnyn − 1.099yn)) + (1− θ3)yn,

(6.6.4)

(a) Controlled diagram for xn (b) Controlled diagram for yn

Figure 6.7: Controlled diagrams for system (6.1.1) with θ ∈ (0, 1) with
(r, k, α, β, s, h) = (2.495, 2.099, 2.599, 1.299, 1.099, 0.75011954) and initial conditions x0 =

0.8460354119, y0 = 0.5730475087

(a) Controlled diagram for xn (b) Controlled diagram for yn

Figure 6.8: Controlled diagrams for system (6.7.1) with θ∗1 ∈ (0, 1) with (r, k, α, β, s, h) =

(2.495, 2.099, 2.599, 1.299, 1.099, 0.75011954) with initial values x0 = 0.8460354119, y0 =

0.5730475087
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where (r, k, α, β, s, h)=(2.495, 2.099, 2.599, 1.299, 1.099, 0.75011954) and 0 < θ < 1 is
the control parameter. In this case p=(0.8460354119, 0.5730475087) is the unique positive
equilibrium point for system (6.6.4). Moreover, p=(0.8460354119, 0.5730475087) is posi-
tive fixed point of original map (6.1.1). By utilizing Lemma 1.3.1, we can conclude that
the controlled map (6.6.4) attains local asymptotic stability only when 0 < θ < 0.935637.
Moreover, an analysis of Fig. 6.7 readily demonstrates the successful restoration of
stability in the original system (6.1.1) across a broad range of the control parameter θ.

Example 6.6.5. This example is concerned to the implementation of modified hybrid
control methodology for controlling the period-doubling bifurcation and chaos. By applying
the generalized hybrid control methodology on system (6.1.1), we get the following scheme;

xn+1 =θ3
(
xn + 0.9211954

(
2.99xn − 2.99x2

n − 0.4xnyn
))

+ (1− θ3)xn,

yn+1 =θ3 (yn + 0.9211954 (2xnyn − 1.999yn)) + (1− θ3)yn,
(6.6.5)

where 0 < θ < 1 is the control parameter and (r, k, α, β, s, h) = (2.99, 1, 0.4, 2, 1.999, 0.921).
In this case unique positive equilibrium point for (6.6.5) is p=(0.9995, 0.00262). Further-
more, it is worth noting that p=(0.9995, 0.00262) is a positive fixed point for the original
map (6.1.1). Consequently, applying Lemma 1.3.1, the controlled map (6.6.5) achieves
local asymptotic stability within the range of 0 < θ < 0.899062. Moreover, the analysis
presented in Fig. 6.9 demonstrates that the stability of the original system (6.1.1) is
effectively restored across a broad spectrum of the control parameter θ2.

(a) Controlled diagram for xn

Figure 6.9: Controlled diagrams for system (6.1.1) with θ ∈ (0, 1) with (r, k, α, β, s, h) =

(2.99, 1, 0.4, 2, 1.999, 0.9211954) with initial values x0 = 0.9995, y0 = 0.00262375
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(a) Controlled diagram for xn

Figure 6.10: Controlled diagrams for system (6.1.1) with θ∗∗1 ∈ (0, 1) with
(r, k, α, β, s, h) = (2.99, 1, 0.4, 2, 1.999, 0.9211954) with initial values x0 = 0.9995, y0 =

0.00262375

Example 6.6.6. In this particular instance, we utilized a modified control technique to
manage the Neimark-Sacker bifurcation encountered by system (6.1.2). Consequently,
when we apply the modified hybrid control technique to system (6.1.2), we obtain the
subsequent mathematical system.

xn+1 =θ3

(
xn (1 + 9.95(0.59064973))

1 + 9.95(0.59064973)
5.999

xn + 0.599(0.59064973)yn

)
+ (1− θ3)xn,

yn+1 =θ3

(
yn (1 + 0.999(0.59064973)xn)

1 + 1.679(0.59064973)

)
+ (1− θ3)yn,

(6.6.6)

(a) Controlled diagram for xn (b) Controlled diagram for yn

Figure 6.11: Controlled diagrams for system (6.1.2) with θ ∈ (0, 1) with (r, k, α, β, s, h) =

(9.95, 5.999, 0.599, 0.999, 1.679, 0.59064973) and initial conditions x0 = 1.680680681, y0 =

11.89727313
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Value of h I1 I2 Length of I1 Length of I2

0.59064973 0 < θ < 0.781652763 0 < θ1 < 0.921166118 0.781652763 0.921166118
0.69064973 0 < θ < 0.724828750 0 < θ1 < 0.908280151 0.724828750 0.908280151
0.79064973 0 < θ < 0.68237874 0 < θ1 < 0.880390125 0.682378743 0.880390125
0.89064973 0 < θ < 0.649461101 0 < θ1 < 0.865999646 0.649461101 0.865999646

Table 6.1: Comparison between modified hybrid method and old hybrid method [95]
for system (6.6.6) for h ∈ (0, 1) and (r, k, α, β, s) = (9.95, 5.999, 0.599, 0.999, 1.679) with
initial points x0 = 1.680680681, y0 = 11.89727313

(a) Controlled diagram for xn (b) Controlled diagram for xn

Figure 6.12: Controlled diagrams for system (6.7.2) with θ1 ∈ (0, 1) with (r, k, α, β, s, h) =

(9.95, 5.999, 0.599, 0.999, 1.679, 0.59064973) and initial conditions x0 = 1.680680681, y0 =

11.89727313

where (r, k, α, β, s, h) = (9.95, 5.999, 0.599, 0.999, 1.679, 0.59064973) and 0 < θ < 1

is the control parameter. In this case p=(1.680680681, 11.89727313) is unique positive
equilibrium point for (6.6.6). Additionally, p=(1.680680681, 11.89727313) is positive fixed
point of original map (6.1.2). Hence, by using Lemma 1.3.1 one can see that the
controlled system (6.6.6) is locally asymptotically stable if and only if 0 < θ < 0.921166.

Moreover, it can be easily seen that the stability of original system (6.1.2) is successfully
restored for maximum range of control parameter θ (see Fig. 6.11).

6.7 Concluding remarks

This chapter has discussed the dynamics of a discrete-time plant-herbivore model pro-
posed by Chattopadhyay et al. [87]. We converted a continuous-time plant-herbivore
model into its discrete-time counterpart by using Euler’s forward method. Furthermore,
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Value of h I3 I4 Length of I3 Length of I4

0.9911954 0 < θ < 0.67540166 0 < θ∗∗ < 0.87737928 0.67540166 0.87737928
0.9211954 0 < θ < 0.72672423 0 < θ∗∗ < 0.89906249 0.72672423 0.89906249
0.8211954 0 < θ < 0.81522013 0 < θ∗∗ < 0.93416795 0.81522013 0.93416795
0.7211954 0 < θ < 0.928257475 0 < θ∗∗ < 0.97548999 0.928257475 0.97548999

Table 6.2: Comparison between modified hybrid method and old hybrid method [95] for
system (6.6.5) for h ∈ (0, 1) and (r, k, α, β, s) = (2.99, 1, 0.4, 2, 1.999, ) with initial points
x0 = 0.9995, y0 = 0.00262375

a dynamically consistent discrete-time plant-herbivore model is obtained by using Mick-
ens [20] non-standard difference scheme. Mainly, we studied the linearized stability of
systems (6.1.1) and (6.1.2) about all of their equilibrium points. By utilizing the pa-
rameter h as a bifurcation parameter, it has been demonstrated that the discrete-time
mathematical system (6.1.1) undergoes Neimark-Sacker bifurcation and period-doubling
bifurcation centered around the positive equilibrium p. Additionally, the system (6.1.2)
experiences Neimark-Sacker bifurcation solely when h is employed as a bifurcation pa-
rameter, with no possibility of period-doubling bifurcation. Parametric conditions for the
existence and direction of both the Neimark-Sacker bifurcation and period-doubling bifur-
cation have been derived. The main objective of our study is to establish the dynamical
consistency of the mathematical system (6.1.2) and develop an improved hybrid control
strategy to regulate the Neimark-Sacker bifurcation and period-doubling bifurcation. To
demonstrate the effectiveness of this modified technique, a comparison is provided with an
existing hybrid control methodology [95]. For this comparison, all parametric values are
taken similarly as taken in Example 6.6.4, Example 6.6.5 and Example 6.6.6. By
applying hybrid scheme [95] on (6.1.1) and (6.1.2), one can get the following discrete-time
mathematical systems, respectively;

xn+1 =θ∗∗1

(
xn + h

(
rxn −

rx2
n

k
− αxnyn

))
+ (1− θ∗∗1 )xn,

yn+1 =θ∗∗1 (yn + h (βxnyn − syn)) + (1− θ∗∗1 )yn,

(6.7.1)

and

xn+1 =θ1

(
xn (1 + rh)

1 + rh
k
xn + αhyn

)
+ (1− θ1)xn,

yn+1 =θ1

(
yn (1 + βhxn)

1 + sh

)
+ (1− θ1)yn,

(6.7.2)

where, θ1, θ
∗∗
1 ∈ (0, 1] are control parameters. Considering the stability criteria from

Lemma 1.3.1 one can see that system (6.7.1) is stable if and only if 0 < θ∗∗1 < 0.726724,
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where θ∗∗1 is control parameters for period-doubling bifurcation. Furthermore, the system
(6.7.2) is stable if and only if 0 < θ1 < 0.781653 where θ1 is control parameters for
Neimark-Sacker bifurcation. On the other hand, in example 6.6.4, Example 6.6.5
and Example 6.6.6, a modified control methodology (6.5.1) is applied to systems (6.1.1)
and (6.1.2) for the same parametric values. In this case, a clear regain in the stability
of the original system can be seen from regions shown in Fig. 6.7, Fig. 6.9 and
Fig. 6.11, respectively. Hence, it is seen that the modified control methodology is
more efficient than the existing hybrid control scheme and applicable for every class of
discrete-time maps. For comparative analysis of control techniques, Fig. 6.8 and Fig.
6.12 respectively represent Neimark-Sacker bifurcation related to the system (6.7.1) and
(6.7.2). In addition, a controlled diagram for modified control methodology related to
period-doubling bifurcation is shown in Fig. 6.10. Finally, a comprehensive tabular
comparison of controlling techniques is given in Table. 6.1 and Table. 6.2.
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