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ABSTRACT 
 

Geoscientists continue to be challenged by the complexities of petroleum reservoir systems. Due 

to a lack of high-quality data, there is a lack of understanding of reservoir dynamics, resulting in 

inaccurate reservoir potential estimation. .Shear wave velocities have a wide range of applications 

in petrophysical analysis and in accurate reservoir characterization. Shear wave velocity helps to 

improve the reservoir and fluid prediction accuracy by decreasing seismic-based uncertainty. 

However, acquiring S-wave velocity is difficult and costly, resulting in the lack of S-wave velocity 

data for some gas and oil reservoirs. Therefore, estimation of precise S-wave velocity has become 

a serious challenge. In this study, three-layer Feed Forward Neural network model (FFNN) in 

combination with feature importance has been utilized to estimate the shear wave log (DT4S). 

Prior to neural network application, Feature importance has been to analyze the input data to get 

optimum results.  Out of available 46 logs, 6 logs (DT, LLS, LLD, NPHI, GR, PEFZ) have been 

chosen for the development of FFNN. The model contains 1 hidden layer containing 16 neurons. 

70% data has been used to train the FFNN and remaining 30% data was used for testing. The 

obtained results (Zamzama-01 well) shows 87% correlation with the measured log. To further 

check the credibility of this designed network, it was applied on another area where input logs 

cover the early cretaceous rock. The trained network provides excellent matching (84%) with the 

measured log. After checking the credibility of designed neural network, DT4S log was also 

estimated in Zamzam-03, and 05 well where it does not acquired. Estimates DT4S log in 

combination with other elastic and reservoir parameters were crossplotted in order to distinguish 

the hydrocarbon bearing zone. The crossplot clearly separate the gas bearing and non-gas bearing 

zones. Further petrophysical investigation of Zamzama-01, clearly indicate that Pab-sandtone 

formation comprises of thin sand beds that serve as suitable reservoirs. These beds have good 

porosity values (11%), low shale volume (12%) and low water saturation (25%). To study these 

thin beds, three-layer forward AVO model, and wedge modeling have been used. Wedge modeling 

results indicate that bed having thickness of 26m, 22m, and 19m can be identified if seismic data 

have dominant frequencies of 25Hz, 30Hz and 35HZ, respectively. Moreover, AVO forward 

modeling shows Class IV AVO response from the top layer of gas-bearing sand. 
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CHAPTER 1 
INTRODUCTION TO DISSERTATION 

1.1 Introduction 

Hydrocarbon exploration is one of the most important elements of any country's economy. As the 

demand for energy grows, the research sector turns its attention to previously unknown locations 

in search of new energy resources. To examine the ground, geophysical procedures and equipment 

are utilized, which include taking measurements and computing physical attributes to check for 

differences both laterally and vertically ( Arshad et al., 2013). 

Exploration geophysicists began working on the seismic approach in 1915, and it has since shown 

to be quite beneficial for imaging subsurface geological features and locating structural or 

stratigraphic traps. Seismic surveys, which portray data as a time series of reflections through the 

subsurface, are commonly used in hydrocarbon exploration (Coffeen, 1986). 

The primary tool for hydrocarbon exploration is 3D seismic interpretation. 3D seismic surveys 

offer numerous benefits and can be used for a wide range of concerns, from exploration to 

development. They're also useful for limiting the scope of extensive reservoir characterization 

(Alsadi, 2017). 3D seismic data can be used to efficiently analyze the subsurface features. When 

compared to 2D data, the structures may be viewed with high resolution alongside the vertical 

cross-segment of the earth and its entire volume in 3D data. The amplitude sections reveal the 

extent and quality of reserves, as well as their formation borders and faults (Raeesi et al., 2012). 

Conventional interpretation approaches are typically employed to demarcate large-scale structural 

traps, however, they are ineffective when dealing with narrow, interbedded reservoirs which are 

undetectable under the threshold seismic resolution (Farfour et al., 2015). Due to low seismic 

resolution, amplitude reflections from alternating thin layers frequently experience tuning 

thickness problems. As a result, amplitude anomalies are taken into account and examined using 

various approaches such as amplitude versus offset (AVO), amplitude versus angle (AVA), and 

spectral decomposition ( Saeed et al., 2020). 

The study of rock characteristics and their interaction with fluids is known as petrophysical 

analysis. The most significant attribute of fluid for its storage and movement within the rock is 
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porosity and permeability. Because petrophysical logs contain the majority of data, they are 

utilized to map and identify lithologies (Tiab & Donaldson, 2015). Reservoir characterization is a 

combination of procedures used to characterize reservoir heterogeneity (Lake & Caroll, 1986). In 

reservoir characterization, petrophysical analysis is particularly useful for distinguishing 

hydrocarbon and non-hydrocarbon bearing zones (Yuedong & Hongwei , 2007). In most cases, 

petrophysical analysis is used to estimate reservoir parameters, including shale volume, 

permeability, porosity, and water and hydrocarbon saturation, from wireline log data. The ability 

to distinguish between hydrocarbon and non-hydrocarbon bearing zones can be greatly improved 

by a thorough examination of these reservoir features (Azeem et al., 2017). 

Shear wave velocities have a wide range of applications in accurate reservoir characterization. 

However, acquiring S-wave velocity is difficult and costly, resulting in the lack of S-wave velocity 

data for some gas and oil reservoirs. As a result, obtaining a precise S-wave velocity has become 

a serious challenge. Artificial neural network (ANN) is gaining importance in the fields of 

geophysics. In geophysics it is preferred due to its low cost and efficient computational time. The 

ANN is an effective standard tool for nonlinear issues because it is extremely adaptable and 

capable of developing functional links between data (Singh & Kanli, 2016). The findings achieved 

by using ANN to build a non-linear relationship between the input and output data is valuable and 

dependable (Zhu et al., 2012). In theory, the ANN can compute any arbitrary map building between 

one vector space to another because it has the ultimate power to approximation of data. (Svozil et 

al., 1997). Neural networking plays an important role in accessing the prior unknown parameters 

encoded in data (Svozil et al., 1997). 

1.2 Study Area 

Pakistan's southern and northern regions have a lot of hydrocarbon potential (Alsadi, 2017). The 

Zamzama gas field is located 200 kilometers north of Karachi in the Sindh region of Pakistan 

(Qadri, 1995). It has a surface area of 120 square kilometers and ranks fourth in terms of discovered 

gas resources in Pakistan. It is the eastward progressing thrusted anticline with a huge north-south 

oriented reverse fault (Jackson et al., 2004). 

The Zamzama field is surrounded by the Kirthar range in the west, which consists of a 560 km 

long and 130-220 km wide belt with a NS direction, containing basins and valleys. Sukkur is in 
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the NE of the field and district Hyderabad is towards its SE. The river Indus is in the east, and 

Karachi is located to its south. Lake Manchor is located to the south of the field, close to the Indus 

River, flowing in the eastward direction. The majority of production comes from late cretaceous 

Pab Formation fluvial and shallow marine sandstones, as well as estuarine Paleocene Khadro 

Formation sandstones (Qureshi et al., 2020). For the next 10 to 12 years, the field is estimated to 

produce roughly 320mmcf/d of gas and 2000 standard barrels of condensate (stb/d), with an 

economic field life of 15 to 25 years (Jackson et al., 2004). 

In the kirthar fold belt, the late Cretaceous Pab sandstone serves as a primary reservoir (Jackson 

et al., 2004). The Zamzama area is surrounded by other gas field such as, Bhit (southwest of 

Zamzama), Sawan, Kadanwari, and Maino fields (northeast of Zamzama) are other gas fields 

located nearby. The entire known recoverable reserves from the core area of the Zamzama field 

are estimated to be 1.7 Tcf of gas (Jackson et al., 2004).  

 

Figure1.1: Map showing the location of wells and orientation of 3D seismic cube in Zamzama gas field 
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1.3 Main Aims and Objectives  

General aims of the current research work are as follows: 

 To study the subsurface structures of the study area using 3D seismic interpretation. 

 To carry out petrophysical analysis of the reservoir rock in order to identify the potential 

prospect hydrocarbon zones. 

 Estimation of DT4S (Shear Wave) log via feed-forward neural network and subsequently 

characterize the reservoir using calculated elastic parameters. 

 To perform wedge modeling and AVO analysis for identification of thin bedded reservoirs 

of Zamzama gas field. 

1.4 Data Set and Methodology 

1.4.1 Seismic Data 

The seismic dataset used in the study is given in Table 1.1. 3D seismic cube covering an area of 

12x12 km2 is used in this research work. This cube comprises of 90 inlines starting from 420 to 

510 and 180 crosslines ranging from 1320-1440 used in this research. 

Table 1.1 Details of inline and crossline of 3D Seismic Data 

Lines Start End Total No of Lines 

In Line 420 510 90 

Cross Line 1320 1440 180 

1.4.2 Well Log Data 

The details of the well log data used for this study is given in Table 1.2. Total of three wells 

(Zamzama-01, Zamzama-03, and Zamzama-05) were used for research purpose. Out of available 

logs data, 8 logs i.e. GR, SP, CALI, LLS, LLD, NPHI, DT, and RHOB were used for petrophysical 

analysis to identify the prospect zone. 
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Table1.2 Details of wells used in research work 

Sr. No Well Name Longitude Latitude Total Depth 

1 Zamzam-01 67.6619 26.7344 3950 

2 Zamzama-03 67.6682 26.7138 3698 

3 Zamzama-05 67.6706 26.6676 3871 

1.4.3 Methodology 

The main emphasis of this dissertation is to predict the DT4S log in reservoir zone for accurate 

reservoir characterization. Prior to the prediction of DT4S log, identification of subsurface 

geometry is necessary. For this purpose, 3D seismic data and well log data was used. First of all 

well to seismic tie is carried out to marks the horizons and faults on seismic section. After that, the 

petrophysical analysis was carried out in the desired reservoir zone to identify the hydrocarbon 

zone by displaying available logs in lithology, resistivity and porosity tracks. After the 

identification of reservoir zone, the main part of research was done i.e. prediction of DT4S log. 

For the prediction of DT4S log, three layered feed forward neural network was utilized in the 

combination of feature importance. Prior to neural network application, it is necessary to analyze 

the input data to get optimum results. Feature importance analysis were perfomed and as a result 

of this, 6 logs (DT, LLS, LLD, NPHI, GR, PEFZ) out of 45 available logs have been chosen for 

input. After that, designed network was used over different wells to check the credibility of 

network. After checking the credibility, the designed network was used to estimate the DT4S logs 

in those wells where, it was missing. Estimated DT4S log was further used for reservoir 

characterization. In order to distinguish between lithologies in the reservoir zone based on fluid 

content, calculated elastic parameters have been cross plotted. Finally, three-layer forward AVO 

model, and wedge model were prepared to analyze the tuning thickness of thin bedded reservoir. 

1.5 Brief Description of Dissertation 

This thesis is split into six chapters, the first of which serves as an introduction. The geologic 

background is covered in Chapter 2 including a stratigraphic chart with the source, seal, and 

reservoirs of the research area labeled with various colors. The seismic interpretation of the study 



DRSML Q
AU

 

6 
 

area utilizing seismic reflection methods has been discussed in Chapter 3. Using well-logs, 

numerous petro-physical parameters estimated for characterizing the reservoir have been discussed 

in Chapter 4. With the help of neural network, the main purpose of this dissertation has been carried 

out i.e., prediction of shear wave velocity with the help of petrophysical logs, have been discussed 

in Chapter 5. Furthermore, it is also includes reservoir characterization done with the help of cross 

plotting the calculated elastic properties. In Chapter 7, the AVO analysis of thin beds have been 

discussed. 
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CHAPTER 2 
REGIONAL GEOLOGY AND TECTONICS 

2.1 Introduction 

Geology is the study of evolution of the earth over time. It depicts the earth's history and aids 

interpretation of the surface and subsurface structures by providing information on deformation, 

structure types, and rock types. The study of depositional environments proves beneficial in 

determination of profitable and non-productive zones for hydrocarbon exploration. Therefore, 

studying the geological history of an area is crucial in the field of oil and gas exploration. 

Essentially, the geological history of the area is linked to the area's tectonic behavior and deposited 

sedimentary sequences (Larsen et al., 1992). For precise seismic interpretation, geophysicists must 

be aware with the regional geology and geology of the location (Sheriff, 1976). 

2.2 Structural Style 

Pakistan is situated at the intersection of two differing domains. Pakistan's south-eastern region is 

in the Gondwanian domain, whereas the north-western region is in the Tethyan domain (Kazmi & 

Jan, 1997). Tethyan domain is found in Pakistan's northernmost regions, including the Karakoram, 

Kohistan-Ladakh, Kharan, Chagai, and Makran. The Himalayas, Salt Range, Indus Basin, 

Cholistan, Eastern Ranges of Balochistan, and Thar Desert are all part of the Gondwanian realm, 

which covers Pakistan's southern half (Kazmi & Jan, 1997). 

Open and symmetrical folds dominate the Kirthar fold belt. Thrusts in the Eocene mudstones and 

thrusts with a deeper detachment in the Lower Cretaceous source rock period that involve the 

reservoir during deformation defined by horst and Graben structures, as well as a system of trans-

current faults, have been interpreted with two detachments north-western region is in the Tethyan 

domain (Zaigham & Mallick, 2000). A considerable number of anticlinal structures were formed 

on the eastern side of the Kirther fold belt as a result of plate collision during the Oligocene–

Miocene period ( Arshad et al., 2013).  

. The predicted shortening along the Zamzama structure represents deformation associated to fault 

propagation folds. This indicates that a decollment exists beneath the structure, resulting in 
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Zamzama being a thin-skinned structure with no basement involvement in the deformation. (Figure 

2.1) 

 

Figure 2.1:  structural style of Zamzama Area and it's surrounding (Kazmi & Jan, 1997) 

2.3 Geological Setting 

The geological environment of a sedimentary basin controls hydrocarbons, migration, and 

trapping. Gandwanian domain and Tethyan domain are the two territories that make up Pakistan. 

The Indo-Pak crustal plate supports the southern half of this, which belongs to the Gandawanian 

domain (Kazmi & Jan, 1997). 

This area has rocks, dating from the Triassic to the recent epochs. During the Cretaceous, the 

Indian plate rifted apart and drifted away, resulting in the formation of the Lower Indus basin. 

Sedimentary sections from the Tertiary to Mesozoic epochs show respective source, reservoir, and 

cap rocks (Asim et al., 2014). Sand bodies developed in a variety of shallow marine environments, 

ranging from shore face to lower shelf marine conditions, make up this formation (Jackson et al., 

2004). During the late Cenozoic, the greater influence of clastic debris from the north side 
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compelled the sea to withdraw to the south. The Indus basin was filled with sediments by the end 

of the Paleocene, and it resembled a large flood plain with braided streams, with the folded belts 

providing the sole height.  

2.4 Stratigraphy and Petroleum Play 

The Kirthar Foldbelt Basin have a stratigraphic succession ranging from Permian to Recent, with 

substantial unconformities at the Permian, Jurassic, and Upper Cretaceous ages (Zafar et al., 2018). 

The deep Oligocene to quaternary age rocks are found in the Lower Indus Basin, overlain by 

Mesozoic to Eocene passive edge clastics and carbonate deposits that pierce the tertiary orogenesis 

of the kirthar fold belt (Figure 2.2) (Qadri, 1995). 

The Cretaceous rocks in the surrounding regions of Suleiman and Kirthar provinces of the Lower 

Indus Basin are largely sedimentary in origin and, with the exception of small disconformities, 

form a continuous succession from Early to Late Cretaceous. In some portions of this area, the 

Tertiary layers are transitional, and local disconformities between the Cretaceous and Tertiary have 

been identified (Zaigham & Mallick, 2000). 

A mature source rock, a channel to migrate hydrocarbons, reservoir rock, optimum time for the 

creation of these elements and the migration processes are all geological processes required to 

produce and accumulate hydrocarbons (Monreal et al., 2009). 
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Figure 2.2:  Stratigraphic Column of Zamzama area with heighlighted petroleum paly, (Zafar, et al., 
2018) 

2.4.1 Source Rock 

Sembar formation of cretaceous age act as source rock in the study area. The Lower Cretaceous 

Sembar and Goru Formations mostly include gas-prone type-III kerogen. The Sembar Formation 

shale also contains type-II kerogen, indicating the possibility of oil production (Wandrey et al., 

2004). 

Goru depicts a pelagic environment, whereas the Sember was found on the shelf edge. The 

majority of the Sember deposits come from a marine environment (Zafar et al., 2018). 

Sembar's TOC ranges from 0.5 to 3.4 percent, with an average of 1.4 percent. Depending on where 

in the source kitchen to the west, Sembar Formation shales range from thermally immature in 

structural highs to highly mature (Zafar et al., 2018). 
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2.4.2 Reservoir Rock 

Reservoir rocks that are porous and permeable are deemed economic in terms of hydrocarbon 

resources. The most essential physical features of reservoir rocks for hydrocarbon accumulation 

are porosity and permeability (Qadri, 1995). The principal reservoir for the Zamzama field is the 

Cretaceous Pab Sandstone. It is found in a tidal and shallow marine environment. The Pab 

sandstone is a braid delta/coastal plain deposited formation that is exceptionally sand-rich. This 

reservoir has a net thickness of about 220m and a net-to-gross ratio of about 60% (Jackson et al., 

2004). 

2.4.3 Seal Rock 

Shales from the paleocene Khadro and Ranikot formations act as a top seal for the underlying Pab 

sandstone. These shales have proven to be reliable in Bhit, Zamzama, and Mehar fields, among 

other places. The underlying Pab Formation is well-sealed by the basal Khadro Formation shales. 

In some circumstances, Khadro becomes sandier and does not serve as an affective seal, in such 

situation Gidro provides the seal (Qureshi et al., 2020). 
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CHAPTER 3 
3D SEISMIC DATA INTERPRETATION 

3.1 Introduction 

The earth is extended over three dimensions and the petroleum resources are trapped inside 3D 

traps. The interpretation of the processed seismic data is followed by hydrocarbon exploration and 

extraction. Geologic information about the subsurface includes structures, subsurface rock 

features, stratigraphy, velocity and stresses, and probable reservoir fluid changes in space and time 

(Onajite , 2013). Interpretation is a method for attempting to identify all the structures or 

stratigraphical models embedded in the seismic data. We aim to determine the zone of interest by 

interpreting the seismic section by focusing on the typical geological model of the earth. Not only 

must a proper interpretation be consistent with all seismic data, but it is also necessary to have a 

thorough understanding of the field, surface geology, well information, and geological and 

physical concepts (Sheriff, 1999). 

The essential abilities that are widely employed in the oil business for exploration are seismic 

interpretation and subsurface mapping (Gunderson & Huffman, 2018). Because of its high 

resolution, the seismic reflection technique is one of the most essential geophysical techniques for 

petroleum operations. Seismic interpretation is the process of extracting subsurface information 

from seismic data collected on the earth's surface. It may also be used to estimate the area's overall 

geological knowledge, as well as to determine locations for future exploratory well or to assess the 

development of an already discovered field (Coffeen, 1986). Generally, seismic reflection data 

from acoustic impedance interfaces with lateral continuity has been used to pick and track laterally 

consistent seismic reflectors for the purposes of mapping geologic structures, reservoir 

architecture, and stratigraphy (Das et al., 2017). 

3.2 Structural Analysis 

The seismic section is subjected to structural analysis in order to identify prospective structures 

capable of storing and accumulating hydrocarbons. The interpretation method utilized in the 

delineation of structures is two–way seismic reflection time rather than depth. The fundamental 
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concern in this strategy for hydrocarbon buildup is observation of structural entrapment such as 

anticlines, faults, and folds (Sheriff, 1999). 

3.3 Workflow of Seismic Interpretation 

Multiple steps were used in the interpretation of the available seismic data. Each phase entails a 

number of steps that were carried out with the use of software tools. Simplified workflow 

employed in the dissertation, shown in Figure 3.1, provides a complete picture of how 

interpretation was carried out using the seismic lines and SEG-Y navigation data using 

IHS Kingdom. The base map was created. Faults and horizons of interest were demarcated. 

Horizons were identified using synthetic seismogram derived from well data, and faults were 

identified using careful examination of seismic sections and knowledge of the research area's 

geologic history. 

 

Figure 3.1:  Workflow adopted to mark the horizons and faults on seismic section 
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3.4 Base Map 

The base map depicts well locations and orientation of inlines and corss lines. The location of 

geographic references are often merged into the base maps either by using latitude and longitude 

values, or in X Y form using Universal Transverse Mercator (UTM) information. 

In geophysics, the base map shows the alignment of seismic lines and the locations where seismic 

data was collected. The base map was constructed using the provided navigation data, which 

included latitude and longitude values for inlines, crosslines, and Well locations. The base map 

depicts the locations of all inline, crosslines, and wells in case of a 3D grid. Inlines are oriented 

across the dip of any regional fault in the area, thus exhibiting information about the structural 

variation of the vicinity. The crosslines are oriented orthogonal to the inlines. The base map of the 

study area includes the seismic cube, along with Zamzama-01, Zamzama-03 and Zamzama-05 

wells as shown in Figure 3.2. 

 

Figure 3.2: Base map depicting inlines, crosslines, and well locations of the study area.  
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3.5 Synthetic Seismogram 

The creation of synthetic seismograms is used to connect the well to the seismic section. It allows 

you to spot reflections and figure out which event is related to which interface or series of 

interfaces. First, the sonic and density logs were used to calculate the reflectivity series ( Peterson 

et al., 2002). The wavelet was then retrieved from the seismic data at the well locations. To obtain 

the desired synthetic seismogram, the reflection coefficient series was convolved with the 

extracted wavelet. The Girdo and Pab horizons were demarcated on the seismic section using well 

tops and generated seismogram (Figure 3.3). 

 

Figure 3.3: Synthetic seismogram for picking horizons on zamzama-03 well. 
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3.6 Interpretation of Horizons and Faults 

Conventional seismic interpretation requires skill and extensive knowledge in geology and 

geophysics (Wrona et al., 2018). Fault marking on a seismic section is difficult without knowledge 

of the area's tectonic history (Polo et al., 2017). Horizons are the surfaces that divide distinct rock 

strata in depositional environments observed on the section based on varying reflection qualities. 

Horizontal displacement is frequently caused by vertical fractures (faults). Faults are identified 

during the interpretation process where there is a diminishing amplitude and a shift in the position 

of the reflectors across the fault. To indicate the exact location of the horizons on the seismic 

section, the well tops are correlated with the seismic. Two horizons, Girdo and Pab, were 

interpreted on seismic section based on well tops of Well Zamzama – 03 and two faults, F1 and 

F2, have been marked, both of which are thrust faults (Figure 3.4). 

 

Figure 3.4:  Interpreted seismic inline 451 having faults F1 and F2 and two horizons Pab and Gidro 
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CHAPTER 4 
PETROPHYSICAL ANALYSIS 

4.1 Introduction 

Petrophysics is a field of applied geology that studies reservoir and cap rock properties and their 

interactions with fluids using fundamental principles of physics, chemistry, and mathematics 

(Buryakovsky et al., 2012). Reservoir characterization is an important point in the oil and gas 

business since it aids in determining the potential within the formation of interest as well as 

identifying the zones within the reservoir that contain retrievable hydrocarbons (Fanchi, 2005). 

Petrophysics is a method for estimation and representation of reservoir properties. Petrophysical 

research aids in the detection and quantification of fluids in reservoirs (Knackstedt et al., 2010) 

and can be referred to as the interpretation of well logs. Well logging is the art of taking precise 

measurements of geological and geophysical factors within a borehole. The "Sonde" is a well 

logging equipment that examines the physical and chemical properties of the rocks as well as their 

interaction with fluids (Buryakovsky et al., 2012). 

Knowledge regarding the characteristics of a reservoir such as shale volume, porosity, saturation 

of water, and hydrocarbon are essential to precisely delineate the probable hydrocarbon zones. 

Geologists and geophysicists can better comprehend the hazards and potential in the area by 

combining petrophysics with rock physics. The use of well measurements to improve reservoir 

representation has made petrophysics a frequently used method for characterization of reservoirs 

( Hussain et al., 2017). 

4.2 Objectives for Log Interpretation 

The quantitative examination of well logs can be used for estimation of reservoir parameters 

including:  

 Porosity 

 Saturation of water 

 Fluid type (oil, gas, water) 

 Reservoir type (lithology) 

 Productivity (permeability) 
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The major goals of logging are:  

 To acquire data for analyzing petroleum reservoirs. 

 To assist in well testing, completion, and rehabilitation. 

4.3 Geophysical Well-Logs Classification 

4.3.1 Lithology Track 

In this track, we have the following logs: 

 Gamma ray  

 Caliper log  

 Spontaneous potential log  

 Bit Size 

These logs are useful in identification of lithologies as the name of the track suggests. 

4.3.2 Resistivity Track 

The logs belonging to the second track includes: 

 Deep laterolog  

 Shallow laterolog  

 Micro spherically focused log  

These logs are useful in identification of presence of fluid within the formation of interest.  

4.3.3 Porosity Track  

The following logs comprises the third track: 

 Density log  

 Neutron log  

 Sonic log  

The total and effective porosities of a formation can be estimated using any of these logs based on 
the type of formula being used. 
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4.4 Methodology  

The petrophysical examination of Zamzama-1 was completed with the help of the above 

mentioned logs. The workflow for carrying out petrophysical interpretation has been given in 

Figure 4.1. The estimated properties of the reservoirs have been listed below: 

 Volume of shale (VSH) using the GR log. 

 Porosities (PHIT, PHIE) using logs of third track. 

 Fluid saturation (Sw, Sh) with the help of logs of resistivity track. 

 
 

 

Figure 4.1:  Workflow of Petrophysical Analysis, (Mughal & Akhter, 2021) 

4.4.1 Shale Volume Calculation 

In petrophysical studies, the GR log is used to compute the volume of shale. The radioactivity of 

the formation is measured using the GR log (Rider, 1990). As a result, it offers the concentration 

of radioactive material present in the formation, making it extremely valuable for lithology 

identification. The gamma ray has a low value in carbonate and sandstone, but it has a larger value 

in shale. The reason for this is because shale has a higher concentration of radioactive material 
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than sand and carbonates. As a result, the reservoir and non-reservoir rocks are distinguishable 

(Fanchi, 2005). 

The volume of the shale is calculated using the calculations below given by (Miller, 1986) 

௦ܸ௛ =
ீோ೗೚೒ିீோ೎೗೙

ீோೄ೓೗ିீோ೎೗೙
         (4.1) 

Here, ௦ܸ௛ is volume of shale, ܴܩ௟௢௚ is Gamma ray values from log, ܴܩ௖௟௡ is value of gamma ray 

in clean zone, ܴܩ௦௛௟ is value of gamma ray in shaly zone. 

4.4.2 Porosity Calculation 

Porosity is the most critical property to estimate when it comes to the petroleum system. Porosity 

can be calculated using Neutron, Sonic, and Density logs. The acoustic measurement is the sonic 

log, whereas the nuclear measurements are the Neutron and Density logs (Abdelwahhab & Raef, 

2020). 

The ratio of pore space to the bulk volume of a rock, expressed in percent, is known as porosity. 

To some extent, all clastic rocks are permeable. Because compaction is linked to the lowering of 

pore spaces, pores in sand are particularly relevant in compaction studies. Sonic Log, Density Log, 

and Neutron Log can be used to determine porosities in the potential zones (Carter & Gregorich, 

2007). There are various sorts of porosities, which are listed as follows: 

4.4.2.1 Average Porosity 

It is the average of all porosity records in the available well log data suite (including Neutron, 

Sonic, and Density porosity).Its mathematical equation is given below: 

∅௔௩௚ =
∅೏ା∅೙

ଶ
          (4.2)  

Here, ∅௔௩௚ is total porosity, ∅ௗ is porosity from density log, and ∅௡ is porosity from Neutron log. 

4.4.2.2 Effective Porosity 

Effective porosity is defined as the ratio of total volume of rock body to total volume of 

interconnected pores spaces that are present in the rock unit. It therefore removes the porosity 

contributed by shales in the rock. Effective porosity is used to calculate hydrocarbon and water 
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saturation. The formula provided in equation 4.3 is used to calculate effective porosity (Asquith & 

Krygowski, 2006). 

∅௘௙ = ∅௔௩௚ ∗ (1 − ௦ܸ௛)        (4.3) 

Here, ∅௘௙ is effective porosity, ∅௔௩௚ is average porosity, and ௦ܸ௛ is volume of shale. 

4.4.3 Saturation of Water 

The water resistivity is calculated after the calculation of shale volume and porosities. For the 

calculation of saturation of water, it is necessary to calculate the resistivity of water first (Patchett 

& Rausch, 1967). 

Different methods can be applied for calculating the resistivity of water. First step for the 

calculation of water saturation is the calculation of water resistivity. Following are the steps for 

the calculation of saturation of water: 

STEP 1: firstly, we have to note the values of resistivity of mud filtrate (Rmf1), Surface temperature 

(ST) and maximum recorded temperature (BHT) from well’s header.  

Now, static spontaneous potential can be calculated by the equation given by (Miller, 1986) using 

spontaneous potential log readings. 

ܵܵܲ = ܵ ௖ܲ௟௡ − ܵ ௦ܲ௛௟         (4.4) 

STEP 2: formation temperature is also required to calculate water saturation. Formation 

temperature can be calculated using the following equation (Miller, 1986): 

ܶܨ =
஻ு்ିௌ

்஽
∗  (4.5)         ܦܨ

 Formation Depth =ܦܨ

 Total Depth =ܦܶ

STEP 3: resistivity of mud filtrate can be calculated by the following equation (Miller, 1986): 
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ܴ௠௙ଶ =
(ௌ்ା଺.଻଻)∗ோ೘೑భ

(ி்ା଺.଻଻)
         (4.6) 

ܵܶ= Surface Temperature 

 Formation Temperature =ܶܨ

STEP 4: mud equivalent resistivity can be calculated by the given formula as (Miller, 1986): 

ܴ௠௙௘௤ = 0.85 ∗ ܴ௠௙ଶ         (4.7) 

STEP 5: equivalent water resistivity can be calculated with the help of spontaneous potential log. 

The value against the Rmfeq at SSP and BHT gives us the equivalent water resistivity. 

STEP 6: from the plot of Rweq and formation temperature, we can get the value of resistivity of 

water (Rw). After getting all the values, saturation of water can be calculated with the help of 

Indonesian equation for water saturation. Indonesian equation is applicable for the area having 

sand shale lithology. The calculation is given by (Sam-Marcus et al., 2018) as: 

ܵ௪ = [{(
௏ೞ೓

మషೇೞ೓

ோೞ೓
)

ଵ
ଶൗ + (

ఝ೐
೘

ோೢ
)

ଵ
ଶൗ }ଶܴ௧]ିଵ

ଶൗ       (4.8) 

ܴ௧= True Resistivity 

௦ܸ௛= Volume of Shale 

ܴ௦௛= Resistivity of Shale 

ܴ௪= Resistivity of Water 

Ø௘= Effective Porosity 

݉ = Cementation factor (varies around 2). 
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4.4.4 Hydrocarbon Saturation 

Hydrocarbon saturation represents the presence of hydrocarbon in the pore spaces of rocks. 

Saturation can be calculated by subtracting the saturation of water from 1 (Kamel & Mabrouk, 

2002) as: 

ܵ௛௖ = 1 − ܵ௪          (4.9) 

ܵ௛௖= Saturation of Hydrocarbon 

ܵ௪= Saturation of Water 

4.5 Log Interpretation Criteria  

Combination of well logs curves is used for log data analysis. The first log to observe is Calipper 

log. If the readings of caliper log are not disturbed, then others are obsrved. Second log is Gamma 

ray log, which can help distinguish between reservoir and non-reservoir zone. The reservoir and 

non-reservoir zone are therefore highlighted on the basis of gamma ray. This narrows down the 

area for further interpretation. The region where the shale values are low within a reservoir is 

selected for analysis. The integrative findings from other logs produce a comprehensive report to 

confirm the types and amounts of hydrocarbon. Then, we go for SP log, is SP show deflection, 

presence of fluid will be confirmed. 

Hydrocarbon detection is done using resistivity logs which can effectively detect the presence of 

fluid within the zone of interest. The fluid is detected within the formation based on the difference 

in the values of LLS and LLD log which otherwise follow the same pattern. Typically, presence 

of oil and dense gas causes an increase in the LLD values, which are used for observation of 

resistivity in virgin zone, compare to the LLS values, which are used to investigate the shallow, 

transition or flush zone. Higher density is associated with extremely low resistance. It could be 

caused by the presence of heavy minerals such as gluconate, siderite, chlorite, and chamosite etc.  

The crossover created between the decreasing values of neutron and density logs is another good 

indicator of the existence of hydrocarbon (Miller, 1986). Evaluation of the above mentioned 

indicators have been used to demarcate the zone of interest in the reservoir as depicted in Figures 

4.2-4.4. 
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4.5.1 Interpretation of Zamzama-01 

 

Figure 4.2:  Petrophysical analysis of Zamzama well-01 

Petrophysical analysis indicates the Zamzama-01 contains a 13m gas bearing zone as shown in 

figure 4.2. The depth of this zone is ranging from 3720-3733m. Overall, this zone contain low 

volume of shale (10%) and comparatively high porosity which is 11% in this zone. Further, 

saturation of water is 25% which is on lower side. However, above or below of this zone the shale 

volume and water saturation is on higher side. Whereas, effective porosity is on lower side. So, 

these zones are not favorable for hydrocarbon accumulation. 

4.5.2 Interpretation of Zamzama-03 

According to petrophysical research, the Zamzama-03 has an 11-meter gas bearing zone, as shown 

in figure 4.3. The depth of this zone varies between 3790 and 3801 metres. In general, this zone 

has a low volume of shale (15%) and a relatively high porosity (9%). Furthermore, the water 

saturation is 30%, which is on the low side. Below this zone, we have low volume of shale but we 
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don’t have good effective porosity. So, that is why these zoned are not good for hydrocarbon 

accumulation.  

 

Figure 4.3:  Petrophysical analysis of Zamzama well-03 

4.5.3 Interpretation of Zamzama-05 

The Zamzama-05, as illustrated in figure 4.4, has a 10-meter gas bearing zone, according to 

petrophysical analysis. This zone's depth is between 3755 and 3765 metres. In general, this zone 

contains a low volume of shale (12%) and has a high porosity (9% ). Furthermore, the water 

saturation level is 32 %. Low volume of shale has been observed throughout Zamzama well-05, 

with high effective porosity and NPHI and RHOB crossover, but these zones are in patches and 

have no economic significance. 

Comparison of all the zone of interest in all the three wells has been given in Table 4.1. 



DRSML Q
AU

 

26 
 

 

Figure 4.4:  Petrophysical analysis of Zamzama well-05 
 

Table 4.1 Results of Petrophysical Analysis 

Well names Zamzama-01 Zamzama-03 Zamzama-05 

Gross thickness 3720-3733 (13m) 3790-3801 (11m) 3755-3765 (10m) 

Volume of Shale 10% 15% 12% 

Effective Porosity 11% 9% 9% 

Water Saturation 25% 30% 32% 

Hydrocarbon 
Saturation 

75% 70% 68% 
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CHAPTER 5 
PREDICTION OF SHEAR WAVE VIA FEED FORWARD NEURAL 

NETWORK AND RESERVOIR CHARACTERIZATION 

5.1 Introduction 

The intrinsic complexities of petroleum reservoir systems continues to provide a challenge to 

geoscientists (Al-Anazi & Gates, 2010). Due to a lack of substantial-quality data, there is an 

insufficient understanding of reservoir behavior resulting in poor estimation of reservoir potential 

(Akhundi et al., 2014). Shear wave velocities have a wide range of applications in petrophysical 

analysis, geomechanical research, seismic modeling, amplitude variation with offset (AVO) 

analysis, and engineering applications (Castagna et al., 1985). The use of a combination of P-wave 

velocity and S-wave velocity can increase reservoir and fluid prediction accuracy while reducing 

the seismic based uncertainty (Zhang et al., 2021). However, obtaining S-wave velocity is difficult, 

time-consuming, and expensive, resulting in the unavailability of S-wave velocity data for some 

gas or oil reserves. As a result, acquiring an accurate S-wave velocity has become a major 

challenge (Akhundi et al., 2014).Various empirical relationships for calculating shear wave 

velocity have been provided by many scientists but the outcomes of these relationships are often 

inaccurate when used in different regions primarily due to the anisotropic nature of the earth. 

Furthermore, many factors influence shear wave velocity, but not all of them are considered while 

developing the empirical relationships. Empirical relationships are generally specific to a certain 

place or reservoir rock (with specific lithology and fluid), and implementing them to other areas 

do not yield satisfactory result. The rock and fluid parameters vary from rock to rock and most 

shear wave velocity measurements have been performed on sandstones, with only a few studies 

looking for carbonates (Akhundi et al., 2014). Shear wave velocities or moduli from available 

compressional velocities or moduli can be calculated either empirically or mathematically (Zhang 

et al., 2021) 

Many experts are currently working on relevant studies on S-wave velocity prediction using 

various methodologies. Castagna, et al., (1985), for example, estimated empirical S-wave velocity 

formulas for sandstone reservoirs. (Xu & Payne, 2009) Suggested S-wave prediction rock physics 

model for sandstone reservoirs as well as, for carbonate reservoirs. Russell et al., (2003), Wang et 
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al., (2020), and Ghorbani et al., (2012) used many neural networks and other machine learning 

approaches based on well logs to estimate the S-wave velocity. 

The deep learning (DL) approach is a new direction in traditional Machine Learning Techniques 

(MLTs), which uses a series of hidden layers to achieve high-level features from the input 

information. While traditional MLTs were a point-to-point prediction model based on well logs 

and did not include the time series characteristics of well logs, the DL approach is a new direction 

which uses a series of hidden layers to achieve high-level features from input data (Fang et al., 

2020). During the interpretation process, a single sampling point cannot adequately reflect the 

lithology and porosity of the reservoirs. As a result, traditional machine learning algorithms are 

limited in their ability to forecast S-wave velocity (Wang et al., 2021). 

The Artificial Neural Network (ANN) is being applied in a variety of geophysical domains. It is 

widely preferred since it saves the user time and money. The ANN is an effective standard tool for 

nonlinear issues because it is extremely adaptable and capable of developing functional links 

between data (Singh & Kanli, 2016). The findings achieved by using ANN to build a non-linear 

relationship between the input data and the output parameter are highly reliable (Zhu et al., 2012). 

In theory, a neural network has the power of a universal approximator, which means it can perform 

any arbitrary mapping from one vector space to another (Svozil et al., 1997). The ability to access 

some priori, unknown information encoded in data is the main advantage of neural networks 

(Svozil et al., 1997). 

The neural network is cognizant of the expected outcome and the weight coefficients are therefore 

modified in supervised training (for example, multi-layer feed-forward (MLF) neural network). 

As a result, the computed and intended outputs are as close as practically possible to each other 

(Svozil et al., 1997). ANNs are capable of adapting without the user's help. A neural network is 

non-linear in and of itself. Nonlinearity is a crucial quality, especially when the relationship 

between input and output is intrinsically non-linear (Ilonen et al., 2003). Each example in 

supervised training has a unique input signal and the accompanying target response. MLF neural 

networks are particularly robust, meaning that their performance diminishes gradually with 

increase in noise (Sanger, 1989). 
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Prior to neural network application, it is necessary to analyze the input data to get optimum results. 

Certain tests are applied to reduce the number of input parameters. Gamma test (GT), principal 

component analysis (PCA), forward selection (FS), and Feature importance (FI) are the techniques 

used for this purpose (Noori et al., 2011). 

Feature importance has become a significant study topic as a fundamental step in data 

preprocessing (Zhou et al., 2021). Filtering, encapsulation, and embedded feature selection 

methods are few among the many available (Ball & Brunner, 2010, Tang & Peng, 2017). A 

common embedded feature selection approach is the decision tree which is frequently used in 

machine learning and data mining (Zhou, et al., 2021, Sun & Hu, 2017). It has the ability to remove 

irrelevant attributes while keeping certain key ones in the data. As a result, we may enhance 

classification quality and speed up the model generation process by using it (Zhou, t al., 2021). In 

each node, the Decision Tree algorithm always discovers the most significant attributes (Iqbal et 

al., 2012). 

5.2 Data Set 

Among the many wells located in the study area, only Zamzama-01 has been used for training of 

neural network because it has the complete suite of required logs including gamma ray, neutron 

porosity, density, resistivity, sonic and particularly shear wave log as highlighted in Table 5.1. 

There are a total of 35 logs run in this well. 

Table 5.1 Input Data for Neural Network 

Logs 
Name 

Starting Depth 
(m) 

Ending Depth 
(m) 

CALI 3550.044 3929.919 

CALS 1279.169 3317.044 

CGR 3323.669 3905.669 

DT 3323.794 3570.044 

DT4P 3484.044 3905.669 

DT4S 3484.044 3901.294 

DTCO 3484.044 3905.669 

DTL 1279.169 3317.044 

DTLF 1279.169 3317.044 

DTLN 1279.169 3317.044 

DTRP 3484.044 3905.669 

DTRS 3484.044 3898.169 

DTSM  3484.044 3905.669 

DTTS 116.6642 3901.294 
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GR 8.9189 3929.669 

HCAL 3323.544 3569.919 

HDRA 3550.044 3939.919 

HLLD 3323.544 3924.794 

HLLS 3323.544 3924.919 

LLD 1279.169 3317.044 

LLS 1279.169 3317.044 

MSFL 1279.044 3317.044 

NPHI 3323.669 3939.794 

DTTP 3484.044 3901.294 

RHOZ 3323.544 3939.919 

RHOX 3323.544 3919.794 

PEFZ 3550.044 3934.919 

SGR 3323.669 3905.669 

SP 1279.169 3929.669 

THOR 3323.669 3905.669 

TPRA 3323.669 3905.669 

TURA 3323.669 3905.669 

UPRA 3323.669 3905.669 

URAN 3323.669 3905.669 

A large amount of data has been used in training to develop a realistic neural network i.e. around 

70% of the whole data, while remaining 30% has been used for testing of the developed neural 

network. The diagram for logs based neural network is shown in Figure 5.1 

 

Figure 5.1:  Three layer Feed-forward Neural Network Model 
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5.3 Feature Importance 

Feature importance techniques assign a score to input features based on how helpful they are at 

predicting a target variable (Rajbahadur et al., 2021). Feature significance scores are important 

because they provide insight into the data, information into the model, and the foundation for 

feature selection and dimensionality reduction, which can improve the efficiency and efficacy of 

a predictive model for the problem (Hossain et al., 2020). 

Decision tree, statistical correlation scores, permutation importance scores, and coefficients 

generated as part of linear models are some of the most common types and sources of feature 

importance scores (Brownlee, 2020). 

Extra Decision Tree is a supervised machine learning technique that creates the vertical and 

horizontal link between each input feature and output feature. It then calculates the relevance 

scores by deleting each input feature one at a time. 

The mathematical representation of feature importance is given by (Ronaghan, 2018) as follow: 

݊௜௝ = ௝ݓ ௝ܿ − ௟௘௙௧(௝)ܿ௟௘௙௧(௝)ݓ −  ௥௜௚௛௧(௝)ܿ௥௜௚௛௧(௝)     (5.1)ݓ

݊௜௝= node importance 

 ௝= weights of nodesݓ

௝ܿ= impurity 

Impurity increases with increase in information since information gain is a measure of impurity. 

“Information Gain” splits the data using entropy. It is calculated by equation given by (Ronaghan, 

2018) as: 

,ܶ)݊݅ܽܩ ܺ) = (ܶ)ݕ݌݋ݎݐ݊ܧ − ,ܶ)ݕ݌݋ݎݐ݊ܧ ܺ)     (5.2) 

T= target value i.e. shear wave velocity log. 

X= feature to be split on. 
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Entropy (T,X)= the entropy calculated after the data split on feature X. 

In a decision tree algorithm, importance of every feature can be calculated as given by (Ronaghan, 

2018): 

݂݅௜ =
∑ ௡௜ೕೕ:೙೚೏೐ ೕ ೞ೛೗೔೟ೞ ೚೙ ೑೐ೌ೟ೠೝ೐ ೔

∑ ௡௜ೖೖ∈ೌ೗೗ ೙೚೏೐ೞ
       (5.3) 

݂݅௜= importance of feature i. 

݊ ௝݅= the importance of node j. 

In this work, the sonic shear wave velocity (DT4S) is predicted through machine learning 

algorithms by providing the various well logs as input features and DT4S as target feature. The 

well logs along with input features and target feature are subjected to K fold cross validation. K 

fold cross validation is the resampling procedure that splits the well logs into the subsamples of 

equal sized training and testing datasets and subsequently train the model on sample of equal sized 

training data followed by validation of the model on sample of equal sized testing data (Hossain 

et al., 2020). The K fold is nominated as 4 which means that K fold cross validation generates the 

sample of training and testing datasets four times. It then trains the model on training data four 

times followed by four times validation of the model through determining the correlation between 

the testing data and predicted data. Extra Decision Tree is a supervised machine learning algorithm 

that develops the vertical and horizontal relationship between each input feature and output feature 

and calculate the importance scores by removing the input feature one by one. 

The samples of training data and testing data which provides the high correlation is chosen for 

determining the importance of well logs and the feature importance of each feature is estimated by 

different estimators and then feature importance is normalized into the single value with the help 

of standard deviation.  

The highest correlation is 83.5 %, achieved from third sample of training and testing datasets and 

feature importance of each estimated feature is shown in Figures 5.2 and Table 5.2  
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Table 5.2 Correlation values of each input w.r.t output 
 

Sr No. Log Name Importance 

1 GR 0.152588 

2 NPHI 0.237792 

3 PEFZ 0.176320 

4 HLLD 0.196803 

5 HLLS 0.121200 

6 DT 0.115296 

 

Figure 5.2:  Graphical representation of correlation values of each input w.r.t output 

5.4 Feed-Forward Neural Network 

From the input to the output layers, FFNNs have a one-way link. Prediction, pattern recognition, 

and nonlinear function fitting are the most prevalent applications. Feed Forward back-propagation, 

Feed Forward input-delay back-propagation, cascade-forward back-propagation, perceptual, and 

linear networks are all supported FFNNs (Mahmood & Ahmad, 2017).  

A multi-layer feed-forward neural network has the advantage of learning under supervision, 

therefore enabling it to generate a specified output. As a consequence, the weight coefficients are 
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adjusted to reduce the difference between the calculated and intended outputs (Hampson, et al., 

2001). 

The main aim of feedforward neural network training is to determine ideal connection weights 

(w*) so that the estimated outputs for each sample matches the value of the outputs that are 

desirable. Typically, this is a non-linear optimization problem. 

Where w* is given by (Konate et al., 2014) as follows: 

ݓ ∗= arg   (5.4)         (ݓ)ܧ݊݅݉

 weight matrix= ݓ

 objective function on w=(ݓ)ܧ

 ,.can be calculated at any point of w using the following equation given by (Konate et al (ݓ)ܧ

2014). 

(ݓ)ܧ = ∑ ௣௣ܧ  (5.5)         (ݓ)

Where 

 .number of examples in the training set=݌

 .output error for each example p =(ݓ)௉ܧ

 .is expressed by following equation (Konate et al., 2014) (ݓ)௉ܧ

(ݓ)௉ܧ =
ଵ

ଶ
∑ (݀௣௝ − ଶ((ݓ)௣௝ݕ

௝        (5.6) 

For the ݌௧௛ example, the estimated and desired network outputs of the jth output neuron are ݕ௣௝(ݓ) 

and ݀௣௝, respectively. 

To minimize the objective function following equation is used (Konate  et al., 2014). 

E(w) =
ଵ

ଶ
∑ ∑ (݀௣௝ − ଶ((ݓ)௣௝ݕ

௝௣        (5.7) 
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The network calculated output value is compared to the desired output value for each learning 

(training) operation. If the estimated and desired output networks differ, the synaptic weights that 

contribute to a major error will be modified more than the weight that contributed to a minor error 

(Konate et al., 2014). 

A three-layer Feed Forward neural network model is utilized with 6 neurons in the input layer, 16 

neurons in the hidden layer, and 1 neuron in the output layer. Only one hidden layer is utilized in 

this network. The hidden layers are utilized to boost nonlinearity and modify the data 

representation for better function generalization. 

The data sample is given into the model in which DT4S represents the dependent output variable. 

While, DT, HLLD, HLLS, GR, NPHI, and PEFZ represent a single array comprised of six 

independent variables. The data sample is divided into a training dataset and a testing dataset in 

order to apply the neural network. The whole dataset was divided into two parts: a training dataset 

(70%) and a testing dataset (30%) in case of Zamzama-01 (Figure5.3) and Sawan (Figure 5.4) 

wells and the results were compared. 
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Figure 5.3:  Correlation between DT4S and 
DT4S_MODEL estimated by feed-forward 

neural network of Zamzama-01 Well 

 

Figure 5.4:  Correlation between DT4S and 
DT4S_MODEL estimated by feed-forward 

neural network of Sawan-01 Well

Neurons in the input layer do not do any computations because they are simply nodes in the input 

layer. Biases and weights are related to neurons in the preceding layer by neurons in the output 

layers and hidden layers. Each neuron in the previous layer sums the weighted and biased input 

from the previous layer's neurons, then filters the sum with a transmission function (Suzuki, 2011). 

The network, which connects each of the neurons until some performance criterion is met, 

constantly updates the weights and biases to accurately map the inputs into the outputs (Singh & 

Kanli, 2016). 

The weights are optimum when the prediction error is minimized, that is when the predicted value 

for each training point is as near to the actual value as possible. There are multiple local minima 

in this non-linear optimization problem. 

To determine the global minimum, MLFN employs a combination of conjugate-gradient analysis 

and simulated annealing. Each of the total iterations consists of a conjugate gradient analysis pass 

followed by a simulated annealing effort to find an ideal starting point. While there is some trial 
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and error involved in determining the best configuration of middle nodes, the MLFN technique 

has been demonstrated to be capable of great performance. As a result, MLFN is favored (Latimer, 

et al., 2000). Figure 5.3 shows that the match between actual DT4S and the ANN measured DT4S 

is nearly perfect at all depths. It gives us 87% correlation as shown in Figure 5.5. 

 

Figure 5.5:  Correlation plot of training and testing dataset of Zamzama-01 well 

After training and testing our network on Zamzama area, we also predict our neural network on 

different stratigraphic setting i.e, on Sawan area too. We kept all the input conditions similar as of 

Zamzama and ran the network on Sawan data. On this area the network gives us 84% correlation 

as shown in Figure 5.4. Figure 5.6 shows the match between measured and predicted. 

 
Figure 5.6:  Correlation plot of training and testing dataset of Sawan-01 well 
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Zamzama-03 and Zamzama-05 used for reservoir characterization. But, they both don’t have 

DT4S log in their las files. W predicted the DT4S log of both the wells using the designed neural 

model. The figures 5.7 and 5.8 shown the predicted DT4S log of Zamzama-03 and Zamzama-05, 

respectively.  

 

Figure 5.7:  DT4S log predicted by feed-forward 
neural network of Zamzama-03 Well 

  

 

Figure 5.8: DT4S log predicted by feed-forward 
neural network of Zamzama-05 Well

5.5 Reservoir Characterization 

Reservoir characterization is the understanding and procedures used to analyze the reservoir 

properties and heterogeneity (Lake & Caroll, 1986). It is a multidisciplinary, integrated task that 

requires skills in reservoir geology, well logging, geophysics, geostatistics, petrophysics, and 

reservoir engineering to create accurate pictures of petrophysical parameters required to predict 

reservoir performance (Srivastava, 1994). Geological models based on core, geophysical data, and 

wireline-log are used to create three-dimensional visualizations. By tying petrophysical 

characteristics to geological fabrics and employing modern geostatistical and geophysical 

methodologies, petrophysical properties collected from core, wireline-log, and production data are 
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distributed throughout the geological model. Finally, the model is put through a numerical 

simulator to be tested and predicted (Lucia et al., 2003). 

In reservoir characterization, petrophysical analysis is particularly useful for distinguishing 

hydrocarbon and non-hydrocarbon bearing zones (Yuedong & Hongwei , 2007). Petrophysical 

analysis is utilized to translate wireline log data into reservoir parameters such as shale volume, 

porosity, permeability, and water and hydrocarbon saturation in the majority of cases. The ability 

to distinguish between hydrocarbon and non-hydrocarbon bearing zones can be greatly improved 

by a thorough examination of these reservoir features (Azeem et al., 2017). 

Shear and compressional velocities are significant in reservoir characterization. With the help of a 

neural network, these velocities could be approximated. The reservoir system is an example of a 

physical system that exhibits both deterministic and statistical behavior (Lake & Caroll, 1986). 

The purpose of reservoir characterization is to create a full and detailed picture of the reservoir 

distribution by integrating and analyzing huge volumes of data. The elastic characteristics of the 

reservoir interval encountered in each well were estimated using a neural network model. The 

elastic characteristics (DT4S) obtained from the neural network model in the reservoir intervals 

are used for analysis. 

Cross-plotting of parameters against each other is a useful graphical tools for identifying data 

clusters in targeted zones. Based on their response, these data sets can be classified into different 

lithologies/facies. Elastic properties (Vp/Vs ratio) enable the capacity to distinguish between 

different forms of lithology and payable sand in the targeted area. However, a combination of P-

impedance and the Vp/Vs ratio is utilized to accurately predict lithology and fluid content (Azeem 

et al., 2017). 

5.6 Cross Plot Analysis 

This study includes Zamzama-01, 03 and 05 wells containing wireline logs (e.g., DT, RHOB, GR, 

SP, LLD, LLS, NPHI,). All wells have a complete set of logs, and the borehole situation in the 

targeted region appears to be satisfactory as well. The missing shear wave log was predicted in 

Zamzama 03 and 05 wells, using the above discussed neural network model in shown in Figure 

5.7 and 5.8.
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The elastic characteristics of the reservoir interval encountered in each well were estimated using 

the neural network model. The elastic properties obtained from the neural network model in the 

reservoir intervals are plotted against the derived petrophysical parameters from petrophysical 

analysis. Cross-plotting many parameters is a useful tool for visual analysis and for identifying 

data clusters in target zones. These data clusters can be divided into distinct lithologies/facies based 

on their responses. Elastic characteristics (VP/VS ratio) can distinguish between various types of 

lithology and payable sand in the target zone. However, a combination of P-impedance and the 

VP/VS ratio can be used to estimate lithology and fluid saturation with high accuracy. 

 

Figure 5.9:  The model's effectiveness is tested by comparing measured and modelled elastic 
characteristics. (a) Acoustic impedance measured vs. VP/VS ratio. (b) Acoustic impedance modeled vs. 

VP/VS ratio. Gamma ray log colour codes the data points. 

The techniques discussed previously have been applied to the wireline logs of three wells: 

Zamzama 01, 02, and 05. The reservoir intervals confronted in the three wells of the research 

region have been characterized using elastic and petrophysical parameters. 
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For validation of the model’s performance, the measured and computed values of elastic 

impedance have been plotted against the Vp/Vs ratio over the whole reservoir interval (Figure 5.9). 

Gamma-ray log have been used to color code the data points. Figures 5.9(a) and (b) are 

significantly different from one another. Figure 5.9(b) shows a cross plot of modeled parameters 

that clearly differentiates the sand and shale facies, whereas Figure 5.9(a) shows a cross plot of 

measured (logs) parameters that show mixing of sand and shale facies. It's tough to distinguish 

lithology or fluid contents based on log data because it is influenced by a variety of factors and 

unpredictable circumstances. Various types of facies in all wells are distinguished based on the 

cross plots of Vp/Vs and acoustic impedance (Figure 5.10), keeping the model's efficiency in mind.  

In (Figures 5.10(a)–(c)), the low GR values and low Vp/Vs ratio indicates the clean sand lithology 

whereas the high GR and high Vp/Vs ratio indicates shale lithology. Gamma-ray levels in shaly 

sand deposits range from 80 to 120 API. If sand is gas bearing, then the acoustic impedance, and 

Vp/Vs ratio characteristics will be reduced but values of effective porosity will be high. The data 

points are color-coded using effective porosity (Figure 5.11). The gas presence has a significant 

impact on elastic properties, lowering acoustic impedance and the Vp/Vs ratio. The gas-bearing 

sediments exhibit low values of Vp/Vs and of acoustic impedance, as shown in Figures 5.11 (a), 

but the values of acoustic impedance are bit higher which might due to the tight reservoir, as shown 

in Figures 5.11 (b)–(c); further the effective porosity in these two wells (Zamzama-03 and 

Zamzama-05) are bit lower than the Zamzama-01 well. 

If sand is gas bearing, then the acoustic impedance, and Vp/Vs ratio characteristics will be reduced 

but values of effective porosity will be high. The data points are color-coded using water saturation 

(Figure 5.12). Low values of Vp/Vs and acoustic impedance values depict gas-bearing sediments, 

as shown in Figures 5.12(a), but the values of acoustic impedance are bit higher which might due 

to the tight reservoir, as shown in Figures 5.12 (b)–(c). 
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Figure 5.10:  Cross plots of acoustic impedance versus ௣ܸ ௦ܸ⁄  ratio developed using modeled elastic 
parameters of (a) Zamzama-01, (b) Zamzama-03, and (c) Zamzama-05 wells at various gamma ray 

values. Gas saturation is indicated by a data cluster with low acoustic impedance, ௣ܸ ௦ܸ⁄  ratio, and GR 
values. 

The data points are clearly divided into three types of clusters by the cross plots of these properties. 

Gas-bearing sand is represented by the cluster with low acoustic impedance, water saturation, 

Vp/Vs ratio, GR values and high effective porosity values. The comparison of gas-bearing 

sediments and gas-free sediments showed that the later has higher acoustic impedance and water 

saturation. The gas bearing sand and water bearing shale bodies can be identified easily with water 

saturation and elastic parameters through cross plots. According to the cross-plot analysis, the 
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calibrated model seems effective in predicting the type of rock and fluid content in the area of 

Zamzama gas field. 

 

Figure 5.11:  Cross plots of acoustic impedance versus Vp»Vs ratio developed using modeled elastic 
parameters of (a) Zamzama-01, (b) Zamzama-03, and (c) Zamzama-05 wells at various effective porosity 
values. Gas saturation is indicated by a data cluster with low acoustic impedance, ௣ܸ ௦ܸ⁄  ratio, and low 

effective porosity values. 
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Figure 5.12:  Cross plots of acoustic impedance versus Vp»Vs ratio developed using modeled elastic 
parameters of (a) Zamzama-01, (b) Zamzama-03, and (c) Zamzama-05 wells at various effective porosity 

values. Gas saturation is indicated by a data cluster with low acoustic impedance, ௣ܸ ௦ܸ⁄  ratio, and 
medium water saturation values. 
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CHAPTER 6 
WEDGE MODELING AND THIN BEDS AVO ANALYSIS 

6.1 Introduction 

Reservoir characterization is required for reservoir management, development, monitoring, as well 

as production optimization. Reservoir characterization must be dynamic in order to attain accuracy 

and ensure that all information available at any given time is incorporated into the reservoir model. 

However, to accomplish this, one must first create a primary model of the reservoir at a given 

moment (Aminzadeh & Dasgupta, 2013). Conventional interpretation approaches are typically 

employed to outline large-scale structural traps, however, they are ineffective when dealing with 

narrow interbedded reservoirs which are undetectable with relatively low seismic resolution 

(Farfour et al., 2015). Amplitude reflections of successive thin beds typically face tuning thickness 

difficulties due absence of high frequencies in the seismic data. As a result, amplitude anomalies 

are taken into account and examined using various approaches such as amplitude versus offset 

(AVO), amplitude versus angle (AVA), and spectral decomposition ( Saeed et al., 2020). 

The AVO approach uses seismic readings to obtain elastic parameters and lithological features of 

subsurface strata. The AVO inversion method is based on the notion that the offset variation of the 

P-P reflection amplitude contains all of the elastic contrast information (Buland et al., 2005). In 

AVO analysis, the Knott–Zoeppritz equation is used to show how transmission and reflection 

coefficients change with angle. AVO response is influenced by a variety of parameters, including 

pore fluid, lithology, offset-dependent factors, and reservoir thickness ( Saeed et al., 2020). 

AVO analysis becomes more difficult when dealing with a layered media with several boundaries. 

At zero offset, interference or tuning is determined by the dominant period of the wave, which is 

typically 20–100 ms. Tuning is also a function of the thin bed's interval velocity (Bakke & Ursin, 

1998). The composite reflection amplitudes from a thin bed fluctuate as a measure of bed thickness 

for a cosine wavelet. When the layer thickness becomes equal to 1/4th of the dominant wavelength 

in the signal for a thin bed, inter-bedded in a homogenous background with low acoustic 

impedance, the constructive interference for a zero-phase wavelet is determined. Tuning thickness 

is another name for this (WIDESS, 1973). The influence of thin beds on seismic amplitude can be 
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examined using three-layer wedge modelling. Tuning thickness is the thickness of a layers where 

the two events become indistinguishable in the temporal domain (Bakke & Ursin, 1998). 

The AVO characteristics of seismic reflections of gas sands are diverse. The AVO behaviour of a 

gas sand reflection is influenced by two factors: the normal incidence reflection coefficient R0 and 

the contrast in Poisson's ratio at the reflector. The R0 component is the less constrained of the two. 

Gas sand reflectors can be classified into three classes according to their AVO properties 

(Rutherford & Williams, 1989). 

The goal of this research is to look at how reservoir thickness affects amplitude anomalies. The 

Pabstone Formation has thin strata of sandstone that operate as reservoir rocks. Due to limited 

seismic resolution, however, identification of these thin layers using seismic data is not possible. 

We have performed petrophysical-based wedge modeling and AVO analysis to solve this problem. 

6.2 Wedge Modeling 

According to well log examinations, the Pabstone Formation has very thin reservoir beds (Figures 

4.2-4.4). Therefore, wedge modelling is utilized to assess the seismic response while taking 

thickness variation into account. A three-layered wedge model is built, with a reservoir layer 

buried between two non-reservoir layers. The elastic values required to produce the double 

interference wedge model are shown in Table 6.1. 

Table 6.1 Elastic parameters used to develop three layer wedge model 

Layers Vp (m/s) Vs (m/s) Density (g/cm3) 

1 4181.705 2735.898 2.54 

2 3653.367 2180.866 2.43 

3 4343.928 2898.735 2.49 

The following calculation is used to calculate the tuning thickness ( Saeed et al., 2020). 

ݖ = ௜/2.8ݒ ௗ݂          (6.1) 

z= bed's tuning thickness, (λ/4)  
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 ௜= target layer's interval velocityݒ

ௗ݂  = dominant frequency.  

The tuning thickness has been determined for dominant frequencies of 25, 30, and 35 Hz, and the 

results are given in Figures 6.1-6.3. 

 

Figure 6.1:  (a) Three-layer wedge model for selected interval. (b) Synthetic seismogram by using zero 
offset Ricker wavelet of 25 Hz frequency. (c) Amplitude of synthetic seismogram showing maximum 

response at 26 m thickness. 

 

a 

b 

c 
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Figure 6.2:  (a) Three-layer wedge model for selected interval. (b) Synthetic seismogram by using zero 
offset Ricker wavelet of 30 Hz frequency. (c) Amplitude of synthetic seismogram showing maximum 

response at 22 m thickness. 

 

a 

b 

c 
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Figure 6.3:  (a) Three-layer wedge model for selected interval. (b) Synthetic seismogram by using zero 
offset Ricker wavelet of 35 Hz frequency. (c) Amplitude of synthetic seismogram showing maximum 

response at 19 m thickness. 

The identified reservoir interval has a 13-meter thickness that is conducive for hydrocarbon 

accumulation based on petrophysical study. The thickness of the reservoir zone is taken into 

account while creating a three-layer wedge model, with reservoir layer wedged between two non-

reservoir layers.  

The layer 2 pinches out towards the left and made the wedge model (Figure 6.1(a)). To create the 

synthetic traces, a Ricker wavelet of zero-phase having frequency of 25Hz is convolved with the 

reflectivity series. The horizon after the 26m are clearly distinguishable, but before 26m horizons 

a 

b 

c 
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are can’t be distinguished as shown in Figure 6.1(b). The wedge has negative impedance contracts 

at the top and positive impedance contrast at the bottom as evident from the wedge model. Figure 

6.1(c) shows that the amplitude decreases as the thickness increases up to 26m. It is obvious from 

the preceding study that the seismic amplitudes peak at 26m thickness, indicating that beds having 

26m thickness or greater can be easily detected on seismic section when a frequency of 25Hz is 

used. To investigate the variation in tuning thickness owing to changes in frequency, a similar 

approach is adopted for 30 and 35Hz frequencies (Figures 6.2 and 6.3). In figure 6.2 (a) the layer 

2 pinches out towards the left and wedge like model is formed. Figure 6.2 (b) shows that after 22m 

the horizons can clearly identifiable on seismic section. The amplitude diminishes as the thickness 

increases up to 22m, as seen in Figure 6.2(c). The seismic amplitudes peak at 22m thickness in 

the study, indicating that beds with a thickness of 22m or larger can be easily recognized on seismic 

sections when a frequency of 30Hz is utilized. Layer 2 pinches out to the left in figure 6.3 (a), 

forming a wedge-like shape. The horizons can be easily identified on seismic section after 19m, 

as shown in Figure 6.3 (b). As the thickness grows up to 19m, the amplitude decreases, as seen in 

Figure 6.3. (c). When a frequency of 35Hz is used, the seismic amplitudes peak at 19m thickness 

in the study, showing that beds with a thickness of 19m or larger can be easily identified on seismic 

sections. Wedge model results show that reservoir layers with thicknesses of 22m and 19m may 

be easily resolved using seismic data at 30Hz and 35Hz frequencies, respectively. 

6.3 AVO Analysis 

The foundation of AVO theory is the Zoeppritz equation, which gives the wave reflection and 

transmission coefficients as a function of the angle of incidence and elastic factors. Shifts in elastic 

properties can be used to infer litho-fluid changes from one layer to the next. Precise Zoeppritz 

equation is used to study the variation in reflection coefficients with respect to incidence angle at 

the top and bottom of the target range. The actual Zoeppritz equation that was employed is given 

by (Zoeppritz, 1919) as follows: 
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ܴ௣= P-wave reflection coefficient 

ܴ௦= S-wave reflection coefficient 

௣ܶ= P-wave transmitted amplitude 

௦ܶ= S-wave transmitted amplitude 

,ଵߠ  ଶ= Reflection angelsߠ

߮ଵ, ߮ଶ= Transmission angles 

௣ܸଵ, ௦ܸଵ= P and S-wave velocity of upper half space 

௣ܸଶ, ௦ܸଶ= P and S-wave velocity of lower half space 

,ଵߩ  ଶ= Densities of upper half spaceߩ

The objective is to determine thickness differences and their impact on AVO response. To study 

the effect of thickness, the reflection coefficients generated from the Zoeppritz equation are 

convolved with the Ricker (source) wavelet. Because the thickness of the layer affects the travel 

time values, the two-way travel time values were used to derive the convolving coefficients. 

Finally, the Shuey's approximation was used to get the intercept and gradient values at various 

thicknesses. The influence of thickness on AVO qualities was then investigated by cross-plotting 

these attributes. The Shuey's equation that was employed is given by (Shuey, 1985) as follows: 

(ߠ)ܴ ≈ ܴ(ܱ) + ߠଶ݊݅ݏܤ +  (6.3)      (ߠଶ݊ܽݐߠଶ݊݅ݏ)ܥ

ܴ(ܱ) =
ଵ

ଶ
(

∆௏ು

௏ು
+

∆ఘ

ఘ
)         (6.4) 

ܤ = −2 ቀ1 −
ఙ

ଵିఙ
ቁ ܴ(ܱ) −

ଵ

ଶ

ଵିଷఙ

ଵିఙ

∆௏೛

௏೛
+

∆ఙ

(ଵିఙ)మ     (6.5) 

ܥ =
ଵ

ଶ

∆௏೛

௏೛
          (6.6) 

௣ܸ, ௦ܸ = Contrast of P and S-wave velocities, respectively. 
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௣ܸ, ௦ܸ = Average of P and S-wave velocities, respectively. 

,ߪ∆  .Contrast of Poisson’s Ration and Density, respectively =ߩ∆

,ߪ ߩ = Average of Poisson’s Ration and Density, respectively. 

 

Figure 6.4:  (a) Reflectivity response of elastic parameters for selected interval. (b) Synthetic angle 
gathers considering the 26 m bed thickness. (c) Angle-dependent reflectivities (amplitude) estimated with 

convolved and standard Zoeppritz equations of the upper interface. (d) Angle-dependent reflectivities 
(amplitude) estimated with convolved and standard Zoeppritz equations of the lower interface. 

The reflection coefficients at the normal angle of incidence, also known as the AVO intercept, are 

represented as ܴ(ܱ). The AVO gradient is represented by ܤ, and it explains the fluctuation in 

reflection amplitudes at a mid-angle of incidence. The third term ܥ, stands for curvature, and it 

describes how reflection coefficients behave at large angles of incidence, sometimes near the 
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critical angle. Shuey's equation can be reduced to a two-term equation if the angle of incidence is 

less than 30 degrees as: 

(ߠ)ܴ ≈ ܴ(ܱ) + ݏܤ ଶ(6.7)        ߠ 

 

Figure 6.5:  (a) Reflectivity response of elastic parameters for selected interval. (b) Synthetic angle 
gathers considering the 22 m bed thickness. (c) Angle-dependent reflectivities (amplitude) estimated with 

convolved and standard Zoeppritz equations of the upper interface. (d) Angle-dependent reflectivities 
(amplitude) estimated with convolved and standard Zoeppritz equations of the lower interface. 

At zero offset, the synthetic gathers were observed. Synthetic angle gathers are investigated to gain 

understanding of thin bed adjustment and their influence on angle-dependent reflectivity. Angle-

dependent reflectivity (amplitudes) over the top and bottom interfaces (Figures 6.4a & b) are 

calculated using precise Zoeppritz equations with a bed thickness of 26 m (Figures 6.4c & d). The 

d 
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convolved amplitudes have been addressed to get an idea of reflectivity response for layers which 

are very thin.  

Figure 6.4c (upper interface) indicates with the increase in the angle of incidence, values of 

reflection coefficient of convolved and zoeppritz increases. The value of convolved amplitudes, 

on the other hand, increases more quickly than the Zoeppritz amplitudes crossing its reflectivities 

at a 32-degree angle. The convolved amplitudes grow smaller than the Zoeppritz reflectivity after 

that angle, which could suggest destructive interface. The reflectivity at the lower interface, on the 

other hand, are the polar opposite of those along the top interface (Figure 6.4d). With increasing 

angle of incidence, the gap between these amplitude curves narrows as well; yet, these two 

reflectivity curves (convolved and Zoeppritz) cross at angle 32.  

Similarly, we conducted AVO analyses for 22m and 19m thicknesses, using 30Hz and 35Hz 

frequencies respectively. Figures 6.5 and 6.6 depict the acquired results. It is obvious from these 

results (Figures 6.5 & 6.6) that the reflectivity responses obtained along the top and bottom 

interfaces are identical to those reported for 26 m thickness at a frequency of 25 Hz (Figure 6.4). 

Seismic data with prominent frequencies of 25 Hz, 30 Hz, and 35 Hz can be used to identify zones 

with thicknesses of 19m, 22m, and 26m respectively. AVO modelling gives Class IV AVO 

response from the top layer of gas-bearing sand. 
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Figure 6.6:  (a) Reflectivity response of elastic parameters for selected interval. (b) Synthetic angle 
gathers considering the 19 m bed thickness. (c) Angle-dependent reflectivities (amplitude) estimated with 

convolved and standard Zoeppritz equations of the upper interface. (d) Angle-dependent reflectivities 
(amplitude) estimated with convolved and standard Zoeppritz equations of the lower interface 
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RESULTS AND CONCLUSIONS  
 

This study analyzes the Pabstone formation, in Zamzama area, Central Indus Basin, Pakistan. 3D 

seismic data and well log data of Zamzama-01, 03, and 05 was used for interpretational purpose. 

3D seismic interpretations indicate that the Zamzama field, which is extensively scattered, contains 

thrusted anticlinal structure. 

The depth of resource formation is of particular significance since it has a direct impact on the 

economic aspect in analysis. Petrophysical analysis reveals, Pabstone act as reservoir rock in 

Zamzama gas field. It has many thin beds of sands ranging from 8 to 13m that act as economical 

reservoirs. To characterize this reservoir, DT4S log is necessary. Feed forward neural network is 

designed to estimate and predict the DT4S log using well log data as input. Input for neural network 

model was selected using feature importance. 87% matching was observed in estimation of DT4S 

log in Zamzama area. Same neurak network model was applied on Sawan area, 84% matching was 

also observed in this area. After calculating DT4S log in Zamzama well-01, 03 and 05, cross plot 

analysis was done using calculated elastic parameter, to distinguish the reservoir and non-reservoir 

zone.  

Thin bed wedge modeling and AVO analysis was carried out to resolve the thin beds of reservoir. 

Different dominant frequencies are used for this purpose. Dominant frequency of given seismic 

data was 25 Hz which resolved the beds of thickness more than 26m, whereas 30 Hz and 35 Hz 

resolves the beds of thickness more than 22m and 19m, respectively.  

Conclusions of the study are as follows: 

 Three dimensional seismic interpretations reveal that thrusted anticlinal structure is 

present in the Zamzama field 

 Petrophysical analysis shows one prospect zone in Zamzama-01, in which shale volume is 

10%, effective porosity is 11% and hydrocarbon saturation is 75%. 

 According to a petrophysical analysis, one prospective zone in Zamzama-03 contains 15% 

shale volume, 9% effective porosity, and 70% hydrocarbon saturation. 

 One potential zone in Zamzama-05, according to a petrophysical analysis, comprises 12% 

shale volume, 9% effective porosity, and 68% hydrocarbon saturation. 
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 Feed-forward neural network give us more than 80% accuracy for calculating DT4S in 

Zamzama as well as in Sawan field. 

 Cross plot analysis was also done using calculated elastic parameters to clearly distinguish 

between reservoir and non-reservoir zone. 

 Thin beds were identified with the help of wedge modeling using 25 Hz, 30 Hz, and 35 Hz, 

which resolved 26m, 22m, and 19m thin beds, respectively. AVO modeling gave Class IV 

AVO response from the top layer of gas-bearing sand. 

Recommendations 

Thin beds reservoirs ranging of thickness 8-15m were observed which are not resolvable with the 

help of conventional AVO technique. As we have thin beds reservoir throughout the Pabstone in 

Zamzama field, it is necessary to resolve these beds. These thin beds can be resolved with the 

help of stochastic AVO modeling. 
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