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Preface 

It is commonly accepted now that peristaltic flows are caused by the propagation of waves along 

the flexible boundaries of channel or tube. Such flows in physiology are represented by food 

movement in the digestive tract, urine transport from kidney to bladder, semen movement in vas 

deferens, movement of lymphatic fluids in lymph vessels, bile flow from the gall bladder into the 

duodenum, vasomotion of blood cells, movement of ovum in the female fallopian tube, transport 

of spermatozoa in the ductus efferents etc. Peristaltic motion in the industrial applications are 

employed in the transport of corrosive and noxious fluids, roller and finger pumps, hose pumps, 

tube pumps, dialysis machines and heart-lung machines. The concept of heat transfer has key 

role in the analysis of tissues, hemodialysis and oxygenation. The recent progress in the 

application of heat (hyperthermia), radiation (laser therapy) and coldness (cryosurgery), as 

means to destroy undesirable tissues including cancer have stimulated much interest in 

mathematical modeling for properties of tissue. Moreover, radiofrequency therapy has 

significance in the treatment of diseases like tissue coagulation, the liver cancer, the lung cancer 

and reflux of stomach acid. Moreover the energy flux is not only induced due to temperature 

gradient but by compositions gradient as well. Phenomena of heat and mass transfer taking place 

simultaneously can perturb each other’s efficiency by producing the Soret and Dufour effects. 

Such effects are especially significant in chemical engineering and geosciences. Specifically the 

Soret effect is useful for isotope separation and in mixtures between gases having light and 

medium molecular weights, the Dufour effect is very significant. The concept of variable 

viscosity of fluid is now very well recognized. Some of the processes in which viscosity of the 

fluids depends on temperature include nuclear power plants, pumps operated at high 

temperatures, in turbines, rockets, missile technologies and space vehicles. Even in blood, the 



living ingredient for animals is very sensitive to temperature changes and slight change in 

temperature may cause irreversible damage during dialysis or in heart lung machines.  

Magnetohydrodynamic (MHD) flow in channels/tubes has wide applications in purification of 

crude oil, petroleum industry, fluid droplets sprays, electrostatic precipitation, designing cooling 

systems, magnetic resonance imaging (MRI), blood pumps etc. Inability of the Newtonian fluid 

model to predict the viscoelastic behavior of several fluids in industry and physiology lead to the 

development of several non-Newtonian models. Third order fluid model is one of such models 

which can easily describe both the shear thickening and shear thinning properties even in the 

steady flows. The present thesis in view of afore mentioned facts is arranged as follows: 

Review of available literature on peristalsis under various flow configurations is included in 

Chapter one. The fundamental equations are also presented here. The MHD mixed convection 

peristaltic flow with variable viscosity and thermal conductivity is analyzed in chapter two. Joule 

heating effect here is also taken into account. Viscosity and thermal conductivity of fluid vary 

linearly with temperature. Resulting nonlinear system is solved numerically. Velocity, pressure 

gradient, temperature and streamlines are examined through graphs. Numerical values of heat 

transfer rate at the wall are computed and analyzed for variation in certain embedded parameters. 

The main observations of this chapter are summarized at the end of chapter. Material of this 

chapter is accepted for publication in “Sains Malasiayana”. 

Hydromagnetic peristaltic transport of fluid with variable viscosity is studied in chapter three. 

Here fluid fills the porous space in a channel. Heat transfer analysis is carried out in the presence 

of viscous dissipation and Joule heating. Viscosity of the fluid is taken temperature dependent. 

Both channel and magnetic field have the inclined considerations.  The resulting problems are 

solved numerically. A parametric study is performed to predict the impact of embedded 



variables. Results of this chapter are compiled in the Key findings of this chapter. The main 

observations of this chapter have been submitted for publication in Journal of Mechanical 

Engineering Science. 

Impact of convective boundary conditions on the peristaltic transport in an asymmetric channel 

is examined in chapter four. Joule heating effect is included in the analysis of heat transfer. Cases 

of hydrodynamic and magnetohydrodynamic (MHD) fluids are considered separately. Analytic 

solutions for stream function and temperature are constructed. Numerical integration is carried 

out for pressure rise per wavelength. Effects of influential flow parameters are pointed out 

through graphs. Findings of this study are accepted for publication in Journal of Central South 

University, 21 (2014) 1411-1416”. 

Simultaneous effects of heat and mass transfer on the peristaltic transport of viscous fluid are 

examined in chapter five. The channel is assumed to be axially symmetric. Soret and Dufour 

effects along with Ohmic heating are considered. Closed form solutions for temperature and 

concentration are analyzed by plots for variation of embedded parameters. Numerical values of 

heat and mass transfer rates at the wall are also tabulated. Material of this study is published in 

Magnetohydrodynamics, 47 (2011) 295-302. 

Effects of heat and mass transfer on the peristaltic transport of variable viscosity fluid are studied 

in chapter six. The fluid viscosity is considered space dependent. Thermo-diffusion and 

diffusion-thermo effects are taken into account. Series solutions for the nonlinear equations are 

obtained using the perturbation technique.  Results for the stream function, temperature and 

concentration are constructed. The variations of sundry parameters are analyzed. Results of this 

chapter are published in Applied Mathematics and Information Sciences, 8 (2014) 211-219. 



Influences of velocity, thermal and concentration slips on the peristaltic transport in an 

asymmetric channel are analyzed in chapter seven. Fluid is electrically conducting under the 

effect of a constant applied magnetic field. Soret, Dufour and Joule heating effects are taken into 

account. Close form solutions for stream function, temperature, concentration and heat transfer 

coefficient are obtained. Plots of physical quantities of interest are given and explored. Research 

presented in this chapter is accepted for publication in Arabian Journal for Science and 

Engineering, 39 (2014) 4341–4349. 

MHD mixed convective peristaltic transport in a vertical channel is studied in chapter eight. 

Simultaneous effects of heat and mass transfer for peristaltic transport of viscous fluid are 

addressed in presence of Joule heating and Soret and Dufour effects. Perturbation solution is 

prepared for small Brinkman number. Flow quantities of interest are plotted and analyzed. 

Material of this chapter is accepted for publication in Applied Mechanics and Technical 

Physics. 

Mixed convective heat and mass transfer analysis for peristaltic transport in an asymmetric 

channel has been carried out in chapter nine. Mathematical modeling and analysis is presented in 

presence of Soret and Dufour effects. The convective conditions for both temperature and 

concentration are used in the analysis of heat and mass transfer. Resulting problems are solved 

for the series solutions. Numerical values of heat and mass transfer rates are displayed and 

studied. Main observations of this chapter are accepted for publication in Journal of Central 

South University. 

The effect of variable viscosity on the peristaltic motion of MHD third order fluid in a channel is 

studied in chapter ten. Mathematical formulation includes the concept of slip condition. Both the 

governing equations and boundary conditions are nonlinear even after long wavelength and low 



Reynolds number assumptions. The series solutions of stream function, longitudinal velocity and 

pressure gradient are first derived and then discussed in detail. The pressure rise and frictional 

forces are monitored through numerical integration. This material is published in International 

Journal for Numerical Methods in Fluids, 67 (2011) 1500-1515. 

Heat transfer analysis for the peristaltic transport of third order fluid is carried out in chapter 

eleven. Viscosity of third order fluid is considered space dependent. The fluid is electrically 

conducting in the presence of uniform applied magnetic field. Analysis is performed when no-

slip condition at the boundaries does not hold. The velocity and thermal slip effects are thus 

taken into account. Perturbation solution is discussed and a comparative study between the cases 

of constant and variable viscosities is presented and analyzed. The observations of this study are 

published in Chinese Physics Letters, 28 (2011) 044701. 

Soret and Dufour effects on peristaltic transport of third order fluid in a symmetric channel are 

reported in chapter twelve. Joule heating effect is also taken in to account. The governing 

nonlinear problem is solved using perturbation approach. Graphical results are reported and 

discussed for various parameters of interest entering into the problem. Findings of this chapter 

are accepted for publication in Heat Transfer Research, 45 (2014) 589-603. 
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Chapter 1

Introduction

The aim of this chapter is to provide a material for the better understanding of the subse-

quent chapters. Here the literature review about peristaltic flows, and some definitions and

fundamental equations are presented.

1.1 Peristaltic transport

The peristaltic transport of fluid is caused by a progressive wave of area contraction/expansion

travelling along the length of a distensible tube. Such wave in turn propels the fluid in the

direction of propagation of wave. This type of transport mechanism finds its application in the

physiological and industrial processes. These include the locomotion of worms, urine passage

from kidney to bladder, food swallowing by the esophagus, vasomotion of small blood vessels,

sanitary and corrosive fluids transport, movement of bio fluids (chyme in gastrointestinal tract,

bile in the bile duct, ovum in the fallopian tube and spermatozoa in cervical canal), in heart

lung machine and roller and finger pumps.

1.2 Literature review

Despite of the fact that the mechanism of peristalsis was known to the physiologist since long,

mechanical analysis of peristalsis begin in later half of the twentieth century. Initial investiga-

tion of peristaltic pumping was inspired by its application in human ureter system. Studies of

4



Kiil [1] and Boyarsky [2] are fundamentals in this direction. Latham [3] in his MS thesis carried

out the experimental investigation of peristaltic pump. Shapiro [4] discussed the inertia free

two-dimensional peristaltic transport when the wavelength of peristaltic wave is large compared

to the half channel width. Under these assumptions there is a steady flow in a wave frame.

Later on these two considerations (the long wavelength and low Reynolds number approxima-

tion) were widely utilized by the researchers in the analysis of peristaltic flows. The theoretical

investigation of Shapiro [4] was found in good agreement with the experimental work of Latham

[3]. These pioneering studies of Latham [3] and Shapiro [4] were first precise efforts to mechan-

ically investigate peristaltic flows and triggered extensive interest in peristaltic flows. Later on

several investigations were made to study peristaltic flows under different flow configurations.

More realistic models for the ureteral waves were proposed by Lykoudis [5] and Weinberg et

al. [6]. Time elapsed during the chyme motion through small intestine was calculated by Bar-

ton and Raynor [7] using the concept of peristaltic motion. Inertia free peristaltic flow in a

roller pump was studied by Maginniss [8]. Shapiro et al. [9] examined the peristaltic flow of

Newtonian fluid in a planner channel and circular tube. Long wavelength and low Reynolds

number approximations were used in this investigation. In continuation Jaffrin [10] studied

the effects of inertia and streamline curvature on peristaltic pumping. Yin and Fung [11] and

Fung and Yih [12] studied the peristaltic flow for arbitrary Reynolds and wave numbers in

axisymmetric tube and planar channel respectively. In these studies the authors performed the

analysis for small amplitude ratio. Jaffrin and Shapiro [13] made review for studies available on

peristaltic pumping. Mittra and Prasad [14] studied the interaction of peristalsis with poiseuille

flow. Wilson and Perel [15] analyzed the interaction of peristalsis with pulsatile flow. Brown

and Hung [16] compiled the computational and experimental investigations on two-dimensional

peristaltic flows up to 1977. Srivastava and Srivastava [17] discussed the interaction of peri-

stalsis with pulsatile flow in a cylindrical tube by assuming that the flow is generated by an

arbitrary pressure gradient and peristaltic waves. Peristaltic transport of blood was seen by

Srivastava and Srivastava [18]. In this study they used the Casson fluid model to describe the

non-Newtonian properties of blood. Numerical solutions of two-dimensional peristaltic flow

problem were obtained by Takabatake and Ayukawa [19]. Takabatake et al. [20] studied the

peristaltic pumping in circular cylindrical tubes. They obtained the numerical solutions of the
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problem and discussed the efficiency of such flow. Fluid mechanics of gastrointestinal tract was

studied by Mishra and Rao [21]. They considered the peristaltic transport in a channel with

porous peripheral layer analogous to the flow in gastrointestinal tract.

The magnetohydrodynamic character of fluid has a pivotal role in solidification processes

of metals and metal alloys, study of nuclear fuel debris, control of underground spreading of

chemical wastes and pollution control, design of MHD power generators, blood pump machines,

diagnose and treatment of cancer tumors. Interaction of peristaltic flow with pulsatile magneto-

fluid through a porous medium was analyzed by Afifi and Gad [22]. Elshehawey et al. [23]

examined the effects of inclined magnetic field on magneto fluid flow between two inclined wavy

plates. In this study they further assumed the boundaries to be porous. Peristaltic flow of blood

through a non-uniform channel was inspected by Mekheimer [24]. Blood was assumed to flow

under the influence of a uniform applied magnetic field. Mekheimer [25] carried out the study of

magnetohydrodynamic nonlinear peristaltic transport in an inclined planar channel. Magnetic

fluid model induced by peristaltic waves was proposed by Siddiqui et al. [26]. Hayat and Ali

[27] investigated the peristaltically induced motion of MHD third grade fluid in a deformable

tube. Abd El Naby et al. [28] analyzed the effects of magnetic field on trapping while studying

peristaltic motion of a generalized Newtonian fluid. Nonlinear peristaltic transport in a planar

channel under the influence of applied magnetic field was studied by Hayat et al. [29]. Hayat

and Ali [30] provided the mathematical description of peristaltic hydromagnetic flow in a tube.

Effect of applied magnetic field on the peristaltic transport of micropolar fluid was discussed by

Wang et al. [31]. Hayat et al. [32] studied the influence of inclined magnetic field on peristaltic

transport of fourth grade fluid in an inclined asymmetric channel.

In several physical situations, the no-slip condition between the fluid and solid boundary

is not valid. Such situation arises in fluid mechanics within the body of living beings where

the internal linings of the tubular organs are coated with mucus/secretions. Also in the case

of artificial heart the no-slip condition is no longer effective. In such situations one may take

into account the slip effects while analyzing the flow phenomena. Mandiviwalla and Archer

[33] inspected the effects of velocity slip on the peristaltic pumping in a rectangular channel.

Hayat et al. [34] studied the peristaltic transport through a porous medium under the influence

of partial slip. Hayat et al. [35] studied the peristaltic transport with simultaneous effects of

6



heat transfer and velocity slip. Effects of partial slip and heat transfer on the peristaltic flow

of MHD Newtonian fluid in an asymmetric channel were examined by Yildirim and Sezer [36].

Kumari and Radhakrishnamachrya [37] studied the effects of slip on heat transfer for peristaltic

transport in the presence of magnetic field.

Processes that take place at high temperature e.g. in nuclear reactors, turbines, rockets,

missile technologies, pumps operated at high temperatures and space vehicles may face variation

in fluid viscosity with temperature. Moreover the dependence of fluid viscosity is justified

physiologically because normal person or animal of similar size takes 1-2L of the fluid every

day. Also 6-7L of the fluid is received by the small intestine as secretions from salivary glands,

stomach, pancreas, liver and small intestine itself. Ali et al. [38] carried out the study to

examine the influence of velocity slip on the peristaltic transport in a planar channel. Fluid

viscosity was assumed to be space dependent and a uniform magnetic field was also taken

into account. El Naby et al. [39] studied the effects of an endoscope and variable viscosity

on peristaltic motion. Elshehawey and Gharsseldien [40] examined the peristaltic transport of

three-layered flow with variable viscosity. Hayat and Ali [41] examined the effect of variable

viscosity on the peristaltic transport of Newtonian fluid in an asymmetric channel. Ebaid [42]

computed numerical solution for the MHD peristaltic flow of bio-fluid with variable viscosity

in a circular cylindrical tube via Adomian decomposition method. Effects of heat transfer

on the MHD peristaltic transport of a variable viscosity fluid were studied by Nadeem and

Akbar [43]. The fluid viscosity in this study was considered to vary linearly with temperature

and Adomian decomposition Method (ADM) was used to obtain the solution of the coupled

equations. Nadeem et al. [44] discussed the influence of heat transfer on the peristaltic transport

of fluid with variable viscosity. Nadeem and Akbar [45] presented the study for the effects

of temperature dependent viscosity on peristaltic flow of Jeffrey-six constant fluid in a non-

uniform vertical tube. Nadeem and Akbar [46] examined the influence of temperature dependent

viscosity on peristaltic transport of a Newtonian fluid.

The concept of heat transfer has a key role in the analysis of tissues, hemodialysis and oxy-

genation. Radhakrishnamachrya and Murty [47] studied influence of heat transfer on peristaltic

transport in a non-uniform channel. Vajravelu et al [48] performed the heat transfer analysis of

the peristaltic transport in a vertical porous annulus under the long wavelength consideration.
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Simultaneous effects of heat transfer and applied magnetic field on the peristaltic transport in

a vertical annulus were studied by Mekheimer and Elmaboud [49]. Srinivas and Kothandapani

[50] examined the peristaltic transport in an asymmetric channel with heat transfer. Hayat et al.

[51] performed the heat transfer analysis for the peristaltic transport of an electrically conduct-

ing fluid in porous space. Srinivas and Kothandapani [52] studied the impact of heat and mass

transfer on the MHD peristaltic motion with complaint walls. Hayat and Hina [53] investigated

the heat and mass transfer effects on the peristaltic motion of Maxwell fluid. Mekheimer et al.

[54] analyzed the peristaltic transport under the influence of heat transfer and space porosity.

Nadeem and Akbar [55] analyzed the effect of radially varying MHD on the peristaltic flow

in an annulus with heat and mass transfer. Ali et al. [56] studied the heat transfer effect

on peristaltic transport in a curved channel. Hayat and Noreen [57] examined the peristaltic

transport of fourth grade fluid with heat transfer and induced magnetic field. Effects of thermal

radiation and space porosity on MHD mixed convection flow in a vertical channel were analyzed

by Srinivas and Muthuraj [58]. Vajravelu et al. [59] discussed the influence of heat transfer

on peristaltic transport of Jeffrey fluid in a vertical porous stratum. Hayat et al. [60] ana-

lyzed the heat transfer effects on the peristaltic transport in a curved channel with complaint

walls. Mixed convection heat and mass transfer in an asymmetric channel with peristalsis was

discussed by Srinivas et al. [61]. Effects of heat and mass transfer on the peristaltic flow of

Johnson Segalman fluid in a vertical asymmetric channel with induced MHD was examined by

Nadeem and Akbar [62]. Tripathi [63] proposed a mathematical model for swallowing of food

bolus through the oesophagus under the influence of heat transfer. Akbar et al. [64] computed

the effects of heat and mass transfer on the peristaltic transport of hyperbolic tangent fluid.

Akbar and Nadeem [65] investigated the heat and mass transfer effects in the peristaltic trans-

port of Johnson-Segalman fluid. Effects of induced magnetic field were also taken into account

in this study. Effects of induced magnetic field and heat transfer on peristaltic transport were

also discussed by Hayat et al. [66]. This study was performed for the Carreau fluid model.

Peristaltic transport of third order fluid under the effect of applied magnetic field was studied

by Hayat et al. [67]. Hayat et al. [68] also analyzed the peristaltic flow of a third order fluid

in an asymmetric channel with slip effects. Heat and mass transfer analysis for the peristaltic

transport of third order fluid in a diverging tube was carried out by Nadeem et al. [69]. Akbar

8



et al. [70] studied the effects of slip and heat transfer on the peristaltic flow of third order fluid

in an inclined asymmetric channel.

1.3 Fundamental laws

1.3.1 Law of conservation of mass

Mathematical form of law of conservation of mass is known as continuity equation which for

unsteady flow is given by




+∇ · (V) = 0 (1.1)

in which  denotes the density of the fluid and V the velocity. Eq. (11) for an incompressible

fluid is

∇ ·V = 0 (1.2)

1.3.2 Law of conservation of linear momentum

Newton’s second law of motion states that time rate of change of linear momentum is equal to

the total force acting on the fluid element. Mathematically it is expressed as


V


=∇ · τ+b (1.3)

for an incompressible flow. Here τ is the Cauchy stress tensor which is different for different

fluids, ∇τ the surface force and b the body force. The body force b is different for different
flow situations. For instance the expression of body force b for the flow of an electrically

conducting fluid in the presence of magnetic field and buoyancy effects is

b =g [ ( − 0) +  ( − 0)] + J×B (1.4)

where g is the gravitational acceleration,  and 0 the temperatures of fluid and boundary

respectively,  and 0 the concentrations of fluid and boundary respectively,  and  the
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volumetric expansion coefficients, J the current density and B the applied magnetic field.

Furthermore first two terms on the right hand side of Eq. (14) represent the body force

due to density differences caused by temperature difference and composition difference. The

last term of Eq. (14) is the Lorentz force.

The Cauchy stress tensor τ is expressed as

τ =

⎡⎢⎢⎢⎣
  

  

    

⎤⎥⎥⎥⎦ or τ =

⎡⎢⎢⎢⎣
    

    

    

⎤⎥⎥⎥⎦ , (1.5)

where  ()   () and  are the normal stresses while all others are shear stresses.

In cartesian coordinates (  ) Eq. (13) can be written as



µ



+ 




+ 




+ 





¶
=

 ()


+

 ()


+

 ()


+  (1.6)



µ



+ 




+ 




+ 





¶
=

 ()


+

 ()


+

 ()


+  (1.7)



µ



+ 




+ 




+ 





¶
=

 ( )


+

 ( )


+

 ()


+  (1.8)

1.3.3 First law of thermodynamics

The law of conservation of energy is also known as first law of thermodynamics and can be

expressed as


( )


= τ ·∇V −∇ · (−∇ ) + 1


J · J (1.9)

Here  is the internal energy, τ ·∇V the viscous dissipation, ∇ the heat flux,  the

temperature field,  the specific heat,  the electrical conductivity of fluid,  the thermal

conductivity,  the diffusion coefficient and the last term on RHS of Eq. (1.9) is due to the

Joule heating.
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1.3.4 Advection diffusion equation

The diffusion of chemically reacting species is governed by Fick’s second law. It is given by




= ∇2 −( − 0)

 (1.10)

where  is the concentration field of the diffusing species,  the order of chemical reaction, 

the diffusion coefficient and  the reaction rate.

1.3.5 Dufour and Soret effects

It has been experimentally verified that the diffusion of energy can be caused by a composition

gradient. This fact is known as Dufour effect or diffusion-thermo effect. The diffusion of

diffusing species by temperature gradient is termed as Soret effect or thermal diffusion effect.

In most of the studies dealing with the transfer of heat and mass, Dufour and Soret effects

are neglected under the assumptions that these effects have smaller order of magnitude when

compared to the effects described by Fourier’s and Fick’s laws. However recent developments

show that these effects are significant when transfer of heat and mass occur in the flow of

mixture of gases with very light molecular weight (2, ) and gases with medium molecular

weight (2 air)  Eqs. (1.9) and (1.10) can be modified to make them capable of describing

Dufour and Soret effects as follows:





= ∇2 +  +




∇2 + 1


J · J (1.11)




= ∇2 + 


∇2 (1.12)

where   is the viscous dissipation term,  the stress tensor,  the velocity gradient,  the

concentration susceptibility,  the thermal-diffusion ratio and  the mean fluid temperature.

1.3.6 Maxwell’s equations

Equations which mathematically state a set of laws namely Gauss’ law of electricity, Gauss’ law

of magnetism, Faraday’s law and Ampere-Maxwell law are known as Maxwell equations after
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the name of James Clerk Maxwell. These equations are

∇ ·E =

0
 (Gauss’ law for electricity)  (1.13)

∇ ·B = 0 (Gauss’ law for magnetism)  (1.14)

∇×E = −B


 (Faraday’s law)  (1.15)

∇×B = 0J+ 0
E


 (Ampere-Maxwell law)  (1.16)

Here  indicates the charge density, 0 the permittivity of free space, B the magnetic field, E

the electric field, J the current density and  the electric constant.

1.4 Constitutive equations of a third order fluid

The Cauchy stress tensor τ in an incompressible homogeneous third order fluid is [67-70]:

τ = −I+
³
+ 3A

2

1

´
A1 + 1A2 + 2A

2

1 + 1A3 + 2
¡
A1A2 +A2A1

¢
 (1.17)

in which   ( = 1 2) and  ( = 1 23) are the material constants. The Rivlin-Ericksen

tensors can be represented as follows

A1 = L+L

 (1.18)

A+1 =
A


+AL+ L


A  = 1 2 (1.19)
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Chapter 2

MHD mixed convection peristaltic

flow with variable viscosity and

thermal conductivity

This chapter concerns with mixed convection peristaltic flow of an electrically conducting fluid

in an inclined channel. Analysis has been carried out in the presence of Joule heating. The

fluid viscosity and thermal conductivity are assumed to vary with respect to temperature. A

nonlinear coupled governing system is computed. Numerical results are presented for the veloc-

ity, pressure gradient, temperature and streamlines. Heat transfer rate at the wall is computed

and analyzed. Graphs reflecting the contributions of embedded parameters are discussed.

2.1 Mathematical formulation

We examine the peristaltic transport of viscous fluid in an inclined asymmetric channel of width

(1 + 2)  The channel is inclined at an angle 1. The −axis is chosen along the length of
the channel and −axis is taken normal to the −axis. A uniform magnetic field of strength

0 acts parallel to the −axis. Effects of induced magnetic and electric fields are ignored. The
viscosity and thermal conductivity are temperature dependent. The following forms of waves

propagate along the channel walls
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1( ) = 1 + 1,

2( ) = −2 − 2,

1 = 1

µ
2


( − )

¶


2 = 1

µ
2


( − ) + 

¶


in which  is time, 1 and 2 represent the upper and lower walls of channel, 1 and 1 are the

amplitude of the waves at respective walls,  the phase difference of two waves and  and  are

the speed and wavelength of the waves respectively. Appropriate velocity field for this problem

is  =
£
(  )  (  ) 0

¤
 Laws of conservation of mass and linear momentum give




+




= 0 (2.1)



µ



+ 




+ 





¶
 = − 


+ 2





µ
 ( )





¶
+





∙
 ( )

µ



+





¶¸
−20 + ∗ ( − ) sin1 +  sin1 (2.2)



µ



+ 




+ 





¶
 = −


+ 2





µ
 ( )





¶
+





∙
 ( )

µ



+





¶¸
−∗ ( − ) cos1 −  cos1 (2.3)

In above equations  is the density of fluid,  the electric conductivity,  ( ) the temperature

dependent dynamic viscosity,  the acceleration due to gravity,  the mean value of temper-

ature of both the channel walls and ∗ the thermal expansion coefficient. We consider ( )

and  as the velocity components and pressure in the wave frame ( ). The transformations

between laboratory and wave frames are

 =  −   =    =  −   =   ( ) =  (  ) (2.4)
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where (  ) and  are the velocity components and pressure in the laboratory frame. The

conservation laws of mass and momentum in wave frame can be expressed as




+




= 0 (2.5)


³
(+ ) 


+  



´
(+ ) = − 


+ 2 



¡
 ( ) 



¢
+ 



h
 ( )

³


+ 



´i
−20 (+ ) + ∗ ( − ) sin1 +  sin1 (2.6)


³
(+ ) 


+  



´
() = −


+ 2 



³
 ( ) 



´
+ 



h
 ( )

³


+ 



´i
−∗ ( − ) cos1 −  cos1 (2.7)

Defining the dimensionless quantities

 =



  =



1
  =




  =




  =

1


 1 =

1

1
 2 =

2

1
  =

2

1
  =

21

0
,

 =
0

 () =

( )

0
 2 =

µ


0

¶2
20

2
1  =




  =

∗ (1 − 0) 
2
1

0
  =

 − 

1 − 0


 =
1

0
  =

2

1
  = ,  = − (2.8)

and adopting long wavelength and low Reynolds number approach we have in terms of stream

function  the following equations

 =




∙
 ()

2

2

¸
−2

µ



+ 1

¶
+ Si1 +

ReSi1


 (2.9)

 = 0 (2.10)

and the continuity equation is identically satisfied. Here, 12 are the dimensionless wall shapes,

M the Hartman number, G the Grashoff number, Re the Reynolds number, Fr the Froud

number and  the stream function. Equation (2.10) indicates that  6= () and compatibility
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equation from Eqs. (2.9) and (2.10) has the form

0 =
2

2

∙
 ()

2

2

¸
−2

µ
2

2

¶
+




sin (2.11)

The volume flow rate in fixed frame is defined as

 =

Z 1

2

(  ) (2.12)

and in wave frame we have

 =

Z 1

2

( ) (2.13)

in which 12 are functions of  alone. From Eqs. (2.12), (2.13) and (2.8) one has

 =  + 1()− 2()

The time averaged flow over a period  is

 =
1



Z 

0



which implies that

 =  + 1 + 2

Defining  and  as the dimensionless mean flows in laboratory and wave frames by

 =


1
,  =



1

one can write

 =  + 1 +  (2.14)

where

 =

Z 1

2




 = (1)− (2) (2.15)
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Dimensionless boundary conditions in terms of stream function are

 =


2
,  = −1 at  = 1,

 = −
2
,  = −1 at  = 2. (2.16)

2.2 Heat transfer analysis

We have assumed that the walls at 1 and 2 have temperature 0 and 1 respectively. Energy

equation in presence of viscous dissipation and Joule heating effects in laboratory frame is



¡
 +  +  

¢
= ∇ £( ) (∇ )¤+  ( )

"
2

(µ




¶2
+

µ




¶2)
+

µ



+





¶2#
+20

2
 (2.17)

In wave frame above equation takes the form

 ((+ ) + ) = ∇ £( ) (∇ )¤+  ( )

"
2

(µ




¶2
+

µ




¶2)
+

µ



+





¶2#
+20 (+ )2  (2.18)

in which  is the fluid temperature,  the specific heat,  ( ) the dimensional tempera-

ture dependent thermal conductivity and  ( ) is the temperature dependent viscosity. The

dimensionless energy equation in view of afore mentioned approximations becomes




{()}+ ()

¡


¢2
+2

µ



+ 1

¶2
= 0 (2.19)

where  is the Brinkman number, () the dimensionless temperature dependent thermal

conductivity,  the dimensionless temperature, Pr the Prandtle number and E the Eckert num-

ber. These involved quantities are defined as follows:

 =
 − 

1 − 0
 () =

( )

0
  = Pr  =

0

0
  =

2

 (1 − 0)
 (2.20)
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Dimensionless boundary conditions for the temperature are given by

 = −1
2
at  = 1 and  =

1

2
at  = 2 (2.21)

Temperature dependent viscosity and thermal conductivity are taken in the form

() = 1−  () = 1 +  (, )¿ 1 (2.22)

Note that 0 and 0 are the viscosity and thermal conductivity of the fluid when the temper-

ature of the fluid approaches the mean temperature. Also the cases of constant viscosity and

thermal conductivity can be recovered by choosing  and  equal to zero. The values of 1 and

2 are

1() = 1 +  cos(2), 2() = −−  cos(2+ ) (2.23)

We note that Eq. (2.19) is nonlinear in the present analysis. Hence in this study we have

nonlinear coupled system. Analytic solution of the resulting nonlinear coupled system seems

difficult. Hence the numerical solution throughMathematica is preferred here. The step sizes

for x and y are chosen 0.01. The flow quantities of interest will be analyzed in the next section.

2.3 Graphical analysis

This section aims to analyze the numerical results for influential parameters. Plots of pressure

gradient, axial velocity, temperature and stream function are obtained and examined. Numer-

ical values of the heat transfer rate are given in Table 2.1.

It is obvious from Figs. 2.1 that pressure gradient for constant viscosity fluid is less when

compared with variable viscosity fluid. Temperature dependent thermal conductivity also in-

creases the value of pressure gradient. Such results are obvious from the Figs. 2.1a-b. An

increase in  and  also increases the pressure gradient. Pressure gradient decreases by increas-

ing Hartman and Froud numbers. However this change in pressure gradient due to M and Fr

is sufficiently large when compared with that of  and  (see Figs. 2.1d and f). As the value

of 1 is varied from 0 to 2 the pressure gradient tends to attain significantly large value

which highlights the fact that pressure gradient is higher in a vertical channel when compared
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to horizontal channel (Fig. 2.1 c). For assisting flow (+ve value of acceleration due to gravity

g) pressure gradient is large than that of opposing flow (see Fig. 2.1e).

Plots of axial velocity are given in Figs. 2.2 a-d. These Figs. showed that velocity tends to

follow parabolic path with maximum value occurring near the center of the channel. Fig. 2.1a

shows that when the viscosity parameter  is taken zero i.e. the velocity for constant viscosity

fluid is seen to have maximum value near the center of the channel whereas it tends to shift

towards the lower wall for non zero values of the viscosity parameter. Moreover a slight increase

in the maximum value of velocity is observed when  increases. Channel inclination angle 1 is

seen to have almost similar effect on the velocity as that of  (see Fig. 2.2b). Maximum value of

velocity in inclined channel is shifted towards the lower wall. Increase in the strength of applied

magnetic field decreases the velocity. This change in velocity is maximum when the Hartman

number is taken between 1 and 2 (see Fig. 2.2c). Change in the value of Grashoff number

varies the symmetry of the velocity profile relative to the channel i.e. velocity has maximum

value near the center for opposing flow and this change occurs when G has +ve value. Effect of

Grashoff number on the velocity also depends on the channel inclination which is well justified

physically (see Fig. 2.2d). It is further noted that  has no effect on the axial velocity.

Behavior of the dimensionless temperature through    , 1 G and Br are examined

in the Figs. 2.3 a-f. Fig. 2.3a depicts that an increase in the viscosity parameter decreases the

temperature. This decrease in temperature subject to decrease in  is uniform throughout the

channel. Fig. 2.3 b analyzes the impact of variable thermal conductivity parameter  on the

temperature. Effect of  on the temperature is noteworthy in the sense that it is not uniform

throughout the channel. It means that near the lower wall (2) an increase in the value of 

decreases the value of temperature of the fluid whereas near the upper wall (1) it increases the

value of  Since  yields the perturbation in the thermal conductivity of the fluid so increase in

this parameter gives rise to increase in the ability of the fluid to dissipate or absorb heat. Hence

when temperature of the fluid is higher than the temperature of the boundary then increase in

 results in reduction of the temperature of fluid and vice versa.

Increase in the Hartman number increases the value of  This fact is primarily due to

consideration of Joule heating (see Fig. 2.3c). Channel inclination also has non-uniform effect

on the temperature. Increase in 1 near the lower wall increases the temperature but such
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increase although is not very significant. Similarly the Grashoff number also has very less and

non-uniform effect on the temperature (see Figs. 2.3d and e). Fig. 2.3 f shows that an increase

in Br increases the temperature  significantly. Also when Br is increased then the temperature

plots become non-linear. Streamlines for  and  are plotted in the Figs. 2.4 and 2.5. It is

seen that the size of trapped bolus decreases with an increase in  However  has no significant

effect on the size of the bolus.

Table 2.1 gives the numerical values of heat transfer rate at the wall 0(1) for different

values of the embedded parameters. Results showed that an increase in the value of viscosity

parameter  reduces the transfer rate but heat transfer rate increases through increase in  The

transfer rate decreases via inclined nature of channel. Further an increase in Hartman number

increases the transfer rate.

2.4 Main points

Effects of variable viscosity and thermal conductivity on the MHD peristaltic transport of fluid

in an inclined asymmetric channel are analyzed. Mixed convection and Joule heating effects

are present. Main results are reported below.

• Variable viscosity and thermal conductivity tend to increase the pressure gradient.

• Viscosity parameter, Grashoff number and inclination angle have similar effects on the
velocity. However velocity is unperturbed due to change in thermal conductivity parame-

ter.

• Variable thermal conductivity has no significant change on the bolus size.

• Variable viscosity tends to reduce the temperature of fluid.

• Viscosity parameter and inclination angle have similar effects on heat transfer rate at the
wall.

The following values are used in the plots

Figs. 2.1 (a-g),  = 01 1 = 6  = 01  = 3   = 2  = 02  = 05  = 2

 = 05  = 04  = 03  = 4  = 07 and  = 07
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Figs. 2.2 (a-d),  = 01 1 = 6  = 01  = 0  = 3  = 2  = 04  = 05

 = 2  = 05  = 04  = 03  = 4  = 07 and  = 09

Figs. 2.3 (a-f),  = 01 1 = 6  = 01  = 0  = 5  = 2  = 05  = 1

 = 1  = 05  = 04  = 03  = 4  = 07 and  = 15

Figs. 2.4 and 2.5,  = 01 1 = 6  = 01  = 3  = 2  = 02  = 05  = 2

 = 05  = 04  = 03  = 4  = 07 and  = 12
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Figs. 2.1 a-f. Development of pressure gradient in the axial direction.
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Fig. 2.2 a-d Axial velocity for different parameters.
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Figs. 2.3 a-f. Dimensionless temperature for various parameters.
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Fig. 2.4 Streamlines for viscosity parameter .

Fig. 2.5 Streamlines for thermal conductivity parameter .
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  1  −0(1)
00 01 6 05 10603

04 10257

06 10051

01 00 09893

01 10524

02 11258

01 0 11278

4 10247

2 09892

6 00 09857

04 10284

08 11567

Table 2.1. Numerical values of heat transfer rate at the wall (1) when  = 3   = 2

 = 02  = 0  = 2  = 05  = 04  = 03  = 4  = 07 and  = 12
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Chapter 3

Hydromagnetic peristaltic transport

of variable viscosity fluid with heat

transfer and porous medium

This chapter examines the peristaltic transport of variable viscosity fluid in a planar channel

with heat transfer. The fluid viscosity is taken temperature dependent. The fluid is electrically

conducting in the presence of a constant applied magnetic field. Both channel and magnetic

field are considered inclined. An incompressible fluid saturates the porous space. Heat transfer

analysis is carried out in the presence of viscous dissipation and Joule heating. The resulting

problems are solved numerically. A parametric study is performed to predict the impact of

embedded parameters. Important results have been pointed out in the key findings.

3.1 Mathematical analysis

Let us examine the peristaltic transport of an incompressible viscous fluid in a symmetric

channel. The channel is taken inclined at an angle 1 to the vertical. The fluid is electrically

conducting in the presence of an inclined magnetic field with constant strength B0. The flow

generated is due to peristaltic waves travelling along the channel walls. The wall geometry is

chosen in the form
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( ) = 1 + ,

where 1 is the half channel width and  is the disturbance produced due to propagation of

peristaltic waves at the walls. This disturbance can be written in the form

 = 1

µ
2


( − )

¶


in which  is time, 1 is the amplitude of the peristaltic wave,  and  are the speed and

wavelength of the waves respectively. Appropriate velocity field for this problem is  =£
(  )  (  ) 0

¤
 Laws of conservation of mass, momentum and energy can be repre-
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Here  ,  and  are the velocity components and pressure in the laboratory frame (  ), 

the density of fluid,  the dynamic viscosity,  the acceleration due to gravity,  permeability of

the porous medium parameter,  the inclination of applied magnetic field and ∗ the thermal

expansion coefficient. We also denote  as the specific heat,  the thermal conductivity and

 the temperature of fluid. We further adopt ( ) and  as the velocity components and
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pressure in the wave frame ( ). The transformations between laboratory and wave frames

are

 =  −   =    =  −   =   ( ) =  (  ) (3.5)

The governing equations in the wave frame are given by
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Defining the dimensionless quantities
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and adopting long wavelength and low Reynolds number approach, the equations in terms of

stream function  are
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Note that the incompressibility condition is automatically satisfied and Eq. (3.11) witnesses

that  6= () From Eqs. (3.10) and (3.11) we have
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Here  denotes the kinematic viscosity, Re the Reynolds number,  the Brinkman number,

 the Eckret number,  the Prandtl number,  the wave number,  the Grashoff number,

 the Froud number,  the dimensionless permeability parameter and  the dimensionless

temperature

We consider the temperature dependent viscosity in the form

() = −

which gives

() = 1−  for ¿ 1

where  is the viscosity parameter. Note that for  = 0 our problem reduces to the constant

viscosity case.

The dimensionless volume flow rate in laboratory frame is defined by

 =

Z 

0

(  ) (3.15)
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and in wave frame we have

 =

Z 

0

( ) (3.16)

in which  is function of  alone. From Eqs. (3.14), (3.15) and (3.6) one has

 =  + ()

The time averaged flow over a period  is

 =
1



Z 

0



which implies that

 =  + 

Defining  and F as the dimensionless mean flows in the laboratory and wave frames by

 =



,  =




(3.17)

one can write

 =  + 1 (3.18)

where

 =

Z 

0




 (3.19)

The corresponding boundary conditions for the present flow configuration are

 = 0,  = 0,  = 0  = 0,

 =  ,  = −1,  = 0,  = , (3.20)

with

() = 1 +  cos(2). (3.21)
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3.2 Solution and analysis

Numerical solutions of the derived problems are obtained. For that we have taken 0.01 as the

step size for the variations of  and . The obtained results are analyzed graphically in this

section.

The graphs of pressure gradient, stream function, velocity and temperature are examined.

Moreover, the numerical values of heat transfer rate at the wall are computed and analyzed

through Table 3.1. Hence Figs. 3.1(a-h) are plotted to analyze the pressure gradient variation

with respect to different embedded parameters. Figs. 3.2-3.8 depict the behavior of streamlines,

Figs. 3.9(a-f) for velocity and Figs. 3.10(a-f) for the temperature profile.

It is seen that the pressure gradient varies and has maximum value at the wider part of

the channel. Minimum value of the pressure gradient is found near the more occlude part of

the channel. It is observed that value of the pressure gradient increases with an increase in

the variable viscosity parameter i.e. the pressure gradient has a higher value for the variable

viscosity fluid than that of the fluid with constant viscosity (see Fig. 3.1a). Presence of porous

medium decreases the value of pressure gradient (see Fig. 3.1b). Pressure gradient is larger

when we move from the horizontal to the vertical channel. Increase in the Hartman number and

decrease in the magnetic field inclination tend to decrease the pressure gradient (Figs. 3.1d and

f). An increase in Froud number decreases the pressure gradient while the Brinkman number

increases its value (Figs. 3.1e and h). Corresponding value of the pressure gradient is higher in

the case of resisting (or opposing) flow when compared to that of the assisting flow (Fig. 3.1g).

The volume of the fluid trapped within a streamline is usually termed as bolus. This study

showed that the size of the trapped bolus decreases with an increase in the magnetic field

parameter M (see Fig. 3.2). Bolus size is smaller in the case of fluid with constant viscosity

(see Fig. 3.3). Size of the trapped bolus increases with an increase in the value of the porosity

parameter k. It means that the bolus size gets reduced in case of flow through porous medium

(Fig. 3.4). From Fig. 3.5 it is observed that the impact of channel inclination on the size of the

trapped bolus is not very significant. However an increase in channel inclination enhances the

bolus size by a very small amount. An increase in both magnetic field inclination and Brinkman

number give rise to an increase in the size of the trapped bolus (see Figs. 3.6 and 3.7). Bolus

is found to have a comparatively larger size in the case of assisting flow (+ value of g) (see Fig.
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3.8).

Velocity profile is seen to follow a parabolic trajectory with maximum value near the center

of the channel. Such value of the velocity increases when we move from constant viscosity fluid

to the fluid with temperature dependent viscosity. It is seen from Fig. 3.9b that the velocity

decreases in the case of porous medium. Increase in the Hartrman number decreases the velocity

near the center line whereas the case is opposite for an increase in Brinkman number (see Figs.

3.9d and f). Inclination of the channel results in the increase of the velocity for both assisting

and resisting flows (see Fig. 3.9c). Fig. 3.9e revealed that the velocity has a higher value for

assisting flow.

Dimensionless temperature is analyzed in the Figs. 3.10(a-f). Fig. 3.10a showed that the

temperature is higher for the case of constant viscosity fluid when compared with the fluid of

variable viscosity. Fig. 3.10b depicts that an increase in the value of permeability parameter

decreases the value of the dimensionless temperature. Dimensionless temperature increases

with an increase in the value of the Hartman number (Fig. 3.10 c). Similarly temperature is

higher for the case of assisting flow (see Fig. 3.10 d). Increase in inclination of channel gives

higher value of the temperature whereas the case is opposite for the inclination of magnetic

field (see Figs. 3.10 e and f).

Numerical values of the heat transfer rate at the wall for different parameters are plotted in

Table 3.1. It is noted that the heat transfer rate decreases by increasing the viscosity parameter

 permeability parameter k, Grashoff number G and channel and magnetic field inclinations

(1 and  respectively). However it increases due to increase in Hartman number (M) and

Brinkman number Br.

3.3 Key findings

Numerical solution for the peristaltic transport of the variable viscosity fluid with porous

medium and heat transfer in an inclined channel is obtained and analyzed. The main points of

present attempt are listed below.

• Pressure gradient has a higher value for variable viscosity fluid than constant viscosity
fluid.
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• There is a decrease of pressure gradient in presence of porous medium.

• Pressure gradient has higher value when channel is vertical and there is resisting flow.

• Size of the trapped bolus increases with an increase in viscosity and permeability para-
meters.

• Trapped bolus has a larger size for assisting flow case.

• Fluid velocity with constant viscosity is less when compared to that of variable viscosity.

• Effects of porous medium on pressure gradient and velocity are qualitatively similar.

• Unlike the velocity, the temperature of the fluid is higher for constant viscosity case.

• Temperature is higher for the case of assisting flow.

• Heat transfer rate at the wall decreases with the increase in channel and magnetic field
inclinations.

The used values of the parameters here are  = 02  = 10 1  = 4Re = 5  =

2  = 05 = 05  = 05  = 03 and  = 03 (unless stated otherwise).

36



a = 0, 0.3, 0.6

-0.4 -0.2 0.0 0.2 0.4
0.4

0.6

0.8

1.0

1.2

1.4

1.6

x

dp
dx

Fig. 3.1 a

k = 0.5

k = 1.5

k = 5.0

-0.4 -0.2 0.0 0.2 0.4

0.0

0.5

1.0

1.5

x

dp
dx

Fig. 3.1 b

a1 = 0

a1 = p/4

a1 = p/2

-0.4 -0.2 0.0 0.2 0.4

-1

0

1

2

x

dp
dx

Fig. 3.1 c

b = 0, p/4, p/6

-0.4 -0.2 0.0 0.2 0.4

0.4

0.6

0.8

1.0

1.2

1.4

1.6

x

dp
dx

Fig. 3.1 d

37



Fr = 0.5

Fr = 1.0

Fr = 0.5

-0.4 -0.2 0.0 0.2 0.4

1

2

3

4

5

6

7

x

dp
dx

Fig. 3.1 e

M = 0.0

M = 1.0

M = 2.0

-0.4 -0.2 0.0 0.2 0.4
-0.5

0.0

0.5

1.0

1.5

x

dp
dx

Fig. 3.1 f

Gt  = -2, 0, 2

-0.4 -0.2 0.0 0.2 0.4

0.5

1.0

1.5

x

dp
dx

Fig. 3.1 g

Br = 0, 0.5, 1.0

-0.4 -0.2 0.0 0.2 0.4

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

x

dp
dx

Fig. 3.1 h

Figs. 3.1 (a-h) Pressure gradient for the various parameters.
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Fig. 3.2 Streamlines for variation of Hartman number.

Fig. 3.3 Streamlines for variation of viscosity parameter.
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Fig. 3.4 Streamlines for variation of porosity parameter.

Fig. 3.5 Streamlines for variation of channel inclination.
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Fig. 3.6 Streamlines for different inclinations of magnetic field.

Fig. 3.7 Streamlines for different Brinkman number.
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Fig. 3.8 Streamlines for different Grashoff number.
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Figs. 3.9 (a-f) Velocity profile for different parameters.
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Figs. 3.10 (a-f) Temperature profile for different parameters.
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.

    1   0()

00 10 10 2 4 4 05 232081

03 176871

06 144276

02 05 224094

20 171568

100 152373

10 00 161917

10 191839

20 28159

10 −20 195425

00 193242

20 191839

10 00 193242

4 192427

2 192153

4 00 222499

4 192427

2 162345

4 01 0401872

02 0795321

03 118027

Table 3.1. Numerical values of heat transfer rate at the wall for different parameters.
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Chapter 4

Peristaltic flow in an asymmetric

channel with convective boundary

conditions and Joule heating

This chapter concentrates on the peristaltic transport of viscous fluid in an asymmetric channel.

The channel walls exhibit convective type boundary conditions. Both cases of hydrodynamic

and magnetohydrodynamic (MHD) fluids are considered. Analytic solutions for stream function

and temperature are constructed. Numerical integration is carried out for pressure rise per

wavelength. Effects of influential flow parameters are pointed out through graphs.

4.1 Mathematical analysis

Consider the peristaltic transport of an incompressible MHD viscous fluid in an asymmetric

channel of width 1 + 2. The -axis is taken along the length of the channel whereas the

 -axis is taken normal to the -axis. The flow is due to the waves travelling on the walls of

channel. A constant magnetic field 0 is applied in the  - direction. The fluid is electrically

conducting while the channel walls are non-conducting. The upper 1 and lower 2 walls are

maintained at the temperature 0 and 1 respectively. The geometry of the walls is given as

follows
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1( ) = 1 + 1

µ
2


( − )

¶
,

2( ) = −2 − 1

µ
2


( − ) + 

¶
 (4.1)

where 1 and 1 are the amplitudes of the waves travelling on the upper and lower walls,  is

the wavelength,  is the wave speed,  is the phase difference and  is the time. The laws of

mass, momentum and energy yield




+




= 0 (4.2)



µ



+ 




+ 





¶
 = − 


+ 

∙
2


2
+

2


2

¸
− 20 (4.3)



µ



+ 




+ 





¶
 = −


+ 

∙
2


2
+

2


2

¸
 (4.4)



³


+  


+  



´
 = 

h
2


2 +

2


2

i
+

∙
2

µ³




´2
+
³




´2¶
+
³



+ 



´2¸
+ 20

2
 (4.5)

where (  ) are the velocity components in ( ) directions respectively,  the pressure,

 the dynamic viscosity,  the density of fluid,  the electrical conductivity,  the thermal

conductivity and  the specific heat. We have an interest to transform our problem from the

fixed frame ( ) to the moving/wave frame ( ). For that we define

 =  −   =    =  −   =   ( ) =  (  ) (4.6)
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On setting

 =



  =



1
  =




  =




  =

1


 1 =

1

1


2 =
2

1
  =

2

1
  =

1

1
  =

1

1
  =

21


,  =






 =
1


  =




  =

µ




¶12
01  =

 − 0

1 − 0
  = Pr,

 =
2

 (1 − 0)
  =




  =




,  = −


(4.7)

dimensionless form of Eqs. (42− 45) take the following form




+




= 0 (4.8)

Re

µ
(+ 1)


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



¶
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2
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¶
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3Re

µ
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Here  denotes the kinematic viscosity,  the Hartman number, Re the Reynolds number, 

the Brinkman number,  the Eckret number,  the Prandtl number,  the wave number and

 the dimensionless temperature. Making use of the long wavelength and low Reynolds number

approximation we have




=

3

3
−2

µ



+ 1

¶
 (4.12)




= 0 (4.13)

0 =
2

2
+

µ
2

2

¶2
+2

µ



+ 1

¶2
 (4.14)

where Eq. (4.12) indicates that  6=  ().
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Defining  and F as the dimensionless mean flows in laboratory and wave frames by

 =


1
  =



1
 (4.15)

which after using  =  +  (1 + 2) give

 =  + 1 +  (4.16)

where

 =

Z 1

2




 (4.17)

The convective boundary condition for the temperature can be expressed as follows

− 


= ( − )

in which  is the thermal conductivity,  the wall heat transfer coefficient and  the tempera-

ture of the wall. Physically this condition states that the rate of heat transfer from the wall to

the fluid (or vice versa) is proportional to the difference of their temperature. Having in mind

the asymmetric nature of considered channel, we choose 1 and 2 the respective heat transfer

coefficients of upper and lower walls. Hence the dimensionless boundary conditions are

 =


2
,




= −1, 


+1 = 0   = 1,

 = −
2
,




= −1, 


−2( − 1) = 0,   = 2, (4.18)

1() = 1 +  cos(2), 2() = −−  cos(2+ )  (4.19)

1 =
11


, 2 =

21


 (4.20)

where 12 are the Biot-numbers for the upper and lower walls. Pressure rise per wavelength

is given by

∆ =

Z 1

0




 (4.21)
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4.2 Solution expressions

The solutions of Eqs. (4.12) and (4.14) subject to the conditions (4.18) are

 =
−−

21
(2 − 3)  (4.22)

 =
1

4

µ−5
1

+ (1 +11)6 +
7

(1)

¶
 (4.23)

For  = 0 one has

 = −(1 + 2 − 2) (−2 (1 − 2) (1 − ) (2 − ) + 8)

2 (1 − 2)
3

 (4.24)

 = 1 +
6 ( + 1 − 2)

2

2 (1 − 2)
3

+
32 ( + 1 − 2)

2

42 (1 − 2)
2

− 1

22

−3 ( + 1 − 2)
2 (1 + 2 − 2)4

4 (1 − 2)
6

+
3

2
 (4.25)

and Ls, As and Cs are given as follows:
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1 =
³
1

³
2 (1 − 2)

3 + 6 ( + 1 − 2)
2
´
+ 62 ( + 1 − 2)

2
´
(−1 +22) 

2 = (1 − 2)
3 (1 +2 +211 −212) 

3 =
³
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³
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2
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´


2 = ( + 1 − 2)
³
2(1+2) − 22

´


3 =  (1 + 2 − 2)
³
2 (−2 + )− 1 (2 + )

´


4 = 1 +2 +211 −212

5 =  (1−2 + 2)
2 (2 +3 −4 −1 (5 +6)) 

6 = 2 − 1

(1)
× ¡2 (−2 −7)

¢
+

µ
2

2

(1)
×8

¶
−9
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¡
10 −11

2
¢


8 =
¡
21 − 412 + 22 + 2 (1 + 2)  − 22

¢


1 = 4
³
1 (−2 + 1 − 2) + 2 (2 + 1 − 2)

´2


2 = −221 ( + 1 − 2)
2
¡
1 +2

¢
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2
¡
1 +2
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−81 ( + 1 − 2)
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´


3 = 82 ( + 1 − 2)
³
1 (−2 + 1 − 2) + 2 (2 + 1 − 2)

´
−41

³
22 (2 + 1 − 2)

2 + 21 (2 + 1 − 2)
2
´


4 = 2(1+2)13

5 = 21 ( + 1 − 2)
2
¡
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¢
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´
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¡
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¢
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2
¡
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¢
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9 = 82 ( + 1 − 2)
³
1 (−2 + 1 − 2) + 2 (2 + 1 − 2)

´
+ 22212

10 = 2(1+2−) ( + 1 − 2)
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¡
1 +2

¢
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2
¡
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¢
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´
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12 = 22 (2 + 1 − 2)
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13 = 4 + 21
4 − 2124 + 22

4 + 2 (1 − 2)
2
¡
1 +2

¢
+  2

¡
2 +4

¢


14 = 1 ( + 1 − 2)
³
1 (−2 + 1 − 2) + 2 (2 + 1 − 2)

´


4.3 Graphical analysis

This section is concerned with the discussion of streamlines, pressure gradient and pressure rise

per wavelength. This objective is achieved through Figs. 4.1-4.4. Dimensionless temperature

profile is observed in the Figs. 4.5-4.7 for various parameters. In addition the heat transfer rate

at the upper wall is numerically tabulated. Such numerical values are presented in Table 4.1.

Figs. 4.1 (a and b) examine the streamlines plotted against rate of volume flow  when

 = 0. It is observed that there is a lower limit of flow rate below which no trapping occurs.

This shows that without sufficient volume of the fluid flowing per unit time through the channel,

trapping is unlikely to occur. The "threshold" or critical value of flow rate in present problem

is observed which approximately is equal to 1.6. It is noticed that when the value of flow rate

is increased from the critical value then the size of the trapped bolus not only increases but

also it gets elongated (see Figs. 4.1a & 1b). Figs. 4.2 showed that the size of the trapped

bolus decreases for a given value of flow rate and eventually vanishes when Hartman number

increases.

Fig. 4.3 plots the pressure gradient. It is seen that the pressure gradient is maximum at the

center of the channel i.e. in the wider part of the channel. Moreover the corresponding value

of the pressure gradient is decreased when  has higher values. Pressure rise per wavelength

decreases with an increase in flow rate and for a fixed value of flow rate the pressure rise also

decreases by increasing the value of  .

Figs. 4.5a and 4.5b examine the temperature profile. Fig 4.5a includes the Joule heating
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effect whereas Fig. 4.5b is without such effect. It is shown that there is no significant effect

of  on the temperature profile when there is no Joule heating. However the temperature in

presence of Joule heating effect increases significantly for an increase in M.

Figs. 4.6 (a and b) analyze the effects of 1 and 2 separately on the temperature. It is

found that variation of 1 has significant effect near the upper wall and hardly has any effect

near the lower wall. Similarly the variation of 2 is significant near the lower wall. Further

the temperature decreases by increasing 12 Fig. 4.7 is for the case when both the walls have

same heat transfer coefficient i.e. 1 = 2 = . Here the temperature also decreases with

an increase in . However such decrease is initially large.

Numerical values of heat transfer rate at the upper wall is given in Table 4.1. Here 0(1)

is the heat transfer rate for  given in (4.21) and (∗)0(1) is one when we neglect the Joule

heating effect. It is seen that the transfer rate increases when M and ’s are increased. This

increase in heat transfer differs a lot in the two cases when Joule heating is considered and

neglected. It is seen that  for one wall has very little or no effect (for large value of Bi) on

transfer rate at the other wall.

4.4 Concluding remarks

Effects of convective boundary conditions and Joule heating on the peristaltic transport of MHD

viscous fluid are examined. The key findings of the presented analysis are mentioned below.

• There is a critical value of the flow rate below which trapping is not likely to occur.

• The applied magnetic field tends to decrease the size of trapped bolus.

• Magnetic field decreases the magnitude of pressure gradient and pressure rise.

• Temperature rises in presence of Joule heating.

• Biot number decreases the dimensionless temperature.

• Effects of Hartman and Biot numbers on the heat transfer rate at the wall are opposite.
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Fig. 4.1 Streamlines for M = 0.

Fig. 4.2 Streamlines for M 6= 0.
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Fig. 4.3 Pressure gradient  for different values of M.
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Fig. 4.4 Pressure rise ∆ for different values of M.
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Fig. 4.5 (a) Fig. 4.5 (b)

Fig. 4.5 Dimensionless temperature with variation in M.

Fig. 4.6 (a) Fig. 4.6 (b)

Fig. 4.6 Dimensionless temperature with variation in 12.
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Fig. 4.7 Dimensionless temperature with 1 = 2 = 
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 1 2  −0(1)
05 10 20 20 121396

10 181183

15 279366

20 414483

05 105343

10 20839

15 311436

20 414483

05 05 467126

10 10 467727

15 15 468055

20 20 468262

−(∗)0(1)
101291

101291

101291

101291

270455

517941

765427

101291

113298

113899

114227

114434

Table: 4.1. Effect of various parameters on heat transfer rate at the upper wall.
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Chapter 5

Peristaltic motion with Soret and

Dufour effects

This chapter examines the magnetohydrodynamic (MHD) peristaltic flow in a symmetric chan-

nel in the presence of Ohmic heating. Effects of Soret and Dufour are retained. Long wavelength

and low Reynolds number assumptions are employed. Attention is mainly focused to analyze

the flow quantities for various parameters of interest.

5.1 Mathematical analysis

We consider the flow of an incompressible MHD fluid in a channel of width 21. The − axis
is chosen along the walls of channel and  − axis is selected normal to it. A uniform magnetic

field B0 is applied in the  direction and induced magnetic field is neglected. The channel walls

are represented by

( ) = 1 + 1

µ
2


( − )

¶
, (5.1)

where 1 is the wave amplitude,  is the wavelength, c is the wave velocity and  is the time.

The equations governing the two-dimensional flow are




+




= 0 (5.2)
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where (  ) are velocity components in the laboratory frame ( ),  is pressure,  the

concentration field,  the temperature field,  mass diffusivity,  thermal diffusion ratio,

 specific heat,  concentration susceptibility, 0 concentration at boundary,  and 0 the

fluid mean temperature and temperature at boundary respectively.

If ( ) are the velocity components in the wave frame ( ) then introducing

 =  −   =    =  −   =   ( ) =  (  ) (5.7)

equations (5.2)-(5.6) in wave frame are reduced as follows:
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Defining
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


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the equations (58)− (512) in dimensionless form are stated as follows:
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Making use of the long wavelength and low Reynolds number approximations we obtain




=

3

3
−2

µ



+ 1

¶
 (5.19)

4

4
−2

2

2
= 0 (5.20)




= 0 (5.21)
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0 =
2

2
+

µ
2

2

¶2
+2

µ



+ 1

¶2
+Pr

2

2
 (5.22)

0 =
1



2

2
+ 

2

2
 (5.23)

in which  6=  ()  υ denotes the kinematic viscosity, the Hartman number, Re the Reynolds

number,  the Brinkman number,  the Dufour number,  the Soret number,  the

Schmidt number,  the Eckret number,  the Prandtl number,  the wave number and the

dimensionless temperature and concentration are  and  respectively. The boundary conditions

are

 = 0,
2

2
= 0,




= 0




= 0   = 0,

 =  ,



= −1,  = 0,  = 0,   = , (5.24)

() = 1 +  cos(2),  =

Z 

0




 (5.25)

Pressure rise per wavelength ∆ at this stage is

∆ =

1Z
0




 (5.26)

Heat transfer coefficient  for this problem is defined as

 = 

5.2 Solutions expressions

Solving the above equations subject to the corresponding boundary conditions one finds that

 =
 cosh () +  sinh ()− ( + ) sinh ()

 cosh ()− sinh ()
 (5.27)




= − ( + )3 cosh ()

 cosh ()− sinh ()  (5.28)
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 =
2 (21 −2 cosh[() +3 +4)

8 (−1 + Pr) (− cosh () + sinh ())2
 (5.29)

 =
2 (1 +2 cosh[(2)−3 +4)

8 (−1 + Pr) (− cosh () + sinh ())2
 (5.30)

where

1 = 
¡
4 + + 34

¢− ¡1 + 24
¢
2 +  22

¡
1 +2

¢
(− ) (+ ) + 2¡

2 + 2
¡
1 +2

¢
(− ) (+ )

¢
 2 =  2

¡
1 +2

¢
+ 2

¡
4 + + 2

¢− 22
+

¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢  3 = ( + )2

¡
1 +2

¢
cosh[2] + 4¡

2 +  (2 + )− 2
¢
sinh[2 ]− 16 ( + ) cosh[ ] ( (− ) + sinh[]) 

4 = 16 ( + ) sinh[ ] ( (− ) + sinh[])

1 = −8 − 2 (4 + )− 22 ( + 2)2 − 22 ( + )24

+2
³
1 +  ( + 2)2 + ( + )24

´
2 2 =  2

¡
1 +2

¢
+

2
¡
4 + + 2

¢− 22 + 
¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢ 

3 = ( + )2
¡
1 +2

¢
cosh[2]− 4 ¡

2 +  (2 + )− 2
¢
sinh[2 ]

4 = 16 ( + ) cosh[ ] ( (− ) + sinh[])− 16 ( + )

sinh[ ] ( (− ) + sinh[]) 

5.3 Discussion

Here Figs. 5.1(a-e) are drawn for the temperature, Figs. 5.2(a-e) for concentration and Figs.

5.3(a-e) for the heat transfer coefficient. Tables 5.1 and 5.2 describe the temperature and

concentration gradients. It is observed that with an increase in M the temperature increases.

An increase in temperature becomes more apparent with an increase in M (see Fig. 5.1a).

This fact agrees well to the expected results of Ohmic heating i.e. the temperature increases

with an increase in the magnetic field strength. This fact is quite opposite to the observed

results of behavior of M on temperature in the previous attempts by several other authors

who considered the magnetic field but ignored the effects of Ohmic heating which in turn gives

the lesser accurate prediction about the behavior of temperature for different values of M.

From Figs. 5.1(b-d), the temperature increases with an increase in Schmidt, Dufour and Soret

numbers but contrary to the previous case this increase is not much. Fig. 5.1(e) shows that

there is rapid increase in temperature with an increase in the Brinkman number. From Figs.
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5.2(a-e), we can clearly see that there is decrease in the concentration with an increase in M,

Sr, Sc and Br. This decrease is more in case of Hartman number M and Brinkman number Br

when compared with the other parameters. The result that concentration decreases effectively

with an increase in  is of considerable importance. This means that we can use the heating

effect of applied magnetic field to develop small thermal gradients which in turn can be used to

control the concentration of any particular substance in the fluid. This result has wide range of

applications especially for cure of several diseases, for instance clearing several type of blockages

in many arteries that exhibit peristaltic mechanism. The thermal gradients can be used more

efficiently in place of radiations with lesser side effects. These thermal gradients can also be

used for the transport of several minerals and medicine within the human body on the desired

location.

Heat transfer coefficient has its own physical significance in problems related to heat transfer.

It is always helpful to examine the behavior of heat transfer coefficient ( in this case) for a

given problem. Keeping this in mind the Figs. 5.3(a-e) are explicitly plotted to examine how

 develops throughout the flow field. In all the Figs. 5.3(a-e), Z has oscillatory behavior which

is due to peristalsis. In all these Figs. the absolute value of heat transfer coefficient is positive.

Fig. 5.3(a) shows a rapid fluctuation in Z for changing values of M. From Figs. 5.3(b-d), it

is quite obvious that the Du, Sc and Sr effect the heat transfer coefficient but this effect is

relatively smaller when compared with the effects of other parameters like Br, M and d. Since

Soret and Dufour effects have gained reasonable interest in convective heat and mass transfer.

One cannot neglect such effects when there is appreciable density difference in the flow regime.

The concentration gradient in fact yields the thermal energy flux (referred as Dufour effect)

whereas the temperature gradients contribute to the mass fluxes (referred as Soret effect). One

can neglect Soret and Dufour effects in heat and mass transfer mechanism when such effects

are small in comparison to the effects by Fourier’s or Fick’s laws. Motivated by this fact we

computed the temperature and concentration gradients at  =  in the Tables 5.1 and 5.2. It

is noticed from Table 1 that magnitude of temperature gradient increases when  Du and

Br are increased. However the situation is reverse when there is an increase in a. Table 5.2

depicts that concentration gradient is an increasing function of M, Du, Br and Sr. Further the

concentration gradient is decreasing function of a.
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    0()

05 10 05 03 −28569
10 −36054
15 −50997
20 −77157

00 −27040
05 −30903
10 −36054
15 −43265

00 00

05 −30903
10 −61807
15 −92711

02 −33563
04 −25868
06 −211325
08 −181531

Table 5.1: Variation of 
 =

via different parameters.
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     0()

05 10 05 03 05 071424

10 090136

15 12749

20 19289

00 06760

05 07725

10 09013

15 10816

00 00

05 07725

10 15452

15 23178

02 08390

04 06467

06 05283

08 04538

02 02787

04 05753

06 08914

08 12291

Table 5.2: Variation of 
 =

via different parameters.
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Chapter 6

Soret and Dufour effects on

peristaltic transport of MHD fluid

with variable viscosity

This chapter looks at the Soret and Dufour effects on the magnetohydrodynamic (MHD) peri-

staltic flow of variable viscosity fluid in a symmetric channel. Modeling is presented in the

presence of Ohmic heating. Mathematical analysis is carried out through large wavelength and

small Reynolds number. Results for the stream function, temperature and concentration are

developed. The variations of sundry parameters on the flow quantities of interest are sketched

and examined.

6.1 Mathematical analysis

Let us investigate the magnetohydrodynamic flow of an incompressible viscous fluid in a channel

with width 21. The − axis is chosen along the walls of channel and  − axis is taken normal
to the − axis. A constant magnetic field of strength B0 is exerted in the  − direction.

Induced magnetic field is not accounted. Sinusoidal wave propagates along the channel walls

with constant wave speed  represented by

( ) = 1 + 1

µ
2


( − )

¶
. (6.1)
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If (  ) and ( ) are the velocity components in the laboratory ( ) and wave ( ) frames

then transformations between laboratory and wave frames are

 =  −   =    =  −   =   ( ) =  (  ) (6.2)

In above expressions 1 is the wave amplitude,  is the wavelength,  is the time and  and 

are the pressures in the laboratory and wave frames respectively. Introducing the variables in

the forms

 =



  =



1
  =




  =




  =

1


  =




  =

1

1
  =

21

0


 =
 − 0

0
  =

 − 0

0
  =

µ


0

¶12
01 υ =

0

 =

1

0


 =



  =




  = −


  = Pr  =

0

00
,  =

0

00


 =
0


  =
2

0
  =




 and () =

̄(̄)

0
 (6.3)

the governing equations after adopting long wavelength and low Reynolds number approxima-

tion become




=





µ
()

2

2

¶
−2

µ



+ 1

¶
 (6.4)

2

2

µ
()

2

2

¶
−2

2

2
= 0 (6.5)

0 =
2

2
+()

µ
2

2

¶2
+2

µ



+ 1

¶2
+Pr

2

2
 (6.6)

0 =
1



2

2
+ 

2

2
 (6.7)

where  is the pressure,  the concentration field,  the temperature field,  mass diffusivity,

 the thermal diffusion ratio,  the specific heat,  the concentration susceptibility, () the

variable viscosity,  the fluid mean temperature, υ the kinematic viscosity,  the Hartman

number, Re the Reynolds number,  the Brinkman number,  the Dufour parameter,  the

Soret parameter,  the Schmidt number,  the Eckret number,  the Prandtl number,  the
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wave number,  the stream function,  the dimensionless temperature and  the concentration.

The boundary conditions are

 = 0,
2

2
= 0,




= 0




= 0   = 0,

 =  ,



= −1,  = 0,  = 0,   = , (6.8)

()=1 +  cos(2),  =

Z 

0




 (6.9)

Pressure rise per wavelength ∆ is

∆ =

1Z
0




 (6.10)

The dimensionless expression of space dependent viscosity is

() = − = 1−  ¿ 1

where "" is the viscosity parameter.

We look for solutions in the series form represented below

 = 0 + 1 + 

 = 0 + 1 + 

 = 0 + 1 + 

Employing the procedure of perturbation method and retaining the results up to order () we

have

 = 1 +
( + )2

8 (− cosh () + sinh ())2
 (6.11)

 = − 21

8 (−1 + Pr) ( cosh ()− sinh ())2
(6.12)

−  [2 +3 +4 −5 +6 −7 +8]

32 (−1 + Pr) ( cosh ()− sinh ())3

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 = − 2[1−2+3]
8(−1+Pr)( cosh()−sinh())2

+
[4+5+2(6+7+1

4
(8+9−10)−11−12+13)]

64(−1+Pr)( cosh()−sinh())3
 (6.13)

Heat transfer coefficient is defined as follows:

 = 

The involved A( = 1 2) B( = 1− 8) and C( = 1− 13) are
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1 =
 cosh()+ sinh()−(+) sinh()

 cosh()−sinh()
 2 = 3 + ( cosh () +

¡
32 − 

¢
sinh ())2 sinh ()  3 = −1 + 222 + cosh (2) + 2 cosh () (−
cosh () + sinh ())− 2 sinh (2)  1 = −8 − 2 (4 + )− 2 + 2 ( + 2)

2 − 22 ( + )24 + 2(1 +  ( + 2)2 + ( + )24)2 + ( 2
¡
1 +2

¢
+2

¡
4 + + 2

¢− 22 + 
¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢) cosh (2)− ( + )2¡

1 +2
¢
cosh (2)− 4 ¡

2 +  (2 + )− 2
¢
sinh (2) + 16 ( + )

cosh () ( (− ) + sinh ())− 16 ( + ) sinh () ( (− ) + sinh ())

2 = −83 ( + ) (− ) sinh (2)4 − 1
2
( + )9 cosh ()− 164 ( + )

4 cosh ()3 + 83 ( + )4 (− ) cosh (2)  3 =
1
2
( + ) (3 ( + ) + 3¡

 + − 82¢2 + 844) cosh (3) + 162 ( + )42 cosh ()2 cosh ()

−2 ( + )22
¡
1 +2

¢
 cosh () cosh (2)  4 = ( + )10 sinh () 

5 = 641
23 cosh ()2 sinh () + 23 ( + )23

¡
1 +2

¢
cosh (2)

sinh () + 2 ( + )2
¡
1 +2

¢
 cosh (2) sinh () + 16 ( + )22 cosh ()

sinh ()2 − 84 ( + )5 (− ) sinh (2)  6 = 11 cosh () sinh (2) 

7 = (−4 +  2 − 4+ 2+ 2 + ( + )2
¡
1 + 2

¢
2 + 2 ( + )24)

sinh (3)− 162 ( + )3 cosh ()2 sinh () + 163 ( + )3 sinh ()2

sinh ()− 16 ( + ) sinh ()2 sinh ()− 84 ( + )4 sinh (2) sinh () 

8 = 16 ( + )2 sinh (2) sinh () + ( + )2
¡
1 +2

¢ ¡−3 + 222
¢

sinh () sinh (2)−  ( + ) cosh ()12 9 = 
¡
1 +2

¢
(3 + 42(−3

+232 + 2 − 223)) + (3 +2(3 + 4(
¡−3 +2

¡−3 + 2 ¡1 + + 2
¢¢¢

+2 (−3 + ) + 22 − 22
¡
1 +2

¢
3))) 10 = −3 (4 +  + ) + (

¡−3 + 52¢
+ (−3 +  (16 + 5)))2 + 3 ( + )

¡
5 + 42

¢
4 + 45 ( + )6 + 4 ( + )¡

1 +2
¢
 − 43 ( + )4

¡
1 +2

¢
2 − 4 ( + )2

¡
1 +2

¢
3 11 = −3 ( + )2

+
¡−3 2 − 6+ 321+ (−3 + 2 (8 +  ))2 + 4 (4 +  )3 + 24

¢
2 + 22 ( + )2

4 12 = 16
22 sinh ( (− )) + ( + )

¡
1 +2

¢ ¡−3 + 222
¢
sinh (2) + 16

22 sinh ( (+ ))  1 = 214 − 16 ( + )2 (− ) cosh ()− ( 2 ¡1 +2
¢

+2
¡
4 + + 2

¢− 22 + 
¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢) cosh (2)  2 = 8

cosh ( (− ))− 8 cosh ( (− )) +  2 cosh (2) + 2 cosh (2) + 2

cosh (2) +  22 cosh (2) + 22 cosh (2) + 22 cosh (2) + 8 ( + )

76



cosh ( (+ )) + 16 sinh () + 162 sinh ()− 16 sinh ()− 16

sinh ()  3 = 8 sinh (2) + 82 sinh (2) + 43 sinh (2)− 42

sinh (2) + 8 sinh ( (− )) + 82 sinh ( (− ))− 8 ( + )

sinh ( (+ ))  4 = (3 ( + )2 +
¡
3 2 + 6 (1− 4)+  (641 + 3 (1− 8))¢

2) cosh (3)  5 = 2 cosh ()215 6 = −83 ( + )4 (− ) + 2 ( + )2


¡
1 +2

¢ ¡
32 + 

¢
cosh() 7 = 2 sinh () + 16 ( + )22 cosh ()

sinh ()2  8 = 641 cosh () + 323 ( + )3 (− ) cosh (2)− 641
 cosh (3)  9 = 16 sinh ()  10 = 32

4 ( + )4 (− ) sinh (2) + (−
( + )

¡−8 + 5 + 5+ (5 + (5− 16))2
¢
+ 81

¡
4 +  + +

¡
 + − 42¢2

¢
)

sinh (3)  11 = 41
¡
4− 422

¢
+ 4 ( + )

¡−3 + 22 (3+ )
¢
+ 4(1¡

4− 422
¢
+ 4 ( + )

¡
 + 22 (−+ )

¢
) cosh (2) + 42 ( + )(32

−2) sinh (2) sinh () + 4 ( + )2
¡
1 +2

¢ ¡−3 + 222
¢
sinh () sinh (2) 

12 = cosh () ( + ) (
¡
1 +2

¢ ¡
3 + 42

¡−3+ 232 + 2 − 223
¢¢

+cosh ()(3 +2(3 + 42(−3 +2
¡−3 + 2 ¡4 + + 2

¢¢
+ 2 cosh () (−3 + )

+22 − 22
¡
1 +2

¢
3))) 13 = 641

2 cosh (2) + 4 ( + )22
¡
1 +2

¢
 cosh (2) + 2

¡−3212 sinh (2) + ( + )18
¢
 14 = 

¡
4 + + 34

¢
− ¡1 + 24

¢
2 +  22

¡
1 +2

¢
(− ) (+ ) + 2 (2 + 2

¡
1 +2

¢
(− ) (+ )),

15 = 16
2 ( + )32 cosh ()− ( ( + )

¡−8 + 5 + 5+ (5 + (5− 16))2
¢

+81
¡
4 +  + +

¡
 + + 42

¢
2

¢
) sinh ()− 8((41 ¡−1 + 22

¢
+ ( + ) ( + 2

2 (−+ )))) sinh ()  16 = 81
¡
4 +  + +

¡
 + − 42¢2

¢
+ ( + )17

17 = (−56 + 
¡
1 +2

¢ ¡−13 + 2422 + 1644
¢
+ (−13 +2(−13 + 8(10 + ¡

1 +2
¢ ¡
3 + 222

¢
)))) + 16 ( + )

¡
1 +2

¢
 − 163 ( + )4

¡
1 +2

¢
2 − 16

( + )2
¡
1 +2

¢
3 18 = 16

22 sinh ( (− )) + ( + )
¡
1 +2

¢ ¡−3 + 222
¢

sinh (2) + 1622 sinh ( (+ )) 

6.2 Discussion

This section describes the impacts of pertinent parameters on the temperature and concentra-

tion. We recall that theme of this study is to point out the influences of Soret and Dufour.

Therefore, the results of various parameters associated with velocity are not included. In order

to achieve the desired objective, we present the plots in such a way that the left panels are for
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constant viscosity (i.e. for  = 0) and the right ones are for variable viscosity (  = 04). It is

observed in all the graphs related to temperature that the rise in temperature for variable vis-

cosity fluid is relatively slower when compared with fluid having constant viscosity. Here Figs.

6.1-6.5 are drawn for temperature whereas the Figs. 6.6-6.10 show variation of concentration.

Temperature increases with an increase in M (Fig. 6.1). Further an increase in temperature is

abrupt in view of Ohmic heating. The variations of Du, Sr, Sc and Br on the temperature are

displayed in the Figs. 6.2-6.5. These Figs. indicate that there is an increase in temperature by

increasing Du, Sr, Sc and Br. It is also found that an increase in temperature is more for Br

when compared with the other parameters.

Figs. 6.6-6.10 are presented to examine the behavior of embedded parameters on the con-

centration. Increase in concentration is observed when M and Du are increased (see Figs. 6.6

& 6.7). Concentration also increases when Sr, Sc and Br are increased (Figs. 6.8-6.10).

Behavior of heat transfer coefficient Z for various parameters is shown in the Figs. 6.11-6.15.

As expected Z shows an oscillatory behavior which is because of peristalsis. It is also noted

that there is no variation in Z for amplitude ratio () between 0 and 0.3. It is observed from

Fig. 6.11 that Z increases when M is increased. The absolute values of Z in variable viscosity

fluid are more than the constant viscosity fluid. Figs 6.12-6.15 show that Z increases with the

increase in Du, Sr, Sc and Br. Effects of Du, Sr, Sc and Br on Z are opposite to that of M.
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Fig. 6.1 Effect of M on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0

Fig. 6.2 Effect of Du on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0
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Fig. 6.3 Effect of Sr on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0

Fig. 6.4 Effect of Sc on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0
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Fig. 6.5 Effect of Br on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0

Fig. 6.6 Effect of M on  when  = 05,  = 05,  = 05,  = 03  = 14 ,  = 05 and

 = 0.
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Fig. 6.7 Effect of Du on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0

Fig. 6.8 Effect of Sr on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0.

82



Fig. 6.9 Effect of Sc on  when  = 05  = 05  = 05  = 03  = 14  = 05 and

 = 0

Fig. 6.10 Effect of Br on  when  = 05  = 05  = 05  = 03  = 14 ,  = 05 and

 = 0
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Fig. 6.11 Effect of M on  when  = 05  = 05  = 05  = 03  = 14 and  = 05

and  = 0

Fig. 6.12 Effect of Du on  when  = 05  = 05  = 05  = 03  = 14 and  = 05
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Fig. 6.13 Effect of Sr on  when  = 05  = 05  = 05  = 03  = 14 and  = 05

Fig. 6.14 Effect of Sc on  when  = 05  = 05  = 05  = 03  = 14 and  = 05
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Fig. 6.15 Effect of Br on  when  = 05  = 05  = 05  = 03  = 14 and  = 05
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Chapter 7

Soret and Dufour effects on

peristaltic flow in an asymmetric

channel

This chapter studies the combined effects of heat and mass transfer on the peristaltic flow

of magnetohydrodynamic (MHD) fluid in an asymmetric channel. Asymmetry in channel is

induced because of the wave amplitude and phases. Analysis has been performed in the presence

of slip conditions. Attention has been given to the Soret and Dufour effects. The obtained

results are plotted and discussed.

7.1 Mathematical analysis

We consider MHD flow of incompressible fluid in an asymmetric channel. The -axis is selected

along the channel walls and −axis perpendicular to the -axis. The flow is due to the

sinusoidal wave trains travelling on the walls of the channel with speed  The geometry of the

waves is given below

1( ) = 1 + 1 cos

µ
2


( − )

¶
, (7.1)

2( ) = −2 − 1 cos

µ
2


( − ) + 

¶
 (7.2)
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in which a1 and b1 are the amplitudes of the waves travelling on the upper and lower walls

respectively,  is the phase difference of two waves and 1+2 is the width of the channel. The

phase difference  ranges 0 ≤  ≤  Here  = 0 corresponds to the symmetric channel with

waves out of phase and for  =  the waves are in phase. Moreover 1 2 a1 b1 and  satisfy

the condition

21 + 21 + 211 cos () ≤ (1 + 2)
2 

A uniform magnetic field B0 is applied in the transverse direction to the flow. Effects of induced

magnetic field are not considered by choosing low magnetic Reynolds number. However, Joule

heating and Soret and Dufour effects are taken into account. The equations of mass, momentum,

energy and concentration in the laboratory frame ( ) are




+




= 0 (7.3)



µ



+ 




+ 





¶
 = − 


+





µ
2





¶
+


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where   are the velocity components in the  and  directions respectively,  the pressure,

 the temperature,  the concentration,  the density of fluid,  the dynamic viscosity, 

the specific heat,  thermal conductivity,  fluid mean temperature,  the mass diffusivity,

 the concentration susceptibility and  the thermal diffusion ratio. Using the following

transformations in order to transform our problem in to wave frame ( )

 =  −   =    =  −   =   ( ) =  (  ) (7.8)
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We define the following dimensionless quantities

 =



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 (1 − 0)
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 (1 − 0)

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
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  =
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  =




  =




and  = −


 (7.9)

in which  is the wave number,  the non-dimensional temperature,  the dimensionless con-

centration,  the Hartman number, Re the Reynolds number,  the Brinkman number, 0

and 0 the temperature and concentration at upper wall, 1 and 1 the temperature and con-

centration at lower wall, Pr the Prandtl number,  the Eckert number,  the Soret number

and  the Schmidt number. We find that  does not depend upon  i.e.  = 0 and

−component of momentum equation reads to




=

3

3
−2

µ



+ 1

¶
 (7.10)

where ( ) are the velocity components in the wave frame,  the pressure in wave frame and

 the stream function.

Now the compatibility, energy and concentration equations are given by

4

4
−2

2

2
= 0 (7.11)
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0 =
1
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2

2
+ 

2

2
 (7.13)
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The non-dimensional boundary conditions in terms of slip are

 =


2
,




+ 1

2

2
= −1,  + 2




= 0 + 3

Φ


= 0   = 1,

 = −
2
,




− 1

2

2
= −1,  − 2




= 1, − 3

Φ


= 1,   = 2,(7.14)

in which 1 2 and 3 are the dimensionless velocity, temperature and concentration slip

parameters respectively. These are defined as

1 =
∗1
1

 2 =
∗2
1

 3 =
∗3
1



where ∗1 
∗
2 and 

∗
3 are the dimensional velocity, temperature and concentration slip parameters

respectively.

Now the dimensionless expressions of wave shapes are

1()=1 +  cos(2), 2()=− −  cos(2+ ) (7.15)

Flow rate and pressure rise per wavelength ∆ are defined as follows:

 =

Z 1

2




 (7.16)

∆ =

1Z
0




 (7.17)

Heat transfer coefficient 1 at the upper wall is defined by

1 = 1

The solution of the involved problems throughMathematica are analyzed in the next section.

7.2 Discussion

This section is especially prepared to examine the effects of pertinent parameters. Here we

arrange the variations of such parameters in the Figs. 7.1-7.4. These Figs. depict the plots of
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stream lines, temperature, concentration and heat transfer coefficient at the upper wall. Figs.

7.1(a-d) illustrate the streamlines for an increase in velocity slip parameter 1 The volume of

fluid trapped within a streamline is termed as bolus. It is observed that the trapped bolus gets

elongated and its size increases when the slip parameter increases.

Figs. 7.2(a-i) exhibit the temperature variation. It is seen that the temperature increases

due to increase in M, 2 Du, Sr, Sc, Pr and . However it is found that the temperature

decreases when d and 1 are increased Increase in  is rapid and much in cases of M and Pr

(see Figs. 7.2a and 7.2f) but slower and small for 2 Du, Sr and Sc (see Figs. 7.2b, 2c,2d and

2e).

Figs. 7.3(a-h) demonstrate how concentration field develops when certain parameters of

interest are varied. Key observations from these Figs. are that concentration decreases with

the increase in M, 3 Du, Sr, Sc and Pr whereas it increases by increasing 1 and  Here

decrease in  is much for M, 3 Sr, Sc, Pr and small for Du. Moreover the concentration

remains invariant for thermal slip parameter 2

Figs. 7.4(a-e) are plotted to see the behavior of heat transfer coefficient Z1 at the upper

wall Because of peristalsis it is found that, Z1 has an oscillatory behavior. Moreover Z1 has

maximum value near the upper wall. It increases with the increase in M and  Further Z1

decreases with increase in d and 1 An interesting and noteworthy fact is that the thermal slip

parameter 2 has no meaningful variation on Z1

7.3 Main points

Simultaneous effects of heat and mass transfer on the peristaltic transport of viscous fluid in

an asymmetric channel with slip effects are analyzed. They main observations are summarized

as follows:

• The trapped bolus gets elongated as the value of viscosity parameter is increased.

• Effects of Hartman number M, Dufour number Du and temperature slip parameter 2 on
the temperature are opposite to that of velocity slip parameter 1.

• Increase in temperature subject to an increase in Hartman number M is rapid when
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compared to that of other parameters.

• Increase in applied magnetic field results in decrease of concentration.

• Thermal slip parameter has no effect on the fluid concentration.

• Absolute value of the heat transfer coefficient increases with increase in the Hartman
number M.
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Fig. 7.1. Effect of velocity slip parameter 1 on stream lines.
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Sc = 0.5, 1.0, 1.5, 2.0
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Figs. 7.2(a-i). Effects of various parameters on temperature 
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Figs. 7.3(a-h). Effects of various parameters on concentration.
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Figs. 7.4(a-e). Behavior of 1 for different parameters.
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Chapter 8

Peristaltic transport in a vertical

channel subject to Soret and Dufour

effects

This chapter looks at the simultaneous effects of heat and mass transfer in peristaltic transport

of viscous fluid. Mathematical modelling is provided in the presence of Joule heating and

Soret and Dufour effects. Perturbation solution is prepared for small Brinkman number. Flow

quantities of interest are plotted and analyzed.

8.1 Mathematical formulation

Here our aim is to develop a model for the peristaltic transport of viscous fluid in a vertical

channel. An incompressible fluid is considered in a vertical channel. Magnetohydrodynamic

(MHD) character of fluid is accounted. The flow is generated by sinusoidal waves having con-

stant speed . The channel width is taken as 21. An incompressible and magnetohydrodynamic

(MHD) fluid fills the region in the channel. The fluid is conducting through uniform applied

magnetic field B0 Induced magnetic field is not taken into account. Electric field is absent.
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Geometry of flow problem is given below

The wall shape is taken as

( ) = 1 + 1

µ
2


( − )

¶
, (8.1)

where 1 is the wave amplitude,  the wavelength and  the time. The velocity field in two-

dimensional flow is given by

 =
£
(  )  (  ) 0

¤


Conservation laws of mass, momentum and energy in the present flow consideration are reduced

in the following expressions


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= 0 (8.2)
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In above expressions (  ) are the velocity components in the laboratory frame ( ), 

the pressure,  the acceleration due to gravity, ∗ the coefficient of thermal expansion, ∗∗ the

coefficient of expansion due to concentration,  the thermal conductivity,  the concentration

field,  the temperature field,  the mass diffusivity,  the thermal diffusion ratio, Φ
∗ the

constant heat addition/absorption,  the specific heat,  the concentration susceptibility, 0

the concentration at boundary,  and 0 the fluid mean temperature and temperature at the

boundary respectively.

If ( ) are the velocity components in the wave frame ( ) then using the transformations

 =  −   =    =  −   =   ( ) =  (  ) (8.7)
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incompressibility condition (8.2) is clearly satisfied while Eqs. (8.3)-(8.6) through standard

definition of stream function  can be written as
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+ + (8.9)

101



4

4
−2

2

2
+




+




= 0 (8.10)




= 0 (8.11)

0 =
2

2
+

µ
2

2

¶2
+2

µ



+ 1

¶2
+Pr

2

2
+Φ (8.12)

0 =
1



2

2
+ 

2

2
 (8.13)

From Eq (8.11)  6=  ()  Here υ denotes the kinematic viscosity,  the Hartman number, Re

the Reynolds number,  the local temperature Grashoff number,  the local concentration

Grashoff number, Φ the dimensionless heat source/sink parameter,  the Brinkman number,

 the Dufour number,  the Soret number,  the Schmidt number,  the Eckret number, 

the Prandtl number,  the wave number and the dimensionless temperature and concentration

are denoted by  and  respectively. The boundary conditions are prescribed in the following

forms

 = 0,
2

2
= 0,




= 0




= 0   = 0,

 =  ,



= −1,  = 0,  = 0,   = , (8.14)

()=1 +  cos(2),  =

Z 

0




 (8.15)

where  is the dimensionless form of the wall shape. The dimensionless mean flow rates in

laboratory () and wave ( ) frames are related by

 =  + 1

Pressure rise per wavelength ∆ can be put into the following relation

∆ =

1Z
0




 (8.16)
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8.2 Series expressions

We are interested to develop the series solutions of the resulting problems. For that we expand

the stream function in terms of small Brinkman number and write

 = 0 +1 + 

Similarly the other physical quantities like    and  are also expanded. It is worth men-

tioning to point out that the condition  ¿ 1 is not an unrealistic condition. For example,

the most common Newtonian fluid i.e. water, at 25 (298 Kelvin ≈ room temperature) has

dynamic viscosity  = 089 cP (centi poise) and thermal conductivity 0.58 W/mK (watt per

meter Kelvin). If we consider the characteristic speed 1m/s (meter per second) and wall tem-

perature to be 310 Kelvin (≈ equal to body temperature), then the Brinkman number comes

out to be 12787×10−4 ¿ 1 This provides us a confidence regarding the selection of Brinkman

number  as a small quantity. Resulting zeroth and first order systems are given by

0


=

30
3

−2

µ
0


+ 1

¶
+0 +0

0 =
20

2
+Pr

20
2

+Φ

0 =
1



20
2

+ 
20

2


0 = 0,
20
2

= 0,
0


= 0

0


= 0   = 0,

0 = 0,
0


= −1, 0 = 0, 0 = 0,   = .

First order system

1


=

31
3

−21


+1 +1

0 =
21

2
+Pr

21
2

+

µ
20
2

¶2
+2

µ
0


+ 1

¶2

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0 =
1



21
2

+ 
21

2


1 = 0,
21
2

= 0,
1


= 0

1


= 0   = 0,

1 = 1,
1


= 0, 1 = 0, 1 = 0,   = .

The solutions of above systems yield the following expressions

 =
−(+2)

62

³
−6 (−1 +)1 () + 2

1 (63)
´


+ 

"
−

5+()

11
4 () + 12

#


 =

¡−2 + 2
¢


2 (−1 +)
− 7

36026


 =
8

360 (−1 +)3
+

10

29

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Where

1 =
¡
3 (−1 +) ( + )22 ()

¢
(+2)

2 = (−1 +)2
³
1 +  + 2 (−1 + )

´


3 = 16−2+3(+)
¡−1 + 22

¢
( −)Φ

2

4 = 6 () +7 () (−1 +) ( + ) +8 () +9 () 

5 = (−1 +)310
³
1 +  + 2 (−1 + )

´


6 = (−1 +)3
³
1 +  + 2 (−1 + )

´


7 = 720 (−1 +)2 (−) 22

1 () +2 () +3 () +4 () +5 () 

8 = 
³
180 (−1 +)2 (− ) (+ )Φ

´


9 =
³
360 (−1 +)3

´³
1 +  + 2 (−1 + )

´


10 = 1 () + 2 () + 3 () +4 () + 5 () 

11 =
³
1 +  + 2 (−1 + )

´


12 = 5 () +
3

55

n
(+2)4

o
+10 () 

 =  and   and  are given below
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1 =
 cosh()+ sinh()−(+) sinh()

( cosh()−sinh())2


2 = 1(
23 +( cosh () +

¡
32 − 

¢
) cosh ())2 cosh () 

+sinh ())− 2 sinh (2) 

3 = ( + )2
¡
1 + 2

¢
2 + 2 ( + )24) +(2 ( + )2

¡
1 +2

¢


cosh (2) sinh () + 16 ( + )22 cosh ())

4 =
¡
 + − 82¢2 + 844) cosh (3) + 162 ( + )42 cosh ()2 cosh ()

(sinh ()− 16 ( + ) sinh ()2 sinh ())

5 = 2
¡
4 + + 2

¢− 22 +(
¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢)) cosh (2) 

6 = 2
2(+ )(2

¡
4 + + 2

¢−2
2 + 

¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢)

7 = ( + 2
3)2 cosh (2) + 22 cosh (2) + 22 cosh (2) + 8 ( + ) 

8 = ()+2(16 ( + ) sinh () ( (− ) + sinh ()))

9 = 16
22 sinh ( (− )) + ( + )

¡
1 +2

¢ ¡−3 + 222
¢
sinh (2) + 16

+22 sinh ( (+ )) 

10 =
¡
1 +2

¢
 − 43 ( + )4

¡
1 +2

¢
2 − 4 ( + )2

¡
1 +2

¢
3

1 = 1(−8 2 − 2 (4 + + 3)− 2 + 2 ( + 2)2 − 22 ( + )24)

+2(1 +  ( + 2)2 + ( + )24)2 + ( 2
¡
1 +2

¢
+ 2

¡
4 + + 2

¢
−22 + 

¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢) cosh (2)− ( + )2

¡
1 +2

¢
cosh (2) 

2 = 16 ( + )
3(+2) cosh () ( (− ) + sinh ())− 16 ( + )

 sinh () ( (− ) +  sinh ())

3 =
1
2
( + )9 cosh ()− 164 ( + )3 + 83 ( + )4 (− ) cosh (2) 

4 = 1281
34 cosh ()2 sinh () + 23 ( + )23

¡
1 +2

¢
cosh (2) + 83

( + )4 (− )5

5 = 4(−4 +  2 − 4+ 22+ 2 + ( + )2
¡
1 + 2

¢
2 + 2 ( + )24)

1 = 16 ( + )2 (− ) cosh ()  − ( 2
¡
1 +2

¢
+ 2

¡
4 + + 2

¢
−22 + 

¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢) cosh (2) 

2 =  22 cosh (2) + 22 cosh (2) + 22 cosh (2) + 8 ( + ) 2

cosh (2) + 2 cosh (2) 

3 = 32
2 ( + )32 cosh ()2 − ( ( + )

¡−8 + 5 + 5+ (5 + (5− 16))2
¢


4 = 8
¡
4 +  + +

¡
 + + 42

¢
2

¢
) sinh ()− 8((4 ¡−1 + 22

¢
+ ( + ) 

5 = (−64 + 
¡
1 +2

¢
6
¡−13 + 2422 + 1644

¢
+ 3(−13 +2(−13 + 8(10 + )))
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8.3 Graphical results and analysis

This section emphasizes the impact of embedding flow parameters in the solution expressions.

Here plots are prepared in the two and three dimensions. Arrangement of the graphs is made

in such a way that Figs. 8.1 (a-d) show the pressure gradient, Figs. 8.2 (a-d) the pressure rise

per wavelength, Figs. 8.3 (a-d) the 3-D plots for velocity profile, Figs. 8.4-8.9 the stream lines

and Figs. 8.10 and 8.11 the 3D plots for temperature and concentration fields respectively.

Figs. 8.1 (a-d) reveal that pressure gradient decreases by increasing  and  However,

the pressure gradient increases with an increase in Φ and Du. It is further noticed that the

change in dp/dx is larger in the cases of Φ and M when compared with Du and Sr.

Pressure rise per wavelength via mean flow rate  is displayed in the Figs. 8.2 (a-d). These

Figs. show that the pressure rise decreases when flow rate increases. For a given constant value

of the mean flow rate, the pressure rise increases with an increase in Φ and  but it decreases

with increase in  (see Figs. 8.2 a,c and d). Behavior of pressure rise for M is however different.

The pressure rise increases for negative value of mean flow rate when  increases. However,

the behavior is opposite for positive values of mean flow rate (Fig. 8.2b).

We displayed the 3D plots for velocity, temperature and concentration. Here it is observed

from Fig. 8.3 that the velocity decreases when  is increased. Such decrease largely depends

upon the values of  Physically the decrease in velocity is due to the reason that the Lorentz

force has a role of retarding force. Consequently it increases the friction resistance which

opposes the motion of fluid.

Figs. 8.3 (b-d) depict that the velocity is increasing function of Φ and  However reverse

situation is observed for  i.e. the velocity decreases when  increases.

Trapping is considered interesting feature of the peristaltic transport. The volume of fluid

that gets trapped in a stream line during peristaltic motion is known as bolus. Figs. 8.4-8.9

depict that the size of trapped bolus decreases when  ,  and  are larger. It is also found

that the results are opposite for the cases of  Φ and .

The variations of temperature and concentration fields can be seen through Figs. 8.10 and

8.11. These Figs show that the temperature increases when  , , Φ and Du are increased.

Clearly the rise in temperature with an increase in M and Du is more than Φ and . Effects

of  on the temperature are not significant.
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Figs. 8.11 plot the influences of  Φ ,  and  on the concentration field. Here

concentration field decreases when there is an increase in , Φ and . Further, the variations

of concentration field for  and  are insignificant. It is also concluded that temperature

increases and concentration decreases when  increases.
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Figs. 8.1 (a-d) Behavior of pressure gradient for variations in M, Φ Du and Sr.
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Fig. 8.2 a
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Fig. 8.2 c
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Fig. 8.2 (a-d) Pressure rise per wavelength.
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Fig. 3 a

Fig. 8.3 c Fig. 8.3 d

Fig. 8.3(a-d) Velocity profile with variations of  , Φ  and .
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Fig. 8.4 Effect of Hartman number () on stream lines when Φ = 1  = 05,  = 05

 = 025  = 2 and  = 1

Fig. 8.5 Effect of  on stream lines for Φ = 1  = 05,  = 05  = 025  = 2 and

 = 1
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Fig. 8.6 Effect of  on stream lines when Φ = 1  = 05,  = 05  = 025  = 2 and

 = 1
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Fig. 8.7 Effect of Φ on stream lines when  = 2  = 05,  = 05  = 025  = 2 and

 = 1
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Fig. 8.8 Effect of  on stream lines for Φ = 1  = 2  = 05,  = 05  = 025  = 2

and  = 1

Fig. 8.9 Effect of  on stream lines when Φ = 1  = 2  = 05,  = 05  = 025

 = 2 and  = 1
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Fig. 8.10 a Fig. 8.10 b

Fig. 8.10 c Fig. 8.10 d

Fig. 8.10 e
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Figs. 8.10 (a-e) Variations of  ,  , Φ and  on temperature.
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Fig. 8.11 a Fig. 8.11 b

Fig. 8.11 c Fig. 8.11 d

Fig. 8.11 e

Figs. 8.11 (a-e) Diagrams analyzing the development of concentration field when  ,  ,

Φ and  are varied.
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Chapter 9

Mixed convective heat and mass

transfer for peristaltic transport in

an asymmetric channel with Soret

and Dufour effects

The aim of present chapter is to address the simultaneous effects of heat and mass transfer in

the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel

walls exhibit the convective boundary conditions. In addition the effects due to Soret and

Dufour are taken in to consideration. Resulting problems are solved for the series solutions.

Numerical values of heat and mass transfer rates are displayed and studied.

9.1 Mathematical analysis

We consider an asymmetric channel of width 1 + 2 with flexible walls. An incompressible

viscous fluid is considered. Cartesian coordinate system is adopted such that the -axis is

along the length of the channel and the  -axis is normal to the -axis. The flow is generated

due to peristaltic waves propagating on the channel walls with speed c. Moreover, the channel

walls possess the characteristics of convective type boundary condition. We intend to study
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the flow in the presence of Soret and Dufour effects. The channel walls are described by the

following expressions

1( ) = 1 + 1, left wall and 2( ) = − (2 + 2)  right wall

where 1 and 2 are the disturbances produced due to propagation of peristaltic waves at the

left and right walls respectively. The values of 1 and 2 can be written in the forms

1 = 1

µ
2


( − )

¶


2 = 1

µ
2


( − ) + 

¶


in which  is time,  is the phase difference and 1 1 are the amplitudes of the waves travelling

on the left and right walls with speed c respectively. Temperature and concentration at the

walls are assumed to be  and  ( = 0 for left wall and  = 1 for right one ) respectively.

Velocity field for this problem is  =
£
(  )  (  ) 0

¤


Fundamental equations governing the flow of an incompressible viscous fluid are

∇ = 0 (9.1)





= −∇ + 

³
∇2

´
+ ∗ ( − 0) + ∗∗ ( − 0)  (9.2)

in which  is the density of fluid,  is the pressure,  is the dynamic viscosity,  is the acceler-

ation due to gravity and ∗ and ∗∗ are the thermal and concentration expansion coefficients

respectively. The energy and concentration equations can be expressed as




= 



£
 +  

¤
+


h
2
³

2
 + 

2


´
+
¡
 +  

¢2i
+ 



£
  +  

¤
 (9.3)




= 

£
  +  

¤
+





£
  +  

¤
 (9.4)

Here  is the specific heat,  is the thermal conductivity,  is the mass diffusivity,  is the

thermal diffusion ratio,  is the concentration susceptibility,  is the mean temperature, 
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and  are respectively the temperature and concentration of the fluid.

We consider ( ) and  as the velocity components and pressure in the wave frame ( ).

The transformations between laboratory and wave frames are

 =  −   =    =  −   =   ( ) =  (  ) (9.5)

where (  ) and  are the velocity components and pressure in the laboratory frame. The

fundamental equations in wave frame are reduced as follows:




+




= 0 (9.6)



µ
(+ )




+ 





¶
(+ ) = −


+ 

∙
2

2
+

2

2

¸
+ ∗ ( − 0)

+∗∗ ( − 0)  (9.7)



µ
(+ )




+ 





¶
 = −


+ 

∙
2

2
+

2

2

¸
 (9.8)

 ((+ ) + ) =


[ + ] +



∙
2
³
(+ )2 + 2

´
+
³
(+ ) + 

´2¸
+ 


[ +]  (9.9)

(+ ) +  =  [ +] +



[ + ]  (9.10)
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Letting

 =



  =



1
  =




  =




  =

1


 1 =

1

1


2 =
2

1
  =

2

1
  =

1

1
  =

1

1
  =

21


,  =






 =
1


  =

 − 0

1 − 0
  =

 − 0

1 − 0
,  =

 (1 − 0)

 (1 − 0)
,

 = Pr,  =
2

 (1 − 0)
  =

 (1 − 0)

 (1 − 0)
  =






 =



 =

∗ (1 − 0) 
2
1


  =

∗∗ (1 − 0) 
2
1




 =



  = ,  = − (9.11)

and adopting long wavelength and low Reynolds number approach we have in terms of stream

function  the following equations

 =  + + (9.12)

 = 0 (9.13)

 +
¡


¢2
+Pr() = 0 (9.14)

1


 +  = 0 (9.15)

Here  denotes the kinematic viscosity, Re the Reynolds number,  is the Brinkman number,

 is the Eckret number,  is the Prandtl number,  is the wave number,  is the temperature

Grashoff number,  is the concentration Grashoff number,  is dimensionless concentration, 

is the dimensionless temperature and incompressibility condition is automatically satisfied.

Defining  and F as the dimensionless mean flows in laboratory and wave frames we have

 =  + 1 +  (9.16)

where

 =

Z 1

2




 (9.17)
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The convective boundary conditions for the temperature and concentration are given by

− 


= ( − )

−


= ( − )

The dimensionless boundary conditions for our problem can be imposed as follows:

 =


2
,  = −1,  + () = 0  + () = 0  = 1,

 = −
2
,  = −1,  −( − 1) = 0,  −(− 1) = 0,  = 2, (9.18)

where

1() = 1 +  cos(2), 2() = −−  cos(2+ )  (9.19)

 =
1


,  =

1


 (9.20)

In above expressions  and  are dimensionless transfer coefficients,  is heat transfer Biot-

number and  is mass transfer Biot-number.

9.2 Solution of the problem

The problems consisting of Eqs. (9.12)-(9.15) have been solved for both the perturbation and

numerical solutions. Perturbation solution is obtained for small Brinkman number. Numerical

solution is presented using Mathematica. For perturbation solutions we have the following

zeroth and first order systems:

0 +0 +0 = 0 (9.21)

0 +Pr(0) = 0 (9.22)

0 + 0 = 0 (9.23)

123



0 =
0

2
, 0 = −1, 0 + (0) = 0 0 + (0) = 0  = 1, (9.24)

0 = −0
2
, 0 = −1, 0 −(0 − 1) = 0, 0 −(0 − 1) = 0,  = 2,

and

1 +1 +1 = 0 (9.25)

1 +
¡
0

¢2
+Pr(1) = 0 (9.26)

1 +  (1) = 0 (9.27)

1 =
1

2
, 1 = 0, 1 + (1) = 0 1 + (1) = 0  = 1,

1 = −1
2
, 1 = 0, 1 −(1) = 0, 1 −(1) = 0,  = 2. (9.28)

The perturbation solutions of above problem are given

 = − (1 + 2 − 2)
¡
21 − 412 + 22 + 2 (1 + 2)  − 22

¢
2 (1 − 2)

3

+
0 ()

24 (2 + (1 − 2)) (1 − 2)
2 (2 + 1 − 2)

+
1 ()

241920 (1 − 2)
6
 (9.29)

 =
1 +1 −

2 +1 −2
+



1440 (−1 +)
2 ()  (9.30)

 =
1 +1 −

2 +1 −2
+



1440 (−1 +)
[3 ()]  (9.31)

where  are given below
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1 =
 cosh(1)+ sinh(2)−(+) sinh()

( cosh(1)−sinh(2))2 + ( + 1)
22

¡
1 + 21

¢
2

+2 ( + 1)
24) +(2 ( + 2)

2
¡
1 +2

¢
 cosh (2) sinh (2)

+16 ( + 2)22 cosh ()) + 62
¡
 + 1 − 821

¢
2 + 842

4)

cosh (32) + 162 ( + 2)
42 cosh (2)2 cosh ()(sinh ()

−16 ( + 1) sinh (2)
2 sinh ())− 2 ¡4 + 2 + 2

2
¢− 22

+23(2
¡
8 +1

¡
3 +2

¡
1 + 221 − 22

¢¢¢
)) cosh (22) 

2 = 2
2(1 + 2 + 2)(2

¡
4 + 1 + 82

¢−2
2 + 2(8 + 1(3

+2
¡
1 + 221 − 22

¢
))) +23( + 1 + 2

3
2)

2
 cosh (2)

+22 cosh (2) + 22 cosh (2) + 8 ( + 2) + (+22+1)(16(

+2 + 41) sinh () ( (− ) + sinh ())) + ( + 2 + 41)
¡
1 +2

¢¡−3 + 222
¢
sinh (2) + 16 + (1 + 42)

22 sinh ((2 + )) 

3 =
¡
1 +2

¢
 − 432 ( + 1)4

¡
1 +2

¢
2 − 4 ( + 2)

2
¡
1 +2

¢
3

(1 − 2)(−8 2 − 22 (4 + 1 + 3)− 2 + 22 ( + 21)2 − 221 ( + 2)
2

4) + 2(1 +  ( + 21)2 + ( + 2 + 41)
24)2 + ( 2

¡
1 + 21

¢


9.3 Graphical analysis

In order to provide a comparative study of the results by the two methods, we have plotted

graphs for both solutions. Left panel depicts the perturbation solution whereas right panel for

the numerical solution. Graphical analysis is carried out for the dimensionless temperature,

concentration and velocity fields. Numerical values for the rates of heat and mass transfer at

the left wall are given in the Tables 9.1 and 9.2 respectively.

The values of different parameters in all the graphs are taken as follows:

 = 1  = 4  = 05  = 07  = 08  = 0 = 1  = 2  = 05

 = 05 = 1  = 025  = 05  = 07

The graphs of temperature profile showed that the temperature decreases with an increase

in the values of Bi and it increases by increasing Mi. The decrease in the temperature with

increase in the heat transfer Biot-number is very rapid for  ≤ 1 It is noted that for  ≥ 1
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corresponding decrease in temperature becomes very slow (see Fig. 9.1). This fact is totally

opposite to the case of increase in Mi in which temperature not only increases by increasing

 but also such increase is constant and very slow (Fig. 9.2).

Fig. 9.3 showed that the temperature increases when  is increased Increase in the tem-

perature is smaller for small values of G but this increase becomes much for higher values

of G. However this increase in temperature is observed throughout the channel. Unlike the

case of  small increase in temperature is observed when G increases but this increase is not

uniform throughout the channel. Near the right wall the temperature tends to decrease very

slowly by increasing  (see Fig. 9.4)

Figs. 9.5-9.7 are plotted to analyze the concentration profile in detail. It is found that the

concentration increases when  is increased This increase is large for  ≤ 1 and very slow
for large values of Mi (see Fig. 9.5). It is noticed from Figs. 9.6 and 9.7 that the concentration

generally decreases with an increase in  and . This decrease is much and constant for 

and  respectively. However concentration profile showed different behavior near the right

wall. The concentration here increases which is quite different for its behavior at all other parts

of the channel. Figs. 9.8 and 9.9 depict that the value of velocity increases by increasing  but

it remains constant with variation in  The velocity in both cases is increased for increasing

 and  in the region where "y" is negative and decreased for positive y.

Tables 9.1 and 9.2 are plotted for the numerical values of rates of heat and mass transfer. It

is seen that solution up to first order perturbation gives an agreement with the numerical results

up to second decimal place. Table 9.1 shows that heat transfer rate is increasing function of

Biot-number. However the Grashoff numbers and mass transfer Biot number reduce the heat

transfer rate (see Table 9.1). Table 9.2 illustrates that the mass transfer rate at the wall tends

to decrease when , ,  and  are increased.
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Fig. 9.1 Effect of  on the temperature profile.
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Fig. 9.2 Effect of  on the temperature profile.
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Fig. 9.3 Effect of  on the temperature profile.

Gc = 0.0 , 2.0 , 4.0 , 6.0

-1.0 -0.5 0.0 0.5 1.0 1.5

2.4

2.6

2.8

3.0

3.2

y

q

Gc = 0.0, 2.0, 4.0, 6.0

-1.0 -0.5 0.0 0.5 1.0 1.

2.4

2.6

2.8

3.0

3.2

y

q

Fig. 9.4 Effect of  on the temperature profile.
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Fig. 9.5 Effect of  on the concentration profile.
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Fig. 9.6 Effect of  on the concentration profile.
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Fig. 9.7 Effect of  on the concentration profile.
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Fig. 9.8 Effect of  on the velocity profile.
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Fig. 9.9 Effect of  on the Velocity profile.
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    −0(1) −
¡
0
¢∗
(1)

05 10 20 05 11935 11927

10 12343 12343

15 12550 12560

20 12674 12693

00 12988 13018

10 12674 12693

20 12411 12402

30 12197 12176

00 12439 12349

10 12310 12254

20 12197 12176

30 12100 12110

05 12100 12110

10 11999 12006

15 11955 11967

20 11930 11951

Table 9.1. Numerical values of heat transfer rate at 1.
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    0(1)
¡
0
¢∗
(1)

05 10 20 05 02190 02187

10 02179 02179

15 02174 02176

20 02171 02173

00 02219 02225

10 02171 02173

20 02139 02141

30 02125 02139

00 02142 02146

10 02131 02141

20 02125 02139

30 02125 02140

05 02125 02140

10 01346 01360

15 00903 00914

20 00618 00625

Table 9.2. Numerical values of mass transfer rate at 1.
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Chapter 10

Variable viscosity effects on the

peristaltic motion of a third-order

fluid

The effect of variable viscosity on the peristaltic motion of MHD non-Newtonian fluid in a

channel is studied. Constitutive relations of third order fluid are employed in the development

of flow. Mathematical analysis is presented when no-slip condition is no longer valid. The series

solutions for stream function, longitudinal velocity and pressure gradient are first derived and

then discussed in detail. The pressure rise and frictional forces are monitored through numerical

integration. Physical interpretation is also made.

10.1 Governing problem

We consider an incompressible magnetohydrodynamic (MHD) third order fluid with variable

viscosity in a uniform channel of width 21. A uniform magnetic field B0 is applied in the

−direction. The induced magnetic and electric fields are not considered. Wave shapes are
written as

( ) = 1 + 1

∙
2


( − )

¸
, (10.1)
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where c is the velocity of propagation of the wave, 1 is the wave amplitude,  is the wavelength,

 is the time,  is the direction of wave propagation and  is transverse to 

The constitutive equations for the third order fluid are given through Eqs. (1.17-1.19).

Hence we directly write the following governing equations for two dimensional flow of MHD

third order fluid as




+




= 0 (10.2)



µ



+ 




+ 





¶
 = − 


+




+




− 20 (10.3)



µ



+ 




+ 





¶
 = −


+




+

 


 (10.4)

̄̄̄ = (2̄̄) + 1(2̄̄̄ + 2̄ ̄̄̄ + 2̄ ̄̄̄ + 4̄
2
̄
+ 2̄̄̄̄ + 2̄

2
̄
) + 2

(4̄2
̄
+ ̄2

̄
+ ̄ 2

̄
+ 2̄̄ ̄̄) + 1(2̄̄̄̄ + 2̄̄̄̄̄ + 4̄ ̄̄̄̄ + 2̄̄

̄̄̄ + 4̄ ̄̄̄ ̄ + 12̄̄̄̄̄ + 4̄̄̄̄ ̄ + 14̄ ̄̄̄̄̄ + 10̄ ̄̄̄̄̄ −

6̄ ̄̄̄̄̄ + 6̄ ̄̄ ̄̄̄ + 6̄̄ ̄̄̄ + 6̄ ̄̄̄̄̄ + 4̄ ̄̄̄̄ ̄ + 8̄
3
̄

+8̄̄ ̄̄̄̄ + 2̄̄ ̄̄̄ + 2̄
2̄̄̄̄ + 4̄ ̄ ̄̄̄̄ + 2̄ ̄̄ ̄̄̄ + 2

̄ 2̄̄̄ ̄ ) + 2(8̄̄̄̄̄ + 8̄ ̄̄̄̄̄ + 8̄ ̄̄̄̄̄ + 16̄
3
̄
+ 8̄̄

̄̄̄̄ + 4̄̄ ̄
2
̄
+ 2̄̄ ̄̄ ̄ + 2̄̄ ̄̄̄ + 2̄ ̄̄ ̄̄̄ − 2̄ ̄̄ ̄̄̄ +

2̄ ̄̄ ̄̄̄ + 2̄ ̄̄ ̄̄ ̄ + 4̄̄̄
2
 + 2̄̄̄̄ ̄ + 2̄̄ ̄̄̄ + 2̄ ̄̄ ̄̄̄

−2̄ ̄̄̄̄̄ + 2̄ ̄̄̄̄̄ + 2̄ ̄̄̄̄ ̄ ) + 3(16̄
3
̄
+ 4̄̄̄

2
̄
+

4̄̄ ̄
2
̄
+ 8̄̄̄̄ ̄̄)
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̄̄̄ = (̄̄ + ̄̄) + 1(̄̄ ̄ + ̄ ̄̄̄ + ̄ ̄̄ ̄ + ̄̄̄ + ̄ ̄̄̄ − ̄ ̄̄̄ + 2̄̄̄̄ − 2̄̄̄̄)

+1(̄̄ ̄̄ + ̄̄̄̄̄ + ̄̄̄̄ ̄ + ̄̄̄̄ + ̄̄̄̄̄ + ̄̄̄̄̄ + 2̄ ̄̄̄̄ + 4̄̄ ̄̄̄ +

2̄̄̄̄ ̄ − 2̄̄ ̄̄̄ − 4̄̄̄̄̄ + ̄2̄̄̄̄ + ̄ ̄̄̄̄ ̄ − ̄ ̄̄ ̄̄̄ + ̄2̄̄̄̄

−5̄ ̄̄̄̄̄ + 4̄ ̄̄ ̄̄̄ + ̄ ̄̄̄̄ ̄ + ̄ 2̄̄ ̄ ̄ + ̄ ̄̄ ̄̄̄ + 3̄ ̄̄̄̄̄

−̄ 2̄̄̄̄ − 4̄ ̄̄̄̄̄ + 2̄ ̄ ̄̄̄ ̄ + 2̄ ̄ ̄̄̄̄ + 2̄ ̄̄ ̄ ̄ + 2̄ ̄̄̄ ̄ + 3̄ ̄̄̄̄̄

+5̄ ̄̄ ̄̄̄ − 2̄ ̄̄̄̄ + 4̄
2
̄
̄̄ + 4̄̄̄

2
̄
+ 4̄̄ ̄

2
̄
+ 4̄̄̄

2
̄
)

+2(8̄
2
̄
̄̄ + 6̄

2
̄
̄̄ + 2̄

3
̄
+ 8̄̄̄

2
̄
+ 6̄̄ ̄

2
̄
+ 2̄ 3

̄
)

3(8̄
2
̄
̄̄ + 8̄

2
̄
̄̄ + 2̄

3
̄
+ 6̄̄ ̄

2
̄
+ 6̄2

̄
̄̄ + 2̄

3
̄
)

̄̄ ̄ = (−2̄̄) + 1(−2̄̄̄ − 2̄ ̄̄̄ − 2̄ ̄̄̄ + 4̄
2
̄
+ 2̄̄̄̄ + 2̄

2
̄
)

+2(4̄
2
̄
+ ̄2

̄
+ ̄ 2

̄
+ 2̄̄ ̄̄)

+1(−2̄̄̄̄ − 2̄̄̄̄̄ − 4̄ ̄̄̄̄ − 2̄̄̄̄̄ − 4̄ ̄̄̄ ̄

+12̄̄̄̄̄ + 2̄̄̄̄ ̄ + 4̄̄ ̄̄̄ + 6̄̄ ̄̄ ̄ + 10̄ ̄̄̄̄̄ − 2̄2̄̄̄̄

−4̄ ̄ ̄̄̄̄ + 4̄ ̄̄ ̄̄̄ + 6̄ ̄̄ ̄̄̄ − 6̄ ̄̄ ̄̄̄ + 14̄ ̄̄̄̄̄ − 2̄ 2̄̄̄ ̄

+2̄ ̄̄̄̄ ̄ + 6̄ ̄̄ ̄̄ ̄ − 8̄̄ ̄̄̄̄ − 8̄3̄)

+2(2̄̄ ̄̄ ̄ + 2̄̄ ̄̄̄ + 2̄ ̄̄ ̄̄̄ − 2̄ ̄̄ ̄̄̄ + 2̄ ̄̄ ̄̄̄ + 2̄ ̄̄ ̄̄ ̄

−4̄2
̄
̄̄ − 8̄̄ ̄̄̄̄ + 2̄̄̄̄ ̄ + 2̄̄ ̄̄̄ + 2̄ ̄̄ ̄̄̄ − 2̄ ̄̄̄̄̄ +

2̄ ̄̄̄̄̄ + 2̄ ̄̄̄̄ ̄ − 4̄ 2̄̄̄ + 8̄̄̄̄̄ + 8̄ ̄̄̄̄̄ + 8̄ ̄̄̄̄̄ − 16̄3̄
+3(−16̄3̄ − 4̄̄̄

2
̄
− 4̄̄ ̄

2
̄
− 8̄̄̄̄ ̄̄)

where (  ) and  are the velocity components and pressure in the fixed frame ( ) and

the subscripts denote the partial derivatives

If ( ) and  indicate the velocity components and pressure in the wave frame then defining

 =  −   =    =  −   =   ( ) =  (  ) (10.5)
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and using

 =



  =



1
  =




  =




  =

1


  =



1
  =

1

1
  =

2

0


 =
1

0
 ()  () =

()

0
  =

µ


0

¶12
01 0 =

0

  =

1

0


 =



  =




  = −


 2 =

2
2

0
2
1

 3 =
3

2

0
2
1

 (10.6)

we obtain under the long wavelength and low Reynolds number approximation the following

expressions

−

+





"
()

2

2
+ 2Γ

µ
2

2

¶3#
−2

µ



+ 1

¶
= 0 (10.7)

0 = −


 (10.8)

in which Γ(= 2 + 3) is the Deborah number,  is the stream function, 0 is the constant

kinematic viscosity,  is the Hartman number, Re is the Reynolds number,  is the fluid

density,  is the electrical conductivity, () is the viscosity function,  is the wave number, 0

is the constant viscosity and continuity equation is automatically satisfied. Further Eq. (10.8)

indicates that  6= () From Eqs. (10.7) and (10.8) we have

2

2

Ã
()

2

2
+ 2Γ

µ
2

2

¶3!
−2

2

2
= 0 (10.9)

The subjected boundary conditions in dimensionless form become

 = 0,
2

2
= 0,   = 0,

 =  ,



+ 1 = −1,   = , (10.10)

()=1 +  cos(2),  =

Z 1

0




 (10.11)

In above equations () = − or () = 1− for (¿ 1),  is the viscosity parameter, 1
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is the non-dimensional velocity slip parameter and

 = ()
2

2
+ 2Γ

µ
2

2

¶3
 (10.12)

Pressure rise per wavelength∆ and frictional force  (at the wall) are defined by the following

expression

∆ =

1Z
0




 (10.13)

 =

1Z
0



µ
−


¶
 (10.14)

In the next section the problem consisting of Eqs. (10.9) and (10.10) will be solved for small

Deborah number Γ and small viscosity parameter 

10.2 Series expressions

Letting

 = 0 + Γ1 + 

 = 0 + Γ1 + 

 = 0 + Γ1 + 

and

0 = 00 + 01 + 

1 = 10 + 11 + 

0 = 00 + 01 + 

1 = 10 + 11 + 

0 = 00 + 01 + 

1 = 10 + 11 + 
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we arrive at the following systems:

System for 00

−00


+
300
3

−2(
00


+ 1) = 0 (10.15)

400
4

−2
200
2

= 0

00 = 0 =
200
2

  = 0

00 = 00
00


+ 1
200
2

= −1   = 

System for 01

−01


+
301
3

−201


=




µ

200
2

¶
 (10.16)

401
4

−2
201
2

=
2

2

µ

200
2

¶


01 = 0 =
201
2

 at  = 0

00 = 01
01


+ 1
201
2

= 
200
2

at  = 

System for 10

−10


+
310
3

−210


+ 6

µ
200
2

¶2
300
3

= 0 (10.17)

410
4

−2
210
2

+ 6




Ãµ
200
2

¶2
300
3

!
= 0

10 = 0 =
210
2

 at  = 0

10 = 10
10


+ 1
210
2

+ 21

µ
200
2

¶3
= 0 at  = 
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The solutions of above systems finally give

 =
 cosh [ ] + 

¡
1 + 21

¢
sinh [ ]− ( + ) sinh []

 cosh [ ] +
¡−1 + 21

¢
1 sinh [ ]

+ 1 + Γ2 (10.18)

 =
1

32
¡
[ ] +

¡−1 + 21
¢
1 sinh [ ]

¢4 × (10.19)⎡⎣ 72 ( + )36Γ cosh []
¡
 cosh [ ] +

¡−1 + 21
¢
sinh [ ]

¢
+61 − 2 + 3 + 4 − 5 +

1

6

⎤⎦ 



= − ( + )3 (cosh [ ] +1 sinh [ ])

 cosh [ ] +
¡−1 + 2

¢
1 sinh [ ]

+ 1 + Γ2 (10.20)
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with

1 =
( + ) (3 + 2 sinh[ ] (4) + 2 cosh[ ] (5))

8( cosh [ ] +
¡−1 + 21

¢
1 sinh [ ])

2


2 =
(−3−3 ( + )34)9

32( cosh [ ] +
¡−1 + 21

¢
1 sinh [ ])

4


3 = −4
¡
+ 1 + 21

¢
+ 2

¡
21 + 

¡−1 + 221
¢¢
cosh[2 ]

+
¡−22 + 2 + 

¡−4 +2
¡
(−4 + )− 2

¢¢
1
¢
sinh[]

4 = 3
¡−1 + 21

¢
cosh[] +(−22 + 2 + (−4 +2((−4 + )

− 2))1) sinh[]

5 = 3 cosh[] +
¡−2 +  (+ 1)

¢
sinh[]

6 = −3 cosh[3 ] + 12 ( +  (+ 21 −1)) sinh[ ]

+
¡
1− 921

¢
sinh[3 ]

7 = 3 cosh[3 ]− 12 (− +  (+ 21 +1)) sinh[ ]

+
¡−1 + 921

¢
sinh[3 ]

8 = 12 (+ 1)− 161 cosh[2 ] + 41 cosh[4 ]

−8 sinh[2 ] +  sinh[4 ] +  cosh[ ](12(− cosh[ ]

+1 sinh[] + sinh[3])) + sinh[3]

9 =
¡
1− 21

¢
sinh[ ] + 6 (6) + 2 (7) + 2

3 (8) 
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1 = 7 + 8

2 = 6( + )36Γ (9) 

3 = 2( + )35(1 + 3)Γ (10) 

4 = 2( + )35Γ (11)[]

5 = 6( + )35Γ([3 ] + 3 (12))[]

6 = 4( + )
¡
[ ] +

¡−1 + 2
¢
[ ]

¢2
(13 + 2[ ] (14))

7 = ( + )35Γ cosh [3] ( cosh [ ] +
¡−1 + 21

¢
sinh [ ])

+32( cosh [ ] +
¡−1 + 21

¢
sinh [ ])3((−( + )[]

+[ ] +  ([ ] +1[ ])))

8 = 2( + )35Γ[](12
¡−1− 3 + 21

¢
[ ]

−3[3 ]) + 12 (1 + (3 +  (+ 1 − 31))) sinh [ ]

+
¡
1− 921

¢
sinh [3 ] 

9 = 12 (+ 1) + 4(−4[2 ] + [4 ])− 8[2 ] + [4 ]

10 = 12(+ 1) + 41(−4[2 ] + [4 ])− 8[2 ]
+[4 ] 11 = [3 ] +(4(− + 31)[ ]− 3[3 ]
+4( + (3+ 61 −1))[ ]− 91[3 ]

12 = ((−[3 ] +(41[ ] + 4(+ 21)[ ]− 31[3 ])))
13 = −4

¡
+ 1 + 1

2
¢
+ 2

¡
21 + 

¡−1 + 221
¢¢
[2 ]

+3[2 ]− 421[2 ] + 2[ ](
¡
3 +2

¡−2 + (+ 1)
¢¢

[] +[])

14 =
¡−3 +2

¡−22 + 2 + 
¡−1 +2

¡
(−4 + )− 2

¢¢
1
¢¢
[]

+
¡−1 + 21

¢
[]

1 =
(+)3

8( cosh[ ]+(−1+21) sinh[ ])2


2 =
(+)374

16( cosh[ ]+(−1+2)1 sinh[ ])
4 

3 = 4
¡
+ 1 + 21

¢
+ 2

¡
− 2 ¡1 + 2

¢
1
¢
cosh [2 ] +

¡−3 + 421
¢

sinh [2 ] 

4 = 12 (+ 1) + 41 (−4 cosh [2 ] + cosh [4 ])− 8 sinh [2 ] + sinh [4 ] 
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10.3 Results and discussion

In this section the main objective is to study the influence of various parameters of interest

on the flow quantities. In particular the variations of Hartman number ()  Deborah number

(Γ)  amplitude ratio ()  slip parameter (1) and viscosity parameter () on the longitudinal

velocity, pressure gradient, pressure rise (∆) and frictional force () per wavelength have

been examined.

Figs.10.1-10.3 show the effects of , 1 and Γ on the longitudinal velocity  The plots show

that velocity at the center of the channel and near the walls has opposite behavior. Further the

velocity at the center of the channel decreases with an increase in  and 1 but it increases

by increasing Γ

The variation of pressure gradient for certain values of  , 1 and Γ are depicted in the

Figs 10.4-10.6 It is anticipated that the absolute value of pressure gradient increases with an

increase in  and 1 but it decreases when Γ is increased.

The pressure rise and frictional force per wavelength have been computed numerically. The

pressure rise verses flow rate has been plotted in the Figs 10.7-10.11. It is noticed from Fig. 10.7

that the pressure rise decreases with an increase in 1 It is found that magnitude of pressure

rise per wavelength increases by increasing  (see Fig. 10.8). Fig. 10.9 depicts an important

phenomenon that is the graph for pressure rise for Γ = 0 is linear whereas in the case of non

zero Γ it is non linear. Fig 10.11 shows that the pressure rise increases with an increase in the

amplitude ratio . The free pumping flux increases by increasing  (see Fig1010) 

Figs. 10.12-10.16 monitor the features of frictional force ()  It is clear that there exists

a critical value of  below which  resists the flow and above which it assists the flow. This

critical value of  decreases by increasing 1 and  (see Figs. 10.12 and 10.13). Contrary to

this the critical value of  increases with an increase in  and  (see Figs 10.14 and 10.15). It is

revealed from Fig. 16 that the effect of Γ on frictional force is quiet opposite to that of pressure

rise.

Another important fact of interest here is a comparison between the viscous and non-

Newtonian fluids (see Figs. 10.3, 10.6, 10.9 and 10.14). In all these Figs. the case of viscous

fluid is given by putting Γ = 0 Fig. 10.3 shows that velocity at the center of the channel in

non-Newtonian fluid is larger when compared with a viscous fluid. Fig. 10.6 shows that the
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non-Newtonian fluid exhibits larger pressure gradient than the viscous fluid.

Figs. 10.17-10.20 examine the trapping phenomenon. It is observed that the size of the

trapped bolus decreases with an increase in 1 and The size of trapped bolus also increases by

increasing the viscosity parameter  (see Figs. 10.17 and 10.18). It is noted that by increasing

the Deborah number Γ the size of the bolus decreases whereas it increases by increasing 
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Fig. 10.1. Effect of  on velocity  when 1 = 02Γ = 004  = 1  = 13 and  = 03 Left

panel is for  = 0 and right panel is for  = 04
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Fig. 10.2. Effect of 1 on velocity  when  = 1Γ = 004  = 1  = 13 and  = 03 Left

panel is for  = 0 and right panel is for  = 04
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Fig. 10.3. Effect of Γ on velocity  when  = 1 1 = 004  = 1  = 13 and  = 03
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Fig. 10.4. Effect of  on pressure gradient when 1 = 02 Γ = 0001  = 01 and  = 03

Left panel is for  = 0 and right panel is for  = 04
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Fig. 10.5. Effect of 1 on pressure gradient when  = 1 Γ = 0001  = 01 and  = 03 Left

panel is for  = 0 and right panel is for  = 04

G = 0.03, 0.02, 0.01, 0.0

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

1.5

x

dp
dx

G = 0.03, 0.02, 0.01, 0.0

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

1.0

1.5

x

dp
dx

Fig. 10.6. Effect of Γ on pressure gradient when  = 1 1 = 02  = 01 and  = 03 Left

panel is for  = 0 and right panel is for  = 04
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Fig. 10.7. Variation of 1 on ∆ when Γ = 001  = 15  = 03 and  = 02
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Fig. 10.8. Variation of  on ∆ when Γ = 001 1 = 002  = 03 and  = 02
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Fig. 10.9. Variation of Γ on ∆ when 1 = 002  = 15  = 03 and  = 02
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Fig. 10.10. Variation of  on ∆ when 1 = 002  = 15  = 03 and Γ = 001
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Fig. 10.11. Variation of  on ∆ when 1 = 002  = 15  = 02 and Γ = 001
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Fig. 10.12. Variation of 1 on  when  = 03  = 15  = 02 and Γ = 001
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Fig. 10.13Variation of  on  when  = 03 1 = 002  = 02 and Γ = 001
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Fig. 10.14. Variation of Γ on  when  = 03  = 15  = 02 and 1 = 002
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Fig. 10.15. Variation of  on  when  = 03  = 15 Γ = 001 and 1 = 002
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Fig. 10.16. Variation of  on  when  = 02  = 15 Γ = 001 and 1 = 002
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Fig. 10.17. Effect of  on stream lines when Γ = 004  = 03  = 11 and  = 02 Left

panels are for  = 0 and right panels are for  = 04
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Fig. 10.18. Effect of 1 on stream lines when Γ = 004  = 03  = 11 and  = 05 Left

panels are for  = 0 and right panels are for  = 04
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Fig. 10.19. Effect of Γ on stream lines when 1 = 02  = 03  = 11 and  = 05 Left

panels are for  = 0 and right panels are for  = 04
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Fig. 10.20. Effect of  on stream lines when 1 = 02  = 1Γ = 004  = 11 and  = 05

Left panels are for  = 0 and right panels are for  = 04
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Chapter 11

Heat transfer analysis for peristaltic

mechanism in variable viscosity fluid

This chapter extends the analysis of previous chapter in the presence of heat transfer. Thermal

slip is also considered. Viscous dissipation is present. Perturbation solution is constructed and

a comparative study between the cases of constant and variable viscosities is presented and

analyzed.

11.1 Statement of the problem

Here we study an incompressible magnetohydrodynamic (MHD) third order fluid with variable

viscosity in a uniform channel of width 21. The  −  is selected along the centerline of

the channel whereas  is perpendicular to the  − . The fluid is electrically conducting

under an applied magnetic field B0 in the − direction. The electric and induced magnetic
field effects are neglected. Sinusoidal waves propagating on the channel induce the flow. Such

waves are described by the following equations

( ) = 1 + 1

µ
2


( − )

¶
. (11.1)

In above expression  is the speed of propagation of the wave, 1 the wave amplitude,  the

wavelength and  the time. Further the channel walls have a constant temperature 0. The
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governing equations are




+




= 0 (11.2)



µ



+ 




+ 





¶
 = − 


+




+




− 20 (11.3)



µ



+ 




+ 





¶
 = −


+




+

 


 (11.4)



µ


̄
+ ̄



̄
+ ̄



̄

¶
 = ∇2 + Φ̄ (11.5)

where Φ̄ is the dimensional viscous dissipation term. In light of the following dimensionless

quantities

 =



  =



1
  =




  =




  =

1


  =




  =

1

1
  =

21

0


 =
1

0
 ()  () =

()

0
  =

µ


0

¶12
01 0 =

0

  =

1

0


 =



  =




  = −


 2 =

2
2

0
2
1

 3 =
3

2

0
2
1

  =
 − 0

0


Pr =
0


  =

2

0
  =

0
2

2
 (11.6)

equations (11.2)-(11.5) give

[(







− 






)



] = −


+ 




+




−2(




+ 1) (11.7)

−3[(







− 






)



] = −


+ 2




+ 




 (11.8)

[(







− 






)] = Φ+

1

Pr
(2

2

2
+

2

2
) (11.9)

where  is the specific heat,  the thermal conductivity, Γ(= 2 + 3) the Deborah number,

 the stream function, 0 the constant kinematic viscosity,  the Hartman number, Re the

Reynolds number,  the fluid density,  the electrical conductivity, () the viscosity function,

 the wave number, 0 the constant viscosity, (= Pr) the Brinkman number, Φ the di-

mensionless viscous dissipation term, Pr the Prandtl number and  the Eckert number. The
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governing problems subject to long wavelength and low Reynolds number are

−

+




 −2

µ



+ 1

¶
= 0 0 = −


 (11.10)

2

2
= − (11.11)

 = ()
2

2
+ 2Γ

µ
2

2

¶3
  = ()(

2Ψ

2
)2 + 2Γ(

2Ψ

2
)4 (11.12)

 = 0,
2

2
= 0,




= 0   = 0,

 =  ,



+ 1 = −1, -2




=0   = , (11.13)

()=1 +  cos(2),  =

Z 1

0




 (11.14)

where 2 is the dimensionless thermal slip parameter, () = − or () = 1 −  for

(¿ 1) ;  the viscosity parameter, 1 the dimensionless velocity slip parameter,  the stream

function,  the temperature and  the dimensionless flow rate in wave frame. Further Eq.

(11.10) indicates that  6= () and finally we write

2

2

Ã
()

2

2
+ 2Γ

µ
2

2

¶3!
−2

2

2
= 0 (11.15)

Pressure rise per wavelength ∆ and frictional force  (at the wall) are

∆ =

1Z
0




  =

1Z
0



µ
−


¶
 (11.16)

11.2 Solution expressions

The solutions for small Γ and  are

 =
 cosh [ ] + 

¡
1 + 21

¢
sinh [ ]− ( + ) sinh []

 cosh [ ] +
¡−1 + 21

¢
1 sinh [ ]

+ 1 + Γ2 (11.17)
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


= − ( + )3 (cosh [ ] +1 sinh [ ])

 cosh [ ] +
¡−1 + 21

¢
1 sinh [ ]

+ 1 + Γ2 (11.18)

 =
( + )22

¡−[2 ] + [2] + 2
¡

¡
2 − 2 − 2¢+ 2[2 ]

¢¢
8 ([ ] + (−1 + 21)[ ])

2

+
 ( + )2

192 ([ ] + (−1 + 21)[ ])
3
×

(1 + (2 − 3 − 4 + 5))

+
 ( + )46Γ

512 ([ ] + (−1 + 21)[ ])
5
×

(1 + 4 (2 + (3 + 4 + 5 + 6))) (11.19)

where the involved  ( = 1− 8)   ( = 1 2)   ( = 1− 6) and  ( = 1− 8) are given as
follows:

1 =
(+)(3+2 sinh[ ](4)+2 cosh[ ](5))

8( cosh[ ]+(−1+2) sinh[ ])2


2 =
−3−3(+)34(((1−2) sinh[ ]+6(6)+

2(7)+2
3(8)))

32( cosh[ ]+(−1+2) sinh[ ])4


3 = −4
¡
+  + 2

¢
+ 2

¡
2 + 

¡−1 + 22
¢¢
cosh[2 ]

+
¡
3− 42

¢
sinh[2 ] 4 = 3

¡−1 + 2
¢
cosh[] +(−22

+2 + 
¡−4 +2

¡
(−4 + )− 2

¢¢
) sinh[]

4 = 3
¡−1 + 2

¢
cosh[] +(−22 + 2 + (−4 +2((−4 + )− 2)))

sinh[]

5 = 3 cosh[] +
¡−2 +  (+ )

¢
sinh[]

6 = −3 cosh[3 ] + 12 ( +  (+ 2 −)) sinh[ ]

+
¡
1− 92

¢
sinh[3 ]

7 = 3 cosh[3 ]− 12 (− +  (+ 2 +)) sinh[ ]

+
¡−1 + 92

¢
sinh[3 ]

8 = 12 (+ )− 16 cosh[2 ] + 4 cosh[4 ]− 8 sinh[2 ]
+ sinh[4 ] +  cosh[ ](12 (− cosh[ ] +  sinh[] + sinh[3])

+ sinh[3])
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1 =
(+)3

8( cosh[ ]+(−1+2) sinh[ ])2


2 =
(+)374

16( cosh[ ]+(−1+2) sinh[ ])
4 

3 = 4
¡
+  + 2

¢
+ 2

¡
− 2 ¡1 + 2

¢

¢
cosh [2 ] +

¡−3 + 42
¢
sinh [2 ] 

4 = 12 (+ ) + 4 (−4 cosh [2 ] + cosh [4 ])− 8 sinh [2 ] + sinh [4 ] 

1 = (3 + 2(−3 + 42(23 + (
¡−2− 3 + 62(− )(+ )

¢− 3 ¡−1 + 422
¢

))))[ ]− 3 ¡1 + 2
¡− + 4 ¡1 + 2

¢¢¢
[3 ] + 6[ ][2]

2 = 3
¡
2(− ) + 

¡
1 + 22

¡
2 + 2

¢¢

¢
[(− 2)] + 3 (2(+ ) +  (6))

[(+ 2)]

3 = 3[ ] + 20
32[ ] + 2454[ ]− 24342[ ]

−823[ ]

4 = 32
44[ ] + 24242[ ] + 843[ ]− 3622[ ]

−4844[ ] + 9634[ ] + 9[3 ] + 1222[3 ]

+3[(− 2)] + 632[(− 2)]− 6[(− 2)]
5 = 6

22[(− 2)]− 622[(− 2)] + 62[(− 2)]
+3
¡−2 + 

¡−1 + 22(− )(+  − )
¢¢
[(+ 2)]

6 = −1 + 22(− )(+ )

161



1 = 16
¡−6 + 

¡
5 + 22 (7)

¢¢
[ ] + 3 (36 +  (8))[3 ] + 16[ ]

−25[3 ] + [5 ]− 5[(− 4)]
2 = 5[(− 2)] + [(3− 2)] + 5[(+ 2)] + [(3+ 2)])

−5[(+ 4)]
3 =

¡
7− 4 ¡3 + 132

¢

¢
[5 ] + 5[(− 4)]− 20[(− 2)]

−48[(− 2)] + 4822[(− 2)]
4 = 48

2[(− 2)]− 12[(3− 2)]− 20[(+ 2)]
+48[(+ 2)] + 4822[(+ 2)]− 482[(+ 2)]

−12[(3+ 2)] + 5[(+ 4)] + 2882[ ]

5 = 192
43[ ]− 1922[ ]− 192232[ ] + 112[ ]

+19233[ ]− 19232[ ]− 544[ ]− 38433[ ]

−19223 Si[ ] + 162[3 ]− 162[3 ]− 71[3 ]

−14433[3 ] + 14432[3 ]− 4[3 ]

6 = 288
23[3 ] + 31[5 ]− 4[5 ] + 5

[(− 4)] + 482[(− 2)] + 48[(− 2)] + 76
[(− 2)]− 36[(3− 2)] + 482[(+ 2)]

−48[(+ 2)] + 76[(+ 2)]− 36[(3+ 2)]

+5[(+ 4)]

7 = 6
2 + 3

¡−2+ ¡−1 + 22(− )(+ )
¢

¢− ¡ + 6 ¡−1 + 22

¢¢


8 = −11 + 42
¡−42 + 42 + 8 + 7¢ 

The heat transfer coefficient is

 =  (11.20)

11.3 Graphical analysis and key points

This section provides a comparative study of temperature for the effects of various parameters

in the constant ( = 0 left panels) and variable ( = 02 right panels) fluid viscosities in the

presence of heat transfer.

It is observed in Figs. 11.1 (a-d) that  decreases when  and 1 are increased. Further

temperature in variable viscosity fluid is less when compared with constant viscosity fluid. From
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Figs. 11.2 (a-d), an increase in  is observed when Br increases whereas  decreases when 2

increases. Although the plots for heat transfer coefficient  are not included to save space for

variation of  and Γ It is also seen that impact of  on  is quite opposite to that of 1

 is an increasing function of  Figs. 11.3 (a-d) show that  decreases when 1 increases

whereas it increases by increasing 

The main points of present chapter can be summarized as follows.

i) Temperature in constant viscosity fluid is greater than variable viscosity situation.

ii) Temperature is decreasing function of thermal slip parameter 2.

iii) The qualitative effects of  and 1 on the temperature are opposite.

iv) Behavior of 1 on the heat transfer coefficient is opposite to that of 
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Fig. 11.1 (a-d): Variation of  for Γ = 004  = 03  = 11  = 01 and Br= 05.
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Fig. 11.2 (a-d): Variation of  for  = 1 Γ = 004  = 03  = 11 and  = 02
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Fig. 11.3 (a-d): Variation of Z when Γ = 004  = 03  = 11 and  = 1
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Chapter 12

Soret and Dufour effects on

peristaltic transport of a third order

fluid

Soret and Dufour effects on peristaltic transport of third order fluid in a symmetric channel have

been reported in this chapter. Joule heating effect is also taken in to account. The governing

nonlinear problem is solved using perturbation approach. Graphical results are reported and

discussed for various parameters of interest entering into the problem

12.1 Mathematical formulation

We consider the magnetohydrodynamic (MHD) flow of third order fluid in a channel of width

21 The − axis is chosen along the walls of channel and  − axis is taken normal to the
− axis. A constant magnetic field of strength B0 is applied in the  − direction. Induced
magnetic field is not accounted. Sinusoidal wave propagating on channel walls with constant

wave speed  is represented by

( ) = 1 + 1

µ
2


( − )

¶
, (12.1)
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where 1 is the wave amplitude,  is the wavelength and  is the time . The continuity,

momentum, energy and concentration equations of the problem may be written as follows:




+




= 0 (12.2)



µ



+ 




+ 





¶
 = − 


+




+




− 20 (12.3)



µ



+ 




+ 





¶
 = −


+




+

 


 (12.4)



³


+  


+  



´
 = 



³
2


2 +

2


2

´
+ +

20
2


+ 



³
2


2 +

2


2

´
 (12.5)

µ



+ 




+ 





¶
 = 

µ
2


2
+

2


2

¶
+





µ
2


2
+

2


2

¶
 (12.6)

In the above equations,  and  are the velocity components along  and  directions re-

spectively in fixed (laboratory frame),  is the density,  is the pressure,  is the kinematic

viscosity,  is the electrical conductivity,  is the thermal conductivity, 0 is the applied mag-

netic field,  is the temperature field,  is the specific heat,  is the viscous dissipation,  is

mass diffusivity,  is the thermal diffusion ratio,  is the concentration susceptibility,  is

the concentration field and  is the mean temperature.

Extra stress tensor S in third order fluid is

S =
³
+ 3A

2

1

´
A1 + 1A2 + 2A

2

1 + 1A3 + 2
¡
A1A2 +A2A1

¢


in which   ( = 1 2) and  ( = 1 23) are the material constants. The Rivlin-Ericksen

tensors can be represented as follows

A1 = L+L



A+1 =
A


+AL+ L


A  = 1 2

where L = gradV and  indicates the matrix transpose.
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If ( ) and ( ) are the velocity components in the laboratory ( ) and wave ( )

frames respectively then defining

 =  −   =    =  −   =   ( ) =  (  ) (12.7)

and introducing the following dimensionless variables

 =



  =



1
  =




  =




  =

1


  =



1
  =

1

1
  =

2




 =
 − 0

0
  =

 − 0

0
 =

µ




¶12
01υ =




 =

1




 =



  =




  = −


  = Pr  =

0

0
,  =

0

0


 =



  =

2

0
  =




  =

1


 ()  2 =

2
2

2
 3 =

3
2

2
(12.8)

we have

−

+




 −2

µ



+ 1

¶
= 0 0 = −


 (12.9)

0 =
2

2
+ +2

µ



+ 1

¶2
+Pr

2

2
 (12.10)

0 =
1



2

2
+ 

2

2
 (12.11)

 =
2

2
+ 2Γ

µ
2

2

¶3
  = (

2

2
)2 + 2Γ(

2

2
)4 (12.12)

where  is the pressure,  the stream function, Γ(= 2 + 3) the Deborah number,  the

Hartman number, Re the Reynolds number,  the Brinkman number,  the Dufour para-

meter,  the Soret parameter,  the Schmidt number,  the Eckret number,  the Prandtl

number,  the wave number, 0 temperature at the wall, 0 concentration at the wall,  the

dimensionless temperature and  the concentration. The boundary conditions are

 = 0,
2

2
= 0,




= 0




= 0   = 0,

 =  ,



= −1,  = 0,  = 0,   = , (12.13)
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()=1 +  cos(2),  =

Z 

0




 (12.14)

where  is the dimensionless volume flow rate and  is the dimensionless wave shape. Pressure

rise per wavelength ∆ is

∆ =

1Z
0




 (12.15)

We look for solutions in the series form and thus we expand the quantities in terms of small

Deborah number as follows:

 = 0 + Γ1 + 

 = 0 + Γ1 + 

 = 0 + Γ1 + 

 = 0 + Γ1 + 

 = 0 + Γ1 + 

The resulting zeroth order system is given by

40
4

−2
2
0

2
= 0 (12.16)

0 =
20

2
+

µ
20
2

¶2
+2

µ
0


+ 1

¶2
+Pr

20
2

 (12.17)

0 =
1



20
2

+ 
20

2
 (12.18)

0 = 0,
20
2

= 0,
0


= 0

0


= 0   = 0,

0 = 0,
0


= −1, 0 = 0, 0 = 0,   = , (12.19)

and first order system becomes

41
4

+ 2
2

2

µ
20
2

¶3
−2

2
1

2
= 0 (12.20)

170



0 =
21

2
+

Ã
2
20
2

21
2

+

µ
20
2

¶4!2
+2

µ
2
1


µ
0


+ 1

¶¶
+Pr

21
2



(12.21)

0 =
1



21
2

+ 
21

2
 (12.22)

1 = 0,
21
2

= 0,
1


= 0

1


= 0   = 0,

1 = 1,
1


= 0, 1 = 0, 1 = 0,   = , (12.23)

The heat transfer coefficient at the wall can be computed by

 = 

12.2 Solution expressions

Solving the resulting systems at zeroth and first orders we can write

 = − 1

(− cosh[ ] + sinh[ ])4

+
−3 ( + )34Γ (2 − 3 + 4)

32 (− cosh[ ] + sinh[ ])4

 =
2 (1 + 42 −3 cosh[2 ] +4 −5)³
8 (−1 +) (− cosh[ ] + sinh[ ])2

´
+

− ( + )36Γ³
512 (−1 +) ( cosh[ ]− sinh[ ])5

´
× (6 − 167 cosh[ ] +8 +9 −10 +11 −12) 

171



 =
2 (1 +2 cosh[2 ]−3)³
8 (−1 +) (− cosh[ ] + sinh[ ])2

´
+

 ( + )36Γ³
512 (−1 +) ( cosh[ ]− sinh[ ])5

´
× (−4 − 16 (5) cosh[ ] +6 −7 +8 −9 −10) 

with ,  and  are given as follows:

1 = ( cosh[ ]− sinh[ ])3 (− ( cosh[ ] + sinh[ ]) + ( + )

sinh[])

2 = 2432 − 
¡
1− 6 + 122 + 124

¢
cosh[ ]

3 = 32
¡−1 + 2

¢
 cosh[3 ] + sinh[ ]− 6 sinh[ ]

−12222 sinh[ ]

4 = 12422 sinh[ ] + 122 sinh[ ] + 124 sinh[ ]

−163

sinh[2 ]− 2 sinh[3 ] + 4 sinh[3 ] + 23 sinh[4 ]
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 = Pr ∗ 

1 = 2
¡
4 + + 34

¢− 2 ¡1 + 24
¢
2 + 2 22

¡
1 +2

¢
(− ) (+ ) 

2 = 2 + 2
¡
1 +2

¢
(− ) (+ ) 

3 =  2
¡
1 +2

¢
+ 2

¡
4 + + 2

¢− 22 + 
¡
8 + 

¡
3 +2

¡
1 + 22 − 22¢¢¢ 

4 = ( + )2
¡
1 +2

¢
cosh[2] + 4

¡
2 +  (2 + )− 2

¢
sinh[2 ]

5 = 16 ( + ) cosh[ ] ( (− ) + sinh[]) + 16 ( + ) sinh[ ]( (− )

+ sinh[])

6 = −288 − 9633 + 288 + 9623

7 = −16 + 4822 + 123
¡
2 + 24

¢
+  (−5 + 32

¡−3 + 42 − 42¢+ 244¡
2 − 2

¢
)− 

¡
5 + 2442 + 32

¡
3 + 42

¢¢


8 = 256
¡
1 + 322

¢
(− ) cosh[2 ]− 288 cosh[3 ]− 33 cosh[3 ]

−332 cosh[3 ] + 273 cosh[3 ]

9 = 2723 cosh[3 ]− 4833 cosh[3 ]− 4843 cosh[3 ]− 4835

cosh[3 ]

10 = 4845 cosh[3 ] + 4832 cosh[3 ] + 48232 cosh[3 ] + 4852

cosh[3 ] + 48252 cosh[3 ] + 32 cosh[4 ] + 9633 cosh[4 ]

−32 cosh[4 ]− 9623 cosh[4 ] + 32 cosh[5 ] + 7 cosh[5 ]

11 = 72 cosh[5 ] + 33 cosh[5 ] + 323 cosh[5 ] + 5

cosh[ (− 4)] + 52 cosh[ (− 4)] + 93 cosh[ (− 4)] + 923

cosh[ (− 4)]− 32 cosh[ (2− 3)]− 20 cosh[ (− 2)]− 202

cosh[ (− 2)]

12 = 843 cosh[ (− 2)]− 8423 cosh[ (− 2)]− 48 cosh[ (− 2)]

( + )− 483 cosh[ (− 2)] ( + )− 12 cosh[ (3− 2)] ¡ + +2
¢

−32 cosh[ (2− )] + 192 cosh[ (2− )]
¡
32 +  + 22

¢

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1 = −8 − 2 (4 + )− 22 ( + 2)2 − 22 ( + )24 + 211
2

2 =  2
¡
1 +2

¢
+ 2

¡
4 + + 2

¢− 22 +  (8 + 12) 

3 =
¡
 + 2

¢ ¡
1 +2

¢
cosh[2]− 4 ¡

2 +  (2 + )− 2
¢
sinh[2 ] +

16 ( + ) cosh[ ] ( (− ) + sinh[])− 16 ( + ) sinh [ ]

( (− ) + sinh[]) 

4 = 288 − 9633 + 288 + 9623

5 = −16 + 4822 + 123
¡
2 + 24

¢
+ 13 − 

¡
5 + 2442 + 32

¡
3 + 42

¢¢


6 = 256
¡
1 + 322

¢
(− ) cosh[2 ]− 288 cosh[3 ]− 33 cosh[3 ]

( + ) + 27 cosh[3 ]
¡
2 + 2

¢


7 = 48 cosh[3 ]14 + 32 cosh[4 ] (− ) + 9622 cosh[4 ] ( −) 

8 =  cosh[5 ]
¡
32 + 7 + 7+ 32 + 32

¢
+  cosh[ (− 4)]¡

5 + 5+ 92 + 92
¢− 32 cosh[ (2− 3)]

9 =  cosh[ (− 2)]15

10 =  cosh[ (3− 2)] ¡12 + 12+ 122 + 122
¢−  cosh[ (2− )]¡

32− 19222 − 192 ()− 1922
¢


11 = 1 +  ( + 2)2 + ( + )24 12 = 3 +2
¡
1 + 2

¡
2 − 2

¢¢


13 = −5 + 32
¡−3 + 42 − 42¢+ 242

¡
2 − 2

¢


14 = 22 + 32 + 24 + 34 − 22 − 22 − 42 − 42

15 = 20 + 20+ 842 + 842 + 48 + 48 + 482 + 482

12.3 Discussion

The objective of this section is to analyze the plots for temperature, concentration and heat

transfer coefficient. Hence Figs. 12.1-12.3 are given in order to achieve such objective. Here

Figs. 12.1(a-g) are drawn for temperature  Figs. 12.2(a-g) for concentration profile and Figs.

12.3(a-f) for the heat transfer coefficient Z. Explicitly 3-D graphs are plotted to analyze the

behavior fully in the domain of interest.

Figs. 12.1 demonstrate that the dimensionless temperature increases with an increase in
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M, Br, Du, Sr, Sc, Pr and Γ It is also noted from Fig. 12.1a that increase in temperature

with respect to M is not much for small M. However the temperature increases abruptly when

M increases. Also with the increase in magnitude of applied magnetic field, the temperature

increases more due to Joule heating. In Fig. 12.1b it can be seen that there is a linear

relationship between Br and  Similar observation holds for Γ (see Fig. 12.1g). This depicts

that rise in temperature is lesser for Newtonian fluid when compared with non-Newtonian fluid.

In Figs. 12.2 (a-g) it is observed that the dimensionless concentration decreases by decreas-

ing M, Br, Du, Sr, Sc, Pr and Γ It is found that decrease in temperature is not linear for M,

linear and large for Br and Γ and smaller bit small for Du, Sr, Sc, Pr.

Figs. 12.3(a-f) explicitly see the behavior of heat transfer coefficient Z when values of

different embedded parameters are altered. It is seen in all these Figs. that Z has an oscillatory

behavior. It is physically acceptable in view of peristalsis. The magnitude of oscillations in Z

increase most rapidly in case of Γ when compared with the other cases.
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Fig. 12.1 a Fig. 12.1 b

Fig. 12.1 c Fig. 12.1 d
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Fig. 12.1 e Fig. 12.1 f

Fig. 12.1 g

Figs 12.1(a-g). Behavior of the temperature with change in values of different parameters.
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Fig. 12.2 a Fig. 12.2 b

Fig. 12.2 c Fig. 12.2 d
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Fig. 12.2 e Fig. 12.2 f

Fig. 12.2 g

Figs. 12.2(a-g). Development of concentration field with increase in values of parameters.
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Fig. 12.3 a Fig. 12.3 b

Fig. 12.3 c Fig. 12.3 d
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Fig. 12.3 e Fig. 12.3 f

Figs. 12.3(a-f). Behavior of heat transfer coefficient Z.
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http://www.bis.org/statistics/hcsv/hanx9b.csv

< 1% match (Internet from 16-Dec-2007)

http://www.nervenet.org/papers/images/bxn/BXNRelease1InferredFull.xls

< 1% match (Internet from 19-May-2012)

http://www.130th.net/pub/mirror/opera/winmobile/850b2/opera_wmppc2003_85b2.cab

< 1% match (Internet from 25-Jan-2007)

http://www.pasza.ca/pdfs/PASZA%20Feb%202006.pdf

< 1% match (Internet from 12-Jun-2013)

http://www.notredame-
high.org.uk/documents/exams/Exam%20Performance%20Data%202012.pdf

< 1% match (Internet from 22-Apr-2009)

http://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHHCS/1998/TAB_DELIMITED/DP98PUB.TXT

< 1% match (Internet from 01-Nov-2010)

http://www.m-hikari.com/ams/ams-2010/ams-29-32-2010/madiAMS29-32-2010.pdf

< 1% match (Internet from 19-Apr-2012)

http://www.veltechuniv.edu.in/IJMSC/current_issue/IJMSC01-02-Paper18.pdf

< 1% match (Internet from 08-Jul-2013)

http://www.msss.com/moc_gallery/m07_m12/imq/M09/M0901797.imq

< 1% match (Internet from 29-Nov-2010)

http://ajse.kfupm.edu.sa/articles/301A_06P.pdf

< 1% match (Internet from 08-Jan-2011)

http://nuv.apnetwork.it/attach/file/Relazioni/2005/03_La_didattica_05.pdf

< 1% match (Internet from 26-Dec-2010)

http://cg.tuwien.ac.at/courses/Animation/kinematics.pdf

< 1% match (Internet from 04-Dec-2011)

http://www.fire01.ru/assets/files/BCH/BCH_49-86.doc

< 1% match (Internet from 06-Jun-2013)

http://ijamm.bc.cityu.edu.hk/ijamm/outbox/y2011v7n21p1c66305179.pdf

< 1% match (Internet from 10-Aug-2012)
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http://audio14.archive.org/stream/SchaumsTheoryProblemsOfAbstractAlgebra/Fang-
AbstractAlgebra_djvu.txt

< 1% match (publications)

Landmann, Markus( and Thomä, Reiner). "Limitations of experimental channel
characterisation", Digitale Bibliothek Thüringen, 2008.

< 1% match (Internet from 14-Nov-2010)

http://servicealberta.ca/pdf/vs/2005deaths.pdf
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http://146.6.139.68/users/pmueller/pap/RMR07.pdf

< 1% match (Internet from 01-May-2003)

http://www.bis.org/statistics/hcsv/hanx9b.csv
http://www.nervenet.org/papers/images/bxn/BXNRelease1InferredFull.xls
http://www.130th.net/pub/mirror/opera/winmobile/850b2/opera_wmppc2003_85b2.cab
http://www.pasza.ca/pdfs/PASZA%20Feb%202006.pdf
http://www.notredame-high.org.uk/documents/exams/Exam%20Performance%20Data%202012.pdf
http://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHHCS/1998/TAB_DELIMITED/DP98PUB.TXT
http://www.m-hikari.com/ams/ams-2010/ams-29-32-2010/madiAMS29-32-2010.pdf
http://www.veltechuniv.edu.in/IJMSC/current_issue/IJMSC01-02-Paper18.pdf
http://www.msss.com/moc_gallery/m07_m12/imq/M09/M0901797.imq
http://ajse.kfupm.edu.sa/articles/301A_06P.pdf
http://nuv.apnetwork.it/attach/file/Relazioni/2005/03_La_didattica_05.pdf
http://cg.tuwien.ac.at/courses/Animation/kinematics.pdf
http://www.fire01.ru/assets/files/BCH/BCH_49-86.doc
http://ijamm.bc.cityu.edu.hk/ijamm/outbox/y2011v7n21p1c66305179.pdf
http://www.tibtd.org.tr/2009-1/67-78.pdf
http://scholarworks.uno.edu/cgi/viewcontent.cgi?article=1046&context=honors_theses
http://www.cefage.uevora.pt/en/content/download/1723/22481/version/1/file/2009_08.pdf
http://audio14.archive.org/stream/SchaumsTheoryProblemsOfAbstractAlgebra/Fang-AbstractAlgebra_djvu.txt
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-15967/ilm1-2008000090.pdf
http://servicealberta.ca/pdf/vs/2005deaths.pdf
http://146.6.139.68/users/pmueller/pap/RMR07.pdf


12/24/13 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=385877909&sid=0&n=0&m=0&svr=8&r=36.164116649888456&lang=en_us 5/58

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

78 http://www.hendersoncountync.org/elections/nov5_by_precinct.html

< 1% match (publications)

Abd-Alla, A. M.; Yahya, G. A. and Farhan, A. M.. "Effect of Magnetic Field and Porosity on
Peristaltic Flow of Micropolar Fluid", International Review of Physics, 2013.

< 1% match (publications)

Ali, N. Wang, Y. Hayat, T. Oberlack, M.. "Numerical solution of peristaltic transport of an
Oldroyd 8-constant fluid in a circular cylindrical", Canadian Journal of Physics, Sept 2009

Issue

< 1% match (publications)

Oaten, Susan Rosemary(Blitz, J). "Assessment of defects in ferromagnetic metals with eddy
currents", Brunel University Institute for the Environment PhD Theses, 2011.

< 1% match (publications)

Engineering Computations, Volume 24, Issue 4 (2007-05-27)

< 1% match (Internet from 15-Jun-2011)

http://www.qau.edu.pk/betaqau/profile.php?id=814010

< 1% match (Internet from 29-Sep-2010)

http://alumni.media.mit.edu/~tpminka/courses/36-350/handout/handout19.pdf

< 1% match (Internet from 09-May-2013)

http://www.rogersmedia.com/system/files/file-attach/city_summer_12_0.pdf

< 1% match (Internet from 03-May-2013)

http://www.arthal.ru/matematika_3/trigonometriya_-_shpargalka_2.html

< 1% match (Internet from 21-May-2012)

http://www.icms.org.uk/downloads/NoncommutativeSkye/Keller.pdf

< 1% match (publications)

Engineering Computations, Volume 29, Issue 5 (2012-06-30)

< 1% match (Internet from 31-Dec-2009)

http://www.epicoalition.org/valance_reports/chart_books/20090123.pdf

< 1% match (Internet from 27-Oct-2010)
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< 1% match (Internet from 24-May-2010)

http://www.csub.edu/~jross/projects/ssricrem/modules/siss/sisssp.por

< 1% match (Internet from 15-May-2013)

http://203.158.6.22:8080/sutir/bitstream/123456789/1319/2/paladorn_fulltext.pdf

< 1% match (publications)

Alberici, Diego(Contucci, Pierluigi). "Il limite termodinamico nei sistemi di spin diluiti", AMS
Tesi di Laurea - AlmaDL - Università di Bologna, 2010.

< 1% match (publications)

Goldscheider, Nico. "Hydrogeology and vulnerability of karst systems - examples from the
Northern Alps and the Swabian Alb [online].", Universität Karlsruhe, 2007.

< 1% match (publications)

Hayes-McCoy, Declan. "Direct computations of a synthetic jet actuator", Brunel University
School of Engineering and Design PhD Theses, 2012.

< 1% match (Internet from 20-Mar-2012)

http://dataarchives.ss.ucla.edu/earthquake/Whittier/WHITTIER.Y88.POR
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< 1% match (Internet from 10-Aug-2012)

http://www.arpnjournals.com/jeas/volume_07_2011.htm

< 1% match (Internet from 30-Jun-2013)

http://ec.europa.eu/social/BlobServlet?docId=1874&langId=en

< 1% match (Internet from 16-Jul-2012)

http://daeilins.com/pdf/hitrol/HTG100E.pdf

< 1% match (publications)

Akram, Safia; Nadeem, S.; Ghafoor, Abdul and Changhoon Lee. "Consequences of
nanofluid on Peristaltic flow in an asymmetric channel", International Journal of Basic &

Applied Sciences, 2012.

< 1% match (publications)

Shiferaw, Dereje(Karayiannis, TG and Kenning, DBR). "Two-phase flow boiling in small to
micro-diameter tubes", Brunel University School of Engineering and Design PhD Theses,

2011.

< 1% match (publications)

International Journal of Numerical Methods for Heat & Fluid Flow, Volume 22, Issue 3
(2012-03-31)

< 1% match (Internet from 30-Jul-2012)

http://applmathmech.cn/mcwz_article.asp?muluid=1652

< 1% match (Internet from 17-Dec-2007)

http://www.pisa.oecd.org/dataoecd/58/57/33918098.pdf

< 1% match (Internet from 19-Oct-2011)

http://wup.torun.pl/publikacje/download/rynekpracy/2011/2011.04.19_monitoring.pdf

< 1% match (Internet from 31-Jul-2012)

http://agama.nexuizninjaz.com/lunesvsTdance

< 1% match (Internet from 05-Aug-2012)

http://www.uew.edu.gh/regvid/Stud_reg4_blog.mp4

< 1% match (Internet from 13-Nov-2012)

http://www.artofproblemsolving.com/LaTeX/Examples/Maxwell's%20Equations.pdf

< 1% match (Internet from 07-Dec-2012)

http://www.jiaoan.net/jiaoanchu/HTML/18966.html

< 1% match (publications)

Kranich, Wieland(Meinhold, Gottfried and Neuber, Baldur). "Suprasegmentale
Eigenschaften gesprochener Sprache unter besonderer Berücksichtigung emotionaler

Ausdrucksqualitäten", Digitale Bibliothek Thüringen, 2002.

< 1% match (publications)

Engineering Computations, Volume 29, Issue 8 (2012-11-03)

< 1% match (Internet from 16-Nov-2013)
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http://www.relkocz.com/katalogy/Sick/LR_0936_0945_V12_en.pdf
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http://www.risklab.ch/dmath/education/bachelor/lectures/hs2012/other/stochastik_MAVT/statistik_und_wahrscheinlichkeitsrechnung_neu.pdf
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http://www.arpnjournals.com/jeas/volume_07_2011.htm
http://ec.europa.eu/social/BlobServlet?docId=1874&langId=en
http://daeilins.com/pdf/hitrol/HTG100E.pdf
http://search.ebscohost.com/login.asp?r=58.6413727274348&svr=6&lang=en_us&x?direct=true&db=ECD&AN=90327651&site=ehost-live&EPSource=esi
http://bura.brunel.ac.uk/bitstream/2438/5420/1/FulltextThesis.pdf
https://www.turnitin.com/viewEmerald.asp?r=58.6413727274348&svr=6&lang=en_us&oid=84625&key=0fc8fab50ccf1e7f484b8a5ae2c37fbd
http://applmathmech.cn/mcwz_article.asp?r=58.6413727274348&svr=6&lang=en_us&muluid=1652
http://www.pisa.oecd.org/dataoecd/58/57/33918098.pdf
http://wup.torun.pl/publikacje/download/rynekpracy/2011/2011.04.19_monitoring.pdf
http://agama.nexuizninjaz.com/lunesvsTdance
http://www.uew.edu.gh/regvid/Stud_reg4_blog.mp4
http://www.artofproblemsolving.com/LaTeX/Examples/Maxwell's%20Equations.pdf
http://www.jiaoan.net/jiaoanchu/HTML/18966.html
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-1286/Dissertation.pdf
https://www.turnitin.com/viewEmerald.asp?r=58.6413727274348&svr=6&lang=en_us&oid=97024&key=6d768f37ddb5e5666246120138c1486d
http://hubnet.buffalo.edu/TEST%20FOLDER/stats2011/stats-12/2011FTArticles.xls
http://www.math.umbc.edu/~seidman/Papers/na_ABC.pdf
http://www.relkocz.com/katalogy/Sick/LR_0936_0945_V12_en.pdf
http://www.risklab.ch/dmath/education/bachelor/lectures/hs2012/other/stochastik_MAVT/statistik_und_wahrscheinlichkeitsrechnung_neu.pdf
http://www.est.ufpr.br/~paulojus/MBG/slides/mbg.slides.pdf


12/24/13 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=385877909&sid=0&n=0&m=0&svr=8&r=36.164116649888456&lang=en_us 7/58

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

< 1% match (Internet from 23-May-2013)

http://www.larslaj.sk/public/www/files/architects/pioneer/11121_2D.dwg

< 1% match (Internet from 23-Aug-2013)

http://syneva.com/wp-content/uploads/2011/11/SYNEVA-Economics-Local-Population-
Change-112011-H.pdf

< 1% match (Internet from 08-Aug-2012)

http://miabogadoenlinea.net/images/leyes/leyimpuestosobrelarenta.pdf

< 1% match (publications)

International Journal of Numerical Methods for Heat & Fluid Flow, Volume 23, Issue 7
(2013-09-07)

< 1% match (Internet from 20-May-2012)

http://akademik.ege.edu.tr/?q=tr/bilgiler&id=3563

< 1% match (Internet from 02-Nov-2012)

http://www.tibtd.org.tr/2012-1/9-17.pdf

< 1% match (Internet from 15-May-2009)

http://www.sscnet.ucla.edu/issr/da/earthquake/Northridge/north.por

< 1% match (Internet from 01-Oct-2003)

http://www.nordita.dk/data/brandenb/pencil-code/doc/manual.pdf

< 1% match (Internet from 21-Jan-2012)

http://www.lana.lt/journal/38/Abdou.pdf

< 1% match (Internet from 21-Jun-2013)

http://cdn.intechweb.org/pdfs/21783.pdf

< 1% match (Internet from 04-Nov-2012)

http://www.fersch.de/pdfdoc/IGanzrationaleFunktion.pdf

< 1% match (Internet from 25-Jan-2013)

http://qnet-ercoftac.cfms.org.uk/w/images/0/06/UFR4-16_Diffuser2_RANS-RSM.pdf

< 1% match (Internet from 29-Aug-2013)

http://starbase.jpl.nasa.gov/mgs-m-moc-na_wa-2-sdp-l0-
v1.0/mgsc_1005/m00016/m0001682.imq

< 1% match (Internet from 30-Jul-2012)

http://webdoc.sub.gwdg.de/diss/2005/hoeltken/hoeltken.pdf
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http://www.fraserinstitute.org/admin/books/chapterfiles/Complete%20Publication-
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< 1% match (Internet from 14-May-2013)
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< 1% match (Internet from 12-Nov-2013)

http://www.goiit.com/posts/show/271639.htm

< 1% match (publications)

Hayat, T. Momoniat, E. Mahomed, F.M.. "Endoscope effects on MHD peristaltic flow of a
power-law fluid.(magnetohydrodynamic)", Mathematical Problems in Engineering, Annual

2006 Issue

< 1% match (publications)

International Journal of Numerical Methods for Heat & Fluid Flow, Volume 21, Issue 1
(2010-12-25)
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< 1% match (publications)

Schönherr, Marek (Dr. Frank Krauss, Prof. Dr. Dominik Stöckinger and Technische
Universität Dresden, Fakultät Mathematik und Naturwissenschaften). "Improving predictions

for collider observables by consistently combining fixed order calculations with resummed results in
perturbation theory", Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden,
2012.

< 1% match (publications)

Arellano-Garcia, Harvey. "Chance Constrained Optimization of Process Systems under
Uncertainty", Technische Universität Berlin, 2006.

< 1% match (publications)

Graf, Iulia-Mihaela. "Electrical stimulation of the human left ventricle", Universität Karlsruhe,
2005.

< 1% match (Internet from 05-Dec-2003)

http://www.csubak.edu/~jross/projects/ssricrem/exercises/GWOM/gwomsp.por

< 1% match (Internet from 15-Jun-2013)
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1001 Introduction The aim of this chapter is to provide a mterial for the better

understanding of the

subse- quent chapters. Here the literature review about peristaltic flows, and some definitions and

fundamental equations are presented. 1.1 Peristaltic transport The peristaltic transport of fluid is caused

21by a progressive wave of area contraction/expansion along the length of a

distensible tube.

Such wave inturn propells the fluid

151in the direction of propagation of wave. This type of

transport mechanism finds its application in the physiological and industrial processes. These include the

locomotion of worms, urine passage from kidney to bladder, food swallowing by the esophagus,

vasomotion of small blood vessels, sanitary and corrosive fluids transport, movement of bio fluids (chyme

in gastrointestinal tract, bile in the bile duct, ovum in the fallopian tube and spermatozoa in cervical canal)

and in heart lung machine and roller and finger pumps. 1.2 Literature review Despite of the fact that the

mechanism of peristalsis was known to the physiologist since long, mechanical analysis of peristalsis begin

in later half of the twentieth century. Initial investiga- tion of peristaltic pumping was inspired by its

application in human ureter system. Studies of Kiil [1] and Boyarsky [2] are fundamentals in this direction.

Latham [3] in his MS thesis carried out the experimental investigation of peristaltic pump. Shapiro [4]

discussed the inertia free two-dimensional peristaltic transport when

137the wavelength of peristaltic wave is large compared to the

half channel width. Under these assumptions there is a steady flow in a wave frame. Later on these two

considerations (the long wavelength and low Reynolds number approxima- tion) were widely utilized by the

researchers in the analysis of peristaltic flows. The theoretical investigation of Shapiro [4] was found in

good agreement with the experimental work of Latham [3]. These pioneering studies of Latham [3] and

Shapiro [4] were first precise efforts to mechan- ically investigate peristaltic flows and triggered extensive

interest in peristaltic flows. Later on several investigations were made to study peristaltic flows under

different flow configurations. More realistic models for the ureteral waves were proposed by Lykoudis [5]

and Weinberg et al. [6]. Time elapsed during the chyme motion through small intestine was calculated by
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Bar- ton and Raynor [7] using the concept of peristaltic motion. Inertia free peristaltic flow in a roller pump

was studied by Maginniss [8]. Shapiro et al. [9] examined

4the peristaltic flow of Newtonian fluid in a planner channel

and circular

80tube. Long wavelength and low Reynolds number approximations were used

in

this investigation. In continuation Jaffrin [10]

26studied the effects of inertia and streamline curvature on peristaltic

pumping. Yin and Fung [11] and Fung and Yih [12] studied the peristaltic flow for arbitrary Reynolds and

wave numbers in axisymmetric tube and planar channel respectively. In these studies the authors

performed the analysis for small amplitude ratio. Jaffrin and Shapiro [13] made review for studies available

on peristaltic pumping. Mittra and Prasad [14] studied the interaction of peristalsis with poiseuille flow.

Wilson and Perel [15] analyzed the interaction of peristalsis with pulsatile flow. Brown and Hung [16]

compiled the

15computational and experimental investigations on two-dimensional

peristaltic flows

up to 1977. Srivastava and Srivastava [17] discussed the interaction of peri- stalsis with pulsatile flow in a

cylindrical tube by assuming that the flow is generated by an arbitrary pressure gradient and peristaltic

waves. Peristaltic transport of blood was seen by Srivastava and Srivastava [18]. In this study they used

the Casson fluid model to describe the non-Newtonian properties of blood. Numerical solutions of two-

dimensional peristaltic flow problem were obtained by Takabatake and Ayukawa [19]. Takabatake et al.

[20] studied the

66peristaltic pumping in circular cylindrical tubes. They obtained the numerical

solutions of the problem and

discussed the efficiency of such flow. Fluid mechanics of gastrointestinal tract was studied by Mishra and

Rao [21]. They considered the

52peristaltic transport in a channel with porous peripheral layer analogous to

the flow in gastrointestinal tract. The magnetohydrodynamic character of

fluid has a pivotal role in solidification processes of metals and metal alloys, study of nuclear fuel debris,

control of underground spreading of chemical wastes and pollution control, design of MHD power

generators, blood pump machines, diagnose and treatment of cancer tumors.

15Interaction of peristaltic flow with pulsatile magneto- fluid through a porous

medium

was analyzed by Afifi and Gad [22]. Elshehawey et al. [23] examined the

5effects of inclined magnetic field on magneto fluid flow

between two inclined wavy plates. In this study they further assumed the boundaries to be porous.

Peristaltic flow of blood through a non-uniform channel was inspected by Mekheimer [24]. Blood was

assumed to flow

81under the influence of a uniform applied magnetic field.

Mekheimer [25] carried out the study of magnetohydrodynamic

143nonlinear peristaltic transport in an inclined planar channel. Magnetic fluid

model

javascript:openDSC(3437209240, 1390, '47268');
javascript:openDSC(69938982, 4, '11794');
javascript:openDSC(95601, 14, '6601');
javascript:openDSC(4185860055, 1274, '49912');
javascript:openDSC(1348399828, 772, '54795');
javascript:openDSC(1763353375, 1390, '97501');
javascript:openDSC(4185860055, 1274, '49907');
javascript:openDSC(3616280763, 1390, '88981');
javascript:openDSC(42450085, 1353, '18217');
javascript:openDSC(3787330333, 1392, '98409');


12/24/13 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=385877909&sid=0&n=0&m=0&svr=8&r=36.164116649888456&lang=en_us 13/58

induced by peristaltic waves was proposed by Siddiqui et al. [26]. Hayat and Ali [27] investigated the

13peristaltically induced motion of MHD third grade fluid in a deformable tube.

Abd El Naby et al. [28] analyzed the

31effects of magnetic field on trapping while studying peristaltic motion of a

generalized Newtonian fluid. Nonlinear peristaltic transport in a planar channel

15under the influence of applied magnetic field was studied by Hayat et al.

[29]. Hayat and Ali [30] provided the

13mathematical description of peristaltic hydromagnetic flow in a tube. Effect of

applied

44magnetic field on the peristaltic transport of micropolar fluid

was discussed by Wang et al. [31]. Hayat et al. [32] studied the

13influence of inclined magnetic field on peristaltic transport of fourth grade

fluid in an inclined asymmetric channel.

In several physical situations, the no-slip condition between the fluid and solid boundary is not valid. Such

situation arises in fluid mechanics within the body of living beings where the internal linings of the tubular

organs are coated with mucus/secretions. Also in the case of artificial heart the no-slip condition is no

longer effective. In such situations one may take into account the slip effects while analyzing the flow

phenomena. Mandiviwalla and Archer [33] inspected the

6effects of velocity slip on the

peristaltic pumping in a rectangular

10channel. Hayat et al. [34] studied the peristaltic transport through a

porous medium

29under the influence of partial slip. Hayat et al. [35] studied the peristaltic

transport with simultaneous effects of

heat transfer and velocity slip.

30Effects of partial slip and heat transfer on the peristaltic flow of MHD

Newtonian fluid in an asymmetric channel were examined by

Yildirim and Sezer [36]. Kumari and Radhakrishnamachrya [37] studied the effects

99of slip on heat transfer for peristaltic transport in the presence of magnetic

field.

Processes that take place at high temperature e.g. in nuclear reactors, turbines, rockets, missile

technologies, pumps operated at high temperatures and space vehicles may face variation in fluid viscosity

with temperature. Moreover the dependence of fluid viscosity is justified physiologically because normal

person or animal of similar size takes 1-2L of the fluid every day. Also 6-7L of the fluid is received by the

small intestine as secretions from salivary glands, stomach, pancreas, liver and small intestine itself. Ali et

al. [38] carried out the study to examine the

1influence of velocity slip on the peristaltic transport in a
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planar channel. Fluid viscosity was assumed to be space dependent and a uniform magnetic field was also

taken into account. El Naby et al. [39] studied the

3effects of an endoscope and variable viscosity on peristaltic motion.

Elshehawey and

Gharsseldien [40] examined the

52peristaltic transport of three-layered flow with variable viscosity. Hayat and

Ali [41] examined the

45effect of variable viscosity on the peristaltic transport of Newtonian fluid in

an asymmetric channel.

Ebaid [42] computed

55numerical solution for the MHD peristaltic flow of bio-fluid with variable

viscosity in a circular cylindrical tube via Adomian decomposition method.

4Effects of heat transfer on the MHD peristaltic transport of a variable viscosity

fluid

were studied by Nadeem and Akbar [43]. The fluid viscosity in this study was considered to vary linearly

with temperature and Adomian decomposition Method (ADM) was used

88to obtain the solution of the coupled equations.

Nadeem et al. [44] discussed the influence

4of heat transfer on the peristaltic transport of fluid with variable viscosity.

Nadeem and Akbar [45] presented the study for the

4effects of temperature dependent viscosity on peristaltic flow of Jeffrey-six

constant fluid in a non- uniform vertical tube.

Nadeem and Akbar [46] examined the

4influence of temperature dependent viscosity on peristaltic transport of a

Newtonian fluid. The concept of

heat transfer has a key role in the analysis of tissues, hemodialysis and oxy- genation.

Radhakrishnamachrya and Murty [47] studied influence of

25heat transfer on peristaltic transport in a non-uniform channel.

Vajravelu et al [48] performed the

3heat transfer analysis of the peristaltic transport in a

vertical porous annulus under the long wavelength consideration. Simultaneous effects

105of heat transfer and applied magnetic field on the peristaltic transport in a

vertical annulus

were studied by Mekheimer and elmaboud [49]. Srinivas and Kothandapani [50] examined the
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10peristaltic transport in an asymmetric channel with heat transfer. Hayat et al.

[51] performed the

heat transfer

123analysis for the peristaltic transport of an electrically conduct- ing fluid in

porous space.

26Srinivas and Kothandapani [52] studied the impact of heat and mass transfer

on the MHD peristaltic

motion with complaint walls. Hayat and Hina [53] investigated the

3heat and mass transfer effects on the peristaltic motion of Maxwell fluid.

Mekheimer

3et al. [54] analyzed the peristaltic transport under the influence of

heat transfer and space porosity. Nadeem and Akbar [55] analyzed the effect

83of radially varying MHD on the peristaltic flow in an annulus with heat and

mass transfer.

Ali

64et al. [56] studied the heat transfer effect on peristaltic transport in a

curved channel.

79Hayat and Noreen [57] examined the peristaltic transport of fourth grade fluid

with heat transfer and induced magnetic field.

20Effects of thermal radiation and space porosity on MHD mixed convection

flow in a vertical channel

were analyzed by Srinivas and Muthuraj [58].

25Vajravelu et al. [59] discussed the influence of heat transfer on peristaltic

transport of Jeffrey fluid in a vertical porous stratum.

Hayat et al. [60] ana- lyzed the

4heat transfer effects on the peristaltic transport in a curved channel with

complaint walls. Mixed convection

2heat and mass transfer in an asymmetric channel with peristalsis

was discussed by Srinivas et al. [61]. Effects

2of heat and mass transfer on the peristaltic flow of Johnson Segalman fluid

in a vertical asymmetric channel with induced MHD

was examined by Nadeem and Akbar [62]. Tripathi [63] proposed
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29a mathematical model for swallowing of food bolus through the oesophagus

under the influence of heat transfer. Akbar et al. [64] computed the effects of

2heat and mass transfer on the peristaltic transport of hyperbolic tangent fluid.

Akbar and Nadeem [65] investigated the

3heat and mass transfer effects in the peristaltic trans- port of Johnson-

Segalman fluid.

Effects of

12induced magnetic field were also taken into account

in this study.

2Effects of induced magnetic field and heat transfer on peristaltic transport

were also discussed by Hayat et al. [66]. This study was performed for the Carreau fluid model.

16Peristaltic transport of third order fluid under the effect of applied magnetic

field was studied by Hayat et al.

[67]. Hayat et al. [68]also analyzed

4the peristaltic flow of a third order fluid in an asymmetric channel with slip

effects. Heat and mass transfer

analysis for

26the peristaltic transport of third order fluid in a diverging tube

was carried out by Nadeem et al. [69]. Akbar et al. [70] studied the

4effects of slip and heat transfer on the peristaltic flow of third order fluid in

an inclined asymmetric channel.

1.3 Fundamental laws 1.3.1 Law of conservation of mass Mathematical form of law of conservation of mass

is known as continuity equation which for unsteady flow is given by ?? ?? + ∇ · (?V) = 0? (1.1) in which ?

denotes the density of the fluid and V the velocity. Eq. (1?1) for an incompressible fluid is ∇ · V = 0? (1.2)

1.3.2 Law of conservation of linear momentum

38Newton’s second law of motion states that time rate of change of linear

momentum is equal to the total force acting on the

fluid element. Mathematically it is expressed as ? ?V ?? = ∇ · τ +?b? (1.3) for an incompressible flow. Here

τ is the Cauchy stress tensor which is different for different fluids, ∇?τ is the surface force, ?b is the body

force. The body force ?b is different for different flow situations. For instance the expression of body force

?b for

113the flow of an electrically conducting fluid in the presence of magnetic field

and buoyancy effects is

?b =?g [?? (? − ?0) + ?? (? − ?0)] + J × B (1.4) where g is the gravitational accelration, ? and ?0 the

temperatures of fluid and boundary respectively, ? and ?0 the concentations of fluid and boundary

respectively, ?? and ?? the volumetric expansion coefficients, J the current density and B the applied

magnetic field. Furthermore first two terms
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139on the right hand side of Eq. (1 ?4) represent the

body force due to density differences caused by temperature difference and composition difference. The

last term of Eq. (1?4) is the Lorentz force. The Cauchy stress tensor τ is expressed as ??? ? ?? ? ?? ??? ?

?? ? ?? τ = � ? ?? ??? ? ?? � or τ = � ? ?? ??? ? ?? � , (1.5) � � ? ?? ? ?? ??? � ? ?? ? ?? ??? � � �

� � where ??? (???) ? ??? (???) and ??? are the normal stresses while all others are shear stresses. In

catesian coordinates (?? ?? ?) Eq. (1?3) can be written as ? ?? ?? ?? ?? = µ ?? +??? +??? +??? ? ?? ??

?? ?? ¶ = µ ?? +??? +??? +??? ? ?? ?? ?? ?? ¶ = µ ?? + ? ?? + ? ?? + ? ?? ¶ 1.3.3 First law of

thermodynamics ? (???) ? (???) ?? + ?? + ? (?????) + ???? ? (???) ? (???) ? (???) ?? + ?? + + ???? ??

? (???) ? (???) ?? + ?? + ? (???) + ???? ?? (1.6) (1.7) (1.8) The law of consrevation of energy is also

known as first law of thermodynamics and can be expressed as ? ?(??? ) = τ · ∇V − ∇ · (−? ∇? ) + J · J? 1

?? ? (1.9) Here ?? is the internal energy, τ · ∇V the viscous dissipation, ?∇? the heat flux, ? the

temperature field, ?? the specific heat, ? the electrical conductivity of fluid, ? the thermal conductivity, ? the

diffusion coefficient and the last term on RHS of Eq. (1.9) is due to the Joule heating. 1.3.4 Advection

diffusion equation The diffusion of chemically reacting species is governed by Fick’s second law. It is given

by ???? = ?∇2? − ??(? − ?0)?? (1.10) where ? is the concentration field of the diffusing species, ? the

oreder of chemical reaction, ? the diffusion coefficient and ?? the reaction rate. 1.3.5 Dufour and Soret

effects It has been experimentally verified that the diffusion of energy can be

14caused by a composition gradient. This fact is known as Dufour effect or

diffusion-thermo effect. The

diffusion of diffusing species by temperature gradient is termed as Soret effect

14or thermal diffusion effect. In most of the

studies dealing with the transfer of heat and mass,

11Dufour and Soret effects are neglected under the assumptions that these

effects are

11smaller order of magnitude as described by Fourier’s and Fick’s laws.

However recent developments show that these effects are significant when transfer of heat and mass

occurs in the flow of mixture of

32gases with very light molecular weight (?2, ??) and gases with medium

molecular weight (?2? air)

? Eqs. (1.9) and (1.10) can be modified to make them capable of describing Dufour and Soret effects as

follows: ?? ??? ?? = ??∇2? + ??? + Φ + ????? ∇2? + 1 ? J · J? (1.11) ?? ?? = ?∇2? + ??? ∇2?? (1.12)

?? where ? ?? is the viscous dissipation term, ? the stress tensor, ? the velocity gradient, ?? the

concentration susceptibility, ?? the thermal-diffusion ratio and ?? the mean fluid temperature. 1.3.6

Maxwell’s equations Equations which mathematically state a set of laws namely

110Gauss’ law of electricity, Gauss’ law of magnetism, Faraday’s law and

Ampere-Maxwell law

are known as Maxwell equations after the name of James Clerk Maxwell. These equations are ∇ · E = ?? ?

(Gauss’ law for electricity) ? (1.13) ?0 ∇ · B = 0? (Gauss’ law for magnetism) ? (1.14) ?B ∇ × E = − ?? ?

(Faraday’s law) ? (1.15) ∇ × B = ?0J + ???0 ?? ? (Amapere-Maxwell law) ? ?E (1.16) Here ?? indicates the

charge density, ?0 the permittivity of free space, B the magnetic

141field, E the electric field, J the current density and ?? the electric

constant. 1.4

7Constitutive equations of a third order fluid The

Cuachy stress tensor τ in an incompressible homogeneous third order fluid is [67-70]: τ = −?I+ ? + ?3??

A21 A1 + ?1A2 + ?2A21 + ?1A3 + ?2 A1A2 + A2A1 ? (1.17) ³ ́ ¡ ¢ in which ?? ?? (? = 1? 2) and ?? (? = 1?

2
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7?3) are the material constants. The Rivlin-Ericksen tensors can be

represented as follows A1 = L+L?? (1.18) A?+

1 =

23?A??? + A?L + L? A? ? = 1? 2? (1.

19) Chapter 2 MHD mixed convection peristaltic flow with variable viscosity and thermal conductivity This

chapter concerns with mixed convection peristaltic flow of an electrically conducting

1fluid in an inclined channel. Analysis has been carried out in the presence of

Joule heating. The

127fluid viscosity and thermal conductivity are assumed to vary

with respect to temperature. A nonlinear coupled governing system is computed. Numerical results are

presented for the veloc- ity, pressure gradient, temperature and streamlines. Heat transfer rate at the wall

is computed and analyzed. Graphs reflecting the contributions of embedded parameters are discussed.

2.1

6Mathematical formulation We examine the peristaltic transport of viscous fluid

in an inclined asymmetric channel of width

(?1 + ?2) ? The channel is inclined at an angle ?1. The ?−axis is chosen along the length of the channel

and ?

20−axis is taken normal to the ?−axis. A uniform magnetic field of strength ?0

acts parallel to the ? −axis. Effects of

induced magnetic field are neglected under low magnetic Reynolds number approximation. Electric field

effects are also negligible. The viscosity and thermal conductivity are temperature dependent. The

following forms of waves propagate along the channel walls ?1(?? ?) = ?1 + ?1, ?2(?? ?) = −?2 − ?2,

87?1 2? = ?1??? ? (? − ??) ? µ 2? ¶ ?2 = ?1??? (? − ??) + ? ? µ

? ¶ in which ? is time, ?1 and ?2 represent

171the upper and lower walls of channel,

?1 and ?1 are the amplitude of the waves at respective walls, ? the phase difference of two waves and ?

and ? are the speed and wavelength of the waves respectively. Appropriate velocity field for this problem is

? = ?(?? ? ? ?)? ? (?? ? ? ?)? 0 ? Laws of conservation of mass and linear momentum give £ ¤ ?? ?? ??

?? = 0? + (2.1) ? ? +? +? ? ? ? = − ?? ? ? (? ) ?? + ? ? (? ) ?? + 2 + µ ?? ?? ?? ¶ ?? ?? −??02? + ???∗ (?

− ??) sin ?1 + ?? sin ?1? µ ?? ¶ ?? ?? − ??02? ∙

169µ ?? ?? ¶¸ (2.2) ? ? +? +? ? ? ? ?? ? ?? + ? ?? ?? ? (? ) µ ?? ?? ?? ¶ = −??

+2?? ?(?)?? µ ¶ ?? −???∗ (? − ??) cos ?1− ?? cos ?1? ∙ µ ?? ?? ¶¸ + (2.

3) In above equations ?

122is the density of fluid, ? is the electric conductivity, ? (? ) is the

temperature dependent dynamic viscosity, ? is the acceleration due to gravity, ?? is the mean value of the

temperature of both the channel walls and ?∗ is the thermal expansion coefficient. We consider (?? ?) and

? as the

7velocity components and pressure in the wave frame (?? ?). The
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7transformations between laboratory and wave frames are

? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?)? (2.4) where (? ? ? ) and ?

10are the velocity components and pressure in the

laboratory frame. The

95conservation laws of mass and momentum in wave frame can be

expressed as ?? ?? ?? ?? = 0? + (2.5) ? (? + ?) ??? + ? ??? (? + ?) = − ???? + 2 ??? ? (? ) ???? + ??? ?

(? ) ???? + ???? ³ −??20́(? + ?) + ???∗ (? − ??¡) sin ?1 +¢ ?? sinh?1? ³ ́i (2.6) ? (? + ?) ??? + ? ??? (?)

= − ???? + 2 ??? ? (? ) ???? + ??? ? (? ) ???? + ???? ³ −́???∗ (? − ??) cos³?1 − ?? ćos ?1? h ³ ́i (2.7)

Defining the dimensionless quantities ?= ? ? ? = ? ? = ? ? = ? ? ? ?21? ? ? ? ? = ?1 ? ?1 = ??11 ? ?2 = ??

12 ? ? = ??21 ? ? = ? ???0 , ?1 ?? ?= ?0 ? ?(?) = ?(? ) ? ? 2 = ? − ?? ? ? 0 µ ?0 ¶ ?02?12? ? = ?? ? ?? =

???∗ (??10−? ?0) ?21 ? 2 ? ? ? = ?1 − ?0 ? ??= ????01? ?? = ???21? ? = ??, ? = −?? (2.8) and

adopting long wavelength and low Reynolds number approach we have in terms of stream function ? the

following equations ?? = ? ? (?) ?2? − ?2 ?? +1 ?? +??? Si ??1 + Re S?i???1 ∙ ??2 ̧ µ ?? ¶ ? (2.9) ?? =

0? (2.10) and the continuity equation is identically satisfied. Here, ?1?2 are the dimensionless wall shapes,

1M is the Hartman number, G? is the Grashoff number, Re is the Reynolds

number, Fr is the Froud number and ? is the

stream function. Equation (2.10) indicates that ? 6= ?(?) and compatibility equation from Eqs. (2.9) and

(2.10) has the form 0= ???22 ?(?)??2??2 −?2 ??2??2 +?????? sin ?? ∙ ̧ µ ¶ The volume flow rate in fixed

frame is defined as ?1 ? = ? (? ? ? ? ?)? ? Z?2 and in wave frame we have ?1 ? = ?(?? ?)??? Z?2 in which

?1?2 are functions of ? alone. From Eqs. (2.12), (2.13) and (2.5) one has ? = ? + ??1(?) − ??2(?)? The

time averaged flow over a period ?? is ? = 1 ?? ???? (2.11) (2.12) (2.13) ? Z0 which implies that ? = ? + ??

1 + ??2? Defining ? and ? as the dimensionless mean flows in laboratory and wave frames by ? = , ? = ? ?

??1 ??1 one can write ? = ? +1+?? (2.14) where ?= Z?2 ?? ?? = ?(?1) − ?(?2)? ?1 ?? (2.15)

Dimensionless boundary conditions in terms of stream function are ? = ? 2 , ?? = −1 at ? = ?1, ? = − , ?? =

−1 at ? = ?2. ? 2 (2.16) 2.2 Heat transfer analysis We have assumed that the walls at ?1 and ?2 have

temperature ?0 and ?1 respectively. Energy equation in presence of viscous dissipation and Joule heating

effects in laboratory frame is 2 ??? ??? +??? = ∇? ?(?)(∇?) +?(?)"2(µ??¶ ?? 2 + ?? ?? ) + ?? ?? 2 ?? ??

+ ¡ ¢ £ ¤ µ ¶ µ ¶ # +??02?2? (2.17) In wave frame above equation takes the form ??? ((? + ?) ?? + ???) =

∇? ?(? ) (∇? ) + ? (? ) "2 (µ ?? ?? 2 ?? 2 + ?? ?? 2 ¶ ) + ¶ µ ?? µ ?? ?? + ¶ # +?£?20 (? + ?)2 ?¤ (2.18) in

which ? is the fluid temperature, ?? is the specific heat, ? is the dimensional tempera- ture dependent

thermal conductivity and ? (? ) is the temperature dependent viscosity. The dimensionless energy equation

in view of afore mentioned approximations becomes ? {?(?)??}+???(?) ??? 2+???2 ?? 2 + 1 = 0? (2.19)

?? ?? ¡ ¢ µ ¶ where ?? is the Brinkman number, ?(?) the dimensionless temperature dependent thermal

conductivity, ? the dimensionless temperature, Pr the Prandtle number and E the Eckert num- ber. These

involved quantities are defined as follows: ? = ??1−−???0? ?(?) = ??(?0)? ?? = Pr?? ?? = ??0?0?? ? = ?2

? (2.20) ?? (?1 − ?0) Dimensionless boundary conditions for the temperature are given by ? = − at ? = ?1

and ? = at ? = ?2? 1 1 2 2 (2.21) Temperature dependent viscosity and thermal conductivity are taken in

the form ?(?) = 1 − ??? ?(?) = 1 + ??? (?, ?) ¿ 1? (2.22) Note that ?0 and ?0 are the viscosity and thermal

conductivity of the fluid when the temper- ature of the fluid approaches the mean temperature. Also the

cases of constant viscosity and thermal conductivity can be recovered by choosing ? and ? equal to zero.

The values of ?1 and ?2 are ?1(?) = 1 + ? cos(2??), ?2(?) = −? − ? cos(2?? + ?)? (2.23) We note that Eq.

(2.19) is nonlinear in the present analysis. Hence in this study we have nonlinear coupled system. Analytic

solution of the resulting nonlinear coupled system seems difficult. Hence the numerical solution through

Mathematica is prefered here. The step sizes for x and y are chosen 0.01. The flow quantities of interest

will be analyzed in the next section. 2.3 Graphical analysis This section aims to analyze the numerical

results for influential parameters. Plots of pressure gradient, axial velocity, temperature and stream

function are obtained and examined. Numer- ical values of the heat transfer rate are given in Table 2.1. It

is obvious from Figs. 2.1 that pressure gradient for constant viscosity fluid is less when compared with

variable viscosity fluid. Temperature dependent thermal conductivity also in- creases the value of pressure

gradient. Such results are obvious from the Figs. 2.1 a-b. An increase in ? and ? also increases the

pressure gradient. Pressure gradient decreases by increas- ing Hartman and Froud numbers. However

this change in pressure gradient due to M and Fr is sufficiently large when compared with that of ? and ?

(see Figs. 2.1 d and f). As the value of ?1 is varied from 0 to ??2 the pressure gradient tends to attain

significantly large value which highlights the fact that pressure gradient is higher in a vertical channel when

compared to horizontal channel (Fig. 2.1 c). For assisting flow (+ve value of acceleration due to gravity g)

pressure gradient is large than that of opposing flow (see Fig. 2.1 e). Plots of axial velocity are given in

Figs. 2.2 a-d. These Figs. showed that velocity tends to follow parabolic path with maximum value

occurring near the centre of the channel. Fig. 2.1a shows that when the viscosity parameter ? is taken zero

i.e. the velocity for constant viscosity fluid is seen to have maximum value near the centre of the channel

whereas it tends to shift towards the lower wall for non zero values of the viscosity parameter. Moreover a

slight increase in the maximum value of velocity is observed when ? increases. Channel inclination angle ?

1 is seen to have almost similar effect on the velocity as that of ? (see Fig. 2.2 b). Maximum value of
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velocity in inclined channel is shifted towards the lower wall. Increase in the strength of applied magnetic

field decreases the velocity. This change in velocity is maximum when the Hartman number is taken

between 1 and 2 (see Fig. 2.2 c). Change in the value of Grashoff number varies the symmetry of the

velocity profile relative to the channel i.e. velocity has maximum value near the centre for opposing flow

and this change occurs when G? has +ve value. Effect of Grashoff number on the velocity also depends

on the channel inclination which is well justified physically (see Fig. 2.2 d). It is further noted that ? has no

effect on the axial velocity. Behavior of the dimensionless temperature through ?? ?? ?, ?1? G? and Br are

examined in the Figs. 2.3 a-f. Fig. 2.3a depicts that an increase in the viscosity parameter decreases the

temperature. This decrease in temperature subject to decrease in ? is uniform throughout the channel.

Fig. 2.3 b analyzes the impact of variable thermal conductivity parameter ? on the temperature. Effect of ?

on the temperature is noteworthy in the sense that it is not uniform throughout the channel. It means that

near the lower wall (?2) an increase in the value of ? decreases the value of temperature of the fluid

whereas near the upper wall (?1) it increases the value of ?? Since ? yields the perturbation in the thermal

conductivity of the fluid so increase in this parameter gives rise to increase in the ability of the fluid to

dissipate or absorb heat. Hence when temperature of the fluid is higher than the temperature of the

boundary then increase in ? results in reduction of the temperature of fluid and vice versa. Increase in the

Hartman number increases the value of ?? This fact is primarily due to consideration of Joule heating (see

Fig. 2.3c). Channel inclination also has non-uniform effect on the temperature. Increase in ?1 near the

lower wall increases the temperature but such increase although is not very significant. Similarly the

Grashoff number also has very less and non-uniform effect on the temperature (see Figs. 2.3 d and e).

Fig. 2.3 f shows that an increase in Br increases the temperature ? significantly. Also when Br is increased

then the temperature plots become non-linear. Streamlines for ? and ? are plotted in the Figs. 2.4 and 2.5.

It is seen that the size of trapped bolus decreases with an increase in ?? However ? has no significant

effect on the size of the bolus. Table 2.1 gives the numerical values of heat transfer rate at the wall ?0(?1)

for different values of the embedded parameters. Results showed that an increase in the value of viscosity

parameter ? reduces the transfer rate but heat transfer rate increases through increase in ?? The transfer

rate decreases via inclined nature of channel. Further an increase in Hartman number increases the

transfer rate. 2.4 Main points Effects of variable viscosity and thermal conductivity on the MHD peristaltic

transport of fluid in an inclined asymmetric channel are analyzed. Mixed convection and Joule heating

effects are present. Main results are reported below. • Variable viscosity and thermal conductivity tend to

increase the pressure gradient. • Viscosity parameter, Grashoff number and inclination angle have similar

effects on the velocity. However velocity is unperturbed due to change in thermal conductivity parame- ter.

• Variable thermal conductivity has no significant change on the bolus size. • Variable viscosity tends to

reduce the temperature of fluid. • Viscosity parameter and inclination angle have similar effects on heat

transfer rate at the wall. The following values are used in the plots Figs. 2.1 (a-g), ? = 0?1? ?1 = ??6? ? =

0?1? ?? = 3? ?? = 2? ?? = 0?2? ? = 0?5? ?? = 2? ?? = 0?5? ? = 0?4? ? = 0?3? ? = ??4? ? = 0?7 and ? =

0?7? Figs. 2.2 (a-d), ? = 0?1? ?1 = ??6? ? = 0?1? ? = 0? ?? = 3? ?? = 2? ?? = 0?4? ? = 0?5? ?? = 2? ??

= 0?5? ? = 0?4? ? = 0?3? ? = ??4? ? = 0?7 and ? = 0?9? Figs. 2.3 (a-f), ? = 0?1? ?1 = ??6? ? = 0?1? ? =

0? ?? = 5? ?? = 2? ?? = 0?5? ? = 1? ?? = 1? ?? = 0?5? ? = 0?4? ? = 0?3? ? = ??4? ? = 0?7 and ? = 1?5?

Figs. 2.4 and 2.5, ? = 0?1? ?1 = ??6? ? = 0?1? ?? = 3? ?? = 2? ?? = 0?2? ? = 0?5? ?? = 2? ?? = 0?5? ?

= 0?4? ? = 0?3? ? = ??4? ? = 0?7 and ? = 1?2? 0.2 0.2 0.0 0.0 -0.2 -0.2 dp?dx dp?dx e = 0.0, 0.1, 0.25

-0.4 a = 0.0, 0.2, 0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1.0 -1.0 -0.4 -0.2 0.0 0.2 0.4 x -0.4 -0.2 0.0 0.2 0.4 Fig. 2.1 a

Fig. 2.1 b x 1.0 0.0 0.5 M = 0.0 a1 = p/2 -0.5 0.0 M = 1.0 a1 = p/4 -1.0 dp?dx -0.5 dp?dx -1.5 -1.0 -2.0 a1 =

0 -1.5 -2.5 M = 2.0 -0.4 -0.2 0.0 0.2 0.4 -3.0 -0.4 -0.2 0.0 0.2 0.4 Fig. 2.1 c x Fig. 2.1 d x 0.2 2.5 0.0 -0.2

dp?dx -0.4 -0.6 -0.8 -1.0 Gt = -2, 0, 2 dp?dx 2.0 Fr = 0.5 1.5 1.0 0.5 Fr = 1.0 0.0 Fr = 1.5 -0.5 -0.4 -0.2 0.0

0.2 0.4 x -0.4 -0.2 0.0 0.2 0.4 Fig. 2.1 e Fig. 2.1 f x Figs. 2.1 a-f. Development of pressure gradient in the

axial direction. 0.0 0.0 -0.2 -0.2 a = 0.6, 0.4, 0.0 a1 = p/2, p/4, 0 -0.4 -0.4 U U -0.6 -0.6 -0.8 -0.8 -1.0 -1.0

-0.5 0.0 0.5 1.0 y -0.5 0.0 0.5 1.0 Fig. 2.2 a Fig. 2.2 b y 0.0 0.0 -0.2 -0.2 M = 0.0, 0.8, 1.6 Gt = 2, 0, -2 -0.4

-0.4 U U -0.6 -0.6 -0.8 -0.8 -1.0 -1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 Fig. 2.2 c y y Fig. 2.2 d Fig. 2.2 a-d

Axial velocity for different parameters. 0.8 0.8 0.6 0.6 e = 0.0, 0.1, 0.2 0.4 0.4 a = 0.0, 0.4, 0.8 q 0.2 q 0.2

0.0 0.0 -0.2 -0.2 -0.4 -0.4 -0.5 0.0 0.5 1.0 Fig. 2.3 a y 0.0 -0.5 Fig. 2.3 b y 0.5 1.0 q 0.8 0.6 0.4 0.2 0.0 M =

0.0, 0.5, 1.0 q 0.6 a1 = 0, p/4, p/2 0.4 0.2 0.0 -0.2 -0.2 -0.4 -0.4 -0.5 0.0 0.5 1.0 0.0 0.5 1.0 y Fig. 2.3 c y

-0.5 Fig. 2.3 d 0.6 Gt = -2, 0, 2 0.4 Br = 0.1, 0.2, 0.3 0.4 0.2 0.2 q 0.0 0.0 q -0.2 -0.2 -0.4 -0.4 -0.5 0.0 0.5

1.0 0.0 0.5 1.0 y -0.5 Fig. 2.3 e Fig. 2.3 f y Figs. 2.3 a-f. Dimensionless temperature for various

parameters. Fig. 2.4 Streamlines for viscosity parameter ?. Fig. 2.5 Streamlines for thermal conductivity

parameter ?. ? ? ?1 ? 0?0 0?1 ??6 0?5 0?4 0?6 0?1 0?0 0?1 0?2 0?1 0 ??4 ??2 ??6 0?0 0?4 0?8 −? 0(?

1) 1?0603 1?0257 1?0051 0?9893 1?0524 1?1258 1?1278 1?0247 0?9892 0?9857 1?0284 1?1567

Table 2.1. Numerical values of heat transfer rate at the wall (?1) when ?? = 3? ? ? = 2? ?? = 0?2? ? = 0?

?? = 2? ? ? = 0?5? ? = 0?4? ? = 0?3? ? = ??4? ? = 0?7 and ? = 1?2? Chapter 3 Hydromagnetic peristaltic

transport of variable viscosity fluid with heat transfer and porous medium This chapter examines the

peristaltic transport of variable viscosity fluid in a planar channel with heat transfer. The fluid viscosity is

taken temperature dependent. The fluid is electrically conducting in the presence of a constant applied

magnetic field. Both channel and magnetic field are considered inclined. An incompressible fluid saturates

the porous space. Heat transfer analysis is carried out in the presence of viscous dissipation and Joule

heating. The resulting problems are solved numerically. A parametric study is performed to predict the

impact of embedded variables. Important results have been pointed out in the key findings. 3.1

Mathematical analysis Let us examine the peristaltic transport of an incompressible viscous fluid in a

symmetric channel. The channel is taken inclined at an angle ?1 to the vertical. The fluid is electrically

conducting in the presence of an inclined magnetic field with constant strength B0. The flow generated is

due to peristaltic waves travelling along the channel walls. The wall geometry is chosen in the form ?(?? ?)

= ?1 + ?, where ?1 is the half channel width and ? is the disturbance produced due to propagation of

peristaltic waves at the walls. This disturbance can be written in the form 2? ? = ?1??? (? − ??) ? µ ? ¶ in

which ? is time, ?1 is the amplitude of the peristaltic wave, ? and ? are the speed and wavelength of the

waves respectively. Appropriate velocity field for this problem is ? = ?(?????)??(?????)?0 ?
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Lawsofconservationofmass,momentumandenergycanberepre- s£ented as follows: ¤ ?? ?? ?? ?? = 0? +

(3.1) ? ? ??? + ? ??? ? = − ???? + 2 ??? ? (? ) ???? + ??? ? (? ) ???? + ???? −??³02???? ?????−? Si??

+??³?∗(? −?0)Si??1+??Si??1− ́ ́ h ³ ?(́?i)? ? ? (3.2) ¡ ¢ ? ? ??? + ? ??? ? = − ???? + 2 ??? ? (? ) ????

+ ??? ? (? ) ???? + ???? −??³02 Si ?? ? ? ??́? − ? Si ?? − ???³∗ (? − ?0́) ? ???1h − ???³???1 − ?́(?i)?

? ? (3.3) ¡ ¢ ?? 2 ?? 2 ?? ?? 2 ??? ??? +??? = ? ??? +??? +?(?) 2 £ " (µ?? ¶ + ) + + ¡ ¢ ¤ µ ?? ¶ µ ?? ??

¶ # +??02 ?????−? Si?? ?(?)?2 2 + ? ? (3.4) ¡ ¢ Here ? , ? and ?

10are the velocity components and pressure in the

laboratory frame (?? ? ? ?), ? the density of fluid, ? is the dynamic viscosity, ? is the acceleration due to

gravity, ? is permeability of the porous medium parameter, ?

148is the inclination of applied magnetic field and ?∗ is the

thermal expansion coefficient. We also denote ?? as the specific heat, ? the thermal conductivity and ? the

temperature of fluid. We further adopt (?? ?) and ? as the

7velocity components and pressure in the wave frame (?? ?). The

7transformations between laboratory and wave frames are

? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?)? (3.5) The

10governing equations in the wave frame are given by

?? ?? ?? ?? = 0? + (3.6) ? (? + ?) ??? + ? ??? (? + ?) = − ???? + 2 ??? ? (? ) ???? + ??? ? (? ) ???? +

???? −??³02???? ((? + ?) ??́?? − ? Si ??) + ???∗ (?¡ − ?0) Si¢??1 +h?? Si ?³?1 − ?(?)́(?i+?)? (3.7) ? ?

(? + ?) ??? + ? ??? (?) = − ???? + 2 ??? ? (? ) ???? + ??? ? (? ) ???? + ???? −??02³Si ?? ((? + ?) ???́?

− ? Si ??) − ???³∗ (? − ?0)́????1h− ???³???1 − ?́(?i)(?)? (3.8) ? ?? 2 ?? 2 ?? ?? 2 ??? ((? + ?) ?? +

???) = ? [??? + ???] + ? (? ) "2 (µ?? + µ ?? + ¶ ¶ ) µ ?? ?? + ¶ # +??02 ((? + ?) ???? − ? Si ??)2 + ? (? )

(? + ?)2 ? ? (3.9) Defining the dimensionless quantities ? = ?(?) = ? ? = ? ? ?= ? ?= ? ?= ? ? ? ?1 ? ? ? ? ?

= ?1 ?? ? ? ?= ?1 ? ? = ??11 ? ? = ???21??0 , ? = ?0 ? ? ?(? ) ? ? 2 = ? 2 ?0 ? µ ?0 ¶ ?02?21? ?? =

????01? ? = ??? ? = ? −?0?0? ?? = ????∗0??0?21? ? ???21 ? ? = ?21 ? ?? = Pr ?, ? = ???2?0 ? ? ? =

?0?? ? ? ? = ??, ? = −??? (3.10) and adopting

16long wavelength and low Reynolds number approach, the equations in terms

of

stream function ? are ?? = ?? ?(?) ??2??2 − ?2???2? + ? ? (?) ?? ∙ ̧ ½ ? +1 + ?? ¾ µ ¶ ??? Si ??1 + Re

Si ??1 ? (3.11) ?? ?? = 0? (3.12) ???+???(?) ??? 2+?? ?2???2?+?(?) ????+1 =0? 2 ? (3.13) ¢ ∙ ̧ µ ¶

3Note that the incompressibility condition is automatically satisfied and

Eq. (3.11) witnesses ¡ that ? =6 ?(?)? From Eqs. (3.10) and (3.11) we have 0= ???22 ?(?)??2??2 − ?2???

2?+ ? (?) ?2? ?? ∙ ̧ ½ ? ??2 + ?? ?? Si ??1? (3.14) ¾ µ ¶ Here ? denotes

47the kinematic viscosity, Re the Reynolds number, ?? the Brinkman number, ?

the Eckret number, ? ? the Prandtl number, ? the

wave number, ?? the Grashoff number, ? ? the Froud number, ? the dimensionless permeability parameter

and ? the dimensionless temperature? We consider the temperature dependent viscosity in the form ?(?) =

?−?? which gives ?(?) = 1 − ??? for ? ¿ 1? where ? is the viscosity parameter. Note that for ? = 0 our

problem reduces to the constant viscosity case.

16The dimensionless volume flow rate in laboratory frame is defined by

? ?= ? (? ? ? ? ?)? ? (3.15) Z0 and in wave frame we have ? ? = ?(?? ?)?? (3.16) Z0 in which ? is function

of ? alone. From Eqs. (3.14), (3.15) and (3.6) one has ? = ? + ??(?)? The time averaged flow over a

period ?? is ?? ? = 1 ? Z0 ??? which implies that ? = ? + ??? Defining ? and F as the dimensionless mean

flows in the laboratory and wave frames by ? = , ? = ? ? (3.17) ?? ?? one can write ? = ? + 1? (3.18) where

? = ? ?? Z0 ?? ??? (3.19) The corresponding boundary conditions for the present flow configuration are ?

= 0, ??? = 0, ?? = 0? ? = 0, ? = ? , ?? = −1, ? = 0, ? = ?, (3.20) with ?(?) = 1 + ? cos(2??). (3.21) 3.2

Solution and analysis Numerical solutions of the derived problems are obtained. For that we have taken
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0.01 as the step size for the variations of ? and ?. The obtained results are analyzed graphically in this

section. The graphs of pressure gradient,

30stream function, velocity and temperature are examined. Moreover, the

numerical values of

heat transfer rate at the wall are computed and analyzed through Table 3.1. Hence Figs. 3.1(a-h) are

plotted to analyze the pressure gradient variation with respect to different embedded parameters. Figs.

3.2-3.8 depict the behavior of streamlines, Figs. 3.9(a-f) for velocity and Figs. 3.10(a-f) for the temperature

profile. It is

35seen that the pressure gradient varies and has maximum value at the wider

part of the channel.

178Minimum value of the pressure gradient is

found near the more occuled part of the channel.

27It is observed that value of the pressure gradient increases with an increase in

the

variable viscosity parameter i.e. the pressure gradient has a higher value for the variable viscosity fluid

than that of the fluid with constant viscosity (see Fig. 3.1a). Presence of porous medium decreases the

value of pressure gradient (see Fig. 3.1b). Pressure gradient is larger when we move from the horizontal to

the vertical channel. Increase in the Hartman number and decrease in the magnetic field inclination tend to

decrease the pressure gradient (Figs. 3.1d and f). An increase in Froud number decreases the pressure

gradient while the Brinkman number increases its value (Figs. 3.1e and h). Corresponding value of the

pressure gradient is higher in the case of resisting (or opposing) flow when compared to that of the

assisting flow (Fig. 3.1g). The volume of the fluid trapped within a streamline is usually termed as bolus.

This study showed

1that the size of the trapped bolus decreases with an increase in the magnetic

field parameter

M (see Fig. 3.2). Bolus size is

14smaller in the case of fluid with

constant viscosity (see Fig. 3.3).

5Size of the trapped bolus increases with an increase in the value of the

porosity parameter k. It means that the bolus size gets reduced in case of flow through porous medium

(Fig. 3.4).

64From Fig. 3. 5 it is observed that the

impact of channel inclination on the size of the trapped bolus is not very significant. However an increase in

channel inclination enhances the bolus size by a very small amount. An increase in both magnetic field

inclination and Brinkman number give rise to

5an increase in the size of the trapped bolus

(see Figs. 3.6 and 3.7). Bolus is found to have a comparatively larger size in the case of assisting flow (+

value of g) (see Fig. 31 3.8). Velocity profile is seen to follow a parabolic trajectory with maximum value

near the centre of the channel. Such value of the velocity increases when we move from constant viscosity

fluid to the fluid with temperature dependent viscosity. It is seen from Fig. 3.9b that the velocity decreases

in the case of porous medium. Increase in the Hartrman number decreases the velocity near the centre

line whereas the case is opposite for an increase in Brinkman number (see Figs. 3.9d and f). Inclination of

the channel results in the increase of the velocity for both assisting and resisting flows (see Fig. 3.9c). Fig.

3.9e revealed that the velocity has a higher value for assisting flow. Dimensionless temperature is

analyzed in the Figs. 3.10(a-f). Fig. 3.10 a showed that the temperature is higher for the case of constant
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viscosity

3fluid when compared with the fluid of variable viscosity.

Fig. 3.10b

3depicts that an increase in the value of permeability parameter decreases the

value of the dimensionless temperature. Dimensionless temperature increases with

81an increase in the value of the Hartman number (Fig. 3.10

c). Similarly temperature is higher for the case of assisting flow (see Fig. 3.10 d). Increase in inclination of

channel gives higher value of the temperature whereas the case is opposite for the inclination of magnetic

field (see Figs. 3.10 e and f). Numerical values of the heat transfer rate at the wall for different parameters

are plotted in Table 3.1.

15It is noted that the heat transfer rate decreases by increasing

the viscosity parameter ?? permeability parameter k, Grashoff number G? and channel and magnetic field

inclinations (?1 and ? respectively). However it increases due to increase in Hartman number (M) and

Brinkman number Br. 3.3 Key findings Numerical solution for the

3peristaltic transport of the variable viscosity fluid with porous medium and heat

transfer

in an inclined channel is obtained and analyzed. The main points of present attempt are listed below. •

Pressure gradient has a higher value for variable viscosity fluid than constant viscosity fluid. • There is a

decrease of pressure gradient in presence of porous medium. • Pressure gradient has higher value when

channel is vertical and there is resisting flow. •

1Size of the trapped bolus increases with an increase in viscosity

and permeability para- meters. • Trapped bolus has a larger size for assisting flow case. • Fluid velocity

with constant viscosity is less when compared to that of variable viscosity. • Effects of porous medium on

pressure gradient and velocity are qualitatively similar. • Unlike the velocity, the temperature of the fluid is

higher for constant viscosity case. • Temperature is higher for the case of assisting flow. •

1Heat transfer rate at the wall decreases with the increase in

channel and magnetic field inclinations. The used values of the parameters here are ? = 0?2? ? = 1?0? ?

1? ? = ??4? Re = 5? ? ? = 2? ?? = 0?5? ? = 0?5? ?? = 0?5? ? = 0?3 and ? = 0?3 (unless stated

otherwise). 1.6 1.4 1.5 dp?dx 1.2 1.0 0.8 0

172.6 0.4 a = 0, 0. 3, 0.

6 dp?dx 1.0 0.5 0.0 k = 5.0 k = 1.5

85k = 0. 5 -0. 4 -0.2 0. 0 0.2 0. 4 -0. 4 -0.2 0. 0 0.2 0.

4 Fig. 3.1 a x Fig. 3.1 b x 2 1.6 dp?dx 1 0 -1 a1 = p/2 a1 = p/4 a1 = 0 -0.4 -0.2 0.0 Fig. 3.1 c x 0.2 0.4 1.4

dp?dx 1.2 1.0 0.8 0.6 0.4 -0.4 b = 0, p/4, p/6 -0.2 0.0 0.2 Fig. 3.1 d x 0.4 7 6 Fr = 0.5 1.5 5 1.0 dp?dx 4 3

0.5 M = 0.0 dp?dx Fr = 1.0 2 1

159Fr = 0. 5 -0. 4 -0.2 0. 0 0.2

Fig. 3.1 e x 1.5 dp?dx 1.0 Gt = -2, 0, 2 0.5 -0.4 -0.2 0.0 0.2 Fig. 3.1 g

117x 0.0 -0. 5 0.4 -0. 4 1 .8 1. 6 1 .4

dp?dx 1.2 1.0 0.8 0.6 0.4 0.4 -0.4 M = 1.0
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76M = 2.0 -0.2 0.0 0.2

0.4 Fig. 3.1 f x

22Br = 0, 0. 5, 1 .0 -0. 2 0.0 0. 2 0.

4 Fig. 3.1 h x Figs. 3.1 (a-h) Pressure gradient for the various parameters. Fig. 3.2 Streamlines for

variation of Hartman number. Fig. 3.3 Streamlines for variation of viscosity parameter. Fig. 3.4 Streamlines

for variation of porosity parameter. Fig. 3.5 Streamlines for variation of channel inclination. Fig. 3.6

Streamlines for different inclinations of magnetic field. Fig. 3.7 Streamlines for different Brinkman number.

Fig. 3.8 Streamlines for different Grashoff number. 0.5 0.5

34a = 0.0, 0.3, 0.6 k = 0. 4, 1, 10 0 .0 0.0

36U U -0.5 -0.5 -1.0 -1 .0 -1 .0 -0. 5 0.0

y Fig. 3.9

60a 0. 5 1.0 -1.0 -0. 5 0.0

Fig. 3.9 b

180y 0.5 1.0 0.

5 a1 = 0, p/4, p/2 0.5 M=0,2,4 0

92.0 0.0 U U -0. 5 -0. 5 -1 .0 -1.0 -1.0 -0. 5 0.0 0.

185 1.0 y -1.0 -0.5 0.0 0.5 1.0

Fig. 3.9 c Fig. 3.9 d y 0.5 Gt = -2, 0, 2 0.5

22Br = 0, 0. 5, 1 .0 0.0 0.0

33U U -0. 5 -0. 5 -1 .0 -1 .0 -1 .0 -0. 5 0.0 0. 5 1 .0 -1.0 -0. 5 0 .0 0. 5 1.0

Fig. 3.9 e y y Fig. 3.9 f Figs. 3.9 (a-f) Velocity profile for different parameter. 1.4 1.2

175a = 0. 0 1.2 k = 0. 5 1.0

1.0 k = 2.0 a = 0.3 0

23.8 0.8 q a = 0.6 q 0. 6 0.6

54k=10 0. 4 0. 4 0. 2 0. 2 0.0 -1 .0 -0.

5 0.0 0.5 1.0 y Fig. 3.10

114a 0.0 0.5 1 .0 -1.0 -0. 5 0.0

Fig. 3.10 b y M = 2.0 1.0 Gt = -2, 0, 2 1.5 0.8 M = 1.0 q

221.0 0. 6 q M = 0.0 0 .4 0. 5 0. 2 0.0 0.0 -1 .0 -0. 5 0. 0 0. 5 1 .0 -1 .0 -0. 5 0.0 0.

5 1.0 Fig. 3.10 c y Fig. 3.10 d y 1.4 1.0 a1 = 0, p/4, p/2 b=0 1.2 0.8 b = p/4 1.0 q 0
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181.6 0.4 0.8 q 0. 6 0.

4 b =

48p/2 0. 2 0. 2 0.0 -1 .0 -0. 5 0.0 0. 5 1 .0 0.0 1 .0 -0. 5 0.

5 Fig. 3.10 e y -1.0 Fig. 3.10 f y 0.0 Figs. 3.10 (a-f) Temperature profile for different parameters. . ? 0?0

0?3 0?6 0?2 ? 1?0 0?5 2?0 10?0 1?0 ? 1?0 0?0 1?0 2?0 ?? 2 ?1 ? ?? ?0(?) ??4 ??4 0?5 2?32081 1?

76871 1?44276 2?24094 1?71568 1?52373 1?61917 1?91839 2?8159 1?0 −2?0 0?0 2?0 1?0 0?0 ??4

??2 ??4 0?0 ??4 ??2 1?95425 1?93242 1?91839 1?93242 1?92427 1?92153 2?22499 1?92427 1?

62345 ??4 0?1 0?401872 0?2 0?795321 0?3 1?18027 Table 3.1. Numerical values of heat transfer rate

at the wall for different parameters. Chapter 4

102Peristaltic flow in an asymmetric channel

with convective boundary conditions and Joule heating This chapter concentrates

63on the peristaltic transport of viscous fluid in an asymmetric channel. The

channel

walls exhibit convective type boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic

(MHD) fluids are considered. Analytic solutions

70for stream function and temperature are constructed. Numerical integration is

carried out for pressure rise

per wavelength. Effects of influential flow parameters are pointed out through graphs. 4.1 Mathematical

analysis

5Consider the peristaltic transport of an incompressible MHD viscous fluid in

an asymmetric channel of width

?1 + ?2. The

56?-axis is taken along the length of the channel whereas the ? -axis is taken

normal to the ?-axis.. The

flow is due to the waves travelling on the walls of channel. A constant

32magnetic field ?0 is applied in the ? - direction. The

17fluid is electrically conducting while the channel walls are non-conducting.

The upper ?1 and lower ?2 walls are maintained at the

temperature ?0 and ?1 respectively. The geometry of the walls is given as follows 2? ?1(?? ?) = ?1 + ?

1??? (? − ??) , µ ? ¶ ?2(?? ?) = −?2 − ?1??? 2? ? (? − ??) + ? ? (4.1) µ ¶ where ?1 and ?1 are the

amplitudes of the waves travelling

35on the upper and lower walls,

?

97is the wavelength, ? is the wave speed, ? is the phase difference and ? is the

time. The

laws of mass, momentum and energy yield ?? ?? ?? ?? = 0? + (4.2) ? ? ? =− +? +? ? ? ?? + ? +

42µ ?? ?? ?? ¶ ?? ∙ ???2? 2 ??2??2  ̧− ??02? ? ? ? ? =− +? +? ? ? ?? +? ?2? ?2?µ
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?? ?? ?? ¶ ?? ∙??2 ?? 2 ¸ + ? ??? ??? + ? ??? + ? ??? ? = ? ???2?2 + ???2 ?2

(4.3) (4.4) +? 2 ³ ?? 2 + ???? + ???? + ???? + ??02?2? 2 ́ h 2 i ?? (4.5) ∙ µ³ ́ ³ ́ ¶ ³ ́ ̧ where (?? ? )

6are the velocity components in (?? ? ) directions respectively, ? is the

pressure,

?

21is the dynamic viscosity, ? is the density of fluid, ? is the electrical conductivity,

? is the thermal conductivity and

?? is the specific heat. We have an interest to transform our problem from the fixed frame (?? ? ) to the

moving/wave frame (?? ?). For that we define ? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ?

?)? (4.6) On setting ?= ? ? ? = ? ? = ? ? = ? ? ? ? ? ?1 ? ?? ? ? = ?1 ? ?1 = 1 ? ? ?1 ?2 = ?2 ? ? = ?2 ? ?

= ?1 ? ? = ?1 ? ? = ?21? , ? = ? ? ?1 ?1 ?1 ?1 ??? ? ?? = ???1 ? ? = ?? ? 1?2 ? ? ? ? = µ ¶ ? ?0?1? ? = ?

1 − ?0 ? − ?0 ? ?? = Pr ?, ?= ?2 ?? (?1 − ?0) ? ?? = ???? ? = ??, ? = −?? ? ?? ?? dimensionless form of

Eqs. (4?2 − 4?5) take the following form ?? ?? ?? ?? = 0? + ?Re (?+1)?? +??? ?? ?? =− ?? + ?2?2? ?2?

−?2(?+1)? + µ ¶ ??

146µ ??2 ??2 ¶ ?3 Re (? + 1) ???? + ? ???? = − ???? + ?2 ?2 ??2??2 ??2??

2 + ? µ ¶ µ ¶ ? Pr

62Re (? + 1) ???? + ? ???? = ?2 ???2? 2 + ??2??2 +?? 2?2 ???? + ???? + ?

2????+???? +???2(?+ 1 )2? 2 ³ 2 ´ 2

∙ µ ³ ́ ¡ ¢ ¶ ³ ́ ̧ (4.7) (4.8) (4.9) (4.10) (4.11) Here ? denotes the kinematic viscosity, ? the Hartman

2number, Re the Reynolds number, ?? the Brinkman number, ? the Eckret

number, ? ? the Prandtl number, ? the wave number and ? the

dimensionless temperature. Making use of the

12long wavelength and low Reynolds number approximation we

have ?? ?3? ?? ??3 = − ?2 ?? + 1 ? (4.12) µ ?? ¶ ?? ?? = 0? (4.13) 0 = ??2??2 + ?? ??2??2 2 + ???2

???? 2 µ +1 ? (4.14) ¶ µ ¶ where Eq. (4.12) indicates that ? 6= ? (?). Defining ? and F as the

dimensionless mean flows in laboratory and wave frames by ? = ? ? = ? ? ? (4.15) ??1 ??1 which after

using ? = ? + ? (?1 + ?2) give ? = ? +1+?? (4.16) where ? = ?1 ?? Z?2 ?? ??? (4.17) The convective

boundary condition for the temperature can be expressed as follows −? ?? = ?(? − ??)? ?? in which ?

5is the thermal conductivity, ? is the wall heat transfer coefficient and ?? is the

temperature of the

wall. Physically this condition states that the

157rate of heat transfer from the wall to the

fluid (or vice versa) is proportional to the difference of their temperature. Having in mind the asymmetric

nature of considered channel, we choose ?1 and ?2 the respective heat transfer coefficients of upper and

lower walls. Hence the dimensionless boundary conditions are ?= ? ?? ?? 2 , ?? = −1, ?? + ??1? = 0? ?? ?

= ?1, ?=− ? 2 , ?? ?? ?? = −1, ?? − ??2(? − 1) = 0, ?? ? = ?2, (4.18) ?1(?) = 1 + ? cos(2??), ?2(?) = −? − ?

cos(2?? + ?) ? (4.19) ??1 = ?1?1 , ??2 = ?2?1 ? ? ? (4.20) where ??1?2 are the Biot-numbers for the

upper and lower walls. Pressure rise per wavelength is given by ∆?? = 1 ?? Z0 ?? ??? (4.21) 4.2 Solution

expressions The solutions of Eqs. (4.11) and (4.13) subject to the conditions (4.17) are ? = 2?1 (?2 − ?3)

? −?−?? ?= 1 −?5 + (1 + ??1?1) ?6 + (?1) ¶ ? 7 ?4 µ ? ? 1 For ? = 0 one has ? = − (?1 + ?2 − 2?) (−2 (?

21 (−?1?−2)?(?2)13− ?) (?2 − ?) + ? ?8) ? (4.22) (4.23) (4.24) ? = 1 + 6????(2?(?+1 ?−1 ?−2)?32)2 3??

24????2((??1+−?1?2−)2?2)2 + − ? 1 ??2?2 − 3?? (? + ?1 − ?2)2 (?1 + ?2 − 2?)4 ?3? 4 (?1 − ?2)6 + ?2 ?

(4.25) and L?s, A?s and C?s are given as follows: ?1 = ??1 ??2 (?1 − ?2)3 + 6?? (? + ?1 − ?2)2 + 6??2??

(? + ?1 − ?2)2 (−1 + ??2?2) ? ?2 = (³?1 −³?2)3 (??1 + ??2 + ??2??1?1 − ??2??1́?2) ? ́ ?3 = −??1 ??2

(?1 − ?2)3 + 6?? (? + ?1 − ?2)2 + 6??2?? (? + ?1 − ?2)2 ? ?1 = ³??1? (³−2 + ?1? − ?2?) + ??2? (2 + ?1?

−́ ?2?) ? ́ ?2 = (³? + ?1 − ?2) 2?(?1+?2)? − 2?2?? ? ́ ?3 = ?? ? (?1 + ?2 −³2?) ?? ?2 (−2 + ? ?́ ) − ?? ?1
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(2 + ? ? ) ? ?4 = ??1 + ??2 + ??2??1?1 − ??2??1?2? ³ ́ ?5 = ?? (1 − ??2 + ?2) ? 2 (? ?2 + ?3 − ?4 − ??1

(?5 + ?6)) ? ?6 = ??2 − (?1) × ???2 (−?2 − ?7) + ??(???12)?2 × ?8 − ?9? 1 ? 7 = ??? 2 ?10 − ¡?11?2 ? ¢

µ ¶ ? 8 = ?21 − 4¡?1?2 + ?22 + 2¢ (?1 + ?2) ? 2?2 ? − ? 2 1 = ¡4 ??1? (−2 + ?1? − ?2? ) + ??2? (2¢+ ?1?

− ?2? ) ? ?2 = −³2?2?1?(?+?1−?2)2 1+?2 +2?2?2?(?+?1−́?2)2 1+?2 −8??1?(?+?1−?2) ?¡?1?(−2¢+?1?

−?2?)+??2?(2¡+?1?−¢?2?) ? ?3 = 8??2?(?+?1−?2)?³ ??1?(−2+?1?−?2?)+??2?(2+?1?−?2?́) −4?1 ?2?2?

(2 + ?1? −³ ?2?)2 + ?2?1? (2 + ?1? − ?2?) ? ́ ?4 = 2?(?1+³?2)??13? ?5 = ?2?1? (? + ?1 − ?2)2 1 + ?2 +

2?2?2? (? + ?1 − ?2)2 1 + ?2 −8??1? (? + ?1 − ?2)¡ ??1? (¢−2 + ?1? − ?2?) + ??2?¡(2 + ?1?¢ − ?2?)

+8??2? (? + ?1 − ?2) ?³ ́ ?6 = 2?21 ?2?2? (2 + ?1? − ?2? )2 + ?2?1? (2 − ?1? + ?2? )2 − 2?(?1+?2)? ?

13 ? ?7 = 8??2³? (? + ?1 − ?2) ? ??1? (−2 + ?1? − ?2? ) + ??2? (2 + ?1? − ?2? )́ +4?2?12? ³ ́ ?8 = ?2?

1? (? + ?1 − ?2)2 1 + ?2 + 2?2?2? (? + ?1 − ?2)2 1 + ?2 + 8?14? ¡ ¢ ¡ ¢ ?9 ?10 = 8??2? (? + ?1 − ?2) ??

1? (−2 + ?1? − ?2?) + ??2? (2 + ?1? − ?2?) + 2?22?12? = ?2?(?1+?2−?) (? + ?1 − ?2)2 1 + ?2 + 2?2??

(? + ?1 − ?2)2 1 + ?2 ³ ́ +8??(?1+?2−?) (? + ?1 − ?2)¡?14? ¢ ¡ ¢ ?11 ?12 ?13 ?14 = 8??? (? + ?1 − ?2) ?

??1? (−2 + ?1? − ?2? ) + ??2? (2 + ?1? − ?2? ) + 2?12? = ?2?2? (2 + ?1? − ?2?³)2 + ?2?1? (2 − ?1? + ?

2?)2 − 2?(?1+?2)??13? ́ = 4 + ?21? 4 − 2?1?2? 4 + ?22? 4 + 2? (?1 − ?2) ? 2 1 + ? 2 + ? 2 ? 2 + ? 4 ? =

??1? (? + ?1 − ?2) ??1? (−2 + ?1? − ?2? ) + ?¡?2? (2 +¢?1? −¡ ?2? ) ? ¢ ³ ́ 4.3 Graphical analysis This

section is concerned with the discussion of streamlines, pressure gradient and pressure rise per

wavelength. This objective is achieved through Figs. 4.1-4.4. Dimensionless temperature profile is

observed in the Figs. 4.5-4.7 for various parameters. In addition

1the heat transfer rate at the upper wall is

numerically tabulated. Such numerical values

152are presented in Table 4.1. Figs. 4.1

(a and b) examine the streamlines plotted against rate of volume flow ? when ? = 0. It is observed that

there is a lower limit of flow rate below which no trapping occurs. This shows that without sufficient volume

of the fluid flowing per unit time through the channel, trapping is unlikely to occur. The "threshold" or

critical value of flow rate in present problem is observed which approximately is equal to 1.6. It is noticed

that when the value of flow rate is increased from the critical value then the

17size of the trapped bolus not only increases

but also it gets elongated (see Figs. 4.1a & 1b). Figs. 4.2 showed

17that the size of the trapped bolus decreases for

a given value of flow rate and eventually vanishes when Hartman number increases. Fig. 4.3 plots the

pressure gradient. It is

35seen that the pressure gradient is maximum at the centre of the channel i.e.

in the wider part

of the channel. Moreover the corresponding value of the pressure gradient is decreased when ? has

higher values. Pressure rise per wavelength

27decreases with an increase in flow rate and

for a fixed value of

27flow rate the pressure rise also decreases by increasing the

value of ?. Figs. 4.5a and 4.5b examine the temperature profile. Fig 4.5a includes the Joule heating effect

whereas Fig. 4.5b is without such effect. It is shown that there is no significant effect of ? on the

temperature profile when there is no Joule heating. However the temperature in presence of Joule heating

effect. Figs. 4.6

160(a and b) analyze the effects of ??1 and ??2

separately on the temperature. It is found that variation of ??1 has significant effect near the upper wall

and hardly has any effect near the lower wall. Similarly the variation of ??2 is significant near the lower

wall. Further the temperature decreases by increasing ??1?2? Fig. 4.7 is for the case when both the walls

have same heat transfer coefficient i.e. ??1 = ??2 = ??. Here
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14the temperature also decreases with an increase

in ??. However such decrease is initially large. Numerical values

14of heat transfer rate at the upper wall is given

in Table 4.1. Here ?0(?1) is the heat transfer rate for ? given in (4.21) and (?∗)0(?1) is one when we

neglect the Joule heating effect. It is seen that the transfer rate increases when M and ??’s are increased.

This increase in heat transfer differs a lot in the two cases when Joule heating is considered and

neglected. It is seen that ?? for one wall has very little or no effect (for large value of Bi) on transfer rate at

the other wall. 4.4 Concluding remarks Effects of convective boundary conditions and Joule heating

12on the peristaltic transport of MHD viscous fluid are examined. The

key findings of the presented analysis are mentioned below. • There is a critical value of the flow rate

below which trapping is not likely to occur. • The applied magnetic field tends to decrease the size of

trapped bolus. • Magnetic field decreases the magnitude of pressure gradient and pressure rise. •

Temperature rises in presence of Joule heating. • Biot number decreases the dimensionless temperature. •

Effects of Hartman and Biot numbers

14on the heat transfer rate at the wall are opposite. Fig. 4.

1 Streamlines for M = 0. Fig. 4.2 Streamlines for M 6= 0. 0 M=0 -20 M=1 dp?dx

136-40 M=2 -60 M=3 -80 M=4

-0

115.6 -0. 4 -0. 2 x 0.0 0.2 0.4

Fig. 4.3 Pressure gradient ????? for different values of M. 100 80 60 Dpl 40 20 0 -20

34M = 0,1, 2,3 ,4 -0. 4 -0. 2 0.0

h 0.2 0.4 Fig. 4.4 Pressure rise ∆?? for different values of M.

170Fig. 4.5 (a) Fig. 4.5 (b) Fig. 4.5

Dimensionless temperature with variation in M.

164Fig. 4.6 (a) Fig. 4.6 (b)

Fig. 4.6 Dimensionless temperature with variation in ??1?2. Fig. 4.7 Dimensionless temperature with ??1 =

??2 = ??? ? ??1 ??2 ?? −?0(?1) −(?∗)0(?1) 0?5 1?0 2?0 2?0 12?1396 10?1291 1?0 18?1183 10?1291

1?5 27?9366 10?1291 2?0 41?4483 10?1291 0?5 10?5343 2?70455 1?0 20?839 5?17941 1?5 31?1436

7?65427 2?0 41?4483 10?1291 0?5 0?5 46?7126 11?3298 1?0 1?0 46?7727 11?3899 1?5 1?5 46?8055

11?4227 2?0 2?0 46?8262 11?4434 Table: 4.1. Effect of various parameters on heat transfer rate at the

upper wall. Chapter 5 Peristaltic motion with Soret and Dufour effects This chapter examines the

magnetohydrodynamic (MHD) peristaltic flow in a symmetric chan- nel

11in the presence of Ohmic heating. Effects of Soret and Dufour

are retained.

30Long wavelength and low Reynolds number assumptions are

employed. Attention is mainly focused to analyze the flow quantities for various parameters of interest. 5.1

Mathematical analysis

3We consider the flow of an incompressible MHD fluid in a channel of
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width 2?1. The ?− axis is chosen along the walls of channel and ? − axis is selected normal to it.

9A uniform magnetic field B0 is applied in the ? direction and induced

magnetic field is neglected. The

channel walls are represented by 2? ?(?? ?) = ?1 + ?1??? ? (? − ??) , (5.1) µ ¶ where ?1

21is the wave amplitude, ? is the wavelength, c is the wave velocity and ? is the

time. The equations governing the

two-dimensional flow are ?? ?? ?? ?? = 0? + (5.2) ? ? +? +? ? ? + (5.3) µ ?? ?? ?? ¶ ? =−???? +?∙???2?2

??2??2̧−??02?? ? ? +? +? ? ? ?? ?2? ?2? + ? (5.4)

42µ ?? ?? ?? ¶ ? =−?? +?∙??2 ??2¸ ??? ??? + ? ??? + ? ??? ? = ? ???2 ?2 + ??2

??2 + ? 2 ???? + ???? + ???? + ??´?? 2 + ??02 ?2 + ????? 2 ³ 2

182h i ?2?2 + ?2?2

(5.5) ∙ µ³ ?? ?? ́ ³ ́ ¶ ³ ́ ̧

59h i ? +? +? ? ? + + ?2? ?2? ∙ ?? ?? ?? ¸ ? = ? ∙ ???2?2 ??2??2 ¸ ??? ? ? ∙??2

?? 2

 ̧+ ? (5.6) where (???) are velocity components in the laboratory frame (???), ? is pressure, ? the

concentration field, ? the temperature field, ? mass diffusivity, ?? thermal diffusion ratio, ?? specific heat,

?? concentration susceptibility, ?0 concentration at boundary, ?? and ?0 the fluid mean temperature and

temperature at boundary respectively. If (???)

24are the velocity components in the wave frame

(???) then introducing ? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?) (5.7) equations (5.2)-

(5.6) in wave frame are reduced as follows: ?? ?? ?? ?? = 0? + (5.8) ? (? + 1)?? + ? ?? = − ?? ??

65µ ¶ ???? + ? ??2??2 ??2 ??2− ??02(? + 1)? + (5.9) ∙ ̧ ?? ?? ?? ?2? ?2? ? (? +

1)?? + ??? = −?? + ? ??2 ??2

+ ? (5.10)

131µ ¶ ∙ ¸ ??? (? + 1) ??? + ? ??? ? = ? ??2??2 + ??2??2 + ? 2 ???? 2 + ?? ³ 2

 ́2 h i ?? + ???? + ???? + ??02(? + 1)2 + ????? ??2??2 + ??2??2 (5.11) ∙µ ¡ ¢ ³ ́ ¶ ³ ́ ̧ h

51i (? + 1) ?? + ? ?? ? = ? ??2??2 + ??2?? 2 ??? ? ? + ?2? ?2? ? (5.12) ∙ ̧ ∙ ̧ ? ? ∙

??2 + ??2  ̧Defining ?= ?= ?= ?? = ? ? ? ? ? = ? ? = ? ? = ? ? ? ? ? = ?1 ? ? = ? ? = ?

1 ? ? = ?21? ? ?1 ? ?? ? ?1

?1 ??? ? − ?0 ? − ?0 ? ? ? = 0 ? ? ? = 0 ? 1?2 ?0?1? υ = ? ?? = ???1 ? ? ? ? ? ?? µ ¶ ? ?? = Pr ?? ?? =

?????0?????0 , ?? = ???? ?0 ? ????0 ? ? ?2 ??? ? ? = ???? and ? = − ?? ?? ? ? = ???0 ? ? ? = ? ?? ?

(5.13) the equations (5?7) − (5?11) in dimensionless form are stated as follows: ?? ?? ?? ?? = 0? + (5.14)

112?Re (?+1)?? +??? ?? ?? = − ???? + ?2 ??2??2 ??2??2

− ? 2(? + 1)? + (5.15) µ ¶ µ ¶ ?3

112Re (? + 1) ???? + ? ???? = − ???? + ?2 ?2 ??2??2 ??2??

2 + ? (5.16) µ ¶ µ ¶ ? Pr

javascript:openDSC(44654308, 487, '3097');
javascript:openDSC(2915999564, 1390, '97673');
javascript:openDSC(2576432806, 1390, '52873');
javascript:openDSC(1318799875, 1393, '48616');
javascript:openDSC(100883, 14, '18822');
javascript:openDSC(2245877218, 1179, '94070');
javascript:openDSC(2522967539, 304, '38595');
javascript:openDSC(265246641, 1393, '39183');
javascript:openDSC(1853763984, 1393, '54258');
javascript:openDSC(3480387269, 1179, '87370');
javascript:openDSC(42425839, 1353, '18235');
javascript:openDSC(42425839, 1353, '18237');


12/24/13 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=385877909&sid=0&n=0&m=0&svr=8&r=36.164116649888456&lang=en_us 30/58

62Re (? + 1) ???? + ? ???? = ?2 ??2?? 2 ???2?2 + ?? 2?2 + ?? 2 ?? 2

¶ "Ã µ ?? + + ?2 ?? + ?? 2 µ ¶ µ ?? ¶ ! µ ?? ?? ¶ # +???2(? + 1)2 + ?? Pr ?2 ?2? + ?2? ? (5.17) µ ??2 ??

2 ¶ ? (?+1)?? +??? ?? ?? = 1 ?2?2? ?2? +?? ?2?2? ?2? + + ? (5.18) µ ¶ ?? µ ??2 ??2 ¶ µ ??2 ??2 ¶

Making use of the long wavelength and low Reynolds number approximations we obtain ?? ?3? ?? ??3 = −

?2 ?? +1 ? µ ?? ¶ ??4??4 − ? 2 ????22 = 0? ?? ?? = 0? (5.19) (5.20) (5.21) 0 = ???2?2 + ?? ??2??2 2 +

???2 ? (5.22) µ ?? 2 ?2? ¶ µ ?? + 1 + Pr ?? ??2 ¶ 0 = ?? ??2 + ?? ??2 1 ?2? ?2? ? (5.23) in which ? 6= ?

(?) ? υ denotes the kinematic viscosity, ? the Hartman number, Re the Reynolds number, ?? the Brinkman

number, ?? the Dufour number, ?? the Soret number, ?? the Schmidt number, ? the Eckret number, ? ?

the Prandtl number, ? the wave number and the dimensionless temperature and concentration are ? and ?

respectively. The boundary conditions are ? = 0, ?2? ?? ?? ??2 = 0, ?? = 0? ?? = 0? ?? ? = 0, ? = ? , ??

?? = −1, ? = 0, ? = 0, ?? ? = ?, (5.24) ?(?) = 1 + ? cos(2??), ? = ? ?? Z0 ?? ??? (5.25) Pressure rise per

wavelength ∆?? at this stage is 1 ∆?? = ????? ?? (5.26) Z0 Heat transfer coefficient ? for this problem is

defined as ? = ????? 5.2 Solutions expressions Solving the above equations subject to the corresponding

boundary conditions one finds that ? = ? ? ? cosh (?? ) + ? sinh (?? ) − (? + ?) sinh (? ?) ?? cosh (?? ) −

sinh (?? ) ? (5.27) ?? (? + ?) ? 3 cosh (?? ) ?? = − ?? cosh (?? ) − sinh (?? ) ? (5.28) ? = 8 (−1 +??P?r?2?

(?2???1?−) ?(−2?c?oshc[o(?sh?(?)?+ )?+3 +sin?h4()?? ))2 ? ? = 8 (−?1?+?P2r????????(???1)+(−??2?

coscho[s(h2?(???))−+?s3in+h (??4?) ))2 ? where ?1=? 4+?+?3?4 − 1+?2?4 ?2+?2?2 1+?2 (?−?)(?+?)+2?

2+??¡2 1+?2 (?¢−?¡)(?+?) ?¢?2=?2 1+¡?2 +2¢? 4+?+??2 −2?2 +¡? 8+?¡3+?2¢1+2?2−2?2 ¢ ??3=(?¡+?)2

1¢+?2¡cosh[2??]+¢4?? 2?¡+?(2¡+?)−?¡2 sinh[2??]−¢¢1¢6?(?+?)?cosh¡[??](?¢(?−?)+sinh[??])? ?¡4=16(?

+?)sinh[¢??](?(?−?)+sinh[??]) ?1=−8?−2?(4+?)−2??2(?+2?)?2−2?2(?+?)2?4 +2 1+?(?+2?)?2+(?+?)2?4 ?

2??2=?2 1+?2 + 2? ³4 + ? + ?? 2 − 2?2 + ? 8 + ? 3 +́ ? 2 1 + 2?2¡− 2?2 ¢ ? ?3 ¡= (? + ?)2 1¢+ ? 2

cosh¡[2? ?] ¡− 4?? 2¡? + ? (2 + ?) ¢−¢¢?2 sinh[2?? ]? ?4 = 16? (? +¡?) ? cos¢h[?? ] (? (? − ?) +¡sinh[? ?])

− 16 (? +¢?) sinh[?? ] (? (? − ?) + sinh[? ?]) ? (5.29) (5.30) 5.3 Discussion Here Figs. 5.1(a-e) are drawn

for the temperature, Figs. 5.2(a-e) for concentration and Figs. 5.3(a-e) for the heat transfer coefficient.

Tables 5.1 and 5.2 describe the temperature and concentration gradients. It is observed that with an

increase in M the temperature increases. An increase in temperature becomes more apparent with an

increase in M (see Fig. 5.1a). This fact agrees well to the expected results of Ohmic heating i.e. the

temperature increases with an increase in the magnetic field strength. This fact is quite opposite to the

observed results of behavior of M on temperature in the previous attempts by several other authors who

considered the magnetic field but ignored the effects of Ohmic heating which in turn gives the lesser

accurate prediction about the behavior of temperature for different values of M. From Figs. 5.1(b-d), the

temperature increases with an increase in Schmidt, Dufour and Soret numbers but contrary to the previous

case this increase is not much. Fig. 5.1(e) shows that there is rapid increase in temperature with an

increase in the Brinkman number. From Figs. 5.2(a-e), we can clearly see that there is decrease in the

concentration with an increase in M, Sr, Sc and Br. This decrease is more in case of Hartman number M

and Brinkman number Br when compared with the other parameters. The result that concentration

decreases effectively with an increase in ? is of considerable importance. This means that we can use the

heating effect of applied magnetic field to develop small thermal gradients which in turn can be used to

control the concentration of any particular substance in the fluid. This result has wide range of applications

especially for cure of several diseases, for instance clearing several type of blockages in many arteries

that exhibit peristaltic mechanism. The thermal gradients can be used more efficiently in place of radiations

with lesser side effects. These thermal gradients can also be used for the transport of several minerals

and medicine within the human body on the desired location. Heat transfer coefficient has its own physical

significance in problems related to heat transfer. It is always helpful to examine the behavior of heat

transfer coefficient (? in this case) for a given problem. Keeping this in mind the Figs. 5.3(a-e) are explicitly

plotted to examine how ? develops throughout the flow field. In all the Figs. 5.3(a-e), Z has oscillatory

behavior which is due to peristalsis. In all these Figs. the absolute value of heat transfer coefficient is

positive. Fig. 5.3(a) shows a rapid fluctuation in Z for changing values of M. From Figs. 5.3(b-d), it is quite

obvious that the Du, Sc and Sr effect the heat transfer coefficient but this effect is relatively smaller when

compared with the effects of other parameters like Br, M and d. Since Soret and Dufour effects have

gained reasonable interest in convective heat and mass transfer. One cannot neglect such effects when

there is appreciable density difference in the flow regime. The concentration gradient in fact yields the

thermal energy flux (referred as Dufour effect) whereas the temperature gradients contribute to the mass

fluxes (referred as Soret effect). One can neglect Soret and Dufour effects in heat and mass transfer

mechanism when such effects are small in comparison to the effects by Fourier’s or Fick’s laws. Motivated

by this fact we computed the temperature and concentration gradients at ? = ? in the Tables 5.1 and 5.2. It

is noticed from Table 1 that magnitude of temperature gradient increases when ?? Du amd Br are

increased. However the situation is reverse when there is an increase in a. Table 5.2 depicts that

concentration gradient is an increasing function of M, Du, Br and Sr. Further the concentration gradient is

decreasing function of a. ?a? Du=0.5,Sc=0.5,Sr=0.5,Br=0.5 ?b? M=1,Sc=0.5,Sr=0.5,Br=0.5 1 1.5 M= 0.5

M= 1.0 Du = 0.2 M= 1.5 Du = 0.4 Du = 0.6 1.25 M= 2.0 0.8 Du = 0.8 1 0.6 q q 0.75 0.4 0.5 0.25 0.2 0 0 0

0.2 0.4 0.6 0.8 1 1.2 y 0 0.2 0.4 0.6 0.8 1 1.2 y ?c? Du=0.5,Sc=0.5,M=1,Br=0.5 1 Sr = 0.2 Sr = 0.4 0.8 Sr =

0.6 Sr = 0.8 0.6 q 0.4 0.2 0 0 0.2 0.4 0.6 y 0.8 1 1.2 ?d? Du=0.5,Sr=0.5,M=1,Br=0.5 ?e?

Du=0.5,Sc=0.5,M=1,Sr=0.5 1 Sc = 0.2 Sc = 0.4 1.4 Br = 0.2 Br = 0.4 0.8 SScc == 00..68 1.2 Br = 0.6 Br =

0.8 1 0.6 0.8 q q 0.4 0.6 0.2 0.4 0.2 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 y y Fig. 5.1(a-e)

Variation of temperature when ? = 0?3? ? = 1?4? and ? = 0? ?a? Du=0.5,Sc=0.5,Sr=0.5,Br=0.5 ?b?

M=1,Sc=0.5,Sr=0.5,Br=0.5 0 0 -0.1 -0.1 f -0.2 f -0.2 -0.3 -0.3 M = 0.5 M = 1.0 Du = 0.2 M = 1.5 Du = 0.4 M

= 2.0 Du = 0.6 -0.4 Du = 0.8 -0.4 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 y y ?c?

M=1,Sc=0.5,Du=0.5,Br=0.5 0 -0.25 -0.5 f -0.75 -1 -1.25 Sr = 0.2 Sr = 0.4 Sr = 0.6 -1.5 Sr = 0.8 0 0.2 0.4

0.6 0.8 1 1.2 y 0 ?d? M=1,Sr=0.5,Du=0.5,Br=0.5 0 ?e? M=1,Sr=0.5,Du=0.5,Sc=0.5 -0.05 -0.1 -0.1 f -0.2

-0.15 0.3 -0.2 -0.3 -0.4 Sc = 0.2 Sc = 0.4 Sc = 0.6 Sc = 0.8 0 0.2 0.4 0.6 0.8 1 1.2 y -0.25 -0.3 -0.35 0 0.2

0.4 0.6 y 0.8 1 Br = 0.2 Br = 0.4 Br = 0.6 Br = 0.8 1.2 Fig. 5.2(a-e) Variation of concentration when ? = 0?
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3? ? = 1?4? and ? = 0? ?a? Br=0.5,Sr=0.5,Du=0.5,Sc=0.5 ?b? Br=0.5,Sr=0.5,M=1,Sc=0.5 20 M = 0.5 1.0

10 M = 1.5 = 2.0 10 5 Du = 0.2 Du = 0.4 Du = 0.6 Du = 0.8 Z 0 Z 0 -10 -5 -20 -10 0 0.2 0.4 0.6 0.8 1 x 0

0.2 0.4 0.6 0.8 1 x ?c? Br=0.5,Du=0.5,M=1,Sc=0.5 10 Sr = 0.2 Sr = 0.4 Sr = 0.6 Sr = 0.8 5 Z 0 -5 -10 0 0.2

0.4 0.6 0.8 1 x ?d? Br=0.5,Du=0.5,M=1,Sr=0.5 ?e? Sc=0.5,Du=0.5,M=1,Sr=0.5 40 10 Br = 0.2 Br = 0.4 Br =

0.6 5 20 Br = 0.8 Sc = 0.2 Sc = 0.4 Sc = 0.6 Sc = 0.8 Z 0 Z 0 -5 -20 -10 -40 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4

0.6 0.8 1 x x Fig. 5.3(a-e) Variation of Z when ? = 0?3? ? = 1?4? and ? = 0? ? ?? ?? ? 0?5 1?0 0?5 0?3 1?

0 1?5 2?0 0?0 0?5 1?0 1?5 ?0(?) −2?8569 −3?6054 −5?0997 −7?7157 −2?7040 −3?0903 −3?6054 −4?

3265 0?0 0?5 1?0 1?5 0?2 0?0 −3?0903 −6?1807 −9?2711 −3?3563 0?4 −2?5868 0?6 −2?11325 0?8

−1? 81531 Table 5.1: Variation of ???? ?=? via different parameters. ? ?? ?? ? ?? ?0(?) 0?5 1?0 0?5 0?3

0?5 0?71424 1?0 0?90136 1?5 1?2749 2?0 1?9289 0?0 0?6760 0?5 0?7725 1?0 0?9013 1?5 1?0816 0?

0 0?0 0?5 0?7725 1?0 1?5452 1?5 2?3178 0?2 0?8390 0?4 0?6467 0?6 0?5283 0?8 0?4538 0?2 0?

2787 0?4 0?5753 0?6 0?8914 0?8 1?2291 Table 5.2: Variation of ???? ?=? via different parameters.

Chapter 6 Soret and Dufour effects on peristaltic transport of MHD fluid with variable viscosity This chapter

looks at the Soret and Dufour effects on the magnetohydrodynamic (MHD) peri- staltic flow of variable

viscosity fluid in a symmetric channel. Modeling is presented in the presence of Ohmic heating.

Mathematical analysis is carried out through large wavelength and small Reynolds number. Results for the

stream function, temperature and concentration are developed. The variations of sundry parameters on

the flow quantities of interest are sketched and examined. 6.1 Mathematical analysis Let us investigate the

magnetohydrodynamic flow of an incompressible viscous fluid in a channel with width 2?1. The ?− axis is

chosen along the walls of channel and ? − axis is taken normal to the ?− axis. A constant magnetic field of

strength B0 is exerted in the ? − direction. Induced magnetic field is not accounted. Sinusoidal wave

propagates along the channel walls with constant wave speed ? represented by ?(?? ?) = ?1 + ?1??? 2? ?

(? − ??) . (6.1) µ ¶ If (? ? ? ) and (?? ?) are the velocity components in the laboratory (?? ? ) and wave (??

?) frames then transformations between laboratory and wave frames are ? = ? − ??? ? = ? ? ? = ? − ?? ? =

? ? ?(?? ?) = ? (? ? ? ? ?)? (6.2) In above expressions ?1 is the wave amplitude, ? is the wavelength, ? is

the time and ? and ? are the pressures in the laboratory and wave frames respectively. Introducing the

variables in the forms ?= ? ? ? = ? ? = ? ? = ? ? ? ? ? ? = ?1 ? ? = ? ? ? = ?1 ? ? = ?21? ? ?1 ? ?? ? ? ?1

???0 ?= ? − ?0 ? ? = ? − ?0 ? ? = ? 1?2 ? ?0?1? υ = ?0 ? ?? = ???1 ? 0 ? 0 µ ?0 ¶ ? ? 0 ?= ?? ? ??

=??????=−????? ??=Pr?? ??=??????0??0??0, ??=???0??????00? ?? = ?0? ?= ?2 ??? ?̄(?̄) ? ?? = ?

? and?(?)= ?0 ? (6.3) ?? ???0 the governing equations after adopting long wavelength and low Reynolds

number approxima- tion become ???? ?? ?(?)??2??2 − ?2 = ? µ ?? +1 ? ¶ µ ?? ¶ ??2 ?(?) ??2 − ? ?2 ?2?

2 ??2 = 0? µ ¶ ??2 0 = ??2??2 + ???(?) ??2??2 + ???2 2 ?? 2 ? µ ?2? +1 ¶ µ ?? ¶ + Pr ?? ??2 1 ?2? ?2?

0 = ?? ??2 + ?? ??2 ? (6.4) (6.5) (6.6) (6.7) where ? is the pressure, ? the concentration field, ? the

temperature field, ? mass diffusivity, ?? the thermal diffusion ratio, ?? the specific heat, ?? the

concentration susceptibility, ?(?) the variable viscosity, ?? the fluid mean temperature, υ the kinematic

viscosity, ? the Hartman number, Re the Reynolds number, ?? the Brinkman number, ?? the Dufour

parameter, ?? the Soret parameter, ?? the Schmidt number, ? the Eckret number, ? ? the Prandtl number,

? the wave number, ? the stream function, ? the dimensionless temperature and ? the concentration. The

boundary conditions are ? = 0, ?2? ?? ?? ??2 = 0, ?? = 0? ?? = 0? ?? ? = 0, ? = ? , ?? ?? = −1, ? = 0, ? =

0, ?? ? = ?, (6.8) ?(?)=1 + ? cos(2??), ? = ? ?? Z0 ?? ??? (6.9) Pressure rise per wavelength ∆?? is ∆?? =

?? ??? 1 ?? (6.10) Z0 The dimensionless expression of space dependent viscosity is ?(?) = ?−?? = 1 − ??

? ¿ 1? where "?" is the viscosity parameter. We look for solutions in the series form represented below ? =

?0 + ??1 + ???? ? = ?0 + ??1 + ???? ? = ?0 + ??1 + ???? Employing the procedure of perturbation

method and retaining the results up to order ?(?) we have ? = ?1 + 8(−?? co(s?h(+???))?+?s2inh(??))2 ?

(6.11) ? = − 8 (−1 + Pr ??????) (?????c2o?sh1 (?? ) − sinh (?? ))2 (6.12) − 32 (−?1??+ ?Pr[??2??+???

3?+)(???4−co?s5h +(???6)−−?si7n+h(??8?] ))3 ? ? = −8(−1+Pr????????2??)(?????[?co1s−h?(?2?+?)

−3]sinh(??))2 + ????????6[4?(−4+1?+5P+r2?(???6?+???)7(+??14?co(?sh8(+???9)−−?si1n0h)−(???

11)−)3?12+?13)]? (6.13) where the involved A?(? = 1? 2)? B?(? = 1 − 8) and C?(? = 1 − 13) are ?1 = ? ?

? cosh(???? )c+os?hs(i?n?h(?)−?si)n−h((???+?)) sinh(? ?) ? ?2 = ??3 + (?? ? cosh (?? ) + ?3? 2 − ? sinh

(?? ))2 sinh (? ?) ? ?3 = −1 + 2?2? 2 + cosh (2?? ) + 2? ? cosh (? ?) (¡−?? ¢ cosh (?? ) + sinh (?? )) − 2??

sinh (2?? ) ? ?1 = −8? − 2? (4 + ?) − 2? + ?2 (? + 2?) ? 2 − 2?2 (? + ?)2 ? 4 + 2(1 + ? (? + 2?) ? 2 + (? +

?)2 ? 4)?2 + (? 2 1 + ? 2 +2? 4 + ? + ?? 2 − 2?2 + ? 8 + ? 3 + ? 2 1 + 2?2 − 2?2 ) cosh (2¡?? ) − (¢? + ?)2

1 + ¡? 2 cosh (2?¢?) − 4?? 2¡? + ?¡(2 + ?) −¡ ?2 sinh (2??¢)¢¢+ 16? (? + ?) ? c¡osh (??¢) (? (? − ?) + sinh

(¡? ?)) − 16 (? + ?) si¢nh (?? ) (? (? − ?) + sinh (? ?))? ?2 = −8?3 (? + ?) (? − ?) sinh (2?? ) ? 4 − 12 (? +

?) ?9 cosh (?? ) − 16?4 (? + ?) ? 4 cosh (?? )3 + 8?3 (? + ?) ? 4 (? − ?) cosh (2?? ) ? ?3 = 12 (? + ?) (3 (?

+ ?) + 3 ? + ? − 8?2 ? 2 + 8?4? 4) cosh (3?? ) + 16?2 (? + ?) ? 4?2 cosh (?? )2 cosh (? ?) −¡2? (? + ?)2¢?

2 1 + ? 2 ? cosh (?? ) cosh (2? ?) ? ?4 = (? + ?) ? ?10 sinh (?? ) ? ?5 = 64? 1?2? 3 c¡osh (??¢)2 sinh (??

) + 2?3 (? + ?)2 ? 3 1 + ? 2

9cosh (2? ?) sinh (?? ) + 2 (? + ?)2 ? 1 + ? 2 ? cosh (2? ?) sinh

(??¡) + 16 (?¢ + ?) ? 2?2 cosh (? ?) sinh (?? )2 − 8?4 (? + ?) ?¡ 5 (? − ?¢) sinh (2?? ) ? ?6 = ?? ?11 cosh

(?? ) sinh (2?? ) ? ?7 = ?? (−4? + ? 2 − 4? + 2? ? + ?2 + (? + ?)2 1 + ?2 ? 2 + ?2 (? + ?)2 ? 4) sinh (3?? )

− 16?2 (? + ?) ? 3? cosh (?? )2 sinh (?¡ ?) + 1¢6?3 (? + ?) ? 3 sinh (?? )2 sinh (? ?) − 16 (? + ?) ? ? sinh

(?? )2 sinh (? ?) − 8?4 (? + ?) ? 4 sinh (2?? ) sinh (? ?) ? ?8 = 16? (? + ?) ? 2? sinh (2?? ) sinh (? ?) + (?

+ ?)2 1 + ? 2 −3 + 2? 2?2 sinh (?? ) sinh (2? ?) − ? (? + ?) ? cosh (?? ) ?12? ?9 =¡ ? 1 +¢?¡ 2 (3 + 4??

¢2(−3? +2?3? 2 + 2? − 2? 2?3)) + ?(3 + ? 2(3 + 4?(? −3 + ? 2 −¡3 + 2? ¢1 + ? + ?? 2 +2 (−3 + ?) + 2? 2?

− 2? 2 1 + ? 2 ?3)))? ?10¡= −3? (4 +¡ ? + ?) +¡ ?(? −3 + 5¢?¢2¢ +? (−3 + ? (16 + 5?)))? 2 +¡?3 (? +¢?) 5 +

4?2 ? 4 + 4?5 (? + ?) ? 6 + 4¡ (? + ?) ¢ 1 + ? 2 ? − 4?3 (? + ?) ? 4 1 + ? 2 ?¡2 − 4 (?¢+ ?) ? 2 1 + ? 2 ?3?

?11 = −3 (? + ?)2 +¡ −3? 2¢− 6? ? + 32? 1? + (−¡3 + 2? (¢8 + ? )) ?2 + 4 (4 + ?¡ ) ?3 + 2¢?4 ? 2 + 2?2 (? +

?)2 ?¡4? ?12 = 16? 2?2 sinh (? (? − ?)) + (? + ?) 1 + ? 2 −3 + 2? 2?2¢ sinh (2? ?) + 16 ? 2?2 sinh (? (? +

?)) ? ?1 = 2?14 − 16? (? + ?¡) ? 2 (?¢−¡ ?) cosh (?? )¢− (? 2 1 + ? 2 +2? 4 + ? + ?? 2 − 2?2 + ? 8 + ? 3 +

? 2 1 + 2?2 − 2?2 ) cosh (2?? ) ?¡?2 = 8?¢ cosh (¡? (? − ?)) − ¢8? cosh (? (¡? − ?)¡) + ? 2 co¡sh (2? ?) +
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2?¢?¢¢cosh (2? ?) + ?2 cosh (2? ?) + ? 2? 2

9cosh (2? ?) + 2? ?? 2 cosh (2? ?) + ?2? 2 cosh (2? ?) + 8 (? + ?) cosh

(? (? + ?)) + 16? ?? sinh (?? ) + 16?2? sinh (?? ) − 16? ? ? sinh (?? ) − 16?? ? sinh (?? ) ? ?3 = 8? ??

sinh (2?? ) + 8?2?

9sinh (2?? ) + 4? 3? sinh (2?? ) − 4?? ?2 sinh (2?? ) + 8? ?? sinh

(? (? − ?)) + 8?2? sinh (? (? − ?)) − 8? (? + ?) ? sinh (? (? + ?)) ? ?4 = (3 (? + ?)2 + 3? 2 + 6? (1 − 4?) ? +

? (64? 1 + 3 (1 − 8?) ?) ? 2) cosh (3?? ) ? ?5 = 2? cosh (?? )¡2 ?15? ?6 = −8?3 (? + ?) ? 4 (? − ?) + 2 (? +

¢?)2 ? 1 + ? 2 ?3? 2 + ? cosh(? ?)? ?7 = 2? ? sinh (?? ) + 16 (? + ?) ? 2?2 cosh (? ?) sinh¡ (?? )2 ¢??¡8 =

64? 1?¢? cosh (?? ) + 32?3 (? + ?) ? 3 (? − ?) cosh (2?? ) − 64? 1? ? cosh (3?? ) ? ?9 = ?16 sinh (?? ) ?

?10 = 32?4 (? + ?) ? 4 (? − ?) sinh (2?? ) + (−? (? + ?) −8 + 5? + 5? + (5? + (5 − 16?) ?) ? 2 + 8? 1 4 + ? +

? + ? + ? − 4?2 ? 2 ) sinh (3??¡ ) ? ?11 = 4? ? 1 4 − 4?2? 2 + 4? (?¢+ ?) −¡3? + ?2? 2 (3?¡ + ?) + 4?¢(? 1

¢ 4 − 4?2? 2 +

434? (? + ?¡) ? + ?2? 2¢(−? + ?) ) cosh¡(2?? ) + 4? 2? (? + ¢?) ? (?3? 2 −¡2?)

sinh (2?¢? ) sinh (? ?) +¡ 4? (? + ?)2 1 + ?¢ 2 −3 + 2? 2?2 sinh (?? ) sinh (2? ?) ? ?12 = cosh (?? ) (? + ?)

(? 1 + ? 2 3 +¡4?? 2 −¢3¡? + 2?3? 2 +¢2? − 2? 2?3 + cosh (?? ) ?(3 + ? 2(3 + 4¡?2(−3 +¢?¡ 2 −3 + 2?¡ 4 +

? + ?? 2 + 2 cosh (??¢¢) (−3 + ?) +2? 2? − 2? 2 1 + ? 2 ?3)))? ?13 = 64?¡1?? 2 cos

119¡h (2?? ) + 4?¢(¢? + ?)2 ? 2 1 + ? 2 ? cosh (2? ?) + ¡2??−3 ¢2? 1?? 2 sinh (2??

) + (? + ?) ?18 ? ?14 = ? 4 + ? +¡ ?3? 4 ¢ − 1 + ?2? 4 ?2 + ? ¡2? 2 1 + ? 2 (? − ?) (? + ?) + 2? (2 +¢?? 2 1

+¡? 2 (? − ?) (?¢+ ?)), ?1¡5 = 16?2 (?¢ + ?) ? 3?2 c¡osh (? ?¢) − (? (? + ?) −8 + 5? + 5? +¡(5? + (5¢ −

16?) ?) ? 2 +8? 1 4 + ? + ? + ? + ? + 4?2 ? 2 ) sinh (??¡) − 8((4? 1 −1 + ?2? 2 + (? + ?) (? + ¢?2 ? 2 (−¡? +

?)))) sinh¡(? ?) ? ?16 =¢8? 1 ¢4 + ? + ? + ? + ? −¡ 4?2 ? 2 +¢(? + ?) ?17? ?17 = ?(−56 + ? 1 + ? 2 −13 +

24?¡2? 2 + 16?4?¡ 4 + ?(−13 ¢+ ? 2¢(−13 + 8?(10 + ? 1 + ? 2 3 + 2?2¡? 2 ))))¢+¡ 16 (? + ?) 1 + ? 2 ? −

1¢6?3 (? + ?) ? 4 1 + ? 2 ?2 − 16 (¡? + ?) ?¢¡2 1 + ? 2 ?¢3? ?18 = 16? 2?2 s¡inh (? (¢? − ?)) + (? + ?) 1 +¡

? 2 −¢3 + 2? 2?2 sinh (2? ?) +¡ 16? 2?¢2 sinh (? (? + ?)) ? ¡ ¢ ¡ ¢ Heat transfer coefficient is defined as

follows: ? = ????? 6.2 Discussion This section describes the impacts of pertient parameters on the

temperature and concentration. We recall that theme of this study is to point out the influences of Soret

and Dufour. Therefore, the results of various parameters associated with velocity are not included. In order

to achieve the desired objective, we present the plots in such a way that the left panels are for constant

viscosity (i.e. for ? = 0) and the right ones are for variable viscosity ( ? = 0?4). It is observed in all the

graphs related to temperature that the rise in temperature for variable viscosity fluid is relatively slower

when compared with fluid having constant viscosity. Here Figs. 6.1-6.5 are drawn for temperature whereas

the Figs. 6.6-6.10 show variation of concentration. Temperature increases with an increase in M (Fig. 6.1).

Further an increase in temperature is abrupt in view of Ohmic heating. The variations of Du, Sr, Sc and Br

on the temperature are displayed in the Figs. 6.2-6.5. These Figs. indicate that there is an increase in

temperature by increasing Du, Sr, Sc and Br. It is also found that an increase in temperature is more for Br

when compared with the other parameters. Figs. 6.6-6.10 are presented to examine the behavior of

embedded parameters on the con- centration. Increase in concentration is observed when M and Du are

increased (see Figs. 6.6 & 6.7). Concentration also increases when Sr, Sc and Br are increased (Figs. 6.8-

6.10). Behavior of heat transfer coefficient Z for various parameters is shown in the Figs. 6.11-6.15. As

expected Z shows an oscillatory behavior which is because of peristalsis. It is also noted that there is no

variation in Z for amplitude ratio (?) between 0 and 0.3. It is observed from Fig. 6.11 that Z increases when

M is increased. The absolute values of Z in variable viscosity fluid are more than the constant viscosity

fluid. Figs 6.12-6.15 show that Z increases with the increase in Du, Sr, Sc and Br. Effects of Du, Sr, Sc and

Br on Z are opposite to that of M. Fig. 6.1 Effect of M on ? when ?? = 0?5? ?? = 0?5? ?? = 0?5? ? = 0?3?

? = 1?4 , ?? = 0?5 and ? = 0? Fig. 6.2 Effect of Du on ? when ? = 0?5? ?? = 0?5? ?? = 0?5? ? = 0?3? ? =

1?4 , ?? = 0?5 and ? = 0? Fig. 6.3 Effect of Sr on ? when ?? = 0?5? ? = 0?5? ?? = 0?5? ? = 0?3? ? = 1?4

, ?? = 0?5 and ? = 0? Fig. 6.4 Effect of Sc on ? when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 , ??

= 0?5 and ? = 0? Fig. 6.5 Effect of Br on ? when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 , ?? = 0?

5 and ? = 0? Fig. 6.6 Effect of M on ? when Du=0.5, Sr=0.5, Sc=0.5, ? = 0?3? ? = 1?4 , Br=0.5 and x=0.

Fig. 6.7 Effect of Du on ? when ? = 0?5? ?? = 0?5? ?? = 0?5? ? = 0?3? ? = 1?4 , ?? = 0?5 and ? = 0? Fig.

6.8 Effect of Sr on ? when ?? = 0?5? ? = 0?5? ?? = 0?5? ? = 0?3? ? = 1?4 , ?? = 0?5 and x=0. Fig. 6.9

Effect of Sc on ? when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4? ?? = 0?5 and ? = 0? Fig. 6.10

Effect of Br on ? when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 , ?? = 0?5 and ? = 0? Fig. 6.11

Effect of M on ? when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 and ?? = 0?5 and ? = 0? Fig. 6.12

Effect of Du on ? when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 and ?? = 0?5? Fig. 6.13 Effect of

Sr on ? when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 and ?? = 0?5? Fig. 6.14 Effect of Sc on ?

when ?? = 0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 and ?? = 0?5? Fig. 6.15 Effect of Br on ? when ?? =

0?5? ?? = 0?5? ? = 0?5? ? = 0?3? ? = 1?4 and ?? = 0?5? Chapter 7 Soret and Dufour effects

102on peristaltic flow in an asymmetric channel
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This chapter studies the combined

2effects of heat and mass transfer on the peristaltic flow of

magnetohydrodynamic (MHD) fluid in an asymmetric channel. Asymmetry in channel

is induced because of

the wave amplitude and phases. Analysis

1has been performed in the presence of slip condition.

Attention has been given to the Soret and Dufour effects. The obtained results are plotted and discussed.

7.1 Mathematical analysis We consider MHD

63flow of incompressible fluid in an asymmetric channel. The

?-axis is selected along the channel walls and ? −axis perpendicular to the ?-axis. The flow is due to the

sinusoidal wave trains travelling

6on the walls of the channel with speed

?? The geometry of the waves is given below

872? ?1(?? ?) = ?1 + ?1 cos (? − ??) , µ ? ?2(?? ?) = −?2 − ?1 cos 2? ¶ ? (? − ??) +

? ? µ

¶ (7.1) (7.2) in which a1 and b1 are the amplitudes of the waves travelling

153on the upper and lower walls respectively, ? is the

phase difference of two waves and ?1 + ?2 is the

176width of the channel. The phase difference

? ranges 0 ≤ ? ≤ ?? Here ? = 0

37corresponds to the symmetric channel with waves out of phase and for ? = ?

the waves are in phase. Moreover ?1? ?2? a1? b1 and ? satisfy the

condition ?12 + ?21 + 2?1?1 cos (?) ≤ (?1 + ?2)2 ?

16A uniform magnetic field B0 is applied in the transverse direction to the

flow. Effects of induced magnetic

field are not considered by choosing low magnetic Reynolds number. However, Joule heating and

104Soret and Dufour effects are taken into account. The

equations

104of mass, momentum, energy and concentration in the

laboratory frame (?? ? ) are ?? ?? ?? ?? = 0? + (7.3) ? + ?? + ? ?? + ? ?? ? = −?? ?? 2??? ? ? ? ?? + ?

?? + ? µ ¶ µ ¶ ?? ∙ µ???? ???? ¶̧ − ??02?? (7.4) ? ? ? + ? + ? ? ? ?? + ? ? ?? ?? + + ? 2? ?? µ ?? ?? ??

¶ ? = −?? ?? ∙ µ?? ?? ¶̧ ? (7.5) ??

42µ ?? ¶ ??? ??? + ? ??? + ? ??? ? = ? ???2? 2 + ???2?2 +? 2 ???? + ???? +

???? + ????́ 2 + ??02 ?2 + ????? 2 ³ 2 h i ∙ ½³ ́ ³ ́ ¾ ³ ́ ̧ h ?2?
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1092 + ?2?2 ?? ?? ? i (7.6) ? + ? + ? ? ? ?2? ?2? ??? ?2? ?2? ? = ? + + + ? ∙ ??

?? ?? ¸ ∙??2 ?? 2 ¸ ? ? ∙??2 ?? 2

 ̧(7.7) where ?? ? are

24the velocity components in the ? and ? directions respectively, ? the

pressure, ? the temperature, ? the

concentration, ? the density of fluid, ? the dynamic viscosity, ?? the specific heat, ? thermal conductivity,

?? fluid mean temperature, ? the mass diffusivity, ?? the concentration susceptibility and ?? the thermal

diffusion ratio. Using the following transformations in order to transform our problem in to wave frame (???)

? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?)? (7.8) We define the following dimensionless

quantities ?= ? ? ? = ? ? = ? ? = ? ? ? ?1 ? ??? ? ? = ?1 ? ?1 = ??11 ? ?2 = ??12 ? ? = ??21 ? ? = ???

21?? ? ? ?= ? − ?0 ? − ?0 ? 1?2 ? ???1 ?1 ?1 ?1 − ?0 ? ? = ?1 − ?0 ? ? = µ ¶ ? ?0?1? υ = ? ?? = ? ? ? ?

= ? ? = ? ? 1 ? 1 ?= ?? ? ? ??=Pr?? ??=???(???1?−(??10−)??0?), ??= ???? (?1 − ?0) ??? (?1 − ?0) ? ??

= ? ? ?= ?2 ?? ?? (?1 − ?0) ? ?? = ??? ? ? = ???? and ? = − ???? ? ? (7.9) in which ? is the wave number,

? the non-dimensional temperature, ? the dimensionless con- centration, ? the

1Hartman number, Re the Reynolds number, ?? the Brinkman number,

?0 and ?0 the temperature and concentration at upper wall, ?1 and ?1 the temperature and con-

centration at lower wall,

2Pr the Prandtl number, ? the Eckert number, ?? the Soret number and

?? the Schmidt number. We find that ? does not depend upon ? i.e. ????? = 0 and ?−component of

momentum equation reads to ?? ?3? ?? ??3 = − ?2 ?? + 1 ? (7.10) µ ?? ¶ where (?? ?)

31are the velocity components in the wave frame, ? the pressure in wave frame

and ? the

stream function. Now the compatibility, energy and concentration equations are given by ??4??4 − ? 2

????22 = 0? 0 = ???2?2 + ?? ??2??2 + ???2 2 µ ?? 2 ?2Φ +1 ? ¶ µ ?? ¶ + Pr ?? ??2 1 ?2? ?2? 0 = ??

??2 + ?? ??2 ? (7.11) (7.12) (7.13) The non-dimensional boundary conditions in terms of slip are ?= ? 2 ,

?? ?? ?Φ ?? + ?1 ??2 = −1, ? + ?2 ?? = 0? ? + ?3 ?? = 0? ?? ? = ?1, ?2? ?=− , 2 ? ?? ?? − ?1 ??2 = −1, ?

− ?2 ?? = 1, ? − ?3 ?? = 1, ?? ? = ?2,(7.14) ?2? ?? ?Φ in which ?1? ?2 and ?3 are the dimensionless

velocity, temperature and concentration slip parameters respectively. These are defined as ?1 = ???1∗1 ?

?2 = ??∗21 ? ?3 = ??∗31 ? where ?∗1? ?∗2 and ?∗3

1are the dimensional velocity, temperature and concentration slip parameters

respectively. Now the dimensionless expressions of

wave shapes are ?1(?)=1 + ? cos(2??), ?2(?)= − ? − ? cos(2?? + ?)? (7.15) Flow rate and pressure rise

per wavelength ∆?? are defined as follows: ? = ?1 ?? Z?2 ?? ??? (7.16) 1 ∆?? = ?? ?? ??? (7.17) Z0

15Heat transfer coefficient ?1 at the upper wall is defined by

?1 = ?1???? The solution of the involved problems through Mathematica are analyzed in the next section.

7.2 Discussion This section is especially prepared to examine the effects of pertinent parameters. Here we

arrange the variations of such parameters in the Figs. 7.1-7.4. These Figs. depict the plots of stream lines,

14temperature, concentration and heat transfer coefficient at the

upper wall. Figs. 7.1(a-d) illustrate the streamlines for an increase in velocity slip parameter ?1? The

volume of fluid trapped within a streamline is termed as bolus. It is observed that the trapped bolus gets

elongated and its size increases when the slip parameter increases. Figs. 7.2(a-i) exhibit the temperature

variation. It is seen that the temperature increases due to increase in M, ?2? Du, Sr, Sc, Pr and ?. However

it is found that the temperature decreases when d and ?1 are increased? Increase in ? is rapid and much

in cases of M and Pr (see Figs. 7.2a and 7.2f) but slower and small for ?2? Du, Sr and Sc (see Figs. 7.2b,

2c,2d and 2e). Figs. 7.3(a-h) demonstrate how concentration field develops when certain parameters of

interest are varied. Key observations from these Figs. are

26that concentration decreases with the increase in M, ?3? Du, Sr,

javascript:openDSC(797583494, 1274, '88213');
javascript:openDSC(2522967539, 304, '38582');
javascript:openDSC(2576036439, 1390, '42081');
javascript:openDSC(490417337, 1392, '53689');
javascript:openDSC(30346864, 37, '876');
javascript:openDSC(2576036439, 1390, '42118');
javascript:openDSC(4185860055, 1274, '49855');
javascript:openDSC(20172627, 37, '5522');
javascript:openDSC(95601, 14, '6808');


12/24/13 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=385877909&sid=0&n=0&m=0&svr=8&r=36.164116649888456&lang=en_us 35/58

Sc and Pr whereas it increases by increasing ?1 and ?? Here decrease in ? is much for M, ?3? Sr, Sc, Pr

and small for Du. Moreover the concentration remains invariant for thermal slip parameter ?2? Figs. 7.4(a-

e) are plotted to see

1the behavior of heat transfer coefficient Z1 at the upper wall?

Because of peristalsis it is found that, Z1 has an oscillatory behavior. Moreover Z1 has maximum value

near the upper wall. It increases with the increase in M and ?? Further Z1 decreases with increase in d and

?1? An interesting and noteworthy fact is that the thermal slip parameter ?2 has no meaningful variation on

Z1? 7.3 Main points Simultaneous

2effects of heat and mass transfer on the peristaltic transport of viscous fluid in

an asymmetric channel with slip effects are

analyzed. They main observations are summarized as follows: • The trapped bolus gets elongated as the

value of viscosity parameter is increased. •

17Effects of Hartman number M, Dufour number Du and

temperature slip parameter ?2 on the temperature are opposite to that of velocity slip parameter ?1. •

Increase in temperature subject to an increase in Hartman number M is rapid when compared to that of

other parameters. • Increase in applied magnetic field results in decrease of concentration. • Thermal slip

parameter has no effect on the fluid concentration. •

29Absolute value of the heat transfer coefficient increases with increase in

the Hartman number M. Fig. 7.1. Effect of velocity slip parameter ?1 on stream lines. 5 20

77b2 = 0.1, 0.2, 0.3, 0.4

15

19M = 0.5, 1.0, 1.5, 2.0

1440 q 10 q -5 5 -10 0 -1.5 -1 .0

-0.5 y 0.0 Fig. 7.2

34a 0. 5 1. 0 1.5 -2 -1 0 1

2 Fig. 7.2 b y 4.0 Du = 0.5, 1.0, 1.5, 2.0 4.0 Sr = 0.5, 1.0, 1.5, 2.0 3.5 3.5 3.0 3.0 2.5 2.5

49q q 2.0 2. 0 1.5 1.5 1.0 1 .0 0.5 0.5 -1.5

-1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 0.5 1.0 -0.5 0.0 Fig. 7.2 c y Fig. 7.2 d y 4.0 40 Pr = 2.0 Sc = 0.5, 1.0, 1.5, 2.0

3.5 Pr = 1.5 3.0 30 q 2.5 q 20 Pr = 1.0 2.0 1.5 Pr = 0.5 10 1.0 0.5 -1.5 -1.0 -0.5 0.0 0

93.5 1.0 0 y -1.5 -1.0 -0.5 0.0 0.5 1.0

Fig. 7.2 e Fig. 7.2 f y 4 4 g =

86p/6, p/4, p/3, p/2

69d = 0.3, 0.6, 0.9, 1.2

3 3 q
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48q 2 2 1 1 0 -0. 5 0.0 0. 5 1 .0

-1.0 -0.5 0.0 0.5 1.0 Fig. 7.2 g y y Fig. 7.2 h 3 2 q 1

8b1 = 0.1, 0. 2, 0. 3, 0.4 0 -1 -1 .5 -1.0 -0. 5 0. 0 0.

5 1.0 1.5 y Fig. 7.2 i Figs. 7.2(a-i). Effects of various parameters on temperature ?? 1.5 1.0 1.0 0.8 f 0.5

0.0 -0.5

49M = 2.0, 1.5, 1.0, 0.5 f 0. 6 0. 4 0.

2

8b1 = 0.1, 0. 2, 0. 3, 0. 4 -1.0 0.0 -1.5 -0.2

-1.5 -1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 y Fig. 7.3 a -0.5 0.0 Fig. 7.3 b

18y 0.5 1.0 1.5 1.0 0. 8 1 .0 0.

6

125f 0. 4 0. 2 0.0 b2 = 0 .1, 0. 2, 0. 3, 0.

4

28f 0. 5 0.0 b3 = 0. 4, 0. 3, 0. 2, 0.

1 -1.5 -1.0 -0.5 0.0 Fig. 7.3 c

18y 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5

y Fig. 7.3

135d 1.0 1.5 1.0 1.0

f 0.8 0.6 0.4 Du = 2.0, 1.5, 1.0, 0.5 0.5 f 0.0 Sr = 2.0, 1.5, 1.0, 0.5 0.2 -0.5 0.0 -1.0 -0.2 -1.5 -1.0 -0.5 0.0

Fig. 7.3 e

84y 0.5 1 .0 -1 .5 -1. 5 -1.0 -0.5 0.0 0.5 1.0

Fig. 7.3 f y 1

162.0 1.0 Pr = 2.0, 1.5,

1.0, 0.5 0.5 0.5 Sc = 2.0, 1.5, 1.0, 0.5 f 0.0

90f 0.0 -0. 5 -0. 5 -1.0 -1.0 -1.5 -1. 5 -1.0 -0. 5 0. 0 0.

5 1.0 -1.5

98y -1.5 -1.0 -0.5 0.0 0.5 1.0

Fig. 7.3 g Fig. 7.3 h y Figs. 7.3(a-h). Effects of various parameters on concentration. 20 15 15 10 10 Z1 5

Z1

19M = 2.0, 1.5, 1.0, 0.5 5 0

javascript:openDSC(589114854, 5, '39304');
javascript:openDSC(42450853, 1353, '12578');
javascript:openDSC(760851344, 43, '37407');
javascript:openDSC(42450853, 1353, '12391');
javascript:openDSC(952993285, 772, '25723');
javascript:openDSC(62572293, 304, '35891');
javascript:openDSC(1608637565, 5, '84210');
javascript:openDSC(952993285, 772, '25725');
javascript:openDSC(2343635012, 1392, '98184');
javascript:openDSC(192795163, 772, '33302');
javascript:openDSC(1741891889, 1179, '93971');
javascript:openDSC(846363379, 772, '70318');
javascript:openDSC(527085347, 43, '49539');
javascript:openDSC(1886349002, 304, '27255');
javascript:openDSC(2830950010, 943, '85219');


12/24/13 Turnitin Originality Report

https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=3&oid=385877909&sid=0&n=0&m=0&svr=8&r=36.164116649888456&lang=en_us 37/58

69d = 0.3, 0.6, 0.9, 1.2 0 -5

-5 -10 -3 -2 -1 0

1111 2 3 3 y -3 -2 -1 0 1 2 Fig. 7.4 a Fig. 7.4 b

y 15 8 6 10 Z1 4 2 0 -2 g =

86p/6, p/4, p/3, p/2

Z1 5 0

149b1 = 0.1, 0.2, 0.3, 0.

4 -4 -5 -6 -3 -2 -1 0 y Fig. 7.4

150c 1 2 3 -3 -2 -1 0 y

Fig. 7.4 d 1 2 3 8 6 4 Z1 2 0 -2 b2 = 0.4, 0.3, 0.2, 0.1 -4 -3 -2 -1 0 1 2 3 y Fig. 7.4 e Figs. 7.4(a-e).

Behavior of ?1 for different parameters. Chapter 8 Peristaltic transport in a vertical channel subject to

Soret and Dufour effects This chapter looks at the simultaneous

2effects of heat and mass transfer in peristaltic transport of viscous fluid.

Mathematical modelling is provided

32in the presence of Joule heating and Soret and Dufour effects.

Perturbation solution is prepared for small Brinkman number. Flow quantities of interest are plotted and

analyzed. 8.1 Mathematical formulation Here our aim

3is to develop a model for the peristaltic transport of viscous fluid in a vertical

channel.

156An incompressible fluid is considered in a vertical channel.

Magnetohydrodunamic (MHD) character of

fluid is accounted. The flow is generated by sinusoidal waves having con- stant speed ?. The channel

width is taken as 2?1. An incompressible and magnetohydrodynamic (MHD) fluid fills the region in the

channel. The fluid is conducting through uniform applied magnetic field B0? Induced magnetic field is not

taken into account. Electric field is absent. Geometry of flow problem is given below The wall shape is

taken as ?(?? ?) = ?1 + ?1??? 2? µ ? (? − ??) , (8.1) ¶ where ?1 is the wave amplitude, ? the wavelength

and ? the time. The velocity field in two- dimensional flow is given by ? = ? (? ? ? ? ?)? ? (? ? ? ? ?)? 0 ? £

¤

95Conservation laws of mass, momentum and energy

in the present flow consideration are reduced in the following expressions ?? ?? ?? ?? = 0? + (8.2) ? ? =−

+? +? +? ? ? ? ?? + µ ?? ?? ?? ¶ ?? +???∗∗ (? − ?0) ? ∙???2?2 ???2?2̧−??02? +???∗(? −?0) (8.3) ? ?

+? +? ? ? ?? ?2? ?2? + ? (8.4)

65µ ?? ?? ?? ? =−?? +?∙??2 ??2¸ ¶ ??? ??? + ? ??? + ? ??? ? = ? ???2?2 + ??

2?? 2 + ? 2 ???? + ???? + ???? + ???? + ??02? + ????? ???2?2 + ???2 ?2

+ Φ∗ 2 ³ 2 ́2 h 2 i (8.5) ∙ µ³ ́ ³ ́ ¶ ³ ́ ̧

59h i ? + ? + ? ? ? ?2? ?2? ??? ?2? ?2? ? = ? + + + ? (8.6) ∙ ?? ?? ?? ̧ ∙??2 ?? 2 ¸

? ? ∙??2 ?? 2
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 ̧In above expressions (? ? ? )

80are the velocity components in the laboratory frame (? ? ? ), ? the

pressure, ? the

56acceleration due to gravity, ?∗ the coefficient of thermal expansion, ?∗∗

the coefficient of

expansion due to concentration, ? the thermal conductivity, ? the concentration field, ? the temperature

field, ? the mass diffusivity, ?? the thermal diffusion ratio, Φ∗ the constant heat addition/absorption, ?? the

specific heat, ?? the concentration susceptibility, ?0 the concentration at boundary, ?? and ?0 the fluid

mean temperature and temperature at the boundary respectively. If (?? ?)

24are the velocity components in the wave frame (?? ?) then using the

transformations ? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?) (8.7)

and

taking ?= ?= ?= ?= Φ= ? ? ? = ? ? = ? ? = ? ? ? ?1 ? ? ? ? = ?1 ? ? = ? ? ? = ?1 ? ? = ?21? ? ?? ? ?1 ?1

??? ? − ?0 ? ? = ? − ?0 ? ? 2 = ?02?21? υ = ? ?? = ???1 ? ? ? ? 0 ? 0 µ ¶ ? ? ? ?? ? ? ? ?? = Pr ?? ?? =

?????0?????0 , ?? = ?????????00 ? ?? = ?? ? ???2?0 ? ? ? = ??? ? ?? = ????∗??0?12 ? ?? = ???∗?

∗??0?21 ? ? ?2Φ∗ ?? ?? ? (? − ?0)? ? = ?? , ? = − ?? ? (8.8) definition of stream function ? can be

written as incompressibility condition (8.2) is clearly satisfied while Eqs. (8.3)-(8.6) through standard ?? ?

3? ?? ??3 = − ?2 ?? + 1 + ??? + ???? (8.9) µ ?? ¶ ??4??4 − ? 2 ????22 ?? ?? + ?? ?? + ?? ?? = 0?

(8.10) ?? ?? = 0? (8.11) 0 = ??2??2 + ?? ??2??2 + ??? 2 ???? + 1 + Pr ?? ??2??2 + Φ? 2 2 (8.12) µ ¶ µ

¶ 1 ?2? ?2? 0 = ?? ??2 + ?? ??2 ? (8.13) From Eq (8.11) ? 6= ? (?) ? Here υ denotes the kinematic

viscosity, ? the

1Hartman number, Re the Reynolds number, ?? the local temperature Grashoff

number,

?? the local concentration Grashoff number, Φ the dimensionless heat source/sink parameter, ?? the

Brinkman number, ?? the Dufour number, ?? the Soret number, ?? the Schmidt number, ? the Eckret

number, ? ? the Prandtl number, ? the wave number and the dimensionless temperature and

concentration are denoted by ? and ? respectively. The boundary conditions are prescribed in the

following forms ? = 0, ?2? ?? ?? ??2 = 0, ?? = 0? ?? = 0? ?? ? = 0, ? = ? , ?? ?? = −1, ? = 0, ? = 0, ?? ? =

?, (8.14) ?(?)=1 + ? cos(2??), ? = ? ?? Z0 ?? ??? (8.15) where ? is the dimensionless form of the wall

shape. The dimensionless mean flow rates in laboratory (?) and wave (? ) frames are related by ? = ? + 1?

Pressure rise per wavelength ∆?? can be put into the following relation 1 ∆?? = ?? ??? ?? (8.16) Z0 8.2

Series expressions We are interested to develop the series solutions of the resulting problems. For that

70we expand the stream function in terms of small Brinkman number and

write ? = ?0 + ???1 + ???? Similarly the other physical quantities like ?? ?? ? and ? are also expanded. It

is worth men- tioning to point out that the condition ?? ¿ 1 is not an unrealistic condition. For example, the

most common Newtonian fluid i.e. water, at 25?? (298 Kelvin ≈ room temperature) has dynamic viscosity ?

= 0?89 cP (centi poise) and thermal conductivity 0.58 W/mK (watt per meter Kelvin). If we consider the

characteristic speed 1m/s (meter per second) and wall tem- perature to be 310 Kelvin (≈ equal to body

temperature), then the Brinkman number comes out to be 1?2787 × 10−4 ¿ 1? This provides us a

confidence regarding the selection of Brinkman number ?? as a small quantity. Resulting zeroth and first

order systems are given by ??0 ?3?0 − ?2 ??0 = ?? ??3 µ + 1 + ???0 + ???0? ?? ¶ 0 = ??2??20 + Pr ??

??2??20 + Φ? 0 = ?1? ??2??20 + ?? ??2??20 ? ?0 = 0, ??2??20 = 0, ????0 = 0? ????0 = 0? ?? ? = 0, ?

0 = ?0, ????0 = −1, ?0 = 0, ?0 = 0, ?? ? = ?. First order system ??1 ?3?1 − ? ?? ??3 2 ????1 + ???1 +

???1? = 0 = ??2??21 + Pr ?? ??2??21 + ?2?0 + ?2 ??0 + 1 2 2 µ ??2 ? ¶ µ ?? ¶ 0 = ?1? ??2??21 + ??

??2??21 ? ?1 = 0, ?2?1 = 0, ??1 = 0? ??1 = 0? ?? ? = 0, ??2 ?? ?? ?1 = ?1, ????1 = 0, ?1 = 0, ?1 = 0, ??

? = ?. The solutions of above systems yield the following expressions + ?5? ?+(?)³ ́ ?= ?−??6???2(?+2?)

−6 (−1 + ?) ?1 (?) + 2??? ?1? (6?3) ? ?? − ?11 ?4 (?) + ?12 ? " # −?2 + ?2 ? ???7 ? = ¡2 (−1 + ?¢) 360?

26 − ? ?= ?8 + ???10 360 (−1 + ?)3 ?29 ? where ?1 = 3(−1+?)(? +?)?2?2(?) ??(?+2?)? ? 2 = ¡(−1 + ?) ? 2

1 + ?? + ?2??¢(−1 + ?? ) ? ?3 = 16?−2??+3?(?³+?)? −1 + ?2?2 (?? − ??????) Φ2? ́ ? 4 = ?6 (?) + ?7 (?)

(−1¡+ ?) (? + ?¢) + ?8 (?) + ?9 (?) ? ?5 = (−1 + ?)3 ? 10 1 + ?? + ?2?? (−1 + ?? ) ? ?6 = (−1 + ?)3 1 +³?? +

?2?? (−1 + ??) ? ́ ?7 = 720 (−1 + ?³)2 ??(?−?)?2?2?1 (?) + ?2 (?) + ?3 (?) + ?4 (?) + ?5 (?) ? ́ ?8 = ????

180 (−1 + ?)2 (? − ?) (? + ?) Φ ? ?9 = 360 (³−1 + ?)3 1 + ?? + ?2?? (−1́+ ?? ) ? ?10 = ?³1 (?) + ?2 (?)

+́³?3 (?) + ?4 (?) + ?5 (?) ? ́ ?11 = 1 + ?? + ?2?? (−1 + ?? ) ? ?12 = ?5 (?) + ??355 ??(?+2?)?4 + ?10

(?) ? ³ ́ n o ? = ? ???????? and ???? ??? and ??? are given below ?1 = ? ?? cosh((????c)o+s?h(s?in?

h()?−?sin)−h((???+?)))2sinh(??) ? ?2 = ?1(?2?3 + ??(?? ? cosh (?? ) + ?3? 2 − ? ) cosh (?? ))2 cosh (?

?) ? + sinh (?? )) − 2?? sinh (2?? ) ? ¡ ¢ ?3 = (? + ?)2 1 + ?2 ? 2 + ?2 (? + ?)2 ? 4) + ??(2 (? + ?)2 ? 1 + ?

2 ? cosh (2? ?) sinh¡ (?? ) +¢ 16 (? + ?) ? 2?2 cosh (? ?))? ¡ ¢ ?4 = ? + ? − 8?2 ? 2 + 8?4? 4) cosh (3?? )
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+ 16?2 (? + ?) ? 4?2 cosh (?? )2 cosh (? ?) ??(sin¡h (? ?) − 16 (¢? + ?) ? ? sinh (?? )2 sinh (? ?))? ?5 =

2? 4 + ? + ?? 2 − 2?2 + ??(? 8 + ? 3 + ? 2 1 + 2?2 − 2?2 )) cosh (2?? ) ? ?6 = 2?2¡(? + ?)(2? 4 ¢+ ? + ??

2 − ?¡?2?2 +¡ ? 8 + ?¡ 3 + ? 2 1 +¢2¢?¢2 − 2?2 )? ?7 = (? + 2?3)? 2 co¡sh (2? ?) + 2?¢ ?? 2 cosh (2?¡ ?)

+ ?¡2? 2 cos¡h (2? ?) + 8 (?¢¢+¢ ?) ? ?8 = ?()?+2???(16 (? + ?) sinh (?? ) (? (? − ?) + sinh (? ?)))? ?9 =

16? 2?2 sinh (? (? − ?)) + (? + ?) 1 + ? 2 −3 + 2? 2?2 sinh (2? ?) + 16?? +? 2?2 sinh (? (? + ?)) ? ¡ ¢ ¡ ¢ ?

10 = 1 + ? 2 ? − 4?3 (? + ?) ? 4 1 + ? 2 ?2 − 4 (? + ?) ? 2 1 + ? 2 ?3? ?1 = ?¡1(−8? 2¢− 2? (4 + ? + 3?) −

2¡? ? + ?2¢(? + 2?) ? 2 − 2?2 ¡(? + ?)2¢? 4) +2(1 + ? (? + 2?) ? 2 + (? + ?)2 ? 4)?2 + (? 2 1 + ? 2 + 2? 4 +

? + ?? 2 −2?2 + ? 8 + ? 3 + ? 2 1 + 2?2 − 2?2 ) cosh¡(2?? ) −¢ (? +¡?)2 1 + ? 2 c¢osh (2? ?) ? ?2 = 16?

¡(? + ?¡) ? ???3(¡? + ? 2?) cosh¢¢(?¢? ) (? (? − ?) + sinh (?¡?)) − 16¢(? + ?) ? sinh (?? ) (? (? − ?) + ?

sinh (? ?))? ?3 = 12 (? + ?) ?9 cosh (?? ) − 16?4 (? + ?) ?3 + 8?3 (? + ?) ? 4 (? − ?) cosh (2?? ) ? ?4 =

128? 1?3? 4 cosh (?? )2 sinh (?? ) + 2?3 (? + ?)2 ? 3 1 + ? 2 cosh (2? ?) + 8?3 (? +?)?4(?−?)?5? ¡ ¢ ?5 =

?4? ?(−4? ? + ? 2 − 4? + 2?2? ? + ?2 + (? + ?)2 1 + ?2 ? 2 + ?2 (? + ?)2 ? 4)? ?1 = 16? (? + ?) ? 2 (? − ?)

cosh (?? ) ??? − (? 2 1 + ?¡ 2 + 2¢? 4 + ? + ?? 2 −2?2 + ? 8 + ? 3 + ? 2 1 + 2?2 − 2?2 ) cosh (2¡?? ) ? ¢ ¡

¢ ?2 = ? 2?¡ 2

9cosh¡(2? ?) +¡ 2? ?? 2 cosh (¢2¢?¢ ?) + ?2? 2 cosh (2? ?) + 8 (? + ?) ? 2 cosh (2?

?) + 2? ? cosh (2? ?) ? ?3 = 32?2 (? + ?) ? 3?2 cosh (? ?) ?2 − (? (? + ?) −8 + 5? + 5? + (5? + (5 − 16?)

?) ? 2 ? ?4=8? 4+?+?+ ?+?+4?2 ?2 )sinh(??¡)−8((4? −1+?2?2 +(?+?)? ¢ ?5 = ?(−¡64 + ? ? 1 +¡? 2 ?6

−13¢+ 24¢?2? 2 + 16?4? 4 + ¡??3(−13 + ?¢ 2(−13 + 8?(10 + ?)))? ¡ ¢ ¡ ¢ 8.3 Graphical results and

analysis This section emphasizes the impact of embedding flow parameters in the solution expressions.

Here plots are prepared in the two and three dimensions. Arrangement of the graphs is made in such a

way that Figs. 8.1 (a-d) show the pressure gradient, Figs. 8.2 (a-d) the pressure rise per wavelength, Figs.

8.3 (a-d) the 3-D plots for velocity profile, Figs. 8.4-8.9 the stream lines and Figs. 8.10 and 8.11 the 3D

plots for temperature and concentration fields respectively. Figs. 8.1 (a-d) reveal that pressure gradient

decreases by increasing ? and ??? However, the

26pressure gradient increases with an increase inΦ and Du. It is further noticed

that

the change in dp/dx is larger in the cases of Φ and M when compared with Du and Sr. Pressure rise per

wavelength via mean flow rate ? is displayed in the Figs. 8.2 (a-d). These Figs. show that the pressure rise

decreases when flow rate increases. For a given constant value of the mean flow rate, the

5pressure rise increases with an increase inΦ and ?? but it

decreases with increase in ?? (see Figs. 8.2 a,c and d). Behavior of pressure rise for M is however

different. The pressure rise increases for negative value of mean flow rate when ? increases. However, the

behavior is opposite for positive values of mean flow rate (Fig. 8.2b). We displayed the 3D plots for

velocity, temperature and concentration. Here

5it is observed from Fig. 8.3 that the velocity decreases

when ? is increased. Such decrease largely depends upon the values of ?? Physically the decrease in

velocity is due to the reason that the Lorentz force has a role of retarding force. Consequently it increases

the friction resistance which opposes the motion of fluid. Figs. 8.3 (b-d) depict

31that the velocity is increasing function of

Φ and ??? However reverse situation is observed for ?? i.e. the velocity decreases when ?? increases.

Trapping is considered interesting feature of the peristaltic transport. The volume of fluid that gets trapped

in a stream line during peristaltic motion is known as bolus. Figs. 8.4-8.9 depict

5that the size of trapped bolus decreases when ?, ?? and

?? are larger. It is also found that the results are opposite for the cases of ??? Φ and ??. The variations of

temperature and concentration fields

3can be seen through Figs. 8.10 and 8.

11. These Figs show that the temperature increases when ?, ??, Φ and Du are increased. Clearly the rise

in temperature with an increase in M and Du is more than Φ and ??. Effects of ?? on the temperature are

not significant. 99 Figs. 8.11 plot the influences of ?? Φ? ??, ?? and ?? on the concentration field. Here

concentration field decreases when there is an increase in ?, Φ and ??. Further, the variations of

concentration field for ?? and ?? are insignificant. It is also concluded that temperature increases and

concentration decreases when ? increases. 0 0 M = 1.0 -1
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129F = 2.0 -5 F = 1 .0 M = 2.0 -2 -10 -3 F = 0.

0 dp?dx M = 3.0 dp?dx -4 -15 -5 F = -2.0 -20 M = 4.0 -6 -7 -0.4 -0.2 Fig.

508.1 a x 0.0 0.2 0.4 -0. 4 -0. 2 Fig.

718.1 b x 0.0 0.2 0.4

-2 0 Du = 6.0 Sr = 0.0 Sr = 1.0 -1 Du = 4.0 -3 Sr = 2.0 Du = -2 -4 Du = 0.0 Sr = 3.0 dp?dx -3 dp?dx -5 -4 -6

-5 -6 -7 -7 -0.4 -0.2 Fig.

508.1 c x 0.0 0.2 0.4 -0. 4 -0. 2 Fig.

718.1 d x 0.0 0.2 0.4

Figs. 8.1 (a-d) Behavior of pressure gradient for variations in M, Φ? Du and Sr. 30 20 10 0 Dpl M =

1011.0 -10 M = 2.0 M = 3.0 -20 M = 4.0 -30

-1 0 1 2 3 Fig. 8.2 a Fig. 8.2 b h 10 10 5 5 0 Gt = 1.0 Dpl -5 Gt = 2.0 Gt = 3.0 -10 Gt = 4.0 -15 0 Gc = 1.0

Dpl -5 Gc = 2.0 Gc = 3.0 -10 Gc = 4.0 -15 -20 -20 -25 -1 0 1 2 3 -1 0 h 1 2 3 h Fig. 8.2 c Fig. 8.2 d Fig. 8.2

(a-d) Pressure rise per wavelength. Fig. 3 a Fig. 8.3 c Fig. 8.3 d Fig. 8.3(a-d) Velocity profile with

variations of ?, Φ? ?? and ??. Fig. 8.4 Effect of Hartman number (?) on stream lines when Φ = 1? ?? = 0?

5, ?? = 0?5? ?? = 0?25? ?? = 2 and ?? = 1? Fig. 8.5 Effect of ?? on stream lines for Φ = 1? ?? = 0?5, ?? =

0?5? ?? = 0?25? ?? = 2 and ? = 1? Fig. 8.6 Effect of ?? on stream lines when Φ = 1? ?? = 0?5, ?? = 0?5?

?? = 0?25? ?? = 2 and ? = 1? Fig. 8.7 Effect of Φ on stream lines when ?? = 2? ?? = 0?5, ?? = 0?5? ?? =

0?25? ?? = 2 and ? = 1? Fig. 8.8 Effect of ?? on stream lines for Φ = 1? ?? = 2? ?? = 0?5, ?? = 0?5? ?? =

0?25? ?? = 2 and ? = 1? Fig. 8.9 Effect of ?? on stream lines when Φ = 1? ?? = 2? ?? = 0?5, ?? = 0?5? ??

= 0?25? ?? = 2 and ? = 1?

75Fig. 8. 10 a Fig. 8. 10 b

75Fig. 8. 10 c Fig. 8. 10 d

Fig. 8.10 e Figs. 8.10 (a-e) Variation of ?, ?? ,??? Φ and ?? on temperature.

166Fig. 8.11 a Fig. 8.11 b

75Fig. 8. 11 c Fig. 8. 11 d

Fig. 8.11 e Figs. 8.11 (a-e) Diagrams analyzing the development of concentration field when ?, ?? ,??? Φ?

and ?? are varied. Chapter 9

2Mixed convective heat and mass transfer for peristaltic transport in an

asymmetric channel with

32Soret and Dufour effects The aim of

present chapter is to address the

12simultaneous effects of heat and mass transfer in the mixed convection

peristaltic flow of viscous fluid in an asymmetric channel. The

channel walls exhibit the convective boundary conditions. In addition the effects due to Soret and Dufour

are taken in to consideration. Resulting problems are solved for the series solutions. Numerical values of

heat and mass transfer rates are displayed and studied. 9.1 Mathematical analysis We consider an
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asymmetric channel of width ?1 + ?2 with flexible walls. An incompressible viscous fluid is considered.

Cartesian coordinate system is adopted such

9that the ?-axis is along the length of the channel and the ? -axis is normal to

the ?-axis. The flow is

generated due to peristaltic

1waves propagating on the channel walls with speed c.

Moreover, the channel walls posses the characteristics of convective type boundary condition. We intend

to study the flow

32in the presence of Soret and Dufour effects. The

channel walls are described by the following expressions ?1(?? ?) = ?1 + ?1, left wall and ?2(?? ?) = − (?2

+ ?2) ? right wall where ?1 and ?2 are the disturbances produced

2due to propagation of peristaltic waves at the left and right walls respectively.

The

values of ?1 and ?2 can be written in the forms 2? ?1 = ?1??? ? (? − ??) ? µ 2? ¶ ?2 = ?1??? (? − ??) + ?

? µ ? ¶ in which ? is time, ? is the phase difference and ?1? ?1 are the amplitudes of the waves travelling

on the left and right walls with speed c respectively. Temperature and concentration at the walls are

assumed to be ?? and ?? (? = 0 for left wall and ? = 1 for right one ) respectively. Velocity field for this

problem is ? = ?(?? ? ? ?)? ? (?? ? ? ?)? 0 ?

10Fundamental equations governing £the flow of an incompress¤ible viscous

fluid

are ∇?? = 0? (9.1) ? ?? = −∇? + ? ∇2? + ???∗ (? − ?0) + ???∗∗ (? − ?0) ? (9.2) ?? ³ ́ in which ?

66is the density of fluid, ? is the pressure, ? is the dynamic viscosity, ? is the

acceler- ation due to gravity and ?∗ and ?∗∗ are the thermal and concentration expansion coefficients

respectively. The energy and concentration equations can be expressed as ?? ???? = ?? ?? + ?? ? ? + ?

2 ?2? + ? 2? + ?? +£? + ????¤?? ? ? + ?? ? 2 ? ? ? (9.3) h ³ ́ ¡ ¢ i £ ¤ ?? ?? = ? ?? ? + ?? ? ????? ? ? +

?? ? + ? ? (9.4) Here ?? is the specific heat, ? is the

6thermal conductivity, ? is the mass diffusivity, ?? is the £ ¤ £ ¤ thermal

diffusion ratio, ?? is the concentration susceptibility, ?? is the

mean temperature, ? and ? are respectively the

14temperature and concentration of the fluid.

We consider (?? ?) and ? as the

7velocity components and pressure in the wave frame (?? ?). The

7transformations between laboratory and wave frames are

? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?)? (9

24.5) where (? ? ? ) and ? are the velocity components and pressure in the

laboratory frame.

The fundamental
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37equations in wave frame are reduced as follows: ?? ?? ?? ?? = 0?

+ (9.6) ? ? ?? ?2? ? (? + ?) ?? + ? ?? (? + ?) = − ?? + ? ??2 + µ ¶ ∙ ??2??2 + ???∗ (? − ?0) +???∗∗ (? −

?0) ? ̧ (9.7) ? (? + ?) ?? + ? ?? ? = − ?? + ? ??2 ??2 ? ? ?? ?2? ?2? + ? (9.8) µ ¶ ∙ ̧ ?? ((? + ?) ?? + ???)

= ?? [??? + ???] + ? 2 (? + ?)2? + ?2? + (? + ?)? + ?? + ?????? [??? + ???] ? 2 (9.9) ∙ ³ ́ ³ ̧́ (? + ?) ?? +

??? = ? [??? + ???] + ??? ?? [??? + ???] ? (9.10) Letting ?= ? ? ? ?= ? ?= ? ?= ? ? ? ?1 ? ?? ? ? = ?1? ?

1 = ?1? ? ?1 ?2 = ?2? ?= ?2? ?= ?1? ?= ?1? ?= ?21? , ? = ? ? ?1 ?1 ?1 ?1 ??? ? ?? = ???1 ? ? = ? − ?0

? ? = ? − ?0 , ?? = ? (?1 − ?0) ?? , ? ?1 − ?0 ?1 − ?0 ????? (?1 − ?0) ?? = Pr ?, ? = ?2 ? ?? = ???? (?1 −

?0) ?? ?? (?1 − ?0) ??? (?1 − ?0) ? ? = ? ? ?? = ? ?? ? ?? = ???∗ (?1 − ?0) ?21 ? ?? = ???∗∗ (?1 − ?0)

?12 ? ?? ?? ??? ?? = ? ? ?=??,?=−??? (9.11) and adopting long wavelength and low Reynolds number

approach we have in terms of stream function ? the following equations ?? = ???? + ??? + ???? ?? = 0?

??? + ?? ??? 2 + Pr ??(???) = 0? ????? + ????? = 0? 1¡ ¢ (9.12) (9.13) (9.14) (9.15) Here ? denotes the

47kinematic viscosity, Re the Reynolds number, ?? is the Brinkman number,

?

1is the Eckret number, ? ? is the Prandtl number, ? is the wave number, ?? is

the temperature Grashoff number, ?? is the concentration Grashoff number, ? is

dimensionless concentration, ? is the

dimensionless temperature and incompressibility condition is automatically satisfied. Defining ? and F as

the dimensionless mean flows in laboratory and wave frames we have ? = ? +1+? (9.16) where ?1 ?? ?=

Z?2 ?? ??? (9.17) The convective boundary conditions for the temperature and concentration are given by

−? ?? = ?(? − ??)? ?? −??? =?(?−??)? ?? The dimensionless boundary conditions for our problem can be

imposed

88as follows: ? = ? 2 , ??=−1, ??+??(?)=0? ??+??(?)=0? ?=?1, ? = − , ??=−1, ??

−??(?−1 )=0, ??−??(?−1 )=0,?=?2,

? 2 (9.18) where ?1(?) = 1 + ? cos(2??), ?2(?) = −? − ? cos(2?? + ?) ? (9.19) ?? = ?? ? 1, ?? = ??1? ?

(9.20) In above expressions ? and ? are dimensionless transfer coefficients, ?? is heat transfer Biot-

number and ?? is mass transfer Biot-number. 9.2 Solution of the problem The problems consisting of Eqs.

(9.12)-(9.15) have been solved for both the perturbation and numerical solutions. Perturbation solution is

obtained for small Brinkman number. Numerical solution is presented using Mathematica. For perturbation

solutions we have the following zeroth and first order systems: ?0???? +

78???0? + ???0? = 0? ?0?? + Pr ??(?0??) = 0? ?0?? + ?????0?? = 0?

(9.21) (9.22) (9.23) ?0 = ?20 , ?0? = −1, ?0? + ?? (?0) = 0? ?0? + ?? (?0) = 0? ? = ?1, ?0 = −?0 , ?0? =

−1, ?0? − ??(?0 − 1) = 0, ?0? − ??(?0 − 1) = 0, ? = ?2, 2 and ?1???? + ???1? + ???1? = 0? ?1?? + ?0??

2 +

74Pr ??(?1??) = 0? ?1?? + ???? (?1??) = 0? ¡ ¢ ?1 = ?1 , ?1? = 0, ?1? + ?? (?1)

= 0? ?1? + ?? (?1) = 0? ? = ?1, 2 ?1 = −?21 , ?1? = 0, ?1? − ??(?1) = 0, ?1? − ??

(?1)

= 0, ? = ?2. The perturbation solutions of above problem are given ? = − ? (?1 + ?2 − 2?) ?21 −24(??11?

−2+?2?)223 + 2 (?1 + ?2) ? − 2?2 ¡ ?0 (?) ¢ + 24 (2 + ?? (?1 − ?2)) (?1 − ?2)2 (2 + ?1? − ?2?) + ???1 (?)

241920 (?1 − ?2)6 ? ? = 2 + ???1 − ??2 1440 (−1 + ?) ?2 (?) ? 1 + ???1 − ??? + ?? ? = 21++??????11−

−??????2 144?0?(−??1?+? ?) [?3 (?)] ? + where ??? are given below (9.24) (9.25) (9.26) (9.27) (9.28)

(9.29) (9.30) (9.31) ?1 = ??? cosh((??c1o)s+h?(?si1n)h−(s?in2

108)h−(?(?2)+)2?) sinh(?) + (? + ?1 )2 ?2? 1 + ?21 ??2 +?2 (? + ?1 )2 ??4) + ??(2

(? + ?2)2 ?? 1 + ?2

? co¡sh (2?) s¢inh (?2) +16 (? + ?2) ??2?2 cosh (?)) + 62???? ?¡ + ?1 −¢8?21 ??2 + 8?42??4) cosh (3?

2??) + 16???2 (? + ?2) ?4?2 c¡osh (?2??)2 co¢sh (?) ??(sinh (?) −16?? (? + ?1) ??? sinh (?2)2 sinh (?))

− 2? 4 + ?2 + ?2??2 − 2?2 +2?3??(?2 8 + ?????1 3 + ?2 1 + 2?21 − 2¡?2 ))

43cosh (2?¢2) ? ?2 = 2?2??¡??(? 1 + ?2 +¡?2)(

2? 4¡ + ?1 + 8???2¢¢¢− ??2?2 + ?2(8 + ?1(3 +??2 1 + 2?21 − 2?2 ))) + ??2?¡?3??(? + ?1 + 2?¢32)?2?
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cosh (2?) +2??¡??2 cosh (2?) +¢?2??2 cosh (2?) + 8 (? + ?2) + ?(?+2?2+?1)??(16(? +?2 + 4?1) sinh (??)

(? (? − ?) + sinh (??))) + (? + ?2 + 4?1) 1 + ??2 −3 + 2? ?2?2 sinh (2? ?) + 16?? + (?1 + 4?2)2?2 sinh ((?

2 + ?))¡? ¢ ?¡3 = 1 + ??2¢ ? − 4?32 (? + ?1) ??4 1 + ??2 ?2 − 4 (? + ?2) ??2 1 + ??2 ?3 (?1 −¡?2)(−8? 2¢

− 2?2 (4 + ?1 + 3?) −¡2?? + ?¢22 (? + 2?1) ??2 − 2?¡21 (? + ?2¢)2 ????4) + 2(1 + ? (? + 2?1) ??2 + (? +

?2 + 4?1)2 ??4)?2 + (?2 1 + ?21 ? 9.3 Graphical analysis ¡ ¢ In order to provide a comparative study of

the results by the two methods, we have plotted graphs for both solutions. Left panel depicts the

perturbation solution whereas right panel for the numerical solution. Graphical analysis is carried out for

the dimensionless temperature, concentration and velocity fields. Numerical values for the rates of

20heat and mass transfer at the left wall are given in the Tables

9.1 and 9.2 respectively. The values of different parameters in all the graphs are taken as follows: ? = 1??

= ??4?? = 0?5?? = 0?7?? = 0?8?? = 0??? = 1??? = 2??? = 0?5? ?? = 0?5??? = 1??? = 0?25??? = 0?

5??? = 0?7? The graphs of temperature profile showed

15that the temperature decreases with an increase in the values of

Bi and it increases by increasing Mi. The decrease in the temperature with increase in the heat transfer

Biot-number is very rapid for ?? ≤ 1? It is noted that for ?? ≥ 1 corresponding decrease in temperature

becomes very slow (see Fig. 9.1). This fact is totally opposite to the case of increase in Mi in which

temperature not only increases by increasing ?? but also such increase is constant and very slow (Fig.

9.2). Fig. 9.3 showed that the temperature increases when ?? is increased? Increase in the tem- perature

is smaller for small values of G? but this increase becomes much for higher values of G?. However this

increase in temperature is observed throughout the channel. Unlike the case of ??? small increase in

temperature is observed when G? increases but this increase is not uniform throughout the channel. Near

the right wall the temperature tends to decrease very slowly by increasing ?? (see Fig. 9.4)? Figs. 9.5-9.7

are plotted to analyze the concentration profile in detail. It is found that the concentration increases when

?? is increased? This increase is large for ?? ≤ 1 and very slow for large values of Mi (see Fig. 9.5). It is

noticed from Figs. 9.6 and 9.7

5that the concentration generally decreases with an increase in ?? and ??. This

decrease is

much and constant for ?? and ?? respectively. However concentration profile showed different behavior

near the right wall. The concentration here increases which is quite different for its behavior at all other

parts of the channel. Figs. 9.8 and 9.9 depict that the value of velocity increases by increasing ?? but it

remains constant with variation in ??? The velocity in both cases is increased for increasing ?? and ?? in

the region where "y" is negative and decreased for positive y. Tables 9.1 and 9.2 are plotted for the

numerical values of rates of heat and mass transfer. It is seen that solution up to first order perturbation

gives an agreement with the numerical results up to second decimal place. Table 9.1 shows that heat

transfer rate is increasing function of Biot-number. However the Grashoff numbers and mass transfer Biot

number reduce the heat transfer rate (see Table 9.1). Table 9.2 illustrates that the mass transfer rate at

the wall tends to decrease when ??, ??, ?? and ?? are increased. 3.0 3.0 Bi = 0.5 Bi = 0.5 2.5 2.5 2.0 q

2.0 q Bi = 1.0 1.5 Bi = 1.5 1.5 1.0 1.0 Bi = 2.0 Bi = 1.0 Bi = 1.5 Bi = 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 0.5 -1.0

-0.5 0.0 0.5 1.0 y y Fig. 9.1 Effect of ?? on the temperature profile. 3.2 Mi = 0.5, 1.0, 1.5, 2.0 3.2

Mi=05.,1.0,1.5,2.0 3.0 3.0 q 2.8

40q 2.8 2.6 2.6 2.4 2.

4 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 0.5 1.0 y y Fig. 9.2 Effect of ? ? on the temperature profile. 3.2 Gt

= 0.0, 1.0, 2.0, 3.0 3.2

57Gt = 0.0, 1 .0, 2 .0, 3 .0 3 .0 3 .0

q 2.8

40q 2.8 2.6 2.6 2.4 2.

4 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 0.5 1.0 y y Fig. 9.3 Effect of ?? on the temperature profile. 3.2

46Gc=0.0,2.0,4.0,6.0

3.2

46Gc = 0.0, 2.0, 4.0, 6.0
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3.0 3.0 q

40q 2. 8 2. 8 2.6 2.6 2. 4 2.4

-1.0 -0.5 0.0 0.5 1.0 1.5 1.0 -1.0 -0.5 0.0 0.5 y

173y 0. 6 0.6 0.4 Mi = 2.

0 0

155.4 0.2 f 0.0 -0.2

Mi = 2.0

82Mi = 1. 5 0. 2 Mi = 1.5 ∆ 0.0

82Mi = 1.0 Mi = 1. 0 -0. 2 Mi = 0 .5 -0.

4

120Mi = 0.5 -1.0 -0. 5 0. 0 0. 5 1.0 1 .5 -0.

4 y -1.0 -0

118.5 0.0 y 0.5 1.0 1.5

Fig. 9.5

11Effect of ? ? on the concentration profile. 0. 0 -0. 1 -0. 1 -0.

2

133-0.2 f -0.3 f -0.3 -0.4 Gt = 0.

0, 1.0, 2.0, 3.0 -0.4

57Gt = 0.0, 1 .0, 2 .0, 3 .0 -1 .0 -0. 5 0.0 0. 5 1 .0 1.5 -0.

5 y -1.0 -0

128.5 0.0 y 0.5 1.0 Fig.

9.6

11Effect of ?? on the concentration profile. 0. 0 -0. 1 -0. 1 -0.

762 -0.2 f ∆ -0. 3 -0 .3 -0. 4 Gc = 0 .0,

2.0, 4.0, -0.4

46Gc=0.0,2.0,4.0,6.0

-0.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -0.5

39y -1.0 -0.5 0.0 0.5 1.0 y
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Fig. 9.7

11Effect of ?? on the concentration profile. 1.0 1 .0

0.5 0.5

28U 0.0 U 0.0 Gt =0.0, 2 .0, 4 .0, 6 .0 Gt = 0.0, 2 .0, 4 .0, 6 .0 -0.5 -0.

5 -1.0 -1.0 -1.0 -0.5 0.0 0

36.5 1.0 1.5 y -1.0 -0.5 0.0 0.5 1.0 y 1.0 1.0 0. 5 0.5 0 .0 Gc=0 .0, 2.0,4 .0,

6.0

121U 0. 0 U Gc = 0.0, 2 .0, 4 .0, 6 .0 -0. 5 -0.

5 -1.0 -1.0 -1.0 -0.5 0.0 0

18.5 1.0 1.5 y -1.0 -0.5 0.0 0.5 1.0

y Fig. 9.9 Effect of ?? on the Velocity profile. ?? ?? ?? ?? −?0(?1) − ?0 ∗ (?1) 0?5 1?0 2?0 0?5 1?1935

¡1?1¢927 1?0 1?2343 1?2343 1?5 1?2550 1?2560 2?0 1?2674 1?2693 0?0 1?2988 1?3018 1?0 1?2674

1?2693 2?0 1?2411 1?2402 3?0 1?2197 1?2176 0?0 1?2439 1?2349 1?0 1?2310 1?2254 2?0 1?2197

1?2176 3?0 1?2100 1?2110 0?5 1?2100 1?2110 1?0 1?1999 1?2006 1?5 1?1955 1?1967 2?0 1?1930

1?1951 Table 9.1. Numerical values of heat transfer rate

161at ?1. ?? ?? ?? ?? ?0(?1) ?0 ∗ (?1) 0?5 1 ?0 2? 0 0?

5 0?2190 ¡ 0?¢2187 1?0 0?2179 0?2179 1?5 0?2174 0?2176 2?0 0?2171 0?2173 0?0 0?2219 0?2225

1?0 0?2171 0?2173 2?0 0?2139 0?2141 3?0 0?2125 0?2139 0?0 0?2142 0?2146 1?0 0?2131 0?2141

2?0 0?2125 0?2139 3?0 0?2125 0?2140 0?5 0?2125 0?2140 1?0 0?1346 0?1360 1?5 0?0903 0?0914

2?0 0?0618 0?0625 Table 9.2. Numerical values of mass transfer rate at ?1. Chapter 10

4Variable viscosity effects on the peristaltic motion of a third-order fluid

The

45effect of variable viscosity on the peristaltic motion of MHD non -Newtonian

fluid in a channel

is studied. Constitutive relations of third order fluid are employed in the development of flow. Mathematical

analysis is presented when no-slip condition is no longer valid. The

17series solutions for stream function, longitudinal velocity and pressure

gradient are

first derived and then discussed in detail. The

6pressure rise and frictional forces are monitored through numerical

integration.

Physical interpretation is also made. 10.1 Governing problem We

12consider an incompressible magnetohydrodynamic (MHD) third order fluid

with variable viscosity in a uniform channel of

width 2?1.
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16A uniform magnetic field B0 is applied in the ?−direction. The induced

magnetic

and electric fields are not considered. Wave shapes are written as ?(?? ?) = ?1 + ?1??? 2? ? (? − ??) ,

(10.1) ∙ ̧ where

6c is the velocity of propagation of the

wave, ?1

9is the wave amplitude, ? is the wavelength, ? is the time, ? is the direction of

wave

propagation and ? is transverse to ?? The constitutive equations for the third order fluid are given through

Eqs. (1.17-1.19). Hence we directly write the following governing equations for two dimensional flow of MHD

third order fluid as ?? ?? ?? ?? =0? + (10.2) ? ? +? +? ? ? + + (10.3) µ ?? ?? ?? ?=−?? ???? ???? −??

02?? ¶ ?? ?? ?? ? ? +? +? ? ? + + (10.4)

51µ ?? ?? ? =− ?? ???? ????? ?? ¶ ?? ?? ?? ?¯?¯?¯ = ?(2?¯?¯)+? 1 (2?¯?¯¯?

+2?¯?¯?¯?¯+ 2?̄?̄?̄?̄+4 ?¯?2¯+2?¯?¯?¯?¯+2?¯?¯2)+?2 (4 ?¯?2¯ +?̄?2̄ +?

?̄2̄ +2?¯?¯?¯?¯)+?1(2?¯?¯¯?¯?+

2?̄ ?̄?̄?̄?̄ +4?̄?̄?̄?̄ ?̄+2?̄ ?̄ ?̄?̄?̄ +4?̄?̄?̄?̄ ?̄+12?̄?̄?̄?̄ ?̄+4?̄?̄?̄?̄ ?̄+14?̄?̄?̄?

?̄̄?̄ +10?̄?̄?̄?̄?̄?̄ − 6?̄?̄?̄?̄?̄?̄ +6?̄?̄?̄?̄?̄?̄ +6?̄?̄?̄?̄ ?̄+6?̄?̄?̄?̄?̄?̄ +4?̄?̄?

?̄̄?̄?̄ +8?̄?3̄ +8?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄ ?̄+2?̄2?̄?̄?̄?̄ +4?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄?̄?̄

+2 ?̄2?̄?̄?̄?̄)+?2(8?̄?̄?̄?̄?̄+8?̄?̄?̄?̄?̄?̄ +8?̄?̄?̄?̄?̄?̄ +16?̄?3̄ +8?̄?̄ ?̄?̄?̄?̄

+4?̄?̄?̄?2̄ +2?̄?̄?̄?̄ ?̄+2?̄?̄?̄?̄ ?̄+2?̄?̄?̄?̄?̄?̄ −2?̄?̄?̄?̄?̄?̄ + 2?̄?̄?̄?̄?̄?̄ +2?

?̄̄?̄?̄?̄?̄ +4?̄?̄?̄?2 +2?̄?̄?̄?̄ ?̄+2?̄?̄?̄?̄?̄+2?̄?̄?̄?̄?̄?̄ −2?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?

?̄̄?̄ +2?̄?̄?̄?̄?̄?̄)+?3(16?̄?3̄ +4?̄?̄?̄?2̄ + 4?̄?̄?̄?2̄ +8?̄?̄?̄?̄?̄?̄)? ?̄?̄?̄ ?(?̄?̄

+?̄?̄)+?1(?̄?̄ ?̄+?̄?̄?̄?̄ +?̄?̄?̄?̄ +?̄?̄ ?̄+?̄?̄?̄?̄ −?̄?̄?̄?̄ +2?̄?̄?̄?̄ −2?̄?̄?̄?̄) =

+?1(?̄?̄ ?̄?̄+?̄ ?̄?̄?̄?̄ +?̄ ?̄?̄?̄?̄ +?̄?̄ ?̄̄?+?̄?̄?̄?̄?̄ +?̄ ?̄?̄?̄?̄ +2?̄?̄?̄?̄?̄+4?̄?

?̄̄?̄ ?̄+ 2?̄?̄?̄?̄ ?̄−2?̄?̄?̄?̄?̄−4?̄?̄?̄?̄ ?̄+?̄2?̄?̄?̄?̄ +?̄?̄?̄?̄?̄?̄ −?̄?̄?̄?̄?̄?̄

+?̄2?̄?̄?̄?̄ −5?̄?̄?̄?̄?̄?̄ +4?̄?̄?̄?̄?̄?̄ +?̄?̄?̄?̄?̄?̄ +?̄2?̄?̄?̄?̄ +?̄?̄?̄?̄?̄?̄ +3?

?̄̄?̄?̄?̄?̄ −?̄2?̄?̄?̄?̄ −4?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄ ?̄+2?

?̄̄?̄?̄ ?̄+3?̄?̄?̄?̄?̄?̄ +5?̄?̄?̄?̄?̄?̄ −2?̄?̄?̄?̄ ?̄+4?̄?2̄?̄?̄ +4?̄?̄?̄?2̄ +4?̄?̄?̄?2̄

+4?̄?̄?̄?2̄) +?2(8?̄?2̄?̄?̄ +6?̄?2̄?̄?̄ +2?̄?3̄ +8?̄?̄?̄?2̄ +6?̄?̄?̄?2̄ +2?̄?3̄) ?3(8?̄?

2̄?̄?̄ +8?̄?2̄?̄?̄ +2?̄?3̄ +6?̄?̄?̄?2̄ +6?̄?2̄?̄?̄ +2?̄?3̄)? ?̄?̄?̄ = ?(−2?̄?̄)+?1(−2?̄?

¯̄?−2?̄?̄?̄?̄ −2?̄?̄?̄?̄ +4?̄?2̄ +2?̄?̄?̄?̄ +2?̄?2̄) +?2(4?̄?2̄ +?̄?2̄ +?̄?2̄ +2?̄?̄?̄?̄)

+?1(−2?̄?̄ ?̄̄?−2?̄?̄?̄?̄?̄ −4?̄?̄?̄?̄ ?̄−2?̄?̄?̄?̄?̄ −4?̄?̄?̄?̄ ?̄ +12?̄?̄?̄?̄?̄+2?̄?̄?

?̄̄?̄+4?̄?̄?̄?̄?̄+6?̄?̄?̄?̄ ?̄+10?̄?̄?̄?̄?̄?̄ −2?̄2?̄?̄?̄?̄ −4?̄?̄?̄?̄?̄?̄ +4?̄?̄?̄?̄?

?̄̄ +6?̄?̄?̄?̄?̄?̄ −6?̄?̄?̄?̄?̄?̄ +14?̄?̄?̄?̄?̄?̄ −2?̄2?̄?̄?̄?̄ +2?̄?̄?̄?̄?̄?̄ +6?̄?̄?

?̄̄?̄?̄ −8?̄?̄?̄?̄?̄?̄ −8?̄?3̄) +?2(2?̄?̄?̄?̄ ?̄+2?̄?̄?̄?̄ ?̄+2?̄?̄?̄?̄?̄?̄ −2?̄?̄?̄?̄?

?̄̄ +2?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄?̄?̄ −4?̄?2̄?̄?̄ −8?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄ ?̄+2?̄?̄?̄?̄ ?̄

+2?̄?̄?̄?̄?̄?̄ −2?̄?̄?̄?̄?̄?̄ + 2?̄?̄?̄?̄?̄?̄ +2?̄?̄?̄?̄?̄?̄ −4?̄?2̄?̄?̄ +8?̄?̄?̄?̄?̄

+8?̄?̄?̄?̄?̄?̄ +8?̄?̄?̄?̄?̄?̄ −16?̄?3̄ +?3(−16?̄?3̄ −4?̄?̄?̄?2̄ −4?̄?̄?̄?2̄ −8?̄?̄?̄?̄?

?̄̄)? where (???) and ?

3are the velocity components and pressure in the fixed frame (???) and the

subscripts denote the partial derivatives If (?? ?) and ? indicate the

17velocity components and pressure in the wave frame then defining

? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?) (10.5) and using ? = ? = ? = ? ? ? ? = ? ? = ?

? = ? ? ? ?2? ? ? ? ? = ?1 ? ? = ? ? = ?1 ? ? = ?? ? ? ?1 ?1 ?1 ???0 ?(?) µ ?0 ¶1?2 ?0?1? ?0 = ?0 ? ?? =

????01 ? ? ?0? ?0 ? ?1 ? (?) ? ?(?) = ? ? = ?? ? ? ? = ????? ? = −??????2 = ??02??221??3 = ??03??

221? (10.6) we obtain

3under the long wavelength and low Reynolds number approximation the

following expressions − ???? ?? ?(?)??2??2 +2Γ ??2??2¶3#−?2 ???? + ? " + 1 = 0? µ µ ¶ 0 = −?? ?? ?

(10.7) (10.8) in which Γ(= ?2 + ?3) is the Deborah number, ?

1is the stream function, ?0 is the constant kinematic viscosity, ? is the Hartman
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number, Re is the Reynolds number, ? is the

124fluid density, ? is the electrical conductivity, ?(?) is the viscosity function, ? is

the

wave number, ?0 is the constant viscosity and continuity equation is automatically satisfied. Further Eq.

(10.8) indicates that ? =6 ?(?)? From Eqs. (10.7) and (10.8) we have ?2 ?2? ?2? 3 ??2 ?(?) ??2 + 2Γ ??2

Ã − ? 2 ?2? = 0? µ ¶ ! ??2 The subjected boundary conditions in dimensionless form become ? = 0, ?2?

??2 = 0, ?? ? = 0, ? = ? , ?? ?? + ?1??? = −1, ?? ? = ?, ?(?)=1 + ? cos(2??), ? = 1 ?? Z0 ?? ??? (10.9)

(10.10) (10.11) In above equations ?(?) = ?−?? or ?(?) = 1 − ?? for (? ¿ 1), ? is the viscosity parameter, ?

1 is the non-dimensional velocity slip parameter and ?2? ?2? 3 ??? = ?(?) ??2 + 2Γ ??2 ? (10.12) µ ¶

3Pressure rise per wavelength ∆?? and frictional force ?? (at the wall) are

defined by

the following expression 1 ?? ∆?? = ?? ??? (10.13) Z0 ?? = ? − ?? ??? 1 ?? (10.14) Z0 µ ¶ In the next

section the problem consisting of Eqs. (10.9) and (10.10) will be solved for small Deborah number Γ and

small viscosity parameter ?? 10.2 Series expressions Letting ? = ?0 +

68Γ?1 + ???? ? = ?0 + Γ?1 + ???? ? = ?0 + Γ?1

+ ???? and ?0 = ?00 + ??01 + ???? ?1 = ?10 + ??11 + ???? ?0 = ?00 + ??01 + ???? ?1 = ?10 + ??11 +

???? ?0 = ?00 + ??01 + ???? ?1 = ?10 + ??11 + ???? we arrive at the following systems: System for ?00

− ??00 ?? + ??3??300 − ?2(????00 + 1) = 0? (10.15) ??4??400 − ? 2 ??2??200 = 0? ?00 ?2?00 = 0 = ??

2 ?? ? = 0? ?00 = ?00 ????00 + ?1 ??2??200 = −1 ?? ? = ?? System for ?01 − ??01 + ?3?01 −?2??01 =

? ?2?00 ?? ? ? (10.16) ??3 ?? ?? µ ??2 ¶ ?4?01 −?2?2?01 = ?2 ? ?2?00 ? ??4 ??2 ??2 µ ??2 ¶ ?01 = 0

= ??2??201 ? at ? = 0? ?00 = ?01? ????01 + ?1 ??2??201 = ?? ?2?00 at ? = ?? ??2 System for ?10 − ??

10 ?? + ?3?10 − ?2 ??10 + 6 ?2?00 2 ?3?00 = 0? (10.17) ??3 ?? µ ??2 ¶ ??3 ?4?10 −?2?2?10 +6 ?2?00

? ??4 ??2 ?? Ã µ ??2 ¶ 2 ?3?00 = 0? ??3 ! ?10 = 0 = ?2?10 ? at ? = 0? ??2 3 ?10 = ?10? ????10 + ?1

??2??210 + 2?1 ??2??200 = 0 at ? = ?? µ ¶ The solutions of above systems finally give ? = ???

cosh[??]+? 1+??2?1 sinh[??]−(? +?)sinh[??] ??cosh[??¡]+ −1+?¢??21 ??1sinh[??] + ??1 + Γ?2? (10.18) ¡

¢ ?= 1 32 ?? ????[?? ] + −1 + ?? ?21 ? ?1 sinh [?? ] 4 × (10.19) � +6?1 − ?¡2 + ?3 + ?4 − ?5 +¡ ?1 ?6 ¢ ¢

� ? 7¡2(? +?)3?6?Γc¡osh[??] ??¢cosh[??]+ −¢1+??2?1 sinh[??] � � ?? ?? = − ??(?co+sh?[)???3] (+cos

−h1[?+??]?+??2 ??1s?in1hsi[n?h?[?])? ] + ??1 + Γ?2? (10.20) ¡ ¢

168with ?1 ?2 ? 3 ? 4 ?5 ? 6 ? 7

? 8 ?9 = (? + ?) (?3 + 2 sinh[?? ] (?4) + 2?? cosh[?? ] (?5)) 8? (?? cosh [?? ] + −1 + ?? ?21 ? ?1 sinh [??

])2 ? (?−3???−3?¡? (? + ?)3 ?¢4)?9 = 32(?? cosh [?? ] + −1 + ?? ?21 ? ?1 sinh [?? ])4 ? = −4?? ? + ?1 +

??¡2?1 + 2??¢ 2?1 + ? −1 + 2?2?1 cosh[2??] +? −¡2?2 + ?2 + ? −4¢+ ? 2 (−¡4 + ?) ?¡− ?2 ? 1 sin¢h¢[?

?]? = 3? −¡1 + ?? 2?1 cos

142¡h[? ?] + ?¡ (−2?2 + ?2 + ?¢(¢−4 +¢ ? 2((−4 + ?) ? −¡ ?2))?1)

sinh[?¢ ?]? = 3? cosh[? ?] + ? −?2 + ? (? + ?1) sinh[? ?]? = −3?? cosh[3?? ]¡+ 12? (? + ?? (¢? + 2?1 − ?

??1)) sinh[?? ] + 1 − 9?? 2?1 sinh[3?? ]? = 3?¡? cosh[3?? ]¢− 12? (−? + ?? (? + 2?1 + ? ??1)) sinh[?? ] +

−1 + 9?? 2?1 sinh[3?? ]? = 12¡? ? (? + ?1) − ¢16? ??1 cosh[2?? ] + 4? ??1 cosh[4?? ] −8? sinh[2?? ] + ?

sinh[4?? ] + ? cosh[?? ](12? (−? cosh[? ? ] +?? ?1 sinh[? ?] + sinh[3? ?])) + sinh[3? ?]? = 1 − ?? 2?1

sinh[?? ] + ?6?? (?6) + ?2?? (?7) + 2?3??? (?8) ? ¡ ¢ ?1 = ?7 + ?8? ?2 = 6(? + ?)3? 6?Γ (?9) ? ?3 = 2(? +

?)3? 5(1 + 3? ?)Γ (?10) ? ?4 = 2(? + ?)3? 5Γ (?11) ????[? ?]? ?5 = 6(? + ?)3? 5Γ(????[3?? ] + 3?? (?

12))????[? ?]? ?6 = 4(? + ?)? ?? ????[?? ] + −1 + ?? 2? ????[?? ] 2 (?13 + 2????[?? ] (?14))? ?7 = (? +

?)3 ?¡5?Γ cosh [3? ?] (?¡?

165cosh [?? ]¢+ −1 + ??¢ 2?1 sinh [?? ]) +32(?? cosh [?? ] + −1 + ?? 2? 1 sinh

[?? ])3((¡−(? + ?)? ?¢???[? ?] +????[?? ] + ? ? (?¡???[?? ] + ?¢?1????[?? ])))? ?8 = 2(? + ?)3? 5Γ????[?

?](12?? −1 − 3? ? + ?? 2?1 ????[?? ] −3?? ????[3?? ]) + 12 (1 + ? (3? +¡?? (? + ?1 − 3? ??1¢))) sinh [??

] + 1 − 9?? 2?1 sinh [3?? ] ? ?9¡= 12? (? + ?¢1) + 4? ?(−4????[2?? ] + ????[4?? ]) − 8????[2?? ] + ????

[4?? ]? ?10 = 12? (? + ?1) + 4? ?1(−4????[2?? ] + ????[4?? ]) − 8????[2?? ] +????[4?? ]? ?11 = ????

[3?? ] + ? (4?? (−? + 3?? ?1)????[?? ] − 3?????[3?? ] +4(? + ?? (3? + 6?1 − ? ??1))????[?? ] − 9?? ?

1????[3?? ]? ?12 = ((−????[3?? ] + ? (4?? ?1????[?? ] + 4(? + 2?1)????[?? ] − 3?1????[3?? ])))? ?13 =

−4? ? + ?1 + ??1? 2 + 2? 2?1 + ? −1 + 2? 2?1 ????[2?? ] +3????[2??¡ ] − 4?? 2?1????¢[2?? ] +¡ 2?? ??

¡??[?? ]( 3 + ¢?¢ 2 −?2 + ?(? + ?1) ????[??] + ??????[??])? ¡ ¡ ¢¢ ?14 = −3 + ?2 −2?2 + ?2 + ? −1 + ?2

(−4 + ?)? − ?2 ?1 ????[??] +?? ¡−1+??2¡?1 ????[??]? ¡ ¡ ¢¢ ¢¢ ?1 = 8(??cosh[??](+?(+−?1)+????32?

1)sinh[??])2? ¡ ¢ ?2 = 16(?? cosh[?? ]+(−1+?? ? )? ?1 sinh[?? ]) (?+?)3?7?24 4? ?3 = 4? ? + ?1 + ??2?1

+ 2? ? − 2 1 + ??2 ?1 cosh[2??] + −3 + 4??2?1 sinh [2??¡] ? ¢ ¡ ¡ ¢ ¢ ¡ ¢ ?4 = 12? (? + ?1) + 4? ?1 (−4
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cosh [2?? ] + cosh [4?? ]) − 8 sinh [2?? ] + sinh [4?? ] ? 10

163.3 Results and discussion In this section the

main objective is

24to study the influence of various parameters of interest on the

flow quantities. In particular the variations of Hartman number (?)? Deborah number (Γ)? amplitude ratio

(?)? slip parameter (?1) and viscosity parameter (?)

21on the longitudinal velocity, pressure gradient, pressure rise (∆??) and

frictional

force (??) per wavelength have been examined. Figs.10.1-10.3 show the effects of ?, ?1 and Γ on the

longitudinal velocity ?? The plots show that velocity at the center of the channel and near the walls has

opposite behavior. Further the velocity at the center of the channel decreases with an increase in ? and ?1

but it increases by increasing Γ?

10The variation of pressure gradient for certain values of ?, ?1 and Γ

are depicted in the Figs 10.4-10.6

2It is anticipated that the absolute value of pressure gradient increases with an

increase in ? and ?1 but it

decreases when Γ is increased. The

6pressure rise and frictional force per wavelength have been computed

numerically. The

pressure rise verses flow rate has been plotted in the Figs 10.7-10.11.

5It is noticed from Fig. 10.7 that the pressure rise decreases with an increase in

?1? It is

found that magnitude of pressure rise per wavelength increases by increasing ? (see Fig. 10.8). Fig. 10.9

depicits an important phenomenon that is the graph for pressure rise for Γ = 0 is linear whereas in the

case of non zero Γ it is non linear. Fig 10.11 shows

10that the pressure rise increases with an increase in the amplitude ratio

?. The

3free pumping flux increases by increasing

? (see Fig?10?10)? Figs. 10.12-10.16 monitor the features of frictional force (??)?

3It is clear that there exists a critical value

of ? below which ?? resists the flow and above which it assists the flow. This critical value of ? decreases

by increasing ?1 and ? (see Figs. 10.12 and 10.13). Contrary to this the critical value of ? increases with

an increase in ? and ? (see Figs 10.14 and 10.15). It is revealed from Fig. 16 that the effect of Γ on

frictional force is quiet opposite to that of pressure rise. Another important fact of interest here is a

comparison between the viscous and non- Newtonian fluids (see Figs. 10.3, 10.6, 10.9 and 10.14). In all

these Figs. the case of viscous fluid is given by putting Γ = 0? Fig. 10.3 shows that velocity at the centre of

the channel in non-Newtonian fluid is larger when compared with a viscous fluid. Fig. 10.6 shows that the

132 non-Newtonian fluid exhibits larger pressure gradient than the viscous fluid. Figs. 10.17-10.20

examine the trapping phenomenon.

27It is observed that the size of the trapped bolus decreases with an increase
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in ?1 and ?? The size of trapped bolus also increases by increasing the viscosity

parameter

? (see Figs. 10.17 and 10.18). It is noted

167that by increas- ing the Deborah numberΓ? the size of the

bolus decreases whereas it increases by increasing ?? 0.6 0.6

19M = 0.5, 1.0, 1.5, 2.

1160 M = 0.5, 1.0, 1.5, 2.0

0.4 0.4

33U U 0. 2 0. 2 0.0 0.0 -1 .0 -0. 5 0.0 0. 5 1 .0 -1.0 -0. 5 0 .0 0. 5 1.0

y y Fig. 10.1. Effect of ? on velocity ? when ?1 = 0?2? Γ = 0?04? ? = 1? ? = 1

8?3 and ? = 0?3? Left panel is for

? = 0 and right panel is

8for ? = 0? 4? 0. 8 0.6 0.

5 0.4 b1 = 0.0, 0.2, 0

130.4, 0.6 U b1 = 0.0, 0. 2, 0. 4, 0.

6

61U 0. 2 0.0 0.0 -0. 2 -0. 5 -0. 4 -1 .0 -0. 5 0. 0 0. 5 1 .0 y -1 .0 -0. 5 0.0 0. 5 1 .0

y Fig. 10.2. Effect of ?1 on velocity ? when ? = 1? Γ = 0?04? ? = 1? ? = 1?3 and ? = 0?3? Left panel is for

? = 0 and right panel is for ? = 0?4 0.6

134G = 0.08, 0.06, 0.04, 0. 0 0.

4

28U 0. 2 0.0 -1 .0 -0. 5 0.0 y 0. 5 1 .0

Fig. 10.3. Effect of Γ on velocity ? when ? = 1? ?1 = 0?04? ? = 1? ? = 1?3 and ? = 0?3? 3 3 2 2 1 1 dp?dx

19M = 2.5, 2.0, 1.5, 1.0 0

dp?dx

91M = 2. 5, 2. 0, 1.5, 1.0 0 -1 -1 -2 -2 0. 0 0.2 0. 4 0. 6 0.

398 1.0 x 0.0 0.2 0.4 0.6 0.8 1.0 x Fig.

10.4. Effect of ? on pressure gradient when ?1 = 0?2? Γ = 0?001? ? = 0?1 and ? = 0?3? Left panel is for ?

= 0 and right panel is for ? = 0?4 2.0 1.5 1.0 dp?dx 0.5 0.0 2.0 1.5

67b1 = 0.0, 0.1, 0.2, 0.3
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dp?dx 1.0 0.5 0.0

8b1 = 0. 0, 0. 1, 0. 2, 0. 3 -0. 5 -0.5 -1.0 0. 0 0.2 0. 4 0. 6 0. 8 1 .0 0. 0 0.2 0. 4 0. 6 0.

8 1.0 x x Fig. 10.5. Effect of ?1 on pressure gradient when ? = 1? Γ = 0?001? ? = 0?1 and ? = 0?3? Left

panel is for ? = 0 and right panel is for ? = 0?4? 1.5 1.5 1.0 1.0 dp?dx 0.5

132G = 0.03, 0.02, 0.01, 0.0

dp?dx 0.5

53G = 0. 03, 0. 02, 0. 01, 0.0 0.0 0.0 -0. 5 -0. 5 0.0 0. 2 0. 4 0. 6 0. 8 1 .0 0.0 0. 2 0.

4 0.6 0.8 1.0 x x Fig. 10.6. Effect of Γ on pressure gradient when ? = 1? ?1 = 0?2? ? = 0?1 and ? = 0?3?

Left panel is for ? = 0 and right panel is for ? = 0?4? 10 5 Dpl 0 -5

41b1 = 0. 3, 0. 2, 0.1, 0. 0 -10 -1.0 -0.5 0 .0

0.5 1.0 1.5 h Fig. 10.7. Variation of ?1 on ∆?? when Γ = 0?01? ? = 1?5? ? = 0?3 and ? = 0?2? 10 5 Dpl 0

-5

89M = 0.5, 1.0, 1.5, 2.0 -10 -15 -1 .0 -0 .5 0 .0 0 .5 1 .0 1 .5

h 20 10 Dpl 0 -10

28G = 0.00, 0. 01, 0. 02, 0. 03 -20 -1 .0 -0. 5 0. 0 0.

5 1.0 1.5 h Fig. 10.9. Variation of Γ on ∆?? when ?1 = 0?02? ? = 1?5? ? = 0?3 and ? = 0?2? 6 4 2 Dpl -2 0

-4 -6

96a = 0.0, 0. 3, 0. 6, 0. 9 -1 .0 -0. 5 0.0 0. 5 1.0

1.5 h 5 Dpl 0 -5

54a = 0. 2, 0. 3, 0. 4, 0. 5 -1.0 -0. 5 0.0 0. 5 1.

0 1.5 h Fig. 10.11. Variation of ? on ∆?? when ?1 = 0?02? ? = 1?5? ? = 0?2 and Γ = 0?01? 10 5 b1 = 0.3,

0.2, 0

78.1, 0.0 Fl 0 -5 -1.0 -0.

5 0.0 0.5 1.0 1.5 h 10

19M = 0.5, 1.0, 1.5, 2.0

5 Fl 0 -5 -10 -1.0 -0.5 0.0 0.5 1.0 1.5 h Fig. 10.13Variation of ? on ?? when ? = 0?3? ?1 = 0?02 ? = 0?2

and Γ = 0?01? 20 15 10

154G = 0.0, 0. 1, 0 .2, 0. 3 5 Fl 0

-5 -10 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 h 6

34a = 0.0, 0. 3, 0. 6, 0. 9 4 2

Fl 0 -2 -4 -1.0 -0.5 0.0 0.5 1.0 1.5 h Fig. 10.15. Variation of ? on ?? when ? = 0?3? ? = 1?5? Γ = 0?01 and

?1 = 0?02? 6 4

23a = 0. 5, 0.4, 0.3, 0.2 2 Fl 0 -2 -4 -1.0 -0.5 0.0 0.5 1 .0
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1.5

58h 1. 2 1. 2 1 1 0. 8 0. 8 ? = 0? 5 0. 6 0. 6 0. 4 0.4 0. 2 0. 2 0 0 -0. 4 -0. 2 0 0. 2 0.4

-0. 4 -0.

2 0 0.2 0.4 1.2 1.2 1 1 0.8 0.8 ? = 1?5 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 1.2

1.2 1 1 0.8 0.8 ? = 2?5 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 Fig. 10.17. Effect

of ? on stream lines when Γ = 0?04? ? = 0?3? ? = 1?1? and ? = 0?2 Left 1.2 1.2 1 1 0.8 0.8 ?1 = 0?1 0.6

0.6 0.4 0.4 0.2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 1.2 1.2 1 1 0.8 0.8 ?1 = 0?3 0.6 0.6 0.4 0.4

0.2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 1.2 1.2 1 1 0.8 0.8 ?1 = 0?5 0.6 0.6 0.4 0.4 0.2 0.2 0 0

-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 Fig. 10.18. Effect of ?1 on stream lines when Γ = 0?04? ? = 0?3? ? =

1?1 and ? = 0?5? Left 1.2 1.2 1 1 0.8 0.8

23Γ = 0? 1 0. 6 0. 6 0.4 0. 4 0.

2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 1.2 1.2 1 1 0.8 0.8

23Γ = 0? 2 0. 6 0. 6 0.4 0. 4 0.

2 0 -0.4 -0.2 0 0.2 0.4 0.2 0 -0.4 -0.2 0 0.2 1.2 1.2 1 1 0.8 0.8

23Γ = 0? 3 0. 6 0. 6 0.4 0. 4 0.

2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 Fig. 10.19. Effect of Γ on stream lines when ?1 = 0?2? ? = 0?

3? ? = 1?1 and ? = 0?5? Left 1.2 1.2 1 1 0.8 0.8 ? = 0?2 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4

-0.2 0 0.2 1.2 1.2 1 1 0.8 0.8 ? = 0?4 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 1.2 1.2

1 1 0.8 0.8 ? = 0?6 0.6 0.4 0.6 0.4 0.2 0.2 0 0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 Fig. 10.20. Effect of ? on

stream lines when ?1 = 0?2? ? = 1? Γ = 0?04? ? = 1?1 and ? = 0?5? Chapter 11

13Heat transfer analysis for peristaltic mechanism in variable viscosity fluid

This chapter extends the analysis of previous chapter in the presence of heat transfer. Thermal slip is also

considered. Viscous dissipation is present. Perturbation solution is discussed and a comparative study

between the cases of constant and variable viscosities is presented and analyzed. 11.1 Statement of the

problem Here we study

30an incompressible magnetohydrodynamic (MHD) third order fluid with

variable viscosity in a uniform channel

of width 2?1. The ? − ???? is selected along the centerline of the channel whereas ? is perpendicular to

the ? − ????. The

138fluid is electrically conducting under an applied magnetic field B0 in the ? −

direction.

The electric and induced magnetic field effects are neglected. Sinusoidal waves propagating on the

channel induce the flow. Such waves are described by the following equations ?(?? ?) = ?1 + ?1??? 2? µ ?

(? − ??) . (11.1) ¶ In above expression ? is the speed of propagation of the wave, ?1 the wave amplitude, ?

the wavelength and ? the time. Further the channel walls have a constant temperature ?0. The governing

equations are ?? ?? ?? ?? = 0? + ? ? +? +? ? ? ?? ?? ?? ¶ ? = −???? ?????? ?????? − ??02?? + + µ ? ?

+ ? + ? ? ? ? = − ?? ???? ??? ? ? + + µ ?? ?? ?? ¶ ?? ?? ?? ?? ??̄ + ?̄ ??̄ + ?̄ ??̄ ? = ?∇2? + Φ̄ ? ?

? ? µ ¶ (11.2) (11.3) (11.4) (11.5) where Φ̄  is the dimensional viscous dissipation term. In light of the

following dimensionless quantities ?= ? ? ? ? ? ? ? ? = ?1 ? ? = ? ? = ?? ? ? = ?1 ? ? = ? ? = ??11 ? ? =

???21??0 ? ? ? ? 1?2 ? = ?1 ?(?) ? ?0?1? ?0 = ?0 ? ?? = ???1 ?0??(?)? ?(?)= ?0 ? ? =µ?0¶ ? ? ?0 ?=

?? ? ? ? = ????? ? = −??????2 = ??02??221??3 = ??03??221?? = ? −?0?0? Pr= ?0??? ? = ?2 ? ? = ?0?

2 ? ? ???0 ?2 equations (11.2)-(11.5) give ???[( ???? ??? ???? ??? ???? ] = − ???? + ? ?????? +

?????? − ? 2( ???? − ) + 1)? −?3??[( ???? ??? ???? ??? ???? ] = − ???? + ?2 − ) ???? ???? + ? ? ?? ??

???[(???? ???? ???? ????)] = ?Φ + Pr(?2 ???2?2 ??2??2)? − 1 + (11.6) (11.7) (11.8) (11.9) where ?? is

the specific heat, ? the thermal conductivity, Γ(= ?2 + ?3) the Deborah number, ? the stream function, ?0

the constant

47kinematic viscosity, ? the Hartman number, Re the Reynolds number, ? the

fluid density, ? the electrical conductivity, ?(?) the viscosity function, ? the wave number, ?0 the constant
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viscosity, ??(= Pr ?) the Brinkman number, Φ the di- mensionless viscous dissipation term, Pr the Prandtl

number and ? the Eckert number. The governing problems subject to long wavelength and low Reynolds

number are − ?? + ? ?? ?? ??? − ?2 ?? + 1 = 0? 0 = − ?? ? (11.10) µ ?? ¶ ?? ??2 = −???? ?2? (11.11) ?

2? ?2? 3 ??? = ?(?) ??2 + 2Γ µ ??2 ¶ ? ? = ?(?)(??2?Ψ2)2 + 2Γ(??2?Ψ2)4? (11.12) ? = 0, ?2? ?? ??2 =

0, ?? = 0 ?? ? = 0, ? = ? , ?? ?? ?? + ?1??? = −1, ?-?2 ?? =0 ?? ? = ?, (11.13) ?(?)=1 + ? cos(2??), ? = 1

?? Z0 ?? ??? (11.14) where ?2 is the dimensionless thermal slip parameter, ?(?) = ?−?? or ?(?) = 1 − ??

for (? ¿ 1) ; ? the viscosity parameter, ?1 the dimensionless velocity slip parameter, ? the stream function,

? the temperature and ? the dimensionless flow rate in wave frame. Further Eq. (11.10) indicates that ? =6

?(?) and finally we write ?2 ?2? ?2? 3 ??2 ?(?) ??2 + 2Γ ??2 Ã − ? 2 ?2? = 0? (11.15) µ ¶ ! ??2

3Pressure rise per wavelength ∆?? and frictional force ?? (at the wall) are

1 ?? 1 ?? ∆?? = ?? ??? ?? = ? − ?? ??? (11.16) Z0 Z0 µ ¶ 11.2 Solution expressions The solutions for

small Γ and ? are ?= ? ? ? cosh??[??co]s+h[???¡1]++? ?−12+?1?¢?sin?h21[????]1−si(n?h+[???)]sinh

[??] + ??1 + Γ?2? (11.17) ¡ ¢ ?? = − ?? cosh [?? ] + −1 + ?? ?21 ? ?1 sinh [?? ] + ??1 + Γ?2? ?? (? + ?) ?

3 (cosh [?? ] + ? ?1 sinh [?? ]) (11.18) ¡ ¢ ? = ??(? + ?)2?2 −????[2??] + ????[2??] + 2? ? ?2 − ?2 − 2??

+ ?2????[2??] ¡ 8 (?? ????[?? ] + (−1 + ??¡2?1)¡????[?? ])2 ¢ ¢¢ + ?? (? + ?)2 ? ? 192 (?? ????[?? ] +

(−1 + ?? 2?1) ????[?? ])3 × (?1 + ? (?2 − ?3 − ?4 + ?5)) + ?? (? + ?)4 ? 6Γ 512 (?? ????[?? ] + (−1 + ??

2?1) ????[?? ])5 × (?1 + 4 (?2 + ? (?3 + ?4 + ?5 + ?6))) (11.19) where the involved ?? (? = 1 − 8) ? ?? (?

= 1? 2) ? ?? (? = 1 − 6) and ?? (? = 1 − 8) are given as follows: ?1 = (?8?+?(?)(??c3o+s2h[s?in?h[]?+?(−]

(1?+4?)?+2??2?)?co?shsi[n?h?[?]?(?]5)2)) ? ?2 = ?−3???−3??(?+?)33?2(4?(?((1c−os?h?[?2??)]+si(n

−h1[?+???]+??62?)??(??s6in)+h[??2??]?)(4?7)+2?3???(?8))) ? ?3 = −4? ? ? + ? + ?? 2? + 2? ? 2? + ?

−1 + 2? 2? cosh[2?? ] +? 3 − 4??¡2? sinh[2?? ]? ¢?4 = 3? ¡−1 + ??¡ 2?

43cosh[?¢?¢] + ? (−2?2 +?2¡+ ? −4 + ?¢ 2 (−4 + ?) ? − ?2

¡?) sinh[? ?]?¢ ?4 = 3?¡ −1 + ??¡2? cosh[? ?] + ?¢¢(−2?2 + ?2 +

43?(−4 + ? 2((− 4 + ?)? − ?2))?) sinh[? ?]¡? ¢ ?5 = 3? cosh[? ?] + ? −?2

+ ? (? + ?) sinh[? ?]? ?6 = −3?? cosh[3?? ]¡+ 12? (? + ?? ¢(? + 2? − ? ??)) sinh[?? ] + 1 − 9?? 2? sinh[3??

]? ?7¡ = 3?? cosh¢[3?? ] − 12? (−? + ?? (? + 2? + ? ??)) sinh[?? ] + −1 + 9?? 2? sinh[3?? ]? ?8¡ = 12? ?

(? +¢?) − 16? ?? cosh[2?? ] + 4? ?? cosh[4?? ] − 8? sinh[2?? ] +? sinh[4?? ] + ? cosh[?? ](12? (−? cosh[?

? ] + ?? ? sinh[? ?] + sinh[3? ?]) + sinh[3? ?])? ?1 = 8(?? cosh[?? ](+?(+−?1)+????3 2?) sinh[?? ])2 ? ?2 =

(?+?)3?7?42 16(?? cosh[?? ]+(−1+?? ? )? ? sinh[?? ]) 4? ?3 = 4? ? + ? + ?? 2? + 2? ? − 2 1 + ?? 2 ? cosh

[2?? ] + −3 + 4?? 2? sinh [2?? ] ? ?4 = 12?¡(? + ?) + 4? ?¢(−4 cos¡h [2??¡] + cosh [¢4??¢ ]) − 8 sinh [2?¡?

] + sinh [4??¢ ] ? ?1 = (3 + ?? 2(−3? + 4? 2(2?3 + ?(? −2? − 3? + 6? 2(? − ?)(? + ?)? − 3 −1 + 4?2? 2

??))))????[?? ] − 3 1 + ?? 2 −? + 4¡? 1 + ?? 2? ????[3?? ] + 6?¢???[?¡? ]????[2? ?¢]? ?2 = 3? 2(? − ?)?

+¡ ? 1 + 2?¡ 2 ?2 + ?¡2 ? ????¢[¢?¢ (? − 2?)] + 3? (2?(? + ?) + ? (?6) ?) ????[?(¡? + 2?)]? ¡ ¡ ¢¢ ¢ ?3 =

3?????[??] + 20?3?2????[??] + 24?5?4????[??] − 24?3?4?2????[??] −8?2?3????[??]? ?4 = 32?4?

4?????[??] + 24?2?4?2?????[??] + 8??4?3?????[??] − 36?2?2?????[??] −48?4?4?????[??] + 96?3?

4??????[??] + 9?????[3??] + 12?2?2?????[3??] +3?????[?(? − 2?)] + 6?3?2????[?(? − 2?)] − 6?????[?

(? − 2?)]? ?5 = 6??2?2????[?(? − 2?)] − 6?2?2?????[?(? − 2?)] + 6??2??????[?(? − 2?)] +3 −2? + ? −1 +

2?2(? − ?)(? + ? − ?) ????[?(? + 2?)]? ?6 =¡ −1 + 2?¡2(? − ?)(? + ?)? ¢¢ ?1 = 16? −6? + ? 5 + 2? 2 (?7)

????[?? ] + 3? (36? + ? (?8)) ????[3?? ] + 16????[?? ] −25????[3¡?? ] + ???¡?[5?? ] − 5??¢?¢?[? (? −

4?)]? ?2 = 5????[? (? − 2?)] + ????[? (3? − 2?)] + 5????[? (? + 2?)] + ????[? (3? + 2?)]) −5????[? (? +

4?)]? ?3 = 7? − 4 3 + 13?? 2? ? ????[5?? ] + 5?????[? (? − 4?)] − 20?????[? (? − 2?)] −48??¡???[?¡(? −

2?)] + 48¢?2¢? 2?????[? (? − 2?)]? ?4 = 48?? 2??????[? (? − 2?)] − 12?????[? (3? − 2?)] − 20?????[?

(? + 2?)] +48?????[? (? + 2?)] + 48?2? 2?????[? (? + 2?)] − 48?? 2??????[? (? + 2?)] −12?????[? (3? +

2?)] + 5?????[? (? + 4?)] + 288?2? ????[?? ]? ?5 = 192?4? 3????[?? ] − 192? ?2????[?? ] − 192?2? 3?

2????[?? ] + 112?? ?????[?? ] +192?3? 3?????[?? ] − 192?? 3?2?????[?? ] − 544?? ?????[?? ] − 384?

3? 3?????[?? ] −192?2? 3?? Si ??[?? ] + 16?2? ? ????[3?? ] − 16? ?2????[3?? ] − 71?? ?????[3?? ]

−144?3? 3?????[3?? ] + 144?? 3?2?????[3?? ] − 4?? ?????[3?? ]? ?6 = 288?2? 3??????[3?? ] + 31??

?????[5?? ] − 4?? ?????[5?? ] + 5?? ? ????[? (? − 4?)] + 48?2? ????[? (? − 2?)] + 48?? ?????[? (? −

2?)] + 76? ? ?????[? (? − 2?)] − 36?? ?????[? (3? − 2?)] + 48?2? ????[? (? + 2?)] −48?? ?????[? (? +

2?)] + 76?? ?????[? (? + 2?)] − 36?? ?????[? (3? + 2?)] +5?? ?????[? (? + 4?)]? ?7 = 6?2 + 3? −2? + −1

+ 2? 2(? − ?)(? + ?) ? − ? + 6? −1 + 2?? 2? ?? ?8 = −11 + 4?¡2 −4?2¡ + 4?2 + 8?? + 7?? ? ¢ ¢ ¡ ¡ ¢¢ The

heat transf¡er coefficient is ¢ ? = ????? (11.20) 11.3 Graphical analysis This section provides a

comparative study of temperature for the effects of various parameters in the constant (? = 0 left pannels)

and variable (? = 0?2 right pannels) fluid viscosities in the presence of heat transfer. It is observed in Figs.

11.1 (a-d) that ? decreases when ? and ?1 are increased. Further temperature in variable viscosity fluid is

less when compared with constant viscosity fluid. From Figs. 11.2 (a-d), an increase in ? is observed when

Br increases whereas ? decreases when ?2 increases. Although the plots for heat transfer coefficient ?

are not included to save space for variation of ? and Γ? It is also seen that impact of ? on ? is quite

opposite to that of ?1? ? is an increasing function function of ?? Figs. 11.3 (a-d) show that ? decreases

when ?1 increases whereas it increases by increasing ??? 11.4 Key findings The main points of

174present chapter can be summarized as follows.
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i) Temperature in constant viscosity fluid is greater than variable viscosity situation. ii) Temperature is

decreasing function of thermal slip parameter ?2. iii) The qualitative effects of ?? and ?1 on the

temperature are opposite. iv) Behavior of ?1

103on the heat transfer coefficient is

opposite to that of ??? 0.15 0.15 0.10 0.10 q 0.05 q

19M = 0.5, 1.0, 1.5, 2.0

0.05 0.00

106M = 0.5, 1.0, 1 .5, 2.0 -0. 05 0. 00 0. 0 0. 2 0. 4 0.6 0.

8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 y y

60(a) ? = 0?2 (b) ? = 0?2 0. 35 0. 4 0. 30 0. 3 0. 25 0.

20 q 0.2 q 0.15 0.1

67b1 = 0.0, 0.1, 0.2, 0.3 0.

10

8b1 = 0. 0, 0. 1, 0. 2, 0. 3 0. 05 0. 0 0. 00 0. 0 0.2 0. 4 0. 6 0. 8 1 .0 1.2 0. 0 0. 2 0.4 0.

6 0.

8 1.0 1.2 y y (c) ? = 0?2 (d) ? = 0?2 Fig. 11.1 (a-d): Variation of ? for Γ = 0?04? ? = 0?3? ? = 1?1? ? = 0?

1 and Br= 0?5. 0.25 0.25 0.20 0.20 0.15 q 0.10 0.15 q 0

158.10 0. 05 0. 05 Br = 0. 8, 0. 6, 0. 4, 0.

2

22Br = 0. 8, 0. 6, 0. 4, 0. 2 0. 00 0. 00 0.0 0. 2 0. 4 0. 6 0.

738 1.0 1.2 y 0.0 0.2 0.4 0.6 0.8 1.0 1.2 y (a) ?2

= 0?2

107(b) ?2 = 0? 2 0. 2 0. 2 0.1 0. 1 0.0 0.0

q q -0.1

77b2 = 0.1, 0.2, 0.3, 0.

414 b2 = 0. 1, 0.2, 0.3, 0.4 -0. 1 -0. 2 -0. 2 -0. 3 -0.3 0. 0 0. 2 0. 4 0. 6 0.

8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 y y (c) ?? = 0?5 (d) ?? = 0?5 Fig. 11.2 (a-d): Variation of ? for

? = 1? Γ = 0?04? ? = 0?3? ? = 1?1? and ? = 0?2? 150 150 100 100 50 50

126Z 0 Z 0 -50 b1 = 0.0, 0. 1, 0. 15, 0.

2 -50

8b1 = 0.0, 0. 1, 0. 15, 0.
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2 -100 -100 -150 0.0 0.2 0.4 0.6 0

72.8 1.0 -150 x 0.0 0.2 0.4 0.6 0.8 1.0 (a) ?? = 0? 5 (b) ?? = 0?

5 x 40 40 20 20 Z 0 Z 0 Br = 2.0, 1.5, 1.0, 0.5 Br = 2.0, 1.5, 1.0, 0.5 -20 -20 -40 -40 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 (c) ?1 = 0?2 x (d) ?1 = 0?2 x Fig. 11.3 (a-d): Variation of Z when Γ = 0?04? ? = 0?

3? ? = 1?1? and ? = 1? Chapter 12 Soret and Dufour

4effects on peristaltic transport of a third order fluid

Soret and Dufour effects

44on peristaltic transport of third order fluid in a symmetric channel have been

reported in

this chapter. Joule heating effect is also taken in to account. The

37governing nonlinear problem is solved using perturbation

approach. Graphical

177results are reported and discussed for various parameters of

interest entering into the problem 12.1

6Mathematical formulation We consider the magnetohydrodynamic (MHD) flow of

third order fluid in a channel of width

2?1? The ?− axis is chosen along the walls of channel and ? −

20axis is taken normal to the ?− axis. A constant magnetic field of strength B0 is

applied in the

? − direction. Induced magnetic field is not accounted. Sinusoidal wave propagating on channel walls with

constant wave speed ? is represented by 2? ?(?? ?) = ?1 + ?1??? ? (? − ??) , (12.1) µ ¶ where ?1

44is the wave amplitude, ? is the wavelength and ? is the

time . The continuity, momentum, energy and concentration equations of the problem may be written as

follows: ?? ?? ?? ?? = 0? + ? ? +? +? ? ? + + µ ?? ?? ?? ¶ ? = −???? ?????? ?????? − ??02?? ? ? +? +?

? ? ? =− ?? ???? ??? ? ? + + µ ?? ?? ?? ¶ ?? ?? ?? ?? ??? + ? ??? + ? ??? ? = ?? ???2?2 + ???2?2

(12.2) (12.3) (12.4) ³ +?? + ???20?2 + ??́???? ???2

145?2³+ ???2? ? ´ 2 (12.5) ³ ́ ? + ? ? ? + ? ?? ? = ? µ??2 ?? 2¶ ?2? ?2? ??? ?2?

?2? + + + ? (12.6) µ ?? ?? ¶ ? ? µ??2 ?? 2¶ In the above equations, ? and ? are the velocity components

along ? and ? directions re- spectively

5in fixed (laboratory frame), ? is the density, ? is the pressure, ? is the

kinematic viscosity, ? is the electrical conductivity, ? is the

thermal conductivity, ?0 is the applied mag- netic field, ? is the temperature field, ??

7is the specific heat, ?? is the viscous dissipation,

? is mass diffusivity, ??

11is the thermal diffusion ratio, ?? is the concentration susceptibility, ? is the
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concentration field and ?? is the mean temperature.

147Extra stress tensor S in third order fluid is

S = ? + ?3??A21 A1 + ?1A2 + ?2A21 + ?1A3 + ?2 A1A2 + A2A1 ? ³ ́ ¡ ¢ in which ?? ?? (? = 1? 2) and ??

(? = 1? 2?3)

7are the material constants. The Rivlin-Ericksen tensors can be represented as

follows A1 = L+L?? A?+

1 = ?A??? +

179A?L + L? A? ? = 1? 2? where L

= grad V and ? indicates the matrix transpose. If (???) and (???)

31are the velocity components in the laboratory (???) and wave (???) frames

respectively

then defining ? = ? − ??? ? = ? ? ? = ? − ?? ? = ? ? ?(?? ?) = ? (? ? ? ? ?)? (12.7) and introducing the

following dimensionless variables ?= ? ? ? ?2? ? ? ? = ? ? = ? ? = ? ? ? = ?1 ? ? = ? ? = ?1 ? ? = ? ??? ? ?

1 ? ?? ? ?1 ?1 ?= ? − ?0 ? ? = ? − ?0 ? ? = ? 1?2 ?0?1? υ = ? ?? = ???1 ? ? ?0 ?0 µ ¶ ? ? ? ?= ?? ? ?? =

?????? = −????? ?? = Pr?? ?? = ?????0?????0, ?? = ?????????00? ??= ?? ? ? = ???2?0 ? ? ? = ????

? ? = ??1? ? (?) ? ?2 = ??2??22 ? ?3 = ??3??22 ? (12.8) we have − ?? ?? ?? + ? ???−?2 ?? +1 =0? 0=−

?? ? (12.9) µ ?? ¶ ?? 0 = ???2?2 + ??? + ???2 ?? 2 ?2? ? (12.10) µ ?? +1 +Pr????2 ¶ 1 ?2? ?2? 0 = ??

??2 + ?? ??2 ? (12.11) ??? = ??2??2 + 2Γ ??2??2 ? ? = ( ??2??2 )2 + 2Γ( ??2??2 )4? 3 (12.12) µ ¶

where ? is the pressure, ? the stream function, Γ(= ?2 + ?3) the Deborah number, ?

1the Hartman number, Re the Reynolds number, ?? the Brinkman number, ?? the

Dufour para- meter, ?? the Soret parameter, ?? the Schmidt number, ? the Eckret number, ? ? the Prandtl

number, ? the wave number, ?0 temperature at the wall, ?0 concentration at the wall, ? the dimensionless

temperature and ? the concentration. The boundary conditions are ?=0, ?=?, ?2? ?? ?? ??2 = 0, ?? = 0?

?? = 0? ?? ? = 0, ?? ?? = −1, ? = 0, ? = 0, ?? ? = ?, (12.13) ?(?)=1 + ? cos(2??), ? = ? ?? Z0 ?? ???

(12.14) where ? is the dimensionless volume flow rate and ? is the dimensionless wave shape. Pressure

rise per wavelength ∆?? is 1 ∆?? = ?? ??? ?? (12.15) Z0 We look for solutions in the series form and thus

2we expand the quantities in terms of small Deborah number as

follows: ? = ?0 +

68Γ?1 + ???? ? = ?0 + Γ?1 + ???? ? = ?0 + Γ?1 + ???? ? = ?0 + Γ ?1 + ???? ? =

?0 + Γ ?1

+ ???? The resulting zeroth order system is given by ??4??40 − ? 2 ????220 = 0? (12.16) 0 = ??2??20 +

?? ??2??20 + ???2 ????0 + 1 2 2 + Pr ?? ?2?0 ? µ ¶ µ ¶ ??2 (12.17) 0 = ?1? ??2??20 + ?? ??2??20 ?

(12.18) ?0 = 0, ?2?0 = 0, ??0 = 0? ??0 = 0? ?? ? = 0, ??2 ?? ?? ?0 = ?0, ????0 = −1, ?0 = 0, ?0 = 0, ?? ?

= ?, (12.19) and first order system becomes ??4??41 + 2 ???22 ????220 − ? 2 ????221 = 0? 3 (12.20) µ

¶ 0 = ??2??21 + ?? 2??2??20 ??2??21 + ??2??20 + ???2 ????1 ????0 + 1 4 2 Ã ! 2 + Pr ?? ?2?1 ? µ ¶

µ µ ??2 ¶¶ (12.21) 0 = ?1? ??2??21 + ?? ??2??21 ? (12.22) ?1 = 0, ??2??21 = 0, ??1 = 0? ??1 = 0? ?? ?

= 0, ?? ?? ?1 = ?1, ????1 = 0, ?1 = 0, ?1 = 0, ?? ? = ?, (12.23) The

103heat transfer coefficient at the wall can be computed by

? = ????? 12.2 Solution expressions

12Solving the resulting systems at zeroth and first orders

we can write ? = − (−?? cosh[?? ] + sinh[?? ])4 ? 1 + ?−3?? (? + ?)3 ? 4Γ (?2 − ?3 + ?4) 32 (−?? cosh[?? ]

+ sinh[?? ])4 ? = ??? 2 (?1 + 4? ?2 − ?3 cosh[2?? ] + ?4 − ?5) 8 (−1 + ?) (−?? cosh[?? ] + sinh[?? ])2 ³ ́ +

−?? (? + ?)3 ? 6Γ 512 (−1 + ?) (?? cosh[?? ] − sinh[?? ])5 × ³(?6 − 16?? ?7 cosh[?? ] + ?8 + ?9 − ?10 ́+ ?

11 − ?12) ? ?= ???2???? (?1 + ?2 cosh[2??] − ?3) 8(−1 + ?)(−?? cosh[??] + sinh[??])2 + ³ ?? (? + ?)3 ?

6????Γ ́ 512 (−1 + ?) (?? cosh[??] − sinh[??])5 × ³(−?4 − 16?? (?5) cosh[?? ] + ?6 − ?7 + ?́8 − ?9 − ?10)
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? with ???, ??? and ??? agiven as follows: ?1 = (?? cosh[?? ] − sinh[?? ])3 (−? (? ? cosh[?? ] + sinh[?? ]) +

(? + ?) sinh[? ?])? ?2 ? 3 = 24?3? ? ?? 2 ? − ?? 1 − ?6? ? + 12?2? ? ? ? + 12?4? ? ? ? cosh[?? ]? = 3?2?

? −1 + ?2? ? ?¡? cosh[3?? ] + sinh[?? ] − ?6? ? sinh¢[?? ] −12?2?¡ ? ?2 ? 2 sinh¢[?? ]? ?4 = 12?4? ? ?2 ?

2 sinh[?? ] + 12?2? ? ? ? sinh[?? ] + 12?4? ? ? ? sinh[?? ] −16?3? ? ? ? sinh[2?? ] − ?2? ? sinh[3?? ] + ?

4? ? sinh[3?? ] + 2?3? ? ? ? sinh[4?? ]? ? = Pr ?? ∗ ????? ?1 = 2? 4+?+?3?4 −2 1+?2?4 ?2+2?2?2 1+?2

(?−?)(?+?)? ? 2 = 2+¡??2 1+?2¢(?−¡?)(?+?)¢? ¡ ¢ ? 3 = ?2 1+?¡2 +2?¢ 4+?+??2 2?2+? 8+? 3+?2 1+2?2

2?2 − − ? ? 4 = (?¡+?)2 1¢+?2 ¡cosh[2??]+4¢?? 2?+¡?(2+?¡)−?2 s¡inh[2??]? ¢¢¢ ? 5 = 16?(?+¡?)?cos

¢h[??](?(?−?)+¡sinh[??])+16(?+¢?)sinh[??](?(?−?) + sinh[? ?])? ?6 = −288??−96?3?3+288??+96?2?3??

?7 = −16+48?2?2+12?3 ?2+2?4 +?(−5+3?2 −3+4?2−4?2 +24?4 ?2−?2 )−? 5+24?¡4?2+3?2¢3+4?2 ? ¡ ¢ ?

8 = ¡256? 1¢+3?2¡?2 (? ?)cosh[2??¡] 288¢?¢?cosh[3??] 33???cosh[3??] − − − −33?2¡? cosh[3??¢] + 27?

?? 3 cosh[3?? ]? ?9 = 27?2? 3 cosh[3?? ] − 48? ?3? 3 cosh[3?? ] − 48?4? 3 cosh[3?? ] − 48? ?3? 5

cosh[3?? ]? ?10 = 48?4? 5 cosh[3?? ] + 48? ?? 3?2 cosh[3?? ] + 48?2? 3?2 cosh[3?? ] + 48? ?? 5?2

cosh[3?? ] + 48?2? 5?2 cosh[3?? ] + 32?? cosh[4?? ] + 96?3? 3 cosh[4?? ] −32? ? cosh[4?? ] − 96?2? 3?

cosh[4?? ] + 32? ? cosh[5?? ] + 7? ?? cosh[5?? ]? ?11 = 7?2? cosh[5?? ] + 3? ?? 3 cosh[5?? ] + 3?2? 3

cosh[5?? ] + 5? ?? cosh[? (? − 4?)] + 5?2? cosh[? (? − 4?)] + 9? ?? 3 cosh[? (? − 4?)] + 9?2? 3 cosh[? (?

− 4?)] − 32?? cosh[? (2? − 3?)] − 20? ?? cosh[? (? − 2?)] − 20?2? cosh[? (? − 2?)]? ?12 = 84? ?? 3

cosh[? (? − 2?)] − 84?2? 3 cosh[? (? − 2?)] − 48? ? cosh[? (? − 2?)] (? + ?) − 48? 3? cosh[? (? − 2?)] (? +

?) − 12?? cosh[? (3? − 2?)] ? + ? + ? 2 −32?? cosh[? (2? − ?)] + 192? cosh[? (2? − ?)] ?3? 2 + ? + ?2?

2¡? ? ¢ ¡ ¢ ?1 = −8? − 2? (4 + ?) − 2? ?2 (? + 2?) ? 2 − 2?2 (? + ?)2 ? 4 + 2?11?2? ?2 = ? 2 1 + ? 2 + 2? 4

+ ? + ?? 2 − 2?2 + ? (8 + ??12) ? ? 3 = ? ¡+ ?2 1¢+ ? 2 ¡cosh[2? ?] − 4¢?? 2? + ? (2 + ?) − ?2 sinh[2?? ] +

1¡6? (? +¢ ¡?) ? cos¢h[?? ] (? (? ?) +¡sinh[? ?]) 16 (? +¢?) sinh [?? ] − − (? (? − ?) + sinh[? ?]) ? ?4 =

288?? − 96?3? 3 + 288? ? + 96?2? 3?? ?5 = −16 + 48?2? 2 + 12?3 ? 2 + 2? 4 + ? ?13 − ? 5 + 24? 4?2 +

3? 2 3 + 4?2 ? ? 6 = 256? 1 + 3?2? 2 (? −¡ ?) cosh[2??¢ ] − 288?? c¡osh[3?? ] − 33?? co¡sh[3??¢]¢ (? + ?

¡) + 27?? co¢sh[3?? ] ? ? 2 + ?? 2 ? ? 7 = 48?? cosh[3?? ]?14 + 32?¡cosh[4?? ] (?¢− ?) + 96?2? 2

cosh[4?? ] (?? − ? ?) ? ?8 = ?? cosh[5?? ] 32 + 7? + 7? + 3? ? 2 + 3?? 2 + ?? cosh[? (? − 4?)] 5? + 5? +

9? ?¡ 2 + 9?? 2 − 32?? cosh[? (2¢? − 3?)]? ? 9 = ¡?? cosh[? (? − 2?)]?15? ¢ ?10 = ?? cosh[? (3? − 2?)]

12? + 12? + 12? ? 2 + 12?? 2 − ?? cosh[? (2? − ?)] 32−192?2?2 192(¡???) 192??2? ? − − ¢ ?11 = ¡1+?(?

+2?)?2+(?+?)2?4? ?12¢=3+?2 1+2 ?2−?2 ? ?13 = −5+3?2 −3+4?2−4?2 +24?2 ?2−?2 ? ¡ ¡ ¢¢ ?14 = ??2?

2+?¡3?2+??2?4¢+?3?4−¡??2?2¢−??2?2−??4?2 ??4?2? − ?15 = 20? + 20? + 84? ? 2 + 84?? 2 + 48? ? +

48?? + 48? ? 2? + 48?? 2?? 12.3

1Discussion The objective of this section is to analyze the plots for temperature,

concentration and heat transfer coefficient.

Hence Figs. 12.1-12.3 are given in order to achieve such objective. Here Figs. 12.1(a-g) are drawn for

temperature ?? Figs. 12.2(a-g) for concentration profile and Figs. 12.3(a-f) for the heat transfer coefficient

Z. Explicitly 3-D graphs are plotted to analyze the behavior fully in the domain of interest. Figs. 12.1

demonstrate

25that the dimensionless temperature increases with an increase in M, Br,

Du, Sr, Sc,

2Pr andΓ? It is also noted from Fig. 12.1a that

increase in temperature with respect to M is not much for small M. However the temperature increases

abruptly when M increases. Also with the increase in magnitude of applied magnetic field, the temperature

increases more due to Joule heating. In Fig. 12.1b it can be seen that

6there is a linear relationship between Br and ?? Similar observation holds for Γ

(see Fig. 12.1g). This depicts that rise in temperature is lesser for Newtonian fluid when compared with

non-Newtonian fluid. In Figs. 12.2 (a-g) it is observed that the dimensionless concentration decreases by

decreas- ing M, Br, Du, Sr, Sc, Pr and Γ? It is found that decrease in temperature is not linear for M, linear

and large for Br and Γ and smaller bit small for Du, Sr, Sc, Pr. Figs. 12.3(a-f) explicitly see the behavior of

heat transfer coefficient Z when values of different embedded parameters are altered. It is seen in all these

Figs. that Z has an oscillatory behavior. It is physically acceptable in view of peristalsis. The magnitude of

oscillations in Z increase most rapidly in case of Γ when compared with the other cases. Fig. 12.1 a Fig.

12.1 b Fig. 12.1 c Fig. 12.1 d Fig. 12.1 e Fig. 12.1 f Fig. 12.1 g Figs 12.1(a-g). Behavior of the

temperature with change in values of different parameters

94Fig. 12.2 a Fig. 12. 2 b Fig. 12.

2 c

94Fig. 12.2 e Fig. 12. 2 d Fig. 12.
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2 f Fig. 12.2 g Figs. 12.2(a-g). Development of concentration field with increase in values of parameters.

Fig. 12.3 a Fig. 12.3 b Fig. 12.3 c Fig. 12.3 d Fig. 12.3 e Fig. 12.3 f Figs. 12.3(a-f). Behavior of heat
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10.10. Variation of ? on ∆?? when ?1 = 0?02? ? = 1?5? ? = 0?3 and Γ = 0?01? Fig. 10.12. Variation of ?1

on ?? when ? = 0?3? ? = 1?5? ? = 0?2 and Γ = 0?01? Fig. 10.14. Variation of Γ on ?? when ? = 0?3? ? =
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