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Abstract 

The present thesis models the squeezing flows in the regime of non-Newtonian fluids. Mathematical 

modeling is based upon the constitutive equations of Jeffrey, couple stress, second grade and third grade 

fluids. These fluid models have been employed to predict the relaxation and retardation times, polar 

effect, body couples normal stress and shear thinning/shear thickening features. It addition heat and mass 

transfer is considered. The modeled nonlinear mathematical problems are computed by a modern 

technique namely the homotopy analysis method (HAM). Comparison of developed convergent series 

solutions with previous numerical solutions in limiting situation is shown. Discussion to important 

parameters in the solutions is given. 

 

 

 

 

 

 

 

 

 

 

 



Preface 

The curiosity to understand the flows of fluids obeying nonlinear rheological paradigm is increasing due 

to vast industrial and engineering applications. The examples include material plasticizing and 

solidification processes for manufacturing parts, oil-well drilling, fossil fuel combustion, paper 

production and many others. Spirited researchers endeavoring in assorted domains have been 

experimentally testing, mathematically modelling and developing algorithms for analyzing flow problems 

through different constitutive relationships and geometric configurations. Resulting equations in such 

flow problems are generally more nonlinear and higher order than the Navier-Stokes equations. These 

equations offer interesting challenges to the researchers in the field. Mathematicians are particularly 

exposed to challenging mathematical riddles, for instance, related to solvability and thermodynamic 

compatibility of constitutive relations, their solutions and analysis. The present thesis in this direction 

models and examines the flow problems of Jeffrey, couple stress, second and third grade fluids. The 

considered fluid models definitely predict the effects of relaxation and retardation times, polar, normal 

stress and shear thinning/shear thickening respectively. On the other hand the study of squeezing flow 

between two disks has attracted the interest of recent researchers because of its numerous applications in 

engineering, biology and bioengineering. For example compression moulding processes of metals and 

polymers represents squeeze flows. Valves and diarthroidial joints are examples of squeezing flow in 

biology and bioengineering. Even some phenomena occurring during food intake can be modeled using 

squeezing flow. In fact compression of food between the tongue and the palate can be approximated as a 

squeezing flow. Further chemical reaction can be codified as either homogeneous/heterogeneous process. 

Such situation depends on whether they occur at an interface/single phase volume reaction. Mechanism of 

cooling towers is perhaps the cheapest way that can be used for the cooling of large quantities of water. 

Importance of chemical reaction in the nuclear industry is also quite obvious. Its applications range from 

smoke detectors to nuclear reactors and even from gun sights to nuclear weapons. The Soret and Dufour 

effects are very important when the temperature and concentration gradient are high. The thermal-

diffusion or Soret effect corresponds to species differentiations in an initial homogeneous mixture 

submitted to a thermal gradient and diffusion-thermo or Dufour effect corresponds to the heat flux 

produced by a concentration gradient. Motivated by all such facts we organized the present thesis as 

follows. 

Chapters two to five address the unsteady axisymmetric flow of Jeffrey fluid between two parallel disks. 

Relevant problems are modeled. Appropriate transformations reduced the resulting partial differential 

system into ordinary differential system. The nonlinear problems are solved for the convergent series 



solutions by homotopy analysis method (HAM). Contributions reflecting the influence of pertinent 

parameters into each problem are explored. The following problems are analyzed in these chapters. 

 Unsteady squeezing flow of Jeffery fluid between two parallel disks. 

 Thermal radiation effects in squeezing flow of Jeffery fluid. 

 Soret-Dufour effects in magnetohydrodynamic (MHD) squeezing flow of Jeffrey fluid with Joule 

heating. 

 Squeezing flow of Jeffrey fluid with chemical reaction. 

The purpose of chapters six and seven is to examine the squeezing flows of couple stress fluids. This fluid 

model sustains couple stresses and the body couples. The stress tensor in present model is not symmetric. 

Main interest here is to introduce a size dependent effect through body couple. In particular the effects of 

heat transfer and chemical reaction are analyzed in these chapters. The series solutions are derived and 

main findings of these two chapters have been pointed out. Squeezing flow problems in regime of 

magnetohydrodynamics and porous surface are studied in the chapters eight and nine. Thermal-diffusion 

and diffusion-thermo effects are also investigated. The second grade fluid is chosen for the interest to 

capture the normal stress feature. Convergent solutions are developed. Physical insights is described by 

plots. Chapter ten models the time-dependent flow of third grade fluid between two squeezed disks. The 

third grade fluid model can predict the shear thinning and shear thickening effects even in the steady 

unidirectional flow due to a rigid surface. The formulated problem is nonlinear. Computations are made 

and examined. 
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Chapter 1

Review and some fundamental laws

1.1 Introduction

This chapter consists of review regarding the background of the considered �ow problems. Brief

idea of homotopy analysis method (HAM) is also summarized.

1.2 Background

Newtonian �uids re�ecting a linear between the stress and the rate of strain do not explain

many materials occurred in diverse applications of industry. The constitutive equations of such

liquids vary considerably in complexity. Di¤erent models have been discussed in context of these

�uids. A special category of viscoelastic �uid attracted many researchers in the recent years.

Exact/approximate solution can be expected in case of second grade �uid which is considered

as a subclass of viscoelastic �uids. The rheologists have been able to provide a theoretical

foundation in the form of a constitutive equation which can in principle, have any order. For

applied mathematicians, modelers and computer scientists the challenge comes from a di¤erent

quarter. The constitutive equations of even the simple viscoelastic �uids, namely, second grade

�uids are such that the di¤erential equations describing the motion have, in general, order

higher than those describing the motion of the Newtonian �uids but apparently there is no

corresponding increase in the number of boundary conditions. Applied mathematicians and

computer scientists are thus forced with the so-called ill-posed boundary value problems which,
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in theory, would have a family of in�nitely many solutions for �ows con�ned for �nite domain.

The task then becomes to select one of them under some plausible assumption. However

for di¤erent �ow con�gurations, the stated assumptions take di¤erent forms. Taking all such

complexities in view, even various recent researchers are engaged in the advancement of �ows

of second grade �uids (see [1 � 10]). Further, geophysicists encounter MHD aspect through

interaction of conducting �uids. The MHD concept is useful for the engineers in the design of

heat exchangers, MHD pumps and �ow meters, in space vehicle propulsion, control and reentry

problems, in metallurgical process and polymer industry; in creating novel power generating

systems and in controlling fusion process. The �ows of second grade �uids in the presence of

magnetic �eld have been addressed by the very recent investigations [11 � 15]. No doubt, the

model of second grade �uid describes the normal stress e¤ects but important features of shear

thinning/ thickening cannot be explained through its implementation. In such situation, the

model of third grade �uid is more appropriate. This �uid model even in steady �ow predicts

the shear thinning/ thickening properties. With this awareness, Feiz-Dizaji et al.[16] examined

the �ow of third grade �uid in the annulus. Some fundamental �ows of third grade �uid

in the presence of partial slip e¤ects are discussed by Ellahi et al.[17]: Abelman et al. [18; 19]

investigated such analysis in a rotating frame. Flow of third grade �uid over a stretching surface

with heat transfer and partial slip is analyzed by Sahoo and Do [20]: They used the regular

perturbation method for the solution analysis. The series solution to unsteady boundary layer

equations in a special third grade �uid is presented by Abbasbandy and Hayat [21]: Convergent

series solutions are developed by homotopy analysis method. Narain and Kara [22] made the

analysis of conservation laws in third grade �uid. Keimanesh et al. [23] employed multi-step

di¤erential transform method for �ow of third grade �uid between two parallel plates. Hayat

et al. [24] constructed mathematical model for peristaltic �ow of third grade �uid in a curved

channel with heat and mass transfer. Ellahi and Afzal [25] studied the e¤ect of variable viscosity

on the �ow of third grade �uid in a porous space. The convergent solutions of the governing

equations are obtained via homotopy analysis method. The second grade and third grade �uid

models can not explain the relaxation and retardation times e¤ects. Among the several models

which have been employed to describe the rheological parameters exhibited by certain real

�uids, the Je¤rey �uid has gained much support from the experimentalists and theoreticians.
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This is due to the reason that the Je¤rey �uid model can predict the ratio of relaxation to

retardation e¤ects. Many researchers discussed the Je¤rey �uid model in di¤erent situation.

Kothandapani and Srinivas [26] investigated peristaltic transport of a Je¤rey �uid under the

e¤ect of magnetic �eld in an asymmetric channel. Peristaltic motion of Je¤rey �uid under the

e¤ect of magnetic �eld in a tube was studied by Hayat and Ali [27]. Hayat et al. [28] found the

series solution for MHD channel �ow of a Je¤ery �uid. Boundary layer �ow of Je¤rey �uid with

convective boundary conditions is discussed by Hayat et al. [29]. Hayat et al. [30] examined the

e¤ects of an endoscope and magnetic �eld on the peristalsis involving Je¤rey �uid. Ellahi et al.

[31] investigated magnetohydrodynamic peristaltic �ow of a Je¤rey �uid in eccentric cylinders.

They found the series solution. Very recently the Karman �ow of Je¤rey �uid has been discussed

by Siddiqui et al. [32]. The couple stress �uid model proposed by Stokes [33] can predict various

features of couple stresses in the �uids caused by the mechanical interactions that occur inside a

deforming continuum. A prominent feature of this model is that it takes into account the polar

e¤ects. Having such preference in mind, Lakshmana and Iyengar [34] presented analytical and

computational studies for �ow of couple stress �uid. Stokes �ow of an incompressible couple

stress �uid past an approximate sphere has been studied by Srinivasacharya [35]: Ramanaiah

[36] analyzed the squeezing �lms between �nite plates lubricated by �uids with couple stresses.

Analysis of couple stresses lubricant in hydrostatic thrust bearings has been reported by Gupta

and Sharma [37]. Very recently Hayat et al. [38] presented the unsteady three dimensional �ow

of couple stress �uid over a stretching surface with chemical reaction.

Heat and mass transfer e¤ects play a key role in extensive applications of engineering,

physiology and industry. In particular these e¤ects with the chemical reaction have essence in

chemical and hydrometallurgical processes. Some interesting �elds where heat and mass transfer

phenomena subject to chemical reaction are signi�cant include formation and dispersion design

of chemical processing equipment, food processing and cooling towers, temperature distribution

and moisture over agriculture �elds and groves of fruit trees, damage of crops due to freezing,

oxygenation and dialysis processes, crossurgery, hyperthermia etc. E¤ects of mass transfer are

very important in the evaporation of water from a container to the atmosphere, the blood

distillation in the kidneys and liver and puri�cation of alcohol [39 � 43]. Also Shehzad et

al. [44] studied the Soret and Dufour e¤ects in the stagnation point �ow of Je¤rey �uid with
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convective boundary condition. Unsteady �ow of third grade �uid with Soret and Dufour

e¤ects was discussed by Hayat et al. [45]. Islam and Alam [46] investigated the Soret and

Dufour e¤ects in free convection rotating �ow. Shooting iteration technique is used to solve

the system of governing equations. Rashidi et al. [47] addressed the simultaneous e¤ects of

partial slip and Soret and Dufour e¤ects in �ow of viscous �uid induced by rotating disk. Soret

and Dufour e¤ects in mixed convection boundary layer �ow over a stretching vertical surface

was studied by Hayat et al. [48]: Here viscoelastic �uid �lls the porous space. Tsai and Huang

[49] presented a theoretical study of the steady stagnation point �ow over a stretched vertical

surface in the presence of species concentration and mass di¤usion under Soret and Dufor�s

e¤ects. They concluded that for some kinds of mixtures with the light and medium molecular

weight, the Soret and Dufor�s e¤ects should be considered as well. A�fy [50] discussed the

e¤ects of thermal di¤usion and di¤usion thermo in MHD free convective �ow over a stretching

surface with suction or injection. He used Shooting and fourth order Runge Kutta method.

The initial study on squeezing �ow through lubrication approach was presented by Stefan

[51]. Reynolds [52] obtained solution for elliptic plates and Archibald [53] studied this problem

for rectangular plates. Many researchers [54 � 63] discussed the theoretical and experimental

studies of squeezing �ows. Landlois [64] represented the results for isothermal squeezed �lms.

Numerical solution for a squeezed �ow between two plates is developed by Verma [65]. In�uence

of suction/blowing on the squeezed �ow is analyzed by Hamza [66]: Rajagopal and Gupta

[67] discussed the squeezed �ow in a second grade �uid. Analytic solution for squeezed �ow

problem is constructed by Rashidi et al. [68]: Homotopy perturbation solution (HPM) for

magnetohydrodynamic (MHD) squeezed �ow between parallel disks is developed by Domairy

and Aziz [69]. Mahmood et al. [70] examined the heat transfer characteristics in the squeezed

�ow over a porous surface. Mustafa et al. [71] studied heat and mass transfer characteristics

in a viscous �uid which is squeezed between parallel plates. They found that the magnitude

of local Nusselt number is an increasing function of both Prandtl and Eckert numbers. Heat

transfer e¤ect in squeezing �ow of Newtonian �uid between two disks has been studied by

Hayat et al. [72]. Hussain et al. [73] developed the analytical and numerical solutions for

squeezing �ow and heat transfer with velocity slip and temperature jump. Khaled and Vafai

[74] studied the magnetohydrodynamic e¤ects in the squeezed �ow and heat transfer over a
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sensor surface. Heat transfer of Cu-water nano�uid �ow between parallel plates was explored

by Sheikholeslami et al. [75]. Duwairi et al. [76] investigated heat transfer e¤ects of viscous

�uid squeezed and extruded between the two parallel plates. Unsteady MHD �ow between two

disks with heat transfer was explored by Hamza [77]. He found the results by using Shooting

and Maching technique. Bhattacharyya and Pal [78] studied unsteady MHD squeezing �ow

between two parallel rotating disks. Sweet et al. [79] discussed the unsteady MHD �ow of

viscous �uid between moving parallel plates.

1.3 Homotopy analysis method

Liao [80] proposed the homotopy analysis method (HAM) to solve ordinary and partial di¤er-

ential equations. The method separates itself from other methods in the following manner.

� HAM is not dependent on physical parameters. Therefore the technique can be used for

both strong/weak nonlinear problems.

� Other methods like the delta expansion method, Adomian decomposition method and

the Lyapunov arti�cial small parameter method are special cases of HAM (Homotopy

analysis method).

� The HAM facilitates a simple way to control and adjust the convergence of the series

solutions and allow to select required base functions in di¤erent situations with freedom.

� This method can be coupled with many other mathematical methods such as integral

transform methods, series expansion methods, numerical methods and so on.

This technique is applicable in the development of results to numerous problems [81� 100]:

Idea behind the HAM is as follows.

We consider the nonlinear di¤erential equation in the form

N [u (�)] = 0; (1.1)

where N is the nonlinear operator, u is an unknown dependent function and x denotes the

independent variable. The homotopic equation is [82]
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(1� q)L [�u(�; q)� u0(�)] = q}N [�u(�; q)] ; (1.2)

in which the embedding parameter q; 0 � q � 1, the auxiliary parameter } 6= 0, auxiliary linear

operator L and initial guess u0(�) satisfying the boundary conditions. When q = 0 and q = 1

then

�u(�; 0)� u0(�) = 0; and �u(�; 1)� u0(�) = 0; (1.3)

respectively. Thus as q varies from 0 to 1; the solution �u(�; q) ranges from initial guess u0(�)

to the �nal solution u(�): Writing �u(�; q) in the Taylor series of parameter q we get

�u(�; q) = u0(�) +
1X
m=1

um(�)q
m; um(�) =

1

m!

@m�u(�; q)

@qm

����
q=0

: (1.4)

The mth order equation is

L [um(�)� �mum�1(�)] = }Rm (um�1) ; (1.5)

with

Rm (um�1) =
1

(m� 1)!
@m�1�u(�; q)

@qm�1

����
q=0

; (1.6)

�m =

8<: 0; m � 1;

1; m > 1:
(1.7)

The solution of equation (1:5) can be obtained using a suitable software like MATHEMATICA

or MAPLE. If the auxiliary parameter, the initial guess and the auxiliary linear operator is

chosen accurately, the series (1:5) will converge at q = 1

�u(x) = u0(�) +

1X
m=1

um(�): (1.8)
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Chapter 2

Unsteady squeezing �ow of Je¤ery

�uid between two parallel disks

This chapter addresses the unsteady axisymmetric �ow of Je¤rey �uid between two parallel

disks. The relevant partial di¤erential equations are modeled. The modeled partial di¤erential

equations are reduced to the ordinary di¤erential equations through appropriate transforma-

tions. The resulting ordinary di¤erential system is solved for the series solution. Convergence

of series solution is explicitly discussed. E¤ects of �ow quantities due to di¤erent physical

parameters are seen. It is found that the velocity pro�le is enhanced via larger porosity and

squeezing parameters.

2.1 Mathematical formulation

We consider axisymmetric �ow of an incompressible Je¤rey �uid. The �ow is bounded between

two parallel disks distant H (1� at)
1
2 apart. The upper disk has the velocity �aH

2 (1� at)
� 1
2

at z = h (t) = H (1� at)
1
2 : The lower permeable disk at z = 0 is stationary. In absence of

body forces, the laws of conservation of mass and linear momentum are

@u

@r
+
u

r
+
@w

@z
= 0; (2.1)

�
dV

dt
= divT; (2.2)
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where the Cauchy stress tensor (T) in a Je¤rey �uid is de�ned by

T = �pI+ S; S =
�

1 + �1
(_r+ �2�r) ; (2.3)

in which d
dt is the material time di¤erentiation, (V) the velocity �eld, (u) the velocity component

along radial direction (r) and (v) the axial component of the velocity in z�direction, (�) the �uid

density, (I) the identity tensor, (p) the pressure, (�) the dynamic viscosity, (�1) the relaxation

to retardation times ratio, (�2) the retardation time, dots over the quantities represent material

time di¤erentiation and

_r = rV+(rV)T ; �r = d

dt
(_r) : (2.4)

The above fundamental equations give the following scalar expressions:

�

�
@u

@t
+ u

@u

@r
+ w

@u

@z

�
= �@p

@r
+

�

1 + �1

�
@2u

@r2
+
@2u

@z2
+
1

r

@u

@r
� u

r2

�
+
��2
1 + �1

�
@3u

@t@z2
+ 2

@2u

@t@r2
+
2

r

@2u

@t@r
+

@3w

@t@r@z

� 2
r2
@u

@t
+
@u

@r

�
@2u

@r2
� 2u
r2

�
+
@w

@r

@2u

@z@r

+u

�
@3u

@r3
+

@3w

@r2@z
+

@3u

@r@z2
+
2u

r3

�
+w

�
@3u

@z@r2
+
2

r

@2u

@z@r
+
@3w

@z3
+
@2w

@r@z

�
+
@u

@z

�
@2w

@r2
� 2w
r2
+
@2u

@z@r

�
+
@w

@z

�
@2u

@z2
+
@2w

@r@z

�
+
2

r

@2u

@r2

�
; (2.5)
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�

�
@w

@t
+ u

@w

@r
+ w

@w

@z

�
= �@p

@z
+

�

1 + �1

�
@2w

@r2
+
@2w

@z2
+
1

r

@w

@r

�
+

��2
1 + �1

�
@3w

@r@t@z
+
@3w

@t@r2
+ 2

@3u

@r@z2
+ 2

@u

@z

@2w

@r@z

+
@u

@r

�
@2u

@r@z
+
@2w

@r2

�
+ u

�
@3u

@r2@z
+
@3v

@r3

�
+
@w

@r

�
@2u

@z2
+

@3u

@t@z2

�
+w

�
@3u

@r@z2
+

@3w

@r2@z
+
@3w

@z3
+
1

r

@2u

@z2
+
1

r

@2w

@z@r

�
+
u

r

�
@2u

@r@z
+
@2w

@r2

�
+
1

r

�
@2u

@t@z
+
@2w

@t@r

��
: (2.6)

The boundary conditions are given by

u = 0; w =
@h

@t
, at z = h(t),

u = 0; w = �w0, at z = 0: (2.7)

De�ning [69]

u =
ar

2 (1� at)f
0 (�) ; w = � aHp

1� at
f (�) ; � =

z

H
p
1� at

(2.8)

equation (2:1) is readily satis�ed and Eqs. (2:5)� (2:7) give

f (iv) � Sq (1 + �1)
�
�f 000 + 3f 00 � 2ff 000

�
+
�

2

�
�f (v) + 5f (iv) + f 00f 000 � 3f 0f (iv)

�
= 0; (2.9)

f (0) = S; f 0 (0) = 0; f (1) =
1

2
; f 0 (1) = 0; (2.10)

where S > 0 and S < 0 respectively denote the suction and blowing e¤ects at the lower

static disk. The squeeze parameter Sq and Deborah number � are introduced via the following

expressions:

Sq =
aH2

2�
; � =

�2a

1� at : (2.11)
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Coe¢ cient of skin friction in the present �ow of Je¤rey �uid is

Cfr =
� rz jz=h(t)

�
�

aH

2(1�at)1=2

�2 ; (2.12)

with

� rz =
�

1 + �1

�
@u

@z
+
@w

@r

�
+

�2
1 + �1

�
@2u

@t@z
+
@2w

@t@r
+ u

�
@2u

@r@z
+
@2w

@r2

�
+ w

�
@2u

@z2
+
@2w

@z@r

��
: (2.13)

Dimensionless form of skin friction coe¢ cient is

H2

r2
RerCfr =

�
1 +

3

2
�

�
f 00 (1) ; (2.14)

where

R�1er =
2�

raH (1 + �1) (1� at)1=2
; � =

�2a

1� at : (2.15)

2.2 Solution for f (�)

We expressed the velocity pro�le f (�) as the set of base functions

n
�k j k � 0

o
; (2.16)

in the form of the following series

f (�) =
1X
k=0

ak�
k;

where ak are the coe¢ cients. The initial approximation (f0) and linear operator (Lf ) are

presented as follows:

f0 (�) = S +

�
3

2
� 2S

�
�2 + (2S � 1) �3; (2.17)

Lf = f (iv); (2.18)
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where

Lf
�
C1 + C2� + C3�

2 + C4�
3
�
= 0; (2.19)

and Ci (i = 1� 4) depict the arbitrary constants.

2.2.1 Zeroth order deformation problem

The zeroth order deformation problem can be written as

(1� q)Lf
�
�f (�; q)� f0 (�)

�
= q~fNf

�
�f (�; q)

�
; (2.20)

�f (0; q) = S; �f 0 (0; q) = 1; �f (1; q) =
Sq
2
; �f 0 (1; q) = 0; (2.21)

where ~f 6= 0 denotes the auxiliary parameter and 0 � q � 1 indicates embedding parameter.

It is observed that when q changes from 0 to 1; then �f(�; q) varies from the initial solution

f0 (�) to the required solution f(�): When q = 0 and q = 1; one can obtain

�f(�; 0) = f0(�); �f(�; 1) = f(�): (2.22)

The nonlinear operator is de�ned as follows:

Nf
�
�f (�; q)

�
=
@4 �f (�; q)

@�4
� Sq (1 + �1)

�
�
@3 �f (�; q)

@�3
+ 3

@2 �f (�; q)

@�2
� 2 �f (�; q) @

3 �f (�; q)

@�3

�
+
�

2

�
�
@5 �f (�; q)

@�5
+ 5

@4 �f (�; q)

@�4
+
@2 �f (�; q)

@�2
@3 �f (�; q)

@�3
� 3@

�f (�; q)

@�

@4 �f (�; q)

@�4

�
: (2.23)

By applying the Taylor series on f(�) one can write

f(�) = f0(�) +

1X
m=1

fm(�)q
m; (2.24)

fm(�) =
1

m!

@m �f(�; q)

@qm

����
q=0

: (2.25)
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2.2.2 mth-order deformation problems

We di¤erentiate Eq. (2:20) m�times with respect to q then divide by m! and setting q = 0 we

get

Lf [fm (�)� �mfm�1 (�)] = ~f<fm (fm�1 (�)) ; (2.26)

fm (0) = 0; f
0
m (0) = 0; fm (1) = 0; f

0
m (1) = 0; (2.27)

in which

�m =

8<: 0; m � 1;

1; m > 1;

<fm (fm�1 (�)) = f
(iv)
m�1 (�)� Sq (1 + �1)

�
�f 000m�1 (�) + 3f

00
m�1 (�)

�
+
�

2

h
�f

(v)
m�1 (�) + 5f

(iv)
m�1 (�)

i
+
m�1X
n=0

�
2Sq (1 + �1) fn (�) f

000
m�1�n (�)

+
�

2

�
f 00n (�) f

000
m�1�n (�)� 3f 0n (�) f

(iv)
m�1�n (�)

��
: (2.28)

The general solution of boundary value problem given in Eq. (2:26) with boundary conditions

(2:27) is

fm(�) = f
�
m(�) + C1 + C2� + C3�

2 + C4�
3 (2.29)

in which f�m(�) is the particular solution of the problem given in Eq. (2:29): The coe¢ cients

Ci (i = 1� 4) can be found through the boundary conditions expressed in Eq. (2:21):

2.2.3 Convergence of solution

The convergence of HAM solution (2:29) highly depends upon the auxiliary parameter ~f for

the function f . This parameter is useful in adjusting and controlling the convergence of the

obtained solution. To obtain the admissible values of auxiliary parameter, we have drawn Figs.

(2:1� 2:4) at � = 0 and � = 1 respectively. The permissible values of auxiliary parameter ~f
is �1:0 � ~f � �0:3 in all cases. Further, convergence of the series solution exists through out

15



the domain � (0 < � <1) when ~f = �0:5:

Fig.2.1: Convergence region of f at � = 0 for blowing.

Fig.2.2: Convergence region of f at � = 0 for suction.
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Fig. 2.3: Convergence region of f at � = 1 for blowing.

Fig. 2.4: Convergence region of f at � = 1 for suction.
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Table 2.1: Series solution�s convergence by HAM for di¤erent order of approximations

when Sq = 1:5; � = 0:2 and �1 = 0:1.

Order of (for blowing) S = �1:0 (for suction) S = 1:0

approximation f 00(0) f 00(1) f 00(0) f 00(1)

1 7:617214286 �10:58721429 �3:747642857 2:757642857

5 7:392289170 �11:49335115 �4:117403138 2:704699243

10 7:398693247 �11:49336023 �4:119968397 2:704914073

15 7:398569715 �11:49316106 �4:119969183 2:704914241

20 7:398573463 �11:49317065 �4:119969180 2:704914240

25 7:398573339 �11:49317027 �4:119969180 2:704914240

30 7:398573344 �11:49317029 �4:119969180 2:704914240

35 7:398573344 �11:49317029 �4:119969180 2:704914240

40 7:398573344 �11:49317029 �4:119969180 2:704914240

2.3 Graphical analysis and discussion

Our intention now is to predict the impact of the embedding parameters on the radial velocity

pro�le f 0(�) for suction and blowing cases. Variation of Sq on the velocity �eld f 0 in suction

and blowing have been displayed through the Figs. 2.5 and 2.6. It is analyzed that the velocity

�eld f 0 decreases near the porous walls where suction e¤ects are dominant which is presented

in Fig. 2.5. Since the upper wall is moving towards the stationary porous wall generating a

pressure which enhances the �ow. Thus velocity �eld near the upper wall increases in order

to satisfy the mass conservation. Fig. 2.6 describes that blowing at the lower wall acts as a

retarding force which shows a decrease in �uid velocity. However in the upper half region of

the channel, the �uid velocity increases. This is because of the reason that the squeezing e¤ects

are dominant in the upper half region of the channel. In�uence of � on f 0 in suction case is

illustrated in Fig. 2.7. It is observed that � causes a decrease in the radial velocity f 0 in the

lower region of the channel. However f 0 increases in the channel�s upper region by increasing

�: Fig. 2.8 depicts opposite results in blowing situation. Figs. 2.9 and 2.10 plot the variation

18



of �1 on f 0 in suction (S > 0) and blowing (S < 0) respectively. It is found that e¤ect of �1 on

f 0 is quite opposite to that of � in both cases of suction and blowing respectively.

Fig. 2.5: In�uence of Sq on f 0 for suction.

Fig. 2.6: In�uence of Sq on f 0 for injection.
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Fig. 2.7: In�uence of � on f 0 for suction.

Fig. 2.8: In�uence of � on f 0 for injection.
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Fig. 2.9: In�uence of �1 on f 0 for suction.

Fig. 2.10: In�uence of �1 on f 0 for injection.
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Table 2:2 provides the numerical values of skin friction coe¢ cient
�
H2

r2
RerCfr

�
for di¤erent

embedded parameters. Here the skin friction coe¢ cient increases by increasing S whereas it

decreases for positive values of Sq; �1 and �: Table 2:3 highlights a comparative study of present

work with the previous published result. An excellent agreement with previous research in a

limiting sense has been found.

Table 2.2: Values of skin friction coe¢ cient H2

r2
RerCfr for di¤erent values of emerging

parameters.

S Sq �1 � H2

r2
RerCfr

�1:5 1:5 0:1 0:1 �19:76512

�0:5 �7:94205

0:5 0:00000

1:5 5:85264

�1:0 0:5 �11:42769

1:0 �12:34814

1:5 �13:21714

2:0 �14:03591

1:5 0:0 �12:98520

0:1 �13:21714

0:2 �13:44533

0:1 0 �11:37973

0:1 �13:21714

0:2 �15:01379
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Table 2.3: Comparison between HAM and HPM solutions [69]

S f 00(1)

HPM [69] HAM (Present results)

0:1 2:97682 2:97682

0:5 � 2:89177

1:0 � 2:80242

1:5 � 2:73094
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2.4 Closing remarks

In the present analysis we discussed the �ow of Je¤rey �uid between two parallel disk using

the modern technique known as the homotopy analysis method (HAM). In�uence of emerging

physical parameters are discussed via graphs. The following points have been noted.

� E¤ects of squeezing parameter Sq on velocity pro�le f 0(�) in suction and blowing are

reverse.

� Variations of Deborah number (�) on the radial velocity f 0(�) are opposite for suction

and blowing cases.

� In�uence of ratio parameter �1 on radial velocity f 0(�) is opposite in suction and blowing

cases.

� The skin friction coe¢ cient
�
H2

r2
RerCfr

�
increases by increasing S whereas it decreases

for positive values of Sq; �1 and �:
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Chapter 3

Thermal Radiation e¤ects in

squeezing �ow of a Je¤ery �uid

This chapter extends the �ow analysis of previous chapter through heat transfer. Conservation

law of energy is employed for the development of problem in addition to the conservation laws

of mass and linear momentum. Radiative e¤ects in the energy equation are retained. Attention

is mainly focused to the temperature �eld. The relevant di¤erential system is solved for the

convergent series solution. E¤ects of the various physical parameters on both suction and

blowing cases are analyzed. It is noted that temperature decreases for larger Prandtl number

in both suction and blowing situations. There are opposite e¤ects of thermal radiation on the

temperature in suction and blowing cases.

3.1 Mathematical analysis

Axisymmetric �ow of an incompressible Je¤rey �uid is considered. The �ow is bounded between

two parallel disks distant H (1� at)
1
2 apart. The upper disk is located at z = h (t) ; (h (t) =

H (1� at)
1
2 ): The upper disk moves with velocity �aH

2 (1� at)
� 1
2 while the lower permeable

disk at z = 0 is stationary. Heat transfer is considered in the presence of linear thermal

radiation. Rosselands approximation for thermal radiation is used. The laws of conservation of
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mass, linear momentum and energy yield

@u
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+
u

r
+
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@z
= 0; (3.1)
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�cp

�
@T

@t
+ u

@T
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+ w

@T

@z

�
= Kc
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@2T

@r2
+
@2T
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+
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�
+
16��T 30
3k�
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; (3.4)

where u denotes the radial velocity, the axial velocity (v), (T ) the �uid temperature, (�) the

�uid density, (cp) the speci�c heat at constant temperature, (p) the pressure, (�) the dynamic
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viscosity, (�1) relaxation and retardation times ratio, (�2) the retardation time, (Kc) the ther-

mal conductivity, (��) the Stefan-Boltzmann constant, (k�) the mean absorption coe¢ cient and

(T0) temperature of the wall:

The relevant boundary conditions are presented in the following forms:

u = 0; w =
@h

@t
, T = T0 +

T0
1� at at z = h(t),

u = 0; w = �w0, T = T0 at z = 0: (3.5)

De�ning the transformations

u =
ar

2 (1� at)f
0 (�) ; w = � aHp

1� at
f (�) ; � =

z

H
p
1� at

; T = T0 +
T0

1� at� (�) ;

(3.6)

equation (3:1) is automatically satis�ed and eliminating pressure from Eqs. (3:2)� (3:5) give

f (iv) � Sq (1 + �1)
�
�f 000 + 3f 00 � 2ff 000

�
+
�

2

�
�f (v) + 5f (iv) + f 00f 000 � 3f 0f (iv)

�
= 0; (3.7)

�00
�
1 +

4

3
Rd

�
�RePr

�
��0 + 2� � 2f�0

�
= 0; (3.8)

f (0) = S; f 0 (0) = 0; f (1) =
1

2
; f 0 (1) = 0; � (0) = 0; � (1) = 1; (3.9)

where S > 0 and S < 0 respectively denote the suction and injection (or blowing) at the lower

permeable static disk. The squeezing parameter Sq, the Deborah number (�), the Reynolds

number (Re) ; the Prandtl number (Pr) and the radiation parameter (Rd) are introduced in

the following expressions

Sq =
aH2

2�
; � =

�2a

(1� at) ; Re =
�aH2

2�
; Pr =

cp�

Kc
; Rd =

4��T 30
k�Kc

: (3.10)
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3.2 Solution for �(�)

The dimensionless temperature �(�) in terms of base functions

n
�k j k � 0

o
; (3.11)

is expressed in the following series

� (�) =
1X
k=0

ak�
k;

where ak are the coe¢ cients. The initial approximation �0 (�) and linear operator L� are chosen

as follows:

�0 (�) = �; (3.12)

L� = �00; (3.13)

where

L� [C1 + C2�] = 0; (3.14)

and Ci (i = 1; 2) denote the arbitrary constants.

3.2.1 Zeroth order deformation problem

The zeroth order deformation equation can be written as

(1� q)L�
�
�� (�; q)� �0 (�)

�
= q~�N�

�
�� (�; q)

�
; (3.15)

with

�� (0; q) = S; �� (1; q) = 1; (3.16)

where ~� 6= 0 denotes the auxiliary parameter and 0 � q � 1 indicates embedding parameter.

It is ensured that when q changes from 0 to 1 then ��(�; q) vary from �0 (�) to �(�):When q = 0

and q = 1; one obtains

��(�; 0) = �0(�); ��(�; 1) = �(�): (3.17)
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The nonlinear operator is by

N�
�
�� (�; q)

�
=

�
1 +

4

3
Rd

�
@2�� (�; q)

@�2
�RePr

�
�
@�� (�; q)

@�
+ 2�� (�; q)� 2 �f (�; q) @

�� (�; q)

@�

�
:

(3.18)

By applying Taylor series on �(�) one can write

�(�) = �0(�) +
1X
m=1

�m(�)q
m; (3.19)

�m(�) =
1

m!

@m��(�; q)

@qm

����
q=0

: (3.20)

3.2.2 mth-order deformation problems

We di¤erentiate Eq. (3:15) with respect to q (m� times) then divide by m! and putting q = 0

we get

L� [�m (�)� �m�m�1 (�)] = ~�<�m (�m�1 (�)) ; (3.21)

�m (0) = 0; �m (1) = 0; (3.22)

in which

�m =

8<: 0; m � 1;

1; m > 1;

<�m (�m�1 (�)) =
�
1 +

4

3
Rd

�
�00m�1 (�)�RePr

�
��0m�1 (�) + 2�m�1 (�)

�
+RePr

m�1X
n=0

�
fn (�) �

0
m�1�n (�)

�
(3.23)

The general solution is given by

�m(�) = �
�
m(�) + C1 + C2�; (3.24)

where ��m(�) is the particular solution of the problem given in Eq. (3:15): The coe¢ cients Ci

(i = 1� 2) can be found through the boundary conditions (3:16):
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3.2.3 Convergence analysis

Fig. 3.1: Convergence region for � at � = 0 in suction case.

Fig. 3.2: Convergence region for � at � = 0 in blowing case.
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Fig. 3.3: Convergence region for � at � = 1 in suction case.

Fig. 3.4: Convergence region for � at � = 1 in blowing case.

We know that the convergence of the series solution (by HAM) highly depends upon the

auxiliary parameter. For that we choose ~� as the auxiliary parameter for the function �. This

parameter is useful in controlling and adjusting the convergence of the obtained solution. To

obtain the admissible values of auxiliary parameter, we have plotted Figs. (3:1� 3:4) at � = 0
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and � = 1 respectively. It is established that range for suitable values of ~� is �0:7 � ~� � �0:1

for � = 0 and � = 1 respectively for S = 1 and it is �1:0 � ~� � �0:2 for � = 0 and � = 1 when

S = �1. As mentioned earlier that we here extended the work of chapter 2 for the case when

heat transport phenomenon in the presence of thermal radiation e¤ect is taken into account.

Therefore we have just plotted the graphs for temperature �eld in this study since the results

of velocity �eld have been already reported in chapter 2.

Table 3.1:. Series solution�s convergence by HAM for di¤erent order of approximations

when Sq = 1:5; �1 = 0:1 = �, Rd = 0:5; P r = 1:0 and Re = 0:5.

Order of (for blowing) (for suction)

approximation �0(0) �0(1) �0(0) �0(1)

1 0:8500000000 1:300000000 0:8500000000 1:300000000

5 0:7765901549 1:330436766 0:8878770710 1:252678964

10 0:7666196235 1:336478432 0:8890118171 1:252236295

15 0:7653444817 1:336716279 0:8889946572 1:252241035

20 0:7651313344 1:336747677 0:8889949365 1:252240969

25 0:7650916868 1:336752519 0:8889949318 1:252240970

30 0:7650838167 1:336753354 0:8889949319 1:252240970

35 0:7650821876 1:336753508 0:8889949319 1:252240970

40 0:7650818402 1:336753538 0:8889949319 1:252240970
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3.3 Discussion

Our aim now is to present the impact of the embedding parameters on the temperature pro�le

� (�) for suction and blowing cases. Variations of Prandtl number (Pr) on the temperature

�eld � (�) for suction and blowing have been sketched in the Figs. 3:5 and 3:6. It is observed

from Figs. 3:5 and 3:6 that temperature �eld decreases when we increase (Pr) for both suction

and injection cases. It is due to the fact that higher Prandtl number relates to weaker thermal

di¤usivity and smaller Prandtl number has stronger thermal di¤usivity. Smaller Prandtl �uid

has larger temperature in comparison to the higher Prandtl �uid. In Figs. 3:7 and 3:8, we

discussed the in�uence of radiation parameter (Rd) for both suction and injection cases. It is

noticed from Fig. 3:7 that when we increase (Rd) the temperature pro�le decreases for suction

case and it increases for injection case. Physically an increase in radiation parameter provides

more heat to the working �uid for the injection case that causes an increase in temperature for

the injection case. Table 3:2 highlights a comparative study of present work with the previous

published result. It is observed that present analysis is in good agreement with existing research

in a limiting sense.

Fig. 3.5: In�uence of Pr on � for suction.

33



Fig. 3.6: In�uence of Pr on � for blowing.

Fig. 3.7: In�uence of Rd on � for suction.

34



Fig. 3.8: In�uence of Rd on � for blowing.
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Chapter 4

Soret-Dufour e¤ects in MHD

squeezing �ow of a Je¤rey �uid with

Joule heating

This chapter is concerned with the unsteady squeezing �ow of Je¤rey �uid between two parallel

plates. Soret-Dufour and Joule heating e¤ects are also considered. The �uid is electrically

conducting in the presence of magnetic �eld. Transformation procedure reduces the partial

di¤erential equations into the ordinary di¤erential equations. Convergent series solutions are

developed. The solution expressions for velocity, temperature and concentration �elds are

computed and discussed. In addition the skin friction coe¢ cient, Nusselt number and Sherwood

number are tabulated and analyzed.

4.1 Mathematical analysis

We examine heat and mass transfer e¤ects in axisymmetric squeezing �ow of an electrically

conducting Je¤rey �uid. The �ow is bounded between two parallel disks distant H
p
1� at

apart. The �ow is considered symmetric about z = 0. A constant magnetic �eld B0 is ap-

plied along the radial direction. The induced magnetic and electric �elds are neglected. Joule

heating is also taken into account. The temperature and concentration of the lower disk are

T0 and C0 respectively. The upper disk at z = h (t) = H
p
1� at is moving with velocity
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dz
dt = � aH

2
p
1�at while lower porous disk at z = 0 is stationary. The governing equations for

magnetohydrodynamic (MHD) axisymmetric �ow of Je¤rey �uid are given by
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In above equations u the radial velocity, w the axial velocity, T the �uid temperature, � the

�uid density, cp the speci�c heat, p the pressure, � the dynamic viscosity, � the electrical

conductivity of �uid, �1 the ratio of relaxation to retardation times, �2 the retardation time,

T the �uid temperature, C the concentration �eld, D the thermal di¤usivity, Kc the thermal

conductivity, Cs the concentration susceptibility, Tm the mean �uid temperature and KT the

thermal-di¤usion ratio.

The subjected boundary conditions are:

u = 0; w =
@h

@t
, T = T0 +

T0
1� at ; C = C0 +

C0
1� at at z = h(t),

u = 0; w = �w0, T = T0; C = C0 at z = 0: (4.6)

De�ning the transformations

u =
ar

2 (1� at)f
0 (�) ; w = � aHp

1� at
f (�) ; � =

z

H
p
1� at

;

T = T0 +
T0

1� at� (�) , C = C0 +
C0
1� at� (�) ; (4.7)

equation (4:1) is automatically satis�ed and eliminating pressure from Eqs. (4:2) � (4:5) we

have

f (iv) � Sq (1 + �1)
�
�f 000 + 3f 00 � 2ff 000

�
+
�

2

�
�f (v) + 5f (iv) + f 00f 000 � 3f 0f (iv)

�
�M2 (1 + �1) f

00 = 0; (4.8)

�00 �RePr
�
��0 + 2� � 2f�0

�
+M2RePrEcf 02 + PrDu�00 = 0; (4.9)

�00 �ReSc
�
��0 + 2�� 2f�0

�
+ SrSc�00 = 0; (4.10)
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f (0) = S; f 0 (0) = 0; f (1) =
1

2
; f 0 (1) = 0; � (0) = 0; � (1) = 1; � (0) = 0; � (1) = 1; (4.11)

where S > 0 and S < 0 respectively denote the suction and injection at the lower static disk.

Sq the squeezing parameter, � the Deborah number; Re the Reynolds number; P r the Prandtl

number, M denotes the Hartman number, Ec the Eckert number; Sc the Schmidt number Sc;

Du the Dufour number and Sr the Soret number. These quantities are de�ned as

Sq =
aH2

2�
; � =

�2a

1� at ; M
2 =

�B20
�a

; Re =
�aH2

2�
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�cp
KC

;

Ec =
a2r2

2cpT0
; Sc =

�

D
; Du =

DKTC0
�CscpT0

; Sr =
DKTT0
�TmC0

: (4.12)

The skin friction coe¢ cient, local Nusselt number and Sherwood number are

Cf =
� rz jz=h(t)

�
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�
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�
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: (4.13)

The dimensionless form of above quantities are

H2

r2
RerCf =

�
1 +

3

2
�

�
f 00(1); (4.14)

(1� at)3=2Nu = ��0(1); (4.15)

(1� at)3=2 Sh = ��0(1): (4.16)

4.2 Solution expressions

We write f(�); �(�) and �(�) in term of base functions

n
�k j k � 0

o
; (4.17)

through the following de�nitions

f (�) =
1X
k=0

ak�
k; � (�) =

1X
k=0

bk�
k; � (�) =

1X
k=0

ck�
k;
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where ak; bk and ck are the coe¢ cients. The initial approximations f0 (�) ; �0 (�) ; �0 (�) and

linear operators Lf ; L�; L� are chosen as follows:

f0 (�) = S +

�
3

2
� 2S

�
�2 + (2S � 1) �3; �0 (�) = �; �0 (�) = �; (4.18)

Lf = f (iv); L� = �00; L� = �00; (4.19)

where

Lf
�
C1 + C2� + C3�

2 + C4�
3
�
= 0; L� [C5 + C6�] = 0; L� [C7 + C8�] = 0; (4.20)

and Ci (i = 1� 8) are the arbitrary constants.

4.2.1 Zeroth order deformation problems

The zeroth order problems ensures the following statements:

(1� q)Lf
�
�f (�; q)� f0 (�)

�
= q~fNf

�
�f (�; q)

�
;

�f (0; q) = S; �f 0 (0; q) = 1; �f (1; q) =
Sq
2
; �f 0 (1; q) = 0; (4.21)

(1� q)L�
�
�� (�; q)� �0 (�)

�
= q~�N�

�
�� (�; q)

�
;

�� (0; q) = 0; �� (1; q) = 1; (4.22)

(1� q)L�
�
�� (�; q)� �0 (�)

�
= q~�N�

�
�� (�; q)

�
;

�� (0; q) = 0; �� (1; q) = 1; (4.23)

In expressions (4:21), (4:22) and (4:23); ~f 6= 0; ~� 6= 0 and ~� 6= 0 denote the auxiliary

parameters and 0 � q � 1 denotes an embedding parameter. It is observed that when q

changes from 0 to 1; then �f(�; q); ��(�; q) and �� (�; q) vary from f0 (�) to f(�); �0 (�) to � (�)
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and �0 (�) to � (�) respectively: When q = 0 and q = 1; one obtains

�f (�; 0) = f0 (�) ; �f (�; 1) = f (�) ; (4.24)

��(�; 0) = �0(�); ��(�; 1) = �(�); (4.25)

��(�; 0) = �0(�);
��(�; 1) = �(�): (4.26)

The nonlinear operator is de�ned as follows
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By applying the Taylor series on f(�); �(�) and �(�) one can write

f(�) = f0(�) +
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m; (4.30)
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We select the auxiliary parameter in such a way that the series (4:30� 4:32) converge at q = 1

and we have

f(�) = f0(�) +

1X
m=1

fm(�); (4.34)

�(�) = �0(�) +
1X
m=1

�m(�); (4.35)

�(�) = �0(�) +

1X
m=1

�m(�); (4.36)

4.2.2 Higher order deformation problems

The mth order deformation problems are

Lf [fm (�)� �mfm�1 (�)] = ~f<fm (fm�1 (�)) ;

fm (0) = 0; f
0
m (0) = 0; fm (1) = 0; f

0
m (1) = 0; (4.37)

L� [�m (�)� �m�m�1 (�)] = ~�<�m (�m�1 (�)) ;

�m (0) = 0; �m (1) = 0; (4.38)
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�
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�
;

�m (0) = 0; �m (1) = 0; (4.39)

where

�m =

8<: 0; m � 1;

1; m > 1;
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+2ReSc
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fn (�)�
0
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The general solutions of boundary value problems given in Eqs. (4:37� 4:39) are

fm(�) = f�m(�) + C1 + C2� + C3�
2 + C4�

3 (4.43)

�m(�) = ��m(�) + C5 + C6� (4.44)

�m(�) = ��m(�) + C7 + C8� (4.45)

in which f�m(�); �
�
m(�) and �

�
m(�) are the special solutions of the problem given in Eqs. (4:37�

4:39): The coe¢ cients Ci (i = 1 � 8) can be found through the boundary conditions Eqs.

(4:37� 4:39):

4.2.3 Convergence of solutions

We know that the convergence of the series solution (by HAM) highly depends upon the auxil-

iary parameters. For that we choose ~f ; ~� and ~� for the functions f; � and � as the auxiliary

parameters. These parameters are useful in controlling and adjusting the convergence of the

obtained solutions. To obtain the admissible values of auxiliary parameters, we have sketched

Figs. (4:1� 4:4) at � = 0 for both suction and injection. It is noticed that ranges for suitable
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values of ~f ; ~� and ~� are �1:0 � ~f � �0:35 (for suction), �0:9 � ~f � �0:3 (for injection),

�1:9 � ~�; ~� � �0:5 (for suction) and �1:0 � ~�; ~� � �0:4 (for injection) at � = 0. Table 4.1

is constructed to show that the orders of approximation up to six decimal places are achieved

at 16th, 32th and 35th order of approximations at � = 0; 16th, 30th and 32th order of approx-

imations at � = 1 for blowing and 15th, 30th and 30th order of approximations at � = 0; 10th,

27th and 27th order of approximations at � = 1 for suction.

Fig. 4.1: Convergence region for f at � = 0 in suction.
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Fig. 4.2: Convergence region for f at � = 0 in blowing.

Fig. 4.3: Convergence region for � and � at � = 0 in suction:
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Fig. 4.4: Convergence region for � and � at � = 0 in blowing:
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Table 4.1:. Series solution�s convergence by HAM for di¤erent order of approximations

when Sq = 1:5; �1 = � = 0:1, Pr = Sc =M = Ec = 1:0; Re = Du = Sr = 0:5 and ~f = �0:4.

Order of (for blowing)

approximation f 00(0) f 00(1) �0(0) �0(1) �0(0) �0(1)

1 7:716214 �10:68621 1:090000 0:880000 0:685000 1:285000

5 7:565773 �11:54585 1:194840 0:579025 0:527470 1:595504

10 7:569565 �11:54259 1:172617 0:529937 0:550204 1:644717

15 7:569505 �11:54250 1:166880 0:525442 0:555935 1:649210

16 7:569507 �11:54251 1:166617 0:525265 0:556198 1:649387

20 7:569507 �11:54251 1:166288 0:525006 0:556527 1:649646

25 7:569507 �11:54251 1:166277 0:524958 0:556538 1:649695

30 7:569507 �11:54251 1:166287 0:524951 0:556529 1:649701

32 7:569507 �11:54251 1:166288 0:524951 0:556527 1:649702

35 7:569507 �11:54251 1:166288 0:524951 0:556526 1:649702

40 7:569507 �11:54251 1:166288 0:524951 0:556526 1:649702

45 7:569507 �11:54251 1:166288 0:524951 0:556526 1:649702

Order of (for suction)

approximation f 00(0) f 00(1) �0(0) �0(1) �0(0) �0(1)

1 �3:780643 2:790643 1:150000 1:060000 1:105000 1:105000

5 �4:154397 2:746023 1:214939 1:047257 1:068955 1:150789

10 �4:156797 2:746224 1:232270 1:042944 1:051616 1:155099

15 �4:156798 2:746224 1:235803 1:042745 1:048083 1:155298

20 �4:156798 2:746224 1:236467 1:042774 1:047418 1:155269

25 �4:156798 2:746224 1:236585 1:042785 1:047301 1:155258

27 �4:156798 2:746224 1:236605 1:042786 1:047281 1:155256

30 �4:156798 2:746224 1:236608 1:042786 1:047278 1:155256

35 �4:156798 2:746224 1:236608 1:042786 1:047278 1:155256

40 �4:156798 2:746224 1:236608 1:042786 1:047278 1:155256
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4.3 Analysis

The purpose of this section is to analyze the in�uence of the emerging parameters on the radial

velocity f 0 (�), temperature � (�) and concentration � (�) �elds in the suction and blowing (or

injection) cases. E¤ects of Hartman number M on radial velocity are discussed in the Figs. 4:5

and 4:6 for both suction and injection cases. In Fig. 4:5, the velocity �eld f 0 decreases near

the porous (0 � � � 0:21) and squeezing (0:61 � � � 1) walls but it increases at the centre

(0:21 � � � 0:61) of the channel when we increase Hartman number M for the suction case. In

fact the magnetic �eld slows down the �uid particles and retards the motion of the �uid particles

in the region of both walls but obviously to satisfy law of conservation of mass an increase in

�uid velocity occurs at the central region. Fig. 4:6 shows opposite trend in case of blowing

when compared to the case of suction. Combined e¤ects of Dufour and Soret numbers on the

temperature �eld �(�) are discussed in the Figs. 4:7 and 4:8: Both cases of suction and injection

are taken. Fig. 4:7 shows that with the increase of Dufour number Du and decrease of Soret

number Sr; the temperature �eld decreases in the vicinity of lower porous disk (0 � � � 0:41)

and it increases in the vicinity of upper squeezing disk (0:41 � � � 1:0): Fig. 4:8 shows that

with the increase of Dufour number (Du) and decrease of Soret number (Sr) ; the temperature

�eld increases for blowing case. Physically we can observe that Dufour e¤ect describes the

heat �ux created when a chemical system is under concentration gradient. Such e¤ect depends

upon thermal di¤usion which is generally very small but can be sometimes signi�cant when

the participating species are of widely di¤ering molecular weights. Mass di¤usion occurs if

the species are initially distributed unevenly i.e., when a concentration gradient exists. A

temperature gradient can also work as a driving force for mass di¤usion called thermo-di¤usion

or Soret e¤ects. Therefore the higher the temperature gradient, the larger the Soret e¤ects.

E¤ect of Hartman number M on temperature pro�le �(�) is illustrated in Fig. 4:9 for the

suction case. The temperature increases when M is increased. Figs. 4:10 and 4:11 illustrate

the e¤ects of Eckert number Ec on temperature pro�le �(�) for both suction and blowing

cases. Temperature pro�le increases with an increase of Eckert number Ec in both suction

and injection cases. Since the Eckert number is the ratio of kinetic energy to the enthalpy.

An increase in the Eckert number indicates an increase in kinetic energy. Since temperature

is the average kinetic energy of �uid particles. Therefore �(�) increases with an increase in
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the Eckert number. When the electrical current passes through a medium then some of the

electrical energy is converted into heat energy which is called Joule heating. Hence an increase

in Hartman number corresponds to an increase in the intensity of the magnetic �eld. Thus

more heat dissipates and adds to the system. As a consequence the �(�) increases. E¤ects of

Schmidt number Sc on concentration pro�le �(�) are illustrated in the Figs. 4:12 and 4:13 for

suction and injection respectively. With an increase of Schmidt number Sc; the concentration

�eld decreases when 0 � � � 0:41 while it increases when 0:41 � � � 1:0 for the suction case.

For blowing case, the concentration �eld decreases with the increase of Schmidt number Sc:

Combined e¤ects of Dufour and Soret numbers on the concentration �eld are drawn in the Figs.

4:14 and 4:15 for suction and injection cases respectively. Fig. 4:14 indicates that with increase

of Dufour number Du and decrease of Soret number Sr; the concentration �eld decreases for

0 � � � 0:54 and it increases for 0:54 � � � 1:0 in the suction case. Fig. 4:15 illustrates

that concentration �eld decreases with the increase of Dufour number Du and it decreases with

Soret number Sr.

Tables 4:2 and 4:3 provide the numerical values of skin friction coe¢ cient, local Nusselt

number and Sherwood number for di¤erent embedded parameters. The skin friction coe¢ cient

increases by increasing S whereas it decreases for positive values of Sq; �1; M and �: With

the increase of S; Sq; �1 and �; the local Nusselt number decreases while it increases with the

increase ofM; Du and Sr: Through increase of S; Sq; �1; M; Du and Sr; the Sherwood number

decreases while it increases with the increase of �: Table 4:4 highlights a comparison of present

work with the previous published attempts. It is found that present results are in an excellent
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agreement with previous research in the limiting cases.

Fig. 4.5: In�uence of M on f 0 for suction.

Fig. 4.6: In�uence of M on f 0 for blowing.

50



Fig. 4.7: In�uence of Du and Sr on � for suction.

Fig. 4.8: In�uence of Du and Sr on � for blowing.
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Fig. 4.9: In�uence of M on � for suction.

Fig. 4.10: In�uence of Ec on � for suction.
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Fig. 4.11: In�uence of Ec on � for blowing.

Fig. 4.12: In�uence of Sc on � for suction.
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Fig. 4.13: In�uence of Sc on � for blowing.

Fig. 4.14: In�uence of Du and Sr on � for suction.
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Fig. 4.15: In�uence of Du and Sr on � for blowing.
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Table 4.2: Values of skin friction coe¢ cient, local Nusselt number and Sherwood number

for di¤erent emerging parameters when Pr = Sc = Ec = 1:0; Re = Du = Sr = 0:5.

S Sq �1 � M H2

r2
RerCf (1� at)3=2Nu (1� at)3=2 Sh

�2:0 1:0 0:1 0:1 0:5 �24:84606 �0:8655236 �1:647918

�1:0 �12:36713 �1:111552 �1:387342

0:5 0:000000 �1:162187 �1:162187

1:0 3:214864 �1:099825 �1:128748

�0:5 0:5 0:1 0:1 0:5 �7:312816 �1:169153 �1:289044

1:5 �7:957332 �1:169678 �1:292141

2:0 �8:258052 �1:169909 �1:293497

2:5 �8:545881 �1:170122 �1:294742

�0:5 1:0 0:0 0:1 0:5 �7:582271 �1:169375 �1:290382

0:2 �7:702460 �1:169479 �1:290935

0:3 �7:761728 �1:169530 �1:291204

0:4 �7:820456 �1:169580 �1:291469

�0:5 1:0 0:1 0:0 0:5 �6:701664 �1:169409 �1:291181

0:2 �8:567625 �1:169438 �1:290135

0:3 �9:477623 �1:169439 �1:289611

�0:5 1:0 0:1 0:1 0:0 �7:625739 �1:253467 �1:253467

0:4 �7:636556 �1:199665 �1:277278

1:0 �7:693446 �0:9181438 �1:401899
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Table 4.3. Values of local Nusselt number for di¤erent emerging parameters when S = �1:0;

Re = 0:5; Sq = Pr = Ec = Sc =M = 1:0; and � = �1 = 0:1.

Du Sr (1� at)3=2Nu (1� at)3=2 Sh

0:0 0:5 �0:8226191 �1:511866

0:2 �0:7237254 �1:555881

0:4 �0:6061634 �1:608229

0:6 �0:4640282 �1:671562

0:5 0:0 �0:6234136 �1:440144

0:2 �0:5934533 �1:510079

0:4 �0:5584374 �1:591943

0:6 �0:5170207 �1:688961

0:8 �0:4673695 �1:805563

Table 4.4: Comparison between HAM and HPM solutions [69]

S f 00(1)

HPM [69] HPM [69] Present results

0:1 2:97682 2:97682 2:97682

0:5 � 2:89177 2:89177

1:0 � 2:80242 2:80242

1:5 � 2:73094 2:73094
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4.4 Concluding remarks

Squeezing �ow of Je¤rey �uid with Soret and Dufour e¤ects is analyzed in the presence of Joule

heating. The main observations are listed below.

� E¤ects of Hartman number on velocity pro�le f 0(�) are opposite for suction and blowing.

� Temperature pro�le �(�) in suction case decreases near the lower disk and it increases

near the upper disk when Soret and Dufour numbers increase.

� Temperature pro�le �(�) in injection case increases through out the domain with the

increase of Soret and Dufour number.

� Temperature pro�le �(�) is higher for larger values of Hartman number M:

� Temperature pro�le �(�) is higher for larger values of Eckert number Ec for both suction

and injection.

� Concentration �eld �(�) is an increasing function of Schmidt number Sc near the lower

disk while it is decreasing function of Sc near the upper wall for suction case but concen-

tration �eld �(�) decreases through out the domain for injection.

� Behavior of concentration pro�le �(�) in suction is opposite near the lower and upper

walls with the increase of Soret and Dufour numbers.

� Behavior of concentration pro�le �(�) in injection is opposite for Soret and Dufour num-

bers.

� Skin friction coe¢ cient increases by increasing S whereas it decreases for positive values

of Sq; �1; M and �:

� With the increase of S; Sq; �1 and �; the local Nusselt number decreases while it increases

with the increase of M; Du and Sr:

� Through increase of S; Sq; �1; M; Du and Sr; the Sherwood number decreases while it

increases with the increase of �:
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Chapter 5

Squeezing �ow of Je¤rey �uid with

chemical reaction

This chapter explores the simultaneous e¤ects of heat and mass transfer in squeezing �ow

of Je¤rey �uid between parallel plates. Viscous dissipation and chemical reaction e¤ects are

present. Series solution to the involved system is computed. A parametric study of pertinent

variables is conducted. The skin friction coe¢ cient, local Nusselt and Sherwood numbers are

computed and examined.

5.1 Mathematical analysis

We examine the time-dependent squeezing �ow of Je¤rey �uid with heat and mass transfer.

The �ow is bounded by two parallel plates situated at z = �H (1� at)
1
2 = �h(t). For a > 0

the plates are squeezed and the squeezing plates touch each other for t = 1=a while separation

between the plates occurs for a < 0. The �ow analysis has been investigated by considering

viscous dissipation and heat generation due to friction produced by shear forces in Je¤rey �uid.

This e¤ect is relatively signi�cant in the case when the �uid is mainly viscous or �owing at a

high speed. This situation occurs when Eckert number (Ec >> 1) is very high. Mass transfer

is considered in the presence of chemical reaction and �ow is taken symmetric. Fundamental

laws of mass, momentum, energy and concentration for time-dependent two-dimensional �ow
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of Je¤rey �uid give
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= D

�
@2C

@x2
+
@2C

@y2

�
�K1 (t)C: (5.5)

Here u denotes velocity along the x�direction, v the velocity along the y�direction, T; C; p; �;

�; Kc; Cp; D and K1 (t) = k1
1��t represent the temperature, the concentration, the pressure, the

�uid density, the kinematic viscosity, the thermal conductivity, the speci�c heat, the di¤usion

species and the reaction rate respectively.
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The boundary conditions are prescribed as follows:

u = 0; v = vw =
dh

dt
; T = TH ; C = CH at y = h (t) ;

v =
@u

@y
=
@T

@y
=
@C

@y
= 0 at y = 0: (5.6)

Eliminating pressure gradient from Eqs. (5:2� 5:3) and using the transformations

� =
y

H
p
1� at

; u =
ax

2 (1� at)f
0 (�) ; v =

�aH
2
p
1� at

f (�) ;

� =
T

TH
; � =

C

CH
: (5.7)

we arrive at

f (iv) � Sq (1 + �1) (�f 000 + 3f 00 + f 0f 00 � ff 000)

+
�

2

�
�f (v) + 5f (iv) + 2f 00f 000 � ff (iv) � f 0f (iv)
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= 0; (5.8)
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+ �f 0f 00 � ff 0f 00
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�00 + ScSq
�
f�0 � ��0

�
� Sc
� = 0: (5.10)

f(0) = 0; f(1) = 1; f 0(1) = 0; f 00(0) = 0;

�(1) = 1 = �(1); �0(0) = 0 = �0(0): (5.11)

where squeezing parameter Sq, the Deborah number �; the Prandtl number (Pr) ; the Eckert

number (Ec) ; the Schmidt number (Sc) and the chemical reaction parameter 
 are given by

Sq =
aH2

2�
; � =

�2a

1� at ; Pr =
�Cp
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;
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1
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2 (1� at)

�2
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D
; 
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k1H
2

�
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H2 (1� at)
x2

: (5.12)

Note that the plate movement is described by the squeezing parameter Sq. When Sq > 0,
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the plates moving away from each other and when Sq < 0; the plates are moving together.

For Ec = 0 the viscous dissipation e¤ect is not present. Further 
 > 0 shows the destructive

chemical reaction and 
 < 0 illustrates the generative chemical reaction. The case of � = 0,

�1 = 0 corresponds to the viscous �uid. The skin friction coe¢ cient, Nusselt number and

Sherwood number are as follows

Cf =
(�xy)y=h(t)

�v2w
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�
@T
@y
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(5.13)

Using (5:7) in (5:13); we get
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p
1� �tSh = ��0 (1) : (5.14)

5.2 Solution of the problem

Here f(�); �(�) and �(�) are expressed by the set of base functions

n
�2k+1 j k � 0

o
; (5.15)

in the form of the following series

f (�) =
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ak�
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1X
k=0

bk�
2k+1; � (�) =

1X
k=0

ck�
2k+1;

where (ak) ; (bk) and (ck) are the coe¢ cients. The initial approximations f0 (�) ; �0 (�) ; �0 (�)

and linear operators Lf ; L�; L� are chosen as follows:

f0 (�) =
1

2

�
3� � �3

�
; �0 (�) = 1; �0 (�) = 1; (5.16)

Lf = f (iv); L� = �00; L� = �00; (5.17)
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where

Lf
�
C1 + C2� + C3�

2 + C4�
3
�
= 0; L� [C5 + C6�] = 0; L� [C7 + C8�] = 0; (5.18)

and Ci (i = 1� 8) are the arbitrary constants.

5.2.1 Zeroth order deformation problems

The zeroth order problems ensures the following statements:
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In expressions (5:20), (5:21) and (5:22); ~f ; ~�, ~� denotes the auxiliary parameters and 0 � q �

1 denotes the embedding parameter. It is observed that, when q varies from 0 to 1; then �f(�; q);

��(�; q) and �� (�; q) vary from f0 (�) to f(�); �0 (�) to � (�) and �0 (�) to � (�) respectively:When

q = 0 and q = 1; one obtains

�f (�; 0) = f0 (�) ; �f (�; 1) = f (�) ; (5.22)

��(�; 0) = �0(�); ��(�; 1) = �(�); (5.23)

��(�; 0) = �0(�);
��(�; 1) = �(�): (5.24)
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The nonlinear operator is de�ned as follows:
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Employing Taylor series for f(�); �(�) and �(�) one can write
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5.2.2 Higher order deformation problems

The corresponding problems here are

Lf [fm (�)� �mfm�1 (�)] = ~f<fm (fm�1 (�)) ;
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00
m (0) = 0; fm (1) = 0; f

0
m (1) = 0; (5.32)

L� [�m (�)� �m�m�1 (�)] = ~�<�m (�m�1 (�)) ;

�0m (0) = 0; �m (1) = 0; (5.33)

L�
�
�m (�)� �m�m�1 (�)

�
= ~�<�m

�
�m�1 (�)

�
;

�0m (0) = 0; �m (1) = 0; (5.34)

in which

�m =

8<: 0; m � 1;

1; m > 1;

<fm (fm�1 (�)) = f
(iv)
m�1 (�)� Sq (1 + �1)

�
�f 000m�1 (�) + 3f

00
m�1 (�)

�
+
�

2

h
�f

(v)
m�1 (�) + 5f

(iv)
m�1 (�)

i
+
m�1X
n=0

�
�Sq (1 + �1)

�
f 0n (�) f

00
m�1�n (�)� fn (�) f 000m�1�n (�)

�
+
�

2

�
2f 00n (�) f

000
m�1�n (�)

�fn (�) f (v)m�1�n (�)� f 0n (�) f
(iv)
m�1�n (�)

�i
; (5.35)
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<�m (�m�1 (�)) = (1 + �1)
�
�00m�1 (�)� PrSq�0m�1 (�)

�
+ PrSq

m�1X
n=0

fn (�) �
0
m�1�n (�)

+PrEc

m�1X
n=0

�
f 00n (�) f

00
m�1�n (�) + 4�

2f 0n (�) f
0
m�1�n (�) +

�

2

�
3f 00n (�) f

00
m�1�n (�)

+�f 00n (�) f
000
m�1�n (�) + 4�

2
�
2f 0 (�) f 0m�1�n (�) + �f

0 (�) f 00m�1�n (�)
�

�fm�1�n(�)
nX
k=0

f 00n�k (�)
�
f 000k (�) + 4�

2f 0k (�)
�

+f 0m�1�n(�)
nX
k=0

f 0n�k (�)
nX
l=0

f 00k�l (�) f
00
l (�)

)#
; (5.36)

<�m
�
�m�1 (�)

�
= �00m�1 (�)� ScSq��0m�1 (�)� Sc
�m�1 (�) + ScSq

m�1X
n=0

fn (�)�
0
m�1�n (�) :

(5.37)

The general solution of the problems given in Eq. (5:33� 5:35) are

fm(�) = f�m(�) + C1 + C2� + C3�
2 + C4�

3 (5.38)

�m(�) = ��m(�) + C5 + C6� (5.39)

�m(�) = ��m(�) + C7 + C8� (5.40)

where f�m(�); �
�
m(�) and �

�
m(�) are the special solutions of the problems given in Eqs. (5:33);

(5:34) and (5:35): The coe¢ cients Ci (i = 1 � 8) can be found by the Eqs. (5:33); (5:34) and

(5:35):

5.2.3 Convergence of solutions

The convergence of series solutions totally depend upon the auxiliary parameters. We select

these parameters ~f ; ~� and ~� corresponding to the functions f; � and � respectively. These

parameters adjust and control the convergence of the obtained series solutions. Figs. (5:1� 5:2)

show the h�curves of the functions f , � and � for Sq = �1 = 1:0; � = 0:5; P r = Ec = 1:0 and

� = 0:1: The permissible values of these auxiliary parameters ~f ; ~� and ~� are �0:75 � (~f ;

~�) � �0:15 and �0:80 � ~� � �0:18 respectively. Table 5:1 is useful in making a guess that

how much order of approximations are required for a convergent solution. This table shows that

the 20th order of approximations are su¢ cient for the convergent solution. Figs. (5:3�5:5) are
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drawn for the residual errors. These Figs. illustrate that the residual error is negligible. It is

observed that the lowest possible error of f; � and � for ~f 2 [�0:55;�0:3] ; ~� 2 [�0:4;�0:3]

and ~� 2 [�0:65;�0:4] respectively. Residual errors increase as we move away from the line

parallel to the ~�axis. Therefore it shows oscillatory/divergent behavior.

Fig. 5.1: Convergence region for f and � at � = 1:
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Fig. 5.2: Convergence region for � and � at � = 1:

Fig. 5.3: Convergence region for residual error in f(�):
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Fig. 5.4: Convergence region for residual error in �(�):

Fig. 5.5: Convergence region for residual error in �(�):

69



Table 5.1. Series solution�s convergence by HAM for di¤erent order of approximations when

� = 0:5; Sq = Pr = Ec = Sc = 
 = �1 = 1:0 and � = 0:1.

Order of approximations �f 00(1) ��0(1) �0(1)

1 3:691428 2:249485 0:400000

5 3:841897 2:789644 0:711241

10 3:842650 2:793175 0:728652

15 3:842652 2:793181 0:729459

20 3:842652 2:793181 0:729512

25 3:842652 2:793181 0:729515

30 3:842652 2:793181 0:729516

35 3:842652 2:793181 0:729516

40 3:842652 2:793181 0:729516

5.3 Discussion

This section concerns with the analysis of involved parameters for the velocity, temperature

and concentration �elds. Hence we have plotted the Figs. (5:6 � 5:17). Figs. (5:6; 5:7) depict

the e¤ects of squeezing parameter on velocity pro�le. Here the e¤ects of positive and negative

squeezing parameter on velocity pro�le are opposite. The e¤ects of squeezing parameter Sq

on f 0 is discussed in the Figs. (5:8 � 5:9): Fig. 5:8 shows that f 0 decreases when 0 � � �

0:4 and it increases when 0:4 � � � 1 with the increase of Sq > 0: Reverse behavior has

seen for Sq < 0: Figs. 5:10 and 5:11 indicate the e¤ects of relaxation to retardation times

ratio �1 on f 0 for positive and negative squeezing parameter Sq. These Figs. depict that

the e¤ect of �1 is similar to that of Sq on f 0. In Fig. 5:12 we have discussed the combined

e¤ects of squeezing parameter on the temperature �eld. This Fig. indicates that when we

increase Sq, the temperature decreases. Here the temperature is comparatively higher when

the plates are moving to each other. The kinematic viscosity decreases upon increasing Sq.

E¤ects of Prandtl number (Pr) on the temperature pro�le � is displayed in Fig. 5:13. This

Fig. shows that an increase in Prandtl number enhances the temperature pro�le. Note that the

temperature increases from the walls to the middle of the channel. E¤ects of Eckert number
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on �uid temperature is displayed in Fig. 5:14. There is an increase in temperature when

Eckert number increases. This is because of the fact that presence of viscous dissipation e¤ects

signi�cantly increases the temperature �. Fig. 5:15 shows the combined e¤ects of positive and

negative squeezing parameter on the concentration �eld. The concentration decreases for �xed

values of parameters. Signi�cant decrease in the concentration �eld is observed for larger values

of Sq. This is expected because the concentration is quite higher when the plates are moving

towards each other. An increase in Sq can be related with the reduction in the kinematic

viscosity which consequently depends upon the velocity and the distance between the plates.

E¤ect of Schmidt number Sc on concentration �eld is displayed in Fig. 5:16. Note that with

the increase of Schmidt number Sc; the concentration pro�le � increases. This is due to the

decrease in process of di¤usion of species. E¤ects of chemical reaction parameter (
) on the

concentration �eld is discussed in Fig. 5:17. A reduction occurred in the concentration for

larger values of chemical reaction parameter (
 > 0). Further enhancement is noted in the

concentration �eld for higher values of generative chemical reaction parameter (
 < 0): Larger

values of 
 result in the enhancement of concentration at the lower wall.

Fig. 5.6: In�uence of Sq > 0 on f:
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Fig. 5.7: In�uence of Sq < 0 on f:

Fig. 5.8: In�uence of Sq > 0 on f 0:
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Fig. 5.9: In�uence of Sq < 0 on f 0:

Fig. 5.10: In�uence of �1 on f 0 when Sq > 0:
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Fig. 5.11: In�uence of �1 on f 0 when Sq < 0:

Fig. 5.12: In�uence of Sq on �:
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Fig. 5.13: In�uence of Pr on �:

Fig. 5.14: In�uence of Ec on �:
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Fig. 5.15: In�uence of Sq on �:

Fig. 5.16: In�uence of Sc on �:
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Fig. 5.17: In�uence of 
 on �:

Table 5.2. Values of skin friction coe¢ cient, local Nusselt number and local Sherwood number

for di¤erent values of Sq; � and �1 when Pr = Ec = Sc = 
 = 1:0.

Sq � �1 �k(1) ��(1) ��(1)

�1:0 1:0 1:0 3:3226037 4:3341184 0:80164969

�0:5 3:6940223 4:1729478 0:78049337

0:01 4:0382409 4:0795752 0:76123593

0:5 4:3423886 4:0346438 0:74451077

1:0 0:3 1:0 2:8529501 2:3060473 0:72991231

0:5 3:3623203 2:7931806 0:72951620

0:8 4:1239018 3:5279497 0:72911225

1:0 4:6306425 4:0195272 0:72891934

1:0 0:5 0:2 5:2327614 4:5967155 0:72844349

0:5 4:3002619 3:6934855 0:72886089

1:0 3:3623203 2:7931806 0:72951620

2:0 2:4125553 1:8982217 0:73069644
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Table 5.3. Values of local Nusselt number for di¤erent values of Pr and Ec when Sq = �1 =

� = 1:0 and � = 0:1

Pr Ec ��0(1)

0:5 1:0 2:030517

1:0 4:019537

2:0 7:879131

5:0 18:60918

1:0 0:5 2:009763

1:2 4:823432

2:0 8:039054

5:0 20:09768

Table 5.4. Values of local Sherwood number for di¤erent values of Sc and 
 when Sq = �1 =

� = 1:0

Sc 
 �0(1)

0:5 1:0 0:419756

1:0 0:728919

1:5 0:971904

2:0 1:171940

1:0 �0:5 �0:561622

�0:1 �0:097266

0:5 0:409349

1:0 0:728919
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Table 5.5: Comparison between HAM and HPM solutions [69]

S f 00(1)

HPM [69] HAM (Present results)

0:1 2:97682 2:97682

0:5 � 2:89177

1:0 � 2:80242

1:5 � 2:73094

5.4 Conclusions

Here we have discussed the heat and mass transfer e¤ects in squeezing �ow of Je¤rey �uid

between two parallel plates. The main outcomes are as follows:

� E¤ects of positive and negative squeezing parameter on velocity pro�le are quite opposite.

� Variations of the ratio of relaxation to retardation times �1 on f 0 for positive and negative

squeezing parameter Sq are opposite.

� E¤ects of Prandtl number (Pr) and Eckert number Ec have increasing behavior for the

temperature �.

� Increase in squeezing parameter Sq decreases the temperature �.

� Concentration �eld � increases when squeezing parameter is increased.

� Schmidt number (Sc) results in the reduction of concentration pro�le and enhancement

in Sherwood number.

� Destructive and generative chemical reaction parameters (
 > 0; 
 < 0) have opposite

e¤ects on concentration �eld �.

� Larger the relaxation to retardation times ratio �1 decreases the magnitude of skin friction

coe¢ cient. However the local Nusselt number and local Sherwood number are increased

for larger �1.

� Increase of Pr and Ec leads to enhancement in Nusselt number.
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Chapter 6

Axisymmetric �ow of couple stress

�uid due to squeezing disks

The purpose of this chapter is to revisit the �ow analysis of chapter two for couple stress �uid.

The considered �uid model here has distinct features through polar e¤ects when compared with

the other non-Newtonian �uid models. Speci�cally the present �uid model allows polar e¤ects

such as the presence of couple stress, body couple and non-symmetric tensors. The modeled

nonlinear �ow problem is reduced into the ordinary di¤erential system. Computations have

been carried out by homotopy analysis method (HAM). E¤ects of the squeezing and couple

stress parameters on the velocity pro�le are discussed.

6.1 Mathematical analysis

Let us consider an incompressible axisymmetric �ow of a couple stress �uid between two parallel

disks distant H (1� at)
1
2 apart. The upper disk at z = h (t) = H (1� at)

1
2 is moving with

velocity �aH(1�at)�
1
2

2 while lower porous disk at z = 0 is �xed. The fundamental equations

governing the motion of an incompressible couple stress �uid are:

r �V = 0; (6.1)

�
DV

Dt
= �rp+ �r2V��r4V (6.2)
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where V denotes the velocity vector, � the density, p denotes the pressure, � the Newtonian

viscosity and � the material constant characterizing the couple stresses. The ratio �=� has the

dimension of length square and, hence, characterizes the material length of the �uid.

Equations (6:1) and (6:2) for the �ow under consideration give

@u

@r
+
u

r
+
@w

@z
= 0; (6.3)

�

�
@u

@t
+ u

@u

@r
+ w

@u

@z

�
= �@p

@r
+ �

�
@2w

@z@r
� @

2u

@z2

�
��
�
@4u

@z4
+

@4u

@r2@z2
� @4w

@z3@r
� @4w

@z@r3

�
; (6.4)

�

�
@w

@t
+ u

@w

@r
+ w

@w

@z

�
= �@p

@z
+ �

�
@2u

@z@r
� @

2w

@r2

�
� �

�
@4w

@r4
+

@4w

@z2@r2
� @4u

@z@r3
� @4u

@r@z3

�
; (6.5)

where u denotes the velocity component along radial direction and w the velocity component

along the axial (z) direction.

The boundary conditions are prescribed in the forms

u = 0; w =
@h

@t
at z = h(t),

u = 0; w = �w0 at z = 0: (6.6)

Substituting the transformations

u =
ar

2 (1� at)f
0 (�) ; w = � aHp

1� at
f (�) ; � =

z

H
p
1� at

; (6.7)

equation (6:3) is readily satis�ed and Eqs. (6:4) and (6:5) are reduced as

f (iv) +Kf (vi) � Sq
�
�f 000 + 3f 00 � 2ff 000

�
= 0; (6.8)
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f (0) = S; f 0 (0) = 0; f (1) =
1

2
; f 0 (1) = 0; (6.9)

where S > 0 and S < 0 respectively denote the suction and injection at the lower disk. The

squeezing parameter Sq and couple stress parameter K are introduced through the following

de�nitions

Sq =
aH2

2�
; K =

�

�H2 (1� at) : (6.10)

6.2 Homotopy analysis solution

For homotopy solution, we de�ne f (�) by a set of base function

�k j k � 0 (6.11)

in the form of the following series

f (�) =

1X
k=0

ak�
k; (6.12)

where ak are the coe¢ cients. The initial approximation and linear operator are selected as

follows:

f0 (�) = S +

�
3

2
� 2S

�
�2 + (2S � 1) �3; (6.13)

Lf = f (iv); (6.14)

with

Lf
�
C1 + C2� + C3�

2 + C4�
3
�
= 0; (6.15)

and Ci (i = 1� 4) are the arbitrary constants.

6.2.1 Zeroth order deformation problem

The zeroth order problem satis�es

(1� q)Lf
�
�f (�; q)� f0 (�)

�
= q~fNf

�
�f (�; q)

�
; (6.16)
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�f (0; q) = S; �f 0 (0; q) = 1; �f (1; q) =
Sq
2
; �f 0 (1; q) = 0; (6.17)

where ~f is an auxiliary parameter and 0 � q � 1 is embedding parameter. It is observed that,

when q changes from 0 to 1; then �f(�; q) varies from f0 (�) to f(�): For q = 0 and q = 1; we

have

�f(�; 0) = f0(�); �f(�; 1) = f(�): (6.18)

The nonlinear operator is de�ned as follows:

Nf
�
�f (�; q)

�
=
@4 �f (�; q)

@�4
+K

@6 �f (�; q)

@�6
�Sq

�
�
@3 �f (�; q)

@�3
+ 3

@2 �f (�; q)

@�2
� 2 �f (�; q) @

3 �f (�; q)

@�3

�
:

(6.19)

Taylor series for f(�) yields

f(�) = f0(�) +

1X
m=1

fm(�)q
m; (6.20)

fm(�) =
1

m!

@m �f(�; q)

@qm

����
q=0

: (6.21)

6.2.2 mth-order deformation problems

We di¤erentiate Eq. (6:16) with respect to q (m�times) then divide by m! and setting q = 0

we get

Lf [fm (�)� �mfm�1 (�)] = ~f<fm (fm�1 (�)) ; (6.22)

fm (0) = 0; f 0m (0) = 0; fm (1) = 0; f 0m (1) = 0; (6.23)

in which

�m =

8<: 0; m � 1;

1; m > 1;

<fm (fm�1 (�)) = f
(iv)
m�1 (�)+Kf

(vi)
m�1 (�)�Sq

�
�f 000m�1 (�) + 3f

00
m�1 (�)

�
+2Sq

m�1X
n=0

�
fn (�) f

000
m�1�n (�)

�
:

(6.24)
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The general solution for mth order problems is

fm(�) = f
�
m(�) + C1 + C2� + C3�

2 + C4�
3; (6.25)

where f�m(�) is the particular solution of problem given in Eq. (6:15): The coe¢ cients Ci

(i = 1� 4) can be found through the boundary conditions (6:16):

6.2.3 Convergence analysis

We know that convergence of series solution highly depends upon the auxiliary parameter. For

that we choose ~f as the auxiliary parameter for the function f . This parameter is useful

in controlling and adjusting the convergence of the obtained solution. In order to obtain the

admissible values of auxiliary parameter, we have plotted the Figs. (6:1� 6:4) at � = 0 and

� = 1 respectively. It is found that range for suitable values of ~f are �0:5 � ~f � �0:2 and

�0:45 � ~f � �0:1 when � = 0 for suction and injection respectively. From Figs. (6:3; 6:4) the

ranges of suitable values of ~f are �0:5 � ~f � �0:15 and �0:5 � ~f � �0:1 when � = 1 for

suction and injection respectively. Table 6.1 is useful in making a guess that how much order

of approximations are necessary for a convergent series solution.

Fig. 6.1: Convergence region of f at � = 0 for suction:
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Fig. 6.2: Convergence region of f at � = 0 for blowing:

Fig. 6.3: Convergence region of f at � = 1 for suction:
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Fig. 6.4: Convergence region of f at � = 1 for blowing:

Table 6.1:. Convergence of series solution by HAM for di¤erent order of approximations

when Sq = 1:5 and K = 0:01.

Order of (for blowing) (for suction)

approximation f(0) �f(1) �f(0) f(1)

1 8:5564 9:1521 3:2293 2:9764

5 7:7012 9:5079 3:8176 2:9234

10 7:4518 9:6707 4:1278 2:9013

15 7:4136 9:7228 4:2374 2:8951

20 7:4112 9:7395 4:2733 2:8935

25 7:4125 9:7448 4:2839 2:8931

30 7:4133 9:7465 4:2866 2:8931

32 7:4135 9:7468 4:2869 2:8931

34 7:4135 9:7470 4:2871 2:8931

35 7:4135 9:7470 4:2871 2:8931

40 7:4135 9:7470 4:2871 2:8931
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6.3 Discussion

In the Figs. (6:5; 6:6) it is noted that the velocity pro�le f 0 in the lower half of the channel

increases when the couple stress parameter K is increased. However it decreases at the center of

the channel and again increases in the upper half of the channel for both suction and injection

cases. The e¤ects of squeezing parameter Sq are discussed in the Figs. (6:7; 6:8) for suction

and injection respectively. It is noted that for suction case the velocity pro�le f 0 decreases near

porous wall. It is obvious because suction e¤ects are foremost. As we know that the upper

disk is moving towards the �xed porous lower disk creating pressure which increases the �ow.

Hence law of conservation of mass is satis�ed at the upper half of the disk. Fig. 6:8 depicts that

injection at the lower wall acts as a retarding force which shows a decrease in �uid velocity when

we increase the squeezing parameter. Notice that in the upper half of the channel, the �uid

velocity increases because the squeezing e¤ects are dominant in the upper half of the channel.

It is also noticed that the squeezing and couple stress parameters have opposite e¤ects in the

suction and blowing cases.

Fig. 6.5: In�uence of K on f 0 for suction:
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Fig. 6.6: In�uence of K on f 0 for blowing:

Fig. 6.7: In�uence of Sq on f 0 for suction:
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Fig. 6.8: In�uence of Sq on f 0 for blowing:
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Chapter 7

Squeezing �ow of couple stress �uid

with heat transfer and chemical

reaction

This chapter examines the unsteady two-dimensional squeezing �ow of couple stress �uid be-

tween parallel plates. Mathematical analysis is presented in the presence of heat and mass

transfer. E¤ects of viscous dissipation and chemical reaction are taken into account. Trans-

formation procedure is adopted in obtaining the ordinary di¤erential systems. The governing

problems are computed by homotopy analysis method (HAM). Quantities of interest are illus-

trated graphically. The skin friction coe¢ cient, Nusselt and Sherwood numbers are computed

and analyzed.

7.1 Mathematical analysis

We examine the time-dependent squeezing �ow of couple stress �uid with heat and mass trans-

fer. The �ow is bounded between two in�nite parallel plates located at z = �H
2 (1� at) = h(t).

For a > 0 the plates are squeezed and the squeezing plates touch each other for t = 1
a while

separation between the plates occurs for a < 0. The �ow analysis has been investigated by

considering viscous dissipation and heat generation due to friction produced by shear forces.

This e¤ect is relatively signi�cant in the case when the �uid is mainly viscous or �owing at a
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high speed. This situation occurs when Eckert number (Ec >> 1) is very high. Mass transfer

is considered in the presence of chemical reaction and �ow is taken symmetric. The governing

equations of mass, momentum, energy and mass in time-dependent two-dimensional �ow of

couple stress �uid become
@u

@x
+
@v

@y
= 0; (7.1)
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�
@2C

@x2
+
@2C

@y2

�
�K1 (t)C: (7.5)

Here u denotes the velocity component in the x�direction and v the velocity component in the y

direction, T; C; p; �; �; Kc; Cp; D; k1 and K1 (t) = k1
1�at are the temperature, the concentration,

the pressure, the �uid density, the kinematic viscosity, the thermal conductivity, the speci�c

heat, the di¤usion species, chemical reaction parameter and the time dependent reaction rate

respectively. Also (�) is the Newtonian viscosity and (�) is the material constant characterizing

the couple stresses. The dimension of �=� is of length square and hence describes the material

length of the �uid.

The boundary conditions are given by

u = 0; v = vw =
dh

dt
; T = TH ; C = CH at y = h (t) ;

v =
@u

@y
=
@T

@y
=
@C

@y
= 0 at y = 0: (7.6)
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We de�ne the following transformations

� =
y

H
p
1� at

; u =
ax

2 (1� at)f
0 (�) ; v =

�aH
2
p
1� at

f (�) ;

� =
T

TH
; � =

C

CH
: (7.7)

Substituting the above transformations into Eqs. (7:2)� (7:5), we get the following di¤erential

equations

f (iv) � Sq(�f 000 + 3f 00 + f 0f 00 � ff 000)�Kf (vi) = 0; (7.8)

�00 + PrSq
�
f�0 � ��0

�
+ PrEc

h�
f 00

2
+ 4�2f 0

2
�
+K

�
�2f 00

2
+ f 000

2
�i
= 0; (7.9)

�00 + ScSq
�
f�0 � ��0

�
� Sc
� = 0; (7.10)

and the boundary conditions are

f(0) = 0; f(1) = 1; f 0(1) = 0; f 00(0) = 0;

�(1) = 1 = �(1); �0(0) = 0 = �0(0); (7.11)

where squeezing parameter Sq, the couple stress parameter (K) ; the Prandtl number (Pr) ; the

Eckert number (Ec) ; the Schmidt number (Sc) and the chemical reaction parameter (
) are

de�ned as follows:

Sq =
aH2

2�
; K =

�

�H2 (1� at) ; P r =
�Cp
Kc

;

Ec =
1

THCp

�
ax

2 (1� at)

�2
; Sc =

�

D
; 
 =

k1H
2

�
; �2 =

H2 (1� at)
x2

: (7.12)

Here the squeeze parameter Sq represents relative distance between the plates (Sq > 0 shows

that plates are moving apart and Sq < 0 represents that plates move together (which is called

squeezing �ow)). Note that Ec = 0 represents the absence of viscous dissipation e¤ect, 
 > 0

corresponds the destructive chemical reaction and 
 < 0 describes the generative chemical
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reaction. Skin friction coe¢ cient, Nusselt number and Sherwood number are de�ned as follows:

Cf =
(�xy)y=h(t)

�v2w
; Nu =

�HKc
�
@T
@y

�
y=h(t)

KcTH
; Sh =

�HD
�
@C
@y

�
y=h(t)

DCH
(13)

By Eqs. (7:7) and (7:13); we have

H2

x2
(1� at)RexCf = f 00(1)�Kf (iv)(1);

p
1� atNu = ��0(1);

p
1� atSh = ��0 (1) : (7.13)

7.2 Homotopy analysis solutions

The initial approximations f0; �0, �0 and auxiliary linear operators Lf ; L�; L� for f(�); �(�)

and �(�) are

f0(�) =
1

2

�
3� � �3

�
; �0(�) = �0(�) = 1; (7.14)

Lf =
d4

d�4
; L� =

d2

d�2
; L� =

d2

d�2
; (7.15)

with

Lf
�
C1 + C2� + C3�

2 + C4�
3
�
= 0; (7.16)

L� [C5 + C6�] = 0; (7.17)

L� [C7 + C8�] = 0; (7.18)

where Ci(i = 1� 8) are the arbitrary constants and the zeroth order problems are

(1� p)Lf [ �f(�; p)� f0(�)] = p~fNf
�
�f(�; p)

�
; (7.19)

(1� p)L�[��(�; p)� �0(�)] = p~�N�
�
�f(�; p); ��(�; p)

�
; (7.20)

(1� p)L�
�
�� (�; p)� �0 (�)

�
= p~�N�

�
�f(�; p); �� (�; p)

�
; (7.21)
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�f(0; p) = 0; �f(1; p) = 1;
@ �f(1; p)

@�
= 0;

@2 �f(1; p)

@�2
= 0;

��(1; p) = 1; ��(1; p) = 1;
@��(0; p)

@�
= 0;

@��(0; p)

@�
= 0; (7.22)

with the non-linear operators Nf ; N� and N� are

Nf
�
�f(�; q)

�
=
@4 �f(�; q)

@�4
� Sq

�
�
@3 �f(�; q)

@�3
+ 3

@2 �f(�; q)

@�2
+
@ �f(�; q)

@�

@2 �f(�; q)

@�2
� f̂(�; p)@

3 �f(�; q)

@�3

�
�K@

6 �f(�; q)

@�6
; (7.23)

N�
�
�f(�; q); ��(�; q)

�
=
@2��(�; q)

@�2
+ PrSq

�
�f(�; q)

@��(�; q)

@�
� �@

��(�; q)

@�

�
+PrEc

"�
@2 �f(�; p)

@�2

�2
+ 4�2

�
@ �f(�; q)

@�

�2
+K

(
�2
�
@2 �f(�; q)

@�2

�2
+

�
@3 �f(�; q)

@�3

�2)#
; (7.24)

N�
�
�f(�; q); ��(�; q)

�
=
@2��(�; q)

@�2
+ ScSq

�
�f(�; q)

@��(�; q)

@�
� �@

��(�; q)

@�

�
�Sc
��(�; q): (7.25)

Here 0 � q � 1 denotes the embedding parameter and ~f 6= 0, ~� 6= 0 and ~� 6= 0 indicate

auxiliary parameters. When q = 0 and q = 1, one can write

�f(�; 0) = f0(�); �f(�; 1) = f(�); (7.26)

��(�; 0) = �0(�); ��(�; 1) = �(�); (7.27)

��(�; 0) = �0(�);
��(�; 1) = �(�); (7.28)

and when q changes from 0 to 1 then �f(�; p), ��(�; p) and ��(�; p) vary from f0(�), �0(�), �0(�)

to f(�), �(�), �(�) respectively. Expanding �f; �� and �� using Taylor series about q we get

�f(�; q) = f0(�) +

1X
m=1

fm(�)q
m; fm(�) =

1

m!

@mf(�; q)

@qm

����
q=0

; (7.29)

��(�; q) = �0(�) +

1X
m=1

�m(�)q
m; �m(�) =

1

m!

@m�(�; q)

@qm

����
q=0

; (7.30)

��(�; q) = �0(�) +

1X
m=1

�m(�)q
m; �m(�) =

1

m!

@m�(�; q)

@qm

����
q=0

: (7.31)
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Auxiliary parameters are chosen such that the series (7:30)� (7:32) converge at q = 1. Hence

we have

f(�) = f0(�) +

1X
m=1

fm(�); (7.32)

�(�) = �0(�) +
1X
m=1

�m(�); (7.33)

�(�) = �0(�) +

1X
m=1

�m(�): (7.34)

Explicit mth-order deformation problems (7:19� 7:21) are

Lf [fm (�)� �mfm�1 (�)] = ~fRfm (�) ; (7.35)

L� [�m (�)� �m�m�1 (�)] = ~�R�m (�) ; (7.36)

L�
�
�m (�)� �m�m�1 (�)

�
= ~�R�m (�) ; (7.37)

fm(0) = 0; fm(1) = 0; f
0
m(1) = 0; f

00
m(0) = 0;

�m(0) = 0; �
0
m(0) = 0; �m(1) = 0; �

0
m(0) = 0; (7.38)

Rfm (�) = f
(iv)
m�1 � Sq

�
�f 000m�1 + 3f

00
m�1

�
�Kf (vi)m�1

�Sq
m�1X
k=0

�
f 0m�1�kf

00
k � fm�1�kf 000k

�
; (7.39)

R�m (�) = �00m�1 � PrSq��0m�1 + PrSq
m�1X
k=0

fm�1�k�
0
k

+PrEc

m�1X
k=0

�
f 00m�1�kf

00
k + 4�

2f 0m�1�kf
0
k +K

�
�2f 00m�1�kf

00
k + f

000
m�1�kf

000
k

��
; (7.40)

R�m (�) = �00m�1 � ScSq��0m�1 � Sc
�m�1 + ScSq
m�1X
k=0

fm�1�k�
0
k; (7.41)

�m =

8<: 0; m � 1;

1; m > 1:
(7.42)
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The general solutions of Eqs. (7:24)� (7:26) are given by

fm(�) = f
�
m(�) + C1 + C2� + C3�

2 + C4�
3; (7.43)

�m(�) = �
�
m(�) + C5 + C6�; (7.44)

�m(�) = �
�
m(�) + C7 + C8�; (7.45)

where f�m(�); �
�
m(�); and �

�
m(�) denotes the special solutions.

7.3 Convergence of the homotopy solutions

The convergence of series solutions (7:24 � 7:26) contains the parameters ~f ; ~� and ~� for

the functions f , � and � respectively. These parameters help in controlling and adjusting

the convergence of the solutions. To �nd the ranges of admissible values of ~f ; ~� and ~� of

the functions f 00(1); �0(1) and �0(1); we have plotted the ~f and ~��curves for 15th-order of

approximations and 20th order of approximation for ~��curve. From Figs. (7:1) and (7:2) it

is clear that the ranges for the admissible values of ~f ; ~� and ~� are �1:70 � ~f � �0:3;

�1:6 � ~� � �0:5; and �1:20 � ~� � �0:20 respectively. In Figs. (7:3� 7:5) the ~�curves

for residual error of f; � and � are sketched in order to get the admissible ranges for ~. Here

we found that by selecting the values of ~ from this range we get the correct result upto 6th

decimal place. It is observed that the lowest possible error of f; � and � for ~f 2 [�1:25;�0:25] ;

~� 2 [�0:8;�0:4] and ~� 2 [�1:0;�0:4] respectively. Residual errors increase as we move away

from the line parallel to the ~�axis. Therefore it shows oscillatory/divergent behavior. Table

7:1 shows that 15th� order of approximations are enough for convergence solutions of f and �
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and 20th order approximations for �:

Fig.7.1: Convergence region for the functions f and �:

Fig.7.2: Convergence region for the function �:
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Fig. 7.3: Convergence region for residual error in f(�):

Fig. 7.4: Convergence region for residual error in �(�):
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Fig.7.5: Convergence region for residual error in �(�):

Table 7.1. Series solution�s convergence by HAM for di¤erent order of approximations when

Sq = 0:1; K = 0:01 and Pr = Ec = Sc = 
 = � = 1:0.

Order of approximations �f 00(1) ��0(1) �0(1)

1 3:042857 1:882980 0:600000

5 3:068946 3:102037 0:756355

10 3:069559 3:133750 0:757933

15 3:069565 3:134080 0:757946

20 3:069565 3:134083 0:757946

25 3:069565 3:134083 0:757946

30 3:069565 3:134083 0:757946

40 3:069565 3:134083 0:757946

50 3:069565 3:134083 0:757946
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7.4 Discussion

In this section we discuss the in�uence of physical parameters on the velocity, temperature and

concentration pro�les. Hence we have plotted the Figs. 7:6�7:13: In Figs. 7:6 and 7:7, we have

discussed the in�uence of couple stress parameter K and squeezing parameter Sq on the velocity

pro�le f 0. From Fig. 7:6 it is clear that when we increase the couple stress parameter K then

the velocity pro�le increases initially from � = 0 to � = 0:45 and it decreases from � = 0:45 to

� = 1: Similar behavior is observed for the squeezing parameter Sq in Fig. 7:7: In Fig. 7:8, we

explored the e¤ects of Eckert number Ec on temperature pro�le �: Obviously the temperature

pro�le increases when the Eckert number Ec is increased. This is because of the fact that

the presence of viscous dissipation e¤ect signi�cantly increases the temperature �. E¤ects of

Prandtl number Pr on the temperature pro�le � is displayed in Fig. 7:9: This Fig. shows that

an increase in Prandtl number heats up the �uid. It is also noticed that the temperature is

gradually increasing from the walls towards the middle of the channel. The combined e¤ects of

squeezing parameter Sq on the temperature pro�le � is discussed in Fig. 7:10: The temperature

decreases from � = 0 to � = 1 for �xed values of other parameters. Considerable reduction

occurs in the temperature �eld � for higher values of Sq. It is found that the temperature

is comparatively high when the plates are moving to each other. An increase in Sq can be

related with the reduction in kinematic viscosity which consequently depends upon the velocity

and the distance between the plates. Reduction appears in the concentration for larger values

of chemical reaction parameter (
 > 0). Further enhancement is noted in the concentration

�eld for higher values of generative chemical reaction parameter (
 < 0): Higher values of 


result in the enhancement of concentration at the lower wall. In�uence of Schmidt number

(Sc) on the concentration �eld � is characterized in Fig. 7:12. Thinner boundary layer is

analyzed due to small molecular di¤usivity when Schmidt number Sc is increased. E¤ect of Sq

on concentration �eld is discussed in Fig. 7:13: The concentration �eld also increases when Sq

is increased. Tables (7:2� 7:4) are presented for the numerical values of skin friction coe¢ cient,

local Nusselt and Sherwood numbers for di¤erent parameters. In Table 7:2, when we increase

the squeezing parameter Sq, the skin friction coe¢ cient increases while local Nusselt number

and local Sherwood number decrease. The skin friction coe¢ cient, local Nusselt number and

local Sherwood number decrease when couple stress parameter is increased. Numerical values
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of local Nusselt number for di¤erent parameters are discussed in Table 7:3. With the increase

of Pr; Ec; and �; the local Nusselt number also increases. Numerical values of local Sherwood

number for di¤erent parameters are shown in Table 7:4: Local Sherwood number is increasing

function of Sc: Tables 7:5 and 7:6 provides the comparison for viscous case. Here the comparison

is excellent.

Fig. 7.6: In�uence of K on f 0:
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Fig. 7.7: In�uence of Sq on f 0:

Fig. 7.8: In�uence of Ec on �:
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Fig. 7.9: In�uence of Pr on �:

Fig. 7.10: In�uence of Sq on �:
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Fig. 7.11: In�uence of 
 on �:

Fig. 7.12: In�uence of Sc on �:
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Fig. 7.13: In�uence of Sq on �:

Table 7.2. Values of skin friction coe¢ cient, local Nusselt number and local Sherwood number

for di¤erent values of Sq and K when Pr = Ec = Sc = 
 = 1:0.

Sq K �k(1) ��(1) ��(1)

�0:1 0:01 2:937676 3:145330 0:765336

�0:01 2:993850 3:138872 0:761964

0:01 3:006131 3:137755 0:761225

0:1 3:060523 3:134083 0:757946

0:5 3:286238 3:140897 0:744223

0:01 0:01 3:006131 3:137755 0:761225

0:02 3:005165 3:228405 0:761225

0:03 3:004234 3:319040 0:761225

0:04 3:003340 3:409661 0:761225
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Table 7.3. Values of local Nusselt number for di¤erent values of Pr; � and Ec when Sq = 0:1

and K = 0:01.

Pr Ec � ��0(1)

0:3 1:0 0:1 0:942163

0:5 1:569348

1:0 3:134083

1:5 4:694227

1:0 0:01 0:1 0:0313408

0:5 1:567042

0:8 2:507267

1:5 4:701125

1:0 1:0 0:0 3:086392

0:5 4:278670

1:0 7:855504

1:5 13:81689

2:0 22:16283

Table 7.4. Values of local Sherwood number for di¤erent values of Sc and 
 when Pr = Ec =

1:0; � = 0:1

Sc 
 �0(1)

0:1 1:0 0:0967333

0:2 0:1874234

0:7 0:5702172

1:2 0:8703312

1:5 1:0235430

1:0 �0:5 0:5993247

�0:3 0:3316206

0:1 0:0961821

0:3 0:2715976

0:5 0:4281469
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Table 7.5. Comparison of skin friction coe¢ cient, local Nusselt number and local Sherwood

number when K = 0; P r = Ec = Sc = 
 = 1:0 and � = 0:1:

Mustafa et al.[23] Present

Sq �f 00(1) ��0(1) ��0(1) �f 00(1) ��0(1) ��0(1)

�1:0 2:170090 3:319899 0:804558 2:17009087 3:31989927 0:80455875

�0:5 2:614038 3:129491 0:781402 2:61740384 3:12949108 0:78140233

0:01 3:007134 3:047092 0:761225 3:00713375 3:04709193 0:76122521

0:5 3:336449 3:026324 0:744224 3:33644946 3:02632354 0:74422428

2:0 4:167389 3:118551 0:701813 4:16738918 3:11855069 0:70181323

Table 7.6: Comparison between HAM and HPM solutions [69]

S f 00(1)

HPM [69] HAM (Present results)

0:1 2:97682 2:97682

0:5 � 2:89177

1:0 � 2:80242

1:5 � 2:73094
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7.5 Main results

Here the e¤ects of heat and mass transfer in squeezing �ow of incompressible couple stress �uid

are analyzed. The main observations are put into the following points.

� Velocity pro�le f 0(�) increases near the lower plate while it decreases near the upper plate

when couple stress and squeezing parameters are increased.

� E¤ects of Prandtl number Pr and Eckert number Ec have increasing behavior for the

temperature � (�).

� Increase in squeezing parameter Sq decreases the temperature � (�).

� Concentration �eld � (�) increases when squeezing parameter is increased.

� Concentration �eld � (�) is higher for larger values of Schmidt number (Sc) :

� Destructive and generative chemical reaction parameters (
 > 0; 
 < 0) have opposite

e¤ects for concentration �eld �.

� Increasing the squeezing parameter Sq, the skin friction coe¢ cient increases while local

Nusselt number and local Sherwood number decrease.

� The skin friction coe¢ cient, local Nusselt number and local Sherwood number decrease

when couple stress parameter is increased.
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Chapter 8

MHD unsteady squeezing �ow of

second grade �uid over a porous

stretching plate

This chapter is concerned with the unsteady squeezing �ow of non-Newtonian �uid between two

parallel plates. Rheological equation of second grade �uid is used. The consider �uid model can

predict the normal stress e¤ect. The �uid is electrically conducting in the presence of constant

applied magnetic �eld. Transformation procedure reduces the partial di¤erential equations into

the ordinary di¤erential equations. A series solution is developed using a modern mathematical

scheme. The solution expressions for velocity components are computed and discussed. In

addition the skin friction coe¢ cient is analyzed through the tabular values.

8.1 Mathematical formulation

We consider the �ow of second grade (a subclass of di¤erential type of non-Newtonian) �uid

between the two walls. The porous lower wall (situated at y = 0) is stretching in an unsteady

manner with the velocity ax=1� bt (t < 1=b): Note that for b = 0; steady state case of linearly

stretching is recovered (see [98; 101]). Further the lower wall is porous with V0 > 0 for suction

and V0 < 0 corresponds to injection case. Here the porosity of the plate is also taken in an

unsteady manner. The upper wall situated at y = h(t) is squeezing towards the lower wall and
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this generate the squeezing �ow. The squeezing velocity is taken Vh: The lower plate is situated

at y = 0 and the upper moving plate located at h(t) =
p
�(1� bt)=a moves with velocity Vh.

Note that
p

�
a has a dimension of length which is a constant. When t = 0; then h(t) =

p
�
a and

when t = 1
b then h(t) = 0: Infect h(t) = 0 means that there is no other plate which provides a

contradiction to the present �ow con�guration. Hence t 6= 1
b in present case. Therefore the �ow

domain 0 � h(t) <
p

�
a represents a �nite interval. A magnetic �eld B0=(1�bt) is applied along

the y�axis. The induced magnetic and electric �elds are neglected. The governing equations

for two-dimensional �ow of second grade �uid are

@u

@x
+
@v

@y
= 0; (8.1)
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: (8.3)

Here u denotes the velocity in the x�direction and v the velocity in the y�direction and �; �; p

and �1(> 0) are the �uid density, the kinematic viscosity, pressure and the material parameter

respectively.

The boundary conditions are

u(x; y; t) = U0 =
ax

1� 
t ; V0(x; y; t) = �
w0

1� 
t ; at y = 0;

u(x; y; t) = 0; v(x; y; t) = Vh = �



2

r
�

a (1� 
t) at y = h(t); (8.4)

where �a�denotes the stretching rate of the lower plate, w0 > 0 indicates the suction and w0 < 0
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for the injection/blowing velocity. Eliminating pressure gradient from Eqs. (8:2�8:3) and using

u = U0f
0 (�) ; v = �

r
a�

1� btf (�) ; � =
y

h (t)
: (8.5)

we arrive at

f (iv) � f 0f 00 + ff 000 � Sq
2

�
�f 000 + 3f 00

�
+�

�
f 0f (iv) � ff (v) + Sq

2

�
5f (iv) + �f (iv)

��
�M2f 00 = 0: (8.6)

The corresponding boundary conditions can be written in the form

f(0) = S; f 0(0) = 1; f(1) =
Sq
2
; f 0(1) = 0: (8.7)

where squeezing parameter Sq, the second grade parameter ��; the suction/injection parameter

S and the magnetic parameter M have the following de�nitions:

Sq =



a
; �� =

a�1
� (1� at) ; S =

w0
ah
; M2 =

�B20
�a

: (8.8)

Note that the upper plate moves downward with velocity Vh < 0 for Sq > 0. For Sq < 0 the

upper plate moves apart with respect to the plane y = 0 and Sq = 0 corresponds to the steady

case or stationary upper plate. The skin friction coe¢ cient is given by

Cf =
(�xy)y=h(t)

�v2h
(8.9)

with

�xy = �

�
@u

@y
+
@v

@x

�
+ �1

�
@2u

@t@y
+
@2v

@t@x
+ u

�
@2u

@x@y
+
@2v

@x2

�
+v

�
@2u

@y2
+
@2v

@x@y

�
+
@u

@x

�
@u

@y
� @v

@x

�
+
@v

@y

�
@v

@x
� @u
@y

��
: (8.10)

Dimensionless form of Eq. (8:9) is

2Re
1
2 Cf = f

00(1) + ��
�
Sq
�
3f 00 (1) + f 000 (1)

	
+ 4f 0 (1) f 00 (1)� 2f (1) f 000 (1)

�
: (8.11)
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8.2 Homotopy analysis procedure

8.2.1 Zeroth order deformation problems

To �nd the series solution through homotopy analysis method (HAM), the velocity �eld is

written by a set of base functions n
�k p k � 0

o
(8.12)

in the form

f (�) =
X
k

ak�
2k+1 (8.13)

in which ak are the coe¢ cients. The initial approximation f0(�) and the auxiliary operator Lf
are chosen in the forms:

f0(�) = � � 2�2 + �3 + S
�
1� 3�2 + 2�3

�
+ Sq�

2

�
3

2
� �
�
; (8.14)

Lf = f (iv): (8.15)

The operator Lf has the property

Lf
�
C1 + C2� + C3�

2 + C4�
3
�
= 0; (8.16)

where Ci(i = 1� 4) are the arbitrary constants and the nonlinear operator is

Nf
�
�f(�; p)

�
=

@4 �f

@�4
� @

�f

@�

@2 �f

@�2
+ �f

@3 �f

@�3
� Sq
2

�
�
@3 �f

@�3
+ 3

@2 �f

@�2

�
�M2@

2 �f

@�2

+��
�
@ �f

@�

@4 �f

@�4
� �f

@5 �f

@�5
+
Sq
2

�
5
@4 �f

@�4
+ �

@5 �f

@�5

��
: (8.17)

The zeroth order problem has the de�nition

(1� q)Lf
�
�f (�; q)� F0 (�)

�
= q~fNf

�
�f(�; q)

�
; (8.18)

�f (0; q) = S; �f 0 (0; q) = 1; �f (1; q) =
Sq
2
; �f 0 (1; q) = 0; (8.19)

where ~f is an auxiliary parameter and 0 � q � 1 is embedding parameter. It is observed that,

when q changes from 0 to 1; then f(�; q) varies from f0 (�) to f(�): For q = 0 and q = 1; one
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obtains

�f(�; 0) = f0(�); �f(�; 1) = f(�): (8.20)

By applying the Taylor series on f(�) one can write

f(�) = f0(�) +

1X
m=1

fm(�)q
m; (8.21)

fm(�) =
1

m!

@m �f(�; q)

@qm

����
q=0

: (8.22)

The convergence of the series solution is dependent upon ~f . We choose ~f in such a way that

the series (8:21) converges at q = 1 and hence

f(�) = f0(�) +

1X
m=1

fm(�): (8.23)

8.2.2 mth-order deformation problems

The mth-order deformation equations are obtained by di¤erentiating the equations (8:18) and

(8:19) with respect to q (m�times) and then putting q = 0 i.e.

Lf [fm (�)� �mfm�1 (�)] = ~fRm(�); (8.24)

fm(0) = f
0
m(0) = fm(1) = f

0
m(1) = 0; (8.25)

�m =

8<: 0; m � 1;

1; m > 1;
(8.26)

Rm(�) = f (iv)m�1 �M2f 00m�1 �
Sq
2

h
�f 000m�1 + 3f

00
m�1 � ��

�
5f

(iv)
m�1 + �f

(v)
m�1

�i
+
m�1X
k=0

n
��
�
f 0m�1�kf

(iv)
k � fm�1�kf (v)k

�
� f 0m�1�kf 00k + fm�1�kf 000k

o
: (8.27)

The above equations have a solution

fm (�) = f
�
m (�) + C1 + C2� + C3�

2 + C4�
3; (8.28)

in which f�m represents a special solution.
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8.2.3 Convergence analysis

The series solution (8:23) contains the auxiliary parameter ~f : This auxiliary parameter can

adjust the convergence of the obtained series solution. Fig. 8:1 shows the h�curve of the

function f for Sq = M = 1:0 and �� = 0:1: The permissible values of auxiliary parameter ~f

are �1:1 � ~f � �0:2 and �1:1 � ~f � �0:25 for both suction and injection respectively.

Table 8:1 helps in making a guess that how much order of approximations are necessary for

a convergent solution. This table shows that the 13th and 11th order of approximations are

enough for the convergent solution of suction and injection respectively. We have performed

all computations regarding the convergence of the derived series solutions. It is noted that the

obtained solutions converge for � = 0:5; 1:0; 1:5; 2:0: Now it is obvious that values of ~f are

admissible for which the plots are parallel to ~f�curve. For example in Figs. (a); (b); (c); (d)

the admissible values for ~f are �0:3 � ~f � �0:05; �0:16 � ~f � �0:03; �0:08 � ~f� �0:02;

�0:09 � ~f � �0:01.

Fig.8.1: Convergence region of f at � = 0 for suction:
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Fig.8.2: Convergence region of f at � = 0 for blowing:

Table 8.1. Series solution�s convergence by HAM for di¤erent order of approximations when

Sq =M = 1:0; S = 0:5 and �� = 0:1.

Order of approximations �f 00(0) for suction f 00(0) for injection

1 4:284524 1:890476

5 4:399092 1:867194

10 4:399209 1:867386

11 4:399207 1:867388

13 4:399205 1:867388

20 4:399205 1:867388

25 4:399205 1:867388

30 4:399205 1:867388

35 4:399205 1:867388

40 4:399205 1:867388
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8.3 Graphical results and analysis

In this section, we discuss the in�uence of embedding parameters on the velocity pro�les f 0

and f: E¤ects of second grade parameter (��) on f 0 and f are discussed in the Figs. (8:3; 8:4):

It is reported that f 0 increases initially when �� is increased whereas for � � 0:4; there is

decrease in velocity pro�le f 0 (Fig. 8:3): As expected the higher magnitude of velocity �eld is

observed for larger ��: This is because of the fact that viscoelastic e¤ect and wall permeability

lead to enhance the velocity f: E¤ects of suction parameter S on f 0 and f are shown in the

Figs. (8:5; 8:6). Increase in suction parameter S yields a decrease in velocity �eld f 0: Reverse

�ow occurs due to reduction in the velocity f 0 for larger suction. Such reverse �ow is more

dominant near the upper plate in comparison to the lower plate. Physically this is due to the

considerable adverse pressure gradient produced by �uid particles �eeing from the lower wall.

Fig. 8:6 shows that larger suction gives increase in f: Also variation in the velocity pro�le is

con�ned in vicinity of lower plate. Figs. (8:7; 8:8) illustrate the e¤ects of parameter Sq on f 0

and f: It is noticed that the velocity increases by increasing Sq. It is also observed that the

higher value of Sq depreciate the reverse �ow. Fig. 8:8 shows the e¤ects of Sq on f . Here f

increases with the increase of Sq. Fig. (8:9; 8:10) plots the e¤ects of magnetic parameter (M) on

horizontal and vertical velocities f 0 and f respectively for suction case. With increase ofM , the

velocity pro�le f 0 decreases for 0 � � � 0:4 and it increases when 0:4 � � � 1: In fact Lorentz

force increases with the magnetic parameter M which is a resistive force. So horizontal velocity

pro�le decreases and vertical velocity increases. Figs. (8:11 � 8:16) are devoted to examine

the e¤ects of ��; Sq and M on f 0 and f for the injection case. Opposite behavior is seen in

the case of blowing/injection from the suction case. Combined e¤ects of suction and injection

on the velocity �elds f 0 and f for di¤erent values of �� are shown in the Figs. (8:17; 8:18):

Figs. (8:19; 8:20) present the simultaneous e¤ects of suction and blowing on velocity �elds f 0

and f for various values of M: Simultaneous e¤ects of suction and injection on velocity �elds

f 0 and f for di¤erent values of Sq are displayed in Fig. (8:21; 8:22): Figs. 8:17 and 8:19 show

that the velocity f 0 increases near the lower and upper plate while it decreases at the centre

of the channel by increasing �� and M (for injection case S < 0): Reverse behavior is seen

in the case of suction. Fig. 8:18 shows that when we increases ��; the velocity f increases

for suction and it decreases for injection. Fig. 8:20 shows that the magnitude of the vertical
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velocity f reduces due to suction while it increases for injection case with the increase of M:

Fig. 8:21 shows that magnitude of velocity f 0 decreases for the suction while it increases for

the injection when we increase squeezing parameter Sq. Fig 8:22 shows that the magnitude of

velocity f increases for suction case. However the magnitude of f decreases for injection case.

Table 8:2 includes numerical values of skin friction for di¤erent parameters. With the increase

of suction parameter S and second grade parameter ��; the skin friction coe¢ cient increases

while it decreases by increasing the squeezing parameter Sq and M:

Fig. 8.3: In�uence of �� on f 0:
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Fig. 8.4: In�uence of �� on f:

Fig. 8.5: In�uence of S on f 0:
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Fig. 8.6: In�uence of S on f:

Fig. 8.7: In�uence of Sq on f 0:

119



Fig. 8.8: In�uence of Sq on f:

Fig. 8.9: In�uence of M on f 0:
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Fig. 8.10: In�uence of M on f:

Fig. 8.11: In�uence of �� on f 0:
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Fig. 8.12: In�uence of �� on f:

Fig. 8.13: In�uence of Sq on f 0:
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Fig. 8.14: In�uence of Sq on f:

Fig. 8.15: In�uence of M on f 0:
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Fig. 8.16: In�uence of M on f:

Fig. 8.17: In�uence of �� on f 0:
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Fig. 8.18: In�uence of �� on f:

Fig. 8.19: In�uence of M on f 0:
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Fig. 8.20: In�uence of M on f:

Fig. 8.21: In�uence of Sq on f 0:
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Fig. 8.22: In�uence of Sq on f:
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Table 8.2. Values of skin friction coe¢ cient for di¤erent values of S; Sq; M and ��:

S Sq M � 2R
1
2
e Cf

�0:5 0:5 0:3 0:1 �3:040855

0:1 1:177707

0:3 2:518978

0:5 3:824939

0:1 0:0 0:3 0:1 2:522514

0:2 2:044922

0:3 1:775929

0:5 1:177707

0:6 0:848527

0:1 0:5 0:0 0:1 1:181439

0:1 1:181024

0:3 1:177707

0:5 1:171101

0:6 1:166581

0:1 0:5 0:3 0:00 1:008879

0:01 1:025835

0:03 1:059691

0:05 1:093479

0:08 1:144053

0:09 1:160886
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8.4 Key �ndings

The squeezing �ow of second grade �uid is studied in this chapter. The main outcomes are as

follows:

� The second grade parameter �� has opposite e¤ects on the velocity pro�le f 0(�) in both

suction and injection cases.

� Vertical velocity f(�) for suction and injection has opposite behavior when second grade

parameter �� is increased .

� Horizontal velocity f 0(�) decreases while vertical velocity f(�) increases with the increase

of suction parameter.

� Horizontal and vertical velocities have opposite e¤ects for suction and injection when

Hartman number is increased.

� Larger values of suction parameter S and second grade parameter ��; the skin friction

coe¢ cient increases while it decreases by increasing the squeezing parameter Sq and M:
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Chapter 9

MHD squeezing �ow of second grade

�uid with thermal-di¤usion and

di¤usion-thermo e¤ects

The combined e¤ects of heat and mass transfer in the magnetohydrodynamic (MHD) squeezing

�ow of second grade �uid between the two parallel plates are investigated. Simultaneous e¤ects

of thermal-di¤usion (Soret), di¤usion-thermo (Dufour) and viscous dissipation are considered.

Suitable variables are utilized for the conversion of partial di¤erential system into an ordinary

di¤erential system. Series solution is obtained by homotopy analysis method (HAM). Various

physical results are shown to present the e¤ects of involved sundry parameters. A comparative

study with the already published results shows an excellent agreement.

9.1 Mathematical analysis

We examine the heat and mass transfer analyses in the time-dependent squeezing �ow of an

incompressible second grade �uid. Thermal di¤usion (Soret) and di¤usion thermo (Dufour)

e¤ects have been considered. Fluid is electrically conducting in the presence of constant mag-

netic �eld B0: The �ow is bounded by two parallel plates at z = �H (1� at)
1
2 = �h(t): Note

that a > 0 corresponds to the squeezing of two plates whereas a < 0 means the separation

of the plates. The governing �ow problem is modeled in the presence of viscous dissipation.
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Mass transfer is also considered in the presence of �rst order chemical reaction. The governing

equations from the laws of conservation of mass, linear momentum, energy and concentration

are given by
@u

@x
+
@v

@y
= 0; (9.1)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �1

�
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+ �
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@2u
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@y2

�
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2
0u (9.2)
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@C

@t
+ u

@C

@x
+ v

@C

@y
= D

�
@2C

@x2
+
@2C

@y2

�
�K1 (t)C +

DKT
Tm

�
@2T

@x2
+
@2T

@y2

�
; (9.6)

where u denotes the velocity in the x�direction, v the velocity in the y�direction and T;

C; p; �; �; Kc; Cp; D; Tm, KT and K1 (t) = k1
1�at are the temperature, the concentration,

the pressure, the �uid density, the kinematic viscosity, the thermal conductivity, the speci�c

heat, the coe¢ cient of mass di¤usivity, mean �uid temperature, thermal di¤usion ratio and the

time-dependent reaction rate respectively.
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The boundary conditions can be expressed as follows:

u = 0; v = vw =
dh

dt
; T = TH ; C = CH at y = h (t) ;

v =
@u

@y
=
@T

@y
=
@C

@y
= 0 at y = 0: (9.7)

Eliminating pressure gradient from Eqs. (9:2) and (9:3) and using the transformations

� =
y

H
p
1� at

; u =
ax

2 (1� at)f
0 (�) ; v =

�aH
2
p
1� at

f (�) ;

� =
T

TH
; � =

C

CH
(9.8)

we get

f (iv) � Sq(�f 000 + 3f 00 + f 0f 00 � ff 000)

+
�

2

�
�f (v) + 5f (iv) + f 0f (iv) � ff (v)

�
�M2f 00 = 0; (9.9)

�00 + PrSq
�
f�0 � ��0

�
+ PrEc

�
f 00

2
+ 4�2f 0

2
�

+
PrEc�

2

�
�3f 002 � f 0f 002 � �f 000f 00 + ff 00f 000

��
�
�2f 02 � �f 0f 00 + ff 0f 00

�	
; (9.10)

�00 + ScSq
�
f�0 � ��0

�
+ Sc
�+ SrSc�00 = 0; (9.11)

f(0) = 0; f(1) = 1; f 0(1) = 0; f 00(0) = 0;

�(1) = 1 = �(1); �0(0) = 0 = �0(0); (9.12)

where the squeezing parameter Sq, the second grade parameter ��; the Prandtl number Pr; the

Eckert number Ec; the Schmidt number Sc; the chemical reaction parameter 
, the Hartman
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number M; the Soret number Sr and the Dufour number Df have the following de�nitions:

Sq =
aH2

2�
; �� =

a�1
� (1� at) ; P r =

�cp
Kc
;

Ec =
1

THCp

�
ax

2 (1� at)

�2
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�

D
; 
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k1H
2

�
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H2 (1� at)
x2

;

M2 =
�B20
�a

; Sr =
DKTTH
�CHTm

; Df =
DKTCH
�cpCsTH

: (9.13)

Note that the plate movement is described by the squeezing parameter Sq. When Sq > 0, the

plates are moving away from each other and when Sq < 0, the plates are moving towards each

other. For Ec = 0; the viscous dissipation e¤ect are absent. Moreover 
 > 0 represents the

destructive chemical reaction and 
 < 0 characterizes the generative chemical reaction. Here

�� = 0 corresponds to the viscous �uid case. The skin friction coe¢ cient, Nusselt number and

Sherwood numbers are given by

Cf =
(�xy)y=h(t)

�v2w
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�HKc
�
@T
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�
y=h(t)
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�
y=h(t)

DmCH
: (9.14)

Using Eq. (9:7) in Eq. (9:13) we get

H2

x2
(1� at)RexCf = f 00(1) +

��
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�
f 000(1) + 3f 00(1) + 3f 0(1)f 00(1)� f(1)f 000(1)

�
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p
1� atNu = ��0(1);

p
1� atSh = �0 (1) : (9.15)

9.2 Solution of the problem

9.2.1 Zeroth order deformation problems

We express f (�) ; � (�) and � (�) are expressed by a set of base functions

n
�k p k � 0

o
(9.16)

in the forms

f (�) =
X
k

ak�
2k+1; � (�) =

X
k

bk�
2k+1; � (�) =

X
k

ck�
2k+1 (9.17)
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in which ak; bk and ck are the coe¢ cients. The initial guesses f0(�); �0(�); �0(�) and the

auxiliary operators Lf ; L�; L� are chosen in the forms:

f0(�) =
1

2

�
3� � �3

�
; �0(�) = 1; �0(�) = 1; (9.18)

Lf = f (iv); L� = �00; L� = �00: (9.19)

The operators Lf ; L� and L� have the properties
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2 + C4�
3
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where Ci(i = 1� 8) are the arbitrary constants and the nonlinear operators are
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N�
�
�f(�; q); ��(�; q); ��(�; q)

�
=
@2��

@�2
+ ScSq

�
�f
@��

@�
� �@

��

@�

�
+ Sc
��+ SrSc

@2��

@�2
: (9.24)

The zeroth order problems have the following statements:

(1� q)Lf
�
�f (�; q)� F0 (�)

�
= q~fNf

�
�f(�; q)

�
; (9.25)

�f (0; q) = S; �f 0 (0; q) = 1; �f (1; q) =
Sq
2
; �f 0 (1; q) = 0; (9.26)
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(1� q)L�
�
�� (�; q)� �0 (�)

�
= q~�N�

�
�f(�; q); ��(�; p); ��(�; q)

�
; (9.27)

��
0
(0; q) = 0; �� (1; q) = 1; (9.28)

(1� q)L�
�
�� (�; q)� �0 (�)

�
= q~�N�

�
�f(�; q); ��(�; q); ��(�; q)

�
; (9.29)

��
0
(0; q) = 0; �� (1; q) = 1; (9.30)

where ~f ; ~� and ~� denote the auxiliary parameters and 0 � q � 1 shows embedding parameter.

It is observed that when q changes from 0 to 1; then f(�; q); �(�; q) and �(�; q) vary from f0 (�)

to f(�); �0 (�) to �(�) and �0 (�) to �(�): When q = 0 and q = 1; one obtains

�f(�; 0) = f0(�); �f(�; 1) = f(�); (9.31)

��(�; 0) = �0(�); ��(�; 1) = �(�); (9.32)

��(�; 0) = �0(�);
��(�; 1) = �(�): (9.33)

Taylor series for f(�); �(�) and �(�) yields

f(�) = f0(�) +

1X
m=1

fm(�)q
m; fm(�) =

1

m!

@m �f(�; q)

@qm

����
q=0

; (9.34)
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1X
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�m(�)q
m; �m(�) =

1

m!

@m��(�; q)

@qm

����
q=0

; (9.35)

�(�) = �0(�) +
1X
m=1

�m(�)q
m; �m(�) =

1

m!

@m��(�; q)

@qm

����
q=0

: (9.36)

The convergence of the series solutions are dependent upon ~f ; ~� and ~�. We choose ~f ; ~�

and ~� in such a way that the series (9:33� 9:35) converge at q = 1 and hence

f(�) = f0(�) +

1X
m=1

fm(�); (9.37)

�(�) = �0(�) +
1X
m=1

�m(�); (9.38)

�(�) = �0(�) +

1X
m=1

�m(�): (9.39)
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9.2.2 mth-order deformation problems

The mth-order deformation equations are found by di¤erentiating the equations (9:24); (9:26)and

(9:28) with respect to q (m�times) and then putting q = 0 we obtain:

Lf [fm (�)� �mfm�1 (�)] = ~fRfm(�);

fm(0) = f
0
m(0) = fm(1) = f

0
m(1) = 0; (9.40)

L� [�m (�)� �m�m�1 (�)] = ~�R�m(�);

�0m(0) = 0; �m(1) = 0 (9.41)

L�
�
�m (�)� �m�m�1 (�)

�
= ~�R�m(�);

�0m(0) = 0; �m(1) = 0; (9.42)
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1; m > 1;
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; (9.43)
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; (9.44)
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R�m(�) = �00m�1 � ScSq��0m�1 + Sc
�m�1 + SrSc�00m�1 + ScSq
m�1X
k=0

fm�1�k�
0
k: (9.45)

The general solutions of equations (8:24) and (8:25) can be expressed as

fm (�) = f�m (�) + C1 + C2� + C3�
2 + C4�

3; (9.46)

�m (�) = ��m (�) + C5 + C6�; (9.47)

�m (�) = ��m (�) + C7 + C8�; (9.48)

in which f�m; �
�
m and �

�
m represent the special solutions.

9.2.3 Convergence analysis

The convergence of the series solutions (9:36� 9:38) strongly depends upon the auxiliary para-

meters (~f ; ~� and ~�) for the functions (f; � and �) respectively. These auxiliary parameters

adjust the convergence of the obtained series solutions. Figs. (9:1� 9:3) show the h�curves

of the functions f , � and � for �� = 0:5; Sq = Pr = Ec = Sc = 1:0; Df = M = 0:2;

Sr = 0:3 and � = 0:1: The permissible values of these auxiliary parameters ~f ; ~� and ~� are

�0:6 � ~f � �0:2, �0:61 � ~� � �0:46 and �0:7 � ~� � �0:35 respectively. Table 9:1 is use-

ful in making a guess that how much order of approximations are necessary for the convergent

solutions. This table shows that the 6th; 35th and 33th order of approximations are adequate
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for the convergent solutions of f; � and � respectively.

Fig. 9.1: Convergence region for the function f:

Fig. 9.2: Convergence region for the function �:
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Fig. 9.3: Convergence region for the function �:

Table 9.1. Series solution�s convergence by HAM for di¤erent order of approximations when

�� = 0:5; M = 0:2; Sq = Pr = Ec = Sc = 
 = 1:0; Df = 0:2; Sr = 0:3 and � = 0:1.

Order of approximations �f 00(1) ��0(1) �0(1)

1 3:288914 0:157714 0:400000

5 3:286721 0:510613 0:805592

6 3:286720 0:540208 0:831707

10 3:286720 0:586933 0:874009

15 3:286720 0:596898 0:883754

25 3:286720 0:598494 0:885423

30 3:286720 0:598525 0:885457

33 3:286720 0:598529 0:885462

35 3:286720 0:598531 0:885462

40 3:286720 0:598531 0:885462

50 3:286720 0:598531 0:885462
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9.3 Analysis

This section explains the in�uence of emerging physical parameters on the velocity, temperature

and concentration pro�les. For this purpose, we have plotted the Figs. 9:4� 9:11. In Figs. 9:4

and 9:5, we have discussed the in�uences of Hartman number (M) and squeezing parameter

(Sq) on the velocity pro�le f 0. From Fig. 9:4 it is clear that when we increase the Hartman

number (M), the velocity pro�le decreases initially in the range (0 � � � 0:45) and it increases

after that (0:45 � � � 1): Notice that when magnetic �eld is applied to any �uid then the

apparent viscosity of the �uid increases to the point of becoming a viscoelastic solid. Magnetic

�eld intensity can be used to adjust and control the �uid�s yield stress as a result force trans-

mission ability of the �uids increases/decreases. It is used in the practical life applications to

design electromagnetic casting of metals, MHD power generation and MHD ion propulsion etc.

Finally near the plate the magnetic �eld strength is greater which retards the �ow and as the

distance increases from the plate the magnetic �eld strength is weaker whereas the squeezing

e¤ects are dominant in that portion which �nally causes an increase in velocity. From Fig. 9:5,

it is seen that f 0 decreases when 0 � � � 0:45 and it increases with the increase of Sq when

0:45 � � � 1: Simultaneous e¤ects of Soret (Sr) and Dufour (Df) on the temperature �eld (�)

and concentration (�) are discussed in the Figs. 9:6 and 9:7 when the product of (Sr) and (Df)

remains constant. We observed from these Figs. that the e¤ects of (Sr) and (Df) are opposite.

In Fig. 9:8 we discuss the e¤ects of chemical reaction parameter (
) on the concentration �eld

�. Higher values of destructive (
 > 0) and generative (
 < 0) chemical reaction parameters

result in the reduction and enhancement of concentration �eld (�) respectively. Concentration

�eld at the lower plate is higher for constructive chemical reaction when compared with the

destructive chemical reaction. E¤ects of Hartman number (M) on the temperature (�) and

concentration �elds (�) are discussed in the Figs. 9:9 and 9:10. The e¤ects of Hartman number

(M) on the temperature and concentration �elds are quite opposite. E¤ects of Eckert number

(Ec) on temperature is displayed in Fig. 9:11. There is an increase in temperature when Eckert

number (Ec) increases. It is due to the fact that presence of viscous dissipation e¤ects signif-

icantly increases the temperature (�). Tables 9:2 and 9:3 are prepared to show the numerical

values of skin friction coe¢ cient, local Nusselt and Sherwood numbers for di¤erent physical pa-

rameters. From Table 9:2 it is noticed that when we increase the squeezing parameter (Sq) ; the
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second grade parameter (��) and the Hartman number (M), the magnitude of the skin friction

coe¢ cient increases. The local Nusselt and local Sherwood numbers are decreased when the

squeezing parameter (Sq) and the second grade parameter (��) increase while these increase

with the increase of Hartman number (M). Numerical values of rate of heat transfer (local

Nusselt number) and rate of mass transfer (local Sherwood number) for various parameters

are discussed in Table 9:3. With the increase of Ec and 
 the rate of heat and mass transfer

increase. By increasing (Sr) and decreasing (Df) ; the local Nusselt number decreases but local

Sherwood number increases. Table 9:4 is prepared to show a comparison for viscous case (Ref.

[71]). This comparison con�rms the validity of present �ow analysis.
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Fig. 9.4: In�uence of M on f 0(�):

Fig. 9.5: In�uence of Sq on f 0(�):
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Fig. 9.6: E¤ects of Df and Sr on �(�):

Fig. 9.7: E¤ects of Df and Sr on �(�):
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Fig. 9.8: In�uence of 
 on �(�):

Fig. 9.9: In�uence of M on �(�):
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Fig. 9.10: In�uence of M on �(�):

Fig. 9.11: In�uence of Ec on �(�):
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Table 9.2. Values of skin friction coe¢ cient, local Nusselt number and local Sherwood

number for di¤erent values of Sq; �� and M when Pr = Ec = Sc = 
 = 1:0, Df = 0:2;

Sr = 0:3 and � = 0:1.

Sq �� M l2(1�at)
x2

RexCf ��0 (1) ��0 (1)

0:1 0:5 0:2 �5:307561 0:579811 �0:911588

0:5 �5:509490 0:588261 �0:899520

1:0 �5:751760 0:598530 �0:885463

1:5 �5:983845 0:608522 �0:872431

0:5 0:1 0:2 �3:762730 2:65571 �1:43215

0:4 �5:067670 1:10424 �1:03162

0:8 �6:843277 �0:959052 �0:504731

0:5 0:5 0:1 �5:505274 0:587931 �0:899418

0:2 �5:509490 0:588262 �0:899521

0:4 �5:526328 0:589576 �0:899926
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Table 9.3. Values of local Nusselt number and local Sherwood number for di¤erent values

of Ec; Df; Sr and 
 when Sq = Pr = Sc = 1:0; �� = 0:5 and M = 0:2

Ec Df Sr 
 ��0(1) ��0(1)

0:3 0:2 0:3 1:0 0:279789 �0:796915

0:5 0:370857 �0:822213

0:9 0:552995 �0:872813

1:5 0:826203 �0:948711

1:0 0:1 0:2 1:0 0:726798 �0:859097

0:025 0:8 0:674634 �1:22408

0:02 1:0 0:671156 �1:34573

0:01 2:0 0:664201 �1:95403

1:0 0:2 0:3 �0:5 0:576609 0:379749

�0:3 0:625264 0:118924

0:5 0:764753 �0:624207

1:0 0:826203 �0:948711

Table 9.4. Comparison of skin friction coe¢ cient, local Nusselt number and local Sherwood

number when �� =M = Df = Sr = 0; P r = Ec = Sc = 
 = 1:0 and � = 0:1:

Mustafa et al.[71] Present

Sq �f 00(1) ��0(1) ��0(1) �f 00(1) ��0(1) ��0(1)

�1:0 2:170090 3:319899 0:804558 2:17009087 3:31989927 0:80455875

�0:5 2:614038 3:129491 0:781402 2:61740384 3:12949108 0:78140233

0:01 3:007134 3:047092 0:761225 3:00713375 3:04709193 0:76122521

0:5 3:336449 3:026324 0:744224 3:33644946 3:02632354 0:74422428

2:0 4:167389 3:118551 0:701813 4:16738918 3:11855069 0:70181323

9.4 Concluding remarks

The combined e¤ects of thermal-di¤usion, di¤usion-thermo, viscous dissipation and chemical

reaction in MHD �ow of second grade �uid between parallel plates are discussed. Computations
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are analyzed for the nonlinear analysis. Main �ndings are mentioned below.

� E¤ects of Hartman number M and squeezing parameter Sq are similar in a qualitative

sense.

� Temperature pro�le �(�) increases throughout the domain with the increase of Soret and

Dufour numbers.

� Temperature pro�le �(�) is decreasing function of Hartman number M:

� Concentration pro�le �(�) is an increasing function of Soret and Dufour numbers.

� Concentration �eld � (�) is a decreasing function of destructive chemical reaction pa-

rameter (
 > 0) and an increasing function of generative chemical reaction parameter

(
 < 0):

� Magnitude of the skin friction coe¢ cient increases for larger squeezing parameter Sq; the

second grade parameter �� and the Hartman number M .

� The local Nusselt and local Sherwood numbers are decreased when the squeezing parame-

ter Sq and the second grade parameter �� increase. However Hartman number M leads

to an increase in the local Nusselt and Sherwood number.

� With the increase of Ec and 
, the rate of heat and mass transfer increase. By increasing

Sr and decreasing Df; the local Nusselt number decreases but local Sherwood number

increases.
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Chapter 10

Axisymmetric squeezing �ow of

third grade �uid

This chapter addresses the time-dependent �ow of an incompressible third grade �uid between

the squeezing disks. The relevant equations of thermodynamic compatible third grade �uid

are modeled. The considered �uid model can predict the shear thinning and shear thickening

e¤ects even in study �ow situation. Transformation procedure reduces the partial di¤erential

system to the ordinary di¤erential system. Solution to the nonlinear problem is computed in

series form. The presented graphical results illustrate the in�uence of emerging parameters in

the considered problem.

10.1 Mathematical formulation and analysis

We consider axisymmetric �ow of third grade �uid between two parallel disks separated by

a distance H (1� at)
1
2 . The upper disk at z = h (t) = H (1� at)

1
2 is moving with velocity

�aH(1�at)�
1
2

2 : The lower porous disk at z = 0 is �xed. In absence of body forces, the laws of

conservation of mass and linear momentum are

@u

@r
+
u

r
+
@w

@z
= 0; (10.1)

�
dV

dt
= divT; (10.2)
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where the Cauchy stress tensor in third grade �uid is de�ned as

T = �pI+ S; S = �A1 + �1A2 + �2A
2
1 + �3(trA

2
1)A1; (10.3)

with

A1 = L+ L
T ; A2 =

dA1
dt

+A1L+ L
TA1; L = gradV; (10.4)

in which d=dt denotes the material time di¤erentiation, Ai (i = 1; 2) �rst two Rivlin-Ericksen

tensors, V the velocity �eld, u the velocity component along radial direction (r); w the velocity

component along axial direction (z), � the �uid density, p the pressure, I the identity tensor, �

the dynamic viscosity and �i (i = 1; 2) and �3 the material parameters of third grade �uid.

Using Eqs. (10:3) and (10:4) in Eq. (10:2), we have the following scalar equations
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The boundary conditions are

u = 0; w =
@h

@t
, at z = h(t);

u = 0; w = �w0, at z = 0: (10.7)

Using the following similarity transforms

u =
ar

2 (1� at)f
0 (�) ; w = � aHp

1� at
f (�) ; � =

z

H
p
1� at

; (10.8)

equation (10:1) is satis�ed automatically and by eliminating pressure gradient, Eqs. (10:5) �
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(10:7) give

f (iv) � Sq
�
�f 000 + 3f 00 � 2ff 000

�
+
��

2

�
�f (v) + 5f (iv) � 4f 00f 000 � 2f 0f (iv) � 2ff (v)

�
� ��2
2
(2f 0f (iv) + 4f 00f 000) + ��3

�
Re

�
3

2
(f 00)2f (iv) + 3f 00(f 000)2

�
+6(f 0)2f (iv) + 48f 0f 00f 000 + 14(f 00)3

o
= 0; (10.9)

f (0) = S; f 0 (0) = 0; f (1) =
1

2
; f 0 (1) = 0; (10.10)

where S denotes the suction/injection at the lower stationary disk. The squeeze parameter Sq;

second grade parameters �� and ��2; third grade parameter �
�
3 and Reynolds number Re are

introduced via the following de�nitions:

Sq =
aH2

2�
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(10.11)

The skin friction coe¢ cient in the present �ow is
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Dimensionless form of Eq. (10:13) is

H2
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�
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3

2
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1
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��3Ref

00(1)

�
f 00 (1) ; (10.14)
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where

R�1er =
2�

raH (1� at)1=2
: (10.15)

10.2 Series expression

The initial guess is taken as

f0(�) = S +

�
3

2
� 3S

�
�2 + (2S � 1) �3; (10.16)

while the auxiliary linear operator is de�ned by

Lf =
d4

d�4
(10.17)

which satisfy
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2 + C4�
3
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in which Ci(i = 1� 4) are the constants.

The zeroth order problem is
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in which the involved nonlinear operator Nf is given by
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where the embedding parameter is q 2 [0; 1]. For q = 0 and q = 1, we have

�f(�; 0) = f0(�); �f(�; 1) = f(�); (10.21)

The problems at the mth order are

L [fm(�; q)� �mfm�1(�)] = }fRm(�);

fm(0) = f
0
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0
m(1) = 0; (10.22)
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where }f is the auxiliary parameter and �m is de�ned by

�m=

8<: 0;m � 1

1;m > 1:
(10.24)

Use of Taylor series leads to the following expression

�f(�; q) = f0(�) +

1X
m=1

fm(�)q
m; fm(�) =

1

m!

@m �f(�; q)

@qm

����
p=0

: (10.25)

Note that the values of }f are selected in such a way that the series (10:22) converge for q = 1.

Hence

f(�) = f0(�) +
1X
m=1

fm(�): (10.26)
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10.3 Convergence analysis

The series solution (10:22) contains the auxiliary parameter }f : This parameter is useful in

adjusting and controlling the convergence of the obtained solution. In order to obtain the

admissible values of auxiliary parameter, we have drawn Figs. (10:1� 10:2) at � = 0 and � = 1

respectively. It is established that range for admissible values of }f is �2:2 � }f � �0:7.

Further, the series solutions converge in the whole region of � (0 < � < 1) when }f = �1:7.

Table 10.1 is useful in making a guess that how much order of approximations are necessary

for a convergent solution. This table shows that the 25th and 15th order of approximations are

enough for the convergent solution for lower and upper disks for injection respectively

Fig. 10.1: Convergence region for f at � = 0:
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Fig. 10.2: Convergence region for f at � = 1:

Table 10.1: Series solution�s convergence by HAM for di¤erent order of approximations when

S = �1:0, �� = ��2 = Re = 0:1; ��3 = 0:01 and Sq = 2:0:

Order of approximation f 00(0) �f 00(1)

1 7:5600 12:1612

5 7:2198 13:8953

10 7:2178 13:8657

15 7:2169 13:8658

20 7:2166 13:8658

25 7:2165 13:8658

30 7:2165 13:8658

35 7:2165 13:8658

40 7:2165 13:8658
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10.4 Graphical results and discussion

Our intention now is to describe the in�uences of the involved parameters on the velocity �eld

f 0(�): Thus we plotted the Figs. (10:3� 10:10) : Fig. 10:3 presents the in�uence of squeezing

parameter Sq on f 0: It is observed that squeezing Sq enhances the �ow near the upper wall.

Such increase in �ow is compensated with the decrease in the lower part of channel in order to

ful�l the condition of law of mass conservation. In�uence of squeezing parameter Sq on the axial

component of velocity f is plotted in Fig. 10:4: It is observed that axial velocity is a decreasing

function of Sq: In�uence of S on f 0 is shown in Fig. 10:5: It is observed that the velocity �eld f 0

increases with an increase in the magnitude of S: E¤ect of second grade parameters �� and ��2

on f 0 is investigated in Figs. 10:6 and 10:7. The velocity �eld f 0 decreases for 0 � � � 0:7 and

it increases for 0:7 � � � 1 with the increase of �� and ��2: Reverse �ow has seen near the lower

porous plate. Fig. 8 plots the e¤ects of third grade parameter ��3 on f
0. It is noted from this

Fig. that velocity of �uid increases near the lower and upper disks whereas it decreases at the

center of channel. Since both S and Sq act as the boosting agents which always enhance the �ow

but at the center of the channel the third grade parameter ��3 (being a viscoelastic parameter)

is dominant. Thus it retards the �ow at the central part. E¤ects of Reynolds number Re is

plotted in Fig. 10:9: Opposite trends is noticed for f 0 when we increase Re (see Figs. 10:6 and

10:7).

Fig. 10:10 plots the in�uence of skin friction coe¢ cient (drag force) H
2

r2
RerCfr for di¤erent

values of ��3 vs Re: It is noticed that the magnitude of skin friction coe¢ cient decreases by

increasing ��3:

Table 10:2 presents the values of skin friction coe¢ cient for di¤erent parameters. It is noted

that skin friction coe¢ cient increases with an increase in S whereas it decreases by increasing
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Sq and ��3:

Fig. 10.3: In�uence of Sq on f 0:

Fig. 10.4: In�uence of Sq on f:
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Fig. 10.5: In�uence of S on f 0:

Fig. 10.6: In�uence of �� on f 0:
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Fig. 10.7: In�uence of ��2 on f
0:

Fig. 10.8: In�uence of ��3 on f
0:
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Fig. 10.9: In�uence of Re on f 0:

Fig. 10.10: In�uence of ��3 and Re on
H2

r2
RerCfr:
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Table 10.2: Values of skin friction coe¢ cient H2

r2
RerCfr for di¤erent values of emerging

parameters.

S Sq ��3
H2

r2
RerCfr

�1:5 2:0 0:01 �23:97831

�1:0 �15:84972

�0:5 �9:073212

0:0 �3:870458

�1:0 0:0 �12:10583

1:0 �14:03073

2:0 �15:84972

2:5 �16:70936

2:0 0:00 �15:07652

0:01 �15:84972

0:02 �16:15729

0:03 �16:25819

10.5 Key �ndings

Here axisymmetric squeezing �ow of third grade �uid is studied. Main points of presented

analysis are summarized below.

� Horizontal velocity f 0(�) decreases near the porous disk while it increases near the upper

squeezing disk when squeezing parameter Sq increases.

� Vertical velocity f(�) decreases through increase of squeezing parameter Sq.

� Velocity pro�le f 0(�) decreases with the increase of suction parameter S:

� Magnitude of velocity pro�le f 0(�) decreases for larger second grade parameters �� and

��2:

� Velocity pro�le f 0(�) increases near the porous disk while it decreases near the upper disk

when third grade parameter ��3 increases.

162



� Skin friction coe¢ cient increases with an increase in S whereas it decreases by increasing

Sq and ��3:
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Chapter 11

Summary

The research conducted in this thesis can be summarized through the contents of chapters two

to ten. In fact chapter two describes the unsteady incompressible and axisymmetric �ow of

Je¤rey �uid between two parallel disks. The lower wall is static and subjected to the suction or

injection while upper wall is squeezed towards the lower wall. The �ow analysis is investigated

without any body force. Pressure is eliminated from the governing momentum equations and

then reduced to ordinary di¤erential equation by using the suitable transformations. The

resulting ordinary di¤erential system is solved for the series solution. Convergence analysis of

the series solution is explicitly discussed. Variations of pertinent parameters on velocity pro�le

are shown graphically. Skin friction coe¢ cient is also computed. It is found that the velocity

pro�le is enhanced via larger porosity and squeezing parameters.

Chapter three extends the �ow analysis of previous chapter through heat transfer charac-

teristics. Conservation law of energy is used for the development of problem in addition to

the conservation law of linear momentum. Thermal radiation e¤ect is present to investigate

the heat transfer behavior. Temperature at the lower and upper walls is assumed di¤erent.

A system of ordinary di¤erential equations is solved by homotopy analysis method. Behavior

of various physical parameters on temperature distribution is examined for both the cases (i)

suction (ii) blowing. It is analyzed that temperature distribution decreases for higher values of

Prandtl number in both suction and blowing situations. However opposite e¤ect is observed

due to thermal radiation on the temperature pro�le in the cases of suction and blowing.

Chapter four focuses on the unsteady MHD incompressible squeezing �ow of Je¤rey �uid
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between two parallel plates. Simultaneous e¤ects of heat and mass transfer are explored. The

phenomena of Soret-Dufour and Joule heating are also considered to study the behavior of heat

and mass transfer. Temperature and concentration at the lower and upper walls are assumed

di¤erent. The �uid is electrically conducting in the presence of magnetic �eld. To �nd the

series solutions by homotopy analysis method, the governing equations are �rst converted into

ordinary di¤erential equations using the appropriate transformations. The solution expressions

for velocity, temperature and concentration �elds are computed and discussed. In addition the

skin friction coe¢ cient, Nusselt number and Sherwood number are tabulated and analyzed.

Chapter �ve explores the simultaneous e¤ects of heat and mass transfer in unsteady in-

compressible squeezing �ow of Je¤rey �uid between parallel plates. The present analysis is

investigated in the presence of viscous dissipation and �rst order chemical reaction. Temper-

ature and concentration are assumed constant at the upper and lower plates. Series solution

to the involved system is computed. Analysis is performed for residual errors of the series

solutions. A parametric study of pertinent variables is conducted. The skin friction coe¢ cient

and local Nusselt and Sherwood numbers are computed and examined. It is examined that

temperature pro�le is higher for larger values of Eckretnumber. Destructive and constructive

chemical reactions have opposite e¤ect on the concentration distribution.

The objective of chapter six is to revisit the �ow analysis of chapter two by considering the

couple stress �uid model. The considered �uid model here has distinct features through polar

e¤ects when compared with the other non-Newtonian �uid models. Speci�cally the present �uid

model allows polar e¤ects such as the presence of couple stress, body couple and non-symmetric

tensors. The modeled nonlinear �ow problem is reduced into the ordinary di¤erential system.

Computations have been carried out by homotopy analysis method (HAM). E¤ects of the

squeezing and couple stress parameters on the velocity pro�le are discussed. Velocity pro�le

increases in the lower and upper half of the channel while it decreases at the center of the

channel for higher values of couple stress parameter.

Chapter seven discloses the behavior of simultaneous e¤ects of heat and mass transfer in

unsteady two-dimensional squeezing �ow of couple stress �uid between the parallel plates.

Characteristics of viscous dissipation and �rst order chemical reaction are analyzed. Appropri-

ate transformation procedure is adopted to obtain a system of ordinary di¤erential equations.
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The governing problems are computed by homotopy analysis method (HAM). Convergence and

residual errors of the series solutions are also analyzed. Quantities of interest are illustrated

graphically. The skin friction coe¢ cient and Nusselt and Sherwood numbers are computed and

analyzed. Destructive and constructive chemical reactions have opposite e¤ect on the concen-

tration distribution.

Chapter eight is concerned with the unsteady squeezing �ow of second grade �uid between

two parallel plates. Rheological behavior of second grade �uid is analyzed in the magnetohy-

drodynamic �ow. The considered �uid model can predict the normal stress e¤ect. The �uid

is assumed electrically conducting. The lower plate is stretched with linear velocity while the

upper plate is squeezed. Transformation procedure reduces the partial di¤erential equations

into the ordinary di¤erential equations. A series solution is developed using a modern mathe-

matical scheme. The solution expressions for velocity components are computed and discussed.

In addition the skin friction coe¢ cient is analyzed through the tabulated values. It is analyzed

that second grade parameter has opposite e¤ects on the velocity pro�le in both suction and

injection cases.

Chapter nine focuses on the combined e¤ects of heat and mass transfer in the magnetohy-

drodynamic (MHD) squeezing �ow of chemically reactive second grade �uid model. The �ow

analysis is performed between the two parallel plates. Simultaneous e¤ects of thermal-di¤usion

(Soret), di¤usion-thermo (Dufour) and viscous dissipation are considered. Suitable variables

are utilized for the conversion of partial di¤erential system into an ordinary di¤erential sys-

tem. Analytical solutions are obtained by homotopy analysis method (HAM). The behavior of

involved sundry parameters on the velocity, temperature and concentration distributions are

shown graphically. A comparative study with the already published results shows an excellent

agreement. Concentration pro�le is an increasing function of Soret and Dufour numbers.

Chapter ten addresses the time-dependent �ow of an incompressible third grade �uid be-

tween the squeezing disks. The relevant equations of thermodynamic compatible third grade

�uid are modeled. The considered �uid model can predict the shear thinning and shear thick-

ening e¤ects along with the normal stress. Suitable transformations are used to get the system

of ordinary di¤erential equation. Solution to the nonlinear problem is computed in series form.

The presented graphical results illustrate the in�uence of emerging parameters in the consid-
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ered problem. It is analyzed that velocity distribution increases near the porous disk while it

decreases near the upper disk when third grade parameter increases.

It is worthmentioning to point out that the outcomes of chapters two and three have been

published in "Chinese Physics Letters 29 (2012) 034701" and "The European Phys-

ical Journal Plus 128 (2013) 85" respectively. The contents of chapters four and �ve are

submitted for publication in "Computers and Fluids" and "Applied and Computational

Mathematics". The materials of chapters six and seven are respectively submitted in "The

European Physical Journal Plus" and "Zeitschrift Natuforchung A". Research pre-

sented in chapter eight is published in "The European Physical Journal Plus 128 (2013)

157" while the �ow analysis of chapter nine is submitted in "Heat Transfer Research". Fi-

nally the results of chapter ten are submitted in "Maejo International Journal of Science

and Technology".

The following problems will be discussed in future.

� Squeezing �ow for Williamson �uid.

� E¤ects of melting heat transfer in squeezing �ow of viscous and di¤erential type �uids.

� Newtonian heating e¤ects in squeezing �ow of nano�uids.
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