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Abstract

Survival analysis is a set of statistical methods or tools for analyzing time-to-event

data. Survival analysis is a very active field of inquiry that has applications in

numerous areas of study, including engineering, physical, biological, and social

sciences. The hazard function represents the rate of failure at a specific time t,

considering the individual has survived up to that point. The Cox proportional

hazards model is widely employed in survival analysis to explore the relationship

between covariates and the hazard rate. Covariates can influence the hazard

function, causing it to vary, which may lead to the occurrence of a change point.

This study centers around the estimation of change point in the Cox proportional

hazard model, involving an examination of three distinct hazard models. We utilize

maximum likelihood method to estimate change points within these proposed

hazard models. Through a thorough Monte Carlo simulation study, we assess

the consistency and performance of our methods as sample size and censorship

percentages vary. The chronic granulotamous disease (CGD) dataset is used as a

practical application and results showed that the proposed models are effective in

estimating the change point.
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Chapter 1

Introduction

Survival analysis is a collection of statistical methods used to analyze and interpret

the time-to-event data. An event can be the occurrence of a disease, the failure

of a mechanical component, or the death of an individual (Kleinbaum and Klein,

2012). Survival analysis is also known as time-to-event analysis or event history

analysis. Survival analysis takes into account censored data, which occurs when

the event of interest has not yet occurred for some individuals by the end of the

study period.

1.1 Censoring and its types

Censoring in survival analysis refers to the situation where complete information

about the occurrence time of an event is not available for all individuals in a study.

According to Grambsch and Therneau (2000) censoring occurs when an event time

is known only to occur after a given time. It is a fundamental concept in survival

analysis and must be appropriately handled during data analysis to avoid having

biased results with traditional methods. Different types of censoring include

� Left censoring occurs when a data point is known to be below a certain

value, but the specific magnitude of how much it is below that threshold

remains unknown.

� Right censoring takes place when a data point is known to be above a

certain value, but the exact magnitude above that threshold is unknown.

� Interval censoring happens when a data point falls within an interval

between two values, and the exact value within that interval is unknown.

� Type I censoring occurs when an experiment is conducted for a predeter-

mined duration or with a set sample size, and the study concludes at a fixed
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time. Any individuals or subjects remaining at that time are considered right

censored.

� Type II censoring arises when an experiment is conducted for a predeter-

mined duration or with a set sample size, and the study concludes once a

predetermined number of failures are observed. The remaining individuals or

subjects are then right censored.

It is also important to consider random (or non-informative) censoring, where

each subject’s censoring time is statistically independent of their failure time.

1.2 Hazard function

The hazard function, also known as the hazard rate or instantaneous failure rate, is

a fundamental concept in survival analysis. According to Klein and Moeschberger

(2003) hazard function is defined as “the rate of occurrence of an event of interest,

given that the individual has survived up to a particular time” It represents the

instantaneous probability of experiencing the event at a specific time, conditional

on the individual being at risk up to that time. The hazard function is the

ratio of the probability density function and survival function. Mathematically,

λ(t) = f(t)/s(t).

1.2.1 Cox proportional hazard model

The Cox proportional hazards model, also known as the Cox regression, was devel-

oped by Sir David Cox in 1972. Cox (1972) is widely recognized as a significant

breakthrough in the analysis of time-to-event data. The paper was greeted as a mile-

stone in the analysis of time-to-event data and received feedback from statisticians

worldwide, highlighting its impact and importance in the field (Kalbfleisch and

Schaubel, 2023). The Cox proportional hazards model, as described by Kleinbaum

and Klein (2012), is a widely used semi-parametric regression model for analysing

survival data. It assumes that the hazard function for an individual is a function

of time multiplied by an unknown baseline hazard function, which is independent

of the covariates. The model relates the hazard function to the covariates through

a linear relationship, allowing for the estimation of the effects of the predictor

variables on the hazard rate.

There is one main type of Cox regression model, which is the standard Cox

proportional hazards model. However, variations and extensions of the Cox model

have been developed to handle specific scenarios or address certain limitations.

Here are some notable types of Cox regression models.

2



� Extended Cox Model: The extended Cox model allows for the inclusion

of time-varying covariates, which are predictor variables that can change

their values over time. This model accounts for the dynamic nature of the

covariates and their impact on the hazard rate over time (Husain et al., 2018)

� Startified Cox Model: The stratified Cox model allows for the incorpora-

tion of additional stratification variables that may affect the hazard function.

It stratifies the data based on these variables and estimates separate baseline

hazard functions within each stratum while assuming proportional hazards

within each stratum (Kleinbaum and Klein, 2012)

� Frailty Cox Model: The frailty Cox model incorporates random effects

or frailty terms to account for unobserved heterogeneity among individuals

within a group. It assumes that the hazard function is a product of an

individual-specific hazard and a common baseline hazard (Grambsch and

Therneau, 2000)

Marginal Cox model, cure rate model, Prentice Williams and Peterson (PWP)

model are also extensions of the Cox regression model provide additional flexibility

and address specific complexities encountered in survival data analysis. The choice

of the appropriate model depends on the research question, data characteristics,

and underlying assumptions of the analysis.

1.3 Change Point

Survival analysis involves the examination of a group of individuals who experience

an event of interest over a period of time, commonly referred to as the failure

event. The duration until the occurrence of this event is known as the failure time.

Failure times are observed in various fields, including biology, engineering, reliability

theory, and medicine. In the medical domain, individuals with chronic degenerative

diseases such as cancer, diabetes, and kidney diseases often exhibit changes within

short time intervals due to treatment, which are considered covariates in hazard

models. The specific point at which such changes manifest in a patient is commonly

known as a change point (Arenas et al., 2021).

1.3.1 Estimation of change point in Cox proportional haz-

ard model

The estimation of change points in a Cox proportional hazard model involves

identifying the time points at which significant shifts occur in the hazard function.

3



These change points indicate potential changes in the underlying risk factors or

covariates affecting the survival outcome. The study of change points involves

two essential steps: the first step is to determine the presence of a change point,

while the second step involves estimating its occurrence. Estimation methods for

identifying the timing of change points are typically based on parametric models

such as exponential, Weibull, normal, gamma, etc., as explored by (Chen and

Gupta, 2012). Various techniques, including the maximum likelihood, stochastic

processes, logistic regression, Bayesian tests, and non-parametric tests, among

others, have been utilized for change point detection (Chen and Gupta, 2001;

Goodman et al., 2006).To determine the change point within the Cox proportional

hazard model, Liang et al. (1990) employed the Ornstein-Uhlenbeck (O-U) process.

Their aim was to maximize the statistical test score, taking into account the variable

nature of the change point over time. O’Sullivan (1993) employed a non-parametric

linear regression approach with time-dependent covariates for the Cox model

estimation. Pons (2003) studied the asymptotic behavior of the partial likelihood

function to obtain estimates of the change point. Liu et al. (2008) proposed a

Monte Carlo method for maximizing score functions to determine test thresholds,

offering an alternative to the O-U process. Zhang et al. (2010) introduced a

semi-parametric approach based on Splines for the maximum likelihood estimation.

Li et al. (2013) focused on the parameter estimation problem for a piecewise hazard

regression model with one change point, considering covariate effects and right

censoring through maximum likelihood. Palmeros et al. (2018) recently proposed a

method for calculating the change point in the Weibull regression model, with a

specific emphasis on the log-likelihood function. Arenas et al. (2021) conducted an

estimation of the change point in the Cox proportional hazard model using the

maximum likelihood estimation and moments estimation (ME).

Because the change point problem arises in many practical situations, efficient

change point estimation methods are needed. In this study, we offer two methods

for the estimation of change point in the Cox proportional hazard model on three

different hazard models. First method covers the estimation of the change point

when other parameters of the Cox proportional hazard model like β and θ are not

in closed form whereas in second method their MLEs are available in closed form.

A Monte Carlo simulation study is performed for assessing the consistency of the

proposed estimation methods in terms of the mean squared error (MSE).

1.4 Thesis objectives

The main objectives of the study are

4



1. To propose Cox proportional hazard model with different intensities in

different change point situations.

2. To check the consistency of proposed estimation methods for change point

estimation in the Cox proportional hazard model.

3. To access the performance of estimation methods under different levels of

censorship.

The structure of this thesis is as follows: Chapter 2 provides a comprehensive

review of the literature. Chapter 3 presents the methodology and results derived

from the simulation study. The concluding remarks can be found in Chapter 4.

5



Chapter 2

Literature Review

Arenas et al. (2021)“presented a study on the computational methods for estimating

a change point in the Cox hazard model. In this work, a novel approach combines

moment estimation (ME) with the maximum likelihood estimation to estimate

the change point. It uses a numerical method to minimize an objective function

provided by ME. A Monte Carlo simulation using various situations provides the

mean squared error of the estimator.”

Palmeros et al. (2018)“computed estimates of a change point in the Weibull

regression hazard model. Covariates and censored variables are used in this study

to estimate a change point in the Weibull regression hazard model, an extension of

the exponential model. A Monte Carlo simulation study indicates that this model

can really be applied in practice.”

Pons (2002)“presented a study on estimation in a Cox regression model with a

change point at an unknown time. The asymptotic properties of the maximum

likelihood estimators of the parameters in a non-regular Cox model with a change-

point in the regression on time-dependent covariates are examined in this study.

Overall consistency is derived from the uniform convergence of the partial log-

likelihood.”

Liu et al. (2008)“studied a Monte Carlo approach for change point detection

in the Cox proportional hazards model. The maximal score tests were used

for detecting change points in the Cox proportional hazards model with the

censored data. The proposed method can be used to test a single change point

in the Cox model with covariates and sample stratifications over a wide range of

candidate regions, like discrete time-point sets or disjoint intervals. The proposed

test statistics and Monte Carlo procedure are well suited to situations involving

multiple change points.”

Gandy et al. (2005)“reported a study on a Cox model with a change point

applied to an actuarial problem. They used survival analysis methods on an

actuarial dataset to identify significant covariates for contract cancellation. The

6



well-known risk models suggested by the Cox (1972) and Aalen (1980) were used

in their approach but the result suggests that the functional form of a covariate

was misspecified. Then, a new variant of the Cox model with a change point at an

unknown threshold was proposed that proved the consistency of the estimators.”

Wang et al. (2021)“worked on change point detection in the Cox proportional

hazards mixture cure model, In which the covariate effects on the distribution of

uncured subjects’ failure time may jump when one of the covariates exceeds a change

point. The semiparametric estimates are obtained using nonparametric maximum

likelihood estimation. To implement the estimation a two-step computational

procedure involving the expectation-maximization algorithm and finite sample

performance is demonstrated using simulation studies and real data examples.”

Dupuy (2006)“studied estimation in a change point hazard regression model.

The author take into account a parametric survival regression model with a change

point in both the hazard and regression parameters. Estimators of the regression

parameters, change point, and hazard are proposed and shown to be consistent.”

Li et al. (2013)“presented a study on estimation in a change point hazard

regression model with long-term survivors. In the presence of right censoring

and long-term survivors, they estimated the change point for a piecewise hazard

regression model. The consistency of the maximum likelihood estimators of the

change point and other parameters is demonstrated. The proposed method is

demonstrated by analyzing data on kidney infection recurrence.”

Yao (1986)“worked on the maximum likelihood estimation in hazard rate

models with a change point. The problem of parameter estimation in hazard rate

models with a change point is explained. The likelihood function in this problem

is unbounded, which is an interesting feature. A maximum likelihood change point

estimator subject to a natural constraint is proposed and shown to be consistent.

The limiting distributions are derived as well.”

Fotopoulos and Jandhyala (2001)“reported a study on the maximum likelihood

estimation of a change point for the exponentially distributed random variables.

The problem of estimating the unknown change point in the parameter of a sequence

of independent and exponentially distributed random variables’s considered. The

analysis is based on the use of the Weiner-Hopf factorization identity, which involves

the distribution of ascending and descending ladder heights, as well as the renewal

measure in random walks.”

Fu and Curnow (1990)“presented a study on the maximum likelihood estimation

of multiple change points. If there are known lower bounds on the lengths of the

sub-sequences between the change points, the maximum likelihood estimation of

the locations of changes in sequences of independent categorical random variables

is examined. A method is developed which finds the maximum likelihood solution.

7



The method also allows the boundary distributions of the changed segments to

differ from the distribution of the changed segments’ central region.”

Matthews and Farewell (1982)“studied testing for a constant hazard against

a change point alternative. They constructed a test of a constant failure rate

against the alternative of a failure rate involving a single change point. For the

given alternative, a likelihood ratio test is derived and simulated. Tests based on

alternatives in the log gamma family are also taken into consideration since they

function effectively when the change-point model is accurate.”

Lee et al. (2020)“reported a study on testing for change point in the covariate

effects based on the Cox regression model. A Cox model with a change point

in covariate is considered, and the pattern of the change point effects can be

specified in a variety of ways. Three statistical tests, the maximal score, the

maximal normalized score, and the maximal Wald tests are suggested to examine

the possibility of change-point effects. Monte Carlo approaches to simulate the

critical values are suggested.”

Liang et al. (1990)“studied an epidemiologic application using the Cox propor-

tional hazards model with change point. The model possesses two features, different

relative risk parameters are allowed for early versus late onset of the disease of

interest, and an additional parameter is introduced so that specification is not

required for the time (age) at which a change in the magnitude of the relative risks

takes place. They used a set of data on a group of white male medical students

who attended The Johns Hopkins Medical School between 1948 and 1964 to apply

the model.”

Zucker et al. (2013)“presented a study on testing for a change point in the

Cox survival regression model. They examined testing for a threshold effect in the

case when a potential threshold value is unknown. They considered a maximum

efficiency robust test (MERT) of linear combination form and supremum type

tests. They discussed the relevant theory, conduct a simulation study comparing

the power of various test statistics, and demonstrate the use of the tests on data

from the Nurses Health Study (NHS) relating to the relationship between chronic

exposure to particulate matter with a diameter of 10 m or less (PM10) and fatal

myocardial infarction.“

Husain et al. (2018)“worked on the application of the extended Cox proportional

hazard method for estimating the survival time of breast cancer. The main objective

was to model the various factors influencing both the survival time and the rate

of cure in breast cancer patients. They utilized the extended Cox model, which

is a modified version of the proportional hazard Cox model designed to account

for situations where the proportional hazard assumptions are not satisfied. The

researchers employed the maximum likelihood estimation approach to estimate the

8



model’s parameters.”

Zhang et al. (2010)“suggested a semiparametric maximum likelihood method

based on splines to analyse the Cox model using interval-censored data. They

introduced a straightforward approach to consistently estimate the standard error

of the regression parameter, making it easier to perform inference for the Cox

model with interval-censored data. Their proposed method facilitates accurate

estimation and inference procedures for this specific type of data.“

Goodman et al. (2006)“introduced the inclusion of multiple change points.

They put forward a model selection technique utilizing sequential testing, which

encompasses two types of models: the piecewise constant hazard model and the

piecewise linear hazard model. These approaches are driven by the data and

enable estimation of both the overall trend in the hazard function and the specific

locations where changes in the trend occur.”

9



Chapter 3

Changepoint Estimation

The background of the Cox proportional hazard model with its different extensions

is discussed in section 1.2.1. Cox (1972) introduced a diverse range of survival

models that specifically target the hazard function. Among these models, the most

basic one is known as the proportional hazard model. where the hazard at time t

for an individual with covariates vector z is assumed to be

λ(t|z) = λ0(t) exp(β
′z)

In this model, λ0(t) is a baseline hazard function that describes the risk for

individuals with z = 0, and exp(β′z) is a proportionate increase or decrease in risk,

associated with the set of covariates z. Arenas et al. (2021) studied the hazard

model as follows

λ(t;Z) = λ0(t) exp[{β + θI(t ≤ τ)}Z],

where λ0(t) is a unspecified baseline hazard function, τ > 0 is the change point

parameter, β ∈ Rk is the vector of regression coefficients, θ ∈ Rk denotes the effect

of change due to treatment, and Z ∈ Rk is the covariate vector.

We use the setting of Kleinbaum and Klein (2012) who considered a clinical

trial with a total of n individuals each of whom is assigned a random failure

time represented by T̃i and their censorship time Ci. For the i-th individual,

the observations on their failure time consist of two components Ti and δi, Ti =

min(T̃i, Ci) and δi = I(T̃i ≤ Ci), with δi = 1 if the failure event has been observed,

and δi = 0.

To derive the probability density function (PDF), cumulative distribution

function (CDF), and survival function from proposed hazard functions, we use the

following mathematical relationships

Let h(t) denote the hazard function, to find the cumulative hazard function

we can integrate the hazard function over time. The cumulative hazard function,

10



denoted by H(t), represents the cumulative risk or cumulative failure rate up to

time t.

H(t) =

∫ t

0

h(u)du, t > 0

The survivor function provides information about the probability that the

specific event has not happened up to a given time point t. If we consider T as the

time until failure, S(t) represents the probability of surviving beyond time t.

S(t) = exp(−H(t))

then the CDF is expressed as

F (t) = 1− S(t)

To obtain PDF we use this relationship

f(t) = h(t)S(t)

3.1 Model 1

In this section, we present certain well-known properties associated with the Cox

proportional hazard model. The first hazard model under consideration is presented

as follows

λ(t;Z) = λ0(t) exp[{β + θ2I(t ≤ τ)}Z] (3.1)

The expression for the hazard function in equation 3.1 can be stated as follows

λ(t;Z) = λ0(t) exp{(β + θ2)Z}I(t ≤ τ) + λ0(t) exp{βZ}I(t > τ) (3.2)

where the corresponding survival function is

S(t;Z) = exp
(
−tλ0(t) exp{(β + θ2)Z}

)
I(t ≤ τ)+

exp
(
−τλ0(t) exp{(β + θ2)Z} − (t− τ)λ0(t) exp{βZ}

)
I(t > τ)

(3.3)

From equations 3.2 and 3.3, the PDF is

f(t;Z) =
(
λ0(t) exp{(β + θ2)Z} exp(−tλ0(t) exp{β + θ2)Z}

)
I(t ≤ τ)+(

λ0(t) exp{βZ} exp(−τλ0(t) exp{β + θ2)Z}−

(t− τ)λ0(t) exp{βZ})
)
I(t > τ)

(3.4)
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Taking into account the assumption of independent censoring for the data, the

log-likelihood function associated with equation 3.4 can be expressed as follows

l(θ, β) =
n∑
i

[
δi log(λ0(ti)) + δi(β + θ2)Zi − tiλ0(ti) exp{(β + θ2)Zi}

]
I(ti ≤ τ)+

n∑
i

[
δi log λ0(ti) + δiβZi − τλ0(ti) exp{(β + θ2)Zi}−

(ti − τ)λ0(ti) exp{βZi}
]
I(ti > τ)

(3.5)

To simplify the model and reduce computational time, we have assumed that Z is

a dichotomous variable that takes the values 0 or 1. This simplification allows for

easier implementation of the proposed method. The log-likelihood function given

in equation 3.5 is reduced for zi = 1

l(θ, β) =
n∑
i

[
δi log λ0(ti) + δi(β + θ2)− tiλ0(ti) exp(β + θ2)

]
I(ti ≤ τ)+

n∑
i

[
δi log λ0(ti) + δiβ − τλ0(ti) exp(β + θ2)−

(ti − τ)λ0(ti) exp(β)
]
I(ti > τ)

(3.6)

3.2 Model 2

In this section, we will describe the properties of our second proposed hazard model.

The second hazard model that we are considering is

λ(t;Z) = λ0(t) exp[{βθI(t ≤ τ)}Z] (3.7)

The hazard function in equation 3.7 can be formulated as follows.

λ(t;Z) = λ0(t) exp{(βθZ}I(t ≤ τ) + λ0(t) exp{βZ}I(t > τ) (3.8)

where the associated survival function is

S(t;Z) = exp
(
−tλ0(t) exp{βθZ}

)
I(t ≤ τ)+

exp
(
−τλ0(t) exp{βθZ} − (t− τ)λ0(t) exp{βZ}

)
I(t > τ)

(3.9)
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From equations 3.8 and 3.9, the PDF is

f(t;Z) =
(
λ0(t) exp{βθZ} exp(−tλ0(t) exp{βθZ}

)
I(t ≤ τ)+(

λ0(t) exp{βZ} exp(−τλ0(t) exp{βθZ}−

(t− τ)λ0(t) exp{βZ})
)
I(t > τ)

(3.10)

Considering the assumption of independent censoring for the data, the log-likelihood

function related to equation 3.10 can be stated as

l(θ, β) =
n∑
i

[
δi log(λ0(ti)) + δiβθZi − tiλ0(ti) exp{βθZi}

]
I(ti ≤ τ)+

n∑
i

[
δi log λ0(ti) + δiβZi − τλ0(ti) exp{βθZi}−

(ti − τ)λ0(ti) exp{βZi}
]
I(ti > τ)

(3.11)

As we assumed that Z is a dichotomous variable that takes the values 0 or 1, the

log-likelihood function given in equation 3.11 is reduced for zi = 1

l(θ, β) =
n∑
i

[
δi log λ0(ti) + δiβθ − tiλ0(ti) exp(βθ)

]
I(ti ≤ τ)+

n∑
i

[
δi log λ0(ti) + δiβ − τλ0(ti) exp(βθ)−

(ti − τ)λ0(ti) exp(β)
]
I(ti > τ)

(3.12)

3.3 Model 3

Matthews and Farewell (1982) introduced a simple model where the hazard rate

function piecewise with a single change point that is

λ(t) = β + θI(t ≥ τ) (3.13)

Here, we considered the following extension of above mentioned hazard model

λ(t;Z) = λ0(t) exp(βZ)I(t ≤ τ) + λ0(t) exp{(β + θ)Z}I(t > τ) (3.14)

The corresponding survival function is given as

S(t;Z) = exp
(
−tλ0(t) exp(βZ

)
I(t ≤ τ)+

exp
(
−τλ0(t) exp(βZ)− (t− τ)λ0(t) exp{(β + θ)Z}

)
I(t > τ)

(3.15)
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From equations 3.14 and 3.15, the PDF becomes

f(t;Z) =
(
λ0(t) exp(βZ) exp(−tλ0(t) exp(βZ)

)
I(t ≤ τ)+(

λ0(t) exp{(β + θ)Z} exp(−τλ0(t) exp(βZ)−

(t− τ)λ0(t) exp{(β + θ)Z})
)
I(t > τ)

(3.16)

Given the assumption of independent censoring for the data, we can express the

log-likelihood function for equation 3.16 in the following manner

l(θ, β) =
n∑
i

[
δi log(λ0(ti)) + δiβZi − tiλ0(ti) exp(βZi)

]
I(ti ≤ τ)+

n∑
i

[
δi log λ0(ti) + δi(β + θ)Zi − τλ0(ti) exp(βZi)−

(ti − τ)λ0(ti) exp{(β + θ)Zi}
]
I(ti > τ)

(3.17)

From log-likelihood function in equation 3.17, the following score equations are

obtained

∂l(θ, β)

∂θ
=

n∑
i

[
δiZi − (ti − τ)λ0(ti) exp{(β + θ)Zi}

]
I(ti > τ) = 0 (3.18)

∂l(θ, β)

∂β
=

n∑
i

[
δiZi − tiλ0(ti) exp(βZi)

]
I(ti ≤ τ)+

n∑
i

[
δiZi − τλ0(ti) exp(βZi)−

(ti − τ)λ0(ti) exp{(β + θ)Zi}
]
I(ti > τ) = 0

(3.19)

Also, the score equations given in 3.18 and 3.19 are reduced to the following

equations for Zi = 1, because it was assumed that Z is a dichotomous variable that

takes the values 0 or 1.

∂l(θ, β)

∂θ
=

n∑
i

[
δi − (ti − τ)λ0(ti) exp(β + θ)

]
I(ti > τ) = 0 (3.20)

∂l(θ, β)

∂β
=

n∑
i

[
δi − tiλ0(ti) exp(β)

]
I(ti ≤ τ)+

n∑
i

[
δi − τλ0(ti) exp(β)− (ti − τ)λ0(ti) exp(β + θ)

]
I(ti > τ) = 0 (3.21)
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In this scenario, it is possible to solve equations 3.20 and 3.21 simultaneously to

find the maximum likelihood estimators for β and θ

β̂ = log

[ ∑n
i δiI(ti ≤ τ)

λ0(ti)
∑n

i (ti)I(ti ≤ τ) + τλ0(ti)
∑n

i I(ti > τ)

]
(3.22)

θ̂ = log

[(
λ0(ti)

∑n
i (ti)I(ti ≤ τ) + τλ0(ti)

∑n
i I(ti > τ)

)(∑n
i δiI(ti > τ)

)
λ0(ti)

(∑n
i (ti − τ)I(ti > τ)

)(∑n
i δiI(ti ≤ τ)

) ]
(3.23)

3.4 Simulation study

We“use the Monte Carlo simulation method to study the proposed methodology.

Three sets of values are used for the parameters θ, β, and τ to generate failure times

for three proposed hazard models. Furthermore, we randomly assigned censorship

times and covariate values to the failure times from a binomial distribution. Four

percentages of censorship were considered 0%, 20%, 50% and 70% along with four

sample sizes n = 50, 200, 500, 1000. To obtain β̂, θ̂ and τ̂ , 5000 iterations are

performed for each sample size at each level of censorship. Function λ0(t) was

taken to be a constant equal to 0.5 as used in Liu et al. (2008). A characteristic of

the Cox proportional hazard model is that in estimating regression coefficients, it

is not necessary to know the baseline hazard function λ0(t).”

3.5 Results

In this section, the estimated values of β̂, θ̂, and τ̂ along with their MSE are

shown in Tables 3.1-3.15 under different settings. The model parameters are

estimated by the maximum likelihood estimation method. For Model 1 and Model

2, we maximize the log-likelihood functions given in the equation 3.6 and 3.12,

respectively, by using the ‘optim’ function of R Core Team (2016). For Model 3,

first we obtained the MLEs of β and θ from equation 3.22 and 3.23. Then τ̂ is

found by using these values of β̂ and θ̂, we maximize log-likelihood functions given

in equation 3.17 for zi = 1.
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Table 3.1: Estimated MSE for Model 1 with different percentages of censorship
and different values of β, θ, τ for n = 50

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0089 0.0410 1.0149 0.0200 1.3667 0.0174

-1 1 0.5099 -1.0014 0.0255 1.0341 0.0375 0.4935 0.0110

-1 1 0.1876 -1.0046 0.0326 1.1126 0.0580 0.1722 0.0067

-1 2 1.3862 -0.9889 0.0043 1.9989 0.0007 1.4996 0.0160

-1 2 0.5099 -0.9635 0.4128 1.9895 0.0314 0.5977 0.0160

-1 2 0.1876 -0.9816 0.1196 2.0018 0.0085 0.1798 0.0004

-1 3 1.3862 -0.9832 0.0088 2.9977 0.0003 1.5513 0.0336

-1 3 0.5099 -0.9832 0.0090 2.9978 0.0003 0.6738 0.0330

-1 3 0.1876 -0.9834 0.0068 2.9986 0.0003 0.1829 0.0368

20% -1 1 1.3862 -1.2529 0.1137 1.0185 0.0354 1.3841 0.0269

-1 1 0.5099 -1.2343 0.0885 1.0367 0.0570 0.5005 0.0198

-1 1 0.1876 -1.2371 0.0906 1.1437 0.0773 0.1675 0.0111

-1 2 1.3862 -1.0004 0.0018 1.9502 0.0042 1.5414 0.0260

-1 2 0.5099 -0.9783 0.4492 1.9550 0.0939 0.6344 0.0252

-1 2 0.1876 -1.1206 0.2048 1.9973 0.0143 0.1775 0.0006

-1 3 1.3862 -0.9984 0.0014 2.9615 0.0020 1.5747 0.0486

-1 3 0.5099 -0.9983 0.0014 2.9612 0.0020 0.6982 0.0486

-1 3 0.1876 -0.9984 0.0012 2.9610 0.0020 0.1930 0.0484

50% -1 1 1.3862 -1.7530 0.6718 1.0320 0.1640 1.5098 0.1189

-1 1 0.5099 -1.7259 0.5984 1.0387 0.1078 0.5961 0.0756

-1 1 0.1876 -1.8498 0.6460 1.2598 0.1128 0.1656 0.0308

-1 2 1.3862 -0.9787 0.0084 1.7978 0.0415 1.6239 0.0575

-1 2 0.5099 -0.9924 0.1519 1.8299 0.1744 0.6895 0.0488

-1 2 0.1876 -1.5832 0.7106 1.9706 0.0546 0.1724 0.0015

-1 3 1.3862 -1.0040 0.0080 2.8850 0.0130 1.6539 0.0943

-1 3 0.5099 -1.0042 0.0083 2.8850 0.0131 0.7779 0.0950

-1 3 0.1876 -1.0042 0.0081 2.8813 0.0143 0.2204 0.0952

70% -1 1 1.3862 -2.3169 2.0048 1.0475 0.7123 1.6575 0.3404

-1 1 0.5099 -2.2749 1.7876 1.0458 0.2078 0.7879 0.2068

-1 1 0.1876 -2.4500 1.9508 1.2656 0.2095 0.2167 0.1139

-1 2 1.3862 -0.9041 0.0113 1.6427 0.1395 1.6797 0.0957

-1 2 0.5099 -0.9317 0.1364 1.6898 0.2787 0.7874 0.0821

-1 2 0.1876 -2.1881 1.6570 2.0105 0.2272 0.1643 0.0031

-1 3 1.3862 -1.0963 0.0123 2.8115 0.0436 1.7631 0.1332

-1 3 0.5099 -1.0966 0.0121 2.8094 0.0435 0.8868 0.1339

-1 3 0.1876 -1.0962 0.0119 2.8091 0.0442 0.2644 0.2328
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Table 3.2: Estimated MSE for Model 1 with different percentages of censorship, θ
and τ for n = 50

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0089 0.0410 1.0149 0.0200 1.3667 0.0174

-1 2 0.5099 -0.9635 0.4128 1.9895 0.0314 0.5977 0.0160

-1 3 0.1876 -0.9834 0.0068 2.9986 0.0003 0.1829 0.0368

20% -1 1 1.3862 -1.2529 0.1137 1.0185 0.0354 1.3841 0.0269

-1 2 0.5099 -0.9783 0.4492 1.9550 0.0939 0.6344 0.0252

-1 3 0.1876 -0.9984 0.0012 2.9610 0.0020 0.1930 0.0484

50% -1 1 1.3862 -1.7530 0.6718 1.0320 0.1640 1.5098 0.1189

-1 2 0.5099 -0.9924 0.1519 1.8299 0.1744 0.6895 0.0488

-1 3 0.1876 -1.0042 0.0081 2.8813 0.0143 0.2204 0.0952

70% -1 1 1.3862 -2.3169 2.0048 1.0475 0.7123 1.6575 0.3404

-1 2 0.5099 -0.9317 0.1364 1.6898 0.2787 0.7874 0.0821

-1 3 0.1876 -1.0962 0.0119 2.8091 0.0442 0.2644 0.2328

Table 3.3: Estimated MSE for Model 1 with different percentages of censorship, θ
and τ for n = 200

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0045 0.0099 1.0043 0.0049 1.3790 0.0059

-1 2 0.5099 -0.9699 0.3652 1.9966 0.0296 0.4887 0.0077

-1 3 0.1876 -0.9896 0.0012 2.9989 0.0001 0.1863 0.0351

20% -1 1 1.3862 -1.2318 0.0666 1.0052 0.0067 1.3922 0.0124

-1 2 0.5099 -1.0006 0.3767 1.9532 0.0604 0.4839 0.0130

-1 3 0.1876 -0.9983 0.0008 2.9608 0.0016 0.2024 0.0472

50% -1 1 1.3862 -1.7154 0.5374 0.9978 0.0164 1.5643 0.0746

-1 2 0.5099 -1.0113 0.4739 1.8428 0.2802 0.4671 0.0229

-1 3 0.1876 -1.0003 0.0062 2.8819 0.0140 0.2323 0.0811

70% -1 1 1.3862 -2.2411 1.6033 0.9814 0.1464 1.8165 0.2414

-1 2 0.5099 -1.0260 0.3770 1.7209 0.3781 0.4505 0.0369

-1 3 0.1876 -1.0999 0.0112 2.8092 0.0381 0.2644 0.1447
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Table 3.4: Estimated MSE for Model 1 with different percentages of censorship, θ
and τ for n = 500

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0005 0.0039 1.0019 0.0018 1.3821 0.0021

-1 2 0.5099 -0.9742 0.2604 1.9939 0.0226 0.4924 0.0025

-1 3 0.1876 -0.9909 0.0005 2.9989 0.0000 0.1891 0.0350

20% -1 1 1.3862 -1.2280 0.0569 1.0024 0.0026 1.3854 0.0053

-1 2 0.5099 -1.0074 0.3505 1.9497 0.0525 0.4881 0.0038

-1 3 0.1876 -0.9980 0.0006 2.9607 0.0015 0.1967 0.0449

50% -1 1 1.3862 -1.7066 0.5085 0.9922 0.0053 1.5264 0.0608

-1 2 0.5099 -1.4099 0.6564 1.9291 0.1882 0.4772 0.0064

-1 3 0.1876 -1.0000 0.0035 2.8835 0.0134 0.2282 0.0670

70% -1 1 1.3862 -2.2217 1.5160 0.9547 0.0216 1.8614 0.2223

-1 2 0.5099 -1.8905 0.9194 1.9204 0.3276 0.4591 0.0104

-1 3 0.1876 -1.1001 0.0106 2.8115 0.0366 0.2636 0.1347

Table 3.5: Estimated MSE for Model 1 with different percentages of censorship, θ
and τ for n = 1000

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0002 0.0019 1.0015 0.0010 1.3841 0.0007

-1 2 0.5099 -0.9849 0.1186 1.9959 0.0082 0.4999 0.0007

-1 3 0.1876 -0.9919 0.0003 2.9989 0.0000 0.1867 0.0346

20% -1 1 1.3862 -1.2262 0.0531 1.0018 0.0013 1.3850 0.0022

-1 2 0.5099 -1.0174 0.2054 1.9491 0.0160 0.4977 0.0010

-1 3 0.1876 -0.9945 0.0004 2.9607 0.0015 0.1968 0.0436

50% -1 1 1.3862 -1.7010 0.4950 0.9896 0.0032 1.4900 0.0514

-1 2 0.5099 -1.5742 0.7294 1.9700 0.0723 0.4914 0.0023

-1 3 0.1876 -0.9999 0.0016 2.8849 0.0130 0.2277 0.0579

70% -1 1 1.3862 -2.2186 1.4940 0.9492 0.0071 1.8672 0.2183

-1 2 0.5099 -2.1073 1.4128 1.9726 0.1707 0.4803 0.0039

-1 3 0.1876 -1.1005 0.0107 2.8093 0.0363 0.2646 0.1312
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Table 3.6: Estimated MSE for Model 2 with different percentages of censorship, β,
θ and τ for n = 50

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -0.9873 0.0315 1.1326 0.3028 1.4966 0.0732

-1 1 0.5099 -0.9923 0.0246 1.2188 0.5915 0.6098 0.0491

-1 1 0.1876 -0.9933 0.0221 0.8434 0.6737 0.2801 0.0497

-1 2 1.3862 -0.9716 0.0230 2.2221 0.5727 1.4788 0.0545

-1 2 0.5099 -0.9727 0.0218 2.2472 0.4427 0.6140 0.0574

-1 2 0.1876 -0.9670 0.0226 2.0995 0.2324 0.2772 0.0640

-1 3 1.3862 -0.9762 0.0206 3.1247 0.4949 1.4592 0.0485

-1 3 0.5099 -0.9687 0.0221 2.8852 0.3334 0.5669 0.0535

-1 3 0.1876 -0.9671 0.0225 3.1787 0.4238 0.1610 0.0509

20% -1 1 1.3862 -1.2011 0.0821 1.1402 0.2327 1.5695 0.1089

-1 1 0.5099 -1.2048 0.0740 1.2528 0.4414 0.6715 0.0840

-1 1 0.1876 -1.2052 0.0723 1.3449 0.4930 0.3644 0.0860

-1 2 1.3862 -1.1824 0.0599 2.0983 0.3189 1.5415 0.0934

-1 2 0.5099 -1.1843 0.0599 2.1205 0.2692 0.6664 0.0907

-1 2 0.1876 -1.1804 0.0586 2.0452 0.2738 0.3526 0.0894

-1 3 1.3862 -1.1808 0.0580 2.8649 0.3778 1.5026 0.0767

-1 3 0.5099 -1.1811 0.0583 2.6223 0.5994 0.6116 0.0817

-1 3 0.1876 -1.1810 0.0601 3.1194 0.6676 0.2319 0.0781

50% -1 1 1.3862 -1.6563 0.5250 1.1593 0.1906 1.7610 0.2541

-1 1 0.5099 -1.6617 0.4988 1.2928 0.2906 0.7923 0.2182

-1 1 0.1876 -1.6606 0.4922 1.3829 0.3161 0.4819 0.2115

-1 2 1.3862 -1.6261 0.4481 1.8515 0.2643 1.6408 0.2403

-1 2 0.5099 -1.6859 0.4706 1.9086 0.3345 0.7881 0.2260

-1 2 0.1876 -1.6279 0.4409 1.9161 0.4544 0.4771 0.2344

-1 3 1.3862 -1.6240 0.4426 2.3544 0.8892 1.6555 0.2097

-1 3 0.5099 -1.6287 0.4449 2.4061 1.1143 0.8076 0.2146

-1 3 0.1876 -1.6324 0.4487 3.1566 1.2095 0.4604 0.2078

70% -1 1 1.3862 -2.1541 1.5366 1.1919 0.1945 1.8666 0.6575

-1 1 0.5099 -2.1438 1.4441 1.3278 0.3047 0.9274 0.4978

-1 1 0.1876 -1.3407 0.1516 1.3514 0.3818 0.3976 0.1180

-1 2 1.3862 -2.1061 1.3531 1.6466 0.4151 1.9041 0.6903

-1 2 0.5099 -2.2142 1.4675 1.6955 0.6032 0.9708 0.6971

-1 2 0.1876 -2.1112 1.3685 1.5921 0.7597 0.7619 0.7473

-1 3 1.3862 -2.1069 1.3254 2.1534 1.4317 1.8248 0.5368

-1 3 0.5099 -2.1263 1.3539 2.8858 1.5631 0.9778 0.5638

-1 3 0.1876 -2.1208 1.4429 3.1398 1.6925 0.6543 0.5523
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Table 3.7: Estimated MSE for Model 2 with different percentages of censorship, θ
and τ for n = 50

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -0.9873 0.0315 1.1326 0.3028 1.4966 0.0732

-1 2 0.5099 -0.9727 0.0218 2.2472 0.4427 0.6140 0.0574

-1 3 0.1876 -0.9671 0.0225 3.1787 0.4238 0.1610 0.0509

20% -1 1 1.3862 -1.2011 0.0821 1.1402 0.2327 1.5695 0.1089

-1 2 0.5099 -1.1843 0.0599 2.1205 0.2692 0.6664 0.0907

-1 3 0.1876 -1.1810 0.0601 3.1194 0.6676 0.2319 0.0781

50% -1 1 1.3862 -1.6563 0.5250 1.1593 0.1906 1.7610 0.2541

-1 2 0.5099 -1.6859 0.4706 1.9086 0.3345 0.7881 0.2260

-1 3 0.1876 -1.6324 0.4487 3.1566 1.2095 0.4604 0.2078

70% -1 1 1.3862 -2.1541 1.5366 1.1919 0.1945 1.8666 0.6575

-1 2 0.5099 -2.2142 1.4675 1.6955 0.6032 0.9708 0.6971

-1 3 0.1876 -2.1208 1.4429 3.1398 1.6925 0.6543 0.5523

Table 3.8: Estimated MSE for Model 2 with different percentages of censorship, θ
and τ for n = 200

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -0.9975 0.0076 1.0432 0.0508 1.4949 0.0457

-1 2 0.5099 -0.9931 0.0050 2.1399 0.1612 0.5278 0.0150

-1 3 0.1876 -0.9948 0.0050 3.0914 0.3767 0.1960 0.0053

20% -1 1 1.3862 -1.2184 0.0578 1.0546 0.0391 1.5591 0.0627

-1 2 0.5099 -1.2074 0.0497 2.0453 0.1784 0.5500 0.0354

-1 3 0.1876 -1.2136 0.0520 3.0109 0.4479 0.2009 0.0121

50% -1 1 1.3862 -1.6841 0.4919 1.0508 0.0324 1.7042 0.2059

-1 2 0.5099 -1.6779 0.4615 1.7552 0.2382 0.6576 0.1163

-1 3 0.1876 -1.6766 0.4686 3.2734 0.8115 0.2224 0.0480

70% -1 1 1.3862 -2.1785 1.4565 1.0729 0.0386 1.8865 0.5657

-1 2 0.5099 -2.1979 1.4107 1.7406 0.4907 0.9100 0.6038

-1 3 0.1876 -2.0745 1.4551 3.3069 1.3644 0.3202 0.1649
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Table 3.9: Estimated MSE for Model 2 with different percentages of censorship, θ
and τ for n = 500

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -0.9991 0.0030 1.0213 0.0192 1.4821 0.0363

-1 2 0.5099 -0.9965 0.0020 2.0700 0.0835 0.5160 0.0050

-1 3 0.1876 -0.9991 0.0020 3.0740 0.2506 0.1927 0.0009

20% -1 1 1.3862 -1.2221 0.0530 1.0266 0.0141 1.5577 0.0520

-1 2 0.5099 -1.2136 0.0486 1.9730 0.0825 0.5209 0.0180

-1 3 0.1876 -1.2182 0.0503 3.1039 0.2799 0.1925 0.0026

50% -1 1 1.3862 -1.6901 0.4852 1.0175 0.0114 1.6820 0.1835

-1 2 0.5099 1.6655 0.4549 1.7121 0.2106 0.5365 0.0871

-1 3 0.1876 -1.6903 0.4792 3.6376 0.7605 0.1913 0.0147

70% -1 1 1.3862 -2.1960 1.4511 1.0275 0.0138 1.7779 0.4756

-1 2 0.5099 -2.1830 1.3806 1.8256 0.4168 0.8205 0.5505

-1 3 0.1876 -2.0597 1.4116 3.6133 1.0150 0.1972 0.0734

Table 3.10: Estimated MSE for Model 2 with different percentages of censorship, θ
and τ for n = 1000

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -0.9994 0.0015 1.0155 0.0091 1.4791 0.0329

-1 2 0.5099 -0.9977 0.0010 2.0467 0.0361 0.5131 0.0016

-1 3 0.1876 -0.9993 0.0010 3.0462 0.2023 0.1902 0.0003

20% -1 1 1.3862 -1.2222 0.0511 1.0143 0.0068 1.5456 0.0437

-1 2 0.5099 -1.2158 0.0482 1.9247 0.0532 0.5126 0.0082

-1 3 0.1876 -1.2212 0.0501 2.9506 0.2544 0.1901 0.0008

50% -1 1 1.3862 -1.6918 0.4827 1.0070 0.0051 1.6428 0.1636

-1 2 0.5099 -1.6338 0.4504 1.7058 0.1882 0.5107 0.0643

-1 3 0.1876 -1.6942 0.4825 3.6265 0.6135 0.1785 0.0067

70% -1 1 1.3862 -2.1987 1.4508 1.0125 0.0065 1.6283 0.3945

-1 2 0.5099 -2.1631 1.3621 1.8602 0.3632 0.7666 0.4827

-1 3 0.1876 -2.0208 1.3618 3.6828 0.7594 0.1574 0.0278
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Table 3.11: Estimated MSE for Model 3 with different percentages of censorship,
β, θ and τ for n = 50

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0600 0.1161 1.1056 0.1520 1.4230 0.0123

-1 1 0.5099 -1.1278 0.3390 1.1701 0.3741 0.5412 0.0071

-1 1 0.1876 -1.1796 0.3030 1.2324 0.3389 0.2161 0.0063

-1 2 1.3862 -1.0320 0.1133 2.0868 0.1438 1.3981 0.0021

-1 2 0.5099 -1.1100 0.3403 2.1274 0.2725 0.5204 0.0016

-1 2 0.1876 -0.9263 0.2870 2.0545 0.3071 0.1976 0.0015

-1 3 1.3862 -1.0269 0.1049 3.0710 0.1336 1.3904 0.0002

-1 3 0.5099 -1.1046 0.2917 3.0966 0.3204 0.5136 0.0001

-1 3 0.1876 -0.8717 0.2907 2.9738 0.3093 0.1910 0.0001

20% -1 1 1.3862 -1.3044 0.2573 1.1442 0.1967 1.4366 0.0172

-1 1 0.5099 -1.3896 0.5121 1.1939 0.4147 0.5499 0.0105

-1 1 0.1876 -1.4644 0.3673 1.2055 0.3616 0.2248 0.0100

-1 2 1.3862 -1.2551 0.2286 2.0909 0.1821 1.4009 0.0030

-1 2 0.5099 -1.3695 0.4935 2.1339 0.3035 0.5230 0.0022

-1 2 0.1876 -1.4176 0.2609 2.0974 0.2579 0.1999 0.0021

-1 3 1.3862 -1.2505 0.2226 3.0878 0.1768 1.3920 0.0003

-1 3 0.5099 -1.3755 0.4643 3.1287 0.3811 0.5145 0.0002

-1 3 0.1876 -1.3970 0.4720 3.0572 0.2870 0.1917 0.0002

50% -1 1 1.3862 -1.8033 0.9780 1.1835 0.3436 1.4570 0.0283

-1 1 0.5099 -1.8427 1.0686 1.2401 0.4367 0.5728 0.0254

-1 1 0.1876 -1.5691 0.5708 0.9678 0.5603 0.2390 0.0205

-1 2 1.3862 -1.7523 0.9024 2.1217 0.3215 1.4094 0.0058

-1 2 0.5099 -1.8064 0.9203 2.1209 0.3587 0.5304 0.0044

-1 2 0.1876 -1.5267 0.2925 1.8312 0.3113 0.2075 0.0045

-1 3 1.3862 -1.7674 0.8770 3.1216 0.3003 1.3952 0.0007

-1 3 0.5099 -1.7955 0.9072 3.0777 0.3747 0.5173 0.0005

-1 3 0.1876 -1.5207 1.2581 2.7638 0.3551 0.1948 0.0006

70% -1 1 1.3862 -2.3619 2.3418 1.2556 0.5434 1.4884 0.0674

-1 1 0.5099 -2.4410 1.7825 1.2196 0.4867 0.5977 0.0500

-1 1 0.1876 -1.6831 0.8038 0.6328 1.2235 0.2466 0.0348

-1 2 1.3862 -2.3208 2.1627 2.1890 0.4440 1.4252 0.0142

-1 2 0.5099 -2.2274 2.4256 2.0443 0.4050 0.5442 0.0110

-1 2 0.1876 -1.5770 0.4129 1.5151 0.6038 0.2204 0.0099

-1 3 1.3862 -2.3095 2.1225 3.1761 0.4535 1.4020 0.0021

-1 3 0.5099 -2.2525 1.3747 3.0042 0.3106 0.5222 0.0015

-1 3 0.1876 -1.5393 1.2856 2.3707 0.7289 0.1998 0.0019
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Table 3.12: Estimated MSE for Model 3 with different percentages of censorship, θ
and τ for n = 50

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0600 0.1161 1.1056 0.1520 1.4230 0.0123

-1 2 0.5099 -1.1100 0.3403 2.1274 0.2725 0.5204 0.0016

-1 3 0.1876 -0.8717 0.2907 2.9738 0.3093 0.1910 0.0001

20% -1 1 1.3862 -1.3044 0.2573 1.1442 0.1967 1.4366 0.0172

-1 2 0.5099 -1.3695 0.4935 2.1339 0.3035 0.5230 0.0022

-1 3 0.1876 -1.3970 0.4720 3.0572 0.2870 0.1917 0.0002

50% -1 1 1.3862 -1.8033 0.9780 1.1835 0.3436 1.4570 0.0283

-1 2 0.5099 -1.8064 0.9203 2.1209 0.3587 0.5304 0.0044

-1 3 0.1876 -1.5207 1.2581 2.7638 0.3551 0.1948 0.0006

70% -1 1 1.3862 -2.3619 2.3418 1.2556 0.5434 1.4884 0.0674

-1 2 0.5099 -2.2274 2.4256 2.0443 0.4050 0.5442 0.0110

-1 3 0.1876 -1.5393 1.2856 2.3707 0.7289 0.1998 0.0019

Table 3.13: Estimated MSE for Model 3 with different percentages of censorship, θ
and τ for n = 200

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0197 0.0246 1.0349 0.0320 1.3965 0.0036

-1 2 0.5099 -1.0295 0.0666 2.0403 0.0726 0.5120 0.0001

-1 3 0.1876 -1.0626 0.2129 3.0601 0.2190 0.1884 6.6E-06

20% -1 1 1.3862 -1.2499 0.0974 1.0451 0.0410 1.3990 0.0042

-1 2 0.5099 -1.2546 0.1617 2.0435 0.0917 0.5126 0.0002

-1 3 0.1876 -1.3070 0.3730 3.0769 0.2735 0.1887 1.1E-05

50% -1 1 1.3862 -1.7221 0.5953 1.0562 0.0649 1.4093 0.0080

-1 2 0.5099 -1.7445 0.7649 2.0680 0.1651 0.5148 0.0005

-1 3 0.1876 -1.8159 1.0321 3.0866 0.3581 0.1893 2.9E-05

70% -1 1 1.3862 -2.2484 1.7227 1.0774 0.1165 1.4230 0.0178

-1 2 0.5099 -2.2870 2.0699 2.1039 0.2976 0.5174 0.0012

-1 3 0.1876 -2.2335 1.8800 3.0342 0.3746 0.1904 9.2E-05
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Table 3.14: Estimated MSE for Model 3 with different percentages of censorship, θ
and τ for n = 500

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0073 0.0094 1.0149 0.0121 1.3894 0.0010

-1 2 0.5099 -1.0138 0.0237 2.0172 0.0261 0.5108 2.0E-05

-1 3 0.1876 -1.0128 0.0690 3.0239 0.0710 0.1879 1.1E-06

20% -1 1 1.3862 -1.2327 0.0679 1.0196 0.0151 1.3908 0.0014

-1 2 0.5099 -1.2425 0.0936 2.0226 0.0337 0.5110 3.2E-05

-1 3 0.1876 -1.2645 0.1693 3.0370 0.0958 0.1880 1.9E-06

50% -1 1 1.3862 -1.7086 0.5310 1.0254 0.0246 1.3935 0.0030

-1 2 0.5099 -1.7171 0.5871 2.0325 0.0544 0.5117 0.0001

-1 3 0.1876 -1.7501 0.7707 3.0498 0.1662 0.1883 4.7E-06

70% -1 1 1.3862 -2.2272 1.5650 1.0408 0.0417 1.4005 0.0069

-1 2 0.5099 -2.2431 1.7028 2.0470 0.1017 0.5128 0.0002

-1 3 0.1876 -2.2404 2.0961 3.0808 0.3015 0.1887 1.4E-05

Table 3.15: Estimated MSE for Model 3 with different percentages of censorship, θ
and τ for n = 1000

C β θ τ β̂ MSE(β̂) θ̂ MSE(θ̂) τ̂ MSE(τ̂)

0% -1 1 1.3862 -1.0052 0.0047 -1.0052 0.0060 1.3876 0.0003

-1 2 0.5099 -1.0042 0.0117 2.0068 0.0130 0.5103 4.8E-06

-1 3 0.1876 -1.0130 0.0305 3.0139 0.0316 0.1878 3.0E-07

20% -1 1 1.3862 -1.2312 0.0590 1.0105 0.0074 1.3882 0.0005

-1 2 0.5099 -1.2363 0.0732 2.0169 0.0166 0.5105 7.6E-06

-1 3 0.1876 -1.2336 0.1044 3.0206 0.0425 0.1878 4.9E-07

50% -1 1 1.3862 -1.7048 0.5080 1.0174 0.0124 1.3890 0.0010

-1 2 0.5099 -1.7015 0.5308 2.0103 0.0262 0.5108 2.1E-05

-1 3 0.1876 -1.7147 0.6131 3.0293 0.0716 0.1879 1.1E-06

70% -1 1 1.3862 -2.2174 1.5090 1.0211 0.0202 1.3912 0.0026

-1 2 0.5099 -2.2340 1.5822 2.0294 0.0465 0.5114 0.0001

-1 3 0.1876 -2.2313 1.7622 3.0409 0.1352 0.1882 3.1E-06
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3.6 Discussion

Table 3.1 shows the results for Model 1 under different percentages of censorship

when the sample size is 50. In this table, the estimated results are obtained by

using different values of τ when β and θ are kept fixed. At each level of censorship,

we observe that the MSE(θ̂) increases as the value of τ decreased. It is also seen

that the MSE(τ̂) decreases as the censoring level decreased. Tables 3.2-3.5 shows

the ML estimated results for Model 1 under different percentages of censorship with

different values of θ and τ for sample sizes 50, 200, 500, and 1000, respectively. It is

observed that for each sample size MSE(τ̂) decreases as the censorship decreased.

From these tables, we also notice that at each level of censorship the MSE(τ̂)

decreases as n increased.

For Model 2, Table 3.6 presents the ML estimates for the parameters β, θ,

and τ along with their MSE. The results are obtained by using four different

levels of censorship with a fixed sample size n = 50. It can be seen that when

the censorship percentage increases, there is greater variability, therefore MSE(τ̂)

increased, although here we do not see any increase or decrease in the MSE(θ̂) due

to τ . Tables 3.7-3.10 show the ML estimated results for Model 2 under different

percentages of censorship with different values of θ and τ for sample sizes 50, 200,

500, and 1000 respectively. These tables provide evidence that when the sample

size ’n’ remains fixed and the censorship percentage increases, greater variability

occurs, leading to an increase in the MSE. Conversely, by increasing the sample

size while maintaining a fixed censorship percentage there is greater accuracy and

the MSE decreased.

Table 3.11 displays the results for Model 3 with varying percentages of censorship

while keeping the sample size fixed at 50. The estimated results in this table are

obtained using different values of τ , while β and θ remain constant. The table

indicates that the inclusion of τ does not result in any observable change in the

MSE(θ̂). However, an increase in the percentage of censorship levels causes an

increase in MSE. Tables 3.12-3.15 list the estimated results for Model 3 having

sample sizes 50, 200, 500, and 1000, respectively. It can be seen that when increasing

sample size n, and fixing the censorship percentage, MSE(τ̂) decreased. When

the sample size n is fixed and the censorship percentage increases, the MSE(τ̂)

increased.

3.7 Real Data Analysis

In this section, we explore clinical data from a placebo-controlled randomized

trial of gamma interferon in chronic granulotamous disease (CGD) (Fleming and
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Harrington, 2013) to show the practical use of the proposed estimation process.

The CGD is an unusual inherited disorder of the immune system. The specialized

cells (neutrophils and monocytes) that are meant to eliminate harmful bacteria

and fungi, do not function as they should in patients with CGD. As a result, those

affected are more susceptible to serious and life-threatening bacterial and fungal

infections, even though they can fight viruses normally. Additionally, they carry

out chronic inflammatory signs, frequently of a granulomatous type. Although

the exact amount of CGD cases is unknown. Song et al. (2011) estimated that it

affects 8.5 out of every million newborns in the United Kingdom and Ireland.

The CGD data set is available in the R package “survival”. The response

variable is the time to the first infection (days). The covariate we consider here is

gamma interferon from treatment/control. According to Group* (1991), there is

reason to believe that gamma interferon has an important function in the treatment

of CGD patients. In the dataset variable, Status is a censoring indicator that holds

a value of 1 for uncensored and 0 for censored.

The proposed models were fitted to the treatment group by using the proposed

estimation methods. Figure 3.1 presents the Kaplan-Meier estimate of the survival

probability along with their confidence interval, the vertical lines on the Kaplan-

Meier curve indicate censored observations. Arenas et al. (2021) detected that a

change point occur on the 274th day. Figures 3.2, 3.3, and 3.4 present fitted survival

functions for Model 1, Model 2, and Model 3, respectively, all proposed models are

effective in estimating the change point. Table 3.16 shows the parameter estimates

for the proposed models. The correlation between survival probabilities of the

Kaplan-Meier method and Model 3 is higher (0.99241) than Model 1 (0.99067) and

Model 2 (0.97882), which indicates better fitting.

Table 3.16: Parameter estimates for CGD data

β̂ θ̂ τ̂

Model 1 -6.1802 0.2104 274

Model 2 -6.7760 0.9020 274

Model 3 -6.1664 0.0572 274
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Figure 3.1: Kaplan-Meier estimated survival functions for treatment group
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Figure 3.2: Model 1 estimated survival functions for treatment group and estimated
change point
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Figure 3.3: Model 2 estimated survival functions for treatment group and estimated
change point
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Figure 3.4: Model 3 estimated survival functions for treatment group and estimated
change point
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Chapter 4

Conclusion and Recommendations

Hazard functions in survival analysis measure the risk of failure at a given time. A

change point in the failure rate is essential for identifying important population

subgroups. For multiple change point scenarios, dividing the data into many

subgroups may result in limited observations and increased variability in estimated

results. Such multi-group results could also be overfitted. Therefore, a single

change point, or equivalently two subgroups analysis, is still valuable for many

scientific applications.

This study discussed the maximum likelihood method to estimate the change

point in the Cox proportional hazard model. Three hazard models were analyzed,

with the first two models having non-closed mathematical forms for the regression

parameters β and θ. In contrast, the third model provides closed-form MLEs

for these parameters. The simulation study provides evidence supporting the

consistency of the estimator τ̂ for the change point τ . As the sample size n increases,

the MSE of the estimator τ̂ decreases across all hazard models. Moreover, higher

censorship percentages lead to an increase in the MSE(τ̂), which is attributed to

the loss of information by censoring.

The CGD dataset is utilized as an authentic real-life instance of data. We

apply the proposed models to study the group that received gamma interferon

treatment and conclude that all proposed models are effective in estimating the

change point. However, the survival function of Model 3 closely resembles the

Kaplan-Meier survival function.

4.1 Open Studies

The research work has several limitations. Firstly, the study focuses on estimating

a single change point, but there is potential for extension to explore two or more

change points. Additionally, the covariate being studied is currently limited to a
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dichotomous variable, but it could be expanded to include continuous or multinomial

variables. Moreover, there is scope for further exploration by incorporating other

hazard models such as the accelerated failure time (AFT) model and Frailty models.

Also, other estimation methods can be studied for the discussed models.
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