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Abstract

Anticipating how rivers will behave is crucial in overseeing water resources, especially as

the climate changes rapidly. This forecasting holds considerable economic importance, as

it aids in managing water for farming, preventing water scarcity, and minimizing potential

flood destruction. The major rivers within the Indus River system depend on the melting

of snow and glaciers. Their water levels shift significantly during different times of the

year. Researchers are engaged in a study to either examine or predict how much water will

enter the Indus River. The input of water, known as inflow, plays a vital role in how we

manage water resources. Therefore, being able to accurately predict this inflow is essential

for effectively handling water resources. For inflow forecasting and modeling, we used a

comparative study of classical and deep learning techniques. This study uses 5 years of

data on Indus Tarbela Inflow ranging from January 2018 to September 2022. The data

is collected from the Water and Power Development Authority (WAPDA). The first four

years of the data is utilized for the estimation of the models and its subsequent one year is

used for one-month-ahead out-of-sample forecast purpose. In this research work, we apply

the, five different forecasting techniques that have been used for forecasting one-month-

ahead INdus Tarbela Inflow. These include the AutoRegressive Integrated Moving Average

(ARIMA), Seasonal AutoRegressive Integrated Moving Average(SARIMA), Autoregressive

neural network (ARNN), Seasonal-Naive, and Long Short-Scond Memory (LSTM). Three

error measures have been used for assessing the forecasting accuracy of the above models

that includes, mean absolute percentage error (MAPE), root mean square error (RMSE),

and mean absolute error (MAE). The findings indicate that the LSTM approach is effective

in forecasting Indu’s table inflow with lower forecasting measures.
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Chapter 1

Introduction

Hydrology is the scientific study of the distribution, movement, and properties of water in

the atmosphere and on the earth’s surface. It includes investigating a range of water related

phenomena, such as precipitation, evaporation, snow-melt, runoff, groundwater flow, and

how water behaves in rivers, lakes and oceans. Forecasting future hydrological data uses

hydrological time series analysis to identify prospective laws of hydrological process change

based on existing knowledge (Nguyen et al., 2020).

Accurate forecasting of hydrology is becoming more and more necessary due to significant

climate change in order to manage and plan water resources, especially hydroelectric projects.

For optimal resource allocation, effective operations, and risk mitigation for water-related

activities, the purpose of solving engineering issues, such as the building of flood protection

structures for metropolitan areas and the design and development of agricultural accurate

estimates are crucial, For these planning strategies the volume of input into the dam is a

significant factor (Kim et al., 2022).

Some of the most well-known scientific problems in modern hydrology are climate vari-

ability, change, and its effects on the water regime. The unavoidable force of climate change,

which is transforming our globe, has ushered in a new era of floods when the risk of flooding

is amplified by changing weather patterns and rising temperatures. Since flooding is the most

common natural disaster, forecasting at an early stage would prevent potential catastrophes

and allow for the timely set up of rescue efforts.

However, structural (dams, reservoirs, and barrages) and non-structural (disaster pre-

vention, response systems, and floodproofing) approaches can be used to study and control

1
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water behavior. As water from dams and embankments is used for a variety of purposes.

The dam, which performs numerous tasks like guaranteeing irrigation system stability, facil-

itating power generation, and enabling water distribution for community advancement, is a

key component of water resource management. Planning and management of water resources

are improved by anticipating inflow data (Musarat et al., 2021).

If water is released to the upper river, the lower streams will fill quickly and there are

more chances of floods due to overflow Pradeepakumari and Srinivasu (2019). A methodical

approach could prevent overflow and lessen the likelihood of flooding or diminish the overflow.

High flow can be decreased by lakes, canals, reservoirs, and ponds. If predetermined canals

are on the river they decrease the level of flow with the help of flood walls, filtering the

canal can decrease the crest levels and the path of flood can prevent the outflow. To change

the overflow of reservoirs or the crest flow of streams, systematic approaches should be

used. If water inflow exceeds the barrages’ predetermined limits, a flood may result, which

could cause extensive damage. If flood information is available, accurate measurements can

be made using frequency distributions for individual flood locations. Inflow levels have a

significant role in flood forecasting. Pakistan is plagued by more than 150 natural disasters,

most of which are floods. The flood year was triggered by a record-breaking amount of rain

that fell during the monsoon season in 2010. River flow forecasting plays a critical role in

water resource management.

According to Wang et al. (2018), river flow forecasting is crucial for flood control that

occurs in basins, and hydropower systems. Since the dawn of human civilization, the flow

of numerous rivers, including the Indus, has changed. In the early 20th century, the Indus

river played a crucial part in the evolution of modern technology. An essential deadline for

rivers is posed by industrialization and the associated human activity. Bridge construction is

a crucial endeavor for the advancement of human civilization. The inherent traits and river

structure are negatively impacted by these activities. For all of water needs, Pakistan firmly

relies on the Indus river system. Construction of tube wells and dams has decreased the flow

of the Indus river (Khan et al., 2021). Most of the time, it is unpredictable and uncertain

how river water will behave. However, using organized procedures like dams, barrages, and

rivers, water performance may be monitored and controlled. Using forecasting techniques,

it is possible to calculate the river flow at a specific time based on historical data, which
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can help with timely decisions and prevent natural disasters. Predicting a river’s water flow

directly relates to developmental issues.

Predicting a river’s water flow directly relates to developmental issuesMusarat et al.

(2021). The Indus river’s primary branches are largely dependent on glaciers and snowmelt.

These sub-rivers’ flow varies greatly during the entire year. Due to the rainy season, there

is a greater risk of flooding throughout the summer, and the water output is lower in the

winter and higher in the middle of the year. The Indus and its sub-rivers receive water from

hilly areas which is why there are more chances of overflow. On the other side, water is

dropping into the river by monsoon rain. The level of the mainstream of the Indus is at

its lowest in the winter season. After that, the level starts rising slowly until mid-march.

The level starts overflowing in the mid-summer (Cook et al., 2013). Stochastic models

like the ARIMA (AutoRegressive Integrated Moving Average) and ARMA (AutoRegressive

Moving Average) models are commonly utilized in time series forecasting. These models

find significant application in hydrology, particularly in predicting river flows (Adnan et al.,

2017). The development of forecasting models like ARIMA, SARIMA, Seasonal naive, Neural

networks, and LSTM in recent years has opened up new possibilities for improving the

precision and dependability of predictions in hydrological systems.

1.1 Problem Statement

The Indus river contributes 90 percent of the country’s food production, as it is full of natural

resources that are useful for human beings in many aspects. The main water supply for the

nation’s irrigation systems is the Indus river. The Indus river has played a significant role

in the modern world. Due to global warming and other factors, temperatures are rising,

which causes glaciers to melt quickly and alters the flow of the Indus river every day. Due to

the intense monsoon rains, river flow increases in the summer, which causes floods. Floods

cause extensive damage and pose a threat to both human life and Pakistan’s economy. To

solve these issues, many strategies are used to forecast future observations or take preventive

action for the Indus river to forecast its inflow in the future. The flow must be decreased by

building dams, lakes, and sub-rivers. To do it, we utilize a variety of statistical methodologies

to forecast the Indus flow.
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1.2 Research Objectives

• To evaluate different statistical models forecasting abilities for Indus river inflow.

• To propose an efficient model to forecast the inflow of the Indus river.

• To compare different statistical techniques for forecasting problems.

• To recommend models that have superior forecast accuracy.

1.3 Contributions

• This study compared the parametric and non-parametric models to propose an efficient

model for short-term ahead Indus river water inflow.

• In addition, a comprehensive literature review based on short-term ahead forecasting

is also given in the work.

1.4 Thesis Overview

The thesis summary is organized as follows:

• Chapter 2 presents a review of the literature on forecasting models and approaches for

the Indus river, including traditional regression, time series, and artificial intelligence

techniques.

• Chapter 3 provides basic information about time series data and a detailed description

of different types of statistical models used to forecast Indus river inflow.

• Chapter 4 includes the application of statistical models to the Indus river inflow.

• Chapter 5 contains results drawn from the study and provides concluding remarks.



Chapter 2

Literature Review

Adnan et al. (2017) used two time series models to forecast the monthly streamflow of

Doyian station: the Autoregressive Moving Average (ARMA) model and the Autoregressive

Integrated Moving Average (ARIMA). This study employed monthly streamflow data from

1974 to 2010. The models were trained with data from the first 28 years, and forecasting was

done with data from the last 7 years. Time series model accuracy in forecasting is measured

by comparing the root mean square error (RMSE), mean absolute percentage error (MAPE),

and Nash efficiency (NE). Because it allows time series to become stationary, the ARIMA

model outperforms the ARMA time series models in forecasting and training.

To predict monthly discharge at Hit station on the Euphrates River in Iraq, (Shathir

and Saleh, 2016) evaluates seven ARIMA family models. 480 observations were examined

between October 1932 and September 1972 using IBM SPSS statistics 21. Statistical tests

having a 95 percent significant probability, such as the T-test and F-test, were used to detect

changes in mean and variance. The model with the lowest error and the best agreement

between observed and anticipated discharge was (2,0,1)(0,1,1).

Pini et al. (2020) conducted a study that employed many machine learning approaches

and tried to predict water input to Lake Como in Italy. For various days, one-day to three-

day forecasts are given. Three statistical measures are used to evaluate these models: MAE,

RMSE, and Nash-Sutcliffe Efficiency Factor. The experimental results reveal that artifi-

cial Neural Network (ANN) outperforms Support Vector Regression and Random Forest for

streamflow prediction with MAE and RMSE and that ANN outperforms the other models,

which may be due to ANN’s ability to learn the non-linear pattern of the data.

5
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For the planning and operation of water resource systems, particularly hydrologic com-

ponents, future event forecasting is essential. Kisi and Kerem Cigizoglu (2007) used ANN

technology to examine both long- and short-term continuous and irregular daily streamflow

forecasting approaches. Three ANN techniques were used to analyze continuous and inter-

mittent river flow data from two Turkish rivers: feed-forward back propagation (FFBP),

generalized regression neural networks (GRNN), and radial basis function-based neural net-

works (RBF). The ANN training data was successfully prepared using the k-fold partitioning

method. In terms of performance criteria, RBF beats other ANN approaches and time series

models. However, FFBP had limitations, such as local minimum problems and negative flow

generation.

Valipour et al. (2013) examined models such as ARMA, ARIMA, dynamic ANN, and

static autoregressive artificial neural network, the research intends to anticipate the inflow

of the Dez dam reservoir. The model was trained using 42 years of statistics, and it was

forecasted using the last 5 years. In the buried layer, 17 neurons were used, as well as radial

and sigmoid activity functions. In forecasting inflow, the dynamic ANN model with sigmoid

activation component outperformed the static model. The ARIMA model outperformed

the ARMA model because it converts time series to stationary data. Static and dynamic

ANN with an activity sigmoid activation function, on the other hand, forecasted input from

previous 60 months.

Reza et al. (2017) studied three stations in Malaysia’s Bukit Merah watershed, the eval-

uation assessed the efficacy of both linear and non-linear methodologies for modeling time

series data. Based on MAPE, RMSE, and R2, the performance evaluated. The findings

demonstrated that streamflow estimation performed well by using both ARIMA and ANN

approaches but ANN performs superior with short-memory data and is more adaptable to

inconsistent data, and that ARIMA is appropriate for long-term time series analysis. Addi-

tionally, ANN is more adaptable and adept at recognizing data patterns than ARIMA.

In the study, Mohammadi et al. (2005) anticipated spring inflow to the Amir Kabir

reservoir of Iranian Karaj river basin in the study. Techniques such as ANN, ARIMA time

series, and regression analysis were used. Models were trained or calibrated on 25 years of

observable data before being tested for 5 years. Three criteria were used to assess the forecast

model’s performance: average percentage error, average seasonal deviation, and RMS error
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between observed and calculated inflows. The results revealed that the models’ respective

correlation coefficients for RA1, RA2, RA3, ARIMA, and ANN were 0.545, 0.844, 0.711,

0.475, and 0.891 during the verification period. The ANN model outperformed other models

in terms of errors for data spanning thirty years.

Fashae et al. (2019) compared ANN and ARIMA models to estimate river Opeki discharge

from 1982 to 2010. The best predictor was then used to forecast River Opeki discharge from

2010 to 2020. The correlation coefficient (r), RMSE, and projected data were used to assess

the efficacy of the two models (ARIMA and ANN). While ANN’s coefficient of correlation

was 0.93 and its RMSE was 15.06, ARIMA’s was 0.97 and its RMSE was only 0.57. The

results revealed that, when compared to the ANN model, the ARIMA model appeared to

outperform it. When the RMSE was looked at in the near run, ARIMA beat the ANN

model. The study findings revealed that the ARIMA model outperformed the ANN model,

especially when other parameters (such as meteorological data) were scarce.

Sultana and Sharma (2018) conducted a study on Swine flu, which is a respiratory illness

that affects pigs’ respiratory systems as well as other bodily functions. It was brought on

by influenza viruses. This study used a range of time series forecasting techniques, including

Box-Cox transformation, exponential smoothing, seasonal näıve, and neural networks, to

estimate future Swine flu incidence in India. The applied models outcomes were compared

using errors such as Mean Error, Mean Absolute Error, Root Mean Square Error, Mean

Absolute Scaled Error, and Auto Correlation Function. Data from the integrated disease

surveillance program were collected from 2010 to 2017. When they analyzed the final data,

they discovered that the neural network forecasting model offered the best result among the

others, with an accuracy of 98.4%.

Using historical data from 1961 to 2017, Katušić et al. (2022) analyzed the precision

of eight data-driven approaches for forecasting future weather patterns in central Croatia.

Seasonally naive, ARIMA, Error-Trend-Seasonality (ETS), Exponentially Smoothed State

Space Model with Box-Cox Transformation (TBATS), DHR, NNAR, SVR, and LSTM were

all included in the evaluation. In terms of accuracy in forecasting, the results showed that

SVR is the best technique, followed by DHR and NNAR. While NNAR forecasts precipitation

better, DHR forecasts temperature and air pressure better. Furthermore, incorporating

oscillation indices as additional predictors improved the prediction accuracy of SVR, DHR,
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and NNAR methods.

Pala et al. (2019) used a dataset comprised of 36-month EMF readings. In addition to

the mean, naive, seasonal naive, drift, STLF, and TBATS basic models, more sophisticated

ANN models like as NNETAR, MLP, and ELM were used for forecasting in the R software

environment. To measure the accuracy of the models, metrics such as RMAE and MAE

were used. When both MAE and RMAE performance measurements were combined, Sea-

sonal Naive from the standard functions performed best; for neural network functions, the

NNETAR function performed best. NNETAR, MLP, and ELM are examples of ANN al-

gorithms with lower RMAE average values than the other traditional methods. This result

demonstrated that ANN algorithms outperformed conventional methods when the dataset

is divided for training and testing operations by 84% and 16%, respectively, as opposed to

70% and 30% Overall, the top performance values were provided by the NNETAR, Seasonal

Naive, MLP, STLF, TBATS, and ELM models.

To increase forecast accuracy,Cheng et al. (2015) suggested a hybrid forecasting system

that combined SVM and ANN. The approach forecasts reservoir monthly inflow data using

ANN and SVM, with the processed predictive values chosen as input variables for more

accurate forecasting. The monthly inflow projections of the Xinfengjiang reservoir were

analyzed from 1944 to 2014 using the models: ANN, SVM, and the hybrid method. The

hybrid technique outperformed ANN and SVM on five statistical variables, making it a

suitable tool for reservoir dispatching and long-term operation.

Yadav and Sharma (2018), provided numerous forecasting tactics for the Bombay Stock

Exchange’s SENSEX (also called the BSE 30 or simply the SENSEX), BSE SENSEX using

forecasting models such as ARIMA, BoxCox, Exponential Smoothing, Mean Forecasting,

Naive, Seasonal Naive, and Neural Network, and then compared their mean errors to identify

the most effective approach. On the Bombay Stock Exchange’s (BSE) SENSEX, the analysis

was conducted. When the mean error of the two models was compared to the mean error of

the other models, the findings of this study showed that exponential smoothing and neural

networks offer the best results.

Kabbilawsh et al. (2022) compared four univariate time-series forecasting methods for

predicting rainfall time series in Kerala, India: HK-SARIMA, NSTF, YJNSTF, and SN

approach. The difference in rainfall features and the usefulness of the Yeo-Johnson trans-
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formation in enhancing forecast accuracy were examined using the rainfall time series of 18

stations in Kerala, India, from 1981 to 2013. To evaluate the effectiveness of each model,

the following three error statistics were computed: RMSE, MAE, and NSE. In the Western

lowlands and Eastern highlands, respectively, models HK-SARIMA and YJNSTF performed

admirably. Eight of the twelve stations in the Central Midlands had favorable performance

indicators for the HK-SARIMA model. so the conclusion was that the HK-SARIMA mod-

els were more accurate at predicting the monthly rainfall at the stations distributed across

Kerala’s various geographical regions.

The River flow was predicted by Tadesse and Dinka (2017) using GRETL statistical

software from 1960 to 2016. Stationarity was confirmed using unit root and Mann-Kendall

trend analysis. Different SARIMA models were compared based on seasonal differences in

correlogram properties. For predicting river flow, the SARIMA (3,0,2)(3,1,3)12 model was

chosen since it performed the best because it had low values of AI and HQ and had a pattern

that was similar to actual mean monthly flows. The information offered to water resource

managers and decision-makers facilitates the development and management of the Waterval

River and Vaal Dam reservoir in the Olifant basin. Future research should compare SARIMA

model forecast accuracy to that of computational intelligent forecasting approaches.

The ARIMA model with seasonal parameters was used by Selvi et al. (2019) to anticipate

inflow series at the Palar-Porandalar dam in Tamil Nadu. The prediction and modeling

process used the dam’s monthly inflow data from 2003 January to 2017 December as the data

source. The stationarity of the data set was confirmed using Mann-Kendall’s trend test along

with additional stationarity tests. Different models were found and their parameters were

optimised using the Correlogram display. The residuals were then diagnostically assessed

using the Autocorrelation plot and Ljung Box test. The best model was chosen based on the

lowest AIC, BIC, RMSE, and Theil’s U statistic values. The statistic value of the SARIMA

(0, 0, 1) (1, 0, 2)12, value of ’U’ was 0.8497*, which was less than one, indicating that the

model was more accurate in predicting future behavior. As a result, the SARIMA (0, 0, 1)

(1, 0, 2)12 model was best one to use for forecasting.

Joshi and Tyagi (2021) studied the seasonal Naive, seasonal triple exponential smoothing,

and seasonal ARIMA models which were used to estimate rainfall in Bengaluru, Karnataka,

India, using monthly data from January 2009 to December 2018. To compare the forecast
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accuracy of these models, various measurements based on forecast errors and residual plots

were used. Seasonal ARIMA surpassed the seasonal Nave and seasonal Holt-Winter’s models,

and ARIMA (0, 0, 2)(1, 1, 1)12 was the best-fitting SARIMA model, according to the

empirical results. The best SARIMA model was also used to estimate rainfall in Bengaluru

for the next three years (2019, 2020, and 2021), and it showed that rainfall was likely to

decrease in most months, with the exception of May and June, over those three years. This

was not good news for the government of Karnataka because Bengaluru already faces severe

water shortage issues. Making rainwater collection plans, urban water management plans

and other pluralistic water resource related tasks could all benefit from this study.

For one-month-ahead flow forecasting at the Kalabeili gauging station in Xinjiang, China,

Abudu et al. (2010) examined the performance of time series and Jordan-Elman ANN mod-

els. When employing earlier flow conditions as predictors, the ARIMA and SARIMA models

performed similarly to Jordan-Elman ANN models. It made sense to choose ARIMA mod-

eling for improved water and environmental management since it was simple to use and

accurately captures the stochastic nature of streamflow processes. The effectiveness of ANN

and time series models, however, might be attributed to the use of solely prior flows as pre-

dictors. While ANN models might easily incorporate different factors, time series modeling

might be difficult to do with additional predictive variables like snowfall, precipitation, and

temperature data. The models in this study were only applicable to the study basin and

because the forecasting models utilized in this work were limited to the study basin and these

specific conditions, more research was needed to uncover predictors and improve precision.

Mohamed (2021) studied monthly flow at Malakal station, South Sudan, and was pre-

dicted and modeled using SARIMA linear stochastic models. Forecasting monthly streamflow

for the White Nile River at Malakal station was critical for Sudanese and South Sudanese

water resources projects, such as the Jabal al Awliya dam operation. The investigation relied

on monthly flow data spanning the years 1970 to 2013. The original series analysis demon-

strated an annual seasonal pattern. The results of the PP and ADF tests on the flow of water

series show that it was non-stationary. Before constructing the model, the non-stationarity

was eliminated by applying first-order seasonal differencing (with a twelve-month interval).

Forecast accuracy was assessed using RMSE, MAE, R2, NSE, and the Theil inequality co-

efficient (TIC). The model had been found to have reduced MAE and RMSE values. The
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R2 score of 0.869 and the NSE value of 85.3% indicated the model’s performance. The value

of TIC was discovered to be 0.048, indicating that it was an exact match. The actual flow

values were discovered to be very close to predicted values. Finally, this demonstrated that

the previously found SARIMA (1,0,1)(0,1,1)12 model was adequate.

Gelažanskas and Gamage (2015) examined data on household hot water usage was an-

alyzed. To create a demand-side control plan depending on individual residential property

projections. They investigated several forecasting methods, including seasonal decompo-

sition, SARIMA, and ES. These models surpassed the traditional models (mean, naive,

and seasonal naive), and their performance measurement values were greater. The findings

demonstrated that the accuracy of forecasting was significantly influenced by seasonal de-

composition. Strong daily and weekly usage trends were found in the study’s analysis of

aggregate data and water consumption profiles for ninety-five homes. Forecasts for the next

24 hours were generated by using approximated exponential smoothing, ARIMA, and sea-

sonal decomposition models. ”STL and ETS(A,N,N)” and ”STL and ARIMA(p,d,q)” were

the models that perform best.

Forecasting stream flows for miniature rivers is essential but difficult due to their lower

volume. Hu et al. (2020) used LSTM, a deep learning model, to present a unique solution for

time-series data. They obtained precipitation data from 11 sites and stream flow data from

a station in Tunxi, China, to anticipate 6 hours in the future. They assessed the accuracy

of the predictions using RMSE, MAE, and R2 measures. The LSTM model outperformed

the SVR and MLP models, with an RMSE of value equal to 82.007, a 27.752 value of MAE,

and an R2 of 0.970. To examine the influences on the effectiveness of the LSTM model, the

researchers ran extensive tests.

Xu et al. (2020) evaluated the effectiveness of LSTM networks in the Hun and Upper

Yangtze river basins, concentrating on daily and 10-day average flow projections. The study

demonstrated that because of precipitation and flow magnitudes, the non-linear transforma-

tion was required to improve efficiency; however, utilizing a completely linked layer with an

activation function could lower learning efficiency. To balance learning efficiency and stabil-

ity, batch size and LSTM cell number should be carefully adjusted. The LSTM network beats

many hydrological models in terms of Nash-Sutcliffe Efficiency, coefficient of determination,

and relative error, demonstrating its effectiveness in learning difficult hydrological modeling



Chapter 2. Literature Review 12

processes.

Fang et al. (2021) used a sequence-to-sequence prediction model to present a multi-zone

indoor temperature forecast model LSTM-based method to save energy in buildings with

accurate indoor temperature forecasting while occupant comfort was not sacrificed. For

multi-step forecasting, a sequence-to-sequence (seq2seq) model based on LSTM was devel-

oped. Several criteria were employed to evaluate the model’s ability to forecast out-of-sample,

and a custom score was provided to take into account unique features of indoor temperature

with minor daily variations. The model performed better in short-term forecasting tests as

compared to Prophet and seasonal Nave models. A cross-series methodology for learning was

utilized for multi-zone indoor temperature estimation, and intervals for predictions using the

Monte-Carlo dropout technique were used to quantify parameter uncertainty.

Costa Silva et al. (2021) suggested an ensemble method for predicting water flow at

the Jirau Hydroelectric Power Plant (HPP) in Brazil using recurrent neural networks. The

model’s predictive power was evaluated in terms of RMSE and MAE, and its performance

was contrasted with that of individual LSTM models and the statistical model employed

by the Jirau HPP. The effectiveness of the examined models was compared in five different

situations. In four out of five instances, the ensemble LSTM model beat the statistical model

and demonstrated greater accuracy than other individual LSTM models. This method could

be utilized to work with the Jirau HPP for effective energy production and control and was

promising for water flow predictions based on river tributaries.

In this study Atashi et al. (2022) examined time series forecasting’s accuracy as well as

focusing on water levels for flood warning systems. It examined SARIMA, RF, and LSTM

as three flood forecasting methodologies for the Red River of the Northern and discovered

that the LSTM approach outperformed SARIMA and RF methods in terms of results and

accuracy of prediction performance. The findings demonstrated that SARIMA was efficient

for modeling nonlinear data whereas LSTM was more accurate when modelling linear data.

LSTM surpassed RF and SARIMA in all prediction times, with RMSE values that were

77.22% and 78.70% lower, respectively, according to experimental results. In terms of LSTM

model, the RMSE difference between the RF and SARIMA estimated had been greatly

reduced at the Drayton and Grand Forks stations.

In order to predict discharge at the East Branch of the Delaware River up to seven days
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in advance, Mehedi et al. (2022) developed an LSTM neural network regression model. A

comparative analysis using predictions from CNN and MLP were also offered to evaluate

the LSTM’s performance. The overall distribution of the projected values of discharge from

LSTM, CNN, and MLP were substantially equal to the observed data, indicating that all

three methods functioned satisfactorily. However, when it came to predicting discharge

based on historical data, the LSTM strategy performed better than the CNN and MLP-

based systems. The LSTM algorithm’s performance indicator, RMSE, was 151.52 ft3/s,

compared to CNN and MLP’s 235.74 ft3/s and 489.07 ft3/s, respectively, and a MAPE value

of 0.92%, 2.17%, and 2.95%. The model’s performance could be enhanced by repeating

iterations or increasing the number of epochs. However, after 100 epochs, LSTM surpassed

all other algorithms with the least amount of error.

Parasyris et al. (2022), produced Meteorological predictions by employing techniques like

SARIMA, as well as AI approaches like LSTM neural networks and even hybrid amalga-

mations of both methodologies. These approaches used a range of meteorological variables,

temperature, relative humidity, etc, unlike the singular focus of SARIMA. These factors

were divided into those that are seasonal and those that have stochastic behavior, such as

air direction and velocity. To assess the predictive forecast capability, established methods

like climatological forecasts and persistence models were employed as benchmarks. Among

the methods considered, the hybrid approach excelled particularly in predicting temperature

and wind speed, with SARIMA following suit. For humidity forecasts, LSTM outperformed

the rest, a trend that holds even after refinement.

Many applications require local temperature forecasts for up to 24 hours. The SARIMA

model, or, to put it another way, the näıve prediction, is commonly used to generate these

projections. Kreuzer et al. (2020) investigated whether deep neural networks could out-

perform the outcomes of the aforementioned techniques. In addition to univariate LSTM

networks, They presented an alternative technique based on a 2D-convolutional LSTM net-

work. To benchmark their technique, built a case study using data from five different weather

stations in Germany. After performing admirably for the first few hours, the multivariate

LSTM network and convolutional, for longer perspective forecasting, the LSTM network out-

performed the SARIMA model, seasonal nave model, and univariate LSTM networks. Both

multivariate methods function more effectively when the temperature fluctuated during the
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day. Their proposed technique, which was based on a convolutional LSTM system, fared the

best overall on all of the test data sets analyzed.

According to Belvederesi et al. (2022), river flow forecasting models aid in the under-

standing, prediction, and management of surface-water resource problems like flooding and

declining water quality. However, because of seasonal and annual variations, predicting could

be difficult in cold climates. Researchers used regionalization, geographical calibration, in-

terpolation, and regression techniques to enhance forecasting effectiveness. Process-based

models were more accurate, but the data collection and calibration parameters were costly

and time-consuming. Efforts to overcome the lack of data availability, user-friendly inter-

faces, and standardization of calibration and validation dataset choices were highlighted in

Canadian studies.
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Methodology

3.1 Case Study Description

The Indus River is one of Pakistan’s longest rivers. The river connects the boundaries of

four countries including Pakistan, China, India, and Afghanistan. Indus River has Five main

tributaries, Jhelum, Chenab, Sutlaj, Kabul, and Ravi. The first tributary is the Kabul River

which is located at Mithan-Kot where Jhelum and Indus river meets. Jhelum, Chenab,

Ravi, and Sutlaj meet at the head of Panjnad, a single river after the head Punjanad travels

alone and drops into the river Indus. Two-thirds of water for basic human necessities or for

irrigation comes from the Indus River and its sub-rivers. Many sub river drop into the Indus

River, Kabul is one of the leading rivers that drops in the Indus with its sub-river including

Swat and Panjkora. There are so many barrages located on the Indus river and one of the

largest barrages is Sukkur Barrage. These barrages make the largest hydropower project

that produces 1450MW of electricity. Overflow at the river Indus affects the environment

and agricultural activities. Three main water reservoirs are located at the Indus River like

Tarbela, Mangla, and Chashma.We are primarily concerned with the Indus Tarbela Dam.

Tarbela Dam, located on Indus River in Khyber Pakhtunkhwa (KP), is one of the world’s

largest earth-fill dams, some 130 kilometres north of Islamabad. The Dam was built in 1970

and finished in 1974 by Pakistan’s WAPDA, with irrigation for downstream Indus plains,

flood management, and low-cost hydroelectric power generation as its main goals. Pakistan’s

resources are greatly impacted by Tarbela Dam, which provides 52% of irrigation releases

and 30% of the country’s energy demands. At full capacity, the dam generates a reservoir

15
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that is over 100 kilometres long and 260 km square. However, decades of flooding and erosion

have reduced its initial storage of 11.9 billion cubic metres to 6.8 billion cubic metres. The

main dam structure, which measures 2743 metres in length and 148 metres in height, is built

of soil and rock fill. The left bank of the river is connected to the island by adjacent concrete

auxiliary dams Ishfaque et al. (2022). Dam has two spillway structures at its auxiliary dams.

The main spillway has a capacity of 18,406 m/s while the auxiliary spillway has a capacity

of 24,070 m/s. Notably, instead of being used to produce hydroelectric power, more than

70% of the water released via the dam flows over these spillways. The World Bank and the

Asian Infrastructure Investment Bank are backing fifth Tarbela Dam extension project. The

goal of this project was to raise the hydroelectric capacity of dam from 4888 MW to 6298

MW.

3.2 Data Description:

The flow rate of Pakistan’s Indus River is the study’s primary focus. The inflow rate of the

Indus Tarbela is one of the variables being studied. The inflow rate of data from 2018 to 2022

has been taken from Water and Power Development Authority(WAPDA) for the purpose of

this investigation.

Every day, real-time monitoring data is collected to ensure the smooth running of Pak-

istan’s Tarbela dam. The Indus River’s inflow is measured in Cusecs*1000, the dam’s outflow

is measured in Cusecs*1000, and the barrage level is measured in feet daily using real-time

sensor data. The Cusecs stands for ”cubic feet per second,” and 1 Cusec = 28.32 Litres.

There are 169,650 km2 in the Indus basin upstream of Tarbela Dam. Between the Great

Karakoram and Himalayan ranges, where more than 90% of the land is located, meltwaters

from these mountains play a vital role in annual flow that flows into Tarbela. In the remaining

area of basin, which is situated immediately upstream of the dam, monsoon rains frequently

occur during the months of July, August, and September. The discharge of monsoon rains,

which generates severe floods of short duration, delays snowmelt discharge. Tarbela receives

an average of 81,000 Mcm per year (TAMS 1998). The yearly runoff variability in the

Indus is fairly minimal because a substantial portion of its runoff originates from snowfall.

Peak snowmelt volumes can range between 5,660 and 11,300 m3/s, with additional rainfall
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frequently adding up to a maximum of 5,660 m3/s. Due to this Pakistan has faced floods and

other disasters events so many times, which caused many losses to livelihood and economy.

It is vital to work with hydrological data with different statistical and machine-learning

techniques to predict uncertain events that can occur in the future.

3.3 Box Jenkins Methodology

Box Jenkins Methodology is a repetitive procedure that makes an ARIMA model for seasonal

and trend factor, measure accurate weighting parameters and test the model or repeat the

process accurately. Box-Jenkins method was designated for making simulation and forecast-

ing tools that depend on The capacity of the method to deal with complicated situations,

its flexibility in rectifying dependent time series, its beneficial statistical and mathematical

processes, in case of any risk its programmability is effective, and the most important one is

that its implementation is very simple or we can say its easy to use.

For any data set, Box-Jenkins provides an appropriate forecasting model. Its methodology

also provides a structured approach for creating, interpreting and forecasting time series

models. This methodology takes recent observation as a starting value and then estimates

forecasting error for future prediction.

Only in stationary time series Box-Jenkins method can be applied. A series that does

not have any seasonality or trend pattern is known as a stationary series. Most of the time

the data we use is nonstationary, first we apply different transformation methods to make

them stationary (Lu and AbouRizk (2009)). The box-Jenkins method recommends short

and long(seasonal) to attain stationarity in mean, and to attain stationarity in variance

logarithmic or power transformations are applied. Nelson and Plosser (1982) suggest that

some of the series give good results with differencing, and some provide better results with

linear detrending. Most of the time, the series we are using is nonstationary, so it is difficult

to apply any nonstationary series, Box-Jenkins ARIMA modeling provides a widely used

approach to take the differences of a non-stationary series to make them stationary. Then

AR, MA, or ARMA models can easily fit into the series. If there is seasonality in the series

the Box-Jenkins suggest seasonal models with long-term (seasonal) differencing, if we require

stationarity in the mean.
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3.4 Autoregressive Integrated Moving Average Model

ARIMA (Auto-Regressive Integrated Moving Average) is a statistical model employed for

forecasting time series. It is a class of models that integrates the ideas of auto-regression (AR)

and moving average (MA) models with the idea of integration (I) to handle nonstationary

time series data. The ARIMA model is utilized for identifying patterns in the time series

data and then using these patterns to make predictions about future values. Following are

the assumptions of the ARIMA model (Lee and Ko, 2011).

• Stationarity: Time series data are presumed to be stationary by ARIMA, which

means that the mean, variance, and covariance remain constant across time and are

unaffected by the series’ location. Data that is not stationary must be changed to

become stationary.

• Auto-correlation: ARIMA makes the assumption that there is some auto-correlation

in the time series data, which means that the residuals (the difference between the

forecasted value and the actual value.) are associated over time. The ARIMA model

uses auto-correlation, which can be either positive or negative, to improve predictions.

3.4.1 Parameters of ARIMA

Three parameters characterize ARIMA models: (p,d,q).

• p is the order of the autoregression component.

• d is the order of differentiation

• q is the order of the moving average component.

3.4.2 Autoregressive Model

Time series data has always been associated with its past values.The autoregressive process

as their name suggests, is regression on themselves. AR model specifies that current values

are set by their previous values. If the present values depend instantly on previous values, it

is known as AR model. In other words, a model in which independent variables are lags of
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dependent variables or dependent variables are regressed by their own values (Shrestha and

Bhatta, 2018)

Specifically, a pth order auto-regressive processes yt satifies the equation:

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + ϵt

The series’ present value yt is the linear sum of the p’s latest previous values of itself

plus an ”innovation” term epsilont that integrates anything new in the series at time t that

cannot be explained by the prior values. For each t, we suppose that epsilont is independent

of yt− 1, yt− 2, yt− 3, and so on. Yule (1926) pioneered work on auto-regressive processes.

3.4.3 Integrated Process

A first-order integrated process is expressed in the following manner:

Yt = Yt−1 + ϵt (3.1)

Difference order 1 indicates that the difference between two consecutive values of Y is

constant, where ϵt is the white noise process.

3.4.4 Moving Average Model

The present value of the moving average is a linear mixture of present disturbance and

previous disturbance. The MA indicator shows how many earlier periods have been included

in the present value. or we can say that a moving average is a past error multiplied by a

coefficient. MA is expressed as follows:

Yt = ϵt − θ1ϵt−1 − θ2ϵt−2...θqϵt−q

It is referred to as a sequence of moving averages of order q. The expression of moving

average arises from the fact that Yt is gained by using the weights 1,−θ1, - θ2 ... -θq to the

variables ϵt, ϵt−1, ϵt−2, ... , ϵt−q and then moving the weights and applying them to the ϵt,

ϵt−1, ϵt−2, ... , ϵt−q to obtain yt+1 and so on. Slutsky (1927) was the first to investigate

moving average models.
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3.4.5 Autoregressive Integrated Moving Average (ARIMA) and

Stationarity

The ARIMA model is the integration of three components, that are; AR(p), I(d) , and

MA(q). The three parameters are found out accordingly. A series that is not stationary is

distinguished in order to make it stationary. If not, the ARMA Model is applied. According

to a general rule, standardized series with positive auto-correlation at lag 1 suggest AR terms

to find out whether an AR or MA model is needed. At a certain level of differencing, MA

terms perform the best in all other scenarios. The AR(P) model coefficients determine how

quickly the series returns to its mean(Noureen et al., 2019). The series will return to its mean

quickly if the total of the coefficients is close to zero. The series steadily returns to its mean

if the sum is close to 1. A series exhibits moving-average behavior if some random shocks

occur and are felt by two or more consecutive periods. If the MA(1) coefficient is negative,

it indicates that some of the shock from the previous period is still being experienced. The

ARIMA model changes to ARMA when differencing is not necessary.

When differencing is not needed, the ARIMA model becomes ARMA. Mathematially,

ARMA model can be described as,

yt = β0 +
n∑

r=1

φryt−r +

q∑
i=1

ϕiϵt−i + ϵt

where β0 denotes the intercept term, the parameters of AR and MA terms are φr(r =

1, 2, 3, ..., p) and φi(i = 1, 2, ..., q), respectively, and ϵi ∼ N(0, σϵ
2).

3.4.6 Steps for fitting an ARIMA model

• The order of differencing is determined as the initial stage in fitting an ARIMA model.

• find out the numbers of AR and MA terms.

• The third and final step is to fit the model by making sure that the residuals are ”white

noise” and the highest order coefficients are significant. Also, to make sure that the

forecast looks reasonable. If these things are not satisfied, return to the above steps,

i.e., step 1 or 2.
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3.4.7 Tools for Identification of ARIMA Model

ACF and PACF are the methods most frequently employed to identify ARIMA models.

Below is an explanation of them.

Auto-correlation Function (ACF): It is the series’ correlation with itself at different

lags.

Partial Auto-correlation Function (PACF): It is the quantity of auto-correlation at

lag k with the relationships of intervening observations removed. If the PACF unexpectedly

breaks off after a few delays and the ACF slowly fades away, an AR(P) model should be

chosen. The amount of spikes in the PACF graphic shows the AR(P) model’s order. While

suggesting the MA(q) model if the PACF dies out more gradually and the ACF abruptly

stops off after a few lags. The amount of spikes in the ACF plot in this case indicates the

MA term’s order.

3.5 Sarima Model

In order to model a time series that takes into account both seasonal and non-seasonal

elements, Box-Jenkins (1976) developed SARIMA model. The seasonal, autoregressive, in-

tergraded, and moving average components are combined in the SARIMA.

Based on the ARIMAmodel, the single-integrated autoregressive moving average (SARIMA)

model has the greatest potential for forecasting non-seasonal data sets for short-term study.

However, certain data from time series sets show apparent seasonal swings caused by yearly

fluctuations, monthly, quarterly, and other seasonal variations, as well as by some other in-

herent properties. Seasonal temporal data are transformed into ARIMA models using formal

variance, seasonal variance, and autoregressive automatic averaging. (Kaur and Ahuja, 2019)

In short form the SARIMA model expressed as

SARIMA = (p, d, q) x (P, D, Q) s, where p,d,q are the non-seasonal components, P, D,

Q are the seasonal components

A non-stationary seasonal time series is transformed to a stationary seasonal time series

using finite-order seasonal and non-seasonal differences. The seasonal difference between the

time series yt and the seasonal period s is referred to δsyt follows:
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δsyt = yt − yt−s (3.2)

3.5.1 Develpoment of Sarima model

The following three steps in the development of SARIMA models are model identification,

parameter estimation, and diagnostic testing. In order to estimate the parameters d, D, p, q,

P, and Q, The analysis of sample autocorrelation function (ACF) and partial autocorrelation

function (PACF) yields a preliminary SARIMA model. The model with the minimal AIC and

Hannan-Quinn Criterion (HQ) score is the most effective. The periodic and non-seasonal AR

and MA indicators are then estimated in the second stage. The final diagnostic verification

stage determines whether or not the suggested model is adequate. If the model is found to

be appropriate, it can be used to forecast future values; otherwise, the procedure is carried

out until a suitable model is found. (Mohamed, 2021)

3.6 Artificial Neural Networks(ANNs)

Artificial neural networks(ANNs) were established as an alternate methodology for time

series forecasting. Early work on Artificial Neural networks was done by Rosenblatt on the

perceptron. Many people credit McClelland et al. (1986) and Rumelhart et al. (1986) for

setting up the current revival in ANN technology. The highly linked structure of brain cells

serves as the foundation for the ANN approach. This method is quicker than its conventional

counterparts, robust in loud conditions, adaptable to a variety of challenges, and highly

responsive to novel environments(Mohammadi et al., 2005).

While its popularity has risen up in recent years. To create a model that could simulate

human brain intelligence in a computer was the fundamental goal of ANNs. ANNs, like

human brains, strive to identify patterns and sequences in input data, learn patterns through

experience, and at last create generalized output relying on the shared prior information.

While ANNs were developed mostly for biological reasons, they were recently expanded for

forecasting and categorizing applications in a variety of industries.

Many academics and scientists have found significant success using ANN, as one of the

most popular artificial intelligence techniques, in a variety of domains, such as time-series
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simulation and prediction in water resources. ANN has been shown to be an effective and

trustworthy method for modeling nonlinear interactions between inputs and intended outputs

in hydrologic time-series forecasting through numerous studies and experiments(Cheng et al.,

2015).

The distinctive qualities of ANNs that have made them so well-liked for forecasting pur-

poses are as follows: Data may already contain ANNs that are self-adaptive. The appropriate

model is constructed based on the data presentations and descriptions in accordance with its

characteristics and features, and there is no obligation to establish a model structure or any

assumptions to be made about the distribution of the data. In many real-world situations

where there are no technical guidelines for an appropriate data-producing technique, this ap-

proach is very useful. Second, ANNs, which are essentially nonlinear, are much more effective

than conventional linear approaches like ARIMA for representing complex data structures.

In several situations, ANNs were studied and found to predict significantly better than other

linear models. Lastly, as postulated by Hornik along with Stinchcombe. ANNs have global

approximation ability. It has proven that any function that is continuous may need to be

estimated to the required precision. ANNs employ data processing that is parallel to calcu-

late a wide variety of functions with significant precision. The problem may also be handled

if the sources are incorrect or inadequate

3.6.1 The ANN Architecture

Multi-layer perceptions (MLPs) and one hidden layer feeding neural network (FNN) are

the two ANNs that are most frequently used for problem prediction. A three-layer model is

developed by using the input layer, hidden, and output layers. the input layer, which is where

the network receives the data; the hidden layers in which data is processed secretly; and the

output layer where outputs for specific inputs are generated. These Layers are connected by

channels called acyclic connexons. One or more middle layers might be present. The nodes

are also referred to as factories that produce components at different levels.(Benardos and

Vosniakos, 2007) The forward architecture of ANN models can be described as follows:
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Figure 3.1: Structure of ANN

The following mathematical form is used to calculate the model’s output:

zt = f(
n∑

i=1

wt ∗ zt−i + b) (3.3)

Here yt−i(i = 1, 2, ..., n) and yt are the n inputs and output respectively. The number n

represents the number of inputs. wt are the connection weights that connect the two layers

and b is the bias term. f is a function that is defined by the weights and network architecture.

The nonlinearity of the model can be captured using a variety of activation functions,

which enables the model to learn more complicated non-linear correlations between the input

and output variables. The nodes (neurons) in the network employ activation functions to

calculate the node’s output from its inputs. Most commonly the logistic sigmoid function is

used.

f(y) =
1

1 + e−y
(3.4)

However Linear, hyperbolic, tangent, Gaussian, etc. may also be employed as the activa-

tion function(Kamruzzaman et al., 2006)

choosing the best activation function based on the complexity of the issue, network archi-

tecture, and type of data being used. It’s critical to test many activation functions and select

the one that delivers the greatest outcomes for the specific issue at hand. The relationship

between weights can be estimated by using nonlinear least square algorithms based on error

function minimization.

F (φ) =
∑

t e
2
t =

∑
t(yt − ŷ)2 The space of all connecting weights is shown here. The

optimization techniques that can be utilized to minimize the error function are learning rules.

The most prevalent learning principle in the literature is backpropagation or the generalized

delta rule(Zhang, 2003).
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3.6.2 Auto-Regressive Neural Network(ARNN)

A deep learning architecture called an autoregressive neural network (ARNN) uses historical

data to forecast future data points. There are three layers in the neural network autoregres-

sion (NNAR) model: input, hidden, and output. It is a non-linear and parametric estimating

model. This model is defined in the R forecast library, and after importing the forecast li-

brary, the NNAR model is made available.

ARNNs can be used for a variety of applications, such as voice recognition, language

translation, and time series forecasting. A common technique for time series forecasting is

ARNN, which aims to anticipate future values based on historical data. An ARNN is a kind

of recursive neural network since it receives the prediction from the previous time step as its

input at each subsequent time step. ARNNs are a useful time series forecasting technique

because they can account for non-linearity in the data, especially for data with complicated

patterns.ARNNs can be created using RNN or FNN, and they can be trained using supervised

learning in which the network is given historical data and target values. The hidden layer

has p-lagged inputs and k nodes, as shown by the notation NNAR(p,k). A neural network

with an NNAR(11,6) design, for instance, uses the previous eleven observations as inputs

to forecast the output, and the hidden layer contains six neurons. A NNAR(p,0) model is

equivalent to an ARIMA(p,0,0) model, except it lacks the constraints on the parameters that

guarantee stationarity.

Neural networks can tackle the time series forecasting problem based on these architec-

tures. Many manual processes used in conventional modeling approaches can be removed,

including stability verification, autocorrelation function testing, partial autocorrelation func-

tion checking, differentiation order selection, and so on.

3.7 LSTM-based Deep Learning Model

LSTM stands for Long short-term memory. Hochreiter and Schmidhuber invented the LSTM

in 1997, and their default behavior is to recall long-term information To address gradient

vanishing problem in over an extended time period series.

The use of parallel processing by GPU and cutting-edge optimization techniques has
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sped and enhanced the implementation of deep learning-based models like LSTM compared

to ANNs, which have a low number of processing units and layers due to the algorithm’s

computational limits (Li 2021).

It has been demonstrated that LSTM is capable of learning long-term dependency struc-

tures that are found in time series. (Evermann et al., 2017; Fischer & Krauss, 2018). The

framework of the model is a type of recurrent network of neurons (RNN). In practice, gra-

dients in LSTM, which has been presented as a typical RNN, disappear and explode. Tra-

ditional RNNs cannot learn long-lasting dependencies found in data sets. This approach is

appropriate for numerous time-series water-related variables, such as river flow, underground

table, and rainfall. It has been effectively used for financial market time series prediction,

voice recognition, solar irradiance, electricity price prediction, rainfall-runoff modeling, and

water flow modeling (Hu et al., 2018).

3.7.1 The LSTM Architecture

Figure 1 illustrates the architectural layout of lstm.

Figure 3.2: Structure of LSTM

A memory block, a forget gate, an output gate, an input gate, and one or more memory

cells comprise it. The most significant component of the memory block is the memory cell,

which can recall the state of the LSTM model from the prior time step.

In reality, the prior time step Ht−1 output of the memory block and the present time

series Xt function as the current input simultaneously when the current input time series Xt

is a new data input into the memory block.

Forget gate determines the information in the memory cell first during the real operating

procedure. Information that is unrelated to the forecast should be forgotten, while forecast-
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related information should be held in reserve. The following equation represents the forget

gate’s activation function:

ft = σ(Sxf ∗Xt + Shf ∗Ht−1 + bf ) (3.5)

Where Sxf and Shf are forget gate’s weight parameters, bf is its bias parameter, and σ()

is a sig mod function having a range of [0,1]. One signifies that the relevant data should be

preserved in the memory cell. A value of zero, according to Baek and Kim (2018), indicates

that the linked information in the memory cell must have been discarded.

The input gate chooses whether data from the current time series Xt and the memory

block’s output from the time step before that, Ht−1, should be entered into the memory cell

and utilized to update the cell state in second step. First, using the [-1,1] range of the tanh

function, The candidate value Ct is the prospective candidate value that was used to update

the cell’s state at time t.

The following equation is then used to represent the input gate’s activation function:

Ct = tanh(SxcXt + ShcHt−1 + bc) (3.6)

it = σ(Sxi ∗Xt + Shi ∗Ht−1 + bi) (3.7)

where bc and bi are the bias parameter values for the memory cell and the input gate,

respectively, and Sxc and Shc are the memory cell weight parameters. The weight parameters

for the input gate are Sxi and Shi.

The next step is to modify the memory cell state in the present time t by utilising point-

by-point multiplication using the candidate value Ct in the existing time t and the memory

cell’s prior state Ct− 1 as a basis.

The following equation gives the definition of the memory cell state update function.

Ct = ft ∗ Ct−1 + it ∗ C∼
t (3.8)

When a memory cell’s state is freshly finished, the output gate is used to send the result.

Use the memory cell’s output gate control information to output the desired outcome. The
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output gate value ot is calculated by using the equation below.

ot = σ(Sxo ∗Xt + Sho ∗Ht−1 + bo) (3.9)

Sxo and Sho are the weight factors of the output gate, bo is the bias parameters of the output

gate. The state of the LSTM hidden layer is determined by the equation in the last step.

ht = ot ∗ tanh(Ct) (3.10)

If there are few layers and neurons, data attributes in the data set may not be effectively

absorbed. If there are more layers and neurons, it might acquire more data characteristics

within the data set. But it might also result in the issue of overfitting. So, by using the

strategy of greedy search, we arrive at a superior result. The primary technique for LSTM

model parameter adjusting is the greedy search method. The number of hidden neurons in

the LSTM model and the number of hidden layers in the LSTM model serve as the primary

adjustment variables during the greedy search process. A better LSTM structure can be

discovered by looking for a specific range, which enhances prediction performance.

3.8 Seasonal Naive Model

A simple technique used in many fields, including statistics and machine learning, to provide

a fundamental benchmark for comparison against more complex models is the usage of a

naive model, also known as a baseline model. It is meant to establish a performance baseline

and make it simpler to assess how well more intricate algorithms function.

The adjective ”naive” denotes the fact that these models make comparatively straight-

forward assumptions and do not account for complex patterns or relationships in the data.

Instead, they usually employ straightforward methods that require little computing effort.

The basic premise of the simple naive model is that any future projection will match the

most recent value seen.

To predict the time series data, two different Naive models are used. The first is called

Naive-I, and it generates each forecast using the previous value of the time series. The

second is called Naive-II, and it multiplies the forecast of the current observation by the rate
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at which it has grown in relation to the previous observation.

SN is a better option than the naive model for highly seasonal data. A forecast for a

single season is equal to the value of that season’s previous forecast from the prior year.

Due to the repetitive nature of inflow, which makes our data purely periodic, the bench-

mark model should exhibit seasonality. As a result, we chose the seasonal naive model, that

forecasts by monitoring values while simultaneously taking into account the previous season.

For predicting, this model has been chosen as the starting point.

For instance, the number for every month of July after that is anticipated to be the same

as what was previously seen. This approach is effective for data with significant seasonality.

The following are the Naive models for the supplied time series, let’s say yt, and the projected

time series, ŷt the time:

Naive− I : ŷt = yt (3.11)

Naive− II : ŷt = yt−1[1 +
yt− 1− yt− 2

yt− 2
] (3.12)

SeasonalNaive : ˆyt+h|t = yt+h−kp (3.13)

Where p is seasonal period and k = [
h− 1

p
] + 1

3.9 The Modelling Framework

3.9.1 The ARIMA model Fit

Model specification In this research, The ARIMA model parameters were developed by

studying the series’ ACF and PACF. The ACF and PACF were exhaustively analyzed to

determine the best-fitting model. The ARIMA(2, 1, 1) was to be found the best-fitted

model. Thus The ARIMA (2, 1, 1) is given by the equation:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + θ1ϵt−1 + ϵt (3.14)

where: ϕ1, ϕ2 are the autoregressive cofficients and θ1 is the moving average cofficient and ϵt

is the residual term at time step t
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Cofficients of ARIMA Parameters of the model that have been estimated from the

data are represented by the coefficients. They aid in describing how the time series’ previous

values affect its present and future values. The calculated coefficients are as follows Autore-

gressive Coefficient for Lag 1 ϕ1 = 0.9547 Autoregressive Coefficient for Lag 2 ϕ2 = -0.1840

Moving Average Coefficient for Lag 1 θ1 = -0.7565

Model Evaluation:

• sigma2

The estimated variance of the residuals from the model (the difference between the actual

and expected outcomes of the model) is given as σ2, which is calculated to be 0.008766

• log-likelihood

The likelihood function’s logarithm whose value is 1641.65, represents how well the model

matches the data. A better match is indicated by higher values.

• Akaike Information Criterion

This statistic is used in the selection of models. It finds a balance between the complexity

of the model and its goodness of fit. Lower AIC values indicate better models. The AIC in

this situation is -3275.31.

Interpretation:

• The ARIMA model is denoted by the notation ARIMA(2, 1, 1), which stands for

autoregressive, differencing, and moving average orders, respectively, of 2, 1, and 1.

• In the model equation, the lagged values and the lagged error term are combined to

represent the differenced time series (y′t).

• The coefficients, standard errors (s.e.) show how accurately the parameter estimates

are made.

• The error term ϵt’s variance in the model is represented by the estimated variance σ2.

• Among the indicators of how well the model resembles the data are the log-likelihood

and AIC, with lower AIC values suggesting a better model fit.
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3.9.2 The SARIMA Model Fit

Model specification

In this research, The SARIMA model parameters were developed by studying the series’

ACF and PACF.To find best-fitting model, the Auto-correlation and partial auto-correlation

functions were examined. The SARIMA(2,1,1)X(1,1,2)365.25 was found to be the best-fitted

model. Here (2,1,1) is the non-seasonal order of the SARIMA and (1,1,2) is the seasonal order

of the SARIMA Thus,

The SARIMA(2,1,1)X(1,1,2)365.25 is given by the equation:

(1−φ1l
365.25−φ2(l

365.25)2)(1− l)(1−ϑ1l
365.25)(1−φ3l

365.25)(1− l)(1−ϑ2l
365.25−ϑ3(l

365.25)2)

(3.15)

Where: l is the lag operator (i.e.,l365.25yt = yt−365.25) ϕ1, ϕ2 and ϕ3 are the autoregressive

and seasonal autoregressive coefficients ϑ1, ϑ2 and ϑ3 are the moving average and seasonal

moving average parameters, respectively ϵt is the residual term at time step t.

Cofficients of SARIMA

The coefficients are the model parameters that have been estimated from the data. They

aid in describing how the time series’ previous values affect its present and future values.

The calculated coefficients are as follows:

Autoregressive Coefficient for Lag 1 ϕ1 = -0.6803

Autoregressive Coefficient for Lag 2 ϕ2 = 0.1035

Moving Average Coefficient for Lag 1 θ1 = 0.5965

Seasonal Autoregressive Coefficient for Lag 1ϕ3 =-0.4132

Seasonal Moving Average Coefficient for Lag 1θ2 =-0.3025

Seasonal moving average coefficient for lag 2θ3 =-0.6975

Model Evaluation:

• sigma2

The estimated variance of the residuals from the model is given as σ2, which is calculated to

be 0.008772.

• log-likelihood,
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The log-likelihood, which measures how well the model matches the data, is 1636.56. A

better fit is indicated by a larger log probability.

• Akaike Information Criterion

AIC (Akaike Information Criterion) = -3259.13: The AIC is a measure that balances model

fit and complexity. Lower AIC values indicate better models.

Interpretation: In order to determine the root causes of variation and patterns in

time series data, the SARIMA model combines seasonal versions of the autoregressive (AR),

moving average (MA), and differencing (I) components. The coefficients show degree and

direction of each component’s influence on the time series’ present and future values.

3.9.3 The NNAR Model Fit

Three simple steps have been followed to build NNAR model:

• Defining parameters

• Training stage

• Testing stage

Defining parameters The auto-regressive neural network requires two parameters (p,k)

as inputs to build the time series forecasting model. ARNN(p,k) model means that in hidden

layer, there are p past values and k nodes in this model. In our model, p = 2, and k = 2 are

selected which means that the model uses the most 2 recent values as inputs for out-of-sample

forecasting and takes 2 nodes in the hidden layer.

Training Stage

In the training stage, we have used data from 4th January 2018 to 31st December 2021.

The data set has to be defined and formatted suitably as a time series. We trained our model

using the library forecast in R for one-step-ahead forecasting.

Testing stage At the testing stage, we predicted one step ahead from the period Ist

January 2022 to 30th September 2022 by setting the time horizon as h=1.
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3.9.4 Seasoanl Naive fit

The Seasonal Naive (SNAIVE) forecasting method is a simple approach for making forecasts

based on the premise that future values will be the same as prior seasonal cycle values. This

approach is effective for time series data with strong seasonal patterns. This is how it works:

Let’s break down the framework into three key steps: data preparation, forecasting, and

confidence intervals.

• Data Preparation:

we have a time series dataset with a total of 1731 values. We’ve chosen the first 1457

values from 4th January 2018 to 31st December 2021 for training our model. This training

period helps the model learn the seasonal pattern present in the data. We trained our model

using the library forecast in R.

• Forecasting:

we’re interested in predicting the next 273 values from Ist January 2022 to 30th September

2022 in the time series.

• SNAIVE Approach:

SNAIVE Approach: The SNAIVE method assumes that future values will follow the same

pattern as the corresponding values in the previous seasonal cycles.

• Point Forecast:

Point Forecast: For each of the forecasted points, the SNAIVE method generates a point

forecast based on the historical pattern.

• Confidence Intervals:

They provide a measure of uncertainty around the point forecasts. Model provides two sets

of confidence intervals: one with an 80% confidence level and another with a 95% confidence

level. The wider the interval, the more uncertainty there is in the forecast.

• Seasonal NAIVE is a simple method that doesn’t consider factors like trends or other

potential influences on the data. It’s best suited for time series with strong and regular

seasonal patterns.
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• The time series data is divided into individual seasonal cycles. For example, if the data

is monthly, each year’s worth of data would make up a seasonal cycle.

• It’s a simple method that can be effective when dealing with data that exhibits regular

and consistent seasonal behavior.

3.9.5 LSTM model fit

LSTM is a particular form of recurrent neural network (RNN) that is well-suited for tasks

involving time series, natural languages, and more.

• Model architecture:

The model architecture is defined using the Keras library, the Python deep learning library

which is commonly used for building and training neural networks. This specific architecture

is a simple sequential model consisting of two main layers:

• LSTM layer

• Dense layer

The LSTM layer is the core component of this architecture. It’s responsible for cap-

turing sequential patterns and dependencies in the input data. The LSTM layer with 128

units processes input sequences and generates a hidden state that encodes information from

previous time steps. One of the parameters that must be determined in the model is the

number of hidden layer nodes. Experiments show that the model with 128 nodes performs

well.

Dense Layer a dense layer that is entirely connected. It takes the LSTM layer’s output

as input and produces a single output value. The layer has 129 parameters, indicating that

it has a single neuron connected to the LSTM layer and a bias term.

• Model Compilation:

The average squared error loss and the Adam optimizer are used to construct the model.

The optimizer used determines how the loss function is minimized and consequently how

the model proceeds to the ultimate result. Standard options include momentum, Adagrad,

RMSProp, Adam, and so forth. The Adam optimizer is picked by experimentation.
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• Model Training:

In model training, we use data from 4th January 2018 to 31st December 2021. The data set

has to be defined and formatted suitably as a time series. The model is trained for lstm

by using data for training with 60 epochs and a batch count of 32. During training, the

model seeks to reduce the mean squared error loss. Batch size influences the amount of

data handled at one time. Before processing the entire dataset, the model receives several

updates via batches, which alters the process dynamics. The batch size is adjusted at 32 in

this experiment since the small number of batches significantly reduces training speed while

a big batch size leads to overfitting.

The periods during which the model traverses the full dataset are referred to as epochs.

When the epochs are around 60, the loss of the test set is minimal. The epochs in the present

study have been set at 60.

• FORECASTING OF LSTM:

For forecasting the input data is prepared by selecting the data points that come after the

training period. An array is created to match the input shape that is expected by the model.

When the forecast is generated, the predicted values are converted back to the original scale.

We forecast the data points from 1st January 2022 to September 30th 2022

3.9.6 Performance Criteria of Forecasting Accuracy

The models’ performance requirements will be evaluated using three types of error metrics.

MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), and RMSE (Root

Mean Square Error) are three often used measures to quantify forecast accuracy in the context

of forecasting and analyzing model performance.

• Mean absolute error (MAE)

The average absolute difference between forecasted and observed values is calculated using

the MAE metric. It tells you how far your forecasts are from the actual values on average.

The formula is as follows:

MAE =
1

m

m∑
j=1

|zj − ẑj| (3.16)
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• Mean absolute percentage error

MAPE is a metric that calculates the average percentage difference between forecasted and

observed values. It’s especially beneficial for understanding the relative magnitude of errors

in percentage terms. The formula is as follows:

MAPE = 100 · 1

m

m∑
j=1

|zj − ẑj|
zj

(3.17)

• Root Mean Square Error

it quantifies the typical magnitude of the errors in a prediction or estimation by taking into

account both the size and direction of the errors.

RMSE =

√√√√ 1

m

m∑
j=1

(zj − ẑj)2 (3.18)

Where:

zjis the observed value at time step j

ẑj is the estimated value at time step j

m is the number of time steps
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Results

4.1 Descriptive Statistics of Tarbela inflow

Table 4.1: Descriptive Statistics

Statistic Value
Mean 77.29
Median 35.60
Variance 6092.715
Standard Deviation 78.05585
Minimum 8.60
Maximum 353.80
1st Quantile 20.50
3rd Quantile 115.70

Table 4.1 shows that the smallest value of Tarbela Inflow of our data set is 8.60 and the

largest value is 353.80 which indicates a large degree of variation. 78.05585 is the standard

deviation and the average value is 77.29 indicating that there is a prominent difference

between average value and standard deviation.

4.2 Out-Of-Sample Tarbela inflow Forecasting

We have used five models i.e. ARIMA, SARIMA, ARNN, SNAIVE, and LSTM for one step

ahead forecasting of the River Indus Tarbela inflow of Pakistan. It has been seen that the

Tarbela inflow time series shows distinct properties. The time series exhibits periodicity

and a significant long-term trend each month. Monthly data values are used for forecasting

medium-term inflow, which often takes account of long-term trends along with annual and

37
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seasonal periodicity. For instance, in Figure 4.1 it has been noticed that there is a growing

trend in the Inflow of Indus Tarbela ranging from January 2018-September 2022.

Figure 4.1: Indus Tarbela Inflow
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4.3 Indus Tarbela Inflow Forecasting Results

The results of the forecasting accuracy are as follows:

Month S-NAIVE ARIMA SARIMA ARNN LSTM

JAN MAPE 5.270 5.650 5.621 6.215 2.010
MAE 0.858 0.918 0.918 0.977 0.302

FEB MAPE 10.972 11.570 11.48 10.513 1.6085
MAE 1.6714 1.775 1.7622 1.5972 0.24344

MAR MAPE 6.915 6.435 6.615 6.565 1.109
MAE 1.438 1.323 1.352 1.373 0.202

APR MAPE 5.802 5.744 5.697 5.896 1.134
MAE 1.752 1.727 1.718 1.780 0.378

MAY MAPE 7.731 6.944 6.897 6.527 2.969
MAE 5.361 4.790 4.782 4.448 2.199

JUN MAPE 7.063 6.377 6.595 6.413 2.894
MAE 6.166 5.623 5.819 5.731 2.368

JUL MAPE 7.720 6.964 6.588 4.926 3.153
MAE 16.777 15.377 14.450 11.217 8.337

AUG MAPE 9.534 8.882 9.262 7.723 3.337
MAE 23.545 22.233 23.101 19.435 8.972

SEPT MAPE 5.349 5.263 5.130 5.670 1.681
MAE 6.613 6.500 6.355 7.137 1.603

The above table indicates that the monsoon season, typically occurring in July and Au-

gust, is characterized by significant precipitation, often resulting in severe rain and dangerous

flooding. This increased rainfall can lead to higher river flows, resulting in higher MSE and

MAE values.
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Figure 4.2 shows the forecasted values from January 2022 to September 2022 (273 data

points) through ARIMA modeling with parameters p=2, d=1, q=1. Table 4.2 shows fore-

casting errors for the ARIMA model.

Figure 4.2: Actual and forecasted values of Tarbela inflow for ARIMA model from
January 2022 to September 2022

Table 4.2: Accuracy measures of ARIMA

ARIMA Value
MAE 6.773573
MAPE 7.057577
RMSE 12.51049
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Figure 4.3 shows the forecasted values from January 2022 to September 2022 (273 data

points) through SARIMA modeling with parameters p=2, d=1, q=1, P=1, D=1, Q=2,

s=365.25. Table 4.3 shows forecasting errors for SARIMA model.

Figure 4.3: Actual and forecasted values of Tarbela indus for Sarima model from January
2022 to September 2022

Table 4.3: Accuracy measures of SARIMA

SARIMA Value
MAE 6.772233
MAPE 7.063733
RMSE 12.50344

Figure 4.4 shows the forecasted values from January 2022 to September 2022 (273 data

points) through ARNN modelling with parameters p=2 and k=2, where p is the number of

input values and k is the number of nodes in hidden layer. The performance of the model

was estimated using three standard accuracy measures i.e. MAPE, RMSE and MAE. The

results are given in the Table 4.4.
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Figure 4.4: Actual and forecasted values of Tarbela Inflow for ARNN model from January
2022 to September 2022

Table 4.4: Accuracy measures of ARNN

ARNN Value
MAE 6.045271
MAPE 6.695476
RMSE 13.23348



Chapter 4. Results 43

Figure 4.5 shows the forecasted values from January 2022 to September 2022 (273 data

points) through Seasonal Naive modeling, Table 4.5 shows forecasting errors for the Seasonal

NAIVE model.

Figure 4.5: Actual and forecasted values of Tarbela inflow for seasonal naive model from
January 2022 to September 2022

Table 4.5: Accuracy measures of S-NAIVE

S-NAIVE Value
MAE 7.216484
MAPE 7.348168
RMSE 13.23348

Figure 4.6 shows the forecasted values from January 2022 to September 2022 through

Long short-term memory modeling Table 4.6 shows forecasting errors for the LSTM model.
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Figure 4.6: Actual and forecasted values of Tarbela inflow for LSTM model from January
2022 to September 2022

Table 4.6: Accuracy measures of LSTM

LSTM Value
MAE 3.990651
MAPE 3.340282
RMSE 6.881253

4.4 Forecasted vs Observed Indus Tarbela Inflow

It can be observed that predicted values follow the actual values of Tarbela Inflow quite

accurately. The results of the accura cy measure of all mentioned models are tabulated in

Table 4.7. The table shows that LSTM performed well as compared to the other models

with MAPE value 0.6239 , RMSE value 1.8098, and MAE value 0.9072.

Table 4.7: Accuracy measures of the models for one month ahead out of sample forecast

MAE MAPE RMSE
ARIMA 6.773573 7.057577 12.51049
SARIMA 6.772233 7.063733 12.50344
ARNN 6.045271 6.695476 13.23348
S-NAIVE 7.216484 7.348168 13.23348
LSTM 3.990651 3.340282 6.881253
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Conclusion And Future Work

In the realm of the administration of water resources, accurate forecasting of Tarbela Indus

inflow is critical for successful planning and decision-making.

The Indus River is full of natural resources, and it is one of the largest rivers in the world.

It merges into the Arabian Sea and rises from Tibet mountains 90% of the food production

of Pakistan relies on the Indus River. Indus River consists of two major basins, the Upper

Indus Basin and Lower Indus Basin. Rain or melting glaciers and snow will increase the flow

of upper Indus River due to which lower Indus basin will be overfilled and may lead to flood.

To overcome this issue there is need to make reserviors, dams, barrages, etc. These can

reduce the flow rate of rivers and to protect them from floods and other natural disasters.

The flow of the river should be maintained to a certain level by proper maintenance. This

study is performed on the daily flow data of the river Indus from 2018 to 2022 in which one

factor is taken under study which is inflow rate. Flow of the river changes daily because of

rain melting of snow and many other factors. If the river overflows then a flood will occur

that causes great destruction. In order to solve this problem, we conducted this research and

employed several approaches.

The purpose of this study was to advance the field of hydrological forecasting and in-

troduce an efficient model to forecast onward Indus Tarbela Inflow by applying time series

models and advanced machine learning models. In this regard, data from January 2018 to

September 2022 of Indus Tarbela Pakistan is taken to assess the accuracy of models. The

first four years of the data set are utilized for model estimate, while the remaining 273

data points from 2022 are used for out-of-sample forecast accuracy. To predict these data
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points we evaluate the performance of five distinct forecasting techniques: Autoregressive

Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), Seasonal Naive,

Autoregressive Neural Network (ARNN), and Seasonal Autoregressive Integrated Moving

Average (SARIMA).

The rigorous investigation of historical data covering a significant time period, together

with the use of the above-mentioned models, revealed significant insights. by comparing fore-

cast accuracy measures, Among these strategies, we can find that the LSTM model demon-

strated exceptional prediction performance with low values of MAE, MAPE, and RMSE

indicating its ability to capture complicated temporal correlations within inflow data. The

study demonstrated the ability of advanced machine learning and time series approaches to

identify patterns in the complicated hydrological dynamics of the Tarbela Indus inflow.

The work presented in this thesis can be extended by incorporating various exogenous

variables such as rain, snowmelt, and temperature into the model and studying their impact

on out-of-sample forecasts

Also, different models can be used on the same data sets and compare their results.

Different accuracy criteria can also be used to compare the results.

Advances in Tarbela Indus inflow forecasting include the use of hybrid models, the inte-

gration of data sources such as climatic data, satellite imaging, and reservoir levels, and the

quantification of forecast uncertainty. Real-time data integration and climate change adap-

tion are critical for effective decision-making. Machine learning models, such as LSTM, can

improve interpretability and forecast long-term trends, allowing for more sustainable water

management plans. Comparative studies with other forecasting approaches and hydrological

models provide a thorough grasp of the advantages and disadvantages.
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Pala, Z., Ünlük, İ. H., and Yaldız, E. (2019). Forecasting of electromagnetic radiation time

series: An empirical comparative approach. The Applied Computational Electromagnetics

Society Journal (ACES), pages 1238–1241.

Parasyris, A., Alexandrakis, G., Kozyrakis, G. V., Spanoudaki, K., and Kampanis, N. A.

(2022). Predicting meteorological variables on local level with sarima, lstm and hybrid

techniques. Atmosphere, 13(6):878.

Pini, M., Scalvini, A., Liaqat, M. U., Ranzi, R., Serina, I., and Mehmood, T. (2020). Eval-

uation of machine learning techniques for inflow prediction in lake como, italy. Procedia

Computer Science, 176:918–927.

Pradeepakumari, B. and Srinivasu, K. (2019). Dam inflow prediction by using artificial

neural network reservoir computing. Int. J. Eng. Adv. Technol, 9:662–667.

Reza, M., Harun, S., and Askari, M. (2017). Streamflow forecasting in bukit merah watershed

by using arima and ann. Portal: Jurnal Teknik Sipil, 9(1).

Selvi, P., Mahendran, K., et al. (2019). Forecasting the monthly inflow rate of the palar-

porundalar dam in tamil nadu using sarima model. Journal of Applied and Natural Science,

11(2):375–378.

Shathir, A. K. and Saleh, L. A. M. (2016). Best arima models for forecasting inflow of hit

station. Basrah Journal for Engineering Sciences, 16(1):62–71.

Shrestha, M. B. and Bhatta, G. R. (2018). Selecting appropriate methodological framework

for time series data analysis. The Journal of Finance and Data Science, 4(2):71–89.

Sultana, N. and Sharma, N. (2018). Statistical models for predicting swine f1u incidences in

india. In 2018 First international conference on secure cyber computing and communication

(ICSCCC), pages 134–138. IEEE.



References 52

Tadesse, K. B. and Dinka, M. O. (2017). Application of sarima model to forecasting monthly

flows in waterval river, south africa. Journal of water and land development, 35(1):229.

Valipour, M., Banihabib, M. E., and Behbahani, S. M. R. (2013). Comparison of the arma,

arima, and the autoregressive artificial neural network models in forecasting the monthly

inflow of dez dam reservoir. Journal of hydrology, 476:433–441.

Wang, Z.-Y., Qiu, J., and Li, F.-F. (2018). Hybrid models combining emd/eemd and arima

for long-term streamflow forecasting. Water, 10(7):853.

Xu, W., Jiang, Y., Zhang, X., Li, Y., Zhang, R., and Fu, G. (2020). Using long short-term

memory networks for river flow prediction. Hydrology Research, 51(6):1358–1376.

Yadav, S. and Sharma, K. P. (2018). Statistical analysis and forecasting models for stock

market. In 2018 First International Conference on Secure Cyber Computing and Commu-

nication (ICSCCC), pages 117–121. IEEE.

Zhang, G. P. (2003). Time series forecasting using a hybrid arima and neural network model.

Neurocomputing, 50:159–175.



References 53


	List of Abbreviations
	Introduction
	Problem Statement
	Research Objectives
	Contributions
	Thesis Overview

	Literature Review
	Methodology
	Case Study Description
	Data Description:
	Box Jenkins Methodology
	Autoregressive Integrated Moving Average Model
	Parameters of ARIMA
	Autoregressive Model
	Integrated Process
	Moving Average Model
	 Autoregressive Integrated Moving Average (ARIMA) and Stationarity
	 Steps for fitting an ARIMA model
	Tools for Identification of ARIMA Model

	Sarima Model
	Develpoment of Sarima model

	Artificial Neural Networks(ANNs)
	The ANN Architecture
	Auto-Regressive Neural Network(ARNN)

	LSTM-based Deep Learning Model
	The LSTM Architecture 

	Seasonal Naive Model
	The Modelling Framework
	The ARIMA model Fit
	The SARIMA Model Fit
	The NNAR Model Fit
	Seasoanl Naive fit
	LSTM model fit
	Performance Criteria of Forecasting Accuracy


	Results
	Descriptive Statistics of Tarbela inflow
	Out-Of-Sample Tarbela inflow Forecasting
	Indus Tarbela Inflow Forecasting Results
	 Forecasted vs Observed Indus Tarbela Inflow

	Conclusion And Future Work
	References

