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Abstract

Regression to the mean is the phenomenon in which extreme values of a variable in one

sample are discovered to be less extreme and more similar to the population mean following

re-measurement. The first measurement is exceptional solely by accident. When individuals

are chosen based on certain criteria or a cutoff point to determine the significance of an

intervention effect, the observed change, known as the total effect, is made up of treatment

and RTM effects. RTM must be taken into consideration in order to appropriately quantify

the intervention effect. In this research, we aim to develop novel methods for estimating RTM

effects in non-normal populations, transforming non-normal data into normal using Box-Cox

transformations and bivariate normal data methods. The inverse transformation of RTM is

then applied to bring it to the original units of the data. The second approach is motivated

by the percentile change caused by the RTM, which is defined as the difference between the

first quantile point and the mean of the data on the second occasion. The same amount of

percentile change is used to identify the two quantile points whose difference is the RTM

effect in that original population. We used several distributions to meet our research goals

and evaluate the effectiveness of our proposed methods.



Chapter 1

Introduction

Regression toward the mean. That is, in any series of random events an extraordinary

event is most likely to be followed, purely due to chance, by a more ordinary one.

– Leonard Mlodinow

1.1 Regression to Mean

Regression to the mean (RTM) is a statistical phenomenon that can make natural variation

in repeated data appear to be due to treatment or intervention effects. It unusually happens

when large or small measurements tend to be followed by measurements that are closer to

the true population mean. This is also called “reversion to mediocrity” or “reversion to the

mean”. It is a well-known phenomenon in several domains, including medicine, psychology,

sports, economics, and education. Galton (1886) was the first to establish the idea of RTM

at the end of the nineteenth century. Galton noticed that the heights of the offspring of tall

parents were closer to the population average than those of their parents. The heights of

children of short parents tended to be closer to the average population than those of their

parents. To delve deeper into the evolution of the RTM concept over time, the readers are

referred to Stigler (1997).

Galton coined the phrase ”RTM” to understand this phenomenon better. Some examples

of RTM are below.

Assume a researcher wants to see how a new trading method affects stock returns. The

researcher picks a set of stocks with a history of high volatility and trading volume. The

1
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stock returns are higher after using the new trading method. The efficacy of the technique

is predicted to rise, but other factors may also be at play. Stock return variations can be

influenced by various sources of variation, including market circumstances, investor state of

mind, and random fluctuations. Probably, the rise in stock returns observed after applying

the new trading technique could be influenced by variables other than the strategy’s effect.

For example, the initial baseline measures might have been influenced by ideal market

conditions or a strong investor mindset, resulting in better stock returns even before the new

strategy was implemented. In this instance, the reported boost in stock returns may not be

attributable to the treatment effect of the new trading method but may instead be partially

explained by random market movements or outside causes. In this case, the idea of RTM also

applies. If the selected stocks have historically poor returns, it is feasible that their returns

would organically grow over time due to RTM even without any intervention. As a result,

any reported rise in stock returns following the adoption of the new trading method should

be carefully examined to establish the true impact of the strategy, taking into account the

role of RTM and other complicating variables.

Investors frequently examine stock performance to make investing decisions. Assume

ABC is a private trading company. ABC’s stock price has increased by 40 percent in the last

month as a result of the favorable market state of mind and high demand. Investors have

taken notice of the unbelievable increase in value over such a short period.

However, based on the concept of RTM, investors should consider that ABC’s future

returns are likely to be more moderate compared to the recent exceptional growth. The

stock’s price may not continue to rise at the same rapid pace in the coming weeks or months.

Regression to the mean suggests that the stock’s performance will regress or move closer to

its average or typical rate of growth.

Similarly, WXY’s stock price has lately dropped significantly. Despite the stock’s significant

decrease, due to RTM, the WXY’s future returns may improve. Over time, the stock’s price

may recover or stabilize, bringing it closer to its average or projected performance. By taking

RTM into account, investors can reduce their expectations and make more rational decisions,

knowing that significant price fluctuations in the stock market are likely to return to average

or mean performance over time.
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James (1973) investigated the effect of RTM in uncontrolled clinical trials, and concluded

that regression effects were present due to biological variation over time and variation in

the measurement. The author derived a formula to quantify and estimate the RTM effect.

He argued to separate RTM and treatment effects in uncontrolled clinical trials. Chinn and

Heller (1981) derived algebraic formulae to calculate the RTM effect for a measurement whose

population mean and variance change over time and for sub-populations selected according

to the initial value. The formulae were applied to the plasma cholesterol levels of participants

in a dietary intervention study, enabling the effects of an intervention to be separated from

the secular change and the RTM effect.

Healy and Goldstein (1978) reviewed the concept of RTM. The author described the

concept of RTM in basic terms and illustrated how it appeared in studies of mental and

physical development. Browne et al. (1999) investigated the effect of RTM on neurological

symptoms following a coronary artery bypass graft procedure. At the discharge evaluation,

the group’s mean performance on the Rey Auditory Verbal Learning Test had decreased and

remained below baseline after three months. The average performance of the Trail Making

Test (Part A) showed a practically significant decrease upon discharge before increasing

at three months. RTM had a considerable influence on single-case criteria of cognitive

impairment with a disproportionately large percentage of high-baseline performers classified

as handicapped.

Barnett et al. (2005) explained the RTM concept and demonstrated methods to deal

with it. The authors thought that the RTM effect could be reduced by enhancing the design

of research and employing suitable statistical methods. Bush et al. (2006) explored the

prevalence of RTM in contrast to the efficiency of capital markets. By utilizing Fortune

Magazine’s ranking of highly regarded American companies to differentiate between positive

and negative firms, the authors showcased the findings that: (1) the least admired companies

outperformed the most admired firms, (2) a portfolio comprising the most admired firms

demonstrated better performance than the market, and (3) a portfolio of the least admired

companies also exhibited superior performance compared to the market.
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1.2 Consequences of Overlooking RTM

The results of data analysis and decision-making could be misleading if RTM is ignored. To

avoid determining wrong conclusions and creating inaccurate projections, it is essential to

comprehend and resolve these statistical phenomena. Here are a few important consequences:

• False Attributions: Ignoring RTM might lead to incorrectly associating an effect with

specific causes or treatments, thereby obscuring the real nature of the data.

• Misleading projections: Ignoring RTM might lead to overly optimistic or pessimistic

projections, as extreme values tend to regress toward the mean later upon remeasure-

ment.

• Incorrect intervention evaluation: Ignoring RTM in intervention evaluation might

bias results since extreme pre-intervention ratings may regress toward the mean.

• Unrealistic Expectations: Failure to take RTM into account might result in inflated

expectations which could result in bad decisions or strategies since dramatic successes

or failures cannot be long-lasting.

Recently, researchers have reported the RTM effect in different research areas such as health

(Moore et al., 2019; Wang et al., 2020; Cochrane et al., 2020; Kypri, 2020), measurements

of geographic atrophy growth rate (Biarnés and Monés, 2020), and economic forecasting

(Pritchett and Summers, 2014).

1.2.1 Methods for RTM Quantification

Many researchers have developed methods for quantifying RTM. Most of the method are

based on the assumptions of bivariate normality of the pre-post variables. Formulae were

derived for quantifying and estimating RTM by James (1973), Gardner and Heady (1973)

, Davis (1976), and Johnson and George (1991). Recently, researchers have worked out

estimating the RTM effect for discrete distributions including the Poisson distribution (Khan

and Olivier, 2018) and the bivariate binomial distribution (Khan and Olivier, 2019).

Beath and Dobson (1991) used Saddle point and Edgeworth approximations to estimate

RTM for non-normal populations. The methods had certain limitations like producing negative
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results for probability mass function and becoming complicated. Similarly Müller et al. (2003)

developed non-parametric technique for quantifying RTM. However, their formulae does not

help in decomposing the total effect into RTM and treatment effect. John and Jawad (2010)

introduced a kernel density based methods for estimating the RTM effect.

1.2.2 Identification of RTM through graphs

The RTM impact may be displayed using a simple scatter plot that compares follow-up and

baseline sales measurements. In Figure 1.1, the x-axis represents baseline sale measurement,

while the y-axis represents the difference between follow-up and baseline sales. The solid line

shows that the follow-up and baseline values are completely in line (i.e., there has been no

change). The higher line represents the treatment group, while the gap between the regression

lines denotes a potential treatment effect. The higher line represents the treatment group,

and the space between the regression lines denotes a potential treatment effect. The dotted

lines were created by performing a linear regression of the change values on baseline values

with a group covariate. In the figure, some RTM is visible because subjects with unusually

low baseline results have been more likely to improve (so that change values are probably

above the solid line), and subjects with unusually high baseline results have tended to decline

(so that change values are probably below the solid line). Since there was less variation in the

group mean between the measurement intervals in the placebo group, this pattern is more

visible in that group.
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Figure 1.1: RTM effects in figure sales in baseline and follow-up measurement with true mean
and variation

1.2.3 Reducing the effect of RTM

Yudkin and Stratton (1996) discussed several approaches that could be used in experiment

design to mitigate the RTM effect. The RTM can be reduced by using a research design that

randomly allocates participants to the control and active groups. This will have an equal

impact on both groups’ responses. The estimated treatment effect is the difference between

the treatment and placebo groups after RTM correction. The RTM plus placebo effect is

responsible for the change in the placebo group. James (1973) highlighted the importance of

the control group in decreasing the RTM effect.

Gardner and Heady (1973) studied a second technique for reducing the RTM effect and

recommended that people be selected using two or more baseline assessments and that the

number of follow-up measurements be increased. The RTM effect is caused by the random

component, and it is highly rare to detect extraordinary events (very good or very bad) on

the second measurement.

Additionally, the RTM might be decreased during the data analysis stage when the cut-off

point has been chosen; hence, it is suggested to use ANCOVA with a group co-variate.
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1.3 Box Cox Transformation

Box and Cox (1964) introduced Box-Cox transformation. It is a statistical method called the

Box-Cox transformation that can be used to reduce the variance of a dataset or bring the data

closer to the assumption of normality. When data violate the assumption of normality (i.e.,

are not normally distributed) or show heteroscedasticity (unequal variances across several

groups or levels of a variable), the Box-Cox transformation might be used. The transformation

can be applied to continuous positive-valued data.

To transform datasets with non-normal data into a normal, Sakia (1992a) suggested

a statistical technique known as Box-Cox transformation. This change may significantly

increase the accuracy and dependability of linear regression modeling. It required you to take

the natural logarithm of a variable and improve it to power (lambda) measured by MLE. The

lambda value will be determined by how skewed the data is, which means that a new lambda

will be used for each data set. This transformation can be used in regression, ANOVA, and a

variety of other applications where non-normal data must be transformed into normal form.

There are many reasons to use the Box-Cox transformation, but here are the three most

important reasons to use it: To stabilize the variance, improve normality, and make patterns in

the data more easily recognizable. The most fundamental goal of the Box-Cox transformation

is to choose an appropriate power transformation that maximizes data normality or equalizes

variances between groups. A parameter called lambda λ defines the transformation by

specifying the kind and degree of the transformation that will be applied to the data. The

Box-Cox transformation is defined as follows:

w(λ) =


wλ−1

λ
, λ ̸= 0

ln(w), λ = 0

(1.1)

where w represent the original data, and w(λ) represent the transformed data.

The Box-Cox transformation often involves assessing the probability function for several

lambda values and selecting the lambda value that optimizes the likelihood. You may do

this by applying several optimization techniques. The Box-Cox transformation’s purpose

is to generate a dataset that is improved in terms of symmetry and variance homogeneity,
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making the assumption of statistical analysis valid. However, the interpretation of the revised

information may differ from the original data.

Although additional transformations, such as the inverse, square root, and logarithmic

ones, are available, the Box-Cox transformation provides a versatile approach that combines

all of them and may determine which one is appropriate for the data under consideration.

1.4 Motivation of the study

Much of the past research on RTM has focused on normal populations. This research, however,

focuses on assessing RTM for non-normal populations. The objective of this study is to develop

novel methods for estimating RTM effects in data that don’t follow a normal distribution.

The aim is to transform the non-normal data using the Box-Cox transformations and using

the methods developed for bivariate normal data to quantify RTM. After quantification, take

the inverse transformation of RTM to bring it to the original units of the data.

The second approach is motivated by the percentile change caused by the RTM. RTM

can be defined in terms of percentile change as the difference between the first quantile

point ( usually the mean of the truncated data) and the mean of the data on the second

occasion. After identifying the percentile change, the same amount of percentile change is

used for identifying the two quantile points whose difference is the RTM effect in that original

population.

1.5 Research Objectives

• In the case of RTM, Convert non-normal data to normal data using the Box-Cox

transformation, then transform the RTM using the Inverse Box-Cox transformation.

• Study the effect of the percentage change.
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1.6 Outlines of the thesis

In this thesis, we worked to assess the estimation of RTM for a non-normal population. The

structure of the thesis consists of four chapters. In Chapter 2 the existing methods and

relevant literature on RTM for normal distribution and Box-Cox are discussed. Chapter 3

contains an assessment of RTM through Box-Cox Transformation, a simulation study, and a

discussion. Chapter 4 contains an assessment of RTM for discrete distribution, a simulation

study and a discussion. Chapter 5 contain the conclusion of the work and recommendation

for future work.



Chapter 2

Literature

Several techniques have been put forth in past research to quantify the impact of RTM in

various situations. Researchers have offered their suggestions for how to decrease the impact

of RTM and assess treatment effects. We provide a quick summary of all of these strategies

and techniques in this chapter.

2.1 RTM Effect Under Normal Distribution

James (1973) discovered the RTM effect for bivariate normal distribution. He assumed that

the observed variable is made up of both true and random error components. Let Xi is the

effect size on ith measurement of the same subject and X0 is the true measurement then:

Xi = X0 + ei

where ei is random error and i = 1, 2, ...

James (1973) discovered that the observed value was composed of two components namely

the biological effect and measurement error and the true value. James (1973) suggested that

RTM be separated from the observed change to accurately estimate the true treatment effect

to avoid incorrect conclusions.

James derived the formula of RTM by assuming that the pre and post-variables Xi ∼

N(µ, σ2) with cov(X1, X2) = σ2
0 for i = 1, 2. Considering the null treatment effect, the

RTM effect equals the condition difference between the pre and post-treatment means. The

10
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resulting RTM effect formula is

R (x0) =
σ(1− ρ)ϕ (z0)

1− Φ (z0)
= (

σ2
e√

σ2
0 + σ2

e

) ∗ ( ϕ (z0)

1− Φ (z0)
). (2.1)

James determined that if the treatment was effective, the model connecting the pre-post

variables could be expressed as

X2 − µ = γρ (X1 − µ) + e1. (2.2)

For γ < 1, the treatment effect is non-zero. The observed conditional difference in a bivariate

normal distribution was shown to be

E(Z1 − Z2 | Z1 > z0) =
(1− γρ)ϕ(z0)

1− Φ(zo)
, (2.3)

where Zi is z-score for i = 1, 2.

James established the above formula in equation 2.3 for the overall proportionate decrease

attributable to RTM and treatment as well. This will partition the total effect into true and

RTM effects however it fails when the pre-post measurements variables are independent.

Similar to James, Gardner and Heady (1973) worked on the derivation of the RTM

effect, but along with bivariate measures, the authors also investigated the effect of multiple

measurements on RTM. The authors assumed the normal distribution of pre-post variables

with rho = σ/

√
σ2
0 + σ2

1. The subjects selected based on the right cut-off point, i.e. Xi > xo

follow the univariate truncated normal distribution with mean;

E (Xi | Xi > x0) = µ+ σ
ϕ (z0)

1− Φ (z0)
. (2.4)

Similarly, the mean of X0 given that the observation is greater than the cutoff point is

E (X0 | Xi > x0) = µ+
σ2
0

σ
· ϕ (z0)

1− Φ (z0)
. (2.5)

Since σ > σ2
0/σ unless σ2

e = 0, therefore it is clear from the above equations 2.4 and 2.5

that the observed mean of observation is always greater than their true mean due to RTM.
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Gardner and Heady (1973) derived the RTM formula for multiple measurement n on the

same subject before application of the treatment and is given by

R (x0) = E
(
X̄ −X0 | X̄ > x0

)
=

σ2
e/n√

σ2
0 + σ2

e/n
· ϕ (z0n)

1− Φ (z0n)
, (2.6)

where X̄ =
∑

xi/n is the sample mean of n multiple measurements. James’ derivation of

RTM is a special case of equation 2.6 for n = 1. However, the RTM effect approaches zero

when n becomes sufficiently large.

Davis (1976) worked on the study design to reduce the RTM effect. Let the mean of all

multiple measurements and a follow-up observation be X̄ and X∗, respectively such that

X̄ ∼ N(µ, σ2
o + σ2

e/n) and X∗ ∼ N(µ, σ2
o + σ2

e). The RTM effect is derived as shown below:

R (x0, n) = E
(
X̄ −X∗ | X̄ > x0

)
=

σ2
e/n√

σ2
0 + σ2

e/n
· ϕ (z0n)

1− Φ (z0n)
(2.7)

which is the same as derived by Gardner and Heady (1973). Using the first observation X1

as a classification baseline measurement, i.e., choosing a subject based on the event X1 > x0,

and the second observation X2 on the same subject as the baseline from which the treatment

effect may be assessed could be useful to mitigate the RTM effect (Davis, 1976). Let X3 be

the post-treatment measurement, then the author derived the RTM formula by taking the

conditional expectation of the truncated bivariate distribution and derived the formula

R (x0, ρ12, ρ13) = E (X2 −X3 | X1 > x0) = (ρ12 − ρ13) · σ
ϕ (z0)

1− Φ (z0)
, (2.8)

where the correlation coefficient between (X1, Xi) are represented by ρ1j for j = 2, 3. The RTM

effect becomes zero when the two correlation coefficients are equal with baseline measurement,

thereby does not require multiple measurements for reducing the RTM effect.

So far, the observed values were assumed to have consisted of two components, measurement

error and the second is biological variables such as emotional and other influences during the

recording of observation. Johnson and George (1991) extend the previous model and included

the subject effect, Si ∼ N(0, σ2
s). Hence the model becomes;

Yij = X0 + Si + Eij (2.9)
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where i = 1, 2, ...m, j = 1, 2, ...n and Yij represents the jth replicate measurement at the ith

study time. The correlation between Si and Sk is positive and independent of random error

Ei and baseline measurement X0. Under Equation.2.9 the RTM formula derived by Johnson

and George (1991) is

RT (y0) =
(1− ρs)σ

2
s + σ2

e/n

mσȳ

· ϕ (z1)

1− Φ (z1)
(2.10)

The above equation 2.10 represents the total RTM effect due to measurement error and

subject effect. The measurement error of RTM can be reduced by either number of replication

n or by increasing the number of repeated measurements. While a larger number of repeated

measurements m taken at various times reduces the regression impact caused by subject

variability.

The detailed work on RTM under normal distribution was recently done by Khan and

Olivier (2022). The authors partitioned the total effect into true treatment and RTM effects

found the MLE and checked their properties such as unbiasedness, consistency, and normality.

The RTM effect was depicted for both positive and negative correlations. They derived the

RTM effect in a pre-post measurement case in which the pre-variable is composed of true and

random parts i.e. X1 = X0 + ϵ1 and Post-variable X2 = a+ bX0 + ϵ2, where a+ bX0 is the

true part and ϵ2 is the random component. The total effect is quantified as follows;

T (x0, θ) = (µ1 − µ2) + (σ1 − ρσ2)
ϕ (z)

1− Φ (z)
. (2.11)

The first part on the right-hand side, (µ1−µ2), of the above equation is the average treatment

effect, and the second term is the RTM effect. The authors also derived variance of RTM

var(X1 −X2 | X1 > X0) as

var (X1 −X2 | X1 > x0) =
2∑

i=1

var (Xi | X1 > x0)− 2× cov (X1, X2 | X1 > x0) . (2.12)
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The maximum likelihood estimators of the total, RTM, and true effect were derived as

T̂r (x0,x) = µ̂1 − µ̂2 +
ϕ (ẑ0)

1− Φ (ẑ0)
· (σ̂1 − ρ̂σ̂2) , (2.13)

R̂r (x0;x) = (σ̂1 − ρ̂σ̂2) ·
ϕ (ẑ0)

1− Φ (ẑ0)
, and (2.14)

δ̂(x) = µ̂1 − µ̂2. (2.15)

The distribution of RTM and true treatment δ̂(x) were shown to be asymptotically normal

and unbiasedness and consistency of the estimators were established. The simulation study

shows that the RTM and intervention estimates are close to the true value in all cases while

James (1973) method gave poor estimates.

2.2 Box-Cox Transformation

Box and Cox (1964) introduced Box-Cox transformation. It is a statistical method called

the Box-Cox transformation that can be used to stabilize the variance of a data set or

make the data satisfy the assumptions of normality. When data violate the assumption of

normality (i.e., are not normally distributed) or show heteroscedasticity (unequal variances

across several groups or levels of a variable), the Box-Cox transformation could be utilized.

The transformation can be applied to continuous and positive-valued data. Sakia (1992b)

proposed a parametric power transformation technique to reduce errors such as non-additive,

non-normality, and heteroscedasticity.

In Daimon (2011) studied the Box-Cox power transformation. It is used to change the

distributional shape of a piece of data to make it more normally distributed so that tests

and confidence limits that need normality can be applied properly. Yang (1996) conducted

a study on the Box-Cox’s conditional method to inference after transformation selection

demonstrates that the T-statistic obtained when the transformation is estimated using Box-

Cox is asymptotically similar to that obtained when the transformation is assumed to be

known. Rahman (1999) proposed a new method for estimating the Box-Cox transformation

using the maximization of the Shapiro-Wilk W statistic, which forces the data to get closer

to normal as much as possible. A comparative study is also presented with the normal-based
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likelihood and artificial regression model procedures.

Tommaso and Helmut (2011) investigated whether transforming a time series leads to

an improvement in forecasting accuracy. The authors proposed a nonparametric approach

for estimating the optimal transformation parameter and conducted an extensive recursive

forecast experiment on a large set of seasonal macroeconomic time series. As the forecast

horizon increased, the evidence in favor of a transformation became less strong.

Osborne (2010) studied Box-Cox as an automated procedure that may be used in SPSS

and SAS, and it may be a best practice for normalizing data or stabilizing the variance.

Sarkar (1985) proposed the maximum likelihood method of estimation for the parameters

of the Box-Cox model showing the seriousness of the problem of heteroscedasticity in the

context of this transformation. The authors also suggested how to separate the problem

of non-linearity from the influence of stabilization of error variance in an estimate of the

transformation parameter.

Hossain (2011) reviewed the role of the Box-Cox transformation technique in estimation,

testing, inference, and model selection. An attempt was made to bridge the gap by providing

an analytical bibliography for model selection. Gaudry and Laferriere (1988) studied Box-Cox

transformations on linear regression models, which could be interpreted as simple power

transformations, leading to non-degenerate solutions when estimated without a regression

constant.

Proietti and Lütkepohl (2013) examined if a time series transformation might increase

forecasting precision. They conducted a comprehensive recursive forecast experiment and

suggested a nonparametric method for estimating the ideal transformation value. The results

demonstrated that at the one-step-ahead horizon, the Box-Cox transformation generated

superior forecasts than the untransformed data. Another study conducted byOzgur Asar and

Dag (2014) used seven goodness-of-fit tests and a search algorithm to estimate this Box-Cox

parameter. Simulation studies showed that Shapiro–Wilk and the artificial covariate method

were more effective than Pearson Chi-square. An R package called AID was proposed for

implementation.



Chapter 3

Assessing RTM Through

Transformation

3.1 Estimation of RTM for Non-Normal Populations

RTM is a phenomenon in statistical analysis that refers to the tendency of extreme observations

in a data set to move closer to the population mean upon repeated assessments. This effect

is popular in natural systems and is well-known when working with data with a normal

distribution. But in real life, when we deal with population datasets, sometimes the data

do not follow a bivariate normal distribution; that data set is called non-normal data. The

assumption of normality is violated. In these situations, specialized statistical techniques

are needed to account for the non-normality of the data. There are numerous strategies

and procedures for transforming non-normal data into a normal distribution. The Box-Cox

transformation within the framework of RTM is the strategy we used to tackle this problem.

It is interesting to note that the Box-Cox transformation has not yet been used in RTM to

address this specific issue.

3.2 Box-Cox Transformation Application

The Box-Cox transformation is a statistical method for converting non-normal data to normal

data. It can improve the accuracy of predictions made using linear regression. In this

thesis, we use this technique to overcome the problem of non-normal data to normal data

16
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while estimating RTM. Box and Cox (1964) suggested a parametric power transformation

approach to eliminate non-normality and heteroscedasticity. The Box-Cox transformation is

a statistical approach commonly used for data normalization and variance stabilization in

various applications. Its applications include data analysis, regression modeling, time series

forecasting, machine learning, and many more.

For the estimation of RTM from non-normal data, we are using this transformation to tackle

this problem and see how it would work in the estimation of RTM. In RTM estimation, the

Box-Cox transformation is often used to solve the problem of non-normal data with accurate

power transformation of lambda value. Using the Box-Cox transformation, the assumption of

normality in the data set could be satisfied and the methods developed under the assumption

of normality could be used to estimate RTM by selecting an accurate value of lambda using

different parameters of different distributions. With the help of it, we draw a better and

more accurate conclusion by accounting for RTM. The Box-Cox transformation is defined as

follows:

w(λ) =


wλ−1

λ
, if λ ̸= 0

ln(w), if λ = 0

The application of Box-Cox transformation is used in many other fields such as time series,

forecasting, machine learning, and data analysis. In time series Box-Cox transformation plays

a very significant role, especially when we deal with the real data set in the real world when

the assumption of normality and non-constant variance are violated. Time series mostly

contain more complex patterns like seasonality, trends, and irregularity, which makes the

variance non-stationary over time. By applying the Box-Cox transformation with an accurate

value of the parameter lambda, the variance can be reduced, making the data more suitable

for modeling and analysis with approaches such as ARIMA or SARIMA. It can solve the

non-normality issue. In conclusion, the Box-Cox transformation is a vital pre-processing step

in time series analysis, helping to improve data quality and the performance of time series

models.

The Box-Cox transformation is an important pre-processing technique that improves

model performance when dealing with skewed or non-normal data. Batter pattern detection

and resilience are made possible by normalizing data, stabilizing variance, and ensuring



Chapter 3. Assessing RTM Through Transformation 18

normality. It also reduces the impact of outliers on model performance. Overall, it is an

important tool in the machine-learning process because it improves model generalization and

prediction accuracy with non-normal or skewed data.

In conclusion, BoxCox transformation is valuable in transforming non-normal data into

normal data in many applications. It improves the quality and reliability of statistical studies

by normalizing the data, resulting in more robust and useful insights for decision-making and

predictive modeling.

3.3 Idea of Percentile Change

In the context of RTM, first the subjects with initial measurements x1i for i = 1, 2, · · · , n

greater than a cut-off point say x0 are selected. Upon re-measurements x2i, the mean

x2 of the subjects is found closer to the mean. The difference between the cumulative

probabilities at point x1 and the new mean x2 is defined as the probability of percentile

change. Mathematically,

PC = Pr(x < x1)− Pr(x < x2). (3.1)

From Figure 3.1, the difference of the two quantile points is the RTM effect as

RTM = x1 − x2. (3.2)
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Figure 3.1: Visual display of the RTM effect after Box-Cox transformation

Figure 3.2: Visual display of the RTM in the original non-normal distribution using the
percentile change

Let’s assume data from a non-normal distribution xi such that xi > 0 for i = 1, 2..., n.

After applying the Box-Cox transformation, the non-normal data will become normal and let
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it be denoted by y1, y2, ..., yn. The position of each datum is the same, however, the values of

the data will change after the application of the Box-Cox transformation technique. After

applying the Box-Cox technique we used the normality check using the Shapiro-Wilk Test.

The method developed under the assumption of normality could be used to quantify the RTM

effect, and the relevant percentile change can be determined. The same percentage of relevant

change could be used to identify the quantile points for the non-normal data. The difference

in the non-normal population’s quantile points gives the RTM effect. Mathematically,

PC = Pr(y < y1)− Pr(y < y2). (3.3)

Substituting the PC in the above equation and using the known value of y1, the value y2 can

be determined. The difference between y1 and y2 gives the RTM effect for the non-normal

distribution as

RTMnon−normal = y1 − y2. (3.4)

Visually, the RTM is depicted in Figure 3.2.

To find RTM using the proposed method, first, we will transform the data from a non-

normal distribution to a normal distribution by Box-Cox transformation, and then, with the

help of the quantile points, we will find the RTM.

3.4 Inverse Box-Cox Transformation

Firstly, we proposed RTM by using Box-Cox transformations to convert the non-normal data

to normal, and then we also used different quantile points. Now we are interested in finding

the original data. With the help of inverse transformation, we transform the data back to its

original scale in RTM. Then we select the method of inverse Box-Cox transformation to fulfill

our interest. Also, check if the inverse Box-Cox transformation will work in it or not.

The inverse Box-Cox transformation is a statistical technique to transform the data back

to its original scale. It’s a reverse transformation of the Box-Cox transformation. Inverse

Box-Cox transformation is crucial to data analysis, regression modeling, and other areas
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where the statistical hypotheses of normality and constant variance are significant. The

formula that we use in the inverse Box-Cox transformation is as follows:

w−1(λ) =


(wλ+ 1)

1
λ , ifλ ̸= 0

otherwise, ifλ = 0

Now we apply the two proposed techniques to different distributions and see how closely is

the RTM effect estimated by the two methods. If they work, how much good will it be on

a different distribution, and if it does not, how bad will it be on a different distribution?

For this purpose, we have selected continuous skewed, continuous symmetric, and discrete

distributions.

3.4.1 Exponential Distribution

The exponential distribution is a continuous probability distribution that models the time

between events in a Poisson process in which events occur randomly and independently over a

given period. It has only one parameter called λ, which represents the rate of event occurrence.

The range of this distribution is y > 0. The PDF of the exponential distribution is

fy(y|λ) =


λe−λy, ify> 0

0, ify<= 0

Algorithm: To check the performance of the proposed methods, we used the RStudio

software. Initially, Let X11, X21, X12, X22,:::, X1n, X2n be an exponential bivariate random

sample of size n from a truncated bivariate distribution, and let the corresponding observed

values be x11, x21,x12 , x22, · · · , x1n, x2n. James (1973), utilized the method of moments to

calculate µ, ρ, and σ2. The percentage of the population in the trimmed portion x0 was

supposed to be known. We generated 5000 random variables from an exponential distribution

using distinct sample sizes of 50, 100, 200, 300, 500, and 700. These random variables,

denoted as x0, x1, and x2, were generated with parameter values of λ set to 0.5, 0.2, and

0.2, respectively. Subsequently, x1 and x2 were correlated with x0 to create a bivariate

exponential distribution. Upon generating the bivariate random variables, we employed the
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MASS library to apply the Box-Cox transformation. This transformation aimed to convert

the non-normal data into a normal distribution, using the λ values used in the initial random

variable generation. The two new random variables have been constructed using the Box-Cox

transformation with the characteristics of normal data. Now we also check, after applying

Box-Cox, that the data approaches normal with the help of histograms and Shapiro-Wilk

Test. Both confirmed that the data should be normally distributed. After this, we need a cut

point to find the RTM. With the help of quantile 0.85 against the 85 percentiles, we select

the truncated point, which is 12. A truncated point is a value that decides which subset of

the data will be selected for an intervention. Then we find all the values that are used in

True RTM using the existing formulas of regression to the mean: estimation and adjustment

under the bivariate normal distribution by Khan and Olivier (2022).

Furthermore, we proceed with determining the proposed RTM percentile values by

employing quantile points and applying them to any normally distributed data. In finding

the proposed method1, we used another proposed method to convert the data into its original

data, the method name is Inverse Box-Cox Transformation. With the help of this, we also

want to check whether the RTM returns to its original state or not. Table 3.1 shows the

different values of the estimated RTM for different sample sizes. ARTM represents the RTM

estimated using the normal distribution for different sample sizes, ARTMT represents the true

RTM values; ARTMC represents the estimated RTM using the quantile points; and ARTMTR

represents the second proposed RTM values using the inverse Box-Cox transformation.

Table 3.1: Assessing RTM through a transformation using exponential distribution when λ0

=0.5, λ1 =0.2, λ2=0.2, x0=12

Sample Size ARTM ARTMC ARTMT ARTMTR

50 0.6051065 9.190113 8.850660 2.072915

100 0.5891113 9.402414 8.849798 1.938875

200 0.4905445 9.570617 8.843195 1.672131

300 0.443658 9.536601 8.832506 1.55624

500 0.4251441 9.422772 8.844107 1.513019

700 0.4145126 9.406074 8.837298 1.493079
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Figure 3.3: Assessing RTM through a transformation using exponential distribution

The above graph presents the behavior of the RTM methods. We investigate numerous

sample values along the x-axis, such as 50, 100, 200, 300, 500, and 700. The graph illustrates

that our proposed method closely resembles and overestimates the true RTM line. In

comparison, the inverse Box-Cox transformation deviates greatly from the True RTM line.

The proposed method demonstrates superior performance compared to inverse transformation,

as it closely aligns with the True RTM line.

Similarly, using the same procedure, and same parameter values but with a different

quantile point inside the same distribution, the results are shown below.

Table 3.2: Assessing RTM through a transformation using exponential distribution when λ0

=0.5, λ1 =0.2, λ2=0.2, x0=10

Sample Size ARTM ARTMC ARTMT ARTMTR

50 0.5747793 7.884843 7.465132 2.033031

100 0.5003955 8.068392 7.460439 1.740783

200 0.4273357 8.162271 7.448379 1.553180

300 0.4047200 8.162014 7.445641 1.495055

500 0.3863423 8.060589 7.456404 1.456606

700 0.3772540 8.048028 7.451085 1.440499



Chapter 3. Assessing RTM Through Transformation 24

Figure 3.4: Assessing RTM through a transformation using exponential distribution

The above graph presents the behavior of the RTM methods for different sample sizes.

The graph illustrates that our proposed method closely resembles the true RTM line. In

comparison, the inverse Box-Cox transformation deviates greatly from the True RTM line.

So overall, our proposed method demonstrates superior performance compared to inverse

transformation, as it closely aligns with the True RTM line.

Similarly, another example involves applying the same procedure but with different

parameter values inside the same distribution, the results are shown below.

Table 3.3: Assessing RTM through a transformation using exponential distribution when λ0

=0.8, λ1 =0.5, λ2=0.5, x0=5

Sample Size ARTM ARTMC ARTMT ARTMTR

50 0.4510861 3.469634 3.194372 1.697973

100 0.4387682 3.573141 3.192464 1.614436

200 0.4016658 3.615905 3.190236 1.526212

300 0.3498763 3.629690 3.183675 1.417099

500 0.3355998 3.616957 3.192554 1.387105

700 0.3290473 3.608417 3.190693 1.375249
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Figure 3.5: Assessing RTM through a transformation using exponential distribution

The graph provided illustrates how different sample sizes (50, 100, 200, 300, 500, 700) impact

the performance of RTM methods. The graph indicates that our innovative approach closely

corresponds to the True RTM line, unlike alternative techniques. Conversely, the method

involving inverse transformation significantly diverges from the True RTM line. The suggested

method stands out as superior in comparison to the alternative, as it maintains close proximity

to the True RTM line. Especially for sample sizes of 50 and 100, both our suggested method

and the true RTM method display closely converging values. As a result, on the whole,

our proposed method surpasses the effectiveness of the inverse Box-Cox transformation in

the current context. It’s important to note that the inverse transformation also showcases

commendable performance, although it doesn’t fully meet expectations. Among the three

instances analyzed, this particular example demonstrates the most adept performance. In this

specific scenario, the proposed method shows a stronger resemblance to the True RTM line.

3.4.2 T-Distribution

The t-distribution commonly known as the Student t-distribution, is a kind of probability

distribution with a bell-shaped pattern that resembles the normal distribution but with

thicker tails. It has one parameter called the degree of freedom, denoted by df .

Algorithm: To check the performance of the proposed methods we used the RStudio

software. First, a random sample of size 5000 was generated from the t-distribution. Different
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sizes of the truncated sample like (50, 100, 200, 300, 500, 700) were generated. The pair of

observations (y1, y2) were produced using the relation y1 = x0 + x1, and y2 = x0 + x2 with

choosing the degree of freedom λ values 100, 70 and 70. The Box-Cox transformation was

used to make the data normally distributed. Thus, the two new random variables have

been constructed using the Box-Cox transformation with the characteristics of normal data.

Now we also check the normality of the transformed data with the help of histogram and

Shapiro-Wilk test. After this, we need a cut point used to find the RTM effect. Points above

the 85the percentile were considered as the pre observations which are observations above a

cut-off point 2.5. The method developed by Khan and Olivier (2022) was used to estimate

the RTM effect.

Furthermore, the methods of percentile change and the inverse Box-Cox transformation

were used to estimate the RTM effect. Table 3.4 shows the estimated RTM for different

different sample sizes.

Table 3.4: Assessing RTM through a transformation using t-distribution when λ0 =100, λ1

=70, λ2=70, x0=2.5

Sample Size ARTM ARTMC ARTMT ARTMTR

50 0.2400115 0.9134459 0.7607717 1.287333

100 0.2316016 0.8985153 0.7585636 1.262547

200 0.19189553 0.8924755 0.7571582 1.214506

300 0.1863799 0.9082511 0.7601208 1.198788

500 0.1797155 0.8971447 0.7575833 1.189430

700 0.1762163 0.8998460 0.7582616 1.185212
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Figure 3.6: Assessing RTM through a transformation using t-distribution

The depicted graph illustrates the RTM’s behavior across various techniques. The graph

indicates that both our suggested approaches are overestimated but the proposed method

aligns overestimate but most closely with the true RTM trajectory. Conversely, the inverse

transformation technique overestimates the RTM much more than the proposed technique

when compared to the RTM trend. In comparison to alternative methods, our proposed

approach exhibits superiority by maintaining proximity to the true RTM. Consequently, in

this context, our proposed technique outperforms the inverse Box-Cox transformation, which

tends to overestimate the outcome.

Similarly, another example involves applying the same procedure but with different

parametric values using the same distribution, the results are shown below.

Table 3.5: Assessing RTM through a transformation using t-distribution when λ0 =100, λ1

=50, λ2=50, x0=3

Sample Size ARTM ARTMC ARTMT ARTMTR

50 0.2819583 0.9102047 0.7716964 1.344405

100 0.2360769 0.8985836 0.7719679 1.268804

200 0.1988688 0.9110188 0.7729954 1.216088

300 0.1950896 0.9154427 0.7716701 1.208940

500 0.1896344 0.9087024 0.7733252 1.201261

700 0.1905470 0.9097247 0.7743032 1.201293
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Figure 3.7: Assessing RTM through a transformation using t-distribution

Figure 3.7 expresses the behavior of the RTM methods. We take different sample values

on the x-axis such as 50, 100, 200, 300, 500, and 700. Additionally, our proposed method1

overestimates and nearly follows the true RTM line. The inverse transform method is deviating

and overestimated compared to the true RTM. It is close to true RTM when the sample size

increases. The proposed method is comparatively better than other methods as it is close to

the true RTM line. So, overall, our proposed method1 is considered to perform better than

the inverse Box-Cox transformation in the current situation.

Similarly, another example involves applying the same procedure but with different

permutations of the parameters of the same distribution. The results are shown in Table 3.6.
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Table 3.6: Assessing RTM through a transformation using t-distribution when λ0 =40, λ1

=40, λ2=40, x0=3

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.2396382 0.8952023 0.7687866 1.287693

100 0.2224756 0.9003527 0.7699428 1.251571

200 0.1939674 0.8963792 0.7704535 1.21076

300 0.1835125 0.8945976 0.7685723 1.195458

500 0.1809682 0.8948735 0.7708524 1.19151

700 0.1768102 0.8985692 0.7714213 1.186134

Figure 3.8: Assessing RTM through a transformation using t-distribution

The outcomes are also portrayed in Figure 3.8. The graph illustrates that our suggested

technique closely aligns with the true RTM pattern. In comparison to the RTM trend,

the inverse transformation method highly overestimates the RTM. In contrast to alternate

methods, our proposed method1 demonstrates its superiority by maintaining proximity to the

true RTM line. Consequently, considering the entire context, our method1 is deemed more

effective than the inverse Box-Cox transformation in this scenario.



Chapter 3. Assessing RTM Through Transformation 30

Table 3.7: Assessing RTM through a transformation using t-distribution when λ0 =200, λ1

=200, λ2=200, x0=2

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.2517502 0.8837896 0.7432032 1.302467

100 0.2053486 0.8948849 0.7439597 1.229024

200 0.1891601 0.8883394 0.7417736 1.203985

300 0.179559 0.8851499 0.7424031 1.191034

500 0.1656299 0.8964062 0.747207 1.17395

700 0.1694763 0.8868447 0.7456849 1.177735

Figure 3.9: Assessing RTM through a transformation using t-distribution

The above graph presents the behavior of the estimated RTM for different methods. The

percentile change method for sample sizes 50, 100, 200, 500, and 700 closely estimates the true

RTM. The inverse transform method vastly overestimated the true RTM by more than half of

the true value of RTM. The proposed method is comparatively better than other methods as

it is closer to the true RTM line. Once again, for the new choices of the parameters λ0 =200,

λ1 =200, λ2 =200, x0=2, the percentile change method performs better than the inverse

Box-Cox transformation in the current situation.
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Table 3.8: Assessing RTM through a transformation using t-distribution when λ0 =100, λ1

=60, λ2=60, x0=2

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.2705851 0.9144907 0.764706 1.330423

100 0.2394121 0.9107902 0.7654308 1.275675

200 0.2063942 0.9020308 0.7648465 1.224454

300 0.1901289 0.8980919 0.764812 1.202768

500 0.1794948 0.9017274 0.7652762 1.189271

700 0.1809268 0.8962105 0.7645745 1.190531

Figure 3.10: Assessing RTM through a transformation using t-distribution

The above graph presents the behavior of the RTM methods. We take different sample

values on the x-axis. The graph shows that our proposed method is closest to the true

RTM line. After 500, the proposed method is closer to the true RTM when the sample size

increases, the proposed RTM is moving closer to the true RTM and stabilizes for larger

sample sizes. The inverse transform method again overestimated the true RTM effect. The

proposed method is comparatively better than other methods as it is closer to the true RTM

line. So, overall, our proposed method1 is considered to perform better than the inverse

Box-Cox transformation in the current situation.
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3.4.3 Gamma Distribution

The gamma distribution is a continuous distribution that is commonly used in business,

science, and engineering. It is a positively skewed distribution. It has two parameters i.e.

scale and shape parameter. The gamma function is denoted by Γ. The PDF of the gamma

function is

f(x;α, β) =
1

βαΓ(k)
xα−1e−

x
β

Algorithm: where α > 0, β > 0 and x > 0. To check the performance of the proposed

methods we used the RStudio software. First, we will generate 5000 random variables

from gamma distribution using shape and scale parameters with a different samples 50,

100,200,300,500, and 700. First x0, x1, and x2 were generated from a gamma distribution

with the shape parameter as λ values 7, 7 and 7, then correlated pairs of observations were

produced using the relation y1 = x0+x1 and y2 = x0+x2. To convert the non-normal data to

normal data, the Box-Cox transformation was used. Now we also checked the assumption of

normality with the help of histogram and Shapiro-Wilk test. Both represent the data should

be normal. The 85th percentile of the generated data was used to have bivariate truncated

data which is equivalent to 6 on average over different samples. The methods developed by

Khan and Olivier (2022) were used to estimate the RTM effect. The percentile change and

inverse transformation techniques were used to estimate the RTM effect for the non-normal

population.

Table 3.9 shows the estimated RTM for sample sizes and methods. ARTM represents

the normal distribution of the values for different samples, ARTMT represents the True

RTM values, ARTMC represents the proposed RTM values using quantiles and ARTMTR

represents the second proposed RTM values using inverse Box-Cox transformation.
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Table 3.9: Assessing RTM through a transformation using gamma distribution when λ0 =7
λ1 =7, λ2=7, x0=4

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.13737706 0.6955125 0.7878318 1.158826

100 0.1252764 0.5658763 0.7869629 1.140318

200 0.10734913 0.6009333 0.7881772 1.115027

300 0.09921443 0.6523553 0.7881804 1.104691

500 0.09521137 0.6395224 0.7874632 1.099521

700 0.09358064 0.6762762 0.7854989 1.097465

Figure 3.11: Assessing RTM through a transformation using gamma distribution

Figure 3.11 also illustrates the performance of the methods for estimation of the RTM

effect. The graph indicates that our suggested approach aligns most closely with the actual

RTM line. However, the outcomes from the inverse transform method overestimate and

resemble the true RTM line. Within the context of the gamma distribution, our suggested

approach has even closer results compared to the inverse transform yields. Overall, the

suggested technique stands out as superior among the various methods.
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For another permutation of the parameters in gamma distribution, the results of estimated

RTM using different techniques are given in Table 3.10.

Table 3.10: Assessing RTM through a transformation using gamma distribution when λ0 =5
λ1 =5, λ2=5, x0=4

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.1517956 0.795597 0.8996485 1.178645

100 0.1307754 0.8466264 0.8959284 1.145108

200 0.120365 0.76453 0.8981219 1.130132

300 0.1111027 0.8210398 0.8988831 1.117558

500 0.1041235 0.8138073 0.8982093 1.109136

700 0.1038676 0.8172235 0.8986351 1.108675

Figure 3.12: Assessing RTM through a transformation using gamma distribution

The graph above depicts the observed behavior of the estimated RTM using various

techniques. Initially, with sample sizes such as 100, 300, and above, the proposed method

closely aligns with the actual RTM. However, as the sample size for the proposed RTM closely

resembles the true RTM. Conversely, the inverse transformation method tends to overestimate
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RTM in this scenario. In comparison, the suggested percentile change method stands out as

superior among the alternatives, given its proximity to the true RTM trend. In conclusion,

our proposed method1 outperforms the inverse Box-Cox transformation.

In another permutation of the parameters, the estimated RTM for different sample sizes

and methods is presented in Table 3.11 below.

Table 3.11: Assessing RTM through a transformation using gamma distribution when λ0 =4
λ1 =4, λ2=4, x0=4

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.1388959 0.7902546 0.8111613 1.161058

100 0.1403572 0.8255786 0.8107353 1.157584

200 0.1201642 0.7855641 0.8109963 1.129271

300 0.1098971 0.8036758 0.8117063 1.116177

500 0.1074623 0.8507712 0.8104843 1.112694

700 0.1000879 0.8015176 0.8120511 1.104396

Figure 3.13: Assessing RTM through a transformation using gamma distribution

The depicted graph illustrates the behavior of the RTM techniques. Evidently, our

suggested approach closely tracks the True RTM trend. our suggested technique is best
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performed in this case. Conversely, the inverse transformed method tends to overestimate in

this context. In comparison, the proposed method stands out as superior compared to other

techniques due to its proximity to the True RTM line. Consequently, our proposed method1

is generally regarded as exhibiting superior performance in contrast to the inverse Box-Cox

transformation.

Table 3.12: Assessing RTM through a transformation using gamma distribution when λ0 =15
λ1 =12, λ2=12, x0=3

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.08549664 0.281832 0.3807379 1.094176

100 0.07252033 0.2182242 0.3808462 1.077608

200 0.06803098 0.2208731 0.3817402 1.071389

300 0.06252937 0.2431511 0.381205 1.0652

500 0.05799217 0.2171518 0.3809285 1.059823

700 0.05839066 0.2702581 0.3824145 1.06016

Figure 3.14: Assessing RTM through a transformation using gamma distribution

The values given in Table 3.12 are also depicted in Figure 3.14.
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Assessing RTM for Discrete

Distributions

4.1 Poisson Distribution

Poisson distribution is used to model count data. It has only one parameter called the average

rate of occurrance denoted by λ. The probability mass function of the Poisson distribution is

P (Y = y;λ) =
e−λλy

y!

where λ > 0 and y = 0, 1, 2, · · · .

Algorithm: To check the performance of the proposed methods we used the RStudio

software. Firstly, a large sample of size 5000 was generated from the Poisson distribution with

λ equal to 5, 2 and 2 and the truncated samples of different sizes 50, 100, 200, 300, 500, 700.

The generated variables x0, x1, and x2 were linked by the equation yi = x0+xi for i = 1, 2 to

produce the bivariate count data (y1, y2). To convert the non-normal data to normal data, the

Box-Cox transformation was used. A positive number was added to avoid the computational

complication, e.g, log(0). The cut-off point against the 85 percentages was found to be 11.

RTM was estimated using the methods developed under the bivariate normal distribution

(Khan and Olivier, 2022).

The inverse Box-Cox transformation, and the percentile change approach were used to

estimated the RTM effect. Table 4.1 shows the estimated RTM against different sample sizes

37
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and methods.

Table 4.1: Assessing RTM through a transformation using poisson distribution when λ0 =5,λ1

=2, λ2=2, x0=11

Sample Size ARTM ARTMC ARTMT ARTMTR

50 0.03847092 1.399420 1.441414 1.040800

100 0.03405013 0.322383 1.446547 1.034539

200 0.03256721 1.468332 1.445569 1.032909

300 0.03089452 0.140970 1.438509 1.031166

500 0.02946150 1.241715 1.438775 1.029684

700 0.02963760 1.399923 1.437653 1.029855

Figure 4.1: Assessing RTM through a transformation using Poisson distribution

Graphically, the behavior of the estimated RTM was also depicted. The graph shows

that percentile change method very closely estimates the true RTM for all sample sizes. The

inverse transformation is also close to the true RTM line. The percentile change method

performs well for discrete distribution as well.

As a different permutation of the parametric values, small values of the average rate of

occurrence were considered, and the resulting estimated RTM values are given in Table 4.1 .
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Here both the suggested methods are performing well and as the sample size increases, the

true RTM and the estimated RTM approaches each other.

Table 4.2: Assessing RTM through a transformation using poisson distribution when λ0 =2,λ1

=1, λ2=1, x0=6

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.01333147 1.213055 1.20003 1.01399

100 0.01100145 1.206735 1.204576 1.011054

200 0.01162699 1.208547 1.204914 1.011673

300 0.01127606 1.201643 1.199155 1.011315

500 0.01173736 1.133012 1.201077 1.011777

700 0.01149682 1.071588 1.19988 1.011534

Figure 4.2: Assessing RTM through a transformation using Poisson distribution

The values given in Table 4.2 are also depicted in Figure 4.2.

Similarly, data were generated for different choices of the parameters of the Poisson

distribution. The estimated RTM using the two different methods is presented in Table 4.3.

For larger sample sizes the difference between the true values of RTM and those estimated by

the percentile change decreases. The inverse transformation method remains biased for all

the sample sizes.
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Table 4.3: Assessing RTM through a transformation using poisson distribution when λ0 =7
λ1 =4, λ2=4, x0=15

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.09044454 1.693271 2.057195 1.098766

100 0.07679414 1.569832 2.065759 1.078966

200 0.07347344 1.924171 2.05975 1.075061

300 0.06835397 1.711881 2.057873 1.069574

500 0.06690417 1.657408 2.0586 1.067961

700 0.06789422 1.856034 2.049104 1.068949

Figure 4.3: Assessing RTM through a transformation using Poisson distribution

The same given in Table 4.3 have been portrayed in Figure 4.3.

4.2 Negative Binomial Distribution

In a negative binomial experiment, a discrete probability distribution known as a negative

binomial distribution is used to distribute random variables. The distribution is almost the

same as the binomial experiment with only one difference. In the binomial experiment, there

is a fixed number of trails. However, in a negative binomial experiment, there is a fixed

number of successes. The PDF of negative binomial e

P (X = k; r, p) =

(
k + r − 1

k

)
pr(1− p)k
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Algorithm: To check the performance of the proposed methods we used the RStudio software.

First, we will generate a 5000 random variable from a Negative binomial distribution with a

different sample like 50, 100, 200, 300, 500, 700. x0, x1, and x2 with λ parameter 7, 5, and 5,

then correlated x1 and x2 with x0 using the formulae y1 = x0 + x1 and y2 = x0 + x2 as a

bivariate count data from the bivariate negative binomial distribution. After generating the

bivariate random variables, we apply the Box-Cox transformation. To convert the non-normal

data to normal data by using the parameter values i.e. number of successes as a λ value that

we use in generating random variables. The two new random variables have been constructed

using the Box-Cox transformation with the characteristics of normal data. After this, we

need a cut point used to find the RTM. Against the 85 percentile, the average truncated

point was found to be 12. Then we find all the value that is used in True RTM using the

existing formulas of Regression to the mean: Estimation and adjustment under the bivariate

normal distributionKhan and Olivier (2022).

Furthermore, we find proposed RTM percentile points using the quantile points. Finding

the proposed method1, we used another suggested method to convert the data into its original

data, the method name is the inverse Box-Cox transformation, With the help of this we also

want to check whether the RTM returns to its original state or not. The below Table 4.4

shows the different values of different sample sizes.

Table 4.4: Assessing RTM through a transformation using negative binomial distribution
distribution when λ0 =7, λ1 =5, λ2 =5, x0=12, prob =0.6

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.1866011 3.231867 2.873298 1.238246

100 0.1338608 3.142283 2.886417 1.14569

200 0.1175479 3.021516 2.875532 1.121764

300 0.1194922 3.149227 2.884187 1.123424

500 0.1121149 3.109209 2.870332 1.115302

700 0.115745 3.091725 2.88152 1.11898
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Figure 4.4: Assessing RTM through a transformation using negative binomial distribution
distribution

Figure 4.4 presents the behavior of the RTM methods. We take different sample values on

the x-axis. The graph shows that our proposed methods are closely aligned with the actual

RTM. In comparison, the inverse technique is too far away from the true RTM. Overall over

proposed technique performs well as compared to other techniques.

Table 4.5: Assessing RTM through a transformation using negative binomial distribution
distribution when λ0 =3, λ1 =3, λ2=3, x0=6

Sample Size ARTM ARTMC ARTMT ARTMTR

50 0.10050249 2.442852 2.650404 1.113044

100 0.07983249 2.472135 2.658698 1.083011

200 0.07585102 2.482147 2.664030 1.077761

300 0.07326597 2.471725 2.658566 1.074820

500 0.07152363 2.453475 2.666679 1.072845

700 0.07102765 2.425575 2.651657 1.072292
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Figure 4.5: Assessing RTM through a transformation using negative binomial distribution
distribution

The above graph presents the behavior of the RTM methods. We take different sample

values on the x-axis and regression effect on the y-axis. The graph shows that our proposed

methods perform well as compared to the inverse transformation. Because our proposed

method is close to the true RTM and inverse deviates significantly from the true RTM. In a

nutshell, the proposed performs better than the inverse technique.

Table 4.6: Assessing RTM through a transformation using negative binomial distribution
distribution when λ0 =10, λ1 =10, λ2=10, x0=33, prob =0.5

Sample Size aRTM aRTMc aRTMt aRTMtr

50 0.8169171 5.853239 8.385966 2.389934

100 0.735523 5.310843 8.366834 2.094927

200 0.5982958 6.270405 8.378128 1.769087

300 0.5444862 6.09316 8.3685 1.658782

500 0.5390819 6.730671 8.366261 1.634028

700 0.5099215 6.100299 8.361804 1.592232
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Figure 4.6: Assessing RTM through a transformation using negative binomial distribution

The above graph presents the behavior of the RTM methods. We take different sample

values on the x-axis like 50, 100, 200, 300, 500, and 700. The graph shows that our suggested

technique is close to the true RTM line but sometimes it is close to RTM and at some points,

it is far way to the RTM line. In this case, our suggested method does not show an appropriate

result. The inverse approach is diametrically opposed to the true RTM. So, in general, the

suggested strategy outperforms the other.



Chapter 5

Conclusion and Future Work

This chapter discusses the conclusion of the study and the possible future work. In intervention

studies, the subjects are selected on specific criteria for an intervention, thereby resulting in

data that come from either the left or right tails of a distribution. Regression to mean (RTM)

occurs when the initial observations are extreme, i.e., selected in the tail of a distribution.

When the intervention/treatment is applied to such subjects, the total effect does not only

include the treatment effect but also the RTM effect, thereby leading to incorrect conclusion

about the effectiveness of an intervention effect. Thus, estimating and accounting for RTM is

very essential to accurately estimate the intervention/treatment effect in research areas like

epidemiology, health, clinical trials, sports, economics, etc.

Past research has mainly focused on developing methods under the well known distributions

like the bivariate truncated normal, Poisson, binomial distributions. However, not all data

follow these distribution, and warrants to investigate estimation of the RTM effect for other

non-normal distributions. The main purpose of this thesis is to assess estimation of RTM for

non-normal populations through the Box-Cox transformation and the newly defined percentile

change method.

In this procedure, the non-normal population is transformed into a normal population

using the Box-Cox transformation. The readily available method developed under the bivariate

normal distribution is used to estimate the RTM effect. The quantile points are identified

whose difference gives the RTM effect. The percentile change probability is used to identify

the quantile points in the non-normal distribution and the RTM effect thereafter.

The methods developed were used to estimate the RTM effect for skewed distribution

45
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(exponential and gamma) using different permutations of the parameters and different sample

sizes. The percentile change method closely estimated the true RTM while the inverse

transformation method overestimated the true RTM effect. Moreover, the symmetric t-

distribution was also used to generate data and RTM was estimated. Similar results were

found for the non-normal symmetric distribution.

Data were also generated from two discrete distributions for different permutation of the

parameters. Moreover, different sample sizes were also used for the estimation of RTM. The

proposed methods closely estimated the true RTM. Moreover, the percentile change method

produced very close results as compared to the inverse transformation method.

In conclusion, the proposed percentile change method closely estimate the RTM effect

when data are generated from a non-normal population. Thus, to avoid erroneous conclusion

about the effectiveness of an intervention effect and accurately estimate it, the method

developed in thesis should be used when the data follow non-normal distributions.

5.1 Future Work

The work done in this thesis can be expanded by

1. using different transformation techniques for transforming non-normal data to normal,

2. and using non-stationary distributions to know when both RTM and treatment effects

are part of the observed change.
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