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Abstract

Most of the control charts in the literature focus on detecting constant mean shifts. In

practice, dynamic and time-varying process mean shifts are prevalent in the monitoring of

feedback-control and autocorrelated processes. The cumulative score (CUSCORE) charts

have been proposed in the literature to detect dynamic and time-varying process shifts.

One of such control charts is a reference-free CUSCORE (called RFCS-I) chart that may

detect unknown patterned mean shifts effectively. In this thesis, single and dual CUSCORE

charts are developed to enable an efficient detection of unknown patterned mean shifts.

The developed single CUSCORE chart, called the RFCS-II chart, is based on the control

charting structure of the Crosier CUSUM (called CU-II) chart. Additionally, two existing

single CUSCORE (called RFCS-I) charts are integrated with reflecting boundaries, while an

integration of two RFCS-II charts is also made, to develop the dual RFCS-I (DRFCS-I) and

dual RFCS-II (DRFCS-II) charts, respectively. Moreover, the RFCS-I and RFCS-II charts

are integrated to propose the mixed dual CUSCORE chart, called the MDRFCS chart. In

essence, four CUSCORE charts, i.e. the RFCS-II, DRFCS-I, DRFCS-II and MDRFCS charts

are suggested in this thesis. The Monte Carlo simulation and a real application illustrate

the superiority of these developed CUSCORE charts over their existing counterparts when

detecting patterned mean shifts in terms of zero-state and steady-state relative mean indexes.
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Chapter 1

Introduction

In the realm of statistical quality control, the concept of quality pertains to the comparative

excellence of a particular item or service. In the context of selecting among competing products

and services, quality has demonstrated its pivotal role as a decisive factor. Within every

established organization, a comprehensive framework of policies and guidelines exists to uphold

the inherent caliber of its deliverables. Quality control, as a technique, emerges as a crucial

means of ensuring that goods or services adhere to predetermined quality standards. The

fundamental objective of this approach is to provide assurance that the products or services

offered meet the specified requirements. Employing various methods to address quality-related

issues, statistical process control emerges as one of the most efficacious strategies for attaining

and maintaining superior quality standards.

1.1 Statistical Process Control

Statistical process control (SPC) serves as an industrial technique employed for the evaluation

and regulation of the quality level within a production process. Its core purpose is to ensure

consistency in the manufacturing of products according to their intended design. By closely

monitoring the quality of processes and adhering to predetermined standards, SPC aims

to attain and maintain optimal process performance. To accomplish this objective, SPC

encompasses a comprehensive set of seven fundamental tools, which collectively contribute

to enhancing performance throughout every stage of the production process. The following

section presents a succinct review of these essential tools, elucidating their significance in the

1
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context of SPC.

1. Cause-and Effect Diagram: It is a vertical bar graph that shows the most prevalent

kinds of problems.

2. Check Sheet: A check sheet, also known as tally sheet, is a tool used to collect and

analyze data.

3. Pareto Chart: A vertical bar graph displaying the relative frequency of flaws in

rank-order.

4. Histogram: A graph showing frequency distributions or data with vertical bars varying

in height.

5. Defect concentration diagram: It is a graphic tool used in quality control and

process improvement to identify the processes where defects are most concentrated.

6. Scattar Diagram: A technique for analyzing a relationship between two continuous

variables is a scatter diagram.

7. Control Chart: A control chart is a statistical tool used in quality control to monitor

a process and detect any changes or variations that may occur.

1.2 Control charts

The concept of control charts, initially introduced in the 1920s by Walter A. Shewhart, plays

a crucial role in identifying and addressing potential defects or unsatisfactory outcomes in

manufacturing and production processes. By graphically representing variations in processes

or non-compliant products, control charts provide a visual tool for monitoring and taking

necessary actions to maintain quality standards. The primary objective of a control chart

is to detect any unusual variations occurring within the process. In the realm of SPC, two

types of variations are recognized: “natural cause variation” and “assignable cause variation”.

Natural cause variation refers to the inherent fluctuations present in a process or system, even

when operating under normal conditions. When such variations exist, it indicates that the

process is under control. On the other hand, assignable cause variation, also known as special



Chapter 1. Introduction 3

cause variation, is caused by factors external to the process or system, and can be specifically

identified. Its presence indicates a problem within the process that requires investigation and

correction. The ultimate objective is to identify the source of assignable cause variation and

take appropriate measures to eliminate it, thereby improving the overall process performance.

Within the realm of SPC, two distinct types of charts are employed to monitor and

track process variations: memory-less charts and memory-type charts. Memory-less charts,

commonly referred to as Shewhart-type charts, solely rely on current data for analysis. These

charts excel at detecting significant alterations in process parameters but may be less effective

in identifying smaller or moderate shifts. In contrast, memory-type charts are specifically

designed to utilize both previous and current data, making them highly proficient in detecting

subtle and moderate changes in process parameters. Among the memory-type control charts,

the exponentially weighted moving average (EWMA) and Cumulative SUM (CUSUM) are the

most widely utilized. While Shewhart charts are typically employed to identify substantial

changes or shifts in process parameters, the CUSUM and EWMA charts serve as effective

alternatives for detecting smaller to moderate changes in process parameters. By leveraging

the strengths of these different chart types, practitioners can enhance their ability to effectively

monitor and manage process variations within the context of SPC.

In the realm of process monitoring, X̄-type control charts have gained significant popularity

for tracking constant shifts in the process mean. However, these conventional charts are

inadequate when it comes to detecting dynamic mean shifts, characterized by non-constant,

time-varying patterns with unknown characteristics. This limitation arises from the neglect

of dynamic information inherent in the process. To address this issue, auto-correlation or

feedback-controlled procedures have been introduced to effectively capture dynamic patterns

in mean changes. Among the proposed methods, the CUmulative SCORE (CUSCORE) chart

has emerged as a promising approach for detecting dynamic process changes over time.

Researchers have made notable contributions to the field by developing various control

charting techniques over the years, specifically targeting mean changes with unknown patterns.

For instance, Bagshaw and Johnson (1977) presented sequential approaches for monitoring

forecast errors in time series models. Building upon the Shewhart-CUSCORE charts, Ncube

and Amin (1990) proposed two techniques for simultaneous monitoring of process mean
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and variation. Further advancements were made by Ncube (1992), who developed CUSUM-

CUSCORE charts that assign equal weight to previous sample mean values and past sample

score values. The CUSCORE chart has also been utilized for monitoring the rate of occurrences

of rare events (Radaelli, 1992) and as an adjunct to the Shewhart chart when specific types

of departures are anticipated (Box and Ramı́rez, 1992).

Additional studies have focused on the economic design of CUSCORE charts (Kim and

Jeong, 1993), the combined Shewhart-CUSCORE method for analyzing process variance

changes (Ncube, 1994), and the enhancement of CUSCORE charts for detecting process

shifts (Cheng, 1995). Moreover, control charts have been proposed for comparing sustained

mean shifts and sporadic spikes before and after applying time series modeling (Hu and

Roan, 1996), and the impact of serial correlation on CUSCORE chart performance has been

examined (Bohm and Hackl, 1996). The CUSCORE technique has also been explored as an

interface between Statistical Process Control and Engineering Process Control (Shao, 1998),

with applications in monitoring clean room air quality (Ramı́rez, 1998).

Studies have further contributed algorithms for computing the average run length (ARL)

and run length probability distributions of CUSCORE charts for mean monitoring (Luceno,

1999), and suggested modifications that outperform standard CUSCORE charts in terms of

ARL performance (Ncube and Ncube, 2000). To reduce mismatch between detectors and

fault signatures, a CUSUM-triggered CUSCORE chart has been proposed (Shu et al., 2002).

The benefits and drawbacks of the generalised likelihood ratio (GLR) and CUSCORE charts

in enhancing sensitivity for fault detection have been discussed (Runger and Testik, 2003).

Additionally, a reference-free CUSCORE chart has been recommended to monitor and detect

dynamic shifts in the process mean even in the absence of a known reference pattern (Han

and Tsung, 2006).

While the CUSCORE chart proves suitable when the reference pattern is known, practical

situations often involve unknown reference patterns. Consequently, there is a need for

reference-free charting techniques to overcome this limitation and provide effective process

monitoring solutions.

By developing four single and dual CUSCORE charts and utilizing Monte Carlo simulations

to evaluate their performance characteristics, this thesis provides novel insights into the
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detection of unknown patterned mean shifts. The outlined structure ensures a logical

progression of the research, from the introduction and development of the proposed charts to

their evaluation through comprehensive simulations. The conclusions drawn from the results

contribute to advancing the field of statistical process control and offer suggestions for future

research endeavors.



Chapter 2

Single and dual reference-free

cumulative score charts

2.1 Introduction

Control charts are important process monitoring tool in manufacturing and service industries

to differentiate assignable causes of variation from common causes of variation. The most

commonly used control charts are the X-type charts for detecting constant shifts in the

process mean. These conventional X-type charts are not suitable in detecting dynamic

mean shifts, which include mean shifts that are nonconstant, time-varying and have an

unknown pattern because these charts ignore the dynamic information contained in the

process. Dynamic patterns in mean shifts are usually prevalent in autocorrelated or feedback-

controlled processes. Numerous control charting procedures were developed by researchers

over the years for process monitoring involving unknown patterned mean shifts. These

procedures are discussed thenceforth.

Bagshaw and Johnson (1977) proposed sequential procedures for monitoring forecast errors

in detecting changes in a time series model. Ncube and Amin (1990) suggested two methods

for simultaneously monitoring the process mean and process variance by using combined

Shewhart-CUSCORE charts. Ncube (1992) proposed the CUSUM-CUSCORE charts that

consider equal weight past sample mean values and past sample score values and compared

the proposed schemes with the EWMA-CUSCORE charts. Radaelli (1992) adopted the

CUSCORE chart in monitoring the rate of occurrence of a rare event. Box and Ramı́rez

6
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(1992) developed the CUSCORE statistics that can be used as a supplement to the Shewhart

chart when a kind of departure specifically feared can be identified in advance. Kim and

Jeong (1993) considered an economic design of the CUSCORE chart, while Ncube (1994)

proposed the combined Shewhart-CUSCORE procedure for detecting shifts in the process

variance. A CUSCORE control approach and its enhancements for detecting process shifts

were considered by Cheng (1995). Hu and Roan (1996) suggested control charts for showing

the change patterns of two types of additive process shifts, i.e., sustained mean shifts and

sporadic spikes, before and after the application of time series modelling. The effect of serial

correlation on the in-control average run length (ARL) performance of the CUSCORE chart

was studied by Bohm and Hackl (1996). Shao (1998) utilized the CUSCORE technique as an

interface between Statistical Process Control and Engineering Process Control. An illustration

as to how the CUSCORE charts can be used in detecting changes in the parameters of an

integrated moving average model adopted in monitoring clean room air quality was provided

by Ramı́rez (1998). Luceno (1999) gave algorithms to compute the ARL and run length

probability distributions of CUSCORE charts for the mean.

An EWMA-CUSCORE procedure for detecting shifts in the process variance was suggested

by Ncube and Li (1999). Ncube and Ncube (2000) suggested a CUSCORE chart that considers

past history of the values of the quality characteristic’s sample mean and past history of

the scores, where the suggested scheme surpasses the standard CUSCORE chart, in terms

of the ARL performance. Shu et al. (2002) proposed a CUSUM-triggered CUSCORE chart

that reduces the mismatch between the detector and fault signature. The advantages and

disadvantages of the generalized likelihood ratio (GLR) and CUSCORE charts that were

developed for an increase sensitivity in detecting fault signature were presented by Runger

and Testik (2003). Luceno (2004) developed CUSCORE charts for detecting level shifts

in an autocorrelated process. Han and Tsung (2005) compared the performances of the

CUSCORE, GLR test (GLRT) and CUSUM charts in the detection of a dynamic mean shift

that eventually approaches a steady-state value. A simple and effective method using the

CUSCORE in monitoring the coefficient shifts in an autoregressive moving average process was

proposed by Pan (2006). A chapter devoted for discussing the background, development and

implementation of the CUSCORE chart in process monitoring was presented by Nembhard
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(2006). Han and Tsung (2006) proposed a reference-free CUSCORE chart which can trace and

detect dynamic shifts in the process mean quickly even when the reference pattern is unknown.

The CUSCORE statistics for detecting spike, step, bump and ramp signals hidden in non-

stationary disturbance for feedback-controlled processes were formulated by Nembhard and

Valverde-Ventura (2007). Nembhard and Chen (2007) formulated the CUSCORE statistics

for monitoring process characteristics which are measured by a generalized minimum variance

feedback-control system. Nembhard and Changpetch (2007) derived a CUSCORE statistic

and the necessary control limits for detecting a mean shift in a seasonal time series process.

Shu et al. (2008) proposed a weighted CUSUM chart to detect patterned mean shift, while

two methods for implementing the CUSCORE chart when the time of the signal is unknown

were suggested by Changpetch and Nembhard (2008). The performance of CUSCORE

charts in monitoring a nonstationary process subject to the minimum mean-squared error

feedback-control was studied by Valverde-Ventura and Nembhard (2008). An integration

of the EWMA and GLRT statistics for monitoring processes having patterned mean and

variance shifts was made by Zhou et al. (2010). Capizzi and Masarotto (2010) developed two

self-starting multivariate CUSCORE charts to monitor the unknown mean of a multivariate

normal process. A nonlinear filter chart for monitoring dynamic changes, where the charting

statistics comprise a nonlinear combination of the process data was suggested by Han et al.

(2010). An analysis of the adaptive EWMA charts’ performance in signalling linear drifts

was conducted by Su et al. (2011). Chen and Nembhard (2011) developed a multivariate

CUSCORE approach based on the sequential likelihood ratio test and fault signature analysis

for monitoring the mean vector of an autocorrelated multivariate process. An analysis of

the performance of the EWMA chart of the squared deviation under drifts in the process

variation was carried out by Huang et al. (2012). Capizzi and Masarotto (2012) proposed

an adaptive chart that detects one-sided persistent or time-varying, as well as oscillatory

patterned shifts in the process mean when prior information about the direction, magnitude

and pattern of the shift is not available. The use of the trigger CUSUM-CUSCORE chart

was proposed for solving the drift monitoring problem for two-stage processes by Zhong and

Le (2017).

In recent years, little study has been done on CUSCORE and similar control charts
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for identifying dynamic and pattern mean alterations. In order to close this research gap,

four single and dual CUSCORE charts are created in this chapter for identifying unknown

systematic mean shifts, respectively. The rest of this chapter is divided into the following

sections. The current CUSUM-type and CUSCORE charts are listed in Section 2. Section 3

presents the four CUSCORE charts that were created. The determination of run duration

and an assessment of the proposed CUSCORE and current charts are both covered in Section

4. The application of the proposed CUSCORE charts is demonstrated and contrasted with

the use of the current charts in Section 5. Concluding remarks are given in Section 6.

2.2 The existing charts

In this section, we briefly review some well-known existing CUSUM-type charts when detecting

the patterned shifts in the mean of a process that is assumed to follow a normal distribution.

Let Xt be a measured quality characteristic at the time t, for t ≥ 1. In addition, suppose

that the process, say {Xt}, is normally distributed with the mean and variance, denoted

as µ0 and σ2
0, respectively. Symbolically, Xt ∼ N (µ0, σ

2
0), for t ≥ 1. Moreover, it is also

assumed that after some change point τ , the probability distribution of {Xt} changes from

N (µ0, σ
2
0) to N (µrt−τ , σ

2
0), where t > τ . Clearly, if rt = 1 or rt 6= rt′ , the in-control mean µ0

undergoes either persistent or patterned shifts of sizes µ−µ0 or µrt−τ −µ0, respectively, where

t 6= t′ (≥ τ + 1). Let Zt = (Xt − µ0)/σ0 for t ≥ 1. Then it can be shown that Zt ∼ N (0, 1)

and Zt ∼ N (µ1, 1) for t < τ and t > τ , respectively, where µ1 = (µrt−τ − µ0)/σ0.

2.2.1 The CU-I and CU-II charts

Let (A+
t , A

−
t ) be the (upward, downward) CUSUM statistics based on Zt, for t ≥ 1, that help

in monitoring the irregular changes in the in-control process mean, µ0, given by

A+
t = max

[
0,+Zt − δ/2 + A+

t−1
]
, A+

0 = 0, (2.1)

A−t = max
[
0,−Zt − δ/2 + A−t−1

]
, A−0 = 0, (2.2)

where max[·] is the maximum operator and δ (> 0) is the mean shift size, also called the

reference value, which is of particular interest. The CU-I chart with the statistics (A+
t , A

−
t ) is
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optimal in detecting a step-shift of magnitude δ in µ0. For a given value of δ, the CU-I chart

triggers an out-of-control signal as soon as A+
t > h or A−t > h, where h (> 0) is the control

limit or decision interval. The value of h is judiciously selected so that the in-control ARL of

the CU-I chart reaches a certain threshold. For more details, refer to Montgomery (2009).

Similar to the CU-I chart, another CUSUM statistic was developed by Crosier (1986) for

monitoring the mean of a normal process. Let Bt be the CCUSUM statistic based on Zt, for

t ≥ 1, given by

Bt = (Zt +Bt−1)×max [0, 1− δ/(2Ct)] , B0 = 0, (2.3)

where | · | is the absolute operator and Ct = |Zt +Bt−1|. Here, unlike At, the statistic Bt may

take positive or negative values. The CU-II chart with the statistic Bt is also approximately

optimal in detecting a mean shift of size δ in µ0. For a given value of δ, the CU-II chart

triggers an out-of-control signal as soon as |Bt| > h, where h (> 0) is the decision interval.

The value of h for the CU-II chart is determined similar to that of the CU-I chart. For more

details, refer to Crosier (1986).

2.2.2 The CS and RFCS-I charts

In applications where the mean of a process is prone to be perturbed by a ‘known’ feared

signal peculiar to a particular system, it is customary to use the CUSCORE (CS) chart as a

signal detector device. For instance, a rotary system may introduce a sinusoidal signal, tool

wear may cause a linear-trend signal, etc. The CS chart is based on the concept of an efficient

score statistic that aids in an early detection of this feared signal.

Let rt be the reference pattern of the mean shift that may badly disturb a process. Let

(D+
t , D

−
t ) be the (upward, downward) CUSUM statistic based on Zt and rt, for t ≥ 1, given

by

D+
t = max

[
0,+rt (+Zt − δrt/2) +D+

t−1
]
, D+

0 = 0, (2.4)

D−t = max
[
0,+rt (−Zt − δrt/2) +D−t−1

]
, D−0 = 0, (2.5)

Clearly, the CS chart encompasses the CU-I chart with rt = 1. For a given reference pattern
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rt, the CS chart triggers an out-of-control signal as soon as D+
t > h or D−t > h, where h (> 0)

is the decision interval. When the reference pattern rt is known in advance, the CS chart

may outperform the CU-I chart. For more details, refer to Bagshaw and Johnson (1977) and

Luceno (1999).

Although it is known that the efficiency of the CU-I and CS charts depends on a known

reference value (δ) and a reference pattern rt, respectively, an accurate reference pattern

(also known as a predetermined fault signature) is usually difficult to obtain in practice. To

circumvent this problem, Han and Tsung (2006) suggested a RFCS-I chart for monitoring

patterned mean shifts of a normal process. The main idea behind the RFCS-I chart is to

estimate the mean shift pattern using Zt as we rarely know the exact mean change magnitude

and pattern. Thus, Han and Tsung (2006) suggested to replace the reference pattern rt in

the CS chart with |Zt| as it contains real information on the magnitude and pattern of the

mean change.

Let (E+
t , E

−
t ) be the (upward, downward) CUSUM statistics of the RFCS-I chart based

on Zt, for t ≥ 1, given by

E+
t = max

[
0,+|Zt|(+Zt − |Zt|/2) + E+

t−1
]
, E+

0 = 0, (2.6)

E−t = max
[
0,+|Zt|(−Zt − |Zt|/2) + E−t−1

]
, E−0 = 0. (2.7)

Unlike the CU-I and CS charts, as expected, the plotting-statistic of the RFCS-I chart does

not depend on the reference value δ, as well as on the reference pattern rt. The RFCS-I chart

triggers an out-of-control signal as soon as E+
t > h or E−t > h, where h (> 0) is the decision

interval. The RFCS-I chart outperforms the CU-I and CS charts when detecting different

patterned shifts in the process mean. For more details, refer to Han and Tsung (2006).

2.3 The proposed charts

In this section, we propose the RFCS-II chart based on the control-charting structure of the

CU-II chart, called the RFCS-II chart, for detecting patterned mean shifts. In addition, we

also integrate two RFCS-I charts, as well as two RFCS-II charts, to device dual RFCS-I and

RFCS-II charts, called DRFCS-I and DRFCS-II charts, respectively, for monitoring dynamic
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mean shifts of a normal process. On similar lines, a mixed dual chart that integrates the

RFCS-I and RFCS-II charts is also suggested.

2.3.1 The RFCS-II chart

The control-charting structure of the RFCS-II chart is similar to that of the CU-II chart.

Similar to Bt, let Ft be the CCUSUM statistic of the RFCS-II chart based on Zt, for t ≥ 1,

given by

Ft = (|Zt|Zt + Ft−1)×max
[
0, 1− Z2

t /(2Gt)
]
, F0 = 0, (2.8)

where Gt = ||Zt|Zt + Ft−1|. Similar to the RFCS-I chart, the RFCS-II chart does not depend

on δ and rt. The RFCS-II chart triggers an out-of-control signal as soon as |Ft| > h, where

h (> 0) is the decision interval. The values of h is selected so that the in-control ARL of the

RFCS-II chart reaches a certain threshold.

2.3.2 The dual and mixed dual charts

In order to increase the sensitivity of the RFCS-I/RFCS-II chart for detecting a range of the

mean shift sizes, it is customary to integrate two RFCS-I/RFCS-II charts into a single chart,

namely the DRFCS-I and DRFCS-II charts, where the first RFCS-I/RFCS-II chart detects

small-to-moderate shifts whilst the second RFCS-I/RFCS-II chart detects moderate-to-large

shifts. In addition, for effectively recovering the sensitivity of the DRFCS-I and DRFCS-II

charts for several shift sizes, the corresponding CUSUM statistics of these charts are also

modified with some reflecting boundaries.

Similar to (E+
t , E

−
t ), let (H+

1,t, H
−
1,t) and (H+

2,t, H
−
2,t) be the modified CUSUM statistics of

the DRFCS-I chart based on Zt, for t ≥ 1, given by

H+
1,t = max

[
0,+W1,t (+Zt −W1,t/2) +H+

1,t−1
]
, H+

1,0 = 0, (2.9)

H−1,t = max
[
0,+W1,t (−Zt −W1,t/2) +H−1,t−1

]
, H−1,0 = 0, (2.10)
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and

H+
2,t = max

[
0,+W2,t (+Zt −W2,t/2) +H+

2,t−1
]
, H+

2,0 = 0, (2.11)

H−2,t = max
[
0,+W2,t (−Zt −W2,t/2) +H−2,t−1

]
, H−2,0 = 0, (2.12)

where

W1,t = min
(√

2/π, |Zt|
)

and W2,t = max
(√

2/π, |Zt|
)
.

It is to be noted that the reflecting boundary of
√

2/π is the mean of |Zt| for an in-control

process. The DRFCS-I chart triggers an out-of-control signal as soon as max (H+
1,t, H

−
1,t) > h1

or max (H+
2,t, H

−
2,t) > h2, where h1 (> 0) and h2 (> 0) are the decision intervals. The values of

h1 and h2 are selected so that the in-control ARL of the DRFCS-I chart reaches a certain

threshold.

Similar to Ft, let I1,t and I2,t be the modified CCUSUM statistics of the DRFCS-II chart

based on Zt, for t ≥ 1, given by

I1,t = (W1,t Zt + I1,t−1)×max
[
0, 1−W 2

1,t/(2J1,t)
]
, I1,0 = 0, (2.13)

I2,t = (W2,t Zt + I2,t−1)×max
[
0, 1−W 2

2,t/(2J2,t)
]
, I2,0 = 0, (2.14)

where

J1,t = |W1,t Zt + I1,t−1| and J2,t = |W2,t Zt + I2,t−1|.

The DRFCS-II chart triggers an out-of-control signal as soon as |I1,t| > h1 or |I2,t| > h2,

where h1 (> 0) and h2 (> 0) are the decision intervals. The values of h1 and h2 are selected

similar to that of the DRFCS-I chart.

It is a well-known fact that the CU-II chart is more sensitive than the CU-I chart under

both the zero-state (ZS) and steady-state (SS) setups. However, in the SS setup, when

detecting moderate-to-large shifts, the CU-I chart prevails over the CU-II chart (Crosier,

1986). Based on this fact, using I1,t and H2,t, it is possible to suggest the MDRFCS chart,

which integrates the RFCS-II and RFCS-I charts into a single chart. The plotting-statistics
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of the MDRFCS chart based on Zt, for t ≥ 1, is given by

K1,t = (W1,t Zt +K1,t−1)×max
[
0, 1−W 2

1,t/(2Lt)
]
, K1,0 = 0, (2.15)

K+
2,t = max

[
0,+W2,t (+Zt −W2,t/2) +K+

2,t−1
]
, K+

2,0 = 0, (2.16)

K−2,t = max
[
0,+W2,t (−Zt −W2,t/2) +K−2,t−1

]
, K−2,0 = 0, (2.17)

where Lt = |W1,t Zt +K1,t−1|. The MDRFCS chart triggers an out-of-control signal as soon

as |K1,t| > h1 or max (K+
2,t, K

−
2,t) > h2, where h1 (> 0) and h2 (> 0) are the decision intervals.

The values of h1 and h2 are selected similar to that of the DRFCS-II chart.

2.4 Run length computation and evaluation

In this section, we use the Monte Carlo simulation method to estimate the ZS and SS

ARL profiles of the existing (CU-I, CU-II, CS, RFCS-I) and proposed (RFCS-II, DRFCS-I,

DRFCS-II, MDRFCS) one-sided charts when sampling from a normal process. Under each

simulation run, one hundred-thousand iterations of the run-length are considered for each of

the considered control chart. The in-control ZS ARL is set approximately equal to 870. On

the lines of Han and Tsung (2006), four different kinds of shift pattern are considered, which

include rt = 1, 3/4 + (1/4)(1/2)t−1, 5/4 − (1/4)(1/2)t−1 and 1 + sin(tπ/4). The values of

ARLs for these control charts are displayed in Tables 2.1–2.4. In addition, we also estimate

the value of ZS-RMI for each of the control chart with the following formula:

RMI(T ) =
1

m

m∑
j=1

[
ARLµj(T )− ARL∗µj(T )

ARL∗µj(T )

]
, (2.18)

where T is the signature of a control chart, ARLµj(T ) denotes the out-of-control ARL of T

chart with a shift of µj, and ARL∗µj(T ) is the minimum of the out-of-control ARLs of the

CU-I, CU-II, CS, RFCS-I, RFCS-II, DRFCS-I, DRFCS-II and MDRFCS charts. Similarly, in

Table 2.5, the SS-RMI values are reported with the change-points, τ = 1, 6, 11, 26, 51, 76 and

101, under the aforementioned four shift patterns. Note that for a changepoint, say 51, the

underlying process remains in the in-control state for t = 1, 2, . . . , 50, and then a patterned

shift occurs in the in-control process mean. In case a shift occurs before t = 50, then that
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sequence of observations is ignored when computing the values of the SS-RMI. From Tables

2.1–2.4, the following main points are observed:
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Table 2.1: The ZS ARL comparisons of the existing and proposed one-sided charts under
constant shift

Existing Proposed
Chart CU-I CU-II CS* RFCS-I RFCS-II DRFCS-I DRFCS-II MDRFCS
δ 1.0 1.0 1.0 − − − − −

h, h1 4.938 4.641 4.658 9.244 8.394 6.500 5.810 6.500
{µ}, h2 − − − − − 8.868 8.310 8.150

0.00 873.31 872.84 870.59 872.40 874.43 871.08 869.73 873.59
0.05 579.99 568.01 544.79 530.52 507.98 507.57 484.42 523.32
0.10 394.02 376.33 349.31 329.79 310.87 308.33 286.38 318.35
0.25 135.81 128.83 110.75 105.35 96.74 93.26 85.73 95.60
0.50 37.07 35.07 31.72 33.47 30.82 31.15 28.73 31.02
0.75 16.80 15.87 15.82 18.02 16.60 17.44 16.05 16.82
1.00 10.27 9.72 10.18 12.01 11.06 11.75 10.89 11.18
1.25 7.33 6.93 7.46 8.84 8.14 8.66 8.09 8.14
1.50 5.67 5.41 5.83 6.86 6.34 6.73 6.33 6.29
2.00 3.97 3.77 4.05 4.58 4.24 4.44 4.22 4.15
3.00 2.55 2.43 2.55 2.54 2.37 2.46 2.35 2.32
4.00 2.00 1.92 1.95 1.69 1.59 1.65 1.58 1.56
6.00 1.29 1.20 1.20 1.04 1.03 1.04 1.03 1.02

RMI 0.20 0.14 0.13 0.16 0.09 0.12 0.05 0.09

*The CS chart considers rt = (3/4) + (1/4)(1/2)t−1

Table 2.2: The ZS ARL comparisons of the existing and proposed one sided charts under
patterned shift with rt = 3/4 + (1/4)(1/2)t−1

Existing Charts Proposed Charts
chart CU-I CU-II CS∗ RFCS-I RFCS-II DRFCS-I DRFCS-II MDRFCS
δ 1.0 1.0 1.0 - - - - -

h1, h1 4.938 4.641 4.658 9.244 8.394 6.500 5.810 6.500
{µ}, h2 - - - - - 8.868 8.310 8.150
0.00 872.36 873.52 869.76 874.46 874.82 870.79 870.28 873.80
0.05rt 643.82 629.90 603.54 594.74 581.67 578.75 559.40 592.78
0.10rt 475.61 460.85 432.27 417.81 394.33 391.50 370.67 404.64
0.25rt 207.74 194.08 171.97 162.50 149.11 143.08 132.32 148.13
0.50rt 65.54 61.38 53.28 53.50 49.02 48.19 44.21 48.01
0.75rt 28.47 26.96 24.83 27.02 24.78 25.49 23.30 24.88
1.00rt 15.91 15.06 14.84 17.16 15.73 16.65 15.27 15.99
1.25rt 10.52 9.87 10.22 12.19 11.17 11.93 11.00 11.34
1.50rt 7.64 7.18 7.68 9.25 8.45 9.10 8.38 8.49
2.00rt 4.86 4.57 4.93 5.88 5.37 5.70 5.32 5.27
3.00rt 2.80 2.65 2.80 2.91 2.67 2.80 2.65 2.60
4.00rt 2.07 1.97 2.01 1.77 1.65 1.71 1.63 1.60
6.00rt 1.29 1.20 1.20 1.04 1.03 1.04 1.03 1.03

RMI 0.22 0.15 0.12 0.17 0.08 0.11 0.04 0.08
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Table 2.3: The ZS ARL comparisons of the existing and proposed one sided charts under
patterned shift with rt = 5/4− (1/4)(1/2)t−1

Existing Charts Proposed Charts
chart CU-I CU-II CS∗ RFCS-I RFCS-II DRFCS-I DRFCS-II MDRFCS
δ 1.0 1.0 1.0 - - - - -

h, h1 4.938 4.641 4.658 9.244 8.394 6.500 5.810 6.500
{µrt}, h2 - - - - - 8.868 8.310 8.150

0.00 873.20 872.96 870.40 870.04 872.57 871.97 874.22 873.77
0.05 rt 524.86 510.50 557.21 468.77 447.30 444.58 424.31 458.44
0.10 rt 524.86 510.50 557.21 468.77 447.30 444.58 424.31 458.44
0.25rt 94.01 87.71 113.65 73.85 67.29 65.56 60.38 66.65
0.50rt 24.19 23.07 27.99 23.98 22.18 22.79 21.11 22.32
0.75rt 11.83 11.31 12.48 13.54 12.56 13.29 12.36 12.71
1.00rt 7.79 7.44 7.80 9.32 8.70 9.16 8.61 8.68
1.25rt 5.88 5.60 5.76 7.04 6.52 6.89 6.50 6.47
1.50rt 4.75 4.53 4.62 5.57 5.19 5.44 5.18 5.12
2.00rt 3.50 3.35 3.42 3.87 3.62 3.76 3.59 3.55
3.00rt 2.39 2.30 2.36 2.33 2.19 2.27 2.18 2.15
4.00rt 1.96 1.90 1.98 1.65 1.56 1.61 1.55 1.53
6.00rt 1.29 1.19 1.34 1.04 1.03 1.04 1.03 1.02

RMI 0.19 0.13 0.25 0.16 0.09 0.11 0.05 0.08

Table 2.4: The ZS ARL comparisons of the existing and proposed one sided charts under
patterned shift with rt = 1 + sin(tπ/4)

Existing Charts Proposed Charts
chart CU-I CU-II CS∗ RFCS-I RFCS-II DRFCS-I DRFCS-II MDRFCS
delta 1.0 1.0 1.0 - - - - -
h,h1 4.938 4.641 4.658 9.244 8.394 6.500 5.810 6.500

{µrt}, h2 - - - - - 8.868 8.310 8.150
0.00 874.31 873.81 869.99 869.78 874.25 872.79 872.89 870.71

0.05 rt 577.18 566.60 564.66 526.05 506.82 501.33 484.78 518.09
0.10 rt 387.04 372.08 363.42 327.85 308.66 302.98 284.71 316.24
0.25rt 129.27 121.06 114.80 102.97 94.25 91.61 84.11 92.54
0.50rt 32.50 30.77 26.41 31.01 28.27 29.25 26.62 28.37
0.75rt 13.72 12.79 10.18 15.25 13.80 14.86 13.58 14.03
1.00rt 7.41 6.81 5.17 8.99 8.07 8.77 8.04 8.04
1.25rt 4.49 4.13 3.08 5.57 4.92 5.37 4.93 4.84
1.50rt 3.06 2.85 2.19 3.53 3.15 3.39 3.13 3.07
2.00rt 2.14 2.07 1.59 1.99 1.87 1.94 1.86 1.84
3.00rt 1.63 1.51 1.06 1.21 1.15 1.18 1.15 1.14
4.00rt 1.08 1.05 1.00 1.01 1.00 1.00 1.00 1.00
6.00rt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RMI 0.33 0.26 0.07 0.31 0.21 0.26 0.18 0.21
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Table 2.5: The ZS and SS RMI values of the existing and proposed one-sided charts when the ZS in-control ARL is 870

Existing charts Proposed charts
Changepoint Shift pattern ({µrt}) CU-I CU-II CS* RFCS-I RFCS-II DRFCS-I DRFCS-II MDRFCS

1 {µ} 0.1984 0.1370 0.1248 0.1649 0.0871 0.1170 0.0518 0.0843
6 {µ} 0.1691 0.1549 0.1749 0.1377 0.0998 0.0933 0.0634 0.0683
11 {µ} 0.1739 0.1661 0.1733 0.1265 0.1065 0.0838 0.0672 0.0630
26 {µ} 0.1745 0.1711 0.1707 0.1123 0.1096 0.0714 0.0657 0.0586
51 {µ} 0.1778 0.1729 0.1699 0.1108 0.1111 0.0668 0.0662 0.0572
76 {µ} 0.1764 0.1741 0.1715 0.1117 0.1130 0.0678 0.0665 0.0596
101 {µ} 0.1758 0.1732 0.1714 0.1120 0.1136 0.0680 0.0671 0.0576

1 {µ(3/4 + (1/4)(1/2)t−1)} 0.2174 0.1504 0.1252 0.1657 0.0832 0.1144 0.0423 0.0833
6 {µ(3/4 + (1/4)(1/2)t−1)} 0.1822 0.1588 0.1505 0.1388 0.0989 0.0891 0.0566 0.0688
11 {µ(3/4 + (1/4)(1/2)t−1)} 0.1822 0.1654 0.1454 0.1261 0.1008 0.0785 0.0579 0.0637
26 {µ(3/4 + (1/4)(1/2)t−1)} 0.1852 0.1719 0.1441 0.1127 0.1046 0.0653 0.0576 0.0575
51 {µ(3/4 + (1/4)(1/2)t−1)} 0.1853 0.1731 0.1449 0.1128 0.1086 0.0622 0.0590 0.0587
76 {µ(3/4 + (1/4)(1/2)t−1)} 0.1855 0.1726 0.1444 0.1112 0.1085 0.0616 0.0591 0.0581
101 {µ(3/4 + (1/4)(1/2)t−1)} 0.1856 0.1722 0.1436 0.1108 0.1074 0.0605 0.0581 0.0573

1 {µ(5/4− (1/4)(1/2)t−1)} 0.1896 0.1335 0.2541 0.1604 0.0878 0.1135 0.0544 0.0815
6 {µ(5/4− (1/4)(1/2)t−1)} 0.1791 0.1679 0.2026 0.1494 0.1152 0.1067 0.0816 0.0780
11 {µ(5/4− (1/4)(1/2)t−1)} 0.1789 0.1756 0.2072 0.1345 0.1191 0.0967 0.0817 0.0729
26 {µ(5/4− (1/4)(1/2)t−1)} 0.1785 0.1804 0.2097 0.1200 0.1183 0.0807 0.0794 0.0654
51 {µ(5/4− (1/4)(1/2)t−1)} 0.1795 0.1807 0.2092 0.1189 0.1214 0.0786 0.0799 0.0635
76 {µ(5/4− (1/4)(1/2)t−1)} 0.1777 0.1794 0.2071 0.1173 0.1214 0.0766 0.0800 0.0642
101 {µ(5/4− (1/4)(1/2)t−1)} 0.1806 0.1824 0.2106 0.1204 0.1232 0.0807 0.0816 0.0657

1 {µ(1 + sin(tπ/4))} 0.3297 0.2563 0.0663 0.3091 0.2157 0.2593 0.1843 0.2093
6 {µ(1 + sin(tπ/4))} 0.1678 0.1513 0.0816 0.1563 0.1267 0.1194 0.0954 0.1003
11 {µ(1 + sin(tπ/4))} 0.2798 0.2910 0.0713 0.2069 0.1894 0.1741 0.1615 0.1423
26 {µ(1 + sin(tπ/4))} 0.3309 0.3564 0.0712 0.2732 0.2839 0.2372 0.2464 0.2038
51 {µ(1 + sin(tπ/4))} 0.2827 0.2990 0.0734 0.1907 0.1987 0.1548 0.1596 0.1345
76 {µ(1 + sin(tπ/4))} 0.2179 0.2247 0.1767 0.1187 0.1213 0.0856 0.0859 0.0684
101 {µ(1 + sin(tπ/4))} 0.1556 0.1434 0.0900 0.1180 0.1104 0.0834 0.0759 0.0780

*The CS chart considers rt = (3/4) + (1/4)(1/2)t−1 when rt = 1
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1. As expected, the values of out-of-control ARLs of the control charts tend to decrease as

the magnitude of the shift increases and vice versa. For example, from Table 2.1, the

out-of-control ARLs of the (CU-I, CU-II, CS, RFCS-I, RFCS-II, DRFCS-I, DRFCS-II,

MDRFCS) charts at µ = 0.05, 0.50, 2.0 and 6.0 are (579.99, 568.01, 544.79, 530.52,

507.98, 507.57, 484.42, 523.32), (37.07, 35.07, 31.72, 33.47, 30.82, 31.15, 28.73, 31.02),

(3.97, 3.77, 4.05, 4.58, 4.24, 4.44, 4.22, 4.15) and (1.29, 1.20, 1.20, 1.04, 1.03, 1.04, 1.03,

1.02), respectively.

2. It can be seen that the RFCS-II chart uniformly outperforms the RFCS-I chart when

detecting different patterned mean shifts. For instance, from Table 2.2, the out-of-control

ARLs of the (RFCS-I, RFCS-II) charts for {µrt} = 0.05, 0.50, 2.0 and 6.0 are (594.74,

581.67), (53.50, 49.02), (5.88, 5.37) and (1.04, 1.03), respectively. In addition, from

Tables 2.1–2.3, it is observed that the values of ZS-RMI of any of the proposed chart is

less than those of the existing charts. For example, the values of ZS-RMI for the (CU-I,

CU-II, CS, RFCS-I, RFCS-II, DRFCS-I, DRFCS-II, MDRFCS) charts from Tables 2.1,

2.2 and 2.3 are (0.20, 0.14, 0.13, 0.16, 0.09, 0.12, 0.05, 0.09), (0.22, 0.15, 0.12, 0.17,

0.08, 0.11, 0.04, 0.08) and (0.19, 0.13, 0.25, 0.16, 0.09, 0.11, 0.05, 0.08), respectively.

However, from Table 2.4, the CS chart outperforms all charts in terms of ZS-RMI, but

when detecting small patterned mean shifts of magnitude less than 0.50(1 + sin(tπ/4)),

the proposed charts significantly outperform the CS chart. A shortcoming of CS chart is

that its performance is heavily dependent on the actual choice of the reference pattern

rt, which may not be known in practice. In addition, it is worth mentioning that the

proposed (RFCS-II, DRFCS-I, DRFCS-II, MDRFCS) charts surpass the existing (CU-I,

CU-II, RFCS-I) charts.

3. From Table 2.5, it can be seen that the proposed charts outperform all of the existing

charts in terms of ZS-RMI and SS-RMI values when rt = 1, (3/4) + (1/4)(1/2)t−1

and (5/4) − (1/4)(1/2)t−1, respectively. Note that when the changepoint is equal to

one (greater than one), it refers to the ZS (SS) setup. The boldfaced values showcase

the minimum values in each row. However, as expected, with a patterned mean shift

rt = 1 + sin(tπ/4), when the changepoint is less than or equal to 51, the CS chart

outperforms all other charts. In addition, the proposed charts (DRFCS-I, DRFCS-II,
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MDRFCS) also surpass the CU-I, CU-II and RFCS-I charts in terms of the ZS-RMI

and SS-RMI values.

2.5 Real data application

For illustrating the use of the proposed charts in a real context, a phase-II standardized

dataset is adopted, which is related to the hourly chemical process viscosity readings. This

complete dataset has been used (and reported) by Han and Tsung (2006) when implementing

the two-sided CU-I, CS and RFCS-I charts. For a chemical process control, viscosity measure

is taken every hour as a quality characteristic that must be maintained as close as possible in

order to meet a fixed target level. In case of any significant deviation from the target level,

the process is considered to be out-of-control and chart should signal as early as possible (see

Han and Tsung (2006) for more detail and discussion).
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Figure 2.1: A Phase-II standardized dataset related to the chemical process viscosity readings
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Figure 2.2: The existing two sided charts for the chemical process viscosity dataset



Chapter 2. Single and dual reference-free cumulative score charts 23

0 20 40 60 80 100

−10

0

10

20

sample number

p
lo

tt
in

g
−

s
ta

ti
s
ti
c

The RFCS−II chart

h

F t

0 20 40 60 80 100

−10

0

10

20

sample number

p
lo

tt
in

g
−

s
ta

ti
s
ti
c

The DRFCS−I chart

h1

h2

H
1,t

+

H
2,t

+

H
1,t

−

H
2,t

−

0 20 40 60 80 100

−10

0

10

20

sample number

p
lo

tt
in

g
−

s
ta

ti
s
ti
c

The DRFCS−II chart

h1

h2

I1,t

I2,t

0 20 40 60 80 100

−10

0

10

20

sample number

p
lo

tt
in

g
−

s
ta

ti
s
ti
c

The MDRFCS chart

h1

h2

K1,t

K
2,t

+

K
2,t

−

Figure 2.3: The proposed two-sided charts for the chemical process viscosity dataset
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From the chemical process, 100 raw readings are collected on-line over 100 hours. These

observations are then standardized. A run chart of these standardized observations is displayed

in Figure 2.1. The existence of a dynamic or cyclic mean change pattern may be observed

from the run chart that is given in Figure 2.1. The existing (CU-I, CU-II, CS, RFCS-I) and

proposed (RFCS-II, DRFCS-I, DRFCS-II, MDRFCS) two-sided charts are applied on this

dataset, where the in-control ARL for each of the control chart is set to 500. Here, for the

CS chart, the reference pattern (rt) is taken as sin(tπ/4). The choices of the parameters

for the CU-I, CU-II, CS, RFCS-I, RFCS-II, DRFCS-I, DRFCS-II and MDRFCS charts are

(δ = 1.0, h = 5.071), (δ = 1.0, h = 4.780), (δ = 1.0, h = 4.58), h = 9.542, h = 8.736,

(h1 = 6.80, h2 = 8.93), (h1 = 6.151, h2 = 8.373) and (h1 = 6.151, h2 = 9.030), respectively.

These control charts are displayed in Figures 2.2 and 2.3.

From Figures 2.2 and 2.3, it can be seen that all of the control charts are triggering out-of-

control signals to indicate an upward shift in the in-control process mean. The existing (CU-I,

CU-II, CS, RFCS-I) and proposed (RFCS-II, DRFCS-I, DRFCS-II, MDRFCS) two-sided

charts have triggered the first out-of-control signals at the (92nd, 92nd, 92nd, 38th) and

(34th, 28th, 27th, 27th) samples, respectively. This shows that the proposed charts signal an

out-of-control situation earlier than the existing charts.

2.6 Conclusion

This chapter presents four CUSCORE charts for detecting unknown patterned mean shifts in

a normal process, namely the single RFCS-II, DRFCS-I, DRFCS-II and MDRFCS charts. In

comparing the ARL and RMI performance of the four developed one-sided CUSCORE charts

with the four existing one-sided CU-I, CU-II, CS and RFCS-I charts, it is found that the

former charts outperform the later. The implementation of the four developed CUSCORE

charts is illustrated through real-data viscosity readings, which are compared with the four

existing charts mentioned above. According to this dataset, the developed CUSCORE charts

issue out-of-control signals faster than the existing charts.
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3.1 Conclusion

Control charts have traditionally been utilized to detect constant shifts in the mean in

various industries. However, in processes that involve feedback-control and autocorrelation,

dynamic and time-varying mean shifts are commonly observed, rendering conventional X̄-type

charts inadequate for their detection. To address this issue, the literature has introduced the

CUSCORE chart as a tool capable of identifying dynamic or time-varying process alterations.

Over the years, researchers have developed numerous control charting procedures to monitor

processes involving unknown patterned mean shifts.

The primary focus of this thesis was the development of four CUSCORE charts designed

to detect unknown patterned mean shifts in normal processes. These charts include the

single RFCS-II chart, as well as the dual DRFCS-I, DRFCS-II, and MDRFCS charts. To

assess their performance, an evaluation was conducted by comparing their ARL and RMI

characteristics with four existing one-sided control charts: CU-I, CU-II, CS, and RFCS-I.

The results demonstrated that the proposed charts surpassed the performance of the existing

ones, exhibiting lower out-of-control ARL and RMI values. Notably, among the proposed

charts, the DRFCS-II chart exhibited the highest sensitivity in detecting deviations in the

mean shifts.

25
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3.2 Future work

For future research work, the variable sampling interval, variable sample size, and variable

sample size and sampling interval approaches can be incorporated into the proposed CUSCORE

charts to increase the sensitivity of these charts in detecting patterned mean shifts. As this

thesis only considers the ARL criterion, other performance measures, such as the expected

ARL, median run length and expected MRL criteria can be utilized in studying the performance

of the proposed charts.
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