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Abstract

Survey statisticians are attempting to estimate the unknown population parameters efficiently.
Utilizing the auxiliary information in a meaningful way allows for the efficient estimation of
the finite population mean. We have proposed some modified ratio, product, and regression
type estimators for the finite population mean under simple and stratified random sampling
designs using transformation. To obtain even more accurate estimates, the study variable
is transformed. Similar to this, a known auxiliary variable is a source for increasing the
precision of estimators. In transformation, we applied the antithetic variable technique. The
antithetic variable method is a variance reduction method. The method seeks to increase
the precision and effectiveness of the estimators by reducing the variance of the estimates.
Up to the first level of approximation, expressions for the bias and mean squared errors of
the proposed estimators are obtained. The suggested estimators are compared numerically
and theoretically. The performance of the suggested estimators is numerically illustrated
using actual data sets to validate theoretical conclusions. The comparison showed that the
proposed estimators outperformed the usual ratio, product and regression estimators.



Chapter 1

Introduction

1.1 History

Sampling plays an important role in fields such as data analysis, quality control, epidemiology,
and environmental monitoring. Social scientists and statisticians created techniques for
choosing representative samples from specific groups around the middle of the 20th century.
Researchers were able to draw conclusions about bigger populations from smaller samples using
the techniques of randomization and stratification to assure reliable and unbiased results.To
tackle complicated issues and datasets, more advanced sampling techniques including stratified
sampling, cluster sampling, and adaptive sampling have been developed. Sampling became
more popular in relation to national censuses. As populations swelled in the late 19th century,
it became impracticable to carry out an exhaustive count of every person. In order to
precisely estimate population characteristics, statisticians began to use sampling procedures.
The history of sampling generally covers a wide range of fields and epochs. The essential
instrument for researching and analysing populations is sampling.

1.2 Sampling Designs

Sampling designs are the methods and procedures used to choose a sample from a larger
population for study or research purposes. These approaches offer a framework for selecting
a sample that is representative and capable of producing accurate and trustworthy results. A
few typical sampling techniques are briefly discussed as follows.

The use of probability sampling techniques guarantees that each person or unit of the
population has a known, non-zero chance of being chosen for the sample. To achieve
representativeness, these strategies rely on random selection and statistical concepts. The
probability sampling strategies include simple random sampling, stratified sampling, and
cluster sampling.

Non-probability sampling approaches do not employ random selection and do not guarantee
that every member of the population has an equal chance of being considered. These methods
are typically applied when probability sampling is impractical. Non-probability sampling

1
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methods include chain-referral sampling, convenience sampling, and selective sampling.
Cluster sampling entails grouping the population into clusters or groups, typically according

to the proximity to one another. All persons or items found in the designated clusters are
included in the sample, which is drawn at random from among the clusters. When the
population is spread out geographically, cluster sampling is frequently more practicable and
economical.

Selecting people or components from a community at regular intervals is known as
systematic sampling. To determine the sampling interval, divide the population size by the
appropriate sample size. The first person or thing is chosen at random, and then choices after
that are determined by adding the sample interval to the serial number of the first selected
unit.

When it is difficult to discover or identify the population of interest, snowball sampling
is utilized. Using non-probability techniques, the initial participants, sometimes known as
"seeds," are chosen. Then, participants are requested to suggest individuals who fit the study’s
inclusion criteria. Referrals are used in this sampling technique to increase the sample size.

With purposive sampling, persons or components are specifically chosen according to
predetermined traits or criteria that are in line with the goals of the study. When selecting
participants, researchers utilize their best judgment to select those they believe to be most
pertinent or informed about the subject at hand. Although subjective approach are unlikely
to provide a representative sample, purposive sampling can be helpful in qualitative research
or when examining uncommon or unusual groups.

1.3 Transformation: The Antithetic Variable Technique

The process of using mathematical or statistical techniques to alter the original data in
order to achieve certain objectives or satisfy particular assumptions is referred to as data
transformation. In order to improve data distribution, lessen skewness, normalize variables,
stabilize variance, or enhance linear correlations between variables, data transformation may
be advantageous. In transformation, we used the antithetic variable technique which is a
popular strategy for reducing variance in Monte Carlo simulations. The method seeks to
increase the precision and effectiveness of the estimators by reducing the variance of the
estimates. In the antithetic variable technique, two sets of random variables are used, the
original set and the antithetic set. The original set is transformed while still maintaining
the correlation structure between the variables to produce the antithetic set. Usually, this
transformation entails flipping the values of the random variables or changing their sign. This
information is used by the researcher to create efficient estimators.
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1.4 Uses of Auxiliary Information

Auxiliary variables are additional variables that offer more details about the population of
interest in statistical analysis and survey sampling. Although not the primary variables of
interest, these variables may be somehow connected to the study variables. The design of a
study and the data analysis may be impacted by the relationship between study variables and
auxiliary variables. Depending on the specific research context and the study’s objectives,
there may be a difference in the relationship between the study (Y) and the auxiliary (X)
variables. By adding more information and boosting the precision of estimates the design and
analysis of a research can be enhanced by the inclusion of auxiliary variables. Based on their
applicability to the study and potential to raise the standard of the analysis, researchers should
carefully consider the choice and inclusion of auxiliary variables. In general, auxiliary data in
sampling is very important for increasing the effectiveness, accuracy, and representativeness
of survey estimates. Researchers can choose wisely when it comes to sampling design, sample
unit allocation, and estimation adjustments by including additional variables related to the
population of interest. The study’s results are more accurate and reliable when supplementary
data are included.

In stratified random sampling, auxiliary data are frequently used to define meaningful
strata or subgroups. Researchers can make sure that the sample accurately represents each
strata and enable more accurate estimates within each subgroup by stratifying the population
based on auxiliary variables. Researchers can examine differences in relationships or patterns
across various subgroups using subgroup analysis, which gives them a deeper understanding
of the data.

Researchers can improve analysis, deal with outliers, standardize variables, and increase
accuracy by using auxiliary information and its transformation in survey sampling. Researcher
judgments about variable transformations can be well-informed by taking into account the
correlation between the auxiliary variable (X) and the variable of interest (Y ).

Auxiliary information has traditionally been used in survey sampling. Auxiliary informa-
tion in sample selection with varying probabilities was suggested by Hansen and Hurwitz
(1943). An assortment of estimators exploiting auxiliary information in stratified random
sampling was proposed by Koyuncu and Kadilar (2009a). To improve the ratio estimators,
several researchers have suggested many estimators in simple random sampling employing
auxiliary variables (?). Moreover, Kadilar and Cingi (2003), Shabbir and Gupta (2005),
Kadilar and Cingi (2005), Koyuncu and Kadilar (2009a), Koyuncu and Kadilar (2009b)
adjusted ratio estimators in stratified random sampling to increase their efficiency.

1.5 Simple Random Sampling

Simple random sampling is a fundamental sampling technique that is commonly used in
statistics and research. It comprises randomly choosing units from a population in a way that
ensures each individual has an equal probability of being chosen for the sample. An accurate
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representation of the entire population is the goal of simple random sampling. By ensuring
that every person of the population has an equal chance of being picked for the sample,
simple random sampling lowers selection bias and increases the generalizability of the findings.
Simple random sampling relies on the chance to choose the subjects or things. In light of this,
each member of the population has an equal probability of getting selected.Simple random
sampling can be used to draw a representative sample from a population. It is especially
helpful when there are no recognized patterns or subgroups of interest and the population is
fairly homogeneous. It is crucial to keep in mind that simple random sampling could not be
practicable if the population is sizable or when the cost and time involved in sampling each
element of the population are significant. In some cases, alternative sampling methods like
stratified sampling or cluster sampling may be more appropriate.

1.6 Stratified Random Sampling

The stratified random sampling technique splits a population into homogenous strata based
on predetermined criteria, and then a random sample is taken from each stratum.Stratified
random sampling seeks to ensure that the sample is representative of the population by
capturing the variability prevalent among diverse subgroups. The first step in stratified
random sampling is to divide the population into strata that are exhaustive and mutually
exclusive. Strata are developed depending on pertinent traits or factors that the study is
interested in. Stratified random sampling has a number of benefits over simple random
sampling. As the sample size is concentrated on regions with higher variability, it enables
more accurate estimation within subgroups or strata. Additionally, stratification makes sure
that different groups are fairly represented in the population, which is helpful when examining
and contrasting traits specific to particular subgroups or when drawing conclusions about
various strata separately. However, accurate knowledge of the population and the pertinent
stratification variables are necessary for stratified random sampling. In comparison to simple
random sampling, it also requires more preparation and resources. Despite these difficulties,
stratified random sampling is a useful method for obtaining a representative and effective
sample when the population is heterogeneous or when there are particular subgroups that are
relevant to the analysis.

1.7 Motivation of the Study

In simulation studies, antithetic variables are used for efficient estimation. In survey sampling,
the prime objective is to estimate the population mean efficiently using auxiliary variables.
Here, the goal is to transform the study variable into the auxiliary variable in order to estimate
the population mean in an accurate and efficient manner.
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1.8 Thesis outline

The thesis’ remaining sections are organised as follows. The thesis-related literature has been
reviewed in Chapter 2. In Chapter 3, an estimator for calculating the finite population mean
using simple random sampling is created and is founded on the utilisation of supplementary
information received through transformation. The concept is extended to stratified random
sampling in Chapter 4. Chapter 5 puts an end to the thesis.



Chapter 2

Literature Review

Efficient estimation of the population mean is a fundamental problem in statistics, and the
literature has accorded it a lot of attention. To solve this issue, researchers have suggested
several estimation techniques. There are numerous statistical methods and procedures
covered in the literature to determine the population mean. To increase the population mean
estimator’s accuracy and effectiveness, researchers have looked into a variety of sampling
strategies, estimating techniques, and statistical models. The selection of an estimation
method is affected by a multitude of factors, the sampling design, the data at hand, and the
required level of accuracy for the estimations.

This study aims to calculate the finite population mean with the aid of auxiliary data and
transformation. As many writers have contributed to this with the intention of improving the
estimators of the population parameters. The work of a few researcher is presented here in
the following paragraphs.

Laplace (1820) was the first to estimate the population using additional data. It is
acknowledged that the Neyman (1938) work is a draught that improves an estimate by using
more data. In order to increase the effectiveness of estimators, several survey statisticians
have since tried to determine the mean of the limited population and other population
characteristics using auxiliary data. In addition to being the first to employ an auxiliary
variable during the estimation phase, Cochran (1940) also developed the ratio estimator for
the population mean. When there is a significant positive correlation between the study
variable and an auxiliary variable and the regression line crosses the origin, the ratio type
estimators outperform the basic mean per unit estimator. The usual Ratio Estimator, its
bias and Mean Square Error (MSE) are respectively given by

ˆ̄YR =
(

ȳ

x̄
X̄
)

Bias( ˆ̄YR) = λȲ [C2
x − ρyx · Cx · Cy],

and

MSE( ˆ̄YR) = (λȲ 2(C2
y + C2

x − 2ρyx · Cx · Cy)),

6
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where Cy = (S2
y/Ȳ ) and Cx = (S2

x/X̄ ) are the population coefficient of variation.
Robson (1957) presented the product estimator for the negative correlation. It is commonly

known that when the study variable (Y) and an auxiliary variable (x) have a strong negative
correlation, the product type mean estimator performs better than the sample mean per unit
estimator. The usual product estimator is

ˆ̄Yp = ȳ
x̄

X̄
. (2.1)

The respective bias and MSE of ˆ̄Yp are

Bias( ˆ̄YP ) = λȲ (ρyx · Cx · Cy)

and

MSE( ˆ̄YP ) = (λȲ 2[C2
y + C2

x + 2ρyx · Cx · Cy]

The simple linear regression estimator was defined by Hansen et al. (1953) and is defined as

ˆ̄Ylr = ȳ + b(X̄ − x̄) (2.2)

and its variance is

V ( ˆ̄Ylr) = λS2
y(1 − ρ2

yx),

where b = (Syx/S2
x )is the regression coefficient.

Survey statisticians have been trying to get precise estimate of the population parameters.
However, if the selected sample contains extreme values, the variance of the mean per unit
estimator will be exaggerated. Based on the inclusion of the lowest and largest values in the
sample, the sample mean per unit estimator is reduced and increased by a constant.Särndal
(1972) proposed a mean per unit estimator to address the problem of extreme values in the
chosen sample.The following estimator was proposed by the author.

ȳsan =


ȳ + c′ if ymin′ ∈ ω and ymax′ /∈ ω,

ȳ − c′ if ymax′ ∈ ω and ymin′ /∈ ω,

ȳ for all other samples

(2.3)

where ω denotes the chosen sample and c denotes an adequately chosen constant which needs
to be determined. The variance of ȳsan is expressed as follows.

V (ȳsan) = λS2
y − 2λnc(Ry′ − nc)

N − 1 . (2.4)
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The variance of ȳsan is optimum at copt = Ry/2n, where Ry′ = ymax − ymin. The optimal
variance at copt is expressed as

V (ȳsan) = V (ȳ′) −
λR2

y′

2(N − 1) , (2.5)

where
V (ȳ′) = λS2

y . (2.6)

V (ȳsan) is always less than V (ȳ) at the optimum value of c.
By employing the extreme values existing in the sample, Khan and Shabbir (2013)

expanded the concept of Särndal (1972) to include estimators that use auxiliary information
to further boost the precision of the estimators. The authors introduced improved ratio,
product, and regression estimators for both positive and negative situations.

The authors recommended the ratio and regression estimators as measures of positive
correlation

ˆ̄YRC =



(ȳ + c1′) X̄

(x̄ + c2′) if the sample includes ymin′ and (xmin′),

(ȳ − c1′) X̄

(x̄ − c2′) if the sample includes ymax′ and (xmax′),

ȳ
X̄

x̄
for all other pairs,

and
ȳlrC1 = ȳc11 + b(X̄ − x̄c21).

Whereas for negative correlation, the authors proposed the product and regression type
estimators as

ˆ̄YP C =



(ȳ + c1′)(x̄ − c2′)
X̄

if sample includes ymin′ and (xmax′),

(ȳ − c1′)(x̄ + c2′)
X̄

if sample includes ymin′ and (xmax′),

ȳ
x̄

X̄
for all other pairs,

and
ȳlrC2 = ȳc11 + b(X̄ − x̄c22)

The recommended ratio, product, and regression type estimators’ biases and MSE were
computed and are listed below up to the first level of approximation

Bias( ˆ̄YRC) = λ

X̄
[R′(S2

x − 2nc2′

N − 1(xmax′ − xmin′ − nc2′)) − {Syx − n

N − 1 × (c2′(ymax′ − ymin′)

+c1′(xmax′ − xmin′) − 2nc1′c2′)}]
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And optimum mean square error at optimal values of c1′ = Ry′/2n and c2′ = Rx′/2n is

MSE( ˆ̄YRC)opt = M(ȳR) − λ

2(N − 1) × [(ymax′ − ymin′) − R′(xmax′ − xmin′)]2 (2.7)

where R′ = Ȳ /X̄.

Bias( ˆ̄YP C) = λ

X̄
[Syx − n

N − 1 × (c2′(ymax′ − ymin′) + c1′(xmax′ − xmin′) − 2nc1′c2′)}]

MSE( ˆ̄YP C)opt = M(ȳR) − λ

2(N − 1) × [(ymax′ − ymin′) + R′(xmax′ − xmin′)]2 (2.8)

V ar(ȳlrC)opt = V (ȳlr) − λ

2(N − 1)[(ymax′ − ymin′) − |β|(xmax′ − xmin′)]2 (2.9)

The new estimators’ superior performance over the existing estimators was demonstrated
theoretically and by numerical analysis.

A family of ratio-type estimators of the population mean employing knowledge of the
known population constants, i.e., coefficient of variation and coefficient of correlation of the
auxiliary variable, were proposed by Mursala et al. (2015) as a further extension of Khan and
Shabbir (2013).They suggested the following estimators:

ˆ̄YP 1 = ȳc1(
X̄ + Cx

x̄c2 + Cx

),

ˆ̄YP 2 = ȳc1(
X̄ + ρyx

x̄c2 + ρyx

),

ˆ̄YP 3 = ȳc1(
X̄Cx + ρyx

x̄c2Cx + ρyx

),

and
ˆ̄YP 4 = ȳc1(

X̄ρyx + Cx

x̄c2ρyx + Cx

)

where ȳc1 = ȳ + c1, x̄c2 = x̄ + c2. Unkown constants c1 and c2 need to be determined. The
recommended estimators’ biases and MSEs are

Bias( ˆ̄YP i) = θ′kP i

Ȳ

kP i

(
S2

x − 2nc2′

N − 1(xmax′ − xmin′ − nc2′)
)

− Syx

+ n

N − 1
(
c2′(ymax′ − ymin′) + c1′(xmax′ − xmin′) − 2nc1′c2′

)

MSE( ˆ̄YP i) = θ′ [(S2
y + k2

P iS
2
x − 2kP iSyx) − 1

2(N − 1)
(
(ymax′ − ymin′) − kP i(xmax′ − xmin′)

)2
]

(2.10)
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for i = 1, 2, 3, 4, where θ′ = (1/n) − (1/N), R′ = Ȳ /X̄, and

kP 1 = Ȳ

X̄ + Cx

, kP 2 = Ȳ

X̄ + ρyx

, kP 3 = Ȳ Cx

X̄Cx + ρyx

, kP 4 = Ȳ ρyx

X̄ρyx + Cx

.

The effectiveness of an estimator can also be improved by the transformation of the auxiliary
variable.Using the known lowest and largest values of the auxiliary variable as a starting point,
Mohanty and Sahoo (1995) presented two linear transformations and two ratio type estimators
based on these two transformation. Biases and MSEs were estimated by the authors up
to the first level of approximation. The author’s suggested estimators’ performance was
quantitatively shown.

The effectiveness of estimators in probability proportional to size (PPS) sampling methods
can also be affected by extreme data.To address the difficulty provided by the existence of
extreme values in the chosen sample,Ahmad and Shabbir (2018) adapted Khan and Shabbir
(2013) estimator to the PPS sampling scheme and proposed some ratio, product, and regression
estimators. The recommended estimators outperformed the existing estimators that did not
take into account extreme values, according to theoretical and numerical data.

A population might be divided into several strata, and unusual observations could occur in
each stratum, increasing the mean square error of estimators of the ratio product and regression
type estimators.To address this problem, Shoaib et al. (2018) introduced a distinctive family
of estimators for estimation of the finite population mean based on the extreme values and
fractional raw moments of a complementary variable under stratified random sampling. If
stratified random sampling is used, the Särndal (1972) estimator is

ȳst.c =
L∑

h=1
Whȳhc

where

ȳhc =


ȳh + ch′ if a sample from the ith stratum contains yhmin′ but not yhmax′ ,

ȳh − ch′ if a sample from the ith stratum contains yhmax′ but not yhmin′ ,

ȳh, in other cases,

where ch′(h = 1, 2, 3, .., L) are exogenous constants, W ′
h is the stratum weight, and y′

h is the
sample mean of the hth stratum. Shoaib et al. (2018) suggested the respective combine ratio,
product and regression type estimators under stratified random sampling design as

ˆ̄YRC1 = ȳst.c11

x̄st.c21

X̄,

ˆ̄YP C1 = ȳst.c12

X̄
x̄st.c22 ,
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and
ˆ̄YlrC12 = ȳst.c12 + bc(X̄ − x̄st.c22).

The corresponding biases and MSEs of the combined estimators mentioned above were
calculated as

Bias( ˆ̄YRC1) ≈
L∑

h=1
W 2

h

λh

X̄

[
R′{S2

hx − 2nhc2h′

Nh − 1(xhmax′ − xhmin′ − nh′c2h′)}−

{Shyx − nh′

Nh − 1(c1h′(xhmax′ − xhmin′) + c2h′(yhmax′ − yhmin′)

−2nhc1h′c2h′)}] ,

where R′ = Ȳ /X̄, and

MSE( ˆ̄YRC1)min = MSE( ˆ̄YRC0) −
L∑

h=1
W 2

h

λh

2(Nh − 1) × {(yhmax′ − yhmin′) − R(xhmax′−hmin′)}2,

(2.11)
where

MSE( ˆ̄YRC0) ≈
L∑

h=1
W 2

h λh(S2
hy + R2S2

hx − 2RShyx). (2.12)

Bias( ˆ̄YP C1) ≈
L∑

h=1
W 2

h

λh

X̄
[Shyx− nh′

Nh − 1(c1h′(xhmax′−xhmin′)+c2h(yhmax′−yhmin′)−2nhc1h′c2h′)],

MSE( ˆ̄YP C1)min = MSE( ˆ̄Y )P C0)−
L∑

h=1
W 2

h

λh

2(Nh − 1) ×{(yhmax′ −yhmin′)+R(xhmax′−hmin′)}2,

(2.13)
where

MSE( ˆ̄YP C0) ≈
L∑

h=1
W 2

h λh(S2
hy + R2S2

hx + 2RShyx), (2.14)

Bias( ˆ̄YlrC1) = −cov(x̄st.c21 , bc),

MSE( ˆ̄YlrC1)min = MSE( ˆ̄YlrC0)−
L∑

h=1
W 2

h

λh

2(Nh − 1)×{(yhmax′−yhmin′)−|βc|(xhmax′−xhmin′)}2,

(2.15)
where

MSE( ˆ̄YlrC0) ≈
∑

W 2
h λhS2

hy(1 − ρ2
c), (2.16)

where
ρc =

∑L
h=1 W 2

h λhShyx√∑L
h=1

∑L
h=1 W 2

h λhS2
hy

∑L
h=1 W 2

h λhS2
hx

is used to measure the population correlation coefficient between the study (Y) and the
auxiliary variables (X).

The distinct ratio, product, and regression type estimators suggested by Shoaib et al.



Chapter 2. Literature Review 12

(2018) have been given by

ˆ̄YRS1 =
L∑

h=1
Wh

ȳh′.c11′

x̄h′.c21′

X̄h′ ,

ˆ̄YP S1 =
L∑

h=1
Wh

ȳh′.c12′

X̄h′
x̄h′.c22′ ,

ˆ̄YlrS12 =
L∑

h=1
Wh{ȳh′.c12′ + bh′(X̄ − x̄h′.c22′ )}

respectively. The individual biases and MSEs of the distinct regression, product, and ratio
type estimators are each expressed as follows:

Bias( ˆ̄YRS1) ≈
L∑

i=h

W 2
h

λh

X̄h

[R′{S2
hx − 2nh′ch′

Nh − 1(xhmax′ − xhmin′ − nh′c2h)}

− {Shyx − nh′

Nh − 1(c1h′(xhmax′ − xhmin′) + c2h′(yhmax′ − yhmin′)

− 2nhc1h′c2h′)}],

where Rh′ = Ȳh/X̄h,

MSE( ˆ̄YRS1)min ≈ MSE( ˆ̄YRS0)−
L∑

i=h

W 2
h

λh

2(Nh − 1)×{(yhmax′−yhmin′)−Rh(xhmax′−xhmin′)}2,

(2.17)
where

MSE( ˆ̄YRS0) ≈
L∑

h=1
W 2

h λh(S2
hy + R2

hS2
hx − 2RhShyx), (2.18)

Bias( ˆ̄YP S1) ≈
L∑

h=1
W 2

h

λh

X̄h

[S
hyx−

nh′

Nh − 1
×{c1h′(xhmax′−xhmin′)+c2h′(yhmax′−yhmin′)−2nh′c1h′c2h′}],

MSE( ˆ̄YP S1) ≈ MSE( ˆ̄YP S0) −
L∑

h=1
W 2

h

λh

2(Nh − 1) × {(yhmax′ − yhmin′) + Rh(xhmax′ − xhmin′)}2,

(2.19)
where

MSE( ˆ̄YP S0) ≈
L∑

h=1
W 2

h λh(S2
hy + R2

hS2
hx + 2RhShyx), (2.20)

MSE( ˆ̄YlrS1)min ≈ MSE( ˆ̄YlrS0)−
L∑

h=1
W 2

h

λh

2(Nh − 1)×{(yhmax′−yhmin′)−|βh|(xhmax′−xhmin′)}2,

(2.21)
where

MSE( ˆ̄YlrS0) ≈
L∑

h=1
W 2

h λhS2
hy(1 − ρ2

h). (2.22)

where the correlation coefficient between the study variable (Y) and the auxiliary variable (x)
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in the hth stratum is ρh = Shyx/ShyShx The performance of the recommended estimators was
theoretically and quantitatively established by the authors using simulated and actual data
sets.



Chapter 3

Estimators of Finite Population Mean
Using Transformation

In this chapter, a family of distinctive estimators that use the known auxiliary variables
under simple random sampling is suggested to estimate the finite population mean. up to
the first approximation level, expressions for the bias and mean square error of the current
and proposed families of estimators are derived. We next conceptually contrast the proposed
family of distinctive estimators with other existing estimators. We used four real data sets to
conduct a numerical investigation.

3.1 Notations and Symbols

Let U ′ = {U1′ , U2′ , ..., UN ′} represent a population with N individuals. Let (yi, xi) represent
the values of the study (y) and auxiliary variable (x) on the ith unit of a finite population,
respectively. Let’s assume that a simple random sample of size n is taken without replace-
ment from the population U ′ in order to estimate the population mean. The population
characteristics of the auxiliary variable is assumed to be known which include the population
mean X̄, coefficient of variation C, and coefficient of kurtosis B2(x).

Let Ȳ =∑N
i=1 yi/N be the population mean of study variable y and X̄=∑N

i=1 xi/N be
the population mean of auxiliary variable X. Let the respective variances of the study
and auxiliary variables be S2

y = ∑N
i=1(yi − Ȳ )2/(N − 1) and S2

x = ∑N
i=1(xi − X̄)2/(N − 1).

Let ȳ=∑n
i=1 yi/n and x̄=∑n

i=1 xi/n be the respective sample means of Y and X, and let
s2

y = ∑n
i=1(yi − ȳ)2/(n − 1) and s2

x = ∑n
i=1(xi − x̄)2/(n − 1) be the sample variances of Y and

X. Let Ĉy = s2
y/ȳ be the sample coefficient of variations of study variable y. Let Ĉx = s2

x/x̄ be
the sample coefficient of variations of auxiliary variable x. Let Cy = S2

y/Ȳ be the population
coefficient of variation of study variable Y and let Cx = S2

x/X̄ be the population coefficient of
variations of the auxiliary variable X. Moreover, let the sample correlation coefficient be ρ̂yx.

14
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3.2 Proposed estimators

We propose mean per unit, ratio, product and regression type estimators of the population
mean that utilize known knowledge of the auxiliary variable under SRSWOR. In order to
increase the efficiency of estimator, the suggested estimator also uses auxiliary information.
The methodology of the newly suggested estimator is described as follows and is based on the
concept of Särndal (1972) and antithetic variable. In accordance with the estimator previously
mentioned, an alternate technique to transform the population units is as follows. Let the
population of size N be organized according to the magnitude of the auxiliary variable in
ascending order as

y1, y2, · · · , yN−1, yn.

We add fx1 to the smallest value of the study variable and subtract the same value from
the largest value of the study variable. Then, we add fx2 to the second smallest value of the
study variable and subtract it from the second largest variable. The process is continued for
the remaining values of the study variable. Mathematically, the scheme is

y′
1 = (y′

1 = y1 + fx1), (y′
2 = y2 + fx2), · · · , yj, · · · , (y′

N−1 = yN−1 − fx2), (y′
N = yN − fx1).

Thus, (y′
1, y′

2, y′
3 · · · , y′

N−2, y′
N−1, y′

N ) is the transformed population values. Now we define the
mean per unit estimator based on the antithetic variable idea as

ȳT =
∑n

i=1 y′
i

n
. (3.1)

The variance of the suggested estimation by definition is

V ar(ȳT ) = E(ȳT )2 − [E(ȳT )]2. (3.2)

First, we establish the expectation of E(ȳT )2 as

E(ȳT )2 = E

(∑n
i=1 y′′

i

n

)2

, (3.3)

= 1
n2 E[

n∑
i=1

y
′′2
i +

∑
i̸=j

y′′
i y′′

j ], (3.4)

= 1
n2 [nE(y′′2

i ) + n(n − 1)E(y′′
i y′′

j )]. (3.5)



Chapter 3. Estimation of Population Mean Using Transformation 16

Consider now E(y′′2
i )

E(yi)
′2 =

∑N
i=1 y

′′2
i

N

=
∑j−1

i=1 (y′′
i + fxi)2 + y′′

j
2 +∑n

i=j+1(y′′
i − fxi)2

N

=
∑n

i=1 y′′
i

2 + 2∑j−1
i=1 fx2

i + 2∑j−1
i=1 y′′

i fxi − 2∑N
i=j+1 y′′

i fxi

N

= E(y′′
i

2) + 2
∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

N

Now consider the cross product equation. Using the expression
(∑N

i=1 y′′
i )2 = ∑N

i=1 y
′′2
i +∑N

i=1
∑N

j=1 y′′
i y′′

j ,we have

E(y′′
i y′′

j ) =
∑N

i=1
∑N

j=1 y′′
i y′′

j

N(N − 1)

= (∑N
i=1 y′′

i )2 − (∑N
i=1 y

′′2
i )

N(N − 1) ,

=
N2Ȳ 2 − NE(y2) − 2(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi)

N(N − 1)

Putting the expressions E(y′
iy

′
j) and E(y′2

i ) in (3.5) and then simplifying we get

E(ȳT )2 = 1
n2

n[E(y′′2) +
2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i f(xi) −∑N

i=j+1 y′′
i fxi

)
N

]
+

n(n − 1) ·

N2Ȳ 2 − NE(y2) − 2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i f(xi) −∑N

i=j+1 y′′
i fxi

)
N(N − 1)


=
E(y2)

n
+ (n − 1)NȲ 2

n(N − 1) − (n − 1)E(y2)
n(N − 1) +

2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

−
2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i f(xi) −∑N

i=j+1 y′′
i fxi

)
(n − 1)

nN(N − 1)


Simplifying algebraically, we obtain

E(ȳT )2 = E(y)2

 1
n

− (n − 1)
n(N − 1)

+
2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

1 − (n − 1)
(N − 1)


+ (n − 1)NȲ 2

n(N − 1)
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Note that E(ȳT ) = E(ȳi) = Y . The variance of V (ȳT ) now becomes

V ar(ȳT ) = E(ȳ2
T ) − (E(ȳT ))2

= E(y2)
(

1
n

− (n − 1)
n(N − 1)

)
+

2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

1 − (n − 1)
(N − 1)


+ (n − 1)NȲ 2

n(N − 1) − (E(ȳT ))2

= E(y2)
(

1
n

− (n − 1)
n(N − 1)

)
+

2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

1 − (n − 1)
(N − 1)


+ (n − 1)N(E(y2))

n(N − 1) − (E(ȳ))2

= E(y2)
(

1
n

− (n − 1)
n(N − 1)

)
+

2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

1 − (n − 1)
(N − 1)


− (E(y))2

1 − (n − 1)N
(N − 1)n


= E(y2)

(
N − n

n(N − 1)

)
+

2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

N − n

N − 1


− (E(y))2

 N − n

(N − 1)n


=
 N − n

(N − 1)n

E(y2) − (E(y))2)
+

2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

N − n

N − 1


=
 N − n

(N − 1)n

σ2 +
2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

N − n

N − 1


=
 N − n

(N − 1)n

N − 1
N

S2 +
2
(∑j−1

i=1 fx2
i +∑j−1

i=1 y′′
i fxi −∑N

i=j+1 y′′
i fxi

)
Nn

N − n

N − 1



Now the variance of proposed estimator is as follows

V ar(ȳT ) = λS2
y + 2λ

N − 1

j−1∑
i=1

fx2
i +

j−1∑
i=1

y′′
i fxi −

N∑
i=j+1

y′′
i fxi

 (3.6)

The variance of proposed estimator ȳT is always less than the variance of ȳ, i.e., V (ȳT ) <

V ar(ȳ).
The ratio estimator is seen to be ideal for estimating Y when the study and auxiliary

variables are positively linked, while the product estimator is considered appropriate when
a negative correlation exists between the study and the auxiliary variables. Depending on
the directions of correlation between the study and the auxiliary variable, we provide novel
population mean estimators that deal with each occurrences individually.
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Case 1: When the study (Y) and auxiliary variables (X) are highly positively correlated,
it is expected that the larger values of the study variable will be chosen when the auxiliary
variable’s larger values are chosen, and the smaller values of the study variable will be chosen
when the auxiliary variable’s smaller values are chosen. In this case, we create the following
ratio type estimator under simple random sampling by using the transformation and the
accompanying auxiliary data.

ȳRT = ȳT · X̄

x̄t

(3.7)

and the regression type estimator for positive correlation between the study and the auxiliary
variable is defined as follows:

Ȳlr(T )+ = ȳT + b(X̄ − x̄T ), (3.8)

Case 2: When the study and auxiliary variable are negatively correlated, it is expected
that the larger values of the study variable will be chosen when the auxiliary variable’s
smaller values are chosen, and the smaller values of the study variable will be chosen when the
auxiliary variable’s larger values are chosen. In this case, we suggest the following product type
estimator under simple random sampling by using the transformation and the accompanying
auxiliary data as

ȳP T = ȳT · x̄T

X̄
, (3.9)

and the regression type estimator for negative correlation between the study and the auxiliary
variable is as follows:

Ȳlr(T )− = ȳT + b(X̄ − x̄T ), (3.10)

A theorem is first proved for deriving the covariance between ȳT and x̄t. Later on, the finding
will be utilised to derive formulas for the biases and MSE of various suggested estimators.

Theorem 1: In the case of positively correlated variables, it can be demonstrated that
the covariance between ȳT and x̄t for a simple random sample of size n units drawn from a
population of size N units is given by

Cov(ȳT , x̄t) = λSxy + λ

N − 1(
j−1∑
i=1

Xifxi −
n∑

i=j+1
Xifxi). (3.11)

Proof. The covariance by definition is

Cov(ȳT , x̄T ) = E(ȳT , x̄t) − E(ȳT )E(x̄T ).
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Consider,

E(ȳt, x̄t) = E(
∑n

i=1 Y ′′
i

n
,

∑n
i=1 X ′′

j

n
)

= 1
n2 E[

n∑
i=j

Y ′′
i X ′′

j +
n∑

i̸=j

Y ′′
i X ′′

j ]

= 1
n2 [nEi=jY

′′
i X ′′

j + n(n − 1)Ei̸=jY
′′

i X ′′
j ] (3.12)

Consider the expression Ei=j(Y ′′
i X ′′

j )

Ei=j(Y ′′
i X ′′

j ) =
∑n

i=1 Y ′′
i X ′′

i

N

= 1
N

{(Y1 + fx1)(X1) + (Y2 + fx2)(X2) + ... + (Yj−1 + fxj−1)(Xj−1)

+ Yj + (Yj+1 − fxj+1)(Xj+1) + .... + (YN−1 − fx2)(XN−1) + (YN − fx1)(XN)}

= 1
N

{Y1X1 + fx1X1 + Y2X2 + fx2X2 + .... + Yj−1Xj−1 + fxj−1Xj−1 + Yj + Yj+1Xj+1

− fxj+1Xj+1 + .... + YN−1XN−1 − fx2XN−1 + YNXN − fx1XN}

=
∑N

i=1 YiXi +∑j−1
i=1 fxiXi −∑N

i=j+1 fxiXi

N

This can also be described as

Ei=j(Y ′′
i X ′′

j ) =
∑N

i=1(YiXi)
N

+
∑j−1

i=1 fxiXi −∑N
i=j+1 fxiXi

N
. (3.13)

Now we consider the expression

Ei̸=j(Y ′′
i X ′′

j ) =
∑n

i=j=1 Y ′′
i X ′′

j

N(N − 1)

=
∑n

i=1 Y ′′
i

∑n
j=1 X ′′

j −∑n
i̸=j Y ′′

i X ′′
j

N(N − 1)

=
∑n

i=1 Y ′′
i

∑n
j=1 X ′′

j

N(N − 1) −
∑n

i̸=j Y ′′
i X ′′

j

N(N − 1) .

Substituting the derived expressions of ∑n
i̸=j Y ′′

i X ′′
j in the above equation

n∑
i̸=j

Y ′′
i X ′′

j =
N∑

i̸=j

YiXj +
j−1∑
i=1

fxiXi −
N∑

i=j+1
fxiXi

Ei̸=j(Y ′′
i X ′′

j ) =
∑n

i=1 Yi
∑n

j=1 Xj

N(N − 1) − 1
N(N − 1)

 n∑
i=1

YiXj +
j−1∑
i=1

Xifxi −
n∑

i=j+1
Xifxi
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Ei̸=j(Y ′′
i X ′′

j ) =
∑n

i=1 Yi
∑n

j=1 Xj

N(N − 1) −
∑n

i=1 YiXj

N(N − 1) −
∑j−1

i=1 Xifxi

N(N − 1) +
∑n

i=J+1 Xifxi

N(N − 1) (3.14)

In the expression of Cov(ȳT , x̄t), equations (3.13) and (3.14) are now substituted, and the
result is

Cov(ȳt, x̄t) = 1
n2

n

∑N
i=1(YiXi)

N
+
∑j−1

i=1 fxiXi −∑N
i=j+1 fxiXi

N

+ n(n − 1)
∑n

i=1 Yi
∑n

j=1 Xj

N(N − 1)

−
∑n

i=1 YiXj

N(N − 1) −
∑j−1

i=1 Xifxi

N(N − 1) +
∑n

i=J+1 Xifxi

N(N − 1)

− Ȳ X̄



=
∑n

i=1 YiXi

Nn
+
∑j−1

i=1 fxiXi

Nn
−
∑n

i=j+1 fxiXi

Nn
+
∑n

i=1 Yi
∑n

j=1 Xj(n − 1)
N(N − 1)n

−
∑n

i=1 YiXi(n − 1)
N(N − 1)n −

∑j−1
i=1 fxiXi(n − 1)

(N − 1)Nn
+
∑n

i=j+1 Xifxi(n − 1)
N(N − 1)n − Ȳ X̄

=
∑n

i=1 YiXi

Nn

1 − n − 1
N − 1

+
∑j−1

i=1 fxiXi

Nn

1 − n − 1
N − 1

−
∑n

i=j+1 fxiXi

Nn

1 − n − 1
N − 1


+
∑n

i=1 Yi
∑n

j=1 Xj(n − 1)N
N(N − 1)nN

− Ȳ X̄

=
∑n

i=1 YiXi

Nn

N − n

N − 1

+
∑j−1

i=1 fxiXi

Nn

N − n

N − 1

−
∑n

i=j+1 fxiXi

Nn

N − n

N − 1


+ Ȳ X̄(n − 1)N

(N − 1)n − Ȳ X̄

=
∑n

i=1 YiXi

Nn

N − n

N − 1

− Ȳ X̄

1 − (n − 1)N
(N − 1)n

+
N − n

N − 1

 1
nNj−1∑

i=1
fxiXi −

n∑
i=j+1

fxiXi



=
N − n

N − 1

 1
n

∑n
i=1 YiXi

N
− Ȳ X̄

+
 N − n

(N − 1)Nn

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi



=
N − n

N − 1

 1
n

.σyx +
 N − n

(N − 1)Nn

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi



=
N − n

N − 1

 1
n

.
N − 1

N
Syx +

 N − n

(N − 1)Nn

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi


Now the covariance for the positive correlation becomes

Cov(ȳT , x̄T ) = λSyx + λ

N − 1

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi

. (3.15)
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Theorem 2: If a simple random sample of size n units is taken from a population of size N

units, the covariance between ȳT and x̄T , when there is a negative correlation between the
study variable (Y) and the auxiliary variable (x), may be calculated as follows.

Cov(ȳT , x̄T ) = λSxy − λ

N − 1(
j−1∑
i=1

Xifxi −
n∑

i=j+1
Xifxi) (3.16)

Proof. The covariance by definition,

Cov(ȳt, x̄t) = E(ȳt, x̄t) − E(ȳt)E(x̄t).

Consider,

E(ȳt, x̄t) = E(
∑n

i=1 Y ′′
i

n
,

∑n
i=1 X ′′

j

n
)

= 1
n2 E[

n∑
i=j

Y ′′
i X ′′

j +
n∑

i̸=j

Y ′′
i X ′′

j ]

= 1
n2 [nEi=jY

′′
i X ′′

j + n(n − 1)Ei̸=jY
′′

i X ′′
j ]

Consider the expression Ei=j(Y ′′
i X ′′

j )

Ei=j(Y ′′
i X ′′

j ) =
∑n

i=1 Y ′′
i X ′′

i

N

= 1
N

{(Y1 − fx1)(X1) + (Y2 − fx2)(X2) + ... + (Yj−1 − fxj−1)(Xj−1)

+ YjXj + (Yj+1 + fxj+1)(Xj+1) + .... + (YN−1 + fx2)(XN−1) + (YN + fx1)(XN)}

= 1
N

{Y1X1 − fx1X1 + Y2X2 − fx2X2 − .... + Yj−1Xj−1 − fxj−1Xj−1 + YjXj + Yj+1Xj+1

+ fxj+1Xj+1 + .... + YN−1XN−1 + fx2XN−1 + YNXN + fx1XN}

=
∑N

i=1 YiXi −∑j−1
i=1 fxiXi +∑N

i=j+1 fxiXi

N

This can also be reduced to

Ei=j(Y ′′
i X ′′

j ) =
∑N

i=1(YiXi)
N

−
∑j−1

i=1 fxiXi +∑N
i=j+1 fxiXi

N
. (3.17)

Now we consider the expression

Ei̸=j(Y ′′
i X ′′

j ) =
∑n

i̸=j Y ′′
i X ′′

j

N(N − 1)

=
∑n

i=1 Y ′′
i

∑n
j=1 X ′′

j −∑n
i=j Y ′′

i X ′′
j

N(N − 1)

=
∑n

i=1 Y ′′
i

∑n
j=1 X ′′

j

N(N − 1) −
∑n

i=j Y ′′
i X ′′

j

N(N − 1)
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Putting expression of ∑n
i=j Y ′′

i X ′′
j in the above equation, we get

Ei̸=j(Y ′′
i X ′′

j ) =
∑n

i=1 Yi
∑n

j=1 Xj

N(N − 1) − 1
N(N − 1)

 n∑
i=1

YiXj −
j−1∑
i=1

Xifxi +
n∑

i=j+1
Xifxi



Ei̸=j(Y ′′
i X ′′

j ) =
∑n

i=1 Yi
∑n

j=1 Xj

N(N − 1) −
∑n

i=1 YiXj

N(N − 1) +
∑j−1

i=1 Xifxi

N(N − 1) −
∑n

i=J+1 Xifxi

N(N − 1) (3.18)

In the expression of Cov(ȳT , x̄T ), subsitituting equations (3.17) and (3.18), and the result
can be shown to be given by

Cov(ȳT , x̄T ) = 1
n2

n

∑N
i=1(YiXi)

N
−
∑j−1

i=1 fxiXi +∑N
i=j+1 fxiXi

N

+ n(n − 1)
∑n

i=1 Yi
∑n

j=1 Xj

N(N − 1)

−
∑n

i=1 YiXj

N(N − 1) +
∑j−1

i=1 Xifxi

N(N − 1) −
∑n

i=J+1 Xifxi

N(N − 1)

− Ȳ X̄


=
∑n

i=1 YiXi

Nn
−
∑j−1

i=1 fxiXi

Nn
+
∑n

i=j+1 fxiXi

Nn
+
∑n

i=1 Yi
∑n

j=1 Xj(n − 1)
N(N − 1)n

−
∑n

i=1 YiXi(n − 1)
N(N − 1)n +

∑j−1
i=1 fxiXi(n − 1)

(N − 1)Nn
−
∑n

i=j+1 Xifxi(n − 1)
N(N − 1)n − Ȳ X̄

=
∑n

i=1 YiXi

Nn

1 − n − 1
N − 1

−
∑j−1

i=1 fxiXi

Nn

1 − n − 1
N − 1

+
∑n

i=j+1 fxiXi

Nn

1 − n − 1
N − 1


+
∑n

i=1 Yi
∑n

j=1 Xj(n − 1)N
N(N − 1)nN

− Ȳ X̄

=
∑n

i=1 YiXi

Nn

N − n

N − 1

−
∑j−1

i=1 fxiXi

Nn

N − n

N − 1

+
∑n

i=j+1 fxiXi

Nn

N − n

N − 1


+ Ȳ X̄(n − 1)N

(N − 1)n − Ȳ X̄

=
∑n

i=1 YiXi

Nn

N − n

N − 1

− Ȳ X̄

1 − (n − 1)N
(N − 1)n

−

N − n

N − 1

 1
nNj−1∑

i=1
fxiXi −

n∑
i=j+1

fxiXi



=
N − n

N − 1

 1
n

∑n
i=1 YiXi

N
− Ȳ X̄

−

 N − n

(N − 1)Nn

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi



=
N − n

N − 1

 1
n

.σyx −

 N − n

(N − 1)Nn

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi



=
N − n

N − 1

 1
n

.
N − 1

N
Syx −

 N − n

(N − 1)Nn

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi
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Now the covariance for the negative correlation becomes

Cov(ȳT , x̄T ) = λSyx − λ

N − 1

j−1∑
i=1

fxiXi −
n∑

i=j+1
fxiXi

. (3.19)

Proposed Ratio Estimator: Based on the transformed mean per unit estimator, we propose
a ratio estimator as

ȳRT = ȳt · X̄

x̄t

. (3.20)

The difference between a conventional and this ratio estimator is that here we use ȳt instead
of the usual mean per unit estimator ȳ. The relative error terms are defined for the purpose of
deriving the bias and MSE of the proposed Ratio estimator when there is a positive correlation
between study and auxiliary variable as:

e0 = (ȳt − Ȳ )/Ȳ

e1 = (x̄t − X̄)/X̄

Using Theorem 1, their expectation can be written as

E(e0) = E(e1) = 0, (3.21)

E(e2
0) = λ

Ȳ 2

S2
y + 2

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

 (3.22)

E(e2
1) = λ

X̄2

S2
x

 (3.23)

E(e0e1) = λ

Ȳ X̄

Syx + 1
N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

. (3.24)

The suggested estimator ȳRT cab be rewritten in terms of ei as

ȳRT = Ȳ (1 + e0)(1 + e1)−1.

Up to the first level of approximation, expanding and rearranging the right side of the equation
and disregarding any terms with powers greater than two

(ȳRT − Ȳ ) ≈ Ȳ (e0 − e1 + e2
1 − e0e1). (3.25)

To obtain the bias we apply expectation on both sides of equation (3.24) and then the bias is
as follows

Bias(ȳRT ) ≈Ȳ

 λ

X̄2
{S2

x} − λ

X̄Ȳ
{Sxy + 1

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

. (3.26)
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In order to derive an expression for MSE, we squared both sides of (3.25), keeping just the
terms up to the first level of approximation.

(ȳRT − Ȳ )2 ≈ Ȳ 2[e2
0 + e2

1 − 2e0e1].

Applying expectations on both sides of the aforementioned equation, we obtain MSE,

MSE(ȳRT ) ≈

λ

S2
y + δ2S2

x − 2δSxy

+ 2λ

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi


− 2λδ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 (3.27)

where
δ = Ȳ /X̄

The Proposed Product Estimator: The suggested estimator is

ȳP T = ȳt · X̄

x̄t

(3.28)

The only difference between the suggested and conventional estimator is the transformed
mean per unit estimator. The relative error terms are defined for the purpose of deriving the
bias and MSE of the proposed product estimator when there is a negative correlation between
study and auxiliary variable as e0 = (ȳt − Ȳ )/Ȳ and e1 = (x̄t − X̄)/X̄. Using Theorem 2,
their expectation can be written as

E(e0) = E(e1) = 0, (3.29)

E(e2
0) = λ

Ȳ 2

S2
y + 2

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

 (3.30)

E(e2
1) = λ

X̄2

S2
x

 (3.31)

and

E(e0e1) = λ

Ȳ X̄

Syx − 1
N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 (3.32)

Expressing the suggested estimator ȳP T in terms of ei, we obtain

ȳP T = Ȳ (1 + e0)(1 + e1).

Up to the first level of approximation, by enlarging and rearrange the right side of the equation
and disregarding any terms with second powers of e′

is,

(ȳP T − Ȳ ) = Ȳ (e0 + e1 + e0e1). (3.33)
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To obtain the bias we applied expectation on both sides of equation (3.32) and then the bias
is as follows

Bias(ȳP T ) ≈

 λ

X̄
{Sxy − 1

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

. (3.34)

In order to produce MSE, we squared both sides of (3.24), keeping just the terms up to the
first level of approximation.

(ȳP T − Ȳ )2 ≈ Ȳ 2[e2
0 + e2

1 + 2e0e1].

Applying expectations on both sides of the aforementioned equation, an expression for the
MSE of the proposed product estimator is

MSE(ȳP T ) ≈

λ

S2
y + δ2S2

x + 2δSxy

+ 2λ

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi


− 2λδ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 (3.35)

Proposed Regression Estimator for positive correlation: The suggested regression
estimator is

ȳlr(T ) = ȳT + b(X̄ − x̄t)

The variance of the linear regression estimator, up to the first level of approximation, may
now be derived as follows for positive correlation. Expressing ȳlr(T ) in terms of relative errors
as

ȳlr(T ) = Ȳ (1 + e0) + b(X̄ − X̄(1 + e1)).

Up to first level of approximation, we expand and rearrange all the terms to obtain

ȳlr(T ) − Ȳ = Ȳ e0 − be1X̄

When the two sides of the aforementioned equation are squared and expectation is applied,
the expression of MSE simplifies to

E[ȳlr(P 1) − Ȳ ]2 = λ(S2
y + b2S2

x − 2bSxy) + 2λ

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi


− 2bδ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi


where b=Sxy/S2

x.
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V ar(ȳlr(T ))+ = λS2
y

1 − ρ2
yx

+ 2λ

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

 (3.36)

− 2bλ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

. (3.37)

Similar to positive correlation when there is a negative correlation, the variance of the
regression estimate can be shown to be derived as

V ar(ȳlr(T ))− = λS2
y

1 − ρ2
yx

+ 2λ

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi


+ 2bλ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 (3.38)

A general expression for V ar(ȳlr(T )) can be described as

V ar(ȳlr(T )) = λS2
y

1 − ρ2
yx

+ 2λ

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi


− 2|b|λ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 (3.39)

3.3 Efficiences Comparison:

The circumstances in which the new estimators perform better than the existing estimators
may be identified by comparing the MSE of the proposed estimators to the MSE of existing
estimators. The results are described in the section below.

(1) By comparing the proposed ratio estimator and the usual mean per unit estimator we
get the expression

V ar( ˆ̄YP i) − MSE(ȳRT ) > 0 (3.40)

The equation(3.39) is true if and only if

− δS2
x + 2δSyx − 2

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

.

+ 2δ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0
(3.41)

(2) By comparing the proposed ratio estimator and the usual ratio estimator we get the
expression

MSE( ˆ̄YR) − MSE(ȳRT ) > 0 (3.42)
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The equation (3.40) is true if and only if

−

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

+ δ

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0 (3.43)

(3) By comparing the proposed product estimator and the usual mean per unit estimator we
get the expression

V ar(ˆ̄y) − MSE(ȳP T ) > 0 (3.44)

The equation (3.42) is true if and only if

− δS2
x − 2δSyx − 2

N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

.

+ 2δ

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0
(3.45)

(4) By comparing the proposed product estimator and the usual product estimator we get
the expression

MSE(ˆ̄yP ) − MSE(ȳP T ) > 0 (3.46)

The equation (3.44) is true if and only if

−

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

+ δ

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0 (3.47)

(5) By comparing the proposed regression estimator and the usual mean per unit estimator
for positive correlation we get the expression

V ar(ˆ̄y) − V ar(ȳlrT ) > 0 (3.48)

The equation (3.46) is true if and only if

S2
yρ2

yx − 2
N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi


+ 2b

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0
(3.49)

(5) By comparing the proposed regression estimator and the usual regression estimator for
positive correlation we get the expression

V ar(ȳlr) − V ar(ȳlrT ) > 0 (3.50)



Chapter 3. Estimation of Population Mean Using Transformation 28

The equation (3.48) is true if and only if

− 2
N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

+ 2b

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0

(3.51)

(6) By comparing the proposed regression estimator and the usual mean per unit estimator
for negative correlation we get the expression

V ar(ˆ̄y) − V ar(ȳlrT ) > 0 (3.52)

The equation (3.50) is true if and only if

S2
yρ2

yx − 2
N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi


− 2b

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0
(3.53)

(7) By comparing the proposed regression estimator and the usual regression estimator for
negative correlation we get the expression

V ar(ȳlr) − V ar(ȳlrT ) > 0 (3.54)

The equation (3.52) is true if and only if

− 2
N − 1

 j−1∑
i=1

fx2
i +

j−1∑
i=1

yifxi −
N∑

i=j+1
yifxi

− 2b

N − 1

 j−1∑
i=1

Xifxi −
N∑

i=j+1
Xifxi

 > 0

(3.55)

All of the conditions from (1) to (7) that were established above are conditionally true, and
the proposed estimators will work better whenever the deduced conditions are true.

3.4 Empirical Comparison of Estimators

In this part, real data sets are used to compare the performance of the recommended estimators
to that of competing estimators using four real data sets. The population description and the
pertinent statistical statistics are provided below.
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Data 1:(Source: Montgomery et al. (2021) )
Data set: Jet turbine engine thrust data [page 566]

y=Thrust
x= Primary speed of rotation
Following are the population’s abridged statistics:
N = 40, λ = 1, Ȳ = 3904,X̄ = 1809.925, S2

y = 254667.6, S2
x = 63479.05, δ = 2.156995,

ρyx = 0.9950099 (correlation), Sxy = 126511.3, C2
y = 0.01670914, C2

x = 0.01937801, byx =
1.992962,

Data 2:(Source: Montgomery et al. (2021) )
Data set: Solar Thermal Energy Test Data Data [page 555]

y= Total heat fl ux (kwatts)
x= Insolation (watts/m 2 )
Following are the population’s abridged statistics:

N = 29, λ = 1, Ȳ = 249.6379,X̄ = 754.4741, S2
y = 524.3546, S2

x = 6367.533, δ =
0.3308767, ρyx = 0.6276454 (correlation), Sxy = 1146.865, C2

y = 0.008414027, C2
x = 0.0111862,

byx = 0.1801114,
Data 3:(Source: Montgomery et al. (2021) )

Data set: Belle Ayr Liquefaction Runs Data [page 558]
y = CO2

x = Spacetimemin

Following are the population’s abridged statistics:

N = 27, λ = 1, Ȳ = 24.73037,X̄ = 20.11111, S2
y = 302.6966, S2

x = 200.961, δ = 1.229687,
ρyx = −0.7048039 (correlation), Sxy = −173.8313, C2

y = 0.4949329, C2
x = 0.4968665, byx =

−0.8650001,
Data 4:(Source: Montgomery et al. (2021) )

Data set: Gasoline Mileage Performance for 32 Antomobiles Data [page 556]
y = Miles/gallon

x = Carburetor(barrels)
Following are the population’s abridged statistics:
N = 32, λ = 1, Ȳ = 20.22312,X̄ = 2.59375, S2

y = 39.92078, S2
x = 1.152218, δ = 7.796867,

ρyx = −0.4869972 (correlation), Sxy = −3.302883, C2
y = 0.09761183, C2

x = 0.1712688,
byx = −2.866544,

At this point, a numerical comparison of the proposed and current estimators is made
using a percentage relative efficiency specified by

PRE(· · · ) = [V ar(ȳ)/MSE(· · · )] × 100

where the MSE of the competing estimators is located in the denominator. The proposed
and current estimators’ percentage relative efficiencies are shown in Table 3.1. The data
demonstrates that the suggested estimators outperform the competing estimators.
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Table 3.1: Percentage Relative Efficiencies of existing and proposed Estimators

Estimators Data 1 Data2 Data3 Data4
ˆ̄y 100 100 100 100
ˆ̄yR 6001.6110 113.3676 29.2717 24.7233
ˆ̄yRT 6174.2920 125.3804 31.7711 30.1112
ˆ̄yP 23.2407 26.4770 169.0480 68.2860
ˆ̄yP T 23.2432 27.0831 309.7916 135.0076
ȳLR 10044.8900 164.9998 198.7078 131.0902
ȳLRT 10144.0500 173.2754 356.0389 281.6299

3.5 Conclusion

In this chapter, we suggested transformation-based mean per unit, ratio, product, and
regression type estimators for the mean of a finite population. Additionally, under first level
of approximation, expressions for the bias and MSE have been developed. The suggested
estimators’ effectiveness has been established theoretically, and four real data sets were utilised
to validate the theoretical findings. Based on the numerical results, it have been suggested
that the proposed estimator should be used for the estimation of the population mean as its
relative efficiency is better than the exisitng estimators. For data set 1 and data set 2, the
correlation between the study and the auxiliary variable is positive that’s why the product
estimators do not produce satisfactory results.



Chapter 4

Estimation of Finite Population Mean
Using Transformation Under Stratified
Random Sampling

A sampling method known as stratified random sampling is used in statistics and research
to guarantee that the sample taken from a population accurately reflects each of its strata
in proportion to their presence in the total population. In particular when the population
is diverse, the objective is to create a sample that is more accurate and representative than
simply random sampling.

The population is initially segmented into different, non-overlapping subgroups or strata
in accordance with some traits or properties. Each component of the population only belongs
to one of these strata.The proportion of the sample that should be drawn from each stratum
is decided once the strata have been defined. According to the size or significance of the
strata in the population as a whole, this allocation is often made.A simple random sampling
technique is used to choose a random sample of items from each stratum. As a result, there
is a fair possibility that each stratum member will be chosen.

In stratified random sampling, auxiliary information refers to supplementary information or
variables that are known for each person or unit within the stratum. These auxiliary variables
can offer insightful data on the studied research variable, or the feature of interest.When
there is a significant correlation between the auxiliary variables and the research variable, the
sampling procedure may produce estimates that are more precise.

When a study variable has to be transformed, it typically signifies that certain modifications
are required since the variable’s distribution cannot be used for sampling or analysis. Here
are some common situations where transformation of study variables might be necessary in
stratified random sampling:

Estimates may be skewed if the research(study) variable is extremely skewed (e.g., positively
or negatively skewed).Sometimes the distribution may be made more symmetric and acceptable
for sampling by transforming the study variable using mathematical procedures like the
exponential function.A study variable’s mean and variance can be strongly impacted by

31
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outliers, producing estimates that are biased. Outliers can have an adverse effect, but they
can be reduced by transformations such swapping extreme numbers for less extreme ones or
utilising rankings rather than raw values.It might be challenging to conduct a representative
sample when the study variable’s variation varies between strata.It could be useful to use
transformations that reduce variance, such as the square root or the inverse.The correlation
between the study variable and other factors may not always be linear. The relationship can
be linearized and the analysis made easier by transforming the study variable or the other
variables.

Shoaib et al. (2018) proposed ratio, product, and regression type estimators employing
extreme data values in stratified random sampling with one auxiliary variable. In this chapter
we use Antithetic variable technique in transformation to reduce the variance of the study
variable to estimate the finite population mean under stratified random sampling.

4.1 Notation and symbols under stratified random sam-
pling

Let’s say that a population of N is split into L strata of sizes (h = 1, 2, 3, ..., L) that are
mutually exclusive and have sums of ∑L

h=1 Nh = N .Given that n is the total number of units
in the sample, let’s assume that a random sample of size nh is taken from each stratum
separately using simple random sampling without replacement.Assume that yhi and xhi are
the sample values of the study variable and the auxiliary variable, respectively. These values
correspond to the population values of the study variable Yhi and the auxiliary variable Xhi

for the ith unit (i = 1, 2, 3, ..., Nh) in the hth stratum (h=1,2,3,...,L), respectively.
Let ȳh = ∑nh

h=1 yhi/nh be the sample mean of study variable in the hth (h=1,2,3,...,L)
stratum.

Let x̄h = ∑Nh
h=1 Xhi/nh be the sample mean of auxiliary variable in the hth (h=1,2,3,...,L)

stratum.
Let Ȳh = ∑Nh

h=1 Yhi/Nh be the population mean of study variable in the hth (h=1,2,3,...,L)
stratum.

Let X̄h = ∑Nh
h=1 Xhi/Nh be the population mean of auxiliary variable in the hth (h=1,2,3,...,L)

stratum.
Let s2

yh = ∑nh
h=1(yhi − ȳh)/(nh − 1) be the sample variance of study variable in the hth

(h=1,2,3,...,L) stratum.
Let s2

xh = ∑nh
h=1(xhi − x̄h)/(nh − 1) be the sample variance of auxiliary variable in the hth

(h=1,2,3,...,L) stratum.
Let S2

yh = ∑Nh
h=1(Yhi − Ȳh)/(Nh − 1) be the population variance of study variable in the

hth (h=1,2,3,...,L) stratum.
Let S2

xh = ∑Nh
h=1(Xhi − X̄h)/(Nh − 1) be the population variance of auxiliary variable in

the hth (h=1,2,3,...,L) stratum.
Let Shyx = Shy · Shx · ρhyx be the population covariance of Y and X for the hth stratum.



Chapter 4. Estimation of Population Mean Using Transformation in StrRS 33

Let bh = Shyx/S2
hx be the Population Regression Coefficient for the hth (h=1,2,3,...,L)

stratum.
Let Wh = Nh/N be the stratum weight in the hth (h=1,2,3,...,L) stratum.
Let fh = nh/Nh be the sampling fraction in the hth (h=1,2,3,...,L) stratum.
Let δ = Ȳ /X̄ be the Population ratio.
Let δh = Ȳh/X̄h be the population ratio in the hth (h=1,2,3,...,L) stratum.
Let ρyxh be the sample correlation coefficient in the hth (h=1,2,3,...,L) stratum.

4.2 Proposed Estimator based on transformation

The mean per unit estimator and its variance under stratified random sampling is given by

ȳst =
L∑

h=1
Whȳh (4.1)

var(ȳst) =
L∑

h=1
W 2

h λhS2
hy (4.2)

where λh = 1 − fh

nh
we have proposed the following estimator under stratified random sampling using trans-

formation.
ȳst.T =

∑L
h=1 Whȳh

nh

. (4.3)

The proposed estimator’s variance is obtained as follows by definition:

V ar(ȳst.T ) = E(ȳ2
st.T ) − [E(ȳst.T )]2 (4.4)

where

E(ȳhT )2 = E

(∑nh
i=1 yhi

nh

)2

= 1
n2

h

E

 nh∑
i=1

y2
hi +

∑
i=j

yhiyhj



E(ȳhT )2 = 1
n2

h

[nhE(yhi)2 + nh(nh − 1)E(yhiyhj)] (4.5)

Now Consider

E(yhi)2 = 1
Nh

Nh∑
i=1

y2
hi
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E(y2
hi) =

∑Nh
i=1 y2

hi

Nh

= 1
Nh

{(yh1 + fx1)2 + (yh2 + fx2)2 + ... + (yhj−1 + fxhj−1)2

+ (yjh)2 + (yhj+1 − fxhj+1)2 + .... + (yNh−1 − fx2h)2 + (yNh − fx1h)2}

=
∑Nh

i=1 yhi2 + 2∑jh−1
i=1 fx2

ih + 2∑jh−1
i=1 yhifxih − 2∑Nh

i=jh+1 yhifxih

Nh

= E(y2
ih) +

2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nh

Now consider the cross product term and using the expression (∑Nh
i=1 yhi)2 = ∑Nh

i=1 y2
hi +∑Nh

i=1
∑Nh

j=1 yhiyhj

E(y′
hiy

′
hj) =

∑Nh
i=1

∑Nh
j=1 yhiyhj

Nh(Nh − 1)

= (∑Nh
i=1 yhi)2 − (∑Nh

i=1 y2
hi)

Nh(Nh − 1)

=
N2

h Ȳ 2
h − NhE(ȳ2

h) − 2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nh(Nh − 1)

substituting the expressions of E(yhiyhj) and E(y2
hi) in (4.5) and simplifying we obtain

E(ȳ2
hT ) = 1

n2
h

nh(E(y2
hi) +

2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nh

) + nh(nh − 1)


N2
h Ȳ 2

h − NhE(ȳ2
h) − 2

∑jh−1
i=1 fx2

ih +∑jh−1
i=1 yihfxih −∑Nh

i=jh+1 yhifxih


Nh(Nh − 1)




= E(y2
h)

nh

+ (nh − 1)N2
h Ȳ 2

h

nhNh(Nh − 1) − (nh − 1)E(ȳ2
h)

nh(Nh − 1)

+
2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nhnh

−
2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih

(nh − 1)

Nhnh(Nh − 1)
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E(ȳ2
hT ) = E(y2

h)
[

1
nh

− (nh − 1)
nh(Nh − 1)

]
+ (nh − 1)NhȲ 2

h

nh(Nh − 1)

+
2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nhnh

[
1 − (nh − 1)

(Nh − 1)

]

Now the variance of V ar(ȳhT ) becomes

V ar(ȳhT ) = E(ȳ2
hT ) − (E(ȳhT ))2

= E(y2
h)
[

1
nh

− (nh − 1)
nh(Nh − 1)

]
+ (nh − 1)NhȲ 2

h

nh(Nh − 1)

+
2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nhnh

[
1 − (nh − 1)

(Nh − 1)

]
− (E(ȳhT ))2

= (E(y2
h))

[
1
nh

− (nh − 1)
nh(Nh − 1)

]
+ (nh − 1)NhE(Yh)2

nh(Nh − 1)

+
2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nhnh

[
1 − (nh − 1)

(Nh − 1)

]
− (E(Yh))2

= (E(y2
h))

[
Nh − nh

nh(Nh − 1)

]
+

2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nhnh

[
Nh − nh

Nh − 1

]

− (E(Yh))2
[

Nh − nh

nh(Nh − 1)

]

=
[

Nh − nh

nh(Nh − 1)

]E(yh)2 − (E(yh))2

+
2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nhnh[

Nh − nh

Nh − 1

]

=
[

Nh − nh

nh(Nh − 1)

]
σ2

yh +
2
∑jh−1

i=1 fx2
ih +∑jh−1

i=1 yihfxih −∑Nh
i=jh+1 yhifxih


Nhnh

[
Nh − nh

Nh − 1

]

V ar(ȳhT ) = λhS2
hy + 2λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih −
Nh∑

i=jh+1
yhifxih

 (4.6)

Now the variance of
V ar(ȳst.T )=∑L

h=1 W 2
h var(ȳhT )
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V ar(ȳst.T ) =
L∑

h=1
W 2

h λh

S2
hy + 2

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih −
Nh∑

i=jh+1
yhifxih

 (4.7)

The variance ofȳst.T is always less than the variance of ȳst, i.e.,V ar(ȳst.T ) < V ar(ȳst)

4.3 Proposed Estimators in case of Positive Correlation

It is generally known that the ratio estimator is appropriate for population mean estimate when
the study and auxiliary variable have a positive correlation.The greater value(s) of the study
variable is predicted to be chosen in the sample when there is a positive correlation between
the study variable and the auxiliary variable, which is achieved by choosing larger value(s)
of the auxiliary variable. Likewise, it is reasonable to anticipate small values of Y if small
values of X were chosen for the sample.Under the aforementioned circumstances, we define
the ratio and regression estimators utilising the auxiliary variable by using transformation in
stratified random sampling as

Combined Ratio Estimator,

ȳCRT = ȳst.t
X̄

x̄st.t

. (4.8)

Separate ratio estimator,

ȳSRT =
L∑

h=1
Whȳh.t

X̄h

x̄h.t

(4.9)

Combined regression estimator,

ȳClrT = ȳst.t + bc(X̄ − x̄st.t) (4.10)

Separate regression estimator,

ȳSlrT =
L∑

h=1
Wh{ȳh.t + bh(X̄h − x̄h.t)}. (4.11)

4.4 Proposed estimators in case of negative correlation

However, when there is a negative correlation between the study variable and the auxiliary
variable, it is predicted that the sample would have a lesser number of study variable values
when the greater values of the auxiliary variable are chosen. The choice of a larger value
for the study variable follows the choice of a lower value for the auxiliary variable. Under
these circumstances, the suggested product and regression estimators using stratified random
sampling with transformation are defined as follows:

Combined product estimator.

ȳCP T = ȳst.t · x̄st.t

X̄
(4.12)
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Separate product estimator,

ȳSP T =
L∑

h=1
ȳh.t · x̄h.t

X̄h

(4.13)

Combined regression estimator,

ȳCLRT = ȳst.t + bc(X̄ − x̄st.t) (4.14)

Separate regression estimator,

ȳSLRT =
L∑

h=1
Wh{ȳh.t + bh(X̄ − x̄h.t)}. (4.15)

We first establish the following theorems before determining the bias and mean square errors
for the proposed estimators.

Theorem 1:
For a sample of size ’nh’ (for h=1, 2, 3,..., L), units are chosen at random from a bivariate

sub population of size Nh for (h=1, 2, 3,..., L), forming a stratified random sample of size
n = ∑L

h=1 nh from a population of size N .If two variables are positively correlated, it can be
demonstrated that the covariance between ȳh.t and x̄h.t is provided by;

COV (ȳht, x̄ht) = λhShyx + λh

Nh − 1

 jh−1∑
i=1

Xihfxih −
Nh∑

i=jh+1
Xhifxih

 (4.16)

Proof: Using the covariance definition,

Cov(ȳhT , x̄hT ) = E(ȳht, x̄ht) − E(ȳht)E(x̄ht)

E(ȳht, x̄ht) = E(
∑nh

i=1 Yhi

nh

,

∑nh
i=1 Xhi

nh

)

= 1
n2

h

E[
nh∑
i=j

YhiXhj +
nh∑
i̸=j

YhiXhj]

E(ȳht, x̄ht) = 1
n2

h

[nh · Ei=jYihXjh + nh(nh − 1)Ei̸=jYhiXjh]
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Consider the expression Ei=j(YhiXhj)

Ei=j(YhiXhj) =
∑Nh

i=1 YhiXhj

Nh

= 1
Nh

{(Yh1 + fx1h)Xh1 + (Yh2 + fx2h)Xh2 + ... + (Yhj−1 + fxhj−1)Xhj−1

+ YjhXjh + (Yhj+1 − fxhj+1)Xhj+1 + .... + (YNh−1 − fx2h)XNh−1 + (yNh − fx1h)XNh}

=
∑Nh

i=1 yhiXhi +∑jh−1
i=1 fxihXih −∑Nh

i=jh+1 Xhifxih

Nh

Ei=j(YhiXhj) =
∑Nh

i=1 YhiXhj

Nh

+

∑jh−1
i=1 Xihfxih −∑Nh

i=jh+1 Xhifxih


Nh

Consider Now

Ei̸=j(YhiXhj) =
∑

i̸=j YhiXhj

Nh(Nh − 1)

=
∑Nh

i=1 Yhi
∑Nh

j=1 Xhj −∑
i=j YhiXhj

Nh(Nh − 1)

=
∑Nh

i=1 Yhi
∑Nh

j=1 Xhj

Nh(Nh − 1) −
∑

i=j YhiXhj

Nh(Nh − 1)

In the equation above, if we replace the formula ∑i=j YhiXhj, we obtain

Ei̸=j(YhiXhj) =
∑Nh

i=1 Yhi
∑Nh

j=1 Xhj

Nh(Nh − 1) − 1
Nh(Nh − 1)

 Nh∑
i=1

YhiXhj +
jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
Xhifxih



Ei̸=j(YhiXhj) =
∑Nh

i=1 Yhi
∑Nh

j=1 Xhj

Nh(Nh − 1) −
∑Nh

i=1 YhiXhj

Nh(Nh − 1) −
∑jh−1

i=1 fxhiXih

Nh(Nh − 1) +
∑Nh

i=jh+1 Xhifxih

Nh(Nh − 1)

Substituting expressions of the form Ei=j(YhiXhj) and Ei̸=j(YhiXhj) in the equation of



Chapter 4. Estimation of Population Mean Using Transformation in StrRS 39

Cov(ȳht, x̄ht) which results in

Cov(ȳht, x̄ht) = 1
n2

h

nh

∑Nh
i=1 YhiXhj

Nh

+

∑jh−1
i=1 Xihfxih −∑Nh

i=jh+1 Xhifxih


Nh

+

nh(nh − 1)
∑Nh

i=1 Yhi
∑Nh

j=1 Xhj

Nh(Nh − 1) −
∑Nh

i=1 YhiXhj

Nh(Nh − 1) −
∑jh−1

i=1 fxhiXih

Nh(Nh − 1) +
∑Nh

i=jh+1 Xhifxih

Nh(Nh − 1)


− ȲhX̄h

=
∑Nh

i=1 YhiXhi

Nhnh

+
∑jh−1

i=1 fxhiXih

nhNh

−
∑Nh

i=jh+1 Xhifxih

Nhnh

+
∑Nh

i=1 Yhi
∑Nh

j=1 Xhj(nh − 1)
Nhnh(Nh − 1)

−
∑Nh

i=1 YhiXhi(nh − 1)
Nhnh(nh − 1) −

∑jh−1
i=1 fxhiXih(nh − 1)

nhNh(Nh − 1) +
∑Nh

i=j+1 fxhiXih(nh − 1)
nhNh(Nh − 1) − ȲhX̄h

=
∑Nh

i=1 YhiXhi

Nhnh

Nh − nh

Nh − 1

+
∑jh−1

i=1 fxhiXih

nhNh

Nh − nh

Nh − 1

−
∑Nh

i=jh+1 fxhiXih

nhNh

Nh − nh

Nh − 1


+ ȲhX̄h(nh − 1)Nh

nh(Nh − 1) − ȲhX̄h

=
∑Nh

i=1 YhiXhi

Nhnh

Nh − nh

Nh − 1

− ȲhX̄h

1 − (nh − 1)Nh

(Nh − 1)nh

+ 1
Nhnh

Nh − nh

Nh − 1


 jh−1∑

i=1
fxhiXih −

Nh∑
i=j+1

fxhiXih



=
 Nh − nh

(Nh − 1)nh

∑Nh
i=1 YhiXhi

Nh

− ȲhX̄h

+ 1
Nhnh

Nh − nh

Nh − 1


 jh−1∑

i=1
fxhiXih −

Nh∑
i=j+1

fxhiXih



=
 Nh − nh

(Nh − 1)nh

σyhx + 1
Nhnh

Nh − nh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih



=
 Nh − nh

(Nh − 1)nh

Nh − 1
Nh

Shyx + 1
Nhnh

Nh − nh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


now the covariance in case of positive correlation is

Cov(ȳht, x̄ht) = λhShyx + λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

 (4.17)
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Theorem 2:
For a sample of size ’nh’ (for h=1, 2, 3,..., L), units are chosen at random from a bivariate

sub population of size Nh for (h=1, 2, 3,..., L), forming a stratified random sample of size
n = ∑L

h=1 nh from a population of size N .If two variables are negetively correlated, it can be
demonstrated that the covariance between ȳh.t and x̄h.t is provided by;

Cov(ȳht, x̄ht) = λhShyx − λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

 (4.18)

Relative Errors terms:
The relative error terms are defined for the purpose of deriving the biases and Mean

Square Error of the proposed estimator:
Let

est.T1 = ȳst.t − Ȳ

Ȳ

est.T2 = x̄st.t − X̄

X̄

eh.T1 = ȳh.t − Ȳh

Ȳh

eh.T2 = x̄h.t − X̄h

X̄h

Using theorems 1 and 2, expectations of relative error terms up to the first degree of
approximation may be expressed as

E(est.T1) = E(est.T2) = 0

E(eh.T1) = E(eh.T2) = 0

E(e2
st.T1) = 1

Ȳ 2

L∑
h=1

W 2
h λh

[
S2

hy + 2
Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih −
Nh∑

i=jh+1
yhifxih

]

E(e2
st.T2) = 1

X̄2

L∑
h=1

W 2
h λhS2

hx

E(e2
h.T1) = λh

Ȳ 2
h

[
S2

hy + 2
Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih −
Nh∑

i=jh+1
yhifxih

]

E(e2
h.T2) = 1

X̄2
h

L∑
h=1

W 2
h λhS2

hx

E(est.T1 , est.T2) = 1
Ȳ X̄

L∑
h=1

W 2
h λh

[
Shyx + 1

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

]

E(eh.T1 , eh.T2) = λh

ȲhX̄h

[
Shyx + 1

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

]
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4.5 Proposed Combined Estimators.

We derived the bias and mean square errors of the combined ratio, product and regression
estimators.

Proposed combined ratio estimator:
Rewriting the expression ȳCRT in terms of e′

is, allows us to get the expressions for bias
and MSE

ȳCRT = Ȳ (1 + est.T1)(1 + est.T2)−1

When we expand and rearrange the aforementioned statement up to the first degree of
approximation, we obtain

(ȳRCT − Ȳ ) ≈ Ȳ (est.T 1 − est.T 2 + e2
st.T 2 − est.T 1est.T 2) (4.19)

By applying the expectation on the aforementioned formula, the bias of ȳRCT is as follows;

Bias(ȳRCT ) ≈ Ȳ

X̄2

L∑
h=1

W 2
h λhS2

hx − 1
X̄

L∑
h=1

W 2
h λh

[
Syx + 1

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

]
(4.20)

By taking the square on both sides of (4.19), preserving just the terms up to the first degree
of approximation, and computing the MSE, we may obtain

(ȳRCT − Ȳ )2 ≈ Ȳ 2[e2
st.T 1 + e2

st.T 2 − 2est.T 1est.T 2]

We obtain MSE by applying the expectations on the two sides of the aforementioned equation.

MSE(ȳRCT ) ≈
L∑

h=1
W 2

h λh

S2
hy + δ2S2

hx − 2δShxy

+ 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2δ
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


(4.21)

where δ = Ȳ /X̄

Proposed combined product estimator:
Similarly, we can construct the following formulas for the bias and mean square error of

the combined product estimator;

Bias(ȳCP T ) ≈ 1
X̄

L∑
h=1

W 2
h λh

[
Shyx + 1

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

] (4.22)
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and MSE of the ȳCP T is given by

MSE(ȳCP T ) ≈
L∑

h=1
W 2

h λh

S2
hy + δ2S2

hx + 2δShxy

+ 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2δ
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


(4.23)

Proposed combined Regression estimator in case of positive correlation:
Similarly, we can construct the following formula for the mean square error of the combined

linear regression estimator;

MSE(ȳClrT ) =
L∑

h=1
W 2

h λhS2
hy[1 − ρ2

c ] + 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2bc
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


Proposed combined Regression estimator in case of negative correlation:

MSE(ȳClrT ) =
L∑

h=1
W 2

h λhS2
hy[1 − ρ2

c ] + 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

+ 2bc
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


and the general expression is as follows:

MSE(ȳClrT ) =
L∑

h=1
W 2

h λhS2
hy[1 − ρ2

c ] + 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2|bc|
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


(4.24)

where bc = ∑L
h=1 W 2

h ((Nh − nh)/Nhnh)Shyx/
∑L

h=1 W 2
h ((Nh − nh)/Nhnh)S2

hx

Across all strata, bc represents the population regression coefficient.
where ρc = ∑L

h=1 W 2
h λhShyx/

√∑L
h=1 W 2

h λhS2
hy

∑L
h=1 W 2

h λhS2
hx

pc represents the population correlation coefficient between study and auxiliary variable.

4.6 Proposed Seperate Estimators.

We derived the bias and mean square errors of the seperate ratio, product and regression
estimators.
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Proposed seperate ratio estimator:
Rewriting the expression ȳSP T in terms of e′

is, allows us to get the expressions for bias
and MSE

ȳRST =
L∑

h=1
WhȲh(1 + ehT 1)(1 + eh.hT 2)−1

When we expand and rearrange the aforementioned statement up to the first degree of
approximation,we obtain

(ȳRST − Ȳh) ≈
L∑

h=1
WhȲh(ehT 1 − ehT 2 + e2

hT 2 − eh.T 1eh.T 2) (4.25)

By applying the expectation on the aforementioned formula, the bias of ȳRCT is as follows;

Bias(ȳRST ) ≈
L∑

h=1
WhȲh

[
λhS2

hx

X̄2
h

− λh

ȲhX̄h

Shyx + 1
Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

]
(4.26)

By taking the square on both sides of (4.25), preserving just the terms up to the first degree
of approximation, and computing the MSE, we may obtain

(ȳRST − Ȳh)2 ≈
L∑

h=1
W 2

h Ȳ 2
h [e2

hT 1 + e2
hT 2 − 2ehT 1ehT 2]

We obtain MSE by applying the expectations on the two sides of the aforementioned equation.

MSE(ȳRST ) ≈
L∑

h=1
W 2

h λh

S2
hy + δ2

hS2
hx − 2δhShxy

+ 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2δh
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


(4.27)

Proposed seperate product estimator:
Similarly, we can construct the following formulas for the bias and mean square error of

the seperate product estimator;

Bias(ȳSP T ) ≈ Ȳh

X̄hȲh

L∑
h=1

Whλh

[
Shyx − 1

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih

] (4.28)
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and MSE of the ȳCP T is given by

MSE(ȳSP T ) ≈
L∑

h=1
W 2

h λh

S2
hy + δ2

hS2
hx + 2δhShxy

+ 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2δh
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


(4.29)

Proposed seperate linear Regression estimator in case of positive correlation:
Similarly, we can construct the following formula for the variance of the seperate linear

regression estimator;

MSE(ȳSlrT ) =
L∑

h=1
W 2

h λhS2
hy[1 − ρ2

h] + 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2bh
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


Proposed separate linear Regression estimator in case of negative correlation:

Similarly, we can construct the following formula for the variance of the separate linear
regression estimator;

MSE(ȳSlrT ) =
L∑

h=1
W 2

h λhS2
hy[1 − ρ2

h] +
L∑

h=1

2W 2
h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

+ 2bh
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


and the general expression is as follows:

MSE(ȳSlrT ) =
L∑

h=1
W 2

h λhS2
hy[1 − ρ2

h] + 2∑L
h=1 W 2

h λh

Nh − 1

 jh−1∑
i=1

fx2
ih +

jh−1∑
i=1

yihfxih

−
Nh∑

i=jh+1
yhifxih

− 2|bc|
∑L

h=1 W 2
h λh

Nh − 1

 jh−1∑
i=1

fxhiXih −
Nh∑

i=jh+1
fxhiXih


(4.30)

where bh = Shyx/S2
hx represents the population regression coefficient in the hth stratum.

where ρh = Shyx

ShyShx

represents the correlation coefficient between the study variable and
the auxiliary variable in hth stratum.
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4.7 Real data sets for empirical comparison:

We investigated three real data sets in this part for the purpose of numerically comparing
the current and recommended estimators.while tables 4.1, 4.2 and 4.3 display the summary
statistics for Data 1, 2, and 3.
Data 1:(Source : Singh and Mangat (2013), p.219)
y=Milch cows during March 1993
x=Milch cows during March 1990.

Table 4.1: Summary Statistics for Data 1

Nh nh Wh X̄h Ȳh S2
hx S2

hy

stratum 1 7 4 0.29 15.29 17.43 20.90 17.62
stratum 2 12 6 0.5 17.25 19.58 30.20 16.63
stratum 3 5 2 0.21 17.8 20.6 10.70 13.30

ρhyx Cyh Cxh λh Shyx δh bh

stratum 1 0.77 0.24 0.30 0.11 13 1.14 0.70
stratum 2 0.41 0.21 0.32 0.08 18 1.14 0.30
stratum 3 0.49 0.18 0.18 0.3 8 1.16 0.55

Data 2:(Source : Singh and Mangat (2013), p.180)
y= Orange yields for the current year
x=Orange yields for the previous year

Table 4.2: Summary Statistics for Data 2

Nh nh Wh X̄h Ȳh S2
hx S2

hy

stratum 1 12 6 0.5 92.77 96.79 157.16 136.86
stratum 2 12 6 0.5 77.99 86.99 496.93 377.52

ρhyx Cyh Cxh λh Shyx δh bh

stratum 1 0.95 0.12 0.14 0.08 138.85 1.04 0.88
stratum 2 0.97 0.22 0.29 0.08 421.58 1.12 0.85

Data 3:(Source : Singh and Mangat (2013), p.208)
y= number of refrigerators sold during last summer (LS)
x=expected sale for the current summer (CS)
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Table 4.3: Summary Statistics for Data 3

Nh nh Wh X̄h Ȳh S2
hx S2

hy

stratum 1 14 5 0.33 76.21 79.36 211.10 166.71
stratum 2 9 3 0.21 58.11 59.44 197.11 174.28
stratum 3 12 4 0.29 69.08 76.67 192.99 226.61
stratum 4 7 2 0.17 63.71 76.67 408.09 170.62

ρhyx Cyh Cxh λh Shyx δh bh

stratum 1 0.79 0.16 0.19 0.13 148.76 1.04 0.70
stratum 2 0.87 0.22 0.24 0.22 161.19 1.02 0.82
stratum 3 0.92 0.20 0.20 0.17 192.21 1.11 0.99
stratum 4 0.91 0.17 0.32 0.36 238.96 1.20 0.59

Based on extreme data, Table 4.4 displays the percentage relative efficiency of the proposed
and MEAN PER UNIT estimators. For this objective, three populations have been chosen.
The suggested estimator outperforms its competitors,according on the results of these data
sets.Because the correlation between the study and the auxiliary variable is positive in the
above three data sets, the product estimators do not produce satisfactory results.For data
sets 2, the efficiency of the proposed estimators ȳClrT and ȳSLRT are extremely high.

4.8 Conclusion:

In this chapter, we expanded the previous chapter’s approach and suggested a finite population
mean estimator based on transformation under stratified random sampling. Bias and MSE of
recommended estimators were derived up to the first degree of approximation using stratified
random sampling. The proposed estimator works well in theory under particular conditions,
and numerical findings for certain populations support the theoretical results.
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Table 4.4: PREs of the different Estimators

Estimators Data 1 Data 2 Data 3
ȳst 100 100 100
ˆ̄YCR 66.9929 782.7733 257.2536
ˆ̄YCRT 84.7559 1033.3070 266.2523
ˆ̄YCP 23.9143 20.7542 22.1360
ˆ̄YCP T 25.8481 20.8885 22.2005
ˆ̄YClr 102.9663 1332.9210 322.4822
ˆ̄YClrT 132.6210 1503.8850 374.8214
ˆ̄YSR 67.2622 699.7250 217.6535
ˆ̄YSRT 85.2699 897.8404 227.5351
ˆ̄YSP 23.9526 20.2996 20.9235
ˆ̄YSP T 25.9005 20.4304 21.0113
ˆ̄YSlr 111.1688 1368.1050 368.6722

ˆ̄YSLRT 139.8274 1510.3960 425.4589



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Survey sampling is used by survey statisticians to accurately estimate the finite population
mean. This aim is achievable with efficient and unbiased estimators. The judicious use of
the auxiliary information may increase an estimator’s efficiency and accuracy. We focused
on using the auxiliary variable and transformation to build novel estimators of the finite
population mean under simple and stratified random sampling.

In this research we used the idea of antithetic variable technique in transforming the study
variable to reduce its variability, thereby estimating the finite population mean accurately.
The basic objective of variance reduction approaches is to reduce the variability of estimates
derived from sampling procedures, resulting in more accurate findings with fewer samples.
Through the use of correlations between sample pairs, the antithetic variable method achieves
this.

To construct efficient estimators of the population mean, previous research relied solely
on two extreme values, namely the population minimum and maximum values. However,
more extreme observations in a population may affect the estimation of the population mean.
Similarly, previous research has expanded the concept to account for a population’s two lowest
and two maximum observations. Inclusion of more extreme points complicates the estimator
and its statistical characteristics derivation. The new study has expanded the concept to
account for all of a population observations.

In Chapter 3, we provided new improved mean per unit, ratio, product, and regression
type estimators for estimating the finite population mean using simple random sampling.
Up to the first level of approximation, expressions for biases and MSEs have been derived.
The newly suggested estimators were theoretically compared to other competing estimators
that account for transformation. Conditions that prove the superiority of the proposed
estimators over the existing estimators have been derived. Various real data sets were utilised
to demonstrate the performance of the proposed estimators.

The concept created in stratified random sampling, which is used to reduced population
variability for better estimate, was expanded upon in Chapter 4. Biases and MSEs of the

48
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suggested estimators were derived up to the first degree of approximation. The suggested
estimator outperforms the current estimators, according to theoretical and numerical evidence.
A few real data sets have been included as part of the numerical demonstration.

An estimator’s effectiveness is increased by using the auxiliary data. Additionally, The
use of antithetic variable techniques could further enhance the efficiency of an estimator. It is
advised to employ the proposed estimators for population mean estimate.

5.2 Future work

• The current research may be expanded to families of estimators used for estimation of
the population parameters.

• This study might be expanded to include different sampling techniques, such as proba-
bility proportional to size, etc.

.
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Indian Journal of Statistics, Series B, 57(1):93–102.

Montgomery, D. C., Peck, E. A., and vining, G. G. (2021). Introduction to linear regression
analysis. John Wiley & Sons.

50



References 51

Mursala, K., Ullah, S., Al-Hossain, A. Y., and Bashir, N. (2015). Improved ratio-type
estimators using maximum and minimum values under simple random sampling scheme.
Hacettepe Journal of Mathematics and Statistics, 44(4):923–931.

Neyman, J. (1938). Contribution to the theory of sampling human populations. Journal of
the American Statistical Association, 33(201):101–116.

Robson, D. (1957). Applications of multivariate polykays to the theory of unbiased ratio-type
estimation. Journal of the American Statistical Association, 52(280):511–522.

Särndal, C.-E. (1972). Sample survey theory vs. general statistical theory: Estimation of the
population mean. International Statistical Review/Revue Internationale De Statistique,
40(1):1–12.

Shabbir, J. and Gupta, S. (2005). Improved ratio estimators in stratified sampling. American
Journal of Mathematical and Management Sciences, 25(3-4):293–311.

Shoaib, A., Manzoor, K., and Shabbir, J. (2018). Using extreme values and fractional
raw moments for mean estimation in stratified random sampling. Hacettepe Journal of
Mathematics and Statistics, 47(2):383–402.

Singh, R. and Mangat, N. S. (2013). Elements of survey sampling, volume 15. Springer
Science & Business Media.


	Introduction
	History
	Sampling Designs
	Transformation: The Antithetic Variable Technique
	Uses of Auxiliary Information
	Simple Random Sampling
	Stratified Random Sampling
	Motivation of the Study
	Thesis outline

	Literature Review
	Estimation of Population Mean Using Transformation
	Notations and Symbols
	Proposed estimators 
	Efficiences Comparison:
	Empirical Comparison of Estimators
	Conclusion

	Estimation of Population Mean Using Transformation in StrRS
	Notation and symbols under stratified random sampling
	Proposed Estimator based on transformation
	Proposed Estimators in case of Positive Correlation 
	Proposed estimators in case of negative correlation
	Proposed Combined Estimators. 
	Proposed Seperate Estimators.
	Real data sets for empirical comparison:
	Conclusion:

	Conclusion and Future Work
	Conclusion
	Future work


