
i

C++ Fact Extractor

 Undertaken by:

Muhammad Ali

Supervised by:

Mr. Abdul Qadus Abbasi

INSTITUTE OF INFORMATION TECHNOLOGY

QUAID-I-AZAM UNIVERSITY

ISLAMABAD

Session 2015-2017

C++ Fact Extractor

ii

DEDICATION

I would like to dedicate this thesis to my Parents, my respected teacher Mr. Abdul Qadus Abbasi

and my Friends due to their backing and courage, I’m able to complete this perplexing task.

C++ Fact Extractor

iii

ACKNOWLEDGEMENT

In the name of Allah, The most beneficent and the most merciful. All reward are to

almighty Allah the creator of the universe, for blessing me with knowledge and braveness to

complete this venture.

I would like to acknowledge my thanks to my supervisor Mr. Abdul Qudus Abbasi for his

knowledge, believe in me and patience. Only his guidance made me able to do this project.

In the end, I would like to offer my special thanks seniors for their trust and best wishes for me.

Thank You So Much

Muhammad Ali

C++ Fact Extractor

iv

 Project in brief

Project Title: C++ Fact Extractor

System Used: Intel Core i3

Operating System: Microsoft Windows 8.1

Development Tool: Microsoft Visual Studio 2010 Professional

Language: Visual C++

Start date: 10th September 2016

End date: 13th February 2017

C++ Fact Extractor

v

ABSTRACT

Maintenance and reusability of code is most important and necessary in software

engineering. But this requires much time and resources which increases the cost of the software

project. For both the tasks understanding of whole project is necessary.

During maintenance and change, developers cannot read the entire code of large systems.

They need a way to get a quick understanding of source code entities (such as classes, functions

etc.).

Keeping this in mind, I have developed a tool which makes understanding of code much

easier. This tool gives information about constrains and relationships of C++ source code. It takes

a C++ project source code as a whole as input and extracts facts from source code using scanning

and parsing process. After being processed, it collects useful information from the code, which

makes it very easy to understand code. This tool generates reports in two formats one is TEXT and

the other is XML file.

C++ Fact Extractor

vi

Contents

Chapter 1 ... 1

1.1. Introduction: .. 2

1.2. Purpose of project: .. 2

1.3. Scope: .. 3

1.4. System specification: .. 3

1.4.1. System input: .. 3

1.4.2. System output: .. 3

1.5. Resource identification: .. 3

1.5.1. Software requirement: ... 3

1.5.2. Hardware requirement: ... 3

1.6. Applications: ... 4

1.7. Process model for development: ... 4

Summary: .. 4

Chapter 2 ... 5

2.1. Introduction: .. 6

2.2. Functional Requirements: ... 6

2.3. Information to be extracted: .. 7

2.4. Use case: ... 8

2.5. Assumptions: ... 11

2.6. Nonfunctional requirements: ... 11

Summary: .. 12

Chapter 3 ... 13

3.1. Class composition: .. 14

3.2. Inheritance: ... 15

3.2.1. Access Control and Inheritance: ... 15

3.3. Association: ... 16

3.4. Struct: .. 16

3.5. Enum: .. 16

3.6. Macros: ... 16

3.7. Inline function: .. 17

3.8. Abstraction (Virtual and pure Virtual) .. 18

C++ Fact Extractor

vii

3.9. Polymorphism: .. 18

3.9.1. Static Polymorphism ... 19

3.9.2. Dynamic Polymorphism: .. 19

Summary: .. 19

Chapter 4 ... 20

4.1. Introduction: .. 21

4.2. Lexical Conventions: .. 22

4.2.1. Character set:... 22

4.2.2. Basic source character: .. 22

4.2.3. Comments (C++): ... 22

4.2.4. Identifiers (C++): .. 23

4.2.5. Keywords (C++): .. 24

4.3. Lexical Analyzer: .. 24

4.3.1. Tokens (C++): ... 24

4.3.2. Longest Match Rule: ... 25

4.4. Syntax Analysis .. 26

4.5. Intermediate Representation of Information: .. 26

Summary: .. 27

Chapter 5 ... 28

5.1. Software architecture: ... 29

5.1.1. Fact Extractor: ... 30

5.1.2. File browser: ... 30

5.1.3. Scanner: ... 30

5.1.4. Parser: ... 30

5.1.5. Intermediate Representation: .. 30

5.1.6. Relationship Extractor: ... 31

5.2. Software Design: ... 31

5.2.1. Design constraints: .. 31

5.2.1.1. Reusability: ... 31

5.2.1.2. Maintainability: ... 31

5.2.1.3. Modularity: ... 31

5.2.1.4. Reliability: ... 31

5.3. Class Diagrams: .. 32

5.3.1. Class diagram for folder reader: .. 32

5.3.1.1. CFolderReader: ... 32

C++ Fact Extractor

viii

5.3.1.2. CFileInfo: .. 33

5.3.1.3. CFileInfo_Vec:.. 33

5.3.2. Class diagram for fact extraction: ... 33

5.3.2.1. CTokenizer: ... 33

5.3.2.2. CTokenVector: .. 33

5.3.2.3. CTokenScanner: .. 34

5.3.2.4. CTokenInfo: .. 34

5.3.2.5. TokenScannerVector: .. 36

5.3.3. Class diagram for extracting class Information .. 36

5.3.3.1. Meta_Classinfo ... 36

5.3.3.2. C_classInfo: .. 36

5.3.3.3. CDateMemberInfo: ... 37

5.3.3.4. CDateMemberInfo_VEC: ... 37

5.3.3.5. CFunctionInfo: .. 37

5.3.3.6. CFunction_Info_Vec:.. 37

5.3.3.7. CParameterList: .. 37

5.3.3.8. CLocalDataMembers: ... 37

 5.3.4. CRelationFinder .. 37

5.3.4.1. CstructFinder: ... 38

5.3.4.2. CinheritanceFinder: ... 38

5.3.4.3. CcompostionFinder: .. 38

5.4. User Interface Design: .. 39

Chapter 6 ... 44

6.1. Introduction: .. 45

6.2. Input Files: .. 45

6.2.1. Header file: .. 45

6.2.2. .cpp file: .. 47

6.3. Output: .. 48

6.3.1. XML format: ... 48

6.3.2. Text format: .. 500

Summary: .. 52

Chapter 7 ... 53

7.1. Introduction: .. 54

7.2. Testing: ... 54

7.2.1. Black box testing:.. 54

C++ Fact Extractor

ix

7.3. Test Cases: .. 54

Summary: .. 56

Chapter 8 ... 57

8.1. Conclusion: ... 58

8.2. Future work: .. 58

Reference: ... 59

C++ Fact Extractor

x

Table of Figures

Figure 1.7-1 Incremental Process Model .. 4

Figure 4.1-1 Fact Extraction Process .. 21

Figure 5.1-1 Architecture diagram .. 29

Figure 5.3-1 Class diagram for folder reader .. 32

Figure 5.3-2 Class diagram for fact extraction ... 33

Figure 5.3-3 Class diagram for extracting class .. 36

Figure 5.3-4 Class diagram for Relation finder .. 38

Figure 5.4-1 User Interface main screen ... 39

Figure 5.4-2 Open new project ... 40

Figure 5.4-3 New project Dialog box ... 40

Figure 5.4-4 Fill dialog box for Desired info .. 41

Figure 5.4-5 Extracted class info .. 41

Figure 5.4-6 Extracted relation info .. 42

Figure 5.4-7 Version No. of Tool ... 42

file:///F:/Updated%20thesis.docx%23_Toc479789318
file:///F:/Updated%20thesis.docx%23_Toc479789319

C++ Fact Extractor

1

Chapter 1

Introduction

1.1. Introduction

1.2. Purpose of project

1.3. Scope

1.4. System specification

1.5. Resource identification

1.6. Applications

1.7. Process model for development

Summary

C++ Fact Extractor

2

1.1. Introduction:

Software systems are rapidly growing and changing, so source code written today gets out-of-

date tomorrow. This is among others due to the quickly changing market requirements and also

due to the continuously upcoming new technologies. [13] The always tight deadlines often prevent

the developers to release a product properly with up-to-date documentation (design descriptions,

source code comments, etc.). As a result there is need to understand the relationships between the

different parts of a large system. To comprehend an unfamiliar software system we need to know

many different things about it. We refer to this information as facts about the source code. A fact

is for instance the size of the code. Another fact is whether a class has base classes. Actually any

information that helps us to understand unknown source code is called a fact in this paper. It is

obvious that collecting facts by hand is only feasible when relatively small source codes are

investigated. Real-world systems that contain several million lines of source code can be only

processed with the help of tools. Tool supported fact extraction is in our approach an automatized

process during which the focus system is analyzed file-by-file with analyzer tools to identify the

source code’s various characteristics and their interrelationships and to create representations of

the extracted information into different formats like XML and text. [14]

1.2. Purpose of project:

The purpose of this project is to build a tool that saves time and effects to examine and

apprehend the code. We're privy to the truth that programmers spend maximum of the time in

information and reading the code. The motive and motivation in the back of my tool is to lessen

the effort and keep the valuable time which spends on reading the code. This challenge is the utility

of opposite engineering. Roger Pressman defines the reverse engineering as

“The process of analyzing a program in an effort to create a representation of the program at

higher level of abstraction than source code. Reverse engineering is process of design recovery”

[17].

C++ Fact Extractor

3

1.3. Scope:

This is very useful tool for programmers and maintainers. However it has some limitations too.

The output of the project depend on the input of the user input. This tool only works for C++

source code. It will extract information about classes and relationship between them.

1.4. System specification:

C++ fact Extractor will extract the information of the relationship between the entities of the

system from the input source code. These relationships can be based on inheritance, composition

and association etc...

1.4.1. System input:

C++ Source code file given to the C++ Fact Extractor as input.

1.4.2. System output:

After the extraction of information from source code will be stored on files, which can be

text or XML format.

1.5. Resource identification:

Following are the resources which would be used to full fill the need in the completion of the

project.

1.5.1. Software requirement:

Software resources used for developing the project

 Operating system Windows (7 , 8 or above)

 Language MFC , STL , C++

 IDE Visual Studio 2010

1.5.2. Hardware requirement:

Hardware resources used for developing the project

 Personal computer

 Processor Corei3

 Hard Disk 100 GB

 Memory(RAM) 4GB

C++ Fact Extractor

4

1.6. Applications:

 The principle motive of making this software is to provide help to the maintainer of the

system and to recognize the source code.

 Beneficial for the maintenance and change in the software process

1.7. Process model for development:

Tool will be developed using incremental version. Overall improvement consists of three

increments. First increments consist of parsing and tokenize of source code. Second increment is

to extract the relationships of system and to get the information about the class name, capabilities

in that elegance go back type of function parameter and line of code of function and the entire

class. Third increment is to create an XML file and displaying result to the consumer. [5]

Figure 1.7-1 Incremental Process Model

Summary:
 In this chapter, I have discussed how software is evolving day by day and how we can do

reverse engineering our existing program by understanding the source code. Reverse engineering

is basic factor of motivation for our work.

C++ Fact Extractor

5

Chapter 2

Requirement Analysis

2.1. Introduction

2.2. Functional

2.3. Information to be extracted

2.4. Use case

2.5. Assumptions

2.6. Non-Functional requirements

Summary

C++ Fact Extractor

6

2.1. Introduction:

 Requirement engineering is the technique of figuring out the user exception for a brand new

or changed software product. This is also known as requirement engineering. Those characteristic

are known as necessities, there are styles of necessities functional requirement and nonfunctional

requirement. [7]

2.2. Functional Requirements:

Functional requirements are the main things that the user expects from the software. The

functional requirements are listed as below.

1. Create a new project.

2. Open an existing project.

3. Close project.

4. Save project.

5. Create token

6. Parse the project extract the information about:

 Find Relationship

7. Save Parsed information

8. Generate Intermediate Representation

9. Generate Output in the form of:

 XML File

 TEXT File

C++ Fact Extractor

7

2.3. Information to be extracted:

Our system should be able to extract the following information:-

1. Single Class Information

a. Name of class

b. Data member

c. Member Methods

d. LOC of class

e. Access Specifier

f. Inheritance and composition information

Methods:

g. Name of method

h. Ownership of method

i. Parameters list

j. Return Type

k. LOC of Function

l. Local data members

2. Aggregation

3. Association

4. Composition

5. Struct

6. Enum

7. Abstraction (Virtual and pure Virtual)

8. Inheritance

9. Macros

10. Inline function

11. Polymorphism (Static and Dynamic)

C++ Fact Extractor

8

2.4. Use case:

ID 01

Use case Name Create new project

Description User wants to create a new project

Actor User

Precondition Application is ready to use

Post Condition New project is created

Normal Flow 1. Person gives a command to system to create for growing a new venture.

2. Machine permits the consumer to go into the brand new challenge

records displaying a conversation container.

3. Using browse button person selects the C++ mission listing.

4. Person also can enter path of input directory through edit button.

5. User selects the output listing by browser button.

6. User also can type the output directory direction through edit button.

7. User selects the .Txt or .Xml files to save the end result.

8. Machine displays the fulfillment message.

Alternative Flow 1. a) The input directory does not contain any C++ source code.

2. b) The directory is invalid.

3. c) The path of output does not exist.

C++ Fact Extractor

9

ID 02

Use case Name Open project

Description User wants to open an existing project.

Actor User

Precondition An already created project in the system.

Post Condition Project is open.

Normal Flow

1. Person selects the command to open a new task.

2. A brand new conversation gives the browse mechanism.

3. User selects the undertaking.

4. User can input the path of venture the usage of exit button.

5. Person gives open command.

6. Device opens assignment and success message is displayed.

Alternative Flow

1. A) User does not choose the venture and pressed the open button.

System will show the message that no venture is open. Device asks

to choose a mission once more.

3. B) Person selects invalid task folder. Gadget will show the

message that no undertaking facts determined. System asks the

person to choose again or exist.

C++ Fact Extractor

10

ID 03

Use case Name Close Application

Description User wants to close the project.

Actor User

Precondition A project is opened in a system

Post Condition Project is closed

Normal Flow 1. Person selects the near project command from menu to close task.

2. Application will ask person to save present day undertaking or not.

3. If person selects sure machine save adjustments and near the

assignment.

4. If person selects no system will discard adjustments and near the

venture.

Alternative Flow

1. A) If there's no assignment open then system will display error

message.

2. B) If user selects cancel alternative then the device will return to

foremost window without last challenge.

C++ Fact Extractor

11

ID 04

Use case Name Generates output

Description User wants to generate outputs for tested. The output in XML and text

layout. Person generates record of Tokens, Template training, Nested

instructions and friend magnificence’s information.

Actor User

Precondition Application is ready to use.

Post Condition Selected output is generated.

Normal Flow 1. User pick out the output (XML record, text record).

2. Machine asks to the keep.

3. User gives the save command.

4. System generates the desired outputs.

Alternative Flow 1. a) System cannot save output on secondary storage.

System generates relevant error message.

2.5. Assumptions:

The system is implemented for C++ language. If the input is other than C++ language then

there might accept the input. But the system will produce incorrect result or no result.

2.6. Nonfunctional requirements:

These are the requirements which are needed to be in code however these necessities do not

have an effect on the system functionalities. Nonfunctional requirements of the gadget are

1. Usability of the machine

2. Hardware Compatibility

C++ Fact Extractor

12

3. Destiny enrichment

Summary:

On this phase I've accumulated facts approximately the device requirements, practical and

nonfictional requirements.

C++ Fact Extractor

13

Chapter 3

Syntax Study C++

3.1. Composition

3.2. Inheritance

3.3. Association

3.4. Struct

3.5. Enum

3.6. Macros

3.7. Inline function

3.8. Abstraction (Virtual and pure Virtual)

3.9. Polymorphism

Summary

C++ Fact Extractor

14

3.1. Class composition:

Class composition means a class contains an object of a different classes. A class that has

objects of other classes as their data members are called composite classes. An object member of

a class is called component object. The class of a component object is called component class.

Member function of a composite class cannot access private members of included objects. [10]

For example, a class Date would be composed of a Time object

 Class Date is a client (or user) of class Time

class Time {

private :

int hour , minute , second ;

public :

void setTime (int , int , int) ;

void printTime () const ;

};

class Date {

private :

int day , month , year ;

Time time ;

 public :

Date (int , int , int , int , int , int) ;

 void printDate () const ;

} ;

C++ Fact Extractor

15

3.2. Inheritance:

Provides a way to create a new class from an existing class. The new class is a specialized

version of the existing class. [6]

• Base class (or parent) – inherited from

• Derived class (or child) – inherits from the base class

class Student // base class

 {

 . . .

 };

class UnderGrad: public student

 { // derived class

 . . .

 };

3.2.1. Access Control and Inheritance:

private: x

protected: y

public: z

private: x

protected: y

public: z

private: x

protected: y

public: z

Base class members

x is inaccessible

private: y

private: z

x is inaccessible

protected: y

protected: z

x is inaccessible

protected: y

public: z

How inherited base class members
appear in derived class

Private base class

Protected base class

Public base class

C++ Fact Extractor

16

3.3. Association:

In object-oriented programming, association defines a relationship between classes of objects

that allows one object instance to cause another to perform an action on its behalf. This relationship

is structural, because it specifies that objects of one kind are connected to objects of another and

does not represent behaviour. [19]

3.4. Struct:

There are many instances in programming where we need more than one variable in order

to represent an object. For example, to represent yourself, you might want to store your name, your

birthday, your height, your weight, or any other number of characteristics about yourself. You

could do so like this: [19]

struct Employee

{

short id;

int age;

double wage;

};

3.5. Enum:

An enumeration is a distinct type whose value is restricted to a range of values, which may

include several explicitly named constants ("enumerators"). The values of the constants are values

of an integral type known as the underlying type of the enumeration. [19]

enum Color { red, green, blue };

red=0, green=1, blue=2

3.6. Macros:

Preprocessor directives are lines included in the code of programs preceded by a hash sign

(#). These lines are not program statements but directives for the preprocessor. The preprocessor

C++ Fact Extractor

17

examines the code before actual compilation of code begins and resolves all these directives before

any code is actually generated by regular statements.

When the preprocessor encounters this directive, it replaces any occurrence of identifier in the rest

of the code by replacement. This replacement can be an expression, a statement, a block or simply

anything. [19]

#define TABLE_SIZE 100

int table1[TABLE_SIZE];

int table2[TABLE_SIZE];

3.7. Inline function:

Macro function an optimized technique used by compiler to reduce the execution time.

The inline functions are a C++ enhancement feature to increase the execution time of a program.

Functions can be instructed to compiler to make them inline so that compiler can replace those

function definition wherever those are being called. Compiler replaces the definition of inline

functions at compile time instead of referring function definition at runtime. [19]

Class A

{

 Public:

 inline int add (int a, int b)

 {

 return (a + b);

 }

};

Class A

{

 Public:

 int add(int a, int b);

};

inline int A::add (int a, int b)

{

 return (a + b);

}

C++ Fact Extractor

18

3.8. Abstraction (Virtual and pure Virtual)

Abstract Class is a class which contains atleast one Pure Virtual function in it. Abstract

classes are used to provide an Interface for its sub classes. Classes inheriting an Abstract Class

must provide definition to the pure virtual function, otherwise they will also become abstract class.

[4]

Virtual Function and Pure Virtual Function defers in declaration. Virtual Function is

declared with keyword 'virtual' at the start of declaration.

 Ex: virtual return_type function_name(function arguments);

Class myclass

{

Public:

 Virtual void vfunc();

}

While Pure Virtual Function is declared ass

 Ex: virtual return_type function_name(function arguments) = 0;

Class myclass

{

Public:

 Virtual void vfunc()= 0 ;

}

3.9. Polymorphism:

Recall that polymorphism is the phenomenon where the same message sent to two different

objects produces two different set of actions [11]. Polymorphism is broadly divided into two parts:

 Static polymorphism – exhibited by overloaded functions.

 Dynamic polymorphism – exhibited by using late binding

C++ Fact Extractor

19

3.9.1. Static Polymorphism

Static polymorphism refers to an entity existing in different physical forms simultaneously.

Static polymorphism involves binding of functions based on the number, type, and sequence of

arguments. The various types of parameters are specified in the function declaration, and therefore

the function can be bound to calls at compile time. This form of association is called early binding.

The term early binding stems from the fact that when the program is executed, the calls are already

bound to the appropriate functions.

The resolution of a function call is based on number, type, and sequence of arguments

declared for each form of the function. Consider the following function declaration:

void add(int , int);

void add(float, float);

When the add() function is invoked, the parameters passed to it will determine which version of

the function will be executed. This resolution is done at compile time.

3.9.2. Dynamic Polymorphism:

Dynamic polymorphism refers to an entity changing its form depending on the

circumstances. A function is said to exhibit dynamic polymorphism when it exists in more than

one form, and calls to its various forms are resolved dynamically when the program is executed.

The term late binding refers to the resolution of the functions at run-time instead of compile time.

This feature increases the flexibility of the program by allowing the appropriate method to be

invoked, depending on the context.

Summary:

 In this chapter, I have discuss the relationship and the function (like Composition,

Inheritance, struct and enum etc.) for which my project, extract the information.

C++ Fact Extractor

20

Chapter 4

Process of Fact Extraction

4.1. Introduction

4.2. Lexical Conventions

4.3. Lexical Analysis

4.4. Syntax Analysis

4.5. Intermediate Representation of Information

Summary

C++ Fact Extractor

21

4.1. Introduction:

Fact extraction from software systems is the fundamental building block in the process of

understanding the relationships among the system’s elements. A fact is for instance the size of the

code. Another fact is whether a class has base classes. Actually any information that helps us to

understand unknown source code is called a fact. [15]

The fact extraction method is comparable to compiler as one box that maps a computer program

into a semantically equivalent source program. If we tend to open up this box somewhat, we will

see that there are 2 components to the present mapping: analysis and synthesis.

The analysis half breaks up the computer program into constituent items and imposes a

grammatical structure on them. It then uses this structure to make associate degree intermediate

illustration of the computer program. [13] If the analysis half detects that the computer program is

either syntactically sick fashioned or semantically unsound, then it should give informative

messages, therefore the user will take corrective action. The analysis half additionally collects data

regarding the computer program and stores it during a system referred to as a logo table, which is

passed beside the intermediate illustration to the synthesis half. The synthesis half constructs the

required source program from the intermediate illustration and therefore the data within the image

table. The analysis half is commonly referred to as the forepart of the compiler; the synthesis half

is that the face. Compilation phase of fact extractor

 Lexical Analyzer

 Syntax Analyzer

 Intermediate representation

Lexical

Analyzer

Symbol

table

Source

program

Token

Get next token

Parser

 Figure 4.1-1 Fact Extraction Process

C++ Fact Extractor

22

4.2. Lexical Conventions:

The fundamental elements of a C++ program called "lexical elements" or "tokens" to

construct statements, definitions, declarations, and so on, which are combine to construct complete

programs. The following lexical elements are discussed in this section:[]

4.2.1. Character set:

The C++ standard specifies a basic source character set that may be used in source file.

To represent characters outside of this set, additional characters can be specified by using a

universal character name. When compiled, the basic execution character set and basic execution

wide-character set represent the characters and strings that can appear in a program. The C++

implementation allows additional characters in source code and compiled code. [MSDN]

4.2.2. Basic source character:

The basic source character set consists of 96 characters that may be used in source files.

This set includes the space character, horizontal tab, vertical tab and new-line control characters,

and this set of graphical characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " '

4.2.3. Comments (C++):

A comment is text that the compiler ignores but that is useful for programmers. Comments

are normally used to annotate code for future reference. The compiler treats them as white space.

A C++ comment is written in one of the following ways:

C++ Fact Extractor

23

 The /* (slash, asterisk) characters, followed by any sequence of characters (including new

lines), followed by the */ characters.

 The // (two slashes) characters, followed by any sequence of characters. A new line not

immediately preceded by a backslash terminates this form of comment. Therefore, it is

commonly called a "single-line comment."

The comment characters (/*, */, and //) have no special meaning within a character constant, string

literal, or comment. Comments using the first syntax, therefore, cannot be nested.

4.2.4. Identifiers (C++):

An identifier is a sequence of characters used to denote one of the following:

 Object or variable name

 Class, structure, or union name

 Enumerated type name

 Member of a class, structure, union, or enumeration

 Function or class-member function

 typedef name

 Label name

 Macro name

 Macro parameter

The following characters are allowed as any character of an identifier:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

C++ Fact Extractor

24

4.2.5. Keywords (C++):

break else continue For long signed switch

Case default enum Goto sizeof typedef string

Char do namespace Return static union while

class friend private This public throw cin

delete true protected Endl iomanip main std

cout include iostream inline virtual void static_cast

try bool new catch false NULL operator

Auto const double Float int short struct

template if unsigned

4.3. Lexical Analyzer:

Lexical analysis is the first phase of a compiler. It takes the modified source code from

language preprocessors that are written in the form of sentences. The lexical analyzer breaks these

syntaxes into a series of tokens, by removing any whitespace or comments in the source code.

If the lexical analyzer finds a token invalid, it generates an error. The lexical analyzer works

closely with the syntax analyzer. It reads character streams from the source code, checks for legal

tokens, and passes the data to the syntax analyzer when it demands.

4.3.1. Tokens (C++):

A token is the smallest element of a C++ application that is substantial to the compiler. The

C++ parser recognizes these types of tokens: identifiers, keywords, literals, operators, punctuators,

and one-of-a-kind separators. A glide of these tokens makes up a translation unit.

C++ Fact Extractor

25

Tokens are usually separated by white space. White space can be one or more:

 Blanks

 Horizontal tabs

 New lines

 Comments

For example:

const pi = 3.14159; //constant pi

Token 1: (Keywords, const)

Token 2: (Identifier, ‘pi’)

Token 3: (Operator, =)

Token 4: (Literal Value, 3.14159)

Token 5: (Punctuator, ;)

4.3.2. Longest Match Rule:

When the lexical analyzer read the source-code, it scans the code letter by letter; and when it

encounters a whitespace, operator symbol, or special symbols, it decides that a word is completed.

For example:

int intvalue;

While scanning both lexemes till ‘int’, the lexical analyzer cannot determine whether it is a

keyword int or the initials of identifier intvalue.

The Longest Match Rule states that the lexeme scanned should be determined based on the longest

match among all the tokens available.

The lexical analyzer also follows rule priority where a reserved word, e.g., a keyword, of a

language is given priority over user input. That is, if the lexical analyzer finds a lexeme that

matches with any existing reserved word, it should generate an error.

C++ Fact Extractor

26

4.4. Syntax Analysis

The second section of the compiler is syntax analysis or parsing. The parser uses the primary

parts of the tokens created by the lexical instrument to form a tree-like intermediate illustration

that depicts the grammatical structure of the token stream. A typical illustration could be a syntax

tree within which every interior node represents an operation and therefore the children of the node

represent the arguments of the operation.

For Example:

Token form scanner

if (x >= Y) y = 42 ;

4.5. Intermediate Representation of Information:

In the process of translating a source program into target code, a compiler may construct one

or more intermediate representations, which can have a variety of forms. Syntax trees are a form

of intermediate representation; they are commonly used during syntax and semantic analysis. After

syntax and semantic analysis of the source program, many compilers generate an explicit low-

level or machine-like intermediate representation, which we can think of as a program for an

abstract machine. This intermediate representation should have two important properties: it should

be easy to produce and it should be easy to translate into the target machine.

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

C++ Fact Extractor

27

Summary:

In this chapter, I have explained a general process of fact extraction (facts are the lexical

convention and combined to make up the source program), which is similar to the complier

processing which involves the following steps like lexical analysis (scanner), syntax analysis

(parser) and the facts intermediate representation.

C++ Fact Extractor

28

Chapter 5

System Architecture and Design

5.1. Software architecture

5.2. Software Design

5.3. Class diagram

Summary

C++ Fact Extractor

29

5.1. Software architecture:

Software application architecture is the process of defining a structured solution that meets

all the technical and operational requirements, while optimizing common quality attributes such

as performance, security, and manageability. It involves a series of decisions based on a wide range

of factors, and each of these decisions can have considerable impact on the quality, performance,

maintainability, and overall success of the application. [MSDN]

The primary focuses of software architecture is to present the abstract picture of a device by means

of hiding needless details of the system.

Like: system components and their overall interaction.

 Fact

Extractor

File Browser Scanner

Intermediate

Representation

Parser

Relationship Extractor

Figure 5.1-1 Architecture diagram

C++ Fact Extractor

30

5.1.1. Fact Extractor:

 Fact extractor is the main component of the system that incorporates with all other

components of the system. Fact extractor component acts as a manager component that is

connected with other components through interfaces. Each component is responsible for its own

task but fact extractor is responsible for coordination and manipulation of different tasks of other

components.

5.1.2. File browser:

File Browser is the component of the system which is used to locate and browse the files

used in project. Using file browser a user can select and add file into project. File browser for this

system locates only .cpp source files in the directory location provided by user that are to be

analyzed. File browser communicate with the main component Fact extractor using an interface.

5.1.3. Scanner:

Scanner is another major component of the system which takes files located by file browser

as input. The lexical analyzer takes .cpp source file as input and creates its tokens. Lexical analyzer

breaks the sequence of characters into tokens. These tokens are sequence of characters in the file

in form of string. These tokens are stored to a list that is used by main component.

5.1.4. Parser:

Parser is component of the system which takes the output of scanner as input in this

component the syntax analyzer use that list and produce meaningful information from those tokens

it generate information according to the rule of language. Tokens are classified like identifiers,

keywords, operators, access specifiers, class name, method name, etc. This information is used to

collect class information which is stored to the collection of information of class. Information of

methods is collected and stored to the method collection class. All information generated by parse

are sent to main component fact extractor and other components use that information.

5.1.5. Intermediate Representation:

The role of this component is to maintain data structures from the information provided by

parser component. Classes for each required information are generated by this component.

Scanner class gives the information of each token in the form of

 Token Name

 Token Id

C++ Fact Extractor

31

 Line Number

 Parenthesis Level

 Bracket Level

5.1.6. Relationship Extractor:

Relationship Extractor is a component interconnected with the main component. The

purpose of this component is to extract the relationship form the information which is generated

by the parser and is available as intermediate representation. This is a component which is running

algorithms to extract information from the source code of all types which is required for Decision

Making process.

5.2. Software Design:

System design is the process of defining the base for the development of the system using

requirement analysis documentation. It is also the definition of architecture, components, modules,

interfaces and data for system to meet the system requirements. [8]

5.2.1. Design constraints:

The constraints which are considered during system design are explained below:

5.2.1.1. Reusability:

Reusability is the constraint under which developer should keep in mind that code should

be reusable with slight modification or without any modification.

5.2.1.2. Maintainability:

In this constraint it is measure how easy is understanding, modification and bug fixing

process in the system. The system should be highly maintainable.

5.2.1.3. Modularity:

Modularity is the degree to which the components of the system may be separated and

recombined.

5.2.1.4. Reliability:

The software must be able to perform a required function under the stated conditions for a

specified time.

C++ Fact Extractor

32

5.3. Class Diagrams:

A class diagram in the Unified Modeling Language (UML) is a type of static structure diagram

that describes the structure of a system by showing the system's classes, their attributes, operations

(or methods), and the relationships among objects.

In UML a class diagram is represented containing:

 Name of class

 Data Members of class

 Function member or methods of a class

Class Name

Data member list

Function member list

5.3.1. Class diagram for folder reader:

Figure 5.3-1 Class diagram for folder reader

5.3.1.1. CFolderReader:

CFolderReader is main component which is required to collect all the source files (header (.h) and

.cpp) from a location and bring into the system for analysis.

C++ Fact Extractor

33

5.3.1.2. CFileInfo:

CFileInfo analysis the file which bring into the system by CFolderReader and separate same header

and cpp files of different classes.

5.3.1.3. CFileInfo_Vec:

CFileInfo_Vec stores header and cpp of same class, which is separated from CFileInfo class.

5.3.2. Class diagram for fact extraction:

Figure 5.3-2 Class diagram for fact extraction

5.3.2.1. CTokenizer:

Tokenizer is manager class for all class being used for scanner. It interacts with token

vector class which provide required information to them. It opens a file and a token creation

method is implemented in it which tokenize the whole file. When a token found in the file its id is

retrieved from vector of ids. And added to the token vector.

5.3.2.2. CTokenVector:

Tokenizer class separate the each word of C++ source and remove the comments from the

code and store the code after tokenize. After that it is given to the TokenScanner class.

C++ Fact Extractor

34

5.3.2.3. CTokenScanner:

 TokenScanner is main class which identify the keyword and collect the information of that

keyword for TokenInfo class and store in TokenScannerVector class.

5.3.2.4. CTokenInfo:

 TokenInfo class provide the information about the token, such as

Token Id Int

Token Name String

Line No Int

Parenthesis level Int

Bracket Level Int

Token id is get from the globally declared data variable

//----------------------------- Data Types --------------------------------

const int ID_IF = 100; // if

const int ID_IFELSE = 102; // else if

const int ID_ELSE = 103; // else

const int ID_FOR = 104; // for

const int ID_WHILE = 105; // while

const int ID_DO = 106; // do

const int ID_INT = 107; // int

const int ID_BOOL = 108; // bool

const int ID_DOUBLE = 109; // double

const int ID_CHAR = 110; // char

const int ID_FLOAT = 111; // float

const int ID_STRING = 112; // string

// --------------------------------Brackets ----------------------------------

const int ID_Greater_Then = 300; // >

const int ID_Less_Then = 301; // <

const int ID_Cout = 303; // <<

const int ID_Cin = 304; // >>

C++ Fact Extractor

35

const int ID_square_Brac_Start = 305; // [

const int ID_square_Brac_End = 306; //]

const int ID_AngleBracket_Start = 307; // {

const int ID_AngleBracket_End = 308; // }

const int ID_parentheses_Start = 309; // (

const int ID_parentheses_End = 310; //)

//-------------------------------- Operators --------------------------------

const int ID_Phus = 400; // +

const int ID_Staric = 401; // *

const int ID_Negative = 402; // -

const int ID_Equal = 403; // =

const int ID_EqualsEqual = 404; // ==

const int ID_NotEqual = 405; // !=

const int ID_Not = 406; // !

const int ID_And = 407; // &&

const int ID_OR = 408; // ||

const int ID_Arrrow = 409; // ->

const int ID_Saicolan = 410; // ;

const int ID_Comma = 411; // ,

const int ID_Tild = 412; // ~

const int ID_Reference = 413; // &

const int ID_Collon= 414; // :

//---------------------------------Class, Structs etc----------------------------

const int ID_Class = 500; // class

const int ID_Struct = 501; // struct

const int ID_ENUM = 502; // enum

const int ID_Private= 503; //private

const int ID_Public = 504; //public

C++ Fact Extractor

36

5.3.2.5. TokenScannerVector:

TokenScannerVector stores the final token which we get from whole fact extraction process.

5.3.3. Class diagram for extracting class Information

Figure 5.3-3 Class diagram for extracting class

5.3.3.1. Meta_Classinfo

This class is the main part of Information Extractor component of the project. This class

maintain the information of class which we use farther for finding the relationships and function.

5.3.3.2. C_classInfo:

This class store information of class name, line of code, and function of the class.

C++ Fact Extractor

37

5.3.3.3. CDateMemberInfo:

This class stores all information about data members. The information constraints are data

member name, data member type, data member access specifier of the data member.

5.3.3.4. CDateMemberInfo_VEC:

 A Class may have many or none data members. They all are kept in DataMemberInfo type

STL vector.

5.3.3.5. CFunctionInfo:

This class stores information about Member methods of a class. It composes two more

classes Parameters and Local data Members to store information about these two constraints of a

method. The other constraints associated with the member method are method return type, method

access specifier, method LOC, method name, number of parameters, number of local data

members, and line of code.

5.3.3.6. CFunction_Info_Vec:

Class may have function or member methods. They all are kept in Function_Vec type STL

vector.

5.3.3.7. CParameterList:

CParameterList class contains information about parameters of a method. Parameter type

can be user defined or primitive type. A parameter can be in two states, by reference or by value.

CParameterList class contains all these characteristics about parameter.

5.3.3.8. CLocalDataMembers:

CLocalDataMembers class consist of collection of all local variables declared in methods

of classes.

5.3.4. CRelationFinder

CRelationFinder is main class for finding relationships between classes.

C++ Fact Extractor

38

Figure 5.3-4 Class diagram for Relation finder

5.3.4.1. CstructFinder:

CstructFinder class is used for finding the struct info from the extracted classes’

information. And display info into different formats.

5.3.4.2. CinheritanceFinder:

CinheritanceFinder class is used for finding the inheritance info from the extracted

classes’ information. It can find any kind of inheritance type like single, multi-level, multi-path

etc. And display info into different formats.

5.3.4.3. CcompostionFinder:

CcompostionFinder class is used for finding the composition of classes. And display info

into different formats.

C++ Fact Extractor

39

5.4. User Interface Design:

User Interface of application is a single document windows explorer type application. It looks

like following screen shots:

Figure 5.4-1 User Interface main screen

C++ Fact Extractor

40

Figure 5.4-2 Open new project

Figure 5.4-3 New project Dialog box

C++ Fact Extractor

41

Figure 5.4-4 Fill dialog box for Desired info

Figure 5.4-5 Extracted class info

C++ Fact Extractor

42

Figure 5.4-6 Extracted relation info

Figure 5.4-7 Version No. of Tool

C++ Fact Extractor

43

 When User opens project he has first screen then click File->New

 Dialog Screen will appear

 Fill the dialog box for desired info then click Extract Information button.

 After completing processing tree view is generated.

 Tool shows the info on screen and also store the info into files.

Summary:

In this Chapter I have discussed the system architecture and design and the flow of system. I

have designed the class diagrams for our system and their relations.

C++ Fact Extractor

44

Chapter 6

System Input & Output

6.1. Introduction

6.2. Input Files

6.3. Output Files

Summary

C++ Fact Extractor

45

6.1. Introduction:

In this chapter, I have discuss the input and output of the system. The system take the whole

C++ project as in input and from input the system takes the .CCP file and from .CCP file the system

can analyze the input and generates the output in the form of XML File and TEXT File.

The system out the information in two ways such as:

 XML File

 Text File

6.2. Input Files:

A C++ program as a whole used as input to the system. A C++ program may contain many

header and C++ files. You must compile before you can run the file's code on your Windows

system. You use Visual Studio to compile the CPP C++ program Windows. The compiling process

creates an EXE file, which is an executable that runs on a Windows computer. The header and

.cpp files are given below.

6.2.1. Header file:

#include <afx.h>

#include <shlobj.h>

#include <stdio.h>

struct stFiles

{

 Int iImage;

 CString m_FileName;

 CString m_FilePath;

 CString m_strDate;

 long m_AccessDays;

 double m_FileSize;

};

C++ Fact Extractor

46

class CFolder : public CObject

{

 // Data Members

public:

 CString m_FolderPath;

 CString m_FolderName;

 BOOL m_FilledFlag;

 double m_FolderSize;

 HTREEITEM hItem;

 CArray<stFiles,stFiles> m_FileInfoList;

 CObArray m_FolderInfoList;

 int iImage;

 int iSelImage;

 long m_AccessDays;

 CString m_strTime;

 // Member functions

public:

 BOOL bSortedList;

 CFolder();

 virtual ~CFolder();

 CString GetPath();

 void SetPath(CString strPath);

 LPSHELLFOLDER GetChildFolder();

 void SetChildFolder(LPSHELLFOLDER pFolder);

protected:

 LPSHELLFOLDER pChildFolder;

};

C++ Fact Extractor

47

6.2.2. .cpp file:

// Folder.cpp: implementation of the CFolder class.

//

//

#include "stdafx.h"

#include "NxDUtility.h"

#include "Folder.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

//

// Construction/Destruction

//

CFolder::CFolder()

{

 m_FilledFlag=FALSE;

 bSortedList=FALSE;

}

CFolder::~CFolder()

{

}

void CFolder::SetChildFolder(LPSHELLFOLDER pFolder)

{

 pChildFolder = pFolder;

C++ Fact Extractor

48

}

LPSHELLFOLDER CFolder::GetChildFolder()

{

 return pChildFolder;

}

void CFolder::SetPath(CString strPath)

{

 m_FolderPath = strPath;

}

CString CFolder::GetPath()

{

 return m_FolderPath;

}

6.3. Output:

Output is in two formats XML and Text.

6.3.1. XML format:

<class_info>

< class Number>1</Number>

< class name> CFolder </name>

< class line_of_code>71</line_of_code>

< class total_functions>6</total_functions>

<data_member_info>

<Total>11</Total>

<AccessSpecifer>public</AccessSpecifer>

C++ Fact Extractor

49

<Date_Member_Type> m_FolderPath </Date_Member_Type>

<Date_Member_Name> m_FolderName </Date_Member_Name>

<Date_Member_Name> m_FilledFlag </Date_Member_Name>

<Date_Member_Name> m_FolderSize </Date_Member_Name>

<Date_Member_Name> hItem </Date_Member_Name>

<Date_Member_Name> m_FileInfoList </Date_Member_Name>

<Date_Member_Name> m_FolderInfoList </Date_Member_Name>

<Date_Member_Name> iImage </Date_Member_Name>

<Date_Member_Name> iSelImage </Date_Member_Name>

</data_member_info>

<Class_Function_Information>

<Function_No>1</Function_No>

<Function_AccessSpecifer>private</Function_AccessSpecifer>

<Function_Return_Type>string</Function_Return_Type>

<Function_Name> GetPath() </Function_Name>

<Function_Line_of_Code>2</Function_Line_of_Code>

<Function_parameter>

</Function_parameter>

<local_data_members>

</local_data_members>

<Class_Function_Information>

<Class_Function_Information>

C++ Fact Extractor

50

<Function_No>2</Function_No>

<Function_AccessSpecifer>private</Function_AccessSpecifer>

<Function_Return_Type>void</Function_Return_Type>

<Function_Name> SetPath() </Function_Name>

<Function_Line_of_Code>2</Function_Line_of_Code>

<Function_parameter>

<Parameter_Type> CString </Parameter_Type>

<Parameter_Name> strPath </Parameter_Name>

</Function_parameter>

<local_data_members>

</local_data_members>

</Class_Function_Information>

</class_info>

6.3.2. Text format:

Class No: 1

Class Name: CFolder

Class Lines of Code: 72

Total No. of Functions: 6

Class Date Members Information Total: 11

AccessSpecifer : Date Member Type : Date Member Name

private : CString : m_FolderPath

C++ Fact Extractor

51

private : CString : m_FolderName

private : BOOL : m_FilledFlag

private : double : m_FilledFlag

private : HTREEITEM : hItem

private : CArray<stFiles,stFiles> : m_FileInfoList

private : CObArray : FolderInfoList

private : int : iImage

private : long : m_strTime

~~~~~~~~ Class Function Information ~~~~~~~~ 

Function No:    1 

Function AccessSpecifer:  public 

Function Return Type:  void 

Function Name:   SetChildFolder 

Function Line of Code:  2 

~~~~~~~~ Parameters of Function  Total: 1 ~~~~~~~~ 

Parameter Type: LPSHELLFOLDER Parameter Name: pFolder

~~~~~~~~ Local Data Members of Function  Total: 0 ~~~~~~~~ 

----------------------------------------------------------------------------------------------------- 

~~~~~~~~ Class Function Information ~~~~~~~~ 

Function No: 2

Function AccessSpecifer: public

Function Return Type: LPSHELLFOLDER

Function Name: GetChildFolder

Function Line of Code: 2

~~~~~~~~ Parameters of Function  Total: 0 ~~~~~~~~ 

~~~~~~~~ Local Data Members of Function  Total: 0 ~~~~~~~~ 


C++ Fact Extractor

52

~~~~~~~~ Class Function Information ~~~~~~~~ 

Function No:    3 

Function AccessSpecifer:  public 

Function Return Type:  void 

Function Name:   SetPath 

Function Line of Code:  2 

~~~~~~~~ Parameters of Function  Total: 0 ~~~~~~~~ 

~~~~~~~~ Local Data Members of Function  Total: 0 ~~~~~~~~ 

----------------------------------------------------------------------------------------------------- 

 

Summary: 

In this chapter, I have explained the inputs and the outputs of the system. System accepts 

the C++ program as a whole as input. After extraction of useful information is gives output in two 

formats XML and text.  

  



 

C++ Fact Extractor 

53 
 

 

 

 

Chapter 7 

 

Testing and Evaluation 

 

7.1. Introduction 

7.2. Testing:  

7.3. Test Cases 

Summary 

 

 

 

 

 

 

 

 

 



 

C++ Fact Extractor 

54 
 

 

 

7.1. Introduction: 

System testing is the last important step to complete software for delivery. After the 

development of the system is complete, we're required to check the product. The development of 

a system is done with keen interest that the system works according to our will but there is always 

a chance that after deployment something still can go wrong. To avoid that system testing is done 

to ensure that the system works properly. It is a kind of investigation that is conducted to ensure 

that the system meets the quality desired by the customer. [7] 

A successful system testing unveils all the errors of the system, if any. It also shows that the 

required qualities, usability, reliability, other functional and nonfunctional necessities of the 

system are met. 

7.2. Testing:  

Testing is done to collect bugs and errors in the designed system. Another purpose of testing 

could be to ensure if the product meets the requirements of the system or not.  

7.2.1. Black box testing:  

In black box testing different inputs are tested against expected outputs. So the tester do not 

need to know much about coding for testing. 

7.3. Test Cases: 

Test case for extraction information: 

Test Case ID  01  

Tester  Muhammad Ali 

Test Type  Black Box Testing  

Test Case Name  Extract information of Classes  

Procedure  User can select header and .cpp files from a 

C++ project  



 

C++ Fact Extractor 

55 
 

Expected Result  When the user selects the header and .cpp 

file the system should extract all information 

about classes in the project.  

Actual Result  Class information is returned to user in the 

form of XML or TEXT file.  

Status  Successful  

 

 

Test Case ID  02 

Tester  Muhammad Ali 

Test Type  Black Box Testing  

Test Case Name  Extract information of Composition 

Procedure  User can select header and .cpp files from a 

C++ project  

Expected Result  When the user selects the header and .cpp 

file the system should extract all information 

about composite classes in the project.  

Actual Result  Composite Class information is returned to 

user in the form of XML or TEXT file.  

Status  Successful  

 

 

Test Case ID  03 

Tester  Muhammad Ali 

Test Type  Black Box Testing  

Test Case Name  Extract information of Inheritance 

Procedure  User can select header and .cpp files from a 

C++ project  



 

C++ Fact Extractor 

56 
 

Expected Result  When the user selects the header and .cpp 

file the system should extract all 

information about Inherit classes in the 

project.  

Actual Result  All information of inheritance classes is 

returned to user in the form of XML or 

TEXT file.  

Status  Successful  

  

 

Test Case ID  04 

Tester  Muhammad Ali 

Test Type  Black Box Testing  

Test Case Name  Extract information of Enumeration  

Procedure  User can select header and .cpp files from a 

C++ project  

Expected Result  When the user selects the header and .cpp 

file the system should extract all 

information about Inherit classes in the 

project.  

Actual Result  All information of enum type variables is 

returned to user in the form of XML or 

TEXT file.  

Status  Successful  

 

Summary:  

In this chapter, I have discussed testing of the software system. Then, I have stated some 

test cases for our system. 



 

C++ Fact Extractor 

57 
 

 

 

 
 

Chapter 8 

 
Conclusion and future work 

 

8.1. Conclusion 

8.2. Future work  

  



 

C++ Fact Extractor 

58 
 

 

8.1. Conclusion: 

C++ Fact Extractor tool that I have developed will be very helpful for maintainers and 

developers in the field of software development as well as software maintenance. User will have 

to give C++ source code as an input and the tool will extract information of their desired 

relationship and functions. This can also extracted information about classes such as (class name, 

line of code, data members, number of constructor and function information (function name, 

function return type, function parameters and function line of code)). And the tool will generate 

XML based file and TEXT based file as an output.  

After the completion of this tool it will save time and effect of maintainers in maintaining any C++ 

project. 

8.2. Future work: 

 We can further enhance the functionality of this tool  

 We can make refactoring tool for maintainer 

 A tool for commenting the code  

 



 

C++ Fact Extractor 

59 
 

  

Reference: 

1. http://www.tutorialspoint.com/software_engineering/software_maintenance_overview.ht

m  

2. https://msdn.microsoft.com/en-us/library/2e6a4at9.aspx 

3. https://www.google.com.pk/search?q=incremental+model&rlz=1C1NHXL_enPK692PK

692&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwirscCCjI3OAhWMaRQKH

eH1AukQsAQIKQ&biw=1366&bih=667#imgrc=8jNMttASbKcDMM%3A  

4. http://www.ibm.com/support/knowledgecenter/SSPSQF_9.0.0/com.ibm.xlcpp111.aix.doc

/language_ref/cplr061.html  

5. https://msdn.microsoft.com/en-us/library/3bstk3k5.aspx 

6. http://www.cplusplus.com/doc/tutorial/inheritance/ 

7. http://robincse.blogspot.com/2012/04/steps-of-requirement-engineering.html 

8. https://en.wikipedia.org/wiki/Systems_design  

9. https://msdn.microsoft.com/en-us/library/system.xml.xmldocument(v=vs.110).aspx 

10. http://www.learncpp.com/cpp-tutorial/102-composition/ 

11. http://pages.cs.wisc.edu/~anhai/courses/784-sp10-anhai/ieSurvey.pdf 

12. https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&u

act=8&ved=0ahUKEwiU4uTpn4HSAhXDvBoKHciDDtIQFggcMAA&url=http%3A%2

F%2Fieeexplore.ieee.org%2Fdocument%2F1199197%2F&usg=AFQjCNH2o9F6otz9Af

Ws_WrBogSICuaTOA&sig2=QMCAKpPPahJQyiD_a7fFSg 

 

Research papers: 

13. Author: R. Ferenc (Res. Group on Artificial Intelligence, Univ. of Szeged, Hungary) 

“Extracting Facts with Columbus from C++ Code”, Published in: Software Maintenance 

and Reengineering, 2002. Proceedings. Sixth European Conference on 13 March 2002, 

Publisher: IEEE 

 

14. Author: Michael L. Collard, Huzefa H. Kagdi, Jonathan I. Maletic, “AXML-based 

lightweight C++ fact extractor” , Conference: 11th International Workshop on Program 

Comprehension (IWPC 2003), May 10-11, 2003, Portland, Oregon, USA 

https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiU4uTpn4HSAhXDvBoKHciDDtIQFggcMAA&url=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F1199197%2F&usg=AFQjCNH2o9F6otz9AfWs_WrBogSICuaTOA&sig2=QMCAKpPPahJQyiD_a7fFSg
https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiU4uTpn4HSAhXDvBoKHciDDtIQFggcMAA&url=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F1199197%2F&usg=AFQjCNH2o9F6otz9AfWs_WrBogSICuaTOA&sig2=QMCAKpPPahJQyiD_a7fFSg
https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiU4uTpn4HSAhXDvBoKHciDDtIQFggcMAA&url=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F1199197%2F&usg=AFQjCNH2o9F6otz9AfWs_WrBogSICuaTOA&sig2=QMCAKpPPahJQyiD_a7fFSg
https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiU4uTpn4HSAhXDvBoKHciDDtIQFggcMAA&url=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F1199197%2F&usg=AFQjCNH2o9F6otz9AfWs_WrBogSICuaTOA&sig2=QMCAKpPPahJQyiD_a7fFSg
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Ferenc.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7817
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7817


 

C++ Fact Extractor 

60 
 

 

Books: 

15. Compilers, Techniques and Tools 

Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman 

16. Beginning Visual C++ by Ivor Horton 

17. Compilers  

Dr. Matt Poole 2002, edited by Mr. Christopher Whyley 

18. SAMS - Teach Yourself Visual C++ 6 in 21 Days by Davis Chapman  

19. Software Engineering, A Practitioner’s Approach by Roger S. Pressman 

20. Object oriented programming by Deitel Deitel 

21. C(sharp) Fact Finder by Muhammad Inam Chatha thesis 

22. Java Fact Extractor by Sami ul Haq thesis 

 

 


