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Abstract

An integrating factor is a function that can be multiplied by a given differential equation

to make it exact. In mathematical analysis and optimization problems, adjoint equations

are often used to find solutions or optimize certain quantities related to a given system.

It’s important to note that both integrating factors and adjoint equations are powerful

techniques used in specific contexts to simplify or analyze differential equations. The

concept we are using involves adjoint equations to construct a Lagrangian for systems

described by arbitrary differential equations, where the number of equations is equal to

the number of dependent variables. This method uses adjoint equations and the concept

of Lagrangians to analyze and solve equations that might not traditionally be associated

with Lagrangian formulations. This approach can provide insights into the underlying

symmetries and conservation laws of these systems. Let’s break down the steps involved

in this process and how Noether’s theorem can be applied to the Maxwell equations as

an example.
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Chapter 1

Introduction

1.1 Historical background

Adjoint equations are typically associated with linear equations and integrating factors

are commonly discussed for first-order nonlinear ordinary differential equations (ODEs).

Traditionally, adjoint equations have been associated with linear differential equations.

These equations capture information about the sensitivity and gradients of solutions.

Integrating factors are often used to solve first-order linear differential equations by

transforming them into exact equations. The introduction suggests that integrating fac-

tors can also be discussed in the context of non-linear ordinary differential equations.

This implies that the concept of integrating factors can have relevance beyond just lin-

ear equations and first-order equations. Noether’s theorem establishes a deep connection

between the symmetries of a physical system and the conservation laws that arise from

those symmetries. The theorem is classically applied to variational problems and La-

grangian mechanics. The introduction implies that Noether’s theorem can be extended

to broader settings, allowing for the exploration of conservation laws associated with

symmetries in various types of equations and systems. The introduction outlines that

the subsequent discussion will delve into the definitions and results related to this ex-

tended approach. This likely includes defining adjoint equations in a broader context,

discussing how integrating factors can apply to non-linear equations, and explaining how

Noether’s theorem can be adapted to systems beyond traditional variational problems.
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1.2 Integrating factor

Indeed, the integrating factor method is a powerful technique for solving certain types of

first-order ordinary differential equations (ODEs) by transforming them into equations

that are more amenable to direct integration. A first order ordinary differential equation

is,

a(z1, z2)z
′
2 + b(z1, z2) = 0, (1.1)

The derivative of a function z2 with respect to z1, denoted as z′2 =
dz2
dz1

is represented in

terms of differentials:

a(z1, z2)dz2 + b(z1, z2)dz1 = 0. (1.2)

(1.2) is considered to be exact if the left-hand side of that equation can be expressed as

the differential of a certain function. In mathematical terms, this is known as an exact

differential equation.

a(z1, z2)dz2 + b(z1, z2)dz1 = dϕ(z1, z2), (1.3)

When an equation of the form (1.2) is exact, meaning its left-hand side can be expressed

as the total differential of a function ϕ(z1, z2). The solutions to the equation are curves

or surfaces in the z1z2-plane that satisfy the condition ϕ(z1, z2) = C = cons, where c is

the constant.

In general, the equation (1.2) is not initially exact, an integrating factor to transform a

non-exact equation (1.2) into an exact equation.

ν(adz2 + bdz1) = dϕ ≡ ϕz2dz2 + ϕz1dz1, (1.4)

where,

ϕz2 =
∂ϕ

∂z2
, ϕz1 =

∂ϕ

∂z1
.
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The function ν(z1, z2) is referred to as an integrating factor for equation (1.2). It follows

from equation (1.4) that,

ϕz2 = νa, ϕz1 = νb. (1.5)

The given system of equations (1.5), the mixed partial derivatives of a function ϕz1z2 =

ϕz2z1 with respect to x and z2 are equated and this equation is used to find the integrating

factors associated with a given system of differential equations,

∂(νa)

∂z1
=
∂(νb)

∂z2
. (1.6)

Equation (1.6) theoratically provides an infinite number of integrating factors for equa-

tion (1.2). However, in reality integrating the original differential equation (1.2) is fre-

quently not any easier than integrating (1.6). However, the idea of an integrating factor

is still because individual integrating factors can be discovered by means of certain meth-

ods. If we have two linearly independent integrating factors, ν1(z1, z2) and ν2(z1, z2), for

the differential equation (1.2), it means that a powerful tool to directly obtain the general

solution of (1.2) without needing to perform additional complex integration steps.

ν1(z1, z2)

ν2(z1, z2)
= C. (1.7)

1.3 Adjoint linear differential operators

Let the notation z1 = (z1
1, ..., z1

n) represents a vector of n independent variable and

µα
ϵ = (µ1, ..., µm) represents a vector of m dependent variables with the partial derivatives

of the dependent variables µ(1) = µα
ϵ ,µ(2) = µα

ϵκ, ... of the first, second, etc. indicating

how the rates of change themselves change, where, µα
ϵ = ∂µα

∂zϵ1
, µα

ϵκ = ∂2µα

∂zi1∂z
κ
1
. Denoting,

Dϵ =
∂

∂z1i
+ µα

ϵ

∂

∂µα
+ µα

ϵκ

∂

∂µα
κ

+ ... (1.8)

Taking the total differentiation with respect to z1ϵ provides insights into how the function

changes as a result of altering the i− th independent variable,
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µα
ϵ = Dϵ(µ

α), µα
ϵκ = Dϵ(µ

α
κ) = DϵDκ(µ

α), ....

Previously discussed in the adjoint linear operator’s definition. Take the scalar field

(m=1) as an example, an equation involving a function of multiple variables and its

partial derivatives up to second order,

L[µ] ≡ aϵκ(z1)µϵκ + bϵ(z1)µϵ + c(z1)u = f(z1), (1.9)

where L is associated with a following linear differential equation:

L = aϵκ(z1)DϵDκ + bϵ(z1)Dϵ + c(z1). (1.10)

It is assumed that summation is taking place over that index, the indices i and j range

from 1 to n. For any i and j, the coefficient aϵκ(z1) is equal to the coefficient aκϵ. L∗ is

a second-order linear differential operator called the adjoint operator, and it possesses

certain properties related to L,

νL[µ]− uL ∗ [ν] = Dϵ(p
ϵ) ≡ divP (z1), (1.11)

The adjoint operator L∗ possesses specific properties and a unique form when applied to

all functions u and v, where P (z1) = (p1(z1), ..., p
n(z1) is any vector. Its characteristics

and behavior are completely defined based on the given conditions,

L∗[v] = DϵDκ(a
ϵκv)−Dϵ(b

ϵv) + cv. (1.12)

An operator L is labeled as self-adjoint if the action of the operator L on a function u is

same as the action of its adjoint operator L∗ on the same function u, in mathematical

notation , this is represented as L[µ] = L∗[µ] for any function u(z1). A previously

mentioned operator (1.10) and mention that this operator is self-adjoint if and only if a

certain condition is met,

bϵ(z1) = Dκ(a
ϵκ), i = 1, ..., n. (1.13)

4



A type of mathematical equation that is linear in nature and involves only homogeneous

terms,

L∗[v] ≡ DϵDκ(a
ϵκv)−Dϵ(b

ϵv) + cv = 0, (1.14)

The equation referred to as the "adjoint equation" is associated with a linear differential

equation (1.9, where, L[µ] = f(z1).

The idea of adjoint equation and adjoint operator, initially introduced for linear differen-

tial equations of the form (1.9) are generalized to systems of second-order equations. In

this generalization, the function u becomes an m-dimensional vector function, along with

the operator’s coefficients (1.10) becomes m ×m −matrices. When both the number

of independent variables (n) and the number of dependent variables (m) are equal to

1 (i.e.,n = m = 1), then the definition of the adjoint operator aligns with the familiar

concept of the adjoint operator. Consider the function u as u = y, and focus on a first

order equation,

L[z2] ≡ a0(z1)z
′
2 + a1(z1)y = f(z1). (1.15)

The adjoint operator L∗[z] has a specific form that relates to the original operator to

L[z2] is,

L∗[z] = −(a0z)
′
+ a1z. (1.16)

The idea of Higher-order equations can be used with the adjoint operator, and they

introduce the example of a second-order equation to illustrate how the concept applies

in practice. The details of the example equation will likely be provided in the following

context.

L[z2] ≡ a0z2
′′ + a1z

′
2 + a2z2 = f(z1), (1.17)

a second order equation with variable coefficients a0(z1), a1(z1), a2(z1), the adjoint oper-

ator L∗[z] corresponds to the operator L[z2] takes on a specific form,
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L∗[z] = (a0z)
′′ − (a1z)

′
+ a2z. (1.18)

Similarly, just as discussed for second-order equations, the concept apply to third-order

equations with variable coefficients, the adjoint operator,

L[z2] ≡ a0z
′′′

2 + a1z2
′′ + a2z

′
2 = a3z2 = f(z1). (1.19)

Using the adjoint operator L∗[z] is equivalent to L[z2] is going to be presented,

L∗[z] = −(a0z)
′′′
+ (a1z)

′′ − (a2z)
′
+ a3z. (1.20)

The homogeneous equation L∗[z] = 0 is referred to as the adjoint equation to the primary

linear differential equation. L[z2] = f(z1).

1.4 Noether’s theorem

Symmetries and conservation laws are fundamentally connected by Noether’s theorem in

the setting of variational issues, notably for systems modeled by Euler-Lagrange equa-

tions. When the equations of motion display specific symmetries, this theorem offers a

systematic approach for determining conservation laws. Following is an outline of the

process. Consider a Lagrangian, denoted as L(z1, u, µ(1)) which depends on independent

variables involving, z1 = (z1
1, z1

2, ..., z1
n) dependent variables au = (µ1, µ2, ..., µm), the

first-order derivatives µ1 = (µ1
1, µ

2
2, ..., µ

m
1 ). The system’s equations of motion, known as

Euler-Lagrange equations, are derived from the principle of stationary action and have

the general form:

δL

δµα
≡ ∂L

∂µα
−Dϵ(

∂L

∂µα
ϵ

) = 0, α = 1, ...,m. (1.21)

The Euler-Lagrangian
∫
L(z1, u, µ(1))dz1 with regard to the independent variables z1 is

varied over an arbitrary n-dimensional domain in the space of these variables to produce

the Euler-Lagrange equations. This variation process leads to the derivation of the

equations that govern the system’s behavior. Noether’s theorem establishes a profound
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connection between symmetries of a system and the corresponding conservation laws.

It specifically focuses on the symmetries arising from continuous transformation groups,

denoted as G, which play a fundamental role in the behavior of physical systems.

z1 = ξϵ(z1, u)
∂

∂zϵ1
+ ηα(z1, u)

∂

∂µα
, (1.22)

the vector field C = (C1, ..., Cn) is a mathematical construct that represents the infinites-

imal generator of the continuous transformation group G associated with the symmetry

of the Lagrangian L(z1, u, µ(1)) is defined by,

Cϵ = ξϵL+ (ηα − zϵ1z
κ
2µ

α
κ)
∂L

∂µα
κ

, i = 1, ..., n, (1.23)

Noether’s theorem establishes that if a Lagrangian L(z1, u, µ(1)) possesses a continuous

symmetry G with an associated generator vector field C = (C1, ..., Cn) then there exists

a corresponding conservation law for the Euler-Lagrange equations. This conservation

law is expressed mathematically as ≡ Dϵ(Cϵ) = divC = 0 which means that the diver-

gence of the vector field C is zero for all solutions of the Euler-Lagrange equation. The

Euler-Lagrange equations arise in the calculus of variations as the equations that describe

the stationary points of the action functional. If the variational integral is invariant un-

der the action of a symmetry group G, it implies that the underlying Euler-Lagrange

equations also possess the same symmetry. This means that if you apply the symmetry

transformation to the solution of the Euler-Lagrange equations, the transformed solution

still satisfies the equations. Noether’s theorem establishes a connection between symme-

tries and conserved quantities in the context of Lagrangian and Hamiltonian mechanics.

In the context you’re describing, to apply Noether’s theorem, you need to identify the

symmetries of the system, particularly the Euler-Lagrange equations (1.22). These sym-

metries are transformations that leave the form of the equations invariant. This can be

done by the infinitesimal test serves as a criterion to determine whether a symmetry

transformation maintains the form of the integral.

X(L) + LDϵ(ξ
ϵ) = 0, (1.24)

7



The formula for prolonging the generatorz1to the first derivatives µ(1) involves applying

the Lie derivative operation to the generator with respect to the dependent variables u

and their first-order derivatives µ(1).

z1 = ξϵ
∂

∂zϵ1
+ ηα

∂

∂µα
+ [Dϵ(η

α)− µα
κDϵ(ξ

κ)]
∂

∂µα
ϵ

. (1.25)

In the context of Noether’s theorem and the derivation of conservation laws, the invari-

ance condition is a requirement that the Lagrangian remains unchanged under the action

of the symmetry transformation (1.25) defined by the generator z1,

X(L) + LDϵ(ξ
ϵ) = Dϵ(B

ϵ). (1.26)

Then (1.22) has a conservation law Dϵ(C
ϵ) = 0, where (1.24) is replaced by,

Cϵ = ξϵL+ (ηα − ξκµα
κ)
∂L

∂µα
ϵ

−Bϵ. (1.27)

Noether’s theorem is more general than previously believed, and linkages between sym-

metries and conservation laws can be formed in a wider range of situations than previ-

ously anticipated.
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Chapter 2

Main constructions

By making the problem more receptive to conventional solution methods, an integrating

factor is a function that can be utilized to make the process of solving differential equa-

tions more straightforward. In specifically, in the context of optimization, sensitivity

analysis, or discovering conservation laws, an adjoint equation is a mathematical con-

struct that is frequently employed to examine features of differential equation solutions.

2.5 Preliminaries

the sequence z and the concept of differential functions,

z = (z1, u, µ(1), µ(2), ...), (2.28)

The sequence z is a collection of elements representing various quantities. Each element

is denoted by zv with v ≥ 1, where zϵ = z1
ϵ for 1 ≤ i ≤ n where z1ϵ are the independent

variables, and zn + α = µα for 1 ≤ α ≤ m, where µα are dependent variables with

an added constant term α. The remaining elements represent the derivatives of u with

respect to the independent variable x. A differential function (f), which can be locally

expanded into a Taylor series with regard to all of its arguments (variables), is introduced

as a differential function. The claims of f are selected from the sequence’s finite number

of variables. The derivatives in the highest order that appear in Its order is decided

by f, represented as ord(f). For example, Ord(f) = s suggests that depending on its

derivatives u and other varieties is a locally analytic function. The set of all differential
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functions of finite order is denoted as A. This set A is treated as a vector space, and dif-

ferential functions within it can be multiplied and manipulated using standard algebraic

operations.

af + bg ∈ A, ord(af + bg) ≤ max{ord(f), ord(g)},

fg ∈ A, ord(fg) = max{ord(f), ord(g)}.

If a differential function f is a member of the set A, which contains all locally ana-

lytic differential functions of finite order, then the result of applying a total derivative

operation to f will also be in the same set A, i.e.,

Dϵ(f) ∈ A, ord(Dϵ(f)) = ord(f) + 1.

In order to create the operator, terms must be combined in a precise way and according

to a predetermined mathematical procedure.

∂

∂µα
=

∂

∂µα
−Dϵ

∂

∂µα
ϵ

+DϵDκ
∂

∂µα
ϵκ

+ ..., α = 1, ...,m, (2.29)

For every value of s, the expression involves summation over repeated indices i, j, ...

which run from 1 to n, where n represents the number of independent variables. The

operator ∂
∂µα is introduced and referred to as the variational derivative. The expression

(2.29) which defines the Euler-Lagrange operator, can be written in a more explicit form

when there’s only one independent variable z1,

∂

∂µα
=

∂

∂µα
−Dz1

∂

∂µα
z1

+D2
z1

∂

∂µα
z1z1

−D3
z1

∂

∂µα
z1z1z1

+ .... (2.30)

When there’s only one independent variablez1and one dependent variable z2, the se-

quence z is defined with elements z(z1, z2, z′2, ..., z2′′, ..., z2(s), .....). Then the total differ-

entiation formula (1.8) which involves taking the total derivative of a function, can be

expressed in terms of the sequence z and its elements is written as follows:

10



Dz1 =
∂

∂z1
+ z′2

∂

∂z2
+ z2

′′ ∂

∂z′2
+ ..., (2.31)

and the Euler-Lagrange operator, represented by the expression (2.30) is written in a

specific way,

∂

∂z2
=

∂

∂z2
−Dz1

∂

∂z′2
+D2

z1

∂

∂z
′′
2

−D3
z1

∂

∂z
′′′
2

+ .... (2.32)

The primary content presented in this section relies on the utilization of multipliers, and

it is supported by a series of lemmas. The purpose of these lemmas is to establish specific

mathematical results that are integral to the concepts being discussed. The source for

the proofs of these lemmas is referenced as [6,Section 8.4]).

Lemma 2.1. For a differentiable function f(z1, z2, z′2, ..., z2(s)) belong to the set A, If the

total derivatives Dz1(f) with respect to all variables z1, z2, z′2, ..., z2(s), andz2(s+ 1), is

identically zero, then the function f must be constant c. Similarly if f(z1, u, µ(1), ..., µ(s) is

a differential function with one independent variables z1 and multiple dependent variables

u = (µ1, ..., µm), and the total derivative Dz1(f) is zero, then f must be constant c.

Lemma 2.2. Total derivative is a term used to describe a differential function f(z1, u, ..., µ(s))

that belongs to the set A and has one independent variable z1.

f = Dz1(g), g(z1, u, ..., µ(s−1) ∈ A, (2.33)

a differential function f(z1, u, µ(1), ...) is a total derivative if and only if, a set of equations

are satisfied without exception for all possible values of the variables z1, u, µ(1), .... ,

∂f

∂µα
= 0, α = 1, ...,m. (2.34)

Lemma 2.3. If a function f(z1, u, ..., µ(s) belongs to set A and involves several inde-

pendent variables z1 = (z1
1, ..., z1

n) and several dependent variables u = (µ1, ..., µm)

then f can be expressed as the divergence of a vector field H = (h1, ..., hn), where each

component hϵ also belongs to the set A.
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f = divH ≡ Dϵ(h
ϵ), (2.35)

the specified condition applies to the function if the mentioned equations are consistently

and universally true for z1, u, µ(1), ...:

δf

δµα
= 0, α = 1, ...,m. (2.36)

2.6 Integrating factor for higher-order equations

Definition 2.1. Consider ordinary differential equations involves the sth-derivative of

the dependent variable,

a(z1, z2, z
′
2, ..., z2(s− 1))z2(s) + b(z1, z2, z

′
2, ..., z2(s− 1)) = 0. (2.37)

A differentiable function ν depends on the independent variable z1 and the dependent

variable z2, as well as its derivatives up to (s− 1)th order. The differentiable function

ν is termed an integrating factor for the differential equation represented by (2.37).

the left-hand side of the equation becomes equal to the total derivative of a function

ϕ(z1, z2, z
′
2, ..., z2(s− 1)) belongs to the set A:

νaz2(s) + νb = Dz1(ϕ). (2.38)

The integrating factor of the given differential equation represented by (2.37) enable

to lower the order of the equation. The equation (2.37) and (2.38) are rewritten as

Dz1(ϕ) = 0. The application of Lemma 2.1 yields an equation of lower order, specifically

an (s− 1)-order equation,

ϕ(z1, z2, z
′
2, ..., z2(s− 1)) = C. (2.39)

Definition 2.1 refers to a concept that can be applied to systems of ordinary differential

equations (ODEs) regardless of their order.
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Theorem 2.1. A specific equation that can be used to find or calculate the integrating

factors for the given differential equation (2.37),

δ

δz2
(νaz2(s) + νb) = 0, (2.40)

The symbol δ
δz2

represents the variational derivative in equation (2.31). Equation (2.40)

is introduced as a specific equation involving the variables z1, z2, z′2, ..., z2(2s− 2) and

this equation holds true for all possible values of these variables, without exception.

Proof. Equation (2.40) is a result obtained using Lemma 2.2. After applying the

variational derivative process, 2s − 1 is the highest order of differentiation that takes

place.

(−1)sDs
z1
(νa) and (−1)s−1Ds−1

z1
[z2(s)

∂(νa)

∂z
(s−1)
2

].

certain terms are being disregarded from consideration z2(2s− 1):

(−1)sDs
z1
(νa) = −(−1)s−1Ds−1

z1
[z2(s)

∂(νa)

∂z
(s−1)
2

] + ....

The terms in equation (2.40) that includes z2(2s− 1) are found to mutually cancel each

other out. As a consequence of the cancellation, equation (2.40) is simplified. It now

involves only the variables z1, z2, z′2, ..., z2(2s− 2),

For the first-order ordinary differential equation represented by (1.1) which is a(z1, z2)z′2+

b(z1, z2) = 0 , equation (2.40) can be expresses in particular form:

δ

δz2
(νaz′2 + νb) =

∂

∂z2
(νaz′2 + νb)−Dz1 [

∂

∂z′2
(νaz′2 + νb)].

Where the integrating factor ν is a function that relies on both the independent variable

z1 and the dependent variable z2,

δ

δz2
(νaz′2 + νb) = z′2(νa)z2 + (νb)z2 −Dz1(νa+ 0),
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δ

δz2
(νaz′2 + νb) = z′2(νa)z2 + (νb)z2 − (νa)z1 − z′2(νa)z2 .

We arrive at (1.6), (νb)z2 − (νa)z1 = 0.

Now, consider a new equation that is of second-order,

a(z1, z2, z
′
2)z2

′′ + b(z1, z2, z
′
2) = 0. (2.41)

The integrating factors ν is a function is a function that depends on the variables z1, z2, z′2,

The equation (2.40) is then used to determine the expression for ν(z1, z2, z′2):

δ

δz2
(νaz2

′′ + νb) =
∂

∂z2
(νaz2

′′ + νb)−Dz1 [
∂

∂z′2
(νaz2

′′ + νb)] +D2
z1
[
∂

∂z
′′
2

(νaz2
′′ + νb)],

δ

δz2
(νaz

′′

2 + νb) = z2
′′(νa)z2 + (νb)z2 −Dz1 [z2

′′(νa)z′2 + (νb)z′2 ] +D2
z1
(νa+ 0),

δ

δz2
(νaz2

′′ + νb) = z2
′′(νa)z2 + (νb)z2 − z2

′′[(νa)z1z′2 + z′2(νa)z2z′2 + z2
′′(νa)z′2z′2 ]

− [(νb)z1z′2 + z′2(νb)z2z′2 + z2
′′(νb)z′2z′2 ] +Dz1 [(νa)z1 + z′2(νa)z2 + z2

′′(νa)z′2 ],

δ

δz2
(νaz2

′′ + νb) = z2
′′(νa)z2 + (νb)z2 − z2

′′(νa)z1z′2 − z′2z2
′′(νa)z2z′2 − z2

′′2(νa)z′2z′2

− (νb)z1z′2 − z′2(νb)z2z′2 − z2
′′(νb)z′2z′2 + (νa)z1z1 + z′2(νa)z1z2 + z2

′′(νa)z1z
′
2

+ z′2(νa)z1z2 + z2′2(νa)z2z2 + z′2z2
′′(νa)z2z′2 + z2

′′(νa)z1z′2 + z2
′′z′2(νa)z2z′2

+ z2
′′2(νa)z′2z′2 ,

δ

δz2
(νaz2

′′ + νb) = z2
′′[(νa)z2 − (νa)z1z′2 − z′2(νa)z2z′2 − (νb)z′2z′2 + 2(νa)z1z

′
2

+ z′2(νa)z2z′2 + z′2(νa)z2z2 ] + (νb)z2 − (νb)z1z
′
2 + (νa)z1z1 ,

and hence,

14



δ

δz2
(νaz2

′′ + νb) = z2
′′[z′2(νa)z2z′2 + (νa)z1z′2 + 2(νa)z2 − (νb)z′2z′2 ] + z2′2(νa)z2z2 + 2z′2(νa)z1z2

+ (νa)z1z1 − z′2(νb)z2z′2 − (νb)z1z′2 + (νb)z2 .

Since The expression being discussed is expected to become identically equal to zero

when evaluated for all possible values of z1, z2, z′2andz2′′, The analysis of the expression’s

behavior leads to a specific conclusion.

Theorem 2.2. The funtion ν that act as integrating factors for the given second-order

equation (2.41), are found by solving a system of two equations.

z′2(νa)z2z′2 + (νa)z1z′2 + 2(νa)z2 − (νb)z′2z
′
2 = 0, (2.42)

z2
′2(νa)z2z2 + 2z′2(νa)z1z2 + (νa)z1z1 − z′2(νb)z2z′2 − (νb)z1z′2 + (νb)z2 = 0. (2.43)

Theorem 2.2 demonstrates that second-order equations may not always have integrating

factors available to simplify them, unlike first-order equations. ν(z1, z2) For first-order

equations, the integrating factor ν(z1, z2) can be found by solving a single linear par-

tial differential equation, as represented by (1.6). This equation has infinite number of

solutions. When dealing with second-order equations (2.41), to find ν(z1, z2, z
′
2) as an

integrating factor, one must solve a system of two second-order linear partial differential

equations (2.42)-(2.43) is compatible. The compatibility of these equations is crucial for

the presence of an integrating factor.

Remark 2.1. For a differential equation of second order represented by (2.41) if it

possesses two integrating factors, then it is possible to find the general solution of the

equation without needing any extra step for integration.

Example 2.1. Using integrating factors, let’s determine the particular differential equa-

tion:

z2
′′ +

z2′2
z2

+ 3
z′2
z1

= 0. (2.44)

consider second-order equation,
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a(z1, z2, z
′
2)z2

′′ + b(z1, z2, z
′
2) = 0,

from above equation we can write,

a = 1, b =
z2′2
z2

+ 3
z′2
z1
.

To simplify the process by searching for integrating factors that have a specific form:

ν = ν(z1, z2). The equation (2.42) is transformed to 2νz2 − (νb)z′2z′2 = 0. The term

(νb)z′2z′2 represents a partial derivative of the product νb with respect to z′2 twice. The

value of this derivative is 2ν
z2

,

∂ν

∂z2
− ν

z2
= 0,

whenν = ϕ(z1)y, µy = ϕ(z1) νz2z2 = 0, νz1z2 = ϕ′(z1)y νz1z2 = ϕ′,

νz1z1 = ϕ
′′
z2, νb = ϕz2′2 + 3

ϕ

z 1
z2z

′
2,

(νb)z2 = 3
ϕ

z1
z′2, (νb)z2z′2 = 3

ϕ

z1
, (νb)z1z′2 = 2ϕ′z′2 + 3(

ϕ′

z1
− ϕ

z12
)z2.

So, (2.43) becomes,

z2′2νz2z2 + 2z′2νz1z2 + νz1z1 − z′2
3ϕ

z1
− 2ϕ′z′2 − 3y(

ϕ′

z1
− ϕ

z12
) + 3z′2

ϕ

z1
= 0,

y(z1
2ϕ

′′ − 3xϕ′ + 3ϕ) = 0,

z1
2ϕ

′′ − 3xϕ′ + 3ϕ = 0.

16



Let ϕ = z1
r ϕ′ = rz1

r−1 ϕ
′′
= r(r − 1)z1

r−2 so,

z1
2.r(r − 1)z1

r−2 − 3x.rz1
r−1 + 3z1

r = 0,

r2 − r − 3r + 3 = 0,

r − 3 = 0, r − 1 = 0,

ϕ(z1) = c1z1 + c2z1
3,

we find two separate solutions for a certain equation. In this case, the solutions are

denoted as, ϕ = z1, and ϕ = z1
3. These two integrating factors has associated with these

solutions:

ν1 = z1z2, ν2 = z1
3z2, (2.45)

and the equation (2.44) can be solved without the need of extra integration step (see

Remark 2.1). first integrating factor is applied by multiplying the equation (2.44), we

have

z1z2(z2
′′ +

z2′2
z2

+ 3
y′
z1
) = 0,

z1z2z2
′′ + z1z

′2
2 + 3z2z

′
2 = 0.

Substituting z1z2z2′′ = Dz1(z1z2z
′
2)− z2z

′
2 − z1z

′2
2 , we reduce it to as,

Dz1 =
∂

∂z1
+ z′2

∂

∂z2
+ z2

′′ ∂

∂z′2
,

Dz1(z1z2z
′
2) = z2z

′
2 + z′2z1z

′
2 + z2

′′z1z2,

Dz1(z1z2z
′
2) = z2z

′
2 + z1z

′2
2 + z1z2z2

′′,

Dz1(z1z2z
′
2) + 2z2z

′
2 = 0,

Dz1(z1z2z
′
2) +Dz1(z22) = 0,
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Dz1(z1z2z
′
2 + z22)+ = 0,

where,

z1z2z
′
2 + z22 = C1. (2.46)

Now, ν2 = z1
3y,

z1
3yz2

′′ + z1
3z2′2 + 3z1

2z2z
′
2 = 0,

Dz1 =
∂

∂z1
+ z′2

∂

∂z2
+ z2

′′ ∂

∂z′2
,

3z1
2z2z

′
2 + z′2(z1

3z′2) + z2
′′(z1

3y) = 0,

3z1
2z2z

′
2 + z1

3z2′2 + z1
3z2z2

′′ = 0,

Dz1(z1
3z2z

′
2)− z1

3z2′2− 3z1
2z2z

′
2,

Dz1(z1
3z2z

′
2) = 3z1

2z2y′+ z1
3y′2 + z1

3z2z2
′′,

Dz1(z1
3z2z

′
2)− 3z1

2z2y′ − z2′2z13 + z1
3z2′2 + 3z1

2z2y′,

z1
3z2z

′
2 = C2. (2.47)

From the two equations (2.46)-(2.47), the variable z′2 can be eliminated. then general

solution to the original equation (2.44) can be obtained:

z2 = ±
√
C1 −

C2

z12
. (2.48)

2.7 Adjoint equations

Definition 2.2. Consider a collection partial differential equations of sth-order,

Fα(z1, u, ..., µ(s)) = 0, α = 1, ...,m, (2.49)

This function Fα depends on various variables, including n independent variables denoted

as x = (z1
1, ..., z1

n) and m dependent variables denoted as u = (µ1, ..., µm). The notation

18



u = µ(x) suggests that the variable u depends on the derivatives of x. This implies that

the dependent variables u are functions of x and its derivatives.

F ∗
α(z1, u, v, ..., µ(s), v(s)) ≡

δ(vβFβ)

δµα
= 0, α = 1, ...,m, (2.50)

where v = (v1, ..., vm) consist of new dependent variables ,v = v(z1).

Remark 2.2. In the context of linear differential equations, the adjoint equations intro-

duced in Definition 2.2 correspond precisely to the classical adjoint equations discussed

earlier. Therefore, a system of linear equations F (z1, u, ..., µ(s)) = 0 involving u(z1)

then it’s noted that the adjoint equation F ∗(z1, v, ..., v(s)) = 0 involving v(z1) is also

linear. i.e., F ∗∗ = F . Specifically, if the adjoint equation to F ∗(z1, v, ..., v(s)) = 0 is

F ∗∗(z1, w, ..., w(s)) = 0, then setting w = u in the latter equation result in the original

equation.

Definition 2.3. A system of equations (2.49) is said to be self-adjoint if a specific

condition involving its adjoint equations (2.50) is met. perform a substitution replacing

v with u:

F ∗
α(z1, u, u, ..., µ(s)) = 0, α = 1, ...,m,

the system of equations derived by substituting v = u, the adjoint equations is exactly

the same as the system of equations (2.49).

Example 2.2. Considering the first-order linear ordinary differential equation of n =

1,m = 1, set u = y, v = z, and the first-order linear ODE might resemble this:(1.15):

F (z1, z2, z
′
2) ≡ a0z

′
2 + a1z2 − f(z1) = 0.

As Euler Lagrange operator is,

F ∗
α(z1, u, v, µ(s), v(s)) =

δ

(vβFβ)
= 0,

δ(vF )

δz2
=
∂(vF )

∂z2
−Dz1

∂(vF )

∂z′2
+D2

z1

∂(vF )

∂z′2
− ....

Dz1 =
∂

∂z2
+ z′2

∂

∂z2
+ z2

′′ ∂

∂z′2
+ ....
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Equation (2.50) that definines the adjoint equation represented as:

δ(zF )

δz2
= (

∂

∂z2
−Dz1

∂

∂z′2
)(z[a0z

′
2 + a1z2 − f(z1)]) = 0.

since,

∂

∂z2
(z[a0z

′
2 + a1z2 − f(z1)]) = a1z,

∂

∂z′2
(z[a0z

′
2 + a1z2 − f(z1)]) = a0z,

(2.50) yields the adjoint equation a1z −Dz1(a0z) = 0, or

a1z − (a0z)
′ = 0

the left-hand side of the equation being discussed is exactly the same as the previously

defined adjoint operator in equation (1.16).

Example 2.3. In the equation of second order (1.17),

a0z2
′′ + a1z

′
2 + a2z2 = f(z1),

By using definition 2.2 we can obtain the adjoint equation,

(
∂

∂z2
−Dz1

∂

∂z′2
+D2

z1

∂

∂z
′′
2

)(z[a0z2
′′ + a1z

′
2 + a2z2 − f(z1)]) = 0.

similarly by using the same idea of the last example, one can get the adjoint equation

(1.18):

(a0z)
′′ − (a1z)

′ + a2z = 0.

Example 2.4. Consider a certain kind of linear partial differential equation. (1.8);

L[µ] ≡ aϵκ(z1)µϵκ + bϵ(z1)µϵ + cu = f(z1).

The adjoint equation is defined as follows in (2.50) ,
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(
∂

∂u
−Dϵ

∂

∂µϵ

+DϵDκ
∂

∂µϵκ

)(v[aϵκ(z1)µϵκ + bϵ(z1)µϵ + cu− f(z1)]) = 0,

∂

∂u
(v[aϵκ(z1)µϵκ + bϵ(z1)µϵ + cu− f(z1)]) = cv,

∂

∂µϵκ

(v[aϵκ(z1)µϵκ + bϵ(z1)µϵ + cu− f(z1)]) = bϵv,

∂

∂µϵκ

(v[aϵκ(z1)µϵκ + bϵ(z1)µϵ + cu− f(z1)]) = aϵκv,

so, calculation is leading to the derivation of the adjoint equation (1.14),

L∗[µ] ≡ DϵDκ(a
ϵκv)−Dϵ(b

ϵv) + cv = 0.

Example 2.5. Consider the heat equation

µt − c(z1)µz1z1 = 0,

where a constant coefficient c(z1) is used. Equation (2.50) can be written as, (see (2.29)):

δ

δu
(v[c(z1)µz1z1 − µt]) = (−Dt

∂

∂µt

+D2
z1

∂

∂µz1z1

)(v[c(z1)µz1z1 − µt]) = 0,

∂

∂µt

(v[c(z1)µz1z1 − µt]) = −v,

∂

∂µz1z1

(v[c(z1)µz1z1 − µt]) = vc(z1),

which produces the adjoint equation D2
z1
(c(z1)v) +Dt(v) = 0,

vt + (cv)z1z1 = 0.
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Definition 2.2 the adjoint equation likely refer to a specific concept in a particular math-

ematics or physics context.

Example 2.6. Consider the Korteweg-de Vries equation

µt = µz1z1z1 + uµx. (2.51)

We take partial differential equation involving several variables and partial derivatives,

i.e., F (t, z1, u, ..., µ(3)) = µt − µz1z1z1 − uµx and write the left-hand side of (2.50) in the

form,

δ

δu
(v[µt − µz1z1z1 − uµx]) =

∂

∂u
(v[µt − µz1z1z1 − uµx])−Dz1

∂

∂µx

(v[µt − µz1z1z1 − uµx])

−Dt
∂

∂µt

(v[µt − µz1z1z1 − uµx])

−D3
z1

∂

∂µz1z1z1

(v[µt − µz1z1z1 − uµx]),

= −vµz1 −Dz1(−vu)−Dt(v)−D3
z1
(−v),

= −vµz1 − [−vµz1 − vz1u]− vt + vz1z1z1 ,

= −vt + vz1z1z1 + uvz1 .

Hence, F ∗(t, z1, u, v, ..., µ(3), v(3)) = −(vt − vz1z1z1 − uvz1), and the adjoint equation to

the Korteweg-de Vries equation(2.51) is,

vt = vz1z1z1 + uvz1 . (2.52)

we have,

F ∗(t, z1, u, u, ..., µ(3), µ(3)) = −(µt − µz1z1z1 − uµx) ≡ −F (t, z1, u, ..., µ(3)).
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Thus, The equation (2.51) is self-adjoint implies that the Korteweg-de Vries (KdV)

equation possesses a certain symmetry in relation to its adjoint equation (see Definition

2.3). Let us finding the adjoint equation associated with it (ref50). We have,

δ

δv
(w[vt − vz1z1z1 − uvz1 ]) =

∂

∂v
(w[vt − vz1z1z1 − uvz1 ])−Dz1

∂

∂vz1
(w[vt − vz1z1z1 − uvz1 ])

−Dt
∂

∂vt
(w[vt − vz1z1z1 − uvz1 ])

+D3
z1

∂

∂vz1z1z1
(w[vt − vz1z1z1 − uvz1 ]),

= Dz1(uw)−Dt(w) +D3
z1
(w),

= −wt + wz1z1z1 + uwz1 + wµx.

Hence, the adjoint equation to equation (2.52), is wt = wz1z1z1+uwz1+wµx. Substituting

w = u, we arrive at a new equation that has to do with how a function u is derived,

µt = µz1z1z1 + 2uµz1 ,

is distinct from the original KdV equation (2.51) ,The specific differences and implica-

tions could be further explained in the context of (cf.Remark 2.2).

Example 2.7. Take the Burgers equation, for example,

µt = uµz1 + uz1z1 . (2.53)

Equation (2.50) is written as follows on it’s left hand side:

δ

δu
(v[µt − uµz1 − µz1z1 ]) =

∂

∂u
(v[µt − uµz1 − µz1z1 ]) = −Dz1

δ

δµx

(v[µt − uµz1 − µz1z1 ])

−Dt
δ

δµt

(v[µt − uµz1 − µz1z1 ]) +D2
z1

δ

δµz1z1

(v[µt − uµz1 − µz1z1 ])

−D2
t

δ

δµtt

(v[µt − uµz1 − µz1z1 ]),

= −vµz1 −Dz1(−vu)−Dt(v) +D2
z1
(−v)−D2

t (0),
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Hence, by taking the Lagrangian’s variation with respect to the adjoint variable, the

adjoint equation for the Burgers equation can be produced. (2.53) (is see also [7])

vt = uvz1 − vz1z1 . (2.54)

Example 2.8. Consider the non-linear heat equation:

µt = [k(u))µx]z1 . (2.55)

The left-hand side of Eq.(2.50) is written:

∂

∂u
(v[µt − k(u)µz1z1 − k′(u)µ2

z1
])

= −vt − k′(u)vµz1z1 − k
′′
(u)vµ2

z1
−D2

z1
(k(u)v)

+ 2Dz1(k
′(u)vµx).

(2.56)

We have Dz1(k(u)v) = kvz1 + k′vµx and therefore,

−D2
z1
(k(u)v) + 2Dz1(k

′(u)vµx) = −Dz1(kvz1) +Dz1(k
′vµx).

Using the Lagrangian and its variations, we insert this into the adjoint equation for the

nonlinear heat equation, referred to another equation (2.56) and a source for further

information (see also [7]):

vt + k(u)vz1z1 = 0. (2.57)

Let’s locate the adjoint equation to (2.57). We have,

∂

∂v
(w[vt + k(u)vz1z1 ]) = −wt +D2

z1
[k(u)w].

Hence, the adjoint equation for the non-linear heat equation (2.57) and discovered that

it is differ from original equation wt = [k(u)w]z1z1 . The fact that the adjoint equation

doesn’t coincide with the original equation when setting w = u.
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2.8 Lagrangians

Theorem 2.3. A set of second-order differential equations with general form is denoted

by (2.22),

Fα(z1, u, ..., µ(s)) = 0, α = 1, ...,m, (2.22)

considering a differential equation alongside its adjoint equation (2.50),

F ∗
α(z1, u, v, ..., µ(s), v(s)) ≡

δ(vβFβ)

δµα
= 0, α = 1, ...,m, (2.23)

has a Lagrangian. A system of second-order differential equations, specifically a simulta-

neous system involving equations (2.49)-(2.50) with 2m dependent variables represented

by u = (µ1, ..., µm) and v = (v1, ..., vm) is the system of Euler-Lagrange equations and

Lagrangian is defined based on a certain equation (1.21),

L = vβFβ. (2.58)

Proof. we have,

δL

δvα
= Fα(z1, u, ..., µ(s)), (2.59)

and

δL

δµα
= F ∗

α(z1, u, v, ..., µ(s), v(s)). (2.60)

The homogeneous linear second-order partial differential equation will be discussed (1.8):

L[µ] ≡ aϵκ(z1)µϵκ + bϵ(z1)µϵ + c(z1)u = 0. (2.61)

The Lagrangian (2.58) is written:

L = vL[µ] = v(aϵκ(z1)µϵκ + bϵ(z1)µϵ + c(z1)u). (2.62)
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We have,

δL

δv
=
δL

δv
= L[µ], (2.63)

and
δL

δµα
= DϵDκ(

∂L

∂µϵκ

)−Dϵ(
∂L

∂µϵ

) +
∂L

∂u
,

= DϵDκ(a
ϵκv)−Dϵ(b

ϵv) + cv = L∗[v]. (2.64)

Theorem 2.4. A linear operator L[µ] is self-adjoint, if its adjoint (or conjugate trans-

pose) is the same as the operator itself, i.e., L∗[µ] = L[µ]. Then equation (2.61) is derived

from the Lagrangian,

L =
1

2
[c(z1)µ

2 − aϵκ(z1)µϵµκ]. (2.65)

Proof. To write a given Lagrangian (2.62) in the specific form,

L = v(aϵκµϵκ + bϵµϵ + cu) = Dκ(va
ϵκµϵ)− vµϵDκ(a

ϵκ) + vbϵµϵ − aϵκµϵvκ + cuv.

The first step involves dropping the first term on the right-hand side of an equation,

likely due to a result stated in Lemma 2.3, due to a condition stated in equation (1.13),

the second and third terms cancel each other. Finally, set a variable v equal to u, and

then divide the equation by two, after following the above steps, reached the desired

Lagrangian, denoted as (2.65).

Example 2.9. The Helmholtz equation is given by, ∆u+k2u = 0, where δ is the Laplace

operator, k is a constant, and u is the independent variable representing the wave-like

function. The Lagrangian is given by (2.65)L = (k2µ2− | \∇u |2)/2.

Making a Lagrangian formulation for non-linear or linear non-self-adjoint equations re-

quires taking into account both the original equation and its adjoint equation. This

approach provides a versatile framework for understanding, analyzing, and solving com-

plex mathematical and physical systems.
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Example 2.10. One method to deal with the linear heat equation’s non-self-adjointness

is to take into account both it and its adjoint equation. A system of two equations is

produced as a result, and it offers a more comprehensive knowledge of the behavior,

symmetries, and sensitivities related to the diffusion process:

µt − c(z1)µz1z1 = 0, vt + (cv)z1z1 ,= 0 (2.66)

which is the linear heat equation and its adjoint equation, is derived from a Lagrangian,

L = vµt − c(z1)vµz1z1 . (2.67)

Example 2.11. According to Example 2.6, the Lagrangian,

L = v[µt − µz1z1z1 − uµx], (2.68)

by taking into count the conjugate of the Korteweg-de Vries equation (2.51), a combined

system of equations is obtained. This combined system likely describes the dynamics

and behavior of both equations as a unified whole.

µt = µz1z1z1 + uµz1 , vt = vz1z1z1 + uvz1 . (2.69)

Example 2.12. From the context of Example 2.8 it’s indicated that a Lagrangian is

derived,

L = v[µt − k(u)µz1z1 − k′(u)µ2
z1
], (2.70)

that leads to the non-linear heat equation (2.55) and its conjugate (2.57) a combined

system of equation is obtained:

µt = [k(u)µx]z1 , vt + k(u)vz1z1 = 0. (2.71)

Example 2.13. The Dirac equation is a fundamental equation in quantum mechanics,

27



γk
∂ψ

∂zk1
+mψ = 0, m = const. (2.72)

A four-dimensional column vector (psi) represents the variable, and its components are

complex valued quantities denoted as ψ1, ψ2, ψ3, ψ4. The first three components z11,

z1
2, z13 correspond to real-valued spatial variables, while the fourth component z14 is

a complex variable defined as z14 = ict, where t is time and c is the speed of light.

Furthermore, the Dirac matrices γk are a set of 4× 4 complex matrices, where k denotes

the matrix index:

γ1 =


0 0 0 −ι

0 0 −ι 0

0 ι 0 0

ι 0 0 0

 ,

γ2 =


0 0 0 −1

0 0 −1 0

0 1 0 0

−1 0 0 0

 ,

γ2 =


0 0 0 −1

0 0 −1 0

0 1 0 0

−1 0 0 0

 ,

γ3 =


0 0 −ι 0

0 0 0 ι

ι 0 0 0

0 −ι 0 0

 ,

γ4 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

Equation (2.72) lacks a Lagrangian. Therefore, a common approach is to consider it

together with its conjugate equation,
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∂ψ̃

∂zk1
γk −mψ̃ = 0. (2.73)

Here ψ̃ = ψ
T
γ4 is the complex-conjugate used to create the row vector, where ψ repre-

sents the complex conjugate of original coulmn vector ψ and T stands for transposition

operation. The system of equation (2.72)-(2.73) has a corresponding Lagrangian,

L =
1

2
[ψ̃(γk

∂ψ

∂zk1
+mψ)− (

∂ψ̃

∂zk1
γk −mψ̃)ψ].

Indeed, we have,

δL

δψ
= −(

∂ψ̃

∂zk1
γk −mψ̃),

δL

δψ̃
= γk

∂ψ

∂zk1
+mψ.
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Chapter 3

Application to the Maxwell equations

This section focuses on illustrating the use of Noether’s theorem by applying it to the

Maxwell equations in vacuum. By doing so, it aims to uncover conserved quantities

associated with symmetries present in the equations, leading to a more comprehensive

understanding of electromagnetic field behavior.

1

c

∂R
∂t

= curlS, divR = 0,

1

c

∂S
∂t

= −curlR, divS = 0. (3.74)

The system (3.74) involves six dependent variables,which correspond to the components

of the electric field R and the magnetic field S in three dimensional space. The system

contains eight equations. However, the system is too heavily determined since there

are more equations than dependent variables. This situation is where you have more

equations than variables to solve for. The Euler-Lagrange equations represents by (1.21)

are used to derive equations of motion from a Lagrangian. The number of equations

in this context matches the number of dependent variables. Despite the absence of

Lagrangian for system (3.74) the literature offers a way to establish a variational problem

in electrodynamics, This Lagrangian allows for the application of variational principles

to understand the behavior of wave phenomena,

∆A − 1

c2
∂2A
∂t2

= 0,
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Theorem 2.3 allows for the derivation of the Lagrangian for the electromagnetic field,

which is likely related to the principles of electromagnetic theory and Lagrangian me-

chanics. The equations divR = 0, and divS = 0 represents the divergence free condition

for the electric field and magnetic field. It is stated that these requirements must be

met initially in order for them to hold at any time t = 0. Due to the divergence-free

conditions acting as initial conditions, the system of Maxwell’s equations (3.74) can be

reduced to a determined system of differential equations. The time variable is also trans-

formed to t′ = ct. The use of the new time variable t′ (in units of distance divided by

the speed of light) simplifies the equations by incorporating the speed of light directly

into the equations, which is a common practice in relativistic physics.

curlR +
∂S
∂t

= 0, curlS − ∂R
∂t

= 0. (3.75)

The process involves introducing six new dependent variables, specifically the compo-

nents of two vectors U = (V 1, V 2, V 3) and T = (W 1,W 2,W 3), and the subsequent

introduction of a Lagrangian,

L = U.(curlR +
∂S
∂t

) + T.(curlS − ∂R
∂t

). (3.76)

the following explanation or action is consistent with the definition in equation (2.58).

the provided Lagrangian (3.76) that can be used to drive the system (3.75) with its

adjoint:

∂L

∂U
≡ curlR +

∂S
∂t

= 0,
∂L

∂T
≡ curlS − ∂R

∂t
= 0. (3.77)

∂L

∂R
≡ curlU +

∂T
∂t

= 0,
∂L

∂S
≡ curlT − ∂U

∂t
= 0. (3.78)

when U = R, and T = S, the expression (3.77) coincides with the previous equation

(3.74) that represent the Maxwell equation and this equation is self-adjoint. Therefore

set U = R, and T = S in the derived equation, the equation is then divided by two.

The result is the Lagrangian for the Maxwell equations (3.74) (cf. Theorem 2.4):
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L =
1

2
[R.(curlR +

∂S
∂t

) + S.(curlS − ∂R
∂t

)], (3.79)

the Lagrangian (3.79) will be presented in a mathematical form:

L = E1(Ez23− E2
z +H1

t ) + E2(E1
z − E3

z1
+H2

t ) + E3(E2
z1
− Ez21 +H3

t )

+H1(Hz23−H2
z − E1

t ) +H2(H1
z −H3

z1
− E2

t ) +H3(H2
z1
−Hz21− E3

t ).
(3.80)

The Maxwell equations, which describe electromagnetic phenomena, have well-known

symmetries, the Lagrangian (3.79) is employed as the mathematical framework to apply

Noether’s theorem. The invariance of the system (3.75) with respect to a particular

group of transformation.

S′ = Scosθ + Rsinθ, R′ = Rcosθ − Ssinθ, (3.81)

with the generator,

z1 = R
∂

∂S
− S

∂

∂R
≡

3∑
i=1

(Eϵ ∂

∂Hϵ
−Hϵ ∂

∂Eϵ
). (3.82)

There is a specific expression associated with (1.25),

z1 = R
∂

∂S
− S

∂

∂R
+ Rt

∂

∂St

− St
∂

∂Rt

+ Rz1

∂

∂Sz1

− Sz1

∂

∂Rz1

+ .... (3.83)

Applying a specific operator (3.83) to the Lagrangian (3.79), here’s a concise explanation:

X(L) =
1

2
[−S.(curlR + St) + R.(curlS − Rt)

+ R.(−curlS + Rt) + S.(curlR + St)] = 0.

Hence, the derivation of conservation law using the formula (1.23) and then presents the

conservation law in a particular format,

Dt(τ) + divχ = 0, (3.84)
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where χ = (χ1, χ2, χ3), divχ = Dz1(χ
1) +Dz2(χ

2) +Dz(χ
3). Equation (1.23) yields

τ = R.
∂L

∂St

− S.
∂L

∂Rt

=
1

2
[R.R − S.− (S)] =

1

2
[E2 +H2].

Consequently, τ stands for the energy density.. The poynting vector χ is calculated as a

result of determining the spatial coordinates of the conserved vector (1.23). The Poynting

vector is a fundamental concept in electromagnetics and represents the directional energy

flux (power per unit area) of electromagnetic waves. Thus, by establishing energy density

and is the poynting vector the passage concludes that the conservation of energy has been

obtained.

Dt(
E2 +H2

2
) + div(R × S) = 0. (3.85)

3.9 Conclusion:

Maxwell’s Equation had a significant influence on modern science and technology. Their

uses are extensive, ranging from energy production and communication to materials

science and medical imaging. These equations continue to influence how we think about

the fundamentals of electromagnetism and propel technological advancement in a variety

of fields.
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