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Preface

According to Stefan Banach(1922), on a complete metric space, every contraction has
a unique fixed point. In order to broaden the Banach fixed point theorem, several
writers developed a number of contractive type constraints. By extending the concept
of contraction from single-valued to multi-valued mappings, Nadler applied the Banach
contraction principle. Several authors have now broadened the range of contractive
type constraints to include multi-valued mappings.
In order to be the first work to present fixed point theory in fuzzy metric spaces [in the
sense of Kramosil and Michalek], Grabiec (1988) produced a fuzzy metric version of
the Banach and Edelstein fixed point theorems(1975).
One of the more appealing generalisations of the Banach contraction theorem, which
establishes metric completeness, is Caristi’s(1976) fixed point theorem, which is well
recognised. With regard to fuzzy metric spaces, an intriguing generalisation of the fixed
point theorem by Caristi (1976) and the variational principle by Ekeland (1972) was re-
cently reported by Abbasi and Golshan (2016). However, their findings do not address
the Kirk’s dilemma or the accompanying fuzzy metric’s completeness characterisation
(1976). J. Martinez-Moreno et. al develops a class of Caristi type mappings with a fixed
point and describes the completeness of the appropriate fuzzy metric to solve these
problems.

The results of fuzzy metric space on fuzzy b-metric space are expanded in this disser-
tation. Basic results and definitions that are required for later chapters are provided in
chapter 1. In the second chapter, we define a class of Caristi type mappings with fixed
points and describe the completeness of the related fuzzy metric. Some results from
chapter 2 are extended in chapter 3 on fuzzy b-metric space.
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Chapter 1

Preliminaries

This chapter provides a review of few concepts and findings that are necessary for the
study of sequal chapters. R and Z are the sets of real numbers and integers respectively,
used in this chapter.

1.1 Metric spaces

The notion of metric, which Frechet proposed in 1906, is a generalisation of the calculus
concept of how far two points are from one another. The study of metric is helpful in the
development of the concept of convergence and continuity in abstract spaces. Metric is
important in geometry and analysis. In this section we will define some basic definitions
from [1]

Definition 1.1.1. Suppose U = R− {0}, and ζ : U×U −→ R is satisfying the properties
given below

1. ζ(u, v) ≥ 0

2. ζ(u, v) = 0 ⇐⇒ u = v

3. ζ(u, v) = ζ(v, u)

4. ζ(u, w) ≤ ζ(u, v) + ζ(v, w) ∀ u, v, w ∈ U.

If so, ζ is referred to as metric on U, and (U, ζ) is known as metric space.

Example 1.1.2. Define ζ : U × U −→ R by

ζ(u, v) = |1
u

− 1
v

|.

Then ζ is metric on U.
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Example 1.1.3. For U = Rs, Define ζ : U × U −→ R by

ζ(u, v) =
√√√√ s∑

p=1
|up − vp|2,

where u = (u1, u2, u3, ......us), and v = (v1, v2, v3, ......, vs). Then ζ is a metric on U.

Example 1.1.4. Suppose U = B[u, v] comprises all real-valued, bounded functions de-
fined on [u,v]. Define ζ : U × U −→ R by

ζ(h, k) =
∫ v

u
|h(u) − k(u)|dU.

Then ζ is metric on U.

Definition 1.1.5. Assume that (U, ζ) is a metric space, let u0 ∈ U and t ∈ R+, then open
and closed ball having centre at u0 and radius t in U are denoted and defined as

1. S(u0, t) = {u ∈ U : ζ(u, u0) < t}

(Open Ball)

2. S[u0, t] = {u ∈ U : ζ(u, u0) ≤ t}

(Closed Ball)

Definition 1.1.6. Suppose (U, ζ) is a metric space, and V ⊆ U.
i- The open set in U is V ⇐⇒ for any u ∈ U ∃ t > 0 in a way that u ∈ S(u, t) ⊆ V
ii- The Closed set in U is V ⇐⇒ Vc is open in (U, ζ)

Definition 1.1.7. In a metric space (U, ζ)
i- un is stated to be converge to a point u ∈ U. ⇐⇒ for some positive integer n0 and for
every ε > 0 regardless of how little such that ζ(ur, us) < ε whenever r, s ≥ n0.
ii- ur is stated to be a cauchy sequence in (U, ζ) ⇐⇒ for some positive integer ro and for
every ε > 0, ζ(us, ur) < ε whenever s, r ≥ ro.
iii- {ur} is stated to be a bounded sequence ⇐⇒ ∃ some positive real no µ, however
large to the effect that for each positive integer r

ζ(ur, u) ≤ µ.

Here u is some fixed element of U.

Remark 1.1.8. i- When ur −→ u then lim
r−→∞

d(ur, u) = 0. We also write it as

lim
r−→∞

ur = u.

ii- Every convergent sequence is Cauchy in the metric space (U, ζ). Nevertheless, not all
Cauchy sequence converges.
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Definition 1.1.9. (U, ζ) is complete metric space provided in U each and every Cauchy
sequence converges.

Definition 1.1.10. Suppose (U, du) and (V, dv) are metric spaces and h is function from
U to V.
i- A point t ∈ V is said to be limit of function h at point u0 ∈ U provided whenever ε > 0,
a ponit exists for δ > 0 such that ζu(u, u0) < δ =⇒ ζv(h(u), l) < ε or

lim
u−→u0

h(u) = l.

ii- h is called continuous at u0 ∈ U provided for each open ball S(v, r) in V containing
h(u0) ∃ some open ball S(u, t) in U containing u0 such that h(S(u, t)) ⊆ S(v, r).
Remark 1.1.11. If a function h is continuous ∀u ∈ U, then it is said to be continuous at
U.

1.2 Fixed point

A fixed point is a value that does not change as a result of a specific transformation
(sometimes referred to as an invariant point or fixed point). A fixed point of a function
in mathematics is a particular element that the function maps to itself.

Definition 1.2.1. [1] Assume that h : U −→ U is a mapping and (U, ζ) is a metric space.
If a point u is mapped into itself, i.e. h(u) = u, it is then referred to as a fixed point of h.

Remark 1.2.2. There are four different types of fixed points that can exist in a mapping:
none, one, several, and infinite.

Example 1.2.3. i- Define a mapping h : R −→ R as

h(u) = u

2
has unique fixed point 0.
ii- There are two fixed points 0 and 1 in the mapping h : R −→ R defined as

h(u) = u2

.
iii- The number of fixed points in the mapping h : R2 −→ R2 described by

h(u, v) = u

are infinite.
iv- Suppose U ̸= ϕ and defne h : U −→ U as

h(u) = u + a

where a is arbitrary constant. No fixed point exists for h.

Remark 1.2.4. Points where the graph of h, whose equation is v = h(u), crosses the
diagonal, whose equation is u = v, are graphically known as fixed points.
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1.3 Fixed point theorems

Theorems describing fixed point’s existence and properties are known as fixed point
theorems. Informally, the field of mathematics known as fixed point theory seeks to
locate all self-maps (also known as self correspondence) where at least one element is
left invariant.

i- Metric fixed point theory
Although other people were aware of the metric fixed point theory’s core concepts ear-
lier, it is ascribed to the polish mathematician Stefan Banach with popularising and
making use of the idea.
ii- Banach fixed point theorem
The contraction mapping theorem, also called contraction mapping principle, is another
name for the Bannach fixed point theorem and is a crucial tool when researching metric
spaces. In particular self-mapping metric spaces, it guarantees the existence of fixed
points and are unique and offers a useful technique for locating those fixed points. It
states that
”Assume that (U, ζ) is a complete metric space . If γ is a mapping from U into itself
satisafying ζ(γu, γv) < αζ(u, v) (called Banach Contraction) for each u and v belongs to
U, where α is any real no such that 0 ≤ α < 1 then fixed point of γ in U is distinct”.

1.4 b-metric spaces

There are numerous metric and metric space extensions in addition to fuzzy met-
ric spaces. In order to broaden the application of the Banach contraction principle,
Bakhtin(1989) and Czerwik(1993) developed a space where a weaker condition was
found than the triangle inequality. b-metric spaces was the name given to these spaces.

Definition 1.4.1. [6] Let U ̸= ∅ , a mapping ζb : U × U −→ R+ is called b-metric if it
meets the requirements listed below;

1. ζb(u, v) ≥ 0

2. ζb(u, v) = 0 ⇐⇒ u = v

3. ζb(u, v) = ζb(v, u)

4. ζb(u, w) ≤ ζb(u
b
, v

b
) + ζb(v

b
, w

b
) ∀ u, v, w ∈ U and b ≥ 1

(U, ζb) here stands for b-metric space.

Remark 1.4.2. For b=1, any b-metric becomes a metric, although the opposite is gen-
erally incorrect.

Example 1.4.3. If ζb(u, v) = |v − u|2, u, v ∈ R, then ζb is a b-metric for b = 2. For u =
5, v = 3 and w = 4 it is not a metric because the condition ζb(u, w) ≤ ζb(u, v) + ζb(v, w)
fails.
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1.5 Fuzzy set

A group of items known as a fuzzy set has a range of membership grades. A membership
(characteristic) function, which assigns each object a membership grade between zero
and one, is one technique to recognise such a set. In this section we will define some
basic definitions from [2].

Definition 1.5.1. If U is a set that is not empty, one way to describe a fuzzy set is
A = {(u, σA(u))|u ∈ U} in which u is a particular element of U and σA : U −→ [0, 1]
referred to as the membership function and σA(u) is said to be degree of membership
of u.

Example 1.5.2. Let U = {1, 2, 3, 4, 5, 6} then fuzzy set of U is

A = {(1, 0.9), (2, 0.5), (3, 0.4), (4, 0.6), (5, 0.2), (6, 0.7)}

or also we write it as
σA(1) = 0.9

σA(2) = 0.5

σA(3) = 0.4

σA(4) = 0.6

σA(5) = 0.2

σA(6) = 0.7

Definition 1.5.3. Suppose σA and σB be two fuzzy sets of U.
i- Intersection of σA and σB is denoted by σA ∩ σB and defined as

(σA ∩ σB)(u) = min{σA(u), σB(u)}

ii- Union of σA and σB is asserted as σA ∪ σB and defined by

(σA ∪ σB)(x) = max{σA(x), σB(x)}

iii- A fuzzy set’s complement is asserted by σc
A(x) and defined as

σc
A(x) = 1 − σA(x)

Example 1.5.4. Let U = {1, 2, 3}

σA = {(1, 0.8), (2, 0.3), (3, 0.7)},

σB = {(1, 0.2), (2, 0.7), (3, 0.3)}.
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i − σA ∩ σB = {(1, min(0.8, 0.2)), (2, min(0.3, 0.7)), (3, min(0.7, 0.3))}
= {(1, 0.2), (2, 0.3), (3, 0.3)}

ii − σA ∪ σB = {(1, max(0.8, 0.2)), (2, max(0.3, 0.7)), (3, max(0.7, 0.3))}
= {(1, 0.8), (2, 0.7), (3, 0.7)}

Definition 1.5.5. i- A set whose degree of membership is 1 called universal set.
ii- A set whose degree of membership is 0 called empty set.

Definition 1.5.6. Let σ1, σ2, σ3, ................σn be n fuzzy sets of U1,U2,U3, ...............,Un

respectively then their cross product or cartesian product is denoted and defined as

σ1×σ2×σ3×................×σn(u1, u2, u3, ........., un) = min{σ1(u1), σ2(u2), σ3(u3), ..........., σn(un)}

1.6 t-norm

A t-norm is a type of binary operation used in multi-valued logic, particularly in fuzzy
logic, as well as regarding probabilistic metric spaces. The term ”triangular norm” refers
to the way that t-norms are used to generalise the triangle inequality of fuzzy metric
spaces.

Definition 1.6.1. [3] A mapping of the form ∗ : [0, 1] × [0, 1] −→ [0, 1] is referred to as
a continuous and triangular norm (t-norm) if it meets the criteria below.
∗ is

1. Continuous

2. Commutative and Associative

3. 1 ∗ p = p ∀ p ∈ [0, 1].

4. For p, q, r, s ∈ [0, 1] p ∗ q ≤ r ∗ s when p ≤ r and q ≤ s

Example 1.6.2. i- Minimum t-norm For p, q ∈ [0, 1], p ∗ q = min {p, q}.
ii- Product t-norm Suppose p, q ∈ [0, 1], p ∗ q = pq.
iii- Lukasiewicz t-norm Suppose p, q ∈ [0, 1], p ∗ q = max{p + q − 1, 0} ∀ p , q ∈ [0, 1].
iv. Archimedean t-norm A t-norm ∗ is known as Archimedean, if ∀ p , q ∈ [0, 1],

p ∗ q ≥ p =⇒ q = 1.
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1.7 Fuzzy metric spaces

As stated in the definition of fuzzy metric spaces provided by Kaleva and Seikkala(1984),
if the distance between the elements is not a precise number, the imprecision is in-
cluded in the metric. The concept of a fuzzy metric space was then introduced, initially
by Kramosil and Michalek(1975) and later by George and Veeramani(1994). In this
chapter, we examine the fuzzy metric space theory proposed by George and Veera-
mani(1994).

Definition 1.7.1. [4]
Suppose Y ̸= ϕ and Fm is a fuzzy set on Y × Y × (0, ∞) and ∗ is a t-norm. Then an
ordered triplet (Y, Fm, ∗) is a fuzzy metric space satisfying the conditions given below
∀ p , q, r ∈ Y and u, w > 0.

1. Fm(p, q, w) > 0

2. Fm(p, q, w) = 1 ⇐⇒ p = q

3. Fm(p, q, w) = Fm(q, p, w)

4. Fm(p, r, u + w) ≥ Fm(p, q, u) ∗ Fm(q, r, w)

5. Fm(p, q, .) : (0, ∞) −→ (0, 1] is continuous.

Remark 1.7.2. This is what the second condition of fuzzy metric space is equivalent to

Fm(p, p, w) = 1

∀ p ∈ Y and w > 0 and
Fm(p, q, w) < 1

∀ p ̸= q and w > 0.

Definition 1.7.3. Think of (Y, Fm, ∗) as a fuzzy metric space. The definition of open
ball S(p, q, w) with centre at p ∈ Y and radius 0 < q < 1 is defined as

S(p, q, w) = {r ∈ Y : Fm(p, r, w) > 1 − q}.

Definition 1.7.4. Suppose (Y, Fm, ∗) is a fuzzy metric space. Suppose τ is a collection
of all X ⊂ Y with p ∈ X ⇐⇒ ∃ w > 0 and 0 < q < 1 in a way that S(p, q, w) ⊂ A.
Consequentally τ is a topology on Y (resulting from fuzzy metric Fm). This topology is
1st Countable and Hausdorff.

Definition 1.7.5. Consider a fuzzy metric space (Y, Fm, ∗).
i- {pn} ⊆ Y is referred to as convergent to a point p ∈ Y when a sequence. If

lim
n−→∞

Fm(pn, p, w) = 1 ∀ w > 0
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ii- {pn} ⊆ Y is referred to as a Cauchy sequence when every w > 0 and ε ∈ (0, 1), a
positive integer u ∈ N in a way that

Fm(pn, pm, w) > 1 − ε ∀ m , n ≥ u.

iii- A fuzzy metric space (Y, Fm, ∗) is regarded as complete if all Cauchy sequences are
convergent.

Remark 1.7.6. If the metric space (Y, Fm, ∗) is fuzzy, then Fm is a continuous function
on Y × Y × (0, ∞).

Definition 1.7.7. Consider a fuzzy metric space (Y, Fm, ∗), a mapping Fm on Y × Y ×
(0, ∞), is regarded as continuous if

lim
n−→∞

Fm(pn, wn, qn) = Fm(p, w, q)

whenever {(pn, qn, wn)} is a sequence in Y × Y × (0, ∞) this converges about a point
(p, q, w) ∈ Y × Y × (0, ∞)
i.e.

lim
n−→∞

Fm(pn, p, w) = lim
n−→∞

Fm(qn, q, w) = 1

and

lim
n−→∞

Fm(p, q, wn) = Fm(p, q, w).

Definition 1.7.8 (5). When a sequence {un}n∈N in metric space Fm is such that,

γkun −→ γv =⇒ γk−1un −→ v.

The term ”k-continuous” refers to a self mapping of that space where k = 1, 2, 3,..........
etc.

Remark 1.7.9. Although the opposite isn’t always true, any continuous map is k-
continuous

1.8 Fuzzy b-metric spaces

Fuzzy metric spaces are just one of several metric and metric space expansions. Fuzzy
b-metric spaces, in which the triangle inequality is substituted with a weaker one, were
first described by Sedghi S., Shobe N. (2012)

Definition 1.8.1. [7]
Suppose Y ̸= ϕ and Fbm be a fuzzy set on Y × Y × (0, ∞) and ∗ is a t-norm. Then
fuzzy b-metric space is an ordered triplet (Y, Fbm, ∗) satisafying the following conditions
∀ p , q, r ∈ Y, u, w > 0 and b ≥ 1
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1. Fbm(p, q, w) > 0

2. Fbm(p, q, w) = 1 ⇐⇒ p = q

3. Fbm(p, q, w) = Fbm(q, p, w)

4. Fbm(p, r, u + w) ≥ Fbm(p, q, u
b
) ∗ Fbm(q, r, w

b
)

5. Fbm(p, q, .) : (0, ∞) −→ (0, 1] is continuous.

Remark 1.8.2. In general, the reverse is not true. When b = 1, any fuzzy b-metric space
is a fuzzy metric space.

Example 1.8.3. Consider the case where Fbm(p, q, u) = e
−|p−q|p

u and b > 1 be a real
number. Fbm is therefore a fuzzy b-metric with p = 2b−1. However, when b = 2 it is not
a fuzzy metric.
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Chapter 2

Completeness of Archimedian type
fuzzy metric spaces using Caristi type
mappings

In this chapter, we review some basic results of [8]. We first construct a fixed point
theorem that generalises Abbasi and Golshan’s central theorem, and then we establish
a theory that defines the completeness of an Archimedian type fuzzy metric space.

Definition 2.0.1. Assume that the mapping ξ : [0, 1] −→ [0, 1] is a self mapping. Then

1. ξ is called amenable if
ξ−1(1) = 1

2. ξ is called ∗- superadditive if

ξ(u ∗ v) ≥ ξ(u) ∗ ξ(v)∀ u , v ∈ [0, 1]

Lemma 2.0.2. Assume that the mapping ξ : [0, 1] −→ [0, 1] is continuous and non-
decreasing. If ∗ is Archimedean and ξ(u) = 1 for some u ∈ (0, 1) then ξ(v) = 1 ∀ v ∈ [0, 1]

Proof. Due to fact that u ∈ (0, 1) and ∗ is Archimedian so ∃ some w such that ∗n(u) < v.
Then

ξ(v) ≥ ∗w(u) = 1
because ξ is continuous and non-decreasing, this implies

ξ(v) ≥ 1

=⇒ ξ(v) = 1 ∀ v ∈ [0, 1].
In particular

ξ(0) = ξ(1) = 1
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2.1 Common point of self mappings in fuzzy metric
spaces

In this section, first we define a Caristi-Kirk ball in fuzzy metric space (Y, Fm, ∗) and then
by using the amenability of mapping ξ : [0, 1] −→ [0, 1] and the contractive condition

ξ(Fm(βy, αy, u)) ∗ γ(αy) ≥ γ(βy)

we prove that the self mappings α and β have a common point in Y provided β(Y) is
complete.

Definition 2.1.1. Assume that (Y, Fm, ∗) is a fuzzy metric space, γ : Y −→ [0, 1] and
ξ : [0, 1] −→ [0, 1]. The Caristi-Kirk ball is defined as follows for each y1 ∈ Y such that .

C(y1) = {y2 ∈ Y : ξ(Fm(y1, y2, w) ∗ γ(y2) ≥ γ(y1), ∀ w > 0}

Theorem 2.1.2. Consider a fuzzy metric space (Y, Fm, ∗) in which ∗ is

1. Continuous

2. Archimedean

and where α, β : Y −→ Y are self mappings, γ : Y −→ [0, 1] is

1. Non-trivial on β (i.e.y ∈ Y such that γ(βy) ̸= 0)

2. Upper semi-continuous functions.

Consider the following ξ : [0, 1] −→ [0, 1] is continuous, non-decreasing mapping that meets
the conditions

ξ(Fm(βy, αy, u)) ∗ γ(αy) ≥ γ(βy) (2.1.1)

∀ y ∈ Y and u > 0 and that ξ(u ∗ v) ≥ ξ(u) ∗ ξ(v) and ξ−1(1) = {1}. Consequentally α
and β share a common point in Y provided β(Y) is complete.

Proof. Set the Caristi-Kirk balls for each y ∈ Y so that γ(y) ̸= 0,

C(y) = {y′ ∈ Y : ξ(Fm(y, y′, u)) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

and
δ(y) = sup

y′∈C(y)
γ(y′)

Then ∀ y’ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′)

Clearly C(βy) ̸= ∅ ∀ y , because by (2.1.1)
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αy ∈ C(βy)
Suppose y1 = y, then

βy1 ∈ C(βy)
Similarly

βy2 ∈ C(βy1)
βy3 ∈ C(βy2)

...

βyn+1 ∈ C(βyn)
and

γ(βyn+1) ≥ δ(βyn) − 1
n

, ∀ u ≥ 0

Now as
βyn+1 ∈ C(βyn)

=⇒ γ(βyn+1) ≥ ξ(Fm(βyn, βyn+1, u)) ∗ γ(βyn+1) ≥ γ(βyn)
∀ u > 0. So {γ(βyn)} is an increasing sequence and hence it converges.
Now as

δ(βyn) ≥ γ(βyn+1) ≥ δ(βyn) − 1
n

So

lim
n−→∞

δ(βyn) = lim
n−→∞

γ(βyn)

exists.
Suppose

l = lim
n−→∞

δ(βyn) = Lim
n−→∞

γ(βyn). (2.1.2)

Next, we demonstrate the following inequality by induction.

ξ(Fm(βyn, βym, u)) ∗ γ(βym) ≥ γ(βyn) ∀ u > 0, ∀ m > n. (2.1.3)

Assume (2.1.3) is accurate ∀ m > n.
We provide proof for m+1:

ξ(Fm(βyn, βym+1, u)) ∗ γ(βym+1) ≥ ξ(Fm(βyn, βym,
u

2 )) ∗ ξ(Fm(βym, βym+1,
u

2 )) ∗ γ(βym+1)

≥ ξ(Fm(βyn, βym,
u

2 ) ∗ ξ(Fm(βym, βym+1,
u

2 )) ∗ γ(βym+1)

≥ ξ(Fm(βyn, βym,
u

2 )) ∗ γ(βym)

≥ γ(βyn)
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=⇒ (2.1.3) is correct for m+1. Consequently, it holds accurate for every m ∈ N.
We shall now demonstrate that {βyn} is a Cauchy sequence. On the other hand, if {βyn}
is not a Cauchy sequence, then ∃, 0 < ϵ < 1 and u > 0 in a way that ∀ n ∈ N, ∃ m ∈ N

Fm(βyn, βym, u) < 1 − ϵ.

By (2.1.2) for every 0 < ϵ′ < 1 ∃ N ∈ N with

l ≥ γ(βyn) ≥ l(1 − ϵ′) ∀ n > N.

From (2.1.3) and properties of ξ, we can conclude

l ∗ ξ((1 − ϵ)) ≥ ξ(Fm(βyn, βym, u)) ∗ l

≥ ξ(Fm(βyn, βym, u)) ∗ γ(βym)
≥ γ(βyn)
≥ l(1 − ϵ′)

valid ∀ m > n > N
i.e.

l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′).
Hence, because to the amenability of ξ, contradicts the Archimedean condition. Hence
{βyn} converges to p = β(w) ∈ β(Y).
Since γ is upper semi-continuous and by (2.1.2) we have l = lim

n−→∞
Sup(γ(βyn)) <

γ(βw). Taking the limit from both sides of (2.1.3) now, we get

γ(βyn) ≤ lim
m−→∞

Sup(ξ(Fm(βyn, βym, u)) ∗ γ(βym))
≤ ξ(Fm(βyn, w, u)) ∗ γ(βw)

∀ u > 0. Thus
βw ∈ C(βyn).

Therefore
δ(βyn) > γ(βw).

So by (2.1.2), k ≥ γ(βw) and hence

l = γ(βw) = γ(p)

Since βw ∈ C(βyn) and (2.1.1) holds so αw ∈ C(βw). Note that

ξ(Fm(βyn, αw, u)) ∗ γ(αw) ≥ ξ(Fm(βyn, βw,
u

2 )) ∗ ξ(Fm(βw, αw,
u

2 )) ∗ γ(βw)

≥ ξ(Fm(βyn, βw,
u

2 )) ∗ γ(βy)

> γ(βyn), ∀ u > 0.
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Hence
αw ∈ C(βyn) ∀ n ∈ N

=⇒ γ(αw) ≤ δn(yn) ∀ n ∈ N.

Hence by (2.1.2) we get

γ(αw) ≤ l.

.
Since (2.1.1) holds and γ(βw) = l, we have that

γ(βw) = l ≥ γ(αw) ≥ γ(βw).

Thus

γ(βw) = γ(αw) = l.

Also (2.1.2) shows that

l ∗ ξ(Fm(βw, αw, u)) ≥ l ∀ u > 0. (2.1.4)

It means that
ξ(Fm(βw, αw, u)) = 1

and from previous lemma

Fm(βw, αw, u) = 1 ∀ u > 0

and hence
βw = αw

Remark 2.1.3. We get a fixed point result if we take β as identity.

2.2 Fixed point of self mappings in complete fuzzy met-
ric spaces

In this section, we prove that if fuzzy metric space (Y, Fm, ∗) is complete then the self
mapping α has a fixed point in Y by using the similar contractive condition as in the
above section.

Corollary 2.2.1. Consider a fuzzy metric space (Y, Fm, ∗) which is complete with ∗ is

1. Continuous
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2. Archimedean

α : Y −→ Y be a self mapping, γ : Y −→ [0, 1] is

1. Non-trivial (i.e.y ∈ Y =⇒ γ(y) ̸= 0).

2. Upper semi-continuous function

Consider ξ : [0, 1] −→ [0, 1] which is

1. Continuous

2. Non-decreasing mapping that meets the conditions

ξ(Fm(y, αy, u)) ∗ γ(αy) ≥ γ(y) (2.2.1)

∀ y ∈ Y and u > 0 with ξ(u ∗ v) ≥ ξ(u) ∗ ξ(v) and ξ−1(1) = {1}. As a result Y contains
the fixed point of α.

Proof. Set the Caristi-Kirk ball for each y ∈ Y so that γ(y) ̸= 0,

C(y) = {y′ ∈ Y : ξ(Fm(y, y′, u) ∗ γ(y′) ≥ γ(y) ∀ u > 0}
and

δ(y) = sup
y′∈C(y)

γ(y′).

Then ∀ y’ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′).
Clearly C(y) ̸= ∅ ∀ y, because by (2.2.1)

αy ∈ C(y).
Suppose y1 = y, then

y1 ∈ C(y).
Similarly

y2 ∈ C(y1)

y3 ∈ C(y2)
...

yn+1 ∈ C(yn)
and

γ(yn+1) ≥ δ(yn) − 1
n

, ∀ u ≥ 0.
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Now as yn+1 ∈ C(yn)

=⇒ γ(yn+1) ≥ ξ(Fm(yn, yn+1, u)) ∗ γ(yn+1) ≥ γ(yn), ∀ u > 0.

So {γ(yn)} is an increasing sequence and hence it converges.
Now as

δ(yn) ≥ γ(yn+1) ≥ δ(yn) − 1
n

.

So

lim
n−→∞

δ(yn) = lim
n−→∞

γ(yn)

exists.
Suppose

l = lim
n−→∞

δ(yn) = Lim
n−→∞

γ(yn). (2.2.2)

Now the following inequality is demonstrated through induction

ξ(Fm(yn, ym, u)) ∗ γ(ym) ≥ γ(yn)∀u > 0, ∀m > n. (2.2.3)

Assume that (2.2.3) holds true if m > n.
We establish it for m+1:

ξ(Fm(yn, ym+1, u)) ∗ γ(ym+1) ≥ ξ(Fm(yn, ym,
u

2 )) ∗ ξ(Fm(ym, ym+1,
u

2 )) ∗ γ(ym+1)

≥ ξ(Fm(yn, ym,
u

2 )) ∗ ξ(Fm(ym, ym+1,
u

2 )) ∗ γ(ym+1)

≥ ξ(Fm(yn, ym,
u

2 )) ∗ γ(ym)

≥ γ(yn)

=⇒ (2.2.3) is accurate for m+1 and hence it holds for any m ∈ N.
We shall now demonstrate that {yn} is a Cauchy sequence. {yn} must be a Cauchy
sequence otherwise, ∃ 0 < ϵ < 1 and u > 0 in a way that ∀ n ∈ N, ∃ m ∈ N

Fm(yn, ym, u) < 1 − ϵ.

By (2.2.2) for every 0 < ϵ′ < 1 ∃ N ∈ N with

l ≥ γ(yn) ≥ l(1 − ϵ′) ∀ n > N.

From (2.2.3) and properties of ξ, we can conclude

l ∗ ξ((1 − ϵ)) ≥ ξ(Fm(yn, ym, u)) ∗ l

≥ ξ(Fm(yn, ym, u)) ∗ γ(ym)
≥ γ(yn)
≥ l(1 − ϵ′)
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valid ∀ m > n > N
i.e.

l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′).
Hence, because of the amenability of ξ, contradicts the Archimedean condition. Hence
{yn} converges to p = w ∈ Y.
Since γ is upper semi-continuous and by (2.2.2) we have

l = lim
n−→∞

Supγ(yn) < γ(w).

Taking a limit now from both sides of (2.2.3) , we get

γ(yn) ≤ lim
m−→∞

Sup(ξ(Fm(yn, ym, u)) ∗ γ(ym))
≤ ξ(Fm(yn, w, u)) ∗ γ(u)

∀ u > 0. Thus w ∈ C(yn).
Therefore

δ(yn) > γ(w).
So by (2.2.2), k ≥ γ(w) and so

l = γ(w) = γ(p).
Since w ∈ C(yn) and (2.2.1) holds αw ∈ C(w). Note that

ξ(Fm(yn, αw, u)) ∗ γ(αw) ≥ ξ(Fm(yn, w,
u

2 )) ∗ ξ(Fm(w, αw,
u

2 )) ∗ γ(w)

≥ ξ(Fm(yn, w,
u

2 )) ∗ γ(y) > γ(yn) ∀ u > 0.

Hence αw ∈ C(yn) ∀ n ∈ N

=⇒ γ(αw) ≤ δn(yn), ∀ n ∈ N.

Hence by (2.2.2) we get
γ(αw) ≤ l.

Since (2.2.1) holds and γ(w) = l, we possess that

γ(w) = l ≥ γ(αw) ≥ γ(w).
Thus

γ(w) = γ(αw) = l.

Also (2.2.2) shows that

l ∗ ξ(Fm(w, αw, u)) ≥ l ∀ u > 0. (2.2.4)
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It means that

ξ(Fm(w, αw, u)) = 1

and from lemma(2.0.1)

Fm(w, αw, u) = 1 ∀ u > 0

and hence
w = αw.

=⇒ The required fixed point of α is w.

Example 2.2.2. Suppose {yn} represents strictly increasing sequence of real numbers,
where 0 < y ≤ 1∀n ∈ N with Lim

n−→∞
yn = 1. Suppose

Y = {yn : n ∈ N} ∪ {1}

and

p ∗ 1
2

q = 2pq

1 + p + q − pq
∀ p, q ∈ [0, 1].

On Y × Y × (0, ∞) define a fuzzy set Fm by

Fm(1, 1, u) = 1 = Fm(yn, yn, u) ∀ n ∈ N

Fm(y1, y2, u) = Fm(y2, y1, u) = 1
7

Fm(y1, y3, u) = Fm(y3, y1, u)
= Fm(y2, y3, u)
= Fm(y3, y2, u)
= Fm(y2, y4, u)
= Fm(y4, y2, u)
...

= 1
49

Now we prove that (Y, Fm, ∗) be a fuzzy metric space.
i- Clearly for y1, y2, ∈ Y and u ∈ [0, 1]

Fm(y1, y2, u) > 0

ii-
Fm(y, y, u) = 1
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and

Fm(y1, y2, u) < 1

∀ y1, y2 ∈ Y and u ∈ [0, 1].
iii- Also for any y1, y2 ∈ Y and u ∈ [0, 1]

Fm(y1, y2, u) = Fm(y2, y1, u).

iv- Let y1, y2, y3 ∈ Y, u, v ∈ [0, 1].
Now

Fm(y1, y2, u) ∗ Fm(y2, y3, v) = 1
7 ∗ 1

49

=
2(1

7)( 1
49)

1 + 1
7 + 1

49 − (1
7)( 1

49)

= 1
199

and

Fm(y1, y3, u) = 1
49 .

Clearly

Fm(y1, y3, u) > Fm(y1, y2, u) ∗ Fm(y2, y3, v).

Hence for any y1, y2, y3 ∈ Y with u, v ∈ [0, 1]

Fm(y1, y3, u) ≥ Fm(y1, y2, u) ∗ Fm(y2, y3, v).

v- Also Fm(y1, y2, .) : (0, ∞) −→ (0, 1] is continuous.
Consequently, the metric space (Y, Fm, ∗) is fuzzy . Define a mapping α : Y −→ Y by

αyn = yn+1 ∀ n ∈ N,

α(1) = 1.

Define γ(r) = r and ξ(w) = 1 next.
Then, α has a single fixed point with the value j = 1 because it meets all the require-
ments of corrollary (2.2.1). α, however, does not fulfil the Abbasi criterion. Contrarily
assume that α satisafy the Abbasi condition, then

Lim
n−→∞

Fm(yn, αyn, u) ∗ Lim
n−→∞

γ(αyn) ≥ Lim
n−→∞

Supγ(yn).

i.e.
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1
49 ∗ Lim

n−→∞
Supγ(yn+1) ≥ γ(yn)

or

1
7 ∗ Lim

n−→∞
Supγ(yn+1) ≥ γ(yn).

Since γ is upper semi-continuous and hence

k = Lim
n−→∞

γ(yn+1) ≤ γ(j)

where

Lim
n−→∞

yn = j.

The aforementioned inequality thus becomes

1
49 ∗ k ≥ k

or

1
7 ∗ k ≥ k

that contradicts the Archimedean requirement of ∗.

Remark 2.2.3. The following Abbasi and Golshan conclusion follows if we assume that
ξ and β are identity maps in theorem (2.1.2).

Corollary 2.2.4. Let us assume that (Y, Fm, ∗) is complete fuzzy metric space, in which ∗
is

1. Archimedean

2. Continuous.

A self mapping is α : Y −→ Y. γ : Y −→ [0, 1] is

1. Non-trivial (i.e. y ∈ Y =⇒ γ(y) ̸= 0)

2. Upper semi-continuous functions.

Suppose
Fm(y, αy, u) ∗ γ(αy) ≥ γ(y) (2.2.5)

∀ y ∈ Y and u > 0. A fixed point for α is then found in Y.
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Proof. Assume that ξ : [0, 1] −→ [0, 1] is an identity map. Also ξ is amenable and ∗-
supperadditive. For each y ∈ Y such that γ(y) ̸= 0, set the Caristi-Kirk ball

C(y) = {y′ ∈ Y : ξ(Fm(y, y′, u)) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

C(y) = {y′ ∈ Y : Fm(y, y′, u) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

and

δ(y) = sup
y′∈C(y)

γ(y′)

Then ∀ y’ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′)

Clearly C(y) ̸= ∅ ∀ y , because by (2.2.5)

αy ∈ C(y)

Suppose y1 = y then
y1 ∈ C(y)

Similarly

y2 ∈ C(y1)

y3 ∈ C(y2)
...

yn+1 ∈ C(yn)

and
γ(yn+1) ≥ δ(yn) − 1

n
, ∀ u ≥ 0.

Now as
yn+1 ∈ C(yn)

=⇒ γ(yn+1) ≥ Fm(yn, yn+1, u) ∗ γ(yn+1) ≥ γ(yn) ∀ u > 0.

So {γ(yn)} is an increasing sequence and hence it converges.
Now as

δ(yn) ≥ γ(yn+1) ≥ δ(yn) − 1
n

.

So
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lim
n−→∞

δ(yn) = lim
n−→∞

γ(yn)

exists.
Suppose

l = lim
n−→∞

δ(yn) = Lim
n−→∞

γ(yn). (2.2.6)

Now we establish the following inequality using induction.

Fm(yn, ym, u) ∗ γ(ym) ≥ γ(yn) ∀ u > 0, ∀ m > n. (2.2.7)

Assume (2.2.7) is accurate when m > n.
We demonstrate it for m+1:

Fm(yn, ym+1, u) ∗ γ(ym+1) = Fm(yn, ym+1,
u

2 + u

2 ) ∗ γ(ym+1)

≥ Fm(yn, ym,
u

2 ) ∗ Fm(ym, ym+1,
u

2 ) ∗ γ(ym+1)

≥ Fm(yn, ym,
u

2 ) ∗ Fm(ym, ym+1,
u

2 ) ∗ γ(ym+1)

≥ Fm(yn, ym,
u

2 ) ∗ γ(ym)

≥ γ(yn)

=⇒ (2.2.7) is correct for m+1 and hence it is accurate for any m ∈ N.
{yn} will now be demonstrated to be a Cauchy sequence. On the other hand, let’s say
that {yn} is not a Cauchy sequence. So ∀ n ∈ N, ∃ m ∈ N, it follows that for 0 < ϵ < 1
and u > 0

Fm(yn, ym, u) < 1 − ϵ.

By (2.2.6) for every 0 < ϵ′ < 1 ∃ N ∈ N in a way that

l ≥ γ(yn) ≥ l(1 − ϵ′) ∀ n > N.

From (2.2.7) and properties of ξ, we can conclude

l ∗ ξ((1 − ϵ)) ≥ ξ(Fm(yn, ym, u)) ∗ l

≥ Fm(yn, ym, u) ∗ γ(ym)
≥ γ(yn)
≥ l(1 − ϵ′)

valid ∀ m > n > N i.e.
l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′).

It is in conflict with the Archimedean condition because it is amenable to ξ. Hence {yn}
converges to p = w ∈ Y.
Since γ is upper semi-continuous and by (2.2.6) we have l = lim

n−→∞
Supγ(yn) < γ(w).

22



Currently, we obtain simply taking the limit from both sides of (2.2.7)

γ(yn) ≤ lim
m−→∞

SupFm(yn, ym, u) ∗ γ(ym)
≤ Fm(yn, w, u) ∗ γ(u) ∀ u > 0.

Thus w ∈ C(yn).
Therefore δ(yn) > γ(w). So by (2.2.6), k ≥ γ(w) and so l = γ(w) = γ(p).
Since w ∈ C(yn) and (2.2.5) holds αw ∈ C(w). Note that

Fm(yn, αw, u) ∗ γ(αw) ≥ Fm(yn, w,
u

2 ) ∗ Fm(w, αw,
u

2 ) ∗ γ(w)

≥ Fm(yn, w,
u

2 ) ∗ γ(y)

> γ(yn) ∀ u > 0.

Hence αw ∈ C(yn) ∀ n ∈ N

=⇒ γ(αw) ≤ δn(yn) ∀ n ∈ N.

Hence by (2.2.6) we get

γ(αw) ≤ l.

Since (2.2.5) holds and γ(w) = l, we possess that

γ(w) = l ≥ γ(αw) ≥ γ(w).
Thus

γ(w) = γ(αw) = l.

Also (2.2.6) shows that

l ∗ Fm(w, αw, u) ≥ l ∀ u > 0. (2.2.8)

It means that

Fm(w, αw, u) = 1.

As a result w = αw.
=⇒ The required fixed point of α is w.

Remark 2.2.5. The Abbasi theorem will be generalised in the theorem that follows.

Theorem 2.2.6. Consider a fuzzy metric space (Y, Fm, ∗) under the operation ∗ that fullfils
the criterion
∗ is

1. Continuous
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2. Archimedean

and α : Y −→ Y should be a k-continuous self mapping that meets the requirement

Fm(y, αy, u) ∗ γ(αy) ≥ γ(y) (2.2.9)

∀ y ∈ Y and u > u0 for some u0 > 0, where γ : Y −→ [0, 1] to the extent it is not trivial. (
i.e y ∈ Y =⇒ γ(y) ̸= 0). Subsequentally Y contains a fixed point for α.

Proof. Suppose ξ : [0, 1] −→ [0, 1] is an identity map. Also ξ is amenable and ∗- supper-
additive. If y ∈ Y =⇒ γ(y) ̸= 0, then set a Caristi-Kirk ball

C(y) = {y′ ∈ Y : ξ(Fm(y, y′, u)) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

C(y) = {y′ ∈ Y : Fm(y, y′, u) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

and

δ(y) = sup
y′∈C(y)

γ(y′)
.
Then ∀ y′ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′).
Clearly C(y) ̸= ∅ ∀ y , because by (2.2.9) αy ∈ C(y).
Suppose y1 = y then

y1 ∈ C(y).
Similarly

y2 ∈ C(y1)
y3 ∈ C(y2)

...

yn+1 ∈ C(yn)
and

γ(yn+1) ≥ δ(yn) − 1
n

, ∀ u ≥ 0.

Now as yn+1 ∈ C(yn)

=⇒ γ(yn+1) ≥ Fm(yn, yn+1, u) ∗ γ(yn+1) ≥ γ(yn) ∀ u > 0.

So {γ(yn)} is an increasing sequence and hence it converges.
Now as

δ(yn) ≥ γ(yn+1) ≥ δ(yn) − 1
n

.
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So

lim
n−→∞

δ(yn) = lim
n−→∞

γ(yn)

exists.
Suppose

l = lim
n−→∞

δ(yn) = Lim
n−→∞

γ(yn). (2.2.10)

Now we establish the following inequality using induction

Fm(yn, ym, u) ∗ γ(ym) ≥ γ(yn) ∀ u > 0, ∀ m > n. (2.2.11)

Suppose (2.2.11) is accurate ∀ m > n.
We provide proof for m+1:

Fm(yn, ym+1, u) ∗ γ(ym+1) = Fm(yn, ym+1,
u

2 + u

2 ) ∗ γ(ym+1)

≥ Fm(yn, ym,
u

2 ) ∗ Fm(ym, ym+1,
u

2 ) ∗ γ(ym+1)

≥ Fm(yn, ym,
u

2 ) ∗ γ(ym)

≥ γ(yn).

Since (2.2.11) holds true for m+1 it is accurate ∀ m ∈ N.
We shall now demonstrate that {yn} be a Cauchy sequence. If however, {yn} be not a
Cauchy sequence, then ∃ 0 < ϵ < 1 and u > 0, there is a m ∈ N ∀ n ∈ N in a way that

Fm(yn, ym, u) < 1 − ϵ.

By (2.2.10) for every 0 < ϵ′ < 1 ∃ N ∈ N with

l ≥ γ(yn) ≥ l(1 − ϵ′) ∀ n > N.

From (2.2.11) and properties of ξ, we can conclude

l ∗ ξ((1 − ϵ)) ≥ ξ(Fm(yn, ym, u)) ∗ l

≥ Fm(yn, ym, u) ∗ γ(ym)
≥ γ(yn)
≥ l(1 − ϵ′)

valid ∀ m > n > N
i.e.

l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′).
Hence, because to the amenability of ξ contradicts the Archimedean condition. Conse-
quently, {yn} must be Cauchy.
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Since Y is complete, so y ∈ Y must be in a way that

Lim
n−→∞

(yn) = y

and

lim
n−→∞

(αwyn) = y ∀ w ≥ 1

k-continuity of α then suggests that

Lim
n−→∞

(αkyn) −→ y.

As a result, y is the required fixed point of α.

2.3 Invariance of fuzzy metric under certain mappings

In this section, we exhibit that if the mapping ξ : [0, 1] −→ [0, 1] is satisfying some
properties then it is fuzzy metric preserving.

Lemma 2.3.1. Assume ξ : [0, 1] −→ [0, 1] fullfills the criteria given below

1. ξ(u) ≥ ξ(v) whenever u ≥ v

2. ξ(u ∗ v) ≥ ξ(u) ∗ ξ(v)

3. ξ−1(1) = 1

4. ξ(u) > 0 ∀ u > 0.

Subsequentally ξ is a fuzzy metric-preserving function.

Proof. Consider the fuzzy metric space (Y, Fm, ∗). Currently we establish that F ′
m =

ξ ◦ Fm is a fuzzy metric space.
i- Suppose y1, y2 ∈ Y and u > 0 then

F ′
m(y1, y2, u) = ξ ◦ Fm(y1, y2, u)

= ξ(Fm(y1, y2, u)) ∀y1, y2 ∈ Y and u ∈ Fm

= ξ(u′) where u′ > 0.

> 0 ∵ ξ(u) > 0 when u > 0.

=⇒ F ′
m(y1, y2, u) > 0.

ii- For y1, y2 ∈ Y and u > 0

F ′
m(y1, y2, u) = ξ ◦ Fm(y1, y2, u)

= ξ(Fm(y1, y2, u)).
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Now as Fm is a fuzzy metric, so

Fm(y1, y2, u) = 1 ⇐⇒ y1 = y2

=⇒ F ′
m(y1, y2, u) = ξ(1) ⇐⇒ y1 = y2

= 1 ∀ y1, y2 ∈ Y and u > 0.

iii- For any y1, y2 ∈ Y and u > 0

F ′
m(y1, y2, u) = ξ ◦ Fm(y1, y2, u)

= ξ(Fm(y1, y2, u))
= ξ(Fm(y2, y1, u))
= ξ ◦ Fm(y2, y1, u)
= F ′

m(y2, y1, u).

iv- Let y1, y2, y3 ∈ Y with u, v > 0 then

F ′
m(y1, y3, u + v) = ξ ◦ Fm(y1, y3, u + v)

≥ ξ(Fm(y1, y2, u)) ∗ Fm(y2, y3, v))
≥ ξ(Fm(y1, y2, u)) ∗ ξ(Fm(y2, y3, v))
= F ′

m(y1, y2, u) ∗ F ′
m(y2, y3, v)

=⇒ F ′
m(y1, y3, u + v) ≥ F ′

m(y1, y2, u) ∗ F ′
m(y2, y3, v).

v- Obviously F ′
m(y1, y2, .) : (0, ∞) −→ (0, 1] is continuous because

Fm(y1, y2, .) : (0, ∞) :−→ (0, 1] as well as ξ is continuous.
ξ′ is thus a fuzzy metric space.

Remark 2.3.2. We show a kind of Archimedean t-norm ∗ in the case below, such that
u ∗m v > u ∗ v > uv.

Example 2.3.3. Suppose that Y = {1, 1
2 , 2

7},

u ∗ 1
2

v = {2uv}
1 + u + v − uv

∀ u , v ∈ [0, 1]

and
Fm : Y × Y × (0, ∞) −→ [0, 1] defined for each u > 0 as

Fm(1, 1, u) = Fm(1
2 ,

2
7 , u) = 1

Fm(1,
2
7 , u) = Fm(2

7 , 1, u) = Fm(1
2 ,

2
7 , u) = Fm(2

7 ,
1
2 , u) = 1

2

and

Fm(1,
1
2 , u) = Fm(1

2 , 1, u) = 2
7 .
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i- Clearly
Fm(y1, y2, u) > 0 ∀ y1, y2 ∈ Y

ii-
Fm(y1, y2, u) = 1 ⇐⇒ y1 = y2.

iii- Clearly
Fm(y1, y2, u) = Fm(y2, y1, u) ∀ y1, y2 ∈ Y and u > 0.

iv- Also in particular for 1, 1
2 , 2

7 ∈ Y

Fm(1,
2
7 , u) = 1

2
Fm(1,

1
2 , u) ∗ Fm(1

2 ,
2
7 , u) = 2

7 ∗ 1
2

=
2(2

7)(1
2)

1 + 2
7 + 1

2 − (2
7)(1

2)

=
2
7

14+4+7−2
14

=
2
7
23
14

= 2
7 × 14

23
= 4

23
<

1
2

=⇒ Fm(1,
1
2 , u) ∗ Fm(1

2 ,
2
7 , u) < Fm(1,

2
7 , u).

Hence in general ∀ y1, y2, y3 ∈ Y with u, v ∈ [0, 1]

Fm(y1, y3, u + v) ≥ Fm(y1, y2, u) ∗ Fm(y2, y3, v)
v- Obviously Fm(y1, y2, .) : (0, ∞) −→ (0, 1] is continuous.
As a result (Y, Fm, ∗) be a fuzzy metric space.
Now consider a mapping α : Y −→ Y by

α(1) = 1

α(1
2) = 2

7

α(2
7) = 2

7
and
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γ(1) = 1

γ(1
2) = 4

19

γ(2
7) = 2

7 .

Then clearly α satisafies all the conditions of corrollary (2.2.4) having fixed point as a
result y1 = 1, y2 = 2

7 .

Remark 2.3.4. Clearly u ∗ 1
2

v > uv. t-norm ∗ is an Archimedean.

2.4 Completeness of Archimedean type fuzzy metric
spaces

In this section, we prove the completeness of fuzzy metric space when it is satisfying
the Archimedean condition which is the main objective of this chapter.

Theorem 2.4.1. Consider a fuzzy metric space (Y, Fm, ∗), and ∗ satisafies the conditions.
∗ is

1. Continuous

2. Archimedean.

If the condition

Fm(αy, α2y, u) > Fm(y, αy, u) =⇒ Fm(αy, α2y, u)2 ≥ Fm(y, αy, u) (2.4.1)

∀ y ̸= αy and u > 0
and each k-continuous self-mappings of Y that meets the requirement of theorem (2.2.6)
contains a fixed point. Consequentally Y is complete.

Proof. Assume that each k-continuous self-mappings of Y that meets the requirements
of the theorem (2.2.6) contains a fixed point. We demonstrate the completeness of Y.
On contrary let Y is not complete. Following that, Y has a Cauchy equence, say
G = {v1, v2, v3, . . . }, is up of different points that don’t converge. Assume that w ∈ Y
is provided. As w is not the Cauchy sequence G’s limit point, ∃ N(w) a least positive
integer, like that w ̸= vN(w). Thus we have for any case where t > N(w) and u > 0

Fm(w, vN(w), u) < Fm(vN(w), wt, u). (2.4.2)

Let us define a mapping α : Y −→ Y by α(w) = vN(w). Then αw ̸= w for each w and
using equation (2.4.1), for any w ∈ Y and u > 0 we get
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Fm(αw, α2w, u) = Fm(vN(w), vN(αw), u) > Fm(vN(w), wt, u) = Fm(w, αw, u) (2.4.3)

then by equation (2.4.1), we have

Fm(αw, α2w, u)2 ≥ U(w, αw, u).

Setting
γ(w) = Fm(w, αw, u0)2,

we have

Fm(w, αw, u0) ∗ γ(αw) = Fm(w, αw, u0) ∗ Fm(αw, α2w, u0)2

≥ Fm(w, αw, u0) ∗ Fm(w, αw, u0)
= γ(w).

Moreover

Fm(w, αw, u) ∗ γ(αw) ≥ Fm(w, αw, u0) ∗ γ(αw)
≥ γ(w) ∀ u ≥ u0.

Therefore, the mapping α satisfies the theorem’s (2.2.6) contractive criterion. Moreover,
the non-convergent cauchy sequence G = {vn}n∈N contains the range of the fixed point
free mapping α. Thus, the sequence {yn}n∈N in Y is not present for which the condition
{αyn}n∈Y converges, i.e the sequence {yn}n∈N in Y does not exist in which the condition
αyn −→ z ⇐⇒ α2yn −→ αz is not met. Algorithm α is 2-continuous as a result.
We therefore have a self-mapping α of Y. It meets every requirement of the theorem
(2.2.6), but lacks a fixed point.This is counter to the theorem’s premise. As a result, Y
is complete.

Remark 2.4.2. The following example serves as a proof of the theorem.

Example 2.4.3. Suppose Y = (0, 1],

u ∗ v = uv ∀ u , v ∈ [0, 1]

and

Fm(y1, y2, u) = min{y1, y2}
max{y1, y2}

∀ y1, y2 ∈ Y, ∀ u > 0.

Clearly the fuzzy metric space (Y, Fm, ∗) is Y-complete.. Establish the mapping α :
Y −→ Y by

α(y) = y
1
2 ∀ y ∈ Y.
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If γ is defined by

γ(y) =

y if y ∈ (0, 1
4 ],

1 if y ∈ (1
4 , 1].

then the fixed point of α is 1 since it fullfills all of the conditions of theorem (2.2.6).
Be aware that at 1

4 , γ is not an upper semi-continuous mapping.

Remark 2.4.4. A further generalisation of the Abbasi theorem is the following theorem.

Theorem 2.4.5. Assume (Y, Fm, ∗) as a fuzzy metric space with α, β : Y −→ Y are
continuous and Archimedean. Suppose ∃ a mapping γ : Y −→ [0, 1] such that

1. Fm(αy, βy, u) ∗ γ(βy) ≥ γ(αy) ∀ u ≥ 0 and y ∈ Y,

2. Fm(βy1, βy2, u)2 > min{Fm(αy1, αy2, u)2, Fm(αy1, βy2, u) ∗ Fm(αy1, βy2, u)}
∀ y1 ̸= y2 and u ≥ 0

3. β(Y) ⊂ α(Y)

4. β(Y) or α(Y) are complete.

As a result in Y, α and β shares a common point.

Proof. Assume that y1 = y and select yn in such a way that

αyn = βyn−1.

Take that into consideration without losing any generality.

αyn ̸= αyn ∀ n .

In other case, αyn = βyn

By (i)

γ(αyn+1) ≥ Fm(αyn, αyn+1, u) ∗ γ(αyn+1) ≥ γ(αyn).

So {γ(αyn)} is an increasing sequence which causes it to converge ∀ u ≥ 0.
We may determine that {αyn} be a Cauchy sequence with similar justification using
theorem (2.1.2).
Algorithm α(Y) is complete, therefore {αyn} converges to αw = p ∈ Y.
Additionally, {βyn} converges to αw = p.
We will now demonstrate that αw = βw.
Imagine instead that αw ̸= βw, then by using (ii)

Fm(βyn, βw, u)2 > min{Fm(αyn, αw, u)2, Fm(αyn, βw, u) ∗ Fm(βyn, αw, u)}
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Letting n −→ ∞,

Fm(αw, βw, u)2 ≥ Fm(αw, βw, u).

This gives a contradiction. Hence

αw = βw.

2.5 Compatible mappings and their common points

In this section, first we define compatible mappings then we will prove that the com-
patible mappings have a unique common fixed point if is satisfying some properties.

Definition 2.5.1. Two maps α, β : Y −→ Y if commutes at coincidence points, they are
said to be weakly compatible.
i.e.

βαw = αβw,

∀ w such that

βw = αw.

Theorem 2.5.2. Similar to the theorem’s requirements (2.4.5).They are weakly compati-
ble mappings if β and α share only one fixed point between them.

Proof. Suppose p = βw = αw. Since β and α are weakly compatible,

αp = αβw = βαw = βp.

i.e. Another point that both β and α share is p.
Imagine that βp ̸= p, then

Fm(βp, p, u)2 = Fm(β2w, βw, u)2

> min{Fm(αβw, αw, u)2, Fm(αβw, βw, u) ∗ Fm(β2w, αw, u)}
= min{Fm(αβw, βw, u)2, Fm(βp, p, u)2}
= Fm(βp, p, u)2

a contradiction. Hence

αp = βp = p.
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Chapter 3

Fixed point results in fuzzy b-metric
spaces

With regard to fuzzy metric spaces, Abbasi and Golshan [15] provided an intriguing
generalisation of Caristi’s [16] fixed point theorem. However, their findings do not
address the characterization of the relevant fuzzy metric’s completeness. J.Martinez-
Mereno et. al [8] develops a class of Caristi type mappings with fixed points to address
these problems and characterises the completeness of the appropriate fuzzy metric. For
interested readers we have a little important literature related to Martinez-Mereno’s
study ([9], [10], [11], [12], [13], [14]). However, these results are not yet examined
for extended fuzzy metric spaces. In order to validate these results for extended fuzzy
metric spaces, here we use fuzzy b-metric space. Therefore, in this chapter we prove
that same class of Caristi type mapping also have fixed point in fuzzy b-metric space.

3.1 Common point of self mappings in fuzzy b-metric
spaces

The Caristi-Kirk ball is defined in this section first using the fuzzy b-metric space
(Y, Fbm, ∗), and then by utilising the amenability of mapping ξ : [0, 1] −→ [0, 1] with the
help of the contractive condition

ξ(Fbm(βy, αy, u)) ∗ γ(αy) ≥ γ(βy).

We are able to demonstrate that the self mappings α and β share a common point in Y,
provided that β(Y) is complete.

Definition 3.1.1. Assume that (Y, Fbm, ∗) is a fuzzy b-metric space, γ : Y −→ [0, 1] and
ξ : [0, 1] −→ [0, 1]. The Caristi-Kirk ball is defined as follows for each y1 ∈ Y such that .

C(y1) = {y2 ∈ Y : ξ(Fm(y1, y2, w) ∗ γ(y2) ≥ γ(y1), ∀ w > 0}
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Theorem 3.1.2. Consider a fuzzy b-metric space (Y, Fbm, ∗) satisafying the conditions. ∗
is

1. Continuous

2. Archimedean

α, β : Y −→ Y be a self mapping, γ : Y −→ [0, 1] in order for γ to be non-trivial on β be
such that (i.e.y ∈ Y such that γ(βy) ̸= 0) and upper semi-continuous functions. Suppose
ξ : [0, 1] −→ [0, 1] is

1. Continuous

2. Non-decreasing

3. ∗-supper-additive

4. Amenable

and satisfying
ξ(Fbm(βy, αy, u)) ∗ γ(αy) ≥ γ(βy) (3.1.1)

∀ y ∈ Y and u > 0. α and β share a common point in Y provided β(y) is complete.

Proof. Set the Caristi-Kirk ball for any y ∈ Y such that γ(y) ̸= 0,

C(y) = {y′ ∈ Y : ξ(Fbm(y, y′, u)) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

and

δ(y) = sup
y′∈C(y)

γ(y′).

Then ∀ y’ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′).

Clearly C(βy) ̸= ∅ ∀ y because by (3.1.1)

αy ∈ C(βy).

Suppose y1 = y then

βy1 ∈ C(βy).

Similarly

βy2 ∈ C(βy1)
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βy3 ∈ C(βy2)
...

βyn+1 ∈ C(βyn)

and
γ(βyn+1) ≥ δ(βyn) − 1

n
, ∀ u ≥ 0.

Now as
βyn+1 ∈ C(βyn)

=⇒ γ(βyn+1) ≥ ξ(Fbm(βyn, βyn+1, u)) ∗ γ(βyn+1) ≥ γ(βyn)

∀ u > 0 and b ≥ 1.
So {γ(βyn)} is an increasing sequence and hence it converges.
Now as

δ(βyn) ≥ γ(βyn+1) ≥ δ(βyn) − 1
n

.

So

lim
n−→∞

δ(βyn) = lim
n−→∞

γ(βyn)

exists.
Suppose

l = lim
n−→∞

δ(βyn) = Lim
n−→∞

γ(βyn). (3.1.2)

We now demonstrate the following inequality via induction

ξ(Fbm(βyn, βym, u)) ∗ γ(βym) ≥ γ(βyn) ∀ u > 0, ∀ m > n. (3.1.3)

Assume that (3.1.3) holds true for m > n.
We establish it for m+1:

ξ(Fbm(βyn, βym+1, u)) ∗ γ(βym+1) = ξ(Fbm(βyn, βym+1,
u

2 + u

2 )) ∗ γ(βym+1)

≥ ξ(Fbm(βyn, βym+1,
u

2b
) ∗ Fbm(βym, βym+1,

u

2b
)) ∗ γ(βym+1)

≥ ξ(Fbm(βyn, βym,
u

2b
)) ∗ ξ(Fbm(βym, βym+1,

u

2b
)) ∗ γ(βym+1)

≥ ξ(Fbm(βyn, βym,
u

2b
)) ∗ γ(βym)

≥ γ(βyn)

=⇒ (3.1.3) is correct for m+1 and hence it holds for any m ∈ N.
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We shall now demonstrate that βyn is a Cauchy sequence. However let’s assume that
{βyn} be not a Cauchy sequence, in which case, ∃ 0 < ϵ < 1 with u > 0 ∀ n ∈
N, ∃ m ∈ N in a way that

Fbm(βyn, βym, u) < 1 − ϵ.

By (3.1.2) for each 0 < ϵ′ < 1, ∃ N ∈ N with

l ≥ γ(βyn) ≥ l(1 − ϵ′) ∀ n > N.

From (3.1.3) and the characteristics of ξ, we can say

l ∗ ξ((1 − ϵ)) ≥ ξ(Fbm(βyn, βym, u)) ∗ l

≥ ξ(Fbm(βyn, βym, u)) ∗ γ(βym)
≥ γ(βyn)
≥ l(1 − ϵ′)

valid ∀ m > n > N
i.e.

l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′).
Due to the amenability of ξ , it conflicts with the Archimedean condition. Hence {βyn}
converges to p = β(w) ∈ β(Y).
Since γ is upper semi-continuous and by (3.1.2) we have

l = lim
n−→∞

Sup(γ(βyn)) < γ(βw).

Taking the limit on each side of (3.1.3), we get

γ(βyn) ≤ lim
m−→∞

Sup(ξ(Fbm(βyn, βym, u)) ∗ γ(βym))
≤ ξ(Fbm(βyn, w, u)) ∗ γ(βw) ∀ u > 0.

Thus
βw ∈ C(βyn).

Therefore
δ(βyn) > γ(βw).

So by (3.1.2),
k ≥ γ(βw)

and so
l = γ(βw) = γ(p).

Since βw ∈ C(βyn) and (3.1.1) holds

αw ∈ C(βw).
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Note that

ξ(Fbm(βyn, αw, u)) ∗ γ(αw) = ξ(Fbm(βyn, αw,
u

2 + u

2 )) ∗ γ(αw)

≥ ξ(Fbm(βyn, βw,
u

2b
) ∗ Fbm(βw, αw,

u

2b
)) ∗ γ(αw)

≥ ξ(Fbm(βyn, βw,
u

2b
)) ∗ ξ(Fbm(βw, αw,

u

2b
)) ∗ γ(βw)

≥ ξ(Fbm(βyn, βw,
u

2b
)) ∗ γ(βy) > γ(βyn) ∀ u > 0, b ≥ 1

Hence
αw ∈ C(βyn) ∀ n ∈ N

=⇒ γ(αw) ≤ δn(yn) ∀ n ∈ N.

Hence by (3.1.2) we get

γ(αw) ≤ l.

Since (3.1.1) holds and γ(βw) = l, we have that

γ(βw) = l ≥ γ(αw) ≥ γ(βw).

Thus

γ(βw) = γ(αw) = l.

Also (3.1.2) shows that

l ∗ ξ(Fbm(βw, αw, u)) ≥ l ∀ u > 0. (3.1.4)

It means that

ξ(Fbm(βw, αw, u)) = 1

as ξ is amenable, so

Fbm(βw, αw, u) = 1 ∀ u > 0

and hence

βw = αw.

Remark 3.1.3. The Theorem 3.3 of Martinez-Moreno et. al 2021 follows directly
from the previous theorem for b = 1.
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3.2 Fixed point of self mappings in complete fuzzy b-
metric spaces

This section uses the similar contractive condition as in the part before to demonstrate
that if the fuzzy b-metric space (Y, Fbm, ∗) is complete, then the self mapping α has a
fixed point in this space.

Corollary 3.2.1. Assume that (Y, Fbm, ∗) be a complete fuzzy b-metric space in which ∗ is

1. Continuous

2. Archimedean

α : Y −→ Y be a self mapping, γ : Y −→ [0, 1] to the extent that γ is non-trivial (i.e.
y ∈ Y that way γ(y) ̸= 0) together with the upper semi-continuous functions. Suppose
ξ : [0, 1] −→ [0, 1] is

1. Continuous

2. Non-decreasing

mapping satisafying

ξ(u ∗ v) ≥ ξ(u) ∗ ξ(v),

ξ−1({1}) = {1}

and
ξ(Fbm(y, αy, u)) ∗ γ(αy) ≥ γ(y) (3.2.1)

∀ y ∈ Y and u > 0. Hence Y contains a fixed point for α.

Proof. Define a Caristi-Kirk ball for y ∈ Y in a way that γ(y) ̸= 0,

C(y) = {y′ ∈ Y : ξ(Fbm(y, y′, u)) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

and

δ(y) = sup
y′∈C(y)

γ(y′).

Then ∀ y’ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′).

Clearly C(y) ̸= ∅ ∀ y because by (3.2.1)

αy ∈ C(y).
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Suppose y1 = y then
y1 ∈ C(y).

Similarly

y2 ∈ C(y1)

y3 ∈ C(y2)
...

yn+1 ∈ C(yn)

and
γ(yn+1) ≥ δ(yn) − 1

n
, ∀ u ≥ 0.

Now as
yn+1 ∈ C(yn)

=⇒ γ(yn+1) ≥ ξ(Fbm(yn, yn+1, u)) ∗ γ(yn+1) ≥ γ(yn) ∀ u > 0.

So {γ(yn)} is an increasing sequence and hence it converges.
Now as

δ(yn) ≥ γ(yn+1) ≥ δ(yn) − 1
n

.

So

lim
n−→∞

δ(yn) = lim
n−→∞

γ(yn)

exists.
Suppose

l = lim
n−→∞

δ(yn) = Lim
n−→∞

γ(yn). (3.2.2)

The following inequality is now demonstrated via induction.

ξ(Fbm(yn, ym, u)) ∗ γ(ym) ≥ γ(yn) ∀ u > 0, ∀ m > n. (3.2.3)

Assume that (3.2.3) is accurate when m > n.
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We demonstrate it for m+1:

ξ(Fbm(yn, ym+1, u)) ∗ γ(ym+1) = ξ(Fbm(yn, ym+1,
u

2 + u

2 )) ∗ γ(ym+1)

≥ ξ(Fbm(yn, ym+1,
u

2b
)) ∗ Fbm(ym, ym+1,

u

2b
)) ∗ γ(ym+1)

= ξ(Fbm(yn, ym,
u

2b
)) ∗ ξ(Fbm(ym, ym+1,

u

2b
)) ∗ γ(ym+1)

≥ ξ(Fbm(yn, ym,
u

2b
) ∗ ξ(Fbm(ym, ym+1,

u

2b
)) ∗ γ(ym+1)

≥ ξ(Fbm(yn, ym,
u

2b
)) ∗ γ(ym)

≥ γ(yn).

Since (3.2.3) holds for m+1, it holds for any m ∈ N.
To demonstrate that {yn} is a Cauchy sequence, read on. On the other hand, imagine
that {yn} be not a Cauchy sequence, in which case ∃ 0 < ϵ < 1 and u > 0 in a way that
∀ n ∈ N, ∃ m ∈ N this way

Fbm(yn, ym, u) < 1 − ϵ.

From (3.2.2) ∀ 0 < ϵ′ < 1 ∃ N ∈ N with

l ≥ γ(yn) ≥ l(1 − ϵ′) ∀ n > N.

Inferring from (3.2.3) and the characteristics of ξ

l ∗ ξ((1 − ϵ)) ≥ ξ(Fbm(yn, ym, u)) ∗ l

≥ ξ(Fbm(yn, ym, u)) ∗ γ(ym)
≥ γ(yn)
≥ l(1 − ϵ′)

valid ∀ m > n > N
i.e.

l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′)
which, because ξ is amenable, contradicts the Archimedean condition. Hence {yn}
converges to p = w ∈ Y.
Since γ is upper semi-continuous and by (3.2.2) we have

l = lim
n−→∞

Supγ(yn) < γ(w).

Taking the maximum from both sides of (3.2.3). Now by taking limit from both sides of
(3.2.3), in our case

γ(yn) ≤ lim
m−→∞

Sup(ξ(Fbm(yn, ym, u)) ∗ γ(ym))
≤ ξ(Fbm(yn, w, u)) ∗ γ(u) ∀ u > 0.
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Thus
w ∈ C(yn).

Therefore
δ(yn) > γ(w).

So by (3.2.2),
k ≥ γ(w)

and so
l = γ(w) = γ(p).

Since w ∈ C(yn) and (3.2.1) holds

αw ∈ C(w).
Note that

ξ(Fbm(yn, αw, u)) ∗ γ(αw) = ξ(Fbm(yn, αw,
u

2 + u

2 )) ∗ γ(αw)

≥ ξ(Fbm(yn, w,
u

2b
) ∗ Fbm(w, αw,

u

2b
)) ∗ γ(αw)

≥ ξ(Fbm(yn, w,
u

2b
)) ∗ ξ(Fbm(w, αw,

u

2b
)) ∗ γ(w)

≥ ξ(Fbm(yn, w,
u

2b
)) ∗ γ(y) > γ(yn) ∀ u > 0, b ≥ 1.

Hence
αw ∈ C(yn) ∀ n ∈ N

=⇒ γ(αw) ≤ δn(yn) ∀ n ∈ N.

Hence by (3.2.2) we get

γ(αw) ≤ l.

Since (3.2.1) holds and γ(w) = l, we possess that

γ(w) = l ≥ γ(αw) ≥ γ(w).
Thus

γ(w) = γ(αw) = l.

Also (3.2.2) shows that

l ∗ ξ(Fbm(w, αw, u)) ≥ l ∀ u > 0. (3.2.4)

It means that

ξ(Fbm(w, αw, u)) = 1
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as ξ is amenable

Fbm(w, αw, u) = 1 ∀ u > 0
and hence

w = αw

=⇒ The required fixed point of α is w.

Remark 3.2.2. The Corollary 3.4 of Martinez-Moreno et. al 2021 is a direct conse-
quence of the above corollary for b = 1.

Corollary 3.2.3. Assume that (Y, Fbm, ∗) is fuzzy b-metric space which is complete under
the operation ∗, which is

1. Continuous

2. Archimedean

γ : Y −→ [0, 1] be a mapping satisafying the following
γ is

1. Non-trivial

2. Upper semi-continuous function

α : Y −→ Y is a self mapping.
Suppose that

Fbm(y, αy, u) ∗ γ(αy) ≥ γ(y) (3.2.5)

∀ y ∈ Y and u > 0. As a result Y carries a fixed point for α.

Proof. Let ξ : [0, 1] −→ [0, 1] is an identity map. Also ξ is amenable and ∗- supperaddi-
tive. If γ(y) ̸= 0 for each y ∈ Y , set the Caristi-Kirk balls

C(y) = {y′ ∈ Y : ξ(Fbm(y, y′, u)) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

C(y) = {y′ ∈ Y : Fbm(y, y′, u) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

and

δ(y) = sup
y′∈C(y)

γ(y′).

Then ∀ y ’ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′).
Clearly C(y) ̸= ∅ ∀ y’ , because by (3.2.5)
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αy ∈ C(y).
Suppose y1 = y then

y1 ∈ C(y).
Similarly

y2 ∈ C(y1)

y3 ∈ C(y2)
...

yn+1 ∈ C(yn)
and

γ(yn+1) ≥ δ(yn) − 1
n

, ∀ u ≥ 0.

Now as yn+1 ∈ C(yn)

=⇒ γ(yn+1) ≥ Fbm(yn, yn+1, u) ∗ γ(yn+1) ≥ γ(yn) ∀ u > 0.

So {γ(yn)} is an increasing sequence and hence it converges.
Now as

δ(yn) ≥ γ(yn+1) ≥ δ(yn) − 1
n

.

So

lim
n−→∞

δ(yn) = lim
n−→∞

γ(yn)
exists.
Suppose

l = lim
n−→∞

δ(yn) = Lim
n−→∞

γ(yn). (3.2.6)

We demonstrate the following inequality via induction

Fbm(yn, ym, u) ∗ γ(ym) ≥ γ(yn) ∀ u > 0, b ≥ 1, m > n. (3.2.7)

Assume (3.2.7) is accurate for m > n.
We demonstrate it for m+1:

Fbm(yn, ym+1, u) ∗ γ(ym+1) = Fbm(yn, ym+1,
u

2 + u

2 ) ∗ γ(ym+1)

≥ Fbm(yn, ym,
u

2b
) ∗ Fbm(ym, ym+1,

u

2b
) ∗ γ(ym+1)

≥ Fbm(yn, ym,
u

2b
) ∗ Fbm(ym, ym+1,

u

2b
) ∗ γ(ym+1)

≥ Fbm(yn, ym,
u

2b
) ∗ γ(ym)

≥ γ(yn).
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Since (3.2.7) is accurate for m+1, it is also correct for any m ∈ N.
To demonstrate that {yn} be a Cauchy sequence. Contrarily consider the scenario where
{yn} is not a Cauchy sequence , so ∃ 0 < ϵ < 1 and u > 0 in a way that ∀ n ∈ N, ∃
m∈ N as such

Fbm(yn, ym, u) < 1 − ϵ.

Using (3.2.6) ∀ 0 < ϵ′ < 1 ∃ N ∈ N in a way that

l ≥ γ(yn) ≥ l(1 − ϵ′) ∀ n > N.

A conclusion can be drawn from (3.2.7) and the characteristics of ξ

l ∗ ξ((1 − ϵ)) ≥ ξ(Fbm(yn, ym, u)) ∗ l

≥ Fbm(yn, ym, u) ∗ γ(ym)
≥ γ(yn)
≥ l(1 − ϵ′)

valid ∀ m > n > N
i.e.

l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′).
This, because ξ is amenable, is in conflict with the archimedean condition. Hence {yn}
converges to p = w ∈ Y.
Since γ is upper semi-continuous and by (3.2.6) we have l = lim

n−→∞
Supγ(yn) < γ(w).

As a result of applying the limit on each side side of (3.2.7), we get

γ(yn) ≤ lim
m−→∞

SupFbm(yn, ym, u) ∗ γ(ym)
≤ Fbm(yn, w, u) ∗ γ(u) ∀ u > 0.

Thus
w ∈ C(yn)

.
Therefore

δ(yn) > γ(w).
So by (3.2.6),

k ≥ γ(w)
and so

l = γ(w) = γ(p).
Since w ∈ C(yn) and (3.2.5) holds

αw ∈ C(w).
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Note that

Fbm(yn, αw, u) ∗ γ(αw) = Fbm(yn, αw,
u

2 + u

2 ) ∗ γ(αw)

≥ Fbm(yn, w,
u

2b
) ∗ Fbm(w, αw,

u

2b
) ∗ γ(w)

≥ Fbm(yn, w,
u

2b
) ∗ γ(y)

≥ γ(yn) ∀ u > 0.

Hence
αw ∈ C(yn) ∀ n ∈ N

=⇒ γ(αw) ≤ δn(yn) ∀ n ∈ N.

Hence by (3.2.6) we get

γ(αw) ≤ l.

Since (3.2.5) holds and γ(w) = l, we possess that

γ(w) = l ≥ γ(αw) ≥ γ(w).

Thus

γ(w) = γ(αw) = l.

Also (3.2.6) shows that

l ∗ Fbm(w, αw, u) ≥ l ∀ u > 0. (3.2.8)

It means that

Fbm(w, αw, u) = 1.

As a result

w = αw

=⇒ w is required fixed point of α.

Remark 3.2.4. The Corollary 3.6 of Martinez-Moreno et. al 2021 is a direct conse-
quence of the above corollary for b = 1.

Theorem 3.2.5. Suppose (Y, Fbm, ∗) be a fuzzy b-metric space where ∗ is

1. Continuous

2. Archimedean
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α : Y −→ Y be a k-continuous self mapping. Consider γ : Y −→ [0, 1] satisafies (γ(y) ̸= 0)
and the condition

Fbm(y, αy, u) ∗ γ(αy) ≥ γ(y) (3.2.9)

∀ y ∈ Y and u > u0 for some u0 > 0. Hence Y contains a fixed point for α.

Proof. Consider ξ : [0, 1] −→ [0, 1] is an identity map. Also ξ is amenable and ∗- supper-
additive. Any y ∈ Y =⇒ γ(y) ̸= 0 is considered, set a Caristi-Kirk balls

C(y) = {y′ ∈ Y : ξ(Fbm(y, y′, u)) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

C(y) = {y′ ∈ Y : Fbm(y, y′, u) ∗ γ(y′) ≥ γ(y) ∀ u > 0}

and

δ(y) = sup
y′∈C(y)

γ(y′).

Then ∀ y’ ∈ C(y)

1 ≥ δ(y) ≥ γ(y′).

Clearly C(y) ̸= ∅ ∀ y , because by (3.2.9)

αy ∈ C(y).

Suppose y1 = y then
y1 ∈ C(y).

Similarly

y2 ∈ C(y1)

y3 ∈ C(y2)
...

yn+1 ∈ C(yn)

and
γ(yn+1) ≥ δ(yn) − 1

n
, ∀ u ≥ 0.

Now as
yn+1 ∈ C(yn).

Hence
γ(yn+1) ≥ Fbm(yn, yn+1, u) ∗ γ(yn+1) ≥ γ(yn) ∀ u > 0.
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So {γ(yn)} is an increasing sequence and hence it converges.
Now as

δ(yn) ≥ γ(yn+1) ≥ δ(yn) − 1
n

.

So

lim
n−→∞

δ(yn) = lim
n−→∞

γ(yn)

exists.
Suppose

l = lim
n−→∞

δ(yn) = Lim
n−→∞

γ(yn). (3.2.10)

Now we demonstrate the next inequality using induction

Fbm(yn, ym, u) ∗ γ(ym) ≥ γ(yn) ∀ u > 0, ∀ m > n. (3.2.11)

Assume (3.2.11) is accurate ∀ m > n.
We provide proof for m+1:

Fbm(yn, ym+1, u) ∗ γ(ym+1) = Fbm(yn, ym+1,
u

2 + u

2 ) ∗ γ(ym+1)

≥ Fbm(yn, ym,
u

2b
) ∗ Fbm(ym, ym+1,

u

2b
) ∗ γ(ym+1)

≥ Fbm(yn, ym,
u

2b
) ∗ Fbm(ym, ym+1,

u

2b
) ∗ γ(ym+1)

≥ Fbm(yn, ym,
u

2b
) ∗ γ(ym)

≥ γ(yn)

=⇒ (3.2.11) is correct for m+1 as a result it also correct for any m ∈ N.
In this section, {yn} will be demonstrated to be a Cauchy sequence. Suppose, however,
that {yn} is not a Cauchy sequence, so ∃, 0 < ϵ < 1 and u > 0 in a way that ∀ n ∈ N, ∃
m ∈ N in a way that

Fbm(yn, ym, u) < 1 − ϵ.

From (3.2.10) ∀ 0 < ϵ′ < 1 ∃ N ∈ N in a way that

l ≥ γ(yn) ≥ l(1 − ϵ′) ∀ n > N.

From (3.2.11) and the characteristics of ξ, we may say

l ∗ ξ((1 − ϵ)) ≥ ξ(Fbm(yn, ym, u)) ∗ l

≥ Fbm(yn, ym, u) ∗ γ(ym)
≥ γ(yn)
≥ l(1 − ϵ′)
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valid ∀ m > n > N
i.e.

l ∗ ξ((1 − ϵ)) ≥ l(1 − ϵ′).

Due to the amenability of ξ, which is in conflict with the Archimedean condition. There-
fore, {yn} must be Cauchy.
Given that Y is complete, so there should be a point y ∈ Y in a way that

Lim
n−→∞

(yn) = y

and

lim
n−→∞

(αwyn) = y ∀ w ≥ 1

k-continuity of α thus suggests that

Lim
n−→∞

(αkyn) −→ y.

As a result y is the required fixed point of α.

Remark 3.2.6. The Theorem 3.6 of Martinez-Moreno et. al 2021 is a direct conse-
quence of the above theorem for b = 1.

3.3 Invariance of fuzzy b-metric under certain mappings

In this section, we demonstrate that the mapping ξ : [0, 1] −→ [0, 1] is fuzzy b-metric
preserving if certain conditions are satisfied.

Lemma 3.3.1. Consider ξ : [0, 1] −→ [0, 1] is a mapping satisafying the following ξ is

1. Continuous

2. Non-decreasing

3. ∗-superadditive

4. Amenable

5. ξ(u) > 0 ∀ u > 0.

Afterwards ξ is fuzzy b-metric preserving.
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Proof. Suppose a fuzzy b-metric space is (Y, Fbm, ∗). Now we demonstrate that F ′
bm is a

fuzzy b-metric space, defined as ξ ◦ Fbm.
i- Suppose y1, y2 ∈ Y and u > 0 then

F ′
bm(y1, y2, u) = ξ ◦ Fbm(y1, y2, u)

= ξ(Fbm(y1, y2, u)) ∀y1, y2 ∈ Y, u ∈ Fbm

= ξ(u′) where u’ > 0

because (Y, Fbm, ∗) is a fuzzy b-metric space.
∵ ξ(u) > 0 when u > 0.

=⇒ F ′
bm(y1, y2, u) > 0.

ii- For y1, y2 ∈ Y and u > 0

F ′
bm(y1, y2, u) = ξ ◦ Fbm(y1, y2, u)

= ξ(Fbm(y1, y2, u)).

Now as Fbm is a fuzzy b-metric, so

Fbm(y1, y2, u) = 1 ⇐⇒ y1 = y2

=⇒ F ′
bm(y1, y2, u) = ξ(1) ⇐⇒ y1 = y2 ∀ y1, y2 ∈ Y, u > 0

= 1

∵ ξ is amenable.
iii- For any y1, y2 ∈ Y and u > 0

F ′
bm(y1, y2, u) = ξ ◦ Fbm(y1, y2, u)

= ξ(Fbm(y1, y2, u))
= ξ(Fbm(y2, y1, u))
= ξ ◦ Fbm(y2, y1, u)
= F ′

bm(y2, y1, u)

iv- Let y1, y2, y3 ∈ Y and u, v > 0 then

F ′
bm(y1, y3, u + v) = ξ ◦ Fbm(y1, y3, u + v)

≥ ξ(Fbm(y1, y2,
u

b
) ∗ Fbm(y2, y3,

v

b
))

≥ ξ(Fbm(y1, y2,
u

b
)) ∗ ξFbm(y2, y3,

v

b
))

= ξ ◦ Fbm(y1, y2,
u

b
) ∗ ξ ◦ Fbm(y2, y3,

v

b
)

= F ′
bm(y1, y2,

u

b
) ∗ F ′

bm(y2, y3,
v

b
).
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v- Obviously
F ′

bm(y1, y2, .) : (0, ∞) −→ (0, 1] is continuous because Fbm(y1, y2, .) : (0, ∞) :−→ (0, 1] as
well as ξ is continuous.
Consequently fuzzy b-metric space is ξ′ .

Remark 3.3.2. The Lemma 3.7 of Martinez-Morenoet. al2021 is a direct consequence
of the above lemma for b = 1.
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