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Abstract

The properties of the bound ground state composed of a hydrogen (p*e™) and a positronium (ee™)
(positronium hydride (PsH)) have been determined using the variational method in the Gaussian basis.
Using significantly accurate wave function, the calculation of non-relativistic ground state energy of
(PsH), the expectation values of inter-particle distances and their squares, and the two-,three- and four-
particles coalescence probabilities are calculated. The expectation value of two-particles delta function
converges slowly if we calculate it directly. Drachman proposed very important identities that ensures
the convergence of this two-particle delta function even with small set of basis. We used these identities
to determine the values of different two-particle delta functions by using the Gaussian wave functions
for the ground state with 1000 basis. We find that for 1000 basis our results matches with the reported

values in the literature.



Chapter 1

Introduction

The stable formation of positron systems through Coulomb interaction is a widely accepted fact. The
most basic example of such a system is known as positronium (Ps) which is composed of an electron and
a positron. This system can be considered similar to a hydrogen atom. Empirical confirmation of the
The fact that Ps exist has been provided by Mohorovi¢ié¢ in 1934 [1]. Based upon the spin configuration
of electron and positron, the positronium can exist in two possible spin states, i.e. para-positronium
(spin-0) and ortho-positronium (spin-1). The positronium is unstable and annihilates into photons. Due
to the parity conservation (a holy symmetry in QED), the para-positronium (ortho-poistronium) will
decay to two (three) photons.

In this dissertation, we calculate the properties, such as the binding energy, coalescence probabilities,
etc., of the positronium hydride (PsH). After the theoretical prediction of the stability of positronium
molecule and positronium hydride [1, 2 , 3], these exotic atoms become a subject of topical interest [4,
5 6,7,8 9,610,111, 12, 13, 14, 15, 16, 17, 18, 19, 20] (and references therein). In comparison to the
the Ps™ ion, the production of PsH is more challenging and for the very first time Pareja et al. reported
the experimental existence of such a bound state of PsH in a condensed phase [21]. The first convincing
evidence of PsH was reported by Schrader et al. [22] in the collision between the positrons and methane,
ie.,

et +CHy — CHy +PsH,  7.55eV — Bpen (1.1)

giving an estimate of binding energy, Bpsy = 1.1 + 0.2 €V which in line with most of the theoretical
predictions. Apart from the production of PsH in the laboratory, this compound molecule can be produced
and later annihilated inside and outside the hydrogen stars; therefore, these system play a definite role in
certain astrophysical models [23] and also in a dense hydrogen plasma. Theoretically, these compound
molecules serve as an important tool to test the various quantum mechanical methods and with the
passage of time significant accuracy in theoretical calculations is achieved due to the rapid growth in the
computational facilities. Including relativistic effects, one of the most accurate estimate of the ground
state energy of PsH is given by Bubin and Verga [24].

Apart form the precision calculation of the binding energy of compound molecules, another very
important problem is to evaluate the positron annihilation rates to different number of photons. In most
of the cases, e.g., in Psy, the final state is not of the interest after positron annihilation, and the main
focus is the calculation of annihilation rates I',,,, where n means the number of emitted photons. This
is different from the PsH where after the positron annihilation we have PsH — [HT, e~] + nvy, where
[HT, e~] designates the final state that can be unbound H¥e™ state, or a bound state (hydrogen H). In
case of an unbound final state, along with one- and zero-photon, the full QED calculation of the decay
rate is performed in [25]. This was the first complete and correct result of these QED annihilations.

The relaxation of the daughter system, after positron annihilation to two photons in PsH, in one of the
states of hydrogen is investigated for the first time by Schrader and Peterson [26]. They have calculated
the probabilities of occupation of different final states after the positron annihilation and showed that

the maximum probability is for the ls-state. Later, by considering different choices of the variational



wave-function the same system was discussed by number of other authors [27, 28].

In contrast to the two photon annihilation, the case of one photon along with the hydrogen like final
state is also very important. In this particular case, one of the photon is absorbed by the final state
electron (in which case we have unbound state) or by the H for which we have either the bound or
unbound state. The aim of the present study is to calculate the probabilities of different hydrogen states
in case of both two- and one- photon annihilations when final state hydrogen atom is in i-th state. The
purpose of this work is to calculate the binding energy of PsH using variational approach. By using the
Gaussian basis for the position wave function, we calculate the kinetic energy and potential energy as
a function of variational parameters. We use the numerical code developed by A. Czarnecki at al. to
perform the numerical calculations. wave functions for the position [29].

This dissertation is organized as follows in chapter. In Chapter 2, first we will write the Hamiltonian
in terms of the kinetic and potential (Coulomb) energies for the PsH. We calculate different properties of
PsH such as inter-particle distances, kinetic energy and Coulomb potential and their expectation values
by using variational principal and Gaussian basis [29]. As PsH is unstable, and it decays due to electron-
positron annihilation. this corresponds to the coalescence probabilities of Dirac delta function. For the
two particle delta function, the convergence of direct calculation of expectation values of two particle
delta function requirers significant computational time. Without compromising it, the Drachman has
given some identities to calculate these expectation values [30]. This we discuss in Chapter 3. Finally,

in Chapter 4, we present our numerical results and conclusions.



Chapter 2

Positronium Hydride

2.1 PsH Wave Function and Hamiltonian

As a heart of the Variational Principle (VP) we have to chose the ground state wave function as a
trial wave function. In case of our system of PsH it is the product of spatial and spin parts and is
antisymmetrized with respect to the permutation of two electrons (the identical particles) in our system.

In the Gaussian basis, for the ground state of PsH it can be written as [29]

¥ =x1x7 (XIxt — xXix1) (1 £ Psy) és (2.1)

where, x’s deonote the spin part and ¢g is the S-wave spatial wavefunction and it can be written as

N
eften ]

i=1 a<b

and in the spatial part wy;, are the real coefficients. In Eq. , N are the number of trial basis and P34
is the permutation operator for the two identical fermions. There is a factor of % with the permutation
operator but that is absorbed in the normalization constant ¢,°.

In order to write the Hamiltonian, there are different approaches adopted in the literature. In our
case, we will follow the analogy of di-positronium molecule where the motion of all the four bodies is

considered. Hamiltonian of this system can be written as

4
Z p +ZV Tij)

1<J

~2 9 22
_ P1 + b2 + D3 P4 + Z[ J:| (2_3)

2my  2mo  2mg =

where we have considered the indices {1, 2} for the {p™, e™} and {3,4} for {e~, e~ }. The z; correspond
to the charge index which is —1 for e~ and +1 for {e™, p}. We know that the masses of electron and
positron are equal and we can write my = ms = my4 = m, but we will derive the expressions for the
arbirary masses and at the end we will substitute these three masses to be equal.

Let z‘fi denote the Lab. coordinates and 7; to be the relative coordinates. The inter-particle distances

~ N2
can be written as r;; = (Ai — Aj) . Thus in term of these coordinates, the Hamiltonian becomes
(h=1)
N 1 r= R R - . o
2 =2 2
H = _2M12 |:VT12 + les + vr14:| mil |:VF12 . Vﬁs + vﬁz : VFM + vﬁs . VF14
212 232 212 217 2023 29Z
+a[12+34+13+14+23+24]. (2.4)
12 T34 13 714 23 724



mim;
mi+m;
the reduced masses p15 = p13 = p14. It is worth mentioning that while going from the Lab. coordinates

where p;; = is the reduced mass and in our case, m; = m, , mq = m3 = m4 = m, , therefore
J ) P 3 ) )

to the relative coordinates, we have ignored the kinetic energy term of the centre-of-mass of the PsH
system.
2.2 Calculation of Various Terms in the Hamiltonian

In our case, the trial wave functions depend on the relative coordinates, therefore, we will express the

kinetic energy operator

2 2 2 2
R 1| VS v v v
T=_>| A A2y As g Aal (2.5)
21 my mo ms my
in term of these coordinates. To do this, let us introduce the centre of mass (CoM) coordinates
L1 . . . .
R = M <m1A1 + m2A2 + m3A3 + ’ITL4A4) 5 (26)
where M = mq + mo + m3 + my is the total mass.
The three independent relative coordinates are
Flo = Ay — A,
P13 = Ay — Ay, (2.7)
Fla= Ay — A
In terms of these coordinates, one can write
. OR 0 Ofs O O3 O  OFi4 O
e e 2
! 0 1 OR aAl BTIQ 8A1 87'13 8A1 87"14
= %ﬁﬁ_ﬁflz _6413 _614 (28)
Similarly,
- mo = -
Vgg == MVR - vﬂu,
- ms = -
VA‘g - Mvg—vﬂm, (29)
- ms = -
VA‘4 == MVR‘ - V“M

As the motion of the CoM does not have any effect dynamics of the system, therefore, we can write

V% =Vi, + Vi, + V%, +2Vs, Vi, +2V5, - Vi, +2Vi, - Vi,
=2 =2
V/TQ = VFlQ’
61253 = 672:’137 (2.10)
52 _ o2
VL =Vz,
Thus, in term of relative coordinates Eq. (2.5)) becomes
’f = _1 vg'lz + V%S + v72714 + Qvﬁz : V7:‘13. + 2vf12 : V_‘14 + 2V—‘13 ) V'F14 + v%z + v72713 + vg’m
2 m1 mo ms3 my ’
(2.11)
1 1 N N 1 1\ =, 2 /o - - - -
=-3 <m1 + m2) Vi, + <m1 + mg) Vi, + <m1 + m4) Via T (Vm Viny + Vi, - Vi + Vi,
171 = 1 - 1 = 2 - L . .
= _5 EV%12 + EV%B + iv%m + mi (vﬁz V_‘13 + V1;‘12 V~14 + Vi V7’14):| )




mim;
mi+m;

the reduced masses p12 = p13 = p14. Hence, Eq. (2.11]) becomes

where p;; = is the reduced mass. In our case, m; = m, , my = my = ms = m, and , therefore,

1
2012

T=-

[Vw +VZ 4+V2 ] L [%12 Vi + Vi, - Ve, + Vi, - Vi, (2.12)

T13 T14
The trial wave function, in terms of these relative coordinates, can be written as
1234\ __ / !
|wz >*¢(azvbz,cmdzaemf)
_ /.2 /.2 /.2 1,.2
= exXp ( a T12 b; 7"13 CiT1y — diT33 — €T3y — fi7"34) . (2.13)

The only permutation symmetry this wave function has is the swaping of two electrons, i.e., the {3 + 4}

and it gives

|1/)z'1243> = exp( a; 7’12 b 7"14 C'Ti% - d/'7"24 e 7"23 fz7"34) (2.14)
= exp (*G'T%Q e 7’13 b, 7"14 e 7”23 d; 7“24 fi 7"34)

= ¢(az7cwb;7ezvd;7.ﬁ)

The total wavefunction respecting all the symmetries is

i) = [i%) + [0i*%) = ¢ (af, b, i, di e, fi) + ¢ (al, ¢, b e, 7, f)

From Egs. (2.13) and (2.14)), we can see that all the results that we obtain using Eq. (2.13) can be
obtanined for Eq. (2.14) just by the simultaneous interchange of b <+ ¢ and d « e.
Before, we apply the diffential operators, we know that not all the coordinates are independent. By

fixing the orientation of the four-body system, we can write

T12 + T23 = 713,
T12 + T24 = T14, (2.15)

713 + 734 = T'14.

Now, let’s first write 753 and 754, in terms of 715 to calculate the differentials w.r.t. this parameter. We

can write
r2, =12, + 1 — 2Fy - s,
734 = T%Z + 7"%4 — 27712 . 7_"147 (216)
7"%4 = T%?, + r%4 - 27:’13 . ’)714
Vi, [017Y) = [=2(a] + d} + €]) P12 + 2d;713 + 2€14] [0} 21)
Vi ’1/11‘1234> = [V, (—a;r% — iy — ciriy — dirdy — ejriy — 7"34)] ’¢1234>
= [(—aiVir,riy = Ui Vi, ris — iV, 11, — diVi, 55 — €,V 15, — [IV7,734) ] |7/)i1234>
(2.17)
= [—dj (P13 — 2F12) — 2bj713 — f] (2713 — 2714)] [0} %)
= [=2(b] + d} + f]) s + 2d7 + 2f]71a] |22
Vi, \77/%1234) = [Vm ( alriy — birds — cir?y — dirss — elry, — ,7’34)] }¢1234> (2.18)

= [~2¢jf1a — €] (2714 — 2712) — f] (2714 — 2713)] |11 22*)
[=2(c; + € + f]) ra + 2€j712 + 2{7rs] |[072)

10



In taking these gradients we used

87’k
=4
8’/‘]' ek
0 0 . .
977 = o (rir) = 2rf6?* = 20, (2.19)
1 1
ol (r1-7r2) = 57 (r’fr’§) = ok =)
1 1

where §;; correspond to the kronecker delta. As the terms in kinetic energy involve the second gradient
for all the terms, therefore, in the next step we have to calculate it. Let’s calculate V%Q |w1234> and do
to so, we will use the first line of Eq. (2.17)). Writing

712 |¢1234> 67? . |w1234>
=V, - [(— (af + d} + €}) T + 2d}715 + 2ei714) [913N)]
—6 (a; + d; + €}) |1/Ji1234> +[-2(a} + d, + €}) T1a + 2d;713 + 2€i714] - Vi, ‘¢1234> 3,
—6 (a; + d; + €;) [Y}®) + [=2(a] + d} + €}) F12 + 2d;713 + 2€}714] - (2.20)
(=2 (a) + d, + €}) T1a + 2d;713 + 2€i714] |1/}il234>
= —6 (a; +d; +e7) [ %)
(0 €) o  dPry + ery — 2d (af 4 d ) T

726; ((12 + d; + 62) 7712 . 7714 + Qd/iegflg . F14] ’1/}}234> s

VE |01 = Vi, - (<26 + d] + 1) Fis + 2di712 + 2f(714) [012)]
= —6(b} +dj + f)) [ %)
4 {(bé i+ D R A2y 22— 2d) (0 + d - f]) e - T (2.21)

—2f] (b + di + f]) P13 - Pra + 2d; fiTha - Faa] |72

VQ

714

|22y = =6 (c; + € + f7) [0i*®*) + (=2 (¢} + €} + f]) P14 + 2€i12 + 2f/T13) -
(=2(ch + €} + f1) Fia + 2ei712 + 2f1713)] [124)

-

As the kinetic energy term also involve the gradient terms like Vi, - Vi,, Vi, - Vi, Vi - Vi  the

next task is to calculate these terms.

6?:‘12 : ﬁ7_"13 ’w3234> = ﬁf_"m ’ [(_2 (b; + d; + fz/) T13 + 2d;7?12 + 2leF14) |¢z’1234>]
= [6d; + (=2 (b; + d; + f]) P13 + 2dj712 + 2f{714) - (=2 (a] + d} + €]) P12 + 2d;713 + 2€;714)] |10 2°*)
= [6d; + 4 [—d} (a; + d} + €] Yriy —d, (V) + di 4 f)r3s + el flrd,
[dl2 bl + d/ + f ) (a'— + d/- + 6)] 19 * 7‘13 + [d;fl’ — ei (b; + d; + fll)] 7713 . F14 (223)
[d/ I /( +d/+e)]r12 7"14 ‘¢1234>

11



Vine * Vi [0324) = Vi, - [(=2(¢) + € + f]) Pra + 2ei712 + 2f/713) [1254)]
= [6¢; + (=2 (c} + € + f]) Pra + 2€}712 + 2f1713) - (—2 (af + d} + €}) 12 + 2d}715 + 2€714)] |[91224)
= [6e} +4 [—e; (af + di + ) 1Ty + di firTs — ef (] + €} + f]) 714
[die; — f] (a; + d} + €})] Tra - 71z + [ef f — di (¢} + €] + fi)] T13 - T14 (2:24)
(€2 + (af + di + €)) (¢ + € + f])] Frz - Faa] | [9;°°%) .
Vi Vi [015%) = Vi, - [(<2(c) + € + f]) Pra + 2ei712 + 2f/713) [01254)]
=[6f] + (—=2(c; +€; + fi) Fra + 2ejT12 + 2f;713) - (=2 (b + di + [{) P13 + 2d;712 + 2f{T14)] ’1/’1‘1234>
= [6f] + 4 [dieirTy — fi (b + di + f}) 15 — fi (c; + €} + f]) 114
[di f} — e; (0 + dj + f))] Pra - Tis + [f17 + (0 + di + 1) (¢ + € + f])] Fas - Fua
[eif] — di (c; + €} + f7)] Frz - Fra]] [ . (2.25)

Comment: All these terms agreed with the McGrath thesis [31] except the first term in the final
expression of Eq. where 6d; is written instead of 6f/. To me it seems that it is just a typo as the
expression based on these results given in first line of kinetic energy expression (c.f. Eq. (120) in [31])
is correct. The law of cosine will help us to simplify the dot products between different inter-particle
displacements. For example, from Eq. , we can write

S o 2 2 2
272 - T13 = 119 + 713 — T33,

= 2 2 2
212 - T14 = i + 714 — T34,

2713 - T4 = 7“%3 + ’I“%4 — ’l“§4. (2.26)

In order to calculate the expression of T, let’s assemble the terms corresponding to different inter-particle

distances i.e., r?j.

Constant Terms:

1 1
- [=6 (a; + di +¢;) — 6 (b +d; + f]) — 6 (c; + e} + f])] — — [6d; + 6¢; + 6]
2p12 my
1 1
=— [—6 (a; + b, + ¢, + 2d; + 2¢; + 2f])] — — [6 (d} + e, + f1)] (2.27)
2p12 my
3 6
= — (a + b} + ¢, +2d; + 2 +2f)) — — (d, + €, + f]).
H12 mi

r?, Terms: [Mathematica is used to simplify different terms]

2 2
12 sl / g/ !’ ! ) !/ !l ! g/ !/ g/ /N /N4
—_— (a,i + @idi — bldl + aiei — Ciei) _ (aibi + aici — aidi + bzdz — aiei + Ciei) .
12 my
r2, Terms:

13 .

2

2
(62 = a4 V4 Vo = Chf?) = o (] i+ ol — bl = Vo + ).
12 1

2 .
ri, Terms:
/12 /N /! b/ ! !/ el 2 !/ b/ / !/ /! b/ ! ! r!
—— (¢? — dje; + cie; — bifi + ¢ ) — p— (ajc; + bic; + aje; — cie; + by f] — cifi) -
r2. Terms:

23 :

2
—— (2di* + ajd, + bid, + dje; + d} f] — i f]) +

— (2d}? + @iV + ajd; + bid; + die; + dif] — eif}) .
H12 my

2 .
r3, Terms:

12



2 2
T (2¢? + aje} + cle} + die, — di fl — el f]) + s (2¢? + aic) + alel + clef + die, — di fl — e} f]) .

2 .
r3, Terms:
2 /

—— (2f? —dje; + b fl + A f + dif] + i f]) +

— (2f7% + Ve, — diel + by f] + i f] + dif] + €l f]) -
H12 my

Finally, the expression for the average kinetic energy for the states |1/11234> becomes

. 3 6
@#“T¢%$={“(%+%+¢+Mhﬁd+wn—m(%+d+ﬂ>W?Ww?ﬂ
12 1 '
[ 1 1
~ 2|l a4 el = cel) (el — a4 el + )
| H12 my
[ 1 1
~ 2| L 00 L 1) (i 0~ A D) )
L 12 1
(2.28)
[ 1 1
=2 | (= el el = V) + o el b e e 1A - D) o)
L 112 m
[ 1
— 2 | — (2d® + ajd; + bid; + diej + d; f] — €} )
L 412
1
— — (2d}? + ajb] + aid; + bid] + die} + df] — el f]) | {r3s)
my
1
—2 [l e bl e+ -+l
) -
— — (267 + ajc] + aje} + cief + die; — di f] + € f]) | (r3a)
mq ]
1
~2| L@ de g g )
12
1 ,
= — (2 Vi, = diel TV ff + ciff + dif] 4 € f]) | ()
1 ]
where <r12j> = <w1234 ’rfjf 1/}1234> correspond to the expectation value of the square of inter-particle
distances.

Comment: We can see that under the limit py2 — mq /2 that is; when PsH become the Psy the results
given in the McGrath thesis [31] can be reproduced except one typo in the coefficient of (r3,) where the
second term is alc; instead of ale} (c.f. Eq. (120) of [31]).

In order to find the exception values of the potential energy, we can write

N 1
1234 V‘ 1234\ _ 1234 1234 1234 1234\ _ /1234 1234 2.99
(o V] u) = a [ (2 | o)+ (o™ ) e (2:29)
1 1 1
_ <wi1234 - 1/}]1234> _ <wi1234 - wjl'234> _ <w21234 . wjl234>:| .
3 24

In order to calculate different matrix elements, we need to calculate the Gaussian integrals. Let’s solve

them one by one and first consider

<,(/)i1234 | 1/)}234> .

In the reference [31] it is shown that going from Lab. coordinates fTZ to the relative coordinates, the
Jacobian for the transformation is equal to 1. This is actually a two step process, where at the first step,

we shift from Lab. to centre of mass coordinates and then from centre of mass to the relative coordinates.

13



Just for the simplicity, we will remove the indices of a} - - f/ . Consider

(WP PN =1V ¢ d e f)

= /d3f’12d3r"'13d37_"14 exp (—a'ri, — V'ris — riy — d'r3s — €'r3, — f'r3,). (2.30)

In order to evaluate these integrals first consider the coordinate shift

T2 = T+ a1y + ae?,
i3 = F+ s, (2.31)
14 = Z.

Again the Jacobian corresponding to these transformations is unit and the o3, a9 and as are the

constants and these will be determined later.

Tog =713 — 712 = =T+ (1 — 1) ¥+ (a3 — az) 2,
Tog = T4 — T2 = =T —ay + (1 — a2) Z, (2.32)
T34 = T4 —T13 = —§ + (1 —az) 2.

In these coordinates

—a’rfg =—d (Z+ g+ a?)" =—a (33 + afy” + 04222 + 201 % - Y+ 2027 - 7+ 20107 z)

—briy ==V (4 a32)” = =V (y* + a3z® + 2a37 - 2)

—driy=—c (2)" ==z,

—d'r3y = —d' (—T+ (1 — o) §+ (03 — a2) 2)* = —d’ [;ﬁ +(1—a)’y +(as—a)’ 22 —2(1— )T §
(2.33)
—2(ag—a)Z- 2421 —aq) (g — )y - 2],
—er3y = —¢ (-F— a1+ (1 - ap) 2)* = ¢ [952 +oly’ + (1- )’ 2 + 207§
201 -a)Z-Z-201 (1 —a2)y-2],
— [ ==L (=i + (1 —a5)2)* =—f [iy +(1—ag)’2*—2(1 —043)17'5} :
In line with reference [31], let’s put ay = 1 — ag, a5 = 1 — a3, ag — as = a4 — a5 and collect the

coefficients of different dot products in Eq. (2.33)) set them equal to zero as it will not lose the generality.

(Z- ) [-2d' oy +2d' (1 — ay) — 2¢'ay] = 0, (2.34)
(7 2)[—2d" (1 — ay) + 2d (g — a5) + 2’ aq] = 0,
(g 5) [—20,/041 (1 - a4) — Qb/ (1 — a5) — 2d/ (1 — 041) (a4 — a5) + 2e/a1a4 —+ 2f’a5] =0.

Solving the equation in ([2.34)), for a1, a4 and a5 gives

d/
aj(a+d +e)=d = a; = Trd e (2.35)
From second line of Eq. (2.34)
a/
—(d+d+e€)ay=—d (a5—|—d/> ,
d a
a451—a2:M(a5+w), (236)

li
= Q1 (055 + Cal') .F2 (a/’b/7cl’d/7e/7f/>

14



Using Egs. (2.35) and (2.36)) in Eq. (2.34) and solving for as gives

Vd +201a'd — o2d (a' +d +¢)

=1l—-a3= )
ST W +d+f —2day+a}(a+d +¢€))
and using o’ +d' + ¢ = d , we get
vd +201a'd — aya’'d
a5 —

d M +d+ f —2d oy +ard)’
B ora’ + b
- (b’er’Jrf’fd’oq)'

(2.37)

Hence, from Eq. (2.33)), we can write

—d'riy—...— fr3y = —d (2" + afy® + a32%) =V (y° + a32?) — 2?

—d (m +(1—)? v + (a3 — a2)? 22)

—e (x2 + a2y 4+ (1—ay)? 22>

—f (y2 +(1—as3)’ z2) (2.38)
=—2%(d +d +¢)—vy* (aal—i—b’—i—d’(l—al) —l—eal—i—f)

_ 2 (aa2 +Va +c’+d’(o¢3—a2)2+e’(1—o¢2)2—|—f(1—o¢3)2).
Let’s solve the different coefficients one by one.

s (d+d +€)=a,
y° a’a%+b’+d’(1—a1)2+e’a%+f'):a%(a'—i—d'—i—e’)+b'+d'+f’—2a1d’
d/2 li U /! / U / d/2
= (@ 4dte)+ +d+f 20—
(@ +d+e)° ( ) F = arate
B (b/—l—d/—l—fl) (a’+d’+e’)—d’2 B F2 (a’,b’,c’,d’,e’,f’)
N (! +d +¢€) B Oy
(a/a +baz+c +d (Oég70&2)2+6/(1*042)2+f/(1703)2)

EOéy

(a’ (T—a)’+V (1—as5)’ +c +d (ay —a5)2+e'ai+f’a§)

(a a+d+e) +a5(b+d+f)+a+b+c—2aa4—2ba5—2da4a5)

/

N 2
:( (a5—|—d,) d’+a5(b’+d’+f)+a +V 4+ —2d <a5+d/>—2ba5—2da1 (a5+2)a5>

(2.39)
_ Fl (a/7blac/7d/7e/7 f/) =a
B F2 (a/ab/ac/adl76/af/) oY
where
F (a’,b’,c’,d',e’,f’) _ a’b’c’—l—a/b’e' —l—a/b'f’—l—a/c’d’—i-a’d'e' —l—a’c’f’—i—a’d'f/—i-a’e’f’ (2.40)
+blcld/+blclel+b/d/€/+b/d/f/+b/€/fl+C/d/€/+cld,f/+cle/f/,
and
B b, d e, fy=0+d+f)(d+d+e)—d? (2.41)

:a/b/+a/d/+a/f/+b/d/+b/€/+d/€/+d/f/+elf/.

15



Thus,

—a'r, — . = i = a2 — ayy? — a2t (2.42)

2.2.1 Matrix Elements

Overlap Integral

From Eq. (2.30]), we can write

AR N AT A A 3= 3= 3= 1,2 /,.2 7,2 /,.2 /.2 1.2
I(a,b,C,d&’f):/d Frod®Fiad’Fiyexp (—a'riy — b'riy — vy — d'rgy — €'r3, — ['r34)
I(ag,ay, )= /d3fd3§d3ZeXp (—ozxx2 —ayy? — azzz) ,

= /d3fexp (—azxz)/dggexp (fayyz)/dgé’exp (—azz2), (2.43)

79/2

1 [m
I oz, ay,a;) = ————75 /dxexp —z?) ==, ]=,

79/2

[Fl (a/, V.o, d e, f’)}3/2.

This is one of the overlap matrix. We know that the full over lap matrix element has four terms as
there is a symmetry between the last two indices. Therefore, the four matrix elements can be obtained
by using the permutation symmetry i.e., swapping the different parameters.the four matrix elements can
be obtained by using the permutation symmetry i.e., swapping the different parameters. To be more

specific, these are summarized here

£9/2
Il (a’,b’,c’,d’,e’,f’) _ wi1234 | w1234 — (2.44)
< J > [Fl (a/’ v, d,e, f’)}3/2
where @’ = aj +aj, V' =b; + b}, ' =c; + ), d =d;+d}, ¢ =e; +e", f=f+ [
9/2
I (al?b/aclvd/7el7f/) = <¢z’1243 | wjl‘243> = T (245)

[Fy (a0, ¢\ d' e, fl)}3/2
Again, o’ = aj +a}, V' =b; + b}, ¢ =c; + ¢}, d =d} +d7 e'=eite’s, /'=Fi+fi Now the cross term

79/2

13 (a’,b’,c’,d',e’,f’) _ wi1234 ¢1243 —
< | J > [Fl (a’,b’,c’,d’,e’,f’)]3/2

(2.46)

where in this case, a’ = aj +a, V' = b, + ¢}, ¢ =c; + V), d =d; +¢, ¢ =e; +d;, f'=f+f]
Similarly
79/2

[Fl (a/7 v, d, e, fl)}3/2

LV, cd e, f) = (22 ;%) = (2.47)

with the arguments of F} in this case can be obtained by interchanging the indices ¢ <+ j in the subscripts
of Eq. (2.46) ie,. o' =aj+a, ¥ =V, +c}, ¢ =c;+b, d =d;+e}, ¢ = +d, = f+[]

2.2.2 Coulomb Potential
<¢i1234 ¢J1_234>

Just like above, we will work out with matrix elements with one of the wave functions, say <1/1i1234

|4

% 11)1‘234>
J
and calculate different terms given in Eq. (2.29)). The other three terms that correspond to the permu-

tation can be calculated just by swapping the parameters as we did in Eqgs. (2.4442.47). Consider the
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potential energy term between proton-electron (p™ —e™)

1
1oyl g gt 3= 3= 3= /
V14(aab7cad7€af)=/d7“12d7“13d7”14714exp( a'rly —V'riy — riy — d'rsy —€'riy — f'r3y)

where
a’:ag—i—a;, blzbg—i—b;, c’:cg—&—c;, d’:dg—i—d;‘, e':eg—i—eQ, f:fi’—i—f]’». (2.48)

This becomes

1
Vig (0, ay, 05) = /d3£d3§d33<> exp (—axarz —ayy? — azzZ) ,
z

m 3o (1 2
o [ () e e,

2(3/2/ Fy(a W, d e f)y47rzexp( Lz 2)7 (2.49)
Q)
IS
(amay)3/2 204z,
2 4
Vig (a/7b/aclad/velvf/) = § 1/2?
Fy (G/, b/7 Cl, d/7 ela f/) [F2 (alvb/a clad/7 6/7 fl)]
2m9/2

‘/14 (alab/aclad/7elvf/) =
ﬁFI (a/7 b/,C/7d/, 6/7 f/> [F2 (CL/, b/7 0/7 d/7 6/, f/)]1/2

where we have multiplied and divided by /7. This is due to the fact that when we divide the expectation
values with over-lap factor, this common factor cancels.

Now for proton-positron (p*t — e™)

v /b//d///_ d3—'d3—»d3—»1 1,2 b/2 7,2 d/2 1,2 1,2

12 (a0, d e f) = 71207713 7"147 exp(—ar12— T3 —CTyg — 7"23_67“24—fT34)
12

Let’s try to express it interms of the Vi4 (o', V', ¢/, d’, €', f') by swaping the parameters/indices. We use
the bold indices just to specify what is needed to be interchanged.

1
/2N VAN A VN A 3= 3= 3= /,.2 /.2 1.2 1,.2 /.2 /.2
Vlg(a,b7c,d,e,f):/d Frod’Fi3d’Fia— exp (—a'r]y — b'ris — <'riy —d'r3s — €'r3y — £'r3,)
T12
S
= /d3r14d3r13d37“12—exp (—a'rf, —b'ris —c'ri, —d'r3, —e'r3, — f'r35) , 24 4
T14

1
= /d37712d3f’13d3f'14— exp (—c'rfy —b'ri; —a'ry, —f'r3; —e'r3, —d'r3,)
714
(2.50)
= Vg (<0, a e d).

where coefficients af,--- , f/ are given in Eq. (2.48). The potential energy between proton-(second)
electron (p™ —e™)

1
/ 1 1 gl 3= 3= 3=
Vlg(a,b,c,d,e,f):/dr12dr13dr14—exp( a'rfy —b'rls —c'r}y —d'r3; —€'r3, — f7"34)
T13
[ BrpdPadis b’ d’ 34
= 712d°T14 T13T exp ar12 r14 cr13 7“24—e7"23 fr34 >
14

1
3> 132 3= ) ) 1.2 1.2 12 /2
= /d T12d°T13d r14—r exp (—a ri9g —Crig —b'riy —erss —d'ry, — f r34)
14
(2.51)
— / / / / ! !
:V14(a7c7baead7f)7

i.e., the elements 2 <+ 3 and 4 <> 5 interchanged in the result of Eq. (2.49). The coulomb interaction
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between positron-electron (et —e™)
Vas (a/7 blv C/a dla ela f/) =Vi3 (a/a dla ela bl? cla f/) =V (a/a e/a dla C/a bla f/) . (252)

i.e. in the first step we have changed 1 <> 2 in the expression (c.f. Eq. (2.51) line one) and then 1 < 2,

3 <+ 4 in the result to relate it to Vi4. Similarly for positron-(second) electron (e™ —e™)

Vaa (a/> b/a C/, d/a e/a fl) = Va3 (a/’ Clv blv e/, d/a fl) = Vs (alv d/a e/a b/7 cla fl) (253)

This can be obtained from Va3 by swapping 3 <+ 4 in Eq. (2.52).
Now the final task is to obtained the matrix elements for (1}3* |V, 1/}}234> i.e., the Coulomb inter-

action term between two electrons (e~ —e™)

1
/ I/ 1 el 3= 3= 3= /
V34(a7b7c7d,e,f):/dr12dr13dr14—r exp( ar12 br13—0r14 dr23—e7"24 fr34)
34

1
3= 3= 13- /2
= /d T13d°T12d r14r exp( ar13 b’ r12 crl4 dr23 —er34 fr24), 243

24
(2.54)
= V24 (b/7 ala C/a dla fla e,) )
and from Eq. (2.53)), we get
V'34 (a/7 b/7 cl7 d/a e/7 f/) = ‘/14 (blv d/a fl) al7 C7/ e/) (255)

In Eqgs. (2.49)-[2.55) the definition of @', --- , f’ is the one given in Eq. (2.48) and the bold indices are
the same as unbold.

<¢1243 ‘f/ ¢1243>

From Eq. (2.45)), we can see that these matrix elements can be written in terms of the <w1-1234 ‘V‘ ¢]1-234>

by interchange b <> ¢ and d < e.

1243 (a b/ C d/ e f _ 1234 a’,c/,b’,e',d’,f/),
1243 (a',b' C d/ 6 f/ =V112234 a’,c',b’,e’,d’ f’)

1243 (a',b’,c d/ e f V1234
1243 (a’,b',c ,d',e ,f
1243 (a’,b’,c' d /e/ f

1243 (a/7])/’c d/ e f/

W A
a,c,be,d,f),

f)

Vg3t (d' e b el d L f), (2.56)
)
)

V1234 a/’c ,b/,e ,dl

/
a’,c b, e, d,f

)

— V1234

— = — — — =
~ o~ o~ o~ o~ o~

where in Eqgs. (2.56)) the definition of @', -- f’ is the one given in Eq. (2.48)).
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<1/}1234

)

The goal here is the calculate the cross terms i.e. <1/11234

)

‘/114234(43 (¥, c d e, f)y =B v, d e, f),
Vi) @ v e ) = VB (LY L d L)

V113234(43) (a,b,c d' e, f') = Vi3 (d/, b, ¢/, d e, f),
Vo) (o o L d e f) = Ve (Y, L d e f),
Vo 20 (! b d € f) = Vi (b L d €L ),
Vo ) @ ! d e ) = ViR (@, b L €L )

where, in this case the definition of af, - - f/ is

ad=a;+ay, UV =b+c, =c;+b;,d=d+e} e =e;+d;, f=f+[

<,¢1243

)

1243(34)
Vi

( V1234
1243(34)( 'Yl f) =

roar g gl
a’7b7c7d)e7f)7

1234 /AR NN AR VAR A,
=Vt @y, d e 1),

) )

1243 34
( )(a/,b’,c d’ ce, ) = Vi

where in this case

r_ / Y roo / r /A N / Y /
a =a;+a;, 0 =0;+c,c=c;+b,d=d;+e, e =e;+d;, [ =[f+[

2.2.3 Inter Particle Distances

(2.57)

(2.58)

(2.59)

(2.60)

In order to calculate the inter particle distances, we have to calculate the matrix elements of the type

<Tab> — <¢j1234 |'f'ab| w11234> .
Again, we will start with r14 and write the others in terms of it

<’/’14> <,(/}1234 |7“ |w1234>

32 132 132 2 12 ’ 2 ' 2 12 ’ 2
= /d T19d°F13d°T147T14 €XP (—a rig —brig —criy —drys —ery — f 7"34) ,

/deeXp —agz? /dgyexp ozyy /d3 eXp z2),

o o2 (P2 b, d e £

VR E @, D)
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Similarly, using the scheme as did for the calculation of potential energy, we have

(ri2) (a', 0, d e, f) = (ria) (b ,d, f, e, d),
(ria) (a0, ¢, d' e f) = (rua) (o', &, 0 €y ' f)
(ras) (a0 d €' f') = {raa) (@€ €0 ),
(ra) ( f1) = (ra) ( )
(rsa) ( ) = (ria) V', ).

T12 T14

713 14

ros) (a', b, d €, ris) (a',d, eV, c ,

a v, d,e,f d, f.d,c e'

T34 T14 (2.62)

The definition of a,--- , f is the one given in Eq. (2.48). The matrix elements for the other states can
also be calculated in the similar fashion to exhaust all the permutations.

Matrix elements for inverse Square of Inter-particle distances

Here we will calculate the matrix elements for the inverse square of the inter-particle distances, i.e., the

matrix elements of the type <1/)J1234 T%’ 1/}1-1234>. To do it, let us follow our old foot-steps
ab

<1l)1-234
J

which in terms of (Z, ¥, Z) and following the procedure of Eq. (2.49)), we have

1 1
<72> (a,b,e,de, f) = /cl?’xd?’ycl3 (z )exp( 22— ayy2 — ozzz2)

14
_ 52
_W/dzexp -,z )
20ly)

271_9/2

1

7"14

1/)1234> /d 7"12d ’]”13d 7"14 (7"%4) exXp ( G, 7'12 — b T13 — C 7'14 d 7’23 — 6 7"24 f T34)

= g (2.63)
F2 (a/a bla Cla dla 6/3 f/) [Fl (alv b/’ clv d/a ela f/)]
Likewise, the others can be expressed in terms of above matrix elements as
1 roal oo gl 1 A TR
9 (aab7cadaeaf): 2 (C7b?a7f7€7d)7
T1o T14
1 1
<2> (a/a b/a C/a dlv 6/7 f/) = <2> (a/, C/, blv elv d/a f/) )
T13 T1a
1 1
<2> (ala b/a Cla d/a 6/7 f/) = <2> (Cl/, 6/, d/7 Cl7 b/7 f/) )
723 T14
1 1
<2> (Cl/, b/a C/, dla elv f/) = <2> (al> d/a 6/7 bl> C/7 fl) 1)
T24 T14
1 1
<2> (a/a b/a C/a dlv 6/7 f/) = <2> (b/’ d/a fla ala C/a 6/) . (264)
T34 T1a

The definition of @', -- - , f’ is the one given in Eq. (2.48]). The matrix elements for the other states can
also be calculated in the similar fashion to exhaust all the permutations which is just the swapping of

parameters.

Kinetic Energy matrix elements

<,¢i1234 |T| wjl_234>

In order to do so, first let us calculate

<r%4> (a0, c,d e, f)= /d37712d37713d37_"14 (’I”il) exp (—a’ Py — 0'riy — crdy —d'ray —e'ra, — f r34)
(2.65)
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which in terms of (Z, ¥, Z) and following the procedure of Eq. (2.49), we have

(riy) (d, v, ¢, d e, f) = /d?’fd?’gj'd?’é' (2%) exp (—au2® — ayy® — a.2?)

3
= (O[Z)B/Q/d?’i(f) exp (—a,z?) (2.66)
xQy
4
= (477)3/2/dz 2t exp (—azzz) .
iz 0y

We know that

2 1 ™
dre= % = Z,/2
/ re 5\ 3
d —ax? _ 2 —ax? __ 1 ﬁ
%/dxe —/dxxe =15
d
Ta /dxccQ(f‘”rz = /dx:v‘lef‘”2 = 3 ﬁ (2.67)

Thus

47t 3 /7
2 1ot gt 1 gl
. d = v
<7"14> (a y0,C, € ’f) (amay)3/28a2/2
3 9/2
_ ”—3/2 (2.68)
200, (agaya)

3779/2F2 (alv blv Clv d/, elv fl)
92 (Fl (a/7 v,o.d, e, f/))5/2

where a,--- , f are given in Eq. (2.48).

; (2.69)
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The corresponding expressions for the kinetic energy are

Tt (06, ') = =2 | (&7 e+ o) = U+ )

o Vi e =i+ 1= 1) | (70 (00 )
Tip (', d' e, ') = -2 :12 (a;.2 + ajd; — bid; + aje’; — c;»e;.)

b (a0 + al — ad + Vi — alel + c;e;)] () (¢l £ e d)
Tis (a0, ¢\ d e, f') = —2 ulm (1% — ) d; + Vid, + b, f — &, f)

+mil (afb 4 b + ady — bid; — b ff + c;f;)] (riy) (d,c, b e, d, f) (2.70)
T3 (d/,b',c/,d’ €, ) = -2 ﬁ (2d? + o) + Vd; + dje; + dj ff — €} f)

(2 a4 ap W+ )+ e;.f;.)] () (a e d b, )
Toy (a',b',c',d" €, f') = -2 ,U112 (2¢}% + alie; + cjes + die — d f7 + €} f)

- o 2 g e e i = )| () (b )
T b0, 8 = <2 [ 12— b ) g 1)

1
LA I I S )] () 0 e,
In Eq. (2.70)), the coefficients d’,- -« , f’ are the the same defined in Eq. (2.48]).

<¢1243 a 77[114243>
i J
These can be obtained from Eq. (2.70) by swapping b <+ ¢ and d <> e thus in this case

/ / / / ! !
T14 a,c,b,e,d,f)
/ / / / ! !
T12 a7c7b7e7d7f)

T3 (v, d e f! (
(

Tyz(a',c',b' e, d, f) (2.71)
(
(

1243 /AR NN 1 opl
T35 (@b, c,d e f

)
)
T113243 (a’,b’, c’,d’,e’, f/)
)
)

1243 (1 v/ 1 ! o g/
T23 (a,b,c,d,e,f

1243 ¢ 1 v 1 3 L £l
T34 (a,b,c,d,e,f

/ / / / I !
T23 a,c,b,e,d,f)
/ / / / li !
T34 a,c,b,e,d,f)

Again, the coefficients @/, -+ , f" are the the same defined in Eq. (2.48)).
(11243 7| 1234)
i J

1243(34) ¢ 1 31 1 g 1 g1
14 (a,b,c,d,e,f

T =Ty (d, b, d e f)
T1243(34) (a/ V.. d. e f

=T34 a/a blv C/a dlv elv f'

) (
o ) =T (a0, c,d e, f)
Ti286Y () b ¢\ d €, f') =Tis (b, ¢, d e, f) (2.72)
T2 (o b ¢, d' €, f') = Tos (', b, ¢, d' €, f)
T28CY (o) b ¢ d e, f) = To (d b, d €, f)
) ( )

1243(34) /.1 vt 1 31 o gl
Ts, (a',b',c,d’, €, f

where the arguments of Tj; i.e., a/,--- , f’ are the the same defined in Eq. (2.60)).
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<,(/)i1234 |T| 1)/}]1243>

1
Ty (a b, d e f')y=-2|— (b;2 - a;d; + b;d; — C;f]/ + b;fj/)
LH12
1
+E (afb); + b + ayds — ds + ¢ f — b;fj’)] (ri)(d . ¢, d e, f)
M1
Tip (a0, d e, f)= -2 | — (a;-2 + el — ¢ + ayd; — b))
L 12

1
+m—1 (asc 4 albl; — alsel; + ey — aljd); + b;d;)] (ri,) (¢, a' £ ¢ d)

1
Tis (a/,b',c,d' e, f) = -2 . (? — alel + diels + ¢ f — b )
12
1
—&—m—l (ac; + b + ey — Vel — ¢ fi + b;fj')} (riy) (a,c',b', €, d’, f') (2.73)
(1

Tos (a/, b, ¢/, d' €, f') = =2 i (2¢}* + afie; + cies + ed; + €} f — dj f)
1
o (2¢% + alic} + dle); + ¢je; + efd) + € f] — d;f;)} (ri,)(d,e,d b, f)

3

[ 1
Ty (a’,b’,c’,d',e',f’) =-2|— (2d32 +0,;»d;» +b;d; —|—6;d; o 6;fJ/ - d;f]/)

L 12
1 2 2
— m—l (2d; + a;»bfj + a;dfj + c}d} + efjdfj — e;.fj’» — d;fj’)] <r14> (a’,d’,e’,b’,c’,f’)

1

T3y (2,0, d' e, f') = -2
H12

2
(272 = o+ Vo4 i+ )

1
— L RP G = YT )| () ()

E

where the arguments of Tj; i.e., @, --- , f' are the the same defined in Eq. (2.58).

2.2.4 Kinetic Energy of Positron

The kinetic energy of positron can be written as

1 1234 2 1234
o (o 5 )
1 1234 2 1234
—m@/’j V&, | i)

From Eq. (2.20), we know that

V2

T12

[01234) = —6 (af + dj + ) [ 012 + 4 [(a] + df + )y + diPrdy + €Pry — 2 (o] + df + €]) iz - s
—2¢} (aj + dj + €}) F1a - P14 + 2djeiTs - Fra) [}
= —6 (aj +dj +ef) [ )
+4[(a] + i+ ) rd + A3+ € — d (0] + d 4 €) (7 + 1 — 1)
—e; (a; + d; + €;) (7"%2 +ri, - 7“%4) + dje; (7“%3 +ri, - 7"%4)] ’1/’1‘1234>
= =6 (aj +dj +e)) [¢;2) + 4 [(a}? + ajd} + aje)) riy — aidirts — ajeirty + di (af + di + €}) i
e (af + di + ef) ryy — diegrdy] |02
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Thus

(T =~ (0l (92, )
1 . )
=L [l ) ) (a2 a4 ) () — i () — el (%)
2
+d; (a} + d} + €}) <'r§3> +el (a) +d; +¢€)) <r§4> de, <r34>]] (2.74)

2.2.5 Kinetic Energy of electron (say at position 3)

In the PsH, there are two electrons in spin-singlet state. We can write the kinetic energy fo electron at

position 3 as:

(T = fi (w2 | w7 | i)
— 2 <77Z11234 |v713 | 11)1.1234> ,
and from Eq. , we know that
V2, [0 = =6 (6 + i+ f1) [0F2) + 4 [0+ df + £1)7 03+ diPrdy + [203 = 25 (0 4+ ) + f) Fia - g

=2 (O + di + f7) Tis - Tia + 2, f{Trz - aa] [97%2)

= —6(b) +di + f7) |[4i**)

+4 [(b; +d; + fz‘/)2 rig + diPriy + fPry — di (0 + d + f)) (7"%2 + 785 — 7'%3)
+d; f} (T%Z +7ri4 — 7"%4) — fi (b +di + f7) (7’%3 +riy— 7”%4)] ‘¢,1234>

= 6 () +d + f)) |[0iB) + 4 [ b dirdy + (02 + Vid + Vi f]) vy — O firdy + d) (b + s+ f]) 3
—d; firgy + [ (0 + i + f]) 3] [9%).

Thus

<Te*>ij = <1/’1234 |V7~12 | 1/’1‘1234>

= _L [—6 (b; + d; + fz/) |7/’¢1234> <¢]1'234 | ¢j1234>

2m3
+ A [(=bid)) (riy) + (b2 + bids + Vi f]) (ris) — biff (riy)
+d} (b, + d; + f1) (r3s) — dif{ (r3s) + fL (0, + d; + £1) (r3,)]] - (2.75)
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Chapter 3

Coalescence Probabilities

The electron and positron in PsH annihilate producing even (in spin zero) and odd (in spin-1) number
of photons. This annihilation corresponds to the coalescence probability of electron-positron which is
just the expectation value of the Dirac delta function. Compared to the kinetic and potential energy
discussed in previous chapter, its convergence is slow. To cure this problem, Drachman has proposed

some identities [30] and in this is the major topic of this Chapter.

3.1 Derivation of Drachman Global Identity

Consider a system of N particles described by the Hamiltonian (in Rydberg units with masses in units

of m.: actually we write in Rydberg units 2m = m)

N
1
H:foV22+V(F1’...7FN) (3.1)

i=1 "t

and the wave function is ¢ (7, -+ ,7y) and this is well behaved and are the eigen functions of the

Hamiltonian. In our case, it is Gaussian and so this condition is satisfied [30]. We know that

(LY _ -

Vi (Tjk = —47é (Fi) ,
1

v () — ams (F). (3.2)

Tjk

where 7}, = 7; — 7. We can write

1 1 1 1 1
/dFNz/P (V;? - vi) () = —4n < + > /df%%(@k), (3.3)
m] mi rjk mj mp

1
—dr— (5 (Fx))
or (0 (7jk))

with the reduced mass i = m;my/ (m; +mg). As V2 is a Hermition operator, therefore, we can write

V32 =V - Vy? =2V -V,
=2V - Vi) + 20V, (34)
— 2V + 2 (ﬁw)Q .
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Thus from Eq. (3.3), we have

/dFN (mlk) (7; [2¢v’2w+2 (Vi) } +— [ZW v +2 (Vi) D —47rﬂi_k (0 (7in))

N1 % V% 1 > 2 1 /- 2\ 1 o
/ dF (k) <¢ et () o () ) = e ) (39)

Using Eq. (3.1), along with the fact that Hiy = Ev, therefore,

6y = 22 [ ar ()(E Vi Z = (%, )>. (36)

This is the Drachman identity that we are going to use to calculate the annihilation probability of different

particles. In our case, we will write it in the form

(Vedr) (Ved2)

Tab

476% (rap) 1o — %, (E=V)droo— Y (3.7)

c
where V' is the potential energy defined in Eq. .

We have almost all the tools to calculate it as it involve the matrix elements of potential energy,
overlap matrix and that of the gradient w.r.t. to the interparticle distances. For the off-diagonal terms,
in Eq. we will write (ﬁw)z as 61/}1- . ﬁwj, Y2 = Pirp; and E = % (eg + e;-). We will adopt this
method and later put ¢ = 7 when needed.

Let’s first calculate for the wave function %1234:

(L (9)’ ) (2 (F0) | (%) (o) (F) ) e

my ik mi ma ms3 my

where in terms of the relative coordinates V1, -- -, V4 are the one given in Egs. 1 . Ignoring the

motion of centre of mass, they can be summarized as

Vi=-Vs, -V Vi

Vo=V,

Vo=V, (3.9)
Vs =—-V,

Now writing
- 2 - -
(Vie) = (Vaes) - (V1wy)
where in our case if we take the wave function to be 123* then 9; and 1; will be the same and we can

always put ¢ = j at the end, we get

(F6)- (F1) = [(Fru+ T4 ) ] - [(Fr + Frv 9 ) ]
= (V) - (Fat) + (Frte) - (Vo) + (Vapi) - (V)
#(Taat) - (Frts) + (9] - (Frat) + (Fras) - (v
# () - (Frats) + (Frtn) - (Frats) + (Tt - (Vo) 310
(Fas) - (Vo) = (Vo) - (Fruay)
(€20 () = (P ().
(Bt () = (Fr) - (Bs)
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Using Eqgs. (2.17] , we can calculate all the terms given in Eq. (3.10). We have used MATHEMAT-

ICA to simplify the algebra involved here and to collect the coefficients of rfj. These are

1 1
iy o (4aja; 4 2a;b); + 2bja; + 2a;c; + 2cia}) + o (4ajal; + 2a;d} + 2dja); + 2aje) + 2eja’;)
/ g/ aN; N 1!

1 1

2 .

iy (463D, + 2a5b); + 2bjaf; + 2bic; + 2¢,b;) — - (2a;d} + 2dja))
1

o (A0 200+ 200+ B f] - 26187) — (26 +2f1c)) (3.12)

1
i, o (4cic) + 2aic; + 2¢a); + 2bic; + 2¢b) — - (2aje]; + 2¢ja) (3.13)
1
!/ ! 1./ !l N ! ! el 1]
s (2bifj + 2fibj) + pr (4cicj + 2ci€} + 2e;¢; + 2¢; f; + 2ficj) .

2, T (2a;b; + 2b;a;-) + P (4d;d; + 2a2d; + 2dga; + Zd;e; + 26;d;»)
1
+— (Adjd); + 2bid) + 2d;b); + 2d; f; + 2 fid;) — — (2ei.f] + 2fie)) - (3.14)
3 4

1 1
3, o (2aic) + 2¢jal;) + e (4eje; + 2aje]; + 2ejal; + 2dje; + 2e;d))
(2d’ifjl- + in'd;-) + (46;6;— + 2cjel; 4 2eic; + 2e; f; + 2fl-’e;-) . (3.15)

ms my

1 1
T3, (2b5¢]; + 26b) + - (2ed’; + 2d€]) (Afif] + 20, f; + 2fib} + 2d; f; + 2f{d})  (3.16)

—_ _|_ P
mi ms3

1 ! r! ! rl !/ ! p! !/
+ p— (4fifj + 26, f; +2fic; + 2e; f; + 2fiej) .
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Tik mq

LN\ 2
4 (Vv 1/)) 2
1 ( l 1
< 3 > _ <7‘12> { (dalal, + 24} + 2bLa, + 2ale; + 2cla))
=1

1
(4aja) + 2aid} + 2dja’; 4 2aje); + 2¢jal;) (26}d) + 2d;b)) — - (2ci€; 4 2eic))

4+ — _
ma ms

2
T3 1 1
<w> [m1 (4b3b; + 2aib; + 2bja; + 2bic; 4 2¢;b) — s (2ald; + 2d}a};)

b (4000 2+ 2+ 20+ 2F10) — (2 +2 f;c;)}

2 [ 1
<:14> . (4cic; + 2aic; + 2¢jal; + 2bic; + 2¢;b}) — (2aj€’; + 2eja’)
k 1

ma2

1 1
— o (WA A1) (4 26l 2l + 2+ 2 f;c;)}
"
T35 1
<W> o (20t 20) e (A + 20+ 2+ 2 + 2
+ . (4d;d) + 2bid} + 2d;b} + 2d; f} + 2f{d}) — - (2ef] + 2f{e§)} (3.17)
2
TS, 1
<m> [—ml (20} + 2la) o+~ (4ele + 2l + 2ela + 2] + 26
1 ! ! ! g/ 1 /N4 ! ! !/ ! pl /N
— (2d;f; + 2fid;) + p— (4eje; + 2ci€; + 2ec; + 2ei ff + 2 fie))
@ L (2bic; + 2c5b)) — L (2eid; + 2d;e’)
Tjk mi () () mo ) 1]

1 ! gl ! gl I/ ! gl ! g1 1 ! gl / gl > ! gl ! !
- m—g(4fifj+2bifj+2fibj+2difj+2fidj)+ﬁ4(4fifj+2cifj+2ficj+2eifj+2fiej)

2 2
Now to calculate the expactation values of <7—’>, we use the trick (say for <;¥>,

i
Tik ik

2
e\ _ 90 /1
<7"jk>_ 3a’<7”jk>' (3.18)

As we are considering the annihilation of the electron and positron i.e., say § (723). We know that the
expectation value of i is depicted in Eq. (2.52) i.e.,

‘/23 (a//a bla C/a dla ela f/) = ‘/14 (Cl/, e/a dla C/7 b/7 f/)
2t

Fy (e, d, e, b, f)[Fs (¢, d e, b, f)]/?

where Fy (a/,€',d’,c’,b’, f') and F;(a,e,d,c,b, f) can be obtained from Eq. (2.40) and Eq. (2.41]),
respectively, by swapping the parameters and these will take the form
Fl (a/,e/,d/,cl,b/,fl) — a/blc/ +a/blel +alcld/ +a/blf/ +a/C/f, +a/d/e+ ald/f/ + alelf/
+blc/d/+blc/€/+b/dlel+b/d/f/+blelfl+c/dlel+Cld/fl+clelf/, (3.19)
F2 (a/,e/,d/,cl,b/,f/) — alcl +a/e/+a/fl+b/c/ +blel+b/f/ +Cl€/ +C/f/.
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blcl+b/€/+b/f/+C/d/+C/f/+d/€/+d/f/+€/f/
[Fy (o e, d’, ¢/, b, ) [Fa (d €, ¢, b, f1)]M2

r? 0
<T;§>8/V23(a b, c.d, e, f)=2r"

1 cte+ f
+§ P 3/2
1 (a) e7 d7 C7 b7 f) [F2 (a7 e7 d7 C7b7 f)]

alcl+ale/_|_a/f/+C/d/+clel+d/6/+d/fl+elf/
[Fy (¢, d', ¢, b, [ [ (ol e d/ e, b, )]

T%3 8V b/ dl 24
ros ] 8b’23(a c.d.e, f)=2n

1 ct+e+ f

2 Fy (a,e,d,c,b, f)[F: (a,e,d,c,b, f)]*/?

2 aN; ! g/ 1 £l !/ /! ! ! ! £l ! £l
<r14>:_8/V23(a b, e, f) = 2t ab +add +adf —|—bd2—|—be +de +df —I—elf2
7'23 8 [Fl (a/’e/,d/’c/’b/’f/)] [F2(a/7e/7d/7cl7b/’f/)}/

)

1 a+b+e+ f

2 Fi(a,e,d,c, b, f) [F, (a,e,(Lc,b,f)]?’/2

o [ o' +ae +af +bcd+Ve +bf +de+f

[Fy (¢, d' ¢/, b, [ [Fy (e, d/ e, b, f)]) 2]

- (3.20)
ab +add+adf +vd+bd +b0f +d+cf

[F (a0, e,d e\ 1)) R (o, e, el b f)]2

1 a+b+d 1

)

2
T'33 8 / /
<r23> ad/VQS(“ b',c,d e, f) =

2 9
<T?4> — o Vas (@B d el ) = 2

23

+§ I ol Al o W £ oot AL o W £1V13/2
Fl(a7ead7C7b7f)[F2(a?ead7cab7f)]

abt/ +adcd +dd+de +vd +ve +d+ e
[Fy (a’,e’,d’7c’,b’7f’)]2[F2 (a’,e/,d’,c’,b’,f’)]l/2
+1 a+bv+d 1

2 F (e, d,c\ b, ) [Fy (a’,e’,d’,c’,b’,f’)]g/2

r2 0
<34>_ af/V23(a b d, e, f)=2r?

23

Here the definition of o/,--- | f’ is the same as given in Eq. (2.48). We will multiply and divide these
expressions with /7 so that we can take 72 to be common that cancels with that in the over-lap matrix.

Calculation of <T-,-1m>

1W >, thanks to the identity (c.f. Eq. (7) of [30])

In order to calculate <w
11 / e~
T o \/’TT 0

d
du = 2qdq, = 2dq = o
q

Put u =¢q, = u=¢q>

EE

Thus . 5 ~
S= —arg 3.21
r \/7?/0 € @ (3:21)

therefore, we can see that it is converted to a Gaussian integral.

1 1
/20 VAV /A A Y A 3= 3= 132
V14(a,b,c,d,e,f):<rl4 = drlgdrlgderMexp( a'ryy —Vris —riy — d'ris — €3y — f'r3,)

1 1 1

3 2

< 37 d? 713d 7’14—— exp ( a'riy =V 7’13 —c 7’14 d 7’23 —€ T24 f 7'34)
712714 712 T'14

2 [ S |
== / dq/d3r12d3r13d3r14— exp (—(a’ + @A)y — Vi, —riy, —d'rs, —e'r3, — f’r§4) ,
VT Jo T14

2 o0
= — dqViy (d/ + 2,0, d e, f 22
ﬁA Q14(a+q7 yCs 7eaf) (3 )
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where Vi (a/ 4+ ¢2,V, ¢, d’ €, f') is the same as given in Eq. (2.49) with a’ — a’+¢?. Putting everything,
we can write Eq. (3.22)) as

1 2 [ 27t
R~ dg 1/2°
712714 VT Jo F (o + 2,0, c,d e, f)[Fa(a + ¢V, c,d, e, f)]

with Fy (a/ + ¢V, d' €, f') and Fy (a/ +¢*V/,c/,d',€, f') can be taken from Eq. (2.40) and Eq.
(2.41) with o’ — o’ + ¢% i.e.,

F1 (CL/—I-qQ,b/,C/,dl,e/,f) :F1 (al,b/,cl,d/7e/7fl)+ (blc/+b/e/+blf/+c/dl+C/f/+d/e/+d/f/+e/f/) q27
ZA,—I—B/ 2

Fy(d+¢ V. de, f) = Fd,V,d,d e, f)+ ¥ +d +f)d,
=C'+ D¢

1 e 1
o [+ BlC + D¢

-1 A'D’
A T)2 cos ( B'C')
= dn (3.23)
JA (B'C — AD))

As B'C’' — A’D’ is either greater or less than zero, therefore, it is better to give it a form so that we can

. s A
avoid the complet value. Writing z = 475

cos'x=t = x=cost
1 1
sec’t = 2 = 1+ tan®t = s (3.24)

1
tan’t = — — 1
X

ol — ( BC—AD)
o o A' D!

Thus for (B'C’ — A'D) > 0,

1 477/2 B'C' — A'D’
< > = il fan? (/B ZADT) (3.25)
r12714 \/A’ (B'C" — A'D') A'D’

Similarly for (B’C’ — A'D) < 0, we have

< 1 > 1 4r7/? , . A'D' — B'C’
— ) == itanh _
T12714 i \JA"(A'D' — B'C") A'D’

477/ A'D' — B'C’
= ~ fanh [ /A ZB (3.26)
\/A/ (A/D/ _ B/C/) A'D’
By following the same line of action, let’s calculate the other combinations:
< 1 > — l /OO qu14 (a/ b/ + q2 CI d/ e/ f/)
T13T14 ﬁ o ) k) ) ) K
1 B/:a/cl+a/e/+a/ /—|—C/d/—‘r0/6/—|—d/6/+d/ /_|_e/ /
= < >with f f f (3.27)
12714 D =a + d 4 e
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1 2 e
_ = d V a/7b/7cl7dl + 2,6/, !
<7’23r14> ﬁ/o q 14( q f)

< 1 > th B/:a/C/—i-a/e/+a/f/+blcl+b/€/—|—b/f/-l—C/e/—i-C/fl (328)
= wi .
T12T14 D/ — a/ + b/ + el + f/
1 _ 2 ood V / b/ / d/ / 2 !
ToaT1a 7%0 Q14(a, ,C ’€+q7f)
1 B/:a/b/+a/d/+alf/_|_b/cl+b/d/+b/f/+c/dl+clf/
= with 3.29
<7‘127‘14> D =¥ + d’ 4 f/ ( )
1 _ 2 ood v ! b/ ! d/ ! 2 g/
34714 _ﬁ 0 q 14(0,, yCy 7e+q7f)
< 1 > i B =db +dc +ade +ad+bd+be +cd+ce (3.30)
= wi .
12714 D =d+d+¢€
Now if we have the term
1 1 2 >
(o) = () =7 | vt vy
1 B = a’b’—i—a'd’—i—a’f’—i—b’d’+b’e’+d’e’+d’f’+e’f’
= ith 3.31
<7"127‘14>W1 D' =0 ( )

We can see that the agrument of trignometric functions become oo in Eqs. (3.25} [3.26)), therefore, this
scheme is not applicable when we have both r’s to be same in the denominator.
But we know that the calculation for involving 23 can be done from 14 by the interchange of the

parameters. Therefore, we can write for (B'C' — A'D) 2 0,

< 1 > 1 o [BO—AD
- n pY a0
12723 VA (B'C"— A'D') A'D’

similarly for (B’C’" — A’D) < 0, we have

< 1 > 1 tanh—! A'D' — B'C'
= n —
12723 VA (A'D' - B'C) A'D'

where B = b'c/+b'e'+b0 f'+cd' +c f/+d' e’ +d f'+e' f', A = Fy (d/, ¢/, d', ¢V, f1),C" = Fy (d,e,d ¥, f)
and D' = (' +e + ).

But thanks to the Gaussian wave functions, this can be calculated easily

1 1
VE (a, v, d e, f) = <2> = /dgi:'d?’g]d35<2) exp (—az2? — ayy® — a.2?),
r2, z

o)
= Bz = )exp (—a.z?),
(amay)3/2 0 2:2 ( )
47t

> 2
= (aa)?’/z/o dz exp (—azz ),
zQy

271.9/2
3/2 1/2
/ (az) /

(azay)
) 9/2
- T VR (3.32)
F2 (ala b/, C/v d/; 6/7 f/) [Fl (a/a b/a C/a dlv 6/, f/)]

Here the definition of a, - - - , f is the same as given in Eq. (2.48)).
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As we are calculating the annihilation of the particle at position 2 and 3 i.e., § (7a3) , therefore, we

have to start with the expression of <%> and apply the method described about. But we know that for
1234

Vas (ala bl7 C/7 dl? el7 f/) =V (a/7 e/7 dl7 C/7 b/a f/) ) (333)

therefore, in Eqs. (3.25] [3.26] [3.27 [3.28] [3.29] [3.30] [3.31] [3.32)), we have to do the swapping of b’ < ¢’

and ¢’ + d’, simultaneously.

Now, for the same wavefunction 1234 there is also a possibility that the positron (e*) at position 2

annhilate with the electron (e™) at position 4 and the corresponding delta-function is 0 (724). This can

be obtained by swapping b <> ¢ and d <> e in the expressions of § (753). This is because of the fact that
Vou (a',b',c’,d €, f') = Vas (d/, ¢/, b’ €, d’, f'). (3.34)

Expectation value of Hte™ contact density (4 (714))

In order to calculate the

Viy)? . o . .
7‘]% Z?:l (;:f)> part of the Drachman identity in this case, with r;; = r14 we

will start with the Eq. (3.17) as the constants remains the same and the only change is in the expectation
value where the denominator in the expectation values is replaced with r14. We will make use of Eq. (3.18))

on
ot

Fl (a/v bl? Clv dlv 6/, f/) [FQ (alv b/v C/v d/a elv f/)]1/2 ,
where Fy (o, 0, ¢, d' ¢, f') and Fy (o', V', c/,d' €, f') are given in Eqs. (2.40)) and (2.41)), respectively and
are

V14 (a/7 b/>cl7d/7 6/7 f/) =

}71 (a/,b/7cl,d/,€,,f/):a,b/cl+a/b/€/+a/b/f,+a/cld/+a/d/e/+alclf/+a/d/f/+a/€/f/
+b/Cldl+b/C,€/+bld/e/+bld/f/+b/e/f/+Cld/e/+cldlf/+clelfl,

and

FQ (a/,b’,cl,d',el,f/) — (b/+d/+f/) (a/+d/+el) 7d,2
:a/b/+ald/+a/fl+b/dl+b/6/+d/€/+d/fl+elfl.
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Therefore,

b/cl+b/e/+b/f/+c/d/+C/f/+d/e/+d/fl+e/f/
[Fl (a’7b’7c’7d’,e’,f’)]2[F2 (a/7blucl7d/7e/7f/)]l/2

e :—EV (a0, d e, f)=2n?
da 14 Uyt yey

T14

1 b +d + f

2 Fy (@b, d e, f) [ Fy (a’7b’,c’,d’,e’7f’)]3/2]

ad+ade +adf +d+de+de+df +ef
[Fy (a0, &, d e, [ [Fa (a0, ¢ d el )]

iy = —2V4(a’ v,c,d e, f')=2r"
14 ab 1 sV Ly, &y

1 o +d+eé
2 Fy (o', V,c,d e, f) [Fy (a’,b’,c’,d’,e’,f’)]?’/gl ’
abV+dd +df +vd +ve +de+df +ef
[Fy (a0, d el [ [Fa (al b, d el f)]) M2
ad+de +df +cd+be +bf +ce+cf
[Fy (a0, d e, f) [y (al b, d e, f1)) M2
1 a4+ +e + f ]

2 By (W, e, d e f) [Fy (o, d e, P12

—%VM (a0, d,d e, f)= ot

2
T'14

@ —QVM (a/ V.. d. e f/) :27(4
'[“14 8d ? Y Y I’ ?

ab +add+adf +0d+vd +b0f +d+f
By (0, ¢ d el ) Ry (a0 ¢ d e )
1 b +d + f

2 Fy (@b, d e, f) [ Fy (a’7b’,c’,d’,e’7f’)]3/2] 7

2
<’r24> = _2‘/714 (a//7 b/’ 0/7 dl? e/’ f/) = 27.[.4

i 9 (3.35)

a't +a'd +dd +ae +vd +be +c/d +ce

[Fl (a/a b/a Cla dlv 6/3 f/)]Q [FQ (alv blv Clv dl, ela f,)}1/2
1 a +d +e€ ]

Jr —_

<7‘324> = —EVM (a' ¥, d e, f)=2r"
’,"14 af b b b b )

2 Fl (a/a b/a C/a dlv 6/7 f/) [FQ (a/7 b/7cl7d/a elv f/)]B/Q

3.1.1 Delta Function: Direct Calculations

Last, we come to the matrix elements for the different contact densities i.e., (6 (7;;)) not using the

Drachman identities but by using the direct computation.

(6 (Fra)) = ({16 (Faa) |97,

= /d37712d37713d3f’145 (Fra) exp (—a'riy — Uiy — ry — d'rdy — '3y — f'r3,) (3.36)

— — —

as T4 = 74 — 71, therefore,
(0 (T14)) = /d3F12d3F13 exp (—a’r%Q - b/r%3 - d’r%3 —er? — f’r%l) ,
= /d3f’12d37713 exp (—a'ri, — Vris —d'r3s —€'r3, — f'r3y),
_ / Pirad®irg exp (— (' + )12y — (O + 1)1y — dry) . (3.37)

This is just like the overlap matrix with o’ — o' +¢€',b' = b + f/, ¢ = ¢’ = f' = 0 and the answer is

3

6 (7 = —=Dl[d,V,d,d, ¢, f 3.38
OO = o W s @ s papt Dt ] (335

I !/ N / /! / [ !/ ! ! [ !
where o’ = aj+aj, V' =b, +c;,  =c;+ b, d =d;+e, e =¢€;+d, f'=[f+F

Next in line is the
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(0 (F12)) = (¥i*° 16 (Fa2) [ 95%%*)

= /d3F12d3F13d377145 (Fr2) exp (—a'riy —bris — riy — d'rds — €'r3y — f'13,) (3.39)

as 719 = T — 71, therefore,

(6 (F12)) = /d3F13d3F14 exp (—b'rfg —cdri, —dri, —eri, — f’r§4) ,
/d3F13d3F14 exp (— (V' +d') r2y— (' +e)ri, — fr§4) ) (3.40)

This is just like Eq. (3.38]) with o’ <> ¢/, f’ +> d’ and the result is

P

0 (M2)) = 7 .
< ( )> [(c’ —|—e/) (b/ —|-d’) + (c’ —|—6’)f—|— (b’—|—d’) ﬂs/z (3 41)

! __ li / VAN N / /o / I ! / ' ! ! ! ! I
where o’ = aj +aj, V' =b; +c;, =+, d =d; +ej e —ej—&—di,f —fi—i—fj.

Likewise

(0 (F13)) = (2416 (Fis) |0

3= 3> 3> = 1..2 /.2 /.2 /.2 1,2 1,2
= /d T12d°T13d° 7140 (T13) exp (—a rig —bris —driy —dris —ery, — f 7‘34) , (3.42)
as 713 = 73 — 71, therefore,
= 3= 3= ’ 2 2 /2 ’2 ’ 2
(6 (M3)) = /d T12d°T14 €XP (—a Tip —Criy —dry —€eryy — f 7"14) )

= /d3F12d3F14 exp (— (a/ +d) T%Q —(+ 7’%4 - e’r§4) ,

= i (3.43)
(@ +d) (¢ + 1) + (@ +d) e + (¢ + ) e '
This is just like Eq. (3.38) with &’ <> ¢/, d’ +> €.
Using the scheme of Eq. (2.52), we can write
3
(6 (Fos)) = D[d', ¢, d' ¢V, f'] = u (3.44)

(@4 0) (@ + )+ (@ 4 0) e+ @+ ) el

where the function D [a', V', ¢/, d’, €', f'] is the result of (0 (723)) and is given in Eq. (3.38]). Similarly from
Eq. (2.53)), we have

3
Vs
(6 (7a4)y = Dd,d' e, b,c, f] = ) 3.45
2 @ @ enbe @ P o
and from Eq. ,
3
(5(73)) =D, d, f',d.c,¢] = T (3.46)

(0 + ) (d +e)+ U +)a + (d +¢) a’}3/2.

For the other case, we just swap the parameters to fully exhaust the permutation symmetries. Remember,

3/2

we have to multiply and divide it with 73/2 to make a common factor of 7%/2 that will be cancelled with

we divide its expectation value with overlap matrix.
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Product of two delta functions

This will include the terms like 6 (75;) 0 (7m) and & (75;) 6 (1), where the later determine the three
particles coalescence probabilities. Here we will consider different possibilities corresponding to these
delta functions and later pick the one that is required for the coalescence probability.

Let’s calculate
(6 (713) 6 (Fra)) = (2% 16 (Fis) 6 (Fra)| 9%
= /d3F12d3F13d3F145 (T13) 0 (Fra) exp (—a'rTy — b'rig — iy — d'r3s — €'r, — fr34)
= /d3F12d377135 (F13) exp (—a'rfy = Uiy — d'riy — €'r3y — f'r5,),
= /d3F12d37?135 (Piz) exp (= (a' + € )riy — (V' + f)ris — d'r3s)
= /d3F12 exp (— ( +d +¢) ng) ,

_ [W ]3/2. (3.47)

a +d +e

(6 (712) 6 (F1s)) = (9 °°* 16 (Fi2) 6 (Fis)| 47>
/d3r12d 713d37140 (712) 6 (713) exp ( a'r?, — b’r13 —dr, —d r23 —er2, — f r34)
/d Prod® 7140 (T12) exp( a T%Q —c 7’14 d r21 —é r24 f r14)
/d3r12d3r146 (F2)exp (— (@' +d')riy — (¢ + f)riy — €'r3y),

/

d3F4eXp (" +¢ +f)7°14)

(3.48)

(0(712) 8 (F3a)) = (¥ 410 (Fr2) 0 (Faa) | 951
= /d3f’12d37713d377145 (F12) 0 (F34) exp (—a'rTy — b'rig — iy — d'r3s — €'r, — f'r3y),
= /d37?13d37?145 (34) exp (—5/7'%3 - c’rf4 - d’rf3 - 6/7"%4 - f/7"§4) )
. / A0 (Fra — Tig)exp (= (O + &)y — (¢ +¢)rdy = d (Fua = 71)° )

— /d3F13 exp(— (' +c +d +e)rly), (3.49)

- 3/2
B [b’—l—c’—i—d’—i—e’} '
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(8 (713) 8 (P2a)) = (12416 (13) 6 (7oa) | 0124)
- /d3’?12d37713d377145 (T13) & (F2a) exp (—a'riy — b'rly — c'rly — d'r3y — €'r3y — f'r3,)
= /d3F12d377145 (To4) exp (—a'rly — 1Yy — d'r§) — €13, — f'r14),
B /d37712d37?145 (T4 — T12) exp (_ (@' +d)riy — (¢ + f)riy — ¢ (Fra — F12)2) '
= /d3F12 exp(— (' +c +d+ f)rly),
_ [w] v (3.50)

al+Cl+d/+f/

(0 (73) 6 (aa)) = (W} ]0 (73) & (aa)| 1),
= /d3F12d3F13d3F146 (F13 - 7?12) 6 (7?14 - FlQ) X
exp ( a'riy —b'ris —cri, —d (fi3 — F12)2 —e'rd, — f (Fa — F13)2) ,
= /d3F12d3F145 (7?14 — ’Flg) exp (—a’rfg — b/’f‘%g — C/’I”%4 — 6/7’54 — f (7?14 — F12)2> s
= /dgflgdsfpl(; (F14 — 7?12) exp (7 (a’ + b/) 7’%2 — C,’I"il - (6/ + f’) (7?14 - F12)2> 5
— /dSFH exp (— (a/ + 0 +)riy)
3/2
™

=|— . b1

{a’—&—b’—i—c’} (3:51)

(8 (12) 6 (Ta3)) = (W} |8 (F12) 0 (7)) %)
/d 7’12d 7’13d 7'14(5 (Tlg) 1) (Fm — 7?12) X

’ 2 2 — — 2
P( 6””12_57"13 _07"14 dr23—er24 f(r14—r12)>,

@
o]

/d F1od37140 (712) exp ( a'r?y, —bri, —dri, —ers, — f (P4 — Fu)z) ,
/d3r12d3r145 (712) exp ( (@ +0)riy — 2 — (¢ + ) (Fla — 7712)2) ,

d3F4exp (c +¢ —|—f)r12)

3/2
= [W} = (6 (72) 0 (13)) - (3.52)

(6 (Fas) 6 (7aa)) = (72 [0 (Fas) & (Faa) | )21,
= / d*72d*Fr3d® 140 (P13 — T12) 6 (Fra — Ti3) X
exp (—a’r%Q — Wy — iy —dri, — e, — f (Fla — 77'12)2) )
B /d3F12d3F145 (714 — 712) exp (-a’r% = brYy = iy = €rgy = f (P - F12)2) ’
N /d3F12d3F145 (M4 — T12) exp (_ (@' +0) 1y —riy — (¢ + f') (Fra — F12)2) ’
= /d?’FM exp (— (a' + b + ) 7“%2) )
- 3/2
_ [} = (6 (73) 6 (7)) (3.53)

a/+bl+c/
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Product of three delta functions

There are different possibilities of the four delta functions e.g.,

(0 (712) 6 (F13) 6 (7aa)) = ($F234 |8 (12) 6 (713) O (72a)| 123
— [ i T 1a6 (1) 5 (70) 8 (s — Fio) x
exp (—a’rﬁ — Vi — 3, —dri, — € (Fly — 712)? — [ (Fia — Flg)z) ,
- / T A0 (7i2) 8 (Fis) exp (—a'rdy = Vrdy — 1y + d'rdy = f' (7a — 73)°)
= /d3F125 (Fr2)exp (— (a/ +V + + f)riy),
= /d?’ﬁzé (F2)exp (— (a/ +V + ¢ + f)riy),
= Constant.= 1 (3.54)

In order to consider the four-particles coalescence probabilities we will consider the product of delta

functions of the type 0 (7;) 0 (7jx) ¢ (¥xi). The only possiblity that we are going to consider here is

(8(F12) 8 (F23) 0 (F3a)) = (718 (F12) & (7s) & (Fa) | 95**)
_ / Briad®Fiad® 146 (F1a) 6 (o) 8 (Fra — Tis) X
exp (—a’r%Q — Wl — 2y —dry — € (Fia— T12) — f (Fia — F13)2) ,
— [ @210 (7i2) 8 (7 — 7i2)
exp (—a'r%2 —b'riy — ris +d (Fi3 — F12)? — e (s — F12)2) ,
= /d?’ﬁzé (712) exp (— (@ +0 +¢) ?”%2) ,
= /d?’ﬁgé (Fi2) exp (— (@ + V' +¢)rdy)

= Constant.= 1 (3.55)
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Chapter 4

Numerical Analysis and Conclusion

In our basic course on Quantum Mechanics we learned that hydrogen atom is a simplest two body
system. Even such a simple system can be solved exactly for a Coulomb potential and one has to solve
it numerically for the non-Coulomb like potentials. Replacing proton with a positron will give us a
familiar bound state, i.e., positronium. If we add one more electron or position in the atom it will give us
positronium ion (Psi. To solve this three body problem in Quantum Mechanics, variational approach is
used. In this approach, Using the ground state wave function as a basis for a trial wave function. To study
the different properties of Ps* using the trial wave function with Gaussian basis, a code is developed by
A. Czarnecki et al. [29]. The same code is later used to find the ground state energy various coalesence
probabilities of di-positronium or positronium molecule Pss.

In this dissertation we focused on the properties of PsH. One of most interesting features of the
PsH is that it is somehow special class of Coulombic systems that lies between the Hy molecule and the
dipositronium molecule (Psy) as in the later case both nuclei are replaced with the positron. Since mass
of one nuclei in the PsH is same as that of the electron, therefore, its motion can not be considered to be
slow . Therefore, it is found that the electrons are cluster around the proton and, therefore, the PsH is
essentially a four body system.

Some important properties of the PsH are: Its life time is 0.65 ns. The positronium in PsH is slightly
swollen compared to the ordinary positronium atom with relative electron-positron distances ((r-.+)) to
be 3.48a¢ and 3.0ag, respectively. The average distance of electrons from the proton (<Te—p+>) is 2.31ag
which is larger than the dihydrogen. The average distance between positron-proton (<Te+p+>) is 3.66a0
which is much larger than 1.41ag that is the average distance between two protons ((r,+,+)) in the Hs.

When trying to identify the characteristics of complex quantum system it is not always feasible
to obtain precise wave function. As a result, one may resort to variational calculation to estimate
the wave function. Typically this involves a numerical computation, particularly when attempting to
optimize wave function. If we strive to get a close approximation of our wave function using a set of even
function as a basis, this could prove a significant benefit. The variational method provides a mean for
approximating the ground state as well as certain excited states, of a system’s lowest energy eigenstate.
We use variational method to approximate wavefunction and to calculate expectation values of different
properties of positronium hydride by using the code [29].

In Chapter 2, we have calculated the matrix elements of Hamiltonian in terms of these optimized
parameters a, .., f’. We wrote a computer program based on FORTRAN to calculate expectation values of
inter particle distances, Coulomb potential, matrix elements for inverse square of inter-particle distances,
kinetic energy, matrix elements and total energy of PsH. By using the 1000 basis, the results are presented
in Table We can see that our results of binding energy —0.788 870 345 206 aligns well with the
corresponding calculation. [33].

The radiative decays of PsH occurs through the annihilation of electron and positron, which is known
as the coalescence probability. This corresponds to the expectation value of the Dirac delta function.
In Table we have calculated the expectation value of two-, three- and four-particles coalescence

probabilities. There convergence will lead to the good estimate of the radiative decays and using the
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<T1’+€+> (reve-) <rp€_> (Teme-) <7'127+e+>

3.663 501 879 3.481 175 784 2.313 161 069 3.577 021 997 16.272 155 569
3.663 471 893 3.481 158 108 2.313 146 873 3.576 994 110 16.271 617 005
(2. ) (r2.) (2 (1/r2..) (/72,0
15.593 537 619 7.824 794 250 15.895 938 518 0.172 013 647 0.349 072 614
15.593 216 798 7.824 543 786 15.895 434 519 0.172 015 799 0.349 067 937
<1/T127+€_> <1/Tg—e—> <1/Tp+e+> <1/T6+57> <1/’r’p+67>
1.205 651 819 0.213 646 523 0.347 301 530 0.418 428 480 0.729 258 149
1.205 619 787 0.213 648 513 0.347 302 232 0.418 428 711 0.729 257 838

<66+6766+67>
(1/re—c-) (T) (V) (Hnon-rel. = E1) ° !

= <5 g, ->
(& 63 63 64
0.370 330 394 —— . —0.788 870 685 002 3.7147 x 1074
0.370 330 979 0.788 869 542 262 —1.577 739 887 468 —0.788 870 345 206 3.7364 x 10~*

<(5 e+ Opt —>
{ = (et Oere) (Operdser) (Opes 8orer) Gresdre) (et dyrgdonss )
8.5986 x 104 3.1582 x 10~° 6.3212 x 1073 7.5334 x 1073 1.9038 x 104
8.8148 x 10~ 3.1238 x 10~° 6.0887 x 1073 7.3087 x 1073 1.8018 x 10~*
<§p+e+> <6e+e*> <6e*e*> <5p+e*> <Sp+e+>
0.001 626 822 0.024 458 106 0.004 366 761 0.176 973 054 0.001 622 883
0.001 646 266 0.024 407 634 0.004 388 427 0.176 142 839 0.001 624 232
G) o) (e
0.024 494 690 0.177 041 413 0.004 360 586
0.024 492 580 0.177 031 923 0.004 361 544

Table 4.1: Values of the parameter calculated by using our wave-function for the PsH and their com-
parision with [33]. The values of each parameter in the first row correspond to the one calculated in
[33] and the second row in each case depicts the value calcualted here. In both cases the size of basis is
considered to be 1000. The § denotes the value using Drachman identity.

three- and four-particle delta functions the QED results of two and zero-photon annihilation of PsH are
determined [25]. From Table we can see that our results of various coalescence probabilities are in
agreement with [33]. To achieve the good convergence of two-particle delta functions, we derived the
corresponding results of the expectation using Drachman identities. Compared to the direct calculation
of the expectation value of these two particle delta functions, we can see that the results obtained by
Drachman identities show better agreement with the [33], and this is evident from Table

To summarize: in the work presented here, we used the variational method in Gaussian basis and
combine it with the algorithms for decomposing the Hamiltonian matrix elements and for optimizing the
wave function for PsH. Using these optimized wave functions with 1000 basis, we calculated the various
properties, such as inter-particle distances and the non-relativistic ground state energy and compare
these quantities with the one calculated in [33]. The important problem in the PsH system is the
study of electron-positron annihilation in this system which produce zero-, one-, two-, and in general
n-photons where the decay rate to 2 is the maximum. The electron-positron annihilation correspond to
the coalescence probability of these two particles at one point and it corresponds to the the expectation
value of §,+.-. Knowing that the convergence of these expectation value is not very good in the Gaussian
basis, we reported the values both by the direct calculation and also by using the Drachman identity
and found a good agreement with their values reported in literature [33]. There is a possibility that one

or both photons created due to electron-positron annihilations in the PsH are absorbed by the internal
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conversion that corresponds to the expectation value of the three particle and four particle §-function.
These coalescence probabilities of three- and four-particles at a single point and also calculated. However,
the calculation of the decay rate of PsH to one- and zero-photon with free and bound (possible for one

and two photons only) state of final proton and electron is beyond the scope of this work.
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