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Abstract 

Background 

Neuropeptide Y (NPY) plays an important role in controlling reproductive axis and food intake. 

Both prolactin (PRL) and growth hormone (GH) are important non-gonadotrophic hormones 

that are involved in many physiological processes. Many intrinsic and extrinsic factors are 

involved in modulating the secretion of PRL and GH. It is believed that NPY is also one of the 

factors involved in mediating the release of PRL and GH.  Numerous studies in different animal 

models (rat, mice, sheep) have documented contradictory observations concerning NPY 

regulation of PRL and GH secretion via Y1 receptor subtype (NPY1R). However, the role of 

NPY in mediating non-gonadotropic hormones secretion by NPY1R has not been clearly 

defined in highly evolved non-human primates.   

Aims and Objectives 

The present study was undertaken to study the role of NPY in the control of PRL and GH 

secretion through Y1 receptor subtype in juvenile male rhesus monkey. For this purpose, highly 

specific NPY1R antagonist BIBO 3304 was used.  

Materials and Methods 

A total of four (n=4) juvenile male rhesus monkey (Macaca mulatta) were used to study the 

effect of NPY1R antagonist on GH and PRL secretion. These four juvenile monkeys were 

injected intravenously with either NPY1R antagonist 1ml of 2mg antagonist/animal or an equal 

amount of normal saline (1ml/animal) on two alternative days.  A total of 3 boli of normal 

saline and antagonist in 4.8 % DMSO were injected with an interval of 60 minutes at 0, 60, and 

120 min on two separate days of bleeding. On both days of bleeding, three blood samples (0.5-

0.7 ml) were collected from animals at -60, -30 and 0 minutes. After taking 0-minute sample, 

animals were immediately injected with either vehicle or antagonist and then sequential blood 

samples with 30-minute interval up to 240 minutes were collected with the help of butterfly 

tube connected with 1cc syringe. Plasma was harvested and commercially available GH and 

PRL ELISA kit was used to measure GH and PRL concentration. 
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Results  

Plasma PRL and GH levels in juvenile male rhesus monkeys treated with antagonist showed 

no statistically significant difference (p>0.05) as compared to vehicle group. Thus, current 

findings demonstrated that NPY signaling via NPY1R may not involve in regulating PRL or 

GH secretion in juvenile animals. 

Conclusion 

In conclusion, our study showed that there is no effect of NPY on PRL and GH release in 

juvenile male rhesus monkeys. However, contemplating previous data in different animal 

models, amount, and route of exposure of the drug are the key concerns. Therefore, non-

involvement of NPY1R in mediating non-gonadotropic hormones secretion cannot be 

exclusively ruled out. Further investigations are required to ascertain plausible mechanisms by 

which NPY can regulate GH and PRL release. The study can be extended at the pituitary level 

to ascertain direct effect of NPY on somatotrophs and lactotrophs involved in GH and PRL 

release.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

introduction 



 

    

3 
 

INTRODUCTION 

Neuropeptide Y (NPY) is a 36 amino acid tyrosine-rich neuropeptide that performs functions 

as neuropeptide, neuromodulator, or neurotransmitter depending on the circumstances. Almost 

40 years ago, Tatemoto sequenced and identified NPY from porcine brain extracts in 1982 

(Tatemoto et al., 1982a). NPY belongs to a family of structurally related peptides, which 

includes the hormones pancreatic polypeptide (PP) and peptide YY (PYY). NPY exhibits 70% 

structural homology with PYY and 50% homology with PP. NPY is abundantly present in brain 

areas whereas PP cause food absorption and it is released from pancreas in response to food 

intake (Joehl and DeJoseph, 1986) while PYY is expressed mainly in gut tissues (Tatemoto 

and Mutt, 1980). Allen and colleagues showed that all these structurally related peptides of the 

neuropeptide family have a common tertiary structure (hair pin like), that contains beta-turn 

connecting long alpha-helix and N-terminal poly-proline helix (Allen et al., 1987).    

 

                              

                         

Fig ⅰ. NMR Structure of NPY  

According to amino acids sequence of NPY depicted by Allen and colleagues for the rat and 

human origin, it has been shown that NPY primary structure is constituted by five tyrosine (Y) 

residues. This tyrosine resides at position 1, 20, 21, 27, and at 36 positions (Allen et al., 1987). 
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NPY is named as neuropeptide Y or neuropeptide tyrosine because it contains abundance of 

tyrosine in its structure. NPY, PP, PYY are grouped into same NPY family because of their 

terminal tyrosine in both carboxyl and amino terminals (Cerdá-Reverter et al., 1999).                       

NPY prepropeptide/gene locus  

NPY shares remarkable sequence homology among some species and is evolutionarily well-

preserved for over 450 million years (Larhammar, 1996). Although NPY is well conserved 

across vertebrate phyla, the position of NPY gene is different in different species. NPY 

encoding gene in rats is located on chromosome 04 and in humans on chromosome 07 at the 

locus 7p15.1 while NPY is located on chromosome 03 in rhesus macaques, each with 4 exons 

and 3 introns (Katsuya et al., 1993; Baker et al., 1995). The coding sequence of NPY consists 

of 291 bases (Minth et al., 1984). NPY genetic sequence was determined from human 

pheochromocytoma by in vitro translation of RNA. A 28 amino acid signal peptide, a 36 amino 

acid NPY molecule, and a 30 amino acids C-flanking peptide are present at two proteolytic 

cleavage sites in the inferred precursor amino acid sequence of NPY (CPON). A 

radioimmunoassay study for the predicted sequence of CPON acids shows that it is present in 

various body regions such as in adrenal gland, heart, and central nervous system with the 

highest concentration have been documented in the hypothalamic regions (Allen et al., 1985).  

Central and peripheral expression of NPY  

Several neurons in the central and peripheral nervous systems contain NPY. A thorough map 

of the NPY networks in the CNS has been created using specific antisera against NPY (Karla 

and Crowley, 1992). In addition to the anterior and medial preoptic hypothalamic areas, high-

density NPY terminals can be seen across the suprachiasmatic, periventricular, paraventricular, 

and supraoptic nuclei (Chronwall et al., 1985). The arcuate nucleus (ARC) of the medial basal 

hypothalamus (MBH) is the area where abundance of NPY neuronal bodies is present whereas 

terminals of NPY are also projected in the median eminence area indicating that NPY can 

modulate neurosecretory activity of those neuronal populations the fibers of which culminating 

at ME. The internal and subependymal zones contain most of the NPY terminals, while fibers 

near the portal capillaries have also been discovered in the external zone (McDonald et al., 

1987, Meister et al., 1989). 
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Allen et al. 1983 also discovered that the PVN nucleus of the hypothalamus is abundant with 

NPY immunoreactive bodies. The hippocampus and hypothalamus, particularly the ARC and 

dentate gyrus, have been reported to have the highest levels of NPY. Because of this, NPY is 

capable of controling the neuroendocrine release of many hypothalamic hormones, including 

luteinizing hormone and other hormones (Acuna-goycolea et al., 2005). As far as 

immunoreactive expression of NPY in human brain is concerned, it has been noted that basal 

ganglia, nucleus accumbens, limbic system and hypothalamus are the prominent areas where 

NPY is heavily concentrated. Among these areas, hypothalamus has gained special attention 

by the scientist to uncover the role of NPY in this area because this area is critically involved 

in appetite, energy regulation, homeostasis, and neuroendocrine control (Adrian, 1978). 

In addition, NPY is also present in neuronal elements in the periphery (Emson and Dequidt, 

1984). In the periphery, NPY is abundant in the sympathetic nervous system, where it usually 

acts with norepinephrine and adenosine triphosphate (ATP) to regulate cardiovascular and 

other functions. The primary source of circulating NPY is the adrenal medulla, (Cavadas et al., 

2001), however, it was also found in platelets (Myers et al., 1988), megakaryocytes, bone 

marrow, spleen, blood cells, and thrombocytes of mice (Ericsson et al., 1987). Other tissues 

and organs which have NPY in abundance include the eye, thyroid, pancreas, ovary, kidney, 

skin, and spleen (Chen et al., 2005).  

NPY difference from other peptides 

NPY difference from PYY 

NPY and PYY are identical at 25 positions in entire 36 residues. However, remaining 11 amino 

acids residues are non-identical, but all these 11 residues showed pairing with residues which 

show structural similarity. Among these variable positions, four positions are the replacements 

of Ser/Ala or vice versa, two exchanged positions for Asp/Glu, one position of exchange for 

Ile/Val and another position at which this replacement has been documented is Ile/Leu. In 

addition to these mentioned replacements, exchanges have also been observed at positions 7 

and 13-14 for Asn/Ala and Pro-Ala/Ser-Pro, respectively. NPY and PYY show positional shift 

of Pro from position 13 to 14 like positional shift of avian PP and bovine PP. A greater number 

of exchanges has been observed between NPY and PYY, specially between Ser/Ala residues. 

These changes attribute significant variations in functional difference between these two 
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peptides. There is genetically single nucleotide replacement in 10 of the 11 non-identical 

residues of NPY and PYY, but two nucleotide changes were evident at position 7. The data 

observed about the similarity and difference between NPY and PYY show that a total of 12 

base changes from total of 108 nucleotide positions are the prerequisite to change NPY into 

PYY or vice versa. These attributes lend credence to scientist to propose that a common 

ancestor may be present for both these peptides (Tatemoto et al., 1982b). 

NPY and other PP difference                

NPY shows 18 and 17 of its 36 residues similarity to porcine PP and bovine PP respectively. 

COOH-terminal region where 9 of the 13 residues at positions 24-36 are identical is responsible 

for such sequence homologies. In contrast, NPY and avian PP exhibit homology in 20 residues, 

with the most striking homology being in the central region at positions 8–17, where 8 of the 

10 residues are similar. It has been reported that the brain contains a peptide that reacts with 

antisera raised against bovine and avian PP and hence, it further proves their structural 

similarity (Olschowka et al., 1981).   

NPY receptors 

From mammals, five NPY receptor subtypes have been cloned based on pharmacological 

profiles (NPY1R, NPY2R, NPY4R, NPY5R, and NPY6R), while multiple other receptor types, 

such as NPY3R, have been hypothesized (Berglund et al., 2003). Although an additional Y7 

receptor (NPY7R) was cloned from chicken, its status is still unknown because it is ineffective 

in primates and does not exist in rat and human genome. NPY receptors are large 

transmembrane proteins coupled with G-protein belonging to the rhodopsin-like family. One 

of the gene groups with the greatest abundance in the human genome, accounting for more than 

2% of all genes, is the G-protein-coupled receptor (GPCR) superfamily (Venter et al., 2001). 

All NPY receptors belong to G protein-coupled receptors (GPCRs) family, and there are over 

800 GPCRs in the human genome. NPY and its receptors are widely expressed in the body. 

The spinal cord and the brain both express these receptors in various locations (Larhammar et 

al., 1992). 

In 1992, the first human Y1 receptor was cloned (Larhammar et al., 1992). In 1995, two more 

subtypes of the receptor Y2 and Y4 receptors were cloned (Gerald et al., 1995; Rose et al., 

1995). In the next year, another receptor, the Y5 receptor was discovered (Gerald et al., 1996; 
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Weinberg et al., 1996). Among these, four of the receptors (Y1, Y2, Y4, and Y5) are 

functionally active in humans while y6 is not functional in primates due to an inactivating 

mutation therefore its biological relevance remains to be clarified (Larhammar et al., 1992; 

Michel et al., 1998; Pedrazzini et al., 2003). In the 5q31 region of chromosome 5 in humans, 

the y6 receptor is an inactive pseudogene (Gregor et al., 1996; Matsumoto et al., 1996). The 

subtypes found in mammals possibly originated by means of gene duplication prior to the 

origin of vertebrates (Larhammar et al., 1992). Y1, Y2 and Y5 have been localized to the same 

chromosomal segment in humans, while Y4 and y6 have been mapped to separate 

chromosomes. All these subtypes have been cloned in mouse, human (Michel et al., 1998), pig 

(Wraith et al., 2000) and guinea pig (Sharma et al., 1998; Lundell et al., 2001). Each receptor 

has preference affinity for a particular ligand within NPY-PYY family of peptide (Magni, 

2003). NPY1 receptor (NPY1R) and NPY5 receptor (NPY5R) prefer to bind with NPY and 

PYY, NPY2 receptor (NPY2R) has higher affinity for PYY, while NPY4 receptor (NPY4R) 

preferentially binds to PP (Tatemoto et al., 1982b). Pharmacological studies also suggested the 

existence of another receptor isotype designated as Y3 and it is controversial putative NPY 

preferring receptor (Gehlert, 1998; Lee and Miller, 1998). It is suggested that One or more 

NPY receptors may multimerize to form the putative Y3 receptor (Wahlestedt et al., 1992). 

NPY1 receptor 

NPY1R is the main type of NPY receptor, and it was the first to be cloned in early 

investigations using different peptide segments (Wahlestedt et al., 1986; Herzog et al., 1992). 

NPY1R has 384 amino acids and is pharmacologically unique from NPY2R by its ability to 

bind [Leu31, Pro34] (Herzog et al., 1992). In mammals 92-95% homology has been observed 

in NPY1R gene. NPY1R gene consists of 4 exons with two introns and its chromosomal 

localization is different in different species (Larhammar et al., 2001). 

Central and peripheral expression of NPY1R 

 It has been shown that NPY receptors such as NPY1R and NPY2R appear in MPOA (Dumont 

et al., 1990; Aicher et al., 1991). In the human brain's hypothalamus, modest quantities of 

NPY1R mRNA were found inside the caudate, nucleus accumbens, putamen, ARC, 

amygdaloid nuclei, and paraventricular nucleus  (Jacques et al., 1996). 

https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b88
https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b100
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According to the previously published NPY distribution and anticipated NPY binding locations 

(Adrian, 1978),  NPY1R expression was discovered in the hypothalamus, different amygdaloid 

nuclei, the hippocampus, and multiple thalamic nuclei in the rat and mouse. These findings 

were made using immunocytochemical detection techniques (Eva et al., 1990;  Kishi et al., 

2005). NPY1R mRNA expression has also been noted in different peripheral tissues. Among 

these, adipose tissues (Yang et al., 2008), colon (Goumain et al.,1998), and pancreatic cells 

(Morgan et al., 1998) are the most prominent regions where NPY1R mRNA expression has 

been detected. The epithelial and mucosal nerves of the colon, kidney, adrenal gland, heart, 

and placenta in humans express NPY1R (Wharton et al., 1993). The NPY1R plays a role in 

regulating NPY-induced hyperphagia, multiplication of smooth muscle and neural precursor 

cells, vasoconstriction, as well as involve in avoiding ethanol tolerance (Bhisikar et al., 2009). 

Other NPY receptors 

All NPY receptors have diverse tissue expression profiles and hence have various binding 

affinities to NPY family peptides. The majority of Y2 receptor expressions occur 

presynaptically. Neurotransmitter release is inhibited because of their activation by the peptides 

NPY, and PYY. In addition, cleaved N-terminal product from 3-36 position of both NPY and 

PYY also inhibit neurotransmitter release (Wahlestedt and Hakanson, 1986; Smith-White et 

al., 2001). Adipocyte proliferation, differentiation, and angiogenesis within adipose tissue, all 

are facilitated by Y2 receptors (Kuo et al., 2007). With a picomolar range binding affinity, the 

Y4 receptor binds PP preferentially. This receptor is important in regulating reproductive 

activity (Sainsbury et al., 2010). This is due to involvement of this receptor in modulating the 

activity of reflex arc of vago-vagal in the area postrema which ultimately conveys PP 

anorexigenic signaling from peripheral circulation to higher brain center- hypothalamus (Lin 

et al., 2009). The hypothalamic paraventricular nucleus (PVN) is the site of expression for 

NPY5R, which cooperates with NPY1R to control energy balance (Gerald et al., 

1996; Kanatani et al., 2000; Mashiko et al., 2009). Pharmacological studies in many tissues 

(Lee and Miller, 1998) have led to the hypothesized existence of NPY3R, although its cloned 

status has not yet been established. The y6 receptor is only a functioning receptor in rabbits 

and mice. According to Weinberg et al. (1996), NPY6R is expressed in the hypothalamic 

suprachiasmatic nucleus of mice, suggesting that these receptors may be involved in the control 

of diurnal rhythms and energy homeostasis. 
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https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b61
https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b117
https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b117
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https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b209
https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b69
https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b69
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https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01363.x#b150
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NPY signaling mechanism 

A series of G-protein coupled receptors is used by the NPY family of peptides to communicate. 

The activation of the NPY receptors link to inhibitory G-proteins subunits results in inhibitory 

responses. These inhibitory responses are manifested by downregulation of adenylate cyclase 

and subsequently inhibition of secondary messenger cyclic AMP (Herzog et al., 

1992; Motulsky and Michel, 1988). Additionally, inhibition of potassium and calcium channels 

are also observed upon NPY activation (Aakerlund et al., 1990;  Sun et al., 2001). The 

Y1 receptor can also couple to other second messenger systems in control of direct Ca2+ influx 

(Prieto et al., 2000), thereby, imparting significant effects on cellular polarization and electrical 

signaling. When the NPY1R is activated, the metabolism of phospholipase C and inositol 

phosphate increases intracellular Ca2+ mobilization, whereas the NPY2R reduces the inflow of 

Ca2+, further inhibiting the target cells' secretory activity (Ewald et al., 1988). Both NPY1R 

and NPY2R are adversely correlated with adenylcyclase (Kalra and Crowley, 1992). All NPY 

receptors mediate their effects via Gi protein-coupled receptors (Fig ⅰⅰ). 
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Figure ⅰⅰ. Typical NPY receptor intracellular signaling pathways. The alpha subunit of the Gi 

signaling cascade, which inactivates adenylyl cyclase, is related to all NPY receptors. There 

are several kinase cascades that the beta and gamma subunit triggers. Additionally, Ca2+ 

channel activity can be decreased, and G protein-coupled inwardly rectifying potassium 

(GIRK) currents can be increased when the G protein complex is activated (Acuna-Goycolea 

et al., 2005). The physiological effects of NPY are based on the activation of these cellular 

signaling cascades, which has a variety of impacts including the start of transcription or the 

stimulation or inhibition of hormone/neurotransmitter release. 
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Central and peripheral effects of NPY 

NPY had a role in several physiological and pathological processes since its discovery. The 

peptide has been shown to have both central and non-central peripheral effects. In fact, NPY is 

the peptide that is most prevalent in the brain. Feeding behavior, anxiety, epilepsy, circadian 

rhythms, memory function, sleep, pain, and drug addiction are among the main effects of NPY. 

Numerous pieces of evidence suggest that NPY is essential for controlling hunger, body 

weight, and obesity (Silva et al., 2002). Humans and rodents have shown the peptide's 

anxiolytic qualities, and it may also play a role in depression (Heilig, 2004).  

The cardiovascular actions of NPY's peripheral effects which are predominately located in 

sympathetic fibers include modulation of heart rate, coronary blood flow, ventricular function, 

and a vascular mitogen. Through certain postsynaptic NPY receptors, NPY also promotes 

atherosclerosis (Pons et al., 2004; Zukowska, 2005), and it may possibly be a candidate peptide 

for coronary artery disease (Shah et al., 2009).  

NPY functions 

Researchers started to hypothesize about the role of NPY in hypothalamic-mediated processes 

after NPY was isolated from the pig hypothalamus in 1982. NPY has been regarded as vital 

factor in adaptability of organisms under environmental stresses such as during predator 

assault, starvation, or infection. This adaptability helps the organism to survive under such 

stressful conditions by modulating their behaviors (Sokolowski, 2003). Studies revealed that 

NPY is a crucial energy homeostasis regulator in vertebrates and is frequently regarded as one 

of the strong hunger stimulants in both mammals and fish (Volkoff et al., 2005). Hypothalamic 

NPY increases appetite signaling in a leptin-dependent manner (Egan et al., 2017).  

The NPY system has been found to be engaged in a wide range of physiological processes in 

animals, including the release of hormones in addition to its significant roles in food intake and 

energy balance (McDonald et al., 1985), obesity (Kuo et al., 2007), stress response (Morales-

Medina et al., 2010), anxiety (Domschke et al., 2010), circulation of blood (Zukowska-Grojec 

and Wahlestedt, 1993), embryogenesis (Mathieu et al., 2002), sleep (Dyzma et al., 2010), 

sexual behavior (Kalra and Crowly, 1992), controlling energy balance regulation (Brady et al., 

1990; Turton et al., 1997), memory retention (Borbely et al., 2013), and also in, secretion of 
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pituitary hormones e.g. gonadotropin, adrenocorticotropin,  thyrotropin, growth hormone and 

prolactin hormone (Kalra et al., 1984; Contijoch et al., 1993; Peng and Peter, 1997; Carpio et 

al., 2006).  

Role of NPY on the HPG axis 

Although NPY is well recognized for its influence on appetite, numerous studies have shown 

that it also has a significant impact on the regulation of anterior pituitary hormones production, 

including that of reproductive hormones (Kalra,1993). NPY plays a pivotal role in regulating 

HPG axis by regulating GnRH release. NPY neurons in the arcuate region of hypothalamus 

have been shown to project to GnRH neurons in monkeys (Plant and Shahab, 2002) and in 

mice (Turi et al., 2003). GnRH neurons have been shown to express NPY1R (Li et al., 1999). 

NPY acts as neurobiological brake on GnRH pulse generator before the onset of puberty (El 

Majdoubi et al., 2000). At the hypothalamus level, NPY regulates GnRH release to control 

reproductive function (Khorram et al., 1987; McDonald et al., 1989; Kaynard et al., 1990). 

Depending on the steroid levels, NPY either stimulates or inhibits the reproductive axis. For 

instance, NPY bolus injection stimulates luteinizing hormone (LH) release when oestrogen and 

progesterone levels are high, such as on the afternoon of proestrus. However, when gonadal 

steroids are low, as in the case of ovariectomized females or castrated male rats, NPY decreases 

the release of LH (McDonald et al., 1989; Bauer-Dantoin et al., 1992). In addition, chronic 

NPY infusion disrupts cyclicity in adult female rats and delays the beginning of puberty in 

prepubescent rats of both sexes, indicating that long-term exposure to high amounts of NPY 

acts as a suppressor for the release of LH (Catzeflis et al., 1993; Gruaz et al., 1993; Pierroz et 

al., 1995). 

The release of reproductive hormones is regulated by modulatory substances such NPY, which 

is completely necessary for the regular female reproductive cycle. During the cycle, pulsatile 

release of GnRH occurs in conjunction with NPY in the hypophyseal portal blood vessels 

(Woller and Terasawa, 1992). This concomitant surge pattern of LH has been abolished after 

NPY deletion in mice (Xu et al., 2000). Likewise, immunoneutralization of NPY considerably 

reduces LH surge pattern (Sutton et al., 1988). NPY expressing neurons in the hypothalamus 

have been demonstrated in male monkeys (Plant and Shahab, 2002). The close association 

between NPY and GnRH neuronal entities has led to propose that NPY may regulate GnRH 
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release. However, interestingly, this juxtaposition between these two neuronal moieties 

observed to be higher in prepubertal animals as compared to adult animals conferring NPY as 

neurobiological brake on pulsatile release of GnRH during postnatal developmental period 

(Plant and Shahab, 2002). This conclusion was corroborated by the research showing that NPY 

administration centrally halt the GnRH induced pulsatile LH release in both sexes of agonadal 

monkeys achieved pubertal onset (Kaynard et al., 1990; Pau et al., 1995; Shahab et al., 2003). 

Postnatal developmental transition from infant to pubertal stage also showed inverse 

relationship between gene and peptide content of NPY and GnRH pulse generator activity as 

depicted by LH levels in male monkeys (El Majdoubi et al., 2000).  

Additionally, it has been shown that NPY icv administration caused suppression in GnRH 

release in postpubertal adult monkeys mediated through NPY1R (Shahab et al., 2003). The 

critical involvement of NPY1R in mediating NPY based suppressive effect on LH release has 

been pharmacologically confirmed by using different antagonists. A variety of NPY1R 

antagonist have been tested to evaluate the role of NPY1R in inducing NPY dependent LH 

release. In this regard, in prepubertal non-human highly evolved primates have shown that icv 

administration of NPY1R antagonist enhanced GnRH pulse generator activity by diminishing 

NPY suppressive effect (El Majdoubi et al., 2000; Shahab et al., 2003). These data indicate that 

NPY acts as neurobiological brake in suppressing HPG axis activity during prepubertal stage.  

Several studies indicate that NPY through NPY1R stimulates the release of LH and a selective 

NPY1R antagonist BIBP3226 when injected peripherally inhibited the release of proestrus LH 

and GnRH induction (Leupen et al., 1997) while It is interesting to note that chronic icv 

infusion of highly specific BIBP 3226 caused advancement in pubertal development in 

prepubertal female rats suggesting hiatus of GnRH before pubertal initiation is under the 

control of NPY arrest through NPY1R (Pralong et al., 2000). Since the antagonists used in 

primate studies were exhibiting both agonist and antagonist activity against NPY4R and 

NPY1R respectively, and antagonist used in rodent study was hazardous therefore the results 

are unclear as evident by pharmacological data regarding the involvement of the NPY1R in 

mediating NPY effect on GnRH release (Shahab et al., 2003).  

Kisspeptin-GPR54 is a key neuroendocrine regulator of GnRH release (Plant, 2006; Tena-

Sempere, 2006) according to genetic and pharmaceutical research. Kisspeptine-GPR54 not 

only had a significant impact on pubertal commencement (Han et al., 2005; Shahab et al., 
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2005), but it also controlled the release of GnRH in animals belonging to order primate 

(Terasawa et al., 2013).  

Both kisspeptin and NPY are shown to be potent stimulator and inhibitor of the HPG axis 

respectively, (Terasawa et al., 2013). Recently an intimate association between NPY and 

kisspeptin has been observed in ewes (Backholer et al., 2010; Polkowska et al., 2014) 

suggesting that NPY may regulate the HPG axis activity indirectly via kisspeptinergic pathway. 

Moreover, recently a peptide known as gonadotropin inhibiting hormone (GnIH), which acts 

as a suppressor of gonadotrophin release, has been described in various mammalian models, 

including higher primates (Tsutsui, 2010). Close contact between NPY neurons and GnIH 

fibers has been also demonstrated in mice (Jacobi et al., 2013) which probably indicate that 

NPY based inhibition of GnRH pulse generator might be mediated through GnIH dependent 

intermediatory neuronal network. Hence, it is indicated that the HPG axis is highly susceptible 

to both internal and external influences for proper operation (Cameron, 1996; Wade and Jones, 

2004). 

Effect of NPY on prolactin hormone  

 NPY is a pleiotropic hormone involved in the control of food intake (Kalra and Crowley, 1992) 

as well as in the regulation of LH (Crowley and Kalra, 1984; Khorram et al., 1988; Bauer-

Dantoin et al., 1992) and PRL (Ghosh et al., 1991; Wang et al., 1996) release. Although NPY 

has been shown to regulate prolactin (PRL) secretion, conflicting results have been obtained 

from different experiments involving different animal models. 

The lactotrophs, which are specialized cells found in the anterior part of the pituitary gland, 

produce the polypeptide hormone, prolactin. PRL was first discovered in the late 1920s and 

given that name because it promotes lactogenesis in several animals and encourages the 

formation of mammary tissue (Trott et al., 2008). It is also referred to as luteotropic hormone 

due to its function in the maintenance and production of the corpus luteum.  

Growth hormone (GH), prolactin (PRL), and placental lactogen (PL) genes, all descended from 

the same ancestral gene (Niall et al., 1971). It is a member of the PRL/GH/PL protein family 

and shares similarities with GH and PL in its amino acid sequence. About 400 million years 

ago, the GH and PRL lineages diverged (Cooke et al., 1980; Cooke et al., 1981). On 



Introduction 

    

15 
 

chromosome 6 of the human genome, there is only one prolactin-encoding gene (Owerbach et 

al., 1981). The gene encodes 5 exons and 4 introns and 10 kb (Truong et al., 1984). Single 

chain PRL molecule consists of 199 amino acids with six cysteine residues by three disulfide 

bridges (Cooke et al., 1981). 

As the primary purpose of PRL is to encourage the production of milk, PRL was first identified 

and given that name based on this effect. However, a variety of prolactin-controlled processes 

have been identified over time. An early review identified 85 functions of PRL in the body 

(Nicoll, 1974), and this has subsequently been updated to over 300 identified functions (Bole-

Feysot et al., 1998). PRL currently has a wide range of activities in the brain after being 

implicated in many new functions over the past ten years (Grattan, 2001). PRL affects sexual 

behavior and reproduction in both primates and non-primates in a variety of ways (Ben-

Jonathan et al., 2008). Pleiotropic hormones, such as PRL, are those in which a single gene 

regulates a variety of diverse phenotypic consequences. It has a wide range of neuroendocrine 

effects, including suppression of fertility, activation of hypothalamic dopamine neurons to 

regulate its secretion, stimulation of maternal behavior, stimulation of myelination in the 

central nervous system, and the development of new neurons in the olfactory bulb and 

suppression of the stress response. This pleiotropic term perfectly captures these effects. In rats 

and primates, PRL is a key regulator of the luteotrophic complex, which controls LH and FSH 

(Richardson et al., 1985). PRL inhibits the luteinization of granulosa cells in humans (Adashi 

and Resnick, 1987). It stimulates prostate growth and increases the number of the androgen 

receptors on the prostate. Hyperprolactinemia reduces sperm fertilization and motility. On the 

other hand, hypoprolactinemia produces azoospermia. PRL is also involved in the maintenance 

of the Leydig cell morphology, probably via suppression of the gonadotropin secretion (Wang, 

2001). Evidence suggests that both PRL and progesterone cooperatively operate together to 

enhance mammary gland growth in addition to segregated effects. In many animals, PRL plays 

a crucial part in several aspects of reproduction. Although PRL is frequently referred to as an 

adaptive hormone, there have been few attempts to explain why and how a single hormone 

may affect so many different and seemingly unrelated neuroendocrine activities. 

Inhibitory regulation by dopamine plays a major role in the dual inhibitory and stimulatory 

hypothalamic control of PRL (Neill, 1974; Shin et al., 1987). Dopamine inhibits PRL activity. 

Dopamine is produced by tuberoinfundibular dopaminergic neurons (TIDA). Dopamine acts 

on the surface of lactotrophs by influencing the D2 (dopamine receptor) after being produced 
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from the hypothalamus into the hypophyseal portal circulation (Goldsmith et al., 1979; 

Holzbanct and Racke, 1985). In addition to TIDA neurons, another population of dopaminergic 

releasing characteristics called tuberohypophyseal dopaminergic neurons (THDA) residing in 

ARC also control dopamine release (Arbogast et al., 1989). Additionally, the release of PRL is 

impacted by catecholamine metabolism (Arimura et al., 1972). 

Most of the research that have been published so far have shown that NPY has an inhibitory 

effect on PRL secretion. For example, Wang et al. 1996 found that NPY reduced PRL 

production from rat anterior pituitary cells when administered centrally. Opposite to the above 

cited observation, PRL secretion from dispersed estrogen-primed cultured pituitary cells was 

stimulated by NPY (Hill et al., 2004). While primary cultures of pituitary cells from 

ovariectomized rats treated with estradiol showed amount of the drug suppression of PRL 

release in response to NPY. Male rats' PRL release increased after endogenous NPY was 

neutralized by antibodies, demonstrating that the overall function of NPY is to suppress PRL 

secretion (Ghosh et al., 1991).  However, another study showed stimulatory effect of NPY on 

in vitro PRL secretion from cultured pituitary rat cells (Baranowska et al., 1999). 

NPY13-16 (a Y2 receptor agonist) icv injection increases the mRNA expression of PRL 

(Garcia et al., 1995). Since the anterior pituitary lacks Y2 receptors (Sheikh et al., 1998), the 

peptide's activity is most likely mediated through a primary hypothalamic action. Moreover, 

intracerebroventricular (icv) administration of NPY partially inhibits PRL secretion in male 

rats by increasing dopamine secretion (McCann et al., 1973; McCann et al., 1989; Kalra and 

Crowly, 1992).  NPY icv administration increased tuberoinfundibular dopaminergic neurons 

activity in male rats (Fuxe et al., 1989).  

During lactation, the mediobasal hypothalamus expresses more NPY (Ciofi et al., 1991; 

Pelletier and Tong, 1992; Smith,1993; Ciofi et al., 1993, Malabu et al., 1994). Since TIDA 

neurons typically do not express NPY, the discovery of immunoreactive NPY in these neurons 

is particularly unexpected. NPY promotes the release of PRL from randomly cycled rat 

cultured pituitary cells (Chabot et al., 1988). However, research from lactating or animals 

ovariectomized with estradiol-treatment demonstrates that NPY reduces PRL release from 

primary cultures of anterior pituitary cells in a concentration-dependent manner (Wang et al., 

1996). PRL secretion is further inhibited by the peptide's inhibitory impact through dopamine 

(Wang et al., 1996). Like DA withdrawal, the peptide's removal from the culture media 



Introduction 

    

17 
 

promotes a rapid rebound in PRL output (Wang et al., 1996). Because NPY is present in TIDA 

neurons and their nerve terminals reside in the median eminence, it is possible for the two 

alternative mechanisms to take place. First, NPY may modify dopamine release presynaptically 

or second, dopamine directly acts in the pituitary to modulate PRL secretion (Wang et al., 

1996). NPY administered intracerebroventricularly in male rats reduces PRL secretion (Rettori 

et al., 1990b). Inhibitory action of NPY on PRL secretion has been evident in intact male rats 

when antiserum against NPY injected centrally cause increase in plasma PRL levels (Ghosh et 

al., 1991). This shows importance of sex steroids to mediate central inhibitory action of NPY. 

The mediobasal hypothalamic expression of NPY greatly increases during lactation (Ciofi et 

al., 1991; Smith,1993; Malabu et al., 1994). However, despite being a lactation-dependent 

event, the increase in NPY expression does not require high plasma PRL levels (Pelletier and 

Tong, 1992). Thus, it is suggested that PRL feedback is not mediated by NPY in the 

hypothalamus. 

Effect of NPY on growth hormone secretion 

The 22,000-dalton protein known as growth hormone (GH), commonly referred to as 

somatotropin, is released by the somatotrophs from the anterior pituitary gland in mammals. 

GH belongs to a set of structurally related peptide hormones that includes PRL and placental 

lactogen (PL; chorionic somatomammotropin) (Baxter et al., 1979). GH consists of a single 

191 amino acids polypeptide chain, containing two intrachain disulfide bridges. Remarkable 

structural similarity exists in GH of human and monkey (Li et al., 1986), differing at only 

positions 105, 107, 133, and 173 at four residues due to the mutation of only one codon 

nucleotide.  

Main job of GH is to encourage postnatal longitudinal growth. In addition to stimulating bone 

development, it controls the metabolism of carbohydrates, lipids, nitrogen, and minerals. It 

increases adipocyte lipolysis, which reduces body fat. It enhances muscular protein synthesis, 

nitrogen retention, muscle strength, and muscle hypertrophy (Bonert and Melmed, 2017; 

Troike et al., 2017). GH also has an impact on the cardiovascular system, immune system, 

central nervous system, neurogenesis, and aging (Brooks and Waters, 2010; Waters and 

Blackmore, 2011; Bartke et al., 2016; Gesing et al., 2017). Therefore, aberrant GH secretion 

or release may influence a variety of tissues and organs. GH overproduction results in 

childhood gigantism and adult acromegaly, whereas congenital GH signaling disruption results 
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in short stature. It is a well-known fact that a complicated neuroendocrine regulatory 

mechanism, specifically the interaction of two hypothalamic hypophysiotropic hormones, 

regulates GH secretion. GH is secreted in a pulse fashion, and its pattern depends upon the GH-

releasing hormone (GHRH) and reciprocal action of somatostatin (SS) on pituitary 

somatotrophs (Tannenbanum and Ling, 1984). GHRH is released from the ARC, and it 

stimulates the secretion and synthesis of GH from the pituitary (Brazeau et al., 1982; Barinaga 

et al., 1983; Ibata et al., 1986). SS is primarily released from the periventricular nucleus (PeN) 

in the hypothalamus, and it inhibits the secretion of GH (Reichlin, 1983; Kawano and 

Daikkoku, 1988). Through a short-loop feedback system that controls the production and 

release of SS and GHRH, GH regulates its own secretion. Numerous studies indicate that GH 

inhibits the synthesis and secretion of GHRH from ARC neurons and promotes the secretion 

and synthesis of SS from neurons in the PeN (Chihara et al., 1981; Katakami et al., 1987; 

Chomczinski et al., 1988; Rogers et al., 1988). 

Somatotrophic and gonadotrophic axes are closely associated with growth and sexual 

maturation. LH and FSH primarily control how the gonads operate during gametogenesis. GH 

is crucial for puberty, sexual differentiation, steroidogenesis, ovulation, and gonadal 

development (Zachmann, 1992). GH is typically but not always required for the timing of 

sexual development, as evidenced by the frequent correlation between GH deficiency and 

delayed or missing puberty and the GH injection inducing pubertal onset. The relevance of GH 

in triggering sexual maturity is demonstrated by the stimulation of sexual maturation in GH-

deficient children (Darendeliler et al., 1990; Stanhope et al., 1992) and GH-depleted monkeys 

(Wilson et al., 1989) by exogenous GH. Growth hormone stimulation of the GnRH pulse 

generator led to the onset of puberty (Bartke et al., 1999) or the potentiation of androgen action 

(Ilondo et al., 1982). 

Furthermore, preliminary findings indicated that NPY neurons in the ARC express the GH 

receptor, implicating that NPY also serves as crucial role in modulating feedback control of 

GH secretion (Chan et al., 1996). In sheep, central treatment of NPY is known to stimulate GH 

release via stimulating GHRH (Gładysz et al., 2001; Morison et al., 2003). On the other side, 

NPY inhibits GH by acting on somatostatin (SS) cells in the hypothalamic PeN (Hisano et al., 

1990; Chan et al., 1996; Bluet-Pajot et al., 1998; Lanneau et al., 2000; McMahon et al., 2001; 

Gładysz et al., 2001; Wren et al., 2002, Park et al., 2005). The pituitary somatotrophs are 

affected by the GHRH and SS cells, which operate to either stimulate or inhibit GH release. 
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The GHRH and SS cells project to the external zone of the median eminence (Willoughby et 

al., 1995; McMahon et al., 2001). Intraperitoneal treatment of NPY caused a noticeable 

increase in the serum GH concentrations of goldfish (Peng et al., 1993). Catfish also exhibits 

the same stimulatory effects of NPY on GH secretion (Mazumdar et al., 2006). In addition, 

numerous studies showed that NPY may directly influence GH secretion in rat and pig pituitary 

glands (McDonald et al., 1985; Barb and Barrett ,2005). Furthermore, immunohistochemical 

analysis revealed that NPY neurons colocalized in GH immunoreactive cells in cattle 

(Ogasawara et al., 2008). Dual fluorescent immunohistochemistry of hypothalamic sections of 

humans shown that intimate association exists between NPY and GHRH neuronal systems 

(Deltondo et al., 2008). Thus, from the above cited data it is possible that NPY can directly 

regulate GH expression or indirectly by GHRH.  

Interestingly, NPY prevented acromegaly patients' cultured pituitary adenoma cells from 

secreting GH. Therefore, it is possible that NPY's effect on the hormone release from neoplastic 

pituitary cells will be different from that on normal pituitary cells (Adams et al., 1987). 

Although stimulatory effect of NPY on GH secretion has been documented in various animals 

under in vivo and ex vivo conditions, however, inhibitory effect of NPY on GH secretion has 

also been observed. In this context, in human pituitary cells NPY directly inhibited GH 

secretion in vitro (Adams et al., 1987). Indeed, prior research demonstrated that a rise in NPY 

levels under stress results in a decrease in GH and GHRH secretion (Barb and Barrett, 2005). 

In fasting diabetic male rats, pulsatile GHRH secretion has been observed to decrease, although 

NPY levels increased (Park et al., 2004). In fasting mice, GHRH secretion has been found to 

decline when a rise in NPY and CRF levels was observed (Luque et al., 2007). In addition, 

hypothalamic GHRH mRNA was significantly enhanced and NPY mRNA decline after 

refeeding (Luque et al., 2007). 

From the above-cited data, it has been postulated that NPY plays a role in modulating the 

release of anterior pituitary non-gonadotropic hormones both GH and PRL. Previous studies 

showed the suppressive and enhancing effect of NPY on PRL and GH secretion respectively 

in various animal models, but the results were contradictory in different studies. However, the 

role of NPY in mediating non-gonadotropic hormones secretion by NPY1R has not been 

clearly defined in highly evolved non-human primates. Therefore, the present study was 



Introduction 

    

20 
 

undertaken to study the role of NPY in the control of PRL and GH secretion through NPY1R 

in juvenile male rhesus monkey by using NPY1R specific antagonist. 
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MATERIALS AND METHODS 

Animals 

In the current study, four juvenile male rhesus monkeys (Macaca mulatta) were employed to 

study the effect of NPY1R antagonist on growth hormone and Prolactin secretion. These 10-

14 months old monkeys weighing 1.8-2.2 kg (2 ±0.11 kg mean ± SEM) were used to conduct 

the experiment. All the animals were roomed in separate cages at the Departmental Primate 

Facility under semi-controlled settings (at room temperature 25±3°C and lights on from 06:00 

to 18:00 h). At 10:00 h, the animals were fed with fresh seasonal fruits, at 12:30-13:30 h, they 

were provided boiled potato and egg, and 14:00 h bread was given. Water was available ad 

libitum. Additionally, vitamins were given as supplements. A few weeks before the start of the 

experiment, animals were trained to sit in the restraining chair. Restraint time was gradually 

lengthened to 4-5 hours per day until it was attained. For placing and removing of monkey 

from the chair, animals were tranquilized with ketamine hydrochloride (Ketler, Astarapin, 

Germany 5 mg /kg body weight, i.m). They were also provided with nuts and fruits during 

restraining. The Departmental Committee for Animal Care and Use approved all experimental 

protocols. 

Pharmacological agent 

Ketamine hydrochloride (Ketler, Astarapin Germany), heparin (Rotex media, Trittau, 

Germany), Normal Saline and DMSO (Dimethyl sulfoxide) were purchased from local 

pharmaceutical market. BIBO 3304 ((R)-N-[[4-(aminocarbonylaminomethyl)phenyl]methyl]-

N2-(diphenyl acetyl)-arginine amide trifluoroacetate) was purchased from Sigma-Aldrich (St. 

Louis, MO, USA). 

General experimental design 

Four juvenile male rhesus monkeys (n=4) were utilized for sequential blood sampling on two 

alternative days. On the first day, animals were bleed for 1 hour before vehicle administration 

while eight blood samples with 30 minutes interval were collected after vehicle administration. 

After the gap of one day, second sequential bleeding was done. On the second day, three blood 

samples were collected before antagonist administration while eight blood samples were drawn
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after the antagonist’s administration. On both occasions serial blood sampling was done from 

10:30-2:30 h, at the interval of 30 minutes. Details of sequential blood sampling were as 

follows. 

Vehicle administration (Day 1) 

A total of 11 blood samples were collected. Three blood samples (0.5-0.7 ml) were collected 

from animals at -60, -30 and 0 minutes. After taking 0-minute sample animals were 

immediately injected with vehicle (normal saline in 4.8% DMSO). A total of 3 boli of vehicle 

1 ml /animal with an interval of 60 minutes at 0, 60, 120 minutes. A total of eight blood samples 

at 30,60,90,120,150,180,210,240 minute were collected after vehicle administration with the 

help of butterfly tube connected with 1cc syringe. 

 Antagonist administration (Day 2) 

On the alternative day animals were injected with BIBO 3304 1ml of 2mg antagonist/animal. 

Before antagonist administration three blood samples at (-60, -30 and 0) were drawn. A total 

of 3 boli of antagonist in 4.8 % DMSO with an interval of 60 minutes at 0, 60, 120 min were 

injected. A total of eight blood samples were taken at (0,30,60,90,120,150,180,210,240) 

minutes from three animals while four blood samples were drawn from fourth animal after 

antagonist administration. 

Venous catheterization  

Under deep ketamine (5mg/kg body weight, i.m.) anesthesia, a teflon cannula (Vasocan 

Branule, 0.7 mm / 24 G O.D, B. Braun Melsungen AG, Belgium) was inserted in the saphenous 

vein. A butterfly tube (length 300 mm, volume 0-20 ml, 22 GX3 / 4 ′′, JMS, Singapore) was 

attached to the cannula's distal end. Blood samples were drawn from the proximal end of the 

butterfly tube connected with a syringe (1cc -26G-X-1/2”). Blood sampling proceeded after the 

full recovery of the animals from anesthesia. 

Blood sampling 

 Blood samples of 0.5-0.7 ml were collected on both occasions. Seven-hour sequential blood 

sampling was carried out at 30-minute intervals. Blood samples were collected in a 1ml syringe 
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(26G) and immediately transferred to eppendorf tubes. Samples were centrifuged at 3500 rpm 

for 15 minutes. Plasma was separated and kept at -20 ºC until used for hormonal estimation. 

After every sample, the assembly was flushed with heparin (5IU/mL) to avoid any blood 

clotting and an equal amount of saline was injected to prevent the animal from hypovolemic 

shock. 

Prolactin assay 

Assay principle 

The prolactin (PRL) kit is based on solid-phase ELISA. The assay kit uses a mouse monoclonal 

antibody-enzyme (HRP) conjugate solution and one anti-prolactin antibody for coating 

microtiter plate wells for solid phase immobilization. The sample reacted with solid phase 

antibodies, and with the enzyme conjugate, forming sandwich PRL between the two antibodies. 

The addition of chromogen solution after incubation and washing resulted in the appearance of 

blue color. The color development was stopped with the addition of stop solution, changing 

color to yellow. Color intensity was measured at 450 nm, and it was directly proportional to 

the concentration of PRL in the plasma. 

Assay procedure 

Total plasma concentration of PRL was measured using a PRL ELISA kit (JTC Diagnose 

Mittel UG, Schulweg, Voehl, Germany Catalogue no. Pro-96). The standard protocol provided 

within the kit was followed .50 µl of sample, quality control, and standards were added. After 

that 100 µl of enzyme conjugate was added in every well and gently mixed by tapping then 

plate was kept at 22-24 ºC for 30 minutes. The microplate was rinsed five times with 300µl of 

working wash solution after being emptied of its contents into a waste container. The remaining 

volume was eliminated by smashing the plate on absorbent paper. 100 µl of chromogen-

substrate solution was added to every well, covered and kept for 15 minutes at 22-24 ºC in 

dark. Then 100 µl of stop solution was added and within 30 minutes, a microplate reader 

(BIBIO-RAD) was used to read the absorbance at 450 nm.  Intra and inter-assay coefficient of 

variation was <6% and <7%, respectively. The sensitivity of the assay was 15mIU/L. 
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Growth hormone assay 

Assay principle 

The solid phase sandwich hGH method is the foundation of the hGH ELISA. To the wells 

coated with streptavidin, the samples and conjugate reagent (anti-hGH biotin and HRP) were 

added. hGH in the sample binds to the matched pair of antibodies to create a sandwich complex, 

which is then immobilised by interactions between streptavidin and biotin. Through a washing 

stage, unbound protein and HRP conjugate were removed. The amount of hGH present in the 

samples was inversely correlated with the colour intensity following the addition of substrate. 

By connecting the absorbance to the hGH concentration, a standard curve is created. 

Assay procedure 

The total plasma concentration of GH was measured using a GH ELISA kit (JTC Diagnose 

Mittel UG, Schulweg, Voehl, Germany Catalogue no. HG377S). The standard protocol 

provided within the kit was followed. 50 µl of sample, and standards were added into 

appropriate wells. After that 100 µl of enzyme conjugate reagent was added in every well, 

gently mixed by tapping, and the plate was kept at 20-25 ºC for 60 minutes. The microplate 

was rinsed by flicking the plate contents in a waste container and then rinsed three times with 

300 µl of working 1X wash solution. By smashing the plate against absorbent paper, all the 

remaining volume was eliminated. After that, each well received 100 µl of TMB-substrate 

solution, which was then added, covered, and left at room temperature in the dark for 15 

minutes. Then 100 µl of stop solution was added to each well, and after 15 minutes, the 

absorbance at 450 nm was read using a microplate reader (BIO RAD).  Intra and inter-assay 

coefficient of variation was <8% and <9%, respectively. The sensitivity of assay was 

0.036µIU/L. 

Statistical analyses 

 GraphPad Prism Version 9 was used to perform data analysis (GraphPad Software Inc., La 

Jolla, CA, USA) and all the data were expressed as mean with standard error mean 

(mean±SEM). Differences in mean plasma PRL and GH levels were determined by using a 

two-way analysis of variance (ANOVA), followed by Tukey’s multiple comparison test. 
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Difference between vehicle and antagonist treated animals was analyzed using student’s t-test. 

A value of p ˃ 0.05 was considered statistically significant.
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RESULTS 

Effect of vehicle and NPY1R antagonist on plasma prolactin levels 

Plasma PRL levels in individual juvenile male rhesus monkeys treated with vehicle (normal 

saline) at different time points are shown in Table 1. Blood plasma PRL levels in individual 

juvenile male rhesus monkey treated with antagonist at different time points are shown in Table 

2. 

Variations in plasma PRL levels related to different time points after vehicle (normal saline) 

and antagonist administration in individual juvenile male rhesus monkeys are represented in 

(Figure 1). No considerable individual variations in plasma PRL levels were evident in either 

vehicle administered, or antagonist treated monkeys. However, marked variations in prolactin 

levels are seen across few time points during vehicle regime however, such fluctuations are 

probably attributed by individual variations considering stress response. 

 Mean plasma PRL levels (mean±SEM) with respect to time course changes in vehicle or 

antagonist-treated animals also showed no variations in plasma PRL levels (Figure 2). 

Similarly, Two-way ANOVA followed by Tukey’s multiple comparison test showed no 

statistically significant effect (p > 0.05) of antagonist administration on PRL secretion over 

different time points in juvenile male rhesus monkeys as compared to vehicle-administered 

monkeys. Neither time nor treatment effect was evident on PRL levels after antagonist 

administration in comparison to vehicle administration (Figure 3). 

 Mean plasma PRL levels (mean±SEM) were calculated for blood samples obtained at different 

time points i.e., pre-dose at three time points -60, -30, and 0, and post-dose at 30, 60, 90, 120, 

150, 180, 210 and 240 minutes in both vehicle and antagonist treated juvenile male rhesus 

monkeys. Two-way ANOVA followed by Tukey’s multiple comparison tests also showed no 

statistically significant difference (p > 0.05) in pre and post levels of plasma PRL levels in 

antagonist treated animals (Figure 4). However, fisher LSD showed significant difference 

(p<0.01) between pre and post values of vehicle treated animals. Such difference may be due 

to sample size. Unpaired t-test analysis showed no significant difference in overall mean 

plasma PRL levels in antagonist treated group as compared to control group of male juvenile 

rhesus monkeys (Figure 5). 
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Table 1: Plasma PRL concentrations (mIU/L) in individual juvenile male rhesus monkey 

following vehicle administration at different time points.  

Time 

(min) 

 

             Mean Plasma Prolactin Concentration (mIU/L) 

             Vehicle (Animal number)                            mean±SEM 

  
10M-21 

 
11M-21 

 
12M-21 

 
13M-
21 

 

 
-60 

 
326.61 

 
152.06 

 
175.11 

 
86.89 

   
      185.17±50.71 

 
-30 109.54 133.94 167.33 66.12 

 
       119.23±21.30  

 
 0 

 
60.75 

 
67.98 

 
173.80 

 
82.21 

 
       96.19±26.25 

 
30 

 
44.76 

 
85.25 

 
126.13 

 
96.75 

   
       88.22±16.85 

      
60 28.54 240.44 293.92 48.78        152.92±66.99 
      
90 28.29 267.43 134.19 57.94        121.96±53.37 
      
120 27.55 105.74 111.21 48.78        73.32±20.78 
                 
150 24.53 64.02 35.65 39.03        40.81 ±8.33                                                   
      
180 40.70 40.70 76.37 28.05        46.46±10.40 

210 
 
53.96 
 

23.77 43.33 15.26 
 
       34.08±8.85   

240 58.64 80.34 21.47 37.58        49.51±12.78 
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Table 2: Plasma PRL concentrations (mIU/L) in individual juvenile male rhesus monkey    

treated with antagonist at different time points. 

 

Time 

(min) 

 

             Mean Plasma Prolactin Concentration(mIU/L) 

             Antagonist (Animal number)                        mean±SEM 
 

  
10M-21 

 
11M-21 

 
12M-21 

 
13M-21 

 

 

-60 71.48 327.65 122.74 15.32 

   

          134.30±60.08 

-30 60.75 129.54 82.44 36.13           77.22±19.84 

0 46.89 101.00 87.59 15.05           62.63±19.59                

30 51.14 85.25 102.89 66.82           76.52±11.21   

60 93.93 64.02 113.84 57.24           82.26±13.20 

90 101.00 61.68 119.12            70.45±16.95 

120 64.95 88.76             38.43±11.90 

150 89.93 93.93  32.73           72.20±19.76 

180 85.01 49.72  45.47           60.07±12.53 

210 56.77 55.37  36.38           49.50±6.57 

240 78.01 53.49             65.75±12.25 
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 Figure 1.  Individual variations in plasma PRL concentration in  juvenile male rhesus monkeys 

before and after intravenous adminitrstion of vehicle and antagonist at time 0, 60, and 120 

minute (arrows). 
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Figure 2. Time course changes in plasma PRL levels (mean±SEM) in juvenile male rhesus 

monkeys (n=4) before and after vehicle (A) and antagonist (B) administration. 
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Figure 3. Time course changes in plasma PRL levels (mean±SEM) before and after 

intravenous administered vehicle and antagonist (arrows indicated) treated juvenile male 

rhesus monkeys. Two-way ANOVA followed by Tukey’s multiple comparison test showed no 

significant (p > 0.05) difference of antagonist treatment on PRL secretion. Neither treatment 

nor time showed any observable difference in PRL secretion. 

 

 

 

 

               

 

 

                                                               



Results 

      

32 
 

           

 

      

VEH
IC

LE

A
N
TA

G
O

N
IS

T

0

40

80

120

160

P
ro

la
c
ti

n
 (

m
IU

/L
)

PRE

POST

   

Figure 4. Comparison of mean plasma PRL levels (mean±SEM) in pre (-60, -30 ,0) and post 

(30, 60, 90, 120, 150, 180, 210, 240) vehicle and antagonist administered juvenile male rhesus 

monkeys (n=4). No change in plasma PRL levels was evident in pre and post antagonist treated 

animals. Two-way ANOVA followed by Tukey’ multiple comparison test showed no 

statistically significant effect (p > 0.05) on plasma PRL levels in pre and post samples. 
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Figure 5. Comparison of overall mean plasma PRL levels (mean±SEM) in antagonist treated 

(n=4) and control group (n=4) of juvenile male rhesus monkeys. Unpaired t-test analysis 

showed no significant difference in plasma PRL levels in antagonist treated group as compared 

to control group. 
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Figure 6: Comparison of mean±SEM area under the curve (AUC) for plasma PRL 

concentration during time 0-240 min between vehicle and antagonist treated monkeys (n=4). 
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Effect of vehicle and NPY1R antagonist on growth hormone levels 

Plasma GH levels in individual juvenile male rhesus monkeys treated with vehicle (normal 

saline) at different time points are shown in Table 3. Blood plasma GH levels in individual 

juvenile male rhesus monkeys treated with antagonist were observed at different time points 

and are shown in Table 4. 

Time-related changes in plasma GH levels in individual juvenile male rhesus monkeys after 

vehicle (normal saline) and antagonist administration at different time points are represented 

in Figure 7. No considerable individual variations in plasma GH levels were evident in vehicle 

or antagonist administered monkeys. Although after third injection of antagonist GH levels 

have shown to be high with respect to 30 min, however mean value of antagonist treatment did 

not change as compared to vehicle. 

 No observable changes in mean plasma GH concentrations were observed after antagonist or 

vehicle administration across different time points (Figure 8). Similarly, Two-way ANOVA 

followed by Tukey’s multiple comparison test showed no statistically significant effect (p > 

0.05) of antagonist administration on GH secretion over different time points in juvenile male 

rhesus monkeys as compared to vehicle administered monkeys. Neither time nor treatment 

effect was evident on GH levels after antagonist administration in comparison to vehicle 

administration (Figure 9). 

 Mean plasma GH levels (mean±SEM) were calculated for blood samples obtained at different 

time points i.e., pre-dose at three time points -60, -30, and 0, and post dose at 30 ,60, 90, 120, 

150, 180, 210, and 240 minutes in both vehicle and antagonist treated juvenile monkeys. Two-

way ANOVA followed by Tukey’s multiple comparison test indicated no statistically 

significant difference (p > 0.05) in pre and post levels GH levels in antagonist treated animals 

(Figure 10). Unpaired t-test analysis showed no significant difference in overall mean plasma 

GH levels in antagonist treated group as compared to the control group of male juvenile rhesus 

monkeys (Figure 11). 
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Table 3: Plasma GH concentrations (µIU/ml) in individual juvenile male rhesus monkeys 

following vehicle (normal saline) administration at different time points.  

 
Time 
(min) 

 
      Mean Plasma Growth Hormone Concentration (µIU/ml) 

              
Vehicle (Animal number)                                       mean±SEM 

 

  
10M-21 

 
11M-21 

 
12M-21 

 
13M-21 

 

 

-60 1.65 0.30 0.06 0.06 

     

     0.52±0.38 

-30 4.94 0.03 0.23 0.45     1.41±1.17 

0 0.93 0.03 0.59 0.50     0.51±0.81 

30 0.07 0.62 0.13      0.27±0.17 

60 0.07 0.07 3.05 0.21     0.85±0.73 

90 28.45 3.63 0.22 0.04     8.08±6.83 

120 2.40 1.63 0.31 0.89     1.31±0.24 

150 0.14 0.17 0.41 0.64     0.344±0.45 

180 32.88 0.03 1.58 0.33     8.71±8.06 

210 14.51 0.03 1.94 0.31     4.20±3.46 

240 1.26 3.69 12.86 0.92     4.68±2.79 
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Table 4: Plasma GH concentrations in individual juvenile male rhesus monkeys treated with 

antagonist at different time points. 

 

Time 

(min) 

 

           Mean Plasma Growth Hormone Concentration 

(µIU/ml) 

            

Antagonist (Animal number)                                mean±SEM 

  
10M-21 

 
11M-21 

 
12M-21 

 
13M-21 

 

 

-60 2.89 0.06 24.47 0.22 

    

6.91±5.89 

 
-30 0.92 0.14 1.56 0.11 

 
0.67±0.34 

 
0 0.27 5.75 1.04 0.03 

 
1.77±1.34 

 
30 18.43 25.17 14.72 4.01 

 
15.58±4.42 

 
60 1.08 8.51 17.20 1.41 

 
7.05±3.79 

 
90 17.58 4.20 6.00 0.45 

 
7.06±3.69 

 
120 22.04 0.38 19.71 

  
10.53±6.86 

 
150 3.40 3.12 

 
0.36 

 
2.3±0.97 

 
180 2.97 0.47 

 
0.32 

 
1.25±0.85 

 
210 1.13 0.03 

 
1.07 

 
0.74±0.35 

 
240            0.12 0.64 

 
0.62 

 
0.46±0.17 
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Figure 7.  Individual variations in plasma GH concentration in juvenile male rhesus monkeys 

before and after intravenous adminitrstion of vehicle and antagonist administration at time 0, 

60, and 120 minute (arrows). 
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Figure 8. Time course changes in plasma GH levels (mean±SEM) in juvenile male rhesus 

monkeys (n=4) before and after vehicle (A) and antagonist (B) administration. 
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Figure 9. Time course changes in plasma GH levels (mean±SEM) before and after intravenous 

administered vehicle and antagonist (arrows indicated) treated juvenile male rhesus monkeys. 

Two-way ANOVA followed by Tukey’s multiple comparison test showed no significant (p > 

0.05) difference of antagonist treatment on GH secretion. Neither treatment nor time showed 

any observable difference in GH secretion. 
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Figure 10.  Comparison of mean plasma GH levels (mean±SEM) in pre (-60, -30 ,0) and post 

(30, 60, 90, 120, 150, 180, 210, 240) vehicle and antagonist administered juvenile male rhesus 

monkeys (n=4). No change in plasma GH levels was evident in pre and post antagonist treated 

animals. Two-way ANOVA followed by Tukey’s multiple comparison test showed no 

statistically significant effect (p > 0.05) on plasma GH levels in pre and post samples. 
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Figure 11. Comparison of overall mean plasma GH levels (mean±SEM) in antagonist treated 

(n=4) and control group (n=4) of juvenile male rhesus monkeys. Unpaired t-test analysis 

showed no significant difference in plasma GH levels in antagonist treated group as compared 

to control group. 
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 Figure 12. Comparison of mean±SEM area under the curve (AUC) for plasma GH 

concentration during time 0-240 min between vehicle and antagonist treated monkeys (n=4). 
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DISCUSSION 

Data from the various studies under different physiological conditions have shown that NPY 

plays paradoxical role in regulating GH and PRL release. In earlier literature, the effect of 

BIBO 3304 on non-reproductive hormones (GH and PRL) has not been reported in juvenile 

primates. The current research was undertaken to find out the role of NPY in regulating PRL 

and GH secretion mediated via NPY1R in juvenile male rhesus monkeys. 

The current findings demonstrated that NPY signaling via NPY1R may not involve in the 

control of PRL or GH secretion in juvenile animals. This is the preliminary study in juvenile 

male monkeys as no considerable studies are available in non-human primates to show 

comparison with the results of the present study. 

To evaluate the role of NPY1R in the control of PRL and GH secretion BIBO 3304 was used. 

The novel Y1-selective arginine amide derivative BIBO 3304 (R)-N-[[4-

(aminocarbonylaminomethyl)phenyl]methyl]-N2-(diphenylacetyl)-argininamide 

trifluoroacetate) was synthesized and commercially available for research purposes. The 

antagonist was utilized in different studies due to its selectivity for NPY1R subtype (Wieland 

et al., 1998). BIBO 3304 displayed affinity in the nanomolar quantities for both the rat and the 

human Y1 receptor subtype. The cells stably transfected with the rat/human NPY1R cDNA or 

cells that are expressing the NPY1R endogenously showed sub- nanomolar affinity of the novel 

BIBO 3304 compound. BIBO 3304 showed 10-20 times higher affinity as compared to BIBP 

3226 (another selective Y1 antagonist) for both the rat and human Y1 receptor subtypes. The 

novel BIBO 3304 compound is highly selective for the Y1 receptor subtype since it binds with 

more than 1000-10000-fold lower affinity to any of the other NPY receptor subtypes tested 

(Y2, Y4, Y5) both for rat and human species (Wieland et al., 1995).  

Although BIBO 3304 is highly specific for NPY1R, no effect of this antagonist in modulating 

PRL and GH secretion in juvenile monkeys was observed in the current study. This in efficacy 

of the antagonist can be attributed either by considering two plausible reasons. First, the 

quantity of the dose used was insufficient. Second, the antagonist was unable to cross the blood 

brain barrier. Whatever the reason may be, further studies are required to explain.  

In a previous study, novel BIBO 3304 compound was used to investigate the role of kisspeptin 

in GH release by utilizing NPY pathways in adult ewe and revealed that central administration 
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of kisspeptin (positive regulator of reproductive axis) activates arcuate nucleus NPY cells and 

stimulates NPY release. This in turn stimulates growth hormone releasing hormone (GHRH) 

which ultimately leads to increase GH secretion. By pretreatment of the animals with the 

selective NPY1R antagonist, kisspeptin-induced GH release was completely blocked (Foradori 

et al., 2017). Furthermore, the same study also argues that enhanced NPY plays dual role in 

stimulating GH secretion that is it can activate the GHRH neurons in arcuate while suppress 

the somatostatin (SS) cells in periventricular area (Foradori et al., 2017). This shows a positive 

effect of NPY on GH secretion. However, our results are contradictory to this study as our 

result displays no effect of NPY1R antagonism on GH secretion. This discrepancy in results 

might be due to species and age differences. It can also be speculated that the effect of NPY in 

inducing GH release may be dependent on kisspeptin stimulation. In this context, it is 

interesting to note that during juvenile stage, inverse relationship between kisspeptin and NPY 

exists both at morpho functional and physiological level in non-human primates (Bano et al., 

2022). By comparing these observations with the current results, it can be speculated that 

kisspeptin dependent NPY stimulation of GH can only be viable in the post-pubertal period in 

monkeys. Therefore, it will be interesting to note the effect of kisspeptin administration on 

NPY dependent GH release in juvenile and adult monkeys. This is because reciprocal 

interaction between kisspeptin and NPY neurons in ewes has been documented (Backholer et 

al., 2010), while in case of rhesus monkeys, NPY projections onto kisspeptin neurons along 

with NPY1R expression on to kisspeptin neurons have been observed (unpublished 

observations of the lab). Nevertheless, it has been documented that intravenous administration 

of kisspeptin was failed to modulate GH and PRL levels in adult male monkeys (Ramaswamy 

et al., 2009). Keeping in view the discrepancy in results with previous studies, it is likely to 

interpret that different NPY neuronal populations may involve in regulating both somatotropic 

and gonadotropic axes and different pathways including intermediatory players may be 

involved to regulate both axes separately. 

Although conflicting results regarding NPY regulation of GH have been documented, 

intravenous administration of NPY did not show any effect on GH release in normal humans 

(Watanobe et al., 1994) which shows coherency with the current results.   

Contrary to the above observation, it was analyzed that NPY has negative influence on GHRH 

expression (Mano-Otagiri et al., 2006). NPY inhibited GH release in both sexes of rats (Rettori 

et al., 1990a). It has been shown that NPY inhibited the GH release from intact male rats and 
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sex steroid primed ovariectomized rats (Suzuki et al., 1996). These studies show the inhibitory 

role of NPY in regulating GH secretion. However, the inhibiting NPY tone by NPY1R 

antagonism did not show any change in GH secretion in the current study. Various factors can 

be attributed for the bimodal role of NPY on GH secretion. Among these factors, metabolic 

status, physiological levels of steroids, stress, and day length are involved. Moreover, various 

results obtained in different studies also pertained to specie difference. Therefore, future studies 

could be done during different developmental stages to evaluate the precise role of NPY on 

GH secretion in non-human primates. In addition, experiments could also be done under 

different metabolic conditions to discern the interplay between energy, growth, and 

reproductive status in different animal models. 

The role of GH in the onset of puberty has been investigated in many previous studies. Shahab 

et al (2015) showed that in agonadal male monkey there is no change in any parameter 

(frequency, amplitude etc.) of GH secretion during the late pubertal period (final 6 months of 

juvenile development preceding the pubertal reactivation of LH secretion) and concluded that 

increase in GH during developmental stages in highly evolved primates has no impact on 

timing of puberty. These results were in accordance with a study in the juvenile rhesus monkey, 

in which the somatostatin analog administration impact neither the timing of the pubertal rise 

in LH secretion nor the age of menarche (Wilson et al., 2004). In another study data in boy’s 

developmental changes also showed nonremarkable effect on GH secretion (Martha et al., 

1996). Although growth parameters like bone age etc. which depend on GH release are 

considered to evaluate timing of puberty, however, data from the literature showed that GH 

does not play critical role in timing pubertal onset. This can also be suggested by the present 

data where no observable changes in GH secretion were noted. These findings corroborate the 

current findings that NPY1R antagonism has no effect on GH secretion in juvenile monkeys. 

Although it is important to note that NPY plays a critical role in pubertal onset (Plant and 

Shahab, 2002; Bano et al., 2022). NPY mediated signaling may be involved in the control of 

GH secretion has not been clearly defined. NPY1R antagonist treated animals showed no 

observable changes in GH secretion in juvenile monkeys which shows that NPY may not 

regulate GH secretion in juvenile animals. 

 It has been shown that NPY neurons make synaptic contact with GHRH neurons in arcuate 

and with SS neurons in the PeN by electron microscopic immunohistochemical studies (Hisano 

et al., 1990; Deltondo et al., 2008). This suggests that NPY neurons can influence the release 
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of GH secretion by acting on PeN SS neurons. Deletion of NPY neither alters hypothalamic 

GHRH and SRIF mRNA expression in ad libitum-fed mice nor GH pulsatility. Accordingly, 

NPY neurons did not modulate GH release under fed conditions. In addition, the reverse pattern 

of these results was also evident under fasting conditions (Steyn et al., 2011, 2012; Huang et 

al., 2014). It is anticipated from these observations that NPY regulates GH release via 

modulating activity of GHRH and SRIF neurons according to metabolic condition (Stanley et 

al., 2013). Potentially, NPY based GH secretion is mediated by NPY1R because NPY1R is 

abundantly expressed in ARC and PeN the two areas where GHRH and SRIF are residing 

(Zhang et al., 1999; Kishi et al., 2005). Interestingly it is to mention that NPY1R deletion had 

no effect in modulation of GH secretion in mice (Zhang et al., 1999). Our data also in line with 

this observation where NPY1R antagonist was unable to modulate GH levels in juvenile 

monkeys. 

Before summarizing these these results, it is to mention that icv administration of NPY in 

juvenile male monkeys enhance GH secretion (unpublished observation as cited in Shahab et 

al., 2003), yet the peripheral administration of antagonist in the current study did not cause any 

changes in GH secretion in juvenile monkeys. Keeping in view the BIBO 3304 as the highly 

specific NPY1R antagonist, it can be perceived that the drug might not cross the blood brain 

barrier to halt NPY based signaling to GHRH neurons in higher hypothalamic center or it may 

raise the notion that NPY depend on GH regulation may be mediated by another subtype of 

NPY receptor.  Hence, direct icv administration of the antagonist in future would be helpful to 

delineate the role of NPY in GH secretion. 

Like GH, ambiguous observations are documented regarding NPY regulation of PRL release 

in different animal models. NPY stimulated PRL secretion has been observed cells cultured 

from anterior pituitary (Baranowska et al., 1999). Contrary to this, a significant decline in PRL 

levels 30 minutes after intraventricular injection of NPY for a longer time from castrated and 

normal male rats (Alexander et al., 1993). In another study, intraventricular administration of 

NPY at low doses showed reduced PRL releases in rodents (Härfstrand et al., 1987). The 

plausible mechanism of this PRL inhibition by NPY was in opinion that NPY could modulate 

TIDA neuronal activity hence alter dopamine levels which consequently regulate PRL 

secretion. This idea was speculated by the observations in which NPY with dopamine had 

shown additive effect in inhibition of PRL release (Wang et al., 1996). A similar observation 

was also presented by (Hsueh et al., 2002). Apart from hypothalamic action of NPY on 
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dopaminergic neurons, it was revealed that these neurons send their projections at median 

eminence and administration of NPY may influence dopaminergic system at median eminence 

hence subsequently modulate PRL secretion. Therefore, it can be assumed that NPY regulation 

of PRL secretion may involve some intermediatory pathway in juvenile monkeys which is 

required to be explored. 

As far PRL release by NPY is concerned, no significant effect of 100 µg bolus injection of 

NPY on PRL levels in a patient with prolactinoma has been documented (Watanobe and 

Tamura, 1996). In another study, Chao et al. (1987) showed that there is no effect of in vitro 

dosages of NPY (0.01 to 100 nM), on PRL release in bovine pituitary cells. These findings 

corroborate with the current findings that NPY1R antagonism has no effect on PRL secretion 

in juvenile monkeys. NPY signaling involved in the control of PRL secretion has not been 

clearly defined. NPY1R mRNA antisera provoked PRL secretion in humans (Silveira and 

Franci, 1999) suggesting inhibitory effect of NPY on PRL secretion may be mediated by 

NPY1R. Therefore, NPY1R specific antagonist was used in the current study, however, 

NPY1R antagonist treated animals showed no observable changes in PRL hormone secretion 

in juvenile monkeys which shows that NPY may not regulate PRL secretion via NPY1R in 

juvenile animals.  

Recent data concerning NPY regulation of PRL secretion in monkeys is scarce. Nearly fifty 

years ago, it has been shown that lactotrophs number and PRL release was higher in adult male 

monkeys as compared to juvenile animals (Herbert and Hayashida, 1974). Furthermore, steroid 

treatment in juvenile male monkeys increased number of PRL secreting cells and hence 

stimulated PRL release (Herbert, 1978). Since in juvenile stage low testosterone levels and 

high NPY levels are noted (Terasawa, 2019), it can be suspected that during juvenile phase 

steroid dependent NPY regulation of PRL pathway is present at minimal level and after 

pubertal onset when the testosterone enhanced it may regulate NPY dependent PRL release 

through some intermediatory pathway as suggested earlier about TIDA neurons involvement 

pf PRL release. Alternatively, before pubertal onset NPY neuronal pathway regulates 

gonadotropic axis and after pubertal onset NPY mediated prolactin pathway predominates.  

Concerning non-effectiveness of NPY1R antagonist in modulating GH and PRL secretion in 

juvenile male monkeys, it should be noted that immunoneutralization of NPY did not show any 

fluctuations in both GH and PRL release in mature ewes (Barker-Gibb and Clarke, 1996; 
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Malven et al., 1995). Moreover, dual effect of NPY both inhibitory and stimulatory on PRL 

release has been documented in male rats by high and low dose respectively which shows the 

concern about dose of the antagonist used in the current study. Hence, different doses along 

with different routes would be helpful to understand NPY physiology of PRL secretion.  

In conclusion, our study showed for the first time that there is no effect of NPY on two non-

gonadotropic hormones (PRL and GH) release in juvenile male rhesus monkeys. Further 

investigations are required to ascertain other mechanisms by which NPY can regulate GH and 

PRL release. In this regard, other potential neurobiological candidates (kisspeptin, and GnIH 

etc.) of hypothalamic origin needs to be studied which can mediate NPY dependent GH and 

PRL secretion. Numerous factors like specie difference, route of exposure, amount of dose, 

and steroidal and metabolic milieu can modulate NPY effects on GH and PRL secretion. For 

instance, it is a matter of concern for this study that dose quantity, exposure site, developmental 

stage, and species difference must be considered before any conclusion to draw about these 

results. The study should be extended to the pituitary to ascertain the direct role of NPY in 

regulating somatotrophs and lactotrophs activity. This study can also be extended to cellular 

and genetic levels to explore the pathways which are used by NPY to affect GH and PRL 

release. 
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Figure 13. Proposed Model of current study showing different mechanisms of how NPY effect 

the release of Growth hormone and Prolactin. NPY (Neuropeptide Y), Kp (Kisspeptin), GHRH 

(Growth hormone Releasing Hormone), PRF (Prolactin Releasing Factor). 
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