
SOME ALLOCATION IN MULTIVARIATE
STRATIFIED SAMPLING UNDER COST
FUNCTION USING MULTI-OBJECTIVE

OPTIMIZATION

By

ATTA ULLAH

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE M.PHIL DEGREE IN

STATISTICS

————————————–

DEPARTMENT OF STATISTICS QUAID-I-AZAM

UNIVERSITY ISLAMABAD, PAKISTAN

March, 2013



i



 
Dedicated to 

 
 
 

Our Prophet  

 
HazratMuhammad (PBUH) 

 

 

 

& 

 

My parents 

 
 Without their efforts and support I am unable to  

complete this task of my life. Without their love 

& prayers I am nothing in this world. 
 



Declaration

I ”Mr.Atta Ullah” hereby solemnly declare that this thesis entitled ”Some allocation in
multivariate stratified sampling under cost function using multi-objective optimization”,
submitted by me for the partial fulfillment of Master of Philosophy in Statistics, is the
original work and has not been submitted concomitantly or latterly to this or any other
university for any other Degree.

(Signature) (Place, Date)

iii



Acknowledgment

First and foremost thanks to Almighty ALLAH. All praises to Allah for the strengths and
His blessing in completing this thesis, without His blessing it is impossible to complete this
dissertation. I offer my humblest, sincerest and million Darood to Holy Prophet Hazrat
MUHAMMAD (Peace Be Upon Him), who exhorts His followers to seek for Knowledge
from cradle to grave. I would have never finished this thesis without the prayers, encour-
agement and help of many teachers, relatives, friends to whom I am very much indebted.

I have deeply appreciated the complementary perspective of my supervisor Profes-
sor Dr. Javid Shabbir (Chairman) and all he has contributed to the shape of this
thesis. I thank him for his guidance, for great working relationship, and for the grasp
of broad concept and attention to detail. His invaluable help of constructive comments
and suggestions throughout the thesis works have contributed to the success of this re-
search. Professor Dr. Javid Shabbir is a great supervisor, and he can always give
out inspiring ideas and productive suggestions. Without his patience, encouragement
and intuitive suggestion, I could not finish my dissertation so smoothly. What more, he
taught me to have tremendous enthusiasm and confidence in research, which I know is
priceless. I convey special acknowledgement to Dr. Muhammad Yousaf Shad for his
understanding, advice, encouragement and constant support which have provided good
and smooth basis for my M.Phil tenure. Words fail me to express my appreciation to
Dr. Muhammad Riaz , Dr. Zahid Asghar, Dr. Zawar Hussain, Dr. Freed
Khan, Dr. Ijaz Hussain, Mr Abdul Haq, and Mr Manzoor Khan, through their
vast experience in this field of study, they have offered invaluable and constructed advice
and guidance to make this study come to fulfillment. Their guidance has served me well
and I could never have embarked and started all of this without their prior teachings in
Statistics and thus opened up unknown areas to me. I learned a lot from them.

iv



Abstract

The problem of allocation for multiple characteristics of interest in stratified sampling
design is examined in this thesis. We use regression estimator for estimating the popu-
lation mean of more than one characteristics in stratified sampling. We determine the
sample size that minimize coefficients of variation of estimates of population means under
deterministic and estimated, linear and nonlinear, cost functions. We propose a procedure
to maximize the precision of more than one estimates of population means and minimize
the variable cost of survey, jointly, under a given sample size. The additional condition
is introduced on sample size to avoid over sampling and achieve minimum precision in
each strata. The allocation problem in multivariate stratified sampling design is formu-
lated in multi-objective integer nonlinear programming. The proposed multi-objective
optimization methods are used to solve formulated allocation problem. A general method
is proposed to solve allocation problem in multivariate stratified sampling. One data set
is used to illustrate the procedure and compare the efficiency of allocation methods.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

By Deming (1950), “Sampling is not mere substitution of a partial coverage of a total

coverage. Sampling is a science and art of controlling and measuring reliability useful

statistical information through the theory of probability”.

It is a procedure by which we select a representative sample from a given population. The

main purpose of sampling is to make an efficient use of the budget and other resources

of a study to obtain as precise estimate of population parameter as possible. One of the

branches of statistics that is commonly used in all area of scientific inquiries is that of

probability sampling. An effective sampling technique is one which produces a meaningful

information of the important aspect of population. In probability sampling each units in

the population has nonzero known probability of its being included in the sample. Strat-

ified sampling is one among the designs of sampling surveys that is used for obtaining

such knowledge.

In stratified sampling design, we divide the sampling frame of heterogeneous population

into mutually exclusive and collectively exhaustive sub population or strata, each contain-

ing homogeneous elements with reference to study variables under consideration. That

is, homogeneity within stratum based on characteristics under study. The stratified sam-

pling enjoys with all of its benefits of convenience, flexibility, efficiency with respect to

sampling variance as well as cost, has become necessity factor in all sampling surveys of
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practical importance.

In general, the following four important questions are raised in process of stratified sam-

pling.

(a) How to form the strata ?

(b) How many number of strata to be formed ?

(c) How to select the samples from each stratum ?

(d) How to allocate or determine the sample size to various strata ?

Of course, these fundamental questions are addressed with objective to minimize sampling

variance and cost of sample survey.

The procedure of selecting the best strata boundaries that form strata internally homo-

geneous, given some sample allocation, is known as optimum stratification. In order to

form strata internally homogeneous, the strata boundaries points are selected in such a

way the variances within strata should be as small as possible for all the characteristics

under study and the distribution of study variable is known as optimum strata bound-

aries (OSB). One procedure for OSB consists of cutting the range of the distribution of

study variable at suitable points. The problem of determining the OSB was discussed

by Dalenius (1950), Dalenius and Gurney (1951), Mahalanobis (1952), Hansen et al

(1953), Aoyama (1954), Ekman (1959), Hedlin (2000), Kozak (2004), Horgan (2006),

Keskinturk and Er (2007) etc. When cost of conducting the survey varies considerably

among the strata, the optimum stratification play significant role in controlling the sample

size in each stratum that produce the precise estimate in the sense that the error variance

of cost best linear unbiased predictor is minimum. Second procedure, called cumulative

square root procedure, based on frequency distribution of highly study variable. This

technique of stratification is known as cum
√
f rule after Dalenius and Hodges (1959).

The population is based on some auxiliary variable with a different measurement unit cost

occurs in strata. Third type of technique to determine OSB for the problem discussed

above is mathematical programming approach was discussed by Dalenius (1950), Ahsan

and Khan (1977), Khan et al. (2009). Practical consideration like cost, administrative

convenience, simplicity of methods are considered in stratification.

Decision on number of strata is quantitative part of stratification. One can make as many

2



strata as sample size. But we should have at least two units per stratum to estimate the

variance. Thus the maximum number of strata should be half of sample size, that is n
2
.

The efficiency will be increased as number of strata increases but fact that this increase

goes on depressing with increasing number of strata. Break down the strata in situation

where, estimation of variance is not possible due to increase in number of strata. More

general and complex techniques of sampling can be used in each stratum individually and

estimation of population parameters can be done respectively.

In fact in order to increase the precision of estimates, it is essential to select suitable

allocation plan. In this procedure, strata sizes, within stratum variability and the cost of

measuring a sample units within different strata are taking into account which can effect

the selection of allocation plan. If the variability within strata is not known and difference

in size of strata is small, we choose an equal sample size from each stratum. We allocate

the sample to various strata in proportion to size of each strata where the size of strata

is important. This method is simple to use with greater degree of precision of estimates.

However, it does not consider an important aspect, namely the variability within strata,

associated with stratified sampling.

The population with large variability have to be large sample size. We should select or

allocate large sample size to strata which have large variability. An important criteria

for improvement in precision of estimates of population means in stratified sampling is

to allocate or determine the sample size that minimizes the variance of estimator for

fixed total sample size. This considers both strata size and within strata variability. If

measurement unit cost varies from stratum to stratum, Neyman (1934), Stuart (1954),

Cochran (1977) and Sukhatme et al. (1984) used lagrange multiplier method to deter-

mine optimum sample size that minimizes a variance of an estimator for a fixed survey

cost or minimize the cost for fixed a variance of an estimator.

If we observe more than one characteristics from each and every unit of population, than

lagrange multiplier and other used methods for allocation of sample size for univariate

are not useful because it consider a single characteristic among many characteristics. The

allocation which is optimum for one characteristic can not be optimum for other char-

acteristics. In such situation a compromise criterion is needed to work out a suitable

3



allocation which is optimum for all characteristics in some sense. Such allocation is called

a compromise allocation or mixed allocation in sampling literature.

The auxiliary information can be used to increase precision of an estimate of the param-

eter. Dalenius (1957), Ghosh (1958), Yates (1960), Aoyama (1963), Kokan and Khan

(1967), Ahsan (1975-1976), Ahsan (1978), Ahsan and Khan (1977) , Ahsan and Khan

(1982), Bethel (1985), Bethel (1989), Chromy (1987), Kreienbrock (1993), Jahan et

el. (1994), Jahan et el. (2001), Jahan and Ahsan (1995), Khan et el. (1997), Khan et

el. (2008), Khan et el. (2008), Singh (2003), Semiz (2004), Diaz and Cortez (2006),

Diaz and Cortez (2008), Kozak (2006a), Kozak (2006b), Ansari el al. (2009), Pirzada

and Maqbool (2003), Khowaja et al. (2011), Ghufran et al. (2011), Ali et al. (2011),

Varshney and Ahsan (2011), Ghufran et al. (2012), Khan et al. (2012), Varshney et

al. (2012) used lagrange multipliers and mathematical programming methods for solving

allocation problems in stratified sampling design.

1.2 Literature review

Folks and Antle (1965) studied the optimum allocation in multivariate stratified as a

nonlinear problem of matrix optimization of integers constrained by simple cost function

or by fixed sample size under some assumptions. Folks and Antle (1965) proposed a

procedure to solve the multi-objective optimization problem as a particular case of ma-

trix optimization. Folks and Antle (1965) defined a particular vectorial function of the

objective function of the matrix optimization problem and used value function approach

and distance based method to solve non linear integer multi objective optimum allocation

problem in multivariate stratified sampling.

Kokan and Khan (1967) used the non-integer nonlinear mathematical programming for

obtaining an optimum allocation of sample size under simple cost function when several

characteristics are under study. They used an analytical procedure to solve an allocation

problem in stratified and two stage sampling designs. Cochran (1977) proposed the use

of the average of individual optimum allocation obtained by applying lagrange multipliers
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method for various characteristics in stratified random sampling. Cochran (1977) mini-

mized the variance of each characteristic under fixed simple cost function.

Jahan et el. (1994) considered the compromise sample allocation problem by optimizing

the total relative increase in variances as compared to individual optimum allocation

Pirzada and Maqbool (2003) studied the problem of allocating the sample size to different

strata that is minimized the variances of different characteristics subject to constraint of

given budget and tolerance limits on certain variances. The problem was converted into

non linear mathematical programming problem with various objective functions and sin-

gle convex constraint. Pirzada and Maqbool (2003) handled the non linearity of convex

constraint through cutting plane method and then solved the resulting linear program-

ming problem by Tchebychev’s approximation method.

Diaz and Cortez (2006) criticized approaches adopted by Cochran (1977), Sukhatme et

al. (1984), Stuart (1954), Arthanari and Dodge (1981), Thompson (1997) for solving

allocation problem for various characteristics under study in stratified sampling. Diaz

and Cortez (2006) encountered some conditions that violate lagrange multipliers method

used for sample allocation. Diaz and Cortez (2006) examined problem of minimizing

the variances subject to cost constraint or a given sample size of optimum allocation in

multivariate stratified sampling. They used different techniques: lexicographic method,

e-constraint method and distance base method taking into account the prior knowledge

of population which was classified as complete, partial or no information.

Khowaja et al. (2011) discussed a procedure to work out sample allocation in multi-

variate stratified sampling survey using compromise criteria. They minimized the sum of

squared coefficients of variation for the estimate of population mean of all characteristics

of interest under simple linear cost constraint and used lagrange multipliers method to

solve formulated nonlinear mathematical programming problem.

Varshney and Ahsan (2011) considered a sample allocation problem in stratified sampling

when more than one characteristics are measured from each and every unit of target pop-

ulation. Varshney and Ahsan (2011) considered the simple cost function. Varshney and

Ahsan (2011) extended the idea of Ahsan et al. (2005) for several characteristics under

study and a combination of compromise and mixed allocation using lagrange multiplier
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method for solving the nonlinear programming problem. Varshney and Ahsan (2011)

compared the compromised mixed allocation with Cochran (1977) average allocation

and Sukhatme et al. (1984) compromise allocation.

Ghufran et al. (2011) proposed a method to work out the compromised allocation in

multivariate stratified sampling. Ghufran et al. (2011) used compromise criteria for

minimizing the sum of sampling variances of simple estimators of the population means

of several characteristics under probabilistic cost constraint. The optimum compromise

allocation problem is formulated in stochastic nonlinear programming problem. They ap-

plied chance constraint programming procedure to transform the stochastic programming

to deterministic non linear programming.

Khowaja et al. (2011) proposed a method to work out the compromise allocation in

multivariate stratified sampling. Khowaja et al. (2011) considered the travel cost as well

as measurement cost observing the sampled units. The cost function is quadratic in
√
n .

They formulated the problem as all integer nonlinear programming problem minimizing

the sampling variances of an estimators of the population means of various characteristics

subject to quadratic cost constraint. They used value function approach, ε−constraint

method and distance based method for solving multi-objective compromise allocation

problem taking into account the prior knowledge about target population which can be

categorized as complete, partial or no information.

Ali et al. (2011) used the probabilistic quadratic cost function in the sample allocation

for the estimation of population means of several characteristics in stratified sampling.

They formulated the allocation problem as stochastic optimization problem. Ali et al.

(2011) used chance constrained programming technique and applied Chebyshev approx-

imation method, goal programming and D1 distance method to solve integer nonlinear

deterministic multi-objective optimization problem

Ghufran et al. (2012) discussed an optimum allocation problem in multivariate strati-

fied sample survey with an objective to minimize simultaneously the squared coefficients

of variation of estimators of the population means of various characteristics under cost

constraint. The cost function considered here consists of travel cost within stratum to

reach the selected units. Ghufran et al. (2012) introduced an additional condition on
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sample size to safe over sampling and ensure the availability of estimates of stratum

variances. They formulated an optimum allocation problem as multi-objective all inte-

ger nonlinear mathematical programming problem. They taking into account the com-

plete, partial and no information about the population, proposed value function approach,

ε−constraint method and distance based method to solve formulated all integer nonlinear

multi-objective optimization problem

Varshney et al. (2012) proposed the compromise allocation based on minimization of

individual coefficients of variation of ratio estimators of population means of various

characteristics. Varshney et al. (2012) used cost function including measurement unit

cost and nonlinear travel cost within stratum. They formulated the allocation problem as

multi-objective nonlinear programming problem and used goal programming and weighted

method to solve this problem. They used rounding rule to get integer solution.

Khan et al. (2012) discussed problem of sample allocation in multivariate stratified

sampling. They stated the problem in two ways. first, optimization of variances of an es-

timates of population means under cost constraint, second optimization of cost of sample

survey under fixed variances of an estimates of population means of each characteris-

tics. They considered nonlinear probabilistic travel cost function. The cost function in

nonlinear is
√
n. The chance constraint programming technique was used to get deter-

ministic optimization model equivalent to stochastic optimization model. Khan et al.

(2012) applied modified E-Model technique on both cases of sample allocation optimiza-

tion problem to get optimum allocation in multivariate stratified sampling.
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Chapter 2

Methodology

It is essential to select an allocation procedure in order to increase the precision of esti-

mates of population parameters. In his chapter, we discuss various allocation procedure

in stratified sampling design and multi-objective optimization methods for solving multi-

objective mathematical programming problems.

2.1 Multivariate stratified sampling

Let a population consist of N units divided in to L mutually exclusive strata of size

Nh(h = 1, 2, ..., L) such that
∑L
j=1Nh = N . The sample size nh is drawn from each stra-

tum independently. In univariate stratified sampling we measure only one characteristic

Yi(i = 1, 2, ..., Nh). Let, we observe Ypi(i = 1, 2, ..., Nh), p ≥ 2, characteristics from each

units of the hth stratum and we estimate the parameter of p ≥ 2 characteristics of the

population.

2.2 Proportionate allocation

In proportionate allocation, the number of units allocated to different strata is propor-

tional to size of the strata in target population. That is, the sample size drawn from each

stratum is proportional to the relative size of that stratum in target population. As such,
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it is self weighting sample allocation method. The sampling fraction fh = nh

Nh
is used in

each stratum, giving each unit in population have an equal chance of selection.

2.3 Disproportionate allocation

Disproportionate allocation is a sample allocation procedure in which number of units

selected from each stratum are not representative in the target population. The popula-

tion units have not an equal chance to be selected in the sample and strata have different

sampling fraction.

2.3.1 Disproportionate allocation for within strata analysis

The objective of study may require a researcher to conduct a detail analysis within strata.

Since the proportional allocation may select a sample proportional to size of strata. There-

fore, the researcher may not select an efficient sample from small strata for obtaining

precise estimate within stratum . Disproportional allocation may be used to select over

sample from small strata that would be efficient for within strata analysis to meet the

objective of study.

2.3.2 Disproportionate allocation for between strata analysis

The objective of a study may require a researcher to make comparison among subgroups

of population to each other. If this is the problem, sufficient equal number of units must

be selected from each subgroups and an equal allocation or balance allocation of sample

size is appropriate for such comparison.

2.3.3 Optimum allocation

Although proportional allocation may provide smaller mean square error than simple

random sampling in estimation of population parameters. It may possible to use better
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allocation than proportional allocation. Optimum allocation is designed even greater over

all accuracy than that gained by using proportional allocation. It allocates the sample

size to different subgroups or strata considering two important aspects of doing research,

cost and precision. The sampling fraction change with respect to cost and variability

within different strata. Disproportionate allocation, especially optimum allocation, may

be more appropriate for a study than proportional allocation. The allocation of sample

to different subgroups differ in terms of cost and the variability of the variable of interest.

Optimum allocation may be used concentrating on cost only, precision only or both cost

and precision jointly. The optimum sample size to various strata can be determined by

lagrange multipliers method and mathematical programming method.

2.4 Lagrange multipliers methods

The scope of lagrange multiplier method for constrained optimization has passed through

radical transformation starting with an introduction of augmented lagrangian function and

method of multipliers by Hestenes (1969). The method of lagrange multipliers gives a

strategy for finding local maxima and minima of a function subject to equality constraints.

The lagrange multiplier’s method is used to solve single objective optimization problem.

Let f(Z) be a objective function of decision variable Z and hj(Z), (j = 1, 2, ...,m) are

constraints on decision variable Z with equality upper bound bj. The general algorithm of

lagrange multipliers method for solving optimization problems with equality constraints

is given as:

Min f(Z)

Subject to hj(Z) = b, j = 1, 2, ...,m.

The lagrange function may be written as

L(Z, λj) = f(Z) +
m∑
j=1

λj [f(Z)− b]

10



where, λ is lagrange multipliers vector of order m × 1 and b is constraint limit. We find

the partial derivatives and equivalent to zero as:

∂L(Z, λj)

∂Z
= 0

and
∂L(Z, λj)

∂λj
= 0.

We solve above equations to find local minima which is global minima if following condi-

tions hold.
∂2L(Z, λj)

∂Z2
< 0

and
∂2L(Z, λj)

∂λ2
j

< 0.

2.5 Mathematical programming

It concern with problems of allocating limit resources among contending activities in an

optimal manner. The problems of allocation originate whenever one must pick out the

level of certain activities or objectives which must contend for certain scare resources

compulsory to achieve those objectives. Many type of situations on which mathematical

programming can be applied is admit remarkable. However one common component in

each of these situations is the essential for controlling resources to activities.

Multi-objective programming consult to techniques for solving the general class of op-

timization problems concerning with the interaction of many objectives subject to cer-

tain bounding conditions or constraints. In solving the multi objective problems such as

supply, profit, production, costs, precision or other measure of characteristics obtained

in the best possible or optimal manner subject to certain bounding constraints. Let

fj(Z)(j = 1, 2, ..., p) are objective functions of decision variable Z, and h1j(Z) and h2j(Z)

are constraints on decision variable Z with inequality upper bound b1j and inequality

11



lower bound b2j respectively. Consider the multi objective optimization problem,

Minimize (f1(Z), f2(Z), ..., fm(Z))

Subject to

h1j(Z) ≤ b1j

h2j(Z) ≥ b2j (2.1)

Z l ≤ Zj ≤ Zu

Zj > 0

j = 1, 2, ...,m

where, Z l and Zu are lower and upper limits of decision variable. Many methods are avail-

able for solving multi objective optimization problem. Some methods are being discussed

here.

2.5.1 Goal programming method

Charnes et al. (1955); Charnes and Cooper (1961, 1977), Charnes and Cooper (1961),

Ijiri (1965), Charnes et al. (1967) used the goal programming method for solving multi

objective optimization problems. It is a technique used by decision makers in optimizing

more than one conflicting objectives with each other under unavoidable conditions. In goal

programming, all specified objectives are included in the model. The decision maker tries

to minimize the sum of potential deviations from specified objectives. These deviations

may be positive as above the objectives or negative as below the objective. Consider the

following individual optimum problem,

Minimize fj(Z)

Subject to

h1j(Z) ≤ b1j

12



h2j(Z) ≥ b2j (2.2)

Z l ≤ Zj ≤ Zu

Zj > 0

j = 1, 2, ...,m

Let f ∗
j (Z) be the individual optimum values of the function fj(Z) obtained by solving

above problem. These optimum values f ∗
j (Z) specify objectives. We try to achieve these

objectives in multi objective optimization methods. Let f̂j(z) is a value of objective

function obtained by applying multi objective optimization method. It is obvious that

f̂j(Z) ≥ f ∗
j (Z) or f̂j(Z) − f ∗

j (Z) ≥ 0 is the increase in fj(Z). Suppose this increase is

dj ≥ 0. To achieve these specified objectives, we must have

f̂j(Z)− f ∗
j (Z) ≤ dj

or

f̂j(Z)− dj ≤ f ∗
j (Z)

The sum of all deviations from specified objectives f ∗
j (Z) is

∑m
j=1 dj. In goal programming

method, we minimize this total deviations using above additional constraint. The multi

objective optimization problem (2.1) can be written in Goal programming as:

Minimize
m∑
j=1

dj

Subject to

f̂j(z)− dj ≤ f ∗
j (Z)

h1j(Z) ≤ b1j

h2j(Z) ≥ b2j

Z l ≤ Zj ≤ Zu

13



Zj > 0

j = 1, 2, ...,m

where, dj(j = 1, 2, ...,m) are called deviation variables which are to be minimized.

2.5.2 Value function method

It is a function that indicates the preference of a decision maker among the objectives

vector. The different decision makers have different value functions for same multi ob-

jective optimization vector. Mathematically, Steuer (1989) linked the decision maker’s

preference function to weight function. This method is used for solving multiple objective

optimization problems when complete information about each objective is known so that

the relative weights can be assigned to them. The multi objective minimization problem

(2.1) under this weighted method may be expressed as:

Min
m∑
j=1

Wjfj(Z)

Subject to

h1j(Z) ≤ b1j

h2j(Z) ≥ b2j

Z l ≤ Zj ≤ Zu

m∑
j=1

Wj = 1

Zj > 0

j = 1, 2, ...,m

Here, Wj(j = 1, 2, ...,m) are the weights which indicates the relative importance of each

objectives.
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2.5.3 ε− Constraint method

Besides the value function or weighted approach, the ε− constraint method is probably

best known technique for solving multi objective optimization problems. This method was

introduced by Haimes et al. (1971). This method is used in situations where, only partial

information is available about objectives vector. The ε− constraint method minimize only

one objective and other objectives are transformed into constraints. The decision maker

needs to identify most important objective to apply this method. The problem (2.1) can

be written as:

Minimize fk(Z)

Subject to

f̂j(z) ≤ f ∗
j (Z)

h1j(Z) ≤ b1j

h2j(Z) ≥ b2j

Z l ≤ Zj ≤ Zu

Zj > 0

j 6= k = 1, 2, ...,m

2.5.4 Hybrid method

Guddat et al. (1985) introduced a method called hybrid method that is mixture of

weighted method and ε− constraint method. This method for solving multi objective op-

timization problems has weighted sum objective function and constraints on all objectives.

The problem (2.1) may be solved by hybrid method as:

Minimize
m∑
j=1

Wjfj(Z)

f̂j(z) ≤ f ∗
j (Z)

15



h1j(Z) ≤ b1j

h2j(Z) ≥ b2j

Z l ≤ Zj ≤ Zu

m∑
j=1

Wj = 1

Zj > 0

j = 1, 2, ...,m
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Chapter 3

Optimization of Precision under

Deterministic Cost Constraint

3.1 Introduction

An effective sampling procedure that selects a representative sample provides a mean-

ingful information of the important characteristics of population. Stratified sampling is

appropriate for obtaining such information from heterogeneous population. It is usual to

make use of auxiliary information to improve precision of estimates. In order to increase

precision of estimates, it is essential to select a suitable allocation procedure. Sample

allocation to different strata has large effect on the precision of estimates. In general, al-

location procedure aim to minimize the variance associated with estimating some overall

population parameter subject to condition on sampling resources. The allocation prob-

lem under discussion is optimization problem. In multivariate stratified sampling, where

more than on parameter is to be estimated, an allocation which is optimum for one study

variable may not be optimum for other variables. In such situation some compromise

criterion is need to allocate sample which is optimum for all the study variables in some

sense.

Ghufran et al. (2012) formulated the allocation problem in multi-objective mathematical

programming as:
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Minimize ((CV1)2, (CV2)2, . . . , (CVp)
2)

Subject to
L∑
h=1

Chnh +
L∑
h=1

th
√
nh ≤ C

2 ≤ nh ≤ Nh

nh are integers (h = 1, 2, ..., L),

where, CVj(j = 1, 2, ..., p) are the coefficients of variation of a simple estimator of pop-

ulation mean of jth variable. Ghufran et al. (2012) used value function approach,

ε-constraint method and distance based method to solve this problem. Varshney et al.

(2012) formulated the allocation problem in mathematical programming given as:

Minimize (CV (ȳ1,st), CV (ȳ2,st), . . . , CV (ȳp,st))

Subject to
L∑
h=1

Chnh +
L∑
h=1

th
√
nh ≤ C

2 ≤ nh ≤ Nh

nh are integers(h = 1, 2, ..., L).

CV (ȳj,st) =
√

MSE(ȳj,st)

Ȳ 2 is coefficient of variation of ratio estimator of population mean

of jth characteristic in multivariate stratified sampling. They used goal programming

method and weighted method to solve this problem to get compromise allocation.

In this chapter, we minimize the coefficients of variation of regression estimators of pop-

ulation means of Yj(j = 1, 2, ..., p) characteristics under different types of cost function in

general form. For compromise allocation, we have used goal programming technique and

proposed general method for solving integer multi-objective optimum allocation problems.

Consider an estimator,

ȳj,lrs =
L∑
h=1

Whȳj,lrh.

where

ȳj,lrh = ȳjh + bjh(X̄jh − x̄jh).
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The mean square error (MSE) of ȳj,lrs is given as:

MSE (ȳj,lrs) =
L∑
h=1

W 2
h

(
1

nh
− 1

Nh

) [
S2
Y jh − 2βjhSY Xjh + β2

jhS
2
Xjh

]
(3.1)

where

ȳjh = sample mean of the jth study characteristic in hth stratum,

x̄jh = sample mean of the jth auxiliary characteristic in hth stratum,

X̄jh = population mean of the jth auxiliary characteristic in hth stratum,

S2
yjh = population variance of the jth study characteristic in hth stratum,

S2
xjh = population variance of the jth auxiliary characteristic in hth stratum,

Sxyjh = population covariance between the jth study and the jth auxiliary characteristic

in the hth stratum and βjh =
SY Xjh

S2
Xjh

is population regression coefficient.

Rewrite (3.1)

MSE(ȳj,lrs) =
L∑
h=1

W 2
h Újh
nh

−
L∑
h=1

W 2
h Újh
Nh

(3.2)

where

Újh = S2
Y jh − 2βjhSY Xjh + β2

jhS
2
Xjh.

We ignore the second term in R.H.S of (3.2) because it is independent of sample size nh.

MSE (ȳj,lrs) =
L∑
h=1

W 2
h Újh
nh

.

Since different characteristics are measured with different units, there is need to use

estimate which is independent of measurement unit. Therefore, we use coefficient of

variation instead of mean square error as:

C.V (ȳj,lrs) =

√√√√MSE (ȳj,lrs)

Ȳ 2
j

or

C.V (ȳj,lrs) =

√√√√ L∑
h=1

W 2
h Újh
nhȲ 2

j

(3.3)
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or

C.V (ȳj,lrs) =

√√√√ L∑
h=1

újh
nh

= Zj, (3.4)

where,

újh =
W 2
h Újh
Ȳ 2
j

.

Under the cost function, we determine the sample size nh that minimize Zj(j = 1, 2, ..., p).

3.2 Allocation under simple cost constraint

Consider the cost function
L∑
h=1

Chnh ≤ C − C0 = Ć. (3.5)

where, Ch is cost of observing a selected unit in the hth stratum, C is total cost of survey,

C0 is fixed and Ć is variable cost of conducting the sample survey. We determine the

sample size nh under the cost function (3.5) that minimize coefficients of variation of the

estimate of population mean for each characteristics j(j = 1, 2, ..., p). This problem can

be formulated in mathematical programming as:

Minimize (Z1, Z2, ..., Zp)

Subject to
L∑
h=1

Chnh ≤ Ć (3.6)

2 ≤ nh ≤ Nh

nh are integers.

h=1, 2,...,L.

This problem is a multi-objective optimization problem.We use the following methods to

solve this problem.
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3.2.1 Allocation using individual optimum method

We find the allocation that optimize coefficient of variation of one characteristic of popu-

lation among Yj(j = 1, 2, ..., p) characteristics and use that allocation for estimating other

characteristics of the population. Let Z∗
j be the optimum value of objective function Zj

obtained by solving following integer nonlinear mathematical programming problem.

Minimize Zj

Subject to
L∑
h=1

Chnjh ≤ Ć (3.7)

2 ≤ njh ≤ Nh

njh are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p.

3.2.2 Allocation using goal programming

The multi-objective optimum allocation problem (3.6) may be solved with goal program-

ming method (GP) as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (3.8)

L∑
h=1

Chnhc ≤ Ć

2 ≤ nhc ≤ Nh

nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.
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3.2.3 Allocation using general method

The problem (3.6) having multiple objectives may be solved with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (3.9)

L∑
h=1

Chnhc ≤ Ć

2 ≤ nhc ≤ Nh

p∑
k=1

Wk = 1

nhc are integers.

h = 1, 2, ..., L and k = j = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are weights which indicate relative importance of each charac-

teristics and dj(j = 1, 2, ..., p) are deviation variables.

3.2.4 Numerical example

The data are taken from agricultural census in Iowa state 1997 and 2002 conducted by

National Agricultural Statistics Service , USDA, Washington D. C as reported by Khan

et al.(2010) (Source :http://wwww.agcensus.usda.gov).

Y1 denote the quantity of corn harvested in 2002,

Y2 denote the quantity of oats harvested in 2002,

X1 denote the quantity of corn harvested in 1997,

X2 denote the quantity of oats harvested in 1997.

where,X1 and X2 are auxiliary information on study variables Y1 and Y2 respectively.

Ȳ1 = 474973.90, X̄1 = 405654.19, Ȳ2 = 1576.25, X̄2 = 2116.70
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h Nh Wh S2
y1h S2

x1h S2
y2h S2

X2h

1 8 0.0808 29267524195.5 21601503189.8 777174.1 1154134.2

2 34 0.3434 26079256582.8 19734615816.7 4987812.9 7056074.8

3 45 0.4545 42362842460.8 27129658750.0 1074510.6 2082871.3

4 12 0.1212 30728265336.9 17258237358.5 388378.5 732004.9

h Sx1y1h Sx2x2h β1h β2h ú1h ú2h

1 24360422802.3 902170.6 1.1249 0.7834 0.000066 0.000181

2 22003466630.3 5813439.5 1.1150 0.8239 0.000809 0.009411

3 33367597192.0 1285355.6 1.2300 0.6171 0.001212 0.023390

4 21033769867.3 456991.5 1.2188 0.4243 0.000332 0.000610

We assume that Ć = C − Co = 500 units and C1 = 11, C2 = 13, C3 = 9, C4 = 10. We

determine the sample size nh that minimize the coefficients of variation of estimate of

population mean of Y1 and Y2. We formulate the problem as:

Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

11n1 + 13n2 + 9n3 + 10n4 ≤ 500

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

n1, n2, n3 and n4 are integers.
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(a) Coefficients of variation using individual allocation

Optimum allocation for characteristic Y1:

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

11n11 + 13n12 + 9n13 + 10n14 ≤ 500

2 ≤ n11 ≤ 8

2 ≤ n12 ≤ 34

2 ≤ n13 ≤ 45

2 ≤ n14 ≤ 12

n11, n12, n13 and n14 are integers.

n11 = 3, n12 = 15, n13 = 18, n14 = 11.

Amount of cost used Ć=500.

Optimum allocation for characteristic Y2:

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

11n21 + 13n22 + 9n23 + 10n24 ≤ 500

2 ≤ n21 ≤ 8

2 ≤ n22 ≤ 34

2 ≤ n23 ≤ 45

2 ≤ n24 ≤ 12

n21, n22, n23 and n24 are integers.

24



n21 = 2, n22 = 15, n23 = 25, n24 = 4.

Here Z∗
1 and Z∗

2 are coefficients of variation using individual allocation which are given in

the Table 3.1. Amount of cost used Ć=500.

Table 3.1: Coefficients of variation using individual allocation.

C.Vj Y1 Y2

Z∗
1 0.01317 0.01478

Z∗
2 0.04520 0.04167

total 0.05837 0.05645

(b) Coefficients of variation using goal programming

For estimating the population means of characteristics Y1 and Y2, we determine sample

size nh applying goal programming. Let Ẑ1 and Ẑ2 are coefficients of variation using

proposed allocation methods.

Minimize d1 + d2

Subject to

√
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ 0.01317

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ 0.04167

11n1c + 13n2c + 9n3c + 10n4c ≤ 500

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

n1c, n2c, n3c and n4c are integers.

n1c = 3, n2c = 14, n3c = 25, n4c = 6.
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We get Ẑ1 = 0.01355 and Ẑ2 = 0.04177 using above allocation. Amount of cost used

Ć=500.

(c) Coefficients of variation using general method.

We apply general method to determine sample size nh for estimation of population mean

of the characteristics Y1 and Y2.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to

√
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ 0.01317

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ 0.04167

11n1c + 13n2c + 9n3c + 10n4c ≤ 500

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

W1 +W2 = 1

n1c, n2c, n3c and n4c are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation using general method given in following Table

3.2.
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Table 3.2: Coefficients of variations using general method.

W1 W2 n1c n2c n3c n4c C Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.1 0.9 2 13 27 6 494 0.01398 0.04222 0.05622

0.2 0.8 4 13 25 6 498 0.01351 0.04250 0.05601

0.3 0.7 3 16 23 5 498 0.01384 0.04228 0.05612

0.4 0.6 2 14 26 8 498 0.01388 0.04200 0.05588

0.6 0.4 4 15 23 5 496 0.01377 0.04256 0.05633

0.7 0.3 4 13 26 5 497 0.01385 0.04232 0.05617

0.8 0.2 2 13 27 6 494 0.01398 0.04222 0.05622

0.9 0.1 2 14 24 8 500 0.01352 0.04259 0.05611

3.2.5 Efficiency comparison

We compare the efficiency of goal programming and general method to the individual

allocations for characteristic j(j = 1, 2, ..., p). We use the following expression to obtain

the percentage relative efficiency(PRE) as:

PRE =

∑p
j=1 Z

∗
j∑p

j=1 Ẑj
× 100

The results based on goal programming and general method are given in Tables 3.3-3.4.

Table 3.3: PRE of GP method.

Y1 Y2

105.51 102.04

Table 3.4: PRE of general method.

W1 W2 Y1 Y2 W1 W2 Y1 Y2

0.1 0.9 103.824 100.400 0.6 0.4 103.622 100.213

0.2 0.8 104.214 100.780 0.7 0.3 103.917 100.490

0.3 0.7 104.009 100.588 0.8 0.2 103.824 100.400

0.4 0.6 104.456 101.020 0.9 0.1 104.028 100.600
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3.2.6 Results

Table 3.1 shows that optimum allocation according to Y1 is more efficient than Y2. The

Table 3.3-3.4 are indicate that GP method and general method give more precise estimates

than both individual optimum allocation and the precision varies with respect to different

weights.

3.3 Allocation under traveling cost function

We determine a sample size nh under travel cost function
∑L
h=1 thn

δ
h ≤ Ć that minimize

coefficients of variation Zj defined by (3.4) for each characteristics j(j = 1, 2, ..., p). Here

th is travel cost between units within stratum and δ > 0 represents the effect of travel

to cost. This allocation problem becomes a multi-objective mathematical programming

problem which can be formulated as:

Minimize (Z1, Z2, . . . , Zp)

Subject to
L∑
h=1

thn
δ
h ≤ Ć (3.10)

2 ≤ nh ≤ Nh

nh are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p.

We use following methods for solving multi-objective mathematical programming problem

(3.10).

3.3.1 Allocation using individual optimum method

Let Z∗
j be the optimum value of Zj obtained by solving following integer nonlinear math-

ematical programming problem.
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Minimize Zj

Subject to
L∑
h=1

thn
δ
jh ≤ Ć (3.11)

2 ≤ njh ≤ Nh

njh are integers

h = 1, 2, ..., L and j = 1, 2, ..., p.

3.3.2 Allocation using goal programming method

The formulated multi-objective allocation problem (3.10) is solved by goal programming

as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (3.12)

L∑
h=1

thn
δ
hc ≤ Ć

2 ≤ nhc ≤ Nh

nhc are integers

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.
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3.3.3 Allocation using general method

The allocation problem (3.10) can be solved with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (3.13)

L∑
h=1

thn
δ
hc ≤ Ć

2 ≤ nhc ≤ Nh

p∑
k=1

Wk = 1

nhc are integers.

h = 1, 2, ..., L andj = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are relative weights of each characteristics and dj(j = 1, 2, ..., p)

are deviation variables.

3.3.4 Numerical example

Data source[Khan et al.(2010)]. We assume that t1 = 10, t2 = 8, t3 = 9, t4 = 11

Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

10nδ1 + 8nδ2 + 9nδ3 + 11nδ4 ≤ Ć

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12
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n1, n2, n3 and n4 are integers.

(a) Coefficients of variation using individual optimum allocation

Optimum allocation for characteristics Y1:

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

10nδ11 + 8nδ12 + 9nδ13 + 11nδ14 ≤ Ć

2 ≤ n11 ≤ 8

2 ≤ n12 ≤ 34

2 ≤ n13 ≤ 45

2 ≤ n14 ≤ 12

n11, n12, n13 and n14 are integers.

Optimum allocation for characteristics Y2:

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

10nδ21 + 8nδ22 + 9nδ23 + 11nδ24 ≤ Ć

2 ≤ n21 ≤ 8

2 ≤ n22 ≤ 34

2 ≤ n23 ≤ 45

2 ≤ n24 ≤ 12

n21, n22, n23 and n24 are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation under individual allocation for different value

of δ andĆ in Table 3.5.
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Table 3.5: Coefficients of variation using individual allocation.

δ Ć Allocation n1 n2 n3 n4 used Ć Z∗
1 Z∗

2 Z∗
1+Z∗

2

0.5 120 Y1 4 16 23 4 117.6 0.01424 0.04246 0.05676

Y2 2 22 34 2 119.70 0.01647 0.03887 0.05534

0.8 250 Y1 3 20 15 8 248.57 0.01359 0.04655 0.06014

Y2 2 17 29 2 246.82 0.01498 0.04190 0.05888

1 340 Y1 4 10 14 8 388.00 0.01501 0.05228 0.06729

Y2 2 13 20 4 338.00 0.01640 0.04682 0.06322

1.5 1000 Y1 4 11 13 7 997.00 0.01518 0.05279 0.06797

Y2 2 12 16 3 993.99 0.01494 0.05040 0.06734

1.7 1670 Y1 4 14 12 6 1662.27 0.01518 0.05261 0.06779

Y2 2 12 16 3 1658.22 0.01694 0.05040 0.06734

2 1800 Y1 4 8 10 4 1748.00 0.01794 0.06094 0.07888

Y2 3 8 11 3 1790.00 0.01855 0.05972 0.07872

(b) Coefficients of variation using goal programming

Allocation considering the characteristics Y1 and Y2, we use goal programming method.

Minimize d1 + d2

Subject to √
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

10nδ1c + 8nδ2c + 9nδ3c + 11nδ4c ≤ Ć

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

n1c, n2c, n3c and n4c are integers.
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Here Ẑ1 and Ẑ2 are coefficients of variation for different values of Ć and δ using goal

programming are given in Table 3.6.

Table 3.6: Coefficients of variation using GP method.

δ Ć n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 120 2 18 23 3 118.83 0.01501 0.03906 0.05407

0.8 250 2 14 25 5 241.53 0.01434 0.04267 0.05701

1.0 340 2 14 18 4 338.00 0.01553 0.04706 0.06259

1.5 1000 2 13 14 5 997.69 0.01614 0.05085 0.06699

1.7 1670 2 14 14 4 1658.22 0.01575 0.05106 0.06681

2.0 1800 2 9 16 4 1764.00 0.01678 0.05245 0.06923

(c) Coefficients of variation using general method

We determine sample size nh using general method.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to √

0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

10nδ1c + 8nδ2c + 9nδ3c + 11nδ4c ≤ Ć

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

W1 +W2 = 1

33



n1c, n2c, n3c and n4c are integers. The coefficients of variation Ẑ1 and Ẑ2 for different

values of Ć and δ under above allocation are given in Table 3.7.

Table 3.7: Coefficients of variation using general method.

δ Ć W1 W2 n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 120 0.2 0.8 2 21 30 8 119.15 0.01239 0.03774 0.05103

0.4 0.6 2 22 27 4 117.48 0.01406 0.03921 0.05327

0.6 0.4 2 18 30 4 119.38 0.01419 0.03931 0.05350

0.8 250 0.2 0.8 3 15 26 4 249.20 0.01434 0.04171 0.05605

0.4 0.6 3 15 26 4 249.20 0.01434 0.04171 0.05605

0.6 0.4 3 17 22 5 24.82 0.01382 0.04242 0.05624

0.8 0.2 3 17 22 5 24.82 0.01382 0.04242 0.05624

1 340 0.2 0.8 2 14 17 5 339.00 0.01512 0.04755 0.06267

0.4 0.6 3 13 18 4 340.00 0.01532 0.04729 0.06261

0.4 0.6 3 13 18 4 340.00 0.01532 0.04729 0.06261

0.8 0.2 2 14 17 5 389.00 0.01512 0.04755 0.06267

1.5 1000 0.2 0.8 4 10 14 6 996.98 0.01600 0.05100 0.06700

0.4 0.6 3 11 15 5 989.66 0.01558 0.05096 0.06654

0.6 0.4 3 11 15 5 989.66 0.01558 0.05096 0.06654

0.8 0.2 2 13 14 5 997.69 0.01575 0.05106 0.06681

1.7 1670 0.2 0.8 2 12 15 5 1647.47 0.01574 0.05056 0.06630

0.4 0.6 2 12 15 5 1647.47 0.01574 0.05056 0.06630

0.6 0.4 3 13 14 5 1659.93 0.01540 0.05076 0.06616

0.8 0.2 3 10 16 5 1638.24 0.01565 0.05114 0.06679

2 1800 0.2 0.8 2 9 10 4 1764.00 0.01809 0.06023 0.07832

0.4 0.6 3 8 11 3 1790.00 0.01855 0.05972 0.0787

0.6 0.4 2 7 11 5 1796.00 0.01803 0.06092 0.07872

0.8 0.2 2 7 11 5 1796.00 0.01803 0.06092 0.07872
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3.3.5 Efficiency comparison

Tables 3.8-3.9 show the PRE of goal programming and general method, respectively, to

individual allocation method used for the determination of sample size under nonlinear

deterministic cost function.

Table 3.8: PRE of goal programming method.

δ Ć Y1 Y2 δ Ć Y1 Y2

0.5 0120 104.864 100.349 1.5 1000 101.463 100.522

0.8 0250 112.507 103.280 1.7 1670 101.467 100.793

1.0 0340 107.509 101.007 2.0 1700 113.9939 113.708

Table 3.9: PRE of general method.

δ Ć W1 W2 Y1 Y2 δ Ć W1 W2 Y1 Y2

0.5 120 0.2 0.8 113.106 110.393 1.5 1000 0.2 0.8 101.448 100.507

0.4 0.6 106.439 103.886 0.4 0.6 102.149 101.202

0.6 0.4 105.980 103.439 0.6 0.4 102.149 101.202

0.8 0.2 113.106 110.393 0.8 0.2 101.736 100.739

0.8 250 0.2 0.8 107.290 105.049 1.7 1670 0.2 0.8 102.247 101.569

0.4 0.6 107.290 105.040 0.4 0.6 102.247 101.569

0.6 0.4 106.930 104.694 0.6 0.4 102.264 101.784

0.8 0.2 106.930 104.694 0.8 0.2 101.497 100.823

1.0 340 0.2 0.8 107.372 100.878 2.0 1800 0.2 0.8 100.715 100.511

0.4 0.6 107.475 100.974 0.4 0.6 100.779 100.575

0.6 0.4 107.475 100.974 0.6 0.4 100.203 100.000

0.8 0.2 107.372 100.878 0.8 0.2 100.203 100.000

3.3.6 Results

The optimum allocation according to Y1 gives more efficient results than Y2 for different

values of δ and Ć as shown in Table 3.5. The goal programming method and general

method give efficient results as compare to individual allocation according to Y2 and Y2

as shown in Tables 3.8-3.9.
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3.4 Allocation under nonlinear cost function

Consider following nonlinear cost function.

L∑
h=1

Chnh +
L∑
h=1

thn
δ
h ≤ Ć. (3.14)

We minimize coefficients of variation Zj(j = 1, 2, ..., p) defined by (3.4) under cost function

defined by (3.14).We formulate this multi-objective mathematical programming problem

in the form of integer nonlinear mathematical programming problem as:

Minimize (Z1, Z2, Z3, . . . , Zp)

Subject to
L∑
h=1

Chnh +
L∑
h=1

thn
δ
h ≤ Ć (3.15)

2 ≤ nh ≤ Nh

nh are integers

h = 1, 2, ..., L.

The multi-objective mathematical programming allocation problem (??) is solved by fol-

lowing methods

3.4.1 Allocation using individual optimum method

Let Z∗
j be the optimum value of Zj obtained by solving following integer nonlinear math-

ematical programming problem.

Minimize Zj

Subject to
L∑
h=1

Chnh +
L∑
h=1

thn
δ
jh ≤ Ć (3.16)

2 ≤ njh ≤ Nh

njh are integers

h = 1, 2, ..., L and j = 1, 2, ..., p.

36



3.4.2 Allocation using goal programming method

The problem (3.15) can be solved with goal programming method as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (3.17)

L∑
h=1

Chnh +
L∑
h=1

thn
δ
hc ≤ Ć

2 ≤ nhc ≤ Nh

nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.

3.4.3 Allocation using general method

The problem (3.15) can be solved with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj ≤ Z∗
j (3.18)

L∑
h=1

Chnh +
L∑
h=1

thn
δ
hc ≤ Ć

2 ≤ nhc ≤ Nh

p∑
k=1

Wk = 1

nhc are integers

h = 1, 2, ..., L andj = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are relative weights of characteristics and dj(j = 1, 2, ..., p) are

deviation variables.
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3.4.4 Numerical example

Data source [Khan et al.(2010)].We assume that C1 = 12, C2 = 8, C3 = 6, C4 = 10, t1 =

6, t2 = 4, t3 = 3, t4 = 5.

Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

12n1 + 8n2 + 6n3 + 10n4 + 6nδ1 + 4nδ2 + 3nδ3 + 5nδ4 ≤ Ć

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

n1, n2, n3 and n4 are integers.

(a) Coefficients of variation using individual optimum method.

Individual Optimum allocation for characteristic Y1:

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

12n11 + 8n12 + 6n13 + 10n14 + 6nδ11 + 4nδ12 + 3nδ13 + 5nδ14 ≤ Ć

2 ≤ n11 ≤ 8

2 ≤ n12 ≤ 34

2 ≤ n13 ≤ 45

2 ≤ n14 ≤ 12
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n11, n12, n13 and n14 are integers.

Individual Optimum allocation for characteristic Y2:

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

12n21 + 8n22 + 6n23 + 10n24 + 6nδ21 + 4nδ22 + 3nδ23 + 5nδ24 ≤ Ć

2 ≤ n21 ≤ 8

2 ≤ n22 ≤ 34

2 ≤ n23 ≤ 45

2 ≤ n24 ≤ 12

n21, n22, n23 and n24 are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation under individual allocation for different values

of δ andĆ given in Table 3.10.

Table 3.10: Coefficients of variations using individual allocation.

δ Ć Allocation n1 n2 n3 n4 used Ć Z∗
1 Z∗

2 Z∗
1+Z∗

2

0.5 300 Y1 2 9 18 5 298.00 0.01602 0.05057 0.06659

Y2 2 10 22 2 298.27 0.01830 0.04899 0.06729

0.7 400 Y1 4 14 16 6 395.62 0.01433 0.04776 0.06209

Y2 2 15 25 3 399.71 0.01569 0.04309 0.05878

1 500 Y1 4 11 21 7 498.00 0.01398 0.04584 0.05982

Y2 2 13 29 3 498.00 0.01601 0.04271 0.05872

1.5 850 Y1 4 12 15 9 847.56 0.01420 0.04950 0.06376

Y2 2 14 21 3 833.18 0.01610 0.04560 0.06170

1.8 1300 Y1 3 11 16 8 1295.18 0.01460 0.04954 0.06414

Y2 2 12 19 3 1272.43 0.01658 0.04805 0.06463

2 1500 Y1 3 10 13 7 1470.00 0.01560 0.05374 0.06934

Y2 2 10 16 3 1467.00 0.01733 0.05193 0.06926
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(b) Coefficient of variation using goal programming Method.

We use goal programming method for sample allocation to different strata taking into

account two characteristics Y1 and Y2.

Minimize d1 + d2

Subject to √
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

12n21 + 8n22 + 6n23 + 10n24 + 6nδ21 + 4nδ22 + 3nδ23 + 5nδ24 ≤ Ć

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

n1c, n2c, n3c and n4c are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation using goal programming method for sample

allocations given in Table 3.11.

Table 3.11: Coefficients of variation using GP method.

δ Ć n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 300 2 11 19 3 299.48 0.01678 0.04879 0.06557

0.7 400 2 12 25 5 396.50 0.01467 0.043967 0.05863

1.0 500 2 17 22 4 498.00 0.01479 0.04313 0.05792

1.5 850 2 15 19 4 835.80 0.01529 0.04584 0.06113

1.8 1300 2 12 17 6 1271.06 0.01507 0.04850 0.06357

2.0 1500 2 10 15 5 1468.00 0.01616 0.05209 0.06825

(c) Coefficients of variation using general method

We determine sample size nh taking into account two characteristics Y1 and Y2 using

general method.
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Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to √

0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

12n21 + 8n22 + 6n23 + 10n24 + 6nδ21 + 4nδ22 + 3nδ23 + 5nδ24 ≤ Ć

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

W1 +W2 = 1

n1c, n2c, n3c and n4c are integers.

The coefficients of variation Ẑ1 and Ẑ2 obtained by general method are given in Table

3.12.
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Table 3.12: Coefficients of variation using general method.

δ Ć W1 W2 n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 300 0.2 0.8 2 11 19 3 2999.48 0.01676 0.04878 0.06554

0.35 0.65 2 11 19 3 299.48 0.016766 0.04878 0.06554

0.7 0.3 2 10 18 4 295.86 0.01626 0.04984 0.06610

0.85 0.15 2 11 17 4 298.12 0.01615 0.04974 0.06589

0.7 400 0.2 0.8 2 14 24 4 396.04 0.01498 0.04347 0.05845

0.35 0.65 3 12 25 4 399.47 0.01486 0.04396 0.05822

0.7 0.3 2 12 25 4 396.50 0.01523 0.04430 0.05953

0.85 0.15 2 15 22 4 391.68 0.01500 0.04397 0.05897

1 500 0.2 0.8 2 12 27 5 498.00 0.01455 0.04316 0.05771

0.35 0.65 2 17 22 4 498.00 0.01479 0.04313 0.05793

0.7 0.3 2 15 23 5 498.00 0.01435 0.04309 0.05744

0.85 0.15 2 13 24 6 498.00 0.01418 0.04348 0.05766

1.5 850 0.2 0.8 3 14 19 4 831.16 0.01505 0.04600 0.06105

0.35 0.65 3 11 22 5 848.58 0.01473 0.04584 0.06057

0.7 0.3 3 11 21 6 849.30 0.01444 0.04617 0.06061

0.7 0.3 3 11 21 6 849.30 0.01444 0.04617 0.06061

1.7 1300 0.2 0.8 3 12 18 4 1279.66 0.01548 0.04792 0.06390

0.35 0.65 5 12 16 5 1292.83 0.01493 0.04903 0.06396

0.7 0.3 2 12 17 6 1271.05 0.01507 0.04850 0.06357

0.85 0.15 2 12 17 6 1271.05 0.01507 0.04850 0.06357

2 1500 0.2 0.8 2 13 21 4 1499.90 0.01536 0.04562 0.06098

0.35 0.65 4 12 20 5 1486.90 0.01452 0.04654 0.06106

0.7 0.3 3 14 18 6 1492.88 0.01423 0.04619 0.06042

0.85 0.15 3 13 19 6 1488.86 0.01426 0.04601 0.06027

3.4.5 Efficiency comparison

We compare the efficiency of goal programming method and general method to the indi-

vidual allocations for characteristic Y1 and Y2. The PRE is given in Tables 3.13-3.14.
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PRE =

∑p
j=1 Z

∗
j∑p

j=1 Ẑj
× 100

Table 3.13: PRE of goal programming method.

δ Ć Y1 Y2 δ Ć Y1 Y2

0.5 0300 101.556 102.623 1.5 850 104.302 100.932

0.7 0400 105.901 100.256 1.8 1300 100.897 101.667

1.0 0500 103.280 101.381 2.0 1500 101.597 101.480

Table 3.14: PRE of general method.

δ Ć W1 W2 Y1 Y2 δ Ć W1 W2 Y1 Y2

0.5 120 0.2 0.8 101.602 102.670 1.5 850 0.2 0.8 104.439 101.065

0.35 0.64 101.602 102.670 0.35 0.65 105.267 101.886

0.7 0.3 100.740 100.800 0.7 0.3 105.197 101.798

0.85 0.15 101.062 102.125 0.85 0.15 105.197 101.798

0.7 400 0.2 0.8 106.228 100.565 1.8 1300 0.2 0.8 100.376 101.142

0.35 0.65 106.647 100.962 0.35 0.65 100.281 101.048

0.7 0.3 104.300 098.740 0.7 0.3 100.897 101.667

0.85 0.15 105.291 099.670 0.85 0.15 100.897 101.667

1.0 500 0.2 0.8 103.656 101.750 2.0 1500 0.2 0.8 113.708 113.615

0.35 0.65 103.263 101.364 0.35 0.65 113.560 113.429

0.7 0.3 104.143 102.228 0.7 0.3 114.763 114.631

0.85 0.15 103.746 101.838 0.85 0.25 115.049 114.916

3.4.6 Results

Table 3.10 indicates that individual optimum allocation according to Y1 gives larger co-

efficients of variation compare to Y2. Table 3.13 exhibit that GP method is efficient

allocation technique than individual allocation criteria.Tables 3.13-3.14 show that goal

programming method and general method give more precise estimates as compare to in-

dividual optimum method according to Y1 and Y2 for different values of constants δ and

Ć.
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3.5 Allocation under logarithmic traveling cost func-

tion

We determine sample size nh under the logarithmic cost function
∑L
h=1 thlog(nδh) ≤ Ć.

We minimize coefficients of variation Zj(j = 1, 2, ..., p) defined by (3.4) under this loga-

rithmic cost function.We formulate this sample determination problem as multi-objective

optimization problem in the form of integer nonlinear mathematical programming as:

Minimize (Z1, Z2, . . . , Zp)

Subject to
L∑
h=1

thlog(nδh) ≤ Ć (3.19)

2 ≤ nh ≤ Nh

nh are integers

h = 1, 2, ..., L.

We use following methods for solving multi-objective allocation problem which is formu-

lated as mathematical programming problem (3.19).

3.5.1 Allocation using individual optimum method

The individual optimum allocation method is used to determine the sample size nh that

minimized one coefficient of variation among Zj(j = 1, 2, ..., p) and other coefficients of

variation are measured for that allocation.

Minimize Zj

Subject to
L∑
h=1

thlog(nδh) ≤ Ć (3.20)

2 ≤ njh ≤ Nh

njh are integers.
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h = 1, 2, ..., L and j = 1, 2, ..., p.

Let Z∗
j be the optimum value of Zj obtained by solving above allocation problem.

3.5.2 Allocation using goal Programming method

The multi-objective optimization problem (3.19) may be written in goal programming as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (3.21)

L∑
h=1

thlog(nδh) ≤ Ć

2 ≤ nhc ≤ Nh

nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.

3.5.3 Allocation using general method

The multi-objective allocation problem (3.19) may be solved with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (3.22)

L∑
h=1

thlog(nδh) ≤ Ć

2 ≤ nhc ≤ Nh

p∑
k=1

Wk = 1
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nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are relative weights which express importance of each charac-

teristics and dj(j = 1, 2, ..., p) are deviation variables.

3.5.4 Numerical example

We assume that t1 = 10, t2 = 8, t3 = 7, t4 = 9.

Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

10log(nδ1) + 8log(nδ2) + 7log(nδ3) + 9log(nδ4) ≤ Ć

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

n1, n2, n3 and n4 are integers.

(a) Coefficients of variation using individual optimum method

The individual allocation taking a characteristic Y1:

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

10log(nδ11) + 8log(nδ12) + 7log(nδ13) + 9log(nδ14) ≤ Ć

2 ≤ n11 ≤ 8

2 ≤ n12 ≤ 34
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2 ≤ n13 ≤ 45

2 ≤ n14 ≤ 12

n11, n12, n13 and n14 are integers.

The individual allocation using a characteristic Y2:

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

10log(nδ21) + 8log(nδ22) + 7log(nδ23) + 9log(nδ24) ≤ Ć

2 ≤ n22 ≤ 34

2 ≤ n23 ≤ 45

2 ≤ n24 ≤ 12

n21, n22, n23 and n24 are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation under using individual allocation for different

value of δ andĆ given in Table 3.15.

Table 3.15: Coefficients of variation using individual allocation.

δ Ć Allocation n1 n2 n3 n4 used Ć Z∗
1 Z∗

2 Z∗
1+Z∗

2

0.5 30 Y1 3 10 8 4 28.22 0.01837 0.06386 0.08223

Y2 3 10 8 4 28.22 0.01837 0.06386 0.08223

1.0 60 Y1 3 10 8 4 56.44 0.01837 0.06386 0.08223

Y2 3 10 8 4 56.44 0.01837 0.06386 0.08223

1.5 85 Y1 3 8 5 3 73.16 0.02182 0.07822 0.10004

Y2 2 19 15 2 71.98 0.02200 0.07462 0.09662

2 115 Y1 3 8 6 4 105.28 0.02020 0.07271 0.09291

Y2 3 8 6 4 105.28 0.02020 0.07271 0.09291

(b) Coefficients of variation using goal programming method.

We use propose goal programming method for allocation of sample size to four strata

considering two characteristics Y1 and Y2.
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Minimize d1 + d2

Subject to √
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

10log(nδ1c) + 8log(nδ2c) + 7log(nδ3c) + 9log(nδ4c) ≤ Ć

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

n1c, n2c, n3c and n4c are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation obtained by solving problem which are given

in Table 3.16.

Table 3.16: Coefficients of variation using GP method.

δ Ć n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 30 2 10 15 2 25.27 0.01899 0.05381 0.07280

1.0 60 2 10 15 2 50.54 0.01899 0.05381 0.07280

1.5 85 2 34 5 2 78.97 0.02157 0.07315 0.09472

2.0 150 2 26 6 2 111.66 0.02079 0.06823 0.08902
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(c) Coefficients of variation using general method

Two characteristics Y1 and Y2 are considered in allocation of sample size by general

method.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to √

0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

10log(nδ1c) + 8log(nδ2c) + 7log(nδ3c) + 9log(nδ4c) ≤ Ć

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

W1 +W2 = 1

n1c, n2c, n3c and n4c are integers.

The coefficients of variation Ẑ1 and Ẑ2 are given in Table 3.17 obtained by solving above

allocation problem.
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Table 3.17: Coefficients of variation using general method.

δ Ć W1 W2 n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 30 0.2 0.8 2 14 39 2 29.96 0.01697 0.04083 0.05780

0.4 0.6 2 16 32 2 29.80 0.01695 0.04141 0.05836

0.6 0.4 2 12 45 2 29.84 0.01713 0.04123 0.05836

0.8 0.2 2 15 21 3 29.90 0.01598 0.04511 0.06109

1.0 60 0.2 0.8 2 14 39 2 59.93 0.01697 0.04083 0.05780

0.4 0.6 2 14 39 2 59.93 0.01697 0.04083 0.05780

0.6 0.4 2 17 28 2 59.16 0.01703 0.04224 0.05927

0.8 0.2 2 15 21 3 59.80 0.01598 0.04511 0.06109

1.5 85 0.2 0.8 2 16 11 2 78.20 0.01897 0.05577 0.07474

0.4 0.6 2 16 11 2 78.20 0.01897 0.05577 0.07474

0.6 0.4 2 15 12 2 78.34 0.01881 0.05452 0.07333

0.8 0.2 2 14 13 2 78.35 0.01871 0.05354 0.07225

2 115 0.2 0.8 2 13 28 2 114.03 0.01745 0.04421 0.06166

0.4 0.6 2 13 28 2 114.03 0.01745 0.04421 0.06166

0.6 0.4 2 15 25 2 114.73 0.01736 0.04425 0.06161

0.8 0.2 2 12 29 2 113.24 0.01756 0.04457 0.06213

3.5.5 Efficiency comparison

The percentage relative efficiency of goal programming method and general method as

compare to individual optimum method for characteristic Yj(j = 1, 2) are given in Tables

3.18-3.19.

Table 3.18: PRE of goal programming method.

δ Ć Y1 Y2 δ Ć Y1 Y2

0.5 030 112.95 112.95 1.5 085 105.62 102.01

1.0 060 112.95 112.95 2.0 115 104.37 104.37
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Table 3.19: PRE of general method.

δ Ć W1 W2 Y1 Y2 δ Ć W1 W2 Y1 Y2

0.5 30 0.2 0.8 142.27 142.27 1.5 85 0.2 0.8 133.85 129.27

0.4 0.6 140.90 140.90 0.4 0.6 133.85 129.276

0.6 0.4 140.90 140.90 0.6 0.4 136.42 131.76

0.8 0.2 134.60 134.60 0.8 0.2 138.46 133.73

1.0 60 0.2 0.8 142.27 142.27 2.0 115 0.2 0.8 150.68 150.68

0.4 0.6 142.27 142.27 0.35 0.65 150.68 150.68

0.6 0.4 138.74 138.74 0.7 0.3 150.80 150.80

0.8 0.2 134.60 134.60 0.85 0.25 149.54 149.54

3.5.6 Results

Individual optimum allocation according to Y1 and Y2 give equally precise estimates of

population means as shown in Table 3.15. Goal programming method and general method

of compromise allocation give more efficient estimates than individual optimum allocation

according to Y1 and Y2 for different values of variable cost Ć and constant δ as given in

Tables 3.18-3.19.
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Chapter 4

Optimization of Precision under

Probabilistic Cost Function

4.1 Introduction

In many surveys, the cost for obtaining information from selected units from different

strata are not known exactly, rather than these costs are being estimated from sample. In

this situation the cost function becomes probabilistic and chance constraint programming

is used to solve formulated problem.

Ghufran et al (2011) and Ali et al (2011) formulated the allocation problem in mathe-

matical programming given below.

Minimize [V (ȳ1,st), V (ȳ2,st), . . . , V (ȳp,st)]

Subject to

p

(
L∑
h=1

Chnh +
L∑
h=1

th
√
nh ≤ C

)
≥ po

2 ≤ nh ≤ Nh

h = 1, 2, ..., L.

where,V (ȳj,st)(j = 1, 2, ..., p) are variances of estimators of population means of Yj char-

acteristics in multivariate stratified sampling. Ali et al used chebyshev approximation

method , goal programming method and D1 distance method of optimization and Ghufran
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et all used weighted method to solve above multi-objective optimization problem. The

integer solution was obtained to round the results.

In this chapter, We minimize coefficients of variation of regression estimators for the pa-

rameter of population means of Yj(j = 1, 2, ..., p) characteristics under different types of

probabilistic cost function using goal programming and proposed general method to solve

optimization problem. We also adopt charnes and copper (1959) procedure to convert

integer stochastic optimization problem into deterministic optimization problem.

4.2 Allocation under simple probabilistic cost func-

tion

Consider the following cost function.

C0 +
L∑
h=1

Chnh ≤ C (4.1)

We perceive that cost of observing the selected sample units within stratum cannot remain

same but vary from unit to unit. We consider the measurement cost Ch as a variable and

assume that it is normally distributed with mean µch and variance σ2
ch. Thus the linear

cost function (4.1) becomes probabilistic which can be written as:

p

(
C0 +

L∑
h=1

Chnh ≤ C

)
≥ po (4.2)

where, po is given probability. Under the probabilistic cost functions, we determine the

sample size nh that minimize Zj(j = 1, 2, 3, ..., p) defined by (3.4). We notice that sample

size nh has direct or positive relationship with variability S2
h within stratum and inverse

relationship with stratum measurement cost Ch. The objective of study may require a

researcher to achieve at least some specified level of precision within each stratum. That

is, some proportion of units from each stratum must be included in the sample for ob-

taining minimum level of precision in each stratum. The researcher need the sample

allocation procedure to conduct a detail analysis within stratum. We can use mathe-
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matical programming techniques to handle this situation by introducing an additional

condition on sample size nh. We determine the sample size nh that maximize the overall

precision of the estimates of population means of characteristics Yj(j = 1, 2, ..., p) under

the probabilistic cost function given in (4.2) and additional condition discussed as above.

This multi-objective allocation problem can be formulated in chance constrained integer

mathematical programming as:

Minimize (Z1, Z2, Z3, . . . , Zp)

Subject to

p

(
C0 +

L∑
h=1

chnh ≤ C

)
≥ po (4.3)

lh ≤ nh ≤ uh

lh ≥ 2

nh are integers.h = 1, 2, ..., L,

where, lh is lower bound on sample size nh that must be satisfied for within strata analysis

and uh is upper bound on sample size nh. Now we transform problem (4.3) into deter-

ministic mathematical programming problem as:

Let

g1 = C0 +
L∑
h=1

Chnh.

Applying expectation on both sides, we get

E (g1) =

(
C0 +

L∑
h=1

E(Ch)nh

)

or

E (g1) = C0 +
L∑
h=1

µchnh (4.4)

Now

V ar (g1) = V ar

(
C0 +

L∑
h=1

Chnh

)
.

V ar (g1) =
L∑
h=1

σ2
chn

2
h (4.5)
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The function g1 is normally distributed with mean E (g1) and variance V ar (g1) are defined

in (4.4) and (4.5) respectively.That is, g1 ∼ N (E(g1), V (g1)).The chance constraint (4.2)

can be written as,

p (g ≤ C) ≥ po

p

g1 − E (g1)√
V ar (g1)

≤ C − E (g1)√
V ar (g1)

 ≥ po

where, p
(
g1−E(g1)√
V ar(g1)

)
is standard normal random variable. Thus the probability of realizing

g1 less than or equal to total cost C can be written as:

p (g1 ≤ C) = φ

C − E (g1)√
V ar (g1)

 = φ(z) (4.6)

where, φ (z) represent the cumulative density function of normal random variable g1 cal-

culated at z. Let Aα represent standard normal variable at which φ (Aα) = po. Then the

constraint (4.6) can be written as:

φ

C − E (g1)√
V ar (g1)

 ≥ φ (Aα) .

This inequality will be satisfied only if

C − E (g1)√
V ar (g1)

≥ Aα

or

E (g1) + (Aα)
√
V ar (g1) ≤ C (4.7)

Substituting (4.4) and (4.5) in (4.7), we get deterministic constraint equivalent to proba-

bilistic constraint (4.2).

L∑
h=1

µchnh + (Aα)

√√√√ L∑
h=1

σ2
chn

2
h ≤ C − Co = Ć (4.8)

55



If parameters µch and σ2
ch are unknown, we replace their estimates. Let µ̂ch and σ̂2

ch are

estimates of parameters µch and σ2
ch respectively. The chance constraint mathematical

programming problem (4.3) can be written in deterministic mathematical programming

problem as:

Minimize (Z1, Z2, Z3, . . . , Zp)

Subject to
L∑
h=1

µchnh + (Aα)

√√√√ L∑
h=1

σ2
chn

2
h ≤ Ć (4.9)

lh ≤ nh ≤ uh

lh ≥ 2

nh are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p.

We propose following methods for solving multi-objective integer mathematical program-

ming problem (4.9)

4.2.1 Allocation using individual optimum method

Let Z∗
j be a optimum value of objective Zj obtained by solving following nonlinear integer

mathematical programming problem

Minimize Zj

Subject to
L∑
h=1

µchnjh + (Aα)

√√√√ L∑
h=1

σ2
chn

2
jh ≤ Ć (4.10)

lh ≤ njh ≤ uh

lh ≥ 2

nh are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p.
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4.2.2 Allocation using goal programming

The problem (4.9) can be solved in goal programming (GP) as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.11)

L∑
h=1

µchnjh+ (Aα)

√√√√ L∑
h=1

σ2
chn

2
jh ≤ Ć

lh ≤ nhc ≤ uh

lh ≥ 2

nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.

4.2.3 Allocation using general method

The problem (4.9) may be solved with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.12)

L∑
h=1

µchnjh+ (Aα)

√√√√ L∑
h=1

σ2
chn

2
jh ≤ Ć

lh ≤ nhc ≤ uh

p∑
k=1

Wk = 1

lh ≥ 2

nhc are integers.
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h = 1, 2, ..., L and j = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are relative weights which indicates an importance of charac-

teristics Yj and dj(j = 1, 2, ..., p) are deviation variables.

4.2.4 Numerical example

Data Source [Khan et al.(2010)]. Let chance be required to be sanctified with 99.60

percent probability. The Aα is such that φ(Aα) = 0.996. Aα correspond to 99.60 percent

confidence limit is 2.67. We assume that Ć = C − Co = 350 and

E(C1) = 8, E(C2) = 6, E(C3) = 5, E(C4) = 7, V (C1) = 5, V (C2) = 4.5, V (C3) = 3.5, V (C4) = 5

lhis 25 percent of stratum size Nh and uh is 75 percent of stratum size Nh

Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

8n1 + 6n2 + 5n3 + 7n4 + 5n2
1 + 4.5n2

2 + 3.5n2
3 + 5n2

4 ≤ 350

2 ≤ n1 ≤ 6

9 ≤ n2 ≤ 26

11 ≤ n3 ≤ 34

3 ≤ n4 ≤ 9

n1, n2, n3 and n4 are integers.
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(a) Coefficients of variation using individual allocation

Optimum allocation for characteristic Y1 :

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

8n11 + 6n12 + 5n13 + 7n14 + 5n2
11 + 4.5n2

12 + 3.5n2
13 + 5n2

14 ≤ 350

2 ≤ n11 ≤ 6

9 ≤ n12 ≤ 26

11 ≤ n13 ≤ 34

3 ≤ n14 ≤ 9

n11, n12, n13 and n14 are integers.

Optimum allocation for characteristic Y2 :

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

8n21 + 6n22 + 5n23 + 7n24 + 5n2
21 + 4.5n2

22 + 3.5n2
23 + 5n2

24 ≤ 350

2 ≤ n21 ≤ 6

9 ≤ n22 ≤ 26

11 ≤ n23 ≤ 34

3 ≤ n24 ≤ 9

n21, n22, n23 and n24 are integers.

The coefficients of variation Z∗
1 and Z∗

1 using individual allocation are given in the Table

4.1.
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Table 4.1: Coefficients of variation using individual allocation

C.Vj Y1 Y2

Z∗
1 0.01458 0.01624

Z∗
2 0.04850 0.04617

total 0.06308 0.06241

(b) Coefficients of variation using goal programming

We determine sample size nh taking into account the characteristics Yj(j = 1, 2) using

goal programming.

Minimize d1 + d2

Subject to

√
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ 0.01458

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ 0.04617

8n1c + 6n2c + 5n3c + 7n4c + 5n2
1c + 4.5n2

2c + 3.5n2
3c + 5n2

4c ≤ 350

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

n1c, n2c, n3c and n4c are integers.

n∗
1c = 3, n∗

2c = 13, n∗
3c = 19, n∗

4c = 4.

Here Ẑ1 and Ẑ2 are coefficients of variation obtained by using above allocation.

Ẑ1 = 0.01551, Ẑ2 = 0.04682, Ẑ1 + Ẑ2 = 0.06233.

Amount of cost used Ć=348.77.

(c) Coefficients of variation using general method

60



For estimation of population mean of characteristics Yj(j = 1, 2), we determine sample

size nh using general method.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to

√
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ 0.01458

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ 0.04617

8n1c + 6n2c + 5n3c + 7n4c + 5n2
1c + 4.5n2

2c + 3.5n2
3c + 5n2

4c ≤ 350

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

W1 +W2 = 1

n1c, n2c, n3c and n4c are integers.

The coefficients of variation Ẑ1 and Ẑ2 are obtained by solving above problem given in

Table 4.2

Table 4.2: Coefficients of variation using general method.

W1 W2 n1c n2c n3c n4c C Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.2 0.8 2 14 19 4 349.52 0.01505 0.04633 0.06138

0.4 0.6 2 14 18 5 349.19 0.01498 0.04673 0.06171

0.6 0.4 2 13 18 6 348.19 0.01476 0.04707 0.06183

0.8 0.2 2 13 19 5 348.35 0.01501 0.04656 0.06157
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4.2.5 Efficiency comparison

We compare the efficiency of goal programming method and general method to the indi-

vidual optimum method for characteristic Yj(j = 1, 2). The PRE of goal programming

method and general method to individual optimum method are given below in Tables

4.3-4.4.

Table 4.3: PRE of goal programming method.

Y1 Y2

101.12 100.05

Table 4.4: PRE of general method.

W1 W2 Y1 Y2 W1 W2 Y1 Y2

0.2 0.8 102.77 101.67 0.6 0.4 102.02 100.93

0.4 0.6 102.22 101.13 0.8 0.2 102.45 101.36

4.2.6 Results

Table 4.1 shows that optimum allocation with respect to characteristic Y2 gives smaller

coefficients of variation than Y1. The GP method and general method give efficient

estimates of population means as compare to individual optimum allocation according to

Y1 and Y2 as given in Tables 4.3-4.4. The precision of estimates of general method differ

from individual optimum allocation for different relative weights of variables Y1 and Y2.

4.3 Allocation under probabilistic traveling cost func-

tion

Consider the following cost function.

C0 +
L∑
h=1

thn
δ
h ≤ C (4.13)

We determine the sample size nh under the cost function (4.13) that minimize the coef-

ficients of variation of estimates of population means for characteristic Yj(j = 1, 2, ..., p).
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Here, th is travel cost of measuring the selected units in the hth stratum for all charac-

teristics Yj(j = 1, 2, ..., p) and δ represents effect of travel to cost.Co is fixed cost and

C is total cost of survey. Practically, we observe that traveling cost th vary for taking

information from unit to unit in the hth stratum and consider as random. We assume

that th ∼ N(µth, σ
2
th). Thus traveling cost function (4.13) becomes probabilistic written

as:

p

(
C0 +

L∑
h=1

thn
δ
h ≤ C

)
≥ po (4.14)

We determine the sample size nh that minimize the coefficients of variation Zj(j =

1, 2, ..., p) defined by (3.4) under the constraint (4.14) and additional condition discussed

in section 4.2. This multi-objective optimization problem can be formulated in chance

constraint nonlinear mathematical programming problem as:

Minimize (Z1, Z2, . . . , Zp)

Subject to

p

(
C0 +

L∑
h=1

thn
δ
h ≤ C

)
≥ po (4.15)

lh ≤ nh ≤ uh

lh ≥ 2

nh are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p.

Now we transform chance constraint nonlinear mathematical programming problem (4.15)

into deterministic nonlinear mathematical programming problem as:

Let

g2 = C0 +
L∑
h=1

thn
δ
h

Applying expectation on both sides,

E (g2) =

(
C0 +

L∑
h=1

E(th)n
δ
h

)

or

E (g2) = C0 +
L∑
h=1

µthn
δ
h (4.16)
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V ar (g2) = V ar

(
C0 +

L∑
h=1

thn
δ
h

)

V ar (g2) =
L∑
h=1

σ2
thn

2δ
h (4.17)

The function g2 is normally distributed with mean E(g2) and variance V ar(g2) are defined

in (4.16) and (4.17) respectively. That is, g2 ∼ N (E(g2), V ar(g2)). The chance constraint

(4.14) can be written as:

p (g2 ≤ C) ≥ po

or

p

g2 − E(g2)√
V ar(g2)

≤ C − E(g2)√
V ar(g2)

 ≥ po

where, p
(
g2−E(g2)√
V ar(g2)

)
is standard normal random variable. Thus the probability of realizing

g2 less than or equal to total cost C can be written as:

p (g2 ≤ C) = φ

C − E(g2)√
V ar(g2)

 = φ(z) (4.18)

where, φ (z) represents the cumulative density function of the standard normal distribu-

tion random variable calculated at z. Let Aα represent standard normal variable at which

φ(Aα) = po. Then the constraint (4.18) can be written as:

φ

C − E(g2)√
V ar(g2)

 ≥ φ (Aα) .

This inequality will be satisfied only if

C − E(g2)√
V ar(g2)

≥ Aα.

or

E(g2) + (Aα)
√
V ar(g2) ≤ C. (4.19)
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Substituting (4.16) and (4.17) in (4.19), we get deterministic constraint equivalent to

probabilistic constraint (4.14).

L∑
h=1

µthn
δ
h + (Aα)

√√√√ L∑
h=1

σ2
thn

2δ
h ≤ C − Co = Ć (4.20)

If parameters µth and σ2
th are unknown, we replace by their estimates. Let µ̂th and

σ̂2
th are estimates of parameters µth and σ2

th respectively. The chance constraint nonlinear

mathematical programming problem (4.15) can be written in multi-objective deterministic

optimization nonlinear mathematical programming problem as:

Minimize (Z1, Z2, . . . , Zp)

Subject to
L∑
h=1

µthn
δ
h + (Aα)

√√√√ L∑
h=1

σ2
thn

2δ
h ≤ Ć (4.21)

lh ≤ nh ≤ uh

lh ≥ 2

nh are integers

h = 1, 2, ..., L.

We use the following optimization methods for solving deterministic multi-objective op-

timization problem (4.21).

4.3.1 Allocation using individual optimum method

Let Z∗
j be a optimum value of objective function obtained by solving following nonlinear

integer mathematical programming problem.

Minimize Zj

Subject to
L∑
h=1

µthn
δ
jh + (Aα)

√√√√ L∑
h=1

σ2
thn

2δ
jh ≤ Ć (4.22)

lh ≤ njh ≤ uh
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lh ≥ 2

nh are integers

h = 1, 2, ..., L and j = 1, 2, ..., p.

4.3.2 Allocation using goal programming method

The multi-objective allocation problem (4.21) can be solved with goal programming (GP)

method as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.23)

L∑
h=1

µthn
δ
hc + (Aα)

√√√√ L∑
h=1

σ2
thn

2δ
hc ≤ Ć

lh ≤ nhc ≤ uh

lh ≥ 2

nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.

4.3.3 Allocation using general method

We can determine the sample size nh by solving multi-objective optimization problem

(4.21) with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.24)

L∑
h=1

µthn
δ
hc + (Aα)

√√√√ L∑
h=1

σ2
thn

2δ
hc ≤ Ć
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lh ≤ nhc ≤ uh

p∑
k=1

Wk = 1

lh ≥ 2

nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are relative weights of characteristics Yj and dj(j = 1, 2, ..., p)

are deviation variables

4.3.4 Numerical example

Data Source [Khan et al.(2010)]. We assume that (t1) = 7, E(t2) = 6,

E(t3) = 8, E(t4) = 5, V ar(t1) = 4.5, V ar(t2) = 3.5, V ar(t3) = 2.5, V ar(t4) = 4.5.

The lower bound lh on sample size nh is 25 percent of stratum size and upper bound uh

on sample size nh is 75 percent of stratum size.

Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

7nδ1 + 6nδ2 + 8nδ3 + 5nδ4 + 2.67
√

4.5n2δ
1 + 3.5n2δ

2 + 2.5n2δ
3 + 5n2δ

4 ≤ Ć

2 ≤ n1 ≤ 6

9 ≤ n2 ≤ 26

11 ≤ n3 ≤ 34

3 ≤ n4 ≤ 9

n1, n2, n3 and n4 are integers.
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(a) Coefficients of variation using individual allocation

Individual optimum allocation for characteristic Y1 :

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

7nδ11 + 6nδ12 + 8nδ13 + 5nδ14 + 2.67
√

4.5n2δ
11 + 3.5n2δ

12 + 2.5n2δ
13 + 5n2δ

14 ≤ Ć

2 ≤ n11 ≤ 6

9 ≤ n12 ≤ 26

11 ≤ n13 ≤ 34

3 ≤ n14 ≤ 9

n11, n12, n13 and n14 are integers.

Individual optimum allocation for characteristic Y2 :

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

7nδ21 + 6nδ22 + 8nδ23 + 5nδ24 + 2.67
√

4.5n2δ
21 + 3.5n2δ

22 + 2.5n2δ
23 + 5n2δ

24 ≤ Ć

2 ≤ n21 ≤ 6

9 ≤ n22 ≤ 26

11 ≤ n23 ≤ 34

3 ≤ n24 ≤ 9

n21, n22, n23 and n24 are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation using individual allocation for different value

of δ and Ć given in Table 4.5.
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Table 4.5: Coefficients of variations using individual allocation.

δ Ć Allocation n1 n2 n3 n4 used Ć Z∗
1 Z∗

2 Z∗
1+Z∗

2

0.5 115 Y1 3 15 15 9 113.38 0.01391 0.04811 0.06202

Y2 2 15 23 3 110.90 0.01528 0.04402 0.05930

1 315 Y1 5 9 11 9 309.50 0.01582 0.05724 0.07306

Y2 2 12 15 3 310.55 0.01708 0.05136 0.06844

1.5 1730 Y1 6 17 17 9 1709.54 0.01291 0.04503 0.05794

Y2 5 14 21 5 1709.80 0.01397 0.04409 0.05806

2 2700 Y1 4 10 11 7 2696.88 0.01596 0.05657 0.07253

Y2 3 10 12 4 2688.65 0.01694 0.05570 0.07264

(b) Coefficients of variation using goal programming method

We use goal programming method for determination of sample size considering the char-

acteristics Yj(j = 1, 2).

Minimize d1 + d2

Subject to √
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

7nδ1c + 6nδ2c + 8nδ3c + 5nδ4c + 2.67
√

4.5n2δ
1c + 3.5n2δ

2c + 2.5n2δ
3c + 5n2δ

4c ≤ Ć

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

n1c, n2c, n3c and n4c are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation given in Table 4.6 for different values of Ć

and δ using goal programming methods for allocation.
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Table 4.6: Coefficients of variation using GP method.

δ Ć n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 115 2 12 26 5 114.07 0.01461 0.04355 0.05816

1.0 315 2 9 16 6 314.69 0.01594 0.05196 0.06790

1.5 1730 2 15 20 9 1719.34 0.01358 0.04422 0.05780

2.0 2700 4 9 12 6 2693.58 0.01621 0.05605 0.07226

(c) Coefficients of variation using general method

For estimation of population mean of characteristics Yj(j = 1, 2), we determine sample

sizes n1c, n2c, n3c and n4c using general method.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to √

0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

7nδ1c + 6nδ2c + 8nδ3c + 5nδ4c + 2.67
√

4.5n2δ
1c + 3.5n2δ

2c + 2.5n2δ
3c + 5n2δ

4c ≤ Ć

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

n1c, n2c, n3c and n4c are integers.

Table 4.7 shows the coefficients of variation obtained by solving above problem of alloca-

tion.
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Table 4.7: Coefficients of variation using general method.

δ Ć W1 W2 n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 113 0.2 0.8 2 13 25 5 114.25 0.01450 0.04327 0.05777

0.4 0.6 2 16 22 5 114.47 0.01432 0.04317 0.05749

0.6 0.4 2 12 25 6 114.58 0.01429 0.04373 0.05802

0.8 0.2 2 12 25 6 114.58 0.01429 0.04373 0.05802

1 315 0.2 0.8 3 12 14 4 313.81 0.01609 0.05165 0.06774

0.4 0.6 2 11 15 5 314.21 0.01593 0.05126 0.06719

0.6 0.4 3 12 14 4 313.81 0.01609 0.05165 0.06774

0.8 0.2 3 12 14 4 313.81 0.01609 0.05165 0.06774

1.5 1730 0.2 0.8 4 17 19 6 1716.39 0.01354 0.04395 0.05749

0.4 0.6 4 15 20 8 1728.49 0.01314 0.04380 0.05694

0.6 0.4 4 14 21 7 1729.33 0.01340 0.04380 0.05780

0.8 0.2 4 15 20 8 1728.49 0.01314 0.04380 0.05694

2 2700 0.2 0.8 4 9 12 6 2693.58 0.01621 0.05605 0.07226

0.4 0.6 4 9 12 6 2693.58 0.01621 0.05605 0.07226

0.6 0.4 4 9 12 6 2693.58 0.01621 0.05605 0.07226

0.8 0.2 4 9 12 6 2693.58 0.01621 0.05605 0.07226

4.3.5 Efficiency comparison

The efficiency comparison of goal programming method and general method to the individ-

ual optimum method for characteristic Yj(j = 1, 2) are given in Tables 4.8-4.9 respectively.

Table 4.8: PRE of gaol programming method.

δ Ć Y1 Y2 δ Ć Y1 Y2

0.5 0113 106.64 101.96 1.5 1000 100.24 100.45

1.0 0340 107.60 100.80 2.0 1700 100.38 100.54
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Table 4.9: PRE of general method.

δ Ć W1 W2 Y1 Y2 δ Ć W1 W2 Y1 Y2

0.5 120 0.2 0.8 107.36 102.65 1.5 1000 0.2 0.8 100.78 100.99

0.4 0.6 107.88 103.15 0.4 0.6 101.76 101.97

0.6 0.4 106.89 102.61 0.6 0.4 101.29 101.50

0.8 0.2 107.36 102.65 0.8 0.2 101.76 101.97

1.0 340 0.2 0.8 107.85 101.03 2.0 1800 0.2 0.8 100.38 100.54

0.4 0.6 108.74 101.86 0.4 0.6 100.38 100.54

0.6 0.4 107.85 101.03 0.6 0.4 100.38 100.54

0.8 0.2 107.85 101.03 0.8 0.2 100.38 100.54

4.3.6 Results

Table 4.5 shows the results of coefficients of variation of the estimates of mean of study

variables Y1 and Y2 under general travel cost function. Optimum allocation according to

Y2 gives efficient results as compare to Y1. The compromise allocation provide efficient

results under goal programming method and general method as compete to allocation

using individual optimum method for different values of constants δ and Ć as shown in

Tables 4.8-4.9 respectively.

4.4 Allocation under probabilistic nonlinear cost func-

tion

Consider the following cost function.

C0 +
L∑
h=1

Chnh +
L∑
h=1

thn
δ
h ≤ C (4.25)

Practically, we observe that per unit measurement cost Ch and traveling cost th are not

fixed but vary from unit to unit in each stratum and consider as random. We assume

that Ch ∼ N (µch, σ
2
ch) and th ∼ N (µth, σ

2
th). Thus nonlinear cost function (4.25) become
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probabilistic and given as:

p

(
C0 +

L∑
h=1

Chnh +
L∑
h=1

thn
δ
h ≤ C

)
≥ po (4.26)

We determine the sample size nh that minimize Zj(j = 1, 2, ..., p) under probabilistic cost

function (4.26) and condition on sample size nh discussed in section 4.1. This multi-

objective optimization problem can be formulated in chance constraint integer nonlinear

mathematical programming problem as:

Minimize (Z1, Z2, . . . , Zp)

Subject to

p

(
C0 +

L∑
h=1

Chnh +
L∑
h=1

thn
δ
h ≤ C

)
≥ po (4.27)

lh ≤ nh ≤ uh

lh ≥ 2

nh are integers.

h = 1, 2, ..., L andj = 1, 2, ..., p.

We transform chance constraint mathematical programming problem (4.27) into deter-

ministic mathematical programming problem as:

Let

g3 = C0 +
L∑
h=1

Chnh +
L∑
h=1

thn
δ
h.

Applying expectation on both sides, we get

E (g3) = C0 +
L∑
h=1

E(Ch)nh +
L∑
h=1

E(th)n
δ
h.

E (g3) = C0 +
L∑
h=1

µchnh +
L∑
h=1

µthn
δ
h (4.28)

V ar (g3) = V ar

(
C0 +

L∑
h=1

Chnh +
L∑
h=1

thn
δ
h

)
.

V ar(g3) =
L∑
h=1

σ2
chn

2
h +

L∑
h=1

σ2
thn

2δ
h (4.29)
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The function g3 is normally distributed with mean E(g3) and variance V ar(g3) are defined

in (4.28) and (4.29)respectively.That is, g3 ∼ N (E(g3), V ar(g3)). The chance constraint

is,

p (g3 ≤ C) ≥ po

p

g3 − E(g3)√
V ar(g3)

≤ C − E(g3)√
V ar(g3)

 ≥ po

where, p
(
g3−E(g3)√
V ar(g3)

)
is standard normal random variable.Thus the probability of realizing

g3 less than or equal to total cost C can be written as:

p (g3 ≤ C) = φ

C − E(g3)√
V ar(g3)

 = φ(z) (4.30)

where, φ (z) represent the cumulative density function of the standard normal random

variable calculated at z. Let Aα represent standard normal variable at which φ (Aα) = po.

Then the constraint (4.26) can be written as

φ

C − E(g3)√
V ar(g3)

 ≥ φ (Aα)

This inequality will be satisfied only if

C − E(g3)√
V ar(g3)

≥ Aα

or

E (g3) + (Aα)
√
V ar (g3) ≤ C (4.31)

Substituting (4.28) and (4.29) in (4.31), we get deterministic constraint equivalent to

probabilistic constraint (4.26).

L∑
h=1

µchnh +
L∑
h=1

µthn
δ
h + (Aα)

√√√√ L∑
h=1

σ2
chn

2
h +

L∑
h=1

σ2
thn

2δ
h ≤ C − Co = Ć (4.32)
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If parameters µch , µth, σ
2
ch and σ2

th are unknown, we replace by their estimates. Let µ̂ch,

µ̂th, σ̂2
ch and σ̂2

th are estimates. The chance constraint multi-objective nonlinear integer

mathematical programming problem (4.27) can be written in deterministic multi-objective

nonlinear mathematical programming problem as:

Minimize (Z1, Z2, . . . , Zp)

Subject to
L∑
h=1

µchnh +
L∑
h=1

µthn
δ
h + (Aα)

√√√√ L∑
h=1

σ2
chn

2
h +

L∑
h=1

σ2
thn

2δ
h ≤ Ć (4.33)

lh ≤ nh ≤ uh

lh ≥ 2

nh are integers

h = 1, 2, ..., L.

This multi-objective allocation problem is solved using multi-objective optimization meth-

ods.

4.4.1 Allocation using individual optimum method

Let Z∗
j be a optimum value of Zj obtained by solving following nonlinear integer mathe-

matical programming problem.

Minimize Zj

Subject to
L∑
h=1

µchnh +
L∑
h=1

µthn
δ
h + (Aα)

√√√√ L∑
h=1

σ2
chn

2
h +

L∑
h=1

σ2
thn

2δ
h ≤ Ć (4.34)

lh ≤ njh ≤ uh

lh ≥ 2

nh are integers

h = 1, 2, ..., L and j = 1, 2, ..., p.
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4.4.2 Allocation using goal programming method

The multi-objective allocation problem (4.31) may be solved with goal programming (GP)

as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.35)

L∑
h=1

µchnh +
L∑
h=1

µthn
δ
h + (Aα)

√√√√ L∑
h=1

σ2
chn

2
h +

L∑
h=1

σ2
thn

2δ
h ≤ Ć

lh ≤ nhc ≤ uh

lh ≥ 2

nhc are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.

4.4.3 Allocation using general method

The multi-objective optimization problem (4.33) can be solved with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.36)

L∑
h=1

µchnh +
L∑
h=1

µthn
δ
h + (Aα)

√√√√ L∑
h=1

σ2
chn

2
h +

L∑
h=1

σ2
thn

2δ
h ≤ Ć

lh ≤ nhc ≤ uh

p∑
k=1

Wk = 1

lh ≥ 2
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nhc are integers

h = 1, 2, ..., L and k = j = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are relative weights which indicates the importance of charac-

teristics Yj and dj(j = 1, 2, ..., p) are deviation variables.

4.4.4 Numerical example

Data Source [Khan et al.(2010)]. We assume that

E(C1) = 6, E(C2) = 3.5, E(C3) = 3, E(C4) = 5.5

V (C1) = 2.5, V (C2) = 1.5, V (C3) = 2, V (C4) = 1.75

E(t1) = 4.5, E(t2) = 2.5, E(t3) = 3, E(t4) = 4

V (t1) = 2.5, V (t2) = 1.25, V (t3) = 1.5, V (t4) = 2.30

Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

6n1 + 3.5n2 + 3n3 + 5.5n4 + 4.5nδ1 + 2.5nδ2 + 3nδ3 + 4nδ4

+2.67
√

2.5n2
1 + 1.5n2

2 + 2n2
3 + 1.75n2

4 + 2.5n2δ
1 + 1.25n2δ

2 + 1.5n2δ
3 + 2.3n2δ

4 ≤ Ć

2 ≤ n1 ≤ 6

9 ≤ n2 ≤ 26

11 ≤ n3 ≤ 34

3 ≤ n4 ≤ 9

n1, n2, n3 and n4 are integers.

(a) Coefficients of variation using individual optimum method

Individual optimum allocation taking into account the characteristic Y1 :
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Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

6n11 + 3.5n12 + 3n13 + 5.5n14 + 4.5nδ11 + 2.5nδ12 + 3nδ13 + 4nδ14

+2.67
√

2.5n2
11 + 1.5n2

12 + 2n2
13 + 1.75n2

14 + 2.5n2δ
11 + 1.25n2δ

12 + 1.5n2δ
13 + 2.3n2δ

14 ≤ Ć

2 ≤ n11 ≤ 6

9 ≤ n12 ≤ 26

11 ≤ n13 ≤ 34

3 ≤ n14 ≤ 9

n11, n12, n13 and n14 are integers.

Individual optimum allocation taking into account the characteristic Y2 :

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

6n21 + 3.5n22 + 3n23 + 5.5n24 + 4.5nδ21 + 2.5nδ22 + 3nδ23 + 4nδ24

+2.67
√

2.5n2
21 + 1.5n2

22 + 2n2
23 + 1.75n2

24 + 2.5n2δ
21 + 1.25n2δ

22 + 1.5n2δ
23 + 2.3n2δ

24 ≤ Ć

2 ≤ n21 ≤ 6

9 ≤ n22 ≤ 26

11 ≤ n23 ≤ 34

3 ≤ n24 ≤ 9

n21, n22, n23 and n24 are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation using individual optimum method for different

value of δ and Ć given in Table 4.10.
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Table 4.10: Coefficients of variations using individual allocation.

δ Ć Allocation n1 n2 n3 n4 used Ć Z∗
1 Z∗

2 Z∗
1+Z∗

2

0.5 300 Y1 3 17 15 8 295.59 0.01385 0.04743 0.06128

Y2 2 14 25 3 298.16 0.01580 0.04361 0.05941

1 450 Y1 4 14 18 9 441.30 0.01336 0.04565 0.05901

Y2 2 17 25 3 448.62 0.01548 0.04223 0.05771

1.5 675 Y1 4 10 12 8 672.08 0.01549 0.05487 0.07036

Y2 2 12 15 3 665.97 0.01708 0.05136 0.06864

2 1900 Y1 6 10 12 8 1887.92 0.01531 0.05474 0.07005

Y2 2 12 14 3 1890.19 0.01725 0.05242 0.06969

(b) Coefficients of variation using goal programming

We use propose goal programming method to find the compromise allocation for the

characteristics Yj(j = 1, 2).

Minimize d1 + d2

Subject to √
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

6n1c + 3.5n2c + 3n3c + 5.5n4c + 4.5nδ1c + 2.5nδ2c + 3nδ3c + 4nδ4c

+2.67
√

2.5n2
1c + 1.5n2

2c + 2n2
3c + 1.75n2

4c + 2.5n2δ
1c + 1.25n2δ

2c + 1.5n2δ
3c + 2.3n2δ

4c ≤ Ć

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

n1c, n2c, n3c and n4c are integers.

Ẑ1 and Ẑ2 are coefficients of variations for different values of Ć and δ given in Table 4.11.
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Table 4.11: Coefficients of variation using GP method.

δ Ć n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 300 2 14 25 3 299.07 0.01448 0.04361 0.05809

1.0 450 3 14 23 6 446.15 0.01370 0.04302 0.05672

1.5 675 2 12 14 5 669.29 0.01691 0.05164 0.06755

2.0 1900 4 12 13 5 1885.29 0.01560 0.05244 0.06804

(c) coefficients of variation using general method

The compromise allocation for Yj(j = 1, 2), we use general method.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to √

0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

6n1c + 3.5n2c + 3n3c + 5.5n4c + 4.5nδ1c + 2.5nδ2c + 3nδ3c + 4nδ4c

+2.67
√

2.5n2
1c + 1.5n2

2c + 2n2
3c + 1.75n2

4c + 2.5n2δ
1c + 1.25n2δ

2c + 1.5n2δ
3c + 2.3n2δ

4c ≤ Ć

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

n1c, n2c, n3c and n4c are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation obtained for different values of δ and Ć solving

above problem given in Table 4.12.
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Table 4.12: Coefficients of variation using general method.

δ Ć W1 W2 n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 300 0.2 0.8 2 15 22 5 297.94 0.01443 0.04362 0.05805

0.4 0.6 2 15 21 6 298.61 0.01414 0.04397 0.05811

0.6 0.4 3 15 22 4 298.81 0.01500 0.04362 0.05862

0.8 0.2 3 16 19 6 299.49 0.01385 0.04451 0.05836

1 450 0.2 0.8 3 14 24 5 445.77 0.01402 0.04277 0.05679

0.4 0.6 2 17 22 6 449.56 0.01382 0.04253 0.05635

0.6 0.4 3 18 20 6 449.51 0.01352 0.04306 0.05658

0.8 0.2 2 17 22 6 449.56 0.01382 0.04253 0.05635

1.5 675 0.2 0.8 3 12 14 4 666.21 0.01609 0.05165 0.06774

0.4 0.6 2 12 14 5 669.29 0.01591 0.05164 0.06755

0.6 0.4 3 12 14 4 666.21 0.01609 0.05165 0.06774

0.8 0.2 4 10 14 5 1859.04 0.01582 0.05271 0.06853

2 1900 0.2 0.8 4 12 13 5 1885.29 0.01560 0.05244 0.06844

0.4 0.6 2 11 14 5 1874.33 0.01610 0.05233 0.06843

0.6 0.4 2 12 13 6 1873.47 0.01577 0.05268 0.06845

0.8 0.2 3 11 13 7 1873.66 0.01536 0.05293 0.06827

4.4.5 Efficiency comparison

The percentage relative efficiency PRE of goal programming method and general method

to individual optimum method are given in Tables 4.13-4.14 respectively.

Table 4.13: PRE of goal programming method.

δ Ć Y1 Y2 δ Ć Y1 Y2

0.5 0300 105.49 102.27 1.5 0675 104.16 101.32

1.0 0450 104.04 101.75 2.0 1900 102.95 102.43
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Table 4.14: PRE of general method.

δ Ć W1 W2 Y1 Y2 δ Ć W1 W2 Y1 Y2

0.5 300 0.2 0.8 105.56 102.34 1.5 675 0.2 0.8 104.41 101.03

0.4 0.6 105.46 102.24 0.4 0.6 104.71 101.32

0.6 0.4 104.54.89 101.35 0.6 0.4 104.41 101.03

0.8 0.2 105.00 101.80 0.8 0.2 104.41 101.03

1.0 450 0.2 0.8 103.91 101.62 2.0 1900 0.2 0.8 102.22 101.69

0.4 0.6 104.72 102.41 0.4 0.6 102.37 101.84

0.6 0.4 104.29 100.00 0.6 0.4 102.34 101.81

0.8 0.2 104.72 102.41 0.8 0.2 102.58 102.05

4.4.6 Results

The efficiency of individual optimum method, GP method and general method for sample

allocation to estimate mean of the variables Y1 and Y2 are displayed by the Tables(4.10-

4.14) respectively. The individual optimum allocation subject to Y2 give more efficient

estimates than Y1. The efficiency of compromise allocation using GP method and general

method is greater than individual allocation method according to Y1 and Y2 as given in

Tables 4.13-4.14

4.5 Allocation probabilistic logarithmic cost function

Consider the following cost function.

p

(
C0 +

L∑
h=1

thn
δ
h ≤ C

)
≥ po (4.37)

We determine the sample size nh that minimize the coefficients of variation Zj(j =

1, 2, ..., p) under the probabilistic cost function (4.37) and additional constraint discussed

in section 4.2. This multi-objective optimization problem can be formulated in chance

constraint integer nonlinear mathematical problem as:

Minimize (Z1, Z2, . . . , Zp)
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Subject to

p

(
C0 +

L∑
h=1

th log nδh ≤ C

)
≥ po (4.38)

lh ≤ nh ≤ uh

lh ≥ 2

nh are integers.

h = 1, 2, ..., L and j = 1, 2, ..., p,

Now we transform multi-objective chance constraint mathematical programming problem

(4.38) into multi-objective deterministic integer nonlinear mathematical programming

problem as:

Let

g4 = C0 +
L∑
h=1

th log nδh.

Applying expectation on both sides, we get

E (g4) = C0 +
L∑
h=1

E(th) log nδh.

E (g4) = C0 +
L∑
h=1

µth log nδh (4.39)

V ar (g4) = V ar

(
C0 +

L∑
h=1

th log nδh

)
.

V ar(g4) =
L∑
h=1

σ2
th

(
log nδh

)2
(4.40)

The function g4 is normally distributed with mean E(g4) and variance V ar(g4) are defined

in (4.39) and (4.40) respectively.That is, g4 ∼ N (E(g4), V ar(g4)). The chance constraint

(4.38) can be written as,

p (g4 ≤ C) ≥ po

p

g4 − E(g4)√
V ar(g4)

≤ C − E(g4)√
V ar(g4)

 ≥ po
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where, p
(
g4−E(g4)√
V ar(g4)

)
is standard normal random variable. Thus the probability of realizing

g4 less than or equal to total cost C can be written as:

p (g4 ≤ C) = φ

C − E(g4)√
V ar(g4)

 = φ(z) (4.41)

where, φ(z) represents the cumulative density function of the normal random variable

calculated for z. Let Aα represents standard normal variable at which φ(Aα) = po. Then

the constraint (4.37) can be written as:

φ

C − E(g4)√
V ar(g4)

 ≥ φ (Aα) .

This inequality will be satisfied only if

C − E(g4)√
V ar(g4)

≥ Aα.

or

E(g4) + (Aα)
√
V ar(g4) ≤ C (4.42)

Substituting (4.39) and (4.40) in (4.42), we get deterministic constraint equivalent to

probabilistic constraint (4.37).

L∑
h=1

µth log nδh + (Aα)

√√√√ L∑
h=1

σ2
th

(
log nδh

)2
≤ C − Co = Ć (4.43)

If parameters µth and σ2
th are unknown, we replace them by their estimate.Let µ̂th and

σ̂2
th are estimates of parameters µth and σ2

th respectively. The multi-objective chance

constraint integer nonlinear mathematical programming problem (4.38) can be written in

multi-objective deterministic integer nonlinear mathematical programming problem as:

Minimize (Z1, Z2, Z3 . . . , Zp)

Subject to
L∑
h=1

µth log
(
nδh
)

+ (Aα)

√√√√ L∑
h=1

σ2
th

(
log nδh

)2
≤ Ć (4.44)
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lh ≤ nh ≤ uh

lh ≥ 2

nh are integers

h = 1, 2, ..., L.

The multi-objective optimization problem (4.44) is solved by following optimization meth-

ods.

4.5.1 Allocation using individual optimum method

Let Z∗
j be a optimum value of Zj obtained by solving the following nonlinear integer

mathematical programming problem.

Minimize Zj

Subject to
L∑
h=1

µth log
(
nδjh

)
+ (Aα)

√√√√ L∑
h=1

σ2
th

(
log nδjh

)2
≤ Ć (4.45)

lh ≤ njh ≤ uh

lh ≥ 2

nh are integers

h = 1, 2, ..., L and j = 1, 2, ..., p.

4.5.2 Allocation using goal programming method

The multi-objective optimization problem (4.44) can be solved with goal programming

(GP) method as:

Minimize
∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.46)

L∑
h=1

µth log
(
nδhc

)
+ (Aα)

√√√√ L∑
h=1

σ2
th

(
log nδhc

)2
≤ Ć
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lh ≤ nhc ≤ uh

lh ≥ 2

nhc are integers

h = 1, 2, ..., L and j = 1, 2, ..., p,

where, dj(j = 1, 2, ..., p) are deviation variables.

4.5.3 Allocation using general method

The multi-objective allocation problem (4.44) may be solved with general method as:

Minimize
∑p
k=1WkZk +

∑p
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (4.47)

L∑
h=1

µth log
(
nδhc

)
+ (Aα)

√√√√ L∑
h=1

σ2
th

(
log nδhc

)2
≤ Ć

lh ≤ nhc ≤ uh

p∑
k=1

Wk = 1

lh ≥ 2

nhc are integers

h = 1, 2, ..., L and j = k = 1, 2, ..., p,

where, Wk(k = 1, 2, ..., p) are relative weights indicate the importance for each character-

istics and dj(j = 1, 2, ..., p) are deviation variables.

4.5.4 Numerical example

Data Source [Khan et al.(2010)]. We assume that

E(t1) = 10, E(t2) = 8, E(t3) = 9, E(t4) = 13, V (t1) = 6, V (t2) = 4.5, V (t3) = 5.5, V (t4) = 5
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Minimize

 Z1 =
√

0.000066
n1

+ 0.000809
n2

+ 0.001212
n3

+ 0.000332
n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4


Subject to

10 log nδ1 + 8 log nδ2 + 9 log nδ3 + 13 log nδ4

+2.67

√
6
(
log nδ1

)2
+ 4.5

(
log nδ2

)2
+ 5.5

(
log nδ3

)2
+ 5

(
log nδ4

)2
≤ Ć

2 ≤ n1 ≤ 6

9 ≤ n2 ≤ 26

11 ≤ n3 ≤ 34

3 ≤ n4 ≤ 9

n1, n2, n3 and n4 are integers.

(a) Coefficients of variation using individual allocation

Individual optimum allocation taking into consideration characteristic Y1 :

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to

10 log nδ11 + 8 log nδ12 + 9 log nδ13 + 13 log nδ14

+2.67

√
6
(
log nδ11

)2
+ 4.5

(
log nδ12

)2
+ 5.5

(
log nδ13

)2
+ 5

(
log nδ11

)2
≤ Ć

2 ≤ n11 ≤ 6

9 ≤ n12 ≤ 26

11 ≤ n13 ≤ 34

3 ≤ n14 ≤ 9

n11, n12, n13 and n14 are integers.
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Individual optimum allocation taking characteristic Y2 :

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to

10 log nδ21 + 8 log nδ22 + 9 log nδ23 + 13 log nδ24

+2.67

√
6
(
log nδ21

)2
+ 4.5

(
log nδ22

)2
+ 5.5

(
log nδ23

)2
+ 5

(
log nδ24

)2
≤ Ć

2 ≤ n21 ≤ 6

9 ≤ n22 ≤ 26

11 ≤ n23 ≤ 34

3 ≤ n24 ≤ 9

n21, n22, n23 and n24 are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation using individual optimum allocation for dif-

ferent value of δ and Ć given in the Table 4.15.

Table 4.15: Coefficients of variations using individual allocation.

δ Ć Allocation n1 n2 n3 n4 used Ć Z∗
1 Z∗

2 Z∗
1+Z∗

2

0.5 45 Y1 2 9 15 4 44.949 0.01693 0.05337 0.07030

Y2 2 11 15 3 43.956 0.01726 0.05205 0.06931

47 Y1 2 9 16 4 45.420 0.01678 0.05245 0.06923

Y2 2 11 16 3 44.390 0.01712 0.05110 0.06822

49 Y1 2 9 16 5 47.121 0.01628 0.05215 0.06843

Y2 2 11 17 3 44.809 0.01699 0.05205 0.06724

51 Y1 2 15 14 5 49.097 0.01549 0.05011 0.06560

Y2 2 21 20 3 49.615 0.01558 0.04372 0.05930
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(b) Coefficients of variation using goal programming method

The goal programming method is used for determination of sample size considering the

characteristics Yj(j = 1, 2).

Minimize d1 + d2

Subject to √
0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

10 log nδ1c + 8 log nδ2c + 9 log nδ3c + 13 log nδ4c

+2.67

√
6
(
log nδ1c

)2
+ 4.5

(
log nδ2c

)2
+ 5.5

(
log nδ3c

)2
+ 5

(
log nδ4c

)2
≤ Ć

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

n1c, n2c, n3c and n4c are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation for different values of δ and Ć obtained by

solving above problem given in Table 4.16.

Table 4.16: Coefficients of variation using GP method.

δ Ć n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 45 2 9 17 3 43.690 0.01746 0.05211 0.06957

47 2 23 12 3 46.790 0.01670 0.05150 0.06820

49 2 23 13 3 47.310 0.01649 0.05002 0.06651

51 2 26 19 3 50.528 0.01545 0.04344 0.05889
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(c) Coefficients of variation using goal general method

The compromise allocation for the characteristics Yj(j = 1, 2) is obtained by general

method.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+d1 + d2


Subject to √

0.000066

n1c

+
0.000809

n2c

+
0.001212

n3c

+
0.000332

n4c

− d1 ≤ Z∗
1

√
0.000181

n1c

+
0.009411

n2c

+
0.023390

n3c

+
0.000610

n4c

− d2 ≤ Z∗
2

10 log nδ1c + 8 log nδ2c + 9 log nδ3c + 13 log nδ4c

+2.67

√
6
(
log nδ1c

)2
+ 4.5

(
log nδ2c

)2
+ 5.5

(
log nδ3c

)2
+ 5

(
log nδ4c

)2
≤ Ć

2 ≤ n1c ≤ 6

9 ≤ n2c ≤ 26

11 ≤ n3c ≤ 34

3 ≤ n4c ≤ 9

n1c, n2c, n3c and n4c are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation using general method for different value of δ

and Ć given in Table 4.17.
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Table 4.17: Coefficients of variation using general method.

δ Ć W1 W2 n1c n2c n3c n4c used Ć Ẑ1 Ẑ2 Ẑ1 + Ẑ2

0.5 45 0.2 0.8 2 9 19 3 44.461 0.01724 0.05070 0.06794

0.4 0.6 2 11 17 3 44.809 0.01699 0.05025 0.06724

0.6 0.4 2 11 17 3 44.809 0.01699 0.05025 0.06724

0.8 0.2 2 11 17 3 44.809 0.01699 0.05025 0.06724

47 0.2 0.8 2 9 27 3 46.920 0.01669 0.04697 0.06366

0.4 0.6 2 10 24 3 46.67 0.01659 0.04701 0.06360

0.6 0.4 2 9 27 3 46.920 0.01669 0.04697 0.06366

0.8 0.2 2 10 24 3 46.67 0.01659 0.04701 0.06360

49 0.8 0.2 2 16 20 3 48.043 0.01596 0.04529 0.06125

0.4 0.6 2 15 21 3 48.007 0.01598 0.04511 0.06109

0.6 0.4 2 12 21 3 46.748 0.01640 0.04682 0.06322

0.8 0.2 2 12 19 4 48.187 0.01572 0.04752 0.06324

51 0.2 0.8 2 17 29 3 50.928 0.01527 0.04067 0.05594

0.4 0.6 2 11 14 5 1874.33 0.01610 0.05233 0.06843

0.6 0.4 2 14 24 4 50.643 0.01498 0.04347 0.05845

0.8 0.2 2 16 22 4 50.928 0.01489 0.04352 0.05850

4.5.5 Efficiency comparison

The efficiency comparison of goal programming method and general method to individual

optimum method is given in the Table 4.18-4.19 respectively.

Table 4.18: PRE of goal programming method.

δ Ć Y1 Y2 δ Ć Y1 Y2

0.5 45 101.05 099.63 0.5 49 102.89 101.10

47 101.51 100.03 51 111.39 100.70
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Table 4.19: PRE of general method.

δ Ć W1 W2 Y1 Y2 δ Ć W1 W2 Y1 Y2

0.5 45 0.2 0.8 103.47 102.02 0.5 49 0.8 0.2 111.72 109.80

0.4 0.6 104.55 103.08 0.4 0.6 111.02 110.67

0.6 0.4 104.55 103.08 0.6 0.4 108.24 106.35

0.8 0.2 104.55 103.08 0.8 0.2 108.20 106.32

47 0.2 0.8 108.75 107.16 51 0.2 0.8 117.27 106.01

0.4 0.6 108.85 107.26 0.4 0.6 117.27 106.01

0.6 0.4 108.75 107.16 0.6 0.4 112.23 101.45

0.8 0.2 108.85 107.26 0.8 0.2 112.14 101.37

4.5.6 Results

Table 4.15 indicates the results of individual optimum methods under estimated travel

cost function for constant δ = 0.5 and different values of Ć. The optimum allocation

according to characteristic Y2 provides smaller total coefficients of variation as compared

to characteristic Y2 to estimate population means of Yj(j = 1, 2). Tables 4.18-4.19 show

that compromise allocation using GP method and general method produce more precise

estimates than individual optimum allocation according to variables Y1 and Y2 respec-

tively.
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Chapter 5

Optimization of Cost and Precision

5.1 Introduction

In order to increase the precision of estimates, it is essential to select a suitable alloca-

tion procedure that fulfil the given conditions. Many allocation plans are available by

which we allocate fixed sample size that increase the precision of estimates of population

parameters or determine the sample size that minimize the cost of survey under given

bound on variance of estimator or minimize the variance of overall estimate of population

characteristic under given cost of survey. Khan et al (2012) used E-Model technique to

solve following optimum allocation problem.

Minimize [V (ȳ1,st), V (ȳ2,st), . . . , V (ȳp,st)]

Subject to

p

(
L∑
h=1

th
√
nh + Co ≤ C

)
≥ po

2 ≤ nh ≤ Nh

h = 1, 2, ..., L, 0 < po < 1
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The formulated optimum cost problem is given as:

Minimize p
(∑L

h=1 th
√
nh + Co ≤ C

)
≥ po

Subject to

V (ȳj,st) ≤ V ∗
j

2 ≤ nh ≤ Nh

h = 1, 2, ..., L, j = 1, 2, ..., p.

where, V (ȳj,st)(j = 1, 2, ..., p) are variances of estimators of population means of charac-

teristics in multivariate stratified sampling.

In this chapter, we propose an allocation procedure to find the compromise allocation

among conflicting objectives, costs of survey and precision of estimates. We distribute a

fixed sample size to various strata that minimize, jointly, the cost function and coefficients

of variation of regression estimators of population means of Yj(j = 1, 2, ..., p) character-

istics in multivariate stratified sampling. The coefficients of variation for the estimate of

population mean of each characteristics Yj(j = 1, 2, ..., p) define in (3.4) is,

C.V (ȳj,lrs) =

√√√√ újh
njh

= Zj.

We allocate given sample size n to each stratum that optimize precision for estimate of

population mean of each characteristics Yj(j = 1, 2, ..., p) and total variable cost (Zp+1).

where, (Zp+1) = C − Co

5.2 Traveling cost and precision

Consider the following traveling cost function

Zp+1 =
L∑
h=1

thn
δ
h (5.1)

where, th is per unit traveling cost within hth stratum and constant δ > 0 represents the

effect of travel to cost. We have prior knowledge about th. We allocate given sample
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size n to different strata such that total variable cost Zp+1 and coefficients of variation

of estimate of population means of each characteristics Yj(j = 1, 2, ..., p) are minimized.

This multi-objective optimization problem can be formulated in nonlinear integer math-

ematical programming problem as:

Minimize
(
Z1, Z2, . . . , Zp+1)

)
Subject to

L∑
h=1

nh = n (5.2)

2 ≤ nh ≤ Nh

h = 1, 2, ..., L and j = 1, 2, ..., p+ 1.

The above problem has (p+1) objectives. We use following methods to solve this multiple

objective nonlinear integer mathematical programming problem.

5.2.1 Allocation using individual optimum method

Minimize Zj

Subject to
L∑
h=1

nh = n (5.3)

2 ≤ nh ≤ Nh

h = 1, 2, ..., L and j = 1, 2, ..., p+ 1.

Here Z∗
j (j = 1, 2, ..., p, p + 1) is optimum value of Zj, (j = 1, 2, ..., p + 1) obtained by

solving above integer mathematical programming problem.
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5.2.2 Allocation using goal programming method

The multi-objective optimization problem 5.2 may be solved with goal programming as:

Minimize
∑p+1
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (5.4)

L∑
h=1

nh = n

2 ≤ nh ≤ Nh

h = 1, 2, ..., L and j = 1, 2, ..., p+ 1,

where, dj(j = 1, 2, ..., p+ 1) are deviation variables.

5.2.3 Allocation using weighted method

We solve the multi-objective allocation problem 5.2 with weighted method as:

Minimize
∑p+1
j=1 WjZj

Subject to
L∑
h=1

nh = n (5.5)

2 ≤ nh ≤ Nh

p+1∑
j=1

Wj = 1

h = 1, 2, ..., L and j = 1, 2, 3, ..., p+ 1,

where, Wj(j = 1, 2, ..., p+ 1) are relative weights of characteristics.
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5.2.4 Allocation using general method

We propose the general method to solve multi-objective allocation problem 5.2

Minimize
∑p+l
k=1WkZk +

∑p+1
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (5.6)

L∑
h=1

nh = n

2 ≤ nh ≤ Nh

p+1∑
k=1

Wk = 1

h = 1, 2, ..., L, j 6= k= 1, 2, ..., p+ 1,

where, Wk(k = 1, 2, ..., p+1) are relative weights of characteristics and dj(j = 1, 2, ..., p+1)

are deviation variables.

5.2.5 Numerical example

Data source [Khan et al.(2010)]. We assume that

t1 = 10, t2 = 9, t3 = 7, t4 = 8

Minimize


Z1 =

√
0.000066

n1
+ 0.000809

n2
+ 0.001212

n3
+ 0.000332

n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4

Z3 = 10nδ1c + 9nδ2c + 7nδ3c + 8nδ4c


Subject to

L∑
h=1

nhc = n

2 ≤ n1 ≤ 6

9 ≤ n2 ≤ 26

11 ≤ n3 ≤ 34
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3 ≤ n4 ≤ 9

n1, n2, n3 and n4 are integers.

(a) Coefficients of variation and cost using individual optimum method

Optimum allocation for characteristic Y1 :

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to
L∑
h=1

n1h = n

2 ≤ n11 ≤ 8

2 ≤ n12 ≤ 34

2 ≤ n13 ≤ 45

2 ≤ n14 ≤ 12

n11, n12, n13 and n14 are integers.

Optimum allocation for characteristic Y2 :

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to
L∑
h=1

n2h = n

2 ≤ n21 ≤ 8

2 ≤ n22 ≤ 34

2 ≤ n23 ≤ 45

2 ≤ n24 ≤ 12

n21, n22, n23 and n24 are integers.
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Optimum allocation for total traveling cost C :

Minimize Z3 = 10nδ1c + 9nδ2c + 7nδ3c + 8nδ4c

Subject to
L∑
h=1

nhc = n

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

nc1, n2c, n3c and n4c are integers.

Here Z∗
1 , Z∗

2 are coefficients of variation and Z∗
3 is total traveling cost for different value

of δ and n using individual optimum method is given in Table 5.1.

Table 5.1: Cost and Coefficients of variation using individual optimum method.

δ n Allocation n1 n2 n3 n4 Z∗
1 Z∗

2 Z∗
3 Z∗

1 + Z∗
2

0.5 50 Y1 4 16 20 10 0.01268 0.04317 112.60 0.05586

Y2 2 16 28 4 0.01449 0.04082 103.18 0.05531

C 2 2 44 2 0.02512 0.07505 84.62 0.10017

1.0 45 Y1 5 14 14 12 0.01360 0.04929 370.00 0.06289

Y2 2 15 24 4 0.01485 0.04295 355.00 0.05780

C 2 2 39 2 0.02519 0.07550 327.00 0.10069

1.5 40 Y1 4 12 14 10 0.01427 0.05060 1073.79 0.06488

Y2 2 12 23 3 0.01624 0.04577 1216.10 0.06201

C 7 8 14 11 0.01508 0.05411 1047.39 0.06919

2.0 35 Y1 3 11 14 7 0.01515 0.05170 2943.00 0.06685

Y2 2 11 19 3 0.01676 0.04879 3728.00 0.06555

C 7 8 11 9 0.01605 0.05828 2561.00 0.07433
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(b) Coefficients of variation and cost using goal programming method

We use goal programming method for allocation of sample size n to four strata considering

three characteristics Z1, Z2 and C = Z3.

Minimize d1 + d2 + d3

Subject to √
0.000066

n1

+
0.000809

n2

+
0.001212

n3

+
0.000332

n4

− d1 ≤ Z∗
1

√
0.000181

n1

+
0.009411

n2

+
0.023390

n3

+
0.000610

n4

− d2 ≤ Z∗
2

10nδ1 + 9nδ2 + 7nδ3 + 8nδ4 − d3 ≤ C∗

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

n1, n2, n3 and n4 are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total traveling cost for different

values of n and δ solving above allocation problem given in Table 5.2.

Table 5.2: Cost and Coefficients of variation using GP method.

δ n n1 n2 n3 n4 Ẑ1 Ẑ2 Ẑ3 Ẑ1 + Ẑ2

0.5 50 2 34 12 2 .01800 0.05120 102.18 0.06919

1.0 45 2 2 39 2 0.02519 0.07550 327.00 0.10069

1.5 40 7 8 14 11 0.01508 0.05411 1047.39 0.06919

2.0 35 7 8 11 9 0.01605 0.05828 2561.00 0.07433
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(c) Coefficients of variation and cost using weighted method

The compromise allocation for Ẑ1, Ẑ2 and Ẑ3 is obtained by weighted method.

Minimize


W1

√
0.000066
n1c

+ 0.000809
n2c

+ 0.001212
n3c

+ 0.000332
n4c

+W2

√
0.000181
n1c

+ 0.009411
n2c

+ 0.023390
n3c

+ 0.000610
n4c

+W3

(
10nδ1 + 9nδ2 + 7nδ3 + 8nδ4

)


Subject to

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

W1 +W2 +W3 = 1

n1, n2, n3 and n4 are integers.

(W1,W2,W3)= (0.2, 0.3, 0.5), (0.2, 0.5, 0.3), (0.5, 0.2, 0.3).

Here Ẑ1, Ẑ2 and Ẑ3 are minimum values for different values of alpha and n given in Table

5.3 obtained by solving above problem using different relative weights given above.

Table 5.3: Cost and Coefficients of variation using weighted method.

δ n n1 n2 n3 n4 Ẑ1 Ẑ2 Ẑ3 Ẑ1 + Ẑ2

0.5 50 2 2 44 2 0.02512 0.07505 84.62 0.10017

1.0 45 2 2 39 2 0.02519 0.07550 327.00 0.10069

1.5 40 7 8 14 11 0.01508 0.05411 1047.39 0.06919

2.0 35 7 8 11 9 0.01605 0.05828 2561.00 0.07433

(d) Coefficients of variation and cost using general method

We use general method to allocate given sample size n taking into account Z1, Z2 and Z3.

We consider three cases here.
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Case-1

We minimize travel cost Z3 to compromise optimum value of Z2 and Z1.

Minimize Z3 = 10nδ1 + 9nδ2 + 7nδ3 + 8nδ4

Subject to √
0.000066

n1

+
0.000809

n2

+
0.001212

n3

+
0.000332

n4

− d1 ≤ Z∗
1

√
0.000181

n1

+
0.009411

n2

+
0.023390

n3

+
0.000610

n4

− d2 ≤ Z∗
2

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

n1, n2, n3 and n4 are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total travel cost given in Table 5.4

obtained by solving above problem for different values of δ and n.

Table 5.4: Cost and Coefficients of variation using general method.

δ n n1 n2 n3 n4 Ẑ1 Ẑ2 Ẑ3 Ẑ1 + Ẑ2

0.5 50 2 18 23 7 0.01334 0.04144 107.06 0.05478

1.0 45 2 14 25 5 0.01441 0.04312 354.00 0.5753

1.5 40 3 12 20 5 0.01471 0.04622 1141.63 0.06093

2.0 35 3 11 17 4 0.01580 0.04944 3330.00 0.06524
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Case-2

We minimize travel cost Z3 to compromise optimum value of Z2 and Z1. We use propose

general method to solve multi-objective allocation problem.

Minimize

 W1

√
0.000066

n1
+ 0.000809

n2
+ 0.001212

n3
+ 0.000332

n4

+W2

(
10nδ1 + 9nδ2 + 7nδ3 + 8nδ4

)


Subject to √
0.000181

n1

+
0.009411

n2

+
0.023390

n3

+
0.000610

n4

≤ Z∗
2

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

W1 +W2 = 1

n1, n2, n3 and n4 are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total travel cost given in Table 5.5

obtained by solving above problem for different values of δ and n.
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Table 5.5: Minimum Z3and Z1 under optimum Z2

δ n W1 W2 n1 n2 n3 n4 Ẑ1 Z∗
2 Ẑ3 Ẑ1 + Z∗

2

0.5 50 0.2 0.8 2 15 30 3 0.01543 0.04082 101.20 0.05625

0.4 0.6 2 15 30 3 0.01543 0.04082 101.20 0.05625

0.6 0.4 2 15 30 3 0.01543 0.04082 101.20 0.05625

0.8 0.2 2 15 30 3 0.01543 0.04082 101.20 0.05625

1 45 0.2 0.8 2 13 26 4 0.01499 0.04295 351.00 0.05794

0.4 0.6 2 13 26 4 0.01499 0.04295 351.00 0.05794

0.4 0.6 2 12 18 3 0.01595 0.04295 348.00 0.05890

0.8 0.2 2 12 18 3 0.01595 0.04295 348.00 0.05890

1.5 40 0.2 0.8 2 12 20 6 0.01471 0.04577 1146.09 0.06048

0.4 0.6 2 12 20 6 0.01471 0.04577 1146.09 0.06048

0.6 0.4 4 12 19 5 0.01519 0.04577 1077.5 0.06096

0.8 0.2 2 12 20 6 0.01471 0.04577 1146.09 0.06048

2 35 0.2 0.8 3 12 17 3 0.01647 0.04879 3481.00 0.06526

0.4 0.6 2 12 17 4 0.01596 0.04879 3487.00 0.06475

0.6 0.4 2 12 17 4 0.01596 0.04879 3487.00 0.06475

0.8 0.2 2 13 16 4 0.01594 0.04879 3481.00 0.06472

Case-3

Minimization of Z3 and Z2 under optimum value of Z1.

Minimize

 W1

√
0.000181

n1
+ 0.009411

n2
+ 0.023390

n3
+ 0.000610

n4

+W2

(
10nδ1 + 9nδ2 + 7nδ3 + 8nδ4

)


Subject to √
0.000066

n1

+
0.000809

n2

+
0.001212

n3

+
0.000332

n4

≤ Z∗
2

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34
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2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

W1 +W2 = 1

n1, n2, n3 and n4 are integers.

Here Ẑ2 and Ẑ2 are coefficients of variation and Ẑ3 is total travel cost given in Table 5.6

obtained by solving above problem for different values of δ and n.

Table 5.6: Minimum Z3 and Z2 under optimum Z1

δ n W1 W2 n1 n2 n3 n4 Z∗
1 Ẑ2 Ẑ3 Z∗

1 + Ẑ2

0.5 50 0.2 0.8 2 14 26 8 0.01268 0.04170 106.14 0.05438

0.4 0.6 3 11 29 7 0.01268 0.04254 104.04 0.05522

0.6 0.4 3 11 29 7 0.01268 0.04254 104.04 0.05522

0.8 0.2 2 14 27 7 0.01268 0.04143 105.36 0.05411

1 45 0.2 0.8 2 9 24 10 0.01360 0.03809 529.00 0.05169

0.4 0.6 2 9 24 10 0.01360 0.03809 529.00 0.05169

0.4 0.6 2 9 24 10 0.01360 0.03809 529.00 0.05169

0.8 0.2 2 9 24 10 0.01360 0.03809 529.00 0.05169

1.5 40 0.2 0.8 7 9 14 10 0.01427 0.05297 1047.87 0.06722

0.4 0.6 7 9 13 11 0.01427 0.05410 1148.18 0.06837

0.6 0.4 7 9 13 11 0.01427 0.05410 1148.18 0.06837

0.8 0.2 7 9 13 11 0.01427 0.05410 1148.18 0.06837

2 35 0.2 0.8 4 10 13 8 0.01515 0.05350 2755.00 0.06865

0.4 0.6 4 10 13 8 0.01515 0.05350 2755.00 0.06865

0.6 0.4 4 10 13 8 0.01515 0.05350 2755.00 0.06865

0.8 0.2 4 10 13 8 0.01515 0.05350 2755.00 0.06845

5.2.6 Results

Table 5.1 presents coefficients of variation and expected total travel cost for different values

of δ and given sample size n. Individual allocation method minimize only one objective
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either travel cost Z3 or coefficient of variation Z1 or Z2. GP method and weights are used

to allocate the given sample size that compromise among cost and precision of estimates

as shown in Table 5.2 for δ = 0.5 and n = 50 in first row and Table 5.3 for δ = 2 and

n = 35 in 4th row. For other values of constant δ and given sample size n, both methods

give same results as we obtain to minimize the travel cost under given sample size n.Tables

5.4-5.6 indicate the results of Case(1-3) respectively, of propose general method. Table

5.4 gives the compromise allocation to minimize the travel cost to compromise optimum

precision of estimates of population means of variables Yj(j = 1, 2). Mixed allocation

given in Table 5.5 minimize coefficient of variation of estimate of population mean of Y2

and travel cost to maintain minimum efficiency of estimator of mean of variable Y1 for

various values of δ, n, W1 and W2. The cost and precision of estimate of population

mean of Y2 are optimized to compromise on precision of estimate of population mean of

Y1 shown in Table 5.6.

5.3 Optimization of nonlinear cost and precision

Consider the following traveling cost function.

Zp+1 =
L∑
h=1

Chnh +
L∑
h=1

thn
δ
h (5.7)

where, th is per unit traveling cost within stratum and constant δ > 0 represent the

effect of travel to cost, Ch is per unit measurement cost in hth stratum. We have prior

knowledge about th and Ch. We allocate a given sample size n to each stratum such that

total variable cost of survey and total coefficient of variation for estimate of population

means of characteristics Yj(j = 1, 2, ..., p) are minimized. This problem become a multi-

objective mathematical programming problem with (p+ 1) objectives. This problem can

be formulated in nonlinear integer mathematical programming problem as:
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Minimize (Z1, Z2, . . . , Zp+1)

Subject to
L∑
h=1

nh = n (5.8)

2 ≤ nh ≤ Nh

h = 1, 2, ..., L and j = 1, 2, ..., p+ 1.

The above problem has (p+ 1) objectives. We use following methods to solve this multi-

objective optimization programming problem.

5.3.1 Allocation using individual optimum method

Lat, Z∗
j be a optimum value of Zj obtained by solving following integer mathematical

programming problem.

Minimize Zj

Subject to
L∑
h=1

nh = n (5.9)

2 ≤ nh ≤ Nh

h = 1, 2, ..., L and j = 1, 2, ..., p+ 1.

5.3.2 Allocation using goal programming method

The multi-objective optimization problem 5.8 can be solved by goal programming as:

Minimize
∑p+1
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (5.10)

L∑
h=1

nh = n

2 ≤ nh ≤ Nh
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h = 1, 2, ..., L and j = 1, 2, ..., p+ 1,

where, dj(j = 1, 2, ..., p+ 1) are deviation variables.

5.3.3 Allocation using weighted method

We solve the problem 5.8 with weighted method as:

Minimize
∑p+l
j=1WjZj

Subject to
L∑
h=1

nh = n (5.11)

2 ≤ nh ≤ Nh

p+1∑
j=1

Wj = 1

h = 1, 2, ..., L and j = 1, 2, 3, ..., p+ 1,

where, Wj(j = 1, 2, ..., p + 1) are relative weights which indicates the importance of

different objectives.

5.3.4 Allocation using general method

We solve multi-objective optimization problem 5.8 with general as:

Minimize
∑p+l
k=1 WjZj +

∑p+1
j=1 dj

Subject to

Zj − dj ≤ Z∗
j (5.12)

L∑
h=1

nh = n

2 ≤ nh ≤ Nh

p+1∑
k=1

Wk = 1

h = 1, 2, ..., L, j 6= k= 1, 2, 3, ..., p+ 1,

where, Wk(k = 1, 2, ..., p+ 1) are relative weights which indicates the importance of each

objective and dj(j = 1, 2, ..., p+ 1) are deviation variables.
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5.3.5 Numerical example

Data source [ Khan et al.(2010)].We assume that

C1 = 15, C2 = 9, C3 = 5, C4 = 7, t1 = 5, t2 = 4, t3 = 2, t4 = 3.

Minimize


Z1 =

√
0.000066

n1
+ 0.000809

n2
+ 0.001212

n3
+ 0.000332

n4

Z2 =
√

0.000181
n1

+ 0.009411
n2

+ 0.023390
n3

+ 0.000610
n4

Z3 = 15n1 + 7n2 + 5n3 + 9n4 + 5nδ1 + 4nδ2 + 2nδ3 + 3nδ4


Subject to

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

n1, n2, n3 and n4 are integers.

(a) Coefficients of variation and cost using individual optimum allocation

Individual optimum allocation for characteristic Z1:

Minimize Z1 =
√

0.000066
n11

+ 0.000809
n12

+ 0.001212
n13

+ 0.000332
n14

Subject to
L∑
h=1

n1h = n

2 ≤ n11 ≤ 8

2 ≤ n12 ≤ 34

2 ≤ n13 ≤ 45

2 ≤ n14 ≤ 12

n11, n12, n13 and n14 are integers.
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Individual optimum allocation for characteristic Z2:

Minimize Z2 =
√

0.000181
n21

+ 0.009411
n22

+ 0.023390
n23

+ 0.000610
n24

Subject to
L∑
h=1

n2h = n

2 ≤ n21 ≤ 8

2 ≤ n22 ≤ 34

2 ≤ n23 ≤ 45

2 ≤ n24 ≤ 12

n21, n22, n23 and n24 are integers.

Individual optimum allocation for characteristic Z3 :

Minimize Z3 = C = 15n1c + 7n2c + 5n3c+ 9n4c + 5nδ1c + 4nδ2c + 2nδ3c + 3nδ4c

Subject to
L∑
h=1

nhc = n

2 ≤ n1c ≤ 8

2 ≤ n2c ≤ 34

2 ≤ n3c ≤ 45

2 ≤ n4c ≤ 12

nc1, n2c, n3c and n4c are integers.

Here Z∗
1 and Z∗

2 are coefficients of variation and Z∗
3 is total variable cost using individual

optimum method for different value of δ and n given in Table 5.7.
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Table 5.7: Cost and Coefficients of variation using individual allocation.

δ n Allocation n1 n2 n3 n4 Z∗
1 Z∗

2 Z∗
3 Z∗

1 + Z∗
2

0.5 44 Y1 3 14 15 12 0.01372 0.04840 367.77 0.06212

Y2 2 14 25 3 0.01581 0.04360 317.24 0.05941

C 2 2 38 2 0.02521 0.07561 281.30 0.10082

1.0 38 Y1 4 13 14 7 0.01459 0.05027 405.00 0.06486

Y2 2 12 20 4 0.01562 0.04687 360.00 0.06249

C 2 2 32 2 0.02533 0.07637 310.00 0.10170

1.5 32 Y1 3 10 12 7 0.01585 0.05512 529.18 0.07096

Y2 2 10 17 3 0.01720 0.05110 508.41 0.06830

C 2 4 21 5 0.01896 0.06066 480.16 0.07962

2.0 26 Y1 2 10 9 5 0.01775 0.06126 847.00 0.07907

Y2 2 9 13 2 0.01955 0.05692 870.00 0.07647

C 3 5 11 7 0.01849 0.06447 732.00 0.08296

(b) Coefficients of variation and cost using goal programming method

For minimization of Z1, Z2 and Z3, we use goal programming method.

Minimize d1 + d2 + d3

Subject to √
0.000066

n1

+
0.000809

n2

+
0.001212

n3

+
0.000332

n4

− d1 ≤ Z∗
1

√
0.000181

n1

+
0.009411

n2

+
0.023390

n3

+
0.000610

n4

− d2 ≤ Z∗
2

C = 15n1 + 7n2 + 5n3 + 9n4 + 5nδ1 + 4nδ2 + 2nδ3 + 3nδ4 − d3 ≤ C∗

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12
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n1, n2, n3 and n4 are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total variable cost for different values

of n and δ using goal programming method of given in Table 5.8.

Table 5.8: Cost and Coefficients of variation using GP method.

δ n n1 n2 n3 n4 Ẑ1 Ẑ2 Ẑ3 Ẑ1 + Ẑ2

0.5 50 2 2 38 2 0.02521 0.07561 281.30 0.10082

1.0 45 2 2 32 2 0.02533 0.07637 310.00 0.10170

1.5 40 2 4 21 5 0.01896 0.06066 480.16 0.07962

2.0 35 3 5 11 7 0.01849 0.06447 732.00 0.08296

(c) Coefficients of variation and cost using weighted method

For minimization of Z1, Z2 and Z3, we use weighted method.

Minimize


W1

√
0.000066

n1
+ 0.000809

n2
+ 0.001212

n3
+ 0.000332

n4

+W2

√
0.000181

n1
+ 0.009411

n2+ 0.023390
n3

+ 0.000610
n4

+W3

(
15n1 + 7n2 + 5n3 + 9n4 + 5nδ1 + 4nδ2 + 2nδ3 + 3nδ4

)


Subject to

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

W1 +W2 +W3 = 1

n1, n2, n3 and n4 are integers.

(W1,W2,W3 =) (0.2, 0.3, 0.5), (0.2, 0.5, 0.3), (0.5, 0.2, 0.3).

Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total variable cost for different values of

n and δ using weighted method given in Table 5.9.
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Table 5.9: Cost and Coefficients of variation using weighted method.

δ n n1 n2 n3 n4 Ẑ1 Ẑ2 Ĉ Ẑ1 + Ẑ2

0.5 50 2 2 38 2 0.02521 0.07561 281.30 0.10082

1.0 45 2 2 32 2 0.02533 0.07637 310.00 0.10170

1.5 40 2 4 21 5 0.01896 0.06066 480.16 0.07962

2.0 35 3 5 11 7 0.01849 0.06447 732.00 0.08296

(d) Coefficients of variation and cost using general method

We use propose general method for minimization of Z1, Z2 and Z3 for different values of

n and δ.

Case-1

We minimize travel cost Z3 to compromise optimum value of Z2 and Z1.

Minimize Z3 = 15n1 + 7n2 + 5n3 + 9n4 + 5nδ1 + 4nδ2 + 2nδ3 + 3nδ4

Subject to √
0.000066

n1

+
0.000809

n2

+
0.001212

n3

+
0.000332

n4

− d1 ≤ Z∗
1

√
0.000181

n1

+
0.009411

n2

+
0.023390

n3

+
0.000610

n4

− d2 ≤ Z∗
2

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

n1, n2, n3 and n4 are integers.

Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total variable cost for different values of

n and δ using ε-constraint method given in Table 5.10.
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Table 5.10: Cost and coefficients of variation using ε-constraint method.

δ n n1 n2 n3 n4 Ẑ1 Ẑ2 Ẑ3 Ẑ1 + Ẑ2

0.5 44 2 14 22 6 0.01418 0.04390 330.77 0.05808

1.0 38 3 11 20 4 0.01546 0.04730 369.00 0.6276

1.5 32 2 9 17 4 0.01665 0.05161 500.33 0.06825

2.0 26 2 8 13 3 0.01838 0.05717 819.00 0.07556

Case-2

Minimization of Z3 and Z1 under optimum value of Z2.

Minimize

 W1

√
0.000066

n1
+ 0.000809

n2
+ 0.001212

n3
+ 0.000332

n4

+W2

(
15n1 + 7n2 + 5n3 + 9n4 + 5nδ1 + 4nδ2 + 2nδ3 + 3nδ4

)


Subject to √
0.000181

n1

+
0.009411

n2

+
0.023390

n3

+
0.000610

n4

≤ Z∗
2

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34

2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

W1 +W2 = 1

n1, n2, n3 and n4 are integers.

Here Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total variable cost for different values

of n and δ using general method given in Table 5.11.
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Table 5.11: Z3 and Z1 under optimum Z2

δ n W1 W2 n1 n2 n3 n4 Ẑ1 Z∗
2 Ẑ3 Ẑ1 + Z∗

2

0.5 44 0.2 0.8 2 13 27 2 0.01750 0.04456 310.13 0.06206

0.4 0.6 2 13 27 2 0.01750 0.04456 310.13 0.06206

0.6 0.4 2 13 27 2 0.01750 0.04456 310.13 0.06206

0.8 0.2 2 13 27 2 0.01750 0.04456 310.13 0.06206

1 38 0.2 0.8 2 12 22 2 0.01793 0.04735 350.00 0.06528

0.4 0.6 2 12 22 2 0.01793 0.04735 350.00 0.06528

0.4 0.6 2 11 23 2 0.01803 0.04762 346.00 0.06565

0.8 0.2 2 11 23 2 0.01803 0.04762 346.00 0.06565

1.5 32 0.2 0.8 2 9 18 3 0.01735 0.05137 500.47 0.06872

0.4 0.6 2 9 18 3 0.01735 0.05137 500.47 0.06872

0.6 0.4 2 9 18 3 0.01735 0.05137 500.47 0.06872

0.8 0.2 2 9 18 3 0.01735 0.05137 500.47 0.06872

2 26 0.2 0.8 2 8 13 3 0.01838 0.05718 819.00 0.07556

0.4 0.6 2 8 13 3 0.01838 0.05718 819.00 0.07556

0.6 0.4 2 8 13 3 0.01838 0.05718 819.00 0.07556

0.8 0.2 2 8 13 3 0.01838 0.05718 819.00 0.07556

Case-3

We minimize Z3 and Z2to compromise optimum value of Z1.

Minimize

 W1

√
0.000181

n1
+ 0.009411

n2
+ 0.023390

n3
+ 0.000610

n4

+W2

(
15n1 + 7n2 + 5n3 + 9n4 + 5nδ1 + 4nδ2 + 2nδ3 + 3nδ4

)


Subject to √
0.000066

n1

+
0.000809

n2

+
0.001212

n3

+
0.000332

n4

≤ Z∗
1

L∑
h=1

nh = n

2 ≤ n1 ≤ 8

2 ≤ n2 ≤ 34
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2 ≤ n3 ≤ 45

2 ≤ n4 ≤ 12

W1 +W2 = 1

n1, n2, n3 and n4 are integers.

Ẑ1 and Ẑ2 are coefficients of variation and Ẑ3 is total variable cost for different values of

n and δ using general method given in Table 5.12.

Table 5.12: Z3 and Z2 under optimum Z1

δ n W1 W2 n1 n2 n3 n4 Z∗
1 Ẑ2 Ẑ3 Z∗

1 + Ẑ2

0.5 50 0.2 0.8 2 10 25 7 0.01448 0.04532 326.66 0.05980

0.4 0.6 2 10 25 7 0.01448 0.04532 326.66 0.05980

0.6 0.4 2 10 25 7 0.01448 0.04532 326.66 0.05980

0.8 0.2 2 10 25 7 0.01448 0.04532 326.66 0.05980

1 45 0.2 0.8 2 10 20 6 0.01516 0.04798 362.00 0.06315

0.4 0.6 2 10 20 6 0.01516 0.04798 362.00 0.06315

0.4 0.6 2 10 20 6 0.01516 0.04798 362.00 0.06315

0.8 0.2 2 10 20 6 0.01516 0.04798 362.00 0.06315

1.5 40 0.2 0.8 2 7 18 5 0.01680 0.05344 488.50 0.07024

0.4 0.6 2 7 18 5 0.01680 0.05344 488.50 0.07024

0.6 0.4 2 7 18 5 0.01680 0.05344 488.50 0.07024

0.8 0.2 2 7 18 5 0.01680 0.05344 488.50 0.07024

2 35 0.2 0.8 3 7 10 6 0.01772 0.06201 747.00 0.07973

0.4 0.6 3 5 11 7 0.01847 0.06447 732.00 0.08294

0.6 0.4 3 5 11 7 0.01847 0.06447 732.00 0.08294

0.8 0.2 3 5 11 7 0.01847 0.06447 732.00 0.08294

5.3.6 Results

Table 5.7 presents the allocation of a given sample size n that give individual optimum

value of one objective among nonlinear cost and coefficients of variation of estimates of
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population means of Yj(j = 1, 2) using individual optimum method. First, second and

third row of the table presents the optimum allocation of a sample size n = 44 and

value of constant δ = 0.5 according to study variables Y1 and Y2 and nonlinear cost C.

GP method and weighted method give similar results to individual optimum allocation

according to nonlinear cost C irrespective of different values of weights W1,W2 and W3

given in Table 5.8-5.9 accordingly. The optimum values of nonlinear cost C, coefficients

of variation of the estimates of population means of variables Y1 and Y2 using propose

general method are given in Table 5.10-5.12. For different values of given sample size

n and constant δ, Table 5.10 presents the results of proposed allocation that minimize

nonlinear cost C to cooperate optimum precision of estimates of population means of Y1

and Y2. Table 5.11 displays the results of compromise allocation that minimize nonlinear

cost C and coefficient of variation of estimate of population mean of Y1 to compromise

optimum precision of estimate of mean of Y2. Similarly, Table 5.12 gives the optimum

value of coefficient of variation of estimate of population mean of variable Y2 and nonlinear

cost C to bargain the coefficient of variation of estimate of population mean of variable

Y1. It is shown that compromise allocation using proposed general method is efficient

than individual optimum method, goal programming method and weighted method to

some extent.
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Chapter 6

Conclusion and Recommendation

The study was conducted to solve sample allocation problem in multivariate stratified

sampling design. The problem was formulated in integer multi-objective mathemati-

cal programming. The individual optimum method (IOM), goal programming method

(GPM) and general method (GM) were used to solve allocation problem in following

three situations.

(a) Maximization of precision under fixed given cost of sample survey.

(b) Minimization of coefficients of variation under estimated cost of sample survey.

(c) Optimization of precision and cost of survey under given sample size.

The above three situations ware discussed in chapters 3-5.

In section 3.2, the compromise allocation was given to maximize the precision of estimates

of population means using regression estimator satisfying total budget available measure-

ment of units. Tables 3.1-3.2 showed C.V using IOM and GM respectively and total C.V

using GPM is 0.05572. The compromise allocation using GPM produced 5.51% and 2.04%

efficient estimates and GM gave 4.46% and 1.02% better result for (W1,W2) = (0.4, 0.6)

as compared to IOM according to characteristics Y1 and Y2 as showed in Tables 3.3-3.4

respectively. The allocation problem under given fixed budget available for travel cost

among units was solved in section 3.3. The formulated mathematical programming prob-

lem was given in (3.9) and its solution using IOM, GPM and GM was given in (3.10-3.12).

The C.V under these methods were displayed in Tables 3.5-3.7 respectively for different

values of constant δ and Ć. We observed that IOM according to C yield 14% and 13.70%
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less efficient results as compared to GPM for δ = 2.0, Ć = 1700 and 13.11% and 10.40%

less efficient estimate as compared to GM for δ = 0.5, Ć = 120 and (W1,W2) = (0.2, 0.8)

respectively as showed in Tables 3.8-3.9. Section 3.4 illustrated the solution of allocation

problem to minimize the coefficients of variation satisfying total budget available for gain-

ing information from units and travel among units. The formulated allocation problem (3.

13) was solved by IOM (3.14),GPM (3.15) and GM (3.16) and C.V using these methods

was given in Tables 3.10-3.12 accordingly. The GPM produced 3.28% and 1.40% precise

estimates for δ = 1.0, Ć = 500 and GM gave 14.76% and 14.63% efficient results for

δ = 2.0, Ć = 1500 and (W1,W2) = (0.7, 0.3) as compared to IOM according to Y1 and Y2

as showed in Tables 3.13-3.14. In section 3.5, coefficients of variation were minimized to

determine sample size under logarithmic travel cost function. The formulated allocation

problem was given in (3.17) and its solution was given in (3.18-3.19) using IOM, GPM

and GM. Tables 3.18-3.19 displayed the efficiency of GPM and GM to IOM for different

values of constants δ and Ć. The GPM provided 12.5% precise estimate as compared

to IOM according to Y1 and Y2 for δ = 0.5 and Ć = 30. The GM delivered 50.68%

efficient estimates of population means for δ = 2.0, Ć = 115 than IOM according to both

characteristics Y1 and Y2.

Chapter 4 provided the solution of allocation problems under four types of probabilistic

or estimated cost functions. In section 4.2, we found compromise allocation to minimize

coefficients of variation under specified budget for estimated per unit measurement cost

of sample survey. The allocation problem was formulated in stochastic mathematical

programming (4.5) and solved using IOM (4.13), GPM (4.14) and GM (4.15). Tables

4.1-4.2 demonstrated coefficients of variation using mentioned allocation’s methods. Ta-

ble 4.3 showed that GPM provided 1.12% and 0.5% efficient results than IOM subject to

Y1 and Y2. GM delivered 2.77% and 1.67% better estimates as compared to IOM Y1 and

Y2 for (W1,W2) = (0.2, 0.8). The allocation problem under given budget for travel cost

among units estimated from sample cost was discussed in section 4.3. The problem was

formulated in stochastic programming (4.17) and its equivalent deterministic program-

ming problem was given in (4.24) and solution using proposed IOM, GPM and GM was

given in (4.25-4.27). GPM produced 6.64% and 1.96% better estimates relative to IOM
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according to characteristics Y1 and Y2 using δ = 0.5 and Ć = 115 as given in Table 4.8.

The GM provided 7.88% and 3.15% precise estimates of population mean as compared to

IOM according to Y1 and Y2 for δ = 0.5, Ć = 115 and (W1,W2) = (0.4, 0.6) respectively

as showed in Table 4.9. The sample allocation that maximize the efficiency of regression

estimator of mean under specific budget based on measurement unit cost and traveling

cost estimated from sample costs discussed in section 4.4. The problem was formulated

in chance constrained mathematical programming (4.29) and IOM (4.37), GPM (4.38)

and GM (4.39) used to solve converted deterministic constraint programming problem

(4.36). From Tables 4.13-4.14 it is clear that GPM and GM provided more precise esti-

mates as compared to IOM according to characteristics Y1 and Y2 for different values of

δ and Ć. Section 4.5 produced efficient compromise allocation to minimize coefficients of

variation under estimated logarithmic travel cost function. The problem was formulated

in stochastic programming (4.41) and IOM (4.49), GPM (4.50) and GM (4.50) was used

to solve this problem. GP produced 11.39% and 0.70% efficient results as compared to

IOM subject to Y1 and Y2 for δ = 0.5 and Ć = 45 as given in Table 4.18. GM gave 11.02%

and 10.67% precise estimates of population means as compared to IOM according to Y1

and Y2 for δ = 0.5, Ć = 49 and (W1,W2) = (0.4, 0.6) as showed in Table 4.19.

In chapter 5, We discussed allocation of a given sample size to various strata taking co-

efficients of variation and cost of sample survey as variables. Section 5.2 discussed the

allocation that maximize precision of regression estimator of population means of several

study variables and minimize total traveling cost of sample survey under a given sample

size. The allocation problem was formulated as integer mathematical programming prob-

lem (5.2) and IOM (5.3) GPM (5.4), weighted method (5. 5) and GM (5.6) were used

to solve this allocation problem. Tables 5.1-5.7 displayed the coefficients of variation and

total travel cost obtained using proposed optimization methods. IOM gave total travel

cost C = 1073.79 units and total coefficients of variation Z1 + Z2 = 0.06488 according to

Y1, total travel cost C = 1216 units and total coefficients of variation Z1 + Z2 = 0.06201

according to Y2 and total travel cost C = 1047 units and total coefficients of variation

Z1 + Z2 = 0.06919 according to cost function C for δ = 1.5 and Ć = 40 as showed in

Table 5.1. The GPM and weighted method gave same results as IOM according to cost
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function C as displayed in the Tables 5.2-5.3 respectively. The GM gave total travel cost

C = 1144.63 units and total coefficients of variation Z1 + Z2 = 0.06093 according to

Case-1 as showed in Table 5.4, total travel cost C = 1146.09 units and total coefficients of

variation Z1 +Z2 = 0.06048 according to Case-2 as presented in Table 5.5 and total travel

cost C = 1148.18 units and total coefficients of variation Z1 + Z2 = 0.06837 according

to Case-3 as demonstrated in Table 5.6. The problem of compromise allocation to mini-

mize the coefficients of variation and nonlinear cost function which consists measurement

unit cost and travel cost under given sample size discussed in section 5.2. Table 5.7-5.12

showed the coefficients of variation and total nonlinear cost obtained using IOM, GPM,

weighted method and GM with three cases. The proposed GM provide better solution

to compromise between cost of sample survey and precision of estimates of population

means of several characteristics.

We conclude that proposed multi-objective optimization methods provide efficient com-

promise solution of allocation problems in stratified sampling scheme when more than

one characteristics of interest was studied under different deterministic and probabilistic

cost functions. The proposed general method provide compromise allocation that max-

imize precision of estimate of population mean and minimize variable cost of survey in

multivariate stratified sampling design. We achieved different level of precision in each

strata by using additional condition (lh ≤ nh ≤ uh). The multi-objective optimization

technique can be used to solve allocation problems, especially conflicting in nature, for

other sampling designs.
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