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SUMMARY 
 
Drug resistance within a wide range of infectious agents has become a global menace, 

handling of which through the application of computational chemistry and molecular 

mechanics techniques is one of the possible solutions. Advancements in 

multidisciplinary field of computational chemistry have paved the way for 

computational scientists to take lead in exploring structural and dynamical attributes 

of various biological systems that play a significant role in addressing drug 

resistance. Furthermore, the contemporary headway in computational biology is 

primarily attributed to massive growth in data, power and its mammoth ability to 

predict multiscale modeling of complex biological phenomena. Subsequently, the 

improvement in computer speed and performance has permitted integration of 

advanced computational techniques such as hybrid quantum mechanical and 

molecular mechanical (QM/MM) simulations to elucidate intricate details of 

complex biological processes such as enzyme catalysis, protein ligand interactions, 

and binding and unbinding dynamics of a protein.  

In line with the aim to materialize classical molecular dynamics and QM/MM 

simulations in response to drug resistance, this dissertation outlines the enormous 

potential of these methods particularly in connection with nosocomial infections. The 

first section of thesis is focused on the infections controlled by quorum sensing (QS), 

biofilm dispersion and transcription factors within Pseudomonas aeruginosa. The 

state-of-the-art QM/MM methods are employed to investigate the intricate details of 

covalent inhibition of target proteins that interfere with the defense mechanism of P. 

aeruginosa. Umbrella sampling (US) simulations at the DFTB3/MM level of theory 

are employed to propose a reaction mechanism with four potential covalent 

inhibitors. The potential of mean force reveals the direct role of intrinsic reactivity 

of inhibitors, for example inhibitors with methyl oxo-enoate warhead activate 

carbonyl samples in the first step of a reaction, which shed light on the significance 

of proton transfer indispensable for full inhibition. Whereas the nitrile inhibitor 

undergoes a stepwise mechanism with a small proton-transfer energy barrier and 
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lower imaginary frequencies that materialize instantly after nucleophilic attack. 

Furthermore, to unveil the molecular determinants of respective binding affinities, 

transition states along the reaction path are optimized and characterized with 

B3LYP6-31+G(d,p). This study serves as a preamble to add variation in the proposed 

structures and unveils the impact of functional groups lying in warheads that 

modulate the kinetics of proton transfer, which will certainly aid to design more 

selective and efficient irreversible inhibitors for bacterial transcription factors. 

Under the same domain of addressing MDR through P. aeruginosa, a quorum 

sensing (QS) signal molecule is targeted with the primary objective to identify and 

propose competitive inhibitors for multiple sites within the same binding tunnel.  

This study not only adapts a broad-spectrum strategy for the lucid design of small 

molecule modulators but also provides novel allosteric inhibitors of the enzyme in 

hand. The term “competo-allosteric” is coined for the first time in this study, which 

entails the presence of competo-allosteric site in the same binding tunnel as the 

normal site competing for binding to similar residues. 

Another contemplating resistance emerging nowadays is parasitic resistance 

which is another main focus of this work. This domain enlightens rapidly emerging 

drug resistance in leishmaniasis particularly to available treatment of antimonial (Sb) 

drugs and propose the computational design of alternate formulations encompassing 

relatively less explored functional metalloids. Large-scale atomistic simulations 

particularly with Au(I), Ag, Bi(V), and Sb(V) metalloids pose a major challenge to 

elucidate their molecular mechanism due to the absence of force field parameters. 

This study quantum mechanically (QM) derives force field parameterization of 

heteroleptic triorganobismuth(V) biscarboxylates. Findings from force field 

parameterization are simultaneously supported by the antileishmanial experimental 

study, results of which prove to be a preamble for successive QM treatment. Two 

organo-bismuth(V) carboxylates are modeled, which are optimized and paramtrized 

along the famous pentavalent antimonial drug: meglumine antimoniate using QM 

original Seminarian methods with SBKJC basis set coupled with effective core 

potential (ECP) level of theory. Findings underpin the role of bidentate chelating 
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behavior acquired by Bi(V) models on bond length that highlight the significance of 

OH group present at ortho position of sub-structure subsalicylate. This is preceded 

by atomistic simulations of bismuth and antimony containing compounds in complex 

with two enzymes, trypanothione synthetase-amidase (TSA) and trypanothione 

reductase (TR) to target the (T(SH)2) pathway at multiple points. MD simulations 

provide novel insights into the binding mechanism of both enzymes and highlight 

the role of active site residues in modulating ligand dynamics. Moreover, the 

presence of an ortho group in ligand is emphasized to facilitate interactions for higher 

inhibitory activity of enzymes. This preliminary generation of parameters specific to 

bismuth validated by simulations in replica will become a source of further in future 

computational and experimental research work to open avenues for newer and 

suitable drug targets. 

The final section of this work is categorically focused on Covid19 pandemic 

with the aim to identify appropriate choice of inhibitors to curb this deadly viral 

infection and bring to light alternative methods that would address the existing 

problem of drug resistance. In this respect, with the aim to contribute to scientific 

research community in the challenging times of Covid19 pandemic, this study pulled 

efforts to bring awareness to public as a matter of global dissemination that resorted 

to excessive use of herbal tea “Senna Makki” in treatment of Covid19. There has 

been a myth regarding the use of famous Senna Tea in treatment of Covid19, 

overdose of which led to diuresis and death of many patients unknowingly within the 

paraphernalia of this pandemic. Under this domain, the binding potential of chemical 

compounds of Senna in comparison with the experimentally tested active 

phytochemicals against SARS-CoV-2 protein targets are investigated. The entire set 

of phytochemicals from both the groups are subjected to 3D-QSAR modeling 

followed by MD simulations with multiple SARS-CoV-2 target proteins namely; the 

spike protein, helicase nsp13, RdRp nsp12, and 3-Chymotrypsin-Like Protease 

(3CLpro). Findings manifest the importance of hydrophobic substituents in chemical 

structures of potential inhibitors through cross-validation with the FDA-approved 

anti-3CLpro drugs. Noteworthy improvement in end-point binding free energies and 

pharmacokinetic profiles of active phytochemicals is perceived in comparison to the 
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control drug, Vizimpro. However, Senna metabolites in comparison exhibit weak 

binding affinity, instability and toxicity against all drug targets. Findings contravene 

fallacious efficacy claims of Senna tea interventions circulating on electronic/social 

media as Covid19 cure and discredit the use of Senna tea as whole with all its 

chemical constituents in Covid19 treatment. This emphasizes the importance of well-

examined standardized data of the natural products in hand; thereby preventing 

unnecessary deaths under pandemic hit situations worldwide. 

Additionally, the comparative MD simulations analysis is carried out on 

SARS-Cov-2 Omicron variant and its highly transmissible sublineages that undergo 

mutations to mitigate antimicrobial resistance. This work is in connection with the 

viral architecture or changes in viral structural attributes due to mutations and 

propose their potential effects on stability and transmission of the virus. A thorough 

investigation on Omicron and other variants of concern (VoC) namely Alpha, Beta, 

Gamma, Delta, and Omicron reveal the role of hydration forces in mediating function 

and dynamics based on a stronger interplay between protein and solvent. Mutations 

of multiple hydrophobic residues into hydrophilic residues trigger concerted 

interactions with water leading to variations in charge distribution during MD 

simulations. Moreover, comparative analysis of interacting moieties characterize a 

large number of mutations lying at RBD into constrained, homologous and low-

affinity groups referred to as mutational drivers inferring that the probability of future 

mutations relies on the function of these residues. Furthermore, the computational 

findings reveal a significant difference in angular distances among variants of 

concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates 

tight domain organization but also seems requisite for characterization of mutational 

processes. The outcome of this work signifies the possible relation between hydration 

forces, their impact on conformation and binding affinities, and viral fitness that will 

significantly aid in understanding dynamics of drug targets for Covid-19 

countermeasures.  

The overall concurred outcome of this dissertation in reference to integration 

of QM/MM methods reaffirm role of computational modeling in yielding intricate 
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details about processes like proton transfer, role of well-optimized coordination 

geometry of metal ions, and other important structural and dynamical attributes of 

biomolecules. These instrumental phenomena are of utmost medicinal importance 

that can impact ARM/drug resistance if applied in the context of biologically relevant 

enzymes. 
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1. BACKGROUND AND MOTIVATION 

1.1  Drug resistance in antimicrobials 

Drug resistance in a broader perspective directly impacts the ability of antimicrobial agents 

to treat fatal diseases, post-surgical infections multiple cancer treatments alongwith other 

debilitating diseases1. Drug resistance drastically undermines the effectiveness of 

antimicrobial agents and pose a serious threat to public health globally that prompts 

uncontrolled resistance in micro-organisms. According to the definition of antimicrobial 

resistance (AMR) by World health organization (WHO), it is the inability of antimicrobial 

drugs to respond to bacterial, fungal, or viral infections due to acquired or intrinsic 

resistance. Multiple breakthrough antimicrobial agents encompassing antibiotics, 

antifungals, and antivirals are experiencing multi-drug resistance (MDR) to high priority 

infections that created havoc worldwide2. MDR infections surface when resistance to more 

than one antimicrobial drug is exhibited by an organism, which is alarming to greater extent 

since majority of third and fourth generation antibiotics are experiencing MDR3–6. 

According to WHO, antimicrobial treatment is inconceivable in the absence of effective 

antimicrobial agents that could lead to more than 10 million deaths annually by 2050 if left 

unaddressed7,8.  

1.1.1 Factors contributing to AMR 

There are various factors that intensively contribute to AMR. Acquisition of AMR genes 

are commonly associated with multiple factors such as (i) drug transport through horizontal 

gene transfer, (ii) target modification as a result of mutations, and (iii) drug inactivation by 

enzymatic activity of microbes9,10. Microbes encompassing bacteria, fungi, and viruses 

have multiple ways to build up intrinsic resistance; mostly evolutionary processes, to 

protect themselves whenever they encounter threat or stress, thus modulating their 

mechanism in response to environmental conditions11. Mutagenesis is one of multiple 

competing factors of intrinsic resistance that incorporates changes in genetic makeup 

leading to enhanced virulence in microbes12–15. Another reason in rapid spread and 

evolution of drug resistance is reticulated dynamics of human and healthcare systems that 
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leads to acquired AMR due to poor waste management, overuse, and misuse of 

antibiotics16–19.  

1.1.2 Consequences of AMR 

Consequently, organizations like WHO and Centers for Disease Control and Prevention 

(CDC) have been concertedly raising awareness by monitoring and reporting emergence 

of AMR worldwide 20–22. Multiple reports on clinically resistant strains that encompass 

Escherichia coli23,24, Klebsiella pneumoniae 25,26, Staphylococcus aureus 27, and 

Mycobacterium tuberculosis28 estimate that more than 50% strains are resistant to first 

generation antibiotics. Furthermore, resistance to second-line drugs in strains of M. 

tuberculosis are also witnessed in India and South Africa, which depicted lesser efficacy 

and resistance to bread spectrum antibiotics to treat tuberculosis related infections 29,30.  

Furthermore, antibiotic stewardship has predicted AMR to coincide with Covid19 

pandemic mortality rate presenting itself as an unprecedented challenge for health care 

systems globally, which have already laid out hefty investments in vaccine development, 

drugs repurposing and discovery of novel antivirals 31–33. Noticeably, Covid19 has radically 

hampered the use of antibiotics and contributed to ongoing rise of AMR due to cotreatment 

of secondary infections acquired from hospital settings that largely affected immuno-

compromised patients34,39. Similarly, resistance to antifungals that cause an estimated 

700,000 or more cases annually threatens the prevention and treatment of antifungal 

infections, which needs to be counteracted to lift the economic burden and adverse societal 

consequences40–42.  

1.1.3 Halt in drug discovery 

In that respect, concerted efforts in design and development of effective drugs are required 

to overcome the emergence of AMR that has outpaced drug discovery due to limitations of 

investment in research and pharmaceutical industry. Unfortunately, due to dearth in 

development of antimicrobial drugs despite the availability of around 4,000 therapeutic 

agents, only 30 - 40 % have made it to the clinical trials, which cannot counteract rise of 

AMR 43–45. The overlooked aspect of concern is that only 25% of these drugs target a novel 

mechanism or offer a novel class 45,46. In these challenging times, fastest way to curb AMR 
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and revolutionize drug development is to bring researchers or skilled practitioners from 

research/academia and medicinal chemistry together. They can collectively design, 

assemble, and curate large libraries of compounds and aid in devising new strategies and 

fabricated therapies.  

1.1.4 Methods to control AMR 

Prerequisite to development of modern medicine amidst AMR directs to materialize 

methods that not only cater resistance in response to drugs but also target novel mechanism 

of action to avoid cross-resistance with drugs already in use. Generally, the convergent 

approach to classify antimicrobial compounds is: (i) to target essential enzymes that are 

significant for bacterial life cycle, or (ii) target non-essential enzymes crucial for regulating 

virulence or defense mechanisms of organisms47–49. Aiming at antivirulent targets is a new 

strategy that rather interferes with virulent pathways and defense mechanisms and 

deactivate the pathogen instead of effecting its growth and sustainability, thus providing 

milder possibility of evolutionary resistance. Thus, compounds designed for non-essential 

pathways with existing knowledge about molecular pathogenesis of microbes target 

different classes of enzymes and are referred as: (i) virulence factor inhibitors or pathway 

blockers that are specifically designed to target quorum sensing systems, and biofilm 

formation, (ii) pathway inhibitors involved in regulation of stress modulation as a 

mechanism of host defense mechanism, and (iii) modulators/inhibitors of metabolic 

pathways 49–51. Most of these targets while expending non-traditional approaches in 

disarming MDR pathogens have exhibited their capability to reverse resistance to some 

antimicrobials 52. Similarly, pathway inhibitors have proven less susceptibility to resistance 

in high priority MDR pathogens particularly Gram-negative bacteria Pseudomonas 

aeruginosa, thus acting as valuable therapeutic targets with less potential to either intrinsic 

or evolved resistance 53.   

1.2  Role of molecular mechanics (MM) in drug discovery 

Application of computational techniques in the field of medicinal chemistry has been 

validated by numerous recent accomplishments. In microbiology, the availability of 

crystallographic structures of many pharmacologically relevant proteins makes the use 
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of in silico simulations, an increasingly powerful methodology to fight MDR pathogens. 

This is a multidisciplinary perspective that includes approaches from computational 

biology, chemistry, and biophysics. Classical molecular dynamics (MD) simulations, 

pioneered by Warshel and Levitt and Karplus and McCammon are well-known for 

analyzing motion of atoms/molecules of biological systems with respect to Newton’s law 

of motion. Starting from drug discovery as early as 1994, it has been implemented in 

several successful studies including G-protein-coupled receptors, and protein kinases. One 

of the recent example is the implementation of artificial intelligence (AI) in prediction of 

three-dimensional (3D) protein structures using AlphaFold that will accelerate research in 

nearly every field of biology 54 

Moving beyond the classical MD simulations, past two decades have presented 

multiple powerful methods such as quantum mechanics (QM) combined with molecular 

mechanics (MM) with the ability to predict discrete mechanisms such as binding and 

unbinding of drugs and allosteric modulation through evaluation of their kinetic and 

thermodynamic properties. QM/MM combined with enhanced sampling techniques such 

as steered molecular dynamics, meta dynamics, replica exchange, thermodynamic 

integration (TI), and umbrella sampling (US) have drastically fast-paced drug discovery 

programs in terms of time and accuracy. Outcome of these approaches were apparent in 

pandemic-hit situation when multiple studies surfaced with productive results to refine 

drug discovery such as researchers of Oak Ridge National laboratory used Schrodinger 

equation to predict key binding site of S-protein 55.  

1.3  Aims and objectives  

Within the paradigm of current work, we outline the enormous potential of classical MD 

simulations in understanding complex allosteric mechanism in drug discovery and 

QM/MM methods to decipher kinetics of drugs and metalloids. This work thus 

demonstrates multiple strategies and novel therapeutic options expended in the consortium 

to ensure a sustainable flow to target antimicrobial drug candidates. Topics which lay the 

foundation of this thesis are listed below which are discussed in detail in forthcoming 

chapters: 

i. allosteric inhibition of bacterial quorum-sensing (QS) signaling systems 
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ii. covalent inhibition to unveil molecular mechanisms of bacterial defense 

mechanisms using QM/MM  

iii. QM optimization of metalloids with novel geometries to address drug 

resistance in leishmaniasis 

iv. screening of active phytochemicals against SARS-CoV-2, and  

v. comparative mutational analysis of Covid19 Omicron and other variants. 

Chapter 3 and 4, investigate bacterial proteins within P. aeruginosa that control 

bacterial defense mechanism and bacterial quorum sensing. Given the significance of 

aforementioned bacterial processes in antibiotic resistance, production of biofilm and 

instigating resistance in P. aeruginosa, interference in these system is therefore, an 

attractive strategy to repress AMR 56,57. Chapter 3 emphasizes on combinatorial approach 

targeting transcription factor enzymes with covalent inhibition approach. Example of 

highly sensitive and selective transcription factor sensor, which holds cysteine in its active 

site is KatA, responsible for acute intrinsic resistance in P. aeruginosa 58,59. In this 

connection, bacterial transcriptional factor OxyR that is a sensor of hydrogen peroxide is 

targeted for inhibition studies under the umbrella of QM/MM simulations. QM/MM 

coupled with US approach propose irreversible covalent inhibitors with varying chemical 

environments and assess the impact of warhead modulation on binding catalysis of OxyR.  

The primary objective of the subsequent study in chapter 4 however, is to identify 

competitive allosteric inhibitors against QS signaling molecule; DSPI of P. aeruginosa. In 

addition to targeting the noxious mechanism of bacterial resistance, an alternative 

inhibition strategy; allosteric inhibition provides an effective avenue for selective and 

potent inhibition. Allosteric inhibitors when combined with orthosteric drugs in literature 

revealed suppressed mutation resistance and exhibited the capability to synergistically 

overcome emergence of drug resistance in multiple MDR pathogens60,6162. This work thus; 

employs allosteric inhibition, which has allowed us to classify both normal binding site 

and allosteric inhibitors using techniques of molecular mechanics (MM). It concurs that 

widening phenomenon and disruption of the normal binding site and inhibition of allosteric 

site at the cost of the normal binding site are significant and noticeable outcomes.  
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Chapter 5 addresses the investigation into rapidly emerging drug resistance among 

parasites that has drastically limited the treatment options resulting in more than 500,000 

cases annually63–65. According to WHO, protozoan parasitic diseases from the genus 

Trypanosoma and Leishmania particularly visceral leishmaniasis VL, has reportedly 

caused more than 90% new cases in 202042,65. However, frequently available treatment to 

leishmaniasis comprise antimonial drugs that target precarious metabolic pathways 

involved in AMR. Substantial role of metabolic pathways in myriad of reactions comprise 

defense against oxidative damage, redox, homeostasis and replication66. Despite the 

growing demand of molecular investigations with metalloids, particularly antimonial 

drugs, these compounds are not fully characterized in computational analysis due to the 

absence of force field parameters. In the midst of emerging resistance to antimonial drugs, 

the intention of this work is to investigate metalloids lying right below Sb according to the 

periodic table. This work therefore quantum mechanically generates force field parameters 

of both bismuth and antimony metalloids and provide optimized geometries and topology 

files for classical MD simulations. Parameterization at the hub of an inorganic metal 

centers and specifically bi-inorganic complex will give rise to further parameterization of 

new metals of biological relevance and can be considered as baseline importance of this 

work. In a broader context, this work will aid in inhibiting parasitic redox metabolism and 

the infectious period of pathogenic trypanosomatids, with lesser chances to develop AMR.  

Last two chapters; chapter 6 and 7 are categorically focused on Covid19 with the 

aim to identify appropriate choice of inhibitors to curb this deadly viral infection and bring 

to light alternative methods that would not aggravate the existing problem of drug 

resistance. In the desperate times of Covid19 pandemic, excessive use of antibiotics to treat 

secondary infections hampered the regulation of AMR alongwith the uncontrolled rise in 

alternative treatment options. Role of natural products was therefore endorsed by WHO 

and several other studies, which emphasized on incorporating natural products as an 

alternative treatment in Covid19 with lesser probability to resistance67–69. Natural products 

that comprise antimicrobial properties can significantly contribute to reversing antibiotic 

resistance by interfering with multiple molecular processes such as cell signaling. Chapter 

six on Covid19 however, after thorough investigations carefully distinguish the 

scientifically proven active phytochemicals from harmful medicinal plants that can rather 
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aggravate the already frightful situation. Whereas, the last chapter 7 provides structural and 

dynamical insights of evolving mutations of SARS-Cov-2 Omicron variant and its highly 

transmissible sublineages.  

The more in-depth explanation and methodological protocols of topics discussed 

above are included in their respective chapters. However, the background and theoretical 

overview of QM/MM and MD simulations are expended in second chapter of this thesis.  
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2. COMPUTATIONAL AND THEORETICAL OVERVIEW 

2.1 Molecular modeling 

To elucidate relationship between any molecule with its biological activity, it is imperative 

to accurately identify and understand the basis of interactions established between 

molecule and its site of action. Molecular modeling at any given time relies largely on 

conformational geometries and its ability to acquire specific attractive or repulsive 

interactions or both to successfully predict approximate binding affinity between two 

molecules 70,71. Molecular modeling methods and tools rely on small atomic molecular 

level properties to govern microscopic and macroscopic behaviour of physical systems 

such as hydrogen bonding, electrostatic interactions, bond-lengths, dihedrals, van der Waal 

(vdW), and hydrophobic interactions 72,73. Last two decades have witnessed enormous 

growth of coherent computational methods in the field of drug design that are aimed at 

designing and optimizing specific lead molecules for a given 3D structure of a protein. For 

instance, 3D quantitative structure-activity relationship (QSAR) encompassing necessary 

ensembles of structures and molecular descriptors is capable of drawing a biological 

response between a given set of molecules 74,75. Similarly, articulated methods like 

allosteric and covalent modification of proteins are integral phenomena that grant complete 

control of biological function by modifying structural properties in a way that respective 

thermodynamic ensembles of systems are completely altered 76–78.  

Despite enormous progress in this field, it is still difficult to exactly elucidate 

binding mechanism of two molecules especially when dealing with metal moieties. 

However, in an attempt to provide complementary approaches to experiment, recent 

breakthroughs in development of multiple mathematical models based on molecular 

physics and biophysics such as X-ray crystallography and nuclear magnetic resonance 

(NMR) has enabled dynamic studies between macromolecules. Such analysis cannot only 

predict multiple ensembles of structures but can also model impact of interactions that have 

established between molecular partners in solution by allowing complete degree of 

freedom. Computational methods like MM and QM can efficiently relate biological 

activity to structure by optimizing relevant geometries and parameterizing the molecule by 
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computing potential energy of constituent atoms 79,80. Current resources of high-speed 

computer processors have enabled micro to milli nanoseconds simulations of ionic 

solution, proteins, and other macromolecules to probe into distribution of multiple 

conformational states and provide relevant information about thermodynamics and kinetics 

of any given system. In this context, multiscale simulations independent of time evolution 

first proposed by Metropolis and coworkers, characterized statistical ensembles of a given 

state; known as Monte Carlo (MC) simulations 81,82. Whereas, groundbreaking approaches 

proposed by a Noble Prize winner, Michael Levitt, and coworkers, estimated dynamics of 

a system over a period while employing Newton’s second law of motion 83. However, to 

achieve higher accuracy for description of chemical and physical phenomena, the use of 

QM approaches is pursued. QM methods take into account the polarization effects, proton 

transfer, and most importantly, model chemical reactions capable of depicting effect of 

charge transfer that is otherwise typical to explain using other methods like MM 79,84,85. 

The schematic representation of evolution of multiple simulations methods is presented in 

Figure 2.1 

Nevertheless, the basic theme of this chapter is to provide a brief overview of 

computational techniques employed to investigate the structure and dynamics of multiple 

systems and introduce theoretical principles working behind them. Various methods 

encompassing metal ion modeling, protein modeling to examine the effect of mutations, 

MD simulations and QM methods are explained in forthcoming sections alongwith tools 

used to obtain valuable results.  

2.2 Quantum mechanics 

Quantum mechanics is a pillar of theoretical chemistry that has significantly aided in 

exploration of small objects of nanometer of size.  These methods have the ability to 

supersede experimental techniques in delivering intricate information about molecular 

geometries, compounds with transition metal ions, vibrational frequencies, ionization 

potential, electronic structure configuration including sensitivities of electron correlation 

energies. Whereas, classical mechanics is preferred for large objects to act according to the 

Newtonian mechanics best suited for exploring conformational space. Though, quantum 

chemical methods are computationally expensive while at the same time hybrid QM/MM 
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approaches utilizing the affordability of MM along with accuracy of QM has 

revolutionized the subjective exploration of biomolecules.  Density function theory (DFT) 

both as extension and semi-empirical method have exhibited capabilities generally in 

addressing proteins and specifically in complicated arena of force field 

parameterization79,84. Under this era, commonly utilized software packages that employ 

QM are GAMESS-US, Gaussian, GROMACS, ORCA, Avogadro etc.  

Figure 2.1. Schematic representation of evolution of multiple simulations methods. 

Unlike classical mechanics that was unable to explain certain experimental 

properties like hydrogen spectrum emission and levels of quantized electrons with 

Newton’s law of motions, an improved way for explaining movement of electrons emerged 

in 20th century. Concept of wave mechanics surfaced that rather dealt with particle 

travelling as a wave than a finite particle moving across the definitive path in a straight 
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line86,87. QM describes these dynamical properties based on probability functions to 

describe the position of a particle in space using Schrödinger equation.  

2.2.1 Schrödinger equation 

The conceptual understanding of QM is based on the postulates of Max Planck dated back 

to 1900 that proved that energy levels of electrons are quantized, which occurs in discrete 

unit called “quanta”8889. 

                                                                        𝐸 =  ℎ. 𝑣                                             (2.1) 

where h is referred as Planck’s constant based on his contributions. However, 

Schrodinger equation derived from this model by an Austrian Physicist Erwin Schrödinger 

was a breakthrough in the field of QM and theoretical chemistry 90. All the properties of 

the system were determined using time-independent function called “probability function” 

or wavefunction denoted as ‘Ψ’, where Ĥ is the Hamiltonian operator, and E is the energy.  

                    �̂�𝜓 = 𝐸𝜓         (2.2) 

When dealing with N number of particles, both kinetic (T) and potential (V) energy 

constitute the Hamiltonian operator with respect to variables (r). The expanded form of 

Hamiltonian term is then calculated using approximate values of all particle coordinates 

while employing second-order fractional derivative equation, illustrated in equation given 

below: 

    �̂�  =  − ∑
ℏ2

2𝑚𝑖

𝑁
𝑖=1  𝛻𝑖

2 + ∑ 𝑉𝑖𝑗
𝑁
𝑖≠𝑗                             (2.3) 

where m is the mass of a particle (e.g. electron), Vi,j is the potential energy between 

two particles, and 𝛻𝑖2 is Laplacian operator acting on particle i. The Laplacian operator is 

a scalar differential operator expressed as:  

           𝛻𝑖
2  =  

𝜕2

𝜕𝜘
 +

𝜕2

𝜕𝑦
 +  

𝜕2

𝜕𝑧
                                       (2.4) 

Noticeably, Schrödinger solution exists for one-electron system such as hydrogen 

atom where the electromagnetic interactions between two particles (nuclei-electron and 

electron-electron) are calculated. However, for molecular systems, it can be numerally 

solved using methods like ab initio and/or semiempirical. Numerous approximation 
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methods have been solved using Schrödinger equation so far such as Born-Oppenheimer 

approximation, Hartee-Fock (HF) theory, and DFT. The forthcoming section, however, 

will discuss DFT in detail, which is employed in the current study.   

2.2.2 Density function theory (DFT) 

DFT method is preferred over HF while dealing with larger systems like proteins and 

systems containing metal ion transition states. DFT obtains ground-state energy and relate 

properties using molecular density p. It was first conceptualized by Thomas and Fermi who 

demonstrated compliance between molecular electron density and the wavefunction91. 

However, this theory was later upgraded in 1964 by Hohenburg and Kohn92, who proposed 

two theorems to overcome poor representation of properties like molecular bonding and 

kinetic energy defined previously and rather treated the electron energy as a function of 

electron density defined as: 

         𝐸[𝜌(𝑟)] = ∫ 𝑉𝑒𝑥𝑡(𝑟) 𝜌(𝑟)𝑑𝑟 +  𝐹 [𝜌(𝑟)]                            (2.5) 

In the above equation, external potential Vext defines the interactions of the 

electrons whereas the right-hand-side illustrates the sum of the kinetic energy of the system 

combined with interatomic interactions 93. However, F in this equation represents Kohn 

and Sham theory expanded below: 

  𝐸[𝜌(𝑟)] = 𝐸𝐾𝐸[𝜌(𝑟)] +  𝐸𝐻[𝜌(𝑟)]  + 𝐸𝑋𝐶[𝜌(𝑟)]                   (2.6) 

EKE and EH are described in equation 2.7 and 2.8, where density is defined 

according to Kohn-Sham orbitals, thus defining the kinetic energy EKE and the coulomb 

energy EH of orbitals.  

       𝐸𝐾𝐸[𝜌(𝑟)]  =  ∑ ∫ 𝛹𝑖 
𝑁
𝑖=1 (−

1

2
�̂�2) 𝛹𝑖 (𝑟) 𝑑𝑟                         (2.7) 

                                     𝐸𝐻[𝜌(𝑟)]  =  
1

2
∫ ∫

𝜌(𝑟1) 𝜌(𝑟2)

(|𝑟1− 𝑟2|
𝑑𝑟1𝑑𝑟2                               (2.8) 

The last term EXC component given in equation 2.6, however, is not categorically 

defined and therefore is the source of problems encountered while approximating 

calculations. There are several approximation operators to address the this problem who 

can efficiently integrate inter-electronic contribution to the kinetic energy namely, local 
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density approximations (LDA)94, Generalised gradient approximation (GGA)95, and hybrid 

functionals.  

2.2.3 B3LYP 

Commonly used hybrid functionals are B3LYP that works by combining exchange 

energies such as ELSDA, EHF and Delta EB88 with the correlation energies ELYP and EVWN 

given below: 

𝐸𝑟𝑐
𝐵3−𝐿𝑌𝑃 =  (1 − 𝑎0)𝐸𝑥

𝐿𝑆𝐷𝐴 +  𝑎0𝐸𝑥
𝐻𝐹 + 𝑎𝑥 △ 𝐸𝑥

𝐵88 +  𝑎𝑐𝐸𝑐
𝐿𝑌𝑃 +  (1 − 𝑎𝑐)𝐸𝑐

𝑉𝑊𝑁       (2.9) 

A hybrid function illustrated by Becke96, and Lee, Yang and Parr97 is a standard 

model used in multiple application of chemistry. B3LYP incorporates various 

approximations where parameters (𝑎0, 𝑎𝑥 and 𝑎𝑐) have been determined by least-squares 

fitting mapped to the test set comprising multiple small molecules. However, key problem 

arises while selecting an appropriate method for optimization whereas another debate 

originates when semiempirical approaches are applied for parameterization, which yield 

unknown amount of electron calculations. The B3LYP extension was utilized for better 

results specifically in averaging densities under the domain of biomolecules and explaining 

metal transitions states to define quantum mechanical region. 

2.2.4 Basis set 

Presentation of a basis set in approximation of Schrödinger equation is fundamental, which 

represents a set of one electron functions composed of finite number of atomic orbitals that 

lie in the atomic nuclei within the molecule. Commonly used basis set to treat atomic 

orbitals are Gaussian-type orbitals (GTOs) and Slater-type orbitals (STOs). STOs is the 

most natural way to describe atomic orbitals that relies on solution to Schrödinger equation 

and corresponds to set of functions that decay exponentially with distance from nuclei98. 

STOs gives optimal results if used on atomic orbitals located on the same atom. Whereas 

GTOs are comparatively less accurate but work well if atomic orbitals are based on 

different atoms. GTOs accuracy can be achieved by employing extended number of 

functions to the orbitals in each atom, known as minimal basis set. Notation originating 

from John Pople is X-YZg where Y and Z represent valence orbitals based on two 

functions and X indicates the number of Gaussian comprising basis set to implement higher 
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momentum functions. Both these basis sets are extended forms of most widely uses basis 

sets developed by Dunning and coworkers called correlation consistent basis set. 99,100. 

Some of the examples are given in Table 2.1. 

Table 2.1. Widely used consistent basis set developed by Dunning and coworkers. 

Basis set Explanation 

cc-PVDZ cc-p refers to correlation consistent polarized, V 
means Valence and DZ stands for double-zeta 

cc-pVTZ cc-p refers to correlation consistent polarized, V 
means Valence and TZ stands for triple-zeta 

cc-pVQZ cc-p refers to correlation consistent polarized, V 
means Valence and QZ stands for Quadruple-zeta 

aug-cc-pVDZ Augmented basis sets with added diffuse funcitons 

 

Whereas, minimal basis set is represented as STO-XG where X refers to an integer. 

Despite computationally cheaper than its counterparts, minimal basis set provides 

insufficient results lacking research-quality publication101. On the contrary, split valence 

basis set implements polarization function that treats valence electrons of inner shell 

separately with single functions, hence the reason they are called split valence basis set, 

which are constantly evolving102,103. Commonly used examples of split valence double zeta 

and minimal basis set are illustrated in Table 2.2. If a basis set doubles the number of 

functions in minimal basis set, they acquire the form of double zeta basis. Increasing the 

number of functions to doubles or triples clearly indicate much better description of varying 

electron distribution in a certain direction. 

2.2.5 Effective core potential (ECP) 

Furthermore, the systems with higher period number such as transition metals from third 

and fourth row according to the periodic table are treated with an effective core potential 

(ECP). ECP provides an alternative solution to otherwise poorly characterized basis set due 

to realistic effects. Because inner electrons do not directly contribute to predicting chemical 

properties of heavy atoms, the basis set is required for valence electrons alone. These inner 

electrons are replaced by ECP thus disregarding the need for core basis function that needs 

larger sets of Gaussian. The best results in terms of accuracy and period, however, can be 
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acquired by the inclusion and combination of ECP and standard zeta, or polarization basis 

sets103,104.  

Table 2.2. Commonly used examples of split valence double zeta and minimal basis set. 

Minimal basis set 

STO-2G 

STO-3G 

STO-6G 

Split valence basis set 

3-21g 

3-21+g 

3-21+g* 

6-31g* 

6-31g* 

6-311G(d,p) 

 

In this work, a spit valence basis set 6-31+G(d,p) and SBKJC basis set derived by 

Stevens and coworkers encompassing the valence double-zeta potential set coupled with 

ECP has been employed105. SBKJC particularly deals with large sets of systems comprising 

elements of higher period number covering atoms from mostly group 14-17 (C-Sn, N-Sb, 

O-Te, and F-I). Whereas, 6-31+G(d,p) is a higher order basis set capable of yielding better 

results with polarization functions included to treat chemical bonds and long-range 

interactions efficiently in the presence of diffuse functions (+). This basis set with (d,p) 

indicates that it will treat heavy atoms with first function and hydrogen atoms exclusively 

with second function. Additionally, DFT method DFTB3 is employed in QM/MM US 

study of covalent inhibition.  However, to address a large part of our molecule in production 

run especially out of the active site is usually treated by molecular mechanics approaches.   

2.3 Molecular mechanics 

It is apparent from the aforementioned discussion and theories that to determine any model 

using either MM or QM methods, accurate force field (FF) parameters are necessary to 

define interatomic forces acting upon a particle at any given time. MM approaches are 
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preferably used to elucidate structural properties of large systems including 

metalloproteins, which employ classical mechanics to calculate potential energy of the 

system. Energy of the system is derived from a series of empirical parameters defined as a 

function of nuclear positions typically described as FF parameters. FF parameters are 

usually generated for two well-known interactions namely, bonded, and non-bonded 

interactions106,107. Commonly used FF parameters include bond, angles, torsion angles, 

dihedrals etc. calculated for bonded interactions, which are available in software packages 

like AMBER and CHARMM. Non-bonded interactions however constitute vdW and 

electrostatic interactions that are calculated using 12-6 Lennard Jones or a combination of 

Coulomb equation and 12-6 Lennard-Jones potential108–110. Despite the presence of these 

widely used methods, their accuracy and applicability are questionable while implying 

metals in bioinorganic. However, there are several approaches now available to overcome 

these limitations illustrated in Figure 2.2 such as representation of the metal ion as soft-

sphere that employs Lennard-Jones potential, treat non-bonded model as dummy atoms, or 

use harmonic function for bonded models. While bonded models can be efficiently treated 

with QM approaches, MD simulations provide finest structural and dynamical insights of 

large molecular system, by calculating potential energy of all forces acting on non-bonded 

models. Theoretical background of principles of MD simulations that shed light on various 

ensembles, algorithms used for integration and vice versa are described in detail. 

Figure 2.2. Approaches to treat metal ions in the framework of molecular mechanics 

MM. 
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2.3.1 Statistical mechanics  

Statistical mechanics or statistical thermodynamics is a discipline that provides framework 

to connect properties from microscopic to macroscopic states. Microscopic properties 

generally refer to molecular properties such as atomic configurations, molecular 

geometries, their inter and intramolecular interactions, velocities, and positions111,112. It 

determines relative information about molecular distribution of given states and relate that 

information to retrieve macroscopic average properties like volume V, energy E, 

temperature T, and N number of particles. Statistical mechanics generally revolve around 

the equation of entropy that differs depending on ensembles, thus act as a preamble for all 

other thermodynamics quantities that follows S.  

                                             𝑆 =  𝜅Β ln Ω                                         (2.10) 

2.3.1.1 Ensembles of statistical dynamics 

Statistical dynamics provides means to calculate thermodynamics of different ensembles 

for our system113. These ensembles refer to different parameters or physical properties that 

are monitored while these particles are allowed to interact with each other. Particularly MD 

simulations and MC simulations that encompass N number of atoms or molecules can 

acquire any of these ensembles for predefined period114. Ensembles commonly used to 

calculate possible states of thermodynamics are explained herein: 

Canonical ensemble (NVT) 

It is a statistical mechanics ensemble that incorporates all possible states maintained at 

constant temperature and acquire thermal equilibrium with heat bath for exchange of 

energy. System of any size can be treated with this ensemble given the relative size of heat 

bath is large enough. There are three parameters that are fixed in canonical ensemble: the 

volume V, the absolute temperature T, and the number of atoms N.  

Micro canonical ensemble (NVE) 

In the absence of absolute transfer of energy between the system and it surroundings, micro 

canonical ensemble which works with fixed number of atoms N, the total volume V, and 
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the total energy E is expended. Since there is no interaction with surroundings, this 

ensemble does not cater the temperature T and represent an isolated system.  

Isothermal-isobaric ensemble (NPT) 

It is one of the significant ensembles that maintains the total number of particles N, the 

constant temperature T, and the pressure P, while allowing flow of energy in and out of the 

system boundaries in the presence of heat bath. Isothermal-isobaric system as the name 

indicates holds a critical position in chemistry and especially when describing Gibbs free 

energy or any other system that requires to function at constant pressure P and temperature 

T. 

2.3.2 Molecular dynamics simulations  

Two frequently used methods to control properties and interactions of atoms or molecules 

based on selected ensembles are MC and MD simulations. MC methods preferably exploit 

canonical ensemble (NVT) while searching for conformational phase space of any 

molecular system. MC simulations introduced by Metropolis in 1950 is preferred to sample 

the configuration phase space of the system to efficiently represent its thermodynamic 

behaviour, as it does not calculate time dependent kinetics of the given system81. Various 

algorithms are expended in MC to locate potential energy surface of the system as a 

function of all coordinates are granted complete degree of freedom115. Whereas MD 

simulations provide evolution of both kinetics and thermodynamic behaviour of the system 

while employing Newton’s equation of motion (F=ma), most commonly under NVT or 

NPT ensembles114. Key difference between MC and MD simulations, however, is the 

enclosure of time variable that takes into account N body simulations of system that are 

allowed to interact for predefined period using either of the statistical ensembles. All MD 

simulations employ certain integrators to determine relative position of a particle, which is 

calculated by assuming relative position of atoms or molecules (r), velocity (v), and 

acceleration (a) that will be acted upon by another atom/molecule. The Taylor’s 

expansion116 of these approximations that commonly use Verlet/Velocity-Verlet algorithm 

are: 

                          𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡)  + 𝜈(𝑡)𝛿𝑡 +
1

2
𝑎(𝑡)𝛿𝑡2+ ..                         (2.11) 
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                 𝜈(𝑡 + 𝛿𝑡) = 𝜈(𝑡) + 𝑎(𝑡)𝛿𝑡 +
1

2
𝑏(𝑡)𝛿𝑡2 +..                           (2.12) 

               𝑎(𝑡 + 𝛿𝑡) = 𝑎(𝑡) + 𝑏(𝑡)𝛿𝑡+..                                  (2.13) 

2.3.2.1  Simulation integrators and thermostats 

Verlet algorithm was first coined by a French physicist Loup Verlet in 1967, which deems 

the position r and acceleration a at a given time t to calculate one time-step forward 

positions 𝑟(𝑡 + 𝛿𝑡)at 𝑟(𝑡 + 𝛿𝑡) starting from the previous position 𝑟(𝑡 + 𝛿𝑡). This 

scheme, however, does not compute the velocities rather integrates to compute kinetic 

energy, eventually leading to the total energy. The total energy of a system indicates the 

sum of kinetic and potential energy. While kinetic energy is retrieved from the velocities 

of atoms/particles, the potential energy is extracted from relative positions from all three 

directions, denoted as 3N where N is the number of atoms that needs second order 

differential equations integrated in several algorithms including the Verlet predictor.  

Furthermore, to elucidate the dynamics or behaviour of a system with specific 

thermodynamic constraints, it is required to incorporate thermostat or barostat in your 

simulations. The accurate way of maintaining temperature according to Berendsen et al. is 

to add an external heath bath with constant value of T coupled with temperature of the 

system to administer fluctuations at each time step117,118. The resulting velocities that are 

scaled at each time step will produce difference in temperature that is proportional to the 

rate of change in temperature to avoid numerical error during MD simulations. Similarly, 

barostat is employed to maintain constant pressure of the system while volume is scaled 

inspite of velocities in this case. Berendsen algorithm is one of the efficient algorithms to 

relax the system in order to acquire equilibrium state. However, another method employed 

in this study is the Langevin thermostat that also considers each atom coupled with heat 

bath while employing Langevin equation as an integrator119.  

                                            𝓂r̈  =  −
∂E

∂r
−  𝓂ηel ṙ + FL(t)                               (2.14) 

where E refers to the potential energy, m is the mass, ηel is the friction constant, and 

FL(t) is the random force acting on the system.  
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2.3.2.2 Periodic boundary conditions 

Another very important parameter in MD simulations is the integration of solvent since 

macromolecules cannot exist in isolation and need water molecules and ions to obtain 

realistic simulations results. Computer programs designed to study the properties in bulk 

cannot handle extremely large number of atoms covered in water, which will compromise 

efficiency of the system. It is pertinent to calculate precise and accurate macroscopic 

properties for reliable simulations results; therefore, treatment of boundaries and boundary 

effects is crucial. In this connection, two methods are commonly used for solvation: either 

implicit or explicit120. While explicitly defining a periodic water box around 

macromolecules, appropriate representation of the system is necessary that can hold 

enough atoms at an appropriate density121. A cubic box used for simulating a typical system 

in mentioned in Figure 2.3. However, incorporation of periodic box must be carefully 

monitored to avoid unphysical artefacts and unrealistic interactions due to charged system.  

Furthermore, it is advised to calculate properties based on interactions according to 

the minimal image convention to avoid duplicate interactions or self-interactions of 

molecules. Concept of minimal image convention was first introduced by Metropolis et al. 

in 195381, which is based on the equation that corresponds to movement of non-Coulomb 

or long-range interactions during simulations for each molecular motion which will 

consequently avoid the surface effects.  

         𝐼𝑓𝑟𝑥,𝑦,𝑧(𝒾)  ≥  −  
𝐵𝐿

2
 ⟹  𝑟𝑥,𝑦,𝑧 (𝒾)  =  𝑟𝑥,𝑦,𝑧 (𝒾) –  𝐵𝐿     (2.15) 

      𝐼𝑓𝑟𝑥,𝑦,𝑧(𝒾)  ≤ − 
𝐵𝐿

2
 ⟹  𝑟𝑥,𝑦,𝑧 (𝒾)  =  𝑟𝑥,𝑦,𝑧 (𝒾)  +  𝐵𝐿               (2.16) 

where 𝑟𝑥,𝑦,𝑧 (𝒾)  demonstrates Cartesian coordinates of corresponding ith particle 

whereas BL represent length of the elementary box. However, it is obvious that short-range 

order needs to be composed of few hundred particles to constitute a system to avoid 

artificial symmetry effects. Whereas the description of long-range order must exceed 

number of particles accordingly.  
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Figure 2.3. Schematic representation of two-dimensional periodic boundary 

conditions. 

2.3.2.3 Ewald summation method for long-range interactions 

Handling of electrostatic interactions constituting long-range forces of order r-n with n≤3 

needs proper treatment especially while working with charged species to calculate 

properties like dielectric constant122. There’s tendency in the above explained methods to 

define box length for long-range simulations, which is usually greater than half of the box 

length. However, to address proper handling of such interactions, variety of methods have 

been proposed, out of which Ewald summation method is employed in the current study to 

perform MD simulations.  

Ewald summation method employed in particle mesh method (PME) was devised 

by Ewald in 1921 that efficiently calculated all the electrostatic interactions occurring 

inside of the periodic box with all their periodic images123. It is so far the most widely used 
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method of periodic systems that was originally built for ionic crystals’ energy calculation. 

It calculates total Coulomb interactions/Lennard-Jones potential alongwith periodic 

boundary condition and charge neutrality of any molecular system110. PME method is 

recommended while considering larger systems containing lipoid bilayers, proteins and 

DNA that can be implemented on a supercomputer for increased computer performance.  

2.3.3 Molecular docking 

Last but not the least, one of the most important binding site predictions and the foremost 

step to explore ligand-receptor binding potential is molecular docking defining the 

preliminary stage of molecular modeling. Based on concepts proposed by Warshel, 

Karplus, and Levitt, the best strategy to study molecular interactions is to combine docking 

protocols with MM and QM methodologies124–126 indicated in Figure 2.4. Docking 

packages run on two basic steps: 1) first step focuses on finding the best docking pose 

through sampling and prediction of multiple conformations, and 2) the second step assesses 

the bound ligands to their proteins based on binding affinities, which are calculated using 

different scoring functions.  

 

Figure 2.4: Diagrammatic sketch of three main families of molecular modeling 

methods. 

These scoring functions incorporate exhaustive search algorithms, algorithms 

based on heuristic approaches like genetic algorithms (GA) and simulated annealing. 
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Docking protocols generally imply two docking approaches: rigid and flexible docking. 

The latter is frequently used in performing virtual screening of large libraires efficiently, 

which are based on fast and inexpensive conformational and stochastic algorithms. Current 

study has employed three different docking software’s for multiple studies namely, 

Autodock and Genetic Optimization for Ligand Docking (GOLD) for non-bonded 

docking, and High Ambiguity protein-protein docking (HADDOCK) for covalent docking. 

Both GOLD and Autodock employ genetic algorithm GA that emphasizes on 

sampling each pose based on energetics of pervious one through induvial physics and 

machine learning scoring functions127,128. GA provides a ligand pose with highest fitness 

and lowest energy conformation129. However, GOLD and HADDOCK both keep the 

protein flexible while performing molecular docking whereas GOLD implements two 

scoring functions: Goldscore and Chemscore expanded in equations 2.17.  

∇𝐺𝐵𝑖𝑛𝑑 =  ∇𝐺0 + ∇𝐺𝐻𝐵 ∑ 𝑓(∆𝑟)𝑓(𝐻𝐵 ∆1𝛼) + ∆𝐺𝑚𝑒𝑡 ∑ 𝑓(∆𝑟) + ∆𝐺𝑙𝑖𝑝𝑜 ∑ 𝑓(∆𝑟)𝑙𝑖𝑝𝑜 +𝑚𝑒𝑡

∆𝐺𝑟𝑜𝑡𝑁𝑟𝑜𝑡
′                                                                                                                      (2.17) 

Equation 2.17 sums up the binding energy of translational and rotational entropy, 

energy from hydrophobic to hydrogen bonds, and metal ligation. Furthermore, the penalty 

function 𝒇(∆𝒓)𝒇(∆𝟏𝜶), and the loss of entropy ∆𝑮𝒓𝒐𝒕 at the time of binding are all fitted 

to experimental affinities by plotting regression. GOLD also characterized the energy in 

result of crash penalties, close contacts, and poor conformations pose that give rise to the 

final Chemscore:  

               𝐶ℎ𝑒𝑚𝑆𝑐𝑜𝑟𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  ∆𝐺𝑏𝑖𝑛𝑑 +  𝐸𝑐𝑙𝑎𝑠ℎ + 𝐸𝑖𝑛𝑡                        (2.18) 

Noticeably, both these software’s rely on scoring functions based on FF to cater 

vdW, and electrostatic interactions between the interacting partners. FF parameters 

expended in these software’s are listed in equation 2.19, where Aij and Bij signify potential 

of mean forces between i and j and yield sum of all the forces acting on the two molecules.   

                         Δ𝐺𝑏𝑖𝑛𝑑 =  ∑ ∑ [
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −  

𝐵𝑖𝑗

𝑟𝑖𝑗
6 +  

𝑞𝑖𝑞𝑗

𝜀𝑟𝑖𝑗

𝑟𝑒𝑐
𝑗

𝑙𝑖𝑔
𝑖                                   (2.19) 

Furthermore, we incorporated HADDOCK particularly for its ability to carry out 

covalent docking efficiently. HADDOCK generally carries out docking in three stages: 1) 
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First, it undergoes rigid body minimization till the local energy minima is found, 2) 

followed by semi-flexible simulated annealing by imparting flexibility to side chains of 

protein, and 3) to render refined complexes submerged in explicit solvent130. The software 

predicts total 200 conformations after the first stage, which are later clustered on the basis 

of structural similarities and can be differentiated from respective scores. 

2.4 Hybrid QM/MM approach 

Combined QM/MM methods have obtained a place while dealing with large systems in 

need of pure QM methods that needs solvation alongwith the simulations of proteins and 

nucleic acids. This approach was first introduced by Warshel and Levitt in 1976 but it 

gained pace in 1986 in the form of a practical QM/MM protocol successfully developed by 

Singh and Kollman83,131. The idea of QM/MM surfaced to provide an affordable method 

of molecular mechanics coupled logically between both systems when applied. 

Diagrammatical sketch of QM/MM is illustrated in Figure 2.5 that indicates partitioning 

of the system into two regions; QM and MM whereby quantum mechanical electronic 

structure calculations partially determine molecular potential of the system whereas the 

other half is treated by force field generated by molecular mechanics.  

 

 

 

 

 

 

 

 

Figure 2.5: Diagrammatical sketch of QM/MM illustrating partitioning of the system 

into QM and MM regions. 
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QM approaches provide for calculations of electronic structures to retrieve ground 

and excited state properties like atomic charges, thermodynamic statistics, energies etc. 

Whereas MM depends on careful calibration of force field parameters of larger number of 

atoms. However, forces acting on QM/MM system are calculated according to equation 

2.20.   

                           𝐹𝑡𝑜𝑡 =  𝐹𝑠𝑦𝑠
𝑀𝑀  +  (𝐹𝑄𝑀

𝑄𝑀 − 𝐹𝑄𝑀
𝑀𝑀).S(r)                                     (2.20) 

where Ftot and 𝐹𝑠𝑦𝑠
𝑀𝑀

 are the forces acting on singe particle and whole system. 𝐹𝑄𝑀
𝑄𝑀 and 𝐹𝑄𝑀

𝑀𝑀 

in the equation 2.20 represent MM and QM regions, which provide smooth transition of 

particles from one region to another with the implementation of S(r) with cutoff 0.2 Å. 

Another important phenomenon that is implemented in the current study is to carefully 

divide the covalent bonds while defining QM and MM regions. Various covalent 

embedding schemes are in use such as the one introduced by Singh and Kollman in 1986 

that cuts across the covalent bonds while incorporating a link atom that needs to be 

connected to MM region illustrated in Figure 2.6132,133. However, it must be done very 

carefully to cater the electronegative atoms lying at the surface of electronic structure. 

Furthermore, to fully understand and analyse the dynamics of QM/MM potential, we have 

employed US in the current study.  

 

 

 

 

 

 

 

 

Figure 2.6: Division of covalent bonds across the QM and MM regions.  

 



 
CHAPTER 2                                                        COMPUTATIONAL AND THEORETICAL OVERVIEW 

 

33  
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

 
2.4.1 Umbrella sampling 

QM/MM approach, Umbrella sampling (US), generates reaction free energy profiles of 

reaction pathways explored using DFT methods. US is preferred when dealing with 

electron transfer chemical reactions involving transfer of proton from one atom to another 

donor or acceptor atoms or processes like protein folding and unfolding134–136. In a broader 

perspective, it provides changes in free energy that reveal valuable information about 

kinetics and thermodynamics of processes like ligand-receptor binding. US approach 

applies harmonic constraints to move along the reaction path to run parallel simulations. 

Diagrammatic sketch of US algorithm is illustrated in Figure 2.7. It is run in separate 

windows representing individual simulations, which are then combined to generate free 

energy landscape of the system. The method developed by Torrie and Valleau 109,137 

introduced biasing potential that directs the path of simulations in a certain direction to 

keep the reaction coordinate q(r) along successive positions expanded below: 

    𝑈𝑏𝑖𝑎𝑠 = ∑ 𝑘𝑖(𝑞(𝑖)(𝑟) −  𝑞0
(𝑖)

(𝑟))2
𝑖                              (2.21) 

Biasing potential qo(r) carried out simulations on equally placed multiple windows 

in reaction coordinate space that provide histograms. Histograms are generated such that 

they are overlapped by defining correct force constants ki and spacing between the centers. 

This equation is sufficient to study the unbiased simulation of one window that chooses 

force constants arbitrarily. Whereas, if one wishes to combine the energy curves of multiple 

windows, then force applied needs to be calculated by introducing the bias potential and 

by combining the free energy curves138,139. This process is termed as adaptive umbrella 

sampling that used the following equation:  

                                      Ubais (q) = −G (q) = kBT ln p(q)                                       (2.22) 

To combine the data from unbiased sampling of US, the weighted histogram 

analysis method (WHAM) is expended. Successful implementation of WHAM depends on 

number of factors including the strength of biasing potential applied on the reaction 

coordinate, number of windows to allow sufficient overlap, and the section of correct 

method for slow and accurate convergence140,141. WHAM is one of the most promising 
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methods to estimate calculate weighted average of individual window by minimizing the 

statistical error and functions on the following equation:   

𝐿 =  𝑙𝑛 ∏ ∏ (𝑓(𝑘)𝑒−𝛽𝑈
𝑖

(𝑘)
𝑝𝑖)

𝑛𝑖
(𝑘)

𝑏𝑖𝑛
𝑖=1

𝑁𝑆𝑖𝑚
𝑘=1 + ∑ 𝜆(𝑘)𝑁𝑆𝑖𝑚

𝑘=1 (1 − ∑ 𝑓(𝑘)𝑒−𝛽𝑈
𝑖

(𝑘)
𝑝𝑖

𝑁𝑏𝑖𝑛
𝑖= 1 ) (2.23) 

where pi is the equilibrium probability for bin i and 𝑛𝑖
(𝑘)is the histogram count in bin i. 

However, 𝑓(𝑘) =  
1

∑ 𝑒
−𝛽𝑈

𝑗
(𝑘)

 𝑝𝑗
𝑁𝑏𝑖𝑛
𝑗=1

  is the Boltzmann factor biasing energy, and −𝑈𝑖
(𝑘)

𝑒𝑘𝐵𝑇  is the 

normalizing factor for equilibrium probability used to generate the equation 2.23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Diagrammatic sketch of overlapping windows of Umbrella sampling 

illustrating algorithm behind its calculations, which are combined using WHAM.  
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2.4.2 Metal-ion modeling 

Metal center parameters of novel metals or residues can be derived using QM or hybrid 

QM/MM approaches, which typically deal with metalloprotein region from QM 

perspective whereas MM region is dealt using MD simulations for having insights into 

dynamics of the system. One of the prominent tools employed in this study to model metal 

sites using bonded models is the metal center parameter builder (MCPB) developed by 

Martin Peters in 2010142143. The complete workflow adopted from MCPB is given in 

Figure 2.8.  

First step of model builder focuses on optimizing the geometry of bismuth 

metalloids with SBKJC ECP using DFT level of theory. The basis and role of SABKJC in 

parametrizing metalloids have been discussed in section 2.2.5. MCPB currently supports 

more than 80 metal ions, which are parametrized using vdW parameters comprising RESP 

fits from vdW radii and Lennard-Jones potential adopted from Li et al. and UFF144. The 

second corresponds to generation of FRCMOD that can use any of the predefined methods 

such as Seminario methods, Z-matrix method, or an empirical method. The third step 

however encompass RESP charge fitting leading to respective mol2 files containing fitted 

RESP charges. This step also provides multiple options to choose from i-e ChgModA for 

treating all charges with flexibility, ChgModB that treats only heavy atoms, ChgModC for 

keeping charges of backbone atoms fixed, and ChgModD, which keeps charges of both 

backbone and CB atoms fixed. However, all these charges are assigned using AMBER FF. 

Finally, the last step is to constitute PDB file with their respective metal residues that can 

be implemented in any MD simulations package including AMBER, CHARM, ParmEd, 

GROMACS etc. All these parameterizations have been carried out on GAMESS_US 

whereas MD simulations have been performed with AMBER suite.  

Despite the challenges, the molecular and electronic level insights provided by 

classical mechanics and QM approaches are unmatchable and hard to attain using 

experimental procedures. This study has pulled efforts in parametrizing novel bismuth 

compounds and explore the kinetic and thermodynamics effect of covalent bond on an 

enzyme binding site using the above-mentioned methods. However, methods defined in 

forthcoming sections constitute the pillar of this study in expanding the applicability of 
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molecular modeling to unveil ligand-receptor interactions and interactions established by 

metallo-ligands with neighboring residues.  

2.5 Evaluation of structural and dynamical parameters 

Various tools have been employed to analyse the structural and dynamical properties from 

molecular docking to MD and QM/MM simulations. A few of these methods and tools are 

listed here that include binding free energy calculations, radial distribution function (RDF), 

and axial frequency distribution (AFD).  

Figure 2.8: Flowchart of MCPB.py suite adopted from 142. 

2.5.1 Binding free energy calculations 

A popular method to calculate absolute binding affinities generally between ligand and its 

receptor while analysing biomolecules is Molecular Mechanics Generalized Born/Poisson 

Boltzman Surface Area MM(PB/GB)SA method implemented in AMBER package145. 

This method provides results in correlation with experimental values with r2 ranging from 
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0.0 to 0.8 for individual proteins unless the difference between ligand affinities remain 

below 12 kj/mol146. These theoretical methods are capable of drawing correlation between 

their equivalents while making definitive predictions. In this context, this method has been 

employed in this thesis to evaluate interaction energy between the enzymes and their 

mutant counterparts on simulated trajectories retrieved from MD and QM/MM ensemble 

averages.  The Eq used to calculate the binding free energy contains multiple energy terms 

that can be individually executed and improved.  

                    Δ𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  𝐸𝑏𝑖𝑛𝑑 + 𝐸𝑒𝑙 + 𝐸𝑣𝑑𝑊 +  𝐺𝑝𝑜𝑙 +  𝐺𝑛𝑝 −  TS            (2.24)                                                          

Electrostatic, vdW interactions, and information from bonded terms account for the 

first three MM energy terms. Whereas Gpol and Gnp are the polar and non-polar energy 

solvation terms calculated from PB equations and linear equations drawn from solvent 

accessible surface area (SASA)145. However, the last term takes into account the 

temperature T and entropy S using normal-mode analysis, which employs harmonic-

oscillator in ideal-gas approximations147. Apart from discrepancies in this method that 

strongly rely on continuum solvation method employed and thermodynamic 

approximations, it has been popular in evaluating post-processing trajectories of 

simulations. Furthermore, it highlights functional significance of critical residues by 

employing alanine scanning, which has revealed useful information to screen and propose 

a handful of inhibitors for respective enzymes.  

2.5.2 Radial distribution function 

RDF provides distribution of atoms that lays basis on either the center of mass of molecule 

or pair distribution functions. RDF is capable to shed light on structural properties of the 

solvated system and can efficiently predict the orientation of molecules lying at the 

interaction center148. One of the significant advantages of this method is that results are 

comparable to the data received from experiment diffraction assays. RDF is 

mathematically represented as: 

                                                        𝑔(𝑟) =
𝑝𝑖(𝑟)

<𝑝𝑗>
=

𝑛𝑖𝑗(𝑟)

<𝑝𝑗>4𝜋𝑟𝛿𝑟
                                      (2.25) 
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which gives the probability of finding one particle i from another particle j lying at 

a distance r from each other. Furthermore, n(r) denotes number of atomic shells of certain 

width Δr, leading to the mean atomic density presented as peaks in resulting graphs.  

2.5.3 Axial frequency distribution 

However, another method to estimate structural properties of a system is AFD indigenously 

developed and implemented in our lab149. AFD hold the capability to estimate the 

coordination geometry of ligands with respect to proteins while averaging the density form 

all the directions based on initial atom masks. Exact details pertinent to the orientation and 

movement of protein-ligand complex over the simulation trajectories are revealed. It not 

just provides the coordination geometry but also ascertain their stability by estimating the 

distribution of relative coordinate axis defined using the atomic masks. The equation to 

represent AFD is defined as: 

                              𝐴𝐹𝐷  =   ∑ 𝑚𝑖, 𝑗𝑘𝑙
𝑖=1,𝑗=1                     (2.26)                                                             

where mi,j correspond to the distance between two particles i and j. AFD in principle 

provide local movements and structural changes unlike RDF based on two-particle 

correlation, which is not responsive to local structural reorganization events.  

2.6 Hardware overview 

To implement the methods discussed above, comprising classical MD simulations and QM 

to elucidate protein-ligand complex, or metalloids solvated in hundreds of water molecules 

can take up to days or several hours on an ordinary desktop computer. Computational 

efforts required to perform QM jobs largely depend on number of atoms included in the 

QM region and the timestep, which requires supercomputers. To perform simulations 

implemented in this thesis, Intel ® Core™ 2 Duo e8600@3.33 GHz and Intel ® Core™ 

i7-5930k CPU@3.50GHz with 12 processors was employed with Centos 7 as an operating 

system. Computational Biology Lab of National Center for Bioinformatics at Quaid-i-

Azam University ensures provision of high-performance cluster GPUs given in Figure 2.9 

to conduct these computational analyses. 

mailto:CPU@3.50
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Figure 2.9. Multi-core GPUs available at Computational Biology Lab of National 

Center for Bioinformatics at Quaid-i-Azam University. 
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3. COVALENT INHIBITION OF OXYR: A QM/MM STUDY 
 
3.1 Background 

Rapid evolution and dissemination of AMR drastically undermines the effectiveness of 

antimicrobial agents; thus, posing a serious threat to public health globally that prompts 

uncontrolled resistance in microorganisms1,9,19,52. According to the WHO, antimicrobial 

treatment is inconceivable in the absence of effective antimicrobial agents that could lead 

to more than 10 million deaths annually by 2050 if left unaddressed3,13,150,151. In that 

respect, concerted efforts in design and development of effective drugs are required to 

overcome the emergence of MDR that has outpaced drug discovery due to limitations of 

investment in research and pharmaceutical industry44–46. Generally, the convergent 

approach to classify antipathogenic compounds is to target virulent pathways that interfere 

with regular defense mechanisms of organisms; thus, limiting the possibility of acquired 

resistance due to milder evolutionary pressure50,53,152–154.  

In this context, Gram negative bacteria exhibit a reactive oxidative specie; H2O2, 
that is produced in response to higher stress levels, which in turn triggers expression of 

multiple genes involved in maintenance of homeostasis, or repair especially the 

transcription factors that regulate bacterial defense mechanisms155. H2O2 mainly targets 

protein thiol groups or metal centers present in transcription factors especially those that 

have relatively higher reactivity towards oxygen/nitrogen species156,157. One such 

transcription sensor OxyR that responds to enhanced levels of H2O2 is necessary for full 

virulence of P. aeruginosa158–160 and is thus the protein of interest in this study. OxyR is 

highly sensitive and selective transcription factor sensor of H2O2, which is reduced by 

cysteines present in the active site leading to increased transcription of antioxidant genes 

such as KatA, responsible for acute intrinsic resistance in P. aeruginosa58. To date, multiple 

crystal structures of OxyR regulatory domain (RD) have been solved from Escherichia 

coli, Pseudomonas aeruginosa, Vibrio vulnificus, Neisseria meningitidis, and 

Porphyromonas gingivalis. However, the molecular evidence of involvement of H2O2 in 

catalysis and binding at catalytic triad of OxyR is published in biochemical studies of full-

length P. aeruginosa OxyR (Pa-OxyR)161. OxyR monomer encompasses six cysteine 
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residues, out of which Cys199 and Cys208 are involved in gene activation by disulfide 

bond formation that participates in sensing H2O2 in its environment159,160,162,163. The 

reported crystal structure of Pa-OxyR concluded the role of particularly one cysteine 

residue; Cys199 by mutating it to Asp, which resulted in drastic reduction of H2O2
160,162–

164. Thus, in this study, we elucidated molecular mechanism of OxyR active site by 

modifying the catalytic Cys199 with the addition of covalent adducts comprising different 

chemical warheads. These lines of work provide insights into inhibition of unexplored 

antipathogenic virulence factor OxyR and shed light on design of such molecules that 

impair the ability of bacterial response to oxidative stress.  

Prior to covalent modeling of OxyR, we performed non-covalent MD simulations 

with multiple virtually screened ligands of varying scaffolds to have insights into the 

binding dynamics of OxyR and its neighboring residues. Interestingly, results yielded 

unproductive and highly unstable enzyme:inhibitor complexes after multiple attempts with 

different chemical scaffolds demonstrated in Figure 3.1.  

 

 

 

 

 

 

 

 

 

Figure 3.1: Unproductive non-covalent MD simulations of four different inhibitors. 

Detachment of ligands are highlighted in square.  

These findings signify detachment of non-covalent inhibitors lying at the surface 

of OxyR due to its flexible binding site that reinforce the significance of irreversible 
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covalent inhibition of stress modulator protein in hand with underlying structural aspects.  

Multiple studies have previously reported ligand-induced modifications especially one of 

the most studied Receptor tyrosine kinases (RTK), laid basis in understanding modulations 

of signaling pathways by targeting cysteine containing proteins165,166. Several FDA drugs 

covalently modify Epidermal growth factor receptor (EGFR) and prevent its activation by 

H2O2 for example afatinib, neratinib, dacomitinib, and rociletinib that incorporate a 

Michael acceptor in their structure as an electrophilic warhead166,167. Furthermore, 

inhibitors with reported biological activity encompass warheads like α-ketoamides, 

pyrazoles, aldehydes, and hydroxymethyl ketone (HMK). These warheads are famous in 

forming covalent adducts with extracellular signal-regulated kinases (ERK), akin to 

peroxide stress response sensor OxyR168–172. However, apart from the mutational analysis 

of OxyR catalytic site that effectively resulted in reduction of H2O2
173–175, recently 

published experimental inhibitor of OxyR; an antipathogenic compound significantly 

decreased the activity of H2O2
176. This sheds light on strategic development of small 

molecules or fragments through which the adaptive stress response can be regulated. 

Nevertheless, covalent modifications, mutational and inhibition studies discussed so far 

have laid basis in design of the current study.  

Thus, to elucidate the function-regulated effect of cysteine modification and to 

understand the impact of warhead modulation on reactive center and chemical stability of 

OxyR, we expended QM/MM methods in this study. The second aspect is fundamental in 

designing reversible or irreversible inhibitors since irreversible inhibitor designing is the 

most sustained strategy due to slow dissociation rates unless resynthesis of particular drug 

target takes place177–179. Perhaps, while designing specific covalent modifiers, choice of 

suitable warhead in systematic design is significant since it directly impacts binding 

affinities of non-covalent interactions (Ki) and electrophilic warheads in particular 

reactions (Kinact)180,181. Michael acceptors, which are widely accepted covalent inhibitors 

containing α,β-unsaturated carbonyl moieties in their substructures therefore directed our 

efforts in design of covalent inhibitors comprising Michael acceptors as an electrophilic 

specie182,183. However, our efforts were not limited to Michael acceptors rather we 

incorporated the famous nitrile and thiopene-based inhibitors184,185 to expand our inhibitor 

library. Furthermore, Hyo-Young et al. recently reported first experimental study on OxyR 
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inhibition, which compelled us to incorporate that chemical structure in this study. We thus 

modified the experimental inhibitor with the addition of Michael acceptor warheads methyl 

oxo-enoate and HMK inspired from dimethyl fumarate structure186,187. Chemical structures 

of all four inhibitors are exhibited in Figure 3.2.  

 

Figure 3.2. Chemical structures of the proposed covalent inhibitors A) 

Benzothiopene-core inhibitor B) Modified Exp-2 inhibitor with methyl oxo-enoate C) 

Modified Exp-1 inhibitor with hydroxymethyl ketone D) Nitrile-based inhibitor. 

Reaction centers are indicated with an asterisk whereas the Michael acceptor addition 

of two proposed experimental inhibitors is highlighted in blue.  

Current study, thus, expands its efforts to propose QM/MM inhibition study of 

OxyR and investigate its biochemical process with warheads of varying chemistry, which 

unveil origin of different kinetic rate-constants. Noticeably, considering the importance of 

transient proton transfer from specificity in ribozymes till the shuttling in carbonic 

anhydrase188,189; the phenomenon of proton transfer in current work is observed to differ 



 
CHAPTER 3                                                      COVALENT INHIBTION OF OXYR: A QM/M STUDY 

45 

 

 
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

greatly depending on the nature of warheads that directly impacts the reaction profile. 

Involvement of nearby water molecules and residues forming catalytic triad significantly 

impact the modulation of proton transfer which holds critical standing when dealing with 

extracellular signal-regulated enzymes with flexible binding sites and underlying structural 

aspects. 

3.2  Materials and methods  

The workflow of current study is mentioned in Figure 3.3. 

3.2.1 Selection of covalent modifiers 

The atomic coordinates of three-dimensional structure of OxyR were retrieved from X-ray 

crystal structure available with PDB ID 1I69 in reduced form. To unveil the mechanistic 

of OxyR active site, we chose compounds in a manner that could potentially react in 

different routine due to variations in electrophilic reaction centers, which possess capability 

to exhibit different chemical and topological environment. 

Thus, the first step in selection of inhibitors started from virtual screening that 

established its basis on the presence of electrophilic Michael acceptor in their core 

structure. For this purpose, thiophene-2-one or pyrol-2-one fragment present in most of the 

biological active compounds was used as starting structure (given in Figure 3.4) for 

similarity searching with BIOVIA Discovery studio190.Three different libraries commonly 

used for inhibitor screening were employed; namely ZINC database, Asinex and 

Chembridge database with >80% threshold for ligand selection191–193. The resulting library 

constituted 1,500 compounds that underwent non-covalent docking with GOLD suite 194 

to further screen compounds exhibiting higher binding potential for OxyR active site. The 

top ranked 50 non-covalent complexes mentioned in Table 3.1 were finally selected for 

covalent docking with HADDOCK server195, which screened single compound comprising 

benzothiopene moiety in its structure presented in Figure 3.2a.  

Secondly, recently reported experimental inhibitor of OxyR that underwent 

physiochemical characterization for Gram-negative pathogens namely; P. aeruginosa and 

E. coli was modified176. Addition of Michael acceptor warheads namely, methyl oxo-

enoate and HMK inspired from dimethyl fumarate structure was carried out resulting in 
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two inhibitors namely Exp-1 and Exp-2. Since this is the first experimental inhibitor of 

OxyR that can serve as a template to verify our results, these modified inhibitors remained 

of particular importance. 

Figure 3.3. Workflow of covalent inhibition of OxyR with four proposed inhibitors . 
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Table 3.1: Virtually screened non-covalent docking results from chembridge, zinc, and 

asinex library. 

 

 

Sr. No ID Gold score Sr. No ID Gold score 
1 19796635 62 36 77322699 66 
2 09430801 63 37 09430801 66 
3 09430814 63 38 12585013 67 
4 13129114 63 39 13139114 67 
5 14550325 63 40 19796635 67 
6 19531534 63 41 26095673 67 
7 19796635 63 42 71858580 67 
8 19796636 63 43 11665126 67 
9 35375917 63 44 15946975 68 
10 36389700 63 45 55384989 68 
11 77322699 63 46 13129114 69 
12 02810635 63 47 17301146 69 
13 10337584 63 48 65061768 69 
14 19501458 63 49 5714545 71 
15 64999848 63 50 ZINC41251450 71 
16 65051769 63 51 ZINC41283974 71 
17 13644802 64 52 ZINC41850812 73 
18 65061769 64    
19 02111689 64    
20 04968733 64    
21 14550325 64    
22 15946975 64    
23 17051075 64    
24 19796636 64    
25 55384989 64    
26 63147075 64    
27 06181065 65    
28 14550344 65    
29 14550325 65    
30 17301146 65    
31 19796636 65    
32 32537610 65    
33 40056811 66    
34 65061768 66    
35 71858580 66    
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Figure 3.4. Comparative snapshots of proposed inhibitors in the active site of OxyR 

with interacting residues highlighted. A)  Benzothiopene-core inhibitor B) Nitrile 

inhibitor C) Crystal structure of OxyR with the substrate D) Modified Exp-1 inhibitor 

with hydroxymethyl ketone E) Modified Exp-2 inhibitor with methyl oxo-enoate. 

Lastly, the core structure of highly potent heterocyclic inhibitors of cathepsin-K196 

based on purine template was included in the study to form a covalent adduct with critical 

regulatory cysteine of OxyR, Cys199. So far, a fewer studies have undergone covalent 

inhibition of cysteine proteases with nitrile-based inhibitors, particularly limited 

computational analysis is available. However, the experimentally available information 

suggest that these inhibitors react in an irreversible manner and bind tightly to the active 
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site can thus serve as valuable template196. We, therefore, included this warhead in our 

study to elucidate kinetics of Oxyr under different chemical environment. 

3.2.2 QM-cluster calculations 

DFT calculations that are mainly based on key interactions established between the active 

site of OxyR and proposed inhibitors is exhibited in Figure 3.4. Notably, the location of 

active site of OxyR like many cysteine proteases lies on the surface of protein and hold the 

capability to establish number of interactions including hydrogen bonding demonstrated in 

Figure 3.4. Involvement of interacting residues and conformational information was 

overlaid with the available crystal structure of OxyR with bound substrate that laid basis 

in selection of QM region of each inhibitor. Thus, the selection of QM region included 

Cys199, His198, and His130 along with the inhibitors except for nitrile-based inhibitor that 

lacked His198 in its interaction site. To obtain natural and unbiased results, QM regions 

were kept smaller where Exp-1 inhibitor has 79 atoms and 4H link atoms with overall 

charge -1 whereas the Exp-2 inhibitor has 77 atoms with overall charge -1 including 3H 

link atoms. Furthermore, the QM region of nitrile-based inhibitor has 85 atoms and overall 

charge +2 after 2H link atoms and lastly, the benzothiopene-core inhibitor from zinc 

database contains 83 atoms and +0 charge including 2H link atoms. However, inhibitors 

that used only one His residue while carrying out the reaction, enclosed one doubly 

protonated His residue and the other as singly protonated to keep the charge of the overall 

system neutral. Before undergoing the QM/MM simulations, the protonation states of the 

protein were determined using PropKa server v3.3 given in Table 3.2.  

All four systems were minimized and equilibrated before undergoing US with 

AMBER suite using QM/MM simulations at DFTB3 level of theory that implemented 

theoretical context of QM/MM explained in Section 2.3 and 2.5.1. However, to calculate 

more difficult interaction term HQM/MM, an electronic bedding scheme given in equation 

3.1 is expended in sander, which undergoes MM point charges calculations with electrons 

of the QM system and considers the interactions between MM point charges and QM nuclei 

explicitly.  

                   𝐻𝑄𝑀/𝑀𝑀 =  𝐻𝑄𝑀/𝑀𝑀
𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 + ∑ 𝑞𝑖 ∫

𝜌𝑄𝑀(𝑟)

|𝑟−𝑟𝑖|
 𝑑𝑟

𝑖∈𝑀𝑀
                    (3.1) 
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Table 3.2: pKa of all titratable residues computed with PropKa alongwith their residue 

name and number. Protonated and deprotonated His residues are mentioned accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESIDUE   pKa RESIDUE   pKa 
ASP  51   3.87 TYR  18  10.01 
ASP  56   3.10 TYR  37  10.01 
ASP  76   3.42 TYR  84  12.41 
ASP  86   3.80 TYR 164  10.07 
ASP  99   3.14 TYR 180  11.01 
ASP 110   4.00 TYR 190  10.32 
ASP 116   1.59 LYS  54  10.50 
ASP 124   3.65 LYS  64  10.50 
ASP 160   2.82 LYS 104  10.36 
ASP 202   4.01 LYS 158  10.50 
ASP 206   3.80 LYS 169  10.50 
GLU   1   3.13 ARG  92  11.38 
GLU  35   4.64 ARG 115  12.29 
GLU  40   4.64 ARG 128  11.66 
GLU  65   4.50 ARG 136  11.38 
GLU  67   4.50 ARG 157  11.80 
GLU  71   3.98 ARG 159  11.94 
GLU  77   2.33 ARG 173  11.66 
GLU  85   4.71 ARG 174  12.59 
GLU  93   2.56 ARG 181  11.80 
GLU 103   4.64 ARG 187  12.08 
GLU 109   4.75 ARG 189  12.36 
GLU 133   1.61 ARG 198  11.94 
GLU 156   3.48 ARG 200  11.80 
GLU 171   3.88   
GLU 191   3.91   
GLU 195   3.91   
CYS 199   7.94   
CYS 208   6.79   
HIE  21   6.34   
HIE  27   3.94   
HIE  86   4.60   
HID 130   5.72   
HIE 132   3.71   
HIE 145   4.80   
HIE 164  1.53   
HID 198   5.71   
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Methods and parameters used to generate the topology of all four models are 

enclosed herein. All systems were neutralized with the addition of Na+ counter-ions and 

submerged in TIP3P water box of 15 Å periodic boundary. Equilibration of these systems 

was carried out in a consecutive manner starting from a restrained to completely 

unrestrained system. In a first step, classical minimization was performed with restraints 

set for protein and ligand to allow free movement of water molecules around the system 

for 103 steps with constant volume and non-bounded cutoff set to 10 Å. Minimization 

without restraints at T=0 was carried out to obtain a stable configurational state for 

additional 103 steps under similar NVT and cut-off. Following that, the NVT molecular 

dynamics simulations preceded with thermostat T=300 K with barostat set to 1 for 2 ns. In 

this step, positional restraints were activated by applying weight of 5 kcal/mol/A2 that was 

followed by density equilibration with positional restraints, using Langevin dynamics in 

NPT ensemble and non-bounded cutoff set to 10 Å for 4 ns. Whereas production run on 

each inhibitor was carried out for 10 ns on E-I complexes, which employed PME algorithm 

to regulate electrostatic interactions. Simulation graphs (RMSD) of resulting trajectories 

are depicted in Figure 3.5 and 3.6 generated by CPPTRAJ of AMBER suite exhibiting 

well-equilibrated systems. 

3.2.3 QM/MM setup for umbrella sampling 

However, the purpose of QM modeling of four models was to examine reaction mechanism 

of covalently modified OxyR inhibitors with different warheads and to determine the 

mechanistic of active site of OxyR. Thus, the US approach was employed to generate PMF 

using DFTB3 QM method with 1 fs of MD sampling per reaction coordinate (RC). 

Theoretical background of US is illustrated in Section 2.4.1 whereas, the compete protocol 

is explained here. QM/MM MD for US was run with ibelly restraint set outside 20.0 sphere, 

cutoff 10 Å, and force constants 50-200 kJ mol−1 Å−2using QM/MM MD-NVT simulations. 

General approximations to explore the reaction coordinate carried out sequential steps of 

nucleophilic attack followed by proton transfer in each system. First step of inhibition 

started with attack from thiolate group of Cys199 represented as RC2 that was defined from 
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1.8 to 3.5 Å. Whereas the proton transfer step RC1 was defined from -0.5 to 1.5 Å for each 

inhibitor respectively.   

Figure 3.5. Simulation graphs of resulting trajectories from US simulations of  

thiopene-core and  nitrile-based inhibitors. A) Root Mean Square Deviation (RMSD) 

calculated from 10 ns simulations trajectories of OxyR in complex with the thiopene-

core inhibitor. B) RMSD calculated from 10 ns simulations trajectories of OxyR in 

complex with the nitrile-based inhibitor. Details of the atoms included in the QM 

region in QM/MM calculations are given on the right side. The black dots represent 

the hydrogen link atoms. 

QM method for each step involved in a chemical reaction was analysed by WHAM 

to acquire an approximate minimum energy pathway (MEP) of the reaction. Output 
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generated by WHAM for US is demonstrated in Figure 3.7 of four proposed compounds 

for covalent inhibition. Furthermore, based on multiple studies197–199 that have employed 

hybrid DFT with B3LYP while analyzing nucleophilic addition reactions, we have used 

split-valence 6-31+G(d,p) calculations with RED server for both geometry optimization 

and RESP charge derivation of missing parameters. Whereas, known parameters from 

AMBER were retrieved with Antechamber program of AmberTools package. Complete 

parameter files of all four optimized models at E-I state are mentioned in their respective 

sections.   

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Simulation graphs of resulting trajectories from US simulations of Exp-1 

and Exp-2 inhibitors. A) Root Mean Square Deviation (RMSD) calculated from 10 ns 

simulations performed on the OxyR in complex with the Exp-1 inhibitor. B) RMSD 

calculated from 10 ns simulations performed on the OxyR with Exp-2 inhibitor. 

Details of the atoms included in the QM region in QM/MM calculations are given on 

the right side. The black dots represent the hydrogen link atoms. 
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3.2.4 Binding free energy 

To conclude, the absolute binding free energies of all four inhibitors were calculated for 

non-covalent bound state with MMPBSA/MMGBSA with ABMER whereas the 

decomposition of free energies of catalytic residues was evaluated using MMPBSA.py 

module that based on equation 3.2 leads to difference between the free energy of complex, 

receptor, and ligand.  

                          ∆𝐺𝑏𝑖𝑛𝑑 =  𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥  −  [𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 +𝐺𝑙𝑖𝑔𝑎𝑛𝑑]                              (3.2) 

However, the QM/MM interaction energies were calculated with equation 3.3 as a 

sum of energy contribution of decomposed residues to the total interaction energy. It 

decomposes the interaction of residues while employing polarized wave function (Ψ) 

applied on subset of QM atoms used.  

             𝐸𝑄𝑀/𝑀𝑀
𝐼𝑛𝑡 =  ∑ < 𝛹|

𝑞𝑀𝑀

𝑟𝑒,𝑀𝑀
|𝛹 >  + ∑ ∑

𝑍𝑄𝑀𝑞𝑀𝑀

𝑟𝑄𝑀.𝑀𝑀
+  𝐸𝑄𝑀/𝑀𝑀

𝑣𝑑𝑊                  (3.3) 

 

Figure 3.7. Overlapping windows of RC2 obtained from US for each compound 

generated with WHAM.  
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3.3 Results and discussion 

Before indulging in deep analysis to understand the reaction mechanism, first step included 

systematic analysis of interactions established by all four ligands with the active site of 

OxyR that is located on the surface of protein demonstrated in Figure 3.8. It has been 

reported in multiple studies that the role of basic residues present around the active site is 

critical in defining the catalytic process of OxyR173,200. Two or more basic residues namely 

His130, His198, Arg201, and Arg226 were observed in the vicinity of all four complexes, 

which are conserved in OxyR homologs173,201–203. In the current study, side chains of 

His130 and His198 were frequently observed located near the sulfur atom of Cys199 

exhibiting average distance of 5 to 3A˚ between Cys199-Sy…Ne-His198 and Ne-His130. 

Frequent occurrence of short distances with His residues indicated their capability to act as 

general acid-base catalyst and assist in the nucleophilic attack by Cys199. Similar findings 

have been reported by Jurajet al. that reaffirms the role of nearby His residues, which are 

likely to facilitate the catalytic process of OxyR200.  

All four complexes were then subjected to US and overlaid with the crystal 

structure of OxyR with PEO present in its active site to identify any conformational 

modifications, which is mentioned in Figure 3.4. Noticeable key differences between 

proposed inhibitors namely; thiopene-core, Exp-1, Exp-2, and nitrile-based inhibitor, is the 

presence of different warheads in their chemical structures. Thiopene-core, Exp-1, and 

Exp-2 demonstrated both His130 and His198 in proximity with cutoff value of 5A˚, which 

exhibited hydrogen bonds and pi-alkyl interactions. Thiopene-core inhibitor carries pyrol-

2-one fragment as Michael acceptor in its structure whereas the difference between Exp-1 

and Exp-2 is restricted to their warheads. Nitrile-based inhibitor, however, holds 

pyrrolopyrazine substructure that exhibited comparatively decreased interactions with 

neighboring moieties. However, to select starting structures to undergo cysteine 

modifications and proton transfer, all ligands were first carefully optimized and subjected 

to initial QM/MM simulations with distance restraints. Stabilized reactant complexes were 

further used to study the inhibition reaction mechanism proposed in Scheme 1-4. 

Transition states (TS1 and TS2) are separated by the intermediate which is not shown in 
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scheme 1 and 2 separately however their representative structures are depicted in their 

respective structural displays.  

 

 

Figure 3.8. Non-covalent interactions between OxyR and proposed inhibitors. A) 

Thiopene-core inhibitor B) Nitrile-core inhibitor C) Modified Exp-1 inhibitor with 

hydroxymethyl ketone, and D) Modified Exp-2 inhibitor with methyl oxo-enoate.  
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3.3.1 Reaction mechanism with benzothiopene-core inhibitor 

Previous studies conducted by Kummari et al reported nucleophilic attack on 

benzo[b]thiophene scaffold at C3 position, which underwent in vitro and mass 

spectrometry assays on benzo[b]thiophene 1,1- dioxide compounds, predicting irreversible 

covalent binding of cysteine proteases. This study thus targeted the C3 position on 

benzothiophene scaffold for nucleophilic attack mentioned in Scheme 1. MD simulations 

accommodated the ligand in active site of OxyR by supplying a salt bridge hydrogen bond 

between Hε of His130 and O* of ligand and another salt bridge hydrogen bond between 

O* and sulfur S of Cys199. However, the difference in distances between two salt bridges 

2.410 and 2.961 prioritized proton transfer from His130, which drifted Cys199 at optimal 

position and distance to accompany nucleophilic attack at position C3. According to 

Scheme 1, the proton transfer from Hε of His130 to O* initiates the reaction without any 

reorganization and rehybridization. The reaction proceeded from the proton transfer via 

TS1 leading to the intermediate state (I-E). The product (E-I) was formed in a subsequent 

step by the nucleophilic attack of Sγ-Cys199 on Cβ of the ligand via TS2. Optimized 

geometries of each transition state observed during QM/MM US calculations of this 

reaction are illustrated in Figure 3.9.  

 

Scheme 1: Proposed mechanism of OxyR inhibition by thiopene-core inhibitor.  
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  The reaction is characterized in a stepwise mechanism with two barriers TS1 and 

TS2 separated by an intermediate state. The TS1 and TS2 were verified and characterized 

with B3LYP/6-31+G(d,p) in gas phase resulting in imaginary frequencies i270.08 cm-1 and 

i543.40 cm-1, respectively.  

Figure 3.9. Details of DFTB3/MM optimized structures of selected states located 

along the inhibition reaction of OxyR by thiopene-core inhibitor. The catalytic 

residues C199 and H130 are shown with key distances in Å. 

The reaction energy -5.5 kcal mol-1 was released upon product formation while 

demonstrating energy barriers 3.1 kcal mol-1 in TS1 and 13.6 kcal mol-1 in TS2. Rate-

limiting step; however, is the covalent bond formation with energy barrier 13.6 kcal mol-1 

depicted as TS2 in Figure 3.10. Furthermore, differences observed in distances between 

d(Sγ, Cβ) and d(O*,Hε) throughout the reactions are mentioned in Figure 3.11. Notably, 
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the distance d(Hε,Nε) changed from 1.046 Å to 3.930 Å while d(O*,Hε) decreased from 

2.110 Å to 1.060 Å whereas d(SγCys199, Cβ) changed from 2.978 Å  to 1.787 Å.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: DFTB3/MM free energy profile obtained from QM/MM umbrella 

sampling calculations for inhibition of OxyR. The inhibition mechanism of thiopene-

core and nitrile-based inhibitors is illustrated in black and yellow colours 

respectively. The TS of thiopene-core and nitrile-based inhibitors are not similar and 

represent individual reaction profiles. Red arrows indicate the relative Gibbs free 

energies (∆G) for all stationary points. 

These findings comprehend that the reaction is exergonic where the proton transfer 

takes place prior to the nucleophilic attack. Furthermore, the post simulations analysis 

carried out on covalently bonded (E-I) complexes (Figure 3.18) depict deprotonated His130, 

which is stabilized by the formation of two hydrogen bonds with O* of the ligand thus restricting 

the protonation of His130 by water molecules again. These findings signify the irreversible 

reaction with thiopene-core inhibitor, which is concurrent with the previous study 

conducted by Kummari et al 34. The study comprised similar scaffold as thiopene-inhibitor 

which predicted irreversible covalent binding via in vitro and mass spectrometry assays with 

benzo[b]thiophene 1,1- dioxide compounds 34.  

https://sciwheel.com/work/citation?ids=13359640&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13359640&pre=&suf=&sa=0&dbf=0
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Figure 3.11: Evolution of bond distances along the reaction profile of thiopene-core 

inhibitor, nitrile-core inhibitor, modified Exp-1 inhibitor with hydroxymethyl ketone, 

and modified Exp-2 inhibitor with methyl oxo-enoate.  

Furthermore, to have insights into significant interactions with neighboring residues at 

E-I, we optimized TS structures at this state and parametrized it for MD simulations, which 

revealed significant differences in binding affinities discussed in forthcoming sections. 

However, ready-to-use parameters are given in Figure 3.12. The resulting trajectories 

exhibited deprotonated His130 in TS1 and a dominant hydrogen bond with O* stabilized 

by the formation of two hydrogen bonds, which restrict the protonation of His130 by water 

molecules is depicted in Figure 3.18. Our findings comprehend that the reaction is 

exergonic where the proton transfer takes place prior to the nucleophilic attack. The same 

mechanism highlighted by Marti et al. revealed proton transfer as low energy barrier step 

that led to rapid inhibition process169 thus presenting overall process spontaneous with 

undetectable inactivation rate-constant. Moreover, similar reaction kinetics are predicted if 

starting structure is a neutral catalytic dyad than the metastable ion pair E(±):I where 
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His130 will rather contribute in proton transfer to Cys199, due to surrounding water 

molecules and highly electronegative O*.  

Figure 3.12. Optimized TS structures with B3LYP 6-31+G(d,p) level of theory of 

thiopene-core inhibitor displayed on top and nitrile-based inhibitor shown at the 

bottom 

3.3.2 Reaction mechanism with nitrile-based inhibitor 

Scheme 2 represents nitrile-based inhibitor, which unlike thiopene inhibitor exhibited only 

His130 as its interacting partner in binding groove located at the surface of OxyR (Figure 
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3.4) thus; we kept His130 as doubly protonated and His198 as singly protonated to keep 

our system neutral.  

The PMF of QM/MM US calculations presented in Figure 3.10 demonstrates the 

reaction proceedings that is initiated by the electrophilic attack of Sγ-Cys199 thiolate on 

the nitrile via TS1 leading to an intermediate (I-E). TS2 however, completed the reaction 

by proton transfer from Hε-His130 to the substrate and rendered the product complex (E-

I). Representative structures of transition states are characterized with B3LYP 6-31+G(d,p) 

which are illustrated in Figure 3.13 alongwith their imaginary frequencies.  

 

Scheme 2: Proposed mechanism of OxyR inhibition by nitrile-based inhibitor. 

 

 

A stepwise mechanism with a substrate having imidazolium group deprotonated at 

the position Nd was observed, which established C-S bond at 1.820 to 1.74 Å and proton 

transfer originating at a relatively longer distance of 1.89 to 2.6 Å illustrated in Figure 

3.11. The imaginary frequencies of two transition states TS1 and TS2 separated by the 

intermediate are i592.13 cm-1 and i428.83 cm-1 respectively. Noticeably, the two inhibitors; 

thiopene-core inhibitor and the nitrile inhibitor have exhibited distinct imaginary 

frequencies for a proton transfer step i-e i270.08 cm-1 and i428.83 cm-1 respectively. The 

characterization of proton transfer is in accord with the study conducted by Matthew et al. 

on nitrile-based inhibitors that displayed longer distances for step-wise reaction 

mechanisms with comparatively higher imaginary frequencies74. Moreover, the covalent 

bond formation revealed higher energy barrier of 14.0 kcal mol-1 which originated from the 

initial state E(±):I. Whereas, for the proton transfer, a single route was explored with N* 

https://sciwheel.com/work/citation?ids=13394288&pre=&suf=&sa=0&dbf=0
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due to the limited possibility of proton transfer from neighboring atoms. The energy profile 

revealed that He-His130 participated in proton transfer with energy barrier of 5.9 kcal mol-

1. 

 

Figure 3.13: Details of DFTB3/MM optimized structures of selected states located 

along the inhibition reaction of OxyR by nitrile inhibitor. The catalytic residues C199 

and H130 are shown with key distances in Å.  

The final product E-I rendered an exergonic reaction with -6.1 kcal mol-1 revealing 

TS1 as a rate limiting step. Furthermore, the post simulations analysis of covalent 

complexes demonstrates that unlike thiopene-core inhibitor, contribution of catalytic triad 

(His130, Cys199, Thr129) was observed instead of a dyad (Cys199, His130) depicted in 

Figure 3.18. His130 after deprotonation drifted away from the catalytic position and was 

replaced by Thr129, which established strong hydrogen bonding with N* along with two 

additional hydrogen bonds between water and HN* that stabilized the covalent complex. 
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These findings reinforce the significance of catalytic residues His130 and Thr129 during 

and after the covalent bond formation.  

Furthermore, MD simulations of fully optimized E-I structures (Figure 3.12 for 

parameters) demonstrate that unlike thiopene-core inhibitor, contribution of catalytic triad 

(His130, Cys199, Thr129) was observed instead of a dyad (Cys199, His130). His130 after 

deprotonation drifted away from the catalytic position replaced by Thr129, which 

established hydrogen bond with N* alongwith an additional hydrogen bond between water 

and HN* that stabilized the covalent complex mentioned in Figure 3.18. These findings 

thus reinforce the significance of proton transfer step that controls the activity of catalytic 

residues His130 followed by Thr129 during and after covalent complex formation. 

Nevertheless, TS2 in purine-based nitrile inhibitors are energetically more favorable with 

higher reactivity, which is concurrent with experimental findings thus leading to a more 

stable reactant product complex205. 

3.3.3 Reaction mechanism with Exp-1 and Exp-2 inhibitors 

The experimental inhibitor of OxyR that was reported in 2021 by Hyo-Young Oh et al. 

presented the first OxyR inhibition study that revealed selective antibacterial efficacy 

against P. aeruginosa51. We modified this inhibitor (Figure 3.2) with the addition of 

methyl oxo-enoate and HMK. Multiple possibilities of proton transfer were observed in 

this case for instance the hydroxyl group was indirectly involved in proton transfer of Cβ 

carbonyl oxygen, similarly the presence of oxygen on pyrimidine ring anticipated to 

actively participate in proton transfer. Presence of terminal OH group discussed by 

Hoffman and co-workers clearly demonstrate the decrease in HMKs potency on its 

removal172. Thus, we particularly focused on terminal hydroxyl group, which rather 

interacted more actively with the oxygen of pyrimidine compared to He-His130. The 

distance profile (Figure 3.11) demonstrated Sy-C199…Cβ changing from 3.06 to 1.83 Å 

whereas He-His130…O changed from 3.5 to 2.01 Å. As shown in Scheme 3, Exp-1 

inhibitor reacts in a concerted fashion comprising single TS leading to the product 

formation E-I. Initial assessment of binding site revealed active participation between Exp-

1 side chain comprising OH and the protein illustrated in Figure 3.4. Therefore, it is kept 

in the loop while investigating the reaction mechanism and was incorporated in QM/MM 

https://sciwheel.com/work/citation?ids=13359618&pre=&suf=&sa=0&dbf=0
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calculations. The reaction comprised nucleophilic attack by Sγ-Cys199 on Cβ atom of Exp-

1 leading to Cys199-Sc bond formation and simultaneous proton transfer from adjacent 

He-His130 to the O* atom of Cβ rendering a product complex E-I. The representative 

snapshots along the reaction path are demonstrated in Figure 3.14 whereas the energy 

barrier of reaction is 14.1 kcalmol-1 demonstrated in Figure 3.15. 

Scheme 3: Proposed mechanism of OxyR inhibition by Exp-1 hydroxymethyl ketone 

inhibitor. 

 

Consequently, a single transition state is characterized with imaginary frequency 

i912.47 cm-1 depicting simultaneous process comprising both the nucleophilic attack and 

the proton transfer. The transition state TS identified as maximum of PMF has been 

optimized and characterized using the B3LYP/6-31+G(d,p).  The proton transfer from He-

His130 originated from a slightly shorter distance of 1.746 –1.815 Å compared to the C-S 

bond formation at a distance 2.312 – 1.785 Å. 

Furthermore, the distance evolution profile depicts that proton transfer takes place 

indirectly via the OH group of the substrate, which transfers H* to the O* atom of Cβ and 

simultaneously accepts a proton from Ne-His130.  Thus, the rate limiting step of the full 

inhibition involves protein acylation along with the proton transfer from His130 to the 

carbonyl oxygen of the inhibitor. The activation energy of Exp-1 is slightly higher than 

thiopene-core inhibitor, which makes it kinetically less favorable. The E-I complex of Exp-

1 inhibitor with 4.7 kcal mol-1 is, however, indeed slightly favored over the thiophene-core 
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inhibitor with 5.5 kcal mol-1. Parameters of fully optimized Exp-1 QM system are readily 

available and presented in Figure 3.16.  

Figure 3.14: Details of DFTB3/MM optimized structures of selected states located 

along the inhibition reaction of OxyR by Exp-1 inhibitor. The catalytic residues C199 

and H130 are shown with key distances in Å. 

Figure 3.15: DFTB3/MM free energy profile obtained from QM/MM umbrella 

sampling calculations for inhibition of OxyR. The inhibition mechanism of Exp-1 and 

Exp-2 inhibitors is illustrated in green and blue colours respectively. Red arrows 

indicate the relative Gibbs free energies (∆G) for all stationary points. 
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Furthermore, the inhibition mechanism proposed by the second modified 

experimental inhibitor referred as Exp-2 encompasses methyl oxo-enoate is depicted in 

Scheme 4. The active site of Exp-2 exhibits the catalytic triad (Cys199, His198, His130), 

actively engaged in making interactions with Cα of the Exp-2 lying at a distance less than 

3 Å (Figure 3.8). 

Figure 3.16: Optimized TS structures with B3LYP 6-31+G(d,p) level of theory of 

Exp-1 with hydroxymethyl ketone displayed on top and Exp-2 having methyl oxo-

enoate is shown at the bottom.  

Multiple routes with similar warhead were proposed by Sergio et al. that 

characterized proton transfer at Cα to be more favorable both kinetically and 

thermodynamically while employing M06-2X/6-31+G(d,p)/MM36. Therefore, a single 

route was observed to examine proton transfer from Cα atom. The PMF (Figure 3.15) and 

QM/MM US snapshots displayed in Figure 3.17 determine that the reaction underwent 

https://sciwheel.com/work/citation?ids=12343252&pre=&suf=&sa=0&dbf=0
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nucleophilic attack from Sγ-Cys199 on Cβ atom of Exp-2 and simultaneous proton transfer 

from neighboring residue His130 to Cα atom.  

Scheme 4: Proposed mechanism of OxyR inhibition by Exp-2 inhibitor with methyl oxo-

enoate. 

 

 

 

Figure 3.17: Details of DFTB3/MM optimized structures of selected states located 

along the inhibition reaction of OxyR by Exp-2 inhibitor. The catalytic residues C199 

and H130 are shown with key distances in Å. 

3.3.4 Effect of TS on binding affinities 

In this section, we have analysed and compared the overall structural changes between 

different states. Representative structures from each compound at E:I and E-I states were 

extracted and overlaid to investigate the binding site and its surrounding environment. The 

transition states revealed by all four inhibitors as maximum of PMF were optimized at 6-
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31+G(d,p)/MM level with Red server and used as representative snapshots for Gibbs free 

energy calculations. Starting from thiopene-core compound, it was observed that NO2 

extended its interactions with Gly197 in TS2 whereas [3-(Methylcarbamoyl)phenyl] 

acetate exhibited interactions with Ala60 and Pro62 by the end of simulations, which has 

forced the ligand to move inside the cavity of OxyR demonstrated in Figure 3.19. 

Moreover, slight structural shift in thiopene-based compound was observed in TS1 to 

interact with His130 that was favored despite the presence of water molecules. 

Figure 3.18: Snapshots of four proposed covalent inhibitors from 10 ns QM/MM US 

simulations carried out with DFTB3 level of theory.   

Whereas the second nitrile-based inhibitor did not demonstrate any significant 

changes in the binding site of OxyR except the possibility of electron sharing with 

neighboring water residue lying at 2.5Å, which is greater than O-Ne-His130 1.29 Å 

depicted in Figure 3.19. Increase in contribution of interacting residues particularly Thr, 

Arg and His that comprise catalytic triad of OxyR, thus has direct role in enhanced binding 

affinity at E-I state displayed in Figure 3.19. Furthermore, two experimental compounds 
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especially Exp-2 exhibited extensive hydrogen bonding using its negatively charged 

oxygen atom of the enolate moiety with residues His198 and Gly197 of OxyR. 

Figure 3.19. A) Overlap of the QM region of TS1 and TS2 of thiopene-based inhibitor 

optimized with 6-31+G(d,p)/MM level B) Overlap of the QM region of TS1 and TS2 

of nitrile-based inhibitor. Favourable interaction free energy values (electrostatic plus 

Lennard-Jones) observed between binding site of OxyR and proposed inhibitors 

calculated at E:I and E-I states are mentioned respectively. 

Similarly, activity of compound Exp-1 is concurrent with the activity of final step 

in QM results where the OH groups involve Thr129 in making interactions. Role of 
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catalytic triad and Arg133 is obvious in stabilization of two modified experimental 

inhibitors, which is demonstrated in Figure 3.20. 

Figure 3.20. A) Overlap of the QM region of TS of Exp-1 inhibitor optimized with 6-

31+G(d,p)/MM B) Overlap of the QM region of TS of Exp-2 inhibitor. Favourable 

interaction free energy values (electrostatic plus Lennard-Jones) observed between 

binding site of OxyR and proposed inhibitors calculated at E:I and E-I states are 

mentioned respectively. 

Notably, oxygen atoms present in the core of compounds Exp-2 and the side chains 

extend its interactions with Arg133 and Thr129; residues critical for the function of 

OxyR161,173. These findings are concurrent with the experimental mutational studies that 

reported the loss/decrease of catalytic activity due to mutation of these residues162,206. Thus, 
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direct role of these residues in enhanced binding energies at E-I state reaffirms the 

conformation of ligands in the active site of OxyR suitable for its activity. Lastly, the 

participation of catalytic triad as acid base catalysts is apparent in the active site of OxyR 

that facilitates protonation and deprotonation of residues during covalent bond formation. 

3.4 Concluding remarks 

This study provides insights into the detailed QM/MM analysis of OxyR inhibition with 

four proposed covalent inhibitors encompassing different chemical warheads. We 

particularly focused on incorporating compounds capable of interacting differently in their 

chemical environment and exhibit respective reaction mechanisms with OxyR active site. 

The proposed compounds include nitrile-based inhibitors, thiopenes, and a recently 

reported experimental inhibitor of OxyR. 

In a first step, a known covalent inhibitor (nitrile-based) was explored to provide 

detailed information on the formation of covalent adduct and proton transfer to lay strong 

basis of reaction mechanism and opportunistic interactive residues of OxyR such as 

Cys199, His198, and His130. Together with these results and the literature reported on 

other cysteine protease inhibitors, we modified the experimental inhibitor by the addition 

of methyl oxo-enoate and HMK. The calculated FEP of US revealed that out of the four 

studied inhibitors, two proceed in a concerted fashion undergoing simultaneous 

nucleophilic attack and proton transfer leading to the covalent bond formation and the two 

react in a stepwise mechanism. The thiophene-core and nitrile-based inhibitors underwent 

nucleophilic attack and proton transfer in a stepwise mechanism with two transition states 

separated by the intermediate. The energy profiles of these two inhibitors illustrate the 

nucleophilic attack as the rate-limiting step with free energy values of 14.0 and 13.6 kcal 

mol−1, respectively. 

Nevertheless, impact of warhead modulation was apparently more valuable in 

terms of both kinetics and thermodynamics involved in the proton transfer step. Proton 

transfer is a crucial rate limiting step whose significance in different biological processes 

especially between organic molecules is evident through various substantial work 

conducted under the domain of both experimental and computational frameworks207. For 

instance, in the current study, the thiophene-core inhibitor exhibited a stepwise mechanism 
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where the enol formation via proton transfer occurred before the nucleophilic attack. 

Similarly, the mechanism of proton transfers for Exp-1 and Exp-2 inhibitors differ largely 

due to the terminal hydroxyl group lying in the side chain, which modulates the proton 

transfer and exhibit significant interactions, particularly in the presence of water molecules 

in the surroundings. The transition states characterized with imaginary frequencies are in 

line with the energy profiles which demonstrate the effect of warhead modulation on the 

kinetics and thermodynamics of the process.  

Furthermore, the comparative analysis of interactions energies of the active site 

residues supports the binding potential of the proposed inhibitors in the reactive 

conformations. The role of the catalytic triad (Cys199, His130, and Thr129) in imparting 

stability to covalent complexes is apparent in all reactions, which is concurrent with the 

experimental mutational studies of OxyR173. List of updated parameters and Cartesian 

coordinates of all states are given in Appendix Table A1-A8.  

In summary, this study serves as a foreword to characterize the chemical inhibitors 

of OxyR that explored its binding environment and exhibited the effect of multiple 

warheads and their modulation on the reaction mechanism of this enzyme. Thiophenes and 

nitrile-based inhibitors that have been frequently used in the formation of covalent 

inhibitors have provided powerful insights. Furthermore, with further biochemical 

evidence of the experimental inhibitor, it would serve as a valuable template in the design 

of selective covalent modulators of OxyR in future. 

 

This research work has been published in Journal of Physical chemistry B by the ACS 

publishers and can be found in the publication section of this thesis.
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4 COMPETO-ALLOSTERIC REGULATION  

4.1 Background  

Bacterial virulence mechanisms have emerged as new potential targets for the progression 

of antibacterial mediators. These mechanisms include pervasive signaling pathways that 

are of vital importance in many of these processes, such as the quorum-sensing (QS) 

signaling system 211. In many pathogenic bacteria, QS signaling is a significant controlling 

factor that contributes to bacterial virulence and persistence 212. Pseudomonas aeruginosa, 

one of the foremost causes of nosocomial infections, is primarily controlled by QS 213. 

Therefore, inhibiting these signaling pathways represents attractive strategies for 

developing novel therapeutics against P. aeruginosa infection 214 215. So far, the frequently 

studied QS system in P. aeruginosa is the one established on the DSF fatty acid (FA) signal 

cis-11-methyl-2-dodecenoic acid (CDA), formerly justified in Xanthomonas 

campestris (Xcc)216. The diffusible signaling factor (DSF)-based QS system has been 

recognized as an extensively preserved cell-cell communication mechanism in Gram-

negative bacteria217. Lately, a small messenger fatty acid molecule cis-2-decenoic acid 

(CDA), produced by P. aeruginosa, is reported to work as the autoinducer of biofilm 

dispersion. The role of this molecule has also been observed in multiple Gram-negative 

and Gram-positive bacteria to enhance the biofilm dispersal 218.  

Recently reported protein DSPI has been identified as a significant virulence factor 

in P. aeruginosa and further characterized as an essential enzyme for CDA biosynthesis 
219. Significant homology to RpfF in Xcc has been observed in the gene sequence for this 

protein. DSPI is a member of the crotonase superfamily (CS), demonstrating a common 

crotonase motif and assembles as a homotrimer 220. The structural representation of DSPI 

in biological assembly and as a monomer is depicted in Figure 4.1. CS members catalyze 

diverse metabolic reactions with CoA-ester substrates. Approximately 20 CS reactions, 

including alkene hydration/isomerization, aryl-halide dehalogenation, carboxylation, CoA 

ester, and peptide hydrolysis, have been classified in previous studies221. As a critical 

enzyme responsible for the 2,3 double bond formation during CDA biosynthesis, DSPI has 

been predicted as an Enoyl-CoA hydratase (ECH) according to its sequence alignment with 
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the rat mitochondrial ECH222. To eradicate biofilm dispersion autoinduction in recurrent 

cultures of P. aeruginosa, DSPI was inactivated, suggesting the need to develop a specific 

inhibitor for the enzyme219.  

Figure 4.1. DSPI appear as a standard crotonase fold and assembles as a homotrimer. 

A) Cartoon representation of the DSPI trimer where each binding site is shown in 

pink color. B) Cartoon style of the DSPI monomer. The secondary structure elements 

are highlighted and the substrate docked at normal binding site is shown in pink color.  

Due to the influx of drug resistant strains in P. aeruginosa, the mortality rate is 

increasing drastically. Therefore, an immense number of approaches is perused, which are 

directed at developing novel therapeutic drugs. Considering the need for developing new 

antibiotics against MDR bacteria P. aeruginosa, this study unravels the binding mechanism 

of DSPI bound with CoA substrate and the predicted inhibitors. The current work employs 

two structure-based drug development approaches to inhibit a potential therapeutic target 

protein; DSPI. First and foremost, the catalytic binding pocket of DSPI was analyzed to 

identify the potential inhibitors. The presence of the binding tunnel that passes through the 

active site of DSPI has been reported recently. The catalytic characteristics of the DSPI 

active binding site, therefore provide a valuable template for structure-based drug 

development 223. The complete workflow of the current study is presented in Figure 4.2.  
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Figure 4.2. Workflow of the current study using different computational techniques. 

Secondly, the synergistic or complete antimicrobial activity is attained by focusing 

on the research studies, which are currently aiming at the salvaging of prevailing drugs by 

exploring the allosteric mechanism. Typically allosteric sites are targeted to design 

selective inhibitors to control the enzyme activity and to determine novel functions224. 

Discovering and characterizing new allosteric sites by experimental approaches cannot be 

regarded as trivial. Alternatively, computational advances are valuable in facilitating 

researchers to explore potential allosteric sites for drug discovery225. For instance, 

inhibition studies have been carried out on farnesyl diphosphate synthase (Fds) of 
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Staphylococcus lugdunensis using allosteric modulation226. Furthermore, the allosteric 

binding sites of drug-resistant bacteria Staphylococcus aureus were exploited, which 

resulted in the discovery of quinazolinones 227.   

In the present study, we observed the presence of another site in the same binding 

tunnel as the active site using multiple computational techniques, which was stabilized by 

strong hydrophobic interactions. Therefore, the current study is also intended to analyze 

the potential allosteric site in DSPI, which has allowed us to classify both normal binding 

site inhibitors and allosteric inhibitors. Furthermore, MD simulation studies have been 

performed to understand the structural and functional dynamics of both sites. The best 

binding inhibitors identified in this study are also analysed by exploiting free energy 

calculations, which provide valuable results. 

4.2 Materials and methods 

4.2.1 Receptor protein preparation 

A recently reported crystallographic structure of DSPI with PDB ID: 5WYB was retrieved 

from the PDB database. The crystal structure refined at a resolution 2.25 Å consists of 272 

residues. DSPI is an α/β protein composed of six perpendicular antiparallel β-strands 

surrounded by eleven α-helices. It can be split into two domains: the N-terminal spiral 

domain (α1–α8 and β1–β6) and the C-terminal trimerization domain (α9-end). The helix-

helix contacts between the N-terminal extensions together with the trimerization domain 

of the neighboring monomer are shown in Figure 4.1, which stabilizes the homo-trimeric 

disk assembly 223. The DSPI protein was exposed to energy minimization to eliminate the 

steric encounters and to relax the structure 228. Altogether, minimization was conducted for 

1500 rounds. To reduce critical encounters, 750 steps of steepest descent algorithm were 

initially executed, followed by 750 rounds of slow conjugate gradient method to eliminate 

the stern clashes, which persisted during the steepest minimization under Tripose Force 

Field (TFF) in UCSF Chimera. In both the algorithms, the step size was set to 0.02 Å, 

whereas Gasteiger charges were allocated to the enzyme229. After the minimization of 

DSPI, it was subjected to docking with the library of ligands.  
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4.2.2 Ligand library preparation and molecular docking 

After the selection of target and binding site identification, one can conduct high-

throughput virtual screening (HTVS) of ligand archives against the target site. For that 

purpose, 10,000 compounds were virtually screened using CHEMBRIDGE database230. 

These compounds were classified based on chemical properties, such as molecular weight, 

H-bond acceptor, H-bond donor, tPSA, and rotatable bonds, as presented in Table 4.1.  

Table 4.1. ADMET and drug-related properties of top two ligand molecules of the normal 

and the predicted allosteric sites. 

 

In addition to these compounds, previously reported 3-hydroxydecanoyl-CoA has 

been docked into the binding pocket of DSPI223, and also employed as controls in the 

current study to compare the behaviour of top-scoring compounds. Lipinski’s rule of five 

was verified for all the compound ligands that passed the check by employing drug-like 

guidelines in Ligand Scout 4.1231. An online SWISS-ADME database was used to extort 

parameters for drug-like rules232. In the end, the MMFF94 force field in Ligand Scout was 

employed to minimize the subsequent number of inhibitors233. After applying the drug-like 

rules, the entire library was subjected to docking with x, y, z coordinates of active center 

Structure ID Mol. 
Wei-
ght 

Mol. 
Form-

ula 

Log           
P 
 

RB tPSA H-
bond 

Donor
s 

H-bond 
Accep-

tors 

 

1019
5495 

448.6 C25 
H32 N6 

O2 

3.58 5 85.17 1       7 

 

1025
2273 

482.6 C24 
H26 N4 
O3 S2 

4.81 6 93.09 2       5 
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residue Glu118. It resulted in the identification of another pocket present in the vicinity of 

the active binding site to which the ligand preferably bound. In the current study, the 

potential allosteric site has been identified, which was observed to be competing with the 

active site for attachment of a ligand; therefore, the name competo-allosteric site has been 

coined. Further analysis was carried out on both the normal site and competo-allosteric 

sites to understand the mechanism of ligand binding fully. To select the best docking pose 

of inhibitors in both its binding sites, GOLD 5.2 (Genetic Optimization for Ligand 

Docking)129 fitness score was determined. Visual molecular dynamics (VMD)234, Ligplot 
235 and UCSF Chimera236 were utilized to visualize the docking results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. 3D structure representation of DSPI protein inside the TIP3P water box. 
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4.2.3 Pocket search 

To validate the results obtained from docking and to identify the presence of different 

cavities of the DSPI enzyme, the Fpocket237 and Cavityplus238 were castoff, both of these 

are easily accessible and open-source pocket recognition software packages. Fpocket 

obtains the expertise from a firm structure, based on geometric constraints, whereas, a web 

server Cavityplus offers cavity detection and numerous purposeful analysis. It exploits the 

three-dimensional structure of a protein to reveal potential binding pockets on the surface 

and rank them based on ligandability and druggability scores. Compared to the other 

binding site detection methods, Cavityplus and Fpocket yield highly precise calculations 

in the bound as well as the unbound protein data sets238. An exceptional feature of 

Cavityplus is that it uses CavityScore to quantitatively determine the ligandability and 

Cavity DrugScore to ascertain the druggability of an identified binding cavity. The 

druggability value imitates the potential of a cavity to act as a worthy target for binding 

drug-like molecules. Whereas the ligandability value signifies the probability of aiming 

small ligands with elevated binding affinities to a definite cavity. Thus, the minimized PDB 

structure of DSPI was subjected to pocket search using Fpocket and Cavityplus to predict 

any druggable pockets that could be fundamental for protein’s function. The results 

obtained from Cavityplus and Fpocket are presented in Table 4.2 and Table 4.3 that 

provide vital information on the possible druggable sites of DSPI. 

4.2.4 Ligand topology and molecular dynamics simulations 

Top-ranked docked complexes obtained from molecular docking were subjected to MD 

simulation to explore their conformational space and evaluate the binding potential of the 

proposed lead molecules. SANDER (Simulated Annealing with NMR-Derived Energy 

Restraints) module in AMBER 16.0 suite with force filed FF14SB and GAFF was used to 

conduct molecular dynamics simulations 239. MD simulations were conducted on multiple 

complexes (i) the previously reported crystal complex of DSPI-substrate (ii) a protein 

complex with a ligand bound to the normal binding site and (iii) a protein complex with a 

ligand bound to the proposed allosteric site. Docked complexes were initially subjected to 

energy minimization by 750 steps each of conjugate gradient and steepest descent 

algorithm through UCSF Chimera 1.10.1 236. 
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Table 4.2. CavityPlus scores representing the druggable binding sites of DSPI. 

 

Table 4.3. Differences in volume in the absence and presence of inhibitor at normal and 

competo-allosteric sites. 

 

 

Energy minimization of the docked complexes was followed by ligand 

parameterization.  Ligand forcefield was generated using the AM1-BCC charge method 

and topology files using the antechamber module of AMBER 240. The energy minimization 

of the solvated systems was also done before conducting MD simulations. Each system 

was exposed to 1000 steps of conjugate gradient algorithm and 1500 steps of steepest 

descent algorithm with a nonbonded cut- off of 8 Å. After energy minimization, the system 

was heated from 0 to 300 K with the shackle of 5 kcal mol-1 Å-2 on carbon alpha atoms 

for 20 picoseconds. The time step for each calculation was set at 2 femtoseconds with 

Fpocket 

Score 

Ligand-free state Ligand-bound to the 

normal binding site 

Ligand-bound to 

Allosteric site 

Normal 

site 

Allosteric 

site 

Normal 

site 

Allosteric 

site 

Normal 

site 

Allosteric 

site 

Score 37.84 22.36 21.36 26.923 4.510 6.859 

Druggability 

score 

0.726 0.109 0.301 0.030 0.013 0.008 

Volume 1832 803.7 412.5 951.542 618.8 450.1 

No. Phred. Max pKd Phred. Avg pKd Drug score Druggability 

1 11.51 6.56 472.00 Druggable 

2 11.39 6.52 2113.00 Druggable 

3 7.41 5.16 -820.00 Undruggable 

4 7.22 5.09 -1117.0 Undruggable 

5 6.65 4.90 -1065.00 Undruggable 

6 6.62 4.89 -1197.00 Undruggable 

7 5.45 4.49 -1472.00 Undruggable 
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Langevin dynamics241. Heating was carried in the NVT ensemble under periodic boundary 

conditions, and H-atom bond interactions were ignored using SHAKE242. Following 

heating, the system was allowed to equilibrate by applying constraints at various intervals 

gradually. A time step of 2 ns and 100 ps was applied to equilibrate the systems243, whereas 

systems pressure was maintained using the NPT ensemble for 50 ps. In the end, the 

production run of 100 ns was carried out in the NVT ensemble. The time step of 2 fs for 

non-bonded interactions with cut off 8.0 Å was used during the production run. 3D 

structure of DSPI in TIP3P water box during the simulation is presented in Figure 4.3. 

4.2.5 Simulation trajectories evaluation 

The simulation trajectories were generated using CPPTRA244 and analyzed to validate the 

conformational stability of docked complexes while snapshots at various nanoseconds 

were visualized through VMD 234, UCSF Chimera 236 and TRAPP 245. TRAPP (Transient 

pockets in proteins) is a tool that is used to evaluate and analyze the spatial and 

physicochemical properties of an identified pocket during the molecular dynamics 

simulation run. The opening and closing of transient sub-pockets along the MD trajectory 

can be examined using the pocket characteristics tab when exploring the TRAPP-pocket 

and simulation results. Other than that, different parameters were calculated for all the 

systems. These parameters include root mean square deviation (RMSD), root means square 

fluctuations (RMSF), the radius of gyration (Rg) and beta-factor (β-factor). The analysis 

was further followed by hydrogen bond characterization to illustrate the stability of 

complexes. Furthermore, the energy calculations were carried out using MMPBSA and 

MMGBSA in AMBER toolkit to estimate the ligand binding potential146. Free energies of 

systems were computed by employing MMPBSA and MMGBSA, which takes into account 

the energy differences between protein and ligand and that of the complex. Two methods, 

namely Poisson-Boltzmann (PB) and Generalized-Born (GB) were applied to conduct the 

analysis 246. After every 0.2 ns, a total of 450 frames were extracted from the complete MD 

trajectory and exposed to MM(PB)SA calculation using MMPBSA.py module of AMBER 

16146. To have deeper insights into the components, the hot spot amino acids that are 

significant in binding free energy were analysed. The binding free energy was therefore 
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fragmented into per residue and pair residues expending MMPBSA.py module of AMBER 

16. 

4.2.6 Validation of study with a positive control 

Similar molecular docking and dynamics simulation protocol was implemented on all the 

predicted complexes. The two proposed complexes were compared to DSPI-substrate to 

understand the mechanism of normal and competo-allosteric binding sites. 

4.3  Results and discussion 

The current study provides two fundamental approaches critical for the inhibition of DSPI 

in P. aeruginosa. Apart from the inhibition of functional site as reported in the literature223, 

docking and MD simulation studies of DSPI were also carried out on the anticipated 

allosteric site. The results, however, encouraged us to analyze the inhibition mechanism of 

both the normal and competo-allosteric binding sites.  

4.3.1 Docking analysis of DSPI 

Docking evaluation determined that among the docked compounds, the best scoring 

compounds that bound with the normal binding site and the competo-allosteric site have a 

common benzamide-benzimidazole (BB) backbone. BB compounds have previously 

revealed to be active against MDR isolates of P. aeruginosa and efficiently reduced 

virulence 247. Docking analysis of the normal site revealed that it possesses two well-

conserved acidic residues Glu118 and Glu138. These two GLU residues are critical for 

catalysis and have been concluded as one of the structural features to differentiate the ECH 

hydration activity from the monofunctional ECI or DCI (dienoyl-CoA isomerase) activity 
248 221. In addition to the two catalytic residues Glu118 and Glu138, nearby cysteine residue 

Cys146 played a critical role in the current computational study. The BB nitro group 

established a volatile hydrogen bond with the hydroxyl group of Cys146 in DSPI, which 

was lying adjacent to the hydrophobic pocket of the normal binding site, as shown in 

Figure 4.4b. Among the docked compounds bound at the normal binding pocket, 

compound 10195495 exhibited the highest GOLD score of 68. The cavity analysis of 

normal binding site reveals interacting residues Ala70, Phe80, Phe90, Cys146, Leu143, 
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Leu144, Ala147, Gly119, Glu118, Leu136, Glu138, Gly116, Pro145, Cys119, Gly69, and 

Gly117 form the normal binding pocket of DSPI as shown in Figure 4.4a. 

Molecular docking outcomes displayed hydrophobic, cation-π interactions and 

formation of hydrogen bonding between side-chain amino acids and among beta sheets 

near the vicinity of the active site. These critical non-covalent binding contacts perform a 

substantial function in ligand detection, protein-drug communications, and structural 

steadiness249. We have therefore investigated the strength of all these forces that play a 

critical role in stabilizing the ligand-receptor complex. The critical residues of the normal 

binding site that are significant in hydrogen bonding with the ligand are Glu138, Gly115, 

Gly116, Ala70, and Cys146. Hydrogen bond donor and acceptor atoms were identified 

within a distance of less than 3.5 Å. An explicit hydrogen bond with a 3.319 Å distance 

between compound 10195495 and an O atom of Glu138 was identified. Protein residue 

Cys146 exhibited 3 H-bonds with N atoms of the ligand depicting 1.906Å, 2.375Å and 

2.979 Å hydrogen bond distances, respectively. The impact of hydrophobic interactions 

was observed to be essential for producing a hydrophobic pocket in the vicinity of 

10195495 with a maximum distance of 3.9 Å with residues Ala70, Gly115, Ala87, Ala83, 

Phe75, Ala68, Ala76, Pro145, Asp77, Gly78, Lys86, and Pro145. These hydrophobic 

residues are critical for the formation of a hydrophobic pocket that facilitates DSPI 

interaction with the docked compound N-[3-(dimethylamino)-2,2-dimethylpropyl]-1-(8-

methoxy-5,6-dihydrobenzo[h]quinazolin-2-yl)-5-methyl-1H-pyrazole-4 carboxamide. 

Another significant molecular interaction force in biological receptors is π-

interactions250 that was witnessed in the regular binding site. It is noticed that the 

heterocyclic ring of ligand 10195495 formed pi-pi stacked, pi-pi T-stacked and amide-pi 

stacked interactions with the side chain of Ala8, Phe75, and Phe90 as depicted in Figure 

4.4b. In general, it is stated that the attractive interactions with heterocyclic ring are less 

sensitive to substituent effects than the corresponding non-heterocycles251. On the other 

hand, docking analysis of substrate CoA in comparison to the predicted normal site 

inhibitors revealed H-bonding with Ala87, Gly115, and Phe90. It comprised residues 

Ala87, Phe90, Gly115, Glu118, Leu143, Leu144, and Cys146. Weak hydrogen bonding 

with zero pi interactions were observed between DSPI and the substrate, although they 
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occupy the same binding pocket. The atom-wise interaction details of the highest-scoring 

compounds involved in hydrogen bonding are given in Table 4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Docked inhibitor within the normal binding pocket. A) The docked pose 

of compound 10195495 highlighting critical residues of the normal binding pocket. 

Protein is in ribbons whereas ligand is in bond style. B) 2D depiction of the docked 

complex highlighting hydrogen bonds and cation-π interaction through DS Visualizer. 

 



 
CHAPTER 4                                                                               COMPETO-ALLOSTERIC REGULATION 

 

87  
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

Table 4.4. Interaction details of hydrogen bonding of docked complexes. 

 

However, the compound with the highest score in potential allosteric site was 

10252273, exhibiting a GOLD score of 81. Analysis of the docked complex at the predicted 

allosteric site revealed that it is composed of the residues Phe94, Ala147, Phe181, Gly48, 

Arg98, Glu118, His42, Ala122, Trp155, Arg222, Arg126, Ala52, Leu156 and Leu121 

displayed in Figure 4.5a.  

MD simulations analysis exhibited the presence of two additional critical residues 

Cys119 and Cys123 alongwith Glu118 and Cys146 that made this pocket even more 

stimulating. These two residues Cys119 and Cys123 have also been identified as crucial in 

the previous experimental studies by Li Liu et al. 223. The predicted allosteric site 

interacting with compound 10252273 exhibited strong hydrogen bonding with the residues 

Leu121, Gly148, Arg126, and Arg98, as shown in Figure 4.5b. Hydrogen bond 

interactions were observed between Arg126 (2H-bond) and Arg98 (2H-bond) with O atoms 

of the ligand having bond distances of 2.33Å, 2.986Å, 1.993Å and 3.621Å respectively. It 

was also revealed that the heterocyclic ring of ligand 10252273 formed strong hydrogen 

bonding and cationic interactions with Arg222. 

Compound interacting atom of the 

ligand 

interacting atom of the 

protein 

Distance Å 

 

10195495 

Normal 

binding site 

H 

O 

O 

O 

N 

N 

N 
 

GLU 138: O 

GLY 116: H 

GLY 115: H 

ALA 70: H 

CYS 146: H 

CYS 146: H 

CYS 146: H 
 

3.319 

3.745 

1.936 

2.241 

1.906 

2.375 

2.979 
 

 

10252273 

 

Allosteric 

binding site 

H 

H 

O 

O 

O 

O 
 

LEU 121: O 

GLY 148: O 

ARG 126: H 

ARG 126: H 

ARG 98: H 

ARG 98: H 
 

1.916 

3.050 

2.330 

2.986 

1.993 

3.621 
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Figure 4.5. Docked inhibitor within the allosteric binding pocket. A) Docked pose of 

compound 10252273 highlighting critical residues of the allosteric binding pocket. 

Protein is in ribbons whereas ligand is in bond style. B) 2D depiction of the docked 

complex highlighting hydrogen bonds and cation-π interaction through DS Visualizer.  

One pi-sulfur interaction with Phe94, two amide-pi stacked interactions with 

Gly148 and Ala147, and one pi-alkyl interaction with Ala152 were also observed, which 

is presented in Figure 4.5b. Furthermore, Arg222 and Trp155 were observed to be 

essential for creating a hydrophobic pocket in the vicinity of ligand 10252273. The docked 
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complexes in the predicted allosteric binding site also showed variable interactions with 

α3, α7, and α10 from the neighboring subunit.  

Results revealed that a common residue Glu118 in both the normal binding site and 

predicted allosteric sites appear to be competing for the ligand to attach as depicted in 

Figure 4.6. This phenomenon compelled us to classify the druggable sites of DSPI within 

the binding tunnel, which resulted in the identification of competo-allosteric site. The entire 

binding mechanism was dependent on the selection of atoms (‘O’ and ‘OE1’) of active 

center residue Glu118. Upon selection of ‘O’ atom of Glu118, the ligand preferred to bind 

to the allosteric site in the same binding tunnel, whereas the selection of ‘OE1’ atom led to 

the binding at normal site. However, the role of both the normal and predicted allosteric 

sites seemed critical while determining their binding mechanisms. 

Comparative evaluation of all the docked complexes revealed higher GOLD scores 

at the proposed allosteric pocket, whereas the normal pocket yielded slightly lower GOLD 

scores. The highest GOLD score of 81 was attained for compound 10252273, which was 

docked against the allosteric pocket of DSPI, whereas the normal pocket exhibited the 

highest GOLD score of 68. Notably, the critical residue Glu118 played a vital role in the 

binding of inhibitors at both the normal and proposed allosteric binding sites. The current 

analysis indicated the presence of a site within site competing with each other upon ligand 

binding. The mechanism of both the hydrophobic allosteric pocket and the normal pocket, 

and how it can provide an alternative route to inhibit the mechanism of DSPI, has been 

further explored through MD simulations. 

4.3.2 Crystal structure of DSPI 

The overall structure of DSPI in complex with both the inhibitors was then compared with 

its ligand-free form and DSPI ligand binding domain in crystal structure, which was fused 

with R) 3-hydroxydecanoyl-CoA as illustrated in Figure 4.7. Results revealed that there 

was no obvious conformational change observed in DSPI when it was bound with 

inhibiting compounds at both the sites separately compared to when it was fused with a 

substrate.  
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Figure 4.6. The normal binding site and the competo-allosteric site in the same 

binding tunnel competing with each other for ligand binding. Electronegative atom 

“OE1” interacted with a ligand bound at the normal binding site, whereas interactions 

between “O” atom of Glu118 and ligand attached at the allosteric site were observed.  

However, subtle native conformational changes were observed in the region of 

helices α9 (residues 208 – 223) when compared the normal site complex to the ligand-free 

DSPI. The residue Glu138 was observed to be present in the form of beta-sheets to make 

direct hydrophobic contact with DSPI, making a triad with Cys146 and the binding tunnel 

passing through the active site in all the docked complexes, as shown in Figure 4.7.  

4.3.3 Druggability analysis 

The identification of the binding cavities by Fpocket together with the prediction 

of Cavityplus assisted in understanding the principles of molecular binding and allosteric 

modulation. Binding cavities on protein surfaces are imperative for protein function 

because they expedite the binding of the protein to other biological macromolecules such 

as nucleic acids and proteins, or small molecules such as metabolites and drugs252. 
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Figure 4.7: Structural changes upon ligand binding at the normal and the competo-

allosteric site during docking. Structural rearrangements are mentioned in red with 

the critical residues highlighted in each conformation. A) DSPI without ligand B) 

10195495 docked at the normal site C) DSPI with substrate D) 10252273 docked at 

the competo- allosteric site. 

Computational identification of protein cavities has been contemplated as a vital 

step for efficient annotation of proteins and structure-based drug design253. In the current 

study, Fpocket predicted 11 cavities, whereas Cavityplus detected 7 cavities, out of which 

only two were categorized as putative druggable binding sites based on the druggability 

prediction score given by both the programs. The best-ranked sites were the site 1 that 

indicated the presence of potential allosteric site and site 2, which corresponded to the 
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normal binding site. Caviyplus and Fpocket analysis given in Table 4.2 and Table 4.3 

revealed significant results. Table 4.2 displayed the values obtained from Cavityplus in 

which Phred. Max pKd value indicates the ligandability of a cavity-binding site. A value 

of less than 6.0 suggests that this may not be a suitable binding site. Whereas, the results 

obtained by Fpocket are presented in Table 4.3, in which the score indicates the number 

assigned by the Fpocket to the predicted sites in the given structure (the higher the score, 

the better the binding site). The druggability value indicates the possibility of a cavity 

binding site to be druggable or not. Inspection of residues of both the sites revealed the 

presence of critical residues Glu118, Cys131, Glu138, and Cys146, which were also 

indicated during docking analysis. According to both the programs, normal binding pocket, 

and the predicted allosteric pocket were the only druggable pockets. However, Fpocket 

indicated changes in the normal binding cavity when ligand was bound at the allosteric 

site, which failed to detect the normal cavity. The disappearance of the normal cavity upon 

ligand binding at the allosteric site suggested the possibility of disorderedness in the 

residues that are critical for the inhibition of DSPI. This unique case of competitive 

inhibition between two sites refer to the lower inhibitory activity where all active sites on 

the protein subunits are altered when an allosteric inhibitor binds to it (illustrated in Figure 

4.8). 

4.3.4 Analysis of MD simulation trajectories 

MD studies for both the complexes and DSPI-substrate were carried out to enlighten a 

credible mechanism of action for the conventional and predicted competo-allosteric 

inhibitors 10195495 and 10252273. Molecular dynamics simulation findings serve as an 

influential tool to observe the intimate conformational details taking place in biological 

systems224. As the structure of a protein determines its function, the conformational 

dynamics of protein molecules play a critical role in defining the function of that particular 

protein. A thorough understanding of the structure and dynamics of a biological 

macromolecule is, therefore considered essential in understanding its functional flexibility 
254. Therefore, to further analyze the dynamics of DSPI, root mean square deviations 

(RMSD), root mean square fluctuations (RMSF), the radius of gyration (Rg), and B-factor 

values were plotted. All these values were obtained through the 100 ns trajectories. The 
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precision of our simulated complexes was evaluated through a comparison of the RMSD, 

RMSF, and energy values with the values of a control i-e DSPI-substrate complex 

Figure 4.8: Detection of druggable cavities by CavityPlus and Fpocket A) Druggable 

binding sites upon ligand binding at the normal site with the critical residues labeled, 

normal site is shown in pink and allosteric site shown in grey color B) Druggable 

binding sites upon ligand binding at competo-allosteric site with the critical residues 

labeled and allosteric site shown in grey color. The structural rearrangement of critical 

residues at the normal binding site is shown due to which the software failed to 

identify its presence. 
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Backbone RMSD analysis of DSPI-substrate indicated a steady expansion during 

the first 3.5 ns, and conformational changes during 0 ns - 10 ns, 30 ns - 40 ns, and 90 ns - 

99 ns indicated structural rearrangements over the entire simulation period. The average 

RMSD for the DSPI-substrate complex was found to be 2.26 Å when computed for 100 ns. 

Whereas, the values of RMSF were 1.17 Å and B-factor 56.4 Å, which indicated flexibility 

in residues that were involved in the formation of active site as depicted in Figure 4.9. 

Simulation results of normal binding site docked with the substrate revealed the widening 

of the pocket. The fluctuations throughout the simulation run were observed which were 

due to the movement in a bottom loop of the active site, comprising the residue Glu138. 

Due to the movement in the loop, the substrate kept moving away from the active site 

indicating the flexibility in this region presented in Figure 4.10. 

The structural analysis of a proposed inhibitor bound at the normal pocket revealed 

significant movement along the ligand to maintain the electrostatic connections. Movement 

of loop residues (71-79) induced a conformational change in the normal pocket but kept 

the ligand within the active site showing strong bonding as compared to the substrate. 

However, the RMSD trajectory showed an increasing trend for the first 0 ns - 10 ns, which 

depicted the structural rearrangements initiated due to the ligand binding. The movement 

of ligand was also observed during 30 ns - 40 ns, which came back to its original position 

right after 40 ns and stayed intact for the rest of the simulation, as presented in Figure 4.11. 

This phenomenon explains the change in RMSD from 30 ns - 40 ns as depicted in 

Figure 4.9a. When estimated from 100 ns, the average RMSD was found to be 2.73 Å. 

The maximum RMSD 3.93 Å was observed between 70 ns and 80 ns, which took place 

due to the fluctuation of amino acids present in the α7 and α10 regions of the C-terminal. 

These α-helix residues consistently displayed higher B-factor values, i.e., 69 Å with a 

maximum value of Ala243. Amino acid residues present in the first and last regions 

displayed particularly higher fluctuations, which illustrated the flexible C terminal of this 

protein structure. The maximum value of 8.1 Å and an average value of 1.24 Å during the 

100 ns run were revealed by RMSF values, representing the binding loop region residues 

Lys1 and Ala243, presented in Figure 4.9b. 
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Figure 4.9. Simulations analysis of resulting trajectories of a substrate, ligand bound 

at the normal and compete-allosteric site. A) Deviation of the backbone depicted with 

root means square B) deviation of individual residue depicted as root mean square 

fluctuation. C) disordered regions and thermal stability of protein as B-factor. D) and 

net volume of the DSPI depicted with a radius of gyration. Black color represents a 

substrate used as controls, red color represents ligand bound at the normal site, and 

green color is the representation of a ligand at the competo-allosteric site. 
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Figure 4.10. Structural analysis of a substrate at the normal binding site. A) Movement 

of a bottom loop as indicated with an arrow during 0 ns -10 ns. 0 ns trajectory is 

brown in color and 10 ns are shown in blue color. B) Movement of the substrate away 

from the binding pocket during 90 ns – 100 ns. 90 ns trajectory is brown in color and 

100 ns are shown in blue color. 
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Figure 4.11. MD simulation trajectory analysis of ligand 10195495 at the normal 

binding site. Movement of the ligand and loop residues (71-79) during 30 ns – 40 ns 

are depicted A) Superimposition of 30 ns (brown color) – 40 ns (blue color) snapshots 

indicating the structural changes. B) Ligplot images generated at 30 ns and 40 ns to 

depict the movement of ligand and residues around the active pocket.  

4.3.5 Competo-allostery 

The competo-allosteric complex, to which the ligand was bound at the predicted allosteric 

site, exhibited an increasing trend for the first 0 ns – 10 ns. The reason for structural 

flexibility might be the fluctuations induced in C-terminal residues, as it was relatively a 

flexible region of DSPI protein reported in 223. RMSD increased initially to the maximum 

value but remained extremely stable throughout the simulation run of 100 ns. The average 
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RMSD computed after 100 ns was observed to be 2.1 Å, whereas the overall mean value 

of RMSF was 1.01 Å. Regions comprising two residues Val141 and Ala243 exhibited 

maximum RMSF value of 4.8 Å due to higher fluctuations. However, the average B-factor 

value obtained was 41.8 Å2. The B-factor also indicated higher values for Val141 and 

Ala243 (629 Å2). Lastly, the RMSF of the DSPI-substrate complex and the predicted 

allosteric complex were compared to observe structural insights induced due to the 

fluctuations of residues. We observed rigidity of residues when ligand 10252273 was 

bound at the allosteric site. Reductions in the maximum peak of fluctuations from 

approximately 8 Å to barely 4 Å were revealed, which suggested fewer fluctuations when 

the ligand was attached to that the allosteric site.  

Significant structural flexibility was observed at both the sites affecting the 

interaction of critical residues with the ligand molecules. Therefore, the most vibrant and 

flexible part of the protein, i.e. the helical regions were analyzed 255. Modification of the 

helical secondary structure into a loop and vice versa was observed at different stages, 

throughout the 100 ns simulation run. Particular changes observed in the normal pocket 

residues were between Glu138 and Cys146. They were observed to be involved in the 

hydrogen exchange as a result of structural fluctuations in the protein. As previously 

comprehended, the fundamental aspect rather responsible for the secondary structures of 

proteins is the intra-molecular hydrogen bonding 256. Various hydrogen bond interactions 

were observed during simulations such as the ligand 10195495, bound at the normal site, 

fluctuated around the predicted docking poses to maintain H-bond interactions with 

residues Ala70 (during the 100% of the simulation), similarly Gly115 during the initial 

simulation phase (20% of the simulation) and Ala68 interacted in the last 50% of the 

simulations. Further interactions between the H-bond donor and H-bond acceptor residues 

Cys146 (30% of the simulation) and the H-bond acceptor side-chain residues Glu138 (70% 

of the simulation) were observed. Despite structural rearrangements and ligand movement 

within the normal site, the proposed compound remained in the pocket, unlike the substrate 

that moved away from the binding site.  

On the other hand, the detailed analysis of the predicted allosteric complex at 

different instances also illustrated significant structural changes. All the active site residues 

determined by docking were changed into Arg224, Glu223, Gln219, and Lys215 except 
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Phe94, Gly148, Trp155, Arg222, and Ala152. They were located in the proximity of the 

ligand molecule and were observed contributing actively to the interactions. Strong 

hydrogen bonding was observed throughout the simulation run between Arg222 and the 

proposed ligand bound at the allosteric site with a distance of 1.913, 2.184, 3.479, 3.997, 

3.017 and 3.065 respectively. Another important parameter, the radius of gyration (Rg) 

was also computed to investigate the compactness and stability of a protein structure. The 

higher value of Rg indicates a less compact structure, whereas smaller Rg values depict the 

stable packing of a protein structure257. For the normal binding site, structural equilibrium 

was attained at 18.08 Å. Greater Rg was detected during 0 ns –10 ns (18.6 Å) exhibiting 

consistency with the values of RMSD. However, an average Rg witnessed for the proposed 

allosteric complex was 17.7 Å, which infers that both the docked complexes exhibited a 

stable and compact system.  

Moreover, the energy values extracted from the frames of the simulation run of BB 

compound 10195495 bound at the normal site and compound 10252273 bound at the 

allosteric site were extracted. The predicted BB inhibitors showed stability throughout the 

simulation run therefore they are of primary importance. BB compounds have previously 

shown to reduce virulence in mice and have curbed serious infections caused by MDR 

strains of P. aeruginosa.  Thus, the predicted BB inhibitors predicted in this study exhibit 

the potential to act as promising drugs in the future. 

4.3.6 Validation of competo-allostery 

Comparative MD simulation analysis of both the sites revealed subtle conformational 

changes at diverse time intervals throughout a simulation run. Widening of the C terminal 

loop was observed specifically when a ligand was bound at the predicted allosteric site. 

These changes possibly affected the area of the normal binding pocket, thus disturbing its 

conformation for regular substrate binding. This ligand rearrangement also displaced 

Cys146, a critical residue involved in the formation of a normal pocket from its position 

by 8.247 Å, as mentioned in Figure 4.12.  
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Figure 4.12. MD simulation trajectory analysis of the competo-allosteric site at 0 ns 

and 100 ns. Displacement of critical residue Cys146 from original position by 8.247 

Å and change of Glu138 from loop to helices is depicted, while a ligand 10252273 is 

bound to the allosteric site. 

Another conformational change, which was possibly instigated by the breakdown 

of intra hydrogen bonds of the helical structure of the protein, gave rise to the formation of 

a loop. Therefore, the conversion of Glu138 to loop during the simulation run might be 

critical for the functioning of protein as illustrated in Figure 4.13. 
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Figure 4.13. Comparative MD simulation trajectory analysis of the competo-allosteric 

site and normal site at 100 ns. The back view of the protein is presented in a 

hydrophobic surface style presenting the complete binding tunnel in magenta color 

with two pockets. Displacement of critical residues Cys146 and Glu138 at the normal 

binding site after 100 ns is clearly depicted in the close view. The residue Cys146 

moves towards the right side and Glu138 moves to the left side away from the normal 

binding pocket, thus widening the normal site. 

One possible reason for this phenomenon might be the structural rearrangements in 

β sheets that were formed by the alignment of β strands observed during MD simulation 

analysis. The formation of hydrogen bonds was observed between the carbonyl oxygen of 

one strand and the backbone nitrogen present in another strand between residues Met113, 

Tyr111, Ser67, and Phe66. Thus, it was inferred that the displacement and modification of 
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residue Glu118 could be the result of conformational pressure exerted by the formation β 

sheets on residue Glu118, lying next to it as depicted in Figure 4.13. To further explore 

the dynamics of both the pockets, TRAPP analysis of MD simulation trajectories was 

conducted. 

4.3.7 TRAPP analysis of MD simulation trajectories 

Some interesting differences with the conventional site were observed while analyzing the 

allosteric complex during the MD trajectory. To validate these changes, we examined 

different areas of DSPI along the MD trajectory using TRAPP software. We chose one out 

of five frames of the simulation trajectory as input for TRAPP. We first considered the 

conventional cavity, which revealed the flexibility of the residues (71 – 79) that comprised 

of loops exposed to the solvent, as stated previously in our MD analysis. The flexibility in 

this region indicated the chances of the opening of this site more often than the allosteric 

site when the ligand was attached to the normal site. Whereas, we could only comprehend 

the opening of the allosteric site in 25% of the total snapshots of the simulation as depicted 

in Figure 4.14b. The major transformations in the region of sub-pocket 2, which represents 

a normal site, appeared in the last half of the MD trajectory.  

The movement of substrate during the MD simulation run in which the ligand 

gradually moved away from the binding site confirmed the opening of normal site 

relatively more often than the predicted allosteric site, as depicted in Figure 4.14. 

However, when the ligand was bound to the anticipated allosteric site, the software 

completely failed to identify the normal binding site because of the structural changes and 

displacement of residues, induced upon ligand binding. Overall, we observed a stiffness of 

the allosteric conformational state during the simulation. All the indicators observed so far 

refer to the allosteric theory that suggests that the entropy of a system can be reduced by 

ligand binding to maintain the stable conformation of the protein, inhibiting its movement 

and thus altering the target behavior 224. To fully understand the dynamics of these critical 

residues and to determine the binding order of both the ligands and protein, we carried out 

binding free energy calculations using the MM-PBSA and MM-GBSA methodology based 

on the MD simulations. 
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Figure 4.14. Analysis of the pocket dynamics in MD trajectories using TRAPP 

software. A) The reference structure (PDB code: 5wyb) and representative MD 

snapshots of the docked normal complex and the competo-allosteric complex are 

shown respectively. Residues (71 – 79) are shown in red, whereas sticks represent 

ligand bound at the normal site. Transient/conserved regions present in 50% of the 

simulation are represented in mesh scheme, whereas the pocket occurrence is shown 

in the solid scheme. B) Graph representing the opening of transient regions during 

MD simulations where column 2 represents the normal pocket, and column 3 

represents the competo-allosteric pocket. C) The type of contacts that residues are 

making with the binding site during MD simulation d) Movement of the substrate 

away from the normal binding site during 100 ns simulation due to the flexibility of 

the side loop. 
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Table 4.5: MM/GBSA and MM/PBSA value for the docked trajectories of DSPI at the 

normal site, the competo-allosteric site, and the substrate that has been used as a control.  

 

4.3.8 Binding free energy analysis 

The MM/PB(GB)SA methods in AMBER were castoff to calculate the binding free 

energies of the three systems. Table 4.5 summaries the binding free energy and its 

contributed components computed by MM/PB(GB)SA, and the entropy contributions 

obtained for each system. As listed in Table 4.5, the MM/PBSA calculated binding free 

energies were -7.37 of ligand-bound at the proposed allosteric site, −1.97 of the ligand-

bound at the normal site and 1.18 kcal/mol of the substrate-bound at the normal site. 

However, the MM/GBSA computed binding free energies were −40.37, −42.71, and 

−10.35 kcal/mol of 10252273 at an allosteric site, 10195495 at the normal site and CoA 

substrate at the normal site, respectively. Both MM/PBSA and MM/GBSA computations 

signified that solvation contributions were unfavorable within the three systems. Looking 

at the conformations and locating the free hydrogen bond donor and acceptor could best 

provide the reason for higher solvation 258. By analyzing the free energy components, it 

was revealed that inhibitor 10195495 can make extremely strong hydrogen bond 

connections with the residues Ala68, Ala70, Phe75, Gly115, Glu138 and Cys146 of DSPI, 

Energy 

component

s 

Allosteric site Normal site DSPI- SUBSTRTE 

Normal site 

MM/GBS

A 

 (kcal/mol)  

MM/PBS

A  

(kcal/mol) 

MM/GBS

A  

(kcal/mol) 

MM/PBS

A  

(kcal/mol) 

MM/GBS

A 

 

 (kcal/mol) 

MM/PBS

A  

 

(kcal/mol) 

EVDW -46.73 -46.73 -48.21 -48.21 -15.26 -15.26 

EELEC -32.35 -32.35 -142.34 -142.34 -11.07 -11.07 

EPOLAR --- -32.61 --- -32.80 --- -12.63 

EDISP --- 56.16 --- 57.95 --- 19.48 

ETOTAL -40.37 -7.37 -42.71 -1.98 -10.35 1.18 

GGAS -79.08 -79.08 -190.56 -190.56 -26.34 -26.34 

GSOLV 38.71 71.71 147.85 188.58 15.99 27.52 
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whereas inhibitor 10252273 can form H-bonds with residues Leu121, Arg126, Gly148 and 

Arg222 that is located near the C-terminal of DSPI.  

Furthermore, strong hydrophobic interactions were present between DSPI and its 

inhibitors. It was observed that both Evdw and Eeel derived the promising interactions for 

both 10252273 and 10195495 bindings to DSPI. There were two hydrophobic interactions 

observed at normal site which were formed between the N-[3-(dimethylamino)-2,2-

dimethylpropyl) of ligand 10195495 and Glu138 and between (8-methoxy-5,6-

dihydrobenzo[h]quinazolin-2-yl) of 10195495 and residues (71-79) of DSPI, whereas 

LIGAND10252273 bound at the predicted allosteric site was mainly responsible for 

hydrophobic interactions between 1H-benzimidazole-7-carboxamide and residues Arg98, 

Ala122, Trp155 and Arg222 of DSPI. It was also observed that Ala83, Phe75, and Phe90 

could form three stable pi-pi interactions with two aromatic rings that are almost parallel 

of ligand 10195495, bound at the normal site. These interactions of the side chain amino 

acids are critical in determining the structure of a protein, as they provide stability to the 

protein structure and are also involved in various enzymatic reactions 259. Pocket residues, 

which are more stable in the structure, are mostly the aromatic ones. The ligand 10252273 

bound at the predicted allosteric site exhibited one pi-pi stacked interaction with Ala147 

and Gly148 and one pi-sulfur interaction with Phe94 and Arg222. However, the critical 

residues Glu138 and Cys146, involved in protein binding, confirmed the binding potential 

between 10195495 bound at the normal pocket and DSPI through energy contributions. 

Whereas, the other two residues Trp155 and Arg222, which have revealed interactions with 

10252273, bound at the allosteric site, exhibited stronger energy contribution than 

10195495. If we have to summarize based on these residual bonding, we can concur that 

the inhibitor 10195495, bound at the normal site, has the potential to block the binding site 

of DSPI. Whereas, the inhibitor bound at the anticipated allosteric site can easily adapt to 

the potential surface of DSPI and inhibit the mechanism by disturbing the critical residues, 

which are crucial for the binding of a substrate, thus limiting its attachment to the host-

binding site. 



 
CHAPTER 4                                                                               COMPETO-ALLOSTERIC REGULATION 

 

106  
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

4.4  Concluding remarks 

The primary objective of this study was to identify and develop competitive inhibitors 

against DSPI, which can control DSF associated pathogenicity and is critical for protein 

dynamics and subunit interactions.  Targeting multiple sites as presented in the current 

study suggest that both the conventional and allosteric binding pockets of DSPI will aid in 

addressing the problem of multi-drug resistance. Combinations of the free geometry-based 

algorithm Fpocket and Cavityplus alongwith the molecular docking have endorsed the 

identification of a new competo-allosteric binding site. The predicted site existed within 

the same binding tunnel as the normal binding site, possibly competing for the attachment 

of ligands. The active center residue Glu118, however, played a critical role in ligand 

binding. MD simulations and free energy calculations were further implemented to analyze 

the structural mechanisms of potential inhibitors. Simulation studies revealed that docking 

at the competo-allosteric site resulted in the displacement of critical residues that are 

essential for the functioning of DSPI. The disorderedness of residues resulted in the 

widening of the normal binding pocket, whereas the competo-allosteric site exhibited 

stiffness during the simulation run. Structural rearrangements in β sheets were also 

observed, which could be exerting conformational pressure on Glu118 located adjacent to 

it, hence the displacement in the subsequent residue. However, the formation of various 

cation-π interactions and hydrogen bonding was observed between the protein and ligands 

induced due to the fluctuations in a protein. The per-residue energy decomposition was 

calculated to determine the favorable and unfavorable interactions of each residue with an 

inhibitor. The analysis of the dynamics in binding free energy suggested that the major 

contributions to inhibitors binding to DSPI were the vdW energy components exhibited by 

Ala83, Phe75, Phe90, Trp155, and Arg222. The predicted inhibitors have indispensable H-

bond acceptors or donors to interact with the residues Ala68, Ala70, Phe75, Gly115, 

Glu138, Cys146, Leu121, Arg126, Gly148, and Arg222. Compounds with benzamide-

benzimidazole (BB) backbone emerged as promising ligands against both the normal and 

the allosteric binding pockets and therefore, should be explored for their activity against P. 

aeruginosa experimentally. In conclusion, the binding of normal ligand might be affected 

due to the conformational changes induced by the potential allosteric compound 10252273. 

It concurs that widening phenomenon and disruption of the normal binding site and thus 
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inhibition of competo-allosteric site at the cost of the normal binding site is significant and 

noticeable outcomes. This study has provided a profound understanding of the binding 

mode and dynamics of inhibitors with DSPI, which may be useful in the development of 

potentially therapeutic drug.  

This research work has been published in Journal of Bimolecular Structure and Dynamics 

by Taylor and Francis publishers and can be  found in the publication section of thesis.
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5. BI-METAL FORCE FIELD PARAMETERIZATION  

5.1 Background  

According to the World health organization (WHO), protozoan parasitic diseases from the 

genus Trypanosoma and Leishmania particularly visceral leishmaniasis, has reportedly 

caused more than 90% new cases in 2020 63. Due to limited number of treatment options 

and rapidly evolving drug resistance to available drugs, it has resulted in more than 500,000 

cases annually with greater than 50,000 mortality rates globally, which includes 69 

different countries including Europe, Middle East, and South America 65,260. More 

precisely, WHO has categorized it as one of the top mortality potential outbreaks that 

recently occurred in 10 countries namely, Brazil, China, Ethiopia, Eritrea, India, Kenya, 

Somalia, South Sudan, Sudan, and Yemen261,262. However, to curb leishmaniasis, multiple 

molecular studies targeted the most common and critical pathway, trypanothione metabolic 

pathway, which carries a unique thiol-based metabolic system different from humans, 

referred as to trypanothione (T(SH)2)263–265. The substantial role of this pathway in myriad 

of reactions comprise defense against oxidative damage, redox, homeostasis and 

replication 66,266–268. Two widely circulated drug targets namely; trypanothione synthetase 

amidase (TSA) and trypanothione reductase (TR) play a central role in (T(SH)2) pathway. 

(T(SH)2) is synthesized in a two-step process; first it undergoes catalysis from glutathione 

(GSH) and spermidine (Spd) exclusively driven by TSA whereas TR, in the second step 

regenerates (T(SH)2) from trypanothione disulfide (TS2) in the presence of NADPH 265,269.  

Commonly used drugs in the treatment of leishmaniases that target TSA and TR 

include the famous pentavalent antimonial, amphotericin B, miltefosine and paramomycin, 

each with its own efficacy and toxicity limitations262,270,271. These drugs most commonly 

target thiol-based redox system of parasites presenting TSA and TR as suitable anti-

trypanosomatid agents. Apart from difficult administration regimen of these drugs, their 

continuous and long-term use has resulted in parasitic resistance in multiple strains 

resulting in dramatic decrease in their efficacy. Amidst continuous efforts after genetic and 

chemical validation in design of effective and less toxic inhibitors, multiple studies have 

proposed chemotherapy with metal containing compounds namely pentavalent antimonials 
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including sodium stibogluconate and meglumine antimonite272–274. Pentavalent antimonial 

however offer costly and onerous treatment procedures leading to unsolicited damage done 

to body by antimony Sb (III) alongwith the ever-emerging drug resistance 64,275–277.  

In light of the aforementioned facts, this particular study aims at targeting both the 

enzymes of (T(SH)2) pathway namely TSA and TR with novel metalloids. Bismuth (Bi) 

that lies below antimony (Sb) according to the periodic table, tend to share multiple 

electronic and physical features with Sb. Counterintuitively the least toxic among three 

metals (As, Sb, Bi) that exist in two oxidation states +III and +V is Bi 278–280. Despite the 

closeness of Bi to Sb according to the periodic table, there is scarcity of both computational 

and experimental work on Bi. Meanwhile, highly defined organometallic complexes 

designed for targeted diseases are in development against multiple antimicrobial and 

anticancer agents 270,281,282. Similarly, oral formulations namely bismuth subsalicylate are 

commonly used against Helicobacter pylori in the treatment of gastrointestinal 

ailments283,284. Despite the growing demand of molecular investigations with metalloids, 

these compounds are not fully characterized however main hindrance observed in 

computational analysis especially with molecular dynamics (MD) simulations arise due to 

the absence of relevant force field parameters.  

This study however lays basis on our previous experimental study, which 

synthesized heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR′)2] as 

anti-leishmanial therapeutic agents285. These compounds were fully characterized by 

elemental analysis that underwent antileishmanial assay followed by cytotoxicity profiling 

and X-ray crystallographic investigations. We have extended the experimental study and 

generated force field parameters of two bismuth compounds with different chemistry, 

which are investigated in complex with TSA and TR using QM MD methods, gaining pace 

in the development of novel metallic geometries 286–288. Furthermore, to compute force 

field parameters, we exploited Seminario techniques and bonded methods of QM, the DFT 

that was used to generate [BiR3(O2CR′)2] parameters with precise information about 

electronic structure of atoms around the metal center 288,289. We also calculated force field 

parameters of meglumine antimonite to generate its topology with both the enzymes for 

comparative insights into dynamics of Sb and Bi compounds. This study thus reports force 

field parameters of bi(V) metalloids with pentagonal bipyramidal molecular geometry and 
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pentavalent antimonial; meglumine antimonite. Workflow and tools used in the generation 

and validation of Bi and meglumine antimonite parameters are mentioned in Figure 5.1. 

Findings shed light on experimentally verified new chemical structures particularly 

bismuth metalloids targeting key enzymes TSA and TR of (T(SH)2) pathway that will 

certainly aid in inhibiting parasitic redox metabolism and the infectious period of 

pathogenic trypanosomatids to overcome drug resistance.  

 

Figure 5.1: Workflow and tools used in the generation and validation of 

[BiR3(O2CR′)2] force field parameters for TSA and TR of (T(SH)2) pathway.  

Semianario methods SBKJC ECP level of theory was employed to determine bong 

angles, bong lengths, and dihedrals for Models (1-3). For validation of geometric 

structures defining the coordination geometry of [BiR3(O2CR′)2] models, all atom 

MD simulations were employed.  
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5.2  Materials and methods 

5.2.1 Experimentally analysis of Bi(V) metalloids 

In conjugation with our previous experimental synthesis and complete elemental analysis, 

we have employed QM techniques to determine binding potential of Bi metalloids with 

TSA and TR. Experimental study modified [SbAr3(O2CR)2] comprising Ar = m- or p-

tolyl 285, which are the prominent antileishmanial agents in practice and proposed the 

modified bismuth compounds as a series of [BiAr3(O2CR)2] demonstrated in Figure 5.2. 

All these compounds were productively synthesized using salt metathesis reaction, which 

exhibited higher stability and anti-leishmanial activity with lower IC50 values (see Table 

5.1).  

Table 5.1: Anti-leishmanial activity of Bi(V) Model-1 and Model-2 with respective free 

binding energies. 

 

Furthermore, the toxicity profile revealed all synthesized compounds (except 3 and 

7) safe with low LD50 values even at 50% viability with concentration level as high as 20 

μg/mL. We extended the experimental study and subjected these eight compounds to 

molecular docking with GOLD suite 290 targeting two enzymes TSA and TR. X-ray crystal 

structures with PDB ID: 2VOB and 4APN for TSA and TR were retrieved respectively; 

that targeted triangular cavity of TSA as a binding site whereas the interface domain of TR 

was targeted. Lastly, the meglumine antimonite (C7H18NO8Sb) was docked using the same 

Compound No. Antileishmanial activity 

Leishmania tropica KWH23 

Leishmania infantm 

Trypanothione 

Reductase (TR) 

∆G 

Trypanothione 

Synthetase-Amidase  

(TSA) 

∆G 
% Mortality IC50(μg/mL) 

Model 1 89 0.71 -9.5684 1.7110 

Meglumine 

Antimoniate 

- - -2.5153 22.0349 

Model 2 93 0.45 -26.8282 -12.3653 

Amphotericin B 99.5±0.50 0.36±0.04 - - 
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parameters with both the enzymes, which was used as a control during MD simulations 

analysis.  

5.2.2 Novel force field parameters 

Two Bi(V) compounds; Bis(o-bromobenzoato)triphenyl bismuth(V) referred as Model-1 

and Bis(4-methylsalicylato) tris(p-tolyl) bismuth(V) referred as Model-2 were screened 

from docking, which were then subjected to geometry optimization alongwith 

C7H18NO8Sb as Model-3. All these models (1-3) were first optimized with the Seminario 

method, which exploits the bonded model method implemented in AmberTools 16 and 

Python-based metal center parameter builder (MCPB.py) that supports more than 80 metal 

ions131,142. Theoretical details of MCPB and its protocol are given in section 2.42. of this 

thesis. Prior to geometry optimization, ligands, proteins, and metals are protonated 

followed by input file preparation with Avogadro for Models (1-3)291.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Synthesis of eight molecular geometries comprising Bi(V). Image sourced 

from our previous study 285.  
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For geometry optimization using GAMESS-US84,85,292,293, we employed hybrid 

DFT method and electrically polarized basis set SBKJC coupled with ECP. The SBKJC 

basis set is particularly designed to handle metals of group 14 (C–Sn), 15 (N–Sb), 16 (O–

Te) and 17 (F–I) that describe unperturbed system using valence double-zeta 

pseudopotential basis set proposed by Stevens and coworkers294–296 105. First step of QM 

calculations generated three fingerprint files (standard, small, and large models) of each 

model, which contains information about the metal ion and ligating atoms whose 

parameters do not exist in AMBER force field. To find a local minimum of small and large 

models, similar basis set was employed for geometry optimization and force constant 

calculations, which was then visualized using VMD to reaffirm bond coordination to 

metals234.  

Furthermore, to derive metal geometry force field parameters, sub-matrices of 

Cartesian Hessian matrix were employed alongwith the retrieval of information regarding 

bonds and force constants by harmonic potential fitting142, which was determined by 

AMBER to provide potential energy of each position using equation 5.1 given below: 

𝑉(𝑟𝑁) = ∑ 𝑘𝑏(𝑙 − 𝑙0)2 + ∑ 𝑘𝑎(𝜃 − 𝜃0)2 + ∑ ∑
1

2
𝑉𝑛[1 + 𝑐𝑜𝑠(𝑛𝜔 −𝑛𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠𝑎𝑛𝑔𝑙𝑒𝑠𝑏𝑜𝑛𝑑𝑠

𝛾)] + ∑ ∑ 𝑓𝑖𝑗
𝑁
𝑖=𝐽+1 {∈𝑖𝑗 [(

𝑟0𝑖𝑗

𝑟𝑖𝑗
)12  −  2(

𝑟0𝑖𝑗

𝑟𝑖𝑗
)6] +

𝑞𝑖 𝑞𝑗

4𝜋∈0𝑟𝑖𝑗
}𝑁−1

𝑗=1                                         (5.1) 

The first and second term in eq(1) estimate the probability of bending and stretching 

of bonds whereas the third term defines parameterization of torsion angles. Moreover, the 

Lennard Jones (LJ) potential and Coulomb potential relate the involvement of vdW and 

non-bonded electrostatic interactions131,297. LJ parameters are displayed for all three 

models (1-3) in Table 5.2. Nevertheless, the last step of modeling was performed with 

highly regarded method; the restrained electrostatic potential (RESP) fitting technique for 

assigning partial charges using a default Merz–Kollman RESP with defined radius of 2.8 

Å, generally assigned to the metal centers298. As a result, a topology and coordinates files 

are generated by performing tleap modeling which sourced ff14SB force field to retrieve 

known parameters299. 
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5.2.3 Force field parameters validation and analysis 

All parameters derived from AMBER force field and Seminario approaches were subjected 

to MD simulations to evaluate the generated parameters of all three systems (model 1-3). 

Missing parameters provided by optimization and force contacts calculations from 

GAMESS-US generated the topology for each system by Leap modeling with AMBER. 

All these systems were then solvated with TIP3P cubic box with dimensions 12 Å that 

underwent energy minimization comprising 500 cycles for hydrogen atoms and 1000 

cycles for the water box to remove steric clashes. The system was then subjected to heating 

using a two-step canonical ensemble with restraints on the backbone and restraint weight 

5 kcal/mol/Å2 that gradually raised the temperature to 300 K using Langevin dynamics. 

Subsequently, the next step equilibrated the system for 100 ps followed by the pressure 

restraints in NPT ensemble with 1 atm and cutoff set to 8.0 Å. However, the long-range 

electrostatic interactions are dealt with Particle Mesh Ewald (PME)123,300 method. 

Production run was carried out in 2 replicas each for 1 µs on both the Model-1 and Model-

2 in complex with TSA.  

Whereas the production run for 1 µs was separately performed on Model-1 in 

complex with the second protein: TR. Furthermore, three mutation models alongwith the 

control drug was carried out for 100 ns each. However, to analyse the resulting trajectories 

and structures, the Root mean square of deviation (RMSD), Root mean square fluctuation 

(RMSF), Radius of gyration (Rg), and Beta-factor graphs were generated. The resulting 

trajectories were further analysed for subsequent ligand movement in each system using 

Axial frequency distribution (AFD) tool followed by Radial distribution function (RDF) 

analysis. RDF based on hydrogen bond interactions calculates the density distribution of 

one atom in reference to another atom lying at a particular distance. Furthermore, to assess 

the molecular determinants of respective binding affinities, we calculated free binding 

energy of all complexes using MMPBSA.py module of AMBER301.  
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Table 5.2. The LJ parameters for three models (1-3) computed using MCPB.py with 

GAMESS-US.  

Bismuth Model-1 

Atom Type Rmin/2 
(Å) 

Ɛ (kcal/mol) References 

M1 2.1850 0.5180 Adopted from atom type Bi3+3 from UFF (Rappe et al. 

JACS, 114, 10024) 

Y3 1.9080 0.2100 cp C DLM 11/2007 well depth from OPLS replacing 0.0860 

Y4 1.9080 0.2100 cp C DLM 11/2007 well depth from OPLS replacing 0.0860 

Y5 1.9080 0.2100 cp C DLM 11/2007 well depth from OPLS replacing 0.0860 

Y6 1.6612 0.2100 OPLS 

Y7 1.6612 0.2100 OPLS 

Bismuth Model-2 

Atom Type Rmin/2  

(Å) 

Ɛ (kcal/mol) References 

M1 2.1850 0.5180 Adopted from atom type Bi3+3 from UFF (Rappe et al. 

JACS, 114, 10024) 

Y3 1.9080 0.2100 cp C DLM 11/2007 well depth from OPLS replacing 0.0860 

Y4 1.9080 0.2100 cp C DLM 11/2007 well depth from OPLS replacing 0.0860 

Y5 1.9080 0.2100 cp C DLM 11/2007 well depth from OPLS replacing 0.0860 

Y1 1.6612 0.2100 OPLS 

Y6 1.9080 0.0860 OPLS 

Y7 1.9080 0.0860 OPLS 

Y2 1.6612 0.2100 OPLS 

Bismuth Model-3 

Atom Type Rmin/2  

(Å) 

Ɛ (kcal/mol) References 

M1 2.2100 0.4490 Adopted from atom type Sb3+3 from UFF (Rappe et al. 

JACS, 114, 10024) 

Y5 1.6612 0.2100 OPLS 

Y6 1.6612 0.2100 OPLS 

Y7 1.6612 0.2100 OPLS 

Y8 1.6612 0.2100 OPLS 
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5.2.4 Axial frequency distribution (AFD) 

Theoretical overview of AFD to decipher the dynamics of positional shifts and changes in 

orientation of ligand with respect to protein coordinate planes over the period is explained 

in Section 2.5.3. AFD is indigenously developed, designed and implemented in our lab that 

holds the capability to provide significant information about the distribution of interacting 

atoms 149. MD simulations trajectories with critical residues lying within 5.0 Å boundary 

cutoff with atomic center of mass are considered during the calculations. Function of AFD 

that calculates relative coordinate positions of X-axis and Y-axis relative to centroid on 

protein or ligand are discussed in detail in Section 2.5.3. Resulting AFD graphs contain 3D 

histograms depicting bi-molecular distribution of interacting atoms, which are depicted in 

forthcoming section of results.   

5.3  Results and discussion 

5.3.1 Force field parameterization reveal bidentate chelating effect 

Proteins with metal coordinating geometries are dependent on well-optimized states and 

force field parameters to undergo MD simulations. Both bismuth complexes namely, 

Model-1 and Model-2 attained the local minima at optimization steps 349 and 240, 

respectively demonstrated in Figure 5.3. Both these ligands exhibit bidentate coordination 

modes around the Bi metal center while attaining pentagonal bipyramidal geometry. 

Notably, the experimental analysis demonstrated similar findings and mentioned the ability 

of Model-2 to attain bidentate/monodentate coordination geometry that can extend its 

interactions leading to distorted octahedral/pentagonal molecular geometry. Furthermore, 

the bond distances between Bi-C and Bi-O atoms for both models (Model-1 and Model-2) 

are in agreement with the experimentally derived X-ray crystal structure analysis that 

validate the optimization results 285.  
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Figure 5.3: Parameterization of Bi(V) Model-1 and Model 2 alongwith Sb(V) 

meglumine antimonite (C7H18NO8Sb) with Seminario approach. A-C) 3D 

representation of optimized geometries of Model-1, Model-2, and meglumine 

antimonite, respectively. The geometries are optimized with SBKJC basis set coupled 

with ECP level of theory. Graphs represent energy potential calculated with 

GAMESS-US demonstrating starting point with the lowest energy level (step) 

mentioned in each graph.   

Bond distances for Bi-C and Bi-O for Model-1 correspond to 2.12-2.2 Å presented 

in Table 5.2 whereas Model-2 exhibits extended bond distances that ranges between 1.4 to 

3.0 Å. The difference in bond distance between the two models are probably due to the 

ortho OH group present in Model-2 illustrated in Table 5.2 that participates in making 
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extended interactions with the neighboring atoms. Model-2, however, has also been 

reported as the most active compound with IC50 0.45 (0.573 µM) in antileishmanial 

activity, which highlights the role of OH group at alpha position leading to hydrogen 

bonding with alkyl substituents that enhances lipophilicity of this compound. 

5.3.2 RESP charges 

Furthermore, the RESP charges calculated for each atomic interaction with the Bi(V) center 

retrieved from the optimized structures are illustrated in Figures (5.4-5.6).  

 

 

Figure 5.4: Calculation of RESP charges for Model-1 calculated with QM DFT 

methods using SBKJC ECP basis set. The metal center and interacting atoms are 

labelled.
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Table 5.3: Average bond length (Å) and average internal angles (◦) calculated with 1QM 2DFT methods using SBKJC 3ECP basis set 

for the molecular models [BiAr3(O2CR)2] and meglumine antimonite (C7H18NO8Sb).  

       Geometry                                              Bond Length (Å)     Angle (◦) 
             Model System                                                                               Organo-bismuth(V) carboxylates   
Optimized Model 
Number  

Bond 
Description 

SBK ECP   Angle 
Description 

SBK ECP 

    Average 
Equilibrium 
Bond Length (Å) 

Force constant 
(kcal.mol-1.Å-2) 

    Average 
Equilibrium 

Angle 
 [Ꝋeq] 

(°) 

Force constant 
[KꝊ] (kcal·mol-
1·rad-2) 

Bismuth Model 1 M1-Y1 2.1937 77.3   M1-Y1-c  127.26 101.99 

M1-Y2 2.194 74.1  M1-Y2-c  130.01 107.63 

M1-Y3 2.147 144.6  M1-Y3-c2 119.4 167.64 

M1-Y4 2.1449 144.8  M1-Y4-c2 119.44 170.34 

M1-Y5 2.1479 149.3  M1-Y5-c2 119.69 132.05 

Y1-c  1.2183 637.7  Y1-M1-Y3 90.45 129.36 

Y3-c2 1.307 625  Y1-M1-Y4 91.68 79.1 

Y4-c2 1.307 625  Y1-M1-Y5 86.76 145.43 

Y5-c2 1.307 625  Y2-M1-Y1 173.52 157.58 

Y6-ca 1.3984 461.1  Y2-M1-Y3 93.93 96.91 

Y7-ha 1.086 345.8  Y2-M1-Y4 89.61 108.89 

c -Y2 1.2183 637.7  Y2-M1-Y5 87.02 144.11 

c -Y6 1.4906 345.9  Y4-M1-Y3 126.09 112.28 

ca-Y7 1.3984 461.1  Y5-M1-Y3 115.98 99.45 

        Y5-M1-Y4 117.92 99.22 

          

Bismuth Model 2 M1-Y1 2.1937 77.3  M1-Y1-c  127.26 101.99 
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M1-Y2 2.194 74.1  M1-Y2-c  130.01 107.63 

M1-Y3 2.147 144.6  M1-Y3-c2 119.4 167.64 

M1-Y4 2.1449 144.8  M1-Y4-c2 119.44 170.34 

M1-Y5 2.1479 149.3  M1-Y5-c2 119.69 132.05 

Y1-c  1.2183 637.7  Y1-M1-Y3 90.45 129.36 

Y3-c2 1.307 625  Y1-M1-Y4 91.68 79.1 

Y4-c2 1.307 625  Y1-M1-Y5 86.76 145.43 

Y5-c2 1.307 625  Y2-M1-Y1 173.52 157.58 

Y6-ca 1.3984 461.1  Y2-M1-Y3 93.93 96.91 

Y7-ha 1.086 345.8  Y2-M1-Y4 89.61 108.89 

c -Y2 1.2183 637.7  Y2-M1-Y5 87.02 144.11 

c -Y6 1.4906 345.9  Y4-M1-Y3 126.09 112.28 

ca-Y7 1.3984 461.1  Y5-M1-Y3 115.98 99.45 

        Y5-M1-Y4 117.92 99.22 

  Model System                                                                               Meglumine antimoniate  

Antimony Model 3 M1-Y5 1.9953 174.9  M1-Y5-c3 117.45 122.03 

M1-Y6 2.0899 99.4  M1-Y6-c3 119.14 119.1 

M1-Y7 1.9914 181  M1-Y7-c3 114.14 106.37 

M1-Y8 2.0115 149.7  M1-Y8-c3 115.3 103.23 

c3-Y5 1.3165 449.9  Y6-M1-Y5 76.55 140.65 

c3-Y6 1.3165 449.9  Y7-M1-Y5 104.2 154.4 

c3-Y7 1.3165 449.9  Y7-M1-Y6 83.68 112.25 

c3-Y8 1.3165 449.9  Y8-M1-Y5 82.08 102.85 

    Y8-M1-Y6 148.44 152 

        Y8-M1-Y7 79.33 134.83 
1QM: quantum mechanics, 2 DFT: density functional theory, 3 ECP: effective core potential
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First and foremost, the difference in partial atomic charges of Bi metal center in 

both the models namely Model-1 and Model-2 was discrete alongwith the difference in 

charges in interacting atoms. The difference occurred due to larger electrostatic 

environment around the Bi center in Model-2. These variations hold crucial position 

particularly at the binding site to provide stability to metal center. These results however 

are validated through MD simulations of TR and TSA in complex with metal-coordinated 

ligands, which is explained in forth coming sections whereas Figure 5.4-5.6 illustrate the 

resulting optimized parameters of all three models (1-3) used in this study.  

 

Figure 5.5: Calculation of RESP charges for Model-2 calculated with QM DFT 

methods using SBKJC ECP basis set. The metal center and interacting atoms are 

labelled. 

5.3.3 SBKJC ECP at a glance 

SBKJC basis set derived by Stevens and coworkers encompassing the valence double-zeta 

potential set coupled with ECP has been employed in this study to optimize Bi and Sb 

metalloids. SBKJC particularly deals with large sets of systems comprising elements of 
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higher period number covering atoms from mostly group 14-17 (C-Sn, N-Sb, O-Te, and F-

I). Bi Model-1 and Model-2 prior to SBKJC optimization exploited LANL2DZ as basis set 

that led to unconverged geometries particularly for Bi systems. Whereas SBKJC when 

coupled with ECP generated converged calculations for both Bi and Sb that reached their 

local minima.  

Figure 5.6: Calculation of RESP charges for meglumine antimonite (C7H18NO8Sb) 

calculated with QM DFT methods using SBKJC ECP basis set. The metal center and 

interacting atoms are labelled. 

The resulting geometries particularly bond lengths lay close to experimental values 

of Bi compounds. Furthermore, a recent study on SBKJC conducted by Luciano et al. 

suggested the use of pseudopotential with SBKJC that can directly impact the contribution 

of inner electrons and Raman intensities, but the study did not incorporate Bi atoms in its 

data set105. Current study, however, proposes Bi metalloids with pentagonal geometries for 

further analysis, which if/must be considered for optimization with methods like SBKJC 
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ECP with pseudopotential referred as pSBKJC that will effectively lower the 

computational cost expended for heavy nucleus comprising large number of electrons.  

5.3.4 Validation of force field parameters  

The optimized models were validated in all atom MD simulations that require well-

optimized geometries for metal coordinated systems. All three models including the control 

meglumine antimoniate were exploited in complex with TSA and TR using MD 

simulations to shed light on the binding dynamics of Bi(V) compounds on enzymes of 

T(SH)2 pathway. 

5.3.4.1 Modulation of trypanothione synthetase amidase by Arg  

TSA model contains ADP, 2 Mg+ ions and an analogue of GSH necessary for biosynthesis 

and hydrolysis of T(SH)2. The triangular active site of synthetase comprise three sub-

domains S1 for ADP and Mg+, S2 for binding of GSH and S3, a spermidine or glutathionyl-

spermidine binding site. Recent studies have reported crystal structures of TSA bound with 

ATP, Mg+ and an inhibitor comprising structural moieties similar to spermidine or 

glutathionyl-spermidine in their structures. In this study, we exploited organo-bismuth(V) 

carboxylates as inhibitors, which revealed discrete results and remodeled the mode of 

ligand binding. Visual inspection of MD simulations mentioned in Figure 5.7 demonstrate 

overlaid crystal structure with all its sub-domains highlighted.     

Detailed analysis of all three models (1-3) illustrates that ligand dynamics are 

largely dependent on the residue Arg569 lying at the bottom of the binding site. 

Simulations run in 2 replicas for 1 µs each on Model-1 are depicted in Figure 5.8 and 

Figure 5.9, which reveal distinct movement of Arg569 to interact with the OH group 

present on “LIG604” chain of bismuth model. Ligand movement from vertical to horizontal 

position influences ARG569 to interact with the residue Arg313, a catalytic residue that is 

significant for the activity of TSA. Model-1 exhibited mean RSMD value of 1.5 Å while 

maximum and minimum values range from 1.3 Å to 2.5 Å depicted in Figure 5.10. 

Variations in positioning of ortho group in LIG604 chain of Model-1 over the time of 1 µs 

appears crucial that tends to interact with Arg569, leading to stronger interactions between 

Arg569 and Arg313 is depicted in Figure 5.8.  
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Figure 5.7: Visual inspection of active site of Trypanothione Synthetase-Amidase 

with sub-domains labelled. The crystal structure is depicted in grey surface whereas 

the Bi(V) bound complex after MD simulations is represented with brown surface.  

Notably, the strictly conserved residues important for catalysis of ATP at S1 and 

orientation of spermidine at S3 comprising Arg313, Ser336, and Cys341 (non-conserved) 

are affected due to the dynamics of Arg569 upon ligand binding Figure 5.12. Findings 

from MD simulations not just highlight the critical role of Arg569 but also indicate the 

presence of possible allosteric site S4 near the catalytic site S3 of TSA that have been 

reported in multiple experimental studies302,303. In the same context, the study conducted 

by Oliver et al. reports the possibility of an allosteric site304, concurrent with the current 
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study that should undergo experimental and NMR crystallography in future studies 

especially in connection to the orientation of Arg569 (horizontally aligned). 

Figure 5.8: Visual representation of Arg569 and ligand dynamics during MD 

simulations of 1 µs in complex with Model-1. A) snapshots taken at 10 ns, 100 ns, 

500 ns, and 1 µs depict movement of Model-1 from pocket S3 to S4. B) 

Representation of Arg569 at 10 ns, 100 ns, 500 ns, and 1 µs exhibiting the role of 

Arg569 in modulating ligand dynamics. C) Snapshot taken at 10 ns with critical 

residues of protein and chains of Model-1 highlighted. D) Snapshot taken at 1 µs 

depicting interaction of OH present at LIG604 of Model-1 with both Arg313 and 

Arg569. 

 



 
CHAPTER 5                                                                BI METAL FORCE FIELD PARAMETERIZATION 
 

 127 

 
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

 

 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.9. Replica simulations for 1 µs of both Model-1 and Model-2 in complex 

with TSA. Bismuth Model-1 stayed intact till the end of simulations while making 

strong interactions with OH of ligand and Arg313. Bismuth Model-2 however, 

exhibited similar ligand dynamics and shifted to nearby pocket S4. A) Root mean 

square deviation B) Root mean square fluctuations C) Beta-factor D) Radius of 

gyration. 

 



 
CHAPTER 5                                                                BI METAL FORCE FIELD PARAMETERIZATION 
 

 128 

 
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

 

 Figure 5.10: Trajectory analysis of Model-1 and Model-2 in complex with 

trypanothione synthetase-amidase carried out on 1 µs MD simulations. A) Root mean 

square deviation B) Root mean square fluctuations C) Beta-factor D) Radius of 

gyration.  

5.3.4.2 Insights into dynamics of Arg569 

To reaffirm the role of Arg569, we induced mutations in TSA giving rise to three mutated 

models (1-3), which were run for 100 ns each. Single mutation of residue Arg569 to Glu569 

led to the mutated Model-1 whereas mutated Model-2 comprise 4 residues of pocket S4 

that exhibited stronger interactions depicted in Figure 5.12 including Arg569. Mutated 

Model-3 however signifies 4 mutated residues as Model-2 but keeps Arg569 non-mutated. 

Mutated residues namely Lys546, Tyr551, Phe328, and Leu543 comprise the S4 pocket, 

which would not affect the binding dynamics of S3.  
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Figure 5.11: A) Snapshots of Model-2 overlapped to depict the movement of a ligand 

from position S3 to S4. B) Interactions diagram of replica simulations at 1 µs of 

Model-1 in complex with trypanothione synthetase-amidase. C) Interactions diagram 

of replica simulations at 1 µs of Model-2 in complex with trypanothione synthetase-

amidase. 

Interestingly, Figure 5.12 supported by the Figure 5.13 signifies the detachment 

of ligand in all models with Arg569 substituted with Glu569 whereas Arg569 in mutated 

Model-3 reaffirms the significance of this residue, which maintained interactions with the 

bismuth Model-1 till 100 ns. Overall RMSD of all systems fluctuated between maximum 
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and minimum value of 1.5 Å to 2.5 Å, respectively. We also put emphasis on the 

importance of OH in a ligand that oriented the activity of Arg569 by exhibiting strong 

hydrogen bonding with the ligand instead of Ser336, another significant residue for 

establishing and stabilizing the transition state. These findings reveal that Arg569 that is 

essential for the stability of transition state in a synthetase reaction, is completely occupied 

by bismuth containing compounds. 

Furthermore, we compared snapshots and simulations results of control drug 

meglumine antimoniate. Figure 5.14 comprising RMSD, RMSF, beta-factor and Rg 

graphs clearly depict the movement of Model-3 away from the active site of TSA. Despite 

the presence of Arg313, model-3 was unable to retain the binding site due to failure in 

establishing contacts with Arg569. However, to support our findings and to have insights 

into the rearrangement of Arg569 in complex with models (1-3) alongwith the reported 

pentavalent antimony drugs, we carried out CPPTRAJ analysis to identify the native 

contacts that are important for stabilization at both sites (S3 and S4).  

Figure 5.15 of native contacts depict residues that maintained interactions in 

maximum number of frames with distance less than 4 Å. Interacting residues observed at 

10 ns are mostly the conserved residues of S3 pocket comprising Arg569, Ser3346, 

Glu392, Glu393, Met444, and Pro571 with maximum contact points in simulation frames. 

These interacting partners were however changed with the ligand movement comprising 

Glu569, Phe328, Ala531, Lys533, Gln541, Tyr551, and Ile553 observed at 100 ns. 

Common residues that maintained interactions till 1 µs are Tyr551, Lys546, Phe328, 

Ile553, and Arg569, which underwent mutations given in Figure 5.12. 
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Figure 5.12: Mutated models to understand the role of Arg569 in anchoring the 

bismuth models (1-3). A) Mutated Model-1 at 100 ns with single mutation of residue 

Arg569 to Glu569. B) Mutated Model-2 with 4 mutations at S4 pocket comprising 

Lys546, Tyr551, Phe328, and Leu543 including Arg569 at 100 ns. C) Mutated Model-

3 with 4 mutations at S4 pocket comprising Lys546, Tyr551, Phe328, and Leu543 

with Arg569 non-mutated.  
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Figure 5.13: Trajectory analysis of mutated models (1-3) in complex with 

trypanothione synthetase-amidase carried out on 100 ns MD simulations. A) Root 

mean square deviation B) Root mean square fluctuations C) Beta-factor D) Radius of 

Gyration.    

 
Furthermore, to monitor the change in orientation of Arg569 and estimate the 

involvement of hydrogen bond interactions in imparting stability, we applied RDF and 

AFD. RDF and AFD clearly expose the ligand shift from one chain to another in Model-1 

alongwith the atom distribution along the simulation path that contributed to extended 

interactions at different time intervals (ns). Figure 5.16 shows Arg569 simulations at 10 

ns that exhibited highest peak at 3.4 Å with g(r) value of 0.02 with “LIG603” chain of 

bismuth Model-1. Whereas RDF at the end of simulations at 1 µs exhibited higher and 
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stronger density peaks while interacting with “LIG604” chain of bismuth model-1 that 

carries the ortho group. 

 

Figure 5.14. MD simulations analysis of pentavalent antimonial; Meglumine 

antimoniate in complex with trypanothione synthetase-amidase. A) RMSD B) Radius 

of gyration (Rg) C) AFD graph generated from trajectories of 100 ns MD simulations.  

 

Similarly, Model-2 in complex with TSA exhibited similar pattern with maximum 

peak at 4.2 Å with g(r) value of 0.7 at 10 ns and the distance of 2.6 Å with g(r) value of 

0.3 at 1 µs is observed. These results provide powerful insights into the hydrogen bond 

interactions throughout the simulations that directly impact the ligand dynamics connected 

with the Arg569.  
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Figure 5.15. Native contacts established by bismuth Model-1 and Model-2 with 

pockets of TSA at different time intervals of 1 µs MD simulations.  A) Interacting 

residues of both sites (S3 and S4) of TSA in complex with bismuth Model-1 at 10 ns, 

100 ns, and 1 µs. B) Interacting residues of both sites (S3 and S4) of TSA in complex 

with bismuth Model-2 at 10 ns, 100 ns, and 1 µs. 
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Figure 5.16. Radial distribution functions carried out on bismuth Model-1 and Model-

2 at 10 ns and 1 µs. A) RDF calculated for bismuth Model-1 with OH group present. 

B) RDF calculated for bismuth Model-2.  

 

Moreover, Arg569 dynamics are best depicted in Figure 5.17 representing 

movement of Arg569 over the simulations. Interactions observed at 10 ns between 

Glu569@NH2 and LIG603@O3 exhibited variations in binding pattern between different 

atoms of Arg569 and LIG603. Whereas peaks and density distributions keep increasing 

over the time depicted in snapshots taken at 100 ns and 1 µs of Model-1. These sharper 

peaks and higher density distribution indicate stability of model-1 at S4 position where 

Arg569 lies horizontally while making interactions with Arg313. MD simulations 

snapshots also reveal change in dynamics of Cys341 due to movement of Arg569.  
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Figure 5.17. AFD results of Model-1 and Model-2 with trypanothione synthetase-

amidase calculated over 1 µs MD simulations each indicating period of positional 

shifts of Arg569. A) AFD of Model-1 at 10 ns, 500 ns, and 1 µs. B) AFD of Model-2 

at 10 ns, 500 ns, and 1 µs. 

These graphs indicate strong intermolecular forces between Model-1 and the Arg 

residues (Arg569 and Arg313) where the ligand is sandwiched between the two residues 

signifying the role of OH sidechain. These findings also point to the fact that any change 

in one of these residues can completely affect the dynamics of ligand biding. Overall 

analysis of all three bismuth models (1-3) in complex with TSA highlight the role of 

Arg569 that appears as a driving force for such ligand dynamics that can critically affect 

the inhibitory activity of this enzyme. 

 

5.3.4.3 Molecular basis of Bi(V) with trypanothione reductase 

Bismuth containing compounds are further investigated with the second protein: TR of 

T(SH)2 pathway. The X-ray crystal structure used in MD simulations (PDB ID 4APN) 

comprise the NADPH and FAD present in each monomer of a dimer. Whereas, the catalytic 

site for trypanothione molecule or inhibitor is characterized by the presence of two Cys 

residues accompanied by a His residue that is critical not just for inhibitory studies but for 
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dimerization as well206,308. MD simulations run for 1 µs reveal that bismuth containing 

compounds bound at the interface of two chains act as competitive inhibitor of FAD that 

occupies the position where glutathione tail binds. Role of Cys52 and Cys57 residues of 

TR, however, is noteworthy which moves closer to the metalloid bound ligand over the 

period demonstrated in Figure 5.18.  

Distance profile created from 100 ns MD simulations trajectories, exhibit decrease 

in distance from 6.9 to 5.4 Å between Cys52 and the model-1 whereas Cys72 revealed 

distances ranging from 6.9 to 3.5 Å. In a review study reported by Baiocco et al. it is clearly 

reported that Bi(V) and Sb(V) drugs are less toxic and 10-times more effective against TR, 

which in current study occupied two catalytic cysteine residues and His residue in the 

interface while exhibiting strong potential to  inhibit TR304,308. Findings suggest that Bi(V) 

comparatively yields better results in terms of making interactions with neighboring 

residues belonging to 2-fold symmetric active site due to its pentagonal coordinating 

geometry.  

Furthermore, it is observed that in the design of metal inhibitors of TR, several 

metals have exhibited inhibitory role with noteworthy IC50 values such as Sb(III), Au(I) 

and AF (1-thio-b-d-glucopyranosato-(triethylphosphine)gold 2,3,4,6-tetraacetate) with 

similar binding mechanism but with toxicity issues 309–311. Kinetic studies have disclosed 

higher functional characteristics of Au(I) and AF compared to Sb(III) that is Ki = 50 nM, 

155 nM and 1.5 µM, respectively269. This study, however, validates the reaction 

mechanism at computational level whereas the experimental analysis suggests that tris(p-

tolyl)3Bi analogues hold the capability to inhibit with higher IC50 and mortality percentage 

that correlates with data observed in antimony(V) dicarboxylate inhibitory studies 312. 

Overall, the comparative free energy analysis of all models that underwent MD simulations 

alongwith their experimental IC50 values are exhibited in Table 5.1 with both 

trypanothione enzymes, which clearly prioritize Model-1 for further analysis.  
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Figure 5.18. Depiction of molecular interactions demonstrated by Model-2 with hotspot 

residues of conserved binding cleft of TR A) Depicts overall 3D structure of TR with 

NADPH and Model-2 bound with FAD B) Close-up view of overlapped snapshots 

extracted from 10 ns and 100 ns trajectories with Model-2 highlighted in yellow whereas 

FAD lying behind the cavity is exhibited in elemental color C) Close-up view of distance 

profile between the Cys52 and Cys57 over the period.  

5.4  Concluding remarks 

While the unique systems of T(SH)2 metabolism serve as valuable template in the design 

of selective anti-trypanosomatid agents, limited treatment options of parasitic diseases are 

obtainable. In the recent years, emerging drug resistance against present drugs particularly 

pentavalent antimonial emphasize on collective measures to explore novel inhibitors with 

varying chemical environment. One of the foremost strategies is to design chemical 

compounds capable of inhibiting multiple targets of redox homeostasis T(SH)2 pathway. 

The available crystal structures lay strong basis to elucidate structural information of TSA 

and TR to design and optimize inhibitors to target the conserved binding clefts. 
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Nevertheless, application of dual drugs or single-targeted drugs open avenues to disrupt 

these metabolic pathways at multiple points. However, another foremost strategy to 

interfere antimicrobial resistance (AMR) is to design new formulations particularly with 

metalloids offering less toxicity that will act as a preamble of variation in novel drug 

discovery methods.  

This study therefore manifests experimentally determined anti-leishmanial Bi(V) 

metalloids recently published in our previous work 285, which are not only parametrized for 

the first time but to date is the first computational study that have provided powerful 

insights into binding potential of metalloids with enzymes of trypanothione pathway. These 

compounds were synthesized with salt metathesis reaction that underwent variety of 

analytical analysis for structural characterization such as X-ray crystallography, NMR 

spectroscopy and demonstrated higher antileishmanial activity with lower cytotoxicity 

compared to amphotericin B. 

We have extended the experimental study by employing QM calculations with 

SBKJC ECP level of theory to retrieve novel force field parameters of Bi(V) compounds 

synthesized as series of [BiAr3(O2CR)2] alongwith a known Sb(V) drug, meglumine 

antimoniate. Force field parameterization revealed bidentate chelating behaviour of both 

Bi(V) models (Model-1 and Model-2), particularly Model-2 exhibited pentagonal 

bipyramidal geometry with higher binding affinity due to presence of subsalicylate in its 

structure. Moreover, the reported distances in experimentally determined X-ray crystal 

structure are in agreement with distances observed in optimized models illustrated in Table 

5.2, thus validating the choice of a basis set. Such a parameterization at the hub of an 

inorganic metal centers and specifically bi-inorganic complex will give rise to further 

parameterization of new metals of biological relevance and can be considered as baseline 

importance of this work.  

Furthermore, MD simulations of 5 µs to elucidate conformational dynamics and 

binding potential of Sb(V) and Bi(V) containing compounds revealed role of Arg569 in 

modulating the ligand dynamics. Interestingly, the presence of ortho group in a bismuth 

Model-1 has a crucial role in bridging two Arg residues: Arg569 and Arg313 of the binding 

site. These findings are supported by comprehensive interaction analysis, RDF, AFD, and 
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binding free energy calculations. Similar findings have been revealed by experimental 

study that categorized Model-1 with higher antileishmanial activity and lower toxicity 

profile. It has been emphasized that OH group lying at alpha position is actively involved 

in making interactions with neighboring residues, which may improve the lipophilicity of 

this compound.  

However, with the intention of targeting multiple enzymes of the same pathway, 

similar compounds were subjected to MD simulations with TR. TR that contains NADPH 

and FAD in a dimer structure holds the binding cavity at the interface of two chains. 

Proposed study targeted the critical cysteine residues Cys52 and Cys57 that moved closer 

to the Bi(V) models during MD simulations, thus occupying the area where glutathione tail 

of FAD attaches for its regular function 304. Noticeably, similar behaviour yielded by Bi 

and Sb metalloids point to analogous electronic structures of these metals with the ability 

to extend interactions as bidentate or monodentate structures probably due to occurrence 

of these metalloids in the same group according to the periodic table, which presents Bi as 

less toxic than Sb 278,279,313.  

Similarly, the critical role of bismuth complexes is not only evident but there is 

striking opportunity of these complexes to perform better than their counterparts. 

Reaffirmation of structural attributes of bismuth in this context is of utmost medicinal 

importance. In conclusion, this study deciphers the impact of novel metalloids that can 

effectively cater drug resistance and toxicity issues for leishmaniasis and other diseases if 

applied in the context of biologically relevant enzymes.  

This research work has been published in Journal of Chemical Information and Modeling 

by the ACS publishers and can be found at publications section of this thesis.  
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6 MYTHS AND REALITIES BEHIND COVID19 

THERAPEUTIC INTERVENTIONS 

6.1 Background  

Due to continuously evolving genetic makeup of the SARS-CoV-2 virus and its ability to 

spread rapidly, it has taken a huge toll on individuals, communities and societies across the 

world by ruthlessly affecting over 340 million people globally leading to 5.5 million deaths 

as of 20th, January 2022 314. However, several vaccines worldwide namely; Oxford–

AstraZeneca, Pfizer-BioNTech, Sinopharm-BBIBP, Moderna, Sinovac, Johnson & 

Johnson, and mRNA-1273 (developed by Moderna Inc.), have been given authorization on 

an emergency basis due to overwhelmed health systems that have caused widespread social 

and economic disruption 315. Despite the rollout of vaccines to the general public, the trend 

in the daily number of cases reported is still on the higher side signifying the end of the 

SARS-CoV-2 pandemic as implausible 316,317. One of the foremost reasons is the 

unavailability of vaccines especially in low-income and middle-income countries leading 

to a standstill to achieve global control of SARS-CoV-2 318. Another big reason is that a 

large number of people are reluctant to get a vaccine shot rather they believe in using herbal 

medicines as an alternative cure to SARS-CoV-2 319. Nevertheless, traditional medicinal 

plants have a vast history in treating infectious diseases. For example, malaria was treated 

for a very long time with Artemisia Annua (sweet wormwood) in China and Cinchona 

Officinalis (Cinchona tree) in South America 320. Another example is the use of Chinese 

traditional medicine Lianhuaqingwen in the treatment of SARS-CoV-2 exhibiting 

inhibition of virus replication in a dose-dependent manner with IC50 of 411.2 ug/ml 321. 

Thus, the role of herbal medicines in these unprecedented times of ongoing pandemic has 

resulted in a global catastrophe that cannot be ignored.  

While the effectiveness of some medicinal plants has been scientifically proven, 

there is a global tendency for self-medication with different herbal medicines without 

proper scientific evidence. There has been a myth regarding the use of famous Senna tea 

in treatment of Covid19 that has eventually lead to its excessive use followed by a drastic 

hike in prices 322323. It is generally used as an herbal tea made from Senna pods or leaves 
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cultivated in different countries having different species commonly known as Alexandrian 

Senna, Tinnevelly Senna, Indian Senna, and Sanna Makki. The plant extracts of different 

species consists of many active anthraquinones and flavonoids including sennosides, aloe-

emodin, rhein, iso-rhamnetin and kaempferol 324,325. Limitation of long term use of Senna 

is reported to be concomitant with dehydration and diarrhea 326. Apprehensions on the 

propagation of misleading information about its use in Covid19 treatment were enhanced 

through social and mainstream media without sufficient scientific evidence 327. It is of 

utmost importance to remove ambiguity about using Senna tea in Covid19 treatment, which 

can rather aggravate the symptoms by causing irritated bowl linings, dehydration, and 

electrolyte imbalance that can ultimately be fatal 328,329 330. 

The scope of this study, therefore, serves to analyze potential binding of particularly 

those phytochemicals that have been suggested to inhibit the major protease of SARS-

CoV-2, 3-Chymotrypsin-Like Protease (3CLpro) in vitro with IC50 0 – 10 µM in comparison 

with the phytochemicals present in Senna. Inhibition of 3CLpro is crucial in viral lifecycle 

and design of SARS-CoV and SARS-CoV-2 inhibitors 168. It is highly conserved among 

the SARS-CoV viruses and displays 96% similarity with the zoonotic genome, especially 

the bat coronavirus 331,332. To further explore the possibility of chemical compounds of 

Senna to be active against other Covid19 protein targets, we elucidated its structural 

properties with additional essential proteins of SARS-CoV-2 namely; spike protein, 

helicase nsp13, and RdRp nsp12. The findings of this study will assist in distinguishing 

potential phytochemicals from a group of known and social media acclaimed plant based 

Covid19 treatments based on comparative structural dynamics. Moreover, compounds 

proposed in this study will hold a rationale to inhibit both PLpro and 3CLpro and provide 

avenues to use the scaffolds of these molecules in the design of more specific SARS-CoV-

2 inhibitors in the future.  

6.2  Materials and methods 

The complete workflow of the current study is mentioned in Figure 6.1.  
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Figure 6.1. Workflow of the current study to identify potential phytochemicals against 

Covid19 drug targets from a list of known and social media acclaimed natural 

products.  

6.2.1 Dataset collection for pharmacophore modeling  

6.2.1.1 Training set 

Two training sets were required for the generation of two pharmacophores namely; 3D-

QSAR pharmacophore and common feature pharmacophore. A dataset consisting of 

diverse structural information with in vitro data on medicinal plants that have exhibited 

high potential in inhibiting 3CLpro was collected from different resources and used for the 

generation of 3D-QSAR pharmacophore 333–335.  The inhibitory studies conducted on 

SARS-CoV-2 reported the IC50 value of chloroquine between 1.13 to 5.47 µM 336, thus 

establishing a threshold to collect only those medicinal compounds that exhibited IC50 

value from 0 – 15 μM. Whereas, Senna compounds constituting phenolic acids, flavonoids, 
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and coumarins with the highest quantity of benzoic acid as well as anthraquinones were 

used in the training set to generate a common feature pharmacophore. 

6.2.1.2 Test set 

To validate the generated pharmacophores, we investigated both the known active and 

inactive medicinal compounds between IC50 values 1.2 μM to 226 μM. Moreover, to 

randomize the test set, a set of 77 known active and inactive FDA-approved compounds 

recently released against 3CLpro by the National Center for Advancing Translational 

Sciences (NCATS) ("SARS-CoV-2 cytopathic effect (CPE)", 2021) 337 were also added in 

the test set. To keep the study consistent with experimental results, we particularly added 

the controls reported in multiple in vitro studies including hesperetin (8.3 µM), aloe-

emodin (132 µM), apigenin (280.8 ± 21.4 µM), luteolin (20.0 ± 2.2 µM), quercetin (23.8 

± 1.9 µM), and remdesivir (5 µM) 338. 

6.2.2 Pharmacophore modeling 

All the protocols such as; 3D-QSAR pharmacophore modeling, common feature 

pharmacophore modeling, ligand pharmacophore mapping, and feature mapping were 

carried out with the BIOVIA Discovery Studio (DS) 190. In this study, we generated two 

pharmacophore models; 1) 3D-QSAR pharmacophore model for biologically active 

phytochemicals reported against 3CLpro and 2) a common feature pharmacophore for Senna 

compounds with no reported experimental activity with a given target. 3D-QSAR 

pharmacophore generation protocol that is designed to generate predictive pharmacophores 

based on ligands with known activity against a specific biological target was run with input 

ligands set to a training set of 27 active phytochemicals against 3CLpro. The 

HypoGen algorithm generated 200 conformations with an energy threshold for each ligand 

maintained within a 10 kcal/mol energy range that were further optimized using simulated 

annealing. The ligands in the dataset used pre-defined ‘Activ’ and ‘Uncert’ values. ‘Activ’ 

refers to the tested biological values of the input ligands (IC50). Whereas; ‘Uncert’ that is 

the uncertainty value was set to 1.5 implying the variation between experimental and 

estimated values during model generation up to two times and also affects the regression 

fitting of the pharmacophores during optimization. Moreover, to determine the best 

features that should be considered during the pharmacophore models generation, we used 
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a Feature mapping tool that maps solvent-accessible features and identifies all possible 

locations of the selected pharmacophore features on the given ligand. The parameters for 

“Max” and “Min” in the feature mapping protocol were set to 5 and 1, respectively. The 

results exhibited hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), 

hydrophobic (HYD), positive ionizable (PI), and ring aromatic (RA) features as commonly 

mapped features from the training set compounds.  

However, in the absence of biologically predicted values for Senna compounds 

against 3CLpro, a common feature pharmacophore was generated with the phytochemicals 

of Senna. We assumed all compounds to be equally active that were considered as reference 

ligands exhibiting HBA, HBD, HYD, PI, and RA as common features as a result of the 

feature mapping tool analysis. The protocol carried out both the model generation with a 

training set and validation with a test set simultaneously. The output file lists the SD file 

for each pharmacophore aligned to the ligands and the receiver operating characteristic 

(ROC) curve exhibiting the trade-off between sensitivity and specificity of selected 

pharmacophores. Each pharmacophore uses the FitValue property to ascertain which 

ligand uses the maximum features for mapping. Higher FitValue is indicative of more 

features mapped in a suitable conformation.   

6.2.3 Pharmacophore validation 

Two methods: the cost analysis and test set analysis were used to determine the best 3D-

QSAR pharmacophore models. A test set of ligands with similar receptor binding that was 

not used for model generation was employed to assess the ability of generated 

pharmacophores to estimate activity of test ligands. The protocol to generate a 3D-QSAR 

pharmacophore model for the given training set and validation with a test set takes place 

simultaneously in BIOVIA DS resulting in a detailed report with 10 hypothesis models 

generated with different statistical parameters. The output file contains an SD file of the 

input ligands aligned to each pharmacophore with a report summary that includes 

regression statistics and a plot of LogEstimate vs. LogActiv for the test ligands to quickly 

determine the best pharmacophore with the ability to predict the activity of test ligands. 

Whereas; for the cost analysis, the overall cost of each hypothesis was calculated by 

summing these 3 cost factors; 1) FitValue property that indicates the total number of 
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features mapped that are HBA, HBD, HYD, PI, and RA 2) high correlation coefficient (r2), 

3) lowest total cost while exhibiting highest cost difference and 4) low root mean square 

deviation (RMSD) values. Another method ligand pharmacophore mapping protocol was 

run with the test ligands as input to validate the performance of selected pharmacophores 

and return an estimated value that should be close to the experimental values. It anticipates 

the activity of selected pharmacophore based on a decent correlation coefficient with the 

test set ligands and 95% cross-validation confidence.  

However, to determine the best common pharmacophore model and to quickly 

determine the matches, a ligand profiler protocol was used with input data set to test set 

that was mapped against the generated common feature pharmacophores. Ligand profiler 

generates a heat map to quickly determine the best set of ligands mapped against a 

pharmacophore based on the FitValues. From the heat map, the pharmacophores that do 

not map to any of the test set compounds can be easily identified, making the selection of 

pharmacophores easier with higher FitValue and more relevant alignment.  The selected 

validated pharmacophores could be used for lead identification from the molecular 

libraries.  

6.2.4 Virtual screening for lead identification 

The selected 3D-QSAR pharmacophore model was used to screen a library of 2,287 

compounds comprising alkylated chalcones, phlorotannins, tanshinones, bioflavonoids, 

and flavonoids. Whereas, the common feature pharmacophore model was used to screen a 

library of in-house built Senna compounds collected using the Chembl similarity searching 

tool 339 against sennosides and anthraquinones present in Senna. We chose 3D-QSAR 

pharmacophore model Hypo1 and the common feature pharmacophore model 10 as a 3D 

query to screen the input ligands against each pharmacophore feature present in the query 

to extract the more relevant pharmacophore models. The screen library protocol in BIOVIA 

DS was used with the minimum features’ parameter set to 3, the maximum 

features parameter set to 4, and the maximum subset of pharmacophore parameter set to 

100. This suggests that 100 pharmacophore subsets of all possible 3 and 4 feature 

pharmacophore from the 5 features will be used for screening. The resulting subset of both 

the libraries was then subjected to molecular docking.  
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6.2.5 Molecular docking  

LibDock algorithm of BIOVIA DS was run to dock the screened ligands from 3D-QSAR 

pharmacophore of phytochemicals and common feature pharmacophore consisting of 

Senna compounds separately. The screened compounds against 3D-QSAR pharmacophore 

were reported specifically as anti-3CLpro ligands with known biological activity, thus they 

were not tested for other Covid19 targets and subjected to docking into the active site 

HIS164 of 3CLpro 182. LibDock calculates a hotspot map for the given receptor site 

containing polar and apolar groups, which are used to generate favorable ligand-receptor 

interactions followed by the energy minimization step. Due to the conformational 

differences in the monomeric and dimeric structure of 3CLpro as suggested in the literature 
340, we subjected all the complexes to MD simulations with the monomer; whereas, only 

those compounds were tested with dimer that were unstable with monomer. Moreover, due 

to the absence of any experimental data on screened compounds sennoside A, B, C, and D 

of Senna against 3CLpro, we expanded our research scope and chose four additional 

proteins that are crucial for the survival of SARS-CoV-2 namely; spike protein (PDB: 

6LZG), helicase nsp13 (PDB: 6JYT), RdRp nsp12 (PDB: 6M71) and 3CLpro (PDB: 6LU7). 

In order to validate further, based on dynamics and conformational changes, we selected 

the three FDA-approved drugs approved against Covid19 namely; remdesivir, 

hydroxychloroquine, and vizimpro 341, which were used as a control. The top-scoring 

compounds from each dataset were then subjected to molecular dynamics (MD) 

simulations with Amber16 342. 

6.2.6 Molecular dynamics simulations 

MD simulations were carried out on the active phytochemicals, vizimpro and Senna 

compounds to check the behavior of protein with their proposed ligands. There were 6 

phytochemicals and vizimpro in complex with 3CLpro, 2 complexes of spike protein 

(docked at both the regular and allosteric site), helicase nsp13, RdRp nsp12, and 3CLpro 

with Senna compounds. For this purpose, parameter/topology files were generated 

using the LEaP program followed by the system preparation by neutralizing it with counter 

ions (Na+/Cl-). TIP3P tetrahedral solvation box was adjusted for 12 Å and General Amber 

Force Field (GAFF) and ff14SB was used to get insights into the intermolecular and 
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intramolecular interactions. Furthermore, in the next step, preprocessing was performed 

for all the systems with 500 steps and 1000 cycles of minimization with 200kcal/mol/Å2. 

The whole system’s atoms were again minimized for 1000 cycles with 5kcal/mol/Å2 by 

applying restraints on carbon alpha atoms, while 300 minimization steps were run for non-

heavy atoms to further relax the system. The system was slowly heated with restraints on 

the backbone and restraint weight 5 kcal/mol/Å2 using Langevin dynamics till 300 K. The 

system was then equilibrated for 100 ps to make it stabilized according to the environment. 

The pressure was sustained through the NPT ensemble allowing the restraint weight of 

5kcal/mol/Å2. All these systems then underwent production run of minimum 200 ns with 

a non-bounded cut-off set to 8.0 Å. However, only those systems were extended that 

exhibited instability in their RMSD trend. 

6.2.7 Trajectories analysis 

The generated trajectories were analyzed through Amber CPPTRAJ module 16 to observe 

the stability of the complex. Different parameters such as RMSD, root mean square 

fluctuations (RMSF), beta-factor (β-factor), and radius of gyration (Rg) were calculated. 

The generated graphs and trajectories were analyzed using the Visual Molecular Dynamics 
234 and Chimera 236. 

6.2.8 Binding free energies 

Binding free energies were calculated using the MMPBSA/GBSA package of Amber16239. 

Theoretical background of binding free energy calculations is presented in Section 2.5.1. 

The generated trajectories of MD simulations were subjected to MM(PB/GB)SA.py 

module 146. The system works by calculating the energy difference between complex and 

unaided protein and ligand. The MMPBSA.py module was used to 

generate the prmtop files of protein, ligand, and complex, which subsequently follow 

the total binding energies calculation and decomposition binding free energy calculations. 

The total 450 frames each after every 0.2 seconds were mined from the entire MD 

trajectories and exposed to MMPBSA calculations. The two methods Poisson-Boltzmann 

(PB) or Generalized-Born (GB) approaches were used to accomplish the analysis. The 

binding free energy provides information about the significant residues that help to analyze 

the components that participated in keeping the protein and ligand intact. 
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Furthermore, these binding energies were decomposed into per residue and pair residue 

using the MMPBSA.py module of Amber 16.  

6.2.9 Axial frequency distribution  

Furthermore, AFD provided in Section 2.5.3 was employed to have insights about the 

positioning of ligand with respect to coordinates.  

 

6.2.10 Toxicity analysis 

ADMET protocol of BIOVIA DS software was used to calculate the ADMET properties 

of selected compounds whereas; TOPKAT suite of BIOVIA DS software carried out the 

toxicity prediction based on built-in and validated rodent models. The parameters such as 

solubility level, absorption level, blood-brain barrier (BBB) penetration level, plasma 

protein binding (PPB) prediction with a cutoff score of -2.209, CYP2D6 (cutoff score 

0.161), and hepatotoxic prediction using a cutoff value of -4.154 were calculated. 

Moreover, the TOPKAT calculated toxicity based on validated models present in BIOVIA 

DS such as; FDA rodent carcinogenicity test, the prediction of tumorigenic dose rate 50 

(TD50) of a drug, rat maximum tolerated dose (MTD), test rat oral acute median lethal 

dose (LD50) of a chemical, prediction of rat chronic lowest observed adverse effect level 

(LOAEL), ocular and skin irritancy.  

6.2.11 Network pharmacological analysis  

Last but not the least, network pharmacological approach was used to decipher the 

signaling pathways associated with target proteins of proposed phytochemicals against 

Covid19. Proposed phytochemicals including Senna compounds were subjected to 

http://www.swisstargetprediction.ch/ to identify the drug targets. Whereas, the DisGeNET 

(http://www.disgenet.org/) disease target prediction analysis platform was used to find the 

drug targets of Covid19. Drug targets that were common between Covid19 and 

phytochemicals were selected and merged by Cytoscape3.9.1 software to construct an 

active ingredient-key targets Covid19 network. 

http://www.swisstargetprediction.ch/
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6.3  Results and discussion 

6.3.1 Pharmacophore modeling 

Ligand-based 3D-QSAR pharmacophore modeling resulted in the generation of 10 

hypotheses that aligned to the ligands present in training set. The best hypothesis Hypo1 

was selected based on the highest correlation value of 0.74, highest cost difference of 

115.21, and the lowest RMSD of 1.39 Å. The statistical values of 10 hypotheses are 

summarized in Table 6.1. The highest cost difference values indicate the ability of 

pharmacophore to predict estimated values with respect to experimental values with 90% 

significance. The selection of best pharmacophore model was also based on the 

highest FitValue of 4.36 that is based on the alignment of training set ligands to the 

pharmacophore.  

Table 6.1: Statistical parameters of top 10 3D-QSAR pharmacophore hypotheses generated 

using HypoGen algorithm.  

 

 

 

 

 

 

The null cost and the fixed cost are 240.64 and 109.19, respectively   
a Cost difference between the null and the total cost  
b RMSD, root mean square deviation  
c Abbreviation used for features: HBA, hydrogen bond acceptor; HYD, hydrophobic; RA, Ring 
Aromatic.  

 

Four common features consisting of 1 HBA, 2 HYD, and 1 RA were observed in 

Hypo1. It was noted that all the features of pharmacophore were mapped to the most active 

medicinal compound xanthoangelol_E having IC50= 1.2 ± 0.4 µM, depicted in Figure 6.2. 

Moreover, a list of Hypo1 estimated and experimental values with their corresponding error 

values against medicinal compounds are also given in Table 6.2. Interestingly, it was also 

Hypothesis 
No. 

 
Total Cost 

 
Cost Differencea 

 
RMSDb 

 
Correlation 

 
Featuresc 

1   125.43  115.2  1.39   0.741  HBA, HP, RA   
2   129.24  111.39  1.44  0.729  HBA, HP, RA   
3   137.88  102.76  1.52  0.707  HBA, HP, RA   
4   141.68   98.961  1.55  0.697  HBA, HP, RA   
5   145.10   95.537  1.57   0.691   HBA, HP, RA   
6   145.21   95.429  1.58   0.689  HBA, HP, RA   
7   146.72   93.917  1.60  0.682  HBD, HP  
8   153.04   87.594  1.65  0.667  HBA, HP, RA   
9   154.81  85.827  1.68  0.660   HBA, HP, RA   
10   157.02  83.620  1.75  0.653  HBD, HP  
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noted that among the four features, only RA was missing from other active phytochemicals 

endorsing the importance of HBA and HYD features, which might be responsible for the 

experimental activity.  

 

 

 

 

 

 

 

 

 

 

Figure 6.2 3D-QSAR pharmacophore model of compounds comprising alkylated 

chalcones, phlorotannins, tanshinones, bioflavonoids, and flavonoids. A) 3D-QSAR 

pharmacophore exhibits four common features consisting of 1 hydrogen bond 

acceptor (HBA), 2 hydrophobic (HYD), and 1 ring aromatic (RA) B) 3D-QSAR 

pharmacophore model with distance between chemical features. C)The most active 

medicinal compound; xanthoangelol_E from the training set mapped with the highest 

FitValue of 4.36 D) The top compound, vilazodone mapped against 3D-QSAR 

pharmacophore with the highest FitValue of 3.56 from the test set. E) The second top 

compound lapitinib with a FitValue of 3.54 mapped against 3D-QSAR 

pharmacophore from the test set. 
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However, in the case of Senna compounds, it was observed that the common feature 

pharmacophore no. 10 aligned with the training set compounds with highest FitValues 

exhibiting 3 HBA and 1 RA features. The compound isoquercetin mapped to the common 

feature pharmacophore with highest FitValue of 0.975 as displayed in Figure 6.3. 

However, it is noteworthy that the presence of hydrophobic pockets and basic residues in 

3CLpro have been reported in the literature 182, highlighting the significance of hydrophobic 

features, which is missing in the case of common feature pharmacophore. 

Table 6.2: Predicted and experimental IC50 values of the training set compounds based on 

the 3D-QSAR Hypothesis 1 pharmacophore model.  

*Refers to the missing features. 

6.3.2 Validation of pharmacophore models 

Validation of any 3D-QSAR hypothesis model is primarily based on the cost analysis of 

two theoretical values 1) total cost value and 2) null cost value. A good quality 

pharmacophore has a cost difference of 40 to 60-bit score representing 70 – 90% 

Name FitValue Predicted 

IC50 (µM) 

Experimental 

IC50 (µM) 

Error Status Mapping 

Xanthoangelol_E  4.36  1.60  1.20  1.40  active   [6 20 12 9]   

Hesperetin 3.68  6.60   8.30  1.50  active   [1 23 14 *]   

Iguesterin  3.08  8.10  2.70  3.10  active  [2 25 4 *]   

Dieckol  3.14  5.70  2.70  2.10  Moderately active   [12 37 33 *]   

Tanic acid  2.12  61  3.00  20  moderately active   [11 * * 61]   

Psoralidin   3.71   5.30  4.20  1.30  moderately active   [5 23 17 *]   

Tomentin  3.00  7.90  5.00  1.60  moderately active   [3 32 21 *]   

Pristimerin  3.07   6.70  5.50  1.20  moderately active   [2 33 24 *]   

Amentoflavone  3.00  8.00  8.30  -1.0  moderately active   [9 21 * 13]   

Tingenone   2.81  12  9.9  1.20  moderately active   [3 25 5 *]   

Betulinic acid  3.03  7.30  10  -1.40  moderately active   [1 31 14 *]   

Diplacone  3.11  6.1  10  -1.70  moderately active   [6 29 16 * ]   

Celastrol  2.74  15  10  1.40  moderately active   [4 16 18 *]   

Dihydro tanshinone I 2.18  53  14  3.70  moderately active   [* 15 * 1]   

Mimulone  3.13  5.80  14  -2.50  moderately active   [5 22 15 *]  
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confidence level along with other important parameters such as lowest RMSD and the 

highest correlation values. However, the 3D-QSAR model selected in this study represents 

the probability of more than 90% correlation among the data sets with the highest total cost 

difference 115.21 and highest correlation value 0.74, exhibiting a pharmacophore model 

with high prediction ability for lead identification. 

 

Figure 6.3. Common feature pharmacophore of Senna compounds A) Results exhibit 

four common features consisting of 3 hydrogen bond acceptors (HBA) and 1 ring 

aromatic (RA) features B) Common feature pharmacophore model with distance 

between chemical features. C) Isoquercetin mapped the common feature 

pharmacophore with highest FitValue of 0.99 from the training set. D) Compound 

with lowest FitValue. 

Apart from the cost analysis of the training set, the 3D-QSAR pharmacophore 

model was validated using error values estimated between the experimental and estimated 

activity values generated as a result of the ligand pharmacophore mapping protocol. 33 test 
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set compounds mapped to Hypo1 pharmacophore with error value of =<10 depicting order 

one difference between the experimental and estimated IC50 values. The statistical analysis 

indicated higher regression coefficient (R2) value of 0.646 for the test set while cross-

validating the results with training set that displayed regression coefficient value R2=0.495, 

depicted in Figure 6.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Correlation graph in logarithmic scale for experimental values vs. 

predicted values of training and test ligands that mapped the 3D-QSAR 

pharmacophore model Hypo1. 

Moreover, the FDA-approved drugs, vilazodone and lapatinib both having IC50 of 

10 µM from the test set mapped the 3D-QSAR pharmacophore model highest FitValue of 

3.56 as depicted in Figure 6.2. From these results, it was conceived that the presence of 
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chemical features HBA, HYD, and RA for 3CLpro inhibitory activity are crucial and are 

also found in FDA-approved drugs currently under clinical trials. Furthermore, in the case 

of common feature pharmacophore modeled for the Senna compounds, the ROC curve was 

used to evaluate the degree of false positivity of the model with known active and inactive 

compounds. The curve plots true positives against false positives and indicates if the model 

predicted active compounds higher than the inactive compounds. The AUC value lies 

between 0 and 1; 0 is indicative of a bad classifier, however, the selected model exhibited 

a fair accuracy score of 0.710 as presented in Figure 6.5. Table 6.3 displays sensitivity 

and specificity values of the selected model with an ability to distinguish between active 

and inactive compounds.  

Table 6.3 Statistical variations of common feature pharmacophore models.  

 

 

Additionally, the results of ligand profiler protocol exhibited mapping of 15 test set 

compounds accurately with the selected pharmacophore and labeled active compounds as 

red and inactive as blue that can be seen in Figure 6.5. It is therefore determined from the 

validation results that both pharmacophore models exhibited the capability to classify 

active and inactive compounds. The 3D-QSAR pharmacophore model however exhibited 

all the significant features that are required for binding of 3CLpro, while the common feature 

pharmacophore model failed to identify hydrophobicity as a common feature. 

Validation with known Active/Inactive compounds 
Pharmacoph
ore 

Total 
Activ
e 

Total 
Inacti
ve 

True 
Positiv
es 

True 
Negativ
es 

False 
Positiv
es 

False 
Negativ
es 

Sensitivi
ty 

Specifici
ty 

1 77 39 30 14 25 47 0.38 0.35 
2 77 39 31 14 25 46 0.40 0.35 
3 77 39 33 14 25 44 0.42 0.35 
4 77 39 32 14 25 45 0.41 0.35 
5 77 39 33 11 28 44 0.42 0.28 
6 77 39 33 11 28 44 0.42 0.28 
7 77 39 34 10 29 43 0.44 0.25 
8 77 39 33 14 25 44 0.42 0.35 
9 77 39 31 15 24 46 0.40 0.38 
10 77 39 34 14 25 43 0.44 0.35 
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6.3.3 Virtual screening 

The validated 3D-QSAR Hypo1 model and the common feature pharmacophore model No. 

10 were used as a query to screen for new lead compounds from the medicinal library of 

2,287 compounds and Senna compounds. The compounds from the virtual screening that 

best mapped to the pharmacophore models were selected based on the highest FitValues. 

The compounds with FitValue ranging from 3.98 – 2.46 from each library were selected 

and subjected to molecular docking.   

Figure 6.5. A) Heat map generated by the ligand profiler for validation of common 

feature pharmacophore model No. 10 with the test set B) ROC curves generated for 

the validation of common feature pharmacophore model with the test set C) 

Logarithmic graph between estimated and experimental values of the training set and 

test set of common feature pharmacophore. 

6.3.4 Molecular docking 

Since 3D-QSAR pharmacophore was generated with respect to only one target, the 

resulting compounds from virtual screening along with the 27 training set compounds of 
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the active phytochemicals were subjected to molecular docking with 3CLpro. The top six 

compounds; xanthoangelol_E with the highest LibDock score of 202, beta-sitosterol with 

a score of 198, hesperetin with a score of 152, luteolin-7-O-glucopyranoside, isoquercetin, 

and calceolarioside_B with LibDock score 124, 114, and 112 from the medicinal library 

were chosen, respectively. However, considering the fact that theoretically one of the tea 

ingredients of Senna may bind a different Covid19 protein and/or key cellular protein, it 

was necessary to expand our research to determine the binding potential of Senna 

compounds. Therefore, the Senna compounds screened for common feature 

pharmacophore that does not require a specific target for model building were subjected to 

docking with four additional proteins (both structural and non-structural) of Covid19. The 

standing of selected proteins in the structure of Covid19 virion is presented in Figure 6.6.  

Figure 6.6 SARS-CoV-2 virion with the four selected proteins. The structure of virion 

is taken from 343. 

The docked compounds present in high quantity in Senna namely; sennoside A, B, 

C, and D were chosen for further analysis on the basis of Libdock score against each target 

protein. Herein; we also subjected three recently approved FDA drugs remdesivir, 

hydroxychloroquine, and vizimpro to molecular docking to validate results based on 



   
CHAPTER 6           MYTHS AND REALITIES BEHIND COVID19 THERAPEUTIC INTERVENTIONS 

159 
 

 
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

comparative analysis. However, the topmost compound vizimpro with the highest docking 

score of 129 was further subjected to MD simulations to further validate representative 

pharmacophore models and demonstrate their efficiency.  

6.3.4.1 Active phytochemicals 

The topmost compound, xanthoangelol_E is an alkylated chalcone capable of inhibiting 

both 3CLpro and PLpro in a significant dose-dependent manner with IC50 ranging from 1.2 

± 0.4 to 46.4 ± 7.8 µM 344. Xanthoangelol_E completely occupied the catalytic pocket of 

3CLpro making interactions with all the sub-pockets S1, S2, S3, S4, and S5 as depicted in 

Figure 6.7. Whereas, the second and third topmost compounds; beta-sitosterol, and 

hesperetin, are phytochemicals with reported inhibitory activity for 3CLpro with IC50 115 

μM and 8.3 μM, respectively 345. Both these compounds exhibited strong hydrogen bond 

interactions with significant residues of 3CLpro such as Glu166, Thr190 and His164 

presented in Figure 6.7 while occupying the sub-pockets S3, S4 and S5. Beta-sitosterol 

also exhibited other significant interactions such as alkyl, pi-alkyl, and pi-pi T-shaped with 

residues Leu50, Leu167, Ala191, Met165, Pro168, and His41, respectively. Whereas, 

hesperetin not only exhibited interactions with the catalytic dyad but the –OH substitutes 

displayed strong hydrogen bond interactions with Arg489, Gln493, His464, and Leu442. 

Furthermore, the fourth topmost compound is luteolin-7-O-glucopyranoside, which 

is a phytochemical essentially a derivative of luteolin and cynaroside. Luteolin is 

commonly known for its anti-inflammatory activities both in vitro and in vivo based on its 

pharmacologically competent mechanism of action 346. The glucopyranoside ring of this 

compound targeted the sub-pockets S1 and S3 while exhibiting interactions with His163, 

Glu166, and Gln192 as depicted in Figure 6.8 lying near the catalytic dyad (Cys145- 

His41). Whereas, the fifth compound, a hydroxycinnamic acid, calceolarioside_B 

exhibited potential binding affinity with the sub-pockets S1, S2, and S3. The oxygen atoms 

of the ligand molecule have shown conventional hydrogen bond interactions with Asn142, 

His41, and Gly143 residues of the binding pocket.  
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Figure 6.7. Preferred binding mode of active phytochemicals in the binding site of 

3CLpro depicting two-dimensional (2D) docked complex with A) Xanthoangelol_E 

having an IC50 value 11.4 ±1.4 µM B) Hesperetin having an IC50 value 8.3 μM C) 

Beta-sitosterol with an IC50 value 1210 μM. 
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Figure 6.8. Preferred binding mode of active phytochemicals in the binding site of 

3CLpro depicting two-dimensional (2D) docked complex with A) Luteolin-7-O-

glucopyranoside B) Calceolarioside_B C) Isoquercetin. 
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6.3.4.2 Senna compounds 

To get insights into the binding potential of Senna compounds, they were subjected to 

docking with four additional essential proteins of SARS-CoV-2 to conclude and convey 

the larger significance of this study.  

3CLpro 

The docking results of 3CLpro with Senna compounds presented in Figure 6.9 exhibit 

conventional hydrogen bond interactions with residues Gly170, Gly138, Lys5, Val125, and 

GLU288 with Libdock score of 109. Compared to the docking results of active 

phytochemicals against 3CLpro, Senna has shown weak binding affinity and few 

intermolecular interactions suggesting that this might not be a potential lead compound for 

the inhibition of target protein.   

Helicase Nsp13 

Nsp13 is an interesting drug target as it plays a crucial role in the transcription-replication 

complex of CoVs. Docking of Senna compounds against helicase nsp13 has resulted in the 

Libdock score of 114. Significant hydrogen bond interactions of oxygen atoms of the 

ligand can be observed in Figure 6.9 with residues Glu377, Ser312, Gln539, Ser541, 

Thr288, Arg445, and Glu321. Furthermore, Ala314 and Ala318 were involved in pi-alkyl 

interactions with benzene ring of the ligand playing a crucial role in adjusting and 

anchoring the ligand within the binding pocket.  

RdRp Nsp12 

Non-structural proteins such as nsp12 are highly conserved proteins, which are essential 

for viral infection. Senna compounds have shown a Libdock score of 102 against RdRp 

nsp12. Active pocket residues Trp617, Lys798, Asp760, Cys622, Lys551, and Lys621 

have made crucial hydrogen bond interactions with the oxygen atoms of the ligand as 

depicted in Figure 6.9. Furthermore, the benzene ring of the ligand has made pi-anion 

interactions with Aap618. 
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Spike protein 

Spike protein aids in the attachment of virus to the host cell and thus is a significant drug 

target for inhibition studies. Docking of Senna compounds against receptor-binding 

domain (RBD) of spike protein bound with ACE2 receptor resulted in Libdock score of 

118. The active site residues involved in crucial interactions with the protein are Asp30, 

Gly416, Arg408, His34, Ser494, Tyr495, Glu37, Ala387, and Tyr421. Significant 

hydrogen bond interactions of binding site residues with ligand oxygen atoms have firmly 

anchored the ligand within the active pocket as depicted in Figure 6.9.  

Furthermore, several other intermolecular interactions such as pi-anion and pi-alkyl 

between receptor and ligand have also contributed to enhanced binding affinity. Moreover, 

to analyse the conformational changes in spike-ACE2 complex and to estimate the 

capability of Senna compounds to disrupt interactions between spike protein and ACE2 

receptor, molecular docking at the allosteric site of spike protein has revealed a Libdock 

score of 126. Protein residues Ala330, His356, Glu357, Asp332, and Asn376 have 

exhibited strong hydrogen bonding interactions with the lead compound. However, Glu384 

has exhibited pi-anion interactions with two benzene rings of the ligand.  

6.3.5 Molecular dynamics simulations 

All complexes including vizimpro (the control) were subjected to MD simulations to have 

insights into the dynamics and conformational stability of active phytochemicals in 

complex with the SARS-CoV-2 3CLpro and Senna compounds with 3CLpro, RdRp nsp12, 

helicase nsp13, and spike-ACE2.  

6.3.5.1 Analysis of active phytochemicals 

The first compound beta-sitosterol exhibited noteworthy results during 200 ns of MD 

simulations. It possesses stability with both the chains A and B throughout simulations and 

moved even deeper in the binding pocket of 3CLpro as displayed in Fig 6. Interestingly, 

beta-sitosterol was observed making alkyl and pi-alkyl interactions more often with the 

residues of the active site with an average RMSD of 1.78 Å, Rg 22.2 Å and β-factor 31.6 

Å as exhibited in Figure 6.10. The influence of electrostatic interactions in attaining 
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conformational stability has been explained in the literature several times 347, proposing 

beta-sitosterol as an interesting candidate for further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Preferred binding modes of sennosides docked with four essential proteins 

of SARS-CoV-2 depicting 2D binding interactions. A) 3CLpro B) Helicase nsp13 C) 

Spike protein-ACE2 receptor complex docked at two different sites D) RdRp nsp12. 

 



   
CHAPTER 6           MYTHS AND REALITIES BEHIND COVID19 THERAPEUTIC INTERVENTIONS 

165 
 

 
Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

 

Figure 6.10. Insights into the MD simulations of vizimpro, hesperetin, beta-sitosterol, 

and xanthoangelol_E for the time period of 200 ns each complex. A) RMSD in 

complex with 3CLpro B) Radius of gyration C) RMSF of 3CLpro residues D) Beta-

factor. 

Whereas, the second compound hesperetin was run for 200 ns and exhibited 

stability for the first 60 ns followed by a sudden increase in RMSD resulting in detachment 

of hesperetin from chain A, while remaining intact with chain B of the dimer as depicted 

in Figure 6.11. Average RMSD of 1.35 Å is shown in S5 Fig, which also exhibits the 

maximum fluctuations observed mainly in domain III with the Rg value 22.1 Å and β-

factor 25.8 Å. Nonetheless, the role of critical residues such as His143, Phe140, Gln189, 

and Glu166 was again highlighted as they were involved in making significant interactions 

with chain B of 3CLpro. 
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Figure 6.11. MD simulations of beta-sitosterol exhibited strong electrostatic 

interactions and stable conformational dynamics with both the chains of dimer 3CLpro.  

Similarly, xanthoangelol_E, the most active medicinal compound reported in 

experimental assays against 3CLpro exhibited the same behavior as hesperetin. However, 

increase in trend of RMSD graph was observed till 200 ns, which was extended to 300 ns 

to corroborate the structural dynamics. The ligand stayed intact with only chain B of the 

dimer protein displaying overall stability in protein structure as shown in Figure 6.12. 

However, the active site residues of chain B were actively involved in making interactions 

with xanthoangelol_E with an average RMSD of 2.04 Å as displayed in Figure 6.10  

Furthermore, the structural and conformational dynamics of luteolin-7-O-

glucopyranoside during 200 ns exhibited extraordinary results with an average RMSD of 

3.03 Å exhibiting the formation of 13 hydrogen bonds between glucopyranoside ring and 

the active site residues of 3CLpro. A significant increase was observed between 50 ns to 75 

ns with the highest peak noted at 65th ns with an RMSD value of 6.07 Å. This noticeable 

change can be visually observed in simulation trajectories where increased bonding with 

the loop region (185-200 residues) that connects domain II to domain III caused the third 

domain to open up as displayed in Figure 6.13. Moreover, the number of bonds formed by 

the ligand significantly increased from 9 to 22, of which, 13 were hydrogen bonds while 

the rest comprised of C-H bonds and pi-alkyl bonds. The protein was seen to open up to 
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incorporate the ligand into its binding pocket completely at 10 ns forming and 

breaking after every 10 ns up to 75 ns. However, after 80 ns, strong hydrogen bonding was 

observed stabilizing the RMSD as presented in Figure 6.10 making domain III returned to 

original position with the aid of residues Thr190 and Ala191 that kept the critical residues 

of the active site intact.  

 

Figure 6.12. MD simulations analysis of Hesperetin and Xanthoangelol_E A) 

Hesperetin detached itself from chain A due to structural dynamics in its cavity but 

stayed intact with chain B till 200 ns as displayed in the top-right image. B) 

Xanthoangelol_E exhibited the same behavior with the chain while displaying strong 

hydrogen bond interactions and ligand movement deeper in the cavity of chain  B till 

300 ns, as presented in the bottom-right corner image. 

The next simulation run with isoquercetin, exhibited fluctuations in domain II and 

domain III resulting in increased RMSD at 150 ns therefore MD simulations were extended 

to 300 ns to confirm the structural stability of this complex. However, after 200 ns, it was 
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observed that isoquercetin detached from the active site resulting in instability of the 

complex. 

Figure 6.13. A) MD simulations analysis of luteolin-7-O-glucopyranoside for 200 ns. 

Snapshots from 0 ns, 60 ns, and 200 ns are superimposed depicting an increase in 

RMSD due to the domain movement. B) MD simulations analysis of 

calceolarioside_B depicting ligand movement attempting to completely occupy the 

binding site thus leading to the increase in RMSD observed as a consequence of 

domain movement. 

Furthermore, the last MD simulation run of calceolarioside_B with 

3CLpro exhibited significant fluctuations in RMSD throughout the 200 ns run. The 

simulations were further extended to 400 ns to explore the stability of the compound in its 

binding pocket. Simulation trajectories suggested that the receptor-ligand Results yielded 

showed that a significant rise of RMSD at 250 ns is associated with domain III 

movement covering 21.6 Å from its initial position as depicted in Figure 6.13. The ligand 

adjusted itself in the binding pocket of the receptor to form strong hydrogen bond 

interactions with crucial residues Glu166, which play a central role in making interactions 

with a catalytic dyad (Cys145 and His41) and is critical for the proteolytic activity of the 

viral protein 206,348. However, further insights into the simulation results show that the 
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domain moved back to its original position after 300 ns leading to stabilization in 

RMSD.  All the 6 compounds were further compared with a control vizimpro based on MD 

simulation results, which exhibited the exact behavior between chain B (1-302 residues) of 

vizimpro and the dimer 3CLpro. The ligand from chain A drifted away from the active site 

after 150 ns. Whereas, the ligand tightly attached itself to chain B and completely occupied 

the active site while moving inside the cavity making even stronger interactions with the 

active site residues of the receptor. Our analysis was further extended to the calculation of 

binding free energies of all the 7 complexes using MMPBSA and MMGBSA calculations 

to conclude our study.  

6.3.5.2 Analysis of Senna compounds  

Five complexes were subjected to MD simulations comprising a span of 200 ns each. The 

first simulation run with 3CLpro exhibited detachment of sennoside (ligand) from the active 

site as depicted in Figure 6.14. However, the second most interesting complex with spike 

protein and ACE2 receptor was analysed with two different sites to identify the 

conformational changes if any. Ligand bound at RBD of spike protein exhibited stability 

till 200 ns exhibiting the inability of ligand to abrogate interactions between the spike 

protein and ACE2 receptor of SARS-Cov-2 as shown in Figure 6.14. However, the ligand 

docked at the allosteric site of ACE2 receptor resulted in protein fluctuations but eventually 

detached itself from the active site after 150 ns. As an outcome, interactions between spike 

protein and ACE receptor were not abolished that are essential for its inhibitory activity 
349,350. The same results were observed with RdRp nsp12 and helicase nsp13 complexes. 

None of the active sites retained sennosides probably due to the absence of hydrophobic 

interaction, which were reported in different studies as significant for inhibitory activity of 

SARS-CoV-2 proteins 351,352. Moreover, the Senna compounds that remained intact with 

the protein even farther from the active site were still subjected to binding free energy 

profiles to get insights into the energetics between proteins and ligands; respectively. 
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Figure 6.14. Insights into MD simulations of sennosides with A) 3CLpro, B) Spike-

ACE2 with ligand attached at RBD, C) Spike-ACE2 with ligand attached at allosteric 

site, D) RdRp nsp12, and e) Helicase nsp13. 
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6.3.5.3 Binding free energy analysis 

The end-point free energy calculations were performed to find energetics between active 

phytochemicals in complex with 3CLpro, Senna compounds in complex with RdRp and 

spike-ACE2, and vizimpro. The distribution of energetics of top three active 

phytochemicals xanthoangelol_E, beta-sitosterol, and hesperetin as a result of MMGBSA 

calculations is mentioned in Table 6.4. The sum of binding free energy with a dimer 3D 

structure of 3CLpro exhibited impressive values ranging from -86.56 to -92.91 kcal/mol. 

The highest number of binding interactions resulted from the van der Waals interactions 

with values -163.69 to -172.99 kcal/mol between dimer and the selected ligands. However, 

the MMGBSA value of vizimpro, a control FDA-approved drug for SARS-CoV-2 

exhibited a value of -52.80 kcal/mol. Moreover, the energetics of xanthoangelol_E, beta-

sitosterol, and hesperetin as a result of MMPBSA calculations mentioned in Table 6.4 

exhibited values ranging from -22.31 to -26.82 that were striking as compared to the 

control drug, vizimpro that was -9.56 kcal/mol. 

Whereas, energetics of other three compounds namely; luteolin-7-O-

glucopyranoside and calceolarioside B, and isoquercetin exhibited MMGBSA calculations 

that lied between -20.64 to -53.06i kcal/mol. The major contributions came as a result of 

van der Waals interactions with values ranging from -38.79 to -62.02 kcal/mol. Moreover, 

total binding energy values from MMPBSA calculations exhibited values ranging from 

0.4745 to 21.0345 kcal/mol with mostly contrbutions from the van der Waals interactions 

that lied between -45.75 to -62.02 kcal/mol. Furthermore, free energy calculations of all 

three complexes with sennosides lied from 8.60 to 23.63 kcal/mol, which were 

comparatively weak as compared to active phytochemicals and the control drug, vizimpro.  
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Table 6.4. Binding free energy and its components in MM/GBSA and MM/PBSA for the active phytochemicals, Senna compounds, and 

vizimpro in complex with 3CLpro, RdRp, and spike-ACE2 proteins in kcal/mol. 

 

Energy 
Compon

ents 

Vizimpro 
3CLpro 

Beta-
Sitosterol 
3CLpro 

Heperetin 
3CLpro 

Xanthoan
gelol,_E 
3CLpro 

Luteolin 
3CLpro 

 

Calceola
rioside B 
3CLpro 

Isoquerce
tin 

3CLpro 

Sennoside 
3CLpro 

Sennoside 
RdRp 

Sennoside 
Spike-
ACE2 

MM/GBSA 
VDW -52.8713                 -

172.9954 
-163.6940                 -170.2654                -62.0288                 -45.7566                 -38.7973                 -23.4553 -47.3276                 -34.9620                 

EEL 67.9698 -
604.9742 

-672.0357 -610.7079                -8.5579                44.2002                123.7085                -15.2853                 -133.0586                -34.9601                

EGB -61.5635                 673.5643                720.7120                671.3829                25.4674                -29.4643                -100.7974                31.6589                 147.1077                 67.0213                 
ESURF -6.3440                 -22.6008                 -21.9985                 -22.0860                 -7.9486                 -5.2809                 -4.7543                 -2.8773                 -7.6417                 -4.9811                 
DELTA 
G gas 

15.0985                 -
737.5308 

-791.6253 -738.7731                -70.5867                -1.5564                84.9112                -38.7405                -180.3862                -69.9221                

DELTA 
G solv 

-67.9075 650.9634 698.7134 649.2969                17.5187                -34.7452                -105.5516                28.7816                 139.4660                 62.0402                 

DELTA 
TOTAL 

-52.8090 -86.5674 -92.9119                 -89.4762                -53.0680                 -36.3016                 -20.6405                 -9.9590                 -40.9203                 -7.8819                 

MM/PBSA 
VDW -52.8713                 -

172.9954 
-163.6940                 -170.2654                -62.0288                 -45.7566                 -38.7973                 -23.4553                 -47.3276                 -34.9620                 

EEL 67.9698                 -
604.9742 

-672.0357 -610.7079                -8.5579                44.2002                123.7085                -15.2853                 -133.0586                -34.9601                

EPB -50.0416                 595.4107 657.6581                587.1260                39.0509                -22.3992                -85.5626                29.4452                 159.2216                63.4209                
ENPOL
AR 

-34.9171                 -
124.0661 

-116.7880                 -119.7822                 -41.3287                 -26.2835                 -24.6040                 -15.9147                 -36.8856                 -25.2096                 

EDISPE
R 

60.2918                 243.8727 223.9269                 236.2362                74.5756                 50.7137                 46.2899                 33.8181                 72.2494                 55.3440                 

DELTA 
G gas 

15.0985                 -
737.5308 

-791.6253                -738.7731                -70.5867                -1.5564                84.9112               -38.7405                -180.3862                -69.9221                

DELTA 
G solv 

-24.6669                 715.2173                764.7971                703.5800                72.2978                2.0309 -63.8767 47.3485                194.5854                93.5553                

DELTA 
TOTAL 

-9.5684                 -22.3135                -26.8282                -35.1931                1.7110                 0.4745                 21.0345                 8.6080                 14.1991                 23.6332              
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6.3.5.4 Axial frequency distribution 

AFD was carried out on those complexes that exhibited conformational 

changes/movements in ligand-receptor complex to attain stability during MD simulations. 

The findings were consistent with MD simulations analysis that exhibited change in 

orientation of hesperetin while forcing itself to move deeper into the binding cavity while 

making interactions between His164@NE2 and the ligand atoms O6. Hesperetin displayed 

higher density distribution with His143 at the beginning of the simulation, which was later 

shifted to His41 of the second chain covering more surface area but decreased density 

distribution as exhibited in Figure 6.15. 

 

 

 

 

 

 

 

 

 

Figure 6.15. AFD plots to compare point of coordinates and geometry between the 

active phytochemicals A) Hesperetin at 10 ns, B) Hesperetin at 200 ns, C) 

Xanthoangelol_E at 10 ns, D) Xanthoangelol_E at 200 ns, E) Vizimpro at 10 ns, and 

F) Vizimpro at 200 ns. 
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Similarly, xanthoangelol_E and vizimpro exhibited weak hydrogen bonding with 

His residues in the first 10 ns however it displayed higher density distribution later while 

retaining stable interactions with the same residue. Both the ligands displayed movement 

around the active site as seen in Figure 6.15 and exhibited stronger interactions at the end 

of simulations. Moreover, luteolin-7-O-glucopyranoside and calceolarioside_B also 

exhibited hydrogen bonding between two His residues (His41@O of Chain A and 

His143@HE2 of chain B) and ligand atoms H35 and O13 in the first 10 ns. Figure 6.16 

exhibits instabilities in density distribution between calceolarioside_B atoms and His 

residues however the fluctuations in distances are representative of ligand movement 

between the two chains.  

 

Figure 6.16. AFD plots to compare point of coordinates and geometry of A) 

Calceolarioside_B at 10 ns, B) Calceolarioside_B at 400 ns, C) Luteolin-7-O-

glucopyranoside at 10 ns, and D) Luteolin-7-O-glucopyranoside at 200 ns. 

Whereas, lutelolin exhibited strong hydrogen bonding with maximum density 

distribution together with decrease in distance between His143 and the ligand atoms till 
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the end of MD simulations (200 ns), presenting luteolin as more stable than 

calceolarioside_B. The results from AFD highlight the significance of His residues present 

in both the chains of 3CLpro that participated in maintaining the stability of all the 

complexes under study. 

6.3.6 Pharmacokinetic profiling analysis 

6.3.6.1 ADMET analysis 

The ADMET analysis exhibited good absorption values of xanthoangelol_E and hesperetin 

indicating good ability of both the compounds to enter blood circulation as compared to 

beta-sitosterol, and Senna compounds including sennoside A and sennoside B as displayed 

in Table 6.5.  

Notably, only hesperetin presented less blood-brain barrier (BBB) penetration 

ability to penetrate CNS as compared to other active phytochemicals that displayed high 

or very high BBB values. Moreover, hesperetin and beta-sitosterol exhibited good 

solubility values as compared to xanthoangelol_E, and calceolarioside_B. Furthermore, 

xanthoangelol_E and beta-sitosterol emerged as non-inhibitors of CYP2D6 exhibiting 

negative hepatotoxicity and greater than 90% ability to bind to plasma proteins. 

6.3.6.2 Toxicity analysis 

The results of TOPKAT are compared with the FDA-approved drugs for the purpose of 

protocol validation and comparative analysis given in Table 6.6. The toxicity analysis 

suggested two active phytochemicals; xanthoangelol_E, and hesperetin as non-carcinogens 

and non-mutagen as compared to beta-sitosterol and Senna compounds Moreover, the 

TD50 rat model exhibited values ranging from 148 – 0.19 mg/Kg-1 body weight as 

compared to remdesivir that displayed TD50 value 0.96 mg/Kg-1 body weight. Most of the 

Senna compounds exhibited high TD50 values as compared to hesperetin and beta-

sitosterol. Moreover, the active phytochemicals exhibited rat MTD values ranging from 

2.62 – 0.05 g/Kg body weight while beta-sitosterol displayed lowest MTD values 0.03 g/Kg 

body weight. Comparatively, FDA-approved drugs including XL-888, vilazadone, and 

remdesivir presented MTD values of 0.24, 0.93 and 0.09-g/Kg body weights, respectively. 
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Furthermore, the oral LD50 and rat chronic LOAEL values of active phytochemicals stayed 

within the range of 11.27 – 0.62 g/Kg body weight and 0.29 – 0.001 g/Kg body weight, 

respectively. However, the LOAEL of beta-sitosterol was lower than other active 

phytochemicals. Notably, Senna compounds came out as ocular irritants but predicted the 

values of skin irritancy as non-moderate. The statistical data of TOPKAT analysis is 

exhibited in Table 6.6. 

Table 6.5. ADMET properties of chemical compounds present in Senna in comparison with 

the active phytochemicals and FDA-approved drugs. 

aAbsorption level: (0, good; 1, moderate; 2, poor; 3, very poor), bBlood brain barrier (BBB) level; (0, 
very high; 1, = high; 2, medium; 3, low; 4, very low), cSolubility level ( 0, extremely low; 1, very low; 
2, low; 3, good; 4, optimal), dCYP2D6 prediction: (cutoff score 0.161), eHepatotoxicity prediction: 
(cutoff score -4.154), fPlasma protein binding (PPB) value: (cutoff score -2.209 presenting >90% 
binding ability of compounds to the plasma protein.   

 

 

 

Name aAbsorption 
level 

bBBB 
level 

cSolubility 
Level 

dCYP2D6 eHepatotoxicity fPPB 

Cynaroside 3 4 3 FALSE TRUE FALSE 
Gallic acid 0 3 4 FALSE TRUE FALSE 
Benzoic acid 0 3 4 FALSE TRUE FALSE 
Kaempferol 0 3 3 FALSE TRUE FALSE 
Isorhamnetin 0 4 3 FALSE TRUE FALSE 
Psoralen 0 2 3 FALSE TRUE FALSE 
Syringic acid 0 3 4 FALSE TRUE  TRUE  
Vanillic acid 0 3 4 FALSE FALSE FALSE 
Sennoside A 3 4 2 FALSE TRUE FALSE 
Sennoside B 3 4 3 FALSE TRUE FALSE 
Xanthoangelol_E 0 4 2 FALSE FALSE TRUE 
Beta-sisterol 3 4 3 FALSE FALSE TRUE 
Hesperetin 0 3 3 TRUE TRUE FALSE 
Calceolarioside B 3 4 1 FALSE FALSE FALSE 
Isoquercetin 3 4 3 FALSE FALSE FALSE 
Luteolin 0 4 3 TRUE TRUE FALSE 
Vilazadone 1 4 2 FALSE TRUE FALSE 
Lapatinib 2 4 3 FALSE TRUE TRUE 
XL-888 1 4 3 FALSE TRUE TRUE 
Hydroxychloroquine 0 1 3 TRUE TRUE FALSE 
Remdesivir 3 4 2 FALSE TRUE FALSE 
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Table 6.6 Toxicity properties of chemical compounds present in Senna in comparison with the active phytochemicals and FDA-

approved drugs calculated with TOPKAT. 

 
aTumorigenic dose rate 50 TD50 in unit mg/kg body weight, bMaximum tolerated dose MTD in unit g/kg body weight, cMedian lethal dose LD50 
in unit g/kg body weight, dLowest observed adverse effect level LOAEL in unit g/kg body weight. 

 

 

Name FDA Rodent 
Carcinogenicity 

aCarcinogenic 
potency TD50 
Rat 

bRat 
MTD 
feed 

cOral 
LD50 

dRAT 
chronic 
LOAEL 

Ames 
prediction 

Skin 
irritancy 

Ocular 
irritancy 

Cynaroside Non-Carcinogen 12.65 1.23 1.35 0.03 Non-Mutagen None Moderate 
Gallic acid Carcinogen 101.13 1.85 1.29 0.29 Non-Mutagen None Moderate 
Benzoic acid Single-Carcinogen 148.56 1.15 1.60 0.28 Non-Mutagen None Moderate 
Isorhamnetin Non-Carcinogen 11.72 0.69 1.20 0.11 Mutagen None Mild 
Kaempferol Non-Carcinogen 54.54 1.03 0.95 0.14 Mutagen None Moderate 
Psoralen Multi-Carcinogen 16.52 0.05 0.27 0.01 Non-Mutagen Mild Mild 
Syringic acid Non-Carcinogen 47.00 0.40 1.84 0.16 Non-Mutagen None Moderate 
Vanillic acid Non-Carcinogen 77.02 0.38 2.38 0.19 Non-Mutagen None Moderate 
Sennoside A Non-Carcinogen 0.37 1.99 11.27 0.08 Non-Mutagen None Mild 
Sennoside B Non-Carcinogen 0.37 1.99 11.27 0.08 Non-Mutagen None Mild 
Xanthoangelol_E Non-Carcinogen 131.03 0.46 3.70 0.10 Non-Mutagen Mild Mild 
Beta-sisterol Single-Carcinogen 0.71 0.03 1.57 0.001 Non-Mutagen Moderate None 
Hesperetin Non-Carcinogen 8.66 0.45 0.925 0.07 Non-Mutagen None Mild 
Calceolarioside B Non-Carcinogen 2.17 2.62 5.56 0.05 Non-Mutagen Mild Mild 
Isoquercetin Non-Carcinogen 4.54 1.75 0.84 0.07 Non-Mutagen None Moderate 
Luteolin Non-Carcinogen 140.46 0.83 0.77 0.11 Non-Mutagen None Mild 
Vilazadone Non-Carcinogen 0.93 0.13 1.17 0.02 Non-Mutagen None Moderate 
Lapatinib Non-Carcinogen 9.62 0.15 2.22 0.01 Non-Mutagen None Mild 
XL-888 Non-Carcinogen 0.24 0.08 0.74 0.02 Non-Mutagen None Moderate 
Hydroxychloroquine Non-Carcinogen 1.30 0.357 0.20 0.03 Mutagen None Severe 
Remdesivir Non-Carcinogen 0.96 0.09 0.27 0.001 Non-Mutagen Mild None 
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6.3.7 Network pharmacological analysis 

482 Covid19 drug target genes were predicted along with 8 xanthoangelol_E drug target 

genes, 44 target genes for beta-sitosterol, 88 for hesperetin, 24 for calceolarioside-B, 100 

for luteolin, and only 2 for sennosides. Moreover, to generate a network of common 

interactions between target genes of Covid19 and phytochemicals, only those drug targets 

were selected that were common between both the groups as presented in Figure 6.17. 

Active phytochemicals that were most actively involved in interactions were beta-

sitosterol, hesperetin, and luteolin. However, the sennosides failed to exhibit any 

interactions with Covid19 drug target genes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17. Medicinal compounds disease-target-network. Red dots represent the 

five-screened active phytochemicals and yellow dots represent the drug targets 

common between the proposed active phytochemicals and Covid19. 

The Network pharmacological analysis also highlighted the significance of 

proposed compounds by identifying common drug targets with Covid19 (presented in 
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Figure 6.16). The phytochemicals hesperetin, luteolin, and xanthoangelol_E exhibited the 

maximum number of interactions and identified AKT1, PTGS1, TNF, and DPP4 as the 

most affected drug targets. The roles of these kinases, oxidoreductases, upregulation of 

DPP4, and inhibition of PI3K/AKT signaling pathway have been highlighted in multiple 

studies in the treatment of Covid19 353–355. 

6.4 Concluding remarks 

While the spread of SARS-CoV-2 is inevitable despite the availability of different vaccines 
356, it is imperative to explore every possible treatment to curb this viral disease. Based on 

viral studies conducted in clinical trials by the U.S. Food and Drug Administration, 2020, 

the use of combination therapy has been highly recommended such as lopinavir, ritonavir 

in combination with chloroquine, hydroxychloroquine, and interferon-alpha since they 

have exhibited potential in the treatment of SARS-CoV-2 infection 357,358. Similarly, the 

combination therapy with natural products has delivered promising results while targeting 

the specific stages of viral life cycle critical for its survival 359,360. It is therefore 

indispensable to expand the treatment options and include medicinal plants in our research.  

In the current study, we derived two pharmacophore models 1) a 3D-QSAR 

pharmacophore model focused on active phytochemicals that have exhibited biological 

activity (IC50) against 3CLpro with less or no toxicity, and 2) a common feature 

pharmacophore model derived from Senna compounds due to its popularity in India, 

Pakistan, China, Thailand, Singapore, South East Asia, and inhabitants of these regions 

residing in the United States, U.K, and Europe as Covid19 treatment. The ligand-based 

pharmacophore models were validated with FDA compounds in clinical trials for inhibition 

of main proteases released by the NCATS 337. 3D-QSAR pharmacophore model identified 

HBA, HYD, and RA as common features from the training set of active phytochemicals 

and validated with a test set. Whereas, a common feature pharmacophore model lacked a 

significant attribute of hydrophobic groups in its framework that is essential for the 

bioactivity of 3CLpro 349,350. Moreover, the 3D-QSAR pharmacophore also mapped to the 

FDA-approved drugs vilazodone and lapatinib from the test set that are currently in clinical 

trials for SARS-CoV-2. Vilazodone is a novel anti-depressant and its use in combination 

with ritonavir and lopinavir that works by affecting the CYS3A4 is reported to inhibit 
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3CLpro with IC50 values below 15 µM 361–363. Whereas; lapatinib suppressed the SARS-

CoV-2 cytopathic effect and cleaved clustering of N protein in MRC5 (human pulmonary 

fibroblast cell line), thus exhibiting the potential to block 3CLpro 364.  The above results 

validate the ability of 3D-QSAR pharmacophore to predict the activity of test ligands as 

active and inactive. Thus, a 3D-QSAR pharmacophore model comprising all the 

fundamental features for 3CLpro activity proved to be superior to the common feature 

pharmacophore. 

Furthermore, the MD simulations and binding free energy analysis conducted on 

screened compounds using 3D-QSAR pharmacophore identified xanthoangelol_E, 

hesperetin and beta-sitosterol as promising inhibitors of 3CLpro exhibiting binding energy 

values of -35.1 kcal/mol, -26.9 kcal/mol, and -22.3 kcal/mol respectively. Beta-sitosterol 

displayed hydrophobic interactions with both the chains of a dimer throughout 200 ns 

probably because of the hydrophobic constituents in its chemical structures. It is 

noteworthy that xanthoangelol_E and hesperetin displayed higher binding energies than 

beta-sitosterol even though they stayed intact with only one chain of the dimer. The 

findings of MD simulations revealed the significance of hydrophobic interactions in 

keeping the ligands intact with a dimer while it has been previously established both 

computationally and experimentally that only one chain of dimer 3CLpro is active at a time 
340. In agreement with the simulations studies, experimental analysis conducted by Cheng-

Wen Lin et al., 2005 on the inhibitory activity of main proteases also revealed 

xanthoangelol_E as the most active compound against 3CLpro and PLpro with IC50 values 

(11.4 ± 1.4 µM) and (1.2 ± 0.4 µM) respectively 344. In another study by Park et al. 2016, 

hesperetin and beta-sitosterol were reported to be capable of inhibiting main protease dose-

dependently in both the cell-free and cell-based assays with the IC50 value of 8.3µM and 

115 µM, respectively 345. Keeping in view the scope of this study and capability of these 

compounds in experimental assays to inhibit both the 3CLpro and PLpro, we also subjected 

PLpro to molecular docking followed by 50 ns MD simulations on top complexes, which 

can be used as a lead to design more specific dual inhibitors in future. The structural 

insights of these compounds might offer clues for development of anti-SARS-CoV-2 drugs 

and could be used in combination as alternate medicine to prevent Covid19 infection.  
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In comparison, the secondary metabolites like sennosides A, B, C, and D present in 

higher percentage in Senna 325 exhibited instability and weak binding affinity during 

computational analysis against 3CLpro. Furthermore, to explore the possibility of binding 

of Senna compounds with other Covid19 target proteins, we expanded the prospect of our 

research. The findings suggested that Senna compounds failed to act as a candidate of high 

ligand affinity capable of disrupting contact between the spike protein RBD and ACE2 

receptor. Moreover, these sennoside ligands completely left binding sites of all other 

targets namely helicase nsp13, spike-ACE2, and 3CLpro except RdRp nsp12, which also 

resulted in displacement of sennoside with weak binding energy (14.199 kcal/mol). The 

ADMET and TOPKAT protocols have also marked few Senna compounds as carcinogens 

and mutagens after undergoing rat carcinogenicity, TD50, LD50, and LOAEL tests. In 

conclusion, these findings discredit the use of Senna tea as whole with all its chemical 

constituents in Covid19 treatment, which can rather be harmful in the absence of 

insufficient clinical data. 

However, as an outcome of this work, it is suggested as a matter of general global 

dissemination that Senna tea has nothing to do with the killing of the SARS-CoV-2. This 

unintentionally held us responsible for deaths of geriatric patients particularly, via 

diuresis/dehydration/kidney failure through overconsumption of Senna tea. Negation of 

false claim through scientific research is necessary not only to reduce overall burden but at 

the same time uncertified facts when disseminated through the electronic and print media, 

is and can remain a curse under the situation of deadly pandemic 

https://twitter.com/i/status/1262403722006724608. Statements without proper workout 

from renowned personalities are cherry on top that may have disastrous impact to an 

already poverty and/or illiteracy hit regions of the world, which is avoidable 365. While our 

analysis has a limitation of providing a predictive viewpoint of Senna compounds in the 

absence of experimental data on this plant, further clinical analysis should be considered 

and implemented in the future. Our study hints and thus recommends that the use of media 

to propagate any unscientific thought or actions without scientific curation and clarification 

must be discouraged worldwide. This also urges the need for a scientific body from the 

WHO platform to control the propagation of scientific information in a manner to prevent 

https://twitter.com/i/status/1262403722006724608


 
CHAPTER 6        MYTHS AND REALITIES BEHIND COVID19 THERAPEUTIC INTERVENTIONS 
 

 

Characterization and Dynamic Studies of Drugs for Combating Multi-Drug Resistance 

 

182 

a wider community worldwide from spreading unchecked information under the disguise 

of scientific nomenclature.  

This research work has been published in PLoS ONE and can be found at publications 

section of this thesis.  
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7 DYNAMICS OF WATER-MEDIATED INTERACTIONS 

EFFECTS ON OMICRON 

7.1 Background  

Two years into the Covid19 pandemic, world is once again confronting upward surge with 

yet another variant; Omicron threatening to worsen transmissibility rate, diagnosis, re-

infection and performance of vaccines due to multiple mutations 366,367. World is 

acknowledging Omicron to be far more transmissible and agile in evading immune defense 

system compared to previous mutated variants especially the Delta variant. Variants that 

emerged in these two years and are categorized as variants of concern (VoCs) by WHO 

(https://www.who.int/activities/tracking-SARS-CoV-2-variants) are Alpha (B.1.1.7 

lineage), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and now Omicron (BA.1, BA.1.1 

and BA.2).  

Delta variant has predominated global epidemiology of SARS-CoV-2 prevailing 

99.8% of analysed sequences uploaded to GISAID database 

(https://www.gisaid.org/hcov19-variants/). Delta variant acquired 10 mutations in spike 

protein whereas Omicron has exhibited 32 mutations including 15 mutations in receptor 

binding domain (RBD), 3 deletions and one insertion. Different studies have reported the 

effect of mutations on binding between the ACE2 receptor and spike protein leading to 

disparity in rate of transmission and virulence over the period of time 368,369. To study the 

effect of individual mutations on binding affinity of ACE2, Starr et al. conducted a 

systematic experimental study, which categorized 9 mutations (S371L, S373P, S375F, 

K417N, G446S, E484A, G496S, Q498R, Y505H) as decreasing and other 6 mutations 

(G339D, N440K, S477N, T478K, Q493K, N501Y) involved in increasing deleterious 

effects of the variant due to enhanced binding affinity 370. Moreover, higher binding affinity 

of recently reported mutations D614G have been linked with increased rate of transmission 

and viral load in Covid19 patients 371 whereas deleted residues in Delta variant 157-158 

were connected with antibody escape 372. Furthermore, commonly found mutations among 

other variants particularly Omicron that exhibited significant structural changes in 

combination and are particularly linked with cell tropism effecting receptor recognition 
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pattern include N679K, N501Y and P681H. Additional mutations not only appeared at 

RBD that is directly involved in cell entry of SARS-CoV-2 resulting in enhanced 

attachment to its receptor but also played critical role in priming of the protein. These two 

major events; prefusion to the postfusion stage of viral life cycle were drastically effected 

by subsequent mutations in sub-domains of spike protein as mentioned in multiple studies 
373,374.  

Therefore, to unveil the molecular basis for a higher number of mutations in each 

wave, this study compares the dynamic differences between SARS-CoV-2 variants of 

concern and wild-type with specific interest on the omicron variant, through MD 

simulations. These comparisons were done by considering SARS-CoV-2 as a trimer, 

choosing a single monomer, and considering just the receptor binding domain (RBD) of 

VoCs alone. The findings highlight the significant role of hydration forces in providing 

stability with particular emphasis on mutations-induced intra/intermolecular changes in 

solution and molecular determinants responsible for relative binding affinities. Moreover, 

the 3 amino acid insertion (EPE) in Omicron BA.1 is proposed to hold a precarious position 

in forecasting the impact of bulk mutations on conformational dynamics. Complete 

coherence of structural mutations and outcomes of MD simulations further strengthens the 

possible relation between mutations and viral fitness that will significantly aid in 

understanding the molecular basis of additional mutations in new variants. Furthermore, 

the research data also tends to examine the significant role of hydration forces in guiding 

the structure, stability, function, and dynamics of VOCs, a subject that yet remains 

unexplored in present studies.  

7.2 Materials and methods 

7.2.1 Predicting the impact of multiple point mutations 

DynaMut, a comprehensive suite for protein motion and flexibility analysis 375 was used to 

explore molecular consequences of mutations in different VoCs. The tool implements 

Normal mode analysis (NMA) using ENCoM and Bio3D approaches to analyze protein 

motions. It also considers the vibrational entropy changes that influence protein dynamics 

and stability. For protein dynamics analysis, structure of wildtype spike protein was given 

as input. The ‘Mutation list’ option was then used to upload the list of mutations for each 
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VoCs for batch processing. The server then uses consensus prediction method, which 

includes performance metrics, machine-learning algorithms to explore the impact of protein 

mutations on interactions with other molecules.     

7.2.2 Mutant structure modeling 

SARS-CoV-2 S-ACE2 complex (PDB ID: 7df4), was selected as a suitable template to 

model the WT. Three-Dimensional (3-D) structure of WT and all variants of Covid19 were 

generated using SWISS-MODEL (https://swissmodel.expasy.org/). SWISS-MODEL is an 

automated server that predicts 3D structure of proteins using homology modeling 

techniques. Mutated amino acid sequences for all variants were entered and the template 

was selected for each variant respectively. PDB ID: 7a94 showed highest homology to all 

input sequences and was selected as a template to generate 3D-structures of Alpha (B.1.1.7), 

Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529).  

Alpha variant has 3 deletions (H69, V70 and Y144) and 7 single mutations namely 

(N501Y, A570D, D614G, P681H, T7161, S982A and D1118H). Beta variant is associated 

with several mutations in spike, including 3 deletions (L241, L242 and A243) and 8 single 

mutations (L18F, D80A, D215G, K417N, E484K, N501Y, D614G and A701V). Deletion 

at H69 and V70 positions are not present in Beta variant. In Gamma variant, however 

several single mutations (L18F, P26S, T20N, D138Y, R190S, K417T, E484K, N501Y, 

D614G, H655Y and T1027I) are observed but no deletions have been reported. 6 Spike 

mutations in Delta variant are observed at positions (T19R, L452R, T478K, D614G, P681R 

and D950N). In addition to these, 2 deletions (E156 and F157) are also associated in Delta 

variant. Titers against Delta variant were reported to be around 2-fold lower in comparison 

to Alpha and WT.  Omicron is a newly discovered and most mutated Covid19 variant. It 

includes 6 deletions (H69, V70, Y144, G142, V143, and N211). There are 29 single point 

mutations in Omicron i-e: A67V, T95I, Y145D, K417N, S477N, T478K, E484A, N501Y, 

D614G, H655Y, P681H, G339D, S371L, S373P, S375F, N440K, G446S, Q493R, G496S, 

Q498R, Y505H, T547K, N679K, N764K, D796Y, N856K, Q954H, N969K and L981F and 

one insertion at position 214EPE. 15 mutations are present in RBD and 10 mutations 

occurred at Receptor Binding Motif (RBM), which interacts directly with the ACE2 

receptor. Mutations in Omicron are not evenly distributed. Omicron spike is 3 amino acids 

https://swissmodel.expasy.org/
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less in comparison to the WT. The study of mutations was divided in three sets i.e., trimer, 

monomer, and isolated RBD. The RBD domain of all variants was truncated from the 

mutated full-length S proteins, which is an important domain for ACE2 binding to analyze 

separately. Mutations in Alpha, Beta, Gamma and Omicron are listed in Table 1 whereas 

mutations in RBD domain are highlighted in Table 7.1.  

7.2.3 Molecular dynamics simulations 

MD simulations were performed using AMBER (Assisted model building with energy 

refinement) forefield 239. System of the complex in preprocessing step was prepared using 

the antechamber program of AMBER.  Multiple simulations were performed to investigate 

dynamic behavior and conformational space of proteins, particularly intermediate states or 

transitory states that are crucial roles in defining binding or unbinding process of ACE2 

and SARS-CoV-2 variants. MD simulations were performed for 2800 ns in total for WT 

and Omicron trimer, monomer of all variants and RBD of each variant in complex with 

ACE2 receptor, respectively.  

Topology of the complex was extracted using the ff14SB force field and the system 

was solvated by placing complexes in a cubic box of 12 Å with TIP3P water box, which 

was minimized for 1000 steps. Utilizing the Langevin dynamics, entire system was heated 

for 20 picoseconds (ps) at 300 K with 1 atm, which was maintained at that temperature. 

The SHAKE algorithm was utilized to constraint the bonds involved between hydrogen 

atoms and heavy atoms whereas for heating NVT ensemble was utilized. Furthermore, 

system pressure was maintained with time scale of 50-ps using NPT ensemble. However, 

for production run the unbounded interfaces cut-off radius of 8.0 Å was set by using 

Berendsen algorithm with NVT ensemble. CPPTRAJ 244 module of AMBER was used to 

evaluate system simulation trajectories whereas for analyzing and visualization of 

trajectories of MD simulations after every production run, the VMD suite 234 was utilized.  
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Table 7.1: Mutations in Alpha, Beta, Gamma, Delta, and Omicron.  

Alpha, V1 
(B.1.1.7) 

Beta, V2 
(B.1.351) 

Gamma, V3 
(P.1) 

Delta 
(B.1.617.2) 

Omicron 
(B.1.1.529) 

Shared Mutations 
S:H69- S:L18F S:L18F S:L452R S:A67V 
S:V70- S:L241- S:P26S S:T478K S:H69- 
S:Y144- S:L242- S:K417T S:D614G S:V70- 
S:N501Y S:A243- S:E484K S:P681R S:T95I 
S:D614G S:K417N S:N501Y S:D950N S:Y144- 
S:P681H S:E484K S:D614G  S:Y145D 
S:D1118H S:N501Y S:H655Y  S:K417N 
 S:D614G S:T1027I  S:S477N 
 S:A701V   S:T478K 
    S:E484A 
    S:N501Y 
    S:D614G 
    S:H655Y 
    S:P681H 

Other Mutations 
S:A570D S:D80A S:T20N S:T19R S:G142- 
S:T7161 S:D215G S:D138Y S:E156- S:V143- 
S:S982A  S:R190S S:F157- S:N211- 
    S:G339D 
    S:S371L 
    S:S373P 
    S:S375F 
    S:N440K 
    S:G446S 
    S:Q493R 
    S:G496S 
    S:Q498R 
    S:Y505H 
    S:T547K 

S:N679K 
S:N764K 
S:D796Y 
S:N856K 
S:Q954H 
S:N969K 
S:L981F 
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7.2.4 Binding energy calculations   

To compute free energies, Poisson–Boltzmann or Generalized Born and Surface Area 

Continuum Solvation (MM/PBSA and MM/GBSA) methods were used 146,301, which can 

be found in Section 2.5.1.  

7.2.5 Principle component analysis (PCA) 

Principal component analysis (PCA) was used to perform advanced analysis of MD 

simulations trajectories. PCA is a significant method used for investigating protein 

structural changes and movement along the subspace during MD simulations. PCA 

analysis is a statistical approach that allows researchers to extract large-scale collective 

movements of atoms in simulations, which are frequently linked to biological function and 

biophysical features. First and last 10 ns trajectories of each run were utilized for 

calculating PCA with CPPTRAJ module of AMBER. 

7.3 Results and discussion 

7.3.1 Protein thermodynamics and mutational effects 

Based on results of NMA, we predicted comparative thermodynamic effect of mutations 

on stability and flexibility of spike protein of SARS-CoV-2. To get insights into the effect 

of mutations on structural dynamics of VoCs under consideration, DynaMut calculated 

differences in free energy (ΔΔG) and variations in vibrational entropy energy (ΔΔSVib 

ENCoM) between the WT and VoCs presented in Figure 7.1. Out of 5 studied variants, 22 

substitutions; namely D614G, P681R, N501Y, K417N, L452R, D950N, Q954H, Q498R, 

G446S, G339D, L981F, N764K, Y505H, A67V, G496S, D215G, D1118H, T7161, 

A570D, H655Y, R190S, and T1027I resulted in dynamic behavior with increasing ΔΔG 

values that resulted in overall protein flexibility. Whereas NMA results revealed 6 

substitutions: namely N856K, Y145D, T547K, L18F, D80A, and D138Y as stabilizing 

leading to increase in rigidity in protein structure. Interestingly, another 17 substitutions; 

namely N679K, N440K, S375F, T478K, E484A, D796Y, S373P, T95I, Q493R, P681H, 

S477N, S371L, N969K, A701V, S982A, T20N, and P26S revealed themselves as 

destabilizing but caused overall decrease in flexibility of protein.  
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Out of these substitutions, there are 15 mutations reported in RBD of Omicron 

including 5 shared mutations mentioned in Table 7.1. While discussing shared mutations 

lying at RBD, substitution at K417N in all other variants except Gamma that substituted 

Asn417 with Thr exhibited comparatively higher ΔΔG ENCoM value of -0.159 

kcal/mol than -0.264 kcal/mol imparting flexibility to the structure. This could be one of 

the foremost reasons that both K417N and K417T are associated with decrease in ACE2 

binding affinity in experimental studies 368 and alternations at K417 tend to affect the 

binding affinity of class I and II antibodies at the RBD 376. Whereas, substitution at E484A 

exhibited unstable values with ΔΔG ENCoM 0.078 kcal/mol in Omicron compared to 

variants Beta and Gamma that exhibited stability with ΔΔG ENCoM values 0.637 

kcal/mol. Notably, variations in vibrational entropy might prove substantial in defining role 

of this immunodominant residue, which facilitates antibody escape identified in different 

lineages of SARS-CoV-2 369,377.  

Moreover, T478K that evolved in variants Omicron and Delta revealed itself as 

destabilizing but led to increase in rigidity of protein. Due to the presence of T478K at 

RBM, less accessible region of RBD, these residues that tend to make interactions in open 

conformational state of spike protein deliver compactness that can impact 

antigenicity378,379. Current study has also predicted thermodynamic effect of unique 

mutations present in Delta variant such as L452R lying at RBD that led to increased 

flexibility with ΔΔG ENCoM value 0.299 kcal/mol. Multiple studies have reported 

evolution of this residue as a direct result of viral adaptation in response to multitude 

immunity379,380. It is a noteworthy substitution holding capability to neutralize multiple 

antibodies thus prompting the need to study the impact of these phenotypic changes in 

detail. Two more substitutions from Delta D950N and T19R exhibited maximum structural 

changes in turn leading to increased flexibility. Omicron on the other hand exhibited many 

new substitutions. We categorized it to four clusters based on their locations. Cluster I refer 

to substitutions S371L, S373P, and S375F, which contributed to decrease in protein 

flexibility altogether. Cluster II refers to Q493R, G496S, both increasing protein flexibility 

followed by Q498R that counteracted the effect of previous two mutations by decreasing 

the vibrational entropy. Cluster III consists of N856K, N969K, T547K, and D796Y, which 

contributed to decreased flexibility according to Dynamut results. Cluster IV, however, has 
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G339D, N440K, G446S, and Y505H substitutions, which are the most significant ones, 

leading to increase in vibrational entropy except N440K. 

Figure 7.1. Normal mode analysis (NMA) of Dynamut predicted comparative 

thermodynamic effect of mutations on stability and flexibility of spike protein of all 

VoCs. Differences in free energy (ΔΔG) and variations in vibrational entropy (ΔΔSVib 

ENCoM) between the WT and other VoCs are mentioned from lowest to highest.  
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These results ae in coherence with literature that associates residues of cluster I, II 

and IV with improved stability whereas; cluster III is linked to probable weak 

fusogenicity381. Results yielded define combined and independent effect of these 

substitutions lying at RBD on thermodynamics of protein. Although subsequent mutations 

including loss of some important residues in Omicron drastically effect thermodynamics 

of spike protein, it compensated the overall effect by making other interactions, which 

seems to facilitate the protein to hide from antibody immune response 382. 

Lastly, conserved residues involved in cleavage of spike protein, such as P681H in 

Alpha and Omicron that existed in Delta as P681R exhibited contradicted results. P681H 

exhibited stabilizing values ΔΔG ENCoM 0.013 kcal/mol whereas P681R exhibited 

destabilizing values ΔΔG ENCoM -0.016 kcal/mol. Significance of mutation 681 that lies 

at furin cleavage site cannot be denied due to its presence with the neighboring residues 

D614G371. Both these substitutions have been regarded as critical in defining the rate of 

infection in different lineages 383. Moreover, it has been observed that ΔΔG values 

depending on the mutated residue effect the overall dynamics of protein that impact binding 

equilibrium of interacting partners; namely S1 and S2 subunits, which is associated with 

antibody immune escape in literature 379.  

7.3.2 Mutations-induced intra/intermolecular changes in solution 

To further have insights into the effect of each mutation on intermolecular interactions with 

neighboring residues and solvent, MD simulations was carried out on all VoCs. 

Comparative analysis of overall protein RMSD presented in S1-Fig yielded interesting 

results during 100 ns MD simulations of RBD, furin cleavage site, NTD and RBM, which 

are discussed in detail. While discussing mutations at RBD site, the most significant 

substitution at N501Y exhibited maximum number of hydrogen bonds with neighboring 

residues until 100 ns namely, Lys335, Gly496, Gly498, and Gln506 with an additional 

hydrogen bond seen in Omicron with Tyr495. Similarly, K417N also exhibited maximum 

hydrogen bonds in Omicron variant with residues Tyr421, Asn422, and Gln409 while 

sustaining a covalent bond with Ile418 until 100 ns. Comparatively, substitution K417T in 

Gamma appears approx. 1-fold less collaborating while displaying 2 hydrogen bonds with 

Tyr421 and Asn422. Moreover, charged substitutions E484K and T478K exhibited higher 
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number of interactions with water molecules and neighboring cysteine residues namely 

Cys448, Cys468, and Cys488 in Beta, Gamma and Omicron depicted in Figure 7.2E. 

Compared to other variants, Delta substitution at L452R exhibited strong hydrogen 

bonding with residues Tyr419, Asn420, Asp465, and Ser467 until 100 ns, depicting 

enhanced binding affinity with ACE2 receptor. Notably, remaining substitutions in 

Omicron exhibited higher number of bonds with water residues while only S477N, Q498R, 

and Y505H sustained it until 100 ns of MD simulations depicted in Figure 7.2A.  

Furthermore, newly acquired substitutions in cluster I and II of Omicron primarily 

G496S and Q498R revealed 2-fold increase in interactions. These enhanced integrating 

moieties observed in Omicron are predominantly due to hydrophobic and hydrophilic 

contacts particularly at RBD-up region including Q493R, G496S, Q498R, N501Y, and 

Y505H followed by S371L, S373P, and S375F. Higher number of positively charged 

residues present at the interface of Omicron is displayed in Figure 7.2E compared to other 

variants while harboring a loss of K417N that participated significantly in establishing 

interactions in Delta variant.  

Lastly, previous studies reported the significance of distal region furin site and 

D614G 371 that displayed strong hydrogen bonding with Ala647 in both Delta and Omicron 

whereas, P681R in Delta expressed comparatively less water mediated interactions as 

compared to P681H in Omicron exhibiting 3-fold stronger interactions with water. These 

water mediated interactions may provide one of the reasons for enhanced stability of 

Omicron compared to Delta as reported in multiple studies 384,385. In this context, other 

significant substitutions of furin site and NTD were also analysed. N-terminal substitution 

in Delta namely T19R displayed strong hydrogen bonding with ACE2 receptor namely, 

Asp251, Ser253, Ser254, and Trp256 compared to Omicron N-terminal substitutions 

A67V, T95I, and Y145D that revealed higher number of non-covalent interactions in this 

region. Although Delta and Omicron both impart stronger contacts in this region as 

depicted in S2-Fig, Omicron is seen participating more actively to hold the S1 and S2 

subunits together before splitting apart followed by its cleavage and subsequently release 

into the cell 386,387. Furthermore, Omicron also holds an additional 3-residue insertion at 

position 214 (ins214EPE) at furin site that exhibited strong hydrogen bonding with 
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Asp788, Gln793, and Gly794. However, the role of ins214EPE in Omicron needs more 

corroboration, which is discussed in detail in forthcoming sections.  

7.3.3 Molecular determinants responsible for relative binding 

affinities 

RBD region of spike protein that directly interacts with ACE2 receptor carries maximum 

number of mutations thus playing an important role in viral transmissibility and 

adaptability 388. Increased number of mutations at RBD of Omicron is certainly correlated 

with its ability to facilitate cell entry. We calculated RMSD of reported mutations and 

binding affinities of RBD of all VoCs. Substitutions exhibiting significant changes were 

then compared by performing PCA to assess residual structural contribution. Delta RBD 

exhibited 5-fold increased binding affinity than WT and 2.8-fold increased affinity than 

Omicron RBD as depicted in Figure 7.3C. Results comprising isolated RBD of all VoCs 

attached with ACE2 receptor exhibited highest RMSD for Omicron residues Asn477, 

Lys478, and Arg484 → Ala compared to Arg484 → Lys in Alpha and Gamma as depicted 

in Figure 7.3A. These two residues, Arg484 and Lys478 both added a positive charge and 

exhibited different mobility for Omicron compared to other VoCs when PC1 and PC2, the 

projections of essential subspace were plotted (Figure 7.3D and 3E). Whereas Omicron 

Tyr501 and Asn417 exhibited, lowest RMSD compared to other VoCs but higher than its 

WT Asn501 and Lys417. 

Both residues exhibited similar cluster distribution although K417N added a 

negative charge while N501Y added a positive charge (Figure 7.3B). Overall cluster 

projection revealed that Omicron and Alpha exhibited similar conformer distribution along 

the subspace whereas Delta, Gamma and Beta sampled in opposite direction (Figure 7.4E 

and 4F). Apart from shared mutations, newly acquired mutations in Omicron cluster I 

exhibited lesser RMSD and robust binding affinity values when compared to WT. 

Similarly, cluster III was observed displaying low RMSD and higher binding affinity 

signifying more compact domain organization with the ability to impart positive charges 

as displayed in Figure 7.4B 
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Figure 7.2. A) Intermolecular interactions of recently emerged mutations in Omicron 

with neighboring residues and solvent during 100 ns MD simulations B) Homologous 

and presumably constrained interacting residues among all VoCs exhibit significant 

interactions with induced mutations. (+/-) signifies the charge. C) Recently evolved 

mutations from cluster II reveal multiple interactions with neighboring residues D) 

Highly diverse group of residues prone to variations in all SARS-CoV-2 sublineages 

exhibit the capability to dramatically affect binding affinity. E) Intermolecular 

interactions of shared mutations among all VoCs with neighboring residues and 

solvent during 100 ns MD simulations where (w) represents interactions with water 

molecules. 

Cluster II that is directly involved in ACE2 binding exhibited comparatively higher 

RMSD values but the same binding affinity pattern while imparting two positive charges. 

Moreover, residues including P681H/R and D614G, which are both positively charged 

along with ins214EPE that holds a significant standpoint with capability to impart two 

negative charges (Figure 7.4B). However, lower RMSD values and weak binding affinity 
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for ins214EPE was observed compared to WT (Figure 7.4D). To conclude, overall 

combined effect of Omicron substitutions signifies the importance of charge distribution 

in defining capability to reinforce stability due to higher number of mutations into polar 

residues. 

7.3.4 Conformational rearrangements underpinning the active 

conformation 

Furthermore, to draw inferences about comparative structural and conformational 

rearrangements among different variants of spike proteins, simulations on the WT, Delta, 

Omicron, and ins214EPE were carried out. In all selected variants (trimer), the RBD 

remains in the up-configuration while binding to the receptor whereas RBD with no 

receptor exhibited a down-configuration. When comparing the monomer Omicron with 

Delta, a 45-degree conformational shift in ACE2 attachment site in Delta was observed 

primarily due to the substitution L452R exhibited in Figure 7.5E. Consequently, the 

architecture of up-RBD region deviated leading to a clockwise rotation, which 

subsequently drifted down-RBD faraway. Whereas much more compact organization was 

observed in Omicron intersubunits with addition of S371L, S373P, S375F and Q493R, 

G496S, Q498R, N501Y substitutions (Figure 7.5E), which seem to be the facilitator of 

active conformational state. Moreover, interactions between the ACE2 receptor and RBD 

domain remained more widespread in Omicron compared to Delta and WT. Surface area 

of receptor interacting with Omicron RBD had intensive hydrogen bond networks along 

with a salt bridge formed between Arg493 and Asp20. This interaction plays an important 

role in keeping the receptor compact and more interactive with Omicron RBD throughout 

the simulation run. Additionally, Figure 7.7 exhibits another salt bridge formed between 

Asp145 and Arg247 of NTD triggering more stable conformational changes in Omicron.  
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Figure 7.3. A) Comparative root mean square deviation (RMSD) of all VoCs and WT 

are represented by box plots. B) Snapshot of spike protein (green ribbon) exhibiting 

position of mutated residues at RBD (mutations belonging to different clusters are 

color coded) directly involved in making interactions with ACE2 receptor (grey 

surface) C) Comparative free binding energy profile of reported mutations at RBD D) 

Comparative PCA of Delta and Omicron mutation T478K exhibit opposite conformer 

distribution along the subspace E) Comparative PCA of Gamma, Delta and Omicron 

mutation E484/A/K exhibit varying conformer distribution along the subspace 

depending on the variant. 
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Figure 7.4. A) Comparative RMSD box plots of RBM of Delta, Omicron, and WT 

monomers B) Snapshot of spike protein (green ribbon) exhibit position of mutated 

residues at RBM critical for compact conformation of Omicron C) Comparative free 

binding energy profile of reported mutations at RBM D) Comparative RMSD box 

plots of mutated residues at fusion peptide site and HR1 along with insertion EPE 

lying at position 214 E) PCA of monomer Delta exploit different energy minima while 

sampling trajectories F) PCA of monomer Omicron sampling in completely opposite 

direction compared to Delta monomer. G) Comparative free binding energy profile 

of reported mutations at N-terminal, fusion peptide site and HR1. 
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7.3.5 Role of EPE insertion in Omicron 

Multiple insertions in protein evolution over time play an important role in surfacing novel 

protein architectures 389. Number of insertions and deletions within the protein sequence is 

directly proportional to the evolutionary distance. As in case of VoCs, Omicron has the 

highest number of substitutions, unique insertions and deletions compared to other 

variants. To have insights into the effect of ins214EPE, we simulated it with all other 

Omicron mutations and compared it with the ins214EPE induced in WT. Simulation results 

while exploring conformational stability and compactness of spike protein suggested that 

Omicron has more stable structural orientation extensively interacting with the ACE2 

receptor while forming improved intersubunit contacts. As an outcome, the ACE2 binding 

has caused notable and diverse structural shifts in different variants of spike protein. 

The RBD-HR1-NTD have exhibited varying distances and altered angles in all four 

complexes depicted in Figure 7.6, which reflect the role of mutations in controlling 

structural orientations while keeping protein in active conformational state. Findings 

demonstrate 69.29 Å, 73.20 Å, 62.52 Å, and 56.83 Å angular distances between RBD-

HR1-NTD of WT, Delta, Omicron, and ins214EPE monomers crucial for viral stability of 

spike protein that is necessary for viral transmission and immunogenicity. These findings 

propose that ins214EPE was necessary to better characterize the process of substitution in 

Omicron. Simulation analysis of WT with ins214EPE exhibited salt bridge interactions 

with neighboring Arg residues shown in Figure 7.7 and 7.8. In addition to this, six 

potential hydrogen bonds formed during simulation run. Ins214EPE occupied mainly the 

loop regions of NTD. In this way, insertion has not disturbed the folding of protein core 

structure while allowing the protein to explore its conformational space and develop novel 

substructures. 

7.3.6 Water-mediated interactions enhance stability 

Subsequent mutations of residues can increase or decrease the number of water 

molecules interacting with the core region of macromolecule resulting in gain or loss of 

protein stability 390,391. In the current study, we have observed that water-mediated contacts 

kept on increasing and getting stronger with each upcoming Covid variant. For instance, 
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nearly all mutated residues of Omicron exhibited formation and breaking of hydrogen bond 

interactions with water throughout the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Conformational changes observed in different variants of spike protein 

during simulation run. A) WT trimer and B) Omicron trimer, highlighting receptor in 

green and the three RBD domains in orange, red and yellow. The ‘Up’ and ‘Down’ 

conformation of RBD is visible while interacting with the receptor and during no 

interaction, respectively. C) WT trimer D) Omicron trimer zoomed in view to show 

the difference in structural compactness and stability. E) Comparison of structural 

and conformational changes that occur during the binding of Delta and Omicron 

variants to ACE2 receptor. Zoomed in view of superimposed RBD domain and HR1 

peptide where purple surface depicts L452R. 
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Figure 7.6. Monomers at 100 ns simulation run each. Insets representing the diverse 

structural shifts and altered angles formed (RBD-HR1-NTD) in the variants that were 

triggered by ACE2 binding. Orange ribbon displays the receptor. 

However, if we look at the simulation analysis of WT and early-stage variants of 

Covid such as Alpha, Beta, Gamma, and Delta, the interaction of water molecules with 

mutated residues can be seen minimal or not at all. Water is an integral component of 

biomolecular systems that mediates hydrogen bonds and electrostatic interactions 390. 

Significant amount of research data highlights the invaluable role of hydration forces in 

guiding the structure, stability, function and dynamics of proteins 390,392. Water regulates 

protein folding by defining hydrophobic interactions that glue hydrophobic residues 

stabilizing the folding process 392. Water also interacts with protein backbone, surface 

residues, and sidechains while controlling the formation of hydrophobic cavities. 

Mutations of notable number of hydrophobic residues into hydrophilic residues has 

resulted in increased water-mediated interactions in Omicron leading to more compact 

structure and stable behavior of the protein compared to other VoCs. Increased affinity of 

Omicron towards ACE2 receptor and improved role of solvent-mediated interactions has 

influenced its biological functionality. Consequently, Omicron being highly stable, and 

transmissible but much less infectious has been favored in the process of natural selection.  
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Figure 7.7. Intermolecular interactions surrounding the ins214EPE in the WT spike 

protein after 100 ns of simulation run. A) ACE2 receptor is in surf representation in 

green whereas the rest of the monomer is in ribbon representation B) Zoomed in view 

of ins214EPE and interacting protein residues forming salt bridge and hydrogen bond 

interactions. 

 

7.4  Concluding remarks 

Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of 

spike protein in complex with ACE2, a comprehensive comparative mutational analysis on 

Omicron and other VoCs elucidated significant structural changes, which might act as 

facilitators in explaining higher risk of Omicron transmission rate and reveal interesting 

facts about its compromised viral fusion ability.  
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Figure 7.8. Intermolecular interactions surrounding the ins214EPE in the Omicron 

spike protein after 100 ns of simulation run. A) ACE2 receptor is in surf 

representation in green whereas the rest of the monomer is in ribbon representation 

B) Zoomed in view of ins214EPE and interacting protein residues forming salt bridge 

and hydrogen bond interactions.   

Effect of independent mutations on thermodynamics of spike protein in all five 

variants revealed dynamic behavior of conserved mutations such as K417/N/T, E484/A/L, 

N501Y, D614G, and P681R/H. ΔΔG values reveal that successive mutations at RBD 

including recently emerged Omicron clusters could be directly involved in enhanced 

transmissibility of Omicron. Interestingly, mutation P681H in Omicron forged decreased 
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NMA values compared to P681R in Delta that exhibited weak stability or loose attachment 

suggesting a direct link with enhanced replication and cleavage of S1 and S2 subunits of 

Delta as reported in previous studies 378,383,393. 

The above discussion is largely supported by in silico models and simulations 

carried out to disclose molecular basis of improved stability of Omicron. We characterized 

amino acids involved in making significant interactions with RBM+RBD based on their 

binding potential into different groups. Homologous residues exhibiting high binding 

potential in establishing strong interactions among all VoCs are Lys335, Gly447, Gly498, 

Gly496, Gln506, Leu455, Tyr449, Tyr453, Asn487, and Phe456 depicted in Figure 7.2B. 

Role of these conserved residues is presumably constrained due to their involvement in 

protein folding or ascertaining binding affinity for ACE2. Whereas other group of residues 

prone to undergo mutations in all sublineages are G446, Y505, K417, E484, and cluster II 

mentioned in Figure 7.2C and 2D. It is therefore deduced that residues that are 

characterized as molecular determinants participating in protein folding have 

comparatively less potential to mutate in upcoming variants of Omicron or Deltacron or 

any other variant. However, role of mutations at NTD and furin site that are associated with 

enhanced transmission rate of Delta and Omicron 394,395 particularly P681R that emerged 

in Delta and mutated into P681H in Omicron demonstrated 3-fold increased electrostatic 

interactions with water and enhanced hydrogen bonding depicted in S2-Fig and Figure 

7.4C. These findings signify sturdier molecular bridges holding S1 and S2 subunits of 

Omicron together.  

Further investigations on structural dynamics and conformational orientation 

during MD simulations reiterates compact intersubunits in Omicron compared to Delta that 

exhibited angular movements due to L452R depicted in Figure 7.5E. Similar cluster 

projection between Alpha and Omicron compared to Delta and other VoCs exploited 

different energy minima while sampling trajectories. Another significant finding 

anticipated to support compact domain organization in Omicron is unique ins214EPE. MD 

simulations revealed structural shifts and significant difference in angular distances 

between RBD-HR1-NTD of WT, Delta, Omicron, and ins214EPE monomers 

demonstrated in Figure 7.6. Ins214EPE is therefore crucial for viral stability of spike 

protein to understand biological consequences of recently acquired mutations. The 
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observed differences particularly between Omicron and Delta based on certain mutations 

directly affect protein stability and binding that shed light on possible reasons of divergence 

between transmission rate and fusogenecity of both the variants.    

Current study likewise proposes substantial role of hydration forces based on influx 

of solvent-mediated interactions with each Covid variant. As far as Delta and other VoCs 

are concerned, no significant, solvent-mediated interactions give the impression. Thus, the 

interplay between protein and solvent is critical in shaping Omicron function and 

dynamics. Furthermore, Delta and Omicron expressed higher number of mutations into 

charged residues +4 and +9 respectively compared to their successors Alpha, Beta, and 

Gamma. Role of hydrations forces and positively charged residues explained by Nie et. al 

in previous studies support the fact that increased number of mutations in Omicron 

drastically effect binding capability of antibodies to these cationic patches on the interface 

of spike protein 396.  

Based on these findings, it has been discussed that mutational spread is positively 

related to viral fitness, which has been defined in literature 397. For instance, current 

research data suggests that Covid19 variants employing hydration forces along with other 

electrostatic interactions are more compact; thus, play significant role in protein folding 

and function that are prevalent among the human population. However, results yielded also 

put forward those mutations in context of their positions, which compromise water-

mediated interactions and destabilize the protein will be eliminated eventually. This study 

thus demonstrates an insight into structural and conformational changes in response to 

subsequent mutations based on their type and position and forecast the possibility of those 

amino acids to experience changes in future that appear as mutational drivers397,398. 
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APPENDIX  
Table A1: Optimized parameters of thiopene-core inhibitor with 6-31+G(d,p).  

Thiopene-core inhibitor 
Parameters   Parameters 

BOND  K(kcal.mol-1.ang-2) Dist0(ang)   ANGLE  K(kcal.mol-1.rad-2) Theta0(deg) 
C -CA 470 1.409   CA-C -CA 65 120 
C -CX 315 1.522   CA-C -OS 70 120 
C -H4 365 1.1   CX-C -O  80 120.4 
C -N  490 1.335   H4-C -O  50 120.93 
C -O  570 1.229   N -C -O  80 122.9 

C -OS 450 1.323   C -CA-CA 65 120 
CA-CA 470 1.4   C -CA-HA 50 120 
CA-CB 470 1.404   CA-CA-CA 65 120 
CA-CM 425 1.433   CA-CA-HA 50 120 
CA-HA 365 1.08   CB-CA-HA 50 120 
CM-CM 550 1.35   CA-CM-CM 65 117 
CM-CT 315 1.51   CA-CM-HA 50 123.3 
CM-HA 365 1.08   CM-CM-CT 70 119.7 
CT-CT 310 1.526   CM-CM-HA 50 119.7 
CT-CX 310 1.526   CM-CT-CT 65 111 
CT-H1 340 1.09   CM-CT-HC 50 109.5 
CT-H2 340 1.09   CT-CT-CT 40 109.5 
CT-HC 340 1.09   CT-CT-H1 50 109.5 
CT-N  335 1.449   CT-CT-H2 50 109.5 

CT-OH 320 1.41   CT-CT-HC 50 109.5 
CT-OS 320 1.41   CT-CT-OH 50 109.5 
CT-S  225 1.81   CT-CT-OS 50 109.5 

CX-H1 340 1.09   CT-CT-S  50 114.7 
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H -N  435 1.01   CX-CT-H1 50 109.5 
H -NT 435 1.01   CX-CT-S  50 114.7 

HO-OH 555 0.96   H1-CT-H1 35 109.5 
     H1-CT-N  50 109.5 
     H1-CT-S  50 109.5 
     H2-CT-OS 50 109.5 
     HC-CT-HC 35 109.5 
     C -CX-CT 65 111.1 
     C -CX-H1 50 109.5 
     CT-CX-H1 50 109.5 
     C -N -CT 50 121.9 
     C -N -H  50 120 
     CT-N -H  50 118.04 
     H -NT-H  35 109.5 
     CT-OH-HO 55 108.5 
     C -OS-CT 60 117 
     CT-S -CT 60 98.9 
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Table A2: Optimized parameters of nitrile-core inhibitor with 6-31+G(d,p).  

Nitrile-core Inhibitor 
Parameters   Parameters 

BOND  K(kcal.mol-1.ang-2) Dist0(ang)   ANGLE  K(kcal.mol-1.rad-2) Theta0(deg) 
C -CA  470 1.409   CB-CA-N2 70 123.5 
C -NC  455 1.358   CB-CA-NC 70 117.3 
CA-CB  470 1.404   N2-CA-NC 70 119.3 
CA-N2  480 1.34   CA-CB-CB 65 117.3 
CA-NC  485 1.339   CA-CB-NB 70 132.4 
CB-CB  520 1.37   CB-CB-N* 70 106.2 
CB-N*  435 1.374   CB-CB-NB 70 110.4 
CB-NB  415 1.391   CB-CB-NC 70 127.7 
CB-NC  460 1.354   N*-CB-NC 70 126.2 
CK-H5  365 1.08   H5-CK-N* 50 123.05 
CK-N*  440 1.371   H5-CK-NB 50 123.05 
CK-NB  530 1.304   N*-CK-NB 70 113.9 
CT-CT  310 1.526   CT-CT-CT 40 109.5 
CT-H1  340 1.09   CT-CT-H1 50 109.5 
CT-HC  340 1.09   CT-CT-HC 50 109.5 
CT-N*  335 1.475   CT-CT-N* 50 109.5 
CT-N2  335 1.463   CT-CT-N2 80 111.2 
CT-NT  365 1.471   CT-CT-NT 80 111.2 
CT-OH  320 1.41   CT-CT-OH 50 109.5 

CT-S   225 1.81   CT-CT-S  50 114.7 
H -N2  435 1.01   H1-CT-H1 35 109.5 
H -NT  435 1.01   H1-CT-N* 50 109.5 

HO-OH  555 0.96   H1-CT-N2 50 109.5 
     H1-CT-NT 50 109.5 
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     H1-CT-S  50 109.5 
     HC-CT-HC 35 109.5 
     CB-N*-CK 70 105.4 
     CB-N*-CT 70 125.8 
     CK-N*-CT 70 128.8 
     CA-N2-CT 50 123.2 
     CA-N2-H  50 120 
     CT-N2-H  50 118.4 
     CB-NB-CK 70 103.8 
     CA-NC-CB 70 112.2 
     CT-NT-CT 50 109.5 
     CT-NT-H  50 109.5 
     CT-OH-HO 55 108.5 
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Table A3: Exp-2 inhibitor encompassing methyl oxy-enoate optimized parameters with 6-31+G(d,p).  

Methyl oxy enoate warhead 
Parameters   Parameters 

BOND  K(kcal.mol-1.ang-2) Dist0(ang)   ANGLE  K(kcal.mol-1.rad-2) Theta0(deg) 

C -O2 655 1.25   O2-C -O2 80 126 
CA-CA 470 1.4   CA-CA-CA 65 120 
CA-CT 315 1.51   CA-CA-CT 70 120 
CA-HA 365 1.08   CA-CA-HA 50 120 
CC-CV 510 1.375   CT-CT-CT 40 109.5 
CC-CW 520 1.371   CT-CT-H1 50 109.5 
CT-CT 310 1.526   CT-CT-HP 50 109.5 
CT-H1 340 1.09   CT-CT-N3 80 111.2 
CT-HP 340 1.09   CT-CT-NT 80 111.2 
CT-N* 335 1.475   CT-CT-OH 50 109.5 
CT-N3 365 1.471   CT-CT-S  50 114.7 
CT-NT 365 1.471   H1-CT-H1 35 109.5 
CT-OH 320 1.41   H1-CT-N* 50 109.5 
CT-S  225 1.81   H1-CT-OH 50 109.5 

CV-NB 410 1.394   H1-CT-S  50 109.5 
CW-H4 365 1.08   HP-CT-N3 50 109.5 
H -N3 435 1.01   CC-CV-NB 70 120 
H -NT 435 1.01   CC-CW-H4 50 120 

HO-OH 555 0.96   CT-N3-H  50 109.5 
     H -N3-H  35 109.5 
     CT-NT-H  50 109.5 
     CT-OH-HO 55 108.5 
     CT-S -CT 60 98.9 
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Table A4: Exp-1 inhibitor encompassing hydroxy methyl ketone (HMK) optimized parameters with 6-31+G(d,p).  

Hydroxy methyl ketone (HMK) 
Parameters   Parameters 

BOND  K(kcal.mol-1.ang-2) Dist0(ang)   ANGLE  K(kcal.mol-1.rad-2) Theta0(deg) 
C -CM 410 1.444   CM-C -O  80 125.3 
C -CT 315 1.522   CT-C -N  70 116.6 
C -H4 365 1.1   CT-C -O  80 120.4 
C -N  490 1.335   CT-C -O2 70 117 
C -O  570 1.229   H4-C -O  50 120.93 
C -O2 655 1.25   N -C -O  80 122.9 
C -OH 450 1.364   O -C -OH 80 120 
CA-CA 470 1.4   O2-C -O2 80 126 
CA-CT 315 1.51   CA-CA-CA 65 120 
CA-HA 365 1.08   CA-CA-CT 70 120 
CD-CM 550 1.35   CA-CA-HA 50 120 
CM-CT 315 1.51   C -CM-CT 70 119.7 
CM-H4 365 1.08   C -CT-CT 65 111.1 
CT-CT 310 1.526   C -CT-H1 50 109.5 
CT-H1 340 1.09   C -CT-HC 50 109.5 
CT-HC 340 1.09   CM-CT-CT 65 111 
CT-N  335 1.449   CM-CT-H1 50 109.5 

CT-NT 365 1.471   CT-CT-H1 50 109.5 
CT-S  225 1.81   CT-CT-HC 50 109.5 
H -N  435 1.01   CT-CT-N  80 109.7 

H -NT 435 1.01   CT-CT-NT 80 111.2 
HO-OH 555 0.96   CT-CT-S  50 114.7 

     H1-CT-H1 35 109.5 
     H1-CT-N  50 109.5 
     H1-CT-NT 50 109.5 
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     H1-CT-S  50 109.5 
     HC-CT-HC 35 109.5 
     C -N -CT 50 121.9 
     C -N -H  50 120 
     CT-N -H  50 118.04 
     CT-NT-CT 50 109.5 
     H -NT-H  35 109.5 
     C -OH-HO 50 113 
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Table A5: Cartesian coordinates of E:I and E-I state of the inhibition process of thiopene-core 

inhibitors.  

Thiopene-core inhibitor 
E:I   E-I 

Atom x y z   Atom x y z 
N   37.735 47.595 24.086   N   39.48 49.218 26.228 

HN  37.54 48.546 24.267   HN  38.584 49.246 26.711 
CA  38.503 47.336 22.753   CA  39.463 49.23 24.775 
HA  37.947 47.867 21.963   HA  38.632 49.871 24.448 
CB  39.905 48.069 22.744   CB  40.783 49.745 24.185 

HB1 40.295 47.948 21.72   HB1 40.71 49.731 23.087 
HB2 39.719 49.129 22.978   HB2 40.921 50.761 24.57 
CG  40.959 47.499 23.725   CG  41.915 48.877 24.656 
ND1 41.89 46.423 23.431   ND1 42.569 47.891 23.927 
CE1 42.608 46.242 24.472   CE1 43.613 47.264 24.682 
HE1 43.327 45.484 24.578   HE1 43.385 46.192 24.823 
NE2 42.273 47.174 25.471   NE2 43.463 48.013 25.946 
CD2 41.2 47.936 24.96   CD2 42.441 48.933 25.855 
HD2 40.688 48.72 25.457   HD2 42.13 49.576 26.634 

C   38.734 45.907 22.288   C   39.202 47.847 24.263 
O   38.919 45.658 21.087   O   38.361 47.127 24.814 

HE2 42.658 47.213 26.442   HD1 42.261 47.566 23.018 
N   47.116 44.337 26.21   N   47.031 42.245 27.14 

HN  46.705 44.744 25.367   HN  46.811 41.271 26.864 
CA  46.477 44.534 27.566   CA  46.341 42.942 28.252 
HA  46.939 45.405 28.058   HA  47.021 43.678 28.676 
CB  45.025 44.738 27.393   CB  44.983 43.663 27.842 

HB2 44.582 43.837 26.934   HB1 44.341 42.889 27.405 
HB1 44.58 44.915 28.38   HB2 44.503 44.06 28.751 
SG  44.742 46.104 26.354   SG  45.101 45.087 26.625 
C   46.547 43.336 28.45   C   46.11 41.847 29.259 
O   45.652 42.471 28.329   O   47.041 41.467 29.971 
C1  48.345 46.498 35.59   C1  48.381 49.221 33.322 
N1  47.558 46.604 34.391   N1  47.303 48.477 32.712 

HN1 48.018 46.809 33.486   HN1 46.854 48.811 31.876 
C2  46.222 46.424 34.456   C2  46.923 47.337 33.293 
O1  45.643 46.163 35.542   O1  47.531 46.954 34.317 
C3  45.395 46.57 33.243   C3  45.849 46.496 32.718 
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C17 45.888 47.196 32.103   C17 45.211 46.795 31.514 
C4  44.091 46.098 33.255   C4  45.492 45.357 33.433 
C5  43.284 46.247 32.135   C5  44.5 44.516 32.955 
C6  43.772 46.884 31   C6  43.871 44.806 31.758 
C7  45.078 47.367 30.98   C7  44.217 45.936 31.022 
O2  45.636 48.053 29.874   O2  43.479 46.101 29.796 
C8  44.922 48.311 28.699   C8  43.732 47.223 28.936 
O3  43.75 47.922 28.471   O3  42.836 46.796 27.902 
C9  45.64 49.035 27.625   C9  45.059 47.411 28.305 
C10 46.055 47.986 26.57   C10 45.67 46.658 27.344 
C11 46.318 48.67 25.214   C11 46.827 47.432 26.764 
C12 46.48 47.78 24.026   C12 47.163 47.222 25.379 
C13 45.892 48.083 22.861   C13 47.726 48.235 24.728 
N2  46.005 47.282 21.734   N2  48.066 48.102 23.486 
O5  45.37 47.675 20.629   O5  48.273 49.185 23.073 
O4  46.694 46.346 21.694   O4  48.076 46.951 23.142 
C14 45.012 49.288 22.743   C14 47.995 49.533 25.365 
C15 44.53 49.885 23.964   C15 47.399 49.833 26.502 
C16 45.117 49.541 25.098   C16 46.416 48.87 26.969 
S1  44.584 49.943 26.599   S1  45.887 48.912 28.604 
H2  47.687 46.391 36.452   H2  49.144 48.515 33.682 
H3  48.973 47.395 35.695   H3  47.985 49.788 34.178 
H4  49.002 45.621 35.519   H4  48.82 49.915 32.594 
H5  46.876 47.567 32.101   H5  45.488 47.664 30.973 
H6  43.713 45.625 34.119   H6  45.977 45.134 34.342 
H7  42.292 45.883 32.15   H7  44.225 43.652 33.506 
H8  43.138 47.003 30.154   H8  43.108 44.157 31.393 
H10 47.05 46.922 24.109   H10 46.98 46.311 24.907 
H11 44.573 49.537 21.813   H11 48.655 50.223 24.907 
H12 43.679 50.529 23.961   H12 47.575 50.753 27.001 
H13 47.221 49.287 25.333   H13 47.682 47.235 27.341 
H13 46.508 49.641 27.966   H13 45.533 48.991 26.335 
H14 46.84 47.302 26.929   H14 43.156 45.932 27.505 
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Table A6: Cartesian coordinates of E:I and E-I state of the inhibition process of nitrile-core 

inhibitor.  

Nitrile-core inhibitor 
E:I   E-I 

Atom x y z   Atom x y z 
 N   38.446 48.06 28.006    N   39.029 47.643 27.653 

 HN  39.433 48.006 27.741    HN  39.96 48.012 27.765 
 CA  37.652 49.107 27.652    CA  37.916 48.528 27.448 
 HA  37.026 49.335 28.514    HA  37.3 48.527 28.353 
 CB  38.423 50.338 27.215    CB  38.406 49.958 27.174 

 HB2 37.707 51.135 26.978    HB2 37.566 50.658 27.03 
 HB1 39.047 50.621 28.076    HB1 38.981 50.282 28.052 
 CG  39.318 50.092 25.989    CG  39.329 49.997 25.974 
 ND1 40.455 49.204 25.813    ND1 40.252 48.976 25.594 
 HD1 40.834 48.573 26.482    CE1 40.864 49.466 24.424 
 CE1 40.912 49.401 24.506    HE1 41.551 48.939 23.807 
 HE1 41.709 48.9 24.034    NE2 40.362 50.704 24.16 
 NE2 40.133 50.371 23.943    HE2 40.595 51.272 23.371 
 HE2 40.259 50.762 23.021    CD2 39.407 51.006 25.111 
 CD2 39.149 50.756 24.852    HD2 38.827 51.903 25.144 
 HD2 38.383 51.486 24.671    C   37.077 47.995 26.314 

 C   36.741 48.568 26.582    O   36.55 48.759 25.487 
 O   36.38 49.249 25.621    N   47.58 44.083 27.191 
 N   47.808 44.022 27.217    HN  46.836 43.425 26.969 

 HN  47.088 43.341 27.004    CA  47.545 44.942 28.314 
 CA  47.746 44.896 28.298    HA  48.348 45.673 28.199 
 HA  48.606 45.577 28.266    CB  46.268 45.677 28.368 
 CB  46.474 45.71 28.189    HB1 46.337 46.375 29.195 

 HB1 46.441 46.42 29.023    HB2 46.18 46.238 27.43 
 HB2 46.505 46.282 27.242    SG  44.76 44.744 28.571 
 SG  44.977 44.686 28.2    C   47.825 44.223 29.498 
 C   47.851 44.169 29.512    O   48.988 44.352 29.899 
 O   48.94 44.334 30.077    C30 45.322 48.209 34.333 

 C30 45.216 48.165 34.112    C31 44.565 47.361 35.371 
 C31 44.522 47.317 35.186    C32 45.075 45.91 35.317 
 C32 45.085 45.886 35.148    C33 44.826 45.328 33.918 
 C33 44.815 45.266 33.767    C34 45.583 46.169 32.882 
 C34 45.507 46.114 32.693    C29 45.078 47.631 32.926 
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 C29 44.954 47.559 32.716    N28 45.786 48.39 31.935 
 N28 45.645 48.335 31.72    HAC 46.594 48.995 32.189 
 HAC 46.501 48.844 31.983    C25 45.389 48.304 30.617 
 C25 45.223 48.378 30.386    N24 44.39 47.577 30.279 
 N24 44.148 47.802 30.019    C23 43.868 47.495 28.89 
 C23 43.649 47.968 28.624    C27 43.544 46.059 28.416 
 C27 42.615 47.168 28.074    N35 42.47 45.843 27.768 
 N35 41.781 46.523 27.631    N22 44.751 48.209 27.901 
 N22 44.507 48.55 27.675    C21 45.782 49.024 28.386 
 C21 45.649 49.133 28.139    C26 46.065 49.053 29.656 
 C26 45.976 49.087 29.405    N20 47.106 49.938 29.903 
 N20 47.111 49.832 29.611    C19 47.446 50.478 28.789 
 C19 47.467 50.329 28.484    N18 46.684 49.916 27.759 
 N18 46.642 49.859 27.489    C17 46.587 50.363 26.414 
 C17 46.644 50.29 26.116    C16 47.129 49.312 25.322 
 C16 47.446 49.362 25.051    N06 48.61 48.969 25.324 
 N06 48.951 49.114 25.228    C01 49.128 48.176 26.483 
 C01 49.302 48.197 26.331    C04 50.674 47.917 26.322 
 C04 50.831 47.936 26.332    N03 51.379 49.157 26.353 
 N03 51.547 49.178 26.584    C15 52.811 48.915 26.2 
 C15 52.99 48.888 26.561    HAA 51.224 49.63 27.289 
 HAA 51.301 49.565 27.512    C02 50.903 49.954 25.231 
 C02 51.219 50.113 25.549    C05 49.372 50.22 25.318 
 C05 49.682 50.381 25.479    HC2 46.395 48.185 34.558 
 HC2 46.295 48.175 34.31    HC3 44.96 49.245 34.373 
 HC3 44.825 49.192 34.146    HC4 44.735 47.77 36.378 
 HC4 44.71 47.757 36.175    HC5 43.491 47.379 35.144 
 HC5 43.442 47.289 34.993    HC6 46.153 45.893 35.536 
 HC6 46.17 45.913 35.337    HC7 44.538 45.308 36.06 
 HC7 44.595 45.282 35.916    HC8 45.187 44.289 33.881 
 HC8 45.214 44.24 33.741    HC9 43.747 45.35 33.699 
 HC9 43.737 45.243 33.587   0HC1 45.409 45.751 31.881 
0HC1 45.331 45.671 31.7   1HC1 46.656 46.142 33.112 
1HC1 46.581 46.129 32.905    HC  44.005 47.629 32.679 
 HC  43.878 47.533 32.49   2HC1 48.168 51.246 28.686 

2HC1 48.274 51.018 28.333   3HC1 45.51 50.509 26.2 
3HC1 45.573 50.323 25.773   4HC1 47.126 51.324 26.305 
4HC1 47.089 51.302 26.071   5HC1 46.925 49.769 24.343 
5HC1 47.329 49.878 24.084   6HC1 46.55 48.386 25.408 
6HC1 46.967 48.388 24.986   7HC1 48.945 48.709 27.423 
7HC1 49 48.614 27.302   8HC1 48.629 47.211 26.519 
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8HC1 48.796 47.24 26.175   9HC1 50.875 47.393 25.392 
9HC1 51.145 47.519 25.382   0HC2 51.035 47.316 27.173 
0HC2 51.083 47.237 27.141   1HC2 51.105 49.401 24.293 
1HC2 51.542 49.693 24.588   2HC2 51.438 50.914 25.224 
2HC2 51.753 51.055 25.745   3HC2 49.069 50.827 24.469 
3HC2 49.48 51.089 24.682   4HC2 49.169 50.767 26.248 
4HC2 49.343 50.806 26.439   5HC2 53.002 48.38 25.262 
5HC2 53.269 48.468 25.59   6HC2 53.345 49.876 26.203 
6HC2 53.552 49.811 26.747   7HC2 53.159 48.307 27.048 
7HC2 53.224 48.162 27.354    H30 44.506 48.16 26.915 
 H30 44.22 48.616 26.713    H31 42.311 44.903 27.381 
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Table A7 Cartesian coordinates of E:I and E-I state of the inhibition process of Exp-1 inhibitors 

with methyl oxy-enoate warheads.  

Methyl oxy-enoate warhead 
E:I   E-I 

Atom x y z   Atom x y z 
C8  45.711 28.193 27.239   C8  43.662 27.447 29.426 
C9  45.64 26.844 27.572   C9  43.388 26.191 29.956 
C10 44.972 26.445 28.725   C10 42.327 26.026 30.837 
C11 44.381 27.4 29.544   C11 41.54 27.116 31.188 
C12 44.46 28.746 29.217   C12 41.813 28.375 30.656 
C7  45.123 29.15 28.067   C7  42.876 28.536 29.773 
C6  45.184 30.633 27.732   C6  43.185 29.88 29.185 
N2  44.168 30.9 26.735   N2  42.395 30.045 28.08 
C   43.099 31.861 26.752   C   41.293 30.793 28.136 
N1  43.996 30.076 25.76   N1  42.544 29.443 26.914 
C5  42.923 30.373 25.162   C5  41.52 29.766 26.244 
C4  42.525 29.602 24.075   C4  41.327 29.338 24.969 
O3  43.503 28.747 23.594   O3  42.371 28.753 24.315 
O2  41.394 29.668 23.584   O2  40.23 29.349 24.454 
C3  42.301 31.546 25.756   C3  40.698 30.653 27 
N   41.126 32.173 25.309   N   39.598 31.323 26.599 

H4  40.499 31.591 24.779   H4  38.931 30.841 26.025 
C2  41.031 33.616 25.159   C2  39.872 32.703 26.278 
O   40.927 33.196 23.927   O   40.935 32.598 25.235 
C1  39.524 33.794 24.89   C1  38.611 33.289 25.791 
O1  39.288 32.994 23.734   O1  38.153 32.507 24.747 
H1  39.73 32.077 23.933   H1  38.085 31.505 25.158 
HC  46.21 28.491 26.35   HC  44.47 27.568 28.758 
HC1 46.093 26.111 26.943   HC1 43.989 25.368 29.686 
HC2 44.912 25.412 28.976   HC2 42.116 25.063 31.245 
HC3 43.866 27.105 30.417   HC3 40.732 26.987 31.861 
HC4 44.012 29.467 29.843   HC4 41.203 29.213 30.927 
HC5 45.019 31.257 28.613   HC5 42.912 30.682 29.913 
HC6 46.154 30.826 27.256   HC6 44.212 29.916 28.869 
HC7 42.95 32.645 27.421   HC7 40.967 31.403 28.939 
HC8 38.952 33.412 25.752   HC8 37.884 33.275 26.601 
HC9 39.26 34.831 24.711   HC9 38.764 34.307 25.466 
H13 41.896 32.912 23.979   H13 41.745 32.184 25.732 

N   44.682 33.876 25.454   N   44.809 32.153 23.417 
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HN  43.695 33.941 25.23   HN  43.932 32.542 23.398 
CA  45.486 32.77 24.901   CA  44.96 30.975 22.687 
HA  45.773 32.108 25.723   HA  45.344 30.246 23.392 
CB  44.512 31.982 23.906   CB  43.545 30.408 22.167 

HB2 45.095 31.139 23.521   HB2 43.755 29.441 21.699 
HB1 43.653 31.62 24.5   HB1 42.952 30.286 23.066 
CG  43.945 32.81 22.698   CG  42.663 31.19 21.191 
ND1 42.553 33.196 22.507   ND1 41.632 32.09 21.584 
CE1 42.454 33.864 21.286   CE1 40.947 32.43 20.374 
HE1 41.574 34.264 20.863   HE1 40.121 33.062 20.304 
NE2 43.734 33.875 20.718   NE2 41.58 31.775 19.283 
HE2 43.968 34.253 19.799   HE2 41.322 31.806 18.269 
CD2 44.63 33.227 21.627   CD2 42.625 30.999 19.862 
HD2 45.67 33.07 21.461   HD2 43.253 30.323 19.333 

C   46.838 33.252 24.272   C   46.026 31.152 21.603 
O   47.917 32.988 24.834   O   47.111 30.526 21.73 
H8  41.748 33.001 23.184   N   38.64 36.435 26.099 
N   39.822 37.15 25.558   HN  37.69 36.244 26.449 

HN  39.289 37.66 24.909   CA  39.765 36.363 27.083 
CA  40.068 37.689 26.836   HA1 39.924 35.641 26.306 

HA1 40.39 38.722 26.711   CB  40.983 35.464 27.424 
CB  41.199 36.875 27.471   HB2 41.437 35.854 28.343 

HB2 42.059 36.995 26.823   HB1 41.71 35.509 26.611 
HB1 41.432 37.29 28.459   SG  40.546 33.687 27.712 
SG  40.935 35.063 27.62   C   39.029 36.076 28.356 
C   38.774 37.746 27.557   O   38.993 36.968 29.208 
O   38.161 38.823 27.417   HA2 40.226 37.337 26.999 
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Table A8. Cartesian coordinates of E:I and E-I state of the inhibition process of Exp-2 inhibitors 

with hydroxy methyl ketone (HMK) warheads. .  

 

Hydroxy methyl ketone (HMK) warhead 
E:I  E-I 

Atom x y z  Atom x y z 
N   45.342 24.62 22.846  N   45.46 24.394 21.302 

HN  44.413 24.874 22.609  HN  44.475 24.389 21.469 
CA  45.939 23.378 22.382  CA  46.2 23.189 20.797 
HA  46.456 22.878 23.211  HA  46.863 22.828 21.592 
CB  44.925 22.428 21.678  CB  45.208 22.094 20.39 

HB1 44.45 22.9 20.81  HB1 44.579 22.435 19.559 
HB2 45.482 21.555 21.304  HB2 45.728 21.18 20.045 
CG  43.905 21.898 22.592  CG  44.319 21.776 21.53 
ND1 42.746 21.214 22.248  ND1 43.258 20.891 21.546 
HD1 42.425 21.004 21.304  HD1 42.947 20.29 20.773 
CE1 42.113 20.703 23.471  CE1 42.669 21.009 22.757 
HE1 41.087 21.056 23.593  HE1 41.812 20.5 23.094 
NE2 42.972 21.282 24.446  NE2 43.375 21.918 23.477 
CD2 44.001 21.93 23.898  CD2 44.375 22.359 22.717 
HD2 44.785 22.35 24.44  HD2 45.068 23.103 23.019 

C   46.951 23.708 21.342  C   47.049 23.54 19.623 
O   48.116 23.234 21.369  O   48.276 23.368 19.659 

HE1 42.13 19.601 23.541  N   41.815 27.695 26.5 
HE2 42.88 21.128 25.465  HN  42.486 28.363 26.467 

N   40.183 28.068 26.569  CA  41.862 26.838 27.427 
HN  40.583 27.596 25.809  CB  43.342 26.398 27.713 
CA  40.749 28.176 27.713  HB2 43.999 26.941 27.03 
CB  42.073 27.448 27.657  HB1 43.559 26.751 28.723 
HB  42.339 26.88 26.795  SG  43.918 24.608 27.763 
SG  43.063 27.493 28.872  C   41.95 27.761 28.537 
C   40.634 28.639 28.962  O   42.791 28.689 28.467 
O   41.083 28.78 30.104  HA  41.084 26.093 27.453 
C   47.369 18.928 32.175  C   46.821 17.182 33.589 
C1  46.626 18.277 33.153  C1  46.952 17.879 34.785 
C2  46.169 18.979 34.265  C2  47.306 19.223 34.776 
C3  46.458 20.333 34.396  C3  47.53 19.873 33.567 
C4  47.204 20.982 33.419  C4  47.397 19.177 32.369 
C5  47.658 20.279 32.309  C5  47.043 17.831 32.38 
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C6  48.456 20.965 31.242  C6  46.893 17.077 31.081 
N   47.518 21.448 30.286  N   46.069 17.872 30.231 

C14 46.651 22.474 30.5  C14 44.682 17.889 30.227 
N1  47.305 20.922 29.051  N1  46.542 18.794 29.367 
C7  46.355 21.582 28.515  C7  45.543 19.401 28.85 
C8  45.978 21.335 27.156  C8  45.704 20.503 27.9 
O1  46.418 20.307 26.661  O1  46.842 20.717 27.501 
O   45.378 22.276 26.271  O   44.634 21.344 27.535 
C9  45.889 22.574 29.446  C9  44.309 18.832 29.386 
N2  44.851 23.422 29.355  N2  42.991 19.178 29.083 

H11 44.87 24.25 29.856  H11 42.234 18.692 29.519 
C10 43.734 23.104 28.653  C10 45.015 22.421 26.62 
O4  43.606 22.02 28.065  O4  46.186 22.511 26.217 
C11 42.618 23.997 28.577  C11 44.119 23.584 26.219 
C12 41.665 23.61 27.736  C12 42.779 23.153 25.589 
C13 40.459 24.362 27.481  C13 42.053 24.394 25.076 
O3  39.704 24.02 26.551  O3  42.617 25.502 24.973 
O2  40.117 25.455 28.208  O2  40.785 24.316 24.646 
HC  47.715 18.394 31.321  HC  46.55 16.155 33.601 
HC1 46.406 17.248 33.049  HC1 46.781 17.384 35.706 
HC2 45.598 18.48 35.014  HC2 47.406 19.755 35.694 
HC3 46.108 20.871 35.241  HC3 47.804 20.906 33.565 
HC4 47.422 22.017 33.518  HC4 47.563 19.673 31.439 
HC5 48.977 21.829 31.685  HC5 47.881 17.017 30.602 
HC6 49.125 20.255 30.745  HC6 46.465 16.076 31.274 
HC7 46.565 23.027 31.353  HC7 44.049 17.278 30.792 
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