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Abstract

The gist of this thesis is that, by employing the pure mathematical machinery of functional

analytical methods, harmonic analysis, measure theory, distribution theory, and energy

methods, we analyze the regularity of generalized solutions of weakly formulated PDEs

and present improved regularity criteria that will ensure the smoothness of their weak

solutions. Different kinds of regularity criteria involving pressure, vorticity, velocity,

logarithmic, component reduction, one-directional derivatives, etc. are proved in Besov,

critical Besov, and anisotropic Lorentz spaces for various fluid dynamical systems. One of

Clay’s millennium problems, the smoothness of the Navier-Stokes equation, is intimately

related to all the systems that we are going to analyze in this thesis and is a fundamental

open problem of well-posedness and regularity that arises from the turbulent behavior of

flows over a period of time. Our goal is to obtain the regularity in more general critical

function spaces that will ensure the regularity of the systems in that particular time

interval. In this research work, we deal with the unsteady fluid problems on the entire

three-dimensional spatial domain and in the finite-time interval.
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1.1 Introduction

Nearly all the physical phenomena in the universe have been modeled by well-posed

partial differential equations (PDEs), which have three key characteristics. First and

foremost, the PDE problem must have a solution, i.e., a solution exists; secondly, it must

be unique; and thirdly, it must be regular or continuously dependent on the data given

in the problem. Previously, in the nineteenth century, PDE’s solution problem was in-

vestigated by finding it in the form of explicit formulas or exact solutions. This method

generated substantial challenges, considering that there is a fairly small group of PDEs

with exact solutions. In the earlier nineteenth century, with the introduction of Sobolev

spaces, weak solutions, and other harmonic analysis tools, the mathematical theory of

PDEs advanced effectively. Although the understanding of the differentiability properties

of solutions has improved, the problem of the regularity of weak solutions, whose existence

is only known, remains open and is considered one of the millennium problems [1]. Serrin

[3] pioneered to show the regularity of such Leray-Hopf [2, 4] weak solutions in terms of

velocity and proved the result for the Navier-Stokes equations (NSE). For the NSE the

problem of finding unique solution for each smooth initial condition for arbitrarily large

times is still open in higher dimensions. The same problem appears to be true for more

general dynamical systems.

The rigorous harmonic analysis tools of decompositions, Fourier analysis methods,

Besov spaces, Lorentz spaces, functional inequalities, and energy methods together with

a priori estimates, will help us proving our mains results also the embedding properties

of function spaces will be useful in establishing inequalities. This approach encouraged

new problems in the mathematical theory of turbulence, the global-in-time regularity

problem, the boundary value problem for steady state, the Liouville problem of steady

state with finite energy, and the boundary layer description at the zero viscosity limit.

1.2 Function spaces

We recall definitions of several function spaces that helped us support our findings.

1



Definition 1.2.1 For a measurable subset µ̂ of Rn and 1 ≤ p <∞, the norm of

Lp(X, µ̂) space of a p-integrable functions is

∥f∥Lp :=
(∫

µ̂

|f(s)|pds
) 1

p
<∞,

whereas, for p = 2, L2 is called Hilbert space. The norm of its weak form L∞ is given as

∥f∥L∞ := ess sup |f |.

Definition 1.2.2 Let f ∈ Lp(R3) with 1 ≤ p <∞. The space W 1,p consists of all those

functions whose first weak derivatives exists and are in Lp(R3). Whereas, the norm is

given as

∥f∥W 1,p :=
(∫

R3

|f(s)|p +
n∑

j=1

∫
R3

|∂jf(s)|pds
) 1

p
.

For η̂ ≥ 2, the Sobolev norm is defined as

∥f∥p
W η̂,p :=

∑
|α̂|≤η̂

∥∂α̂f∥pLp .

Throughout the thesis we often use L2-based Sobolev spaces with norm defined as

∥f∥2H η̂ :=
∑

0≤|α̂|≤η̂

∥∂α̂f∥2,

whereas, H η̂ = W η̂,2.

Definition 1.2.3 A function f ∈ BMO, if ∥f∥BMO <∞, where

∥f∥BMO = sup
B

1

m(B)

∫
B

|f(x)− fB|dx,

and fB =
1

m(B)

∫
B

f(x)dx with B a ball over Rn.

Now, we define the homogeneous Besov space.

Definition 1.2.4 Let σ̂ ∈ R, 1 ≤ l̂, m̂ ≤ ∞, the homogeneous Besov space Ḃσ̂a
l̂,m̂

(R3) is

defined by the full dyadic decomposition such as

Ḃσ̂
l̂,m̂

= {f ∈ Z′
(R3); ∥f∥Ḃσ̂

l̂,m̂

<∞},

where

∥f∥Ḃσ̂
l̂,m̂

= ∥{2ĵσ̂∥∆jf∥Ll̂}∞ĵ=−∞∥l̂m̂ .

2



The details on dyadic decomposition can be found in [33].

Definition 1.2.5 Let l̂ = (l̂1, l̂2, l̂3) and m̂ = (m1,m2,m3) with 0 < l̂i ≤ ∞,

0 < mi ≤ ∞. If l̂i = ∞ then mi = ∞ for every i = 1, 2, 3. An anisotropic Lorentz space

Ll̂1,m1(Rx1 ;L
l̂2,m2(Rx2 ;L

l̂3,m3((Rx3))) is the set of functions defined as

∥∥∥∥∥
∥∥∥∥∥∥∥f∥∥∥

L
l̂1,m1
x1

∥∥∥∥
L
l̂2,m2
x2

∥∥∥∥∥
L
l̂3,m3
x3

:=
(∫ ∞

0

(∫ ∞

0

(∫ ∞

0

[t̂
1

l̂1
1 t̂

1

l̂2
2 t̂

1

l̂3
3 f

∗1,∗2,∗3(t̂1, t̂2, t̂3)]
m1
dt̂1

t̂1

)m2
m1 dt̂2

t̂2

)m3
m2 dt̂3

t̂3

) 1
m3

<∞.

Definition 1.2.6 For complete Banach space X, and 1 ≤ p <∞. The space of all

strongly measurable functions denoted by Lp(0, T ;X) and has norm

∥f∥Lp(0,T ;X) :=
(∫ T

0

∥f(s)∥pXds
) 1

p
<∞

is called Bochner space. For the weak form L∞(0, T ;X) the norm

∥f∥L∞(0,T ;X) := ess supt∈[0,T ] ∥f(s)∥X

is finite.

Definition 1.2.7 For the Banach space X, let f ∈ L1(0, T ;X) has a weak time

derivative ∂tf ∈ L1(0, T ;X) if∫ T

0

f(s)∂tΦ(s)ds = −
∫ T

0

∂tf(s)Φ(s)

∀ ϕ ∈ C∞
c (0, T ).

To prove our results we use the following inequalities given in [90–93], for 1 ≤ r <∞

and ŝ > 0 we have that

∥f∥2L2r ≤ C∥f∥Lr∥f∥BMO (1.1)

∥f∥BMO ≤ C
(
1 + ∥f∥Ḃ0

∞,∞
log

1
2 (1 + ∥f∥Hs−1)

)
(1.2)

∥(V · ∇)V∥Lr ≤ C∥V∥Lr∥∇V∥BMO (1.3)

∥∇U∥2L4 ≤ C∥∆U∥L2∥∇U∥Ḃ−1
∞,∞

. (1.4)

The following proposition will be effective in proving results for the last chapter:

3



Proposition 1.2.8 [88] Let (h,D,B) is weak solution of the system (7.1). Then

∀ t ∈ [0, T ]

∥ΠŝW∥2L2+∥ΠŝW∥2L2+∥ΠŝW∥2L2+

∫ T

0

(
∥Πŝ+α̂1U∥2L2+∥Πŝ+α̂2W∥2L2+∥Πŝ+α̂3V∥2L2

)
dt ≤ C.

(1.5)

1.3 Main results

We now present a brief synopsis of the few key results reported in this thesis. All the

results are proved for the 3D incompressible fluid models on the whole space R3 and in

the smooth finite time interval subject to the various conditions.

The first regularity criteria was proved for the NSE via velocity. But the system of

three equations that is the NSE is governed by the time evolution of three components

of velocity (U1,U2,U3) and by the scalar pressure. Therefore, the question of finding

regularity conditions for these components is natural. This brought about the work on

the regularity via reduced components, one component, and pressure. Similarly, the

work on the more geometrically complex systems, in which the NSE is just a subpart,

initiated. Our first conditional regularity result is proved for the 3D magnetic Bénard

system. The result given in terms of pressure ”Ψ” that guarantee the conditional

smoothness in the interval [0, T ] is given as∫ T

0

∥Ψ∥2
Ḃ−1

∞,∞(
1 + ln

(
e+ ∥Ψ∥Ḃ−1

∞,∞

)dt <∞,

and is followed by the gradient pressure result

∫ T

0

∥∇Ψ∥
2
3

Ḃ0
∞,∞(

1 + ln(e+ ∥∇Ψ∥Ḃ0
∞,∞

)
) 3

2

dt <∞.

Previously, these results were also given for the NSE. The detailed analysis of these

conditions and background of the problem has been done in the upcoming chapters.

As the mathematical theory of PDEs advanced, more improved and new criteria were

presented. In this regard, we proved a new component reduction one directional

4



derivative result in terms of velocity and magnetic field given as∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥(∂3U , ∂3V)∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

<∞. (1.6)

Result (1.6) is proved for the 3D magneto-micropolar system.

Employing the techniques of the component reduction regularity. It has been further

improved and demonstrated for the Navier-Stokes-Nernst-Planck system via velocity i.e.,∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

dt <∞.

The harmonic analysis tools including the dyadic decomposition and Besov spaces

enabled us to discuss different kinds of regularity results for each and every component

of the system. Following this line, one of the last results we presented is for the

fractional magneto-micropolar system. Due to its generality, we explored it for the

Beale-Kato-Majda type result provided via vorticity i.e., Ω = ∇× U . The proved

conditions that controls to blow-up of weak solution until T is given as∫ T

0

∥Ω∥Ḃ0
∞,∞√

(1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)
dt <∞.

1.4 Overview of the thesis
This thesis aims to presents the results on the geometric constraints of various fluid

systems, including the Cauchy problems of the 3D magnetic Bénard system, the 3D

Boussinesq equations, the magneto-micropolar system, the

Navier-Stokes-Poisson-Nernst-Planck system, and the fractional or generalized

magneto-micropolar system in the more regular function spaces.

In Chapter 2, we discuss the regularity of the weak solutions to the Cauchy problem

of the 3D magnetic Bénard system. These results are given for the pressure term, i.e.,

for "Ψ" in the critical Besov space Ḃ−1
∞,∞ and for "∇Ψ" in the homogenous Besov space

Ḃ0
∞,∞. Thus improving numerous previously established regularity results for this

system. The contents of this Chapter have been published in [35].

In Chapter 3, we explore a new kind of result presented on the one directional

derivative of velocity for the Cauchy problem of 3D Boussinesq equations in the

5



negative index Besov spaces. The contents of this Chapter have been submitted for

publication [5].

In Chapter 4, we present the blow-up criteria that deals with the component

reduction improvement of the regularity for the 3D incompressible magneto-micropolar

and Navier–Stokes-Poisson–Nernst–Planck systems. These results are evaluated

employing energy methods in the anisotropic Lorentz spaces. The contents of this

Chapter are published in [6].

In Chapter 5, we again use energy inequality to prove the finite-time regularity via of

pressure. The pressure and gradient pressure results are proved in the anisotropic

Lorentz spaces. The contents of this Chapter have been submitted for publication [8].

In Chapter 6, the focus is on the scale-invariant critical Besov spaces. The

double-logarithmic result for various fluid systems is proved in such function spaces.

The contents of this Chapter have been submitted for publication [7] and available

online on researchgate with DOI: 10.13140/RG.2.2.18887.37284.

In Chapter 7, for the fractional magneto-micropolar system, the first result is

demonstrated for the system’s voricity ∥Ω∥Ḃ0
∞,∞

, and the second result is demonstrated

for the system’s velocity ∥∇h∥2
Ḃ−1

∞,∞
. The contents of this Chapter have been submitted

for publication [9].

1.4.1 References of Contribution

The contribution is cited in the reference list which include [5–9, 35].

1.5 General notation

For notational convenience, throughout the thesis, U and V are taken as a velocity

and magnetic fields, Ψ as pressure, and W as a micro-rotational velocity.
∫
R3 and

∫ T

0

are spatial and time integrals. All through the thesis, "C" is a generic constant that

could vary from line to line.

The θ̂ in chapter 2 is different from θ used in chapter 4. The ϑ̂ in chapter 2 is not

same as ϑ in chapter 4. For non-verbose notations, systems (4.1) and (4.2) in chapter 6

6



are rewritten with new symbols. For fractional system in chapter 7, we use new

notations to analyze system (7.1).

The terms smoothness and regularity are interchangeable. Similarly, the terms weak

solutions, generalized solutions, and Leray-Hopf weak solutions mean the same.

7



Chapter 2

An improved regularity criterion for

the 3D magnetic Bénard system in

Besov spaces

8



2.1 Introduction

This chapter notably targets the more general (extended) function spaces by

investigating the regularity of the weak solutions or turbulent solutions to the Cauchy

problem of the 3D magnetic Bénard system by converting it into mathematical

symmetric form, in the absence of thermal diffusion, in terms of pressure. In that

regard, we successfully improved the results by obtaining sufficient integrable regularity

conditions for the pressure and gradient pressure in the homogeneous Besov spaces. We

analyse the following 3D magnetic Bénard system in R3 × R+:

∂U
∂t

+ U · ∇U − β1△U +∇Ψ− V · ∇V − θ̂e3 = 0,

∂V
∂t

+ U · ∇V − β2△V − V · ∇U = 0,

∂θ̂
∂t

+ U · ∇θ̂ − β3△θ̂ − U · e3 = 0,

divU = 0, divV = 0,

(U ,V , θ̂)|t=0 = (U0,V0, θ̂0),

(2.1)

where U(x, t), V(x, t), θ̂(x, t) are the velocity field vector, magnetic field vector and

scalar temperature field, respectively, while Ψ(x, t) is the scalar pressure. β1 and β2 are

the viscosity and diffusivity with β3 as the thermal diffusion, e3 = (0, 0, 1) and θ̂e3

reports the acting buoyancy force on the fluid motion, U · e3 imitates the

Rayleigh–Bénard convection in a heated inviscid fluid. Equation (2.1)4 describes the

divergence free velocity and magnetic fields with (2.1)5 tells about the prescribed initial

conditions U0,V0 and θ̂0.

As described by Mulone and Rionero [10] and Nakamura [11], the 3D magnetic

Bénard system models the heat convection phenomenon influenced by velocity, magnetic

field and temperature. The magnetic Bénard problem has sparked interest due to the

thermal instability caused by the magnetic field. Although in 2D, the well-posedness

problem has been resolved but the 3D case is still an unresolved issue in the whole

space R3. When we ignore θ̂ system (2.1) is simplified to MHD system. System (2.1) is

reduced to Boussinesq equations if V is neglected and to Navier-Stokes equations (NSE)

by taking V = 0 and θ̂ = 0. System (2.1) also studies chemotaxis model, an important

9



biological model, which has been extensively studied by [12–14] in the bounded domains.

In 1934, Leray [2] founded the concept of weak solutions (turbulent solutions), i.e.,

the solutions with finite kinetic energy belongs to a class L∞(0, T ;L2) ∩ L2(0, T ;H1) ,

for the proper definition of weak solution and its properties see [15, 16], and the first

finite time regularity criteria were given by Serrin [3] for the incompressible NSE, i.e., U

becomes Leray-Hopf weak solution, if

U ∈ Lm(0, T ;Ll(R3)),
2

m
+

3

l
= 1, 3 < l ≤ ∞, 1 < m ≤ ∞,

then smoothness of solution remains in the interval (0, T ]. Later on, the regularity

problem has been extensively explored by establishing various geometrically important

constraints on the velocity, vorticity, pressure, strain tensor, etc.

In this chapter, our interest is to explore the regularity in pressure terms for the

system (2.1) because pressure controls the solutions of the whole system (2.1) by taking

the divergence by test function, we can decouple velocity, magnetic field, and

temperature from pressure. Therefore, it plays a significant role in understanding fluid

flows. The NSE’s regularity criteria for pressure and its gradient were demonstrated by

Chae and Lee [17], Berselli and Galdi [18], and Zhou [19–21], given as

Ψ ∈ L
2

2−l (0, T, L
3
l ) with 0 < l ≤ 1,

and

∇Ψ ∈ L
2

3−l (0, T, L
3
l ) with 0 < l ≤ 1.

Duan [22] has obtained similar conditions for the MHD system.

For system (2.1), the global existence problem was addressed by Ma in [23], and the

blow-up and regularity problem in terms of U and ∇U in [24] for the multiplier space.

The Serrin-type criteria Ψ
2

2−l (0.T ;L
3
l ) with 0 < l ≤ 1, for the pressure, was given by Liu

[25] in Lebesgue space. Recently, Chen et al. [26] established numerous important

regularity results for the system (2.1), without thermal diffusion, based on pressure and

its gradient in various function spaces, i.e., in Lebesgue spaces

Ψ ∈ L2(0, T ;L
3
l ) with 0 < l ≤ 1,

10



∇Ψ ∈ L
9−2l
2l (0, T ;L

3
l ) with 0 < l ≤ 1.

In Morrey-Companato and Multiplier spaces

Ψ ∈ L
4l

4l−6 (0, T ; Ṁl,m) with
3

2
< l ≤ ∞,

Ψ ∈ L2(0, T ; Ẋ−l) with 0 < l ≤ 1.

In BMO and Besov spaces

∇Ψ ∈ L2(0, T ;BMO), (2.2)

Ψ ∈ L2(0, T ; Ḃ−1
∞,∞). (2.3)

Motivated by the above discussions and results, we will present improved integrable

regularity conditions for the following 3D magnetic Bénard system with zero thermal

diffusion:

∂U
∂t

+ U · ∇U − β1△U +∇Ψ− V · ∇V − θ̂e3 = 0, in R3 × R+,

∂V
∂t

+ U · ∇V − β2△V − V · ∇U = 0, in R3 × R+,

∂θ̂
∂t

+ U · ∇θ̂ = 0, in R3 × R+,

divU = 0, divV = 0, in R3 × R+,

(U ,V , θ̂)|t=0 = (U0,V0, θ̂0) in R3.

(2.4)

We will convert system (2.4) into mathematical symmetric form by putting Q+ = U + V

and Q− = U − V , as it will be useful in calculations and to apply certain inequalities

such as (2.6) for the prove of our desired regularity conditions.

The very first log improvement in U for the 3D NSE system was given by

Montgomery-Smith [27]∫ T

0

∥U∥lLm

1 + ln(e+ ∥U∥Lm)
dt <∞,

2

l
+

3

m
= 1, 2 < l ≤ ∞, and 3 < m ≤ ∞. (2.5)

Later on, such types of criteria were enhanced by (see, [28–30]) and also established for

other fluid models (see [31, 32] and references therein).

Similar to the log-criterion for weak solutions, we established improved logarithmic

regularity condition for the system (2.4) based on pressure and its gradient. Our results

11



naturally generalise the result (2.5). Throughout the calculations, the non-negative

parameters β1, β2, and β3 are taken 1.

The well-known pressure-velocity relations by the Calderon-Zygmund are given as:

∥Ψ∥Lα ≤ ∥U∥L2α ,

∥∇Ψ∥Lα ≤ ∥U · ∇U∥Lα ,

∥Ψ∥Lα ≤ C∥Q+∥L2α∥Q−∥L2α ,

∥∇Ψ∥Lα ≤ C∥Q+ · ∇Q−∥Lα ,

∥∇Ψ∥Lα ≤ C∥Q− · ∇Q+∥Lα .

(2.6)

2.2 Main result and proof I

This section presents result (2.7) and its proof by using well-known energy methods.

Theorem 2.2.1 Assume that (U0,V0, θ̂0) ∈ H1(R3) with ∇ · U0 = 0, ∇ · V0 = 0 in the

sense of distributions. Let T > 0 and (U ,V , θ̂) is a weak solution of system (2.1) in the

interval (0, T ]. If pressure Ψ satisfies∫ T

0

∥Ψ∥2
Ḃ−1

∞,∞(
1 + ln

(
e+ ∥Ψ∥Ḃ−1

∞,∞

)dt <∞, (2.7)

then (U ,V , θ̂) remains its smoothness on R3 × (0, T ], and there are no moving singular

points or blow-ups in the area under consideration, i.e, the interval (0,T].

Proof. Firstly, we will convert the system (2.4) into a symmetric form:



∂Q+

∂t
+Q− · ∇Q+ −△Q+ +∇Ψ− θ̂e3 = 0,

∂Q−

∂t
+Q+ · ∇Q− −△Q− +∇Ψ− θ̂e3 = 0,

∂θ̂
∂t

+ 1
2
(Q+ +Q−) · ∇θ̂ = 0,

divQ+ = 0, divQ− = 0,

(Q+,Q−, θ̂)|t=0 = (Q+
0 ,Q−

0 , θ̂0).

(2.8)

Now, testing (2.8)1 with Q+|Q+|2, (2.8)2 with Q−|Q−|2 and (2.8)3 with θ̂|θ̂|2,

integrating over R3, adding all the equations, we finally get an L4−estimates for Q+,
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Q− and for θ̂, given as

1

4

d

dt

(
∥Q+∥4L4 + ∥Q−∥4L4 + ∥θ̂∥4L4

)
+

1

2

(
∥∇|Q+|2∥2L2 + ∥∇|Q−|2∥2L2

)
+(

∥|Q+||∇Q+|∥2L2 + ∥|Q−||∇Q−|∥2L2

)
= −

∫
R3

∇Ψ
(
Q+|Q+|2 +Q−|Q−|2

)
dx+

∫
R3

θ̂e3Q+|Q+|2dx+
∫
R3

θ̂e3Q−|Q−|2dx

= I1 + I2 + I3. (2.9)

For I2 and I3, we derive that

I2 ≤ C∥θ̂∥4L4 + ∥Q+∥4L4 .

I3 ≤ C∥θ̂∥4L4 + ∥Q−∥4L4 .

I1 is estimated as in (5.2) by Chen et al. [26].

Putting all the estimates in (2.9), using ∥Q+∥4L4 + ∥Q−∥4L4 = ∥U∥4L4 + ∥V∥4L4 , we get

1

4

d

dt

(
∥U∥4L4 + ∥V∥4L4 + 1

)
+

1

4

(
∥∇|U|2∥2L2 + ∥∇|V|2∥2L2

)
+

1

2
(∥U · ∇U∥2L2

+∥V · ∇U∥2L2 + ∥U · ∇V∥2L2 + ∥V · ∇V∥2L2)

≤ C(∥Ψ∥2
Ḃ−1

∞,∞
+ 1)

(
∥U∥4L4 + ∥V∥4L4 + 1

)
(2.10)

≤ C
(
1 +

∥Ψ∥2
Ḃ−1

∞,∞

1 + ln(e+ ∥Ψ∥Ḃ−1
∞,∞

)

)
(1 + ln(e+ ∥Ψ∥Ḃ−1

∞,∞
)
(
∥U∥4L4 + ∥V∥4L4 + 1

)
.

Using inequality (2.6)1, we deduce

≤ C
(
1 +

∥Ψ∥2
Ḃ−1

∞,∞

1 + ln(e+ ∥Ψ∥Ḃ−1
∞,∞

)

)
(1 + ln(e+ ∥U∥2L6)

(
∥U∥4L4 + ∥V∥4L4 + 1

)
.

≤ C
(
1 +

∥Ψ∥2
Ḃ−1

∞,∞

1 + ln(e+ ∥Ψ∥Ḃ−1
∞,∞

)

)
(1 + ln(e+ Z(t))

(
∥U∥4L4 + ∥V∥4L4 + 1

)
.

∀ t ∈ [T∗, T ], define Z(t) := supT∗≤s≤t∥Λ3U∥2L2 + ∥Λ3V∥2L2 + ∥Λ3θ̂∥2L2 .

Applying Gronwall’s lemma on the interval [T∗, t], we have

(
∥U∥4L4 + ∥V∥4L4 + 1

)
≤ C0 exp

(
C

∫ t

T∗

(
1 +

∥Ψ∥2
Ḃ−1

∞,∞

1 + ln(e+ ∥Ψ∥Ḃ−1
∞,∞

)

)
ds(1 + ln(e+ Z(t))

)
,

where C0 =
(
∥U(·, T∗)∥4L4 + ∥V(·, T∗)∥4L4 + 1

)
.
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(
∥U∥4L4 + ∥V∥4L4 + 1

)
≤ C0 exp(2Cϵ ln(e+ Z(t))) ≤ C0(e+ Z(t))2Cϵ. (2.11)

If there were a sufficiently small constant ϵ > 0, ∃ T∗ < T , such that∫ T

T∗

(
1 +

∥Ψ∥2
Ḃ−1

∞,∞

1 + ln(e+ ∥Ψ∥Ḃ−1
∞,∞

)

)
dt < ϵ.

Now, we get bounds for Z(t).

Multiply Λ3 = (−∆)
3
2 with (2.8)1 and taking the inner product with Λ3Q+, Multiply Λ3

with (2.8)2 and taking the inner product with Λ3Q−, Multiply Λ3 with (2.8)3 and taking

the inner product with Λ3θ̂, and using (2.4)4, adding all the equations. We finally obtain

1

2

d

dt

(
∥Λ3Q+∥2L2 + ∥Λ3Q−∥2L2 + ∥Λ3θ̂∥2L2

)
+ ∥Λ4Q+∥2L2 + ∥Λ4Q−∥2L2

= −
∫
R3

(Λ3(Q− · ∇Q+)Λ3Q+))dx−
∫
R3

(Λ3(Q+ · ∇Q−)Λ3Q−))dx+

∫
R3

Λ3(θ̂e3)Λ
3Q+dx

+

∫
R3

Λ3(θ̂e3)Λ
3Q−dx−

∫
R3

Λ3
(
(Q+ +Q−) · ∇θ̂

)
Λ3θ̂dx.

= P1 + P2 + P3 + P4 + P5, (2.12)

where we used integration by parts, Λs = (−∆)
s
2 for s ∈ R, and property of

differentiating distributions. Now, we get estimate for P3 + P4

P3 + P4 =

∫
R3

Λ3(θ̂e3)Λ
3Udx

≤ C
(
∥Λ3θ̂∥2L2 + ∥Λ3U∥2L2

)
≤ C

(
e+ ∥Λ3θ̂∥2L2 + ∥Λ3U∥2L2 ++∥Λ3V∥2L2

)
≤ C1(e+ Z(t))2,

where C1 is a positive constant.

Similarly,

|P5| =
∫
R3

Λ3(U · ∇θ̂)Λ3θ̂dx

≤ C
(
∥Λ4U∥2L2 + ∥Λ4θ̂∥2L2

)
+ C1(e+ Z(t))

3
2
+ 13

2
Cϵ,

here we use Q+ +Q− = U .

For P1 and P2, Due to Kato and Ponce [34], we shall utilize the commutator estimate

that follows:

∥∇α(fg)− f∇αg∥Ll ≤ C
(
∥Λα−1g∥Lm1∥∇f∥Ll1 + ∥Λαf∥Ll2∥g∥Lm2

)
, (2.13)
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for α > 1 and 1
l
= 1

l1
+ 1

m1
= 1

l2
+ 1

m2
.

|P1 + P2| ≤
∣∣ ∫

R3

(Λ3(Q− · ∇Q+)−Q− · ∇Λ3Q+))Λ3Q+dx

+

∫
R3

(Λ3(Q+ · ∇Q−)−Q+ · ∇Λ3Q−))Λ3Q−dx
∣∣.

Using (2.13) with these inequalities

∥∇U∥L3 ≤ C∥∇U∥
3
4

L2∥∇∆U∥
1
4

L2 , ∥∇∆U∥L3 ≤ C∥∇U∥
1
6

L2∥∆2U∥
5
6

L2 ,

we deduce the final estimate that is given as

|P1 + P2| ≤ C
(
∥∇Q−∥L3∥Λ3Q+∥2L3 + ∥∇Q+∥L3∥Λ3Q+∥L3∥Λ3Q−∥L3

)
+C
(
∥∇Q+∥L3∥Λ3Q−∥2L3 + ∥∇Q−∥L3∥Λ3Q+∥L3∥Λ3Q−∥L3

)
≤ C

(
∥∇Q+∥

13
2

L2 + ∥∇Q+∥2L2∥∇Q−∥
9
2

L2 + ∥∇Q+∥
9
2

L2∥∇Q−∥2L2 + ∥∇Q−∥
13
2

L2

)
·
(
∥Λ3Q−∥

3
2

L2 + ∥Λ3Q+∥
3
2

L2

)
+

1

2

(
∥Λ3∇Q−∥2L2 + ∥Λ3∇Q+∥2L2

)

≤ 1

2

(
∥Λ4Q+∥2L2 + ∥Λ4Q−∥2L2

)
+ C

(
∥∇Q+∥2L2 + ∥∇Q−∥2L2

) 13
4 Z

3
2 (t).

Now, testing (2.8)1 with −∆Q+ and (2.8)2 with −∆Q−, the weak form is derived as

1

2

d

dt

(
∥∇Q+∥2L2 + ∥∇Q−∥2L2

)
+ ∥∆Q+∥2L2 + ∥∆Q−∥2L2

= −
∫
R3

(Q− · ∇Q+) ·∆Q+dx+

∫
R3

θ̂e3 ·∆Q+dx−
∫
R3

(Q+ · ∇Q−) ·∆Q−dx+

∫
R3

θ̂e3 ·∆Q−dx.

≤ ∥∆Q+∥2L2 + ∥∆Q−∥2L2 +
1

2

(
∥∆Q+∥2L2 + ∥∆Q−∥2L2

)
+ C

(
∥Q+∥8L6 + ∥Q−∥8L6

)
, (2.14)

where we employed the following maximum principle frequently used and presented

in [26] for system (2.8)

∥θ̂∥Ll≤ ∥θ̂0∥Ll≤ 1, where 1 < l ≤ ∞. (2.15)

Integrating (2.14) in [T∗, t], we deduce that

(
∥∇Q+∥2L2+∥∇Q−∥2L2

)
≤ C(1+Z(t))

4Cϵ
3 (t−T∗)+∥∇Q+(T∗)∥2L2+∥∇Q−(T∗)∥2L2 . (2.16)
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Putting all the estimates into (2.12), absorbing dissipative terms together with (2.16)

we have final H3-bounds by applying Gronwall’s inequality providing that ϵ must be

sufficiently small. We get

∥Λ3Q+∥2L2 + ∥Λ3Q−∥2L2 + ∥Λ3θ̂∥2L2 ≤ C. (2.17)

Bounds (2.17) and (2.16) together with (2.11) implies that(
∥U∥4L4 + ∥V∥4L4 + 1

)
≤ C.

Thus, by providing sufficient estimates that ensure smoothness up to time T, Theorem

2.2.1 has been proved.

Corollary 2.2.2 One of the foremost outcomes of above theorem is the result (2.3).

2.3 Main result and proof II

Theorem 2.3.1 Suppose that (U0,V0, θ̂0) ∈ H3(R3) with ∇ · U0 = 0, ∇ · V0 = 0 in

distributional sense. For T > 0, (U ,V , θ̂) is a weak solution of system (2.1). If pressure

Ψ satisfies an integrable regularity condition

∫ T

0

∥∇Ψ∥
2
3

Ḃ0
∞,∞(

1 + ln(e+ ∥∇Ψ∥Ḃ0
∞,∞

)
) 3

2

dt <∞, (2.18)

then (U ,V , θ̂) shows its smoothness in the interval R3 × (0, T ], and there are no moving

singular points or blow-ups in the area under consideration, i.e, the interval (0,T].

Proof. To prove this theorem we established a priori estimate for the weakly

formulated equation (2.9).

For I3

I3 ≤ ∥θ̂∥L4∥Q+∥L4∥Q+∥2L4 ≤
1

2

(
∥θ̂∥2L4∥Q+∥2L4

)
+ C∥Q+∥4L4

1

4
∥θ̂∥4L4 + C∥Q+∥4L4 + C∥Q+∥4L4 ≤

1

4
∥θ̂∥4L4 + C∥Q+∥4L4 . (2.19)

Similarly,

I2 ≤
1

4
∥θ̂∥4L4 + C∥Q−∥4L4 . (2.20)
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I1 = −
∫
R3

∇Ψ
(
Q+|Q+|2 +Q−|Q−|2

)
dx = −

∫
R3

∇Ψ
(
Q+|Q+|2)dx−

∫
R3

∇Ψ(Q−|Q−|2
)
dx

= P1 + P2. (2.21)

|P1| ≤
∣∣− ∫

R3

∇Ψ · Q+|Q+|2dx
∣∣ ≤ ∥∇Ψ∥L4∥Q+∥3L4 ≤ C∥∇Ψ∥

1
2

L2∥∇Ψ∥
1
2
BMO∥Q

+∥3L4 .

Similarly,

|P2| ≤
∣∣− ∫

R3

∇Ψ · Q−|Q−|2dx
∣∣ ≤ ∥∇Ψ∥L4∥Q−∥3L4 ≤ C∥∇Ψ∥

1
2

L2∥∇Ψ∥
1
2
BMO∥Q

−∥3L4 .

Putting estimates (2.19), (2.20) and (2.21) into (2.9), and using

∥Q+∥3L4 + ∥Q−∥3L4 = ∥U∥3L4 +∥V∥3L4 , we are down to

1

4

d

dt

(
∥U∥4L4 + ∥V∥4L4 + 1

)
+

1

4

(
∥∇|U|2∥2L2 + ∥∇|V|2∥2L2

)
+

1

2
(∥U · ∇U∥2L2 + ∥V · ∇U∥2L2

+∥U · ∇V∥2L2 + ∥V · ∇V∥2L2)

≤ ∥U∥3L4

(
∥U · ∇U∥

1
2

L2∥∇Ψ∥
1
2
BMO

)
+ ∥V∥3L4

(
∥U · ∇U∥

1
2

L2∥∇Ψ∥
1
2
BMO

)
+

(
∥U∥4L4 + ∥V∥4L4 + ∥θ̂∥4L4

)
≤ 1

2
∥|U||∇U|∥2L2 + C∥∇Ψ∥

2
3
BMO∥U∥

4
L4 +

1

2
∥|U||∇U|∥2L2 + C∥∇Ψ∥

2
3
BMO∥V∥

4
L4

+
(
∥U∥4L4 + ∥V∥4L4 + ∥θ̂∥4L4)

≤ C
(
∥U∥4L4 + ∥V∥4L4 + ∥θ̂∥4L4

)(
1 + ∥∇Ψ∥

2
3
BMO

)
.

Using (2.6) for ∇Ψ, we get that

≤ C
(
∥U∥4L4 + ∥V∥4L4 + ∥θ̂∥4L4

)(
1 + ∥∇Ψ∥

2
3

Ḃ0
∞,∞

ln
1
3 (1 + ∥∇Ψ∥H2

)
)

≤
(
∥U∥4L4 + ∥V∥4L4 + ∥θ̂∥4L4

)(
1 +

∥∇Ψ∥
2
3

Ḃ0
∞,∞

(1 + ln(1 + ∥∇Ψ∥Ḃ0
∞,∞

)
2
3

)
ln(1 + ∥Λ3U∥L2)

)
. (2.22)

For θ̂ we use (2.15), which implies that

≤
(
∥U∥4L4 + ∥V∥4L4 + 1

)(
1 +

∥∇Ψ∥
2
3

Ḃ0
∞,∞

(1 + ln(1 + ∥∇Ψ∥Ḃ0
∞,∞

)
2
3

)
ln(1 + κ(t)

)
.

Because of (2.18), ∃ T∗ < T , such that

∫ T

T∗

∥∇Ψ∥
2
3

Ḃ0
∞,∞

1 + ln(1 + ∥∇Ψ∥Ḃ0
∞,∞

)
2
3

< ϵ.

We set

κ(t) := (∥Λ3U∥L2 + ∥Λ3V∥L2 + ∥Λ3θ̂∥L2).

κ(t) is bounded by the same process as Z(t).
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Due to the application of Gronwall’s Lemma to (2.22), we obtain

sup
T∗<t≤T

(
∥U∥4L4 + ∥V∥4L4 + 1

)
≤ C∗(e+ κ(t))Cϵ

This proves Theorem 2.3.1.

Corollary 2.3.2 The continuous embedding BMO ↪→ Ḃ0
∞,∞ results in very important

consequence of Theorem 2.3.1 that is the condition

∇Ψ ∈ L
2
3

(
0, T ; Ḃ0

∞,∞
)
,

which improves the criteria (2.2) by taking it from BMO (Bounded mean oscillations)

space to larger Besov space Ḃ0
∞,∞.

The other very important aspect of the non-linear differential system (2.1), i.e., the 3D

magnetic Bénard system, is the occurrence of movable singularities, i.e., starting from

smooth initial data, the solution becomes infinite in finite time due to the cumulative

effect of the nonlinearities. Such types of singularity formations in non-linear differential

systems are also known as blow-ups. In the framework of the regularity theory of weak

solutions, the blow-up or singularity occurs if the solution becomes infinite at some (or

many) points as t approaches a certain finite time T. The singularity or blow-up

problem states that the solution with some smooth initial data is well-defined in some

function space for some time 0 < t < T . Such type of singularities explicitly depend

upon the type of function space and time. The alternative interpretation of conditions

(2.7) and (2.18) is let T = T † <∞ is the maximal time for the existence of a smooth

solutions, then the solution blows up (also called the first time blow up) to create finite

time singularity, and condition (2.7) takes the form shown as∫ T †

0

∥Ψ∥2
Ḃ−1

∞,∞(
1 + ln

(
e+ ∥Ψ∥Ḃ−1

∞,∞

)dt = ∞,

similarly, the condition (2.18) becomes

∫ T †

0

∥∇Ψ∥
2
3

Ḃ0
∞,∞(

1 + ln(e+ ∥∇Ψ∥Ḃ0
∞,∞

)
) 3

2

dt = ∞.

Therefore, the blow-up is exactly the inability to continue the weak solution up to or

past a given time.
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2.4 Conclusions

The mathematical significance of our results lies in wider spaces, i.e., Besov spaces of a

negative index. Such spaces are important due to their criticality defined by their scale

invariance because the local regularity results by using scale invariance pro- perty could

be taken to global regularity results. The criteria (2.18) replace BMO space with larger

space, i.e., Ḃ0
∞,∞, consequently, improving the regularity of solutions. Our results that

are proved in the finite-time interval C∞(R3 × (0, T ]) constitute vital work on the

millennium clay mathematical problem [1] which requires the solutions to be regular in

C∞(R3 × (0,∞)) i.e., for all time. We use pressure, which has remarkable properties, to

control the solutions of the system (2.4) by imposing sufficient integrable regularity

conditions that improve numerous previously established results.
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Chapter 3

One directional derivative regularity
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3.1 Introduction

In this chapter, we present two new regularity criterion for the 3D Boussinesq equations

in terms of one directional derivative of velocity. These criterion are established within

the framework of negative index Besov spaces that is if weak solution satisfies the

conditions ∫ T

0

∥∂3U∥2Ḃ−1
∞,∞

dt <∞,

and ∫ T

0

∥∂3U∥
2

1−r

Ḃ−r
∞,∞

dt <∞,

where −1 < r < 1, then it remains regular in the interval (0,T].

We investigate the following Cauchy problem of 3D Boussinesq equations:

∂U
∂t

+ (U · ∇)U − χ1△U +∇Ψ = ϑ̂e3,

∂ϑ̂
∂t

+ (U · ∇)ϑ̂− χ2△ϑ̂ = 0,

∇ · U = 0,∇ · ϑ̂ = 0,

U(x, 0) = U0(x), ϑ̂(x, 0) = ϑ̂0(x),

(3.1)

where U(x, t), ϑ̂(x, t) and Ψ(x, t) are unknown velocity vector, temperature function

and pressure having domain in R3 × (0, T ) and e3 = (0, 0, 1)T . The initial data U0, ϑ̂0

satisfies ∇ · U0 = 0 and ∇ · ϑ̂0 = 0 in the distributional sense. With no loss of generality,

we fix parameters χ1 = χ2 = 1, see [35].

Before stating the main theorems, we now give a brief background on the problem. The

Boussinesq equations arise as a result of Boussinesq approximations from the

incompressible Navier-Stokes equations (NSE) an models oceanic and atmospheric

motions [36]. To analyse the weak solutions of a system (3.1), we have in hand two

strategies: analysing the partial regularity of appropriate weak solutions is the first and

second is to propose different improved criteria; thus, the weak solutions’ regularity will

be ensured. This research pursuit relies on improving regularity criteria concerned with

the second approach. Our results improve numerous previously established results on

this problem in the one-directional derivative of velocity. The contextual analysis is

given as follow:
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Cao and wu [37] presented the following result for the 3D MHD equations∫ T

0

∥∂3U∥mLldt <∞, (3.2)

where l ≥ 3, and 3
l
+ 2

m
≤ 1, in the time domain (0, T ].

Later on, the refined form of (3.2) for NSE in Morrey–Campanato space was given by

Liu [38], that is ∫ T

0

∥∂3U∥
2

1−r

Ṁ
l, 3r

dt <∞, (3.3)

where 0 < r < 1, 2 ≤ l ≤ 3
r
.

The above result (3.3) was improved for NSE by Gala [39] in bounded mean oscillation

space to obtain the condition ∫ T

0

∥∂3U∥2BMO dt <∞. (3.4)

Although, not much has been done to obtain results in terms of one-directional

derivatives. Recently, for the initial smooth data in H1(R3) for the system (3.1), Wu

[40] improved the result (3.4) in Besov spaces of index zero, namely, Ḃ0
∞,∞. It satisfies

the condition ∫ T

0

∥∂3U∥2Ḃ0
∞,∞

dt <∞. (3.5)

For the system (3.1), Zhang [41] proved the result∫ T

0

(
∥∇U∥2

Ḃ−1
∞,∞

+ ∥∇ϑ̂∥2
Ḃ−1

∞,∞

)
dt <∞,

and its improved form was presented by Barbagallo et al. in [42]∫ T

0

∥∇U∥2
Ḃ−1

∞,∞
dt <∞. (3.6)

Inspired by the above results, we improve conditions (3.5) and (3.6) via one directional

derivative in the function spaces Ḃ−1
∞,∞ and Ḃ−r

∞,∞.

3.2 Energy estimates for ∥∂3U∥2Ḃ−1
∞,∞

criteria

Theorem 3.2.1. For (U0, ϑ̂0) ∈ H1(R3) with ∇ · U0 = 0 in distributional form. Let

(U , ϑ̂) be the weak solution to (3.1) in (R3 × (0, T ]) and satisfy strong energy inequality

together with ∫ T

0

∥∂3U∥2Ḃ−1
∞,∞

dt <∞, (3.7)
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then the weak solution is regular on (0,T].

Proof. Multiply U and ϑ̂ to the equations (3.1)1 and (3.1)2 respectively and integrating

them by parts in R3. The Holder’s and Young’s inequalities helps us to write:

1

2

d

dt
(∥U∥2L2 + ∥ϑ̂∥2L2) + (∥∇U∥2L2 + ∥∇ϑ̂∥2L2) =

∫
R3

ϑ̂e3Udx ≤ ∥ϑ̂∥2∥U∥2 ≤ ∥ϑ̂∥2 + ∥U∥2.

Gronwall’s Lemma results in

sup
0≤t≤T

( ∥U∥2L2 + ∥ϑ̂∥2L2) + 2

∫ T

0

∥∇ϑ̂∥2L2 + ∥∇U∥2L2dt ≤ C.

Now, differentiating (3.1)1 with respect to space variable x3, then multiplying with ∂3U ,

we have that

1

2

d

dt
∥∂3U∥2L2 + ∥∇∂3U∥2L2 = −

∫
R3

∂3(U ·∇)U · ∂3U dx+

∫
R3

∂3ϑ̂ · ∂3U dx = I1+ I2. (3.8)

Again differentiating (3.1)2 with respect to x3 and multiplying with ∂3u, we derive that

1

2

d

dt
(∥∂3ϑ̂∥2L2 + ∥∇∂3ϑ̂∥2L2) = −

∫
R3

∂3(U · ∇)ϑ̂ · ∂3ϑ̂ dx = I3. (3.9)

Now, we focus on estimating I1 and I2 by using techniques from harmonic analysis

specifically energy methods, functional analysis, and inequalities from the theory of

function spaces, the corresponding estimates are given by employing Holder’s, Young’s,

Geometric mean inequalities and by definition of Besov spaces.

In case of I1

I1 = −
∫
R3

∂3(U · ∇)U · ∂3U dx

|I1| ≤ C∥∂3U∥L4∥∇U∥L2∥∂3U∥L4

≤ C∥∂3U∥2L4∥∇U∥L2

By ∥f∥L4 ≤ C∥f∥
1
2

Ḣ1∥f∥
1
2

Ḃ−1
∞,∞

≤ C∥∂3U∥Ḃ−1
∞,∞

∥∇U∥L2∥∇∂3U∥L2 .

By Young’s inequality

|I1| ≤ C∥∂3U∥2Ḃ−1
∞,∞

∥∇U∥2L2 + ∥∇∂3U∥2L2 . (3.10)
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In case of I2,

|I2| ≤ C(∥∂3ϑ̂∥2L2 + ∥∂3U∥2L2). (3.11)

By (3.10) and (3.11), we obtain

|I1|+ |I2| ≤ C∥∂3U∥2Ḃ−1
∞,∞

∥∇U∥2L2 + ∥∇∂3U∥2L2 + C(∥∂3ϑ̂∥2L2 + ∥∂3U∥2L2). (3.12)

Similarly, for I3

|I3| ≤ C∥∂3U∥L4∥∇ϑ̂∥L2∥∂3ϑ̂∥L4

≤ C∥∇∂3U∥
1
2

L2∥∂3U∥
1
2

Ḃ−1
∞,∞

∥∇ϑ̂∥L2∥∇∂3ϑ̂∥
1
2

L2∥∂3ϑ̂∥
1
2

Ḃ−1
∞,∞

≤ ∥∇∂3U∥2L2 + ∥∇∂3ϑ̂∥2L2 + C∥∂3U∥2Ḃ−1
∞,∞

∥∇ϑ̂∥2L2 + ∥∇ϑ̂∥2L2∥∂3ϑ̂∥2Ḃ−1
∞,∞

. (3.13)

Now, combining (3.12) and (3.13) into the addition of (3.8) and (3.9), we have that

1

2

d

dt
∥∂3U∥2L2 + ∥∇∂3U∥2L2 +

1

2

d

dt
∥∂3ϑ̂∥2L2 + ∥∇∂3ϑ̂∥2L2

≤ C∥∂3U∥2Ḃ−1
∞,∞

∥∇U∥2L2 + ∥∇∂3U∥2L2 + C(∥∂3ϑ̂∥2L2 + ∥∂3U∥2L2)

∥∇∂3U∥2L2 + ∥∇∂3ϑ̂∥2L2 + C∥∂3U∥2Ḃ−1
∞,∞

∥∇ϑ∥2L2 + ∥∇ϑ∥2L2∥∂3ϑ∥2Ḃ−1
∞,∞

≤ C(∥∂3U∥2Ḃ−1
∞,∞

+ ∥∂3ϑ̂∥2Ḃ−1
∞,∞

)(∥∇(U , ϑ̂)∥2L2) + C(∥∂3ϑ̂∥2L2 + ∥∂3U∥2L2).

Employing the fact that ∀x > 0, we have x < x+ 1,

≤ C(1 + ∥∂3U∥2Ḃ−1
∞,∞

+ ∥∂3ϑ̂∥2Ḃ−1
∞,∞

)(1 + ∥∇(U , ϑ̂)∥2L2)(∥∂3ϑ̂∥2L2 + ∥∂3U∥2L2). (3.14)

Integrating (3.14) and by energy inequality, we derive that

sup
0≤t≤T

∥∂3(U , ϑ̂)∥2L2 +

∫ T

0

∥∇∂3(U , ϑ̂)∥2L2 ≤ C.

By the definition of Lebesgue space and weak Lebesuge space the Gronwalls’s inequality

results in Bochner space. Therefore, by energy argument for the weak solutions and by

Sobolev embedding theorem our proof has been completed.
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3.3 Energy estimates for ∥∂3U∥
2

1−r

Ḃ−r
∞,∞

criteria

Theorem 3.3.1. Suppose (U0, ϑ̂0) ∈ H1(R3) with ∇ · U0 = 0 in distributional form. Let

(U , ϑ̂) be the weak solution to equation (3.1) in (R3 × (0, T ]) and satisfy strong energy

inequality together with ∫ T

0

∥∂3U∥
2

1−r

Ḃ−r
∞,∞

dt <∞, (3.15)

where −1 < r < 1,then the weak solution is regular on (0,T].

Proof. To prove this theorem, multiply (3.1)1 with U , then integrating by parts, using

Holder’s and Young’s inequality, we derive that∫
R3

∂tU · U +

∫
R3

(U · ∇)U · U −
∫
R3

∆U · U +

∫
R3

∇Ψ · U =

∫
R3

ϑ̂e3U

1

2

d

dt
(∥U∥2L2) + (∥∇U∥2L2) =

∫
R3

ϑ̂e3Udx ≤ ∥ϑ̂∥2∥U∥2 ≤ ∥ϑ̂∥2 + ∥U∥2. (3.16)

Similarly, multiply (3.1)2 with ϑ̂, we get∫
R3

∂tϑ̂ · ϑ̂+

∫
R3

(U · ∇)ϑ̂ · ϑ̂−
∫
R3

∆ϑ̂ · ϑ̂ = 0

1

2

d

dt
(∥ϑ̂∥2L2) + (∥∇ϑ̂∥2L2) = 0. (3.17)

combining (3.16) and (3.17), we have

1

2

d

dt
(∥U∥2L2) + (∥ϑ̂∥2L2) + (∥∇U∥2L2) + (∥∇ϑ̂∥2L2) ≤ ∥ϑ̂∥2∥U∥2 ≤ ∥ϑ̂∥2 + ∥U∥2.

By Gronwalls’s lemma

=⇒ sup
0≤t≤T

( ∥ϑ̂∥2L2 + ∥U∥2L2) + 2

∫ T

0

∥∇ϑ̂∥2L2 + ∥∇U∥2L2dt ≤ C. (3.18)

Differentiating (3.1)1 in the direction x3, multiplying with ∂3u and integrating over R3,

we obtain

1

2

d

dt
(∥∂3U∥2L2)+(∥∇∂3U∥2L2) = −

∫
R3

∂3(U·∇U)·∂3U dx+

∫
R3

∂3ϑ̂·∂3U dx = I1+I2. (3.19)

Now, we get the following estimates

|I1| ≤
∫
R3

∂3(U · ∇U) · ∂3U dx ≤ ∥∂3U∥L4∥∂3U∥L4∥∇U∥L2 .
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≤ ∥∂3U∥2L4∥∇U∥L2

≤ ∥∂3U∥Ḃ−r
∞ ,∞∥∂3U∥Ḣr∥∇U∥L2

≤ ∥∂3U∥Ḃ−r
∞ ,∞∥∂3U∥1−r

L2 ∥∇∂3U∥rL2∥∇U∥L2

≤ 1

4
∥∇∂3U∥2L2 + C[(∥∂3U∥2/1−r

Ḃ−r
∞ ,∞)1−r/2−r∥∇U∥2L2)1/2−r∥∂3U∥2(1−r)/2−r

L2 ]

|I1| ≤
1

4
∥∇∂3U∥2L2 + C(1 + ∥∂3U∥2L2)(∥∂3U∥2/1−r

Ḃ−r
∞ ,∞ + ∥∇U∥2L2). (3.20)

Similarly, for I2, we use Poincare inequality and achieve

|I2| ≤ ∥∂3U∥2L2∥∂3ϑ̂∥2L2 ≤ ∥∇∂3U∥2L2 + ∥∂3ϑ̂∥2L2 . (3.21)

Now, combining (3.20) and (3.21) into (3.19) together with (3.18), which by employing

Gronwall’s Lemma results in final inequality that ensure the required bounds, i.e.,

=⇒ sup
0≤t≤T

( ∥∂3U∥2L2) + 2

∫ T

0

∥∇∂3U∥2L2dt ≤ C.

Which completes the proof of Theorem 3.3.1.

3.4 Conclusions

The well-posedness problems in higher dimensions i.e., for n ≥ 3 remained partially

solved. Among them the regularity in one-directional derivative is rarely tackled by the

researchers. Recently, Wu presented the one-directional derivative result (3.5) in Besov

spaces. We have improved it by presenting the new result (3.7), result (3.15) improves

(3.6). This work, for sure, will open new dimensions for researchers as the

one-directional results are not yet tackled in Besov space with a negative index.
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Chapter 4

Blow-up criteria for different fluid

models in anisotropic Lorentz spaces
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4.1 Introduction

This chapter establishes new blow-up criteria, in anisotropic Lorentz spaces, via

one-directional derivatives of the velocity and magnetic fields for the Cauchy problem to

the 3D magneto-micropolar model and via one-directional derivative of velocity for the

Cauchy problem to the 3D nonlinear dissipative system. The first model consists of five

equations governing the unsteady, viscous, incompressible magneto-micropolar flow:

∂U
∂t

+ U · ∇U −∆U +∇(Ψ + V2)−∇×W − V · ∇V = 0,

∂W
∂t

−∆W + U · ∇W −∇× U + 2W −∇div W = 0,

∂V
∂t

−∆V + U · ∇V − V · ∇U = 0,

∇ · U = 0, ∇ · V = 0,

(U ,W ,V)|t=0 = (U0,W0,V0).

(4.1)

In the system (4.1), U(x, t) and V(x, t) are the velocity and magnetic fields. The

micro-rotational velocity and hydrostatic pressure are given the notations W(x, t),

Ψ(x, t), while U0, V0 and W0 are the given initial velocity, magnetic field and

micro-rotation velocity with ∇ · U0 = 0 and ∇ · V0 = 0 in the distributional sense.

Galdi and Rionero [43] were the first who suggested the model (4.1). Rojas-Medar and

Boldrini [44] established the existence of global weak solutions to the system (4.1).

Later on, the authors in [45] and [46], respectively, considered the problem of the

existence of local and global strong solutions to the same system for small initial data.

However, concerning the weak solutions to the system (4.1), there arises a question of

the regularity of these solutions. In this regard, several publications discussing the

regularity of weak solutions of system (4.1) have appeared in the literature, see for

instance [47–53] and references therein. In this article, we also choose to discuss the

blow-up criteria for the system (4.1) that guarantees the regularity of local smooth

solutions for all time (0,∞]. In view of the physical importance of system (4.1), it

models the flow of microelements under the influence of a magnetic field. These

micropolar fluids have a diluted suspension of tiny, stiff, cylindrical macromolecules that

move independently and are affected by spin inertia. Such types of flows are significant

in analysing animal and human blood, polymer fluids, liquid crystals, etc. Recently,
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enormous studies have been conducted on studying such fluids on different surfaces,

including bounded and unbounded domains.

The second system we consider here for analysis is the

Navier–Stokes-Poisson–Nernst–Planck system:

∂U
∂t

+ U · ∇U −∆U +∇Ψ−∆ψ∇ψ = 0,

∇ · U = 0,

∂θ
∂t

+ U · ∇θ −∇ · (∇θ + θ∇ψ) = 0, ,

∂ϑ
∂t

+ U · ∇ϑ−∇ · (∇ϑ− ϑ∇ψ) = 0,

∆ψ = θ − ϑ, in R3 × R+,

(U , θ, ϑ)|t=0 = (U0, θ0, ϑ0).

(4.2)

In the system (4.2), U(x, t) and Ψ(x, t) are the velocity and pressure, θ(x, t) and ϑ(x, t)

are the densities of binary diffusive negative and positive charges, ψ is the electric

potential, respectively. Rubinstein [54] proposed system (4.2), which can describe the

drift, diffusion, and convection process for the charged ions in incompressible viscous

fluids (see [55–58], and the references cited therein). The well-posedness problem of the

system (4.2) has been tackled by Jerome [59] based on Kato’s semigroup framework.

The global existence of strong solutions for small initial data and the local existence of

strong solutions for arbitary initial data has been established by Zhao et al. [60–62] in

various function spaces. However, for arbitary initial data, the all time existence of local

smooth solutions is one of the key open problem that we will investigate and present

new blow-up conditions in anisotropic Lorentz space. Similar to system (4.1) the electro

diffusion model covers various fluid models and could be considered as general

formulation to Navier-Stokes, Micropolar, MHD, and Boussinesq systems. The

momentum and mass conservation equations for the flow are (4.2)1 and (4.2)2,

respectively, while the balance between diffusion and convective transport of charges by

the flow and electric fields is modelled by (4.2)3 and (4.2)4, respectively, and the Poisson

equation for the electrostatic potential is (4.2)5. Keep in mind that the Lorentz force

produced by the charges is represented in (4.2)1. To learn more about the physical

backdrop of this issue, we direct the reader to [63–66] and the references therein.
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In that regard, for the system (4.1), Yuan [67] presented the regularity critreia (4.3),

(4.4), Lorenz et al.[68] presented conditions (4.5), (4.6) and Wang [69] established the

regularity criteria (4.7)

U ∈ Lm(0, T ;Ll(R3)), where
3

l
+

2

m
= 1, 3 < l ≤ ∞, (4.3)

∇U ∈ Lm(0, T ;Ll(R3)), where
3

l
+

2

m
= 2,

3

2
< l ≤ ∞, (4.4)

∇U3,∇hV ,∇hW ∈ L
32
7 (0, T ;L2(R3)), (4.5)

∂3U3, ∂3V , ∂3W ∈ L∞(0, T ;L2(R3)), (4.6)

∂3U ∈ Lm(0, T ;Ll(R3)) where
3

l
+

2

m
≤ 1, 3 < l ≤ ∞, (4.7)

where ∇ = (∂1, ∂2, ∂3) and ∇h = (∂1, ∂2).

For the system (4.2), Zhao and Bai [70] proved the regularity criteria (4.8), (4.9)

U ∈ Lm(0, T ;Ll(R3)), where
3

l
+

2

m
≤ 2,

3

2
< l ≤ ∞, (4.8)

∇U ∈ Lm(0, T ;Ll(R3)), where
3

l
+

2

m
≤ 3, 1 < l ≤ ∞. (4.9)

Remark 4.1.1 The embedding relation Lp ↪→ Lp,∞ ensures that the anisotropic

Lorentz space is larger than the anisotropic Lebesgue space and classical(simple)

Lebesgue space. Furthermore, dropping ∞ and setting l = m = n in the anisotropic

Lorentz space we get anisotorpic Lebesgue space and simple Lebesgue space. This

important observation is very useful because the results in anisotropic Lorentz sapces

hold and improve numerous previous results in smaller spaces.

Remark 4.1.2 Throughout the paper the notation

∥∥∥∥∥
∥∥∥∥∥∥∥(f, g)∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

is

expanded as

∥∥∥∥∥
∥∥∥∥∥∥∥f∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+

∥∥∥∥∥
∥∥∥∥∥∥∥g∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

.

As the blow-up of solution of the system (4.1) is controlled by four unknowns that is U ,

V , W , Ψ. The important question regarding the regularity of weak solutions arises here.

Can we propose a blow-up criteria for the system (4.1) only by controlling velocity and
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magnetic fields. In this paper, we give positive answer. Motivated by the above

discussion, Remark 4.1.1 and conditions (4.5), (4.6) and (4.7), we present the following

blow-up criteria in anisotropic Lorentz space for the system (4.1).

4.2 Controlling regularity via velocity and magnetic

field
In this section, we state the condition that controls the blow-up of the system (4.1) via

velocity and magnetic field.

Theorem 4.2.1. Assume that (U0,V0,W0) ∈ H1(R3) with ∇ · U0 = ∇ · V0 = 0 in the

sense of distributions. The Leray-Hopf weak solution (U ,V ,W) of the system (4.1) is

smooth on the interval (0,T], if

∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥(∂3U , ∂3V)∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

<∞, (4.10)

where 2 < l,m, n ≤ ∞ and 1− (1
l
+ 1

m
+ 1

n
) ≥ 0. Otherwise, if T = T ⋆ <∞ is the

maximal time for the existence of smooth solution then the solution blows up in finite

time i.e.

∫ T ⋆

0

∥∥∥∥∥
∥∥∥∥∥∥∥(∂3U , ∂3V)∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

= ∞.

4.2.1 A priori estimates for velocity and magnetic field

Proof of Theorem 4.2.1 In order to get the fundamental energy estimates of the

system (4.1), taking inner product of (4.1)1, (4.1)2, (4.1)3 over R3 with U , W , V ,

respectively, then adding the resulting equations and integrating in time, we get

∥(U ,W ,V)∥2L2 + 2

∫ t

0

(∥∇U∥2L2 + ∥∇W∥2L2 + ∥∇V∥2L2)dτ + 2

∫ t

0

(∥∇ · W∥2L2 + ∥W∥2L2)dτ

≤ ∥(U0,W0,V0)∥2L2 . (4.11)

In order to find L2-estimates for one-directional derivative of the velocity, take

derivative of (4.1)1 with respect to x3, then multiply resulting equation with ∂3⊓ in
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L2(R3) inner product and integrating, we get the resulting equation as

1

2

d

dt

∫
R3

|∂3U|2dx+
∫
R3

|∇∂3U|2dx−
∫
R3

∂3U · V · ∇∂3Vdx = −
∫
R3

∂3U · ∂3U · ∇Udx

+

∫
R3

∂3U · ∂3V · ∇Vdx+
∫
R3

∂3U · ∇ × ∂3Wdx. (4.12)

Similarly, multiplying (4.1)2 with ∂3W and (4.1)3 with ∂3V , integrating by parts, we get

1

2

d

dt

∫
R3

|∂3W|2dx+
∫
R3

|∇∂3W|2dx+
∫
R3

|∇ · ∂3W|2dx+ 2

∫
R3

|∂3W|2dx

= −
∫
R3

∂3W · ∂3U · ∇Wdx+

∫
R3

∂3W · ∇× ∂3Udx. (4.13)

1

2

d

dt

∫
R3

|∂3V|2dx+
∫
R3

|∇∂3V|2dx−
∫
R3

∂3V · V · ∇∂3Udx = −
∫
R3

∂3V · ∂3U · ∇Vdx

+

∫
R3

∂3V · ∂3V · ∇Udx. (4.14)

Adding (4.12), (4.13) and (4.14), we obtain

1

2

d

dt

(
∥∂3U∥2L2 + ∥∂3W∥2L2 + ∥∂3V∥2L2

)
+
(
∥∇∂3U∥2L2 + ∥∇∂3W∥2L2 + ∥∇∂3V∥2L2

)
+∥div ∂3W∥2L2 + 2∥∂3W∥2L2

= −
∫
R3

∂3U · ∂3U · ∇Udx+
∫
R3

∂3U · ∂3V · ∇Vdx−
∫
R3

∂3W · ∂3U · ∇Wdx

+

∫
R3

∂3W · ∇× ∂3Udx−
∫
R3

∂3V · ∂3U · ∇Vdx+
∫
R3

∂3V · ∂3V · ∇Udx

= P1 + P2 + P3 + P4 + P5 + P6. (4.15)

Now, we will find estimates for every term of (4.15), one by one, taking C as a generic

constant.

|P1| =
∣∣∣ ∫

R3

∂3U · ∂3U · ∇Udx
∣∣∣.

Using Holder’s inequality, we obtain

|P1| ≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

L
2l
l−2

,2

x1

∥∥∥∥
L

2m
m−2 ,2

x2

∥∥∥∥∥
L

2n
n−2 ,2

x3

∥∇U∥L2

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥∂3U∥
1−( 1

l
+ 1

m
+ 1

n
)

L2 ∥∂1∂3U∥
1
l

L2∥∂2∂3U∥
1
m

L2∥∂3∂3U∥
1
n

L2∥∇U∥L2
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≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥∂3U∥
1−( 1

l
+ 1

m
+ 1

n
)

L2 ∥∇∂3U∥
1
l
+ 1

m
+ 1

n

L2 ∥∇U∥L2 .

Applying Young’s inequality

≤ C

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥∂3U∥
2.

1−( 1
l
+ 1

m+ 1
n )

2−( 1
l
+ 1

m+ 1
n )

L2 ∥∇U∥
2

2−( 1
l
+ 1

m+ 1
n )

L2

)
+ ∥∇∂3U∥2L2 .

Adjusting above inequality’s exponents to apply again Young’s inequality

≤ C

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥∂3U∥2L2

) 1−( 1
l
+ 1

m+ 1
n )

2−( 1
l
+ 1

m+ 1
n )
(
∥∇U∥2L2

) 1

2−( 1
l
+ 1

m+ 1
n )

+∥∇∂3U∥2L2

≤ C

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥∂3U∥2L2 + ∥∇U∥2L2

)
+ ∥∇∂3U∥2L2 .

Finally, we get an estimate for P1 as

|P1| ≤ C(1 + ∥∂3U∥2L2)

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+ ∥∇U∥2L2

)
+ ∥∇∂3U∥2L2 . (4.16)

Similarly, we get bound for P6 as

|P6| ≤ C(1 + ∥∂3V∥2L2)

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3V∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+ ∥∇U∥2L2

)
+ ∥∇∂3V∥2L2 . (4.17)

In case of P4, using Holder’s and Young’s inequalities

|P4| ≤
1

4
∥∇∂3U∥2L2 + C∥∂3W∥2L2 . (4.18)

Estimating P2, P3 and P5

|P2| ≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∂3V∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

L
2l
l−2

,2

x1

∥∥∥∥
L

2m
m−2 ,2

x2

∥∥∥∥∥
L

2n
n−2 ,2

x3

∥∇V∥L2

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∂3V∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥∂3U∥
1−( 1

l
+ 1

m
+ 1

n
)

L2 ∥∂1∂3U∥
1
l

L2∥∂2∂3U∥
1
m

L2∥∂3∂3U∥
1
n

L2∥∇V∥L2

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∂3V∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥∂3U∥
1−( 1

l
+ 1

m
+ 1

n
)

L2 ∥∇∂3U∥
1
l
+ 1

m
+ 1

n

L2 ∥∇V∥L2 .
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Following on the same steps as for (4.16)

≤ C

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3V∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥∂3U∥2L2 + ∥∇V∥2L2

)
+ ∥∇∂3U∥2L2 .

|P2| ≤ C(1 + ∥∂3U∥2L2)

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3V∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+ ∥∇V∥2L2

)
+ ∥∇∂3U∥2L2 . (4.19)

|P3| ≤ C(1+∥∂3W∥2L2)

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+∥∇W∥2L2

)
+∥∇∂3W∥2L2 . (4.20)

|P5| ≤ C(1 + ∥∂3V∥2L2)

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+ ∥∇U∥2L2

)
+ ∥∇∂3V∥2L2 . (4.21)

Now we will find L2-estimates for the gradient of velocity, magnetic field and

micro-rotational velocity. In order to get required estimates, multiply (4.1)1, (4.1)2,

(4.1)3 with −∆U , −∆W , −∆V , respectively, then integrating over R3, adding the

resulting three equations, we obtain

1

2

d

dt
(∥∇U∥2L2 + ∥∇W∥2L2 + ∥∇V∥2L2) + (∥∆U∥2L2 + ∥∆W∥2L2 + ∥∆V∥2L2)

+∥∇divW∥2L2 + 2∥∇W∥2L2

≤ (∆U ,U · ∇U)− (∆U ,V · ∇V) + (∆V ,V · ∇V)− (∆V ,V · ∇U)

+(∆W ,W · ∇W)− 2(∆W ,∇× U)

= β̂1 + β̂2 + β̂3 + β̂4 + β̂5 + β̂6. (4.22)

The terms in (4.22) are bounded by Tang et al. [73] in inequality (33). For detailed

prove see [73].

=⇒ ∥∇U∥2L2 + ∥∇W∥2L2 + ∥∇V∥2L2 <∞. (4.23)

This implies the fact

(U ,V ,W) ∈ L∞(0, T,H1(R3)) ∩ L2(0, T,H2(R3)).

Putting all estimates in (4.15), after simplifications, it yields

d

dt

(
∥∂3U∥2L2 + ∥∂3W∥2L2 + ∥∂3V∥2L2

)
+ 2
(
∥∇∂3U∥2L2 + ∥∇∂3W∥2L2 + ∥∇∂3V∥2L2

)
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+2∥div ∂3W∥2L2 + 2∥∂3W∥2L2

≤ C

(
1 + ∥∂3U∥2L2 + ∥∂3V∥2L2 + ∥∂3W∥2L2

)(∥∥∥∥∥
∥∥∥∥∥∥∥(∂3U , ∂3V)∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+∥∇U∥2L2 + ∥∇V∥2L2 + ∥∇W∥2L2

)
.

Invoking Gronwall’s inequality with (4.23), we get

sup
0≤t≤T

(
∥∂3U∥2L2 + ∥∂3W∥2L2 + ∥∂3V∥2L2

)
+ 2

∫ t

0

(
∥∇∂3U∥2L2 + ∥∇∂3W∥2L2 + ∥∇∂3V∥2L2

)
dτ

+2

∫ t

0

∥div ∂3W∥2L2dτ + 2

∫ t

0

∥∂3W∥2L2dτ

≤ C

(
1 + ∥∂3U0∥2L2 + ∥∂3V0∥2L2 + ∥∂3W0∥2L2

)(∥∥∥∥∥
∥∥∥∥∥∥∥(∂3U , ∂3V)∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+∥∇U∥2L2 + ∥∇V∥2L2 + ∥∇W∥2L2

)
sup

0≤t≤T

(
∥∂3U∥2L2 + ∥∂3W∥2L2 + ∥∂3V∥2L2

)
+ 2

∫ t

0

(
∥∇∂3U∥2L2 + ∥∇∂3W∥2L2 + ∥∇∂3V∥2L2

)
dτ

+2

∫ t

0

∥div ∂3W∥2L2dτ + 2

∫ t

0

∥∂3W∥2L2dτ ≤ C.

Which completes the desired proof.

As the structure of the systems (4.1) and (4.2) suggests that the velocity plays more

dominant role in the regularity of weak solutions than other unknowns. In view of these

observations, we pose another problem. Can we prove a blow-up criterion that is only

controlled by the one-directional derivative of velocity "∂3U"?. Thanks to the

distributional methods, we give positive answer to this question and prove this criteria

for the system (4.2). Because system (4.2) is also important for the theoretical and

mathematical purposes having wide range of applications in electro-chemical and

fluid-mechanical transport.
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4.3 An improved regularity result via velocity
Now, we present an improvement of our previous result.

Theorem 4.3.1 Assume that (U0, θ0, ϑ0) ∈ H1(R3) with ∇ · U0 = 0 in the sense of

distributions. The Leray-Hopf weak solution (U , θ, ϑ) to system (4.2) is regular on the

interval (0,T], if

∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

dt <∞, (4.24)

where 2 < l,m, n ≤ ∞ and 1− (1
l
+ 1

m
+ 1

n
) ≥ 0. Otherwise, if T = T ⋆ <∞ is the

maximal time for the existence of smooth solution then the solution blows up to create

finite time singularity that is

∫ T ⋆

0

∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

= ∞.

Result (4.24) is refinement of the result (4.10).

Result (4.24) is also true for the system (4.1) and refines the result (4.10).

4.3.1 Establishing estimates in anisotropic Lorentz space

The proof of Theorems 4.3.1 is based on distributional methods and setting up of a

priori estimates under the blow-up condition (4.24).

Proof of Theorem 4.3.1 As a first step we will find L2-estimates for U , θ, ϑ and ∇ψ.

Multiplying (4.2)3 with θ and (4.2)4 with ϑ, integrating over R3, using divergence free

condition (4.2)2 and (4.2)5, we obtain

1

2

d

dt
(∥θ∥2L2 + ∥ϑ∥2L2) + (∥∇θ∥2L2 + ∥∇ϑ∥2L2) +

∫
R3

(θ + ϑ)(θ − ϑ)2dx = 0. (4.25)

As masses of θ and ϑ are conserved, θ and ϑ are non-negative, we infer from (4.25) that

for all 0 ≤ t ≤ T

(∥θ∥2L2 + ∥ϑ∥2L2) + 2

∫ t

0

(∥∇θ∥2L2 + ∥∇ϑ∥2L2)dτ ≤ ∥θ0∥2L2 + ∥ϑ0∥2L2 . (4.26)
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Now, multiplying (4.2)1 with U , (4.2)3, (4.2)4 with ψ, integrating over R3, and using

(4.2)5, it gives
1

2

d

dt
∥U∥2L2 + ∥∇U∥2L2 −

∫
R3

(θ − ϑ)U · ∇ψdx = 0, (4.27)∫
R3

[∂θ
∂t
ψ +∇ · (θ∇ψ)ψ −∆θψ + (U · ∇)θψ

]
dx = 0, (4.28)∫

R3

[∂ϑ
∂t
ψ +∇ · (ϑ∇ψ)ψ −∆ϑψ + (U · ∇)ϑψ

]
dx = 0. (4.29)

Subtracting (4.29) from (4.28), using integration by parts and ∆ψ = θ − ϑ, we get

1

2

d

dt
∥∇ψ∥2L2 +

∫
R3

(θ + ϑ)|∇ψ|2dx+
∫
R3

|∆ψ|2dx+
∫
R3

(θ − ϑ)U · ∇ψdx = 0. (4.30)

Adding (4.27) and (4.30), it follows that

1

2

d

dt
(∥U∥2L2 + ∥∇ψ∥2L2) + ∥∇U∥2L2 + ∥∆ψ∥2L2 +

∫
R3

(θ + ϑ)|∇ψ|2dx = 0. (4.31)

Because of the non-negativity of θ and ϑ, we obtained the final bound

∥U∥2L2 + ∥∇ψ∥2L2 + 2

∫ t

0

∥∇U∥2L2 + ∥∆ψ∥2L2dτ ≤ C. (4.32)

Now, we will find H1-estimates for U , θ and ϑ. For required bounds multiply −∆U with

(4.2)1, integrating over R3, we get

1

2

d

dt
∥∇U∥2L2 + ∥∆U∥2L2 =

∫
R3

(U · ∇)U ·∆Udx−
∫
R3

∆ψ∇ψ ·∆Udx

= Q1 +Q2. (4.33)

For Q2, using Holder’s and Young’s inequalities, using ∆ψ = θ − ϑ, interpolation

inequality ∥∇f∥L4 ≤ ∥f∥
1
8

L4∥∆f∥
7
8

L4 , and combining (4.26), (4.32), we obtain

|Q2| ≤ ∥∆ψ∥L4∥∇ψ∥L4∥∆U∥L2

≤ 1

4
∥∆U∥2L2 + C∥∇ψ∥2L4∥(θ, ϑ)∥2L4

≤ 1

4
∥∆U∥2L2 + C∥∇ψ∥2L2∥(θ, ϑ)∥2L2 + C∥(∇θ,∇ϑ)∥2L2∥(θ, ϑ)∥2L2

≤ 1

4
∥∆U∥2L2 + C(∥∇θ∥2L2 + ∥∇ϑ∥2L2 + 1). (4.34)

For Q1

|Q1| ≤
∫
R3

∇U∇U∇Udx
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≤ C∥∇U∥3L3 ≤ C∥∇U∥
3
2

L3∥∇U∥
3
2

L6 (Interpolation inequality)

≤ C∥∇U∥
3
2

L2∥∇∂1U∥
1
2

L2∥∇∂2U∥
1
2

L2∥∇∂3U∥
1
2

L2 (Lemma 2.5., for α4 = 2)

≤ ∥∇U∥
3
2

L2∥∇2U∥L2∥∇∂3U∥
1
2

L2

≤ 1

4
∥∆U∥2L2 + C∥∇U∥3L2∥∇∂3U∥L2 . (Young’s inequality) (4.35)

Putting (4.34) and (4.35) into (4.33), and employing Gronwall’s inequality, it yields

sup
0≤t≤T

∥∇U∥2L2+2

∫ t

0

∥∆U∥2L2dτ ≤ (∥∇U0∥2L2+e) exp(C

∫ t

0

(∥∇∂3U∥2L2+∥∇U∥2L2+∥∇θ∥2L2

+∥∇ϑ∥2L2 + 1)dτ). (4.36)

=⇒ U ∈ L∞(0, T,H1(R3)) ∩ L2(0, T,H2(R3)).

To get similar results for θ and ϑ. Multiply −∆θ with (4.2)3 and −∆ϑ with (4.2)4, we

achieve

sup
0≤t≤T

(∥∇θ∥2L2 + ∥∇ϑ∥2L2) + 2

∫ t

0

(∥∆θ∥2L2 + ∥∆ϑ∥2L2)dτ ≤ C. (4.37)

For our desired results, differentiate (4.2)1 with respect to x3, then multiply by ∂3U and

integrating by parts to get

1

2

d

dt
∥∂3U∥2L2 + ∥∇∂3U∥2L2 = −

∫
R3

∂3(U · ∇U) · ∂3Udx+
∫
R3

∂3(∆ψ∇ψ)∂3Udx

= D1 +D2. (4.38)

Estimating D2 as (4.34), we obtain

|D2| ≤
∫
R3

∂3(∆ψ∇ψ)∂3Udx

≤ 1

4
∥∇∂3U∥2L2 + C∥(θ, ϑ)∥2L2∥(∇θ,∇ϑ)∥2L2 + C∥(θ, ϑ)∥2L2∥∇ψ∥2L2

≤ 1

4
∥∇∂3U∥2L2 + C(∥∇θ∥2L2 + ∥∇ϑ∥2L2 + 1). (4.39)

Similar to (4.16), D1 is estimated as

|D1| ≤ C(1+ ∥∂3U∥2L2)

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+ ∥∇U∥2L2

)
+ ∥∇∂3U∥2L2 . (4.40)

putting (4.39), (4.40) into (4.38)

1

2

d

dt
(1 + ∥∂3U∥2L2) + ∥∇∂3U∥2L2
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≤ C(1 + ∥∂3U∥2L2)

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+ ∥(∇U ,∇θ,∇ϑ)∥2L2 + 1

)
.

Applying Gronwall’s inequality together with (4.36) and (4.37) yields

(1+∥∂3U∥2L2)+2

∫ T

0

∥∇∂3U∥2L2dτ ≤ (1+∥∂3U0∥2L2) exp

(
C

∫ T

0

(∥∥∥∥∥
∥∥∥∥∥∥∥∂3U∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

1−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

+∥(∇U ,∇θ,∇ϑ)∥2L2 + 1

)
dτ.

sup
0≤t≤T

(1 + ∥∂3U∥2L2) + 2

∫ T

0

∥∇∂3U∥2L2dτ ≤ C. (4.41)

The bound (4.41) ensures the smoothness of weak solutions of system (4.2) on the

interval (0, T ]. Hence proved.
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Chapter 5

Regularity in anisotropic Lorentz

spaces
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5.1 Introduction

This chapter focuses on two new regularity criterion based on pressure and its gradient

to the Cauchy problem of the 3D magneto-micropolar system i.e., for the system (4.1)

in anisotropic Lorentz spaces.

Before presenting our main findings, first, we will go over the problem’s history.

Ignoring the micro-rotational effects in (4.1) models the magnetohydrodynamics flows.

The finite-time singularity problem for MHD flows has been extensively tackled by

different authors (see [74–80]) but it is still an important open problem. For the

magneto-hydrodynamics system Zhou [81] obtained the conditions

Ψ ∈ Ll,m, V ∈ L2l,2m, or ∥Ψ∥
L∞, 3

l
, ∥V∥L∞,3 , (5.1)

where
2

l
+

3

m
≤ 2,

3

2
< m ≤ ∞,

and

∇Ψ ∈ Ll,m, V ∈ L3l,3m, or ∥∇Ψ∥L∞,3 , ∥∇V∥L∞,3 , (5.2)

where
2

l
+

3

m
≤ 3, 1 < m ≤ ∞.

This important result in Lorentz space for micropolar fluid system was presented by

Yuan [82] as

∇Ψ ∈ Lm(0, T, Ll,∞) with
2

m
+

3

l
≤ 3, 1 < l ≤ ∞. (5.3)

Feng-Ping and Guang-Xia [83] presented the following criteria

∇Ψ ∈ Lm(0, T, Ll,∞) with
2

m
+

3

l
≤ 3, m ≥ 2, l > 1, (5.4)

∇Ψ ∈ L
2
3 (0, T, BMO). (5.5)

Recently, Li and Niu [84] presented the regularity criteria in Lorentz spaces

Ψ ∈ Lm,∞(0, T, Ll,∞) with
2

m
+

3

l
= 2, m ≥ 2,

3

2
< l ≤ ∞. (5.6)

Motivated by the above results specifically in Lebesgue and Lorentz spaces we establish

new conditions in generalize Lorentz spaces that is in anisotropic Lorentz spaces.
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5.2 Pressure regularity of weak solutions
Theorem 5.2.1. Suppose (U0,V0,W0) ∈ H1(R3) with ∇ · U0 = ∇ · V0 = 0. Suppose

that (U ,V ,W) is the weak solution of the system (4.1). If

∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

dt <∞, (5.7)

then the solution remains its smoothness upto T. Where 2 ≤ l,m, n ≤ ∞ and

1-(1
l
+ 1

m
+ 1

n
)≥ 0.

Proof. For finding L4-estimates, take inner product of (4.1)1 with |U|2U , (4.1)2 with

|W|2W , and (4.1)3 with |V|2V . After adding all the equations, we finally get that

1

4

d

dt
(∥U∥4L4 + ∥W∥4L4 + ∥V∥4L4) + ∥|∇U||U|∥2L2 +

1

2
∥∇|U|2∥2L2

+∥|∇W||W|∥2L2 +
1

2
∥∇|W|2∥2L2 + ∥div W∥2L2 + 2∥W∥4L4 + ∥|∇V||V|∥2L2

+2∥∇|V||V|∥2L2

≤ 2

∫
R3

|Ψ||U|2|∇U|dx+ 3

∫
R3

|W||U|2|∇U|dx+ 3

∫
R3

|U||W|2|∇W|dx

−
∫
R3

|V||∇(|U|2U)||V|dx+
∫
R3

|V||∇(|V|2V)|U||dx

= L1 + L2 + L3 + L4 + L5. (5.8)

Now we estimate L1

2

∫
R3

|Ψ||U|2|∇U|dx ≤ 1

4
∥∇|U|2∥2L2 + C

∫
R3

|Ψ||Ψ||U|2dx = P1 + P2.

For P2, we obtain

P2 = C

∫
R3

|Ψ||Ψ||U|2dx ≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

L
2l
l−2

,2

x1

∥∥∥∥
L

2m
m−2 ,2

x2

∥∥∥∥∥
L

2n
n−2 ,2

x3

∥|U|2∥L2

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,
x2

∥∥∥∥∥
Ln,∞
x3

∥Ψ∥1−( 1
l
+ 1

m
+ 1

n
)

L2 ∥∂1Ψ∥
1
l

L2∥∂2Ψ∥
1
m

L2L2∥∂3Ψ∥
1
n

L2∥U∥2L4

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥Ψ∥1−( 1
l
+ 1

m
+ 1

n
)

L2 ∥∇Ψ∥
1
l
+ 1

m
+ 1

n

L2 ∥U∥2L4

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
Ln,∞
x3

∥|U|∇U∥
1
l
+ 1

m
+ 1

n

L2 ∥U∥4−( 2
l
+ 2

m
+ 2

n
)

L4
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P2 ≤
1

4
∥|U|∇U∥2L2 + C

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥U∥4L4 .

The final estimates for L1 are

L1 ≤
1

4
∥∇|U|2∥2L2 +

1

4
∥|U|∇U∥2L2 + C

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥U∥4L4 . (5.9)

Assessing L4-estimates for L2 and L3

L2 ≤
1

2
∥|U||∇U|∥2L2 + C

(
∥U∥4L4 + ∥W∥4L4

)
. (5.10)

L3 ≤
1

2
∥|W||∇W|∥2L2 + C

(
∥U∥4L4 + ∥W∥4L4

)
. (5.11)

Now, assessing L2-estimates for L4 and L5

L4 ≤ C∥|V|2|U|∥L2∥∇|U|2∥L2 ≤ C∥|V|2|U|∥2L2 +
1

4
∥∇|U|2∥2L2

≤ C∥|V|2∥2L6∥|U|∥2L3 +
1

4
∥∇|U|2∥2L2 ≤ C∥∇|V|2∥2L2∥∇U|∥L2∥|U|∥L2 +

1

4
∥∇|U|2∥2L2

≤ C∥|V|∇|V|∥2L2 +
1

4
∥∇|U|2∥2L2 (5.12)

L5 ≤ C∥|V2|U|∥2L2 +
1

8
∥∇|V|2∥L2

≤ C∥|V|∇|V|∥2L2 . (5.13)

Putting all the estimates in (5.8) results as

1

4

d

dt
(∥U∥4L4 + ∥W∥4L4 + ∥V∥4L4) + ∥|∇U||U|∥2L2 +

1

2
∥∇|U|2∥2L2

+∥|∇W||W|∥2L2 +
1

2
∥∇|W|2∥2L2 + ∥div W∥2L2 + 2∥W∥4L4 + ∥|∇V||V|∥2L2

+2∥∇|V||V|∥2L2

≤ 1

4
∥∇|U|2∥2L2 +

1

4
∥|U|∇U∥2L2 + C

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥U∥4L4 +
1

2
∥|U||∇U|∥2L2

+
1

2
∥|W||∇W|∥2L2 + C

(
∥U∥4L4 + ∥W∥4L4

)
+ C∥|V|∇|V|∥2L2 +

1

4
∥∇|U|2∥2L2

+C∥|V|∇|V|∥2L2 . (5.14)

Simplification yields

1

4

d

dt
(∥U∥4L4 + ∥W∥4L4 + ∥V∥4L4) + ∥|∇U||U|∥2L2 +

1

2
∥∇|U|2∥2L2
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+∥|∇W||W|∥2L2 +
1

2
∥∇|W|2∥2L2 + ∥div W∥2L2 + 2∥W∥4L4 + ∥|∇V||V|∥2L2

+2∥∇|V||V|∥2L2

≤ C
(
1 +

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

)(
∥U∥4L4+∥W∥4L4+∥V∥4L4

)
. (5.15)

Gronwall’s Lemma results in

sup
0≤t≤T

(∥U∥4L4+∥W∥4L4+∥V∥4L4)

≤ C exp

∫ t

0

{
(
1 +

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

)
}
(
∥U0∥4L4+∥W0∥4L4+∥V0∥4L4

)
=⇒ sup

0≤t≤T

(
∥U∥4L4+∥W∥4L4+∥V∥4L4

)
<∞. (5.16)

Which proves Theorem 5.2.1. as desired.

5.3 Gradient pressure regularity of weak solutions

Theorem 5.3.1 Let (U0,V0,W0) ∈ H1(R3) with ∇ · U0 = ∇ · V0 = 0 in the

distributional sense. Suppose (U ,V ,W) be the weak solution to system (4.1). If

∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥∇Ψ

∥∥∥
Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

3−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

dt <∞, (5.17)

then the solution remains its smoothness upto T. Where 1 ≤ l,m, n ≤ ∞ and

1-( 1
2l

+ 1
2m

+ 1
2n

) ≥ 0.

Proof. We will prove Theorem 5.3.1 by finding a priori estimates, in that regards, we

continue our calculations from equation (5.8), and obtain new bounds for gradient

pressure.

Estimating L1 by employing Holder’s and Young’s inequality.

L1 = 2

∫
R3

|Ψ||U|2|∇U|dx ≤ C

∫
R3

|∇Ψ||U|3dx ≤ C

∫
R3

|∇Ψ|
1
2 |∇Ψ|

1
2 |U|2|U|dx

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥|∇Ψ|

1
2

∥∥∥
L2l,∞
x1

∥∥∥∥
L2m,∞
x2

∥∥∥∥∥
L2n,∞
x3

∥∥∥|∇Ψ|
1
2

∥∥∥
L4

∥∥∥∥∥
∥∥∥∥∥∥∥|U|2∥∥∥

L
2l
l−1

,2

x1

∥∥∥∥
L

2m
m−1 ,2

x2

∥∥∥∥∥
L

2n
n−1 ,2

x3

∥U∥L4
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≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∇Ψ

∥∥∥
Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
1
2

Ln,∞
x3

∥∇|U|2∥
1
2l
+ 1

2m
+ 1

2n

L2 ∥|U||∇U|∥
1
2

L2∥U∥
3−( 1

l
+ 1

m
+ 1

n
)

L4 .

≤ C

∥∥∥∥∥
∥∥∥∥∥∥∥∇Ψ

∥∥∥
Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

3−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥U∥4L4 +
1

4
(∥∇|U|2∥2L2 + ∥|U||∇U|∥2L2).(5.18)

For L2

Γ2 ≤
1

2
∥|U||∇U|∥2L2 + C

(
∥U∥4L4 + ∥W∥4L4

)
. (5.19)

For L3

Γ3 ≤
1

2
∥|W||∇W|2∥2L2 + C

(
∥U∥4L4 + ∥W∥4L4

)
. (5.20)

Γ4 and Γ5 are estimated same as L4 and L5.

Putting all the estimates in (5.8) results in

1

4

d

dt
(∥U∥4L4 + ∥W∥4L4 + ∥V∥4L4) + ∥|∇U||U|∥2L2 +

1

2
∥∇|U|2∥2L2

+∥|∇W||W|∥2L2 +
1

2
∥∇|W|2∥2L2 + ∥div W∥2L2 + 2∥W∥4L4 + ∥|∇V||V|∥2L2

+2∥∇|V||V|∥2L2

≤ 1

4
∥∇|U|2∥2L2 +

1

4
∥|U|∇U∥2L2 + C

∥∥∥∥∥
∥∥∥∥∥∥∥∇Ψ

∥∥∥
Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

3−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

∥U∥4L4 +
1

2
∥|U||∇U|∥2L2

+
1

2
∥|W||∇W|∥2L2 + C

(
∥U∥4L4 + ∥W∥4L4

)
+ C∥|V|∇|V|∥2L2 +

1

4
∥∇|U|2∥2L2

+C∥|V|∇|V|∥2L2 . (5.21)

Simplification yields

1

4

d

dt
(∥U∥4L4 + ∥W∥4L4 + ∥V∥4L4) + ∥|∇U||U|∥2L2 +

1

2
∥∇|U|2∥2L2

+∥|∇W||W|∥2L2 +
1

2
∥∇|W|2∥2L2 + ∥div W∥2L2 + 2∥W∥4L4 + ∥|∇V||V|∥2L2

+2∥∇|V||V|∥2L2

≤ C
(
1 +

∥∥∥∥∥
∥∥∥∥∥∥∥∇Ψ

∥∥∥
Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

3−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

)(
∥U∥4L4+∥W∥4L4+∥V∥4L4

)
. (5.22)

By Gronwall’s inequality

sup
0≤t≤T

(∥U∥4L4+∥W∥4L4+∥V∥4L4) ≤ exp
{∫ T

0

C

(
1 +

∥∥∥∥∥
∥∥∥∥∥∥∥∇Ψ

∥∥∥
Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

3−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

)
dτ
}

(5.23)
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sup
0≤t≤T

(∥U∥4L4+∥W∥4L4+∥V∥4L4) <∞. (5.24)

Hence proved.

5.4 Logarithmic improvement

Theorem 5.4.1 Considering same assumptions as for Theorem 5.2.1 and Theorem

5.3.1 The sufficient conditions

∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

1 + ln(1+∥Ψ∥2L2)
dt <∞, (5.25)

and

∫ T

0

∥∥∥∥∥
∥∥∥∥∥∥∥∇Ψ

∥∥∥
Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

3−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

1 + ln(1+∥Ψ∥2L2)
dt <∞, (5.26)

are the logarithmic imporvements of the conditions (5.7) and (5.17).

Proof. we can prove above condition by Continuing from inequality (5.15)

As 1 + ln(1+∥Ψ∥2L2) ≤ 1 + ln(Π(t))

Where Π(t) = e+∥U∥4L4+∥W∥4L4+∥V∥4L4

d

dt
Π(t) ≤ C

(1 +

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

1 + ln(e+∥Ψ∥2L2)

)(
∥U∥4L4+∥W∥4L4+∥V∥4L4

)
(1+ln(e+∥Ψ∥2L2)

d

dt
Π(t) ≤ C

(1 +

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

1 + ln(e+∥Ψ∥2L2)

)
(Π(t))(1 + ln(Π(t))

=⇒ d

dt
(1 + lnΠ(t)) ≤ C

(1 +

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

1 + ln(1+∥Ψ∥2L2)

)
(1 + lnΠ(t)).

Gronwall’s Lemma results in

sup
0≤t≤T

lnΠ(t) ≤ (1 + lnΠ(0)) exp
{
C

(1 +

∥∥∥∥∥
∥∥∥∥∥∥∥Ψ∥∥∥

Ll,∞
x1

∥∥∥∥
Lm,∞
x2

∥∥∥∥∥
2

2−( 1
l
+ 1

m+ 1
n )

Ln,∞
x3

1 + ln(1+∥Ψ∥2L2)

)
dτ
}

(5.27)
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=⇒ sup
0≤t≤T

(
∥U∥4L4+∥W∥4L4+∥V∥4L4

)
≤ C, (5.28)

which proves our theorem on interval (0, T ].

Following on the same steps as for (5.25), condition (5.26) can be proved. These bounds

ensure the regularity of weak solutions on the interval (0, T ].

47



Chapter 6

Double logarithmic pressure regularity
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6.1 Introduction

We propose and prove two-logarithmic regularity conditions for a variety of fluid

dynamics models on an unbounded Euclidean 3D domain. These integrable constraints

guarantee the smoothness of weak solutions. We specifically obtain new double-log

regularity results for the pressure terms of the magneto-micropolar system and the

Navier-Stokes-Nernst-Planck system in the time interval of regular points [0, T ].

To avoid notational verbosity, we rewrite systems (4.1) and (4.2) in the new symbols

that also match our online published copy on ResearchGate with DOI:

10.13140/RG.2.2.18887.37284.

We prove a new result for the following magneto-micropolar system

∂ν
∂t

+ ν · ∇ν −△ν +∇Ψ−∇×m− β · ∇β = 0,

∂m
∂t

−△m+ ν · ∇m−∇× ν + 2m−∇div m = 0,

∂β
∂t

−△β + ν · ∇β − β · ∇ν = 0,

∇ · ν = 0, ∇ · β = 0,

(ν,m, β)|t=0 = (ν0,m0, β0),

(6.1)

where ν(x, t), β(x, t), m(x, t) and Ψ(x, t) represent the velocity field, magnetic field,

micro-rotational velocity, and pressure, in that order, for the system (6.1).

The second system we analyze is the following Navier-Stokes-Nernst-Planck system

∂ϑ
∂t

+ ϑ · ∇ϑ−△ϑ+∇Ψ−∆ψ∇ψ = 0,

∇ · ϑ = 0,

∂q+

∂t
+ ϑ · ∇q+ −∇ · (∇q+ + q+∇ψ) = 0,

∂q−

∂t
+ ϑ · ∇q− −∇ · (∇q− − q−∇ψ) = 0,

∆ψ = q− − q+, in R3 × R+,

(ϑ, q+, q−)|t=0 = (ϑ0, q
+
0 , q

−
0 ),

(6.2)

where ϑ(x, t) is a velocity field vector, Ψ(x, t), and ψ are scalars describing pressure and

electrostatic potential of the flow with q−(x, t) and q+(x, t) are the densities of the

negative and positive charged particles.
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Our problem to refine regularity of weak solutions immensely effect physicality of

solutions. Similar to other sub-tri-dimensional fluid models, the regularity problem in

terms of pressure is being studied by Hua and Bao-quan [85] for (6.1) and presented

criteria: ∫ T

0

∥Ψ∥nLldt <∞, with
2

n
+

3

l
≤ 2,

3

2
< l ≤ ∞. (6.3)

Above criteria was improved by Li and Chen [83] given as:

∫ T

0

∥Ψ∥Ḃ0
∞,∞

dt <∞. (6.4)

Recently Tang et al. [73] proved an improved regularity criteria given as:∫ T

0

∥Ψ∥2
Ḃ−1

∞,∞

1 + ln(e+ ∥Ψ∥Ḃ−1
∞,∞

)
dt <∞. (6.5)

Our new regularity criteria for (6.1)) in the critical Besov space is better and improve

the results (6.3), (6.4) and (6.5) in terms of pressure as proved in Theorem 6.2.1.

For the system (6.2), Zhao [86] presented the regularity criteria in terms of Ω = ∇× U

given as:

∫ T

0

∥Ω∥
2

2−κ1

Ḃ
−κ1∞,∞

1 + ln(e+ ∥Ω∥
Ḃ

−κ1∞,∞
)
dt <∞, with 0 < κ1 < 2.

Recently, Zhao [87] proved an improved regularity conditions for (6.2) in terms of

pressure given as: ∫ T

0

∥Ψ∥2L3

1 + ln(e+ ∥Ψ∥L3)
dt <∞, (6.6)

∫ T

0

∥Ψ∥Ḃ0
∞,∞√

1 + ln(e+ ∥Ψ∥Ḃ0
∞,∞

)
dt <∞, (6.7)

∫ T

0

∥Ψ∥2
Ḃ−1

∞,∞

1 + ln(e+ ∥Ψ∥Ḃ−1
∞,∞

)
dt <∞, (6.8)

∫ T

0

∥∇Ψ∥
2
3

Ḃ0
∞,∞

(1 + ln(e+ ∥∇Ψ∥Ḃ0
∞,∞

))
2
3

dt <∞.

The above analysis clear motivates us to present Theorem 6.3.1 for (6.2).
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6.2 Regularity criteria for the magneto-micropolar

system

In this section, by employing energy methods we will proof our main result.

Theorem 6.2.1. Let (ν0,m0, β0) ∈ H1(R3) with ∇ · ν0 = ∇ · β0 = 0 in the sense of

distribution. Let T > 0 and (ν,m, β) is a weak solution of system (6.1) on the interval

(0, T ]. If the pressure Ψ satisfies the following condition∫ T

0

∥Ψ∥2
Ḃ−1

∞,∞(
e+ ln

(
e+ ∥Ψ∥Ḃ−1

∞,∞

)
ln
(
e+ ln

(
e+ ∥Ψ∥Ḃ−1

∞,∞

))dt <∞, (6.9)

then (ν,m, β) is a regular solution in R3 × (0, T ].

Proof . In order to find L4 estimates, multiply (6.1)1 with |ν|2ν, integrating by parts,

using divergence free condition and its relations for such evaluations

1

4

d

dt

∫
R3

|ν|4dx+
∫
R3

|∇ν|2|ν|2dx+ 1

2

∫
R3

|∇|ν|2|2dx

≤
∫
R3

|Ψ||ν|2|∇ν|dx+
∫
R3

|m||ν|2|∇ν|dx−
∫
R3

|β||∇(|ν|2ν)||β|dx. (6.10)

Similarly, evaluating L4 estimates for (6.1)2

1

4

d

dt

∫
R3

|m|4dx+
∫
R3

|∇m|2|m|2dx+ 1

2

∫
R3

|∇|m|2|2dx+
∫
R3

|div m|2

+2

∫
R3

|m|4

≤ 3

∫
R3

|ν||m|2|∇m|dx. (6.11)

In case of (6.1)3

1

4

d

dt

∫
R3

|β|4dx+
∫
R3

|∇β|2|β|2dx+ 2

∫
R3

|∇|β||β||2dx

≤
∫
R3

|β||∇(|β|2β)|ν||dx. (6.12)

Adding (6.10), (6.11) and (6.12) implies

1

4

d

dt
(∥ν∥4L4 + ∥m∥4L4 + ∥β∥4L4) + ∥|∇ν||ν|∥2L2 +

1

2
∥∇|ν|2∥2L2
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+∥|∇m||m|∥2L2 +
1

2
∥∇|m|2∥2L2 + ∥div m∥2L2 + 2∥m∥4L4 + ∥|∇β||β|∥2L2

+2∥∇|β||β|∥2L2

≤ 2

∫
R3

|Ψ||ν|2|∇ν|dx+
∫
R3

|m||ν|2|∇ν|dx+
∫
R3

|ν||m|2|∇m|dx

−
∫
R3

|β||∇(|ν|2ν)||β|dx+
∫
R3

|β||∇(|β|2β)|ν||dx

= N1 +N2 +N3 +N4 +N5. (6.13)

Estimating N1 by Holder’s and Young’s inequality

N1 ≤
1

4
∥∇|ν|2∥2L2 + C

∫
R3

|Ψ|2|ν|2dx.

By Calderon Zygmund inequality

C

∫
R3

|Ψ|2|ν|2dx ≤ C∥ν∥2L4∥Ψ∥2L4 ≤ C∥∇Ψ∥L2∥Ψ∥Ḃ−1
∞,∞

∥ν∥2L4

≤ C∥|ν||∇ν|∥L2∥Ψ∥Ḃ−1
∞,∞

∥ν∥2L4 .

By Young’s inequality

≤ 1

2
(∥|ν||∇ν|∥2L2) + C∥Ψ∥2

Ḃ−1
∞,∞

∥ν∥4L4 ≤ ∥|ν||∇ν|∥2L2 + C∥Ψ∥2
Ḃ−1

∞,∞
∥ν∥4L4 .

Finally, getting estimate

N1 ≤ ∥|ν||∇ν|∥2L2 + C(1 + ∥Ψ∥2
Ḃ−1

∞,∞
)(∥ν∥4L4 + ∥m∥4L4 + ∥β∥4L4).

Now estimating N2, N3,

N2 ≤
1

2
∥|∇ν||ν|∥2L2 + C

(
∥ν∥4L4 + ∥m∥4L4 + ∥β∥4L4

)
.

N3 ≤
1

2
∥|∇m||m|∥2L2 + C

(
∥ν∥4L4 + ∥m∥4L4 + ∥β∥4L4

)
.

Estimating N4 and N5 by applying Young’s inequaltiy, Sobolev embedding theorem and

Gagliardo-Nirenberg inequality

N4 ≤ C∥|ν||β|2∥L2∥∇|ν|2∥L2 ≤ C∥|ν||β|2∥2L2 +
1

2
∥∇|ν|2∥2L2

≤ C∥|β|2∥2L6∥|ν|∥2L3 +
1

4
∥∇|ν|2∥2L2 ≤ C∥|∇β|2∥2L2∥|ν|∥L2∥|∇ν|∥L2 +

1

4
∥∇|ν|2∥2L2

≤ C∥|β|∇|β|∥2L2 +
1

4
∥∇|ν|2∥2L2 .
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N5 ≤ C∥|ν||β|2∥2L2 +
1

8
∥∇|β|2∥L2 ≤ C∥|β|∇|β|∥2L2 .

Adding all estimates and putting in (6.13), by Gronwalls’s inequality

∥ν∥4L4 + ∥m∥4L4 + ∥β∥4L4 ≤ exp
(
C

∫ t

0

(1 + ∥Ψ∥2
Ḃ−1

∞,∞
)dt
)
(∥ν0∥4L4 + ∥m0∥4L4 + ∥β0∥4L4).

Proceeding by multiplying (6.1)1 with (−∆ν), (6.1)2 with (−∆m) and (6.1)3 with

(−∆β) in L2(R3). Adding all the resulting equations, using integration by parts and

Gagliardo-Nirenberg inequalities

∥∇ν∥L4 ≤ C∥ν∥
1
5

L4∥∆ν∥
4
5

L2 and ∥∇ν∥L3 ≤ C∥ν∥
2
5

L4∥∆ν∥
3
5

L2 .

We get

1

2

d

dt

(
∥∇ν∥2L2 + ∥∇m∥2L2 + ∥∇β∥2L2

)
+ ∥∆ν∥2L2 + ∥∆m∥2L2 + ∥∆β∥2L2

+∥∇div m∥2L2 + 2∥∇m∥2L2

=

∫
R3

(ν · ∇)ν ·∆νdx+
∫
R3

(ν · ∇)m ·∆mdx+
∫
R3

(β · ∇)β ·∆νdx−
∫
R3

(∇×m)∆νdx

−
∫
R3

(∇× ν)∆mdx+

∫
R3

(ν · ∇β)∆βdx−
∫
R3

(β · ∇ν)∆βdx

≤ ∥ν∥L4∥∇ν∥L4∥∆ν∥L2 + ∥ν∥L4∥∇m∥L4∥∆m∥L2 + ∥∇ν∥L3∥∇β∥2L3 + ∥∇m∥L2∥∆ν∥L2

+∥∇ν∥L2∥∆m∥L2 + ∥∇ν∥L3∥∇β∥2L3 + ∥∇ν∥L3∥∇β∥2L3

≤ C∥ν∥
6
5

L4∥∆ν∥
9
5

L2 + ∥m∥
1
2

L2∥∆m∥
1
2

L2∥∆ν∥L2 + ∥ν∥L4∥m∥
1
5

L4∥∆m∥
9
5

L2+

+∥ν∥
1
2

L2∥∆ν∥
1
2

L2∥∆m∥L2 + 3∥ν∥
2
5

L4∥∆m∥
3
5

L2∥β∥
4
5

L4∥∆β∥
6
5

L2

≤ C∥ν∥12L4 + C∥m∥2L2 + C(∥ν∥12L4 + ∥m∥12L4) +
1

2
(∥∆ν∥2L2 + ∥∆m∥2L2) + C∥ν∥2L2

+C(∥ν∥12L4 + ∥β∥2L2) + C(∥∆ν∥2L2 + ∥∆β∥2L2)

≤ C
(
1 + ∥ν∥12L4 + ∥β∥12L4 + ∥m∥12L4

)
+

1

2

(
∥∆ν∥2L2 + ∥∆β∥2L2 + ∥∆m∥2L2

)
d

dt

(
∥∇ν∥2L2+∥∇m∥2L2+∥∇β∥2L2

)
+∥∆ν∥2L2+∥∆m∥2L2+∥∆β∥2L2+∥∇div m∥2L2+2∥∇m∥2L2

≤ ∥∇ν∥2L2 + ∥∇β∥2L2 + ∥∇m∥2L2 + C
(
1 + ∥ν∥12L4 + ∥β∥12L4 + ∥m∥12L4

)
(
∥∇ν∥2L2+∥∇m∥2L2+∥∇β∥2L2

)
+

∫ t

0

(
∥∆ν∥2L2+∥∆m∥2L2+∥∆β∥2L2+∥∇divm∥2L2+2∥∇m∥2L2

)
dt

≤ ∥∇ν0∥2L2 + ∥∇β0∥2L2 + ∥∇m0∥2L2 + C

∫ t

0

(
1 + ∥ν∥12L4 + ∥β∥12L4 + ∥m∥12L4

)
dt.
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By Ḣ1(R3) ⊂ L6(R3), we achieve

e+ ∥Ψ(·, t)∥L3 ≤ e+ C∥ν∥2L6 ≤ e+ C(∥∇ν∥2L2 + ∥∇β∥2L2 + ∥∇m∥2L2)

≤ e+C
(
∥∇ν0∥2L2+∥∇β0∥2L2+∥∇m0∥2L2

)
+C

∫ t

0

(
1+∥ν(·, t)∥12L4+∥β(·, t)∥12L4+∥m(·, t)∥12L4

)
dt

≤ C
(
e+∥∇ν0∥2L2+∥∇β0∥2L2+∥∇m0∥2L2

)
(e+t) sup

0≤t≤t

(
1+∥ν(·, t)∥12L4+∥β(·, t)∥12L4+∥m(·, t)∥12L4

)
≤ C0(e+ t) exp

(
C

∫ t

0

(1 + ∥Ψ∥2 ˙
B−1

∞,∞
)dt
)
.

Where C0 represents constants, Now using L3(R3) ⊂ Ḃ−1
∞,∞(R3)

e+ ∥Ψ∥Ḃ−1
∞,∞

≤ C(e+ t) exp
(
C

∫ t

0

(1 + ∥Ψ∥2
Ḃ−1

∞,∞
)dt
)
.

Now, applying ln on both sides

ln
(
e+ ∥Ψ∥Ḃ−1

∞,∞

)
≤ ln(C(e+ t)) +

(
C

∫ t

0

(1 + ∥Ψ∥2
Ḃ−1

∞,∞
)dt
)
. (6.14)

Now, we let

Λ(t) = ln(e+ ∥Ψ∥Ḃ−1
∞,∞

).

Θ(t) = ln(C(e+ t)) +
(
C
∫ t

0
(1 + ∥Ψ∥2

Ḃ−1
∞,∞

)dt
)
.

Inequality (6.14) implies

0< Λ(t) ≤ Θ(t).

Now we get

(e+ Λ(t)) ln(e+ Λ(t)) ≤ (e+Θ(t) ln(e+Θ(t)).
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Now, we have

d

dt
ln(e+Θ(t)) =

1

(e+Θ(t))

( 1

e+ t
+ C(1 + ∥Ψ∥2

Ḃ−1
∞,∞

)
)

≤ 1

e2
+ C

1 + ∥Ψ∥2
Ḃ−1

∞,∞

e+Θ(t)

=
1

e2
+ C

1 + ∥Ψ∥2
Ḃ−1

∞.∞

e+Θ(t) ln(e+Θ(t))
ln(e+Θ(t))

=
1

e2
+ C

1 + ∥Ψ∥2
Ḃ−1

∞,∞

(e+ Λ(t)) ln(e+ Λ(t))
ln(e+Θ(t)).

Applying Gronwall’s inequality

ln(e+Θ(t)) ≤ ln(e+Θ(0)) exp
(T
e2

+ C

∫ T

0

1 + ∥Ψ∥2
Ḃ−1

∞,∞

(e+ Λ(t)) ln(e+ Λ(t))
dt
)
. (6.15)

Resulting as

(e+Θ(t)) ≤ (e+Θ(0))
exp

(
T
e2

+C
∫ T
0

1+∥Ψ∥2
Ḃ−1
∞,∞

(e+Λ(t)) ln(e+Λ(t))
dt

)
.

These bounds proof our criteria. □

6.3 Regularity criteria for the

Navier-Stokes-Nernst-Planck system

Theorem 6.3.1 Suppose that (ϑ0, q
−
0 , q

+
0 ) ∈ H1(R3) ∩H2(R3) with ∇ · ϑ0 = 0. Let

T > 0 and (ϑ, q−, q+), a weak solution to system (6.2) satisfies the condition (6.9) then

it is a regular in R3 × (0, T ].

Proof. To find L4 estimates, multiply (6.2)1 with |ϑ|2ϑ, integrating by parts, using

divergence free condition and its relations for such evaluations

1

4

d

dt

∫
R3

|ϑ|4dx+
∫
R3

|∇ϑ|2|ϑ|2dx+ 1

2

∫
R3

|∇|ϑ|2|2dx

≤ −
∫
R3

∇Ψ · ϑ|ϑ|2dx+
∫
R3

∆Ψ∇Ψ · ϑ|ϑ|2dx

=M1 +M2. (6.16)

Now, we will estimate M1

M1 ≤ C

∫
R3

Ψ|ϑ|2 · |∇ϑ|dx
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M1 ≤ C∥Ψ∥L4∥ϑ∥L4∥|ϑ||∇ϑ|∥L2

M1 ≤
1

4
∥|ϑ||∇ϑ|∥2L2 + C∥Ψ∥2L4∥ϑ∥2L4

M1 ≤
1

4
∥|ϑ||∇ϑ|∥2L2 + C∥∇Ψ∥L2∥Ψ∥Ḃ−1

∞,∞
∥ϑ∥2L4

≤ 1

4
∥|ϑ||∇ϑ|∥2L2 + C∥Ψ∥Ḃ−1

∞,∞
(∥|ϑ||∇ϑ|∥2L2 + ∥(∇q−,∇q+)∥

1
2

L2)∥ϑ∥2L4

≤ 1

4
∥|ϑ||∇ϑ|∥2L2 + C(1 + ∥Ψ∥2

Ḃ−1
∞,∞

+ ∥(∇q−,∇q+)∥2L2)(1 + ∥ϑ∥4L4).

Now, estimating M2 we will get

M2 ≤
∫
R3

(q− − q+)∇Ψ · ϑ|ϑ|2dx

≤ ∥(q−, q+)∥L3∥∇Ψ∥L6∥ϑ|ϑ|2∥L2

≤ C∥(q−, q+)∥
3
2

L3∥(∇q−,∇q+)∥
1
2

L2∥ϑ|2∥
3
2

L2

≤ C∥(∇q−,∇q+)∥
1
2

L2∥ϑ|2∥
3
4

L2∥∇|ϑ|2∥
3
4

L2

≤ 1

4
∥∇|ϑ|2∥2L2 + C∥(∇q−,∇q+)∥

4
5

L2∥ϑ∥
12
5

L4

≤ 1

4
∥∇|ϑ|2∥2L2 + C(1 + ∥(∇q−,∇q+)∥2L2)(1 + ∥ϑ∥4L4).

Now, combining both estimates and putting in (6.16), we are down to

d

dt
∥ϑ∥4L4 ≤ C(1 + ∥(∇q−,∇q+)∥2L2 + ∥Ψ∥2

Ḃ−1
∞,∞

)(1 + ∥ϑ∥4L4).

Proceeding by multiplying (6.2)1 with (−∆ϑ) in L2(R3). Adding all the resulting

equations, we are down to

1

2

d

dt

∫
R3

|∇ϑ|2dx+
∫
R3

|∆ϑ|2dx

=

∫
R3

(ϑ · ∇)ϑ ·∆−
∫
R3

∆Ψ∇Ψ ·∆

= O1 +O2. (6.17)

Now, estimating O1

|O1| ≤ ∥ϑ∥L4∥∇ϑ∥L4∥∆ϑ∥L2

≤ C∥ϑ∥
6
5

L4∥∆ϑ∥
9
5

L2

≤ C∥ϑ∥12L4 + ϵ∥∆ϑ∥2L2 .
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For O2

|O2| ≤
∫
R3

∆Ψ∇Ψ ·∆.

Using Holder’s, Young’s and interpolation inequality

≤ C(1 + ∥(∇q−,∇q+)∥2L2) + ϵ∥∆ϑ∥2L2 .

Adding both estimates and putting in (6.17), and applying Gronwall’s inequality

∥∇ϑ∥2L2 +

∫ T

0

∥∆ϑ∥2L2 ≤ ∥∇ϑ0∥2L2 + C

∫ T

0

(∥ϑ∥12L4 + ∥(∇q−,∇q+)∥2L2 + 1)dt.

Which implies

e+ ∥Ψ(·, t)∥L3 ≤ e+ C∥ϑ∥2L6 ≤ e+ C∥∇ϑ∥2L2

≤ e+ C∥∇ϑ0∥2L2 + C

∫ t

0

(∥ϑ∥12L4 + ∥(∇q−,∇q+)∥2L2 + 1)dt

≤ e+ C∥∇ϑ0∥2L2 + C(e+ t)

(
sup
0≤t≤t

∥ϑ∥12L4 +

∫ t

0

∥(∇q−,∇q+)∥2L2 + 1)dt

)
≤ C0(e+ t) exp

(
C

∫ t

0

(1 + ∥Ψ∥2 ˙
B−1

∞,∞
+ ∥(∇q−,∇q+)∥2L2

)
dt.

Where C0 represents constants, Now using L3(R3) ⊂ Ḃ−1
∞,∞(R3)

e+∥Ψ∥Ḃ−1
∞,∞

≤ e+∥Ψ(·, t)∥L3 ≤ C(e+ t) exp
(
C

∫ t

0

(1+∥Ψ∥2
Ḃ−1

∞,∞
+∥(∇q−,∇q+)∥2L2)dt

)
.

Now, applying ln on both sides

ln
(
e+ ∥Ψ∥Ḃ−1

∞,∞

)
≤ ln(C(e+ t)) +

(
C

∫ t

0

(1 + ∥Ψ∥2
Ḃ−1

∞,∞
+ ∥(∇q−,∇q+)∥2L2)dt

)
.

Let

Λ(t) = ln(e+ ∥Ψ∥Ḃ−1
∞,∞

). Following on the same steps as for (6.15), we get the final

estimate

(e+Θ(t)) ≤ (e+Θ(0))
exp

(
T
e2

+C
∫ T
0

1+∥Ψ∥2
Ḃ−1
∞,∞

+∥(∇q−,∇q+)∥2
L2

(e+Λ(t)) ln(e+Λ(t))
dt

)
.

Now to bound ∥(∇q−,∇q+)∥2L2 ≤ ∞. Multiply third equation with ∆q− and fourth

equation with ∆q+ for L2 norm bounds

1

2

d

dt

∫
R3

|∇q−|2dx+
∫
R3

|∆q−|2dx =

∫
R3

(ϑ · ∇)q− ·∆q−dx−
∫
R3

∇ · (q− · ∇Ψ)∆q−dx
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1

2

d

dt

∫
R3

|∇q+|2dx+
∫
R3

|∆q+|2dx =

∫
R3

(ϑ · ∇)q+ ·∆q+dx−
∫
R3

∇ · (q+ · ∇Ψ)∆q+dx.

Adding both equations for L2 estimates

1

2

d

dt
(∥∇q−∥2L2 + ∥∇q+∥2L2) + (∥∆q−∥2L2 + ∥∆q+∥2L2)

=

∫
R3

(ϑ·∇)q−·∆q−dx+
∫
R3

(ϑ·∇)q+·∆q+dx−
∫
R3

∇·(q−·∇Ψ)∆q−dx−
∫
R3

∇·(q+·∇Ψ)∆q+dx

= X1 +X2 +X3 +X4. (6.18)

Now, we will bound X1

|X1| ≤ ∥(ϑ · ∇)q−∥L2∥∆q−∥L2 ≤ C∥(ϑ · ∇)q−∥2L2 + ϵ∥∆q−∥2L2 .

By Holder’s and Young’s inequality, we get

≤ C∥∇ϑ∥2L2∥∇q−∥2L2∥∇q−∥L6 + ϵ∥∆q−∥2L2∥∆q−∥2L2 ≤ C∥∇q−∥2L2 + 2ϵ∥∆q−∥2L2 .

Similarly

|X2| ≤ C∥∇q+∥2L2 + 2ϵ∥∆q+∥2L2

|X3| ≤ −
∫ −

R3

∇Ψ ·∆q−dx−
∫
R3

q−∆Ψ ·∆q−dx

≤ C(∥∇q−∥2L3∥∇Ψ∥2L6 + ∥(q−, q+)∥4L4) + ϵ∥∆q−∥2L2

≤ 3ϵ∥(∆q−,∆q+)∥2L2 + C(1 + ∥(∇q−,∇q+)∥2L2).

Similarly

|X4| ≤ 3ϵ∥(∆q−,∆q+)∥2L2 + C(1 + ∥(∇q−,∇q+)∥2L2).

Placing all the estimates in (6.18), and Gronwall’s lemma yields

∥∇q−∥2L2 + ∥∇q+∥2L2 +

∫ T

0

(∥∆q−∥2L2 + ∥∆q+∥2L2)dt ≤ C(1 + ∥∇q−0 ∥2L2 + ∥∇q+0 ∥2L2) ≤ ∞.

Hence, our result has been proved and improves the conditions (6.6), (6.7) and (6.8).
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Chapter 7

Geometric constraints for the fractional

system on the entire three-dimensional

domain
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7.1 Introduction

This chapter establishes two new geometric constraints, one on the vorticity for the

Beale-Kato-Majda type result and the other on the gradient velocity, vital for

controlling the blow-up of weak solutions to the 3D incompressible fractional

magneto-micropolar system for a finite time.

We study the following Cauchy problem of a generalised 3D incompressible

magneto-micropolar system in the whole spatial domain, i.e., R3, and in the finite time

domain, i.e., [0,T]:

ht + h · ∇h+ (−∆)α̂1h+∇Ψ−B · ∇B− 2(∇×D) = 0,

Dt + h · ∇D+ (−∆)α̂2D−∇divD+ 4D− 2(∇× h) = 0,

Bt + h · ∇B−B · ∇h+ (−∆)α̂3B = 0,

∇ · h = 0, ∇ ·B = 0,

(h,D,B)|t=0 = (h0,D0,B0),

(7.1)

where h, D, B are the velocity field, micro-rotational velocity, and magnetic field,

respectively, while Ψ(x, t) is the scalar pressure. Throughout the paper, Ω = ∇× h

denotes the vorticity and parameters α̂1, α̂2, α̂3 > 0. The divergence free conditions are

satisfied by velocity and magnetic field with initial conditions h0,D0, and B0 given for

velocity, micro-rotation and magnetic field. The Zygmund operator Π = (−∆)
1
2 is

defined in terms of Fourier transform

Π̂îf(ξ) = |ξ|îf̂(ξ), ∀ î ≥ 0.

As system (7.1) is coupled with the Navier-Stokes equations with fractional

micro-rotation and magnetic diffusion that allows us to deal with more complex

problems of the movement of liquid crystals, ferromagnetic particles, animal blood flow,

diluted aqueous polymer solutions, etc. Recently, Deng and Shang [88] showed the

global existence of system (7.1) using Lebesgue and Sobolev spaces. Fan and Zhong [89]

showed the local existence and uniqueness of the system (7.1) and also proved the

following geometric constraints for the velocity and gradient velocity that keep the
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solutions of the given system from blowing up in the given time interval

h ∈ L
2ŝ
ŝ−r (0, T ; Ẋr,ŝ−1),

∇h ∈ L
2s
ŝ−r (0, T ; Ẋr),

∇h ∈ L
2ŝ
ŝ−r (0, T ; Ẋr,ŝ),

∇h ∈ L1(0, T ; Ḃ0
∞,∞),

for 0 < r < ŝ ≤ 5
4
.

Although numerous well-posedness and regularity results are proven for other

systems, the detailed study of the local and global regularity of the system (7.1) clearly

lacks. We try to fill this void by proving more rigorous geometric constraints for

vorticity and gradient velocity because the geometric constraints are used to control

blow-up of any three-dimensional system in given time interval. These results are new

and improved, proven in more general and regular Besov function spaces.

Remark 7.1.1 When B = 0 system (7.1) becomes fractional micropolar system and

for D = 0 and B = 0, system (7.1) reduces to fractional NSE.

7.2 Beale-Kato-Majda type criteria
In this section, we establish geometric constraints of the Belae-Kato-Majda type by

using weak formulations and divergence free properties.

Theorem 7.2.1 Let (h0,D0,B0) ∈ Hn(R3) with n > 5
2

and ∇ · h0 = 0, ∇ ·B0 = 0 in

distributional sense. If a weak solution (h,D,B) of system (7.1) satisfies the following

constraint for vorticity ∫ T

0

∥Ω∥Ḃ0
∞,∞√

(1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)
dt <∞, (7.2)

then it remains its smoothness in (0, T ], until its blow-up at T = T ∗.

Proof. Testing (7.1)1 with ∆h and using the divergence-free properties of velocity and

magnetic field, we have that∫
R3

ht ·∆h dx+

∫
R3

h · ∇h ·∆h dx+

∫
R3

(−∆)α̂1h ·∆h dx+

∫
R3

∇Ψ ·∆h dx
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−
∫
R3

B · ∇B ·∆h dx−
∫
R3

2(∇×D) ·∆h dx = 0

1

2

d

dt
∥∇h∥2L2 + ∥Π1+α̂1h∥2L2 =

∫
R3

B · ∇B ·∆h dx−
∫
R3

h · ∇h ·∆h dx.

= X1 +X2. (7.3)

Similarly, testing (7.1)2 with ∆D, we get that∫
R3

Dt ·∆D dx+

∫
R3

h · ∇D ·∆D dx+

∫
R3

(−∆)βD ·∆D dx−
∫
R3

∇divD ·∆D dx

+

∫
R3

4D ·∆D dx−
∫
R3

2(∇× h) ·∆D dx = 0

1

2

d

dt
∥∇D∥2L2 + ∥Π1+α̂2D∥2L2 + 4∥∇D∥2L2 + ∥∇divD∥2L2 = −

∫
R3

h · ∇D ·∆D dx

+

∫
R3

2(∇× h) ·∆D dx

= X3 +X4. (7.4)

Finally, testing (7.1)3 with ∆B, we have∫
R3

Bt ·∆B dx+

∫
R3

h · ∇B ·∆B dx−
∫
R3

B · ∇h ·∆B dx+

∫
R3

(−∆)α̂3B ·∆B dx = 0

1

2

d

dt
∥∇B∥2L2 + ∥Π1+α̂3B∥2L2 = −

∫
R3

h · ∇B ·∆B dx+

∫
R3

B · ∇h ·∆B dx

= X5 +X6. (7.5)

Now, adding (7.3), (7.4), and (7.5) to have

1

2

d

dt

(
∥∇h∥2L2 + ∥∇D∥2L2 + ∥∇B∥2L2

)
+
(
∥Π1+α̂1h∥2L2 + ∥Π1+α̂2D∥2L2 + ∥Π1+α̂3B∥2L2

)
+4∥∇D∥2L2 + ∥∇divD∥2L2 =

6∑
i=1

Xi. (7.6)

Furthermore, we get an estimates for Xi
′s in (7.6).For X2, we derive

|X2| ≤
∫
R3

|∇h|3 ≤ C∥∇h∥L2∥∇h∥2L4 .

Here, employing (1.1), we get that

≤ C∥∇h∥BMO∥∇h∥2L2 .
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Using

∥∇h∥Ḃ0
∞,∞

≤ C∥Ω∥Ḃ0
∞,∞

,

and (1.2) yields

|X2| ≤ C∥∇h∥2L2

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
log(e+ ∥h∥Hs)

≤ C∥∇h∥2L2

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ψ∥Ḃ0
∞,∞

)

)
log(e+ λ(t)), (7.7)

where λ(t) := supT∗≤s≤t∥Πsh∥2L2 + ∥ΠsD∥2L2 + ∥ΠsV ∥2L2 . For the detailed reasoning and

proven bounds on s = 3, see [35].

Next, we get bounds for X1

|X1| ≤
∫
R3

|∇B|2 · ∇h dx.

Now, using Holder’s inequality with 1
2
+ 5

12
+ 1

12
= 1, with Sobolev inequalities given

≤ C∥∇h∥L2∥∇B∥L12∥∇B∥
L

12
5

|X1| ≤ C∥∇h∥2L2 + C∥Πα̂3B∥2L2 + C∥Πα̂3B∥2L2∥∇h∥2L2 + C∥Π1+α̂3B∥2L2 + C. (7.8)

Following on the same steps as for X1, the estimates for X5, X6, and X3, are given as

|X5| = |X6| ≤ C∥∇h∥2L2 +C∥Πα̂3B∥2L2 +C∥Πα̂3B∥2L2∥∇h∥2L2 +C∥Π1+α̂3B∥2L2 +C (7.9)

|X3| ≤ C∥∇h∥2L2 + C∥Πα̂2D∥2L2 + C∥Πα̂2D∥2L2∥∇h∥2L2 + C∥Π1+α̂2D∥2L2 + C. (7.10)

Lastly, for X4, we obtain

|X4| ≤ C∥∇h∥L2∥∆D∥L2

≤ C
(
∥∇h∥2L2 + ∥∇D∥2L2 + ∥Π1+α̂2D∥2L2

)
. (7.11)

Putting (7.7), (7.8), (7.9), (7.10), and (7.11) in (7.6), after arranging and conserving

norms we have that

1

2

d

dt

(
∥∇h∥2L2 + ∥∇D∥2L2 + ∥∇B∥2L2

)
+
(
∥Π1+α̂1h∥2L2 + ∥Π1+α̂2D∥2L2 + ∥Π1+α̂3B∥2L2

)
+4∥∇D∥2L2 + ∥∇divD∥2L2
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≤ C∥∇h∥2L2

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
log(e+ λ(t)) + C

(
∥∇h∥2L2 + ∥∇D∥2L2

)
+C∥Πα̂3B∥2L2∥∇h∥2L2 + C∥Πα̂3B∥2L2 + C + C∥Πα̂2D∥2L2 + C∥Πα̂2D∥2L2∥∇h∥2L2 + C.

Continuing by the same methodology as above, by applying Gronwall’s inequality, We

achieved that

∥∇h∥2L2 + ∥∇D∥2L2 + ∥∇B∥2L2 +

∫ T

0

∥Πα̂1h∥2L2 + ∥Πα̂2D∥2L2 + ∥Πα̂3B∥2L2 + ∥Π1+α̂1h∥2L2

+∥Π1+α̂2D∥2L2 + ∥Π1+α̂3B∥2L2 dt

≤ C0 exp
(
C

∫ T

T∗

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
dt(1 + ln(e+ λ(t))

)
≤ C0(e+ λ(t))Cϵ, (7.12)

Where C0 =
(
∥∇h(·, T∗)∥2L2 + ∥∇D(·, T∗)∥2L2 + ∥∇B(·, T∗)∥2L2 + 1

)
and for

infinitesimally small constant ϵ > 0, ∃ T∗ < T , such that∫ T

T∗

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
dt < ϵ.

The bounds for λ(t), and for(
∥Πα̂1h∥2L2 + ∥Πα̂2D∥2L2 + ∥Πα̂3B∥2L2 + ∥Π1+α̂1h∥2L2 + ∥Π1+α̂2D∥2L2 + ∥Π1+α̂3B∥2L2

)
are

elaborately proved in [88].

For the L2 bounds, taking inner product of h with (1)1, D with (1)2, and B with (1)3,

estimating all the terms and adding, it is easy to see we get that

∥h∥2L2 + ∥D∥2L2 + ∥B∥2L2 +

∫ T

0

(
∥Πα̂1h∥2L2 + ∥Πα̂2D∥2L2 + ∥Πα̂3B∥2L2

)
dt ≤ C. (7.13)

Hence, (7.12) together with (1.5) and (7.13) proves our result

∥∇
(
h,D,B

)
∥2L2 ≤ C.

By controlling one of the geometric constraints of vorticity in regular homogeneous

Besov spaces we proved our solutions will keep their blow-up until reaching singular

time.
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7.3 Gradient velocity criteria

This section is concerned with demonstrating gradient velocity regularity in the critical

Besov spaces.

Theorem 7.3.1 Suppose (h0,D0,B0) ∈ Hn(R3) with n > 5
2

and ∇ · h0 = 0, ∇ ·B0 = 0

in distributional sense. If a weak solution (h,D,B) of system (7.1) satisfies the

following condition for gradient velocity∫ T

0

∥∇h∥2
Ḃ−1

∞,∞

1 + log(e+ ∥∇h∥Ḃ−1
∞,∞

)
dt <∞, (7.14)

then it remains its regularity in the interval R3 × [0, T ].

Proof. To prove result (7.2) , we continue from equation (7.6).

Now, we get new estimates for X2

|X2| ≤ C∥∇h∥L2∥∇h∥2L4

≤ C∥∇h∥2L2∥∇h∥2
Ḃ−1

∞,∞
+ ∥∆h∥2L2 .

All the other estimates Xi’s are evaluated same as for the previous result. Putting all

the new estimates in (7.6) and following on the same steps as for (7.12), we have that

∥∇h∥2L2 + ∥∇D∥2L2 + ∥∇B∥2L2 +

∫ T

0

∥Πα̂1h∥2L2 + ∥Πα̂2D∥2L2 + ∥Πα̂3B∥2L2 + ∥Π1+α̂1h∥2L2

+∥Π1+α̂2D∥2L2 + ∥Π1+α̂3B∥2L2 dt

≤ C0 exp
(
C

∫ T

T∗

(
1 +

∥∇h∥2
Ḃ−1

∞,∞

1 + log(e+ ∥∇h∥Ḃ−1
∞,∞

)

)
dt(1 + ln(e+ λ(t))

)
≤ C exp(C0ϵ ln(e+ λ(t))) ≤ C0(e+ λ(t))Cϵ. (7.15)

Whereas, for ϵ > 0, ∃ T∗ < T , such that∫ T

T∗

(
1 +

∥∇h∥2
Ḃ−1

∞,∞

1 + log(e+ ∥∇h∥Ḃ−1
∞,∞

)

)
dt < ϵ.

Now, (7.15) together with (7.2) proves that for the finite time the solution remains

regular. □

Corollary 7.3.2 The fact ∥∇h∥Ḃ−1
∞,∞

≈ ∥h∥Ḃ0
∞,∞

implies the new improved result for

(7.1) via velocity constraint∫ T

0

∥h∥2
Ḃ0

∞,∞

1 + log(e+ ∥h∥Ḃ0
∞,∞

)
dt <∞. (7.16)
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7.4 Conclusions

This work employs the functional theoretical approach to the system (7.1) to prove two

new geometric constraints. Considering its structural properties, these constraints are

vital for analyzing the turbulence in a finite time interval for a possible blow-up. The

results (7.2), (7.14), and (7.16) are proved in Besov spaces that are important due to

their complexity and scale-invariant properties. Although NSE have been analyzed

extensively for the finite time regularity or partial regularity (the regularity of the

singular sets), the detailed regularity and partial regularity analyses of the

well-posedness of system (7.1) is missing from the literature. The better results should

be presented on this system.
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