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Preface 

In the recent era, the security of sensitive information has gained widespread attention. The 

multimedia data is one of the key sources of information, which can be agreements, 

photographs, medical reports, contracts, or other types of scanned papers, with the highest 

rank of sensitivity. The privacy of digital information is of utmost importance while 

communicated among authorized parties. To deal the security and privacy of multimedia data 

gave rise to the various efficient encryption algorithms. These algorithms are further based on 

two different ideas: symmetric and asymmetric key-algorithm. Various efficient algorithms 

are developed to generate substitution boxes (S-boxes) and pseudo-random number 

sequences. S-boxes have two major categories: Static and dynamic S-box. A static S-box 

depends on fixed operating as well as generating modes while a dynamic S-box has both 

variable modes of operations. As a result, dynamic S-boxes algorithms are preferred mostly 

to increase the computational cost for cryptanalysts.  

Recently, Razaq et al. [108], developed a novel algorithm with the help of group structure for 

secure S-box in terms of high nonlinearity. Toughi et al. [13], proposed an image encryption 

algorithm with core modules PRNG and advanced encryption standard AES. The authors in 

[14], used the chaotic model to design image encryption scheme with enough pseudo creation 

capability. Due to multiple advantages such as non-periodicity, high sensitivity to input 

parameters, ergodicity, key sensitivity, chaotic systems, and ECs are extensively adopted for 

S-box and pseudo-random number generation in image encryption algorithms. The authors in 

[19], designed a secure algorithm that can be suitable in either digital and optical 

environments. Wang et al. [20], suggested a cryptosystem based on multi-group techniques 

such as chaotic map, Fisher-Yates Shuffling, and DNA sequence encoding. The authors of 

this research study claimed to have high accuracy with fast convergence as an advantage of 

the encryption algorithm. In light of computational precision, chaotic maps can have the 

possibility to generate a random sequence with a short period. Reyad et al. [22], developed an 

idea based on ECs to get pseudo-random numbers that work efficiently in image 

cryptography. El-Latif et al. [23], utilized both cyclic ECs and hybrid-chaotic systems for 

developing an efficient image encryption scheme. 

 The less computational effort with strong security, Elliptic curve based cryptographic 

architectures are more reliable as compared to the existing cryptographic methods. We 

introduced an efficient cryptosystem based on elliptic curves for digital image encryption. 

The designed scheme is consisting of three steps. Initially, the system uses the special type of 
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the isomorphic elliptic curves over a prime field and scrambles the pixel position of the plain 

image. Consequently, it disperses the intra-correlation among the pixels of the original image, 

and capable the scheme to be secure against statistical attacks. In the third step, the scheme 

generates multiple S-boxes with good cryptographic features by using isomorphic elliptic 

curves. The generated S-boxes are then used to substitute the scrambled data that produce 

optimum confusion in the ciphered data. Eventually, the encryption procedure generates 

PRNs through the arithmetic operation of the elliptic curves instead of elliptic curve group 

law; the operation used in the scheme creates high randomness as a result our proposed 

scheme shows high security against classical attacks. The simulation results and performance 

analysis divulge that the proposed scheme has excellent encryption performance with less 

computational effort, which indicates that the scheme has effective potential in real-time 

image encryption application. 

 Secondly, we discuss the security strength of the elliptic curve cryptosystems (ECC) is due 

to its core operations-based group law. This aspect of the elliptic curve provides key service 

to ensure security against modern cryptanalysis. However, the excess use of group law in EC 

based algorithms make it computationally hard for real time applications. In this context, we 

presented a smart-like algorithm based on subgroup co-set operations. The suggested scheme 

uses all co-sets that generates multiple sequences that can smoothly be adopted in most 

promising communication architectures of the future such as internet of things (IoT). Besides, 

the subgroup structure on a small prime with possible embedding is managed to construct 

efficient  S-box. Whereas, the performance of the proposed S-box is examined via 

standardized tests thus found significant for multimedia data security applications. Moreover, 

a small prime based EC subgroup coset model is designed, that generates a set of 

experimentally verified independent pseudo random streams. The atypical mathematical 

model for its application to image data encryption is established, by combining the S-box 

module (SM) and subgroup coset module (ECS-PRNSM). Several statistical tests revealed 

that the proposed technique is suitable for various cryptographic applications. 

Thirdly, in this dissertation, we discuss the Efficient multiple PRNS and S-boxes are one of 

the most significant building blocks, which are jointly adopted normally for secure data 

encryption. Multiple aspects pave the way to handle large-scale multimedia data. However, 

the computational work on multiple constructions may certainly lead to limits the required 

ciphering through-put. Therefore, reducing the computational time of multiple PRNS and S-

boxes is the main requirement for an efficient cryptosystem. For this achievement, we 

exploited the indexing technique over elliptic curves with small prime fields and introduce a 
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computationally efficient mechanism for multiple PRNS and S-boxes. Statistical results of 

multiple S-boxes show that the proposed S-box mechanism is the most effective method that 

generates strong multiple S-boxes on minimum prime fields. Likewise, the PRNS’s 

assessment indicates that the proposed mechanism is the highly productive model for 

generating multiple verified patterns on small prime fields in a single round. Consequently, it 

might be smoothly formalized to diffused large-scaled image data. Subsequently, the 

experimental results and analysis show that the proposed algorithm provides desired 

keyspace, better statistical properties of encrypted data, and less computational effort. 
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Chapter 1 

Introduction and Preliminaries 
1.1 Introduction  

This chapter is mainly devoted to the major concepts, namely elliptic curve (EC) and 

cryptography. The fundamental elements of both EC and cryptography are thoroughly 

presented separately. In addition, we will discuss some EC based cryptographic algorithms to 

validate the importance of EC structure in cryptography. 

This introductory chapter consists of five sections. In section 1.2, we discuss the detail of 

elliptic curve and related results while section 1.3, presents the importance of EC in 

cryptography and discuss some well-known symmetric and asymmetric algorithms. In section 

1.4, the theory of substitution box is briefly discussed. The next section 1.5, of this chapter 

consists of our main objectives while in section 1.6, we demonstrate our own contribution to 

this dissertation.   

1.2 Elliptic Curve 

An elliptic curve 𝐸𝑎1,𝑎2,𝑎3,𝑎4,𝑎5 defined over a prime field 𝐿, is an algebraic expression of the 

form 

𝑦2 + 𝑎1𝑥𝑦 + 𝑎2𝑦 = 𝑥3 + 𝑎3𝑥
2 + 𝑎4𝑥 + 𝑎5                   (1)     

Where  𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑥, 𝑦 ∈ 𝐿. The set of all solutions  (𝑥, 𝑦) to the equation (1) are the 

points of the ring 𝐿 × 𝐿. Apart from that, a point at infinity "𝑂" is added to the set of solutions 

and refer this elliptic curve as 𝐸𝑎1,𝑎2,𝑎3,𝑎4,𝑎5
|𝐿| . Generally, this elliptic curve is known as 

Generalized Weiestrass-equation (GWE). Furthermore, it is preferable to consider GWE 

while working with the fields having characteristics 2 or 3. Considering a field of 

characteristic other than char≠ 2,3, the equation (1) can be transformed initially to the form 

𝑦′
2
= 𝑥3 + 𝑎1

′𝑥2 + 𝑎2
′ 𝑥 + 𝑎3

′   by making substitutions 𝑦′ = 𝑦 + 𝑎1𝑥+𝑎2

2
, 𝑎1

′ = 𝑎3 +
𝑎1

2

4
,

𝑎2
′ = 𝑎4 +

𝑎1𝑎2

2
  and 𝑎3′ = 𝑎5 +

𝑎2
2

4
.  Finally, we get 𝑦′2 = 𝑥′

3
+ 𝐴𝑥′ + 𝐵 by using 𝑥′ = 𝑥 +

𝑎1
′

3
. This equation 𝑦′2 = 𝑥′

3
+ 𝐴𝑥′ + 𝐵 is named as Weiestrass-equation (WE). Besides, for 

WE to get the representation of an elliptic curve, the expression on the right hand of WE must 
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have distinct roots. This means that the cubic 𝑥′3 + 𝐴𝑥′ + 𝐵  has non-zero discriminant (that 

is: 4𝐴3 + 27𝐵2 ≠ 0). 

1.2.1 Elliptic Curve Points Arithmetic 

Here we may develop the intrinsic model of EC structure with the help of utmost two points 

lying on EC and generate another point [1]. The description of this process is examined in 

more detail. 

 

Figure 1. Point Doubling 

For any two points  𝑃1 = (𝑥1, 𝑦1), 𝑃2 = (𝑥2, 𝑦2)  on EC represented by the equation 𝑦2 =

𝑥3 + 𝑎𝑥 + 𝑏. Then the sum 𝑃1 + 𝑃2 = 𝑃3 = (𝑥3, 𝑦3) is also an element on EC by drawing a 

line 𝑙 through  𝑃1and 𝑃2. It could be observed that 𝑙 passes through third point 𝑃3′ on EC. 

Finally, the reflection of 𝑃3′ along 𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 generates 𝑃3 which is the sum of  𝑃1and 

𝑃2 as shown in Figure 1. Since the sum is not a usual addition of pairs. Therefore, it might be 

suitable to denote this sum by 𝑃1⊕𝑃2. Initially we assume that 𝑃1 ≠ 𝑃2 with 𝑃1 𝑜𝑟 𝑃2 ≠ ∞. 

Draw a line 𝑙 that passes through both points 𝑃1 and 𝑃2.  The slope of 𝑙 is 

𝜆 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

  

Now, we obtain the sum 𝑃1⊕𝑃2by the following expression 

𝑃3 = (𝜆2 − 𝑥1 − 𝑥2 , 𝜆(𝑥1 − 𝑥3) − 𝑦1) 

If 𝑃1 = 𝑃2 = (𝑥1, 𝑦1) and 𝑦1 ≠ 0, then the sum 𝑃1⊕𝑃2 is obtained as 

(𝜆2 − 2𝑥1, 𝜆(𝑥1 − 𝑥) − 𝑦1) 

Whereas 𝜆 is the slope at 𝑃. The mathematical expression for 𝜆 is given below 

𝜆 =
3𝑥1

2 + 𝑎

2𝑦1
 

If 𝑃1 = 𝑃2 = (𝑥1, 𝑦1) and 𝑦1 = 0, then the sum 𝑃1⊕𝑃2 is considered as ∞. 
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Furthermore, define 

𝑃⊕∞ = 𝑃, for all 𝑃 ∈ 𝐸𝑎,𝑏
|𝐿| . 

This sum of points looks a little bit unnatural. But we might show that it satisfies some nice 

properties. The following steps describe the main properties. 

1. For any 𝑃1, 𝑃2 ∈ 𝐸𝑎,𝑏
|𝐿|  implies that 𝑃1⊕𝑃2 ∈ 𝐸𝑎,𝑏

|𝐿|  (closed under “⊕”). 

2. For any 𝑃 ∈ 𝐸𝑎,𝑏
|𝐿| , 𝑃⊕∞ = 𝑃 (existence of identity). 

3. Given 𝑃 on 𝐸𝑎,𝑏
|𝐿| , there exists a unique point 𝑃′ on 𝐸𝑎,𝑏

|𝐿|  such that 𝑃 ⊕ 𝑃′ = ∞. The 

point 𝑃′ is normally denoted −𝑃 (existence of inverses).  

4.  For all 𝑃1, 𝑃2, 𝑃3 ∈ 𝐸𝑎,𝑏
|𝐿| , (𝑃1⊕𝑃2) ⊕ 𝑃3 = 𝑃1⊕ (𝑃2⊕𝑃3) (associativity). 

5. For all 𝑃1, 𝑃2 ∈ 𝐸𝑎,𝑏
|𝐿| , 𝑃1⊕𝑃2 = 𝑃2⊕𝑃1 (commutativity). 

In short, the set of all points on 𝐸𝑎,𝑏
|𝐿|  form an abelian group under “⊕” with identity element 

∞. 
 

1.2.2 Elliptic Curves and Finite Fields 

In the above discussion, we have been defined an elliptic curve over arbitrary fields, but the 

field of finite size is the principal component for area of cryptography and its applications. 

Assume the elliptic curve 𝐸𝑎,𝑏
𝑝  over some finite field of size 𝑝, 𝐹𝑝. As the size of 𝐹𝑝 is finite, 

so the resulting group 𝐸𝑎,𝑏
𝑝 (𝐹𝑝) also contains finite number of points.  

One procedure of finding 𝐸𝑎,𝑏
𝑝 (𝐹𝑝) is through brute force. First, we generate a set of quadratic 

residues (square element) in the field 𝐹𝑝, denoted by ℚ(𝐹𝑝). It is pertinent to mention that 

there are exactly half of the square elements in any finite field of characteristic greater than 2, 

as discussed in [2]. This deduces from the fact ℚ: 𝐹𝑝 ⟶ 𝐹𝑝 defined by ℚ(𝑥) = 𝑥2. 

Particularly, the mapping ℚ is a group homomorphism with kernel {−1,1}. 

After getting the list of square elements, we proceed towards computing 𝑓(𝑥′) = 𝑥′
3
+

𝐴𝑥′ + 𝐵 for each 𝑥′ ∈ 𝐹𝑝. Each value 𝑓(𝑥′) ∈ ℚ then produce ±𝑦 satisfying 𝑦2 = 𝑓(𝑥′). 

Example 1.1: Let 𝐸1,217  be an elliptic curve with 𝑦′2 = 𝑥′
3
+ 𝑥′ + 2. We first construct a list 

of quadratic residues of 𝐹17 denoted by ℚ(𝐹17) with minor calculations as under. 

ℚ(𝐹17)= {1,2,4,8,9,13,15,16} 

We write values of x, solving 𝑥3 + 𝑥 + 2 𝑚𝑜𝑑 17 for x selecting only the ones which gives 

values from ℚ(𝐹17). 
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Table 1. Points on elliptic curve over finite field 𝐹17 
𝑥′
3
+ 𝑥′ + 2𝑚𝑜𝑑17 𝑦2𝑚𝑜𝑑17 

2 0 

4 1 

12 4 

15 9 

2 16 

13 8 

3 2 

12 15 

12 13 

9 13 

9 15 

1 2 

8 8 

2 16 

6 9 

9 4 

0 1 

 

The above Table 1, gives us 24 different points including point at infinity ‘∞’. We then say 

that size of 𝐸1,217(𝐹17) is 24. 

 

Figure 2. Graphical interpretation of 𝐸1,217(𝐹17) 
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Since the characteristic of field 𝐹17 is neither 2 nor 3, the points of 𝐸1,217(𝐹17) can be easily 

added using formula given in section 1.2. All arithmetic in addition should be made within 

the given field.  

1.2.3 Some Definitions and Results 

The main results that are useful for determining the total number of points on elliptic curve 

over finite field. 

Theorem 1.1. [[1], Theorem 4.1] Let 𝐸𝑎,𝑏
𝑞  be an elliptic curve, defined on the field 𝐹𝑞 with 

finite size 𝑞. Then either 𝐸𝑎,𝑏
𝑞 (𝐹𝑞) ≅ Ζ𝑛 or 𝐸𝑎,𝑏

𝑞 (𝐹𝑞) ≅ Ζ𝑛1⨁Ζ𝑛2for some positive integer 𝑛, 

or for some integers 𝑛1, 𝑛2 ≥ 1 with 𝑛1 dividing 𝑛2. 

Theorem 1.2. [[1], Hasse’s Theorem] Let 𝐸𝑎,𝑏
𝑞  be an elliptic curve the field 𝐹𝑞 of finite size 𝑞. 

Then the order of 𝐸𝑎,𝑏
𝑞 (𝐹𝑞) satisfies the following relation |𝑞 + 1 − #𝐸𝑎,𝑏

𝑞 (𝐹𝑞)| ≤ 2√𝑞. 

Lemma 1.1. [[1], Lemma 4.33] An elliptic curve 𝐸0,𝑏
𝑝   over a prime field 𝐹𝑝 with  𝑝 − 2 ≡

0mod3 has exactly 𝑝 + 1 distinct points, where each integer in the field 𝐹𝑝 appear once as 𝑦-

coordinates. 

Theorem 1.3. [[3], Example 9.5.2] Let 𝑝 > 2 be any prime integer and 𝐸𝑎,𝑏
𝑝   : 𝑦′2 = 𝑥′3 +

a𝑥′ + b is an elliptic curve over 𝐹𝑝. Then 𝐸𝑎,𝑏
𝑝  is not isomorphic to 𝐸

a′,b′
𝑝   with a′ = t2a and 

b′ = t3b; for any t ∈ 𝐹𝑝∗  if and only if t is non-square in 𝐹𝑝∗. 

Proposition 1.1. [[4], page 230] If  𝑟 𝑜𝑟𝑑(𝐺)⁄ , where 𝐺 is a finite Abelian group, then there 

exists a subgroup of order r in 𝐺. 

Example 1.2: Let’s add the points (1,2) and (4,6). Before addition, we need to calculate 𝜆, 

which can be computed as. 

𝜆 =
6 − 2

4 − 1
≡
4

3
≡ 4 × 6 ≡ 24𝑚𝑜𝑑17 ≡ 7 

Now we may calculate the sum of (1,2) and (4,6) 

𝑥3
′ = 72 − 4 − 1 ≡ 49 − 4 − 1 ≡ 44𝑚𝑜𝑑17 ≡ 10 

𝑦3
′ = 7(1 − 10) − 2 ≡ 7 × −9 − 2 ≡ −65𝑚𝑜𝑑17 ≡ 3 

Hence, the sum (1,2) ⊕ (4,6) = (10,3). 
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Similarly, the point (5,8) is one of the generators of 𝐸1,217(𝐹17): 

𝑃 = (5,8), 2𝑃 = (3,10), 3𝑃 = (10,14), 4𝑃 = (15,14), 5𝑃 = (13,11) 

6𝑃 = (1,11), 7𝑃 = (9,3), 8𝑃 = (12,5), 9𝑃 = (4,11), 10𝑃 = (0,11) 

11𝑃 = (11,16), 12𝑃 = (16,0), 13𝑃 = (11,1), 14𝑃 = (0,6), 15𝑃 = (4,6) 

16𝑃 = (12,12), 17𝑃 = (9,14), 18𝑃 = (1,15), 19𝑃 = (13,6), 20𝑃 = (15,3) 

21𝑃 = (10,3), 22𝑃 = (3,7), 23𝑃 = (5,9), 24𝑃 = ∞ 

Thus, it is revealed that 𝐸1,217(𝐹17) is cyclic group generated by (5,8) whose order is 24. It is 

worth noting that not every elliptic curve over finite fields generates cyclic groups, as we 

show in the following example: 

Example 1.3: Consider the elliptic curve 𝐸0,1013  𝑦′2 = 𝑥′3 + 10 over finite field 𝐹13. Clearly, 

ℚ(𝐹13) = {1,4,9,3,12,10}, then from Table 2. 

𝐸0,10
13 (𝐹13) = {∞, (0,6), (0,7), (4,3), (4,10), (10,3), (10,10), (12,3), (12,10)} 

Since the number of points in 𝐸0,1013 (𝐹13) are 9. It is evident that either 𝐸0,1013 (𝐹13) ≅ Ζ9 or 

𝐸0,10
13 (𝐹13) ≅ Ζ3⨁Ζ3. After computation we conclude that: 

Table 2. Points on elliptic curve over finite field 𝐹13 
𝑥′
3
+ 10𝑚𝑜𝑑13 𝑦2𝑚𝑜𝑑13 

0. 10 0. 0 

1. 11 1. 1 

2. 5 2. 4 

3. 11 3. 9 

4. 9 4. 3 

5. 5 5. 12 

6. 5 6. 10 

7. 2 7. 10 

8. 2 8. 12 

9. 11 9. 3 

10. 9 10. 9 

11. 2 11. 4 

12. 9 12. 1 
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1(0,6) = (0,6), 2(0,6) = (0,7), 3(0,6) = ∞ 

1(4,3) = (4,3), 2(4,3) = (4,10), 3(4,3) = ∞ 

1(10,3) = (10,3), 2(10,3) = (10,10), 3(10,3) = ∞ 

1(12,3) = (12,3), 2(12,3) = (12,10), 3(12,3) = ∞ 

Furthermore, the calculations show that all elements without identity have order 3, as a result 

𝐸0,2
13(𝐹13) ≇ Ζ9 (as Ζ9 is cyclic group). Consequently, 𝐸0,213(𝐹13) ≅ Ζ3⨁Ζ3. 

Definition 1.1: [[3], page 144] Let (𝐸𝑎1,𝑏1
𝑝

, ∞𝐸1) and (𝐸𝑎2,𝑏2
𝑝

, ∞𝐸2) be elliptic curves over 

prime field 𝐹𝑝. An isomorphism of elliptic curves 

𝜃:𝐸𝑎1,𝑏1
𝑝

→ 𝐸𝑎2,𝑏2
𝑝  

The mapping 𝜃 is an isomorphism over 𝐹𝑝̅̅̅̅ of algebraic varieties such that 𝜃(𝑂𝐸1) = 𝑂𝐸2. If 

there is an isomorphism between 𝐸𝑎1,𝑏1
𝑝  and 𝐸𝑎2,𝑏2

𝑝 , then we write 𝐸𝑎1,𝑏1
𝑝 ≅ 𝐸𝑎2,𝑏2

𝑝 . 

Definition 1.2: [[3], page 144] Let 𝐸𝑎1,𝑏1
𝑞  be an elliptic curve over 𝐹𝑞. An elliptic curve 𝐸𝑎2,𝑏2

𝑝  

over 𝐹𝑞 is called a twist of 𝐸𝑎1,𝑏1
𝑞 , if there is an isomorphism 𝜃:𝐸𝑎1,𝑏1

𝑞
→ 𝐸𝑎2,𝑏2

𝑞
 over 𝐹𝑞̅̅̅̅  of 

pointed curves, such that 𝜃(∞𝐸1) = ∞𝐸2. If there is an isomorphism between elliptic curves  

𝐸𝑎1,𝑏1
𝑞  and 𝐸𝑎2,𝑏2

𝑞  over 𝐹𝑞, then 𝐸𝑎1,𝑏1
𝑝  and 𝐸𝑎2,𝑏2

𝑝  of 𝐸𝑎,𝑏
𝑝  are called equivalent twists. 

Definition 1.3: [[3], page 140] Let 𝐸𝑎,𝑏
𝑝  be an elliptic curve over finite field 𝐹𝑝 and let for any 

𝑄 ∈ 𝐸𝑎,𝑏
𝑝
(𝐹𝑝). We define  

𝜏𝑄: 𝐸𝑎,𝑏
𝑝
⟶𝐸𝑎,𝑏

𝑝   

𝜏𝑄(𝑃) = 𝑃+𝑄 ; ∀ 𝑃 ∈ 𝐸𝑎,𝑏
𝑝   

Clearly the map 𝜏𝑄 is bijective. 

Theorem 1.4. [[3], page 144] Let 𝑝 > 2 be any prime integer and 𝐸𝑎,𝑏
𝑝   : 𝑦′2 = 𝑥′3 + a𝑥′ + b  

is any elliptic curve over 𝐹𝑝, such that 𝑡 ∈ 𝐹𝑝∗. Then the twist 𝐸𝑡,𝑎,𝑏
𝑝 ≇ 𝐸𝑎,𝑏

𝑝  if and only if 𝑡 is 

non-square in 𝐹𝑝∗. Furthermore, if 𝑡1 and 𝑡2 are non-squares in 𝐹𝑝∗, then 𝐸𝑡1,𝑎,𝑏
𝑝 ≅ 𝐸𝑡2,𝑎,𝑏

𝑝  over 

𝐹𝑝.  

 
1.3  Elliptic Curves and Its Cryptographic Applications 

In recent decades, data security gets more and more attention due to rapid advancement in the 

fields of communication technology and computer vision. The tools used to protect the 

contents of the data from the access of adversaries during transmission is cryptography. The 
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security aspect of the secrete data entirely depends on the designing procedure of the 

cryptographic scheme. To design efficient cryptographic scheme, many researchers prefer to 

construct crypto algorithms rely on mathematical structures. Due to their highly sensitive and 

random natures, the non-linear dynamical systems are the best choices for the researchers 

[5]–[8]. These systems have wide range of applications in multimedia data security. In some 

systems such as chaotic systems, the security risk and computational efforts are depended to 

some extent on their dimensions. High dimensional chaotic systems are considered secure as 

compared to low dimensional chaotic system. However, in respect to computational 

complexity, these require more calculation time in the designing of cryptosystems. Besides, 

low dimensional chaotic systems are apparently more at risk against cryptanalysis attacks due 

to small key space [9]. 

On the other hand, elliptic curve EC structures are found better to resolve the above issues in 

respect of randomness [10]. With the help of the EC core structure, the level of randomness 

and uncertainty in the output data can be increased for security insurance in either of the 

asymmetric or symmetric encryption algorithms. The most well-known EC based asymmetric 

or public key algorithms are RSA, El Gamal Public Key Encryption, Elliptic curve Diffie 

Hellman key exchange, Elliptic curve Digital Signature Algorithm. Some of them are 

discussed as following:  

 
1.3.1 RSA 

In cryptography we often consider two imaginary people, Alice, and Bob. They both 

communicate over open channel for sharing secrete information. In this connection, Alice 

needs to forward secrete information to Bob. Before this, Bob secretly selects two prime 

numbers 𝑝, 𝑞 and from their product we obtain 𝑛 = 𝑝𝑞. Furthermore, Bob also selects an 

integer 𝑒 ∈ 𝑍𝑚 such that there exists 𝑑 ∈ 𝑍𝑚 with 𝑒𝑑 ≡ 1(𝑚𝑜𝑑𝑚) where 𝑚 = (𝑝 − 1)(𝑞 −

1). He then makes 𝑒, 𝑛 public and holds 𝑑 secret. Alice’s wants to send a secret message 

𝑀(A number)(𝑚𝑜𝑑𝑛). She calculates 𝑡 ≡ 𝑀𝑒(𝑚𝑜𝑑𝑛) and forwards 𝑡 to Bob. After receiving 

the message 𝑡 Bob calculates 𝑀 ≡ 𝑡𝑑(𝑚𝑜𝑑𝑛). If Eve could trace 𝑝 and 𝑞, then she could 

easily find 𝑑 such that 𝑒𝑑 ≡ 1(𝑚𝑜𝑑(𝑝 − 1)(𝑞 − 1)). The security of this algorithm is mainly 

concerned to the factorization of 𝑛. This analogue can also be used using elliptic curve. In 

this connection Koyama-Maurer-Okamoto- Vanstone present one such algorithm which is not 

normally used in practice. 

Alice needs to send a secret message to Bob. They adopted the following procedure: 
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i. First, Bob selects two distinct large prime numbers 𝑝1, 𝑝2 with the condition 𝑝1 ≡

𝑝2 ≡ 2(𝑚𝑜𝑑3) and calculates 𝑛 = 𝑝𝑞,𝑚 = (𝑝 + 1)(𝑞 + 1) 

ii. Bob picks an integer 𝑒 such that 𝑒𝑠 ≡ 1(𝑚𝑜𝑑 𝑙𝑐𝑚(𝑝 + 1, 𝑞 + 1)); for some integer 𝑠. 

iii. Bob publishes 𝑒 and 𝑛 publicly and keeps (𝑠, 𝑝, 𝑞 ) private. 

iv. Alice considers her secret message as a pair of integers (𝑀1, 𝑀2)𝑚𝑜𝑑𝑛. She considers 

(𝑀1, 𝑀2) as a point 𝑀 lying on the elliptic curve 𝐸0,𝑏𝑛  defined by 𝑦′2 = 𝑥′
3
+ b 

Where 𝑏 = 𝑀2
2 −𝑀1

2(𝑚𝑜𝑑𝑛). 

v. Alice adds 𝑀 𝑒 times with the formulas for elliptic curve group law on 𝐸0,𝑏𝑛  to get 𝑇 =

(𝑡1, 𝑡2) = 𝑒𝑀. She forwards 𝑇 to Bob. 

vi. Bob calculates 𝑀 = 𝑠𝑇 on 𝐸0,b𝑛  to get 𝑀. 

In case eavesdropper factors n as 𝑝𝑞, then she computes (𝑝 + 1)(𝑞 + 1) without any hurdle, 

therefore, she could easily find 𝑠 which satisfies 𝑒𝑠 ≡  1 (𝑚𝑜𝑑 (𝑝 +  1)(𝑞 +  1)). Hence, 

she could decrypt the encrypted Alice’s message. 

 
1.3.2 El Gamal Public Key Encryption 

Alice wants to forward a secret data to Bob. First, Bob generates his public encryption key by 

the following procedure: 

He selects an elliptic curve  𝐸𝑎,𝑏
𝑝  over a finite field  𝐹𝑝 such that the DLP (Discrete log problem) 

is hard for 𝐸𝑎,𝑏
𝑝
(𝐹𝑝). He picks a point 𝑄 on 𝐸𝑎,𝑏

𝑝  of large prime. He also picks a secret integer 𝑟 

and calculates 𝐵 = 𝑟𝑄. Bob publishes the elliptic curve 𝐸𝑎,𝑏
𝑝 , the field 𝐹𝑝, and the points 𝑄, 𝐵 a 

public encryption key, which are used by Alice. Bob keeps the integer 𝑟 secret. 

Alice adopts the following steps while sending a message to Bob. 

i. Downloads Bob’s public encryption key. 

ii. Arrange her secret message as a point 𝑀 ∈ 𝐸𝑎,𝑏
𝑝
(𝐹𝑝). 

iii. Select a private random integer 𝑑 and calculate 𝑚1 = 𝑑𝑄. 

iv. Computes 𝑚2 = 𝑑𝐵 +𝑀. 

v. Forwards 𝑚1, 𝑚2 to Bob. 

Bob decrypts the encrypted message by computing 

𝑀 = 𝑚2 − 𝑟𝑚1 

This decryption process is meaningful because 

𝑚2 − 𝑟𝑚1 = (𝑑𝐵 +𝑀) − 𝑟(𝑑𝑄) = 𝑀 + 𝑑(𝑟𝑄) − 𝑑(𝑟𝑄) = 𝑀 
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The Eve knows Bob’s public encryption key and the points 𝑚1, 𝑚2. If Alice can compute 

discrete logarithm, she is able to find 𝑟 using 𝑄, 𝐵, which she can then easily manage to 

decrypt the cipher message as 𝑚2 − 𝑟𝑚1. Moreover, she can also find 𝑑 by using 𝑄 and 𝑚1. 

As a result, she can compute 𝑀 = 𝑚2 − 𝑑𝐵. If Alice cannot compute discrete logarithm, it 

will seem infeasible for her to compute 𝑀. 

It is notable for Alice to choose distinct random integers 𝑑 each time while sending a secret 

message to Bob. Otherwise, Eve can recognize the message because then 𝑚1 = 𝑚1
′. She 

then calculates 𝑚2
′ −𝑚2 = 𝑀

′ −𝑀.  

 
1.4 Substitution Boxes 

In cryptography, S-boxes are normally the main non-linear component in various 

cryptographic encryption schemes. Particularly these play an important role in ensuring the 

security strength of scheme. It is known that practically efficient S-box need to have some 

Cryptographic properties. Cryptographic properties and designing of S-box can be made 

possible by using vector Boolean functions. An S-box, or cryptographic S-box, is a function 

that takes an input (string) of length 𝑠 and outputs (string) of length 𝑡. In other words, an S-

box is a mapping 𝑆(𝑥) from 𝐺𝐹(2𝑠) to 𝐺𝐹(2𝑡). For this sake, an S-box can also be referred 

as (𝑠, 𝑡)-Boolean function. More precisely, we may use S-boxes and (𝑠, 𝑡)-Boolean functions 

interchangeably. It is noted that an (𝑠, 𝑡)-Boolean function could always be represented as the 

𝑡 −Boolean functions, and we can write 

𝑆(𝑥) = [𝑠1(𝑥), 𝑠2(𝑥),… , 𝑠𝑡(𝑥)] 

Where each 𝑠𝑗, is a Boolean function in 𝑠 variables. These 𝑠𝑗 are the coordinate functions of 

𝑆(𝑥). Security strength of an S-box is usually expected to possess the property that any part 

of its output provides no meaningful pattern about the other part (bits) of the output. 

Specifically, the (𝑠, 𝑡) −Boolean function that describes an S-box has the characteristic that 

the 𝑡 outcome functions 𝑠1(𝑥), 𝑠2(𝑥),… , 𝑠𝑡(𝑥), are statistically mutually independent. If an S-

box is bijective that is one-to-one and onto. That means every input uniquely mapped to the 

possible outcome in S-box. In symmetric key cryptosystems the bijective S-boxes play 

significant role regarding security aspect. 

 

For the evaluation of cryptographic properties of an S-box, we use some standardized 

statistical analysis such as nonlinearity (NL), bit independent criteria (BIC), linear approximation 

probability (LAP), strict avalanche criteria (SAC), and differential approximation probability (DAP) 
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which examine the efficiency and strength of S-box. In the next chapter, all the above-

mentioned tests are discussed in detail.  

Likewise, Fathi et al. [6] proposed PRNs generated scheme rely on ECC for image 

encryption. They discussed the applications in the back-door problems efficiently. Elliptic 

curve-based cryptography was first introduced in 1985 by Koblitz [11] and Miller [10]. 

Reyad et al. [14] encrypted the original image through Koblitz encoding algorithm and 

Chaos-Driven elliptic curve PRNGs (C-D ECPRNG). In [11], the author made a connection 

between the discrete logarithm problem (DLP) and EC. Since then, many researchers made 

their efforts to employ ECC using various encryption techniques to enhance its performance. 

Later on, Amara et al. [15] showed that the ECC based cryptosystem provide better security 

than RSA. In [6], a technique for an image encryption is established that utilizes a 

combination of Elliptic Curve Based Random Number Generator (EC-B-RNG)  and AES 

(Advanced Encryption System). Accordingly, the scheme gets better results for image 

encryption. In this method, the PRNs are computed followed by public shared key and the 

base point of the elliptic curve group. Then, AES algorithm is performed to complete the 

encryption. In this algorithm, one party can send a key to an authorized party few days in 

advance. Then, whenever they send secret information through encryption algorithm, they 

both could read using that key. Although it is not applicable in each situation. Similarly, the 

asymmetric algorithm or public key encryption, both parties are not bound to have contact in 

advance. In this case, one party communicates publicly the public encryption key, which the 

other authorized party uses. He also must have a private key for decryption which is 

organized in advance to decrypt encrypted message. Though, the encryption key is known to 

everyone, but it is not feasible to detect the decryption key. In this connection many 

researchers used various mathematical structures such as chaotic systems [16]–[25] and 

encryption using the elliptic curve (EC) [6], [26]–[31]. Elliptic curve-based algorithms are 

most used to provide more security to the information. Here, we shall focus our attention on 

elliptic curve cryptography (ECC) using different techniques suggested by many researchers. 

The first proposed scheme to employ the elliptic curve as a public key cryptosystem was 

designed in 1985 by Miller [12] and independently by Koblitz [11]. Later on, the significant 

advantages of (ECC) on which researchers are being attracted, where power consumption or 

bandwidth and storage is of prime objective [32]. These aspects enhance our attention to use 

the elliptic curve as a foundation for image encryption. 
In general, public key or asymmetric algorithms are slower as compared to efficient 

symmetric algorithms. Therefore, a public key algorithm is normally used to generate a key 
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which is then managed to use in a symmetric algorithm. The speed of algorithm is much 

important when large amounts of data is being transmitted. With this in mind, we now turn 

our attention to what we hope to accomplish in this dissertation. 

 
1.5  Objectives 

The main objectives are listed below: 

a) In this study, we will be present an innovative use of the Elliptic curve over prime 

field for the construction of various cryptographic schemes and will be improve 

the security of the existing cryptographic algorithm.  

b) Elliptic curve over prime field will be solved and apply some suitable 

mathematical operations or structures on the points of the given elliptic curve for 

the construction of efficient nonlinear component of block cipher. 

c) Analyze the proposed substitution box through various standard security 

performance tests. 

d) Show the strength of the newly generated S-boxes based on the experimental tests 

when compared to S-boxes generated using various mathematical structures.  

e)  The pseudo random numbers are generated to create diffusion using elliptic curve 

over another prime field. 

f) Both confusion and diffusion phases depend on various parameters preferably 

distinct.   

g) Application of above-mentioned points in (image/audio/video encryption) 

cryptography, steganography, and digital watermarking. 

h) Some standard performance evaluation metrics are performed on encrypted data to 

conclude the efficiency of the proposed scheme. 

1.5.1 Elliptic Curve Diffie Hellman Key Exchange 

Alice and Bob both agree on a fixed key that they can utilize for sharing secret data through a 

symmetric encryption algorithm such as AES or DES. Assume that Alice and Bob are 

considered as banks that want to share secret financial information. It is unfeasible to share a 

secret key through courier service. It is further assumed that Alice and Bob have not prior 

contact and they only communicate through public channels. In this way the secret key can be 

established by the following procedure, due to Diffie-Hellman (The process is based on the 

set of non-zero elements of finite field). 
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1) Both Alice and Bob agree on choosing an elliptic curve over a finite field 𝐹𝑝𝑠 such 

that the discrete logs problem is hard to compute in 𝐸𝑎,𝑏
𝑝𝑠 (𝐹𝑝𝑠). They also agree on a 

point 𝑄 in 𝐸𝑎,𝑏
𝑝𝑠 (𝐹𝑝𝑠) whose order is large prime. 

2) Alice selects a secret random integer 𝑎, calculates 𝑄𝑎 = 𝑎𝑄, and sends 𝑄𝑎 to Bob. 

3) Bob selects a secret random integer 𝑏, calculates 𝑄𝑏 = 𝑏𝑄, and sends 𝑄𝑏 to Alice. 

4) Alice calculates 𝑎𝑄𝑏 = 𝑎𝑏𝑄. 

5) Bob calculates 𝑏𝑄𝑎 = 𝑏𝑎𝑄. 

6) Alice and Bob agree on procedure which is used to extract encryption/decryption key 

from 𝑎𝑏𝑄. For instance, they could either extract the last 256 bits from 𝑥-coordinate 

of 𝑎𝑏𝑄 as the key or by using a hash function at the 𝑥-coordinate. 

The only public information that the eavesdropper Eve could see, is the elliptic curve 𝐸𝑎,𝑏
𝑝𝑠 , the 

finite field 𝐹𝑝𝑠, and the point 𝑄, 𝑎𝑄, and 𝑏𝑄. She must need to compute 𝑎𝑏𝑄. 

While in symmetric algorithm, the key is same for both encryption and decryption process. 

One of the most Popular EC based symmetric algorithms are the Data Encryption Standard 

(DES) and the Advanced Encryption Standard (AES, normally referred as Rijndael 

algorithm). Both DES and AES depend on the  S-box. S-boxes are widely used in modern 

cryptographic algorithms. It plays important role in furnishing the non-linearity of the 

cryptosystem. Consequently, the chance of any attack is reduced as well as meaningful 

patterns in the ciphered data. Therefore, the construction of efficient S-boxes is prime feature 

for successful cryptographic application. The core idea behind S-box is the Boolean 

function’s structure which comprises of Boolean operations (XOR and OR). In the following 

we present a brief introduction of Boolean function and its application in S-box theory. 

Definition 1.4: Let 𝐺𝐹(2𝑠) be an s-dimensional vector space over the binary field 𝐹2. A 

Boolean function 𝛽 is mapping: 

𝛽: 𝐺𝐹(2𝑠) ⟼ 𝐺𝐹(2) 

𝐺𝐹(2𝑠) stands for the Galois field with 2𝑠 points of the form 𝑏 = (𝑏1, … , 𝑏𝑠). Since the total 

number of points in the domain 𝐺𝐹(2𝑠) and codomain 𝐺𝐹(2) are 2𝑠 and 2 respectively. So, 

the total number of distinct (s-variable) Boolean functions is 22𝑠. 

1.6 Own Work 

This thesis is divided into the following chapters. 

1. In the second chapter, we propose an efficient technique for strong S-box based on 

squared and non-squared elements using isomorphic elliptic curves over finite fields 
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and present their security performance by evaluating some metrics. Moreover, the 

PRNs are generated over non isomorphic ECs using translation map.  

2. Chapter 3 consists of the application of S-box and PRNS in the image data security. 

For this purpose, we shall make use of EC permutations to permute substituted 

images.  Moreover, the security analyses results and computer simulation outputs of 

the proposed encryption algorithm are examined. In addition, we discuss the 

comparison and some conclusive remarks on image encryption algorithm. 

3. In Chapter 4, we establish a technique based on EC core operations that effectively 

generates dynamic S-boxes and PRNS. The mechanism of both S-box and PRNS are 

separately operated over EC subgroup coset model with distinct technique. The 

efficiency of subgroup coset model is verified through statistical analysis of S-box 

and PRNS. As both S-box and PRNS algorithms generates verified PRNS and S-

boxes. 

4. Chapter 5 deals with the atypical well-defined mathematical model for its application 

to image data encryption. We jointly manage both S-box and subgroup coset modules 

to formalize diffusion. Consequently, it will be the main source of the proposed 

scheme for diffusing all kind of multimedia data having any dimension. Generally, 

multiple sequences and S-boxes are mainly generated to cipher multiple data files 

simultaneously. Several statistical tests revealed that the proposed technique is 

suitable for various cryptographic applications. 

5. In Chapter 6, the efficient multiple pseudo-random numbers and S-boxes are 

established which are significant building blocks jointly adopted for image data 

security. Multiple aspects pave the way to handle large-scale multimedia data. For this 

achievement, we exploited an indexing technique over elliptic curves to introduce a 

computationally efficient mechanism for multiple PRNS and S-boxes. The statistical 

results will also show that the proposed S-box mechanism is the most effective 

method for generating strong multiple S-boxes on minimum prime fields. 

Furthermore, the experimental results will show that the proposed algorithm provides 

desired key-space and less computational effort. 

6. This dissertation closed with Chapter 7, which consists of the conclusion of this 

dissertation with future directions. 
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Chapter 2 

A Novel Approach Towards S-box and PRNs over Elliptic 

Curve 
In this chapter, we have suggested an improved scheme using S-box, pseudo-random 

numbers generator (PRNG), and action of permutation over different prime fields. The 

proposed S-box depends only on 𝑦-coordinates by applying modulo operation of all 

isomorphic elliptic curves (IECS) to any fixed elliptic curve over one of the prime fields. The 

proposed work is novel in the sense that it gives us a guarantee to generate a dynamic S-box. 

Meanwhile, simple arithmetic operations are utilized in the generation of pseudo-random 

numbers (PRNs). In our proposed scheme, we use an elliptic curve which yields a 

permutation on the field, on which it is defined. 

2.1 Motivation 

Data transmission through any communication channel is a sensitive task securely. Before 

transmission, various techniques including  S-box, chaotic maps in all three dimensions, and 

many more are being established to encrypt the digital data securely. The main source of 

secure information is lying under the scope of cryptography, steganography, and 

watermarking. The theme behind cryptography, steganography, and watermarking is to hide 

information from casual readers. In recent years, rapid development has been increasingly 

taken place in the field of digital information technology and multimedia data. With these 

advances, security has a key factor in sharing secret information which is not accessible for 

unauthorized persons. One of the reliable channels for this purpose is an image as a base, 

using standard-based cryptosystems. Images itself are very important, sending them in 

routine or unusual activity regarding personal, institutional, military circles, medical history, 

and so on. 

The application of chaos theory played a significant role in the development of crypto 

algorithms using S-boxes, PRNs, and permutation maps to enhance diffusion and confusion 

[21]–[24], [33]–[35]. Belazi et al. [36], proposed a technique for the construction of an S-box 

via a chaotic sin map. The stated technique generates static S-box with minimum nonlinearity 

score 103 and maximum nonlinearity not greater than 108. Nonlinear dynamical systems are 

extensively used for multimedia data security [37].  These systems are further divided into 

two categories: one dimensional chaotic systems and high dimensional chaotic systems. Since 
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one-dimensional systems consist of less number of parameters and initial conditions. 

Therefore, the cryptanalyst can easily figure out the initial values and parameters used for 

encryption and decryption. Accordingly, the encryption schemes based on one-dimensional 

chaotic maps are considered insecure. Besides, the high dimensional chaotic based 

cryptosystems have large keyspace, exceeding dynamical behavior and ergodicity [21], [38], 

[39]. Thus, the encryption schemes based on high dimensional are considered more secure 

than the scheme based on a low dimensional scheme. However, due to the high 

computational complexity of the high dimensional, chaotic system makes their 

implementation on hardware-software costly.   

On the other hand, elliptic curves group structures are much sensitive to input parameters 

similar to chaos-based structures, but it ensures more security by comparison with chaos. In 

[40], the author designed a hybrid cryptosystem based on AES and elliptic curve 

cryptography (ECC). The pseudo-random numbers are generated via EC points whereas 

encryption keys are achieved by the implementation of AES to pseudo-random numbers. The 

stated scheme provides more security but pseudo-random numbers are based on elliptic curve 

group law, which increases the computational cost of the encryption algorithm. The 

combination of a chaotic map and cyclic EC are used to design an encryption algorithm in 

[41]. In this scheme, the author overcomes the problem of small keyspace but is insecure 

against chosen-plaintext/known-plaintext attacks [40]. Similarly, an image encryption scheme 

in reference [28], generates pseudo-random numbers and S-box using EC, where the 

generation of S-box is not possible for each input EC, which is time-consuming. 

 

2.2  Proposed S-boxes Based on IECS 

In this study, we show the worth of isomorphic elliptic curves to any fixed EC in the 

construction of S-box. In [28], S-boxes are designed using total order relation and y-

coordinates of any isomorphic elliptic curve corresponds to a fixed elliptic curve and showed 

that at most  𝑝−1
2

  S-boxes can be constructed. But we utilize all trivial twists of an elliptic 

curve over 𝐹𝑝 to increase the quantity of efficient, cryptographically strong S-boxes up to 

(
𝑝−1

2
)2. 

Definition 2.1: Let 𝐸(𝑎,𝑏,𝑝): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a finite field 𝐹𝑝. 

Suppose for any  (𝑥, 𝑦) ∈ 𝐸(𝑎,𝑏,𝑝). Define a set 

𝑆𝑦 = {𝑦𝑘: 𝑦𝑘 = 𝑡𝑘3𝑦; ∀ 𝑡𝑘 ∈ (𝐹𝑝∗)
2
, 𝑘 = 1,2, … ,

𝑝−1

2
}  
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Then obviously for each 𝑦𝑘 ∈ 𝑆𝑦 there exists an isomorphic elliptic curve 𝐸(𝑎,𝑏,𝑝)to 𝐸(𝑎′,𝑏′,𝑝) 

such that (𝑥𝑘, 𝑦𝑘) ∈ 𝐸(𝑎
′,𝑏′,𝑝);  with 𝑎′ = 𝑡2𝑎 and 𝑏′ = 𝑡3𝑏;  for some  𝑡𝑘 ∈ (𝐹𝑝

∗)
2
. Also, for 

any (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐸(𝑎,𝑏,𝑝) with 𝑦1 is squared and 𝑦2 is square free, which is given 

below. 

      𝑆𝑦1 ∩ 𝑆𝑦2 = ∅ and  𝑆𝑦1 ∪ 𝑆𝑦2 = 𝐹𝑝
∗ 

Proposition 2.1: Let 𝐸(𝑎,𝑏,𝑝): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a finite field 𝐹𝑝. 

Then for any (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐸(𝑎,𝑏,𝑝) with 𝑦1 is squared and 𝑦2 is square free, 𝑆𝑦1 ∩ 𝑆𝑦2 =

∅. 

Proof: Suppose 𝑆𝑦1 ∩ 𝑆𝑦2 ≠ ∅. Then there exist 𝑢 ∈ 𝑆𝑦1 ∩ 𝑆𝑦2. such that 𝑢 ∈ 𝑆𝑦1and 𝑢 ∈

𝑆𝑦2. So, by definition 2.1, 𝑢 = 𝑡1
3𝑦1  and 𝑢 = 𝑡23𝑦2; for some 𝑡1, 𝑡2 ∈ (𝐹𝑝∗)2. This means, 

𝑡1
3𝑦1 = 𝑡2

3𝑦2. A contradiction as L.H.S is squared while R.H.S is square free. Hence 𝑆𝑦1 ∩

𝑆𝑦2 = ∅. 

Furthermore, each element of 𝑆𝑦is lying on one of the elliptic curves, which are isomorphic 

to 𝐸(𝑎,𝑏,𝑝). 

Proposition 2.2: For any elliptic curve  𝐸(𝑎,𝑏,𝑝): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over a finite field 𝐹𝑝 with 

odd prime 𝑝. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐸(𝑎,𝑏,𝑝) with 𝑥1, 𝑦1 are squared and 𝑥2, 𝑦2 are non-

squared. If 𝑡𝑖2𝑥1 ≠ 𝑡𝑗2𝑥2 and 𝑡𝑖3𝑦1 ≠ 𝑡𝑗3𝑦2. Then (𝑡𝑖2𝑥1, 𝑡𝑖3𝑦1) ≠ (𝑡𝑗
2𝑥2, 𝑡𝑗

3𝑦2) for all 𝑡𝑖, 𝑡𝑗 ∈

(𝐹𝑝
∗)2. 

Proof:  Suppose 

𝑡𝑗1
−3𝑡𝑖1

3 𝑦1 = 𝑦2                (1) 

Implies 

(𝑡𝑗1
−1𝑡𝑖1)

2𝑥1 = 𝑥2            (2) 

And 

(𝑡𝑗1
−1𝑡𝑖1)

3𝑦1 = 𝑦2              (3) 

Which is not possible as L.H.S of equation (1) is multiple of squares while R.H.S is non-

square. Similarly, in equation (2), 𝑡𝑖1 , 𝑡𝑗1
−1 are squares. (As inverse, product, any power of 

square element is square infinite field).  So, L.H.S of equation (2) is squared, whereas R.H.S 

is non-squared. Hence 𝑡𝑖2𝑥1 ≠ 𝑡𝑗1
2 𝑥2 and 𝑡𝑖3𝑦1 ≠ 𝑡𝑗

3𝑦2; ∀ 𝑡𝑖, 𝑡𝑗 ∈ (𝐹𝑝∗)2. 
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Corollary 2.1: Let  𝐸(𝑎,𝑏,𝑝): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏  be an elliptic curve over a finite field 𝐹𝑝, 

where 𝑝 > 257 and (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝐸(𝑎,𝑏,𝑝) such that 𝑦1 is squared and 𝑦2 is non-squared 

in 𝐹𝑝∗. Then there is a substitution box 𝑆𝑎,𝑏,𝑝
𝑦1,𝑦2 such that  𝑆𝑎,𝑏,𝑝

𝑦1,𝑦2 = 𝑆𝑦1 ∪ 𝑆𝑦2 . 

Proof:  Followed by Propositions 2.1 and 2.2. 

Let  𝐸(0,𝑏,𝑝): 𝑦2 = 𝑥3 + 𝑏  be an elliptic curve over the prime field 𝐹𝑝, where  𝑝 ≡ 2(𝑚𝑜𝑑3) 

and 𝑝 > 3.  The number of points on 𝐸(0,𝑏,𝑝) are 𝑝 + 1 including 𝑂𝐸  and no repetition occurs 

in  y-coordinate (such that for each 𝑦𝑖 ∈ 𝐹𝑝, there exists unique 𝑥𝑖 ∈ 𝐹𝑝 such that (𝑥𝑖 , 𝑦𝑖) ∈

𝐸(0,𝑏,𝑝)). Let 𝐼 = {𝐸(0,𝑏
′,𝑝): 𝑏′ = 𝑡𝑘

3𝑏; ∀ 𝑡𝑘 ∈ (𝐹𝑝
∗)
2
, 𝑘 = 1,2, … ,

𝑝−1

2
} be the set of all elliptic 

curves which are isomorphic to 𝐸(0,𝑏,𝑝) [1]. Then for any two (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈  𝐸(𝑎,𝑏,𝑝) 

with 𝑦1is squared and 𝑦2is square-free in the field 𝐹𝑝. Then by Corollary 2.1, there exist two 

disjoint sets 𝑆𝑦1 and 𝑆𝑦2 which generate S-box 𝑆0,𝑏,𝑝
𝑦1,𝑦2 for instance 𝑆0,𝑏,𝑝

𝑦1,𝑦2 = 𝑆𝑦1 ∪ 𝑆𝑦2. Also, 

we note that the square element generates sets 𝑆𝑦1, containing only squared elements while 

square free points generate sets 𝑆𝑦2 having square free elements. Besides, the same number 

of sets contains squared and square-free elements. Since all points of the field 𝐹𝑝 appear only 

once on the y-coordinate of the elliptic curve 𝐸(0,𝑏,𝑝).  One can obtain 𝑝 number of such sets 

by the proposed technique. In this collection, half of the sets contain squared elements only 

and the remaining half contain square free elements.  It follows that either two sets are 

disjoint or equal in the collection. To generate the proposed S-box, we can choose any two 

disjoint sets in the collection.  It is observed that for each set 𝑆𝑦1having squared entries there 

are 𝑝−1
2

 sets, containing square free elements in each set. Thus, the total numbers of S-boxes 

are (𝑝−1
2
)2. For instance, the S-box 𝑆0,𝑏,𝑝

𝑦1,𝑦2 constructed by the proposed scheme is shown in 

standard form 16 × 16 look up Table 3. 

2.3 Performance Analyses of the Generated S-box   

In this section, we discuss the experimental results of randomly generated S-boxes based on 

the proposed technique. One can examine that the S-boxes generated by the proposed scheme 

are very efficient to use for secure communication. Here, we consider some S-boxes 

generated by the proposed technique and compare them with some existing S-boxes, 

presented in [6], [28], [42]. 
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Table 3 The S-box 𝑆0,2,257
85,49  based on the proposed method 

85 171 138 147 191 40 180 148 49 153 137 118 225 144 134 173 

43 37 150 108 94 209 156 175 52 236 26 29 30 187 99 116 

28 188 80 14 131 151 115 65 255 60 31 0 9 81 157 234 

182 45 55 39 91 93 230 186 244 162 198 89 122 232 57 207 

206 203 130 33 181 103 161 5 22 114 211 16 189 11 117 18 

250 10 210 245 237 102 125 216 129 36 242 111 185 213 193 58 

38 63 6 24 254 167 201 19 34 124 73 35 92 190 4 17 

83 112 53 152 179 97 183 87 196 249 88 136 79 195 42 159 

109 82 192 71 252 41 238 170 84 141 23 50 239 199 240 98 

77 101 142 27 96 132 56 74 123 158 100 200 140 64 253 215 

217 48 106 164 154 155 90 160 113 70 176 25 246 44 67 62 

66 163 126 166 76 20 3 78 32 227 248 135 68 72 165 178 

110 149 243 218 224 12 233 105 139 228 1 168 241 146 222 121 

119 107 177 202 127 47 251 204 120 231 226 59 46 15 184 169 

86 220 69 212 54 247 194 145 104 21 197 95 143 221 133 8 

172 214 229 75 51 7 219 174 208 205 2 13 235 128 223 61 

 
2.3.1 Nonlinearity (NL) 

The key role of an S-box is to create confusion in the data up to the required level to keep 

safe from unauthorized people. The non-linearity security test is a metric which calculates the 

confusion ability of an S-box over 𝐺𝐹(2𝑛), which is defined as below. 

Ν(𝑆) = 𝑚𝑖𝑛𝜉,𝜁,𝜂{α ∈  𝐺𝐹 (2
𝑛) | 𝜉 · 𝑆(𝛼 ) ≠ 𝜁 · 𝛼 ⊕ 𝜂} 

Where 𝜉 ∈ GF (2𝑛), 𝜂 ∈ GF (2), 𝜁 ∈ GF (2𝑛) \ {0} and “·” is the dot product over GF (2). 

The upper bound for non-linearity (NL) score of an S-box is 120. It is observed that an S-box 

S with the maximum score of non-linearity (that is 120) may not satisfy the required criteria 

of other cryptographic security tests [43]. In Table 4, the nonlinearity (NL) criteria of newly 

design S-boxes by the proposed method and some existing S-Boxes are given comparatively. 

It can be seen easily that the newly constructed S-boxes have greater non-linearity when 

compared to the elliptic curve-based S-boxes in [26], [28]. The newly constructed S-boxes 

have much capability of resistance against linear attack. 
Table 4. Non-linearity of some existing and proposed S-boxes 

S-boxes 𝑆0,3,461
313,229 𝑆0,49,599

122,179  𝑆0,49,599
440,270 𝑆0,2,353

114,1  
Ref. 

[28] 

Ref. 

[26] 

Ref. 

[42] 

Ref. 

[34] 

Ref.  

[36] 

Ref.  

[44] 

Nonlinearity 107 107 107 107 106 106 103.25 107 105.5 106.25 
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2.3.2 Linear Approximation Probability (LP) 

The concept of linear approximation probability test of an S-box is used to calculate the 

highest value LP(S) of coincident masked input bits with masked output bits [45]. The 

mathematical form of LP test is given in the following  

LΡ(𝑆) =
1

2𝑛
{𝑚𝑎𝑥
𝛼,𝛽

{|#{𝑥 ∈ 𝐺𝐹(2𝑛): 𝛼. 𝑥 = 𝛽. 𝑆(𝑥)} − 2𝑛−1|}} 

Where 𝛼 ∈ 𝐺𝐹(2𝑛) and 𝛽 ∈ 𝐺𝐹(2𝑛)\{0}. A cryptographically strong S-box has the property 

that it attains a low score of LP. In Table 5, some of the newly constructed S-boxes by the 

proposed technique and their corresponding LP values are listed, which shows that the S-

boxes based on the proposed scheme is suitable for secure communication against linear 

approximation attacks. 

 
2.3.3 Strict Avalanche Criterion (SAC) 

Webster et al. [45], [46], introduced the concept of strict avalanche criterion. The primary 

objective of his test is used to analyze the diffusion creation capability of an S-box in the 

data. The strict avalanche criterion indicates the likelihood of change in all yield bits by 

applying a single change at an info bit. The mathematical description of SAC of an S-box is 

given as follows 

𝑚 (𝑖, 𝑗) = {
1

2𝑛
[𝑤(𝑆𝑖(𝑥 + 𝛼𝑗) + 𝑆𝑖(𝑥))]| 𝛼𝑗 ∈ 𝐺𝐹(2

𝑛), 𝑤(𝛼𝑗) = 1 𝑎𝑛𝑑 1 ≤ 𝑖, 𝑗 ≤ 𝑛 } 

Clearly, 𝑚 (𝑖, 𝑗) are entries of the dependency matrix. If all the entries of the SAC matrix are 

lying in the small neighborhood of 0.5, then one can say that the SAC criterion is fulfilled. 

The proposed S-boxes 𝑆0,𝑏,𝑝
𝑦1,𝑦2 and their corresponding SAC scores are shown in Table 5. 

These results show a clear sign to have enough diffusion capability of the newly constructed 

S-boxes. Furthermore, the SAC results indicate the effectiveness of the proposed S-boxes in 

comparison with some existing S-boxes. 

 
2.3.4 Bit Independence Criterion (BIC) 

This criterion is also introduced by Webster et al. [45], [46] to examine the inversion of the 

plain-text bit 𝑝 effects the cipher bit 𝑟 without dependence on each other. This test is 

investigated by means of the correlation coefficient. The BIC test of standard S-box is a 

square matrix of dimension 16 × 16. If the entries of the BIC matrix of an S-box are close to 

0.5 then the S-box is said to satisfy the BIC criteria. The BIC test is applied to the various 

proposed and existing S-boxes. Our designed S-boxes 𝑆0,𝑏,𝑝
𝑦1,𝑦2 and BIC test scores are given in 
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Table 5. The average scores of the BIC matrices corresponding to some newly constructed S-

boxes are given in Table 5. The scores of the BIC test ensure the resistance of the proposed 

S-boxes against common attacks. 

 
2.3.5 Differential Approximation Probability (DP) 

The differential approximation probability (DP) of S-box is used to calculate the differential 

uniformity and is defined as: 

𝐷𝑃 (𝑎 → 𝑏)  =
{𝑎 ∈  𝑋| 𝑆(𝑎) ⊕ 𝑆(𝑎 ⊕ 𝑎) = 𝑏}

2𝑚
 

This implies that for each an input differential 𝛥𝑎𝑖, there exists a unique output differential 

𝑏𝑖, thus ensuring a uniform mapping probability for each 𝑖. The average value of differential 

approximation probability of some proposed S-boxes is listed in Table 5. We conclude that 

the results of the DP test of the proposed box are comparable with S-boxes in [21], [23], [24], 

[47] based on the chaotic map. 

 
Table 5. Comparison of experimental results of the proposed S-boxes with standard S-boxes 

S-box SAC BIC LP DP 

𝑆0,3,461
313,229 0.499023 0.50635 0.1250000 0.0390620 

𝑆0,49,599
122,179 0.493408 0.50628 0.1328125 0.0468750 

𝑆0,49,599
440,270 0.495117 0.50691 0.1328125 0.0390620 

𝑆0,2,353
114,1  0.499023 0.49665 0.1328125 0.0390620 

𝑆0,9,653
397,606 0.504639 0.50216 0.1484375 0.0468750 

Ref. [48] 0.506836 0.5017 0.140625 0.03906 

Ref. [42] 0.5151 0.4864 0.15625 0.171875 

Ref. [21] 0.5095 0.5092 0.1250 --- 

Ref. [34] 0.4973 0.5052 0.1172 0.0391 

Ref. [23] 0.4960 0.4994 0.1094 0.0313 

Ref. [24] 0.5001 0.498 0.102 0.0313 

 

2.4 Construction of Pseudo Random Numbers 

There are three classes of random numbers of generators, pseudo-random number generators 

(PRNGs), true random number generators (TRNGs), and hybrid random number generators 

(PRNGs). In cryptography, many security applications like encryption, protocols make use of 

Pseudo-random number generators (PRNGs). Besides, Pseudo-random number generators 



 

28 
 

(PRNGs) are used to create high diffusion in the pixels of the plain image. Various PRNGs 

using the elliptic curve have been established [6], [49]. Most of them have very complex 

computations due to the elliptic curve group law operation. In this section, we generate PRNs 

through fixed EC using square free elements of finite field 𝐹𝒫. Let 𝐸(0,𝒹,𝒫)\{𝑂}  be an elliptic 

curve over a finite field 𝐹𝒫. Then, for each square free element 𝑡′(> 0) ∈ 𝐹𝒫 that is 𝑡′ ≠

𝑟2 𝑚𝑜𝑑 𝒫; ∀ 𝑟 ∈ 𝐹𝒫∗ . There is a non-isomorphic elliptic curve 𝐸(0,ℓ,𝒫) to 𝐸(0,𝒹,𝒫). Thus, one 

may have  𝒫−1
2
  number of non-isomorphic elliptic curves to given EC 𝐸(0,𝒹,𝒫). On each 

curve, the y-coordinates play a vital role to generate the proposed PRNs. The following 

algorithm is used to calculate the PRNs. 

 

1. Select a prime number 𝒫 with 𝒫 ≡ 2 𝑚𝑜𝑑 3, greater than the length 𝑀and width 𝑁 of 

the color image 𝐼. 

2. Generate an elliptic curve 𝐸(0,𝒹,𝒫), (where 𝒹 < 𝒫 − 1 is a non-negative integer) over a 

finite field 𝐹𝒫. 

3. Pick y−coordinates of the EC 𝐸(0,𝒹,𝒫) and leaving x-coordinates to reduce the time 

complexity of the proposed algorithm for further consideration.  

4. Generate a set 𝑆𝑦 for each value of EC 𝐸(0,𝒹,𝒫) \{0} by using square free elements in the 

field  𝐹𝒫. each such set 𝑆𝑦consisting of elements as y-component lying on the non-

isomorphic elliptic curve.  

5. Select a prime 𝑝′ > 𝒫 and 𝑡 with the conditions;  𝑝′ ≡ 2 𝑚𝑜𝑑 3 and 𝑡 ∈ 𝐹𝑝′
∗ . 

6. Generate EC 𝐸(0,𝔟,𝑝′) over prime field 𝐹𝑝′. Choose a non-identity element 𝑄 ∈ 𝐸(0,𝔟,𝑝′)  

and define a translation map  

𝜏𝑄: 𝐸
(0,𝔟,𝑝′)  ⟶ 𝐸(0,𝔟,𝑝

′)   

Defined by 

𝜏𝑄(𝑃) = 𝑃 + 𝑄; ∀ 𝑃 ∈ 𝐸(0,𝔟,𝑝′)   

Clearly, the map 𝜏𝑄is bijective. The ordering of points is a matter of concern. Pick only y-

coordinates of the imaging set of  𝜏𝑄. Place each set 𝑆𝑦, where its first entry lying in the 

sequence consisting of y coordinates obtained via translation map. Form a rectangular 

box 𝑆𝒫×(𝒫−1)/2 of height (𝒫 − 1)/2 and width 𝒫. 

 
 
 



 

29 
 

2.4.1 Key Space Analysis 
 

One of the main components of a secure cryptosystem is a large key space. An encryption 

algorithm is said to be much secure against brute-force attack or commonly known as 

exhaustive key search whenever the set of keys involved in the algorithm has sufficiently 

large cardinality. In this proposed scheme, the order, the base fields for elliptic curves, 

coefficients of the elliptic curve and translation map are used as secret keys. We analyze key 

space by calculating all keys in each step of the proposed scheme. The detailed description is 

given in the following 

a.  The permutation operation of the proposed scheme uses six parameters 

{𝑏1, 𝑏2, 𝑏3, 𝑝1, 𝑝2, 𝑝3} of length at least 9-bits. Thus, the total precision turns out to be  

254.  

b. The substitution box acquires six parameters {𝑡, 𝑠, 𝑏4, 𝑝4, 𝑦1, 𝑦2}. Each having length 

not less than 10-bits. So, the total precision turns into  260. 

c. The PRNs phase requires four secret keys {𝑙, 𝑟, 𝑏5, 𝑏6, 𝑝5, 𝑝6, 𝑄}. The minimum length 

of each key is 10-bits. The precision of 𝑙, 𝑟, 𝑏5, 𝑏6, 𝑝5, 𝑝6 is 260 and 𝑄 has a precision 

of 220. The total precision is 280. 

The total key space is 254 × 260 × 280 = 2194, which describes that the keyspace of the 

proposed technique is much greater than 2128. Therefore, it is evident that the proposed 

cryptosystem is much secure against all kinds of brute force attacks. 

In the next chapter, we shall discus the image encryption applications based on S-boxes, 

PRN, and various permutations operations depending on the dimension of the original color 

images by using different finite fields. 
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Chapter 3 

Squared and Non-Squared PRN and their Application to 

Color Image Encryption 
  

Image encryption is the process to convert the original image in such a way that 

unauthorized source cannot access to understand without having secret keys. The digital 

image is a matrix of numerical values. These values are denoted as pixels. With the 

development of information technologies, digital images are a source of information, such as 

medical images, color images. To protect this information is a big challenge.  

3.1 Motivation 

To consider the characteristic of the digital image, various image encryption schemes 

have been designed on the basis of different mathematical structures, including SCAN-CA 

[50], circular random grids [51], Ordered elliptic curve [26], (n, k, p)-Gray code for image 

[52], Self-adaptive wave transmission [53], vector quantization and index compression [50], 

fractional wavelet transform [24], chaotic theory [37], [54], [55], vector quantization and 

index compression [50], fractional wavelet transform [56], [57] and DNA sequences [18], 

[19], [58]. The Security performance of the encryption algorithm can be measured based on 

three parameters such as Low (L), Medium (M), and High (H). The security of a 

cryptographic scheme is assessed below if it is insecure against cryptanalysis attacks. If the 

cryptographic scheme is unbreakable through some of the cryptanalysis attacks, then its 

security is labeled as moderate, and finally, whenever it is secure against all kinds of 

cryptanalysis attacks, then the scheme is evaluated to be highly secure. Some of the existing 

cryptographic schemes and their security performance have been discussed in [59]. 
In this chapter, we introduce a new color image encryption algorithm. This chapter is 

organized as follows: in section 3.2, we present an image encryption scheme by using EC 

permutations, S-boxes, and PRN respectively. While in sections 3.3 & 3.4, we perform some 

known statistical analysis to validate the performance of the proposed scheme. Finally, in 

section 3.5, we present the time complexity of the proposed algorithm. 
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3.2 Proposed Encryption Scheme 

Let the color image 𝐼𝑀×𝑁 of dimension 𝑀 × 𝑁 × 3, where 𝑀 and 𝑁 indicate the width of the 

image and height 𝑁 of the image respectively. In this work, we denote the color components 

Red, Green, and Blue of the image by R, G, and B of 𝑀 ×𝑁. Also, in the encryption process 

all three channels R, G, and B considered as a gray image, each component will be encrypted 

independently. |The flowchart of the proposed scheme is provided in Figure 3 while the detail 

description is given after the flowchart.  

 

Figure 3. Flowchart of the proposed encryption scheme 

Step 1:  Let 𝐼 be the true color image of dimensions 𝑀 rows and 𝑁 columns, with size 

𝑀 ×𝑁 × 3 pixels. Here, 3 represents the intensities of red, green, blue layers. We work 

separately on red, green, blue channels. We choose two primes 𝑝1, 𝑝2 with 𝑝1 > 𝑀 𝑎𝑛𝑑 𝑝2 >

𝑁 𝑎𝑛𝑑 𝑝1, 𝑝2 ≡ 2 𝑚𝑜𝑑 3. For each 𝑖 = 1,2, … ,𝑀 and 𝑗 = 1,2, … , 𝑁, the pair (𝑖, 𝑗) denotes the 

coordinate of a pixel location in the image. One can observe the one-one correspondence 

between all the pixel positions and ring 𝑍𝑀 × 𝑍𝑁, where 𝑍𝑀 and 𝑍𝑁 are finite rings modulo 𝑀 

and 𝑁 respectively. Therefore, we refer to the locations of all pixels in an image 𝐼𝑀×𝑁 by 

simply a ring(𝑍𝑀 × 𝑍𝑁). Now it is easy to see that y-coordinates of both elliptic curves 

𝐸(0,𝛼,𝑝1) and 𝐸(0,𝛽,𝑝2) act as permutations on the set 𝑍𝑀 × 𝑍𝑁 . Define a set  

𝐴 = {(𝐸(0,𝛼𝑖,𝑝1), 𝐸(0,𝛽𝑖,𝑝2)); with 𝛼𝑖 = 𝑡3𝛼 𝑎𝑛𝑑 𝛽𝑖 = 𝑠
3𝛽, for some 𝑡 ∈ (𝐹𝑝1

∗ )
2
, 𝑠 ∈ (𝐹𝑝2

∗ )
2
} 
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 Where left component of 𝐴 is an elliptic curve isomorphic to 𝐸(0,𝛼,𝑝1) and right component 

corresponds 𝐸(0,𝛽,𝑝2) over finite fields  𝐹𝑝1 and  𝐹𝑝2 respectively. 

So, we introduce some simple notations, we denote 𝑍𝑀 × 𝑍𝑁 = 𝑍𝑀×𝑁, 𝑆𝑝 is symmetric group 

of all permutations over a finite field 𝐹𝑝; y-coordinates of both elliptic curves 

𝐸(0,𝛼𝑖,𝑝1), 𝐸(0,𝛽𝑖,𝑝2) by 𝑒𝑏,𝑦
𝑝1  and 𝑒

𝑏′,𝑦

𝑝2 , respectively. Let B = {(𝑒𝑏,𝑦
𝑝1  𝑒

𝑏′,𝑦

𝑝2 ) with 𝑏 ∈ 𝐹𝑝1
∗ , 𝑏′ ∈

𝐹𝑝2
∗ }. Then clearly 𝑒𝑏,𝑦

𝑝1  ∈ 𝑆𝑝1and 𝑒
𝑏′,𝑦

𝑝2 ∈ 𝑆𝑝2. 

 We now define maps 

𝜇1: 𝑆𝑝1 × 𝑍𝑀×𝑁 ⟶ 𝑍𝑀×𝑁 and 𝜇2: 𝑆𝑝2 × 𝑍𝑀×𝑁 ⟶ 𝑍𝑀×𝑁 

Defined by 

𝜇1(𝑒𝑏,𝑦
𝑝1  (𝑧𝑚, 𝑧𝑛)) = (𝑒𝑏,𝑦

𝑝1 (𝑧𝑚), 𝑧𝑛)          (2.1) 

 

𝜇2 (𝑒𝑏′,𝑦
𝑝2 , (𝑧𝑚, 𝑧𝑛)) = (𝑧𝑚, 𝑒𝑏′,𝑦

𝑝2 (𝑧𝑛))        (2.2) 

 

𝑒𝑏,𝑦
𝑝1 (𝑧𝑚, 𝑧𝑛) = 𝑧𝑚+𝑙 if 𝑧𝑚 ≺ 𝑧𝑚+𝑙 and 𝑧𝑚+𝑙 ∈ 𝑒𝑏,𝑦

𝑝1 ∩ 𝑍𝑀 

 

𝑒
𝑏′,𝑦

𝑝2 (𝑧𝑚, 𝑧𝑛) = 𝑧𝑛+𝑙 If 𝑧𝑛 ≺ 𝑧𝑛+𝑙 and 𝑧𝑛+𝑙 ∈ 𝑒𝑏′,𝑦
𝑝2 ∩ 𝑍𝑁 

The above action of permutation is applied to each color component of the image to scramble 

the position of the pixels of the image. Consequently, one can get new components 𝑃𝑅, 𝑃𝐺  

and 𝑃𝐵. The scrambled image after the action of permutation is shown in Figure 4(b).    

Step 2: In any cryptographic algorithm, the substitution step is an essential part, which boosts 

the security strength of the scheme against the chosen plain text attack. In the proposed 

scheme, the S-box generated scheme (which we have discussed in section 2.2) is deployed, 

which generates good quality S-box having good cryptographic features. Subsequently, the 

obtained S-boxes are then used to substitute the scrambled components 𝑃𝑅, 𝑃𝐺  and 𝑃𝐵 of the 

image (the procedure is the same as AES substitution). As a result, one can get the substituted 

components 𝑆𝑅, 𝑆𝐺 and 𝑆𝐵. The ciphered image after substitution is shown in Figure 4(c).  

𝐸𝑅,𝐺,𝐵(𝑖, 𝑗) = 𝑆𝑅,𝐺,𝐵(𝑖, 𝑗) + 𝑟𝑝′(𝒹,𝒫)𝑖×𝑗= 𝑆𝑅,𝐺,𝐵(𝑖, 𝑗) + 𝑡𝑗3𝑦𝑖𝑚𝑜𝑑 256; for some 𝑡𝑗 ∈  𝐹𝒫 ∖ (𝐹𝒫
∗)2 

Where 𝑆𝑅,𝐺,𝐵(𝑖, 𝑗) and 𝑟(𝒹,𝒫)𝑖×𝑗are (𝑖 × 𝑗)𝑡ℎ element of the substituted component 𝑆𝑅,𝐺,𝐵. 

Consequently, one can get the new components 𝐸𝑅, 𝐸𝐺  and 𝐸𝐵, then combine the new 

components and get the ciphered image, shown in Figure 4(d).  
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3.3  Experimental Results and Comparison 

An encryption algorithm is said to be good enough for implementation purpose if it is 

thoroughly tested through various security performance tests and satisfies the corresponding 

criteria.   

       
                          (a)                               (b)                                            (c)                                      (d) 

    
      (a)                                   (b)                                               (c)                       (d) 

     
              (a)              (b)                                             (c)                                         (d) 

    
(a)                                   (b)                                               (c)                                        (d)   

 

Figure 4. Original and Ciphered images: (a) The original color images of Lena, Baboon, Pepper, and Deblur; (b) The 
Permuted images; (c) The Substituted images; (d) The Ciphered images. 

To examine the security performance against various attacks, in this study we used the color 

images of Lena, Baboon, Peppers, Deblur, with each and encrypt these images by the 
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proposed cryptosystem, shown in Figure 4. The encrypted images are then analyzed through 

various performance tests, which we discuss in upcoming subsection. 

3.3.1 Histogram Analysis 
A histogram is an important tool that measures the total number of pixels having the same 

intensity value in the image. A well-designed encryption algorithm can create uniform-ness 

in the distribution of the pixels of a ciphered image and is completely different than the 

histogram of the original color image.  

 

 
                   (a)                           (b)                            (c)                    (d) 

 
                  (a)                             (b)                              (c)         (d) 

 
               (a)                               (b)                                (c)            (d) 

Figure 5. Histograms of original color images and ciphered images: (a). The original color images: Lena, Swat image and 

Nature image; (b). The histograms of the original images; (c) The ciphered images; (d). The histograms of the ciphered 

images. 

 

To observe the resistance of the proposed encryption technique against statistical attacks, we 

investigate the histograms of ciphered images. Figure 4 shows the histograms of the original 

color images and corresponding ciphered images of ‘Lena’, ‘Swat’, and ‘Nature’. The 

histograms of the ciphered images have almost uniform distribution and significantly 
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dissimilar from those of the corresponding original images. Thus, it is revealed that the 

proposed scheme is highly resistive against the statistical attacks. 

3.3.2 Entropy Analysis 

The entropy test is used to measure the probability of occurrence and randomness in the 

ciphered image. The maximum value of the entropy analysis test for the encrypted image is 8. 

The ciphered image 𝐼′ of the original color image, 𝐼 is considered to have efficient encryption 

if its entropy test gets a high score that is 8. Besides the high entropy, its encryption strength 

is resistant to common attacks. The following mathematical description is used to compute 

the entropy 

    𝐸𝐴(𝐼′) = ∑ [𝑝(𝑥) × log2(
1

𝑝(𝑥)

255
𝑥=0 )] 

𝑝(𝑥), represents the probability of the happening of the pixel 𝑥.  
Table 6. Comparison for the entropy results of the ciphered images 

Schemes                      Proposed  Ref.[19] Ref.[60] Ref. [54] Ref. [46] Ref. [61] 
Images  Lena  Pepper Baboon Lena 
Entropy  7.9993 7.9993 7.9993 7.9927 7.9952 7.9878 7.9971 7.9974 
 

The entropy results of the proposed scheme and some of the existing are given in Table 6. In 

Table 6, the results of the proposed scheme are approximately equal to 8, which is 

comparatively better than the result of the existing scheme. So, the scheme can efficiently 

resist the statistical analysis.  

 
3.3.3 Contrast  

One of the main aspects of the picture quality is the contrast ratio, enabling the viewer to 

identify the object in the picture. Contrast analysis (CA) is used to measure the intensity level 

of contrast about pixels in the whole image. If the contrast ratio is high in the ciphered image, 

the encryption scheme is said to satisfy the contrast test. The mathematical representation of 

the contrast coefficient is given the following 

    𝐶 = ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗  

Where 𝑝(𝑖, 𝑗) denotes the number of gray level co-occurrence matrices of the image. 

 
3.3.4 Energy  

The energy analysis (AE) of an image is dependent on the gray-levels co-occurrence matrices 

of the encrypted image. The energy test measures the uniformity in pixel intensities by 

calculating the square root of the angular second moment. The following mathematical 

equation is used to calculate energy 
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                                                            𝐸 = ∑ 𝑝(𝑖, 𝑗)2𝑖,𝑗  

Whereas 𝑝(𝑖, 𝑗) represents Gray-level co-occurrence matrices (GLCM). 

 
3.3.5 Homogeneity 

Images have naturally distributed contents when captured. This analysis is used to measures 

the closeness of distributed elements of Gray Level Co-occurrence Matrix (GLCM) to GLCM 

diagonal. It is also documented as a gray tone spatial dependency matrix. Mathematically, the 

look for homogeneity analyses is represented by the equation:  

𝐻∗ =∑∑
𝑓(𝑖, 𝑗)

1 − |𝑖 − 𝑗|
𝑗𝑖

 

The value of contrast is zero for the constant image.  
Table 7. Statistical analysis of the proposed scheme with some existing techniques 

Schemes  Image Mertic Original color Image Ciphered Image 

 R G   B R G B 

Our 

scheme 

Deblur Contrast 0.1193 0.1210 0.1051 10.4439 10.5109 10.4721 

Energy 0.1749 0.2139 0.2606 0.0156 0.0156 0.0156 

Homogeneity 0.9484 0.9482 0.9532 0.3905 0.3906 0.3913 

Lena Contrast 0.3672 0.3946 0.3405 10.4758 10.4449 10.4788 

Energy 0.1391 0.0988 0.1755 0.0156 0.0156 0.0156 

Homogeneity 0.8720 0.8706 0.8784 0.3894 0.3894 0.3897 

Pepper Contrast 0.4370 0.4520 0.3849 10.5370 10.6502 10.4483 

Energy 0.1160 0.1054 0.1425 0.0156 0.0156 0.0156 

Homogeneity 0.8576 0.8704 0.8661 0.3891 0.3882 0.3890 

Baboon Contrast 0.4116 0.4297 0.4530 10.5565 10.3775 10.4869 

Energy 0.0881 0.1021 0.0862 0.0156 0.0156 0.0156 

Homogeneity 0.8397 0.8332 0.8265 0.3890 0.3902 0.3895 

 

The texture results of the different color images of Deblur, Lena, Pepper and Baboon via 

proposed scheme are given in Table 7. The contrast score of each channel of the original 

color image Lena is in between 0.3405 and 0.3946, whereas corresponding scores of an 

ciphered image is approximately 10.45, which clearly shows the occurrence of high change in 

the intensity of a pixel and its neighbor of the entire ciphered image. The homogeneity score 

for ciphered image of Lena is very low. Consequently, it indicates that GLCM difference is 
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higher. Energy score of Lena original and ciphered images illustrate the low quantity of 

recurring pairs, which describes the worth of the proposed encryption scheme. 

 
3.3.6 Correlation 

In the color image, the correlation between the adjacent pixels is high due to their pixel 

values are close to each other. The correlation coefficient measures the linearity among the 

value of the adjacent pixel in the neighborhood. The main objective of the encryption scheme 

is to distort the pixels to get the least correlation among the adjacent pixels along with 

horizontal, diagonal, and vertical directions in the image.  
Table 8. Comparison of correlation coefficient results of the proposed scheme with some existing techniques in three layers. 

Schemes  Images Metrics  Original color Image                          Ciphered Image 

     R    G     B        R        G       B 

Proposed 

scheme 

 

Deblur 

Vertical 0.9942 0.9912 0.9829 0.0000082 0.0000089 0.0000052 

Diagonal 0.9902 0.9831 0.9701 -0.000035 -0.000022 0.0000950 

Horizontal 0.9967 0.9946 0.9875 0.0000094 0.0000065 -0.000071 

 

Lena 

Vertical 0.9802 0.9819 0.9625 -0.000035 0.0000092 0.0000110 

Diagonal 0.9344 0.9320 0.9018 0.0000140 0.0000620 -0.000037 

Horizontal 0.9604 0.9619 0.9303 0.0000052 0.0000043 0.0000058 

 

Pepper 

Vertical 0.9532 0.9743 0.9527 0.0000300 0.0000220 0.0000860 

Diagonal 0.9225 0.9550 0.9053 0.0000230 0.0000640 0.0000340 

Horizontal 0.9510 0.9783 0.9509 -0.000060 0.0000940 0.0000230 

 

Baboon 

Vertical 0.9570 0.9303 0.9608 0.0000250 0.0000340 0.0000430 

Diagonal 0.9299 0.8758 0.9317 0.0000075 0.0000190 0.0000830 

Horizontal 0.9600 0.9402 0.9641 -0.000052 0.0000084 0.0000074 

Vertical 0.9803 0.9594 0.9294 0.0203 −0.0025 0.0006 

Ref.[58]  Lena Diagonal 0.9668 0.9433 0.9099 −0.0073 −0.0131 0.0111 

Horizontal 0.9813 0.9691 0.9455 0.0092 0.0002 0.0076 

Vertical 0.9682 0.9755 0.9642 0.0031000 0.0001000 0.0022000 

Ref. [60] Lena Diagonal 0.9377 0.9474 0.9271 0.0007000 0.0017000 0.0007000 

Horizontal 0.9651 0.7202 0.9572 0.0049000 0.0054000 0.0053000 

Vertical 0.9508 0.9370 0.9171 −0.001300 −0.005100 −0.007800 

Ref. [19]  Lena Diagonal 0.9259 0.9111 0.8867 −0.002500 −0.010300 0.0099000 

Horizontal 0.9777 0.9670 0.9496 0.0090000 −0.002700 −0.015500 

Vertical 0.9635 0.9648 0.9280 -0.0141 -0.0134 -0.0486 

Ref. [24] Lena Diagonal 0.8993 0.9075 0.8449 -0.0464 -0.0189 -0.0501 

Horizontal 0.9278 0.9278 0.8867 -0.0362 -0.0089 -0.0105 

Vertical 0.9642 0.9757 0.9742 0.0032000 0.0003000 0.0021000 



 

38 
 

An image encryption scheme is robust and healthy enough for security applications if the 

correlation coefficient of the ciphered image is near to zero. The correlation coefficient of 

two adjacent pixels 𝑢 𝑎𝑛𝑑 𝑣 are represented by the following equation. 

𝑟𝑢𝑣 =
𝑐𝑜𝑣(𝑢, 𝑣)

√𝐷𝑢𝐷𝑣
   

Whereas 

𝑐𝑜𝑣(𝑢, 𝑣) =
1

𝑀 ×𝑁
∑(𝑢𝑖 − 𝐸(𝑢))(𝑣𝑖

𝑀×𝑁

𝑖=1

− 𝐸(𝑣)) 

𝐸(𝑢) =
1

𝑀 × 𝑁
∑ 𝑢𝑖

𝑀×𝑁

𝑖=1

 

 

 

              (𝑅𝑣)                                                  (𝐺𝑣)                                                  (𝐵𝑣) 

 

            (𝑅𝑑)                                                       (𝐺𝑑)                                                 (𝐵𝑑) 

 

            (𝑅ℎ)                                            (𝐺ℎ)                                                 (𝐵ℎ) 
 

 

Figure 6. Correlation plots of two adjacent pixels of R, G, and B channels of the original color image 𝐿𝑒𝑛𝑎 from 

the first to third column illustrates: the vertical, diagonal, and horizontal adjacent pixels of each channel 

respectively. 
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The experimental results of the correlation test of various plain and ciphered images along 

each channel are shown in Table 8. In this paper, it is easy to observe that the correlation of 

two adjacent pixels of plain images along vertical, horizontal, and diagonal directions are 

almost equal to 1. While the correlation coefficient scores along all three directions of two 

adjacent pixels in the ciphered images by the proposed scheme are nearly 0. Furthermore, the 

results of the correlation coefficient show that the proposed encryption scheme is much 

efficient and resistant against statistical attacks in comparison to some existing relevant 

literature. 
 

 
                      (𝑅𝑣)                                                          (𝐺𝑣)                                                          (𝐵𝑣) 

 
                       (𝑅𝑑)                                                         (𝐺𝑑)                                                         (𝐵𝑑) 

     
(𝑅ℎ)                                                         (𝐺ℎ)                                                        (𝐵ℎ) 

Figure 7. Correlation plots of two adjacent pixels of R, G, and B channels of the ciphered Lena image: from the 

first to third column illustrates the vertical, diagonal, and horizontal adjacent pixels of each channel, 

respectively. 

3.3.7 Differential attack 

The NPCR (Number of pixels change rate) analysis measure the number of pixels change rate 

when one byte is adjusted of the plain image. The NPCR value of a sensitive cryptosystem 

when changing original data is close to 100%. UACI mean average intensity of difference 
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between original color image and cipher image. The increase of UACI analysis implies the 

resistance of the cryptosystem against differential attacks increase.  The NPCR and UACI 

analysis mathematically represented as: 

NPCR =
∑ ℬ(ζ1, ζ2)ζ1,ζ2,

Μ× Ν
× 100% 

Where 

ℬ(𝜁1, 𝜁2) = {
1  𝑖𝑓   ∁1(𝜁1, 𝜁2) = ∁2(𝜁1, 𝜁2)

 0   𝑖𝑓    ∁1(𝜁1, 𝜁2) ≠ ∁2(𝜁1, 𝜁2)
 

𝑈𝐴𝐶𝐼 =
1

Μ × Ν
∑ [

|∁1(𝜁1, 𝜁2) − ∁2(𝜁1, 𝜁2)|

255
]

𝜁1,𝜁2,

× 100% 

Where ∁1(𝜁1, 𝜁2) and ∁2(𝜁1, 𝜁2) represent the original image and one-pixel change image.  

 
Table 9. Comparison of NPCR and UACI analysis results of the proposed scheme with some existing techniques 
Schemes  Image NPCR% UACI% Average 

 R G   B R G B  

Deblur 99.980 99.976 99.983 36.9809 30.0386 33.7423 33.5872 

Our scheme Lena 99.979 99.985 99.982 33.4044 33.7832 35.6901 34.2925 

Pepper 99.981 99.982 99.977 33.7500 32.4338 33.1319 33.1052 

Baboon 99.970 99.979 99.974 34.4991 35.0323 34.3105 34.6140 

Ref. [58] Lena 99.653 99.652 99.651 33.4572 33.4715 33.4715 33.4384 

Ref. [62] Lena 99.650 99.644 99.662 33.4462 33.4131 33.4399 33.4330 

Ref. [19] Lena 99.630 99.602 99.601 33.60 33.30 33.40       --- 

Ref. [28] 99.5964 (Gray Image) 33.4762 (Gray Image) --- 

 

Table 9 shows the result of NPCR and UACI analysis of the proposed and previous 

cryptosystems.  From Table 9, we can see that the proposed algorithm illustrates good 

performance that would resist differential attacks. 

 
3.4 Robustness Analyses   

In this section, we investigate the performance of the encryption-decryption algorithm with 

noises. During transmission, some sort of noises creates distortion/errors in multimedia data 

via the communication channel. Therefore, to send the ciphered image through the 

communication channel, some noises are added to examine the efficiency of the decryption of 

the proposed scheme, which are briefly discussed as under. 
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3.4.1 Noise Analyses 

Impulsive or fat-tail distribution is usually known as salt and Pepper noise. An image with 

salt and Pepper noise degrades the dark and bright regions by sudden and sharp disturbances. 

Consequently, it is scattered randomly over the image in the form of dark and white pixels. 

This noise is occurred due to bit errors in transmission or during the conversion of the analog 

signal to a digital signal. Many techniques/algorithms like non-local means, block-matching 

3D filtering (BM3D), dark frame subtraction and interpolation are applied to remove such 

noise. In this study, we added the salt and peppers and Gaussian noise to the ciphered color 

image of Deblur and subsequently decipher the noisy image ciphered images as shown in 

Figure 8 and Figure 9. In Figure 8(a-d) and Figure 9(a-d) depicts the noisy cipher images and 

Figure 8(e-h) and Figure 9(e-h) display the decrypted images of the corresponding noisy 

images. It can be observed easily from the figures that deciphered images are still 

recognizable, even after the existence of noises in the ciphered images. Besides, the UACI, 

NPCR, MSE and PSNR scores are measured among the noiseless decrypted images and the 

noisy deciphered images, the results are listed in Table 10.  

 

        
     (a)                                         (b)                              (c)                              (d) 

       
                 (e)                                      (f)                                 (g)                                 (h) 
Figure 8. Slat and Peppers analysis of Deblur image: first row (a-d) Deblur ciphered image with salt and peper 
variance 0.0005, 0.005, 0.05 and 0.5; second row (e-h) corresponding deciphered images 
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(a)                         (b)                           (c)                              (d) 

       
                   (e)                          (f)                              (g)                            (h) 
Figure 9. Gaussian analysis of Deblur Image: first row (a-d) Deblur ciphered image with salt and peper variance 

0.0004, 0.0003, 0.0002 and 0.0001; second row (e-h) corresponding deciphered images   

 
3.4.2 Occluded Attack 

Due to congestion in the source of communication, some amount of image data may be 

occluded during transmission. The efficient cryptosystem should be capable to decrypt the 

recognizable image, whenever some portion of the corresponding ciphered image is lost 

during the communication.  To examine the proposed encryption scheme against the 

occluded attack, we remove various parts from the ciphered images and then decipher these 

images as shown in Figure 10. Figure 10(a-e) shows the occluded ciphered images, and the 

corresponding deciphered images are shown in Figure 10(i-p). The resultant deciphered 

images demonstrate that the proposed encryption scheme is capable to preserve the 

information of the images, whenever ½ potion of the ciphered image is lost during 

communications.    

3.4.1 Peak Signal to Noise Ratio (PSNR) 

The quality of signal representation is affected by corrupted noise. Peak signal to noise ratio 

(PSNR) is a metric that measures the ratio between the actual power of a signal and the 

power of a noisy signal and expressed in decibel unite. Furthermore, it is one of the tools that 

assess the quality of the image encryption scheme. We have used a digital image as an actual 

signal, and the distortion produced by encryption is termed as the noise in our study. The 

higher score of PSNR usually indicates that a negligible amount of data is lost in the 

deciphered image and specifies the higher strength of the encryption algorithm. 
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(a)                             (b)                             (c)                               (d) 

                         
(f)                                  (g)                                  (h)                             (e) 

             
                     (i)                                  (j)                                      (k)                            (l) 

       
                   (m)                             (n)                                          (o)                                (p) 

Figure 10. Occlusion attack:  first two rows (a-e) Occluded ciphered images; last two rows (i-p) Deciphered 

images corresponding to occluded ciphered images. 

 

The mathematical formula for computing PSNR is given by: 

PSNR = 20 ⋅ 𝑙𝑜𝑔10(
255

√𝑀𝑆𝐸
) 

where MSE (mean square error) is defined as: 
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MSE =
1

𝑀 × 𝑁
∑∑[𝐼(𝑖, 𝑗) − 𝐼′(𝑖, 𝑗)]2

𝑁

𝑗=1

𝑀

𝑖=0

 

where 𝐼(𝑖, 𝑗), 𝐼′(𝑖, 𝑗) are the pixel values of the original and ciphered image respectively. 
Table 10.  UACI, NPCR, MSE and PSNR scores of proposed schemes 

 

Noise Attack 

 

Parameters 

      Proposed Encryption Scheme                                    

PSNR             MSE            NPCR         UACI         

Salt &peppers 

 

0.0005 30.690 71.68 10.61 3.92 

0.005 28.965 103.12 15.62 5.61 

0.05 25.732 314.22 30.59 9.77 

0.5 20.126 587.76 49.98 16.3 

Gaussian  0.0004 23.856 409.92 46.21. 12.54. 

0.0003 22.687 413.57 46.74 12.87 

0.0002 22.976 429.92  47.23 13.654 

0.0001 21.562 465.98 48.67 14.021 

Occluded Attack 1/16  36.765 20.654 9.761 01.36 

1/8  34.932 32.453 15.54 03.15 

3/16  32.167 43.654 21.65 06.25 

1/4  29.765 55.176 25.76 07.75 

5/16   28.564 62.453 30.43 10.43 

3/8  26.876 76.987 37.65 13.65 

7/16 23.564 88.433 43.87 15.86 

1/2 20.543 120.76 49.54 21.76 

 

3.5 Algorithm Complexity 

Some of the factors such as Structure of CPU, memory size, image dimension plays a vital 

role in the execution of an encryption algorithm. Furthermore, the measurement of an 

algorithm is a very important part of computer science. An encryption algorithm is most 

efficient in terms of time complexity if completion of task requires the smallest number of 

operations. The standard way of expressing the time complexity of an algorithm using Big O 

notation. Therefore, the time complexity of our proposed encryption algorithm is discussed in 

the following steps. 

Step 1:  (𝑝2) number of operations are expected to find all solutions of an 

elliptic curve. 

Step 2: (𝑀 × 𝑁) number of operations are expected to permute each channel 

of the image. 

Step 3:  (𝑝) number of operations are expected to construct S-box. 

Step 4:  (𝑝2) number of operations are expected to generate PRNGs. 
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Step 5:  (𝑀 × 𝑁) number of operations are expected in the final step. 

Thus, our proposed encryption algorithm requires 𝒪{max(𝑝2, 𝑀 × 𝑁)} bits operations.  

In the next chapter, we shall apply the core arithmetic operations of EC to generate efficient 

dynamic S-boxes and will also try to verify PRN sequences by using NIST analysis. 

Furthermore, we shall show the better passing performance of the proposed of PRN 

sequences as compared to some of the existing scheme. 
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Chapter 4 

Efficient Random Numbers Generation and S-box 

Construction Scheme 
In this Chapter, we present a smart-like algorithm based on subgroup co-set operations. The 

suggested scheme uses all co-sets that generates multiple sequences that can smoothly be 

adopted in most promising communication architectures of the future such as internet of 

things (IoT). Besides, the subgroup structure on a small prime with possible embedding is 

managed to construct efficient  S-box. Whereas the performance of the proposed S-box will 

be examined via standardized tests thus found significant for multimedia data security 

applications. Moreover, a small prime based EC subgroup coset model will design, that 

generates a set of experimentally verified independent pseudo random streams. 
This chapter introduces two different methods of PRNGs.  In both methods EC operations 

will be used, which produces quality random numbers. However, the first method will use for 

the construction of S-box while the second method generates PRNGs. The graphical 

representation of complete chapter is shown in Figure 11. 

4.1 Motivation 

In recent decades, data security gets more and more attention due to rapid advancement in the 

fields of communication technology and computer vision [63]–[68]. The tools used to protect 

the contents of the data from the access of adversaries during transmission is cryptography. 

The security aspect of the secrete data entirely depends on the designing procedure of the 

cryptographic scheme. To design efficient cryptographic scheme, many researchers prefer to 

construct crypto algorithms rely on mathematical structures. Typically, the mathematical 

structures are used to generate PRNs, that play significant role in cryptographic schemes. In 

[13], [69], [70], chaotic based PRNs are constructed. The scheme in [5], utilized Bernoulli 

map for the construction of PRNs. The author also observed that our random numbers 

generator is more useful then Mersenne Twister MT19937. Payingat et al. [71], generated 

elliptic curve-based PRNs. Moreover, the author claimed that the proposed PRNs are much 

suitable for data encryption. Another interesting non-periodic PRNs are generated by Gaston 

E. Barberis in [72] using logistic maps. To increase the performance ability of the 

cryptosystem, researchers make use of pseudo random numbers generators (PRNGs) based 
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on algebraic structures. The PRNGs with sufficient size and randomization are widely used in 

the cryptographic systems, that strengthen its security characteristic. In addition, it plays 

central role in electronic games, simulation and cryptography. To examine the predictability 

feature, the NIST testing tool affirms whether the PRNGs are random or not. The internet 

source that is worldwide used to shared media files such as text, image, and video. On the 

other hand, transmission security is prominent against eavesdroppers. For instance, some 

digital images having bio-signal of irises, fingerprints. Various cryptographic algorithms 

including image encryption schemes are being established using PRNGs. Ramesh et al. [73], 

presented two phase image encryption scheme using combination of two pseudo random 

generators, which is fast to implement for image encryption. Fathi et al. [6], proposed PRNs 

generated scheme rely on ECC for image encryption. Furthermore, they discussed the 

applications in the back-door problems efficiently. Elliptic curve-based cryptography was 

first introduced in 1985 by Koblitz [11] and Miller [10]. Reyad et al. [14], encrypted the 

original image through Koblitz encoding algorithm and Chaos-Driven elliptic curve PRNGs 

(C-D ECPRNG). In [11], the author made a connection between the discrete logarithm 

problem (DLP) and EC. Since then, many researchers made their efforts to employ ECC 

using various encryption techniques to enhance its performance. Later on, Amara et al. [15], 

showed that the ECC based cryptosystem provide better security than RSA. In [6], a 

technique for an image encryption is established that utilizes a combination of Elliptic Curve 

Based Random Number Generator (EC-B-RNG)  and AES (Advanced Encryption System). 

Accordingly, the scheme gets better results for image encryption. In this method, the PRNs 

are computed followed by public shared key and the base point of the elliptic curve group. 

Then, AES algorithm is performed to complete the encryption. In symmetric key algorithm 

such as AES, the S-box is the main non-linear component. This module is capable of being 

creating confusion between the key and cipher data as discussed in [74] by Cloude Shannon. 

In recent years, various algorithms have been appeared in the literature for the construction of 

S-box [75]–[77]. Authors [72], adopt cubic polynomial map for the construction of S-box. 

This technique is considered useful because of its simple implementation. Due to the their 

highly sensitive and random natures, the chaotic and EC structures are the best choices for the 

researchers for generating random numbers and S-boxes. Therefore, these are widely adopted 

in image data encryption and hardware security schemes [5]–[8], [78]. The public key based 

cryptosystem is introduced to encrypt image data via two phase (EC and AES (Advanced 

Encryption Standard)) [6]. The former phase EC is deployed to generate effective random 
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sequence while the latter one is used traditionally. Farwa el al.[5] described an efficient 

encryption algorithm, which utilized Fresnelet transform and EC over Galois field. 

 
Figure 11. Chapter description (Flowchart) 

4.2 Basic Concepts  

An elliptic curve 𝐸𝑎,𝑏
𝑝  defined over a prime field 𝐹𝑝, is an algebraic expression of the form 

𝑦2 = (𝑥3 + 𝑎𝑥 + 𝑏)𝑚𝑜𝑑 𝑝                   (1)     

where 𝑎, 𝑏 ∈ 𝐹𝑝 and 𝑝 > 3  with the condition 

(27𝑏2 + 4𝑎3) ≠ 0(𝑚𝑜𝑑 𝑝). 

The set of all solutions  (𝑥, 𝑦) to the equation (1) are the points of the ring 𝐹𝑝 × 𝐹𝑝. Apart 

from that, a point at infinity "𝑂" is added to the set of solutions as an identity element. These 

points form an abelian group under the elliptic curve addition operation given in [1] and 
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denoted as 𝐸𝑎,𝑏
𝑝
(𝐹𝑝). In this manuscript, we refer to an elliptic curve rather than an elliptic 

curve over a prime field, otherwise stated. 

4.2.1 Elliptic Curve Group Operations 

The primary operations for the elliptic curve points group (EC-PG) are the main concern in 

this section. The scalar multiple of an element of EC-PG is much harder task as compared to 

do in other group structures. The core idea behind the scalar multiplication depends on the 

point addition and point doubling.   

𝑃 + 𝑂 = 𝑃, for all 𝑃 ∈ 𝐸(𝑎,𝑏,𝑝) 

 
4.2.2  Point Addition Formula 

For any  𝑃1 = (𝑥1, 𝑦1), 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸𝑎,𝑏
𝑝 (𝐹𝑝) with  𝑃1 ≠ 𝑃2. Then the sum 𝑃1⊕𝑃2 =

𝑅 = (𝑥3, 𝑦3) is also an element of 𝐸𝑎,𝑏
𝑝 (𝐹𝑝) using the method given as follows  

𝑅 = (𝑥3, 𝑦3) = (𝜆
2 − 𝑥1 − 𝑥2 𝑚𝑜𝑑𝑝, 𝜆(𝑥1 − 𝑥3) − 𝑦1𝑚𝑜𝑑𝑝), 

Where 𝜆 represents the slope of the line between 𝑃1and  𝑃2 

𝜆 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 𝑚𝑜𝑑𝑝 

 

4.2.3  Point Doubling Formula 

For any 𝑃 = (𝑥0, 𝑦0) ∈  𝐸𝑎,𝑏
𝑝 (𝐹𝑝). Then  𝑄 = 𝑃 + 𝑃 = (𝑥, 𝑦) is calculated as  

𝑄 = (𝑥, 𝑦) = (𝜇2 − 2𝑥0 𝑚𝑜𝑑𝑝, 𝜇(𝑥0 − 𝑥) − 𝑦0 𝑚𝑜𝑑𝑝 ) 

Whereas 𝜇 is the derivative of 𝐸𝑎,𝑏
𝑝  at 𝑃. The mathematical expression for 𝜇 is given below 

𝜇 =
3𝑥0

2 + 𝑎

2𝑦0
 

 The other properties of the group such as unique inverses and associativity are easily verified 

using  sections 4.2.2 & 4.2.3. Aside from that, the doubling formula is applied one time while 

obtaining 𝑘-length sequence using single point of EC. On the other hand, the formula in 

4.2.2, is promising in generating the terms of the sequence up to the required length. We 

recall some results: 

Theorem 4.1. [[1], Hasse’s Theorem] Let  𝐸𝑎,𝑏
𝑝 be an elliptic curve over the finite field 𝐹𝑝. 

Then the order of 𝐸𝑎,𝑏
𝑝 (𝐹𝑝) satisfies 

|𝑞 + 1 − #𝐸𝑎,𝑏
𝑝 (𝐹𝑝)| ≤ 2√𝑞 . 
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Lemma 4.1. [[1], Lemma 4.33] An elliptic curve 𝐸0,𝑏
𝑝  over a prime field 𝐹𝑝 with 𝑝 − 2 ≡

0𝑚𝑜𝑑3 has exactly 𝑝 + 1 distinct points and each integer in the field 𝐹𝑝 appear once as 𝑦-

coordinates. 

Proposition 4.1. [[4], page 230] If  𝑟 𝑜𝑟𝑑(𝐺)⁄ , where 𝐺 a finite Abelian group G, then there 

exists a subgroup of order r in 𝐺. 

4.3  Mechanism for S-box (MS) 

In this section, we discuss the idea of S-box. The construction of S-boxes is one of the main 

fulcrums to validate the security of symmetric cryptographic algorithms [79] and it is a prime 

module of non-linear mappings. It was proposed in 1949 by Claude Shannon [74]. The 

central objective of an S-box is to make the relation confused between the ciphered data and 

the keys used in ciphering. Therefore, generating efficient S-boxes through secure techniques 

are the utmost requirement of modern cryptographic schemes. For this purpose, the security 

of an elliptic curve structure enhanced our attention for designing S-boxes via its core 

operations. In this connection a simple and fast algorithm is introduced in this section. 

Initially, select a prime 𝜌 and a point 𝑃 = (𝑥, 𝑦) with 𝜌 ≡ 2(𝑚𝑜𝑑3) and 𝜌 > 257. Then 

generate a subgroup ℵ =< P > of order 𝑘1. Then collect all points G𝑖=1
𝜌+1

∈  ℵ ∪

{𝐸0,𝑡
𝜌
(𝐹𝜌) ∩ ℵ

𝑐} and sort the points  G𝑖=1
𝑘1 ∈  ℵ and  G𝑖=𝑘1+1

𝜌+1
∈ 𝐸0,𝑡

𝜌
(𝐹𝜌) ∩ ℵ

𝑐 to construct 

Substitution box S-box using y-coordinates of 𝑆𝑃
0,𝑡,𝜌

= G𝑖=1
𝑘1 ∪ G𝑖=𝑘1+1

𝜌+1 . By Lemma 4.1 prime 

field and given elliptic curve have some special relation [1]. Therefore, it is possible to use 

only subgroup generated by base elements of EC. However, it may be time consuming to 

look for the base points of EC. So, without loss of generality, we simply pick any single point 

on EC, and then form a subgroup preferably a proper subgroup. As it is also required to 

reduce the time complexity by using a proper subgroup. The construction process is clearly 

shown in Algorithm 1, while its outcome for 𝜌 = 521, 𝑡 = 91, 𝑃 = (460,74) is shown in 

Table 11. Similarly, Table 12 provides results of some common tests and their comparison 

with that of some existing S-boxes. 
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      Algorithm 1: Construction of proposed 8 × 8 S-box 

Input: A subgroup ℵ =< 𝑃 >, a minimum order of 257 generated by some point P= (𝑥, 𝑦) 

lying on elliptic curve 𝐸0,𝑡
𝝆

  with prime 𝜌 ≡ 2(𝑚𝑜𝑑3). 

Output: Substitution box 𝑆𝑃
0,𝑡,𝜌

 (8 × 8 S-box) 

1. 𝑃 ∶= (𝑥, 𝑦); 

2. 1 ← 𝑖 do 

3. 𝑅 = 𝑃⊕ 𝑃; 

            While  𝑅 ≠ ∞   

 𝑆𝑖 = 𝑃⊕𝑅 

 𝑖 + 1 ← 𝑖 do 

4. 𝒆𝒏𝒅 𝑤ℎ𝑖𝑙𝑒 

5. ℎ1 = { 𝑋(𝑖)} ∪ {𝑥} 

6. ℎ2 = { 𝑌(𝑖)} ∪ {𝑦} 

7. ℵ = [ℎ1, ℎ2] 

8. 𝐾 = 𝐸0,𝑡
𝜌
(𝐹𝜌) ∩ ℵ

𝑐 

9. 𝐾 = [𝑠1, 𝑠2] 

10. 𝑆𝑃
0,𝑡,𝜌

= {𝑠2} 

 

The security analysis of the proposed S-box is to verify the cryptographic strength of the 

proposed S-box algorithm, we carried out several standard measurements (Tests). The briefly 

discussion is given below. 

4.3.1 Measurements and Results of the Proposed S-box  

A substitution box S-box with good cryptographic properties (CP), affirms high security of 

the encryption scheme against cryptanalyst.  To check the strength of CP of an S-box, some 

commonly used measurements (Tests) such as nonlinearity (NL), bit independent criterion 

(BIC), linear approximation probability (LAP), differential approximation probability (DAP) 

and strict avalanche criterion (SAC) play vital role. The concept of NL is essential 

component among those cryptographic measurements on the Boolean functions which is 

thoroughly presented in [80]. Now and in the foreseeable future, it has undoubtably been 

affirmed its importance in cryptosystems against various linear assaults [81]. 
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Table 11: The proposed S-box S(460,74)
0,91,521  

13 54 140 102 23 246 9 84 31 147 109 110 85 123 225 209 

130 60 180 120 192 94 142 35 144 30 152 135 59 64 219 185 

243 105 98 227 77 45 46 199 153 247 146 66 67 183 127 237 

201 61 95 15 92 69 251 56 89 6 220 14 252 76 10 20 

3 249 191 43 149 1 26 138 112 151 148 53 104 228 179 12 

107 197 236 38 165 167 91 238 47 215 216 71 33 204 8 226 

162 141 211 212 83 145 99 250 156 189 22 126 196 68 136 203 

132 75 16 39 96 161 48 134 174 154 214 87 111 52 44 158 

70 253 232 160 113 157 240 166 2 57 241 4 150 223 177 106 

80 198 90 7 88 122 21 229 217 235 50 190 173 184 143 222 

248 11 205 159 81 168 51 118 101 63 195 116 97 234 73 210 

186 5 114 170 125 193 213 41 255 49 65 218 194 163 124 29 

121 19 128 139 221 42 164 32 58 18 175 182 242 181 233 133 

245 129 208 115 202 0 17 207 231 206 25 224 176 108 187 137 

28 55 78 37 86 40 254 155 188 178 239 119 27 230 171 74 

62 131 172 93 79 117 24 34 100 82 72 200 36 244 169 103 

 

The optimal score of non-linearity of an S-box is 120. The average value of nonlinearity of 

our designed S-box 𝐒(𝟒𝟔𝟎,𝟕𝟒)
𝟎,𝟗𝟏,𝟓𝟐𝟏 is 107. BIC is a significant property in the measurements of an 

S-box, introduced by Webster and Tavares in [82]. This criterion is depending on the 

correlation between the output vector correspond to slightly change in input bits vector. The 

BIC score lies in the interval [0,1]. LAP [22], is an important feature in the measurements of 

strength of an S-box. It measures the highest probability value of an event with same parity of 

bits masked of input and output for different combinations of bits.  DAP is the study of 

differential uniformity in an S-box. The minimum the DAP score of an S-box, the more it 

efficient against differential assaults.  Webster and Tavares in [82], presented another 

criterion, called strict avalanche criterion (SAC). SAC of an S-box is an attractive property 

that examines the half bits change in the output by flipping a single bit of the input. The 

above Table 12, indicates that the average nonlinearity of the proposed S-box is better than 

the existing S-boxes in [39], [83], [84], while minimum value of NL is greater than the S-

boxes generated in [39], [71], [83], [84], which clearly shows that proposed technique has the 
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capability of generating efficient S-boxes to transform the input data of the image  to cipher 

output data. 

Table 12. Results and comparisons with existing S-boxes 

Furthermore, the average scores for the BIC and SAC of 𝑺(𝟒𝟔𝟎,𝟕𝟒)
𝟎,𝟗𝟏,𝟓𝟐𝟏 are slightly more close to 

optimal score as compare to the S-boxes in [39], [83], [84], and the minimum score of the 

SAC of 𝑺(𝟒𝟔𝟎,𝟕𝟒)
𝟎,𝟗𝟏,𝟓𝟐𝟏 is greater than or equal to the SAC scores of S-boxes constructed in [71], 

[84], [86]. Similarly, the SAC maximum score of 𝑺(𝟒𝟔𝟎,𝟕𝟒)
𝟎,𝟗𝟏,𝟓𝟐𝟏 is far better than that of [15], [71], 

and approximately equal to the S-box in [86]. Thus, it is clearly revealed that our designed S-

box is more capable of creating confusion in the cipher data than that of S-boxes designed in 

[39], [83], [84]. Additionally, the DAP score of our proposed S-box 𝑺(𝟒𝟔𝟎,𝟕𝟒)
𝟎,𝟗𝟏,𝟓𝟐𝟏 is comparable 

with all S-boxes [39], [83], [84], which is enough to resist against differential attacks. 

Moreover, the LAP score of our suggested S-box 𝑆(460,74)
0,91,521 is not so bad to resist against linear 

attacks. 

4.4  EC Subgroup PRNS Module (ECS-PRNSM) 

In this section, we introduced a new efficient algorithm in order to generate ECS-PRNSM 

(EC subgroup PRN sequences module) using points on EC. The multi set of sequences arise a 

question, whether the proposed algorithm allows us to generate independent sequences using 

single seed. The answer to this is follows from the Lemma 4.1. In which we tried to prove 

that the sequences obtained, are independent. A non-trivial and proper cyclic subgroup of 

𝐸0,𝑎
𝑝 (𝐹𝑝) is the key requirement for the generation of ECS-PRNSM. The process description 

of the proposed scheme is given as under.  For any prime number 𝑝 > 2 and 𝑎 ∈ 𝐹𝑝 

satisfying Lemma 4.1. There exists an elliptic curve  𝐸0,𝑎
𝑝  over a field 𝐹𝑝 with 𝐸0,𝑎

𝑝 (𝐹𝑝) as a 

group. Since 𝐸0,𝑎
𝑝 (𝐹𝑝) is abelian group, then every divisor of Ord (𝐸0,𝑎

𝑝 (𝐹𝑝)) produces a 

subgroup of that order. Let a point 𝑃0 is chosen at a random lying on EC  𝐸0,𝑎
𝑝  such that 

S-box 𝐍𝐋

𝐌𝐢𝐧             𝐀𝐯𝐠            𝐌𝐚𝐱
 

𝐁𝐈𝐂

𝐌𝐢𝐧                       𝐀𝐯𝐠
 

LAP DAP         𝐒𝐀𝐂

𝐌𝐢𝐧                     𝐀𝐯𝐠                   𝐌𝐚𝐱
 

Proposed 106               107               108 0.46289           0.50223 0.125 0.039062    0.40625    0.49829          0.578125 
 

Ref.[71]  104              --                     -- 0.4667968            0.5022 0.13290 0.0234375       0.40625       0.497558 0.6250 

Ref.[12] 106              --                     -- 0.4707031            0.5013 0.14060 0.0234375       0.390625          0.49415  0.6094 

Ref.[39] 104              105.8             108       --                    0.5032 0.12500 0.0390625           --                  0.4976              -- 

Ref.[84]  100              104.7             108       --                    0.4942 0.14063 0.0390625           --                  0.4982              -- 

Ref.[26] 104             106                 110       --                    0.5058 0.14063 0.0390625           --                  0.5039              -- 

Ref.[27] 104              --                     -- 0.4667969            0.4989 0.05470 0.0391000        0.4018            0.4946 0.5781 

Ref.[85]                    106 0.5023 0.12500 0.0313000        0.4958 
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Ord (𝑃0)≪Ord (𝐸0,𝑎
𝑝
(𝐹𝑝)). 

Furthermore, we need to introduce some notations and basics of proposed ECS-PRNSM 

scheme. The term Ord represents the order of an element. Let |ℋ|=|𝑃0 ∖ {∞}| = 𝑛, that is, 

𝑛 + 1 is number of elements in the cyclic group < 𝑃0 > generated by 𝑃0, 𝐾 = 𝐸0,𝑎
𝑝 (𝐹𝑝) ∖

{∞} and 𝑀 = 𝐾 ∩ℋ𝑐 with ℋ𝑐 = 𝐸0,𝑎
𝑝 (𝐹𝑝) −ℋ, cardinality of 𝑀 is 𝑟. The set 𝑊 = ∏ 𝑀𝑟

𝑖=1  

is cartesian product of 𝑀. Consider the set 

 𝐺 ⊂ 𝑊 and 𝐺 = {(𝑔1, 𝑔2, … , 𝑔𝑟): 𝑔𝑖 ≠ 𝑔𝑗 for all 𝑖 ≠ 𝑗} 

Moreover, for any 𝑔 ∈ 𝐺, we define a set 

𝑔 +ℋ = {𝑔 + 𝑄 ∶  𝑔 + 𝑄 = (𝑔𝑖⊕𝑄) ; ∀𝑄 ∈ ℋ} 

Define a map  

𝜔𝑦: 𝑔 +ℋ ⟶ (𝐹𝑝)
𝑟
 

𝜔𝑦((𝑔𝑖⊕𝑄)) = (𝑦𝑖
𝑄) 

Where 𝑦𝑖
𝑄 is the 𝑦 −coordinate of 𝑔𝑖⊕𝑄. 

Preposition 4.2: The mapping 𝜔𝑦 is one-one. 

Proof.  First, we show that the mapping above is well defined. Let for any 𝑔 + 𝑄1, 𝑔 + 𝑄2 ∈

𝑔 +ℋ with 𝑄1 ≠ 𝑄2. Let 𝑔 + 𝑄1 = 𝑔 + 𝑄2. Implies that (𝑔𝑖⊕𝑄1) = (𝑔𝑖⊕𝑄2) for all 𝑖. 

On contrary, suppose 𝜔𝑦(𝑔 + 𝑄1) ≠ 𝜔𝑦(𝑔 + 𝑄2)  implies that (𝑦𝑖
𝑄1) ≠ (𝑦𝑖

𝑄2), which implies 

 𝑦𝑖
𝑄1 ≠ 𝑦𝑖

𝑄2 , for some 𝑖 ≤ 𝑟. Then there exists some 𝑔𝑖 ∈ 𝑔 such that 𝑔𝑖⊕𝑄1 ≠ 𝑔𝑖⊕𝑄2,  

for some 𝑖. Which is contradiction to the fact 𝑔 + 𝑄1 = 𝑔 + 𝑄2. So, 𝜔𝑦(𝑔 + 𝑄1) = 𝜔𝑦(𝑔 +

𝑄2). Therefore, 𝜔𝑦 is well defined. 

To show that the map 𝜔𝑦 one-one. Let  𝑔 + 𝑄1, 𝑔 + 𝑄2 ∈ 𝑔 +ℋ with 𝑄1 ≠ 𝑄2, 𝜔𝑦(𝑔 +

𝑄1) = 𝜔𝑦(𝑔 + 𝑄2) implies that (𝑦𝑖
𝑄1) = (𝑦𝑖

𝑄2).  On contrary, suppose that 

 𝑔 + 𝑄1 ≠ 𝑔 + 𝑄2, then 𝑔𝑖⊕𝑄1 ≠ 𝑔𝑖⊕𝑄2, for some 𝑖. Thus, 𝑦𝑖
𝑄1 ≠ 𝑦𝑖

𝑄2 or 𝑥𝑖
𝑄1 ≠ 𝑥𝑖

𝑄2 for 

some 𝑖. This implies that if 𝑦𝑖
𝑄1 ≠ 𝑦𝑖

𝑄2 for some 𝑖, then it clearly contradicts the fact in 

equation (3).  So,  𝑦𝑖
𝑄1 = 𝑦𝑖

𝑄2, for all 𝑖.  On the other hand, if 𝑥𝑖
𝑄1 ≠ 𝑥𝑖

𝑄2 for some 𝑖. Which is 

again a contradiction to the fact in Lemma 4.1. Thus 𝑥𝑖
𝑄1 = 𝑥𝑖

𝑄2, for all 𝑖. Consequently 𝑔 +

𝑄1 ≠ 𝑔 + 𝑄2, and the mapping 𝜔𝑦 is one-one.  

Obviously, Propositions 4.1 and 4.2, facilitate to generate with confirmation a set 𝐴 =

{𝑇𝑛
𝑃0,𝑐,𝑝} of dimension 𝑛 × 𝑟 consisting of multi-independent pseudo random sequences and 

the point 𝑃0 of order 𝑛 + 1. Figure 12, shows the mutual dissimilarity pattern among these  
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(a)         (b) 

Figure 12. (a)-(b) show the clear picture of pointwise dissimilarity between consecutive rows and columns. (a) 

first 1360 random stream of consecutive rows (b) Representatives of each ECS-PRNSM on consecutive indexes. 

Algorithm 2. Generation of  ECS-PRNSM 

Input A subgroup ℋ =< 𝒬 >, generated by some point 𝑄 = (𝑥, 𝑦) lying on elliptic curve 𝐸𝒃,𝑎
𝑝   with 

number of points 𝐸𝑏,𝑎
𝑝
(𝐹𝑝) and prime 𝑝 = 2(𝑚𝑜𝑑3). 

Output Random number sequences 𝑆𝑖=1𝑛  

1. Start 

2. 𝒯 ≔ ∅ 

3. ℋ =< 𝒬 >, %Algorithm 1 

4. 𝑋1: = ℋ(: ,1) 

5. 𝑌1: = ℋ(: ,2) 

6. ℬ ≔ ℋ𝑐 ∩ 𝐸𝑏,𝑎
𝑝
(𝐹𝑝)  

7. ℬ ≔ 𝑠𝑜𝑟𝑡𝑟𝑜𝑤(ℬ, 2) 

8. [𝑟1, 𝑟2] ≔ 𝑠𝑖𝑧𝑒(ℋ) 

9. [𝑠1, 𝑠2] ≔ 𝑠𝑖𝑧𝑒(ℬ) 

10. 𝒞 ≔ [ ] 

11. [𝑟 + 1, 𝑟 + 1] ≔ 𝑠𝑖𝑧𝑒(𝒞) 

12. [𝑠 + 2, 𝑠 + 2] ≔ 𝑠𝑖𝑧𝑒(𝒟) 

13. 𝑖 = 1 𝑎𝑛𝑑 𝑗 = 1 

14. 𝒘𝒉𝒊𝒍𝒆 𝑖 ≤ 𝑠 𝐝𝐨 

15. 𝒘𝒉𝒊𝒍𝒆 𝑗 ≤  𝑟 𝐝𝐨 

16. 𝑅 ≔ ℬ𝑖⊕ℋ𝑗     

17. 𝑖 = 𝑖 + 1     

18. 𝐞𝐧𝐝 𝑤ℎ𝑖𝑙𝑒 I 

19. 𝑗 = 𝑗 + 1 

20. 𝐞𝐧𝐝 𝑤ℎ𝑖𝑙𝑒 j 

21. return 𝒞(𝑅(: ,2)) 

22. end for 

23. 𝒞 

24. 𝒯 ≔ [𝒞, 𝑌1] 
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sequences. Furthermore, the dimension of 𝐴 is directly proportional to the choice of a prime 

𝑝 and order of the point 𝑃0. 

Proposition 4.3: Let 𝐼𝑢×𝑣 be an image data and a prime number 𝑃 such that 𝑚𝑎𝑥 {𝑢, 𝑣} <

𝑃 < 𝑢 × 𝑣  with 𝑝 = 2(𝑚𝑜𝑑3). Then there exists a subgroup ℋ ≼ 𝐸0,𝑏
𝑃 (𝐹𝑃)  such that 

encryption scheme is possible. 

Proof. Proof followed by propositions 4.1 and 4.2. 

4.5 NIST (800-22 test suit) 

Numerous statistical tests are performed to determine the randomness quality of the ECS-

PRNSM. In this reason, NIST test suite is the standard tool for evaluation of the sequence. 

The test suite consists of fifteen tests of different natures for computing and evaluation of the 

randomness of cryptographic generated ECS-PRNSM [73]. These tests are briefly discussed 

in the following. 

 
4.5.1 Frequency (monobit) Test (FM. T):  

The frequency test is focus on the proportion of zero’s and one’s on the whole sequence. A 

bit’s sequence is passing the frequency monobit test if its test score attains minimum value of 

0.01. All these tests depend on being successful of this test. 

 
4.5.2  Frequency Test within Block (BF. T) 

The prime idea of this test is to examine the percentage of ones in M-bits blocks. If the 

frequency of ones in each M-bit block is close to 𝑀
2

 of a sequence, the sequence is said to 

satisfy BF test criteria. 

4.5.3 Longest of Runs of Ones in a Block Test (LR. T) 

 LR. T calculates the probable value of longest runs of ones in a sequence. 

 
4.5.4 Run Test (R. T) 

 An R. T determines the expected value of number of runs of zeros and ones of different 

lengths in a sequence. 

 
4.5.5 Binary Matrix Rank Test (BMR. T) 

The main motive behind BMR. T is to inspect whether the substrings of a constant length of 

the original sequence have linear dependence among them. 
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4.5.6 Cumulative Sums Test (CS. T) 

CS. T is used to examine the cumulative sum in the tested sequence of partial sequences 

occurred, relative to the expected behavior of that cumulative sum for random sequences. 

4.5.7 Approximation Entropy Test (AE. T)  

For the comparison of overlapping blocks’ frequency of two consecutive lengths (n and n+1) 

with the probable outcome for any random sequence. The length might be taken to be 10 bits 

of each block. 

4.5.8 Non overlapping Template Matching Test (NTM. T) 

The rejection of a sequences based on too many occurrences of a given non periodic pattern 

is made by this test. 

4.5.9 Overlapping Template Matching Test (OTM. T) 

The rejection of a sequences based on deviations from the expected number of runs of ones of 

a given length is made using this test. 

4.5.10 Maurer’s Universal Statistical Test (MUS. T) 

 MUS. T is used to compress a sequence without losing information. 

4.5.11 Random Excursions Test (RE. T)  

The purpose of this test is to determine if the number of times a particular state is visited 

within a cycle deviate from expected value for a random sequence. 

4.5.12 Random Excursions Variant Test (REV. T)  

The key role of this test is the detection of deviations of various stats from the expected 

number of visits in the random walk. 

4.5.13 Linear Complexity (LC. T) 

This test determines whether the structure of the sequence is complex enough to be 

considered random.  

4.5.14 Discrete Fourier Transform Test (DFT. T):  

The core phenomenon of DFT. T is to detect the repetitive patterns in the tested sequence that 

would exhibit a deviation from the assumption of randomness. 
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4.5.15 Serial Test (S. T) 

To determine the similarity between the number of occurrences of the 2
m

m-bit overlapping 

patterns and expected for a random sequence is judged using this test. 

4.6 NIST Analysis and Comparison 

In this section, we present the NIST statistical Testing tool to evaluate the bits sequence for 

randomness. The package comprises fifteen different tests. A sequence is assessed through 

each test separately. The sequence that passes all the tests would call random otherwise 

insufficient. The passing score for each test is the numerical value 𝑃, which is greater or 

equal to pre-defined threshold 𝛽. The sequence that satisfies the test criteria relative to 𝛽 is 

random with confidence of 1 − 𝛽.  

Our ECS-PRNSM are evaluated by setting 𝛽 = 0.01, which imply that a sequence is 

accepted as random with confidence 0.99 unless it’s 𝑃 value is greater than 0.01. 1359 

sequences are generated by the proposed mechanism, each of length 32652 bits. Then, 

employed each test to compute 𝑃 values for their respective sequence. The test results in 

terms of 𝑃 values of the proposed sequences are shown in table 1. Likewise, the ratio of the 

passing sequences to the total number of sequences are computed too. The single most 

remarkable fact to emerge from the Table. 13 is that the tests FM. T, CS. T, R. T, S. T and AE. 

T are easily verified by each sequence, whereas for the remaining tests except MUS.T, the 

average value of the proportions is 99.1%. These facts indicate that our proposed scheme 

gives great confidence in generating maximum number of bitstreams then the scheme in [87]. 

The drawback of the pseudo random sequences generated by the scheme in [87] is that, some 

of the sequences fail to satisfy each test. Moreover, the ignorance of its application aspect 

also arises a question mark on its efficiency. In [88], the authors developed a novel TRNG 

scheme using stochastic diffusive memristor. In this technique, 76 sequences are generated 

and assessed using NIST 800-22 test suite. Furthermore, the scheme hardly generates the 

random sequences with proportion value 0.95, which is in fact much less than the proportion 

value produced by our scheme. This fact is revealing that our proposed technique is far better 

as compare to the scheme in [88].  

In the next Chapter, we shall present the practical application of ECS-PRNSM and MS in 

multimedia data security along with S-box and PRN mechanisms. Besides a well-defined 
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mathematical model (MM) will introduce for practical implications regarding smooth 

diffusion that will make it easy to stretch via slight change in one of its secret keys. 

Table 13. NIST (800-22 test suit) results for ECS-PRNSM subgroup-based pseudo random number sequences 

S.No Test name Number of sequences 

with 𝑝 ≥ 0.01(Passed) 

Number of sequences 

with 𝑝 ≤ 0.01(Failed) 

Passing Rate 

1 FM. T 1359 0 1 

2    CS. T(Forward) 

     CS.T(Backward) 

1359 

1359 

0 

0 

1 

1 

3 LC. T 1334 15 0.9816 

4 BF. T 1350 9 0.9934 

5 LR. T 1344 15 0.9889 

6 R. T 1359 0 1 

7 BMR. T 1337 22 0.9838 

8 NTM. T 1349 10 0.9926 

9 OTM.T 1357 2 0.9985 

10 S. T Test 1 

Test2 

1359 0 1 

1359 0 1 

11 MUS.T Not applicable ------ ------ 

12 DFT. T 1343 16 0.9882 

13 AE. T 1359 0 1 

14 RE. T (Sample=1300) 

1) x=-4 1281 19 0.9853 

2) x=-3 1285 15 0.9885 

3) x=-2 1292 8 0.9938 

4) x=-1 1290 10 0.9923 

5) x=1 1293 7 0.9946 

6) x=2 1294 6 0.9954 

7) x=3 1291 9 0.9930 

8) x=4 1292 8 0.9938 

15)  REV.T(Sample=1300) 

1) x=-9 1291 9 0.9930 

2) x=-8 1290 10 0.9923 
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3) x=-7 1290 10 0.9923 

4) x=-6 1287 13 0.9900 

5) x=-5 1291 9 0.9930 

6) x=-4 1287 13 0.9900 

7) x=-3 1292 8 0.9938 

8) x=-2 1292 8 0.9938 

9) x=-1 1288 12 0.9907 

10) x=1 1287 13 0.9900 

11) x=2 1289 11 0.9915 

12) x=3 1293 7 0.9946 

13) x=4 1293 7 0.9946 

14) x=5 1292 8 0.9938 

15) x=6 1291 9 0.9930 

16) x=7 1292 8 0.9938 

17) x=8 1289 11 0.9915 

18) x=9 1291 9 0.9930 
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Chapter 5 

 Mathematical Model Based on PRN with Image 

Encryption Applications 
 

It is very hard to design a cryptosystem that could be implemented to secure all types of 

multimedia data regardless of its dimension. Since a single seed may not cover to manage all 

dimensions simultaneously. To achieve this goal, we proposed an image encryption system 

with large key space, quality encryption and smooth decryption process that probably works 

to encrypt image data of any size. The whole description of this chapter is shown in Figure 

13. 

5.1 Motivation 

Nonlinear dynamical systems have wide range of applications in multimedia data security. In 

some systems such as chaotic systems, the security risk and computational efforts are 

depended to some extent on their dimensions. High dimensional chaotic systems are 

considered secure as compared to low dimensional chaotic system. However, in respect to 

computational complexity, these require more calculation time in the designing of 

cryptosystems. Besides, low dimensional chaotic systems are apparently more at risk against 

cryptanalysis attacks due to small key space [9].  

On the other hand, elliptic curve EC structures are found better to overcome these issues 

while generating random numbers [10]. Toughi et al. [6], developed an image encryption 

technique adopts pseudo random architecture using an EC with finite field as a domain. 

Haider et al. [78], investigated a scheme with an image application based on PRNs, 

permutation-substitution modules. In [6], [89], pseudo random numbers schemes are stacked 

to create better diffusion impact in the image data. Although, in these schemes, the authors 

effectively made use of core operations of EC, but at least two core operations are required to 

obtain each random number [6]. Consequently, it is more costly and higher computational 

complexity during its real time implementation. Similarly, pseudo random numbers are 

generated to design an efficient image encryption schemes [78], [90], but their efficiency is 

not verified through one of the standardized tests suits such as NIST 800-22 or DIEHARD. 
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To address these problems more efficiently and reduce the time complexity, we design a 

smart-like cryptosystem for image data encryption based on EC core structure. With the help 

of the EC core structure, the level of randomness in the output data is increased, so that it 

passes almost all standardized tests. As a result, the original content is almost impossible for 

adversary to recover once masked with the data generated using proposed structure. In this 

way, one may consider the core operations of EC as a striking feature of the proposed work. 

Besides EC core operations, a well-known group technique is performed to develop S-box 

and PRN construction mechanisms. Along with S-box and PRN mechanisms, a well-defined 

mathematical model (MM) is introduced for practical implications regarding smooth 

diffusion. The reason behind the smooth diffusion is that it can be easy to stretch via slight 

change in one of its secret keys. Consequently, it is the main source of the proposed scheme 

for diffusing all kind of multimedia data having any dimension. In other words, our scheme is 

not limited to generate a single PRN sequence and S-box, but rather multiple independent 

PRN sequences (IPRNS) and S-boxes in a single round. Generally, multiple sequences and S-

boxes are mainly generated to cipher multiple data files simultaneously. As far as the time 

complexity is concerned, there exactly two operations are attached to obtain each pseudo 

random number. To the best of author knowledge, this algebraic aspect of EC is not 

addressed for the purpose to generate random sequences in the recent past. The main 

intention behind the proposed scheme is to enlighten the strength and efficiency of the purely 

algebraic EC-group structure. The generation of IPRNS in the ECS-PRNSM are obtained 

through group theoretic coset operation on EC over a small prime. Likewise, S-box 

generation technique is developed using embedded sample of elements to the subgroup of 

elliptic curve point group (EC-PG). These jointly generate an efficient and smart 

cryptosystem for practical implications. 
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Figure 13. Chapter description (Flowchart) 

5.2  Mathematical Modeling for Image Encryption 

In this section, the plain image data 𝐼𝑢×𝑣 is chosen to encrypt through proposed cryptosystem. 

This encryption process consists of two modules 4.3 & 4.4, the implementation output is 

shown in Figures 14, 15 & 16. The detailed description of our proposed scheme is given by 

the following steps 

Step.1.  Without loss of generality, we assume the sequences set 𝑊 sized 𝑛 × 𝑟, and a prime 

ƿ is  

chosen with 𝑛 + 𝑟 < ƿ < 𝑢 × 𝑣, satisfying preposition 4.2. Select some 𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑟, 

there exists a triplet ℳ = (ℋ, 𝑇𝑖
𝑃0,𝑐,𝑝, 𝑔𝑗 +ℋ) with y-coordinates express as 

(ℋ, 𝑇𝑖
𝑃0,𝑐,𝑝, 𝑔𝑗 +ℋ)𝑦 = 𝐹𝑝

×. Meanwhile, elliptic curve 𝐸0,ɓ
ƿ  with y-coordinates 𝑒ɓ,𝑦

ƿ  except 

zero entry is adopted to act on the triplet (ℋ, 𝑇𝑖
𝑃0,𝑐,𝑝, 𝑔𝑗 +ℋ) as permutation. The 

generalized mathematical model is defined below 

𝜇: 𝑒ɓ,𝑦
ƿ
×ℳ ⟶ 𝐹𝑝 

{if 𝑒(𝑚+𝑙) ≤ 𝑜𝑟𝑑(ℳ), for some 𝑙 ∈ 𝐹𝑝
× and 𝑚 = 1,2, … , 𝑛} 



 

64 
 

𝜇(𝑒ɓ,𝑦
ƿ
,𝑚) = 𝜇(𝑒𝑚, 𝑚) = 𝑚𝑒(𝑚+𝑙)

      

 

Step.2.  Collect non-repeated random streams of length 𝑟, which refer as ℳ𝑛. On the other 

hand, pick out  

an arbitrary 𝛼 ∈ ℳ𝑛  and sort a set ℳ𝑛 as 

ℳ𝛼 = {ℳ𝑛(𝑘) ≼ ℳ𝑛(𝑙) ;  ∀ ℳ𝑛(𝑘) ≥ 𝑛 − 𝛼 ; 𝑤ℎ𝑒𝑟𝑒 𝑘, 𝑙 ∈ {1,2, … , 𝑛} 

Then defined a mapping 

𝛾𝛼 ∶ ℳ𝛼 × 𝐴 ⟶ 𝐹𝑝
𝑟 

𝛾𝛼(ℳ𝛼 , 𝑇𝑛
𝑃0,𝑐,𝑝) = {

𝑇𝑛
𝑃0,𝑐,𝑝;  𝑛 = 1,2, … , 𝛼 − 1

𝑇ℳ𝛼(𝑘)
𝑃0,𝑐,𝑝 ;   𝑘 = 𝛼, 𝛼 + 2,… , 𝑛

 

Then clearly 𝛾𝛼 is one-one, and generate a 𝐴′ by embedding a new sample set of sequences 

Δ = {𝛾𝛼(𝑇𝑛
𝑃0,𝑐,𝑝): ∀ 𝑛 ≥ 𝛼} in the set 𝐴. 

Step.3.  Diffusion: Select a channel 𝐶 of the image data 𝐼𝑢×𝑣 with 1 < 𝑙1, 𝑙2 < 𝑛 

such that  𝑙1 < 𝑙2 and 𝑙2 − 𝑙1 = 𝑢 Then, there exists a subset given as follows  

ℬ𝑙1,𝑙2 = {𝑇𝑛
𝑃0,𝑐,𝑝: 𝑛 = 𝑙1, 𝑙1 + 1,… , 𝑙2} ⊆ 𝐴′. 

As a result, a set given as follows 

𝒮𝑞 = {𝑇𝑛
𝑃0,𝑐,𝑝(𝒿): ∀ 𝑇𝑛

𝑃0,𝑐,𝑝 ∈ ℬ𝑙1,𝑙2 𝑎𝑛𝑑 𝒿 = 𝑞, 𝑞 + 1, … , 𝑣, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑞 ≤ 𝑣} 

of multiple streams are generated to diffuse the channel 𝐶 using bitwise XOR operation. The 

diffusion process is described as below 

𝒟(𝒮𝑞; 𝐶) = 𝑚𝑜𝑑(𝐶 + 𝑚𝑜𝑑(𝒮𝑞 , 256)) 

Step.4. Confusion: Before performing confusion process on the data 𝒟; each channel  

of the diffused image data  𝒟(𝑖, 𝑗) = {𝑃′(𝑖, 𝑗)}𝑖=1,𝑗=1
𝑀,𝑁  of size 𝑀 ×𝑁 is divided into blocks 

with minimum size of 2 × 2, and then, permuted all with separately chosen elliptic curve 𝐸0,𝑏𝜋  

𝑦 −coordinates. The process is explained in the following. 

(i). Select a set of integers {𝑑𝑅′ , 𝑑𝐺′ , 𝑑𝐵′}  with each less then 𝑀×𝑁 
2

, preferably 2. 

(ii). Convert each channel into blocks 𝐵′(𝑖, 𝑗), according to one of the integers given in                           

Step.4(i).        

 

(iii). Choose pair of primes 𝜋1 and 𝜋2 for each channel. Define elliptic curve 𝐸0,𝑏1
𝜋1 and 𝐸0,𝑏2

𝜋2  

 𝜋1, 𝜋2 ≡ 2(𝑚𝑜𝑑3), and then pick the sets of 𝑦 −coordinates of both ECs points. 
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(iv). Transform each block location to disturb the partial information using Step 3 in each 

channel, namely 𝐷𝑅 , 𝐷𝐺 , and 𝐷𝐵. The mathematical representation of the permutation 

process is given by the following 

For 𝑦𝑗 ∈ 𝐸0,𝑏1
𝜋1 , 𝑦𝑖′ ∈ 𝐸0,𝑏2

𝜋2  and 𝑦𝑗 ≤ 𝑟1, 𝑦𝑖′ ≤ 𝑟2 

𝐵𝑇(𝑦𝑖
′, 𝑦𝑗) = (𝑦𝑖

′, 𝑦𝑗) ∗ 𝐵
′(𝑖, 𝑗)  

Otherwise 

𝐵𝑇(𝑦𝑖+1
′ , 𝑦𝑗+1) = (𝑦𝑖+1

′ , 𝑦𝑗+1) ∗ 𝐵
′(𝑖, 𝑗)  

Where 𝐵′(𝑖, 𝑗) is the (𝑖, 𝑗)th block of diffused image 𝒟, whereas total number of blocks are 

𝑟1 × 𝑟2. After block scrambling process in Step.4 (iv), transformed image can be referred as 

𝒟𝑇. Finally, the transform image data  𝒟𝑇 is permuted traditionally with S-box generated as 

sketched in algorithm 1, which is presented as 

𝔢(𝑆𝑃
0,𝑡,𝜌

; 𝒟𝑇) = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑆𝑃
0,𝑡,𝜌

; 𝒟𝑇) 

Perform all the above steps from (1-4) for each channel 𝐶 to complete the encryption process 

and consequently obtain the ciphered image 𝔢(𝐼𝑢×𝑣). In our scheme, the original digital image 

initially experiences diffusion process, and then scramble through traditional substitution via 

S-box discussed in section 4.3 and finally, obtain the encrypted image. 

 

5.3 Performance Analyses of the Proposed Encryption Scheme 

A best encryption scheme could be able to ensure security against all kinds of statistical, 

differential, exhuastive attacks. In this section, some security related experiments are 

conducted to  examine the performance of the proposed technique. The numerical simulations 

of our algorithms are performed in an enviroment with Matlab 2019b on personal computer 

Intel® Core i7-7500U, CPU @ (2.70GHz-2.90GHz) with window 10  and 8GB RAM. the 

sample digital color images getting from database [19]. We used the sample images “Lena”, 

“Baboon”, “Pepper”, “Beans” and “House” with size 256 × 256 × 3, otherwise specified. In 

our proposed encryption scheme, the secret keys 𝑑𝑅 = 𝑑𝐺 = 𝑑𝐵 = 2, 𝜋1
𝑅 = 𝜋1

𝐺 = 𝜋1
𝐵 =

167, 𝜋2
𝑅 = 𝜋2

𝐺 = 𝜋2
𝐵 = 173, 𝑏1

𝑅 = 𝑏1
𝐺 = 𝑏1

𝐵 = 24(𝑚𝑜𝑑167), 𝑏2
𝑅 = 𝑏2

𝐺 = 𝑏2
𝐵 =

24(𝑚𝑜𝑑173), 𝜌 = 521, 𝑡 = 91, 𝑏 = 0, 𝑄 = (460,74), 𝑝 = 4079, 𝑎 = 7, 𝑎′ = 0, 𝛼 = 𝑛 
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 𝐻 =< (20,99) >, 𝑔 = 𝐾 ∩ 𝐻𝑐. Figures (14-16), shows the origional image data and its 

corresponding encrypted data. 

5.3.1  Keyspace Analysis 

The strength of crypto-algorithm is directly proportional to its secret large keyspace. A 

cryptosystem with large keyspace is able to withstand attacks through naïve approach and 

other cryptanalysis tried to break its security. In this context, our proposed mechanism 

maskes the image data by a set of IPRNS (obtained via ECS-PRNSM), while confussion 

module is used to substitute each pixel of confussed image data, and thus produce an 

encrypted image. Therefore, our proposed algorithm not merely possesses the key space 

related to ECS-PRNSM and MS, it also depends on the parameters needed during their 

utilization in image encryption. In this connection, our proposed cryptosystem possesses total 

number of key parameters (𝑑1, 𝑑2, 𝜋1, 𝜋2, 𝑡, 𝑎, 𝜌, 𝑃, 𝑝, 𝑃0, 𝑔, ɓ, ƿ, 𝑖, 𝑗, 𝛼, 𝑙2, 𝑞) for grayscale 

image data. So, the minimum requirement to perform image data encryption shown earlier is 

232 × 230 × 236 × 282 = 2180. Consequently, the total key space size is 2540. It is noticeable 

that the key space allownce increases rapidly with tiny increament produced in any of the 

parameters (𝜋1, 𝜋2, 𝜌, 𝑝, ƿ) and the subgroup < 𝑃0 >. We can deduce that  the key size is 

sufficient to counter common attacks in near future’s computer. 

 

        

     
Figure 14. The first row of the dataset consists original digital images of dimensions 256 × 256, Lena, Baboon, 
Pepper, Beans and House; second row is the corresponding encrypted images.                
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Figure 15. The first column of the dataset consists original grayscale images of dimensions 512 × 512, Baboon, 
Grass; second and third columns are the corresponding encrypted images and their histograms respectively 

 

          
  (e1)       (e2)          (e3)                  (e4) 

                               
(d1)           (d2)          (d3) 

 
Figure 16. Key sensitivity analysis: (e1) Original image data; (e2) -(e3) Encrypted with one-bit change;(e4) 

Difference of image data in (e2) and (e3); (d1) -(d2) Decrypted with respect one another keys;(d3) Decrypted 

with actual key. 
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5.3.2  Key Sensitivity Analysis. 

Key sensitivity analysis is one of the key measurements used to examine the strength of 

encryption system. In this way, we assume two keys  𝑖1, 𝑖2 with only one-bit difference to 

encrypt the image ‘Moon Surface’. The encryption results are presented in Figure 16, where 

Figure 16(e2, e3) are encrypted images with keys 𝑖1 𝑎𝑛𝑑 𝑖2 respectively. Consequently, it is 

observed from the difference Figure 16(e4) that both keys generated completely different 

encrypted images in Figure 16(e2, e3). Meanwhile, Figure 16(d1) is obtained by decrypting 

16(e3) using key parameter  𝑖2 and 16(d1) is obtained by decrypting 16(e2) using key 

parameter 𝑖1, indicating that the actual key parameters plain image data can be recovered. 

Hence, it is revealed that our proposed cryptosystem is highly sensitive to key parameters 

thus resistive against all known attacks. 

5.3.3 Three-Dimensional Histogram 

Histogram of an image is tool that provides graphical depiction of frequency distribution. It is 

almost used to examine the strength of cryptographic algorithm. A uniform histogram of an 

encryption algorithm can assure the security and prevent an adversary to generate an idea 

from the variation of encrypted image frequency distribution. Figure 17 shows the histogram 

distribution of original ‘Lena’, ‘Baboon’, ‘Pepper’, ‘Beans’, ‘House’ and corresponding 

encrypted images.  

    

    
Figure 17. The first row of the dataset consists of the histogram of original digital images, Lena, Baboon, 
Pepper, Beans and House; second row is the corresponding histogram of the encrypted images. 

Clearly, original image histogram distribution is significantly different when compared to 

encrypted image histogram, and the frequency values are uniformly distributed. Thus, our 
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proposed encryption system is capable of concealing the authentic information pattern.  

Accordingly, the proposed is able to successfully resist the statistical attackers.   

5.3.4 Differential Analysis 

Usually, a small change is made in the original image by adversaries and then observe the 

difference between the encrypted outcomes (that is, encrypted image of the test image and 

encrypted image of test with a small change). In such a way, the adversary examines the 

connection between the two encrypted images and test image. In this connection, the 

adversaries take advantage of differential cryptanalysis in decryption of encrypted image. 

Thus, it is necessary that our proposed encryption scheme must be robust against differential 

attacks, which indicates that it should be impossible for adversaries to detect the relation 

between original image and encrypted image. To measure the strength of encryption scheme 

against differential attacks, NPCR (number of pixels changing rate) and UACI (unified 

average changed intensity) are two common metrics used to compute the resistance, which 

are defined as follows 

 

NPCR =
∑ ∁(𝜉1, 𝜉2)𝜉1,𝜉2,

Μ× Ν
× 100% 

∁(𝜁1, 𝜁2) = {
1  𝑖𝑓   ℬ1(𝜉1, 𝜉2) = ℬ2(𝜉1, 𝜉2)

 0   𝑖𝑓    ℬ1(𝜉1, 𝜉2) ≠ ℬ2(𝜉1, 𝜉2)
 

 

𝑈𝐴𝐶𝐼 =
1

Μ × Ν
∑ [

|ℬ1(𝜉1, 𝜉2) − ℬ2(𝜉1, 𝜉2)|

255
]

𝜉1,𝜉2,

× 100%           

Where ℬ1(𝜉1, 𝜉2) and ℬ2(𝜉1, 𝜉2) are two encrypted images and the optimal numerical scores 

of NPCR and UACI are 99.60% and 33.40%, respectively. Using equations 4 and 5, we 

computed scores of NPCR and UACI of our proposed scheme given in Table 14. Moreover, 

the comparative scores with some existing cryptosystems shows that analysis scores are 

better up to some extent. Hence, our scheme has better resistance against differential attacks 

and feasible for security purpose. 
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Table 14. NPCR and UACI numerical values and their comparison 

 

5.3.5 Information Entropy  

There is high correlation of adjacent pixels values in the original image. To create high 

randomness in entire image data, one should need to mask the data using efficient crypto 

algorithm. The information entropy helps to calculate the randomness of pixels information 

in masked image, as the image information ranges between 0 and 255. Thus, for secure 

encryption scheme, the calculated score of entropy must be closed to amount 8. The 

calculation formula for information entropy is given below: 

𝐸𝐴(𝑚) = ∑[𝑝(𝑚) × log2(
1

𝑝(𝑚)

255

𝑚=0

)] 

Where 𝑚  is pixel value and 𝑝(𝑚) is probability. We examined the proposed encryption 

scheme over entropy analysis, the fallouts are tabulated in Table 15. From the table, it can be 

seen that the entropy values for red, green and blue channel of the encrypted images are close 

to 8. Thus, the scheme sufficiently resists the entropy attacks. Besides, the results are 

compared with the results of existing scheme. The compression shows that the proposed 

scheme performed better comparatively the existing scheme presented in the literature.    

5.3.1 Correlation 

In any test/original image, correlation factor can be seen in one of the horizontal, diagonal or 

vertical directions between adjacent pixels. To reduce the correlation, one should make use of 

standard encryption algorithm and create high degree of disruption in the image. The 

numerical value of correlation coefficient lies on the real line bounded by ±1. The bounds 

Schemes Image NPCR% UACI% 

 R G   B R G B 

Lena 99.6429 99.6307 99.6047 33.3147 33.6654 33.6373 

Our scheme Baboon 99.2401 99.6231 99.6093 33.3694 33.3847 33.5375 

Pepper 99.5803 99.6322 99.5941 33.4724 33.5660 33.4971 

Beans 99.6307 99.5986 99.5758 33.5083 33.5451 33.5487 

House 99.6154 99.6078 99.5956 33.3678 33.3789 33.4359 

Ref. [91] Lena 99.612 99.5345 99.5578 33.4572 33.4715 33.4715 

Ref. [92] Lena 99.6158 99.6531 99.6322 33.8730 34.1650 34.4800 

Ref. [93] Lena 99.6300 99.6000 99.6100 33.4200 31.0700 32.1000 

Ref. [94] Lena 99.6155 99.5750 99.6323 32.9071 30.1891 27.3998 
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(that is, ±1) of correlation coefficient exhibits strong correlation while nearest value to 

central point (that is, 0) indicates lowest degree of correlation among the adjacent pixels. 

Table 15. Entropy numerical values and their comparison 
Schemes Dimension   Images Original Image Ciphered Image 

     256×256  R G   B R G B 

Lena 7.2763 7.5834 7.0160 7.9975 7.9976 7.9973 

Our scheme         -- Baboon 7.6634 7.3871 7.6646   7.9975   7.9977 7.9973 

        -- Pepper 7.3920 7.6150 7.1738 7.9972 7.9976   7.9974 

        -- Beans 5.8591 6.2585 6.8553   7.9967 7.9971 7.9975 

        -- House 6.4005 6.5603 6.4042 7.9970 7.9972 7.9973 

512 × 512 Grass --- Gray --- --- 7.9994 --- 

512 × 512 Baboon --- Gray --- --- 7.9994 --- 

Ref. [93] 256 × 256 Lena 7.7317 7.7864 7.6481 7.9892 7.9902 7.9896 

Ref. [95]         -- Lena -- -- -- 7.9973 7.9973 7.9971 

Ref. [96]         -- Lena 7.2352 7.5683 6.9176 7.9967 7.9964 7.9943 

Ref. [31]         -- Lena 7.3277 7.6048   7.1326 7.9971     7.9972      7.9973 

Ref. [97] 512 × 512 Grass --- Gray --- --- 7.9992 --- 

Ref. [9]         -- Baboon --- Gray --- --- 7.9993 --- 

 

To compute the correlation coefficient of original image and encrypted image, we pick 

𝐾 = 104 pairs of pixels values along all three directions from each channel of original color 

image and encrypted image and calculate correlation coefficient 𝐶𝑢𝑣 as follows. 

𝐶𝑢𝑣 =
𝑐𝑜𝑣(𝑢, 𝑣)

√𝐷𝑢 ∘ 𝐷𝑣
   

𝑐𝑜𝑣(𝑢, 𝑣) =
1

𝐾
∑(𝑢𝑖 − 𝐸(𝑢))(𝑣𝑖

𝐾

𝑖=1

− 𝐸(𝑣)) 

𝑉𝑢 =
1

𝐾
∑(𝑢𝑖 − 𝐸(𝑢))

2

𝐾

𝑖=1

 

𝐸(𝑢) =
1

𝐾
∑𝑢𝑖

𝐾

𝑖=1

 

Where 𝑢𝑖  and 𝑣𝑖 are pixel values of the 𝑖𝑡ℎ chosen adjacent pixels values, 𝐸(𝑢) and 𝑉𝑢 are 

expectation and variance of 𝑢, respectively. 
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Table 16. Comparison of correlation coefficient results of the proposed scheme with some existing techniques in three 
layers. 

 

 

 

 

Schemes Directions  Original Image Encrypted Image 

     R    G     B        R        G       B 

Our 

scheme 

 

Lena 

Horizontal 0.9514 0.9517 0.9157 -0.00072 0.00063 0.00064 

Diagonal 0.9309 0.9337 0.8830 0.00032 0.00035 0.000136 

Vertical 0.9757 0.9762 0.9500 -0.00012 0.00013 0.00026 

 

Baboon 

Horizontal 0.9802 0.9819 0.9625 0.000035 0.000092 0.00012 

Diagonal 0.9344 0.9320 0.9018 0.000024 0.00032 -0.00037 

Vertical 0.9604 0.9619 0.9303 0.000022 0.000043 0.000012 

 

Pepper 

Horizontal 0.9532 0.9743 0.9527 0.000300 -0.00002 0.00004 

Diagonal 0.9225 0.9550 0.9053 0.000020 0.00006 0.00003 

Vertical 0.9510 0.9783 0.9509 0.000400 0.00003 0.00061 

 

Beans 

Horizontal 0.9570 0.9303 0.9608 0.000070 0.00004 0.00002 

Diagonal 0.9299 0.8758 0.9317 0.000050 0.00001 0.00001 

Vertical 0.9600 0.9402 0.9641 -0.00030 0.00008 -0.00012 

 Horizontal 0.9682 0.9755 0.9642 0.000034 0.000071 0.000200 

House Diagonal 0.9377 0.9474 0.9271 0.000051 0.000085 0.000044 

 Vertical 0.9651 0.7202 0.9572 0.000032 0.000094 0.000066 

 Vertical 0.9780 0.9694 0.9495 -0.0014 -0.0006 -0.24861 

Ref.[30]  

  Lena 

Diagonal 0.9335 0.9179 0.8947 0.00043 -0.00043 -0.2168 

Horizontal 0.9558 0.9400 0.91894 0.0013 -0.00025 0.00696 

Vertical 0.9803 0.9594 0.9294 0.0203 −0.0025 0.0006 

Ref.[58]    

  Lena 

Diagonal 0.9668 0.9433 0.9099 −0.0073 −0.0131 0.0111 

Horizontal 0.9813 0.9691 0.9455 0.0092 0.0002 0.0076 

Vertical 0.9865 0.9858 0.9831 0.0025 −0.0017 −0.0043 

Ref.[33]   

  Lena 

Diagonal 0.9897 0.9765 0.9684 −0.0066 0.0020 0.0032 

Horizontal 0.9897 0.9871 0.9842 −0.0066 0.0041 −0.0020 

Vertical 0.979540 0.979282 0.966093 0.004776 0.000579 0.000194 

Ref.[98]  

  Lena 

Diagonal 0.970675 0.971043 0.949973 0.000232 0.004807 0.00404 

Horizontal 0.990224 0.990848 0.979408 0.001365 0.003294 0.002060 

Vertical 0.990224 0.990848 0.979408 0.000365 0.000294 0.005070 
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Figure 18. : Correlation distribution in all directions for red channel of Lena image of size 256 × 256. The first 
row indicates the red channel of the original digital image, second row represents the encrypted channel 

     

 

  
 
Figure 19. : Correlation distribution in all directions for green channel of Lena image of size 256 × 256. The 

first row indicates the green channel of the original digital image, second row represents the encrypted green 

channel. 
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Figure 20. : Correlation distribution in all directions for blue channel of Lena image of size 256 × 256. The 

first row indicates the blue channel of the original digital image, second row represents the encrypted blue 

channel. 

 

 In Figures [18-20], first and second row indicate the horizontal, diagonal, and vertical pixels 

distributions of original and encrypted image channels of Lena 256 × 256. All figures’ 

values in first row are diagonally distributed and describes the meaningful original image 

data. But the second row contains figures of encrypted image with data scattered over the 

whole space, reveals meaningless information for attackers. Furthermore, it is clearly shown 

from the Table 16, that the numerical values of correlation coefficient of each channel along 

all three directions occur between −0.0001 and 0.0001. As a result, our proposed encryption 

can reduce maximum degree of correlation among the adjacent pixels in comparison to 

schemes given in the literature 

In the next chapter, we shall use an indexing technique over elliptic curves to introduce a 

computationally efficient mechanism for multiple PRNS and S-boxes. Further, we shall 

evaluate the statistical analysis to show the effectiveness of the proposed S-box, PRNS, and 

its image encryption application.  
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Chapter 6 

Image Encryption by using Novel PRNs and S-boxes 

Modeling Techniques 
This chapter deals with efficient pseudo-random numbers and S-boxes are one of the most 

significant building blocks, which are jointly adopted for image security. Multiple aspects 

pave the way to handle large-scale multimedia data. However, the computational work on 

multiple constructions may certainly lead to limits the required ciphering through-put. 

Therefore, reducing the computational time of both modules is the main requirement for an 

efficient cryptosystem. For this achievement, we exploited an indexing technique over elliptic 

curves to introduce a computationally efficient mechanism for multiple PRNS and S-boxes. 

Statistical results show that the proposed S-box mechanism is the most effective method that 

generates strong multiple S-boxes on minimum prime fields. Likewise, the PRNS’s 

assessment indicates that the proposed mechanism is the highly productive model for 

generating multiple verified patterns on small prime fields in a single round. Furthermore, the 

experimental results show that the proposed algorithm provides desired key-space and less 

computational effort. 

6.1 Motivation 

In the era of 5G network, the security of sensitive information has gained widespread 

attention. The digital images, which are the key source of information, can be agreements, 

photographs, medical reports, contracts, or other types of scanned papers, with the highest 

rank of sensitivity. The privacy of digital images is of utmost importance while 

communicated among authorized parties in any system such as the cloud [100]. To deal 

security and privacy of such multimedia data gave rise to the various efficient encryption 

algorithms. These algorithms are further based on two different ideas: symmetric and 

asymmetric key-algorithm.  In this connection, the prominent principal techniques used for 

the symmetric algorithm are the confusion and diffusion modules [78], [101]. The former 

operating module is normally employed after effective use of diffusion operation to break the 

relation between ciphered data and keys [78], [85], whereas data of both modules is the rang 

of pseudo-random number generator (PRNG). Therefore, well-designed PRNG on 

mathematically based mechanisms performs a principal role in modern image cryptography 

[101]–[103]. Consequently, various efficient algorithms are developed to generate S-boxes 

and pseudo-random number sequences [8], [87], [101], [104], [105]. S-boxes can have two 
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major categories: Static and dynamic S-box. A static S-box depends on fixed operating as 

well as generating modes while a dynamic S-box has both variable modes of operations.  As 

a result, dynamic S-boxes algorithms are preferred mostly to increase the computational cost 

for cryptanalysts. Recently, Ibrahim et al. [101] designed an efficient technique for 

construction of key-dependent dynamic S-boxes using permuted elliptic curves. The author 

tried to minimize the computational cost for dynamic S-box generation. S.H. Alhandawi el al. 

[106], proposed an appropriate configuration S-box based on modified firefly algorithm. The 

authors claimed to have satisfactory cryptographic features. A novel algorithm has been 

developed with the help of group structure for secure  S-box in terms of high nonlinearity 

[107]. Toughi et al. [6], proposed an image encryption algorithm with core modules PRNG 

and advanced encryption standard AES. The author in [108], used the chaotic model to 

design image encryption scheme with enough pseudo creation capability. 

 Due to multiple advantages such as non-periodicity, high sensitivity to input parameters, 

ergodicity, key sensitivity, chaotic systems, and ECs are extensively adopted for S-box and 

pseudo-random number generation in image encryption algorithms [9], [15], [71], [93], [101], 

[106]. The author in [7], designed a secure algorithm that can be suitable in either digital and 

optical environments. Wang et al. [109] suggested a cryptosystem based on multi-group 

techniques such as chaotic map, Fisher-Yates Shuffling, and DNA sequence encoding. The 

authors of this research study claimed to have high accuracy with fast convergence as an 

advantage of the encryption algorithm. Considering computational precision, chaotic maps 

can have the possibility to generate a random sequence within a short period. As a result, 

elliptic curve structure is quite better than chaotic maps to adopt for the generation of random 

sequences [10]. Reyad et al. [89], developed an idea based on ECs to get pseudo-random 

numbers that work efficiently in image cryptography. El-Latif et al. [90], utilized both cyclic 

ECs and hybrid-chaotic systems for developing an efficient image encryption scheme. 

Likewise, Haider et al. [78], made an effort to utilize ECs with the dynamic approach for the 

generation of random numbers and S-box. 

In [6], [101], the authors generated PRNs with ECs group law operating tool (GL-OT) using 

a large prime field. Similarly, the schemes [78], [90], used recursive approach (RA) and (GL-

OT) to find all points on ECs. Moreover, both techniques are further employed to generate S-

box and PRNS. In other words, pure algebraic arithmetic operations are managed to facilitate 

these schemes. However, on the one hand, the RA and GL-OT over a large prime field can be 

very expensive computationally for output data such as S-box and PRNs modules, as it 

requires a sequence of arithmetic operations-but, on the other hand, a small fixed prime field 



 

77 
 

may fail to generate a large number of required data with efficient cryptographic features. 

Even though a scheme [78], considered these hurdles on a priority basis to reduce the 

computational efforts, it could hardly produce at most two strong dynamic S-boxes using a 

minimum fixed odd prime field.  

Considering the aforementioned problems including large-spaced data encryption, we 

propose a novel cryptosystem based on ECs over small odd prime fields with indexing 

technique (IT) to counter existing limitations. In this cryptosystem, two independent 

mechanisms namely S-box and a set of pseudo-random numbers of streams are designed with 

totally different approaches using IT. It is worth mentioning that the S-box construction 

mechanism (SCM) generates multiple dynamic S-boxes in 16 × 16 standard look up table 

using the fixed minimum odd prime field. Meanwhile, the PRN generation mechanism 

(PRNGM) also provides verified non-repeated random patterns; thus, confirming its 

efficiency regarding diffusion purpose for large-scale multimedia data. Furthermore, the 

outcome results from our applications of both modules also affirm the choice of SCM and 

PRNGM by using IT in various cryptographic applications.  

6.2 Basic Concept  
In this section, we recall some basic definition and results related to the main work our this chapter. 

For any given prime field 𝐹𝑝 and 𝑎, 𝑏 ∈ 𝐹𝑝, such that 27𝑏2 + 4𝑎3 ≢ 0𝑚𝑜𝑑𝑝, an elliptic curve (EC) 

𝐸(𝑎, 𝑏, 𝑝) defined over 𝐹𝑝 as a collection of all points 𝑃(𝑥, 𝑦) ∈ 𝐹𝑝 × 𝐹𝑝, such that 

𝑦2 ≡ (𝑥3 + 𝑎𝑥 + 𝑏)𝑚𝑜𝑑𝑝               

Each point on EC is symmetric about 𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒. In other words, any point 𝑃(𝑥, 𝑦) on 

𝐸(𝑎, 𝑏, 𝑝) has corresponding point −𝑃(𝑥, 𝑦) = 𝑃(𝑥,−𝑦) on 𝐸(𝑎, 𝑏, 𝑝), termed as inverse of 𝑃(𝑥, 𝑦). 

Similarly, a special point 𝒪, called “the point at infinity” which plays as the identity point to satisfy an 

abelian group criterion. For 𝑃1 and 𝑃2on 𝐸(𝑎, 𝑏, 𝑝), the sum of 𝑃1 and 𝑃2 is defined as: 

𝑃1⊕𝑃2 =

{
 
 

 
 
𝑃1    𝑖𝑓 𝑃2 = 𝒪                   
𝑃2    𝑖𝑓𝑃1 = 𝒪                    
𝒪       𝑖𝑓 𝑃1 = − 𝑃2            

𝑃𝑠(𝑥𝑠, 𝑦𝑠)         𝑃1 = 𝑃2      

𝑃𝑑(𝑥𝑑 , 𝑦𝑑)  𝑖𝑓  𝑃1 ≠ 𝑃2     

 

where 

(𝑥𝑠, 𝑦𝑠) = (𝑠
2 − 2𝑥1 𝑚𝑜𝑑𝑝, 𝑑(𝑥1 − 𝑥) − 𝑦1 𝑚𝑜𝑑𝑝 ) 

(𝑥𝑑 , 𝑦𝑑) = (𝑑
2 − 𝑥1 − 𝑥2 𝑚𝑜𝑑𝑝, 𝑑(𝑥1 − 𝑥3) − 𝑦1𝑚𝑜𝑑𝑝) 

And 

𝑠 =
3𝑥1

2 + 𝑎

2𝑦1
𝑚𝑜𝑑𝑝, 𝑑 =

𝑦2 − 𝑦1
𝑥2 − 𝑥1

 𝑚𝑜𝑑𝑝 



 

78 
 

Theorem 6.1: Let  𝐸(𝑎, 𝑏, 𝑝) be an elliptic curve over the finite field 𝐹𝑝. Then the order of 

𝐸(𝑎, 𝑏, 𝑝) (𝐹𝑝) satisfies 

|p + 1 − #𝐸(𝑎, 𝑏, 𝑝) (𝐹𝑝)| ≤ 2√p ). 

Lemma 6.1. [[1], page 4.33] An elliptic curve 𝐸(𝑎, 𝑏, 𝑝)  over a prime field 𝐹𝑝 with 𝑝 − 2 ≡ 0mod3 

has exactly 𝑝 + 1 distinct points, where each integer in the field 𝐹𝑝 appear once as 𝑦-coordinates. 

Theorem 6.2. [[3], Example 9.5.2] Let 𝑝 > 2 be any prime integer and 𝐸(𝑎, 𝑏, 𝑝)  : 𝑦2 = 𝑥3 + 𝑎𝑥 +

𝑏 is an elliptic curve over 𝐹𝑝. Then 𝐸(𝑎, 𝑏, 𝑝) is not isomorphic to 𝐸(𝑎′, 𝑏′, 𝑝)  with 𝑎′ = 𝑡2𝑎 and 

𝑏′ = 𝑡3𝑏; for any 𝑡 ∈ 𝐹𝑝∗  if and only if 𝑡 is non-square in 𝐹𝑝∗. 

 
6.3  Proposed Methodology for S-boxes and Pseudorandom Numbers Streams 

In this section, we propose a crypto algorithm based mainly on two independent generation 

schemes for random data of a certain length. The detailed steps of each scheme are explained 

in the following sub-sections. 

6.3.1 SCM 

Generating strong dynamic S-boxes is the most promising criterion for achieving efficient 

cryptosystems, and it plays a key role in nonlinear transformations, which are used for 

assessing well-designed crypto-algorithms [79]. For this reason, the generating dynamic S-

boxes with the best cryptographic features are considered much more suitable in the modern 

cryptographic environment. To get multiple S-boxes, in this section, we propose a fast 

technique with the partial agreement of ECs group law to overcome the shortcomings of 

existing S-box constructions. The following description shows the proposed S-box 

mechanism. 

1. For 𝑝, define ECs 𝐸1(𝑎1, 𝑏1, 𝑝) and 𝐸(0, 𝑎2, 𝑝) over prime field 𝐹𝑝, with IT to 

generate all points. 

2. Select a point 𝑄 ∈ 𝐸2(0, 𝑎2, 𝑝) at random approach and generates a sub-group ℳ =<

𝑄 > using EC group law, i.e. Eq: (1). 

3. Choose 𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 of both generated ECs and ℳ with ascending order of 𝑥 −

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠. 

4. Choose 𝑡𝑠, 𝑡𝑛 ∈ 𝐹𝑝, where 𝑡𝑖are squared and 𝑡𝑛 are square-free. Likewise, we pick two 

points 𝑃1, 𝑃2 ∈ 𝐸(𝑎1, 𝑏1, 𝑝) with 𝑦 − coordinate of 𝑃1is squared and 𝑃2 is square-

free.  

Table 17. Sample S-boxes 
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< 97,73 >169,5
0,234,123

 < 13,214 >121,45
0,234,166

 

52 14 216 154 240 4 25 209 206 58 254 248 230 205 156 193 44 160 212 183 142 193 31 218 83 97 56 255 38 98 224 169 

22 32 130 69 181 225 54 84 197 80 16 98 144 6 110 31 180 194 106 200 108 72 78 66 223 3 101 115 213 11 109 164 

179 236 150 255 37 122 47 180 172 211 50 3 251 188 48 93 155 242 15 231 131 226 153 179 18 138 249 94 150 203 102 113 

35 157 215 103 189 137 28 97 135 152 101 213 138 20 145 53 22 176 159 209 58 90 29 205 240 127 30 116 174 51 210 103 

147 91 160 220 198 141 63 186 119 49 104 120 153 95 187 148 89 91 4 35 134 197 67 81 157 6 172 7 37 148 79 125 

203 228 217 115 221 62 178 46 219 111 64 164 12 191 19 168 166 46 247 53 123 124 110 77 33 217 244 17 243 208 184 121 

15 9 163 100 136 89 192 176 107 68 55 129 1 244 67 44 10 188 162 88 133 202 21 186 154 65 146 206 112 69 2 175 

85 227 56 200 82 70 222 131 128 21 10 132 161 105 166 76 141 16 86 191 245 96 128 48 40 19 144 182 140 196 61 12 

133 26 212 108 243 42 109 142 126 17 113 235 162 202 134 245 28 68 45 241 119 254 85 42 47 36 20 50 132 120 84 156 

194 7 51 86 252 207 88 78 224 151 232 87 106 208 196 231 63 198 54 232 170 253 93 151 24 236 43 229 143 105 130 248 

184 36 242 57 182 250 116 72 77 34 24 71 247 83 38 39 230 39 168 1 149 199 73 26 192 251 76 74 111 80 62 187 

94 92 40 174 201 146 102 226 165 223 29 185 229 45 246 237 122 104 178 220 34 27 0 239 49 204 214 41 238 118 219 171 

79 33 99 13 241 199 41 125 190 234 249 27 23 238 11 60 246 161 52 59 185 233 114 158 75 23 181 14 137 117 9 237 

2 73 158 112 175 139 149 5 75 74 214 143 159 124 140 170 32 135 227 173 163 152 201 107 57 8 95 126 71 216 100 92 

43 90 239 66 123 167 96 171 233 173 169 218 65 183 155 30 189 87 147 222 5 99 221 13 252 225 82 215 136 60 55 165 

8 114 127 118 121 253 210 195 177 81 117 61 0 59 204 18 235 228 64 211 145 195 250 25 167 70 234 177 129 190 207 139 

< 52,92 >4,19
0,211,235

 < 172,109 >196,167
0,211,235

 

197 5 207 116 2 63 209 25 173 169 147 23 21 132 118 176 116 228 174 236 114 81 110 188 28 17 203 7 207 35 242 111 

228 227 66 109 128 187 18 123 158 154 79 175 237 3 58 243 92 176 152 230 235 197 149 40 196 249 195 161 112 27 65 155 

11 15 246 166 219 205 104 42 225 131 71 73 41 120 133 177 9 18 105 93 123 186 72 95 154 167 20 247 241 48 229 91 

61 161 253 121 251 72 83 122 157 188 153 135 98 90 60 171 137 77 248 86 141 23 39 224 26 187 38 127 117 217 171 98 

130 204 126 255 233 192 216 46 10 32 234 9 33 223 222 26 80 46 73 14 126 22 121 101 13 96 254 200 138 66 42 240 

142 47 213 8 24 241 201 36 137 95 31 20 236 254 89 160 118 139 190 76 253 31 246 156 169 113 49 54 146 153 132 158 

113 4 191 74 163 44 145 165 12 140 56 252 59 34 242 240 175 11 238 170 78 199 69 104 164 45 70 245 212 25 166 82 

146 49 38 155 156 172 75 244 170 54 84 212 27 230 232 221 63 5 6 234 206 57 134 201 59 168 52 220 226 103 21 124 

111 164 134 200 136 229 141 91 124 152 206 78 203 183 110 29 221 62 239 204 1 47 15 145 68 100 181 8 32 0 136 184 

245 210 238 231 167 28 211 69 86 217 239 43 162 40 143 107 87 4 210 177 97 243 2 172 227 208 94 251 182 205 215 64 

193 102 196 64 195 115 250 214 88 138 48 190 68 82 117 114 99 214 51 120 178 133 115 159 30 56 24 119 211 216 173 193 

148 93 125 77 224 184 180 55 194 149 103 62 159 151 127 70 165 180 34 55 37 19 147 67 202 33 122 183 148 225 162 255 

87 218 50 97 57 220 112 186 247 174 96 94 85 208 198 22 125 233 128 109 232 237 218 41 58 219 16 151 83 213 43 223 

144 179 182 106 215 99 80 101 108 1 45 235 168 150 76 92 60 84 79 102 129 108 90 250 192 144 198 36 12 53 44 163 

6 202 119 14 249 105 19 51 53 7 226 65 139 178 189 35 106 185 142 160 3 135 74 71 194 140 191 107 130 88 222 89 

30 39 185 0 199 67 17 181 16 81 248 13 129 100 52 37 252 85 29 50 131 143 75 231 150 209 10 179 189 157 244 61 

 

1. Perform arithmetic operation to generate two disjoint sets [78], which are defined as 

𝐴𝑃1 = {𝑡𝑛
3𝑦1: 𝑛 = 1,2,3,… ,

𝑝 − 1

2
 𝑎𝑛𝑑 𝑦1 ∈ 𝑃1} 

𝐵𝑃2 = {𝑡𝑠
3𝑦2: 𝑠 = 1,2,3, … ,

𝑝 − 1

2
 𝑎𝑛𝑑 𝑦2 ∈ 𝑃2} 

2. Define multiple maps 

𝜑1: (𝐴𝑃1 , 𝐵𝑃2) ⟶ (ℳ,ℳ) 

𝜑1(𝑠1, 𝑠2) = (𝑚𝑠1 , 𝑚𝑠2) 

𝜑2: 𝑖𝑚(𝜑1) ⟶ (ℳ,ℳ) 

𝜑2(𝜑1(𝑠1, 𝑠2)) = (𝜑1(𝑠2)𝑚′ , 𝜑1(𝑠1)𝑚′) ⟶ (2) 

The set (ℳ,ℳ) = {(𝑣𝑖, 𝑢𝑗): ∀ 𝑣𝑖 , 𝑢𝑗 ∈ ℳ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖 = 𝑗} and similarly, the set 

(𝐴𝑃1 , 𝐵𝑃2). Inspired by an isomorphic and non-isomorphic ECs approach in [78], the sets 

𝐴𝑃1  𝑎𝑛𝑑 𝐵𝑃2clearly contained all those points which represent the 𝑦 − coordinates of 

isomorphic and non-isomorphic ECs respectively. Similarly, in step 2, the partial engagement 

of EC group law in the proposed scheme is the appearance of both coordinates randomly one 

after another. However, these ideas are further jointly operated to accomplish the required 
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task, as shown in Step 6. As far as Step 6 is concerned, the mappings 𝜑1 and 𝜑2 are bijective, 

so is 𝜑 = 𝜑1 ∘ 𝜑2. Finally, first dissimilar integral points between  0 𝑎𝑛𝑑 256 are collated 

from the set 𝑖𝑚(𝜑2) to form the required S-box ℳ𝑦1,𝑦2

𝑎1,𝑏1,𝑏2 , i.e, Eq. (2). It is noted that the 

proposed S-box construction mechanism generates large number of efficient S-boxes using 

fixed minimum odd prime field and sub-group ℳ. For instance, 𝑝 = 257,  the scheme is 

capable to generate more than 200 S-boxes with a minimum non-linearity score of 106 of 

each which are given in Table 17. 

Table 18. Graphical representation of indexing technique (IT) 
Column 1 Column 2 

𝑥3 + 𝑥 + 1𝑚𝑜𝑑17 𝑦2𝑚𝑜𝑑17 

1. 3 1. 1 
2. 11 2. 4 

3. 14 3. 9 
4. 1 4. 16 
5. 12 5. 8 
6. 2 6. 2 
7. 11 7. 15 
8. 11 8. 13 

9. 8 9. 13 
10. 8 10. 15 
11. 0 11. 2 

12. 7 12. 8 
13. 1 13. 16 
14. 5 14. 9 

15. 8 15. 4 
16. 16 16. 1 
17. 1 17. 0 

 

Table 19. Security analysis of the proposed S-boxes 
Scheme S − box Min Avg             Max BIC SAC DP LP 
 
 
Our 

< 92,244 >64,3
0,189,235 106 107.50 110 0.5069 0.4873 0.0390 0.1328 

< 222,122 >118,210
0,191,235 106 107.50 110 0.5017 0.4992 0.0468 0.1328 

< 202,234 >218,19
0,21,235 106 107.50 110 0.4996 0.4951 0.0468 0.1250 

< 207,28 >100,154
0,21,235 106 107.50 108 0.4990 0.5048 0.0390 0.1250 

< 97,73 >169,5
0,234,123 106 107.75 108 0.5051 0.5026 0.0468 0.1406 

Ref.[110], 2020  106 106.50 108 0.50049 0.5009 0.0391 0.1328 
Ref.[111], 2021  102 105.25 108 0.50872 0.5351 --- 0.140625 
Ref.[112], 2021  104 106.75 108 --- 0.4976 0.03906 --- 
Ref.[101], 2021  106 107.75 110 --- --- --- --- 
 
 

6.3.2 PRNGM 

In various cryptographic applications, especially data encryption and gambling, verified 

pseudo-random numbers play a significant role. In this context, pseudo-random numbers on 
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different mathematical structures including ECs are developed for a strong masking purpose 

in data encryption [6], [49], [113], [114]. Mostly, a single PRN pattern is formalized in a 

single round to get the possible diffusion creation requirement [6], [115]. However, it causes 

key space deficiency which is the utmost requisition for data protection against brute-force 

attacks, whereas accessing multi-PRN patterns in a single round on the group arithmetic 

operations specially ECs GL-OT is much time-consuming. Therefore, reducing time 

consumption as well as generating multi-PRN patterns using ECs, an indexing technique (IT) 

is proposed in this section. The following lines define the proposed algorithm.  

1. Choose 𝑐,  �̂� with  �̂� ≡ 2(𝑚𝑜𝑑3), 𝑐 ∈ 𝐹 �̂� and defines an EC 𝐸(0, 𝑐,  �̂�) over the prime 

field 𝐹 �̂� to generate exactly  �̂� + 1 non-repeated 𝑦 − coordinates Lemma 6.1. 

2. Form the sets 

𝐴𝐸 = {(𝑡𝑛
3𝑦𝑖)𝑛=1

 �̂�−1
2 :  ∀ 𝑦𝑖 ∈ 𝐸

𝑦 ;  𝑡𝑛 𝑖𝑠 𝑛𝑜𝑛 − 𝑠𝑞𝑢𝑎𝑟𝑒} 

𝐵𝐸 = {(𝑡𝑠
3𝑦𝑖)𝑠=1

 �̂�−1
2 : ∀ 𝑦𝑖 ∈ 𝐸

𝑦;  𝑡𝑠 ∈ (𝐹 �̂�\{0})
2
} 

Where each sequence (𝑡𝑛3𝑦𝑖)𝑛=1
 �̂�−1

2 , (𝑡𝑠3𝑦𝑖)𝑠=1
 �̂�−1

2  consists of either squared or square-free 

points of the field 𝐹 �̂�. Similarly, one can generate a whole field 𝐹 �̂� for each 𝑦 ∈ 𝐸𝑦. 

3. Define a set 

𝑇 = {(𝑁𝑖; 𝑆𝑖) = ((𝑦𝑛𝑗); (𝑧𝑛𝑗)): 𝑁𝑖 ∈  𝐴𝐸 , 𝑆𝑖 ∈ 𝐵𝐸  𝑎𝑛𝑑 (𝑦𝑛𝑗) ∈ (𝑒𝑡𝑗
𝑦
) , (𝑧𝑛𝑗) ∈ (𝑒𝑘𝑗

𝑦
)}

∪ {𝐹 �̂�\{0}} 

Now for any 𝑑1, 𝑑2, 𝑑3, 𝑑4 ∈ 𝐹 �̂� 𝑤𝑖𝑡ℎ 𝑑1 < 𝑑2, 𝑑3 < 𝑑4 and |𝑑4 −
 �̂�−1

2
| = |

 �̂�−1

2
−

𝑑3|. Take (𝑁𝑖; 𝑆𝑖) = 𝑊 ∈ 𝑇. One can choose non-isomorphic and isomorphic ECs 

(𝑒𝑗
𝑦
)𝑗=𝑑3
𝑑4−𝑑3 2⁄

, (𝑒𝑘
𝑦
)𝑘=𝑑4−𝑑3 2⁄
𝑑4  

We define a map 

𝜃𝑇:𝑊 ⟶ (𝐹 �̂�\{0})
 �̂�−1 

𝜃𝑇(𝑤) = 𝑇
𝑤 = ((𝑁𝑖; 𝑆𝑖)𝑖=1

 �̂�−1)
𝑤
= ((((𝑦𝑗); (𝑧𝑗))

𝑛
)
𝑛=1,𝑗=1

 �̂�−1,
 �̂�−1

2
)

𝑤

= (((𝑠𝑗)𝑛
)
𝑛=1,𝑗=1

 �̂�−1,
 �̂�−1

2
)

𝑤

= ((𝑤(𝑠𝑗)𝑛
)
𝑛=1,𝑗=1

 �̂�−1,
 �̂�−1

2
 )𝑚𝑜𝑑256. 

Case 1:  If 𝑑3 < 𝑑4. and a set  

 

𝑌𝑊 = {(𝑤(𝑠𝑗)𝑛
)
𝑛=𝑑1,𝑗=𝑑3

𝑑2,𝑑4
= (((𝑦𝑗); (𝑠𝑘))

𝑛
)
𝑛=𝑑1,𝑗=𝑑3,𝑘=𝑑4−𝑑3 2⁄

𝑑2,𝑑4−𝑑3 2⁄ ,𝑑4
: ∀ 𝑤 ∈ 𝑊, 𝑦𝑛𝑗 ∈ 𝑒𝑗

𝑦
, 𝑧𝑛𝑘 ∈ 𝑒𝑘

𝑦
 }
𝑖

⊂ 𝜃𝑇(𝑊) 
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Case 2:  If 𝑑1 < 𝑑2, we have 

𝑌𝑊 = {(𝑤(𝑠𝑗)𝑛
)
𝑛=𝑑1

𝑑2
= ((𝑠𝑗)𝑛)𝑛=𝑑1

𝑑2
: ∀ 𝑤 ∈ 𝑊;   𝑛 = 𝑑1, 𝑑1 + 1,… , 𝑑2} ⊂ 𝜃𝑇(𝑊) 

4. Select the consecutive 𝐿 sequences of ( �̂� − 1) − 𝑙𝑒𝑛𝑔𝑡ℎ to form a sequence of 

minimum 106 − length. 

 

Proposition 6.1: The mapping 𝜃𝑇 does not generate a single similar pattern. So, 𝜃𝑇 is one-

one. 

Proof: 

Case 1. Suppose there exists ℎ1, ℎ2 ∈ (𝐹 �̂�\{0})
 �̂�−1 with ℎ1 ≠ ℎ2such that 𝑠𝑚ℎ1 = 𝑠𝑚ℎ2 , for 

some 𝑑1 ≤ 𝑚 ≤ 𝑑2 ⟺ 𝑣𝑠ℎ1 = 𝑦𝑚𝑗  𝑎𝑛𝑑 𝑣𝑠ℎ2 = 𝑦𝑚𝑗 , for some 𝑣𝑠ℎ1 , 𝑣𝑠ℎ2 ∈ 𝑁𝑖  or 𝑣𝑠ℎ1 , 𝑣𝑠ℎ2 ∈

𝑆𝑖 ⟺ 𝑣𝑠ℎ1 = 𝑣𝑠ℎ2 , for some 𝑣𝑠ℎ1 , 𝑣𝑠ℎ2 ∈ 𝑁𝑖 𝑜𝑟 𝑣𝑠ℎ1 , 𝑣𝑠ℎ2 ∈ 𝑆𝑖. Which is contradiction to the 

fact that both Ni, Si have non-repeated elements by Lemma 6.1. 𝐼𝑓 𝑣𝑠ℎ1 =

𝑣𝑠ℎ2 , for some 𝑣𝑠ℎ1 ∈ 𝑁𝑖 and 𝑣𝑠ℎ2 ∈ 𝑆𝑖. Again, contradiction that 𝑁𝑖 ∩ 𝑆𝑖 = ∅. Similar 

arguments can be proved, for (𝑡𝑚𝑔).  

Case 2. Similarly, for 𝑚1 ≠ 𝑚2 and fixed 𝑑 ∈ (𝐹 �̂�\{0})
 �̂�−1. Consider 𝑠𝑚1𝑑 = 𝑠𝑚2𝑑 ⟺

𝑣𝑠𝑑 = 𝑦𝑚1𝑗  and 𝑣𝑠𝑑 = 𝑦𝑚2𝑗, for some  𝑣𝑠𝑑 , 𝑣𝑠𝑑𝑁𝑖 𝑜𝑟 𝑣𝑠𝑑 , 𝑣𝑠𝑑 ∈ 𝑆𝑖 ⟺ 𝑦𝑚1𝑗 =

𝑦𝑚2𝑗 , but 𝑦𝑚1𝑗 , 𝑦𝑚2𝑗 ∈ 𝑒𝑗
𝑦

. Contradiction to the fact in Theorem 6.2, which shows that θT 

does not generate a single similar pattern. Hence, 𝜃𝑇 is one-one. 

The slight increment in the parameters 𝑑1, 𝑑2, 𝑑3, 𝑑4 not merely provide sufficient 

randomness potency in each generated pattern, but also produce a large impact on the size of 

output data. This can be illustrated more accurately by seeking the relation between a single 

quantity in the sequence (𝑦𝑚𝑗) and corresponding output sequence (𝑣𝑠𝑚𝑑). Likewise, the  

Table 20. Simulation results of PRNM by the NIST testing suit. 
              Test Name                                                          Proportion                  Pass/Fail 
1. Frequency Test (Monobit)                      100

100⁄    Pass 
2. Frequency Test within a Block                     100

100⁄    Pass 
3. Run Test                                            97 100⁄    Pass 
4. Longest Run of Ones in a Block                     98 100⁄    Pass 
5. Binary Matrix Rank Test                           100

100⁄    Pass 
6. Discrete Fourier Transform (Spectral) Test       100

100⁄    Pass 
7. Non-Overlapping Template Matching Test       100

100⁄    Pass 

8. Overlapping Template Matching Test               100
100⁄    Pass 

9. Maurer's Universal Statistical test               100
100⁄    Pass 

10. Linear Complexity Test                            100
100⁄    Pass 

11. Serial test:       100
100⁄    Pass 
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12. Approximate Entropy Test                          100
100⁄    Pass 

13. Cumulative Sums (Forward) Test                  100
100⁄    Pass 

14. Cumulative Sums (Reverse) Test                  100
100⁄    Pass 

15. Random Excursions Test: 
               State                    
    -4            100

100⁄    Pass 
    -3            100

100⁄    Pass 
    -2            100

100⁄    Pass 
    -1            100

100⁄    Pass 
    +1            100

100⁄    Pass 
    +2            100

100⁄    Pass 
    +3            100

100⁄    Pass 
    +4            100

100⁄    Pass 

16. Random Excursions Variant Test: 
    State                               
    -9.0          100

100⁄    Pass 
    -8.0          100

100⁄    Pass 
    -7.0          100

100⁄    Pass 
    -6.0          100

100⁄    Pass 

    -5.0          100
100⁄    Pass 

    -4.0          100
100⁄    Pass 

    -3.0          100
100⁄    Pass 

    -2.0          100
100⁄    Pass 

    -1.0          100
100⁄    Pass 

    +1.0          100
100⁄    Pass 

    +2.0          100
100⁄    Pass 

    +3.0          100
100⁄    Pass 

    +4.0          100
100⁄    Pass 

    +5.0          100
100⁄    Pass 

    +6.0          100
100⁄    Pass 

    +7.0          100
100⁄    Pass 

    +8.0          100
100⁄    Pass 

    +9.0          100
100⁄    Pass 

 
whole process is managed via IT rather than a single arithmetic operation; thus, firmly reduce 

the time complexity of the proposed algorithm.  

Table 21. Time comparison of proposed technique with existing techniques w.r.to point generation. 
𝑝 Maximum/Minimum time(sec.) to generate 

𝐸(0,1, 𝑝) = 𝑡𝑚𝑎𝑥/𝑡𝑚𝑖𝑛 
Maximum/Minimum time(sec.) to generate 𝐸(1,1, 𝑝) = 𝑡𝑚𝑎𝑥/𝑡𝑚𝑖𝑛 

Base Point GL-OT RA IT Base Point GL-OT RA IT 
1019 (27,187) 𝑡𝑚𝑖𝑛

> 0.04 
𝑡𝑚𝑖𝑛
> 0.4 

𝑡𝑚𝑎𝑥
< 0.0151 

(1,375) 𝑡𝑚𝑖𝑛 
> 0.04 

𝑡𝑚𝑖𝑛 > 0.4 𝑡𝑚𝑎𝑥
< 0.0153 

 9929 (10,631) 𝑡𝑚𝑖𝑛
> 1.9 

𝑡𝑚𝑖𝑛
> 32 

𝑡𝑚𝑎𝑥
< 0.6 

(3,4484) 𝑡𝑚𝑖𝑛 
> 1.9 

𝑡𝑚𝑖𝑛 > 32 𝑡𝑚𝑎𝑥
< 0.5.6 

49991 (6,24197) 𝑡𝑚𝑖𝑛 > 47 𝑡𝑚𝑖𝑛
> 880 

𝑡𝑚𝑎𝑥
< 9.4 

(1,11512) 𝑡𝑚𝑖𝑛 
> 48 

𝑡𝑚𝑖𝑛 > 882 𝑡𝑚𝑎𝑥
< 9.4 

65579 (17,26502) 𝑡𝑚𝑖𝑛 > 94 𝑡𝑚𝑖𝑛
> 1380 

𝑡𝑚𝑎𝑥
< 15 

(1,59417) 𝑡𝑚𝑖𝑛 > 92 𝑡𝑚𝑖𝑛 > 1570 𝑡𝑚𝑎𝑥
< 15.2 

101117 (11,18479) 𝑡𝑚𝑖𝑛
> 207.3 

𝑡𝑚𝑖𝑛
> 4000 

𝑡𝑚𝑎𝑥
< 35.7 

(10,24163) 𝑡𝑚𝑖𝑛 > 207 𝑡𝑚𝑖𝑛 > 4000 𝑡𝑚𝑎𝑥
< 35.6 

526067 (85,34831) 𝑡𝑚𝑖𝑛
> 5843 

𝑡𝑚𝑖𝑛
> 24,000 

𝑡𝑚𝑎𝑥
< 838 

(1,317782) 𝑡𝑚𝑖𝑛 > 5994 𝑡𝑚𝑖𝑛 > 24,000 𝑡𝑚𝑎𝑥
< 839 
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6.4 Performance Analysis of SCM and PRNGM 

6.4.1 SCM Analysis 

S-box that is used in the substitution module of the cryptosystem, is one of the most 

important components of the block cipher. It is the only nonlinear component in most of the 

encryption schemes that catered to the function of diffusion and confusion. Therefore, the 

security of such algorithms relies on the security strength of the S-box. To examine the 

strength of the S-box the general criteria are selected, which are nonlinearity (NL), bit 

independent criteria (BIC), linear approximation probability (LAP), strict avalanche criteria 

(SAC), and differential approximation probability (DAP). The NL test evaluates the 

minimum distance among the set of all affine Boolean functions and the output S-box 

Boolean functions. The SAC test examines the sensitivity of the S-box against a small 

variance in the input data. Similarly, the LAP and DAP tests measure the resistance of the S-

boxes against linear and differential attacks respectively. We analyzed the generated S-box 

over these criteria to prove the efficiency of the proposed S-boxes. The resultant values are 

listed in Table 18.  From Table 18, our S-boxes’ non linearity scores are comparable with that  

of the schemes due to Ibrahim et al. [101]. Though, in this scheme, the S-boxes construction 

mechanism is developed using large field. On the other hand, the proposed scheme has 

almost better nonlinearity scores in all respect as compared to that of the schemes in [110]–

[112]. Therefore, our S-box construction mechanism (SCM) is computationally suitable to 

generate multiple efficient S-boxes for large-scale image data.  

6.4.2 PRNGM Analysis 

The strength of pseudo-random numbers can be claimed based on some common statistical 

tools like NIST, Diehard, and TESTU01. A sequence is described as secure and strong in 

terms of cryptography. In this research study, the NIST testing tool is used to identify the 

randomness of EC-based sequences. For this purpose, we tested 100 different sequences that 

are generated in a single round. The rate of passing sequences in each test is almost 1, which 

is perhaps an astonishing passing rate as compared to that of the scheme in [8], [116]. 

Moreover, as far as the number of sequences is concerned, it can be smoothly increased up to 

3000 by using a prime field consisting of 15 −bits entries. These facts prove that the 

proposed PRNGM is more suitable for large-scale multi-media data security. 

6.4.3 National Institute of Standard and Technology (NIST) 

NIST testing suite consists of 15 tests that are normally performed to identify the randomness 

of sequences. Generally, various techniques including cryptographic algorithms can be 
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adapted to generate these sequences. The NIST testing suit was published in 2001, as a result 

of joint teamwork between the NIST statistics department [117], and the computer security 

department. The simulation results of the testing tool on EC-based PRN are listed in Table 

20. 

6.5 Proposed Scheme in Image Encryption  

Images are the visual content that required more attention during transmission, especially in 

military, commercial, medical fields. To consider its security and reliability, numerous 

mathematical structures are adopted to formalize image encryption schemes. Traditionally, 

chaotic and EC systems are utilized for designing pseudo-random numbers and S-box 

generation modules. Cryptosystems with only a substitution module S-box are not suitable 

for security enhancement of image data [118] as its visual content’s nature is different in 

comparison to that of text data. For this purpose, a hybrid cryptosystem is a key requirement 

for image data transmission over public channels in recent decades. Generally, the hybrid 

cryptosystem is mostly based on S-box and PRN modules and found effective [78]. In this 

section, the aim is to demonstrate and validate the performance of the proposed SCM and 

PRNGM modules application in image encryption.  Perhaps, a two-phase mechanism in a 

single round is employed on the image data to construct its ciphered version. The following 

steps are the complete description of the proposed encryption process 

1. Expressed each pixel value of the plain/original image 𝐼𝑀×𝑁 in binary form which is 

denoted by 𝐵𝑀×𝑁. 

2. Initially, choose a sequence (𝑤(𝑠𝑗)𝑛)𝑛=𝑑1

𝑑2
= ((𝑠𝑗)𝑛)𝑛=𝑑1

𝑑2
; ∀ 𝑤 ∈ 𝑊, and 𝑌𝑊 ⊆ 𝑇 (By 

Case 2, in section 6.3.2). 

𝐷𝑀×𝑁 = 𝑏𝑖𝑡𝑥𝑜𝑟 ((𝑤(𝑠𝑗)𝑛
)
𝑛=𝑑1

𝑑2
, 𝐵𝑀×𝑁)𝑚𝑜𝑑256 ; 

The above equation shows the 𝑏𝑖𝑡𝑤𝑖𝑠𝑒 𝑥𝑜𝑟 operation between image data and sequence 

terms with the 𝑖𝑡ℎ − 𝑡𝑒𝑟𝑚 onward of the sequence (𝑤(𝑠𝑗)𝑛)𝑛=𝑑1

𝑑2
. 

3. Apply Bitwise with recursive operation from bottom to top (from last entry to 1st one) 

of image data 𝐷𝑀×𝑁 and get 𝑁𝑀×𝑁′ . 

4. Perform traditional substitution on the masked matrix 𝑁𝑀×𝑁′  by the generated S-box 

discussed in section 3.1. 
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5. Then masks from the top to bottom via RA of the image data 𝑁𝑀×𝑁′  top (from 1st 

entry to last one). 

6.6 Performance Analysis of Image Encryption  

To assess the security and feasibility of the proposed modules in image encryption, we 

perform various standardized tests such as entropy, histogram, correlation, NPCR, UACI, and 

second-order statistics to validate the randomized nature of the encrypted image. Moreover, 

the sensitivity feature regarding key as well as image data is analyzed and examine the 

resistance against attacks to chosen plaintext. The whole encryption process and its 

simulation experiments are investigated on MATLAB 2019𝑏 using 𝐼𝑛𝑡𝑒𝑙® Core(TM)i5 −

7500U CPU @ 2.70𝐺𝐻𝑧 2.90 𝐺𝐻𝑧 Processor, 8.00 − 𝐺𝐵 𝑅𝐴𝑀, Microsoft Windows 10 with 

64 − 𝑏𝑖𝑡 operating system. In this study, six different grayscale images of 256 × 256 

dimensions are chosen, Baboon, Pepper, Lena, Man, Moon Surface, Boat, and purely all 

black and white grayscale images are tested; mostly obtained from the USC-SIPI 

Miscellaneous Image dataset. As far as demonstration is concerned, randomly selected secret 

keys with some fixed parameters are 𝑝 = 257,ℳ𝑦1,𝑦2

𝑎1,𝑏1,𝑏2 =< 97,73 >169,5
0,234,123,  �̂� =

4079, 𝑐 = 1501, 𝑑1 = 1, 𝑑2 = 32, 𝑊 = 𝐹 �̂�\{0}, 𝑌
𝑊 = {(𝑤(𝑠𝑗)𝑛

)
𝑛=𝑑1

𝑑2
=

((𝑠𝑗)𝑛)𝑛=𝑑1

𝑑2
: ∀ 𝑤 ∈ 𝑊;   𝑛 = 𝑑1, 𝑑1 + 1,… , 𝑑2}. Figure 21 and Figure 23 illustrate the 

encryption output of the proposed SCM and PRNGM application to sample images and their 

corresponding histograms. 

6.6.1 Histogram Analysis 

Visual/Graphical description of the tonal distribution in an image is known as an image 

histogram, which represents the grayscale frequencies. As the frequency of each grayscale in 

the encrypted image occurs equally likely, the more it shows the flat histogram and 

confirming its high resistance to common statistical attacks. Figure 23, consists of the 

corresponding histograms relative to images in Figure 22 (a-f). Consequently, the encrypted 

images histograms not only achieve almost the required flatness level but also confirm to 

have meaningless patterns as well. 

6.6.2 Correlation Analysis 

The correlation coefficient (CC) of an image is quantitative measurement between two 

adjacent pixels, which describes the degree of dependency among pixels distribution. In this 

way, 10000 adjacent pairs are chosen to examine CC in the Vertical, Diagonal and 
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Horizontal directions of the original image and encrypted image. The CCs for original and 

encrypted images are computed and shown in Table 23 while their visual representation can 

be seen in Figure 23. The results revealed that the proposed mechanism greatly reduced the 

correlation among adjacent pixels in the original images, which affirms its high resistance 

against all kind of statistical attacks. As a result, the proposed modules are more suitable for 

image encryption applications. 

6.6.3 Information Entropy 

Information Entropy is used to compute the degree of randomness and uncertainty of gray-

scale values in the encrypted image. As the encrypted image data ranges between 0 ∽ 255, 

thus the ideal entropy score is 8 𝑏𝑖𝑡𝑠. Consequently, the more it gets close to 8 𝑏𝑖𝑡𝑠, the more 

is the encrypted image secure against common statistical attacks. In Table 23, the results of 

information entropy of the six gray-scale images and their corresponding encrypted data of 

sized 256 × 256 indicate that each encrypted image attains best entropy score, thus proving 

the suitability of the proposed modules for data security. Also, it can be seen from Table 22 

and Table 23, the entropy results of the encrypted images with all-white and all-black content 

by proposed modules are much better in comparison to some recent encryption schemes.  

6.6.4 Differential Attack 

Differential attack is one of the main techniques for attackers where they try to extract some 

similar or non-random patterns in the encrypted data generated from two almost identical 

plain inputs. If such pattern exists, the adversary may try to find the exact key or a loophole 

and break the security of the encryption algorithm. In this way, secure encryption algorithm 

generates almost random encrypted data even for a slight change in the input data to resist 

against differential attacks. In this context, the number of pixel change rate (NPCR) and 

unified average changing intensity (UACI) are the proper tools for computing the resistance 

of encryption algorithm against differential attacks. Table 23 shows the NPCR and UACI 

recorded scores of six different gray-images with dimension 256 of each. The NPCR 

simulation results of the proposed encryption method clearly lie above the optimal value 

99.5893% while the UACI scores in the optimal interval [33.3730%,33.5541%]. This reveals 

the high dependency of the proposed encryption method on the original image data and could 

be more effective against differential attacks 

6.6.5 Key Sensitivity Analysis 

In efficient cryptographic algorithm, the larger key space plays vital role in its effectiveness 

in respect of brute-force attack [119]. From cryptanalysis perspective, the minimum number 
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of guesses to generate a key space are 2128. The key space of our introduced cryptosystem is 

chosen so large to get 512 bits, and thus the key space for our proposed cryptosystem is 

much greater than 2128. Consequently, our scheme is highly resistive to brute-force attacks. 

Encryption phase sensitivity is examined by ciphering image data with two different secrete 

keys having slight change. We introduce a single bit change to one of the pixels in the pepper 

image and encrypt the image data, shown in Figure 21. In this experiment, the difference 

image in Figure 21(e) reveals the fact that slight changes in secrete key generate almost 

different encrypted images data. As a result, the proposed cryptosystem is highly secret key 

sensitive. 

      

Figure 21. (a) Original Pepper image; (b) Original image from (a) with one bit change at position (2,240); (c) 
Encrypted image of (a); (d) Encrypted image of (b); (e) Difference image of (c) and (d). 
 

      
               (a)                   (b)                     (c)                    (d)                                  (e)                               (f) 
 
Figure 22. (a)-(f) Tested images. 

 

 

 

 

 

 

 

 

 



 

89 
 

 
 (a1)             (b1)          (c1)              (d1)              (e1)   

 
 (a2)             (b2)          (c2)              (d2)              (e2)   

   
 (a3)             (b3)          (c3)              (d3)              (e3)   

 
 (a4)             (b4)          (c4)              (d4)              (e4)   

   
 (a5)             (b5)          (c5)              (d5)              (e5)   

   
 (a6)             (b6)          (c6)              (d6)              (e6)   
 
Figure 23.. (a1) Original image Baboon; (b1) Histogram of (a1); (c1) Encrypted Baboon; (d1) Histogram of 
(c1); (e1) Correlation of (c1); (a2) Original image Pepper; (b2) Histogram of (a2); (c2) Encrypted Pepper; 
(d2) Histogram of (c2); (e2) Correlation of (c2); (a3) Original image Lena; (b3) Histogram of (a3); (c3) 
Encrypted Lena; (d3) Histogram of (c3); (e3) Correlation of (c3); (a4) Original image Man; (b4) Histogram of 
(a4); (c4) Encrypted Man; (d4) Histogram of (c4); (e4) Correlation of (c4); (a5) Original image Moon; (b5) 
Histogram of (a5); (c5) Encrypted Moon; (d5) Histogram of (c5); (e5) Correlation of (c5); (a6) Original 
image Boat; (b6) Histogram of (a6); (c6) Encrypted Boat; (d6) Histogram of (c6); (e6) Correlation of (c6). 
 

Table 22. Entropy, NPCR and UACI results of All-White and All-Black images 
Scheme Entropy NPCR UACI 

All White All Black All White All Black All White All Black 
Our 7.997155 7.997565 99.60 99.61 33.45 33.72 
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Figure 24. Proposed SCM and PRNM application: (a) “All-White”; (b) Encrypted image of (a); (c) Histogram of 
(b); (d) “All-Black”; (e) Encrypted image of (d); (f) Histogram of (e). 

Table 23. Entropies, Correlations Coefficients, NPCR and UACI values 
Original 
Image 

Entropy Correlation NPCR UACI 

Vertical Diagonal Horizontal 
Pepper 7.99777 0.0019 0.0035 0.0013 99.61 33.55 
Baboon  7.99757 -0.0019 0.0016 0.0011 99.59 33.40 
Lena 7.99779 0.0012 0.0006 0.0021 99.60 33.40 
Man 7.99767 0.0020 0.0029 0.0027 99.57 33.42 
Moon-Surface 7.99766 0.0034 0.0018 0.0040 99.60 33.47 
Boat 7.99749 0.0004 0.0021 0.0032 99.67 33.63 

                               Table 24. Comparison table for second order statistics and entropy with that of recent schemes 
Plain Image Scheme Entropy Correlation Contrast Homogeneity Energy Entropy Ratio 

All 
White 

All 
Black 

Baboon 
 

 
Ours 

7.2636 0.8621 0.4089 0.8403 0.1208    

Encrypted 
Baboon 

7.9980 -0.0078 10.5716 0.3865 0.0156 7.9998 7.9998  

Ref.[101],2021  7.9976 0.0031 10.4148 0.3887 0.0156 --- --- 1
3⁄  

Ref.[120], 2020  7.9817 -0.0128 10.4391 0.3889 0.0157 --- --- 0
5⁄  

Ref.[121], 2019  7.9851 -0.0050 8.5792 0.4076 0.0175 --- --- 1
4⁄  

Ref.[122], 2020  7.9553 -0.0087 10.3466 0.3895 0.0157 --- --- 0
5⁄  

Ref.[7], 2020  --- --- --- --- --- 7.9985 7.9985 0
2⁄  

Pepper      
                   

 
Ours 

7.5553 0.9243 0.4359 0.8659 0.1012    

Encrypted 
Pepper 

7.9980 -0.0019 10.5003 0.3893 0.0156 7.9998 7.9998  

Ref.[101], 2021  7.9969 0.0024 10.4172 0.3872 0.0156 --- --- 1
3⁄  

Ref.[120], 2020  7.9545 -0.0061 10.5377 0.3894 0.0157 --- --- 1
4⁄  

Ref.[121], 2019  7.9840 -0.0017 8.4985 0.4103 0.0175 --- --- 1
4⁄  

Ref.[109], 2021  7.9973 --- --- --- --- 7.9973 7.9974 0
3⁄  

Ref.[122], 2020  7.9566 -0.0075 10.3042 0.3899 0.0157 --- --- 0
5⁄  

 
A ratio of 1 3⁄  shows the advantage in one statistics of the competitor while the proposed scheme has got in three statistics over competitor 

    
     (a)                   (b)    (c) 

 
 (d)                  (e)    (f) 
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6.7 Comparison and Discussion 

Generally, a random data with each entry is generated almost through number of arithmetic 

operations in many efficient  cryptographic algorithms [6], [49], [75], [76], [78], [101], [103], 

[121], [123]. However, it increases the computational cost of the algorithm. Likewise, the 

schemes [6], [124] are configured using elliptic curve structure over large field. Avoid the 

excess use of arithmetic operations, we propose an EC cryptosystem based on indexing 

approach to obtain efficient dynamic S-box, PRNS, with reduced computational efforts. In 

addition, the prime field for S-box construction has been taken of minimum size, whereas 

PRNS are generated by assuming small prime fields. To analyze the strength of our scheme, 

we first deploy the IT to obtain each point lying on 𝐸(𝑎, 𝑏, 𝑝): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏𝑚𝑜𝑑𝑝. The 

indexing technique (IT) is processed as: Initially, defining two sequences 𝜍 = (𝑦2𝑚𝑜𝑑𝑝)𝑦=0
𝑝−1 

and 𝜁 = (𝑥3 + 𝑎𝑥 + 𝑏𝑚𝑜𝑑𝑝)𝑥=0
𝑝−1. Now, for any 𝜈 ∈ 𝜍 ∩ 𝜁, we have (𝑥𝑗 , 𝑦𝑖) ∈

𝐸(𝑎, 𝑏, 𝑝), for all indexes 𝑥𝑗 , 𝑦𝑖 ∈ 𝐹𝑝; where 𝑦𝑖
2𝑚𝑜𝑑𝑝 = 𝜈 = 𝑥𝑗

3 + 𝑎𝑥𝑗 + 𝑏𝑚𝑜𝑑𝑝. For 

instance, we performed the indexing technique to generate all points using prime field 𝐹17, as 

shown in Table 19. Then, we obtain the indexes of a common point in both columns, as 

shown in shaded cells. Since, for each index of a single common point 𝛼 ∈ 𝐹𝑝 in column 1, 

there exist two indices having 𝛼 in Column:2 except for the common point appearing in the 

last index of Column 2, Table 19. For instance; 𝛼 =1 there are six pairs (4,1), (4,16), (13,1), 

(13,16), (17,1) and  (17,16) that are the points lying on EC, where the last index can be 

treated as the additive identity of a prime field. Consequently, one can find out all the points 

accurately without use of any single group law operation. Subsequently, it will have a 

positive impact on the speed of proposed cryptosystem while execution in real time 

application. In this way, some primes are chosen and generate EC points using IT, GL-OT, 

and RA separately, whereas the generators are randomly selected for operating GL-OT, as 

shown in Table 21. The computational result in Table shows that IT takes less time in 

generating points lying on EC as compared to GL-OT and RA. Thus, the IT algorithm is 

much feasible to use for computing EC points over large primes. Secondly, our EC scheme 

uses minimum prime fields for the generation of multiple efficient S-boxes as the minimum 

size for a random sequence to get a standardized S-box is 256  with each integral point from 

the set [0,255] without repetition. Such an EC cryptosystem with minimum prime field for 

multiple efficient S-boxes has not been yet adopted in literature, to the best of author’s 

knowledge. For instance, the EC scheme in [101] makes use of two operating modes for 

generating S-boxes with 106 minimum non-linearity scores over primes in the range of 
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[16,512] bits. Although, the same score is achieved using a fixed prime field containing 257 

elements by our proposed scheme. Similarly, the PRNS scheme is proposed with the help of 

IT in this study as well. From Table 22 and Figure 24, the simulation results of PRNS based 

on entropy and histogram indicate that the proposed sequences satisfy the required 

randomness criteria. In addition, a hundred sequences of minimum required length 106 are 

obtained using 12 − bits prime only, which are then tested via NIST testing tool thus found 

best passing ratio in comparison with PRNS’s ratio [8]. Likewise, TRNG is utilized to get 

multiple sequences using diffusive memristor [116] which are further assessed through NIST 

suit. It is revealed that the passing ratio of generated sequences in each test is less or equal to 

that of our proposed generated sequences. As a result, our proposed PRNGM acquires more 

capability of generating verified sequences; therefrom, confirms its suitability for secure 

cryptosystem [89]. To ensure the recommendation of our proposed algorithm in multimedia 

data security, some known statistical tests are employed on the encrypted multimedia data, 

and computed their numerical scores, as shown in Table 18, 20, 22, 23, and 24. Table 22 and 

23, list the NPCR, UACI, correlation, and entropy scores for original images and their 

encrypted images. All these simulation results show that the proposed algorithm is highly 

secure. Similarly, Table 24 depicts the comparative study of proposed algorithm using 

entropy, correlation, and second order statistics scores with that of some recent cryptographic 

scheme [7], [101], [109], [120]–[122] which clearly indicates that our scheme shows more 

advantage in listed statistics over each competitor. 
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Chapter 7 

Conclusion and Future Work 
 

In this chapter, we presented the conclusion and future direction of the dissertation. In the 

first section of this chapter, we present the conclusion of the dissertation while the second 

section deals with the future directions. This chapter involves the detail and accurate 

explanation of the outcomes obtained in the dissertation. Some of the forthcoming 

prospective are also a part of this chapter. 

Following are the main basic points established in this study, which can be categorized in the 

four main points. 

1. Elliptic curve structures are used to generate verified PRNS and robust S-boxes to 

enhance the security strength of a cryptosystem. 

2. Instead of generation a single S-box and pseudo random numbers sequence, the aim is 

to construct multiple number of S-boxes and pseudo random numbers of sequences by 

using simple as well as the core arithmetic operations of elliptic curves structure.  

3. Designed some well-defined mathematical models with bijective features by utilizing 

PRNS and S-boxes.  

4. These S-boxes and PRNS are used in multimedia data security by designing new 

algorithms for image encryption. 

 

7.1 Conclusion of Thesis 

In this section, we discuss the significance role of EC structure in designing efficient 

techniques for generating S-box and PRNS. We developed S-box, PRN and permutation by 

using both group-theoretic, simple arithmetic, and indexing techniques of elliptic curves. In 

this connection, the y-coordinates of an elliptic curve followed by modulo 256 play a 

dynamic role in the proposed research study. Furthermore, we established some significant 

mathematical models for handling large-scale multimedia data for security aspects.  
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In chapter 2, we constituted S-box through elliptic curves. We developed a scheme based on 

PRN and permutation using both group-theoretic aspects (Isomorphic and Non-isomorphic) 

of elliptic curves, distinguishing the encryption schemes published in the recent past decades. 

The y-coordinate of the isomorphic class of a fixed EC is managed to generate multiple 

efficient S-boxes. Meanwhile some similar technique is used for the generation of PRNs over 

the non-isomorphic class of a fixed elliptic curve. The newly obtained S-box has better 

statistical and algebraic characteristics as compared to the existing ECC S-boxes. 

In Chapter 3, we established an image encryption algorithm based on S-box and PRN, which 

are discussed in Chapter 2. Moreover, various permutations operations depending on the 

dimension of the original color image are created over the ECs preferably with different finite 

fields. The proposed cryptosystem has three main features:  

i- Simultaneous implements permutation operation independently along each 

channel of  the original color image. 

ii- The confusion block is generated in the permuted image by dynamic S-box. 

iii- Masks the post-confused image by the proposed PRN.  

Many researchers have tried to merge improved techniques to reduce the existing drawbacks 

in the previous work. In addition, we have already discussed the comparison of our proposed 

scheme with some existing schemes in the conclusion of Chapter 3. From which we conclude 

that our proposed scheme has strong resistance against some common statistical attacks. 

Further to all these, the proposed encryption scheme is better for security application 

purposes as it is equipped with a strong dynamic S-box in terms of nonlinearity. Finally, it 

can also be observed by the analyses that the diffusion property of the proposed method is 

surprisingly much better in the context of entropy and NPCR security analysis. Our proposed 

scheme could also be extended to the audio and video data. 

In chapter 4, we discussed the group arithmetic operations using EC structure. Due to high 

impact of EC group law operations on security strength, the prime objective of EC structure 

is used in order to provide enough security to secrete data. By applying group theoretic 

technique, a cryptographic algorithm is good enough for randomness characteristics. For this 

purpose, we make use of some verified patterns to enhance the confusion-diffusion 

properties. For these achievements, we apply some concepts of group theory with EC to 

explore the hidden potential of subgroup coset model. The subgroup coset mechanism is 

exploited to establish the efficiency of both ECS-PRNSM and MS. The fabulous remark in 

the proposed mechanism is that the points occur more randomly one after another when 

generating whole subgroup, it’s both coordinates also appear in similar fashion. 
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Consequently, there is no need of external mathematical operation to swap their points for 

their random purpose as presented in [103]. Subsequently, it is observed that the sub-group 

may be excellent selection to the base for MS and ECS-PRNSM some small prime fields. The 

proposed MS provides cryptographically strong S-boxes as compare to the some recent 

constructed S-boxes established in [78], [85]. Meanwhile, the ECS-PRNSM has a 

distinguishing feature towards a generated set of multiple independent random sequences 

with the best passing ratio in all tests [8], [88]. We also presented the graphical interpretation 

of consecutive pseudo random streams in which there is no similar pattern can be visualized 

as shown in Figure.12.  

In Chapter 5, we presented a well-define mathematical model, which provides a key platform 

to generate a sufficient environment on a small prime for large, spaced multimedia data to get 

masked. Since the prime parameter is the principal component which stretched the size of the 

output data by producing a small change. Therefore, our scheme can be use for new 

challenges produced by internet of things (IoT) devices. As these devices not only required a 

quick response, but they also need a security strength during data transmission. The obtained 

MM designed with bijective features using randomly chosen keys. Therefrom, we revealed 

that the proposed scheme is in a best agreement with security analysis because of its large key 

space. Furthermore, the efficiency of the proposed encryption mechanism is tested using 

some standard and non-standard image database, selected from internet source including 

USC-SIPI images database [125]. From Table.4, we observed that the entropy results of the 

grayscale encrypted images are better than the schemes found in [9], [97]. The histogram 

analysis also indicates the efficient performance of the proposed ECS-PRNSM module. 

Specifically, the uniformness of encrypted image data can be recognized easily to view 

column three of Figure 15. From Table.4, it is concluded that our scheme has provided better 

results of entropy for different tested encrypted images. 

In Chapter 6, the EC structure is generally employed in image encryption application. For this 

purpose, we reviewed some existing image encryption schemes based on EC using GL-OT. 

We established an EC-based algorithm using IT with partial engagement of GL-OT to reduce 

the time consumption/complexity. The proposed mechanism diffused each pixel value with 

PRNS module, and then created the confusion using S-box module. Both PRNS and S-box 

modules are designed by using isomorphic elliptic curves and sub-group respectively. The 

proposed scheme outperforms on the following main features:  

i- Performing efficient technique, rather GL-OT to generate EC points for both SCM 

and PRNGM modules. 
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ii- Both SCM and PRNGM is processed through pure bijective models. 

iii- Minimum prime field is one of the prime features of proposed SCM. 

iv- Efficiency is enhanced on a small prime field of both SCM, PRNGM. 

v- Encryption performance is excellent in terms of security measures. 

The efficiency of SCM and PRNGM is verified by conducting S-box and NIST testing tools 

respectively, and we found them more efficient relative to their own characteristics. 

Meanwhile, the encryption performance is examined by conducting some experimental tests 

on the encrypted image data. The simulated data present in chapter 6, indicates that the 

proposed modules generate highly secure encrypted data against the existing known attacks. 

Furthermore, the comparative study of our crypto system with some recent research also 

reveals that our scheme uses fewer number of arithmetic operations as compared to the 

schemes established in [6],[78],[101]. In short, due to high encryption speed our proposed 

encryption scheme play a better role in real-time encryption. 

7.2 Perspective of Future Directions 

During my research work, we realized that we shall not limit the scope of elliptic curves to 

symmetric encryption algorithms. But we can rather proceed parallelly to work on the EC 

asymmetric and efficient fully homomorphic encryption as well as core theoretic directions. 

In this connection some queries regarding these aspects are elaborated in the following: 

1. Develop a relation between Carmichael and primitive elements in Galois ring to get a 

complete set consists of non-zero divisors. 
2. Defining the elliptic curve points over the complete set so that every point has 

multiplicative inverse in each component of EC. 
3. Designing a bilinear map over the points of EC that will probably satisfy both additive 

and multiplicative homomorphic properties. 
4. Establish theoretic results that confirms the correctness of decryption process. 
5. Semantic security of proposed algorithm will probably depend on the intractableness 

of both primitive elements as well as non-zero divisors of the complete set. 
The above suggestions are developed by thoroughly inspection of well-known homomorphic 

algorithms namely Goldwasser-Micali (GM), ElGamal, Benaloh, Okamoto-Uchiyama, 

Paillier, and Boneh-Goh-Nissim Algorithms [126]. The core idea behind these algorithms are 

mostly depends on either residuosity class or integer problem. The stated algorithms are 

semantically secure and intractable. Moreover, these algorithms are either additively or 

multiplicatively homomorphic encryption algorithms. However, the GM and Benaloh 
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algorithms are both additive and multiplicative homomorphic by using an integer scalar 𝑠. It 

is noting that the Paillier and Boneh-Goh-Nissim algorithms play vital role in generating our 

idea for future research study.  
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