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Preface 

Due to the rapid advancement of science and digital technology, the importance of digital data 

in everyday life has grown tremendously over the past several decades. Nowadays, digital data 

are employed in many spheres of life, including commerce, military image databases, private 

video conferences, finance, engineering, mathematics, the arts, advertising, healthcare and 

scientific research. Digital data processing tools and digital documentation are becoming 

increasingly important due to the expanded significance of digital data in the age of information 

technology. Consequently, it has improved digital data transmission over the public channel. 

Since the internet network is widely accessible, it has generated plausible opportunities that 

endanger the integrity and confidentiality of digital data during dissemination over the internet. 

Cryptography is the study of information security strategies used to combat these threats. 

Over the past 60 years, cryptography has gained recognition as a legitimate scientific field. 

However, comparatively, it is an entirely new and faster-growing study area compared to other 

science areas, and each moment carries continual developments. The field of cryptography is 

divided mainly into two sub-branches: a) Symmetric Cryptography and b) Asymmetric 

Cryptography. This classification of cryptography is based on the input key and confidential 

data used for encryption and decryption. In symmetric-key cryptography, the communication 

parties secretly share a private key. The Advanced Encryption Standard (AES), Data 

Encryption Standard (DES), Rivest Cipher 4 (RC4), International Data Encryption Algorithm 

(IDEA), Serpent, TwoFish, Camellia, SM4 and Lucifer are some well-known symmetric key 

cryptography algorithms. AES-128, AES-192, and AES-256 are the most often used symmetric 

algorithms. From the resource utilization point of view, the symmetric key algorithms require 

few resources to operate. Although owing to the usage of a single key for encryption, the 

symmetric algorithm is less secure. In symmetric-key cryptography, the communicating parties 

utilize the same private key for encryption and decryption. Thus, the security risks of sharing 

secret keys make public-key cryptography even more crucial. Public key cryptography 

employs a pair of distinct keys (private, public) for encryption and decryption and is much 

safer as two keys are involved. The primary goal of public key cryptography, the cipher, is to 

protect the data from eavesdroppers even when they know the encryption key. Algorithms such 

as RSA, Elliptic Curve Cryptography(ECC), NTRU, Diffie-Hellman, Elgamal and McEliece 

are the most well-known public examples of asymmetric key cryptography. 
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Elliptic curve cryptography (ECC), which employs a pair of public-private keys, is the most 

prominent and well-known public-key cryptosystem. The concept has been used since the 19th 

century and has provided optimal solutions for many hard mathematical problems in literature, 

like the Fast Integers Factorization Problem (FIFP), searching for congruent numbers (SCN), 

etc. Nowadays, this concept is being extensively used in cryptographic applications. 

Principally, the use of these curves relies on the very existence of group law, making this a 

relatively good algorithm for the public key cryptosystem because the discrete logarithm 

problem is a hard problem relative to the size of the parameters used. Such curves also find 

application in digital signatures, bilinear pairing, and digital signatures. Being an alternative to 

the well-known RSA algorithm, elliptic curve cryptography offers better security with a much 

smaller key size than RSA and finite field discrete logarithm-based systems. Finite field Diffie-

Hellman cryptosystems are known to be slow and susceptible to the number field sieve attack 

using precomputation, two limitations that do not apply to elliptic curves, as far as is currently 

known. Elliptic curve cryptosystems offer efficiency and security advantage over these 

systems. Until now, there hasn't been a more effective general attack for elliptic curves over 

prime fields with a subgroup of huge prime order than the exponentially fast Pollard's rho 

attack. Because of this security aspect, elliptic curve systems require a much smaller key size 

to offer the same level of security compared to Diffie Hellman and RSA. Moreover, the 

efficiency advantage makes them ideal for resource-constraint devices like smart cards and 

web servers where public key cryptography is a bottleneck. As a result, many organizations 

have encouraged the use of elliptic curves by proposing sets of suggested elliptic curves and 

algorithms on top of them, including the National Institute of Standards and Technology 

(NIST), the National Security Agency (NSA), and l'Agence Nationale de la Securité des 

Systemes d'Information (ANSSI). 

The primary and most often utilized operation in elliptic curve cryptography is the scalar 

multiplication 𝐾𝑃, where 𝐾 is a private integer value that has to be secured where 𝑃 is the point 

on an elliptic curve. The scalar multiplication of the elliptic curve is utilized in various 

cryptographic algorithms, including enciphering/deciphering of the data, the key generation 

process, and the digital signature signing and verification methods. Scalar, point, and field 

arithmetic are the three arithmetic levels implied by the mathematics of an elliptic curve. Many 

works are devoted to pointing arithmetic and scalar arithmetic to make a quick calculation of 

scalar multiplication, which is the main computation involved in ECC. Point arithmetic means 

the addition and successive doubling of the point of EC. 
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Elliptic curve cryptography has been widely used as a discrete mathematical structure in 

computer hardware and software. Finite fields EC are a beneficial structure with many uses in 

computer science and cryptography. One of the characteristics of finite filed curves is that they 

are typically executed more quickly on general-purpose CPUs because they usually include a 

big integer multiplier circuit instead of a big binary multiplier circuit. Furthermore, finite field 

curve efficiently implements hardware, prompting researchers to utilize it in cryptography. The 

reduction of cost and efficiency improvements are the main characteristics of EC over a finite 

field computation. In this thesis, we evaluate how the parameters of EC over a finite field affect 

the security features of symmetric, asymmetric and hybrid cryptographic techniques. The 

objective is to enhance the parameters of EC over a finite field and investigate how this will 

increase the security of the cryptosystems. 

The thesis encompasses a total of six chapters. The fundamental concepts and mathematical 

background of EC are covered in the first chapter of this thesis. Furthermore, the main objective 

of this chapter is to provide a concise overview of the underlying concepts for EC-based 

cryptographic applications. In the subsequent chapters, these definitions and attributes are 

applied. The chapter also introduces the generalization of EC called hyperelliptic curve (HEC), 

which will be utilized in chapter four for watermarking encryption scheme. The chapter 

concludes with the complexity theory.  

The second chapter of this thesis introduces a hybrid architecture named an integrated 

encryption scheme for multimedia data security. In the hybrid architecture approach, the data 

encoding and decoding approaches combined the efficiency of symmetric key encryption with 

the speed and convenience of an asymmetric key encryption scheme. The scheme introduced 

in this chapter is the enhanced version of the EC integrated encryption scheme (E-ECIES) over 

a finite field ℱ𝑞. This E-ECIES ensures confidentiality, user authentications, and secure key 

sharing among the communicating parties. Initially, the users share a secret parameter using 

Diffie-Hellman over the EC and pass it through SHA-256. Afterwards, the proposed scheme 

uses the first 128 bits for the confidentiality of the data, while the remaining 128-bits are for 

authentication. The confusion module is achieved by affine power affine transformation in the 

encryption algorithm. In contrast, the diffusion module is attained through highly nonlinear 

sequences generated through the EC. 

The third chapter of this thesis introduced an efficient digital audio encryption algorithm with 

the design of a substitution permutation network (SPN) using a Mordell elliptic curve (MEC). 
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This newly designed scheme is based on the core mathematical operations of an EC over a 

finite prime field ℱ𝑞. As the rich mathematical operations of the EC are accomplished 

efficiently, a decent-quality sequence of Pseudo-random numbers is obtained in the initial 

module of the encryption procedure. After that, the plain audio data matrix is defused using 

these highly random sequences. Multiple 5×5 bijective S-boxes perform the confusion part of 

the scheme with optimal nonlinearity. The experimental findings support the proposed 

permutation-substitution architecture scheme's ability to defend against various attacks. 

Chapter 4 of this thesis presents a novel digital watermarking scheme. In this era where the 

popularity and availability of the internet are at their peak, online storage devices are very 

easily accessible. The essay accessibility of online data has made the distribution, replication, 

and creation of digital data hassle-free. This problem led to the developing of a robust algorithm 

that could prevent copyright breaches. Therefore, this chapter presents a novel image 

watermarking scheme based on the hyperelliptic curve (HEC). The suggested scheme is key-

dependent, and only the main owner of the image can prove his ownership using his secret key. 

The proposed scheme uses random sequences generated through the HEC and randomly 

distributes the watermark image's data. The random distribution of the watermark image, on 

the one hand, does not produce an effect on the quality of the host image; on the hand, this 

method enhances the security of the suggested watermarking technique, as only the authorized 

owner can reproduce the watermark image. Additionally, the chapter is concluded with the 

analytical findings of the proposed approach and a comparison to other current schemes.    

Finally, in chapter 5, a symmetric key encryption algorithm was designed based on the efficient 

computation of elliptic curve isomorphism and small substitution boxes for the application of 

grayscale and binary image security. Since the data of plain images contain a high amount of 

correlated pixels, thus, the mere reliance on standard algorithms like AES, RSA, and DES is 

unsuitable for multimedia data security. Therefore, this chapter deliberates the efficient 

algorithms for multimedia data security. The suggested schemes are thoroughly evaluated 

against linear and differential attacks. The experimental findings of the proposed scheme show 

the efficiency of the system against different attacks. 

The conclusion and a few ideas for potential future work are covered in the last chapter. 
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Chapter 1 

Elliptic Curve and Cryptography: An Overview 
 

1.1 Introduction  

This chapter aims to summarize the fundamental theory just enough for cryptographic 

applications. Additionally, this chapter seeks the basic notation, concepts, and properties of an 

elliptic curve and cryptography, which are utilized in the imminent chapters. There are four 

primary divisions within the chapter. The elliptic curve's fundamental definitions and 

mathematical core functioning are covered in the second section. Next, Section three looks at 

the underlying mathematical operation of the Hyper elliptic curve (HEC). The third section of 

the chapter covers elliptic curve cryptography (ECC) and its cryptosystem. The study of 

algorithms and asymptotic complexity studies of the algorithms are enclosed in the last part of 

the chapter.  

1.2 Fundamentals of Elliptic Curve  

Throughout this subsection, 𝕂 denotes a field of arbitrary characteristics, and 𝕃 is the algebraic 

extension field of 𝕂. The general reference of this section is given in Chapter 3 by Darrel 

Hankerson, Alfred Menezes, and Scott Vanstone [1], Chapter 1 of Lawrence Washington [2], 

and Chapter 13 by Dale Husemöller [3]. 

Definition 1.1. Let 𝒶0, 𝒶1, �́�0, �́�1, �́�2 ∈ 𝕂. An elliptic curve over the field 𝕂 is defined by the 

equation  

𝔼 = 𝓎2 + 𝒶0𝓍𝓎 + 𝒶1𝓎 = 𝓍
3 + �́�0𝓍

2 + �́�1𝓍 + �́�2                     (1.1) 

With discernment △𝔼≠ 0, the △𝔼,  is defined as follows: 

△𝔼= −𝒟1
2𝒟2 − 8𝒟3

3 − 27𝒟4
2 + 9𝒟1𝒟3𝒟4

𝒟1 = 𝒶0
2 + 4𝒶0

𝒟2 = 𝒶0
2�́�2 + 4�́�0�́�2 − 𝒶0𝒶1�́�1 + �́�0𝒶1

2 − �́�1
2

𝒟3 = 2�́�1 + 𝒶0𝒶1
𝒟4 = 𝒶13 + 4�́�2

                                      (1.2) 

Then the set of 𝕃-rational points on 𝔼 along with the point of infinity is defined as: 

𝔼 (𝕃) = {(𝓍, 𝓎) ∈ 𝕃 × 𝕃: 𝓎2 + 𝒶0𝓍𝓎 + 𝒶1𝓎 − 𝓍
3 − �́�0𝓍

2 − �́�1𝓍 − �́�2 = 0} ∪ {∞}     (1.3) 

Remarks 1.2. (Observation on Definition 1.1) 
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I. The above equation (1.3) is called the  Weierstrass equation. 

II. Because the coefficients 𝒶0, 𝒶1, �́�0, �́�1, �́�2 of its defining equation are elements of 𝕂, 

we state that of 𝔼  is defined over 𝕂. When we write 𝔼 𝕂⁄  , we highlight that 𝔼 is defined 

over 𝕂 and 𝕂 is referred to as the underlying field. Remember that if the elliptic curve 

𝔼 is defined over 𝕂, it also be defined over any extension field of 𝕂. 

III. The condition of discriminant   △𝔼≠ 0, guarantee that the 𝔼 is "smooth," that is, there 

is not any point (𝓍, 𝓎) where the curve has more than one unique tangent lines 

IV.  The  infinity point (∞,∞), generally denoted by ∞ sitting at the top of the y-axis as 

well as the bottom of the y-axis, satisfies the equation (1.3) 

Example 1.3. (Elliptic curve over the field 𝕂 = ℝ ). Let the elliptic curves  

𝔼1 = 𝓎
2 = 𝓍3 − 𝓍                                                  (1.4) 

 𝔼2 = 𝓎2 = 𝓍3 +
17

8
                                                 (1.5) 

𝔼3 = 𝓎
2 = 𝓍3 − 𝓍 +

17

4
                                         (1.6) 

defined over the 𝕂 = ℝ. The graphical representations of equations (1.4) and (1.6) are 

illustrated in Figure 1. 

 
Figure 1. Elliptic curve over R 

1.2.1 Simplified Weierstrass equations  

Definition 1.4. Consider the elliptic curves 𝔼 and  𝔼 ̅̅ ̅ defined over the field 𝕂 and given by 

the Weierstrass equation 

𝔼 = 𝓎2 + 𝒶0𝓍𝓎 + 𝒶1𝓎 = 𝓍
3 + �́�0𝓍

2 + �́�1𝓍 + �́�2                   (1.7) 
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�̅� = 𝓎2 + 𝒶0̅̅ ̅𝓍𝓎 + 𝒶1̅̅ ̅𝓎 = 𝓍
3 + �́�0̅̅ ̅𝓍

2 + �́�1̅̅ ̅𝓍 + �́�2̅̅ ̅                    (1.8) 

are said to be isomorphic over the field 𝕂 if ∃ 𝓊,𝓇, 𝓈, 𝓉 ∈ 𝕂 with 𝓊 ≠ 0, in such a manner 

that the change of variables transforms equation (1.7) into equation (1.8). 

(𝓍, 𝓎) = {
𝓍 → 𝓊2𝓍 + 𝓇

𝓎 → 𝓊3𝓎 + 𝓊2𝓈𝓍 + 𝓉
                                                 (1.9) 

The change of variables defined in equation (1.9) is called admissible change of variables.  

A general Weierstrass equation  

𝔼 = 𝓎2 + 𝒶0𝓍𝓎 + 𝒶1𝓎 = 𝓍
3 + �́�0𝓍

2 + �́�1𝓍 + �́�2 

Applying admissible change of variables can substantially simplify a Weierstrass equation. 

Throughout the rest of the thesis, simplified equations will be employed. In the case of 

underlying fields with different characteristic from 2 and 3, or underlying fields with 

characteristics equal to 2 or 3, we consider these cases separately. 

Case 1. When the characteristics of the field 𝕂 ≠ 2,3 

If the characteristic of the field 𝕂 ≠ 2,3, then the admissible change of the variable is defined 

as follows: 

(𝓍, 𝓎) → (
𝓍 − 3𝒶0

2 − 12�́�0
36

,
𝓎 − 3𝒶0𝓍

216
−
𝒶0

3 + 4𝒶0�́�0 − 12𝒶1
24

).                 (1.10) 

The above Transformation of the Weierstrass equation (1.7) into (1.11) is called the short 

Weierstrass equation 

𝓎2 = 𝓍3 + Α𝓍 + Β.                                               (1.11) 

Where the elements Α, Β ∈ 𝕂. The discriminant  of the equation (1.11) is △𝔼= −16(4Α
3 +

27Β2).  

Case 2. When the characteristics of the field 𝕂 = 2 

There are two different sub-cases when the characteristic of the field is 2. In the first sub-

case, if the coefficient 𝒶0 ≠ 0, then an admissible change of variable is: 

(𝓍, 𝓎) → (𝒶0
2𝓍 +

𝒶1
𝒶0
, 𝒶0

3𝓎 +
𝒶0

2�́�1 − 𝒶1
2

𝒶03
).                             (1.12) 

transforms 𝔼 to the curve   
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𝓎2 + 𝓍𝓎 = 𝓍3 + Α𝓍2 + Β,                                            (1.13) 

where Α, Β are the elements of 𝕂 and the discriminant  △𝔼= Β. A curve of this type is called a 

non-supersingular which is discussed after this sub-section. 

 In the second sub-case, if the coefficient 𝒶0 = 0, then the admissible change of variable  

(𝓍, 𝓎) → (𝓍 + �́�0, 𝓎).                                                 (1.14) 

and transforms the curve to  

𝓎2 + ℂ𝓎 = 𝓍3 + Α𝓍 + Β,                                        (1.15) 

where the coefficients ℂ, Α, Β are in 𝕂 and the discriminant  △𝔼= ℂ
4. The curve defined 

above is known as supersingular. 

Case 3. When the characteristics of the field 𝕂 = 3 

There are also two different sub-cases when the characteristic of  𝕂 is 3. In the first sub-case, 

if the coefficient 𝒶02 ≠ −�́�0 then an admissible  change of variable is defined as follows: 

   (𝓍, 𝓎) → (𝓍 +
𝒟3

𝒟1
, 𝓎 + 𝒶0𝓍 + 𝒶0

𝒟3

𝒟1
+ 𝒶1),                          (1.16) 

where 𝒟3 = �́�1 − 𝒶0𝒶1 and 𝒟1 = 𝒶02 + �́�0 . And transform into the curve  

𝓎2 = 𝓍3 + Α𝓍 + Β ,                                            (1.17) 

where the coefficients  Α, Β ∈ 𝕂 and his discriminant △𝔼= −(Α
3Β). In the second sub-case, if 

the coefficient 𝒶02 = −�́�0 then the admissible change of variable is defined as follows : 

(𝓍, 𝓎) → (𝓍, 𝓎 + 𝒶0𝓍 + 𝒶1),                                 (1.18) 

and transforms to the curve  

𝓎2 = 𝓍3 + Α𝓍 + Β,                                        (1.19) 

where the elements  Α, Β ∈ 𝕂 and the discriminant  △𝔼= −Α
3. The curve defined in equations 

(1.17) and (1.19) is considered non-supersingular and supersingular, respectively. 

1.2.2 Group law  

To form a group law on the elliptic curve over the specified field 𝕂, i.e., 𝔼(𝕂). We start with 

any two points on the particular elliptic curve 𝔼(𝕂). For adding two points in 𝔼(𝕂) to get the 

third point in 𝔼, use the chord-and-tangent rule. The collection of points 𝔼(𝕂) with the binary 
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operation of the addition define an abelian group with ∞ functioning as its identity. To avoid 

confusion of adding simply the coordinates of points, we denote the operation of the addition 

of points by +𝔼 . 

Let 𝓅 = (𝓍1, 𝓎1) and 𝒬 = (𝓍2, 𝓎2) be two points on 𝔼(𝕂). Then the addition of 𝓅 and 𝒬, 

equal to ℛ, is defined as follows. First, draw the line ℒ through the points 𝓅 and 𝒬. From figure 

2, we can  see that  the line ℒ intersects 𝔼 on the new point ℛ́. Reflect the point ℛ́ along the x-

axis with a change in the sign of 𝓎 coordinate to get the point ℛ. The Doubling of the point 𝒬 

is defined as follows. First, draw the line ℒ on the elliptic curve at the point 𝒬; the line ℒ meet 

another point ℛ́ on the elliptic curve, 𝔼. Reflect the point ℛ́ along the x-axis, we get the point 

ℛ which is a doubling of the point 𝒬. The geometrical interpretation is shown in Figure 2. 

The mathematical formulation of group law for simplified Weierstrass equations over different 

underlying fields for the supersingular and non-supersingular elliptic curve is presented in the 

following subsection.  

 
Figure 2. Geometric interpretation of point addition and doubling 

 

1.2.3 Group law for 𝔼(𝕂): 𝔂𝟐 = 𝔁𝟑 + 𝚨𝔁 + 𝚩, char(𝕂) ≠ 𝟐, 𝟑 

I. Identity: 𝓅 +𝔼 ∞ = ∞ +𝔼 𝓅 = ∞ , ∀ 𝓅 ∈ 𝔼(𝕂). 

II. Inverse: If 𝓅 = (𝓍1, 𝓎1) ∈ 𝔼(𝕂), then (𝓍1, 𝓎1)+𝔼 (𝓍1, −𝓎1) = ∞. Where 

(𝓍1, −𝓎1) is the inverse point of 𝓅 denoted by −𝓅. Moreover, the opposite−𝓅 is in 

𝔼(𝕂) 

III.  Addition of distinct point: Let  𝓅 = (𝓍1, 𝓎1), 𝒬 = (𝓍2, 𝓎2)  ∈ 𝔼(𝕂), where 𝓅 ≠ ∓𝒬. 

Then  𝓅 + 𝒬 computed using the following mathematical expressions.  
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ℛ = 𝓅 +𝔼 𝒬 = (𝓍3, 𝓎3), 

where  

𝓍3 = 𝔪
2 − 𝓍1 − 𝓍2 and  𝓎3 = 𝔪(𝓍1 − 𝓍3) − 𝓎1 

and 𝔪 denotes the slope of line through the points of 𝓅 and 𝒬 which is : 

𝔪 =
𝓎2 − 𝓎1
𝓍2 − 𝓍1

. 

IV. Doubling: Let  𝓅 ∈ 𝔼(𝕂) where 𝓅 ≠ −𝓅, then doubling of the point 𝓅 is denoted by 

2𝓅 and computed by the following mathematical expression. 

2𝓅 = 𝓅 +𝔼 𝓅 = (𝓍3́, 𝓎3́ ) 

where  

𝓍3́ = 𝔪
2 − 2𝓍1 and 𝓎3́ = 𝔪(𝓍1 − 𝓍3) − 𝓎1 

and the slop 𝔪 of the line tangent to the curve in the point 𝓅 is: 

𝔪 =
3𝓍2 + Α

2𝓎
. 

Example 1.5. (Elliptic Curve over the prime field). Consider the elliptic curve 𝔼 over the 

prime field ℱ𝑃, with the parameters Α = 1, Β = 11 and 𝑃 = 41 

𝓎2 = 𝓍3 + 1𝓍 + 11                                                     (1.20) 

The  △𝔼= −16(4Α
3 + 27Β2) = −16(4(1)3 + 27(11)2) = −52,336 ≢ 0 𝑚𝑜𝑑 41, which 

shows that the curve is smooth. The points on 𝔼(ℱ41) are given below: 

Table 1. No. of Points on 𝔼(ℱ41) 
∞ (8,11) (16,33) (20,35) (36,2) 

(21,2) (8,30) (17,12) (22,12) (36,39) 
(2,29) (10,18) (17,29) (22,29) (37,5) 
(3,0) (10,23) (18,11) (24,1) (37,36) 
(5,10) (11,0) (18,30) (24,40) (39,1) 
(5,31) (15,11) (19,1) (25,9) (39,40) 
(7,19) (15,30) (19,40) (25,32) (40,3) 
(7,22) (16,8) (20,6) (27,0) (40,38) 

 

1.2.4 Group law for Non-Supersinguler  𝔼 ℱ2𝓂⁄ : 𝔂𝟐 + 𝔁𝔂 = 𝔁𝟑 + 𝚨𝔁𝟐 + 𝚩.  

I. Identity: 𝓅 +𝔼 ∞ = ∞ +𝔼 𝓅 = ∞ , ∀ 𝓅 ∈ ℱ2𝓂 . 

II. Inverse: If 𝓅 = (𝓍1, 𝓎1) ∈ ℱ2𝓂 , then (𝓍1, 𝓎1)+𝔼 (𝓍1, 𝓍1 + 𝓎1) = ∞. Where 

(𝓍1, 𝓍1 + 𝓎1), is the inverse point of 𝓅 denoted by −𝓅. Moreover, the opposite  point 

−𝓅 ∈ 𝔼(𝕂). 
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III. Addition of distinct points: Let  𝓅 = (𝓍1, 𝓎1), 𝒬 = (𝓍2, 𝓎2)  ∈ ℱ2𝓂 , Where 𝓅 ≠ ∓𝒬.  

The addition of 𝓅 and 𝒬 is defined as follows: 

     

                                                      ℛ = 𝓅 +𝔼 𝒬 = (𝓍3, 𝓎3), 

where  

𝓍3 = 𝔪
2 +𝔪+ 𝓍1 + 𝓍2 + Α and 𝓎3 = 𝔪(𝓍1 + 𝓍3) + 𝓍3 +𝓎1 

and 𝔪 as denoted is the slope of the points of 𝓅 and 𝒬 defined as: 

𝔪 =
𝓎2 + 𝓎1
𝓍2 + 𝓍1

. 

IV.  Doubling: Let  𝓅 ∈ ℱ2𝓂 . Where 𝓅 ≠ −𝓅, doubling of the point 𝓅 is denoted by 2𝓅 

and computed by the following mathematical expression. 

2𝓅 = 𝓅 +𝔼 𝓅 = (𝓍3́, 𝓎3́ ), 

              where   

𝓍3́ = 𝔪
2 +𝔪+ Α and 𝓎3 = (𝔪+ 1)𝓍3́ + 𝓍12 

and the slop of the point 𝓅 = (𝓍1, 𝓎1) ∈ ℱ2𝓂 , is defined as follows: 

𝔪 =
(𝓎1 + 𝓍1)

𝓍1
⁄  

Example 1.6. (Non-Supersingular Elliptic Curve over  𝔼 𝓕𝟐𝟓⁄ ). Consider the finite field ℱ25 

and 𝑝(𝒳)  =  𝒳5  + 𝒳2  +  1 is the reduction of the polynomial in 𝓕𝟐𝟓. If 𝜏 is a root of 

𝑝(𝒳), we have 𝑝(𝜏) = 0, which implies that  

𝑝(𝜏) =  𝜏5  + 𝜏2  +  1 = 0 

𝜏5 = 𝜏2  +  1                                                      (1.21) 

Each of the 31 nonzero elements of 𝓕𝟐𝟓 will now be interpreted using equation (1.21) as shown 

in Table 2. Take note that we need just five coordinates to define each of the 𝑃 = 25 

components of ℱ25.  

 Consider the non-supersingular elliptic curve with parameters Α = 𝜏11 and Β = 𝜏10 defined 

as follows: 

𝓎2 + 𝓍𝓎 = 𝓍3 + 𝜏11𝓍2 + 𝜏10                                         (1.22) 

The number of rational points of the curve of equation (1.22) is shown in Table 3 below. 

 



 

15 
 

Table 2. Elements of ℱ25 
S.no 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐺𝐹(2𝑚) 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 
0 0 0 00000 
1 𝜏 𝜏 00010 
2 𝜏2 𝜏2 00100 
3 𝜏3 𝜏3 01000 
4 𝜏4 𝜏4 10000 
5 𝜏5 𝜏2 + 1 00101 
6 𝜏6 𝜏3 + 𝜏 01010 
7 𝜏7 𝜏4 + 𝜏2 10100 
8 𝜏8 𝜏2 + 1 + 𝜏3 01101 
9 𝜏9 𝜏4 + 𝜏 + 𝜏3 11010 
10 𝜏10 𝜏4 + 1 10001 
11 𝜏11 𝜏2 + 𝜏 + 1 00111 
12 𝜏12 𝜏3 + 𝜏2 + 𝜏 01110 
13 𝜏13 𝜏4 + 𝜏2 + 𝜏3 11100 
14 𝜏14 𝜏4 + 𝜏2 + 𝜏3 + 1 11101 
15 𝜏15 𝜏4 + 𝜏2 + 𝜏 + 𝜏3 + 1 11111 
16 𝜏16 𝜏4 + 𝜏 + 𝜏3 + 1 11011 
17 𝜏17 𝜏4 + 𝜏 + 1 10011 
18 𝜏18 𝜏 + 1 00011 
19 𝜏19 𝜏2 + 𝜏 00110 
20 𝜏20 𝜏3 + 𝜏2 01100 
21 𝜏21 𝜏4 + 𝜏3 11000 
22 𝜏22 𝜏4 + 𝜏2 + 1 10101 
23 𝜏23 𝜏3 + 𝜏2 + 𝜏 + 1 01111 
24 𝜏24 𝜏4 + 𝜏3 + 𝜏2 + 𝜏 11110 
25 𝜏25 𝜏4 + 𝜏3 + 1 11001 
26 𝜏26 𝜏4 + 𝜏2 + 𝜏 + 1 10111 
27 𝜏27 𝜏3 + 𝜏 + 1 01011 
28 𝜏28 𝜏4 + 𝜏2 + 𝜏 10110 
29 𝜏29 𝜏3 + 1 01001 
30 𝜏30 𝜏4 + 𝜏 10010 
31 𝜏31 1 00001 

 

Table 3. Number of valid points on ℱ25 
∞  (01011, 11110) (11001, 01101) 

(00000, 00101)     (01100, 00111)  (11001, 10100) 
(00100, 11010)      (01100,01011)  (11010, 01100) 
(00100, 11110 )      (01111, 10011)   (11010, 10110) 
(00110,10001 )      (01111, 11100)  (11011, 01000) 
(00110 ,10111)      (10010, 01001)  (11011,10011) 
(00111, 01001 )      (10010, 11011)  (11100,00110) 
(00111, 01110)      (10011, 00000)  (11100, 11010)  
(01000, 10110)      (10011, 10011)  (11101, 00010) 
(01000, 11110)      (10101, 00011)  (11101, 11111)  
(01010, 00100)      (10101, 10110) (11111, 00101) 
(01010, 01110)        (11000, 00101) (11111,11010) 
(01011, 10101      (11000, 11101)  
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1.2.5 Group law for supersingular  𝔼 𝓕𝟐𝓶⁄ : 𝔂𝟐 + ℂ𝔂 = 𝔁𝟑 + 𝚨𝔁 + 𝚩. 

I. Identity: 𝓅 +𝔼 ∞ = ∞ +𝔼 𝓅 = ∞ , ∀ 𝓅 ∈ ℱ2𝓂 . 

II. Inverse: If 𝓅 = (𝓍1, 𝓎1) ∈ ℱ2𝓂 , then (𝓍1, 𝓎1)+𝔼 (𝓍1, 𝓎1 + ℂ) = ∞. Where(𝓍1, 𝓎1 +

ℂ) is the opposite −𝓅 of 𝓅 denoted by. Moreover, the opposite −𝓅 is in 𝔼(𝕂). 

III. Addition of distinct Points: Let  𝓅 = (𝓍1, 𝓎1) ∈ ℱ2𝓂  and  𝒬 = (𝓍2, 𝓎2) ∈ ℱ2𝓂 Where 

𝓅 ≠ ∓𝒬. Then the sum of 𝓅 and 𝒬 is: 

                                                      ℛ = 𝓅 +𝔼 𝒬 = (𝓍3, 𝓎3), 

where  

𝓍3 = 𝔪
2 + 𝓍1 + 𝓍2 

𝓎3 = ℂ + 𝓎1 +𝔪(𝓍1 + 𝓍3) 

and 𝔪 is denoted as the slope of the points of 𝓅 and 𝒬 defined as: 

𝔪 =
𝓎2 + 𝓎1
𝓍2 + 𝓍1

. 

IV. Point doubling: Let  𝓅 = (𝓍1, 𝓎1) ∈ ℱ2𝓂 . Where 𝓅 ≠ −𝓅, doubling of the point 𝓅 is 

denoted by 2𝓅 and computed by the following mathematical expression: 

2𝓅 = 𝓅 +𝔼 𝓅 = (𝓍3́, 𝓎3́ ), 

              where           𝓍3́ =
(𝓍1

2+Α)2

ℂ
  and 𝓎3 = (

(𝓍1
2+Α)

ℂ
) (𝓍1 + 𝓍3́) + 𝓎1 + ℂ. 

1.2.6 Scalar multiplication of point 

Using the previously established operation, let 𝔾 represent  the abelian group formed by the 

points on the elliptic curve 𝔼(ℱ𝑃). By continually adding the point 𝑃 multiple time equal to 

the scalar's value, we may define the multiplication by scalar 𝑇 on 𝔼(ℱ𝑃).  

𝑇𝑃 = 𝑃+𝔼 𝑃+𝔼 𝑃+𝔼 𝑃+𝔼… ,…+𝔼 𝑃⏟                     
𝑇

                                              (1.23) 

1.2.7 Order and Structure of the Group 

Let the elliptic curve 𝔼  over the field ℱ𝑃. The order of 𝔼(ℱ𝑃) represented by #𝔼(ℱ𝑃), which 

shows the number of points on the given elliptic curve 𝔼(ℱ𝑃). Moreover, #𝔼(ℱ𝑃) ∈ [1,2𝑃 +

1] because for each value of the x-coordinate, there are precisely two solutions in  ℱ𝑃, of the 

Weierstrass equation (1.1). Tighter bounds on #𝔼(ℱ𝑃) are provided by the following Hasse's 

theorem. 

 Theorem 1.7. Let the elliptic curve 𝔼  over the field ℱ𝑃. Then  

𝑃 + 1 − 2√𝑃 ≤ #𝔼(ℱ𝑃) ≤ 𝑃 + 1 + 2√𝑃 

The interval [𝑃 + 1 − 2√𝑃, 𝑃 + 1 + 2√𝑃] is called the Hasse interval. 
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What types of groups can exist as group 𝔼(ℱ𝑃) is a natural question. The following two 

theorems answer to this question. 

 

Figure 3. Number of points on elliptic curve module P 
  

Theorem 1.8. Let �́� = 𝑃𝓂, where 𝑃 is the characteristics of  ℱ �́�. And let 𝒩 = �́� + 1 − 𝓉. 

Then there is 𝔼(ℱ �́�)  such that 𝒩 = #𝔼(ℱ �́�) if and only if 2√�́� ≥ |𝓉| and the following 

conditions hold. 

i. 𝑔𝑐𝑑(𝑎, 𝑃) = 1. 

ii. If m is even and 𝓉 =  ±2√�́�. 

iii. If m is even, 𝑃 ≢ 1𝑚𝑜𝑑 3 and 𝓉 =  ±√�́�. 

iv. If m is odd, 𝑃 = 3 𝑜𝑟 2 and  𝓉 = ±𝑃𝑚+1 2⁄ . 

v. If m is even, 𝑃 ≢ 1𝑚𝑜𝑑 4 and 𝓉 =  0. 

vi. If m is odd and 𝓉 =  0. 

Theorem 1.9. Let 𝒩 be the order of the elliptic curve over a finite field ℱ𝑃. Write 𝒩 =

𝑃𝑐𝒩1𝒩2 with 𝒩1 𝒩2⁄  and P∤𝒩1𝒩2. Then there is an elliptic curve 𝔼(ℱ𝑃) such that                               

 𝔼(ℱ𝑃) = ℤ𝒩1 ⊕ℤ𝒩2 ⊕ℤ𝑃𝑐 . 

If and only if  

i.  𝒩1 = 𝒩2 for the case of (ii) with Theorem 1.8. 

ii. 𝒩1 �́� − 1⁄  for the cases of (i, iii, iv, vi ) with theorem 1.8. 

Example 1.10. (Order of elliptic curve over the field (𝓕𝟒𝟏) ). Consider the elliptic curve 𝔼 

over the prime field with  𝑃 = 41 and Α, Β ∈ ℱ41 of equation: 

𝓎2 = 𝓍3 + Α𝓍 + Β 𝑚𝑜𝑑 41. 
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From the list of Table 4 shows every pair of coefficients (Α, Β) from the field ℱ41 there exist 

integers 𝒩 in the Hasse interval [41 + 1 − 2√41, 41 + 1 + 2√41] = [29.19376, 54.80624]. 

Table 4. Admissible order of elliptic curve over 𝔼(ℱ41) 
𝓝  (𝚨,𝚩) 𝓝  (𝚨,𝚩) 𝓝  (𝚨,𝚩) 𝓝  (𝚨,𝚩) 𝓝  (𝚨,𝚩) 
39 (1,3) 36 (10,30) 44 (23,34) 42 (35,38) 44 (19,4) 
44 (2,5) 48 (31,33) 40 (5,8) 43 (11,33) 36 (10,30) 
42 (0,3) 50 (17,21) 39 (6,17) 42 (13,32) 33 (11,32) 
43 (7,4) 42 (0,18) 34 (12,14) 40 (24,34) 33 (12,2) 
36 (9,6) 32 (25,0) 48 (8,31) 50 (28,29) 33 (13,4) 
48 (11,13) 42 (24,36) 48 (9,23) 52 (20,30) 40 (4,35) 
49 (21,35) 51 (16,20) 39 (27,7) 49 (39,19) 48 (7,27) 
42  (0,8) 43 (15,28) 36 (19,1) 42 (14,1) 44 (8,40) 
51 (1,8) 34 (13,28) 40 (24,7) 46 (39,17) 41 (11,40) 
41 (3,8) 40 (1,2) 52 (12,19) 51 (17,38) 48 (39,40) 
40 (5,8) 47 (14,7) 40 (25,38) 40 (25,38) 42 (22,39) 

 

Example 1.11. (Group Structure of elliptic curve over the field (𝓕𝟑𝟏) ). Let the elliptic 

curve with the parameters 𝑃 = 31 and Α = 1, Β = 3 ∈ ℱ31 given by the following 

mathematical expression. 

𝓎2 = 𝓍3 + 1𝓍 + 3 𝑚𝑜𝑑 31 

The number of points 𝒩 = #𝔼(ℱ31) = 41. Since the group order is prime, the given elliptic 

curve is a cyclic group and any point from the given elliptic curve except for ∞, generates all 

the points of 𝔼(ℱ31). For instance, suppose that the point  𝓅 = (6,15); the successive 

multiplication of the point 𝓅 yield all the points of the group, as shown in Table 5. 

Table 5. Successive multiplication of the point 𝓅 = (6,15) 
𝓅 = (6,15) 10𝓅 = (3,23) 19𝓅 = (23,14) 28𝓅 = (4,28) 37𝓅 = (12,10) 
2𝓅 = (27,11) 11𝓅 = (5,3) 20𝓅 = (30,1) 29𝓅 = (9,20) 38𝓅 = (18,26) 
3𝓅 = (18,5) 12𝓅 = (9,11) 21𝓅 = (30,30) 30𝓅 = (5,28) 39𝓅 = (27,20) 
4𝓅 = (12,21) 13𝓅 = (4,3) 22𝓅 = (23,17) 31𝓅 = (3,8) 40𝓅 = (6,16) 
5𝓅 = (14,8) 14𝓅 = (26,20) 23𝓅 = (21,27) 32𝓅 = (24,5) 41𝓅 = (∞) 
6𝓅 = (20,5) 15𝓅 = (1,25) 24𝓅 = (22,28) 33𝓅 = (17,29) 
7𝓅 = (15,18) 16𝓅 = (28,29) 25𝓅 = (28,2) 34𝓅 = (15,13) 
8𝓅 = (17,2) 17𝓅 = (22,2) 26𝓅 = (1,6) 35𝓅 = (20,26) 
9𝓅 = (24,26) 18𝓅 = (21,4) 27𝓅 = (26,11) 36𝓅 = (14,23) 

 

1.3 Hyper Elliptic Curve  

Theoretically, all established public key cryptosystems are less secure than Hyper Elliptic 

Curve Cryptography (HECC). This is because, even when compared to Elliptic Curve 

Cryptosystems with equivalent key lengths, there is a high amount of mathematical complexity. 
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The mathematical foundation of a hyperelliptic curve (HEC) is thoroughly addressed in this 

subsection, and effective group operation methods are investigated. The group law in the HEC 

cryptosystem involves addition and doubling in the jacobian of the curve. Cantor provided the 

algorithm for the group operation. Further detail of this subsection can be found in Chapter 14 

of H.Cohen and G.Frey [4], Chapter 21 of Stein and Alf [5] and from the research article [6]–

[10]. 

Definition 1.12. (Hyper Elliptic Curve ). A hyperelliptic curve 𝒞 over the field 𝕂 of genus 

 𝒢 > 1 is defined by the following equation. 

𝒞: 𝒴2 + 𝐻(𝓍)𝒴 = Ϝ(𝑥).                                                         (1.24) 

Where 𝐻(𝓍), Ϝ(𝑥) ∈ 𝕂[𝓍] polynomial of degree 𝒢 and 2𝒢 + 1, respectively. And there is no 

such point on the curve 𝒞 over the algebraic field 𝕃 of 𝕂, which fulfills the following 

conditions defined in equations 1.25 and 1.26, respectively.  

𝑑𝒞

𝑑𝑥
= �́�𝒴 − Ϝ́ = 0,                                                                  (1.25) 

𝑑𝒞

𝑑𝒴
= 2𝒴 + 𝐻.́                                                                              (1.26) 

Definition 1.13. (Rational, finite points, point of infinity of hyperelliptic curve). A point 

𝑃 = (𝓍,𝓎) ∈ 𝕃 × 𝕃 is said to be the rational point of the hyperelliptic curve 𝒞, which satisfies 

equation 1.24. The collection of all points with a point of infinity ∞ is called the set of 

𝕃 −rational points represented by 𝒞(𝕃).  

 
Figure 4. Geometric interpretation of different HEC 
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1.3.1 Group Arithmetic Operation on Hyper Elliptic Curve  

In elliptic curves, we may construct a group by connecting the points on the curve with the 

point of ∞. However, in HEC, the collections of points with the point of ∞ cannot form a 

group. To make a group concerning the points of a hyperelliptic curve, we must first take the 

sum of the points as group components and then execute point addition like (𝔭1 + 𝔭2) ⊕

(𝔮1 + 𝔮2) = (𝔯1 + 𝔯2). The symbols ⊕ and + do not represent xor and addition operations, 

respectively. Figure 5 below depicts an HEC for a genus 2 over the finite field ℱ𝑃, defined by 

the equation 𝒞: 𝒴2 + 𝐻(𝓍)𝒴 = Ϝ(𝑥). Before performing a  group operation on this curve 

equation, we must satisfy the following five conditions.  

i. 𝐻(𝓍), Ϝ(𝑥) ∈ ℱ𝑃[𝑥]. 

ii. Ϝ(𝑥) must be a monic polynomial, and the degree of  Ϝ(𝑥) is 2𝒢 + 1(𝑜𝑑𝑑). 

iii.  The curve 𝒞(ℱ𝑃) does not have any singular point. 

iv.  𝐻(𝓍) = 0 if the field's characteristics are not equal to 2 and deg(𝐻) ≤  𝒢, if the field's 

characteristics are equal to 2. 

v. If the field's characteristics are equal to 2, then  𝒴2 = Ϝ(𝑥), is monic, odd degree and 

square free. 

 
Figure 5. Group operation of HEC of genus 2. 

As previously stated in section 1.2.2, the chord and tangent approach cannot be applied in the 

hyperelliptic curve. Unlike the chord and tangent approach in the elliptic curve, the Jacobian 

curve intersects at 5 points instead of just 3 in the elliptic curve. To construct a group, we use 

the quotient group which is the sum of the crossing points of the Jacobian variety curve with 

the hyperelliptic curve by the subset of the points that lie on the HEC. 
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1.4  Elliptic Curve Cryptography  

Researchers spent much time investigating cryptographic systems based on more trustworthy 

trapdoor functions. However, in 1985 they successfully found a new approach, one based on 

elliptic curves, which was then proposed as the group's foundation for the discrete logarithm 

problem. Their application in cryptography relies mainly on the presence of a group law, which 

enables them for public key cryptography because their discrete logarithm problem is 

challenging as compared to the size of the parameters they employ. Therefore, elliptic curve 

cryptography (ECC) is a potent cryptography approach that may be used as an alternative to 

RSA. Using the core arithmetic of EC creates security between key pairs for public key 

encryption. ECC slowly gained popularity in recent years due to its smaller key size and ability 

to maintain security, as opposed to RSA, which uses prime numbers instead of elliptic curves. 

In light of the growing size of keys, this trend is likely to continue as devices increasingly 

depend on mobile resources to remain secure. Comparatively to RSA, ECC relies on the 

mathematical structure of EC over finite fields to construct public key cryptographic systems. 

Therefore, ECC generates keys that are mathematically harder to crack. In this respect, ECC 

has been deemed the leading-edge implementation of public key cryptography and is 

considered more secure than RSA. The adoption of ECC also ensures high levels of 

performance and security. It is because ECC is increasingly used as websites strive to enhance 

customer data security and mobile optimization at the same time. Furthermore, the applications 

of ECC, like the discrete logarithm problem of EC (ECDLP), the Diffie- hellman key exchange 

protocol based on EC, and the analogue of the EC-ElGamal public key cryptosystem are 

covered in this subsection.  

The general references of this sub-section from chapter 5 of Hoffstein, Jeffrey, Jill Pipher, 

Joseph H. Silverman [11], Chapter 1 of Lawrence Washington [2], section 3 of Olga shevchuk 

[12] and [13]–[15].  

1.4.1 Elliptic Curve Encryption Decryption  

Since ECC is asymmetric key cryptography, the secret and public key pair generation must be 

required for communicating with two parties, Alice and Bob, over the insecure channel. Both 

parties initially agreed on standard EC over the finite field and generator 𝔾 of large order. The 

generation of private and public keys is computed as follows. First, Alice and Bob choose their 

private key 𝒜𝑛 and ℬ𝑛, respectively. The following mathematical expression executes the 

generation of the public key. 
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 𝒜𝑝 = 𝒜𝑛 𝔾, ℬ𝑝 = ℬ𝑛 𝔾.                                               (1.27) 

If Bob wants to send the message 𝒫𝓂 to Alice. Bob encrypts the message 𝒫𝓂, using the Alic 

public key pair. The mathematical expression of the encrypting procedure defined is followed: 

 𝒞𝓂 = {𝒦𝔾,  𝒦𝒜𝑝+𝔼𝒫𝓂 }.                                           (1.28) 

Where 𝒦 is another random integer that ensures that even for the same plaintext point, the 

encrypted message generated by equation (1.28) differs each time, which makes it difficult 

for anyone trying to decipher the message correctly. Alice decrypts the message 𝒫𝓂 by 

subtracting the coordinate of 𝒦𝔾 multiplied by 𝒜𝑛. 

     𝒫𝓂 = {  𝒫𝓂+𝔼𝒦𝒜𝑝 −𝒜𝑛𝒦𝔾}.                                  (1.29) 

1.4.2 Elliptic Curve Discrete logarithm Problem (ECDLP) 

Generally, to build the cryptosystem based on the discrete logarithm problem (DLP) over a 

finite field ℱ∗𝒫. Alice publishes the numbers 𝒽, the generator  ℊ and the exponent 𝓍 to solve 

the following congruence relation   

 𝒽 ≡ ℊ𝑥. 

Let us consider how Alice could accomplish a similar task using an elliptic curve 𝔼 over ℱ𝑃. 

In a discrete logarithm problem, Alice's adversary Eve has to find an integer 𝑥 such that ℊ and 

𝒽 are elements of the group ℱ∗𝒫.  

 𝒽 ≡ 𝒈.𝒈. 𝒈,… ,… , 𝒈⏟          
𝒙−𝒕𝒊𝒎𝒆 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

 

Eve must figure out how many times g multiplied by itself to reach 𝒽. 

With the above mathematical formulation, which is based on the finite filed multiplicative 

group, Alice executed the same work with points of  𝔼(ℱ𝑃), for this, she picks the two points 

that say ℛ1 and ℛ2 in  𝔼(ℱ𝑃) and that private key of  Alice  𝑇  that makes  

  ℛ1 = ℛ2 +𝔼  ℛ2+𝔼 ℛ2+𝔼  … , …+𝔼 ℛ2⏟                    = 𝑇ℛ2.
𝑇−𝑡𝑖𝑚𝑒𝑠 𝐸𝐶− 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 

                           (1.31) 

Then the eavesdropper, Eve, need to check out the sceat key 𝑇, by guessing how many time 

the point ℛ2 must be added to itself to get the point ℛ1. 
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Definition 1.14. (ECDLP). Let ℛ1 and ℛ2 be the two points in 𝔼(ℱ𝑃). Then the ECDLP is the 

problem of finding an integer 𝑇 such that ℛ1 = 𝑇ℛ2. By analogy with DLP based on finite 

field  ℱ∗𝒫, the representation of integer 𝑇 is defined as. 

𝑇 = log2ℛ1                                                    (1.32) 

And the integer 𝑇 is said to be the ECDLP of ℛ1 with respect to ℛ2. 

1.4.3   The Elliptic Diffie–Hellman Key Exchange  

In order to exchange data using a symmetric encryption technique like DES or AES, Alice and 

Bob need to come to terms with a shared key. For instance, Alice and Bob may be banks that 

need to send financial data. Using a courier to deliver the key is impracticable and time-

consuming. Additionally, since Alice and Bob are presumed to have never met before, their 

sole means of communication are open channels. According to Diffie and Hellman, the 

following technique can create a shared secret key between the two communicating parties. 

Procedure:  Before the transmission of the data, Alice and Bob agree on the given 𝔼 with 

parameters Α, Β ∈ ℱ𝑃, and the base point 𝔾 of large prime order (usually the point 𝔾 to be 

chosen of large prime order).  

𝓎2 = 𝓍3 + Α𝓍 + Β 𝑚𝑜𝑑 𝑃  

Alice and Bob choose the secret integers 𝑇1 and 𝑇2 and compute their public keys by the 

following mathematical expression. 

 𝒜𝑝 = 𝑇1𝔾, ℬ𝑝 = 𝑇2𝔾                                                (1.33) 

After that exchange their public keys  𝒜𝑝 and ℬ𝑝 to execute the shared secret key between 

Alice and Bob, both the communicating parties multiply their secret keys to compute 𝑇2𝒜𝑝 

and 𝑇1ℬ𝑝 respectively, which they may utilize as a key to secretly communicate using 

symmetric encryption.    

𝑇2𝒜𝑝 = 𝑇2𝑇1(𝔾) = 𝑇1ℬ𝑝                                              (1.34) 

The key exchange for elliptic Diffie-Hellman is summarised in Table 6. 

Example 1.15. Let the two communicating parties, Alice and Bob, decide to use ECDH  key 

exchange protocol  with the following parameters 𝛢 = 1, Β = 3, 𝑃 = 31 and point 𝔾 =

(15,13): 

𝓎2 = 𝓍3 + 1𝓍 + 3 𝑚𝑜𝑑 31. 
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Alice and bob choose their private keys values   𝑇1 = 13 and 𝑇2 = 17 and then, 

Alice computes  𝒜𝑝 = 13(15,13) = (24,5)  ∈ 𝔼(ℱ31). 

Bob computes   ℬ𝑝  = 17(15,13) = (12,21) ∈ 𝔼(ℱ31). 

Both Alice and Bob send their public keys  𝒜𝑝 and ℬ𝑝 over the insecure channel and, finally, 

computes the shared secret keys. 

Alice computes  𝑇1ℬ𝑝 = 13(12,21) = (5,3) ∈ 𝔼(ℱ31). 

Bob computes  𝑇2𝒜𝑝 = 17(24,5) = (5,3)  ∈ 𝔼(ℱ31). 

Eve can use the ECDLP to figure out Alice and Bob's secret. The only information that the 

eavesdropper Eve observes is the given EC, the finite field ℱ𝑃 and the points,  𝒜𝑝  and ℬ𝑝. 

As a result, Eve must address the following problem. 

Definition 1.16. (ECDHP).  Let the elliptic curve 𝔼 over a finite field ℱ𝑃 and consider the base 

point 𝔾 ∈ 𝔼(ℱ𝑃). The problem of calculating the value of 𝑇2𝑇1(𝔾) from the known values of 

𝑇1𝔾 and 𝑇2𝔾 is known as the Elliptic Curve Diffie-Hellman Problem (ECDHP). 

 Table 6. ECDH key exchange protocol 
Public Parameters 

Large prime P, 𝔼:𝓎2 = 𝓍3 + Α𝓍 + Β, and the point 𝔾(large prime order) 
Secret reckoning 

Alice  
• Chooses a secret integer T1. 
• Computes the public point 𝒜p = T1𝔾 

Bob  
• Chooses a secret integer T2. 
• Computes the public point ℬp = T2𝔾 

The Public exchange of values 

Alice sends  𝒜p To Bob:   𝓐𝐩 

               𝓑𝐩                                                              : Bob sends  ℬp to Alice 

More private reckoning 
 Alice                                                                                             Bob  
Computes the point T1ℬp                                                  Computes the point T2𝒜p 

Shared secret key 

The shared secret key between Alice and Bob is: T2𝒜p = T2T1(𝔾) = T1ℬp   

 

1.4.4 The Elliptic ElGamal Public key Cryptosystem 

Alice wants to communicate with Bob. The first thing Bob does is that he creates his public 

key. To make the discrete log problem difficult for elliptic curve 𝔼(ℱ𝑃), he selects the elliptic 

curve 𝔼 over a finite field ℱ𝑃 and choose the base point 𝔾 ∈ 𝔼(ℱ𝑃). Bob also picks the secret 
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integer 𝑇2 and computes the public point  ℬ𝑝 = 𝑇2𝔾  and publish the curve 𝔼, the point 𝔾 and 

the finite field ℱ𝑃, over the public channel. To send a message to Bob, Alice downloads the 

public parameter. The plaintext point ℛ ∈ 𝔼(ℱ𝑃). After that, Alice chooses the ephemeral key 

𝕂  and calculates the two cipher texts by the following mathematical expression. 

𝒞1 = 𝕂𝔾  and   𝒞2 = ℛ +𝕂 ℬ𝑝 

Send the pair of cipher text (𝒞1, 𝒞1) to Bob, who computes 

𝒞2 − 𝑇2𝒞1 = (ℛ + 𝕂 ℬ𝑝) − 𝑇2(𝕂𝔾) = (ℛ + 𝕂(𝑇2𝔾)) − 𝑇2(𝕂𝔾) = ℛ. 

1.5  Complexity Theory  

Security is an important component of any cryptosystem since it determines how well the 

encryption method can resist attacks of different types. The complexity of the encryption 

algorithm is theoretically involved. It is generally based on some hard problem that is difficult 

to solve, and an encryption algorithm is devised. These problems relating to classical 

encryption were either number theoretic or combinatorial, whereas group-based cryptography 

might relate to group theory. For example, the discrete log problem is a legitimate 

cryptographic problem since it is hard to solve theoretically and practically. Cryptography 

uses a hard-to-solve problem to construct a trapdoor function whose inverse is connected to 

the solution. We would need the secret key for this trapdoor function to accomplish the 

challenging task. Complexity theory is an essential part of theoretical computer science that 

is relevant to quantifying the difficulty of a problem. In this section, we discuss some basic 

notations related to complexity theory. 

Moreover, this section briefly discusses the basic definition of complexity theory. The 

intention of this section is not to describe the implementation guide of the algorithms. 

However, it sketches some crucial notions and results of complexity that are used later in this 

thesis. More detail of this subsection from chapter 3 of Baumslag, G., Fine, B., Kreuzer, M., 

& Rosenberger [16], chapter 1 of Mollin, R. A. [17], chapter 11 of Schneier, B. [18]. 

Definition 1.17. (Computational problem). A problem specified by a specific form of input 

and output is called a computational problem. The computational problem input and output 

instances are particular instances. The size of the computational problem input is the number 

of bits necessitated to symbolize the input.   
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Definition 1.18. (Computational Complexity). The algorithm's complexity is the maximum 

number of bit operations (addition, subtraction, division and multiplication of any two binary 

digits) necessities for the algorithm to solve the computational problem. The upper bound on 

the complexity is denoted by big oh ‘𝑂’ notation. Whenever the complexity estimate of the 

algorithm is given in terms of 𝑂 then we assume that there are infinite numbers of countable 

inputs to that algorithm. The computational complexity of an algorithm, or just complexity, is 

the total number of bit operations required to accomplish the algorithm's performance. 

Definition 1.19 (Big oh 𝑂 notation). Let 𝒻 and ℊ be two real-valued functions 𝒻, ℊ: ℕ ⟶

ℤ+, then 𝑓 = 𝑂(ℊ) if there exists 𝒸 ∈ ℛ>0 and a natural number 𝒩, such that  

𝒻(𝓂) ≤ 𝒸ℊ(𝓂).          for all 𝑚 ≥ 𝒩 

Similarly, if 𝒻(𝓂1,𝓂2… ,𝓂𝑘) and ℊ(𝓂1,𝓂2… ,𝓂𝑘) be two functions from ℕ𝑘 to ℛ >0, 

then 𝒻 = 𝑂(ℊ) if there exists 𝒸 ∈ ℛ>0 and 𝑁1, 𝑁2, … , 𝑁𝑘 ∈ ℕ such that 𝒻(𝓂1,𝓂2… ,𝓂𝑘)  ≤

𝒸ℊ(𝓂1,𝓂2… ,𝓂𝑘) with 𝓂𝑖 > 𝑁𝑖. for all 1 ≤ 𝑖 ≤ 𝑘.   

Theorem 1.20. (Properties of 𝓞). Let 𝒻 and ℊ be two real-valued functions 𝒻, ℊ: ℕ ⟶ ℤ+, 

then 

i. If 𝒸 ∈ ℛ>0, then 𝒸𝑂(ℊ) = 𝑂(ℊ) . 

ii.  𝑂(𝒻ℊ) = 𝑂(𝒻)𝑂(ℊ). 

iii. 𝑂(𝑚𝑎𝑥{𝒻ℊ}) = 𝑂(𝒻) + 𝑂(ℊ). 

Example 1.21. 12𝓂3 + 10𝓃2 + 17𝓃 + 122 = 𝑂(𝓂3), sin(𝓂) + cos(𝑚) +𝓂 = 𝑂(𝓂), 

2𝓂 +𝓂10 = 𝑂(2𝓂) and log𝓃(𝓂) = 𝑂(log(𝓂)). 

Definition 1.22. Let 𝒻 and ℊ be two real-valued functions 𝒻, ℊ: ℕ ⟶ ℤ+, then 𝒻 = 𝑂(ℊ) if 

limit
𝓂→∞

𝒻(𝓂)

ℊ(𝓂)
= 0. 

The function may be expressed as; 𝒻 = �̃�(ℊ) if there exists 𝓃 ∈ ℕ such that 𝒻(𝓂) =

𝑂(ℊ(𝓂) log(𝑔(𝓂))𝓃). The function 𝒻 = Ω(ℊ) if ℊ = 𝑂(𝒻) and 𝒻 = Θ(ℊ) if 𝒻 = 𝑂(ℊ) and 

ℊ = 𝑂(𝒻). 

Definition 1.23. Assume that 𝒜 is an algorithm and that 𝒯(𝓂) is the maximum running time 

that 𝒜 may take to solve any problem with the size of 𝓂 bits. 

i. An Algorithm 𝒜 is said to be polynomial time(PT), if there exists a positive integer 

𝒾 such that 𝒯(𝓂) = O(𝓂𝒾). 
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ii. An Algorithm 𝒜 is said to be super polynomial-time(SPT) if for all 𝒸 ∈ ℛ >1 the 

upper bound   𝒯(𝓂) = Ω(𝓂𝒸). 

iii. An Algorithm A is said to be exponential time(ET) if there exists a constant 𝒸 ∈ ℛ >1 

such that 𝒯(𝓂) = O(𝒸𝓂). 

The above definition is for uniform complexity, as all the problem instances are solved 

through a single algorithm 𝒜. In non-uniform complexity, for each positive integer 𝓂 and 

input 𝒽(𝓂) of polynomial-size, if 𝑥 is a string of 𝓂-bits instance of the computational 

problem then the algorithm 𝒜 solves 𝒜(𝑥, 𝒽(𝓂)) instance. 
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Chapter 2 

An Integrated Image Encryption Scheme Based on Elliptic 
Curve 

 

The transmission of multimedia information, such as digital images, audio data, and video, via 

various networks significantly increased due to the rapid development in network evolution. 

However, mostly the data transmission procedures occurred through unsecured networks. 

Therefore, there is a chance that information might be lost, intercepted (i.e., copied and 

distributed illegally), and can be altered maliciously [19]–[22]. Over the internet, digital image 

is an essential source for data communication. For instance, in the medical industry, images 

are used for visualizing different analyses and diagnosing various diseases. These analyses are 

transmitted in the form of images. The patients use these images and get consultations from 

medical specialists anywhere around the globe. So, in this case, integrity and confidentiality 

violation are very dangerous for the patients.  

 ECC has recently been used for image encryption applications. RGB image encryption based 

on ECC is investigated in [13]. The presented scheme utilized DNA encoding and decoding 

for RGB image encryption and decryption followed by elliptic curve Diffie Hellman. The 

algorithm presented in [23] employed a cyclic group of an EC with the combination of chaos. 

In [24], Bellare and Rogaway introduced a hybrid cryptographic architecture named Elliptic 

Curve Integrated Encryption Scheme (ECIES). The ECIES is a pair of key-derivation 

functions, encryption with a symmetric key algorithm, and a Massage Authentication Code 

(MAC) algorithm. Since the message is sometimes difficult to encode in the points of the curve, 

so challenging to encrypt. Contrastingly, one can easily encrypt any message using a 

symmetric-key scheme of ECIES. This is a substantial benefit of ECIES over the Massey-

Omura(MO) and ElGamal Public key approaches [24]. In [25], the author presented a 

symmetric encryption technique based on the improved version of ECIES for the application 

of medical images. However, the asymptotic complexity of the suggested technique is slightly 

increased due to the serval time of scalar multiplication of the curve points. 

In view of the shortcomings above, we proposed a novel integrated image encryption algorithm 

in this chapter. The proposed scheme consists of a secure key exchange protocol, hash 

algorithm, and symmetric key algorithm. The exchange protocol is used for the communication 

of secret keys among the communicating parties. The hash function is used for data integrity, 
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and the symmetric algorithm is used for data confidentiality. The confusion and diffusion 

module of the symmetric encryption is achieved by using simple operations that provide 

optimum security with less computational effort. Furthermore, the security performance of the 

scheme is thoroughly analyzed using the available tools. The resultant output demonstrates the 

scheme's efficiency compared to the existing scheme 

2.1 Elliptic Curve Discrete Logarithm Problem(ECDLP) 

Let 𝔼a,b𝑞 be the elliptic curve over the finite prime field ℱ𝑞, where 𝑞 is prime and a, b ∈ ℱ𝑞. 

The DLP for an EC is defined as Given a points 𝑄1, and 𝑄2 on 𝔼a,b𝑞 to find the positive integer 

𝑀, if it exists, such that 𝑄2 = 𝑀𝑄1 [26]. 

2.2 Secure Hash Algorithm 

The NIST made public a category of hash functions called Secure Hash Algorithms (SHA). 

Applications of SHA are predominantly located in integrity security services [27]. One well-

known SHA algorithm is SHA-256, which generates message digests with 256-bit lengths. The 

proposed algorithm generates the Hash of key of length 256-bit  between users A and B. The 

first 128-bit is utilized for proposed symmetric key encryption, while the 128-bit length key is 

used for authentication.   

2.3 Enhanced Elliptic Curve Integrated Encryption Scheme (E-ECIES) 

The enhanced elliptic curve integrated encryption scheme E-ECIES was used to improve the 

secret parameter negotiation phase. The improvement of the initialization vector is to be added 

with the key to prevent repeated data encryption, making it harder for a hacker to detect patterns 

and break encryption using a dictionary attack. After that, the symmetric key encryption is 

extracted by the secure SHAH-256. The detailed process of the E-ECIES is summarized in the 

below subsection. Lets user A wants to send a plan-image 𝑀 of size 𝒰 × 𝒱 to user B over the 

insecure channel. User B first creates his public key by choosing the EC over the finite field 

ℱ𝑞 of prime order that makes the discrete log problem for 𝐸𝐶(ℱ𝑞)is difficult, and he picks a 

point 𝑝 on EC that is generally of big prime of order 𝒩. He then calculates the public key 

 𝑃𝐵 =  𝔪𝑝 using a secret number 𝔪. The public key parameter of user A is   {ℱ𝑞 , 𝐸𝐶, 𝑁, 𝑝, 𝑃𝐵) 

while the private key of user B is 𝔪. The following steps are computed to transmit the data 

between user A and user B. 

2.3.1 User A Computation  

• To encrypt and send the message, user A computes the following: 
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• Choose a private key  𝑛𝐴 ∈ [1, 𝑞 − 1]. 

• Computed the public key 𝑃𝐴 = 𝑛𝐴𝔾  with timestamp 𝒯𝑂𝐴. 

• Compute the 𝑃𝐴1 = 𝑛𝐴𝑃𝐵.  

• Create a random initialization vector 𝕍 with the increment of the prime number for 

every block of message, which is chosen for the private elliptic curve in the proposed 

symmetric key encryption function (PSKEF) to prevent the repetition throughout the 

encryption process; the details description of PSKEF is given in the following 

subsection.   

• Compute the Hash to extract the symmetric key; the mathematical description of the 

hash function is given below.      

𝐻𝑎𝑠ℎ(𝑃𝐴(𝑥 ⊕ 𝑦), 𝑃𝐴1, 𝕍  ) = 𝐻1 = 𝐾1||𝐾2                                  (2.2) 

• Compute the proposed symmetric key encryption function with 𝐾1. 

𝐶 = 𝐸𝑛𝑐𝐾1(𝑀)  and 𝒯 = (𝐶, 𝐾2) 

• Send < 𝐻1, 𝑃𝐴, 𝒯𝑂𝐴, 𝒯> to user B.        

2.3.2 User B Computation 

In response to receiving the cipher image from user A, user B creates a new timestamp 𝒯𝑂𝐵and 

follows the below bullets points: 

• User B verifies |𝒯𝑂
𝐵 − 𝒯𝑂

𝐴| ≤ 𝑡. If the condition does not hold user B aborts, or else 

he sustained. The duration of 𝑡 is a short predetermined time.    

• User B computes 𝑃𝐴1= 𝔪𝑃𝐴 using the knowledge of private key 𝔪. 

• Calculate the 𝐻𝑎𝑠ℎ(𝑃𝐴1, 𝑃𝐴(𝑥 ⊕ 𝑦), 𝕍)) = 𝐻2. If 𝐻2 ≠ 𝐻1, when it does not hold, he 

passes over the session. Otherwise B continues the remaining steps of the protocol. 

• Generate the symmetric key 𝐻2 = 𝐾1||𝐾2. 

• Computes 𝐻2(𝐶, 𝐾2) = 𝒯1. If 𝒯1 ≠ 𝒯, user B rejects the cipher image; otherwise, 

continue the protocol steps. 

• Calculate the plan-image 𝑀 = 𝐷𝑒𝑐𝐾1(𝐶), where 𝐷𝑒𝑐𝐾1 is a symmetric key decryption 

function. As a part of user B computation, the second last step involves authentication, 

which is an essential aspect. 

2.4  Proposed Symmetric Key Encryption   

In this section, we proposed a new symmetric key encryption algorithm based on E-ECIES. 

The symmetric key encryption algorithm encapsulates the following steps to perform image 
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encryption. Initially, use secure SHA-256 to generate the key using the following mathematical 

formula.         

𝐻𝑎𝑠ℎ(𝑃𝐴(𝑥 ⊕ 𝑦), 𝑃𝐴1, 𝕍  ) = 𝒦1||𝒦2. 

              

Where 𝒦1 followed by 𝒦2. To perform the encryption using key 𝒦1 the following steps are to 

be done. For the 𝒦1 = 128 𝑏𝑖𝑡 is utilized for the encryption, while the 128𝑏𝑖𝑡 of 𝒦2 are used 

for authentication purposes. Initially, the first four-byte, 𝑏1𝑏2𝑏3𝑏4 are utilized for the 

permutation of the plain image using affine mapping. The mathematical construction for the 

permutation of the plan image using affine mapping is defined as 

𝓅: 𝓏𝑚 × 𝓏𝑚 → 𝓏𝑚 × 𝓏𝑚 

                                                             𝓅(𝒾, 𝒿) = (𝒾′, 𝒿′)                                                           

                                           𝒾′ = 𝑏1(𝒾) + 𝑏2, 𝒿′ = 𝑏3(𝒿) + 𝑏4.                                      (2.2) 

Where 𝑏1 , 𝑏3the unit's elements are 𝓏𝑚, while, 𝑏2 and 𝑏4, are any elements in from 𝓏𝑚. The 𝒾′ 

and 𝒿′, the output of the affine transformation, which shows the permuted pixel of the image.  

2.4.1 Diffusion Phase Based on  Elliptic Curve Pseudo-Random Number (ECPRN)   

The next six bytes 𝑏5𝑏6𝑏7𝑏8𝑏9𝑏10𝑏11𝑏12 is again utilized for the permutation purpose using an 

elliptic curve parameter with the large prime p, which is the concatenation of the last two bytes, 

i.e., 𝑝 = 𝑏11||𝑏12. If the concatenation of the last two bytes is exactly not a prime number, then 

subtract the bytes from the concatenation last two bytes until it gets a prime number. After the 

generation of points on each elliptic curve, pick the y-coordinate of the first EC, i.e., 𝐸1
𝑌𝑖 , and 

get the first sequence, namely 𝒦1 Similarly, we can compute the  𝒦2 and  𝒦3  sequences by 

choosing the y-coordinate of  𝐸2
𝑌𝑖 , 𝐸3

𝑌𝑖 respectively. After that, pick out  𝒦1 and  𝒦2  and again 

permute the affine permuted image 𝐴 and then bit-xor with 𝒦1 sequence to get 𝑆11, where 𝑆11 

represent the red channel of a permuted image. Next, choose the  𝒦2, 𝒦3and permute the 𝑆 and 

bit-xor with  𝒦2  to get  𝑆21 where  𝑆21 shows the permuted image green channel. Finally, get 

 𝑆31 using the sequences of   𝒦3,  𝒦1 and bit-xor with 𝒦3. The mathematical formula for the 

above  𝒦1 ,  𝒦2 and  𝒦1 execution is defined as: 

 𝒦1  = 𝐸1
𝑌𝑖: 𝒴2 = 𝑥3 + 𝑏5𝑥 + 𝑏6 𝑚𝑜𝑑 p.                                       (2.3) 

 𝒦2  = 𝐸2
𝑌𝑖: 𝒴2 = 𝑥3 + 𝑏7𝑥 + 𝑏8 𝑚𝑜𝑑 p.                                      (2.4) 

 𝒦3  = 𝐸3
𝑌𝑖: 𝒴2 = 𝑥3 + 𝑏9𝑥 + 𝑏10 𝑚𝑜𝑑 p .                                   (2.5)                                           
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Where the length of each sequence is 1 ×𝓂𝓃 𝑚𝑜𝑑 𝓂 . The pixel scrambling and diffusion of 

each layer of the above affine permuted image are defined in eq(2.6-2.11) 

   𝐴11 =  𝐴
𝑟
1( 𝒦1,  𝒦2),                                                         (2.6) 

    𝐴11 =  𝒦1⊕  𝑆11.                                                          (2.7) 

 𝐴21 =  𝐴
𝑔
1( 𝒦2,  𝒦3),                                                      (2.8) 

  𝐴21 =  𝒦2⊕  𝑆21.                                                        (2.9) 

     𝐴31 =  𝐴
𝑏
1( 𝒦3,  𝒦1),                                                     (2.10) 

 𝐴31 =  𝒦3⊕  𝑆31.                                                        (2.11) 

Concatenate all the above three-layer and get one of the permuted images.  

2.4.2 Confusion Module Based on Affine Power Affine Permutation   

After that, the last four-byte  𝑏13𝑏14𝑏15𝑏16 is utilized for the confusion phase (S-box). To 

construct the s-box, we use affine power affine transformation (APA) [28], using the following 

mathematical construction. 

𝑆 = 𝐹2
8 → 𝐹2

8  

𝑆 = 𝒜𝑂(Ρ𝑂𝒜′).                                                         (2.12)                                                      

Where, 𝒜 = 𝑏13(𝑥) + 𝑏14, 𝒜
′ = 𝑏15(𝑥) + 𝑏16  are the affine surjection [34]. Where Ρ still 

nonlinear components, which is to be defined as: 

𝛲(𝑥) = 𝑥2
𝑛−2.                                                       (2.13) 

For 𝑛 = 8 the power polynomial becomes Ρ(x) = 𝑥254 is a bijective permutation using any 

primitive polynomial in 𝐺𝐹(28). Moreover, the elements 𝑏13, 𝑏14, 𝑏15, 𝑏16  ∈ 𝐹28,  so we can 

construct 232 new APA S-box represented by 𝑆𝑎,𝑏𝑐,𝑑, with strong algebraic properties. The 

proposed APA S-box with different parameters is given in tables 7 and 8 respectively. 

Furthermore, we analyzed the S-box not only by the coordinate functions but also by evaluating 

all the security analysis by their component function and comparing it with excellent literature 

[29]–[37]. The comparison analysis in table 10 shows that the APA S-box has excellent 

algebraic properties and affine equivalent to the AES S-box [38]. Meanwhile, the only power 

permutation Ρ(x) = 𝑥254, some weak properties like fixed point and opposite fixed are given 

in table 10, which improve by the affine parameter chosen by the proposed symmetric key 
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extracted from the Hash of the E-ECIES. After the substitution phase, we get a cipher image. 

The flow diagram of the E-ECIES is illustrated in Figure 6. 

 
Figure 6. Flow chart Proposed E-ECIES 

2.5 Security Analysis of the Proposed Symmetric Key Encryption  

This section compares our proposed symmetric encryption algorithm security and performance 

against the findings of several experiments in [13][25][29]–[37][39]–[41]. The enhanced 

version is subjected to several security analyses to assess the suggested work randomization 

and prove its resiliency against various known attacks. We take the substitution permutation 

network (SPN). The permutation phase is achieved by three different kinds of elliptic curves 

utilized for the permutation as well, as we add the nonlinear component APA S-box for the 

confusion phase. In the APA S-box, the encryption is evaluated by substituting uncorrelated 

encrypted data for plan image data. Our suggested APA S-boxes are examined using the 

standard S-box evaluation criteria in the results and evaluation section, which include 

nonlinearity score(NLS), linear approximation probability(LP), bit independence 

criterion(BIC), fixed point(FP), opposite fixed point(OFP), autocorrelation(AC),  maximum 

cycle length (MCL), strict avalanche criterion(SAC), linear structure(LS), linear and 

differential branch number(LDBN), and differential approximation probability(DP). 

Moreover, in other literature[29-35], the S-box analysis is evaluated by their coordinate 
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function, but the in our proposed work, we implement all the results on component functions 

well; in the case of 𝑛 = 8, we examined 2𝑛 − 1, component function by their different S-box 

analysis. While the permutation phase evaluates the diffusion properties, including two 

effective tools, namely, the number of pixels change rate (NPCR) and unified average changing 

intensity(UACI). The portable PC with  Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz 2.80 

GHz is used to conduct the various evolution tests using different colored images. Figure 7 

shows the suggested E-ECIES plan and corresponding encrypted images. 

2.5.1 Nonlinearity Score 

The nonlinearity score of function or S-box, 𝑆 = 𝐹2𝑛 → 𝐹2
𝑚, is represented by 𝒩ℒ𝒮(𝑆) and 

defined by [42]. 

𝒩ℒ𝒮(𝑆) = 2𝑛−1 −
1

2
(|𝑊𝑎𝑙𝑠ℎ(𝓊,𝓋)|)                                      (2.14) 

𝑆(𝓊) = 𝓋    for      𝓊 ∈ 𝐹2𝑛, 𝓋 ∈ 𝐹2𝑚 

The 𝒩ℒ𝒮 of APA S-box is 112, as shown in Table 10. 

2.5.2 Strict Avalanche criteria  

Webster and Tavares introduced the SAC idea [43]. The strict avalanche criterion (SAC) is the 

essential component of the S-boxes. Informally, an S-box satisfies SAC if one input bit is 

altered. 50% of the output bits must also be changed [43]. The mathematical description of 

SAC is defined in eq (2.15). 

𝑆 = 𝐹2
𝑛 → 𝐹2

𝑚 

𝑆(𝑥) + 𝑆(𝑥 + 𝒶) is balanced for all 𝒶,  𝑤𝑡(𝒶) = 1                      (2.15) 

2.5.3 Bit Independence Criterion 

The concept of Bit independent creation(BIC) was also developed by Webster and Tavares 

[43]. For any two boolean functions 𝒻𝑖, 𝒻𝑗 , of an S-box, if the bit-xor of both functions, i.e., 

𝒻𝑖⊕ 𝒻𝑗 , is highly nonlinear and satisfies the criterion of SAC. Then, when one input bit is 

changed, the correlation coefficient of each pair of output bits may be extremely near zero. So, 

by confirming that 𝒻𝑖⊕ 𝒻𝑗(𝑖 ≠ 𝑗)  it holds, we may find out the BIC of the S-box of any two 

output bits that satisfy the SAC criterion. Table 10 shows the performance of the new APA S-

box and the comparison with excellent existing literature.  
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2.5.4 Differential Approximation Probability  

Measurement of differential uniformity is the differential approximation probability (DP) of 

the S-box, which is defined as: 

𝒟𝓅𝑆(∆𝒶 → ∆𝒷) = [
≠{𝒶 ∈ 𝑥|𝑆(𝒶) + 𝑆(𝒶 ± ∆𝒶 = ∆𝒷)}

2𝑚
]                   (2.16) 

Where ∆𝓪, ∆𝓫 is the input differential and output differential, which implies that an input 

differential ∆𝓪𝒊 must precisely map to an output differential ∆𝓫𝒊 Order to guarantee a uniform 

chance of mapping for each 𝑖. According to the Performance indexes of the new APA, the 

average differential approximation probability is 0.01562. The comparisons table 10 shows 

that the DP of the new APA S-box is  better than [29][31]–[35], and the same as with AES S-

box  

2.5.5 Linear Approximation Probability  

The linear approximation probability (LP) is the highest possible value of an event's imbalance. 

The mask chooses the output bits 𝜓𝓪 have the same parity as the input bits chosen by the mask 

𝜓𝓫. According to the Matsui mathematical formulation of linear approximation 

probability(LP) is defined as [44]: 

ℒ𝒫 = max 𝜓𝒶 𝜓𝒷≠0, |
≠{𝒶 ∈ 𝑥|𝒶𝜓𝒶 = 𝑠(𝒶)𝜓𝒷}

2𝑛
−
1

2
| .                  (2.17)                            

Where 𝑥 is the set of input space and 2𝑛, is the total number of elements in 𝑥. The input-output 

masks are respectively represented by  𝜓𝓪 and 𝜓𝓫 Them.  

2.5.6  Fixed Point 

Given an S-box, 𝑆 = 𝐹2𝑛 → 𝐹2
𝑚, the input element 𝑥 ∈ 𝐹2𝑛 is said to be a fixed point (FP) if 

𝑆(𝑥) = 𝑥 [45]. The new APA S-box has no FP due to the affine transformation parameter 

chosen by the hash value of 128-bit in symmetric key encryption. In contrast, only the power 

permutation has 4  FP. The comparison table-10 shows that the new-APA S-box is on top of 

no fixed point like the AES S-box. 

2.5.7 Opposite Fixed Point  

Given an S-box, 𝑆 = 𝐹2𝑛 → 𝐹2
𝑚, the input element 𝑥 ∈ 𝐹2𝑛 is said to be the opposite fixed 

point (OFP) if 𝑆(𝑥) = �̅� [45]. The new APA S-box has no OFP. 
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2.5.8 Auto Correlation  

The autocorrelation(AC) of an S-box, which is defined from, 𝑆 = 𝐹2𝑛 → 𝐹2
𝑚, taken 

concerning ℴ ∈ 𝐹2𝑛 denoted by its polarity form 𝑆 ̂, is represented by 𝑟�̂�(ℴ) and defined as 

[45]. 

𝑟�̂�(ℴ) = ∑ (−1)𝑆(𝑥)+𝑆(𝑥+ℴ)𝑥∈𝐹2
𝑛 = ∑ �̂�(𝑥) + �̂�(𝑥 + ℴ)𝑥∈𝐹2

𝑛                     (2.18) 

The range of 𝑟�̂�(ℴ) is [−2𝑛, 2𝑛] for all ℴ ∈ 𝐹2𝑛. For any 𝑛 variable boolean function, the low 

value of autocorrelation is expected. The new APA S-box's auto-correlation value is 32, the 

same as the AES S-box.  

2.5.9 Differential and Linear Branch Number  

Given an S-box, 𝑆 = 𝐹2𝑛 → 𝐹2
𝑚, the differential branch number (DBN) is represented by 

𝜑𝐷𝐵𝑁(𝑆) as defined as [46]: 

𝜑𝐷𝐵𝑁(𝑆) = 𝑚𝑖𝑛𝑥,𝑥′∈𝐹2𝑛,𝑥≠𝑥′({𝓌𝑡(𝑥 ⊕ 𝑥′) +𝓌𝑡(𝑆(𝑥) ⊕ 𝑆(𝑥′)})             (2.19) 

The linear branch number of the S-box is denoted by 𝜑𝐿𝐵𝑁(𝑆), and defined as: 

𝜑𝐿𝐵𝑁(𝑆) = 𝑚𝑖𝑛𝓸,𝓑∈𝑭𝟐𝒏,𝒓�̂�(𝓸,𝓑)≠𝟎({𝓌𝑡(ℴ) +𝓌𝑡(ℬ)})                    (2.20) 

Where   𝑟�̂�(ℴ,ℬ) shows the coefficient of autocorrelation. The suggested APA S-box the  

𝜑𝐷𝐵𝑁(𝑆)  and 𝜑𝐿𝐵𝑁(𝑆), is 2, as shown in Table 10. 

2.5.10 Linear structure  

The linear structure of the S-box is examined for its cryptography importance. It has been noted 

that attacks that could be carried out far more quickly than a thorough key search can break 

block ciphers with linear designs [47]. Therefore, in the block cipher, the confusion phase must 

avoid the linear structure. The mathematical expression of the linear structure of an S-box is 

defined as: 

𝒻(𝑥) + 𝒻(𝑥 + 𝒶) = 𝐶                                                          (2.21) 

Where 𝒻(𝑥) ∈ 𝐹2𝑛 ∀ 𝑥 ∈ 𝐹2𝑛 and for some 𝒶 ∈ 𝐹2𝑛 and 𝐶 ∈ 𝐹2. Then 𝐶 is called the linear 

structure of the S-box. There are two types of linear structure, namely invariant if 𝐶 = 0 and 

complementary if 𝐶 = 1. Table 10 shows that the proposed APA S-box has no linear structure 

and is suitable for cryptographic primitives. 
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Table 7. Proposed APA S-box 𝑆3,57233,154 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 139 193 16 157 237 44 218 164 153 133 112 247 27 186 141 86 
2 34 151 12 145 222 221 42 61 55 89 126 229 161 143 115 179 
3 166 246 29 48 134 167 10 5 163 45 3 119 38 6 99 14 
4 172 192 243 108 132 136 124 67 207 140 200 100 84 146 152 189 
5 30 52 235 174 116 184 131 156 95 68 220 122 203 194 96 175 
6 204 57 255 76 93 137 56 11 78 228 92 97 191 213 169 91 
7 190 46 138 182 98 142 87 63 197 80 252 13 0 79 28 231 
8 183 154 60 244 129 1 202 82 225 173 83 73 35 201 248 121 
9 144 9 114 206 230 148 25 64 69 88 49 127 113 210 181 36 
10 104 59 165 118 150 242 240 65 74 195 106 40 162 226 249 232 
11 77 72 158 62 53 50 253 75 188 199 4 102 160 211 155 171 
12 58 205 94 19 31 216 159 250 20 128 176 7 223 47 238 214 
13 90 147 2 187 26 149 180 85 254 123 110 170 178 233 43 21 
14 103 251 245 24 168 120 117 22 130 101 234 33 224 66 185 239 
15 51 109 212 125 135 81 196 215 15 54 208 41 23 111 107 217 
16 17 70 71 39 198 177 227 105 18 241 236 219 209 37 8 32 
 

Table 8. Proposed APA S-box 𝑆2,231,54 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 24 59 252 66 99 117 237 178 198 110 36 120 206 191 6 13 
2 94 71 100 195 161 115 182 61 215 223 251 97 239 159 230 3 
3 18 86 185 155 85 232 108 104 248 133 218 216 174 113 227 28 
4 192 43 14 214 69 210 38 116 75 184 246 145 151 47 52 154 
5 211 19 42 139 173 50 70 22 186 39 77 7 129 164 181 149 
6 46 250 254 225 166 234 244 5 74 224 219 125 255 127 212 188 
7 170 64 222 37 180 65 143 202 54 81 21 41 136 226 10 197 
8 84 107 87 118 60 167 162 190 177 29 126 240 76 91 88 153 
9 137 175 83 56 49 4 12 229 228 102 33 201 247 233 189 169 
10 55 1 109 217 96 236 140 15 235 11 121 157 183 141 146 45 
11 205 221 106 156 158 144 220 238 8 203 16 213 93 207 148 165 
12 53 67 231 27 79 90 72 25 241 98 119 138 168 101 128 89 
13 150 147 31 82 204 111 193 208 187 200 2 58 160 57 131 80 
14 209 40 103 132 35 194 242 34 122 105 142 249 152 92 199 32 
15 134 63 44 176 163 17 48 196 112 78 253 95 179 26 73 30 
16 20 9 124 62 171 172 114 23 245 135 51 130 123 0 243 68 

 

2.6 Simulation Results of Encryption  

In this section, we evaluated the simulation results of the symmetric key encryption of different 

standard images of  Lena, Apple, Babul-Quaid, and Baboon,  to examine the strength of E-

ECIES. The figure-7 shows the plan images listed and corresponding to their encrypted images. 

From figure-7 shows that the randomization of the encryption scheme is achieved. The image 

obtained after the encryption process reveals its unpredictability, and it is impossible to 

decipher the plan image without the decryption key As a result, from the simulation analysis, 

we identified that the original secret information could be accurately recovered without any 

difference or loss, proving the usefulness and validity of the entire encryption scheme. 
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Table 9. S-box-based on only power permutation 𝑝(𝑥) = 𝑥254 

 
Table 10. Comparison of Nonlinear component with existing algorithm 

Algorithm 𝒩ℒ𝒮 𝐴𝐶 𝐷𝑃 𝐿𝑃 𝑆𝐴𝐶 𝐵𝐼𝐶 𝐹𝑃 𝑂𝐹𝑃 𝐿𝐵𝑁 𝐷𝐵𝑁 𝐿𝑆 
𝒑 = 𝒙𝟐𝟓𝟒 112 32  0.0156 0.0625 0.4375 0.1285 4  1 2 2 0 
𝑺𝟐,𝟐𝟑𝟏,𝟓𝟒 112 32  0.0156 0.0625 0.4375 0.1349 0 0 2 2 0 
𝑺𝟑,𝟓𝟕𝟐𝟑𝟑,𝟏𝟓𝟒 112 32  0.0156 0.0625 0.4375 0.1285 0 0 2 2 0 
Ref.[29] 86 120 0.2109 0.1640 0.2656 0.2887 2 3 2 2 0 
Ref.[30] 112 32 0.0156 0.0625 0.4375 0.1299 1 0 2 2 0 
Ref.[31] 94 96  0.0468 0.1328  0.3437  0.2799 1 1 2 2 0 
Ref.[32] 94 88 0.0781  0.1484 0.3750 0.2863 1 0 2 2 0 
Ref.[33] 94 88 0.0468 0.1328 0.3437 0.3069 1 1 2 2 0 
Ref.[34] 94 88 0.0390 0.1328 0.3750 0.2511 2 1 2 2 0 
Ref.[35] 94 88 0.0390 0.1328 0.3750 0.3138 1 0 2 2 0 
Ref.[36] 94 96 0.0390 0.1328 0.3437 0.3282 2 1 2 2 0 
Ref.[37] 94 104 0.0390 0.1328 0.3437  0.2204 0 1 2 2 0 

 

2.6.1 Statistical Analysis 
It is crucial to ensure that an encryption method can withstand statistical analysis when 

evaluating the security of the algorithms. A cryptosystem is deemed secure if it can fend off all 

statistical attacks. Histogram analysis, neighbouring pixels correlation, and key space play a 

critical role in the statistical analysis of image processing systems. 

2.6.1.1   Histogram Analysis 

An image's histogram can effectively and graphically depict a digital image's distribution of 

grey values. When the distribution of the grey value is more even, it will be more difficult for 

the eavesdropper to extract information from the cipher image through statistical analysis. As 

such, the histogram of the encrypted image should almost be uniform while differentiating 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 0 203 212 40 232 176 252 39 106 138 76 237 20 220 81 24 
2 1 82 218 11 79 225 27 169 222 216 36 92 42 249 236 62 
3 125 65 25 111 56 3 66 108 223 59 210 18 211 67 101 46 
4 160 28 89 32 52 140 102 146 145 33 98 74 175 54 72 195 
5 141 123 15 163 41 229 230 4 109 114 135 5 136 154 97 34 
6 246 209 228 47 192 199 172 83 50 132 191 202 159 137 23 240 
7 221 205 187 53 91 104 57 69 71 147 206 38 94 166 143 251 
8 156 26 119 242 35 70 243 44 244 51 231 200 22 73 184 124 
9 179 227 152 162 173 235 90 168 129 208 61 87 186 151 239 113 
10 30 215 21 194 207 214 241 201 130 6 118 134 60 133 31 120 
11 43 180 122 197 64 63 148 157 150 131 254 49 247 155 100 37 
12 153 116 7 219 255 88 139 248 115 126 29 45 2 158 167 84 
13 80 78 193 48 14 13 58 85 161 182 142 188 16 121 224 117 
14 93 8 10 68 198 177 110 77 250 112 165 189 181 183 12 17 
15 95 75 174 226 178 204 196 144 190 127 103 105 185 149 19 9 
16 96 170 99 234 238 253 213 107 86 128 55 245 164 217 171 233 
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itself from the one derived from the plaintext image. Moreover, the histogram's 

distribution was figured out from the encrypted image and is comparatively uniform, reducing 

the association between neighbouring pixels and preventing the attackers from learning 

anything. Figures 8 and 9 illustrate the histograms analysis of the plan images of Lena and Cat 

and their encrypted versions of Lena and Cat, respectively. 

 
Figure 7. Row 1 shows orginal images of “Lena”, Apple, Babul-Quaid, and Baboon, and row 2 shows 

corresponding  their Cipher Images. 

 
Figure 8. Histogram of original  image Lena and Corresponding their Cipher image histogram 
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Figure 9. Histogram of original image Cat and corresponding their Cipher image histogram 

2.6.1.2   Correlation Coefficent  

In plaintext images, the coefficient correlation between two contiguous distinct pixels is 

typically significant, so a secure and efficient encryption procedure is needed to minimize this 

correlation. After the encypring procedure for the original images, the goal of a small 

coefficient correlation among the adjacent pixels should be conducted in the encrypted images. 

The mathematical formula for the correlation analysis between two contiguous pixels is defined 

as [48]: 

ℛ(𝕩′, 𝕪) =
𝔢(𝕩−𝔢(𝕩′)(𝕪−𝔢(𝕪))

√𝒟(𝕩′)𝒟(𝕪)
,                                          (2.22)                                         

𝔢(𝕩′) =
1

𝑁
∑ 𝕩′𝑖,𝕚=1:𝑛                                                  (2.23) 

𝒟(𝕩′) =
1

𝑁
∑ (𝕩𝕚 − 𝔢(𝕩

′
𝕚))

2
𝕚=1:𝑛 .                                 (2.24) 

Where, 𝕩′and 𝕪 are the pixels of the plan and cipher image, respectively. We choose the pixel 

pairings in the encrypted and plaintext image in the multidirectional: Horizontal, vertical, and 

diagonal directions. The above eq(2.22-2.24) mathematical formula was used to get the 

coefficient correlation between the cipher image and the associated plaintext image in 

multidirectional directions. Table 11 displays the test results for the correlation in three 

directions between plain images and images after the encryption process. Table 11 shows that 

the correlation of cipher image in multidirectional is nearly close to zero, which ensures that 
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correlation is significantly reduced. Hence, the proposed E-ECIES scheme is not vulnerable to 

correlation analysis. 

 

 
Figure 10. Correlation Analysis multidirectional (Horizontal, vertical, and Diagonal) 

of Plain image Lena and Corresponding their Cipher Image 
 

 
Figure 11. Correlation Analysis multidirectional (Horizontal, vertical, and Diagonal) of Plain image 

Cat and Corresponding their Cipher Image 
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Table 11. Correlation Analysis of Proposed E-ECIES 
     Correlation Coefficients 

                              Plan-Image                                                  Cipher-Image 
Test-Images   H V D H V D 

Lena  

 

𝑹 0.9172 0.9504 0.9872 0.0009 0.0007 0.0007 
𝑮 0.9772 0.9618 0.9682 −0.009 −0.0009 −0.0007 
𝑩 0.9772 0.9801 0.9792 0.0017 0.0009 0.0009 

CAT 𝑹 0.9801 0.9713 0.9582 −0.0219 −0.00229 −0.0229 
𝑮 0.8713 0.8456 0.9772 −0.00055 −0.0095 −0.0009 
𝑩 0.9012 0.9651 0.9372 −0.0046 −0.0046 −0.0073 

Baboon 𝑹 0.9872 0.9872 0.9772 0.00021 0.0029 0.0019 
𝑮 0.9834 0.9834 0.9802 −0.0139 −0.00169 −0.0013 
𝑩 0.9751 0.9008 0.9917 0.0044 0.00049 0.0091 

Babul-Quaid 𝑹 0.9026 0.9326 0.9912 −0.00319 −0.00329 −0.0075 
𝑮 0.9761 0.9861 0.9882 −0.0045 −0.0065 −0.0009 
𝑩 0.8462 0.9562 0.9698 −0.0006 −0.0026 −0.00016 

Apple  𝑹 0.9636 0.9546 0.9792 −0.0009 −0.0129 −0.0079 
𝑮 0.9821 0.9701 0.9887 −0.0009 −0.0085 −0.0084 
𝑩 0.9625 0.9715 0.9917 −0.0017 −0.0016 −0.0059 

 

2.6.1.3   Information Entropy  

The information entropy, which shows the degree of confusion in the image, is one of the 

key characteristics of conducting the randomness of the image and evaluating the 

encryption method. The following equation was used to find the information entropy [25]. 

ℍ(𝓂) = −∑ 𝒫(𝓂𝑖)
𝒿
𝑖=1 log2𝒫(𝓂𝑖).                                    (2.25) 

Where ℍ(𝓂), represent the value of entropy and  𝒫(𝓂𝑖) show the probability of 𝓂𝑖. The 

theoretical result of the information entropy is 8. Much more uncertainty is visible, along with 

the image's increasing entropy. The more challenging it is for the attackers to extract 

information from the image, the closer it gets to the optimal value of 8. The entropy values of 

the Lena, Baboon, Babul-Quaid, Cat and Apple images and their corresponding encrypted 

images are shown in Table 12.  

Table 12. Entropy Information of Proposed E-ECIES 
Coefficient of Entropy 

Test-Images                  Plan-Image Cipher-Image  
𝑹 𝑮 𝑩 𝑹 𝑮 𝑩 Entire image Entropy 

Lena  7.2763 7.5834 7.0160 7.9972 7.9974 7.9975 7.9991 

CAT 7.7450 7.7671 7.7671 7.9972  7.9972 7.9975 7.9992 
Baboon 7.6094 7.3876 7.6885 7.9972 7.9974 7.9975 7.9991 
Babul-Quaid 7.7600 7.6617 7.2264 7.9973 7.9973 7.9971 7.9990 
Apple  7.4513 7.4170 7.2021 7.9973 7.9973 7.9971 7.9990 
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Concluding from the values in Table 12 that the entropy for each of the above images is close 

to the ideal theoretical value and utterly different from the values in the corresponding plaintext 

image. Considering the entropy values, we conclude that the algorithm proposed here performs 

effectively against the statistical attacks. 

2.6.1.4   Key Space analysis  

The key space shall be sufficiently large to withstand a brute-force attack. The number of keys 

employed in the  three module namely, permutation, diffusion and confusion processes is used 

to compute the key space. The proposed E-ECIES initially utilized 𝑏1𝑏2𝑏3𝑏4 for diffusion 

process, after that 𝑏5𝑏6𝑏7𝑏8𝑏9𝑏10𝑏11𝑏12 used for the permutation purposes and again utilized 

for diffusion, and the last four bytes 𝑏13𝑏14𝑏15𝑏16  is for the confusing process. The tola 

number of key spaces is 2128 which is larger than 280 and enough for brute force attacks. 

Moreover, the security of E-ECIES is based on the discreet logarithm problem at the initial 

stage of key sharing. Hence, the suggested  E-ECIES has a comparatively larger key space 

2.6.2   Differential  Analysis 

The differential attack evaluates an image encryption algorithm's plaintext sensitivity [36]. 

Therefore, the encryption algorithm can extend this influence over the entire encryption 

process if we slightly alter the plain image, a desirable image. Differential analysis is divided 

into two subcategories: the number of pixels change rate (NPCR) and the unified average 

changing intensity (UACI). 

2.6.2.1   NPCR and UACI 

The Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI) 

are measures of the capability to withstand the differential attack. The mathematical 

discripation is defiend as:  

𝒩𝒫𝒞ℛ =
∑ ∑ 𝔽(𝒾, 𝒿)𝒩

𝑗=1
ℳ
𝑖=1

ℳ×𝒩
× 100%.                                              (2.26) 

𝒰𝒜𝒞ℐ =
∑ ∑ |𝔼′(𝒾, 𝒿) − 𝔼′′(𝒾, 𝒿)|𝒩

𝑖=1
ℳ
𝑖=1

255 ×ℳ ×𝒩
× 100%.                         (2.27) 

Where 𝔼′(𝒾, 𝒿) is cipher image of the original image after the entire encryption process and  

𝔼′′(𝒾, 𝒿) another encrypted image after the one-bit change in original image, both the cipher 

images put into the above two formulas to get the experimental analysis of  𝒩𝒫𝒞ℛ and  𝒰𝒜𝒞ℐ. 

Where, 𝔽(𝒾, 𝒿) is defined as [25][48][44-45]. 
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𝔽(𝒾, 𝒿) = {
1, 𝔼′(𝒾, 𝒿) ≠ 𝔼′′(𝒾, 𝒿)

0,        𝔼′(𝒾, 𝒿) = 𝔼′′(𝒾, 𝒿).
                                     (2.28) 

Consequently, the proposed E-ECIES offers excellent resistance to the differential attack. The 

results 𝒩𝒫𝒞ℛ and 𝒰𝒜𝒞ℐ measurements in this chapter and other references are also shown 

in Table 13. But the value of 𝒩𝒫𝒞ℛ and 𝒰𝒜𝒞ℐ of the suggested E-ECIES is nearer to the 

theoretical value than for any other encryption scheme. As a result, the suggested encryption 

method is useful and efficient for encrypting multimedia data. 

Table 13. Differential analysis 
Tested 
images  

                    𝑁𝑃𝐶𝑅                                       𝑈𝐴𝐶𝐼                                             Average 
𝑹 𝑮 𝑩 𝑹 𝑮 𝑩 𝐴𝑣𝑔 𝑁𝑃𝐶𝑅  𝐴𝑣𝑔 𝑈𝑎𝑐𝑖 

Lena  99.6753 99.7531 99.6521 33.3342 33.4672 33.4192 99.6935 33.4069 
Cat 99.4753 99.6521 99.6421 33.3352 33.4672 33.4192 99.5898 33.4072 
Baboon 99.6753 99.6231 99.6221 33.3322 33.4442 33.4192 99.6402 33.3985 
Babul-
Quaid 

99.6554 99.6541 99.5551 33.3352 33.4762 33.4192 99.6215 33.4102 

Apple  99.6743 99.6531 99.5521 33.3372 33.4812 33.4192   99.6265 33.4125 
 

2.6.2.2   PSNR, NC and SSIM 

Three important sensitive analyses, Peak Signal-to-Noise Ratio (PSNR), Normalized 

Correlation (𝒩𝒞), and Structural Similarity (SSIM), are used to measure the quality and 

change the values of pixels in images after decryption [25]. The following mathematical  

formula is used to compute the value of PSNR  

𝑃𝑆𝑁𝑅 = 10 × log10
216 − 1

ℳ𝒮ℰ
.                                                     (2.29) 

Where ℳ𝒮ℰ is defined as: 

ℳ𝒮ℰ =
∑ ∑ (𝑃(𝒾, 𝒿)−𝐸′(𝒾, 𝒿))

2
𝑛
𝑗=1

𝑚
𝑖=1

ℳ×𝒩
.                                          (2.30) 

Where 𝑃(𝒾, 𝒿), 𝐸′(𝒾, 𝒿) represent the plan and encrypted receptively of size ℳ×𝒩. 

The similarity degree is evaluated by the normalization correlation 𝒩𝒞 metric. In addition, 

this result could be considered a reliable indicator of the encryption algorithms' 

effectiveness because two entirely unrelated images have a correlation coefficient that is 

almost zero. The equation is shown below the computed 𝒩𝒞 value. 
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𝒩𝒞 =∑∑
(𝑃(𝒾, 𝒿) − 𝐸′(𝒾, 𝒿))

∑ ∑ 𝑃(𝒾, 𝒿)2𝑛
𝑗=1

𝑚
𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

.            (2.31) 

The structural similarity between the two images is evaluated using the SSIM index. This 

metric improves on methods like mean squared error (MSE) and conventional PSNR. On 

several windows of a given image, the SSIM index is calculated. As a result, the following 

mathematical expression provides the 𝑆𝑆𝐼𝑀 between two windows, 𝑋 and 𝑌, of standard size 

𝒩 ×𝒩. 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝓍 ,𝜇𝓎 , +𝒷1)(2𝜎𝓍 ,𝓎 , +𝒷2)

(𝜇𝓍 ,2 + 𝜇𝓎 ,2 +𝒷1)(𝜎𝓍 ,2 + 𝜎𝓎 ,2 +𝒷2)
.                         (2.32) 

where 𝜇𝓍 , and 𝜇𝓎 ,, shows the mean values of 𝑋 and 𝑌 , respectively. 𝜎𝓍 ,  and 𝜎𝓎 ,, used for 

standard deviations of 𝑋 and 𝑌, respectively. The covariance of 𝑋 and 𝑌 is represented by 𝜎𝓍 ,𝓎 ,, 

and to avoid the value of zero in dominators, the coefficients 𝒷1 and 𝒷2 are used in eq-(2.32). 

The comparison of the original image with the cipher image should have low 𝑃𝑆𝑁𝑅, 𝑁𝐶 and 

𝑆𝑆𝐼𝑀 values. Otherwise, the plan and encrypted image show the value of 𝑆𝑆𝐼𝑀 and 𝑁𝐶 is 1, 

and a high 𝑃𝑆𝑁𝑅 value. Additionally, it's important to note that the image after decryption is 

the same as the plan image. Table 14 illustrate that the value of 𝑃𝑆𝑁𝑅, 𝑁𝐶 and 𝑆𝑆𝐼𝑀 of the 

plan-images cross-ponding their encrypted images. The results in table 15 ensure that our 

enhanced scheme performs well in terms of low 𝑃𝑆𝑁𝑅, 𝑁𝐶 and 𝑆𝑆𝐼𝑀. Finally, it can be 

concluded that the E-ECIES is reliable against sensitivity attacks based on the 𝑃𝑆𝑁𝑅, 𝑁𝐶 and 

𝑆𝑆𝐼𝑀. 

Table 14. PSNR, NC and SSIM values between plain and encrypted images 
Security Parameters                   PSNR Values  SSIM NC 

𝑃 𝑣𝑠 𝐸 𝑃 𝑣𝑠 𝐷 𝑃 𝑣𝑠 𝐸 𝑃 𝑣𝑠 𝐸 
Lena  7.8298 ∞ 0.0021 0.6185 
Baboon 7.9832 ∞ 0.0131 0.7135 
Cat 8.8945 ∞ 0.0101 0.6374 
Babul-Quaid 8.5095 ∞ 0.0041 0.6245 
Apple 9.4847 ∞ 0.0100 0.6588 

 

2.6.2.3   Key Sensitivity    

The secret key must be highly sensitive to an encryption technique for the actual key space to 

match the theoretical one. A high key sensitivity means two entirely different encrypted and 

decrypted outputs will arise from slightly modifying the secret key throughout the encryption 

and decryption procedures. We generate an original secret key 𝐾1 utilizing the E-ECIES at 
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random and then creating two other secret keys, 𝒦2  and 𝒦3 By modifying one bit in 𝐾1. This 

process is done to determine the sensitivity of the secret keys. The original secret key 𝐾1 and 

the modifying keys 𝒦2, 𝒦3 by the following expression. 

𝐾1 = 𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7𝑏8𝑏9𝑏10𝑏11𝑏12𝑏13𝑏14𝑏15𝑏16 

𝒦2   =  𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7𝒃𝟖𝑏9𝑏10𝑏11𝑏12𝑏13𝑏14𝑏15𝑏16 

𝒦3 = 𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7𝑏8𝑏9𝑏10𝒃𝟏𝟏𝑏12𝑏13𝑏14𝑏15𝑏16 

 
Figure 12. Key Sensitivity Analysis: 1st-row Original image Lena, Encrypt with 𝐾1,  Encrypt with 𝐾2, Encrypt 

with 𝐾3, 2nd row shows, Encrypted image of Lena, decrypted with 𝐾1, decrypt with 𝐾2, decrypt with 𝐾3 

 Figure 12 demonstrate the results of  key sensitivity, attained throughout the encryption 

procedure of the E-ECIES. The 1st row of Figure 12 shows the original image of Lena, three 

encrypted images encrypted using 𝐾1, 𝒦2 and 𝒦3. In the 2nd row of Figure 12, only the original 

secret key 𝐾1 can precisely retrieve the original image. Figure 12 illustrates how two decrypted 

results with just a single bit of difference between 𝒦2  and 𝒦3 they yield entirely 

indistinguishable results. 

2.6.3 Noise Attacks  

This section examines how a cryptosystem responds to noise during encryption and decryption. 

Some noise is always present when digital images are broadcast across communication 

channels. Most of the encrypted digital images are affected by different noises, and therefore, 

to investigate the proposed E-ECIECS, we must check the noise analysis of the suggested 
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encryption technique and ensure that the suggested algorithm is noise resistant on this way that 

the digital image after decryption algorithm must be readable for the receiver sides. So, to 

evaluate the E-ECIECS, the cipher image is anticipated by different kinds of noise with 

different densities, namely: Gaussian, Salt, speckle, Poisson, and Pepper Noise. Major sources 

of Gaussian, Salt and Pepper, and other noise appear in remote sensing images during 

acquisition, including Poor illumination, high temperatures, inadequate transmission, and other 

factors that can all lead to sensor noise, such as electronic circuit noise [25]. 

2.6.3.1   Occlusion Analysis   

Decryption operations for encrypted images delivered across communication channels may be 

ineffective due to data loss [25]. In this case, the ciphered images are subjected to a loss 

operation known as an occlusion attack to examine the enhanced encryption scheme noise 

tolerance. Figure 13 shows the encrypted colour image with data loss rates of 50% from the 

right and left from the top and below; similarly, 25% left and right and from top to bottom. As 

shown in Figure 13, after the decryption, the loss rate of 50%  and 25% in an cipher image, 

the corresponding decipher image keeps most of the visual data from the original image. 

Consequently, it ensures that the  E-ECIES is effective and resists occlusion attacks.  

 
Figure 13. Occlusion Analysis 1st row from  (a-h) Lena encrypted image with different rate of losing the data,  

2nd row from (i-p) Crossponding Decrypted image of Lena 3rd row from(a-h) Cat encrypted image with 
different rate of losing the data 4th row from (i-p) Crossponding Decrypted image of Cat 

2.6.3.2 Gaussian Noise 

The normal distribution, which is also referred to as the Gaussian distribution, has a probability 

distribution function (𝑃𝐷𝐹 ) equal to that of Gaussian noise. Additive white Gaussian 
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noise(AWGN) is the most popular name for this type of noise [49]. The proper definition of 

Gaussian noise is noise with a Gaussian amplitude distribution. The following mathematical 

expression describes the Gaussian distribution of this kind of noise 

ℱ(ℊ) =
1

√2𝜋𝜎2
− 𝑒

(ℊ−𝓂)2

2
⁄ 𝜎2.                                                (2.33) 

Where in eq-(40), 𝜎 represents the standard deviation,  ℊ,𝓂 shows the average and gray level 

of the function. For a random variable 𝒮 of the gaussian, the 𝑃𝐷𝐹 is expressed by the following 

equation eq(2.34). 

𝒫𝒢(𝒮) =
1

√2𝜋𝜎
− 𝑒

(𝒮−𝓊)2

2
⁄ 𝜎2.                                                (2.34) 

where 𝓊 and 𝜎 represent the mean and standard deviation. The simulation results of the Lena 

cipher image with the addition of gaussian noise to the decrypted image of Lena in Figure 14 

are still readable for the receiver side.  

2.6.3.3 Salt and Pepper  

Intensity spikes, often known as salt and pepper noise, are an impulsive form of noise. 

Generally, data transmission failures are what cause this. Each usually has a chance of less than 

0.1. The image has a "salt and pepper" appearance because the contaminated pixels are 

alternately assigned to the minimum or maximum value. The impairment of pixel elements in 

camera sensors is the primary cause of the salt and pepper noise [49]. The encryption image of 

the suggested technique, Lena, with the addition of Salt and Pepper noise, is shown in Figure 

14, along with the matching decrypted images that remain readable after the decryption 

procedure. By The following expression, compute the 𝑃𝐷𝐹 for the bipolar impulse noise model 

𝒫ℐ(𝒮) = {
𝒫𝒶            𝑓𝑜𝑟 𝒮 = 𝒶             
𝒫𝒷             𝑓𝑜𝑟 𝒮 ≠ 𝒶            
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

                                 (2.35) 

2.6.3.4 Speckle Noise 

A grayscale image's pixels can be affected by speckle noise, a multiplicative noise. It mainly 

appears in images with low brightness levels, such as MRI and Synthetic Aperture Radar 

(SAR) images. Before further image processing, such as object detection, picture 

segmentation, edge detection, etc., image enhancement is essential to reduce speckle noise 

[50]. Figure 14 shows the encrypted images, Lena of the proposed algorithm, with the addition 
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of Poisson noise and corresponding decrypted images, which are still understandable after the 

decryption algorithm. 

2.6.3.5 Poisson Noise  

A random temporal distribution may be used to treat individual photon detections as separate, 

discrete occurrences. Thus, photon counting is a standard Poisson process. The discrete 

probability distribution describes the number of photons recorded by a specific sensor element 

across time intervals using the following mathematical formula. 

𝒫𝑟𝑜(𝒩 = 𝒦) =
ℯ−𝛾𝜏(𝛾𝜏)𝒦

𝒦!
.                                          (2.36) 

This is a standard Poisson distribution with a rate parameter 𝛾𝜏 that equates to the anticipated 

incidence photon count, where 𝛾, the expected number of photons per unit of time, is 

proportional to the incident scene irradiance [51]. Photon noise is the term for the uncertainty 

that this distribution encapsulates. Photon noise offers a lower bound on the measurement error 

of light since it derives from the nature of the signal itself. Any measurement would be prone 

to photon noise even under perfect imaging circumstances, devoid of any additional sensor-

based noise sources of noise (such as read noise). Figure 14 shows the encrypted images, Lena 

of the proposed algorithm, with the addition of Poisson noise and corresponding decrypted 

images, which are still understandable after the decryption algorithm. As a result, the proposed 

E-ECIES are secure against poison noise. 

 
Figure 14. Noise attacks: 1st-row shows (a) the encrypted image of "Lena (b) salt & pepper (0.01), (c) 
salt & pepper (0.1) noise.2nd row  (d) speckle with random noise (d) speckle noise (0.001). 3rd- row (e) 

Gaussian noise (f) gaussian with 0.1 noise, and (g)passion noise 
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2.6.4 Computational Complexity And Running Time 

The asymptotic complexity theoretically approximates the execution time of an algorithm. In 

general, the asymptotic complexity is denoted by big oh 𝑂. This subsection presented the 

proposed algorithm's asymptotic complexity and running encryption time. We have 

theoretically analyzed the proposed scheme's encryption and decryption procedure and skipped 

the preprocessing for secret key exchange. Since the proposed scheme is a substitution 

permutation network, in the substitution module, each byte is substituted in constant time 𝑂(1). 

So, the complexity of the overall substitution module is 𝑂(𝑀 × 𝑁) for the image of the 

dimension of (𝑀 × 𝑁). Moreover, the complexity of addition and multiplication modulo 𝑛 is 

𝑙𝑜𝑔(𝑛) and 𝑙𝑜𝑔(𝑛)2, respectively, and the permutation module is an affine transformation that 

consists of addition and multiplication modulo 𝑛.  

Table 15.Computational Complexity and Running Time with Other algorithms 
Methode  Running time  Computational Complexity Experimental Environment  
Proposed 
(256*256) 
1. Lena  
2. Baboon 
3. Cat 
4. Apple  

0.2230/sec  𝑂(𝑀 log𝑀2 × 𝑁 log𝑁2) Matlab R2021a,CPU @ 
2.60GHz  2.80 GHz and 8 
GB of RAM. 

0.2130/sec  𝑂(𝑀 log𝑀2 × 𝑁 log𝑁2) Matlab R2021a,CPU @ 
2.60GHz  2.80 GHz and 8 
GB of RAM. 

0.2240/sec  𝑂(𝑀 log𝑀2 × 𝑁 log𝑁2) Matlab R2021a,CPU @ 
2.60GHz  2.80 GHz and 8 
GB of RAM. 

0.2250/sec  𝑂(𝑀 log𝑀2 × 𝑁 log𝑁2) Matlab R2021a,CPU @ 
2.60GHz  2.80 GHz and 8 
GB of RAM. 

Ref.[52] 0.340/sec 
𝑂(7𝑀𝑁 + 3𝑀 log

𝑀𝑁

3
+ 3𝑀 + 3𝑁) Matlab R2017b, CPU 2.3 

GHz, 8 GB memory 
Ref.[53] 1.320/sec 𝑂(25𝑀𝑁) Matlab R2009a, CPU 2.5 

GHz, 4 GB memory 
Ref.[54] 0.6212/𝑠𝑒𝑐 𝑂(18𝑀𝑁 + 2𝑀 log

𝑀𝑁

2
) Matlab R2012b, CPU 2.6 

GHz, 2 GB memory 
Ref.[55]  0.1179/𝑠𝑒𝑐 − Matlab R2017, CPU 2.70 

GHz, 8 GB memory 
Ref.[56] 0.38/𝑠𝑒𝑐 − Mathematica Version 11, 

CPU 1.80 GHz,1.992 MHz, 8 
GB memory 

 

So, the complexity of the permutation module is 𝑀𝑙𝑜𝑔(𝑀) × 𝑁𝑙𝑜𝑔(𝑁). So, the complexity of 

the overall algorithm is 𝑀 log𝑀2 ×𝑁 log𝑁2. Additionally, we evaluate the proposed 

E_ECIES running time using Matlab R2021a. The following specifications apply to the 

experimental environments: Windows 10 operating system, Intel(R) Core(TM) i7-6600U CPU 

@ 2.60GHz   2.80 GHz and 8 GB of RAM. The proposed method takes 0.2230/sec to encrypt 

the standard image Lena of dimension 256 × 256. Comparing the computational complexity 
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and running time of the proposed E-ECIES with other existing excellent algorithms is shown 

in Table 15. The suggested encryption scheme performed better results compared to the [52] 

[53] [54] and [56] but was less effective than [55].  For evaluating encryption time, we also utilized 

different images of the same dimensions, 256 ×  256. The results are displayed in Table 15. 

2.6.5 Comparative analysis and discussion  

In this subsection, we compared our proposed encryption algorithm with other existing 

cryptosystems based on EC and chose-based mathematical structures [57] [58] [59] [60] [61] [40] 

[30] [31] [32] [25]. The comparative analysis and discussion are based on some state-of-the-art 

differential and statistical analysis mentioned in Table 16. We have tested all of these metrics 

on a standard digital image Lena based on the proposed encryption algorithm. Image 

encryption techniques based on chaos, presented in [59] [60] [61] [62], are complex, have high 

memory requirements, and are difficult to implement on modern devices. The scheme 

presented [25] is based on the fusion of improved ECIES and chaotic equations, namely the 

Hyper chaotic Lorenz generator(HCLG) and Arnold cat map(ACT). The HCLG was utilized 

for the confusion module, which is unsuitable and involves more mathematical operations. 

They also did not properly describe the analysis of the confusion phase. 

Moreover, the Cat map was utilized for the matrix multiplication, which is more expensive. 

While in the suggested encryption scheme, the confusion module is achieved by the nonlinear 

component (S-box) followed by the APA transformation. As a result, obtaining the confusion 

by the proposed scheme is less time-consuming than integrating the confusion and diffusion, 

which requires more fusion of EC and chaotic operation. Furthermore, the following bullet 

points give a detailed assessment of the suggested symmetric encryption algorithm with the 

current excellent literature. 

• According to Table 16, the proposed cryptosystem outperforms in the differential analysis 

compared to other chaotic and EC-based encryption techniques presented in [57] [58] [31] 

[59] [60] [61] [62], and below from [32]. 

• The Entropy information of the suggested encryption is nearly close to the theoretical value 

and shows better results from [40][30][59][60][61], and nearly below the [57] [31] [32] [25], 

and equal to the [62]. 

•   According to the correlation analysis, the results of the horizontal, vertical and diagonal of 

the suggested symmetric algorithm are nearly close to the theoretical value, which makes 

sure that the suggested encryption scheme would perform better and be resistant to statistical 
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attacks as compared other chaotic and elliptic curve based encryption scheme [57] [58] 

[39][30] [25] [59] [61] [62], and less from the [31] [32] [60]. 

Table 16. Comparative analysis 
Security 
parameters  

Sensitivity analysis  Statistical  analysis 

Encryption 
method 

NPCR UACI          PSNR  H.Cor V.Cor D.Cor Entropy  
P vs E P vs D      

Proposed E-
ECIES 

99.6935 33.4069 7.8298     ∞     0.0009 0.0007 0.0007 7.9991 

Ref.[57] 99.5693 33.2824 − − −0.0009 0.0008 0.0021 7.9972 
Ref.[58] 99.6155 33.4274 − − −0.0036 0.00262 0.00123 7.9995 
Ref.[39] 99.7100 33.3600 8.65 ∞ −0.0483 −0.0703 -0.0534 7.9995 
Ref.[40] 99.3300 33.1400 − − 0.0030 0.0050 −0.0020 7.9900 
Ref.[30]  − − − − 0.0081 0.0182 0.0065 7.9022 
Ref.[31] 99.5911 33.3765 − − −0.0006 −0.0009 −0.0005 7.9994 
Ref.[32]  99.976 33.5872   −0.0005 −0.0003 0.0001 7.9993 
Ref.[25] 99.6541 33.4615 4.5789  − 0.0001 0.0005 0.0015 7.9993 
Ref.[59]  99.6090 33.4630 − − − 0.0002 − 0.0070 0.0005 7.9980 
Ref.[60] 99.6 33.45 9.2645 − − 0.0003 − 0.0007  − 0.0001 7.9977 
Ref.[61] 99.6418 33.5581 − − −0.0024 −0.0012 0.0011   7.9996 
Ref.[62]  99.6053 33.4621 7.8616  ∞ 0.0018 −0.0042 0.0041 7.9991 

 

• The PSNR values of the encrypted versus original image and plain versus the deciphered 

image of the proposed symmetric encryption are 7.8298 and ∞ respectively show better 

results than other cryptographic algorithms presented in [39] [60] [62], and somehow less 

from [25].   

Based on the comparative analysis of Table 16, we can see that the proposed symmetric 

cryptosystem testing findings have shown better outcomes than recent chaotic and EC-based 

encryption techniques and give robust security and high resistance against state-of-art 

cryptanalysis. 
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Chapter 3 

Mordell Elliptic Curve for Efficient Digital Audio 
Encryption Application 

 

Nowadays, voice-based transmission is visible in areas like military intelligence, phone 

banking, secret voice conferencing, education, etc. With the increasing demand for secure 

audio communication, the audio encryption protocol is significant for storing and 

communicating sensitive data over the exposed scheme. The conventional cryptographic 

algorithm is not suitable for audio encryption, such as traditional algorithms like AES [63], 

DES [64], TDEA [65], and RSA [66] are not suitable for audio communication. The two 

underlying cryptographic terms, diffusion and confusion, are introduced by Claude Shannon 

[67]. These two terms are substitution and permutation operations achieved by random 

numbers or sequences. In confusion, the data value is permuted corresponding to some key 

parameter to dismantle the neighboring samples. However, both terms are shown a complex 

relation between ciphertext, plaintext, and the encryption of symmetric key algorithms; 

different analysts and designers use the substitution-permutation network (SPN) as a 

fundamental structural element [68].  

Numerous encryption methods for digital audio are described in the literature. However, no 

one algorithm attracts the attention of all digital audio formats. In 2008  Wei-Qi Yan et al. 

presented a scheme of digital Audio scrambling in the compressed domain  [69]. The proposed 

work uses scrambled digital audio data before key transmission. Nonetheless, the suggested 

work has not proven the security against brute force attacks [69]. Juliano B. Lima et al. 

suggested a digital audio encryption technique based on the cosine number transform (CNT) 

[70]. The anticipated approach of encryption was applicable to encrypt different blocks of 

audio format. The rule used to select the audio data blocks is overlapping, producing confusion 

and diffusion in the encrypted data. However, the computational cost of the suggested scheme 

is still expensive and unsuitable for large audio data. Afterward, in 2016 Hongjun Liu 

introduced a scheme of audio encryption by the operation of diffusion and confusion based on 

multi-scroll chaotic encryption and one-time keys [71]. The proposed work shows that a 

chaotic system with varying multi-scroll generates key streams to produce diffusion and 

confusion in audio data. The audio encryption technique is based on the fusion of  Fast Walsh 
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Hadamard Transform(FWHT) and chaotic keystreams proposed by F.J. Farsana et al [72]. In 

the suggested work, the original audio data is permuted using a Henon Map (HM). For the 

second module of the encryption technique, the authors utilized the Lorenz-Hyperchaotic for 

keystreams generation. The computational complexity of the entire scheme is 𝜊(𝑛2) and 

achieved the targeted level of security. The existing chaotic map techniques are shown to be 

insecure against cryptanalysis in the literature mentioned above because the one-dimensional 

chaotic map has fewer parameters. Moreover, techniques based on high-dimensional chaotic 

sequences are highly complicated, necessitating additional storage space, and most chaotic-

based encryption algorithms are subject to numerous hardware limitations. This limitation is 

caused by the absence of mathematical non-integer operations, which require lots of space.  

Considering the abovementioned issues, scholars utilized different algebraic structures to build 

a secure digital audio encryption scheme with infinitesimal computational cost. This chapter 

developed an efficient digital audio encryption algorithm with permutation-substitution 

architecture(PSA) using a mordell elliptic curve(MEC) with highly nonlinear components (i.e., 

S-box). The framework of MEC points generation utilized the searching techniques, 

significantly reducing the time complexity to the exceptional margin. The high-quality pseudo-

random number sequences are subsequently utilized to aid the diffusion process. The phase of 

confusion is utilized with the help of multiple strong 5 × 5 S-box, which have never been 

applied before the existing literature. The experimental findings show that the suggested 

technique is effective and resistant to attacks. 

3.1 Mordell Elliptic Curve 

An elliptic curve over a finite field 𝐹𝑝, is defined as. 

                          𝐸a,b𝑝 = {∞} ∪ {(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝐹𝑝: Υ2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝}                 (3.1)                                             

The particular case of EC when the parameter 𝑎 = 0 and 𝑏 ≠ 0 is called the Mordell elliptic 

curve 𝑀𝐸𝐶0,𝑏𝑝. 

Theorem 3.1. Let  𝑃 be prime (i.e. 𝑝 > 3) such   that  𝑝 ≡ 2(𝑚𝑜𝑑 3). Then for each 𝑏 ∈ 𝐹𝑝, 

the 𝑀𝐸𝐶0,𝑏𝑝, has exactly 𝑝 + 1 unique points. As the y-coordinate of each integer in [0, p–1] 

appears precisely once. 
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3.2 Proposed Audio Encryption   

In this section, we discuss the proposed algorithm for audio data. The proposed algorithm is to 

work out to secure the digital Audio in (.wav formatted) before sending it to the insecure 

channel. In the following steps, we briefly discuss the proposed work. 

Step 1: First, read the audio file in sixteen-bit integer data whose range laying in the interval 

of [2−15, 215 ]. Reshape the original audio data in the new matrix Å of dimension 𝑁 × 𝑁′, 

where 𝑁,𝑁′, represent the rows and columns of the original audio data. 

Step 2: Next, matrix Å contains non-negative and negative data in the class of signed bit 

integers. To identify the position of both data, the scheme creates a binary matrix 𝛽 consisting 

of 1 and 0. The mathematical formulation of the binary matrix is given as follows. 

𝛽(𝑖, 𝑗) = {
0, 𝑖𝑓   Å𝑖,𝑗 < 0

1, 𝑖𝑓   Å𝑖,𝑗 ≥ 0
                                                                      (3.2) 

Where Å𝑖,𝑗, the data is set element of matrix Å at the (𝑖, 𝑗)𝑡ℎ position and 𝛽(𝑖, 𝑗) is to show the 

element of binary matrix 𝛽 at (𝑖, 𝑗)𝑡ℎ position. Therefore, we get a binary matrix 𝛽 of dimension 

𝑁 × 𝑁′. 

Step 3: Next, convert the audio data set [2−15, 215 − 1] to [2−15 − 1, 215 − 1] to get new data 

set matrix Å′ of dimension 𝑁 ×𝑁′. Consequently, get the new matrix Å′, which contains the 

data values of 15 bit-digit integers. The mathematical formula for the new data set is given 

below. 

Å′(𝑖, 𝑗) = {
Å𝑖,𝑗,              𝑖𝑓   Å𝑖,𝑗 > 2

−15

Å𝑖,𝑗 − 1, 𝑖𝑓   Å𝑖,𝑗 = 2
−15
                                       (3.3) 

Step 4: In the next step, apply the absolute function on the data set of  Å′(𝑖, 𝑗) to obtain the 

new data set Å′′(𝑖, 𝑗) whose entries laying in the interval of [0, 215]. Hence the Å′′(𝑖, 𝑗) 

transform to a 15-bit positive integer. 

Step 5: Afterward, generate pseudo-random sequences using the following 𝑀𝐸𝐶0,𝑏𝑝 equations 

eq(3.4-3.6) and pick the y-coordinates of 𝐸Υ1, 𝐸Υ2, 𝐸Υ3 using the following mathematical 

expression.  

𝐸Υ1 = (𝑀𝐸𝐶
0,𝑏

𝑝1
)𝑚𝑜𝑑 𝑁                                              (3.4) 

𝐸Υ2 = (𝑀𝐸𝐶
0,𝑏

𝑝2
) 𝑚𝑜𝑑 𝑁′                                            (3.5) 

𝐸Υ3 = (𝑀𝐸𝐶
0,𝑏

𝑝3
)𝑚𝑜𝑑 𝑁′′                                          (3.6) 
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Where 𝑀𝐸𝐶0,𝑏𝑝1 𝑀𝐸𝐶
0,𝑏

𝑝2
, 𝑀𝐸𝐶

0,𝑏
𝑝3
,  are the MEC sequences with the specified modulus 𝑁, 

𝑁′ and 𝑁′′. 

Step 6: After generating sequences in step 5, a permutation with a matrix Å′′, is performed by 

the proposed algorithm as a next step. Consequently, this diffusion phase aims to reduce the 

strong correlation among adjacent integers. The mathematical description of permutation 

module is defined as follows: 

                                              Å′′𝑃(𝑖, 𝑗) = Å′′(𝐸Υ1 , 𝐸Υ2, )                                                  (3.7)                                                        

Where Å′′𝑃(𝑖, 𝑗) show the integer position of permuted matrix Å′′𝑃 . 

Step 7: The phase of confusion is a cryptographic approach devised to enhance the vagueness 

of cipher data. In this step, the proposed algorithm performed the substitution process to 

establish that the cipher data gives no hint regarding the original data, producing confusion in 

cipher data. Since, in the proposed work, the permuted data is a 15-bit positive integer so it will 

be computing hard to substitute the whole block of 15-bit positive data. For the sake of this 

purpose, the algorithm divided the block into three sub-blocks of a 5-bit positive integer using 

the following mathematical maps is defined as:  

 

𝜁: ℤ2
15⟶ ℤ2

5 

𝜁(𝜎1, 𝜎2, … , …𝜎14,𝜎15) ⟶ 𝜁(𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5… ,… ,0,0).                            (3.8) 

𝜁1: ℤ2
15 ⟶ ℤ2

5 

𝜁1(𝜎1, 𝜎2, … , …𝜎14,𝜎15) ⟶ 𝜁(0,0. . , 𝜎6, 𝜎7, 𝜎8, 𝜎9, 𝜎10… ,0,0).                    (3.9) 

and  

𝜁2: ℤ2
15 ⟶ ℤ2

5 

𝜁2(𝜎1, 𝜎2, … , …𝜎14,𝜎15) ⟶ 𝜁(0,0, … , 𝜎11, 𝜎12, 𝜎13, 𝜎14, 𝜎15).                    (3.10) 

 

Therefore, get 3 –subblocks Å′′𝑃51 , Å
′′𝑃
52 , Å

′′𝑃
53 , consist of 5-bit respectively. 

Step 8: Generate an S-box of 5 × 5 using an EC over a finite field. Since the 5 × 5 S-box has 

never been utilized and evaluated before, in this chapter, we briefly mentioned the construction 

procedure and security analysis of  5 × 5 S-boxes in the next subsection. 

Step 9: Then substitute the 3-subblocks Å′′𝑃51 , Å
′′𝑃
52 , Å

′′𝑃
53 , with the 5 × 5 S-boxes, the 

substitution procedure of the subblocks is the same. Initially converts the subblocks data into 

binary form. Next, split the chunks of five bits of each block element into 2 and 3 bits-string 

and then convert a 2-bit string in the decimal range of 0 to 3(or binary 11 to 00) and 3-bit strings 
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in the decimal range of 0 to 7 (or binary 000 to 111), then substitute each element of subblock 

with the element of  S-box 𝑆𝑝𝑎,𝑏 . For a better explanation, read example 3.2. The mathematical 

representation of the substitution process is defined below. 

 

 Å′′
𝑝𝑆

51 = 𝑆
𝑝
𝑎,𝑏(Å

′′𝑃
51).                                                 (3.11) 

Å′′
𝑝𝑆

52 = 𝑆
𝑝
𝑎,𝑏(Å

′′𝑃
52).                                                 (3.12) 

Å′′
𝑝𝑆

53 = 𝑆
𝑝
𝑎,𝑏(Å

′′𝑃
53).                                                (3.13) 

Step 10: After the phase of substitution, one can get three new subblocks Å′′𝑝
𝑆

51 , Å
′′𝑝

𝑆

52 , and 

Å′′
𝑝𝑆

53. Finally, using the xor operation and xor, the sequences of 𝐸Υ3 𝑚𝑜𝑑 32 with the three 

new subblocks obtained in step 8 to get three new encrypted data ℂ1, ℂ2, and  ℂ3 using the 

following mathematical formulation: 

ℂ1 = (𝐸
Υ
3 𝑚𝑜𝑑 32 ⨁Å

′′𝑝
𝑆

51).                                                (3.14) 

ℂ2 = (𝐸
Υ
3 𝑚𝑜𝑑 32 ⨁Å

′′𝑝
𝑆

52).                                                (3.15) 

ℂ3 = (𝐸
Υ
3 𝑚𝑜𝑑 32 ⨁Å

′′𝑝
𝑆

53) .                                               (3.16) 

Step 11: To reverse the data form ℂ1, ℂ2 and ℂ3 of 5-bit each block to a single 15-bit block by 

using the following mathematical formula: 

𝜁−1: ℤ2
5 × ℤ2

5 × ℤ2
5 ⟶ ℤ2

15 

𝜁−1((𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5)(𝜎6, 𝜎7, 𝜎8, 𝜎9, 𝜎10)(𝜎11, 𝜎12, 𝜎13, 𝜎14, 𝜎15)) ⟶ (𝜎1, 𝜎2, … , …𝜎14,𝜎15).    (3.17)            

Finally, we get a matrix Å15
′′𝑠

 of dimension 𝑁 × 𝑁′. 

Step 12: At the final step of the proposed algorithm map, the data set [0 1 2, … ,… 215 − 1] of 

the matrix Å15
′′𝑠

 to the data set [−215 − 1,… ,…215 − 1], using a binary matrix defined in eq 

(3.18). The mathematical expression of step 12 is defined below. 

 

Å𝐸(𝑖, 𝑗) = {
−Å15

′′𝑠

(𝑖, 𝑗), 𝑖𝑓   𝛽(𝑖, 𝑗) = 0

Å15
′′𝑠

(𝑖, 𝑗), 𝑖𝑓   𝛽(𝑖, 𝑗) = 1
                                       (3.18) 

 

Eventually, one can get a matrix Å𝐸,  then convert to an audio file which is the required cipher 

audio file. The structural outline of the suggested encryption algorithm is demonstrated in 

Figure 15. We encrypted multiple audio files of varied sizes and characteristics to evaluate the 
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proposed scheme's security. Additionally, for better understanding, the source code of the 

entire procedure of encryption and decryption is given in Tables 20 and 21.  

 

 
Figure 15. Flow chart of the proposed encryption scheme 

3.3 𝟓 × 𝟓 S-box Construction and Security Analysis 

Since the 5 × 5 S-box has never been applied before, the construction procedure and 

performance assessment of the 5 × 5  S-box are briefly covered in this section. The 5 × 5 S-

boxes used to substitute three sub-blocks composed of five-bit integers are based on EC over 

prime fields Ϝ𝑝. The algorithm has four main steps described in the following steps. 

Step 1: Select the domain parameters, a and b, from the prime field  Ϝ𝑝, where p is a large 

prime number, i.e., 𝑎, 𝑏 ∈  Ϝ𝑝, 𝑎 ≠ 𝑏 . 

Step 2: Next, our approach to generating EC points using the searching method reduces the 

complexity to a significant extent. The following Weierstrass cubic elliptic curve utilizes to 

generate the points.  

                                               𝐸a,b𝑝 = Υ2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝                                                           

Step 3: Afterward, pick the Υ-coordinate 𝐸a,b,𝑣𝑖𝑝(𝑢𝑖, 𝑣𝑖) of all orders paired 𝐸a,b𝑝(𝑢𝑖, 𝑣𝑖), then 

apply the modulo 32 operation on 𝐸a,b,𝑣𝑖𝑝(𝑢𝑖, 𝑣𝑖) to get the 𝐸a,b,𝑣𝑖32(𝑢𝑖 , 𝑣𝑖). The aim of modulo 

32 is to substitute the three sub-block each of five-bit integer data. The mathematical 

formulation of this step is given below. 

𝜕: 𝐹82 → 𝐹52 
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𝜕: 𝐸a,b𝑝 → 𝐸a,b𝑝′ 

𝜕(𝑢, 𝑣) = 𝑣 𝑚𝑜𝑑 (𝑝′)                                                 (3.19) 

Step 4: In the final step, we choose the first 32 unique elements of 𝐸a,b,𝑣𝑖32(𝑢𝑖, 𝑣𝑖)to generate 

an s-box 𝑆𝑎,𝑏
𝑝′ , and transmute into a 4 × 8 lookup table. 

 The implementation of the suggested algorithm is demonstrated on different ECs with distinct 

parameters for the generation of keyed S-boxes. Three different  S-boxes 𝑆1,132, 𝑆1,332 and 𝑆0,132  are 

generated by 𝐸1,1211, 𝐸1,3197  and 𝐸0,1293 respectively shown in Tables 17,18 and 19. 

Table 17. Proposed  5 × 5 𝐸1,1211 S-box 
 0 1 2 3 4 5 6 7 
0 2 13 22 29 5 15 30 16 
1 4 14 24 0 6 21 31 19 
2 8 17 25 1 10 23 7 26 
3 12 18 28 3 11 27 9 20 

 

Table 18. Proposed  5 × 5 𝐸1,3197 S-box 
 0 1 2 3 4 5 6 7 
0 3 9 20 28 4 18 14 31 
1 5 10 21 29 12 26 23 1 
2 6 11 24 0 15 30 8 27 
3 7 16 25 2 17 13 22 19 

 

Table 19. Proposed  5 × 5 𝐸0,1293 S-box 
 0 1 2 3 4 5 6 7 
0 3 24 12 22 11 20 9 8 
1 2 13 25 15 26 17 28 29 
2 14 18 31 16 30 27 4 0 
3 23 19 6 21 7 10 1 5 

 

Example 3.2. Let the input data I = (21)x = (10101) of the S-box, i.e S1,332 , then the 

outerbits(11)   identify row 3 while the innerbits(010) represent column 2. The numbering 

of rows and columns start from 0 to 3 and 0 to 7, respectively. If we substitute the input data I 

with the S-box, i.e S1,332  , then the return byte of the S-box is S1,332 (21) = 25. 

3.4   Security analysis of  𝟓 × 𝟓 S-box 

In the given subsection, we present some algebraic and probabilistic analyses of the suggested 

S-boxes based on the EC over a finite field, as shown in Table 22. The suggested S-boxes 

review further by performance analyses like Nonlinearity (NL), Bic independent criteria (BIC), 
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Strict Avalanche criteria (SAC), linear approximation portability (LAP), and Differential 

approximation probability (DP), which is already discussed in chapter 2. The mathematical 

expression 2(𝑁−1) − 2(
𝑁−1

2
), calculates the upper bound NL of the proposed s-boxes. Thus, in  

our case, for 𝑁 = 5, the optimum nonlinearity value is 12. The average score of nonlinearities  

of the new design s-boxes 𝑆1,132 , 𝑆1,332 and 𝑆0,332   given in Table 22 are 10, which is close to the 

upper bound value. Similarly, the security analysis results, SAC, BIC, DP, and LP, have been 

presented in the same table, proving that the suggested S-box is unaffected by all possible 

algebraic and statistical attacks. 
Table 20. Source Code of Audio Encoding 
1. 𝑂 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑢𝑑𝑖𝑜 𝑑𝑎𝑡𝑎 ; 
2. 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑎𝑢𝑑𝑖𝑜 𝑑𝑎𝑡𝑎 
3. 𝐹 ← 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦; 
4. [𝑂, 𝐹]  ← 𝑟𝑒𝑎𝑑 (𝑂, ’ 𝑛𝑎𝑡𝑖𝑣𝑒’); 
5. [𝑚, 𝑛]  = 𝑠𝑖𝑧𝑒(𝑂); 
6. 𝐿 → 𝐿𝑒𝑛𝑔𝑡ℎ (𝑚, 𝑛); 
7. %Sequence generation 
8. 𝑓𝑜𝑟 𝑖 = 1: 𝐿 𝑑𝑜 
9. 𝐸Υ1 ← 𝑀𝐸𝐶

0,𝑏
𝑝1

 
10. 𝐸Υ2 ← 𝑀𝐸𝐶

0,𝑏
𝑝2

 
11. 𝐸Υ3 ← 𝑀𝐸𝐶

0,𝑏
𝑝3

 
12. End 
13. % Binary matrix generation  
14. 𝑓𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
15. 𝑓𝑜𝑟 𝑗 = 1: 𝑛 𝑑𝑜 
16. 𝛽(𝑖, 𝑗) = 1 
17. 𝑖𝑓 Å𝑖,𝑗 ≥ 0 
18. 𝑒𝑙𝑠𝑒  
19. 𝛽(𝑖, 𝑗) = 0 
20. 𝑒𝑛𝑑  
21. 𝑒𝑛𝑑  
22. Å′′ =Abs (Å) 
23. % Data conversion 
24. 𝑓𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
25. 𝑓𝑜𝑟 𝑖 = 𝑗: 𝑛 𝑑𝑜 
26. 𝑖𝑓   Å𝑖,𝑗 > 2

−15  
27. Å(𝑖, 𝑗) = Å𝑖,𝑗; 
28. 𝑒𝑙𝑠𝑒 Å𝑖,𝑗 = 2

−15 
29. Å(𝑖, 𝑗) = Å𝑖,𝑗 − 1; 
30. % 𝑫𝒊𝒇𝒖𝒔𝒊𝒐𝒏 𝒑𝒉𝒂𝒔𝒆 
31. 𝑓𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
32. 𝑓𝑜𝑟 𝑖 = 𝑗: 𝑛 𝑑𝑜 
33. Å′′

𝑃
(𝑖, 𝑗) = Å′′(𝐸𝛶1 , 𝐸

𝛶
2, ) 

34. 𝑒𝑛𝑑  𝑒𝑛𝑑  
 

35. % Generation of S-box 

36. 𝑆1,1
32 ← 𝐸1,1211;   

37. 𝑆1,3
32 ← 𝐸1,3197; 

38. 𝑆0,1
32 ← 𝐸0,1293; 

39. % Five-bit shifting  
40. Å′′

𝑷

𝟓𝟏 ← Å
′′𝑷 −bitshift(bitshift(Å′′𝑷 , −𝟓),5); 

41.  Å′′
𝑷

𝟓𝟐 ,←bitshift(bitshift(Å′′𝑷 , −𝟓),5); 
42.  Å′′

𝑷

𝟓𝟑 ←bitshift (bitshift (Å′′𝑷 , −𝟓),5). 
43. % Substitution phase 
44. Å′′

𝑝𝑆

51 ← 𝑆1,1
32(Å′′

𝑃

51) 

45. Å′′
𝑝𝑆

52 ← 𝑆1,3
32(Å′′

𝑃

52) 

46. Å′′
𝑝𝑆

53 ← 𝑆0,1
32(Å′′

𝑃

53) 
47. % Bit-xor operation 
48. ℂ1 ← (𝐸𝛶3 𝑚𝑜𝑑 32 ⨁Å

′′𝑝
𝑆

51) 

49. ℂ2 ← (𝐸𝛶3 𝑚𝑜𝑑 32 ⨁Å
′′𝑝

𝑆

52) 

50. ℂ3 ← (𝐸𝛶3 𝑚𝑜𝑑 32 ⨁Å
′′𝑝

𝑆

53) 

51. Å15
′′𝑠
(𝑖, 𝑗) ← ℂ1⊕ℂ1⊕ℂ1 

52. % Reverse conversion  
53. 𝑓𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
54. 𝑓𝑜𝑟 𝑖 = 𝑗: 𝑛 𝑑𝑜 
55. 𝑖𝑓  𝛽(𝑖, 𝑗) ≥ 0 
56. Å15

′′𝑠

← Å𝐸(𝑖, 𝑗) 
57. 𝑒𝑙𝑠𝑒   
58. Å15

′′𝑠

← −Å𝐸(𝑖, 𝑗) 
59. 𝑒𝑛𝑑 ; 𝑒𝑛𝑑; 𝑒𝑛𝑑 
60. audiowrite (‘encryptedata.wav ’, Å𝟏𝟓

′′𝒔

, 𝑭) 
 

 



 

61 
 

 Table 21. Source Code of Audio Decoding 
1. 𝐼𝑛𝑝𝑢𝑡 →Encrypted audio data 
2. output→ plain audio data 
3. [E, F] ←read (E,’ native’); 
4. F←Frequency;   
5. [m, n] =size(E); 
6. L←length(m, n); 
7. Å𝟏𝟓

′′𝒔

= 𝑬; 
8. % Binary matrix generation 
9. 𝑓𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
10. 𝑓𝑜𝑟 𝑗 = 1: 𝑛 𝑑𝑜 
11. 𝛽(𝑖, 𝑗) = 1 
12. 𝑖𝑓 Å15

′′𝑠

≥ 0 
13. 𝑒𝑙𝑠𝑒 
14. 𝛽(𝑖, 𝑗) = 0 
15. 𝑒𝑛𝑑 
16. 𝑒𝑛𝑑 

17. Å′′ =Abs (Å) 
18. % Data conversion 
19. 𝒇𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
20. 𝑓𝑜𝑟 𝑖 = 𝑗: 𝑛 𝑑𝑜 
21. 𝑖𝑓   Å𝑖,𝑗 > 2

−15 
22. Å(𝑖, 𝑗) = Å𝑖,𝑗; 
23. 𝑒𝑙𝑠𝑒 Å𝑖,𝑗 = 2

−15 
24. Å(𝑖, 𝑗) = Å𝑖,𝑗 − 1; 
25. % Five-bit shifting 
26. Å′′

𝑃

51 ←bitshift(bitshift(Å′′𝑃 , −5),5); 
27. Å′′

𝑃

52 ,←bitshift(bitshift(Å′′𝑃 , −5),5); 
28. Å′′

𝑃

53 ←bitshift(bitshift(Å′′𝑃 , −5),5); 
29. % Generation of inverse S-box 
30. 𝑆1,1

32 ← 𝑖𝑛𝑣(𝐸1,1
211
); 

31. 𝑆1,3
32 ← 𝑖𝑛𝑣(𝐸1,3

197
); 

32. 𝑆0,1
32 ← 𝑖𝑛𝑣(𝐸0,1293 

33. % Re-substitutions phase 
34. Å′′

𝒑𝑺

𝟓𝟏 ← 𝑺𝟏,𝟏
𝟑𝟐 (Å′′

𝑷

𝟓𝟏) 

35. Å′′
𝒑𝑺

𝟓𝟐 ← 𝑺𝟏,𝟑
𝟑𝟐 (Å′′

𝑷

𝟓𝟐) 

36. Å′′
𝒑𝑺

𝟓𝟑 ← 𝑺𝟎,𝟏
𝟑𝟐 (Å′′

𝑷

𝟓𝟑) 
37. % Inverse Sequence generation 
38. 𝑓𝑜𝑟 𝑖 = 1: 𝐿 𝑑𝑜 
39. 𝐸𝛶1 ← 𝑖𝑛𝑣(𝑀𝐸𝐶

0,𝑏
𝑝1
) 

40. 𝐸𝛶2 ← 𝑖𝑛𝑣(𝑀𝐸𝐶
0,𝑏
𝑝2

) 
41. 𝐸𝛶3 ← 𝑖𝑛𝑣(𝑀𝐸𝐶

0,𝑏
𝑝3)

 
42. end 
43. % Bit-xor operation 
44. ℂ1 ← (𝐸𝛶3 𝑚𝑜𝑑 32 ⨁Å

′′𝑝
𝑆

51) 

45. ℂ2 ← (𝐸𝛶3 𝑚𝑜𝑑 32 ⨁Å
′′𝑝

𝑆

52) 

46. ℂ3 ← (𝐸𝛶3 𝑚𝑜𝑑 32 ⨁Å
′′𝑝

𝑆

53) 

47. Å15
′′𝑠
(𝑖, 𝑗) ← ℂ1⊕ℂ1⊕ℂ1 

48. % 𝑫𝒊𝒇𝒖𝒔𝒊𝒐𝒏 𝒑𝒉𝒂𝒔𝒆 
49. 𝑓𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
50. 𝑓𝑜𝑟 𝑖 = 𝑗: 𝑛 𝑑𝑜 
51. Å′′(𝑖, 𝑗) = Å15

′′𝑠
(𝐸𝛶1 , 𝐸

𝛶
2, ) 

52. 𝑒𝑛𝑑  ; 𝑒𝑛𝑑 
53. % Reverse conversion 
54. 𝑓𝑜𝑟 𝑖 = 1:𝑚 𝑑𝑜 
55. 𝑓𝑜𝑟 𝑖 = 𝑗: 𝑛 𝑑𝑜 
56. Å𝑖,𝑗 ← Å′′(𝑖, 𝑗) 
57. 𝑖𝑓  𝛽(𝑖, 𝑗) ≥ 0 
58. 𝑒𝑙𝑠𝑒 
59. Å𝑖,𝑗 ← −Å′′(𝑖, 𝑗) 
60. 𝑒𝑛𝑑 ; 𝑒𝑛𝑑; 𝑒𝑛𝑑 
audiowrite(‘ original data.wav ’, Å𝒊,𝒋, 𝐅) 

 

Table 22. Security analysis of proposed 5 × 5 S-boxes 
S-box NL SAC BIC SAC-

BIC 
LP DP LBN DBN LS 

Proposed 𝑺𝟏,𝟏𝟑𝟐  (𝟓 × 𝟓) 10 0.527 0.600 0.5250 0.25 0.25 2 2 0 

Proposed 𝑺𝟏,𝟑𝟑𝟐  (𝟓 × 𝟓) 8 0.5124 0.6181 0.5250 0.3125 0.25 2 2 0 

Proposed 𝑺𝟎,𝟏𝟑𝟐  (𝟓 × 𝟓) 8 0.5122 0.5222 0.4625 0.25 0.1875 2 2 0 

Ref.[73]. S-box (𝟖 × 𝟖) 108 0.4988 52.851 0.4988 − - 2 2 0 

Ref.[32]. S-box (𝟖 × 𝟖) 107 0.4990 − 0.50635 0.03906 0.1250 2 2 0 

Ref.[74] S-box (𝟕 × 𝟕) 52 0.4978 52.851 0.504  0.09375 0.0156 2 2 0 

Ref [75]. S-box (𝟒 × 𝟒) 4 0.4922 − 0.2500 0.2500 0.0625 2 2 0 
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3.5 Security analysis of Audio encryption 

Effective multimedia data encryption should be robust enough to fend off all attacks, namely 

statistical, brute-force, eavesdropping, and other cryptanalytic approaches. Throughout part of 

this section will examine how the proposed encryption scheme is vulnerable to several types 

of attacks. Matlab 2021(a) uses a portable PC to conduct the simulations. To analyze the 

suggested scheme, we selected a number of audio samples with different characteristics, 

including voice, music, etc., and then encrypted them using different elliptic curve key 

parameters. Figure 16 illustrates the waveforms of the plain audio and encrypted audio files. 

The amplitude depicted in the cipher audio is uniform. It resembles the amplitude of the plan 

audio data, proving that the audio data has been effectively encrypted, as shown in Figure 16. 

Afterward, we will study the scheme with various analyses, such as spectrogram, histogram, 

entropy, correlation, and differential analysis discussed in chapter 2. Therefore, in this section, 

some analysis is just shown by their graphical illustrations, not their theoretical description. 

3.5.1   Histogram analysis 

The histogram analysis examines the proposed audio encryption-based SPA using MEC. The 

result of the histogram analysis is illustrated in Figure 17. Figures 17 shows the histogram of 

plain and cipher audio data, respectively. As observed, the histogram of plan audio data is 

randomized and approaches a fixed location. On the other hand, the histogram of cipher audio 

data nearly resembles each other. As a result, the recommended audio encryption algorithm is 

exceptionally secure against statistical attacks, and Eve could not decrypt the cipher data. 

3.5.2 Spectrogram analysis 

The spectrogram analysis is an accurate and visual representation of audio data and is the tool 

for analyzing sound data. A spectrogram is a standard two-dimensional plot in which one axis 

represents the time domain. In contrast, the axis visualizes the frequency with the colour of 

each point indicating its amplitude. As a result, a spectrogram shows amplitude variations for 

each signal frequency component. To evaluate the recommended encryption scheme, we used 

spectrogram analysis. The spectrogram graph analysis of the proposed audio encryption 

algorithm demonstrates in Figure 18. Form Figure 18 shows the analysis of the original audio 

data, while the second column of Figure 18 shows the spectrogram graph of the cipher audio 

data. Moreover, from Figure 18, one can determine that the spectrogram analysis of the 

encrypted audio is flat, has a considerable amplitude, and is different from the spectrogram 

graph of the plan audio data, ensuring that the digital audio data has been effectively encrypted. 
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Figure 16. The first column shows the Waveforms of the original audio Alarm, female, baby and 

explosion.  The second column shows corresponding their encrypted audio 
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Figure 17. The first column shows the Histogram analysis of the original audio of the Alarm, female 
and baby, respectively. The second column is there corresponding encrypted audio histograms. 
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Figure 18. The first column shows the Spectrogram analysis of the original audio of the Alarm, 

female and baby, respectively. The second column is there corresponding encrypted audio histograms 
 

3.5.3 Correlation analysis  

We test the suggested audio encryption scheme by correlation analysis. Generally, correlation 

analysis evaluates the data in multiple directions, such as horizontal, vertical, and diagonal. 

Since the sample of audio data is highly correlated with one another. Therefore, a highly 

secured cryptosystem should break the correlation between audio data samples. Therefore, we 

picked different adjacent samples to examine the correlation coefficient in multiple 
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dimensions. After all, the audio data samples are organized in a single array of strings, so we 

investigate the analysis of the correlation of the suggested scheme in the horizontal dimension. 

The result is summarized in Table 23. Table 23 shows that the coefficient of correlation for the 

plan audio data is 1, indicating that the audio data segments are highly associated. 

Nevertheless, the results of encrypted audio data are nearly equal to zero, which shows that the 

recommended encryption algorithm disrupts the highly connected audio segments. 

Furthermore, the plan and encrypted audio data analysis is illustrated in Figure 19. From 

Figure.19, we can observe that the proposed encryption scheme is highly resistant to statistical 

attacks. 

 
Figure 19. First column shows the Correlation analysis of the original audio of the Alarm, female and 

baby, respectively. Second column are there corresponding encrypted audio histograms 
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Table 23. Correlation analysis of various samples Audio 
S.no Audio samples Size/KB  Plain Audio  Cipher audio  
1 Alarm sound.wav 186/kb 0.89735 −0.00221 
2 Dog barking sound.wav 279/kb 0.95292 0.00623 
3 Explosion sound.wav 533/kb 0.52226 0.00161 
4 Male sound.wav 345/kb 0.86710 0.00844 
5 Femalesound.wav 23.3/kb 0.85605 0.00318 
6 Baby sound.wav 279/kb 0.96987 −0.04283 
7 Cartoon sound.wav 488/kb 0.97841 0.00154 
8 Gautier sound.wav 270/kb 0.96887 0.00083 
9 Lion sound.wav 221/kb 0.99856 −0.00158 
10 Ref.[76]  395/kb - 0.02021 
11 Ref.[77]  -  0.00311 
12 Ref.[78]  228/kb 0.815998 − 0.00938 
13 Ref.[79]   − 0.00029 
14 Ref.[72]   0.98153 0.000991 
15 Ref.[80]  − − 0.000852 

 
3.5.4 Information of Entropy 

 The suggested encryption scheme is evaluated by information entropy. Theoretically, the ideal 

value of the corresponding audio scheme is 16. Consequently, a cryptosystem is considered 

secure if the information entropy value of the encrypted file is close to the ideal value. Table 

24 summarizes the results of an information entropy analysis for the suggested cryptosystem. 

The suggested scheme information value is significantly closer to the ideal value for every 

encrypted audio data, resulting in the optimal level of uncertainty in the encrypted audio data. 

According to Table 24, the entropy values of various audio files ensure that the presented 

scheme can withstand an entropy attack, as shown in Table 24.  
Table 24. Entropy analysis 

S.no Audio samples Size/KB  Plain Audio  Cipher audio  
1 Alarm sound.wav 186/kb 2.3184 4.1622 
2 Dog barking sound.wav 279/kb 1.6067 4.1045 
3 Explosion sound.wav 533/kb 2.6766 5.6153 
4 Male sound.wav 345/kb 1.5477 4.5071 
5 Femalesound.wav 23.3/kb 1.9385 4.7672 
6 Baby sound.wav 279/kb 2.3182 4.1622 
7 Cartoon sound.wav 488/kb 2.6223 4.7075 
8 Gautier sound.wav 270/kb 2.1482 5.3487 
9 Lion sound.wav 221/kb 2.3132 4.7688 
10 Ref.[76]  395/kb 2.2661 5.0058 
11 Ref.[77]  − − 7.9371 
12 Ref.[78]  228/kb − − 

 
3.5.5 Differential analysis 

An algorithm is deemed well organized and protected against differential attacks if the score 

of NPCR and UACI is nearly equal to 100 and 33.3333, respectively. We inspect the proposed 
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algorithm over both analyses and observe that the suggested encryption is well-secured. The 

simulation score of both NPCR and UACI lies in the optimum range, as shown in Table 25. It 

reveals the proposed SPN structure of the encryption algorithm's significant reliance on the 

plan audio data and suggests that it may be more robust against differential attacks. 

Table 25. Differential analysis 
S.no Audio samples Size/KB  Npcr UACI 

1 Alarm sound.wav 186/kb 99.999721 33.341312 
2 Dog barking sound.wav 279/kb 99.999823 33.442345 
3 Explosion sound.wav 533/kb 99.999752 33.141256 
4 Male sound.wav 345/kb 99.999602 33.341534 
5 Femalesound.wav 23.3/kb 99.999501 33.445467 
6 Baby sound.wav 279/kb 99.999823 33.840334 
7 Cartoon sound.wav 488/kb 99.999816 33.840634 
8 Gautier sound.wav 270/kb 99.999852 33.278134 
9 Lion sound.wav 221/kb 99.999521 33.449134 
10 Ref. [76] 395/kb 99.999506 − 
11 Ref. [77]  − 99.531614 25.798423 
12 Ref. [78]   228/kb 99.734812 33.687823 
13 Ref. [79]  − 99.99950 33.559915 
14 Ref. [72]  −        99.9997 33.3421 
15 Ref. [80]  − 99.9977 − 
16 Ref. [81]  − 57.23 − 
17 Ref. [82]  −     99.978 32.02 

 
3.5.6 Peak signal-to-noise ratio 

We investigate the proposed algorithm by PSNR analysis to measure data quality. The peak 

signal-to-noise ratio (PSNR) is a decibel(dB) unite metric that quantifies the ratio between the 

plan and encrypted audio data, dividing by the highest power of a signal to the power of a noisy 

signal value. Furthermore, the high value of PSNR underscores the effectiveness of the 

encryption scheme. The PSNR is calculated using the following mathematical expression. 

 

𝑃𝑆𝑁𝑅 = 20 × 𝑙𝑜𝑔 10 [
255

√𝑀𝑆𝐸
]                                              (3.17) 

where Mean square error (MSE) is calculated via the following mathematical form  

   

𝑀𝑆𝐸 =
1

𝑀×𝑁
∑ ∑ [𝐷(𝑚, 𝑛) − 𝐸(𝑚, 𝑛)]𝑁

𝑛
𝑀
𝑚

2                                (3.18) 

Where 𝐷(𝑚, 𝑛) Indicate the plan audio data while 𝐸(𝑚, 𝑛) is corresponding encrypted audio 

data. Table 26 indicates the performance analysis of PSNR and MSE of the suggested 

encryption algorithm. From Table 26, we can observe that the higher value of PSNR and lower 
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value of MSE generally underscore the small amount of data retained in decrypted data. 

Moreover, hence the proposed algorithm is scrutinized against robustness analysis. 

Table 26. Peak signal-to-noise ratio analysis 
S.no Audio samples 𝑆𝑖𝑧𝑒/𝐾𝐵 𝑃𝑆𝑁𝑅 𝑀𝑆𝐸  
1 Alarm sound.wav 186/kb 10.35740 3.26444 × 104 
2 Dog barking sound.wav 279/kb 10.62277 3.26475 × 104 
3 Explosion sound.wav 533/kb 10.22475 3.26379 × 104 
4 Male sound.wav 345/kb 10.76211 3.26511 × 104 
5 Femalesound.wav 23.3/kb 10.75679 3.26707 × 104 
6 Baby sound.wav 279/kb 10.57626 3.26446 × 104 
7 Cartoon sound.wav 488/kb 10.71392 3.26473 × 104 
8 Gutier sound.wav 270/kb 10.77144 3.26493 × 104 
9 Lion sound.wav 221/kb 10.56982 3.26391 × 104 
10 Ref.[76] 395/kb 4.2145 − 
11 Ref.[77]  − 10.7163 37.4487 
12 Ref.[78]   228/kb − − 
13 Ref.[79]  − +4.49 − 
14 Ref.[81] − 57.30 0.1211 

 

3.6 Asymptotic Complexity and Running Speed Analysis 

This section theoretically analyzes the proposed encryption over asymptotic complexity. The 

asymptotic complexity summarizes the growth of the execution time with increasing input data 

size. It divulges the mathematical dept of the algorithm, which is independent of hardware 

implementation. The algorithm begins with generating random using the arithmetic operation 

of the elliptic curve. For this step, we used the search method for generating an elliptic curve 

point, which requires O(𝑛2),  operation that is the most computationally costly in the scheme. 

Next, the algorithm uses the random numbers and permutes the plain data, which requires 

O(𝑁 ×𝑀) operation, where 𝑁 ×𝑀 is the plain data block size. In the substitution step, the 

algorithm divides the permuted block data into three subblocks in constant time O(1). Then 

substitute each subblock with a different S-box since the substitution step performs in constant 

time O(1); therefore, for 𝑁 ×𝑀 block size, the step also requires O(𝑁 ×𝑀) operations. So, 

for 𝑛 ≥ 𝑁 ×𝑀 the whole algorithm performs O(𝑛2) operations that are polynomial time. The 

running time of the entire encryption algorithm is measured in kb/second. We encrypt the 

different sizes of audio.wav, and the average time of encryption and decryption are  

0.00334kb/sec and 0.000539 kb/sec, respectively, as shown in Table 27. Table 27 illustrates 

that the overall encryption steps have fewer time requirements than [76] [78]. As a result, the 

encryption technique is efficient and can be used for real-world communications. 
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Table 27. Execution time of the proposed algorithm 
S.no Audio samples Size/KB  Encryption 

time/sec 
1 Alarm sound.wav 186/kb 0.00221/sec 
2 Dog barking sound.wav 279/kb 0.00334/sec 
3 Explosion sound.wav 533/kb 1.07653/sec 
4 Male sound.wav 345/kb 0.00734/sec 
5 Femalesound.wav 23.3/kb 0.000539/sec 
6 Baby sound.wav 279/kb 0.00334/sec 
7 Cartoon sound.wav 488/kb 1.020126/sec 
8 Gutier sound.wav 270/kb 0.00234/sec 
9 Lion sound.wav 221/kb 0.00311/sec 
10 Ref. [76]  395/kb 0.004/sec 
11 Ref. [77]  − − 
12 Ref. [78]   228/kb 0.281/sec 
13 Ref. [79]  0.0026/sec 

 

3.7 National Institute of Standard and Technology (NIST) Statistical Analysis 

In this subsection of security analysis, we utilize NIST statistical analysis to evaluate the 

Modell elliptic curve-based pseud random number sequences (MEC-PRNS) and investigate 

whether the suggested scheme is suitable for the cryptographic application. Since NIST tests 

work on binary data, convert the generated sequence to binary to ensure the randomness of the 

proposed algorithm. There are sixteen (16) tests in the NIST testing suite that are usually 

performed to examine the randomness of data, as shown in Table 28. From the table, we can 

notice that MEC-PRNS succeeded in the complete randomness tests of NIST, proving that the 

MEC-PRNS are highly random and sufficient for audio encryption. 
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Table 28. NIST randomness analysis for cryptographic applications 

 

 

 

 

 

 

S.no Test Name  P-Value  Result  
1 Frequency-Test (single-bit) 0.93432071088934  Success  
2 Frequency-Test(block) 0.31475830512155 Success  
3 Run Test 0.41535210874214 Success  
4 Longest Run of 1’𝑠 in a Block 0.42347212437727 Success  
5 Rank test of Binary matrix  0.65746634332441 Success  
6 Discrete Fourier Transform (DFT) Spectral test 0.13758358862813 Success  
7 Matching Test of Non-Overlapping Template 0.21767757131905 Success  
8 Matching Overlapping Template 0.16716577128047 Success  
9 Maurer's Universal Statistical test (MUST) -1.0 Not 

Success  
10 Linear Complexity (LC) Test 0.54215767242552 Success  
11 Approximate Entropy Test (AET) 0.04554663062186 Success  
12 Forward Cumulative Sums (FCS) test  0.98745143218243 Success  
13 Reverse Cumulative Sums (RCS) test 0.98678134070164 Success  
14 Serial test (ST) 0.12491742232234 Success 
15 Random Excursions Test 

State  
 

 Chai-squared value 𝑃 −value 
 

Result 

-4 4.123469951021149 0.5836458638476241 Success 
-3 1.744271338713358 0.8736591835003546 Success 
-2 4.844693165257315 0.4141356734512387 Success 
-1 5.240705127776518 0.4012356714687765 Success 
1 3.563295336645158 0.6475737764612386 Success 
2 4.076914662345544 0.5476836646123396 Success 
3 5.623125337746047 0.3761126757224412 Success 
4 3.5459267601847782 0.6234512475488964 Success 

16 Random excursions variant test 
State                 No. of Counts  𝑃 −value   Result  
1.0 334 0.1237659854642848 Success  
2.0 353 0.2834649944849434 Success 
3.0 335 0.2347374842019319 Success 
4.0 325 0.4546373846476437 Success 
5.0 305 0.3453848434811987 Success 
6.0 298 0.3645367465353636 Success 
-1.0 251 0.4763544688436878 Success 
-2.0 248 0.1234687473534484 Success 
-3.0 253 0.7464364454193768 Success 
-4.0 276 0.1236294849734841 Success 
-5.0 247 0.5378486462354648 Success 
-6.0 253 0.6473543878434384 Success 
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Chapter 4 

Hyper Elliptic Curve for Efficient Digital Image 
Watermarking 

 

The availability of multimedia data across the world wide web has affected unintended 

individuals in distributing information, including images, audio, and videos, information 

illegally. Problems with copyright protection and ownership authentication are 

highly prevalent, so to counter these issues, it is also required to strengthen the secured strategy. 

The unauthorized distribution of multimedia data is shown in Figure 20. As a result, an 

authorized, highly secured strategy is required to identify these unlawful users to end illegal 

data distribution. In addition, digital watermarking provides anti-tampering, access control, 

ownership verification, non-repudiation, indexing, memory savings, and requirements of 

bandwidth limitations. There are some fundamental principles to applying Watermarks 

digitally in the images: (1) Maintaining the quality of the host's image is essential; (2) inside 

the host image with a watermark, and the watermark is kept hidden; (3) keeping it protected 

from unauthorized users, the watermark should be irregular and invisible. Moreover, the 

classification of digital watermarking according to their domain is shown in Figure 21 [83], 

[84]. 

In [85], hybrid multiple watermarking(HMW) is present in the transform domain. In the 

proposed work, the author used the combination of discrete wavelet transformation (DWT), 

singular value decomposition (SVD) and discrete cosine transformation (DCT)  instead of 

individuals domain to improve the robustness and quality of the watermark image. However, 

it's possible that it somewhat increased computational complexity, which has to be looked into 

independently. A reversible watermarking approach is developed in [86], for healthcare 

applications. The suggested approach utilized the technique of pixel-to-block (PTB) for the 

generation of a cover image instead of the conventional procedure.  

Considering the above-mentioned copyright protection and ownership authentication 

problems, this chapter proposed an efficient digital watermarking based on the hyperelliptic 

curve, which is the generalisation of an elliptic curve. The suggested technique is key-

dependent, and only the main owner of the image may authenticate his ownership using his 

secret key. The suggested approach utilizes random sequences generated using the HEC and 

distributes the watermark image data randomly. On the one hand, the random distribution of 
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the watermark image does not influence the quality of the host image; on the other hand, this 

technique strengthens the security of the proposed system since only the authorised owner may 

replicate the watermark image. Furthermore, the chapter is concluded with the analytical 

findings of the suggested system and its comparison with the existing excellent literature.     

 
Figure 20.  Unauthorized distribution of video data 

 

 

 
Figure 21. Watermarking embedding techniques with Domain-specific categorization 

 

4.1 Fundamentals  of Hyper Elliptic Curve 

As part of this section, we looked at a few basic definitions of HEC over a finite field and their 

characteristics employed in the proposed watermarking technique. A hyperelliptic curve  𝒞 of 

genus 𝒢(𝒢 ≥ 1) defined over the finite field 𝒦 = ℱ𝑞 as defined as[87]: 

𝒞 = 𝒴2 +ℋ(𝒳)𝒴 = ℱ(𝒳) 𝑖𝑛 𝒦[𝒳,𝒴]                                              (4.1) 
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Where ℋ(𝒳) and ℱ(𝒳)  ∈ 𝒦[𝒳,𝒴]  is a polynomial of degree at most 𝒢 and 2𝒢 + 1 

respectively, and there are no such points (𝒳,𝒴) on closer filed �̅� × �̅�, which satisfies the 

following equations.  

𝒴2 +ℋ(𝒳)𝒴 = ℱ(𝒳)                                                      (4.2) 

2𝒴 +ℋ(𝒳) = 0                                                             (4.3) 

ℋ(𝒳)́ − ℱ́(𝑥) = 0                                                           (4.4) 

The point (𝒳,𝒴)  ∈  �̅� × �̅�  which satisfies the equations from eq.(4.2-4.4) is called a singular 

point. A hyperelliptic curve has no singular point. 

4.1.1 Opposite and Special Point  

 Consider the 𝑝ℎ𝑒𝑐 = (𝑥, 𝑦) be the HEC point,  then the opposite point of 𝑝ℎ𝑒𝑐 = (𝑥,−𝒴 −

ℋ(𝑥)), while the special point on HEC is Օ called the point of infinity.   

4.1.2 Arithmetic of Hyper Elliptic Curve  

The points on an elliptic curve with a point of infinity {∞} can be grouped to form a group. 

However, for hyperelliptic curves, taking the points on the curve 𝒞 and adding the points of 

infinity, we will not be able to form a group. To form a group of points in the hyperelliptic 

curve, we must take the sum of the points as group elements and then add them as follows: 

(𝒫1 + 𝒫2) ⊕ (𝒬1 + 𝒬2) = (ℛ1 + ℛ2)                                       (4.5) 

While symbols + and ⊕ do not represent addition and XOR operations, respectively, the xor 

operation represents the mathematical operation of the group. 

4.1.3 Divisor  

In cryptography, the hyperelliptic curve computes groups that are subgroups of the random 

group 𝒟 resulting from the set of points on the curve. If the curve 𝒞 is the HEC of genus 𝒢 over 

the finite field ℱ𝑞. The elements of 𝒟 are known as divisors. The divisor 𝒟 is defined by the 

following mathematical expression [87] . 

 

𝒟 = ∑𝓂𝓅𝒫      𝓂𝓅 ∈ ℱ𝑞 , 𝒫 ∈ 𝒞                                       (4.6) 

  

Where is 𝒟 is the reduced divisor and 𝓂𝓅 , 𝒫 are the number of points and points on the curve 

𝒞. 

4.1.4 Group Divisors  

The group divisors 𝑑𝑖𝑣𝑐
0 of hyperelliptic curve 𝐶of genius 𝒢  and degree 0 are Computed by 

the following mathematical formula. 
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𝑑𝑖𝑣𝑐
0 = ∑ 𝓂𝓅𝒫 𝒫∈𝒞 |𝓂𝓅 ∈ ℱ𝑞 ,𝓂𝓅 = 0 for most of the points on the curve 𝒫 ∈ 𝒞        (4.7) 

4.1.5 Divisor class group 

Each divisor class in the divisor class group can be represented as: 

𝔻 = ∑ 𝒫𝑖 − 𝓇𝒫∞
𝓇
𝑖=1 , 𝒫𝑖 ∈ 𝒞 ∪ 𝒫∞, 𝓇 ≤  𝒢                                        (4.8) 

4.1.6 Jacobian of Hyper Elliptic Curve  

The Jacobian of the curve 𝒞  defined over the finite field ℱ𝑞 is denoted by 𝒥𝑐(ℱ𝑞). The 

mathematical formulation of the Jacobian of the curve 𝒞 is defined as: 

  𝒥𝑐(ℱ𝑞) =
𝑑𝑖𝑣𝑐

0

𝒫
⁄                                                            (4.9) 

Where every element of the 𝒥𝑐(ℱ𝑞), can be represented uniquely by divisors 𝒟. Hence if 

𝒟1, 𝒟1 ∈ 𝑑𝑖𝑣𝑐
0 are equivalent if   𝒟1 − 𝒟1 ∈ 𝒫. There is precisely one divisor in every 

equivalence class called the reduced divisor. The group law is formed by the reduced divisor, 

represented by Mumford representation [88]. 

4.1.7 Mumford Representation 

Mumford representation is the simplest representation of the Cartesian points in polynomial 

divisor form. The divisor can be represented by a pair of polynomials as 𝓊(𝑥),𝓋(𝑥). Although 

both polynomials, i.e., 𝓊(𝑥),𝓋(𝑥) ∈ ℱ𝑞 , and must satisfy the following condition. 

 𝓊(𝑥) is monic polynomial                                                   (4.10)  

deg (𝓋(𝑥)) < deg ( 𝓊(𝑥) ) ≤  𝒢                                         (4.11) 

𝓊(𝑥)|𝓋(𝑥)2 +𝓋(𝑥) ℋ(𝒳) − ℱ(𝒳)                                          (4.12) 

The divisor class polynomial 𝓊(𝑥) is represented by the following mathematical equation. 

𝓊(𝑥) = ∏ 𝓍 − 𝓍𝑖
𝓇
𝑖=1                                                        (4.13) 

 Where the divisor class  𝔻 is shown in equation (4.8). 

4.1.8  Cantor's Algorithm  

In the jacobine of a hyperelliptic curve, i.e.,  𝒥𝑐(ℱ𝑞)The cantor's algorithm presents the formula 

for executing arithmetic group operations such as divisor addition and doubling [88]. The 

cantor's algorithm on the divisor is performed in a two-step. (1). Determined the reduced 

divisor  𝒟′ = 𝑑𝑖𝑣(𝓊′, 𝓋 ′) such that 𝒟 = 𝒟1 + 𝒟2 = 𝑑𝑖𝑣(𝓊1, 𝓋1) + 𝑑𝑖𝑣(𝓊2, 𝓋2) in the group 

of jacobine 𝒥𝑐(ℱ𝑞). (2). Find the semi-reduced divisor 𝒟′ = 𝑑𝑖𝑣(𝓊′, 𝓋 ′) to an equivalent 𝒟 =

𝑑𝑖𝑣(𝓊,𝓋). Table 29 briefly explains the algorithm for the divisors' adding and doubling [89]. 
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Table 29. Algorithm for Adding and Doubling  the divisors 
Algorithm for Adding two divisors 

Input: 𝒟1 = 𝑑𝑖𝑣 (𝓊1𝑝 , 𝓋1𝑝) , 𝒟2 = 𝑑𝑖𝑣 (𝓊2𝑞 , 𝓋2𝑞) , 𝒞 = 𝒴
2 +ℋ(𝒳)𝒴 = ℱ(𝒳). 

Output: 𝒟3 = 𝒟1+𝒟2 = 𝑑𝑖𝑣(𝓊3𝑟 , 𝓋3𝑟).   
Step 1: Compute the gcd using the Extended Euclidean Algorithm(EEA). 
𝔻 = ℊ𝑐𝑑(𝓊1𝑝 , 𝓊2𝑞 , 𝓋1𝑝 +𝓋1𝑝 +ℋ) = 𝒶1𝓊1𝑝 + 𝒶2𝓊2𝑞 + 𝒶3(𝓋1𝑝 +𝓋1𝑝 +ℋ). 
Step 2: Calculate  𝑈′ Using the below expression. 
𝑈′ = 𝓊1𝑝𝓊2𝑞𝔻

−1. 
Step 3: Calculate 
 [𝒶1𝓊1𝑝𝓊2𝑞 + 𝒶2𝓊2𝑞𝓊1𝑝 + 𝒶3 (𝓋1𝑝𝓋2𝑞 + ℱ)𝔻

−1]𝑚𝑜𝑑 𝑈′ . 
Step 4: Initialize 𝑗 = 0 
  𝑊ℎ𝑖𝑙𝑒  deg ( 𝑈′𝑗) > 𝒢 do 
  𝑗 = 𝑗 + 1; 

   𝑈′𝑗 =
ℱ − 𝑣′𝑗−1 ℋ(𝑣

′
𝑗−1 

2)

𝑈′𝑗−1
 

𝑣′𝑗 = (−ℋ − 𝑣′𝑗−1)𝑚𝑜𝑑 𝑈
′
𝑗 

     𝑒𝑛𝑑 
 Output:  (𝓊3𝑟 , 𝓋3𝑟) = (𝑈

′
𝑗
, 𝑣′𝑗). 

Algorithm for divisors doubling 
Step 1: 𝔻 = ℊ𝑐𝑑(𝑈, 2𝑉 +ℋ) = 𝒶1𝑈 + 𝒶3(2𝑣 +ℋ) 

Step 2: 𝑈′ = (𝑈2 𝔻−2) 
Step 3: 𝑉′ = [𝒶1𝑈𝑉 + 𝒶3(𝑉2ℱ)𝔻−1] 𝑚𝑜𝑑 𝑈′. 
 

4.2 Proposed  Colour Image Watermarking Technique 

In this section, we prosed a new digital colour image watermarking technique based on the 

mathematical operation of HEC. Initially, the uniform permutation process uses hyperelliptic 

curve pseudo-random number generation (HEC-PRNG); the brief watermarking image 

description is given in subsection 4.3.1. After that, the embedding and extraction of the host 

image using the most significant bit(MSB) and the least significant bit(LSB) and their inverse 

process are given in subsections 4.3.3 and 4.3.4. 

4.2.1 Proposed Watermarking Image Technique 

The suggested colour watermark image technique works in the following steps. 

Step 1: Load the Host image 𝐻 of size 𝓂×𝓃 × 3. 

Step 2: Generate the points on HEC 𝒞 = 𝒴2 +ℋ(𝒳)𝒴 = ℱ(𝒳) 𝑖𝑛 𝒦[𝒳,𝒴] of 𝒢 =2, Where 

ℱ(𝒳), be defined as in eq (14) with the condition in eq(2-4) must be satisfied. 

ℱ(𝒳) = 𝓍5 + 𝑎1𝓍
3 + 𝑎2𝓍

2 + 𝑎3𝓍 + 𝑎4                                           (4.14) 

Step 3: Next, the generated points on HEC are permuted to their opposite point. The 

mathematical formulation of the HEC point to their opposite point is given in equation  (4.15). 

ℎ𝑒𝑐: ℱ𝑞 × ℱ𝑞 → ℱ𝑞 × ℱ𝑞 
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ℎ𝑒𝑐(𝑥𝑖 , 𝑦𝑗) = (𝑥𝑖′ , 𝑦𝑗′) 

(𝑥𝑖′ , 𝑦𝑗′) = (𝑥𝑖, −𝑦𝑗 −ℋ(𝑥)) 

ℎ𝑒𝑐(𝑥𝑖′ , 𝑦𝑗′) = 𝑦𝑗′                                                          (4.15)  

While (𝑥𝑖′ , 𝑦𝑗′) are opposite points of  HEC. After that, pick the coordinate 𝑦𝑗′ , of any 

dimension and perform the row and column-wise cyclic permutation(RCWCP) on the host 

image. The detailed procedure of RCWCP is given in subsection 4.3.2  

Step 4: Load the watermark-Logo image 𝐻′, of dimension 𝑢 × 𝑣 × 3 and convert the 

watermark image 𝐻′ Into MSB and LSB, then MSB converts to LSB. 

Step 5: Dived the permuted host image of dimension  𝓂×𝓃 × 3 into the subblock of 

dimension 𝑢 × 𝑣 × 3. 

Step 6: Embedded the LSB of the watermark-Logo image into the MSB of the sub-block of 

the permuted host image of dimension 𝑢 × 𝑣 × 3. The detailed procedure for the embedding 

and extracting process is given in subsections 4.3.3 and 4.3.4 

Step 7: Execute the row and column-wise cyclic permutation in reverse order to get the 

watermarked image 𝕎.   

Step 8: To extract the watermark logo from the watermarked image, perform the steps in 

reverse order to get the extracted watermark-Logo.  

4.2.2 Row and Column Wise Cyclic Shift Permutation  

The pixels in a host image 𝐻 are listed in 𝓂 rows and 𝓃 columns. For the row-wise 

permutation(RWCP), the term 𝑦1 ∈ 𝑦𝑗′  was chosen from a sequence generated by HEC to 

permute the pixels by the row-wise cyclic shift operation. For each row, a new random term 

was chosen from 𝑦𝑗′  to permute every row by RWCP of the watermark image. However, there 

are no restrictions on the initial term 𝑦1; choose any term from the sequence and iterate the 

process on the watermark image of 𝓂 rows. For example, 𝑦1 ∈ 𝑦𝑗′ = [2,1, 2, 1… ,… ,𝓂], and 

let 𝐻 be an image of 𝓂 rows, the first row pixels  ℛ1𝐶 ∈ 𝐻 permute first-row cyclic shift to 

the right or left direction by 2. Moreover, receivers should perform cyclic shift operations right 

to left if senders perform them left to right. Otherwise, the receiver should not get a plan image 

permuted by the sender row-wise. The mathematical construction is given below in eq (4.16). 

  
𝑦𝑗′ = [2 1 … , … ,𝓂]  
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[
 
 
 
 
ℛ1𝐶1 … ⋯ ℛ1𝐶𝑛
ℛ2𝐶1 … … ℛ2𝐶𝓃
… … … …
… … … …

ℛ𝓂𝐶1 … … ℛ𝓂𝐶𝓃]
 
 
 
 

→

[
 
 
 
 
ℛ1𝐶𝓃−1 ℛ1𝐶𝓃 … ⋯ ℛ1𝐶𝓃−2
ℛ1𝐶𝓃−1  ℛ2𝐶1 … … ℛ2𝐶𝓃−1
… ,…… … … …
… ,…… … … …

ℛ𝓂𝐶1 , …… . … … ℛ𝓂𝐶𝓃 ]
 
 
 
 

                          (4.16) 

 
Like the RWCP, the column-wise cyclic permutation (CWCP) is executed by 𝓃 columns by 

choosing any random element from 𝑦𝑗′ ,  and permuting the pixels of a column by cyclic shift 

operation from right to left or left to right direction. For example, 𝑦1 ∈ 𝑦𝑗′ =

[2,1, 2, 1… ,… ,𝓃], and let 𝐻 be an image of 𝓃 columns. Choose the first column  𝐶1𝑅 ∈ 𝐻 

and execute the cyclic shift operation on the row by 2 from the left /right direction. The first-

row cyclic shift to the right or left direction by 2. Furthermore, cyclic shift operations should 

be performed right to the left by receivers if they are performed left to right by senders. 

Otherwise, the receiver should not receive a plan image that the sender has permuted cyclic 

shift operation column-wise. The mathematical description of CWCP is given below in eq 

(4.17). 

 
𝑦𝑗′ = [2 1 … ,… ,𝓂] 

 

                               

[
 
 
 
 
𝐶1𝑟1 … ⋯ 𝐶𝓃𝑟1
𝐶1𝑟2 … … 𝐶𝓃𝑟2
… … … …
… … … …
𝐶1𝑟𝓂 … … 𝐶𝓃𝑟𝑚]

 
 
 
 

→

[
 
 
 
 
𝐶1𝑟𝓂−1  𝐶2𝑟𝓂 … ⋯ ℛ1𝐶𝑘−2
𝐶1𝑟𝓂     𝐶2𝑟1 … … ℛ2𝐶𝑘−1
… ,…… … … …
… ,…… … … …

𝐶1𝑟𝓂−2 , 𝐶2𝑟𝓂−1 . … … ℛ𝓂𝐶𝑘 ]
 
 
 
 

           (4.17)  

 
 

4.2.3  Watermarking Embadding  

The processes for embedding a watermark image are as follows, given a watermark image 𝐻 

of size 𝓂×𝓃 × 3 and the host image 𝐻′ , of dimension 𝑢 × 𝑣 × 3. Initially, the watermark 

image 𝐻 is permuted into 𝐻1 using HEC-PRNG to vanish the adjacent pixel correlation, and 

the data is uniformly distributed. Next, dived the watermark permuted 𝐻1 image into the non-

overlapping 𝑢𝑖 128⁄ × 𝑣𝑖 128⁄   sub-blocks of dimension 𝑢 × 𝑣 × 3. After that, 𝑢1 128⁄ ×

𝑣1 128⁄  of dimension 𝑢 × 𝑣 × 3 say 𝐻2 and the host image converts to the MSB of all three 

layers, namely 𝐻𝑅2, 𝐻𝐺2, 𝐻𝐵2 𝐻′𝑅, 𝐻′𝐺, 𝐻′𝐵,  respectively, then convert the MSB of the host 

image into LSB and add them with the corresponding layer of each image to embed the 

watermark. The mathematical expression for the embedding procedure is given below. 

𝑀𝑆𝐵(𝐻2) = 𝑚𝑠𝑏(𝐻
𝑅
2) 
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 = 𝑚𝑠𝑏(𝐻𝐺2) 
 

= 𝑚𝑠𝑏(𝐻𝐵2).                                                   (4.18) 
 

       𝐿𝑆𝐵(𝐻′) = 𝑙𝑠𝑏(𝑚𝑠𝑏(𝐻′𝑅) 
 

= 𝑙𝑠𝑏(𝑚𝑠𝑏(𝐻′
𝐺
), 

 
= 𝑙𝑠𝑏(𝑚𝑠𝑏(𝐻′

𝐵
).                                           (4.19) 

 
                              𝐸𝑀𝑏𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑀𝑆𝐵(𝐻2) + 𝐿𝑆𝐵(𝐻′).                                            (4.20) 
 
 

4.2.4  Watermarking Extraction   

 The extraction process of watermarked image is relatively the same as the watermarked 

embedding. Consider the watermarked image 𝕎 and the symmetric key generated by HEC are 

received. The following steps involved in watermarked extraction are as follows.  

Initially, load the watermarked image 𝕎 and permute RWCP as a key to extract the permuted 

image. Next, divide this permuted image into subblocks 𝑢𝑖 128⁄ × 𝑣𝑖 128⁄  𝒜 of dimension  

𝑢 × 𝑣 × 3. Then, extract the MSB from 𝒜 and convert it to LSB; the LSB convert to MSB and 

subtracted from the subblock to get the extracted MSB watermark-logo 𝐻′. The following 

mathematical expressions compute the extraction of the watermark logo. 

 

𝒜 1
𝑟 = 𝑚𝑠𝑏(𝑙𝑠𝑏(𝑚𝑠𝑏(𝒜𝑟 )) 

𝒜 1
𝑔
= 𝑚𝑠𝑏(𝑙𝑠𝑏(𝑚𝑠𝑏(𝒜𝑔 )) 

𝒜 1
𝑏 = 𝑚𝑠𝑏(𝑙𝑠𝑏(𝑚𝑠𝑏(𝒜𝑏)) 

𝐻𝑟′ = 𝑚𝑠𝑏(𝒜𝑟 −𝒜 1
𝑟) 

𝐻𝑔′ = 𝑚𝑠𝑏(𝒜𝑔 −𝒜 1
𝑔
) 

                                                         𝐻𝑏′ = 𝑚𝑠𝑏(𝒜𝑏 −𝒜 1
𝑏) 

𝐻′ = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐻𝑟
′
, 𝐻𝑔

′
, 𝐻𝑏

′
).                                      (4.21) 

Where,  𝐻𝑟′, 𝐻𝑔′, 𝐻𝑏′, the extracted MSB of the watermark logo. The flow chart of the 

proposed watermarking technique is shown in Figure 22.  
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Figure 22. Flow Chart of The Proposed Watermarking Technique 

 

4.3 Evaluation Metrics and Simulation Results of the Proposed Technique 

To examine the suggested scheme, the watermarking approach is simulated by Matlab R2021a. 

The colour images of pepper, baboon, and Lena, of dimension 512 × 512 and the watermark 

colour image Qau monogram of dimension 128 × 128, data set used in the section of 

experimental analysis.  

Figure 23. Data Set used in the Proposed algorithm 

4.3.1 Quality and Effectiveness Metrics  

The proposed digital colour watermarking technique is evaluated by the effectiveness and the 

quality, such as mean square error (MSE), peak-to-signal noise ratio(PSNR), and structurally 

similarity index(SSIM), which we have already explained in chapter 2.  

4.3.2 Structural Similarity Index 

The proposed watermarking scheme is evaluated by the structural similarity index(SSIM) to 

examine the quality of the original and recovered image difference. The obtained value of 

SSIM of the proposed watermarking scheme is nearly close to 1. The calculated difference 

between the original and recovered watermark image is 1, indicating that the watermark has 

not been altered in the public channel. 
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4.3.3 Mean Squared Error 

It evaluates the quality of the image and validates the average squared difference between the 

original and recovered host image [90][91][92][93][94]. The mathematical representation of 

MSE is defined as: 

ℳ𝒮𝒞 = ∑ ∑
[𝑂(𝑖, 𝑗) − |𝑅(𝑖, 𝑗)|]2

𝑀 ×𝑁

𝑀−1

𝑗=0

𝑁−1

𝑖=0

                                        (4.22) 

 Where 𝑂(𝑖, 𝑗), and 𝑅(𝑖, 𝑗) represent the original and recovered host image of dimension 

𝑀 ×𝑁. We examined our proposed watermarking technique by ℳ𝒮𝒞 analysis for the baboon 

and peepers images of dimension 512 × 512. The computed value of  ℳ𝒮𝒞 of baboon and 

peepers images is 0, which is very low. Similarly, the numerical value of MSE of the original 

images of baboon and peppers and their watermark comes to 0.0000745, which is very low. 

Furthermore, the MSE value of the watermark and the extracted watermark is less, ensuring 

that the proposed algorithm shows the robustness of the watermark. 

4.3.4 Peak Signal-to-Noise Ratio     

We examined the proposed algorithm by the peak signal-to-noise ratio(PSNR). The theoretical 

and mathematical description of PSNR matrices is given in chapter 2. The PSNR value of the 

original host and the recovered image is 97.24430, which ensures that the proposed algorithm 

show robustness against PSNR analysis.    

4.4 Experimental Analysis of Watermark Image 

Watermark image is unprotected from various kinds of attacks. These attacks are categorised 

into Geometric or Transform, Noising, Roubstaness and Counterfeiting attacks.  In a geometric 

attack, the attacker can modify the geometry of the image by altering its rotation, scale, or 

translation. In the category of the robustness of the watermark, the attacker usually removes 

the watermark logo through JPEG compression and image cropping. In a noise watermark 

attack, add some different types of noise to the watermark. In a Counterfeiting attack, the active 

attacker captures the original image, and instead of it, the attacker forwards the fake/forged 

image. 

4.4.1 Salt and Pepper Attack 

Salt and Pepper attacks were calculated based on their impact on recovered image quality [95]. 

We added salt and pepper noise with different ratios of the proposed algorithms and extracted 

the watermark. From the salt and pepper noise attacks, we observe that, with the increase of 

noise in the watermark image, the PSNR value decrease and vice versa, as shown in Table 30. 
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The illustration of a baboon, Lena, and pepper of watermark image of dimension 512 × 512 

with salt and pepper noise is shown in Figure 24, with extracted watermark Qau monogram.   

4.4.2   Rotation Attack 

We perform the rotation attacks on the watermark images of the baboon, Lena, and pepper. 

There are two approaches to fulfilling the rotation attacks; the first one rotates both the original 

and watermark image by 10°, 15°, 30° and the second one rotates the watermark image by 

10°, 15°, 30° Clockwise and then anti-clockwise. The SSIM value of the watermarked image 

varies from 1 to 0.341320 for the rotation attack 10°. The illustration of the rotation attack of 

the baboon, Lena and pepper using the second approach is shown in figure 25. We observe 

from the rotation attack that the proposed watermarking techniques are robust against rotation 

attacks 

Figure 24. (a-d)Salt and Pepper Noise with different ratios (e-h)Crossponding their extracted 

watermark logo. 

Table 30. Salt and peppers analysis on watermark image 
Attacks ratio PSNR values Observation  
Images Pepper Lena Baboon From the PNSR results, we observe that 

without the salt and pepper noise, the value 
of PSNR increased, while when the ratio 
Noise increased, the PSNR value 
decreased.    

Without Noise  24.5137 24.6138 24.6147 
0.1 Noise 21.2345 21.7745 21.7325 
0.2 Noise 16.4675 16.2375 16.6685 
0.3 Noise 15.2536 15.6536 15.4536 
0.4 Noise 14.2345 14.4245 14.7464 

 

. 
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Figure 25. (a-c) Rotation attacks with different angles(d-f) Crossponding extracted watermark logo 

4.4.3 Cropping Attack 

We evaluate the proposed watermarking approach by cropping attacks. We crop the watermark 

image peppers by 25% from the upper left and right, 25% from the bottom left and right, and 

then extract the watermark logo. The difference in SSIM between the cropped image and the 

original host watermarked image is 0.21346. The illustration of cropping attacks is shown in 

Figure 26. Figure 26 shows that the suggested watermarking scheme is robust against cropping 

attacks.  

4.4.4 Compression Attack 

When a watermarked image isn't already in JPEG format, the attacker can easily convert it into 

one by reducing the quality factor of JPEG compression until the image loses the characteristics 

he wants [95]. Moreover, it is possible for the attacker to resave the watermarked image as a 

JPEG, even if it is already a JPEG with a lower quality factor. Due to the standard and easy 

nature of JPEG attacks, this robustness assessment emphasises a robust response to JPEG 

compression. We implement the compression attack on the watermark image. The image is 

compressed to the size of  (256 ∗  256). Moreover, the difference in SSIM value between the 

cropped image and the original host watermarked image is 0.89346, which ensures that the 

watermark image has been attacked in a public channel. The illustration of JPEG compression 
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attacks of Lena, the baboon, and pepper watermarked image is shown in Figure 27. Figure 27 

ensures that the proposed watermarking technique is robust against compression attacks.   

Figure 26. (a-d) Cropping Attacks of the original image Peppers with different data lose (e-h) 

corresponding extracted watermark logo 

 
Figure 27. First row shows the Compression attacks of the original image Lena, Peppers and Baboon 

of  Dimension 256 ∗  256. The second row shows the  corresponding extracted watermark logo 
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Table 31. Analysis of the original host and watermark image 
 SSIM CC  Observation   
Pepper  0.89346 0.001359 The SSIM value is entirely different between the 

original and encrypted images. The value of CC is less 
to ensure the difficulty level for the attacker  

Lena  0.097554 0.0065466 
Baboon  0.15467 0.006356 

 

Table 32. Experimental analysis of original and recovered image 
 SSIM PSNR MSE Observation   
Pepper  0.956721 97.24430 0.000002 The value of MSE is significantly less. 

The value of PSNR for both images is very 
high. The SSIM value is close to 1. 

Lena  0.97644 88.35657 0.0000004 
Baboon  0.98446 91.46575 0.0000003 

 

4.5 Comparison with other Existing Algorithms  

We compared the proposed digital watermarking scheme with other algorithms in this 

subsection. The proposed watermarking robustness is evaluated through the stat of art metrics 

like PSNR, SSIM, MSE and CC. the proposed algorithm has a high PSNR value of 97.24430, 

indicating a high-quality level and robustness compared to other existing watermarking 

algorithms [95]–[100]. Moreover, the value of SSIM of the suggested scheme is close to 1, 

which ensures that the proposed cryptosystems show high robustness of the watermark image 

as compared to the existing watermark techniques [95]–[100]. Additionally, time embedding 

is an essential factor in evaluating the effectiveness of the watermark algorithm. We compare 

the proposed scheme by an important factor of time embedding. According to the findings 

shown in Table 33, our suggested strategy outperforms several current methods [95]–[100]  in 

terms of embedding time. 

Table 33.Comparative Analysis 
 SSIM PSNR MSE CC Emmbiding time 
Proposed  0.956721 97.24430 0.000002 0.001359 0.8754/sec 
Ref.[95] 0.999935 97.5450 0.0000001 0.002287 No 
Ref.[96] 0.9150 55.6042 N0 0.8375 (NC) N0 
Ref.[97] 0.9992 56.8684 N0 0.9998(NC) 4.337/sec 
Ref.[98] 0.99993 52.5768 No  0.99999(NC) 251.79/sec 
Ref. [99] No  38.64  No  No  1.275/sec 
Ref.[100] 0.9771 37.7256 N0  1  8.062/sec 
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Chapter 5 

 Gray Scale Image Encryption based on Isomorphic 
Elliptic Curves 

 

Multimedia data is an essential source for delivering information over the network and is 

widely used in many fields. The most important one is the digital image, which has significant 

information panache and is often used to exchange digital information. However, due to open 

network development, the secrecy of those images which contain sensitive information during 

transmission is the central issue. Advanced Encryption Standard (AES), Data Encryption 

Standard (DES) [101], and triple data encryption standard (TDES) [102] are efficient 

cryptographic algorithms and suitable for the security of small data. However, these schemes 

cannot secure multimedia data like digital images, audio, and video data. To cover the issue of 

digital image security, numerous authors present image encryption schemes proposed based on 

nonlinear dynamical systems. These schemes are usually based on low and high-dimension 

chaotic sequences. The low dimensional chaotic sequence schemes have enough security issues 

due to low accuracy and short cord period. Thus, researchers pay attention to using high-

dimensional chaotic sequences for the encryption algorithm[103]–[106]. Therefore, 

researchers used different mathematical structures to develop a secure image encryption 

scheme with minuscule computational complexity.  

The cryptosystems-based elliptic curve has excellent cryptographic properties, hence widely 

used for secure communication. In [107], it presents an image encryption scheme using a fast-

mapping method based on a matrix approach for ECC.  In the proposed work, the authors used 

different properties of the matrix and elliptic curve to convert the alphanumeric character 

values to the elliptic curve coordinate (𝑥, 𝑦) using the non-singular matrix. The mapping 

technique used in the scheme increases the security strength of the cryptosystem. However, the 

suggested encoding scheme's computational complexity (CC) is still high.  

Generally, the generation of EC points is a time-consuming procedure, and overall, it affects 

the computational time; hence, there is an urge for the method to generate EC points 

comparatively fast. In addition, the conventional conversion of EC points into (𝑥, 𝑦) points 

also influences the computational complexity, so conversion demands an effective and efficient 

procedure.  
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Keeping the above facts in view, this chapter introduced a novel symmetric key encryption 

algorithm based on the efficient computation of elliptic curve isomorphism(ECI) and 4-bit 

substitution boxes(S-Boxes) for the application of grayscale image encryption. In the first 

phase, the proposed algorithm utilized the searching technique to generate the points of EC, 

which reduces the complexity up to an exceptional margin. After that, the kobtliz encoding 

technique was employed to convert the plain image least significant bits(LSB) data to EC 

points. These points are then mapped to the isomorphic curve and are the reason for diffusion 

in the ciphertext. Besides this diffusion mechanism, elliptic curve points are also involved in 

constructing small substitution boxes for confusion. This proposed confusion and diffusion 

technique also provide quality security in response to well-known cryptographic attacks, as 

established by the number of statistical results and security analyses. 

5.1 Koblitz Encoding  

Nill Kobltiz in [108] first proposed the concept of representing plain data in the EC point.  

Consider the elliptic curve E, which is defined as: 𝓎2 = 𝓍3 + Α𝓍 + Β over 𝐹𝑝. Let 𝑀, be the 

plain data, represent the value in the interval 0 ≤ 𝑀 <
𝑝
100⁄ . Let 𝓍𝑖 = 100𝑀 + 𝑖 for 0 ≤ 𝑖 <

100. For 𝑖 = 0,1, … , 99, calculate the value of 𝑆𝑖 = 𝓍𝑖3 + Α𝓍𝑖 + Β. If  𝑆𝑖𝑆(𝑝−1) 2
⁄ ≡ 1 mod 𝑝, 

then 𝑆𝑖 is square mod 𝑝, in such a scenario, we don't need to check any more values of  𝑖. In 

the second case, if 𝑝 ≡ 3𝑚𝑜𝑑 4, the square root 𝑆𝑖 is given by 𝓎𝑖 = 𝑆𝑖(𝑝+1) 4
⁄  mod 𝑝.  Finally, 

if  𝑝 ≡ 1𝑚𝑜𝑑 4, it is also possible to compute the square root of 𝑆𝑖, although the process is 

more complex and hence we get the transform point of EC (𝓍𝑖, 𝓎𝑖). The decoding procedure 

is effortless; compute the ⌊ 𝓍𝑖
100
⌋ (= the greatest integer less than or equal to 𝓍𝑖

100
). The execution 

time of the encoding processes depends on the parameters. However, the decoding time is 

independent of the parameters of the elliptic curve. 

5.2 Isomorphic Elliptic Curve  

Definition 5.1. Two elliptic curves over the field  𝐹𝑝 given by the short Weierstrass equation 

𝐸1 = 𝓎
2 = 𝓍3 + Α𝓍 + Β                                                       (5.1) 

𝐸2 = 𝓎
2 = 𝓍3 + C𝓍 + D                                                          (5.2) 

with Α, Β, 𝐶, 𝐷 ∈ 𝐹𝑝 is said to be isomorphic if there exists  𝛽 ∈ 𝐹𝑝 such that 𝐶 = 𝛽4Α and 𝐷 =

𝛽6Β we say that 𝐸1 and 𝐸2 are isomorphic. The morphism between the elliptic curve is  

𝛾: (𝓍, 𝓎) → (𝛽2 𝓍, 𝛽3𝓎)                                                (5.3)      
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(𝛽−2𝓍, 𝛽−3𝓎) ← (𝓍, 𝓎):𝜑                                             (5.4) 

5.3 S-Box Construction Algorithm   

In the proposed scheme, we employed the S-box to produce confusion in the plain image. The 

S-box construction scheme consists of the following steps.  

1. Initially, choose a prime number   𝑝 and two distinct elements such that Α1, Α2 < 𝑝.   

2. The prime number is selected such that the corresponding elliptic curve 𝐸𝑝(Α1, Α2)  have 

at least 6 × 16 points.  

3. In the third step, generate the points of the elliptic curve using the equation given as 

follows. 

𝓎3 = 𝓍3 + Α1𝓍 + Α2 𝑚𝑜𝑑  𝑝 

4. In the next step, add the 𝑥 and 𝑦 coordinates of each point of the elliptic curve and obtain 

a new set 𝐸 𝑝,𝑧(Α1, Α2). 

  𝐸  𝑝,𝑧(Α1, Α2) = {𝑧 |𝑧 = 𝓍 + 𝓎; (𝓍, 𝓎) ∈𝐸𝑝 (Α1, Α2)}                                       (5.5) 

Finally, we carried out the mod operation 𝐸𝑝,𝑧16(Α1, Α2) to restrict the range of the elements 

of the set 𝐸 𝑝,𝑧16(Α1, Α2), into [0-16] and pick the first sixteen elements from the set, 

subsequently converting the elements into the 4 × 4 lookup table, which is the required S-box, 

as depicted in Table 34. Moreover, the evaluation criteria of the newly generated s-box based 

on the elliptic curve are given in table 35.  

Table 34. Proposed Dyamnmic S-box based on Elliptic curve 
5 2 8 15  5 8 2 11 

14 13 1 6 0 6 15 12 
0 12 11 9 1 3 9 13 
4 3 10 7 4 10 14 7 

S-box 1.   𝐸  173,16(0, 1) S-box 2.   𝐸  211,16(0, 1) 
5 8 14 10 5 12 2 15 
0 12 3 13 0 8 4 7 
1 7 15 11 14 10 6 13 
6 4 9 2 9 11 3 1 

S-box 3.   𝐸  179,16(0, 1)  S-box 4.   𝐸  251,16(0, 1) 
 

5.4 Proposed Encryption Scheme 

In this section, we discussed the proposed encryption algorithm. Let 𝐼 denote the plain image 

of dimension 𝑀 × 𝑁 containing the element from the set [0 − 255]. Subsequently, we split the 

pixels of the image into LSBs and MSBs and convert the MSBs into LSBs. Accordingly, one 
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gets a new matrix 𝐼𝑠 of dimension 2 × 𝑀 × 𝑁, contain the entries between 0 − 16.  Then we 

processed the matrix 𝐼𝑠 over the servel steps. In the next subsection, we discussed the entire 

steps in detail. 

Table 35. Experimental analysis of newly generated  S-box 
                                              Results    
S-Boxes NL SAC LAP DAP BIC-

SAC 
LS LBN DBN FP OFP 

𝐸173,16(0,1) 4 0.4922 0.2500 0.0625 0.2500 0 2 2 0 0 

𝐸211,16(0,1) 4 0.4688 0.2500 0.0625 0.2500 0 2 2 1 0 

𝐸179,16(0,1) 4 0.4922 0.3750 0.0625 0.2500 0 2 2 1 0 

𝐸251,16(0,1) 4 0.5000  0.2500 0.0625 0.2500 0 2 2 1 0 

 

5.4.1 Preprocessing 

In the first step, while using elliptic curve cryptography, the pixels of the plain image should 

be converted into elliptic curve points. In the proposed work, we used the Kobltiz method to 

map the pixels of the matrix 𝐼𝑠,  into the elliptic curve points [108]. Let 𝑐𝑖  be an element of the 

matrix 𝐼𝑠, compute the output pair (𝑥𝑖,  𝑦𝑖) of the element 𝑐𝑖 using the following map. 

                                                               𝑘:  𝐼𝑠 → 𝐸𝑝(𝑎, 𝑏) 

𝑘(𝑐𝑖) = (𝓍𝑖, 𝓎𝑖) 

𝓍𝑖 = 𝑐𝑖𝑘 + 𝑙 𝑚𝑜𝑑 𝑝                                                      (5.6) 

   𝓎𝑖 = √𝓍𝑖3 + Α𝓍𝑖 + Β  𝑚𝑜𝑑 𝑝                                     (5.7) 

 Where 𝓍𝑖 = 𝑐𝑖𝑘 + 𝑙 < 𝑝 and 0 ≤ 𝑙 < 𝑝 and compute 𝑦𝑖, which satisfies equation(5.7). The 

failure probability of finding 𝑦𝑖 is 
1

2𝐿
. According to [109], 𝐿 = 30 is enough to achieve the 

required transformation of the data. 

5.4.2 Postprocessing 

The decoding process of the plain image includes the decoding of the coordinate (𝓍𝑖,  𝓎𝑖)  of 

the elliptic curve by computing 𝑀 = ⌊(𝓍 − 1)/𝑘⌋. The detailed procedure is given in the 

following example 5.2. 

Example 5.2. Let us have an elliptic curve, and the parameters of the EC are as follows. 

 Α = 1, Β = −1, 𝑝 = 503, 𝑘 = 20 
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Let 𝑀 = 22 be a plaintext, then 𝓍 = 𝑀𝑘 + 1 ≫ 22 × 20 + 1 = 441, Since = 𝓍3 + Α𝓍 +

Β 𝑚𝑜𝑑 𝑝 is not a perfect square, so it carried out the same operation and put 𝑙 = 2, i.e., 𝓍 =

𝑚𝑘 + 2 = 442,  which is again not a perfect square. So, we have to iterate the same procedure 

for the various value of 𝑙 till the equation becomes a perfect square. The equation 𝓍3 + Α𝓍 +

Β 𝑚𝑜𝑑 𝑝 is a perfect square for 𝑙 = 19. Accordingly, the plaintext is converted into the elliptic 

curve point(459, 475). To decode the plaintext, subtract 1 from the 𝑥 and divide the output by 

𝑘 and round the answer; the process is given below. 

⌊(459 − 1)/𝑘⌋ =  22 

After the conversion of preprocessing step, which is explained in detail in the above example 

5.2, the next step is to use the isomorphism of the elliptic curve map to alter the position of the 

elliptic curve points to produce diffusion. The mathematical representation is given below 

𝛾𝑚: 𝐸𝑝(Α, Β) → 𝐸𝑝(𝐶, 𝐷) 

𝛾𝑚((𝓍𝑖, 𝓎𝑖)) = (𝓍𝑖
′, 𝓎𝑖

′)                                                           (5.8)   

Where the pair (𝑥, 𝑦) denotes the elliptic curve point. After the isomorphism of the elliptic 

curve map, the range of 𝛾𝑚 is decoded and converted back to the matrix 𝐼𝑘 of range [0 − 16] 

by using the decoding process as discussed below. Furthermore, we need to add the 

abovementioned isomorphism curves and apply the substitution process discussed in section 

5.4. After this substitution process, the obtained S-boxes are applied to the matrix 𝐼𝑘 ,and one 

can get a new matrix 𝐼𝑠. In the next step, split the matrix of dimension 𝑀 ×𝑁 into two matrices 

𝐼𝑠1 and 𝐼𝑠2 of dimension 𝑀 × 𝑁, and convert the matrix 𝐼𝑠1 into MSB and combine the MSB 

with LSB. So, the obtained image is the required encrypted image. The flow diagram of the 

proposed work is shown in Figure 28. 

5.5 Security Analysis Of Encryption Scheme 

Security analysis determines whether a cryptosystem is good enough to counter malicious 

attacks. For good encryption, it should resist all kinds of known attacks. Moreover, in this 

section, most security analysis results are discussed in chapter 2, so we just show their graphical 

and tabular representation, not their theoretical description.  The simulations take a data set of 

input images, Lena, baboon, fruit, and pepper. Figure 29 shows the above data set, plain and 

encrypted images.  It can be envisaged from the encrypted image that encryption results are 

visually strong. 
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Figure 28. Flow Chart of the Proposed algorithm 

 
Figure 29. (a-d)Plan image of Lena, Fruit, Peppers, and Baboon from (e-h) their cipher images, 

respectively 

5.5.1 Histogram Variance Analysis 

Histogram variance analysis is considered a quantitative measurement of the histogram. The 

low value of variance represents the high-level uniformity of a grayscale image; inversely, the 

low uniformity of a grayscale image shows a high variance value. The histogram variance value 

is defined in equation (5.9) [110]. 
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𝑉(𝑋) =
1

𝑁2
∑ ∑

(𝑥𝑖−𝑥𝑗)
2

2

𝑁
𝑗=1

𝑁
𝑖=1                                                          (5.9) 

where N is the grayscale value, and  𝑥𝑖,𝑥𝑗 , represents the pixels of grayscale values, 

respectively. Table 36 shows the histogram variance result of some grayscale test images of 

size 256 × 256. Table 36 shows that the variance analysis of encrypted images is highly 

dissimilar from plain images. The results of decrypted images using our proposed scheme are 

almost equal to plain images. These high differences between encrypted and plain images 

ensure that the histogram variance analysis of grayscale values is highly uniform. 

Table 36. Variance analysis 
Image  Original Encrypted image Decrypted image 
Lena  38952 256.8324 38952 
Baboon 38871 279.9321 38871 
Peppers   480,660 260.2344 480,660 
Fruit   11,787  250.0551 11,787 

 

5.5.2 Chi-Square test  

The Chi-square test is the degree of variance among original sample data and the theoretical 

inference value of the statistical samples. The chi-square is less appropriate if the value is 

larger; on the contrary, a less value of the Chi-square represents more consistency. The chi-

square test values will be 0 if the two values are the same, showing that high grayscale 

uniformity and the theoretical value are more consistent. The mathematical formula of the Chi-

square metric is given in equation (5.10-5.11) [111]. 

                       𝒳2 = ∑
(𝑜𝑏(𝑓𝑖)−𝑒𝑥(𝑓0))

𝑒𝑥(𝑓0)

255
𝑖=0                                                    (5.10) 

                               𝑒𝑥(𝑓0) =
(𝑀×𝑁)

256
                                                             (5.11) 

Where 𝑜𝑏(𝑓𝑖) is the observed frequency 𝑖(𝑖 = 𝑜 𝑡𝑜 255), while 𝑒𝑥(𝑓0), is the expected 

frequency. Table 37 represents the Chi-square test results of cipher images. According to  the 

chi-square distribution table,  𝒳2
255,0.01 = 310.457 and,𝒳2

255,0.05 = 293.2478, ensure that 

the hypothesis of the chi-square test is accepted and the significant level for both values is 1% 

and 5%, respectively. From this, we can say that the distribution of pixels is uniform. 
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Figure 30. Histogram analysis of the original image Lena and corresponding their encrypted image 
histogram 

Table 37. Result of Chi-square test 
Images  𝓧𝟐

𝑻𝒆𝒔𝒕 Result  
Lena 256 × 256 234.1314 Success 
Baboon 256 × 256 236.2627 Success 
Fruit 256 × 256 235.2312 Success 

 

5.5.3 Binary Image Test 

Binary image test to measure that our proposed algorithm works well on binary images. We 

tested the different binary images, and the outcomes are shown in the Figure. 31. It can be seen 

that the conventional methods do not usually work properly on binary images. But our proposed 
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algorithm works well on black-and-white binary images, which ensures that our proposed 

algorithm works well on binary images. 

Figure 31. Binary White and Black image analysis 

5.5.4 Local Shannon Entropy 

Sometimes, cipher image blocks have very low entropy information [112]. In this scenario, the 

proposed encryption algorithm will not be considered highly secure. The Local Shannon 

entropy computes the extracted randomness of pixel values in the cipher image. We can define 

the local Shannon entropy for the block of cipher image as [113]. 

𝑯𝑲,𝑻𝑩
̅̅ ̅̅ ̅̅ ̅(𝑆) = ∑

𝐻(𝑆𝑖)

𝐾

𝐾
𝑖=1                                                 (5.12) 

where 𝑆𝑖 (𝑖 = 1… . . . , 𝑘) are non-overlapping blocks with randomly chosen pixels  𝑻𝑩 of cipher 

image and  𝐻(𝑆𝑖) express the entropy information of 𝑆1, 𝑆2, 𝑆3, ……… , 𝑆𝐾. For the local 

Shannon entropy test, we select k images and 𝑻𝑩  pixels and 𝐾 = 30, 𝑻𝑩 = 1936. The range 

of 𝐾 = 30, 𝑻𝑩 = 1936 should be from [7.901901305 − 7.903037329], with a significance 

level of 0.05. Table 38, represents the information on local Shannon entropy, showing that the 

cipher image results possess high randomness. 
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Table 38. Entropy information 
Image               Test values  Result 
Lena  7.9029 Pass 
Baboon 7.9028 Pass 
Paper’s 7.9028 Pass 
Monogram  7.9024 Pass  

   

 

Figure 32. Correlation analysis in Horizontal, Vertical and Diagonal for original image Lena and corresponding 
their encrypted image    

Table 39. Information of the correlation of proposed schemes 

 

5.5.5 Key Space Analysis  

Better encryption and decryption security are built upon the key size used. The larger the key 

size, the harder it is to perform an attack using the Brute Force attack. Commonly a 

cryptosystem fascinates the key space analysis if it has the key spacing more than 2100. In our 

proposed algorithm, we have used a 512-bit; this implies that the key spacing analysis of our 

proposed algorithm is much larger than   2100. Hence, the proposed encryption technique resists 

Images Horizontal correlation Vertical correlation Diagonal 
correlation 

Lena plan-image 0.9437 0.9705 0.9089 
Lena-cipher image −0.0090 −0.0079 −0.0032 
Baboon plan-image 0.9537 0.9781 0.8821 
Baboon cipher image −0.0081 0.0021 0.0031 
Peppers plan-image  0.9467 0.9725 0.9651 
Peppers cipher image  −0.0003 −0.0003 0.0008 
Fruit plan-image 0.9537 0.9864 0.9845 
Fruit cipher image 0.0002 −0.0061 −0.0016 
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brute-force attacks efficiently. We used nine(9) keys Α, Β, C, D, Α1, Α2, 𝑝 , 𝑘, 𝑎𝑛𝑑 𝛽   and each 

of these nine keys by 512-bit; this implies that the key spacing analysis of our proposed 

algorithm is much larger than 2100. 

5.6 Computational Complexity of The Algorithm  

The computational complexity of the scheme is the number of bit operations required for the 

algorithm to be Completed. In this section, we discussed the computational complexity of the 

proposed scheme. The scheme initially split the image into MSBs and LSBs. The scheme splits 

each image pixel into two sub-blocks in constant time 𝑂(1). Thus, the first required 𝑂(𝑀 × 𝑁) 

bit operation is to split the complete image into MSBs and LSBs. Afterwards, the scheme maps 

the elements of the image into the points of the elliptic curve. The scheme maps each element 

of the image in constant time as the data of the image lay in the fixed range. Therefore, the 

preprocessing requires 𝑂(𝑀 × 𝑁) bit operations to execute. Similarly, the substitution module 

is also performed in linear time. Since all algorithm modules run in linear time, the proposed 

scheme's computational complexity is 𝑂(𝑀 × 𝑁) linear time, where 𝑀 ×𝑁 is the dimension 

of the plain image.  

 Table 40. Time execution 

 

5.7 Comparison And Discussion With Other Encryption Techniques 

The Comparison of our proposed encryption algorithm with other existing cryptosystems based 

on a different mathematical structure, like a chose-based and elliptic curve [104]–[106] [108], 

is presented in this subsection. The scheme proposed in [108]  converts the message encoding 

and decoding into the elliptic curve coordinate using the Kobltiz method and describes the 

implementation results of Kobltiz’s Encoding and Decoding methods. While our proposed 

scheme is based on image encryption, every pixel of the plain image is considered a massage. 

The execution timing of massage 𝑚 converted to (𝑥, 𝑦) is less than the existing scheme, and 

the execution time in [108] is taken more time than the proposed Technique; the execution 

timing of ref [108] is listed in Table 41. The comparative analysis of the proposed encryption 

algorithm with recent encryption schemes is discussed in the following points.  

 Prime A B Preprocessing Timing Post Processing Timing 
Proposed  4093 9 7 0.110 sec 0.000002sec 
Proposed  16381 1 17 2.4567sec 0.000002sec 
Ref.[108]  16381 1 17 3.7sec 0.000002sec 
Ref. [108] 4093 9 7 1.11sec 0.000003sec 
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Table 41. Comparison table with other existing schemes   

 

1. From Table 41, we can see that the results of the proposed cryptosystem's differential 

attack analysis (NPCR and UACI) are better than the other excellent existing algorithm 

[116] [117] [111] [118] [119] [120] [121]. 

2. The entropy information of the proposed algorithm is nearly equal to 8, which shows more 

randomness of pixel values by using the proposed cryptosystem. This can be seen by 

comparing other cryptosystems[114] [115] [120] [121] and having less randomness than 

[104] [113] [117]. 

3. By observing the correlation analysis, the value of the correlation coefficient is nearly 

close to zero, which ensures that the proposed cryptosystem outperforms and is robust 

against statistical attack compared to other encryption schemes [115] [120]  and somehow 

less or equal to[116] [117] [119] [121] . 

4. The histogram variance analysis results of the proposed encryption algorithm in Table 41 

are comparatively less than the current existing encryption method in[117] [111] [118][119] 

[121]. This proves that the pixels of cipher images are largely uniform. 

5. The  𝒳2
𝑇𝑒𝑠𝑡, the test analysis result of our method is less as compared to the chi-square 

value of [120] and greater than[111], which shows that the proposed work has high gray 

scale uniformity.

 

 

 

 

Scheme NPCR UACI Entropy Hor-C Vert-C Diag-C  Variance 
Analysis 

𝓧𝟐 

Proposed 99.6634 33.7112 7.997 −0.0090 −0.0079 −0.0032 256.8324 234.13 
Ref. [104] 99.6233 33.4766 7.999 −0.0034 0.0019 −0.0134 - - 
Ref.[114]  99.6228 33.7041 7.996 −0.0048 −0.0112 −0.0045 - - 
Ref.[113]  99.6166 33.4365 7.999 0.0018 0.0011 −0.0012 - - 
Ref.[115] 99.4186 33.1670 7.957 −0.0083 0.0458 −0.0528 - - 
Ref.[116]  99.6093 33.4723 7.997 0.00152 0.0013,  0.0018 - - 
Ref.[117]  99.6143 33.5513 7.999 0.0031 0.0005 -0.0041 969.5729 - 
Ref.[111] 99.6109 33.4783 7.997 0.0008 -0.0019 -0.0016 676.8 233.13 
Ref.[118]  99.6198 33.4777 7.997 −0.0056  0.0028 −0.001 265.8906 - 
Ref.[119]  99.6216 33.5848 7.997 -0.0056 0.0006 0.0018 250.6719 - 
Ref.[120]  99.6216 33.4994 7.997 0.0106 -0.0012 0.009 - 253.48 
Ref.[121]  90.1978 30.0263 7.989 -0.0015 -0.0143 -0.0236 310.44 - 
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Chapter 6 

Conclusion and Future Work 
 

This thesis illustrates the significant rule of an elliptic curve over a finite field in a symmetric 

and hybrid architecture for the application of multimedia data security. This chapter 

summarises the main finding of the thesis. Further development and future scope are also 

discussed at the end of this chapter. 

6.1 Summary of  Thesis 

This thesis presents the importance of the application and theory of efficient computation of 

elliptic curve cryptography. In this thesis, different cryptosystems are built on the core 

mathematics of elliptic curves over a finite field for multimedia data security. Furthermore, the 

EC over a finite field, the arithmetic of point generation, has been effectively utilized for the 

symmetric and integrated encryption scheme. Moreover, each chapter of the thesis follows the 

Substitution Permutation Network(SPN) design, intending to increase security and perform 

strong pseudorandom number permutation. 

The second chapter reviewed the Elliptic Curve Integrated Encryption Scheme(ECIES) over a 

finite field. Based on the hard problem of the discrete log problem of the elliptic curve, we 

designed the enhanced version of the elliptic curve integrated encryption scheme (E-ECIES). 

From the shared key at the initial stage of the algorithm, we extracted the new symmetric key 

for the application of RGB image encryption. The suggested approach of the symmetric 

encryption scheme achieves the aim of diffusion using the first twelve bytes of the symmetric 

key of 128 bits. The confusion module is accomplished by the affine power affine 

transformation(APA) followed by the last four bytes of the symmetric. Furthermore, after 

comparing the proposed encryption scheme with other excellent existing cryptosystems, we 

can observe that the statistical and sensitivity analysis of the proposed algorithm offers perfect 

security and can withstand common attacks. 

In chapter 3, we present a unique lossless audio encryption scheme with Substitution 

Permutation Architecture (SPA) based on efficient computation of the Mordell elliptic curve 

(MEC) over a finite field for real-world communications. At the first stage of the algorithm, 

generate the strong pseudorandom number generation using MEC to achieve the diffusion of 

the audio data. In addition, the inclusion of substitution boxes is involved in the confusion 
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phase. The substitution with multiple 5 × 5 bijective S-boxes eventually produces optimum 

confusion in encrypting each  5-bit data block, ensuring the proposed algorithm is robust 

against differential attacks. The simulation result presents that the suggested encryption 

efficiently encrypts and turns the audio data into indistinguishable uniform audio data. 

Accordingly, the proposed scheme is securely suitable for real-world communication.  

Chapter 4 presents an efficient digital watermarking encryption scheme based on HEC. The 

proposed scheme is key-dependent, and only the main owner of the image can prove his 

ownership using his secret key. The proposed scheme uses random sequences generated 

through the HEC and distributes the watermark image data randomly. On the one hand, the 

random distribution of the watermark image does not impact the quality of the host image; on 

the other hand, this approach enhances the security of the proposed scheme, as only the 

authorized owner can reproduce the watermark image. Furthermore, after comparing the 

proposed watermarking scheme with other excellent existing cryptosystems, we can observe 

that the experimental findings of the proposed algorithm offer perfect security and can 

withstand common attacks. 

The efficient computation of elliptic curves and small substitution boxes is present in chapter 

five. The proposed scheme utilizes the searching method to generate EC points, which reduces 

the complexity to an exceptional margin. After that, the proposed algorithm follows the 

substitution permutation network(SPN); the permutation is attained through the isomorphism 

of the elliptic curve map, and the small S-boxes are utilized for the confusion of the data. The 

substitution layer evaluates by their stand of the art analysis, and we have found it secure 

against linear and differential attacks. Over several simulation assessments, the proposed 

scheme has been extensively securitized. The outcomes of the simulation experiment have 

demonstrated that the suggested scheme is resistant to several cryptanalysis techniques. The 

recommended approach is, therefore, safely appropriate for grayscale and binary image 

encryption applications. 

6.2 Future Work 

The enhanced elliptic curve integrated encryption (E-ECIES) is present for the RGB image 

encryption. For future work, it would be fascinating to look into how the E-ECIES would be 

implemented on hardware and how it may be used for more multimedia applications like 

Telecare Medical Information Systems (TMIS)  and the Internet of things (IoT).  
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Furthermore, the audio encryption scheme based on generating MEC points is time-consuming, 

and the algorithm's computational complexity is reasonably high. Therefore, the effort may be 

given to make this computation efficient for a strong random number generation scheme with 

less computational complexity in the future. Moreover, the nonlinear layer S-box has some 

fixed points due to its random behaviour; therefore, the fixed points may be removed as the 

area for future scope. The proposed algorithm is validated for offline audio files, although live 

encrypted audio streaming is in demand these days. Thus, in the future, an attempt may be 

made to speed up this algorithm to expand the use of this application for live audio streaming. 

The grayscale image encryption is based on the fusion of isomorphism of an elliptic curve and 

small S-box, presented in this thesis. Since, in the proposed work, the prime p is entirely 

dependent on the image dimension, therefore in the case of large image data, it is time-

consuming, and for small images, the key space remains small, which cannot resist the brute 

force attack. We may extend this proposed work for audio and video encryption applications 

in the future and utilize it for the application of the Internet of things(IoT). 
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