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Preface

Due to the rapid advancement of science and digital technology, the importance of digital data
in everyday life has grown tremendously over the past several decades. Nowadays, digital data
are employed in many spheres of life, including commerce, military image databases, private
video conferences, finance, engineering, mathematics, the arts, advertising, healthcare and
scientific research. Digital data processing tools and digital documentation are becoming
increasingly important due to the expanded significance of digital data in the age of information
technology. Consequently, it has improved digital data transmission over the public channel.
Since the internet network is widely accessible, it has generated plausible opportunities that
endanger the integrity and confidentiality of digital data during dissemination over the internet.

Cryptography is the study of information security strategies used to combat these threats.

Over the past 60 years, cryptography has gained recognition as a legitimate scientific field.
However, comparatively, it is an entirely new and faster-growing study area compared to other
science areas, and each moment carries continual developments. The field of cryptography is
divided mainly into two sub-branches: a) Symmetric Cryptography and b) Asymmetric
Cryptography. This classification of cryptography is based on the input key and confidential
data used for encryption and decryption. In symmetric-key cryptography, the communication
parties secretly share a private key. The Advanced Encryption Standard (AES), Data
Encryption Standard (DES), Rivest Cipher 4 (RC4), International Data Encryption Algorithm
(IDEA), Serpent, TwoFish, Camellia, SM4 and Lucifer are some well-known symmetric key
cryptography algorithms. AES-128, AES-192, and AES-256 are the most often used symmetric
algorithms. From the resource utilization point of view, the symmetric key algorithms require
few resources to operate. Although owing to the usage of a single key for encryption, the
symmetric algorithm is less secure. In symmetric-key cryptography, the communicating parties
utilize the same private key for encryption and decryption. Thus, the security risks of sharing
secret keys make public-key cryptography even more crucial. Public key cryptography
employs a pair of distinct keys (private, public) for encryption and decryption and is much
safer as two keys are involved. The primary goal of public key cryptography, the cipher, is to
protect the data from eavesdroppers even when they know the encryption key. Algorithms such
as RSA, Elliptic Curve Cryptography(ECC), NTRU, Diffie-Hellman, Elgamal and McEliece

are the most well-known public examples of asymmetric key cryptography.



Elliptic curve cryptography (ECC), which employs a pair of public-private keys, is the most
prominent and well-known public-key cryptosystem. The concept has been used since the 19th
century and has provided optimal solutions for many hard mathematical problems in literature,
like the Fast Integers Factorization Problem (FIFP), searching for congruent numbers (SCN),
etc. Nowadays, this concept is being extensively used in cryptographic applications.
Principally, the use of these curves relies on the very existence of group law, making this a
relatively good algorithm for the public key cryptosystem because the discrete logarithm
problem is a hard problem relative to the size of the parameters used. Such curves also find
application in digital signatures, bilinear pairing, and digital signatures. Being an alternative to
the well-known RSA algorithm, elliptic curve cryptography offers better security with a much
smaller key size than RSA and finite field discrete logarithm-based systems. Finite field Diffie-
Hellman cryptosystems are known to be slow and susceptible to the number field sieve attack
using precomputation, two limitations that do not apply to elliptic curves, as far as is currently
known. Elliptic curve cryptosystems offer efficiency and security advantage over these
systems. Until now, there hasn't been a more effective general attack for elliptic curves over
prime fields with a subgroup of huge prime order than the exponentially fast Pollard's rho
attack. Because of this security aspect, elliptic curve systems require a much smaller key size
to offer the same level of security compared to Diffie Hellman and RSA. Moreover, the
efficiency advantage makes them ideal for resource-constraint devices like smart cards and
web servers where public key cryptography is a bottleneck. As a result, many organizations
have encouraged the use of elliptic curves by proposing sets of suggested elliptic curves and
algorithms on top of them, including the National Institute of Standards and Technology
(NIST), the National Security Agency (NSA), and 1'Agence Nationale de la Securité des
Systemes d'Information (ANSSI).

The primary and most often utilized operation in elliptic curve cryptography is the scalar
multiplication KP, where K is a private integer value that has to be secured where P is the point
on an elliptic curve. The scalar multiplication of the elliptic curve is utilized in various
cryptographic algorithms, including enciphering/deciphering of the data, the key generation
process, and the digital signature signing and verification methods. Scalar, point, and field
arithmetic are the three arithmetic levels implied by the mathematics of an elliptic curve. Many
works are devoted to pointing arithmetic and scalar arithmetic to make a quick calculation of
scalar multiplication, which is the main computation involved in ECC. Point arithmetic means

the addition and successive doubling of the point of EC.



Elliptic curve cryptography has been widely used as a discrete mathematical structure in
computer hardware and software. Finite fields EC are a beneficial structure with many uses in
computer science and cryptography. One of the characteristics of finite filed curves is that they
are typically executed more quickly on general-purpose CPUs because they usually include a
big integer multiplier circuit instead of a big binary multiplier circuit. Furthermore, finite field
curve efficiently implements hardware, prompting researchers to utilize it in cryptography. The
reduction of cost and efficiency improvements are the main characteristics of EC over a finite
field computation. In this thesis, we evaluate how the parameters of EC over a finite field affect
the security features of symmetric, asymmetric and hybrid cryptographic techniques. The
objective is to enhance the parameters of EC over a finite field and investigate how this will

increase the security of the cryptosystems.

The thesis encompasses a total of six chapters. The fundamental concepts and mathematical
background of EC are covered in the first chapter of this thesis. Furthermore, the main objective
of this chapter is to provide a concise overview of the underlying concepts for EC-based
cryptographic applications. In the subsequent chapters, these definitions and attributes are
applied. The chapter also introduces the generalization of EC called hyperelliptic curve (HEC),
which will be utilized in chapter four for watermarking encryption scheme. The chapter

concludes with the complexity theory.

The second chapter of this thesis introduces a hybrid architecture named an integrated
encryption scheme for multimedia data security. In the hybrid architecture approach, the data
encoding and decoding approaches combined the efficiency of symmetric key encryption with
the speed and convenience of an asymmetric key encryption scheme. The scheme introduced
in this chapter is the enhanced version of the EC integrated encryption scheme (E-ECIES) over
a finite field F;. This E-ECIES ensures confidentiality, user authentications, and secure key
sharing among the communicating parties. Initially, the users share a secret parameter using
Diffie-Hellman over the EC and pass it through SHA-256. Afterwards, the proposed scheme
uses the first 128 bits for the confidentiality of the data, while the remaining 128-bits are for
authentication. The confusion module is achieved by affine power affine transformation in the
encryption algorithm. In contrast, the diffusion module is attained through highly nonlinear

sequences generated through the EC.

The third chapter of this thesis introduced an efficient digital audio encryption algorithm with
the design of a substitution permutation network (SPN) using a Mordell elliptic curve (MEC).



This newly designed scheme is based on the core mathematical operations of an EC over a
finite prime field ;. As the rich mathematical operations of the EC are accomplished
efficiently, a decent-quality sequence of Pseudo-random numbers is obtained in the initial
module of the encryption procedure. After that, the plain audio data matrix is defused using
these highly random sequences. Multiple 5x5 bijective S-boxes perform the confusion part of
the scheme with optimal nonlinearity. The experimental findings support the proposed

permutation-substitution architecture scheme's ability to defend against various attacks.

Chapter 4 of this thesis presents a novel digital watermarking scheme. In this era where the
popularity and availability of the internet are at their peak, online storage devices are very
easily accessible. The essay accessibility of online data has made the distribution, replication,
and creation of digital data hassle-free. This problem led to the developing of a robust algorithm
that could prevent copyright breaches. Therefore, this chapter presents a novel image
watermarking scheme based on the hyperelliptic curve (HEC). The suggested scheme is key-
dependent, and only the main owner of the image can prove his ownership using his secret key.
The proposed scheme uses random sequences generated through the HEC and randomly
distributes the watermark image's data. The random distribution of the watermark image, on
the one hand, does not produce an effect on the quality of the host image; on the hand, this
method enhances the security of the suggested watermarking technique, as only the authorized
owner can reproduce the watermark image. Additionally, the chapter is concluded with the

analytical findings of the proposed approach and a comparison to other current schemes.

Finally, in chapter 5, a symmetric key encryption algorithm was designed based on the efficient
computation of elliptic curve isomorphism and small substitution boxes for the application of
grayscale and binary image security. Since the data of plain images contain a high amount of
correlated pixels, thus, the mere reliance on standard algorithms like AES, RSA, and DES is
unsuitable for multimedia data security. Therefore, this chapter deliberates the efficient
algorithms for multimedia data security. The suggested schemes are thoroughly evaluated
against linear and differential attacks. The experimental findings of the proposed scheme show

the efficiency of the system against different attacks.

The conclusion and a few ideas for potential future work are covered in the last chapter.
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Chapter 1

Elliptic Curve and Cryptography: An Overview

1.1 Introduction

This chapter aims to summarize the fundamental theory just enough for cryptographic
applications. Additionally, this chapter seeks the basic notation, concepts, and properties of an
elliptic curve and cryptography, which are utilized in the imminent chapters. There are four
primary divisions within the chapter. The elliptic curve's fundamental definitions and
mathematical core functioning are covered in the second section. Next, Section three looks at
the underlying mathematical operation of the Hyper elliptic curve (HEC). The third section of
the chapter covers elliptic curve cryptography (ECC) and its cryptosystem. The study of
algorithms and asymptotic complexity studies of the algorithms are enclosed in the last part of

the chapter.

1.2 Fundamentals of Elliptic Curve
Throughout this subsection, K denotes a field of arbitrary characteristics, and L is the algebraic
extension field of K. The general reference of this section is given in Chapter 3 by Darrel
Hankerson, Alfred Menezes, and Scott Vanstone [1], Chapter 1 of Lawrence Washington [2],
and Chapter 13 by Dale Husemoller [3].

Definition 1.1. Let a,, a4, dg, d1, d, € K. An elliptic curve over the field K is defined by the
equation
E=y?+aoxy+ay =x3+dex?+dix+ d, (1.1)

With discernment Ag# 0, the Ag, is defined as follows:

Ag= —D,*D, — 8D;* — 27D,* + 9D, DD,
D, = ag? + 4a,
D, = ay’d, + 4dody — Agardy + dod® — dy° (1.2)
D3 = 2a4 + aga,
D, = a3 +4d,

Then the set of L-rational points on E along with the point of infinity is defined as:
E(L) ={(x,4) ELxLy?+ayxy +ay —x3—dox? —dix —d, = 0} U {o} (1.3)

Remarks 1.2. (Observation on Definition 1.1)



I.  The above equation (1.3) is called the Weierstrass equation.

II.  Because the coefficients ay, a, dq, 44, d, of its defining equation are elements of KK,
we state that of E is defined over K. When we write IE/ K » We highlight that E is defined

over K and K is referred to as the underlying field. Remember that if the elliptic curve
E is defined over K, it also be defined over any extension field of KK.

II.  The condition of discriminant Apg# 0, guarantee that the E is "smooth," that is, there
is not any point (x, ¢) where the curve has more than one unique tangent lines

IV.  The infinity point (oo, 00), generally denoted by oo sitting at the top of the y-axis as

well as the bottom of the y-axis, satisfies the equation (1.3)

Example 1.3. (Elliptic curve over the field K = R ). Let the elliptic curves

E,=y?=23—x (1.4)
E, =% =2+ (1.5)
Ey=y?=x—x+7 (1.6)

defined over the K = R. The graphical representations of equations (1.4) and (1.6) are

illustrated in Figure 1.

Figure 1. Elliptic curve over R

1.2.1 Simplified Weierstrass equations
Definition 1.4. Consider the elliptic curves E and E defined over the field K and given by

the Weierstrass equation

E =/ya2+a,0x'lg/l+a,1'y» =x3+d0x2+d1x+d2 (17)



E=y?+axy +ay =2x°+deyx>+dx+d, (1.8)
are said to be isomorphic over the field K if 3 «, 7, .8,£ € K with « # 0, in such a manner
that the change of variables transforms equation (1.7) into equation (1.8).

x> urx+r

y > udy +ulsx+ 1 (1.9)

(x,4) = {

The change of variables defined in equation (1.9) is called admissible change of variables.
A general Weierstrass equation
E=y?+apxy+ay =x3+dox*+dx+d,

Applying admissible change of variables can substantially simplify a Weierstrass equation.
Throughout the rest of the thesis, simplified equations will be employed. In the case of
underlying fields with different characteristic from 2 and 3, or underlying fields with

characteristics equal to 2 or 3, we consider these cases separately.

Case 1. When the characteristics of the field K + 2,3
If the characteristic of the field K # 2,3, then the admissible change of the variable is defined

as follows:

x—3ay®—12dy ¢y —3agx ay® + 4aydy — 1Zdl> (1.10)

@ 3) _>< 36 ' 216 24

The above Transformation of the Weierstrass equation (1.7) into (1.11) is called the short

Weierstrass equation
y? = x3+ Ax + B. (1.11)

Where the elements A, B € K. The discriminant of the equation (1.11) is Ag= —16(4A3 +
27B2).

Case 2. When the characteristics of the field K = 2
There are two different sub-cases when the characteristic of the field is 2. In the first sub-

case, if the coefficient a, # 0, then an admissible change of variable is:

a apid, — a,?
(x,4) - (aozx + a—;,ao?’y + —;03 ! ) (1.12)

transforms E to the curve
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y? +xy =23+ Ax? + B, (1.13)

where A, B are the elements of K and the discriminant Ag= B. A curve of this type is called a

non-supersingular which is discussed after this sub-section.
In the second sub-case, if the coefficient a, = 0, then the admissible change of variable
(x,¢) > (x + do, 9. (1.14)
and transforms the curve to
y? + Cy = 2% + Ax + B, (1.15)

where the coefficients C, A, B are in K and the discriminant A= C*. The curve defined

above is known as supersingular.

Case 3. When the characteristics of the field K = 3
There are also two different sub-cases when the characteristic of K is 3. In the first sub-case,

if the coefficient a,? # —d, then an admissible change of variable is defined as follows:
D D
(x,y)—>(x+D—:,fy+a,Ox+aOD—:+al), (1.16)

where D3 = d; — aga, and D; = ay? + dg . And transform into the curve
y?> =23+ Ax + B, (1.17)

where the coefficients A, B € K and his discriminant A= —(A3B). In the second sub-case, if

the coefficient ay2 = —d, then the admissible change of variable is defined as follows :
(x,4) = (x,y + apx + a,), (1.18)
and transforms to the curve
y? =x3+Ax + B, (1.19)

where the elements A, B € K and the discriminant A= —A3. The curve defined in equations

(1.17) and (1.19) is considered non-supersingular and supersingular, respectively.

1.2.2  Group law

To form a group law on the elliptic curve over the specified field K, i.e., E(K). We start with
any two points on the particular elliptic curve E(K). For adding two points in E(K) to get the
third point in E, use the chord-and-tangent rule. The collection of points E(K) with the binary

11



operation of the addition define an abelian group with oo functioning as its identity. To avoid
confusion of adding simply the coordinates of points, we denote the operation of the addition

of points by +f .

Let p = (x4,%41) and Q@ = (x,,4,) be two points on E(K). Then the addition of p and Q,
equal to R, is defined as follows. First, draw the line £ through the points p and Q. From figure
2, we can see that the line £ intersects E on the new point R. Reflect the point R along the x-
axis with a change in the sign of ¢ coordinate to get the point R. The Doubling of the point Q
is defined as follows. First, draw the line £ on the elliptic curve at the point Q; the line £ meet
another point R on the elliptic curve, E. Reflect the point R along the x-axis, we get the point

R which is a doubling of the point Q. The geometrical interpretation is shown in Figure 2.

The mathematical formulation of group law for simplified Weierstrass equations over different
underlying fields for the supersingular and non-supersingular elliptic curve is presented in the

following subsection.

Figure 2. Geometric interpretation of point addition and doubling

1.2.3 Group law for E(K): 4? = 23 + Ax + B, char(K) # 2,3
I.  Identity: p +g 0 =00 4+ p = 0,V p € E(K).
II. TInverse: If p = (x,41) € E(K), then (xq,41)+E (x4, —11) =. Where
(21, —4,) is the inverse point of p denoted by —p. Moreover, the opposite—p is in
E(K)
III.  Addition of distinct point: Let p = (x4,41),Q = (x,%,) € E(K), where p # +Q.

Then p + Q computed using the following mathematical expressions.

12



R=p+gQ = (x3%s3)
where
x3 =m? —x; — 2, and g3 = m(x; — x3) — Yy
and m denotes the slope of line through the points of p and Q which is :

Y2 — Y1
m=——-,
Xy — X

IV.  Doubling: Let p € E(K) where p # —p, then doubling of the point p is denoted by
2p and computed by the following mathematical expression.
2p=p tpp = (¥5,93)
where
X3 =m? — 2x; and ¢35 = m(x; — x3) — Y4
and the slop m of the line tangent to the curve in the point p is:
322+ A
m= 7
Example 1.5. (Elliptic Curve over the prime field). Consider the elliptic curve E over the
prime field Fp, with the parameters A =1,B = 11 and P = 41

y>=x23+1x+ 11 (1.20)

The Agp= —16(4A3 + 27B2) = —16(4(1)3 + 27(11)%) = —52,336 % 0 mod 41, which

shows that the curve is smooth. The points on E(F,,) are given below:

Table 1. No. of Points on [E(F,,)

o (8,11) (16,33) (20,35) (36,2)
(21,2) (8,30) (17,12) (22,12) (36,39)
(2,29) (10,18) (17,29) (22,29) (37,5)
(3,0) (10,23) (18,11) (24,1) (37,36)
(5,10) (11,0) (18,30) (24,40) (39,1)
(5,31) (15,11) (19,1) (25,9) (39,40)
(7,19) (15,30) (19,40) (25,32) (40,3)
(7,22) (16,8) (20,6) (27,0) (40,38)

1.2.4 Group law for Non-Supersinguler IE/sz: y?* + xy = 23 + Ax* + B.

I.  Identity: p +gpo0 =00 +pp =00,V p € Fym.

II.  Inverse: If p = (x,4,) € Fym, then (xq,41)+g (21,2, + 1) =c0. Where
(24, 21 + 11), is the inverse point of p denoted by —p. Moreover, the opposite point
—p € E(K).
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II.  Addition of distinct points: Let p = (x1,%1),Q = (x2,%,) € Fym, Where p # FQ.
The addition of p and Q is defined as follows:

R=p+gQ = (x343),
where
x3=m’+m+2x; +2x,+Aand y; = m(x; +x3) + x5 + 44
and m as denoted is the slope of the points of p and Q defined as:

Yo + Y1
m=-—
X, + x4

IV.  Doubling: Let p € F,m. Where p # —p, doubling of the point p is denoted by 2p

and computed by the following mathematical expression.
2p =p trp = (43,4s3),
where
753 =m2 +m+Aand’y)3 == (m‘l‘ 1).’/63 +x12

and the slop of the point p = (x4, 41) € F,m, is defined as follows:
+x
n = (¢4 1) /x1

Example 1.6. (Non-Supersingular Elliptic Curve over £ /Tzs)' Consider the finite field F,s

and p(X) = X° +X? + 1 is the reduction of the polynomial in F,s. If 7 is a root of

p(X), we have p(1) = 0, which implies that

p(t)=1> 412 +1=0
=12 +1 (1.21)
Each of the 31 nonzero elements of F,s will now be interpreted using equation (1.21) as shown

in Table 2. Take note that we need just five coordinates to define each of the P = 2°

components of F,s.

Consider the non-supersingular elliptic curve with parameters A = t1! and B = 71° defined
as follows:
y?> +xy =23 +1t11x? + 710 (1.22)

The number of rational points of the curve of equation (1.22) is shown in Table 3 below.
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Table 2. Elements of F,s

S.no Element in GF(2™) Polynomial Coordinates
0 0 0 00000
1 T T 00010
2 72 72 00100
3 73 73 01000
4 74 74 10000
5 7° 241 00101
6 o 347 01010
7 77 4+ 72 10100
8 78 2+1+73 01101
9 7° t+r+ 13 11010
10 710 ™ +1 10001
11 711 2 +7+1 00111
12 712 3 +12 41 01110
13 713 ™+ 12+ 13 11100
14 714 ™ +2+13 41 11101
15 715 P44+ +1 11111
16 716 t+r+3+1 11011
17 717 ™+ +1 10011
18 718 T+1 00011
19 719 241 00110
20 720 3 4+ 72 01100
21 21 44173 11000
22 722 t+12+1 10101
23 723 o424+ 74+1 01111
24 724 A A LI 11110
25 725 ™ +13+1 11001
26 726 ™+ 441 10111
27 727 B +7+1 01011
28 728 41241 10110
29 729 3 +1 01001
30 730 41 10010
31 731 1 00001

Table 3. Number of valid points on F s

0¢)

(01011,11110)

(11001,01101)

(00000,00101)

(01100,00111)

(11001, 10100)

(00100,11010)

(01100,01011)

(11010,01100)

(00100,11110)

(01111,10011)

(11010,10110)

(00110,10001)

(01111,11100)

(11011,01000)

(00110,10111)

(10010,01001)

(11011,10011)

(00111,01001)

(10010,11011)

(11100,00110)

(00111,01110)

(10011,00000)

(11100,11010)

(01000,10110)

(10011,10011)

(11101,00010)

(01000,11110)

(10101,00011)

(11101,11111)

(01010,00100)

(10101,10110)

(11111,00101)

(01010,01110)

(11000,00101)

(11111,11010)

(01011,10101

(11000,11101)
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1.2.5 Group law for supersingular ]E/sz: y? + Cy = % + Ax + B.

I.  Identity: p +po0 =00+ p =00,V p € Fym.
II.  Inverse: If p = (x1,41) € Fym, then (x4, 41)+E (21,41 + C) = 0. Where(x;, 4, +
C) is the opposite —p of p denoted by. Moreover, the opposite —p is in E(K).
II.  Addition of distinct Points: Let p = (x1,4,) € Fym and Q = (x,,4,) € Fom Where
» # +Q. Then the sum of p and Q is:
R=p+pQ=(x34s3),
where
X3 =m? +x; + x,
Y3 = C+yy +m(xy + x3)
and m is denoted as the slope of the points of p and Q defined as:

Yo t+ Y1
m=-—
x5 + x4

IV.  Point doubling: Let p = (x4,%41) € Fom. Where p # —p, doubling of the point p is
denoted by 2p and computed by the following mathematical expression:

2p = ptpp = (43,43),

_ (x12+A)?
- C

(x1°+A)

where X3 c

andy3=( )(x1+x'3)+y)1+(C.

1.2.6 Scalar multiplication of point
Using the previously established operation, let G represent the abelian group formed by the
points on the elliptic curve E(Fp). By continually adding the point P multiple time equal to
the scalar's value, we may define the multiplication by scalar T on E(Fp).

T

1.2.7 Order and Structure of the Group
Let the elliptic curve E over the field Fp. The order of E(Fp) represented by #E(Fp), which
shows the number of points on the given elliptic curve E(Fp). Moreover, #E(Fp) € [1,2P +
1] because for each value of the x-coordinate, there are precisely two solutions in Fp, of the
Weierstrass equation (1.1). Tighter bounds on #E(Fp) are provided by the following Hasse's
theorem.
Theorem 1.7. Let the elliptic curve E over the field Fp. Then

P+1—-2VP <#E(Fp) <P+ 1+2VP
The interval [P + 1 — 2v/P, P + 1 + 2v/P] is called the Hasse interval.
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What types of groups can exist as group [E(Fp) is a natural question. The following two

theorems answer to this question.

Figure 3. Number of points on elliptic curve module P

Theorem 1.8. Let P = P™, where P is the characteristics of Fp. And let N =P +1—t.

Then there is E(F p) such that N = #E(F p) if and only 1f2\/; > |t| and the following
conditions hold.
i. gcd(a,P)=1

ii. Ifmisevenandt = iZ\/F.

iii. Ifmiseven, P % 1mod 3 and t = i\/ﬁ

iv. Ifmisodd, P=3o0r2and t = iPm+1/2.
v. Ifmiseven, P % 1mod 4 andt = 0.
vi. Ifmisoddandt = 0.

Theorem 1.9. Let V' be the order of the elliptic curve over a finite field Fp. Write N =
PENLIN, with Ny /N, and P#NiN,. Then there is an elliptic curve E(Fp) such that

E(Fp) = ZNl @ ZNZ D Zpe.
If and only if

i N7 = N, for the case of (ii) with Theorem 1.8.

ii.  Ny/P — 1 for the cases of (i, iii, iv, vi ) with theorem 1.8.

Example 1.10. (Order of elliptic curve over the field (¥4,) ). Consider the elliptic curve [E
over the prime field with P = 41 and A, B € F,; of equation:

y? =23+ Ax + Bmod 41.
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From the list of Table 4 shows every pair of coefficients (A, B) from the field F,; there exist
integers V' in the Hasse interval [41 +1—-2v41,41+1+ 2\/41] = [29.19376,54.80624].

Table 4. Admissible order of elliptic curve over E(F,,)

¥y AB [ N[ AB [N AB [N¥] AB [N (A, B)
39| (1,3) |36 (1030) | 44 | (2334) |42 (3538) | 44 (19,4)
44| (25 | 48] (31,33) | 40 (5,8 | 43| (11,33) | 36 (10,30)
42 (03 |50 a721) | 39| (617) | 42| (1332) [33 (11,32)
43| (74 [ 42| (018 | 34 | (12,14) | 40| (2434) [ 33 (12,2)
36 | (96) | 32| (250) | 48 | (831) |50 (2829 |33 (13,4)
48 | (11,13) | 42 | (2436) | 48 | (9,23) |52 (2030) [ 40 (4,35)
49| (21,35) [ 51 | (1620) | 39 | (27,7) | 49| (39,19) | 48 (7,27)
42| (8 | 43] (1528 |36 | (91 |42 (141D |44 (8,40)
51 (18 [ 34| (1328) | 40 | (247) |46 (3917) | 41 (11,40)
41| 38 [40] 12 52 | (12,19) [51] (17,38) | 48 (39,40)
40| (58 | 47| (147 | 40 | (2538) | 40| (2538) | 42 (22,39)

Example 1.11. (Group Structure of elliptic curve over the field (F3;) ). Let the elliptic

curve with the parameters P =31 and A=1,B =3 € F3; given by the following

mathematical expression.

y? =x3+ 1x + 3mod 31

The number of points ' = #E(F5,) = 41. Since the group order is prime, the given elliptic

curve is a cyclic group and any point from the given elliptic curve except for co, generates all

the points of E(F3;). For instance, suppose that the point p = (6,15); the successive

multiplication of the point p yield all the points of the group, as shown in Table 5.

Table 5. Successive multiplication of the point p = (6,15)

» = (6,15) 10p = (3,23) | 19p =(23,14) | 28p=(428) | 37p = (12,10)
2p = (27,11) 11p = (5,3) 20p = (30,1) | 29p =(9,20) | 38p = (18,26)
3p = (18,5) 12p =(9,11) | 21p=(30,30) | 30p=(528) | 39p = (27,20)
4p = (12,21) 13p=(43) | 22p=(2317) | 31p=(3,8) 40p = (6,16)
Sp=(148) | 14p = (26,20) | 23p=(21,27) | 32p = (24,5) 41p = (o)
6p = (20,5) 15p = (1,25) | 24p = (22,28) | 33p = (17,29)
7p = (1518) | 16p = (28,29) | 25p = (28,2) | 34p = (15,13)
8p = (17,2) 17p = (22,2) 26p = (1,6) | 35p = (20,26)
9p = (24,26) | 18p = (214) | 27p = (26,11) | 36p = (14,23)

1.3 Hyper Elliptic Curve

Theoretically, all established public key cryptosystems are less secure than Hyper Elliptic
Curve Cryptography (HECC). This is because, even when compared to Elliptic Curve

Cryptosystems with equivalent key lengths, there is a high amount of mathematical complexity.
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The mathematical foundation of a hyperelliptic curve (HEC) is thoroughly addressed in this
subsection, and effective group operation methods are investigated. The group law in the HEC
cryptosystem involves addition and doubling in the jacobian of the curve. Cantor provided the
algorithm for the group operation. Further detail of this subsection can be found in Chapter 14
of H.Cohen and G.Frey [4], Chapter 21 of Stein and Alf [5] and from the research article [6]—
[10].

Definition 1.12. (Hyper Elliptic Curve ). A hyperelliptic curve C over the field K of genus
G > 1 is defined by the following equation.

C:Y? + H(x)Y = F(x). (1.24)

Where H(x), F(x) € K[x] polynomial of degree G and 2G + 1, respectively. And there is no
such point on the curve C over the algebraic field L of K, which fulfills the following

conditions defined in equations 1.25 and 1.26, respectively.

Definition 1.13. (Rational, finite points, point of infinity of hyperelliptic curve). A point
P = (x,4) € L X L is said to be the rational point of the hyperelliptic curve C, which satisfies
equation 1.24. The collection of all points with a point of infinity oo is called the set of

[l —rational points represented by C(LL).

Figure 4. Geometric interpretation of different HEC
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1.3.1 Group Arithmetic Operation on Hyper Elliptic Curve

In elliptic curves, we may construct a group by connecting the points on the curve with the
point of co. However, in HEC, the collections of points with the point of co cannot form a
group. To make a group concerning the points of a hyperelliptic curve, we must first take the
sum of the points as group components and then execute point addition like (p; + p,) D
(a1 + g3) = (xr; + ). The symbols @ and + do not represent xor and addition operations,
respectively. Figure 5 below depicts an HEC for a genus 2 over the finite field Fp, defined by
the equation C: Y? + H(x)Y = F(x). Before performing a group operation on this curve

equation, we must satisfy the following five conditions.

i. H(x), F(x) € Fpl[x].
ii.  F(x) must be a monic polynomial, and the degree of F(x) is 2G + 1(odd).
iii.  The curve C(Fp) does not have any singular point.
1v. H(x) = 0 if the field's characteristics are not equal to 2 and deg(H) < G, if the field's
characteristics are equal to 2.
v.  If the field's characteristics are equal to 2, then Y? = F(x), is monic, odd degree and

square free.

Figure 5. Group operation of HEC of genus 2.

As previously stated in section 1.2.2, the chord and tangent approach cannot be applied in the
hyperelliptic curve. Unlike the chord and tangent approach in the elliptic curve, the Jacobian
curve intersects at 5 points instead of just 3 in the elliptic curve. To construct a group, we use
the quotient group which is the sum of the crossing points of the Jacobian variety curve with

the hyperelliptic curve by the subset of the points that lie on the HEC.
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1.4 Elliptic Curve Cryptography

Researchers spent much time investigating cryptographic systems based on more trustworthy
trapdoor functions. However, in 1985 they successfully found a new approach, one based on
elliptic curves, which was then proposed as the group's foundation for the discrete logarithm
problem. Their application in cryptography relies mainly on the presence of a group law, which
enables them for public key cryptography because their discrete logarithm problem is
challenging as compared to the size of the parameters they employ. Therefore, elliptic curve
cryptography (ECC) is a potent cryptography approach that may be used as an alternative to
RSA. Using the core arithmetic of EC creates security between key pairs for public key
encryption. ECC slowly gained popularity in recent years due to its smaller key size and ability
to maintain security, as opposed to RSA, which uses prime numbers instead of elliptic curves.
In light of the growing size of keys, this trend is likely to continue as devices increasingly
depend on mobile resources to remain secure. Comparatively to RSA, ECC relies on the
mathematical structure of EC over finite fields to construct public key cryptographic systems.
Therefore, ECC generates keys that are mathematically harder to crack. In this respect, ECC
has been deemed the leading-edge implementation of public key cryptography and is
considered more secure than RSA. The adoption of ECC also ensures high levels of
performance and security. It is because ECC is increasingly used as websites strive to enhance
customer data security and mobile optimization at the same time. Furthermore, the applications
of ECC, like the discrete logarithm problem of EC (ECDLP), the Diffie- hellman key exchange
protocol based on EC, and the analogue of the EC-ElGamal public key cryptosystem are

covered in this subsection.

The general references of this sub-section from chapter 5 of Hoffstein, Jeffrey, Jill Pipher,
Joseph H. Silverman [11], Chapter 1 of Lawrence Washington [2], section 3 of Olga shevchuk
[12] and [13]-[15].

1.4.1 Elliptic Curve Encryption Decryption

Since ECC is asymmetric key cryptography, the secret and public key pair generation must be
required for communicating with two parties, Alice and Bob, over the insecure channel. Both
parties initially agreed on standard EC over the finite field and generator G of large order. The
generation of private and public keys is computed as follows. First, Alice and Bob choose their
private key A, and B,, respectively. The following mathematical expression executes the

generation of the public key.
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A, = A, G, B, = B, G. (1.27)

If Bob wants to send the message P, to Alice. Bob encrypts the message P,,,, using the Alic

public key pair. The mathematical expression of the encrypting procedure defined is followed:
Cm = {KG, KA, +5P,, }. (1.28)

Where K is another random integer that ensures that even for the same plaintext point, the
encrypted message generated by equation (1.28) differs each time, which makes it difficult
for anyone trying to decipher the message correctly. Alice decrypts the message P,,, by
subtracting the coordinate of X'G multiplied by A,,.

P ={ PuteKA, — AKG}. (1.29)

1.4.2 Elliptic Curve Discrete logarithm Problem (ECDLP)
Generally, to build the cryptosystem based on the discrete logarithm problem (DLP) over a
finite field F*p. Alice publishes the numbers 4, the generator g and the exponent x to solve

the following congruence relation
h = g*.

Let us consider how Alice could accomplish a similar task using an elliptic curve E over Fp.
In a discrete logarithm problem, Alice's adversary Eve has to find an integer x such that g and

4 are elements of the group F*».

x—time multiplication
Eve must figure out how many times g multiplied by itself to reach 4.

With the above mathematical formulation, which is based on the finite filed multiplicative
group, Alice executed the same work with points of E(Fp), for this, she picks the two points
that say R, and R, in E(Fp) and that private key of Alice T that makes

:Rl = Rz +[E R2+[E :R2+[E ey ane +[E Rz = TRZ (131)

T—times EC— addition

Then the eavesdropper, Eve, need to check out the sceat key T, by guessing how many time

the point R, must be added to itself to get the point R;.
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Definition 1.14. (ECDLP). Let R, and R, be the two points in E(Fp). Then the ECDLP is the
problem of finding an integer T such that R, = TR,. By analogy with DLP based on finite

field F*p, the representation of integer T is defined as.
T =log, R, (1.32)
And the integer T is said to be the ECDLP of R, with respect to R,.

1.4.3  The Elliptic Diffie-Hellman Key Exchange

In order to exchange data using a symmetric encryption technique like DES or AES, Alice and
Bob need to come to terms with a shared key. For instance, Alice and Bob may be banks that
need to send financial data. Using a courier to deliver the key is impracticable and time-
consuming. Additionally, since Alice and Bob are presumed to have never met before, their
sole means of communication are open channels. According to Diffie and Hellman, the

following technique can create a shared secret key between the two communicating parties.

Procedure: Before the transmission of the data, Alice and Bob agree on the given E with
parameters A, B € Fp, and the base point G of large prime order (usually the point G to be
chosen of large prime order).

y? =23+ Ax + Bmod P

Alice and Bob choose the secret integers T; and T, and compute their public keys by the

following mathematical expression.
A, =T1G, By, =T,G (1.33)

After that exchange their public keys A, and B,, to execute the shared secret key between
Alice and Bob, both the communicating parties multiply their secret keys to compute T,A,,
and T, B,, respectively, which they may utilize as a key to secretly communicate using

symmetric encryption.
T, Ay =T, T1(G) = T1 B, (1.34)
The key exchange for elliptic Diffie-Hellman is summarised in Table 6.

Example 1.15. Let the two communicating parties, Alice and Bob, decide to use ECDH key
exchange protocol with the following parameters A = 1,B = 3, P = 31 and point G =
(15,13):

y? = 23+ 1x + 3 mod 31.
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Alice and bob choose their private keys values T; = 13 and T, = 17 and then,
Alice computes A, = 13(15,13) = (24,5) € E(F31).
Bob computes B, = 17(15,13) = (12,21) € E(F3,).

Both Alice and Bob send their public keys A, and B, over the insecure channel and, finally,

computes the shared secret keys.
Alice computes T; B, = 13(12,21) = (5,3) € E(F;31).

Bob computes T,A, = 17(24,5) = (5,3) € E(F31).
Eve can use the ECDLP to figure out Alice and Bob's secret. The only information that the
cavesdropper Eve observes is the given EC, the finite field Fp and the points, A, and B,,.

As a result, Eve must address the following problem.

Definition 1.16. (ECDHP). Let the elliptic curve E over a finite field Fp and consider the base
point G € E(Fp). The problem of calculating the value of T,T; (G) from the known values of
T,G and T, G is known as the Elliptic Curve Diffie-Hellman Problem (ECDHP).

Table 6. ECDH key exchange protocol
Public Parameters

Large prime P, E: ¢* = 3 4+ Ax + B, and the point G(large prime order)
Secret reckoning

Alice Bob
e Chooses a secret integer T;. e Chooses a secret integer T,.
e Computes the public point A, = TG e Computes the public point B, = T, G
The Public exchange of values
Alice sends A}, To Bob: I Ap
B, — : Bob sends B, to Alice
More private reckoning
Alice Bob
Computes the point T; By, Computes the point T,A,,

Shared secret key
The shared secret key between Alice and Bob is: T, A, = T, Ty (G) = T; By

1.4.4 The Elliptic EIGamal Public key Cryptosystem
Alice wants to communicate with Bob. The first thing Bob does is that he creates his public
key. To make the discrete log problem difficult for elliptic curve E(Fp), he selects the elliptic

curve E over a finite field Fp and choose the base point G € E(Fp). Bob also picks the secret
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integer T, and computes the public point B, = T,G and publish the curve E, the point G and

the finite field Fp, over the public channel. To send a message to Bob, Alice downloads the
public parameter. The plaintext point R € E(Fp). After that, Alice chooses the ephemeral key

K and calculates the two cipher texts by the following mathematical expression.
C;=KG and C;,=R+K3B,
Send the pair of cipher text (C;, C;) to Bob, who computes
C; —T2C = (R+KB,) — TL(KG) = (R + K(T,G)) — TL(KG) = R.

1.5 Complexity Theory

Security is an important component of any cryptosystem since it determines how well the
encryption method can resist attacks of different types. The complexity of the encryption
algorithm is theoretically involved. It is generally based on some hard problem that is difficult
to solve, and an encryption algorithm is devised. These problems relating to classical
encryption were either number theoretic or combinatorial, whereas group-based cryptography
might relate to group theory. For example, the discrete log problem is a legitimate
cryptographic problem since it is hard to solve theoretically and practically. Cryptography
uses a hard-to-solve problem to construct a trapdoor function whose inverse is connected to
the solution. We would need the secret key for this trapdoor function to accomplish the
challenging task. Complexity theory is an essential part of theoretical computer science that
is relevant to quantifying the difficulty of a problem. In this section, we discuss some basic

notations related to complexity theory.

Moreover, this section briefly discusses the basic definition of complexity theory. The
intention of this section is not to describe the implementation guide of the algorithms.
However, it sketches some crucial notions and results of complexity that are used later in this
thesis. More detail of this subsection from chapter 3 of Baumslag, G., Fine, B., Kreuzer, M.,

& Rosenberger [16], chapter 1 of Mollin, R. A. [17], chapter 11 of Schneier, B. [18].

Definition 1.17. (Computational problem). A problem specified by a specific form of input
and output is called a computational problem. The computational problem input and output
instances are particular instances. The size of the computational problem input is the number

of bits necessitated to symbolize the input.
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Definition 1.18. (Computational Complexity). The algorithm's complexity is the maximum
number of bit operations (addition, subtraction, division and multiplication of any two binary
digits) necessities for the algorithm to solve the computational problem. The upper bound on
the complexity is denoted by big oh ‘O’ notation. Whenever the complexity estimate of the
algorithm is given in terms of O then we assume that there are infinite numbers of countable
inputs to that algorithm. The computational complexity of an algorithm, or just complexity, is

the total number of bit operations required to accomplish the algorithm's performance.

Definition 1.19 (Big oh O notation). Let # and g be two real-valued functions #,g: N —
Z*, then f = 0(g) if there exists ¢ € R~ and a natural number V', such that

F(m) < cg(m). forallm = N

Similarly, if #(m, m, ..., m;) and g(m, m, ..., m;) be two functions from N¥ to R -,
then # = O(g) if there exists ¢ € R, and Ny, Ny, ..., N, € N such that §(m,, m, ..., m;) <

cg(mq,m, .., my,) withm; > N;. forall 1 <i < k.

Theorem 1.20. (Properties of O). Let # and g be two real-valued functions #,g: N — 71,
then
i. Ifc€R.g thencO(g)=0(g).
i. 0(fg)=0(£)0(g).
iii. O(max{fg}) = 0(#) + 0(g).

Example 1.21. 12m3 + 1012 + 177 + 122 = 0(m?), sin(m) + cos(m) + m = 0(m),
2™ + m!% = 0(2™) and log,,(m) = 0(log(m)).

Definition 1.22. Let # and g be two real-valued functions #,g: N — Z*, then # = 0(g) if

limit2 = o,
e g(m)

The function may be expressed as; # = O(g) if there exists # € N such that #(m) =
0(g(m)log(g(m))™). The function § = Q(g) ifg = O(f) and § = O(g) if § = 0(g) and
g = 0($).

Definition 1.23. Assume that A is an algorithm and that 7" (#1) is the maximum running time

that <A may take to solve any problem with the size of m bits.

i.  An Algorithm A is said to be polynomial time(PT), if there exists a positive integer

4 such that T(m) = 0(m?).
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ii.  An Algorithm A is said to be super polynomial-time(SPT) if for all ¢ € R, the
upper bound T (m) = Q(m°).
1ii.  An Algorithm A is said to be exponential time(ET) if there exists a constant ¢ € R -4

such that T'(m) = 0(c™).

The above definition is for uniform complexity, as all the problem instances are solved
through a single algorithm A. In non-uniform complexity, for each positive integer 71 and
input A (m) of polynomial-size, if x is a string of m-bits instance of the computational

problem then the algorithm A solves A (x, £ (m)) instance.
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Chapter 2

An Integrated Image Encryption Scheme Based on Elliptic

Curve

The transmission of multimedia information, such as digital images, audio data, and video, via
various networks significantly increased due to the rapid development in network evolution.
However, mostly the data transmission procedures occurred through unsecured networks.
Therefore, there is a chance that information might be lost, intercepted (i.e., copied and
distributed illegally), and can be altered maliciously [19]-[22]. Over the internet, digital image
is an essential source for data communication. For instance, in the medical industry, images
are used for visualizing different analyses and diagnosing various diseases. These analyses are
transmitted in the form of images. The patients use these images and get consultations from
medical specialists anywhere around the globe. So, in this case, integrity and confidentiality
violation are very dangerous for the patients.

ECC has recently been used for image encryption applications. RGB image encryption based
on ECC is investigated in [13]. The presented scheme utilized DNA encoding and decoding
for RGB image encryption and decryption followed by elliptic curve Diffie Hellman. The
algorithm presented in [23] employed a cyclic group of an EC with the combination of chaos.
In [24], Bellare and Rogaway introduced a hybrid cryptographic architecture named Elliptic
Curve Integrated Encryption Scheme (ECIES). The ECIES is a pair of key-derivation
functions, encryption with a symmetric key algorithm, and a Massage Authentication Code
(MAC) algorithm. Since the message is sometimes difficult to encode in the points of the curve,
so challenging to encrypt. Contrastingly, one can easily encrypt any message using a
symmetric-key scheme of ECIES. This is a substantial benefit of ECIES over the Massey-
Omura(MO) and ElGamal Public key approaches [24]. In [25], the author presented a
symmetric encryption technique based on the improved version of ECIES for the application
of medical images. However, the asymptotic complexity of the suggested technique is slightly

increased due to the serval time of scalar multiplication of the curve points.

In view of the shortcomings above, we proposed a novel integrated image encryption algorithm
in this chapter. The proposed scheme consists of a secure key exchange protocol, hash
algorithm, and symmetric key algorithm. The exchange protocol is used for the communication

of secret keys among the communicating parties. The hash function is used for data integrity,
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and the symmetric algorithm is used for data confidentiality. The confusion and diffusion
module of the symmetric encryption is achieved by using simple operations that provide
optimum security with less computational effort. Furthermore, the security performance of the
scheme is thoroughly analyzed using the available tools. The resultant output demonstrates the

scheme's efficiency compared to the existing scheme

2.1 Elliptic Curve Discrete Logarithm Problem(ECDLP)

Let [Ea'bq be the elliptic curve over the finite prime field F,, where q is prime and a,b € F.
The DLP for an EC is defined as Given a points Q;, and Q, on E*P ¢ to find the positive integer
M, if it exists, such that Q, = MQ, [26].

2.2 Secure Hash Algorithm

The NIST made public a category of hash functions called Secure Hash Algorithms (SHA).
Applications of SHA are predominantly located in integrity security services [27]. One well-
known SHA algorithm is SHA-256, which generates message digests with 256-bit lengths. The
proposed algorithm generates the Hash of key of length 256-bit between users A and B. The
first 128-bit is utilized for proposed symmetric key encryption, while the 128-bit length key is

used for authentication.

2.3 Enhanced Elliptic Curve Integrated Encryption Scheme (E-ECIES)

The enhanced elliptic curve integrated encryption scheme E-ECIES was used to improve the
secret parameter negotiation phase. The improvement of the initialization vector is to be added
with the key to prevent repeated data encryption, making it harder for a hacker to detect patterns
and break encryption using a dictionary attack. After that, the symmetric key encryption is
extracted by the secure SHAH-256. The detailed process of the E-ECIES is summarized in the
below subsection. Lets user A wants to send a plan-image M of size U X V to user B over the
insecure channel. User B first creates his public key by choosing the EC over the finite field
Fy of prime order that makes the discrete log problem for EC(F,)is difficult, and he picks a
point p on EC that is generally of big prime of order . He then calculates the public key
PB = mp using a secret number m. The public key parameter of user A is {Fq, EC,N,p, P5)
while the private key of user B is m. The following steps are computed to transmit the data

between user A and user B.

2.3.1 User A Computation

e To encrypt and send the message, user A computes the following:
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e Choose a private key n? € [1,q — 1].

e Computed the public key P4 = n4G with timestamp 7.

e Compute the P4, = n4P5,

e C(Create a random initialization vector V with the increment of the prime number for
every block of message, which is chosen for the private elliptic curve in the proposed
symmetric key encryption function (PSKEF) to prevent the repetition throughout the
encryption process; the details description of PSKEF is given in the following
subsection.

e Compute the Hash to extract the symmetric key; the mathematical description of the
hash function is given below.

Hash(PA(x ® y), P4,V ) = H, = K{||K, (2.2)

e Compute the proposed symmetric key encryption function with Kj.

C = Encg,(M) and T = (C,Ky)

e Send < Hy, P4, 7,4, 7> to user B.

2.3.2 User B Computation

.. . . . B
In response to receiving the cipher image from user A, user B creates a new timestamp J; "~ and

follows the below bullets points:

e User B verifies |TOB — 7| < t. If the condition does not hold user B aborts, or else
he sustained. The duration of ¢t is a short predetermined time.

e User B computes P4;=mP* using the knowledge of private key .

e Calculate the Hash(P4,,P4(x @ y),V)) = H,. If H, # H,, when it does not hold, he
passes over the session. Otherwise B continues the remaining steps of the protocol.

¢ Generate the symmetric key H, = K;||K5.

e Computes H,(C,K,) =7;. If 7; # T, user B rejects the cipher image; otherwise,
continue the protocol steps.

e Calculate the plan-image M = Decg, (C), where Decg, is a symmetric key decryption
function. As a part of user B computation, the second last step involves authentication,

which is an essential aspect.

2.4 Proposed Symmetric Key Encryption
In this section, we proposed a new symmetric key encryption algorithm based on E-ECIES.

The symmetric key encryption algorithm encapsulates the following steps to perform image
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encryption. Initially, use secure SHA-256 to generate the key using the following mathematical
formula.

Hash(PA(x @ y), P4,V ) = K, || K.

Where K; followed by K,. To perform the encryption using key X; the following steps are to
be done. For the K; = 128 bit is utilized for the encryption, while the 128bit of K, are used
for authentication purposes. Initially, the first four-byte, b,b,bs;b, are utilized for the
permutation of the plain image using affine mapping. The mathematical construction for the
permutation of the plan image using affine mapping is defined as

PZm XZm 2 Zm X Zm
pU,7) = (17"
4" = by(i) + by, 7' = b3(4) + ba. (2.2)

Where b , bsthe unit's elements are z,,,, while, b, and b,, are any elements in from z,,. The 4’

and 7', the output of the affine transformation, which shows the permuted pixel of the image.

2.4.1 Diffusion Phase Based on Elliptic Curve Pseudo-Random Number (ECPRN)

The next six bytes bsbgb;bgbgb1ob11 b1 1s again utilized for the permutation purpose using an
elliptic curve parameter with the large prime p, which is the concatenation of the last two bytes,
i.e., p = by1]||b12- If the concatenation of the last two bytes is exactly not a prime number, then
subtract the bytes from the concatenation last two bytes until it gets a prime number. After the
generation of points on each elliptic curve, pick the y-coordinate of the first EC, i.e., Ef t and
get the first sequence, namely K; Similarly, we can compute the K, and K; sequences by
choosing the y-coordinate of E;/ LE ;( " respectively. After that, pick out K; and X, and again
permute the affine permuted image A and then bit-xor with J; sequence to get S;, where S,
represent the red channel of a permuted image. Next, choose the X, K3;and permute the S and
bit-xor with ¥, to get S?; where S?; shows the permuted image green channel. Finally, get
$3, using the sequences of K3, X; and bit-xor with K. The mathematical formula for the

above X;, K, and XK execution is defined as:

K, =Efi:’y2 = x3 + bgx + bg mod p. (2.3)
K, = E;}: Y% = x3 + b,x + bg mod p. (2.4)
Ky = E} Y2 = x3 + box + bygmod p. (2.5)
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Where the length of each sequence is 1 X mn mod m . The pixel scrambling and diffusion of

each layer of the above affine permuted image are defined in eq(2.6-2.11)

Aty = AT (K, K, (2.6)
Al = K, @ St (2.7)
A% = AY,( K, Ks), (2.8)
A2 = X, @ S2,. (2.9)
A= AP (K, Ky, (2.10)
A3, = K, @ SB,. 2.11)

Concatenate all the above three-layer and get one of the permuted images.

2.4.2 Confusion Module Based on Affine Power Affine Permutation
After that, the last four-byte bi3bi4b15b;¢ 1s utilized for the confusion phase (S-box). To
construct the s-box, we use affine power affine transformation (APA) [28], using the following

mathematical construction.
S = F28 - F28
S =A0(POA"). (2.12)

Where, A = by3(x) + b1y, A’ = bis(x) + by are the affine surjection [34]. Where P still

nonlinear components, which is to be defined as:

P(x) = x2"-2, (2.13)

5% is a bijective permutation using any

For n = 8 the power polynomial becomes P(x) = x?
primitive polynomial in GF (2%). Moreover, the elements b;3, by4, bis, b1 € FE, so we can
construct 232 new APA S-box represented by S%? 4, with strong algebraic properties. The
proposed APA S-box with different parameters is given in tables 7 and 8 respectively.
Furthermore, we analyzed the S-box not only by the coordinate functions but also by evaluating
all the security analysis by their component function and comparing it with excellent literature
[29]-[37]. The comparison analysis in table 10 shows that the APA S-box has excellent
algebraic properties and affine equivalent to the AES S-box [38]. Meanwhile, the only power

5

permutation P(x) = x2°%, some weak properties like fixed point and opposite fixed are given

in table 10, which improve by the affine parameter chosen by the proposed symmetric key
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extracted from the Hash of the E-ECIES. After the substitution phase, we get a cipher image.
The flow diagram of the E-ECIES is illustrated in Figure 6.

Figure 6. Flow chart Proposed E-ECIES

2.5 Security Analysis of the Proposed Symmetric Key Encryption

This section compares our proposed symmetric encryption algorithm security and performance
against the findings of several experiments in [13][25][29]-[37][39]-[41]. The enhanced
version 1s subjected to several security analyses to assess the suggested work randomization
and prove its resiliency against various known attacks. We take the substitution permutation
network (SPN). The permutation phase is achieved by three different kinds of elliptic curves
utilized for the permutation as well, as we add the nonlinear component APA S-box for the
confusion phase. In the APA S-box, the encryption is evaluated by substituting uncorrelated
encrypted data for plan image data. Our suggested APA S-boxes are examined using the
standard S-box evaluation criteria in the results and evaluation section, which include
nonlinearity score(NLS), linear approximation probability(LP), bit independence
criterion(BIC), fixed point(FP), opposite fixed point(OFP), autocorrelation(AC), maximum
cycle length (MCL), strict avalanche -criterion(SAC), linear structure(LS), linear and
differential branch number(LDBN), and differential approximation probability(DP).

Moreover, in other literature[29-35], the S-box analysis is evaluated by their coordinate
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function, but the in our proposed work, we implement all the results on component functions
well; in the case of n = 8, we examined 2" — 1, component function by their different S-box
analysis. While the permutation phase evaluates the diffusion properties, including two
effective tools, namely, the number of pixels change rate (NPCR) and unified average changing
intensity(UACI). The portable PC with Intel(R) Core(TM) i17-6600U CPU @ 2.60GHz 2.80
GHz is used to conduct the various evolution tests using different colored images. Figure 7
shows the suggested E-ECIES plan and corresponding encrypted images.

2.5.1 Nonlinearity Score

The nonlinearity score of function or S-box, S = F," - F,™, is represented by N LS (S) and

defined by [42].
NLS(S) =21 — §(|Wazsh(u, ) (2.14)
Su)=v for weFrR",veFR™
The VLS of APA S-box is 112, as shown in Table 10.

2.5.2 Strict Avalanche criteria

Webster and Tavares introduced the SAC idea [43]. The strict avalanche criterion (SAC) is the
essential component of the S-boxes. Informally, an S-box satisfies SAC if one input bit is
altered. 50% of the output bits must also be changed [43]. The mathematical description of
SAC is defined in eq (2.15).

S=F"->F"
S(x) + S(x + a) is balanced for all a, wt(a) =1 (2.15)

2.5.3 Bit Independence Criterion

The concept of Bit independent creation(BIC) was also developed by Webster and Tavares
[43]. For any two boolean functions #%, #/, of an S-box, if the bit-xor of both functions, i.e.,
#° @ #/, is highly nonlinear and satisfies the criterion of SAC. Then, when one input bit is
changed, the correlation coefficient of each pair of output bits may be extremely near zero. So,
by confirming that #* @ #’(i # j) it holds, we may find out the BIC of the S-box of any two
output bits that satisfy the SAC criterion. Table 10 shows the performance of the new APA S-

box and the comparison with excellent existing literature.
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2.5.4 Differential Approximation Probability
Measurement of differential uniformity is the differential approximation probability (DP) of
the S-box, which is defined as:

+{a € x|S(a) + S(a + Aa = Ab)}

Zm

DpS(ha —» M) =

(2.16)

Where Aa, A# is the input differential and output differential, which implies that an input
differential Aa; must precisely map to an output differential A¢; Order to guarantee a uniform
chance of mapping for each i. According to the Performance indexes of the new APA, the
average differential approximation probability is 0.01562. The comparisons table 10 shows
that the DP of the new APA S-box is better than [29][31]-[35], and the same as with AES S-

box

2.5.5 Linear Approximation Probability

The linear approximation probability (LP) is the highest possible value of an event's imbalance.
The mask chooses the output bits 1), have the same parity as the input bits chosen by the mask
Yg. According to the Matsui mathematical formulation of linear approximation

probability(LP) is defined as [44]:

Ha € x|ay, = s(@)pe} _ 1| (2.17)

LP = max y, y,=o0, o >

Where x is the set of input space and 2", is the total number of elements in x. The input-output

masks are respectively represented by 1, and Y4 Them.

2.5.6 Fixed Point

Given an S-box, S = F," - F,™, the input element x € F," is said to be a fixed point (FP) if
S(x) = x [45]. The new APA S-box has no FP due to the affine transformation parameter
chosen by the hash value of 128-bit in symmetric key encryption. In contrast, only the power
permutation has 4 FP. The comparison table-10 shows that the new-APA S-box is on top of
no fixed point like the AES S-box.

2.5.7 Opposite Fixed Point
Given an S-box, § = F," — F,™, the input element x € F," is said to be the opposite fixed

point (OFP) if S(x) = x [45]. The new APA S-box has no OFP.
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2.5.8 Auto Correlation
The autocorrelation(AC) of an S-box, which is defined from, S =F," - F,”™ taken

concerning o € F,™ denoted by its polarity form S, is represented by 73(¢) and defined as

[45].
75(0) = Taepn(—1)SCITSEH) = 5 b2 S(x) + S(x + 0) (2.18)

The range of 73(¢) is [—2", 2"] for all & € F,™. For any n variable boolean function, the low
value of autocorrelation is expected. The new APA S-box's auto-correlation value is 32, the

same as the AES S-box.

2.5.9 Differential and Linear Branch Number
Given an S-box, S = F," —» F,™, the differential branch number (DBN) is represented by
@ppn (S) as defined as [46]:

(pDBN(S) = minx,x’EFZ",x;tx’ ({Wt(x 69 x,) + ’bU’t(S(X) 69 S(x’)}) (219)
The linear branch number of the S-box is denoted by ¢, gx (S), and defined as:

©1en(S) = Min, gep, 75(0.8)+0 {wt(e) + wt(B)}) (2.20)

Where 75(c, B) shows the coefficient of autocorrelation. The suggested APA S-box the
@pen(S) and @, N (S), is 2, as shown in Table 10.

2.5.10 Linear structure

The linear structure of the S-box i1s examined for its cryptography importance. It has been noted
that attacks that could be carried out far more quickly than a thorough key search can break
block ciphers with linear designs [47]. Therefore, in the block cipher, the confusion phase must
avoid the linear structure. The mathematical expression of the linear structure of an S-box is
defined as:

fFX)+fx+a)=C (2.21)

Where #(x) € F,"Vx € F," and for some a € F," and C € F,. Then C is called the linear
structure of the S-box. There are two types of linear structure, namely invariant if C = 0 and
complementary if C = 1. Table 10 shows that the proposed APA S-box has no linear structure

and is suitable for cryptographic primitives.
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Table 7. Proposed APA S-box $3°7 33 154

1 [ 2 ]3] 4[5 [6 7 1819 1011 [12]13]14]15]16
1 139 1193 | 16 | 157 | 237 | 44 | 218 | 164 | 153 | 133 | 112 | 247 | 27 | 186 | 141 | 86
2 34 | 151 12 | 145 | 222 | 221 | 42 61 55 89 | 126 | 229 | 161 | 143 | 115 | 179
3 [ 166 [246 [ 29 | 48 | 134 [ 167 | 10 | 5 [163 [ 45 [ 3 [119 ]38 | 6 | 99 | 14
4 | 172 | 192 | 243 | 108 | 132 | 136 | 124 | 67 | 207 | 140 | 200 | 100 | 84 | 146 | 152 | 189
5 130 | 52 [235 [ 174 [ 116 | 184 | 131 | 156 | 95 | 68 [220 [ 122 [ 203 | 194 | 96 | 175
6 [ 204 [ 57 [255 ] 76 | 93 | 137 | 56 | 11 [ 78 [228 | 92 | 97 | 191 | 213 [ 169 | 91
7 1190 [ 46 [ 138 [ 182 | 98 | 142 | 87 | 63 [197 [ 80 [252 | 13 | 0 | 79 [ 28 [231
8 | 183 | 154 | 60 | 244 | 129 1 202 | 82 | 225|173 | 83 73 35 | 201 | 248 | 121
9 | 144 9 114 | 206 | 230 | 148 | 25 64 69 88 49 | 127 | 113 | 210 | 181 | 36
10 | 104 | 59 | 165 | 118 | 150 | 242 | 240 | 65 74 1195 | 106 | 40 | 162 | 226 | 249 | 232
1177 [ 72 1158 | 62 | 53 | 50 [253 [ 75 [ 188 [ 199 | 4 | 102 | 160 | 211 [ 155 [ 171
12 | 58 | 205 | 94 19 31 | 216 | 159 | 250 | 20 | 128 | 176 7 223 | 47 | 238 | 214
1390 [147 | 2 |187 | 26 [ 149 [ 180 | 85 [ 254 | 123 | 110 | 170 [ 178 [ 233 | 43 | 21
14 | 103 | 251 | 245 | 24 | 168 | 120 | 117 | 22 | 130 | 101 | 234 | 33 | 224 | 66 | 185 | 239
15 | 51 109 | 212 | 125 | 135 | 81 196 | 215 | 15 54 | 208 | 41 23 | 111 | 107 | 217
16 | 17 [ 70 | 71 | 39 198 | 177 [227 [ 105 | 18 [ 241 [ 236 | 219 [209 [ 37 [ 8 [ 32
Table 8. Proposed APA S-box 5§23, ¢,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 24 59 | 252 | 66 99 | 117 | 237 | 178 | 198 | 110 | 36 | 120 | 206 | 191 6 13
2 94 71 100 | 195 | 161 | 115 | 182 | 61 | 215 | 223 | 251 | 97 | 239 | 159 | 230 3
3 18 86 | 185 | 155 | 85 [ 232 | 108 | 104 | 248 | 133 | 218 | 216 | 174 | 113 | 227 | 28
4 1192 | 43 14 | 214 | 69 | 210 | 38 | 116 | 75 | 184 | 246 | 145 | 151 | 47 52 | 154
5 | 211 19 42 | 139 | 173 | 50 70 22 | 186 | 39 77 7 129 | 164 | 181 | 149
6 46 | 250 | 254 | 225 | 166 | 234 | 244 5 74 | 224 | 219 | 125 | 255 | 127 | 212 | 188
7 1170 | 64 | 222 | 37 | 180 | 65 | 143 | 202 | 54 81 21 41 136 | 226 | 10 | 197
8 84 | 107 | 87 | 118 | 60 | 167 | 162 | 190 | 177 | 29 | 126 | 240 | 76 91 88 | 153
9 | 137 | 175 | 83 56 49 4 12 | 229 | 228 | 102 | 33 | 201 | 247 | 233 | 189 | 169
10 | 55 1 109 | 217 | 96 | 236 | 140 | 15 | 235 | 11 121 | 157 | 183 | 141 | 146 | 45
11 ] 205 | 221 | 106 | 156 | 158 | 144 | 220 | 238 8 203 | 16 | 213 | 93 | 207 | 148 | 165
12 | 53 67 | 231 | 27 79 90 72 25 | 241 | 98 | 119 | 138 | 168 | 101 | 128 | 89
13 ] 150 | 147 | 31 82 1204 | 111 | 193 | 208 | 187 | 200 2 58 | 160 | 57 | 131 | 80
14 1209 | 40 | 103 | 132 | 35 | 194 | 242 | 34 | 122 | 105 | 142 | 249 | 152 | 92 | 199 | 32
15 ] 134 | 63 44 | 176 | 163 | 17 48 | 196 | 112 | 78 | 253 | 95 | 179 | 26 73 30
16 | 20 9 124 | 62 | 171 | 172 | 114 | 23 | 245 | 135 | 51 130 | 123 0 243 | 68

2.6 Simulation Results of Encryption

In this section, we evaluated the simulation results of the symmetric key encryption of different

standard images of Lena, Apple, Babul-Quaid, and Baboon, to examine the strength of E-

ECIES. The figure-7 shows the plan images listed and corresponding to their encrypted images.

From figure-7 shows that the randomization of the encryption scheme is achieved. The image

obtained after the encryption process reveals its unpredictability, and it is impossible to

decipher the plan image without the decryption key As a result, from the simulation analysis,

we identified that the original secret information could be accurately recovered without any

difference or loss, proving the usefulness and validity of the entire encryption scheme.
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Table 9. S-box-based on only power permutation p(x) = x?

54

1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16
1 0 | 203|212 | 40 | 232|176 | 252 | 39 | 106 | 138 | 76 | 237 | 20 | 220 | 81 | 24
2 1 82 218 | 11 79 | 225 27 | 169 | 222 | 216 | 36 | 92 | 42 | 249 | 236 | 62
3 | 125 65 | 25 | 111 | 56 3 66 | 108 | 223 | 59 | 210 | 18 | 211 | 67 | 101 | 46
4 | 160 | 28 89 | 32 | 52 | 140 | 102 | 146 | 145 | 33 98 74 | 175 | 54 72 | 195
5 | 141 | 123 | 15 | 163 | 41 | 229 | 230 | 4 109 | 114 | 135 5 136 | 154 | 97 | 34
6 | 246 | 209 | 228 | 47 | 192 | 199 | 172 | 83 50 | 132 | 191 | 202 | 159 | 137 | 23 | 240
7 | 221 | 205 | 187 | 53 91 | 104 | 57 69 | 71 | 147 | 206 | 38 94 | 166 | 143 | 251
8 | 156 | 26 | 119 | 242 | 35 70 | 243 | 44 | 244 | 51 | 231|200 | 22 | 73 | 184 | 124
9 | 179 | 227 | 152 | 162 | 173 | 235 | 90 | 168 | 129 | 208 | 61 87 | 186 | 151 | 239 | 113
10 | 30 | 215 | 21 | 194 | 207 | 214 | 241 | 201 | 130 | 6 118 | 134 | 60 | 133 | 31 | 120
11| 43 | 180 | 122 | 197 | 64 | 63 | 148 | 157 | 150 | 131 | 254 | 49 | 247 | 155 | 100 | 37
12| 153 | 116 | 7 | 219 | 255 | 88 | 139 | 248 | 115 | 126 | 29 | 45 2 158 | 167 | 84
13| 80 | 78 | 193 | 48 14 13 58 85 | 161 | 182 | 142 | 188 | 16 | 121 | 224 | 117
14| 93 8 10 | 68 | 198 | 177 | 110 | 77 | 250 | 112 | 165 | 189 | 181 | 183 | 12 17
15 95 | 75 | 174 | 226 | 178 | 204 | 196 | 144 | 190 | 127 | 103 | 105 | 185 | 149 | 19 9
16 | 96 | 170 | 99 | 234 | 238 | 253 | 213 | 107 | 86 | 128 | 55 | 245 | 164 | 217 | 171 | 233
Table 10. Comparison of Nonlinear component with existing algorithm
Algorithm | VLS | AC DP LP SAC BIC | FP | OFP | LBN | DBN | LS
p = x*>* 112 | 32 | 0.0156 | 0.0625 | 0.4375 | 0.1285 | 4 | 1 2 2 |0
5223154 112 | 32 | 0.0156 | 0.0625 | 0.4375 | 0.1349 | 0 0 2 2 0
5357533154 | 112 | 32 | 0.0156 | 0.0625 | 0.4375 | 0.1285 | 0 0 2 2 0
Ref.[29] 86 | 120 | 0.2109 | 0.1640 | 0.2656 | 0.2887 | 2 3 2 2 0
Ref.[30] 112 | 32 | 0.0156 | 0.0625 | 0.4375 | 0.1299 | 1 0 2 2 0
Ref.[31] 94 | 96 | 0.0468 | 0.1328 | 0.3437 | 0.2799| 1 1 2 2 0
Ref.[32] 94 | 88 | 0.0781 | 0.1484 | 0.3750 | 0.2863 | 1 0 2 2 0
Ref.[33] 94 | 88 | 0.0468 | 0.1328 | 0.3437 | 0.3069 | 1 1 2 2 0
Ref.[34] 94 | 88 | 0.0390 | 0.1328 | 0.3750 | 0.2511 | 2 1 2 2 0
Ref.[35] 94 | 88 | 0.0390 | 0.1328 | 0.3750 | 0.3138 | 1 0 2 2 0
Ref.[36] 94 | 96 | 0.0390 | 0.1328 | 0.3437 | 0.3282 | 2 1 2 2 0
Ref.[37] 94 | 104 0.0390 | 0.1328 | 0.3437 | 0.2204| O 1 2 2 0

2.6.1 Statistical Analysis

It is crucial to ensure that an encryption method can withstand statistical analysis when

evaluating the security of the algorithms. A cryptosystem is deemed secure if it can fend off all

statistical attacks. Histogram analysis, neighbouring pixels correlation, and key space play a

critical role in the statistical analysis of image processing systems.

2.6.1.1 Histogram Analysis

An image's histogram can effectively and graphically depict a digital image's distribution of

grey values. When the distribution of the grey value is more even, it will be more difficult for

the eavesdropper to extract information from the cipher image through statistical analysis. As

such, the histogram of the encrypted image should almost be uniform while differentiating
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itself from the one derived from the plaintext image. Moreover, the histogram's
distribution was figured out from the encrypted image and is comparatively uniform, reducing
the association between neighbouring pixels and preventing the attackers from learning
anything. Figures 8 and 9 illustrate the histograms analysis of the plan images of Lena and Cat

and their encrypted versions of Lena and Cat, respectively.

Figure 7. Row 1 shows orginal images of “Lena”, Apple, Babul-Quaid, and Baboon, and row 2 shows
corresponding their Cipher Images.

Figure 8. Histogram of original image Lena and Corresponding their Cipher image histogram
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Figure 9. Histogram of original image Cat and corresponding their Cipher image histogram

2.6.1.2 Correlation Coefficent

In plaintext images, the coefficient correlation between two contiguous distinct pixels is
typically significant, so a secure and efficient encryption procedure is needed to minimize this
correlation. After the encypring procedure for the original images, the goal of a small
coefficient correlation among the adjacent pixels should be conducted in the encrypted images.

The mathematical formula for the correlation analysis between two contiguous pixels is defined

as [48]:

(x—e(x')(y—e(y))
R(x',y) =° , 2.22
! 1 !
e(x') = ;Zﬁ:nnx i, (2.23)
! 1 !
D(x') = EZﬁ:l:n(Xﬁ —e(x'p)>2. (2.24)

Where, xX'and y are the pixels of the plan and cipher image, respectively. We choose the pixel
pairings in the encrypted and plaintext image in the multidirectional: Horizontal, vertical, and
diagonal directions. The above eq(2.22-2.24) mathematical formula was used to get the
coefficient correlation between the cipher image and the associated plaintext image in
multidirectional directions. Table 11 displays the test results for the correlation in three
directions between plain images and images after the encryption process. Table 11 shows that

the correlation of cipher image in multidirectional is nearly close to zero, which ensures that

40



correlation is significantly reduced. Hence, the proposed E-ECIES scheme is not vulnerable to

correlation analysis.

Figure 10. Correlation Analysis multidirectional (Horizontal, vertical, and Diagonal)
of Plain image Lena and Corresponding their Cipher Image

Figure 11. Correlation Analysis multidirectional (Horizontal, vertical, and Diagonal) of Plain image
Cat and Corresponding their Cipher Image
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Table 11. Correlation Analysis of Proposed E-ECIES

Correlation Coefficients

Plan-Image Cipher-Image
Test-Images H \4 D H \4 D
Lena R | 0.9172 | 0.9504 | 0.9872 0.0009 0.0007 0.0007
G | 09772 | 09618 | 0.9682 —0.009 —0.0009 —0.0007
B | 09772 | 0.9801 | 0.9792 0.0017 0.0009 0.0009
CAT R | 0.9801 | 0.9713 | 0.9582 —0.0219 —0.00229 —0.0229
G | 0.8713 | 0.8456 | 0.9772 —0.00055 —0.0095 —0.0009
B | 0.9012 | 0.9651 | 0.9372 —0.0046 —0.0046 —0.0073
Baboon R | 0.9872 | 0.9872 | 0.9772 0.00021 0.0029 0.0019
G | 0.9834 | 0.9834 | 0.9802 —0.0139 —0.00169 —0.0013
B | 0.9751 | 0.9008 | 0.9917 0.0044 0.00049 0.0091
Babul-Quaid | R | 0.9026 | 0.9326 | 0.9912 —0.00319 —0.00329 —0.0075
G | 0.9761 | 0.9861 | 0.9882 —0.0045 —0.0065 —0.0009
B | 0.8462 | 0.9562 | 0.9698 —0.0006 —0.0026 —0.00016
Apple R | 0.9636 | 0.9546 | 0.9792 —0.0009 —0.0129 —0.0079
G | 09821 | 0.9701 | 0.9887 —0.0009 —0.0085 —0.0084
B | 0.9625 | 0.9715 | 0.9917 —0.0017 —0.0016 —0.0059

2.6.1.3 Information Entropy

The information entropy, which shows the degree of confusion in the image, is one of the
key characteristics of conducting the randomness of the image and evaluating the

encryption method. The following equation was used to find the information entropy [25].

Where H (), represent the value of entropy and P (m;) show the probability of m,;. The
theoretical result of the information entropy is 8. Much more uncertainty is visible, along with
the image's increasing entropy. The more challenging it is for the attackers to extract
information from the image, the closer it gets to the optimal value of 8. The entropy values of

the Lena, Baboon, Babul-Quaid, Cat and Apple images and their corresponding encrypted

H(m) = —Y!_, P(m;) log, P(m,).

images are shown in Table 12.

Table 12. Entropy Information of Proposed E-ECIES

(2.25)

Coefficient of Entropy
Test-Images Plan-Image Cipher-Image
R G B R G B Entire image Entropy

Lena 7.2763 | 7.5834 | 7.0160 | 7.9972 | 7.9974 | 7.9975 7.9991
CAT 7.7450 | 7.7671 | 7.7671 | 7.9972 | 7.9972 | 7.9975 7.9992
Baboon 7.6094 | 7.3876 | 7.6885 | 7.9972 | 7.9974 | 7.9975 7.9991
Babul-Quaid | 7.7600 | 7.6617 | 7.2264 | 7.9973 | 7.9973 | 7.9971 7.9990
Apple 7.4513 | 7.4170 | 7.2021 | 7.9973 | 7.9973 | 7.9971 7.9990
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Concluding from the values in Table 12 that the entropy for each of the above images is close
to the ideal theoretical value and utterly different from the values in the corresponding plaintext
image. Considering the entropy values, we conclude that the algorithm proposed here performs

effectively against the statistical attacks.

2.6.1.4 Key Space analysis

The key space shall be sufficiently large to withstand a brute-force attack. The number of keys
employed in the three module namely, permutation, diffusion and confusion processes is used
to compute the key space. The proposed E-ECIES initially utilized b;b,b;b, for diffusion
process, after that bsbgb,bgbgb,yb11b1, used for the permutation purposes and again utilized

for diffusion, and the last four bytes byzbi4bi5b1¢ 1s for the confusing process. The tola

2128 280

number of key spaces is which is larger than and enough for brute force attacks.
Moreover, the security of E-ECIES is based on the discreet logarithm problem at the initial

stage of key sharing. Hence, the suggested E-ECIES has a comparatively larger key space

2.6.2 Differential Analysis

The differential attack evaluates an image encryption algorithm's plaintext sensitivity [36].
Therefore, the encryption algorithm can extend this influence over the entire encryption
process if we slightly alter the plain image, a desirable image. Differential analysis is divided
into two subcategories: the number of pixels change rate (NPCR) and the unified average

changing intensity (UACI).

2.6.2.1 NPCR and UACI
The Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI)
are measures of the capability to withstand the differential attack. The mathematical

discripation is defiend as:

121 251 F(4.4)

NPCR =
M XN

X 100%. (2.26)

M N ! L ] I . .
)i |E' (4, 4) —EV (4,
UACT = “121215|5>Ej;)xN ( 7)|><100%. (2.27)

Where E'(4, #) is cipher image of the original image after the entire encryption process and
E" (4,#) another encrypted image after the one-bit change in original image, both the cipher
images put into the above two formulas to get the experimental analysis of NPCR and UACT.
Where, F(4, #) is defined as [25][48][44-45].
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1, E'(4,7) # E"(4,4)

. E) =BG (229

FGi) = |,
Consequently, the proposed E-ECIES offers excellent resistance to the differential attack. The
results NPCR and UACT measurements in this chapter and other references are also shown
in Table 13. But the value of NPCR and UACT of the suggested E-ECIES is nearer to the
theoretical value than for any other encryption scheme. As a result, the suggested encryption
method is useful and efficient for encrypting multimedia data.

Table 13. Differential analysis

Tested NPCR UACI Average

images R G B R G B Avg NPCR | Avg Uaci
Lena 99.6753| 99.7531 | 99.6521 | 33.3342 | 33.4672 | 33.4192 | 99.6935 | 33.4069
Cat 99.4753| 99.6521 | 99.6421 | 33.3352 | 33.4672 | 33.4192 | 99.5898 | 33.4072
Baboon 99.6753| 99.6231 | 99.6221 | 33.3322 | 33.4442 | 33.4192 | 99.6402 | 33.3985
Babul- 99.6554| 99.6541 | 99.5551 | 33.3352 | 33.4762 | 33.4192 | 99.6215 | 33.4102
Quaid

Apple 99.6743| 99.6531 | 99.5521 | 33.3372 | 33.4812 | 33.4192 | 99.6265 | 33.4125

2.6.2.2 PSNR, NC and SSIM

Three important sensitive analyses, Peak Signal-to-Noise Ratio (PSNR), Normalized
Correlation (IN'C), and Structural Similarity (SSIM), are used to measure the quality and
change the values of pixels in images after decryption [25]. The following mathematical

formula is used to compute the value of PSNR

16_1

PSNR =10 x lOglom. (229)

Where MSE is defined as:

’ 2
iz1 2j=1(P(4,7) — E (4,7))

MSE = MXN

(2.30)

Where P(4,4), E'(4,7) represent the plan and encrypted receptively of size M X N

The similarity degree is evaluated by the normalization correlation V'C metric. In addition,
this result could be considered a reliable indicator of the encryption algorithms'
effectiveness because two entirely unrelated images have a correlation coefficient that is

almost zero. The equation is shown below the computed NV'C value.
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Ne = z (P(w) E'(4,4))

G (2.31)

i=1j=

The structural similarity between the two images is evaluated using the SSIM index. This
metric improves on methods like mean squared error (MSE) and conventional PSNR. On
several windows of a given image, the SSIM index is calculated. As a result, the following
mathematical expression provides the SSIM between two windows, X and Y, of standard size

N XN.

(Zlux'.u/yx + ’&1)(20-95'@’ + 5’2)

SSIM(X,Y) = .
( ) (.ux'z + .u/yxz + &1)(0-95'2 + O-yuz + 5/2)

(2.32)

where pi,, and p,,, shows the mean values of X and Y, respectively. g, and g, used for
standard deviations of X and Y, respectively. The covariance of X and Y is represented by g, ,
and to avoid the value of zero in dominators, the coefficients 44 and 4, are used in eq-(2.32).
The comparison of the original image with the cipher image should have low PSNR, NC and
SSIM values. Otherwise, the plan and encrypted image show the value of SSIM and NC is 1,
and a high PSNR value. Additionally, it's important to note that the image after decryption is
the same as the plan image. Table 14 illustrate that the value of PSNR, NC and SSIM of the
plan-images cross-ponding their encrypted images. The results in table 15 ensure that our
enhanced scheme performs well in terms of low PSNR, NC and SSIM. Finally, it can be
concluded that the E-ECIES is reliable against sensitivity attacks based on the PSNR, NC and
SSIM.

Table 14. PSNR, NC and SSIM values between plain and encrypted images

Security Parameters PSNR Values SSIM NC
PvsE PvsD PvusE PvsE
Lena 7.8298 o0 0.0021 0.6185
Baboon 7.9832 00 0.0131 0.7135
Cat 8.8945 00 0.0101 0.6374
Babul-Quaid 8.5095 00 0.0041 0.6245
Apple 9.4847 o0 0.0100 0.6588

2.6.2.3 Key Sensitivity

The secret key must be highly sensitive to an encryption technique for the actual key space to
match the theoretical one. A high key sensitivity means two entirely different encrypted and
decrypted outputs will arise from slightly modifying the secret key throughout the encryption
and decryption procedures. We generate an original secret key K; utilizing the E-ECIES at
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random and then creating two other secret keys, K, and K3 By modifying one bit in K;. This
process is done to determine the sensitivity of the secret keys. The original secret key K; and

the modifying keys K, K5 by the following expression.
Ky = b1byb3b,bsbgb;bgbgbygby1b12b13b14b15bs6
Ky = b1byb3bybsbgby;bgbgbigby1b12b13b14b15bs6

jCS = b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15b16

Figure 12. Key Sensitivity Analysis: 1st-row Original image Lena, Encrypt with K;, Encrypt with K,, Encrypt
with K3, 2nd row shows, Encrypted image of Lena, decrypted with K, decrypt with K,, decrypt with K;

Figure 12 demonstrate the results of key sensitivity, attained throughout the encryption
procedure of the E-ECIES. The 1* row of Figure 12 shows the original image of Lena, three
encrypted images encrypted using K;, K, and K5. In the 2" row of Figure 12, only the original
secret key K; can precisely retrieve the original image. Figure 12 illustrates how two decrypted
results with just a single bit of difference between XK, and XKj;they yield entirely

indistinguishable results.

2.6.3 Noise Attacks

This section examines how a cryptosystem responds to noise during encryption and decryption.
Some noise is always present when digital images are broadcast across communication
channels. Most of the encrypted digital images are affected by different noises, and therefore,

to investigate the proposed E-ECIECS, we must check the noise analysis of the suggested
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encryption technique and ensure that the suggested algorithm is noise resistant on this way that
the digital image after decryption algorithm must be readable for the receiver sides. So, to
evaluate the E-ECIECS, the cipher image is anticipated by different kinds of noise with
different densities, namely: Gaussian, Salt, speckle, Poisson, and Pepper Noise. Major sources
of Gaussian, Salt and Pepper, and other noise appear in remote sensing images during
acquisition, including Poor illumination, high temperatures, inadequate transmission, and other

factors that can all lead to sensor noise, such as electronic circuit noise [25].

2.6.3.1 Occlusion Analysis

Decryption operations for encrypted images delivered across communication channels may be
ineffective due to data loss [25]. In this case, the ciphered images are subjected to a loss
operation known as an occlusion attack to examine the enhanced encryption scheme noise
tolerance. Figure 13 shows the encrypted colour image with data loss rates of 50% from the
right and left from the top and below; similarly, 25% left and right and from top to bottom. As
shown in Figure 13, after the decryption, the loss rate of 50% and 25% in an cipher image,
the corresponding decipher image keeps most of the visual data from the original image.

Consequently, it ensures that the E-ECIES is effective and resists occlusion attacks.

Figure 13. Occlusion Analysis 1st row from (a-h) Lena encrypted image with different rate of losing the data,
2nd row from (i-p) Crossponding Decrypted image of Lena 3rd row from(a-h) Cat encrypted image with
different rate of losing the data 4th row from (i-p) Crossponding Decrypted image of Cat

2.6.3.2 Gaussian Noise
The normal distribution, which is also referred to as the Gaussian distribution, has a probability

distribution function (PDF ) equal to that of Gaussian noise. Additive white Gaussian
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noise(AWGN) is the most popular name for this type of noise [49]. The proper definition of
Gaussian noise is noise with a Gaussian amplitude distribution. The following mathematical

expression describes the Gaussian distribution of this kind of noise

_ 2
(g—m) /202.

F(g) = (2.33)

—e
V2ma?
Where in eq-(40), o represents the standard deviation, g, 7 shows the average and gray level

of the function. For a random variable § of the gaussian, the PDF is expressed by the following

equation eq(2.34).

1 (S—u)z/zo_z.

PG(S) = Ts (2.34)

where 1 and o represent the mean and standard deviation. The simulation results of the Lena
cipher image with the addition of gaussian noise to the decrypted image of Lena in Figure 14

are still readable for the receiver side.

2.6.3.3 Salt and Pepper
Intensity spikes, often known as salt and pepper noise, are an impulsive form of noise.
Generally, data transmission failures are what cause this. Each usually has a chance of less than
0.1. The image has a "salt and pepper" appearance because the contaminated pixels are
alternately assigned to the minimum or maximum value. The impairment of pixel elements in
camera sensors is the primary cause of the salt and pepper noise [49]. The encryption image of
the suggested technique, Lena, with the addition of Salt and Pepper noise, is shown in Figure
14, along with the matching decrypted images that remain readable after the decryption
procedure. By The following expression, compute the PDF for the bipolar impulse noise model
P, for§ =a
PIS) =1 P, forS #a (2.35)
0 otherwise

2.6.3.4 Speckle Noise
A grayscale image's pixels can be affected by speckle noise, a multiplicative noise. It mainly
appears in images with low brightness levels, such as MRI and Synthetic Aperture Radar
(SAR) images. Before further image processing, such as object detection, picture
segmentation, edge detection, etc., image enhancement is essential to reduce speckle noise

[50]. Figure 14 shows the encrypted images, Lena of the proposed algorithm, with the addition
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of Poisson noise and corresponding decrypted images, which are still understandable after the

decryption algorithm.

2.6.3.5 Poisson Noise
A random temporal distribution may be used to treat individual photon detections as separate,
discrete occurrences. Thus, photon counting is a standard Poisson process. The discrete
probability distribution describes the number of photons recorded by a specific sensor element
across time intervals using the following mathematical formula.
e 7" (y)"

Pro(N =K) = ]

(2.36)

This is a standard Poisson distribution with a rate parameter yt that equates to the anticipated
incidence photon count, where y,the expected number of photons per unit of time, is
proportional to the incident scene irradiance [51]. Photon noise is the term for the uncertainty
that this distribution encapsulates. Photon noise offers a lower bound on the measurement error
of light since it derives from the nature of the signal itself. Any measurement would be prone
to photon noise even under perfect imaging circumstances, devoid of any additional sensor-
based noise sources of noise (such as read noise). Figure 14 shows the encrypted images, Lena
of the proposed algorithm, with the addition of Poisson noise and corresponding decrypted
images, which are still understandable after the decryption algorithm. As a result, the proposed

E-ECIES are secure against poison noise.

Figure 14. Noise attacks: 15-row shows (a) the encrypted image of "Lena (b) salt & pepper (0.01), (c)
salt & pepper (0.1) noise.2™ row (d) speckle with random noise (d) speckle noise (0.001). 3™ row (e)
Gaussian noise (f) gaussian with 0.1 noise, and (g)passion noise
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2.6.4 Computational Complexity And Running Time

The asymptotic complexity theoretically approximates the execution time of an algorithm. In
general, the asymptotic complexity is denoted by big oh O. This subsection presented the
proposed algorithm's asymptotic complexity and running encryption time. We have
theoretically analyzed the proposed scheme's encryption and decryption procedure and skipped
the preprocessing for secret key exchange. Since the proposed scheme is a substitution
permutation network, in the substitution module, each byte is substituted in constant time O (1).
So, the complexity of the overall substitution module is O(M X N) for the image of the
dimension of (M X N). Moreover, the complexity of addition and multiplication modulo n is
log(n) and log(n)?, respectively, and the permutation module is an affine transformation that
consists of addition and multiplication modulo n.

Table 15.Computational Complexity and Running Time with Other algorithms

Methode | Running time Computational Complexity Experimental Environment
Proposed | 0.2230/sec O(MlogM? x NlogN?) Matlab R2021a,CPU @
(256%256) 2.60GHz 2.80 GHz and 8
1. Lena GB of RAM.
g- ]éz't”"n 0.2130/sec 0(M log M? x Nlog N?) Matlab R2021a,CPU @
4 Apple 2.60GHz 2.80 GHz and 8
GB of RAM.
0.2240/sec O(MlogM? x NlogN?) Matlab R2021a,CPU @
2.60GHz 2.80 GHz and 8
GB of RAM.
0.2250/sec O(Mlog M? x NlogN?) Matlab R2021a,CPU @
2.60GHz 2.80 GHz and 8
GB of RAM.

Ref[52] 0.340/sec Matlab R2017b, CPU 2.3
GHz, 8 GB memory
Ref.[53] 1.320/sec O(25MN) Matlab R2009a, CPU 2.5
GHz, 4 GB memory
Ref.[54] 0.6212/sec O(18MN + 2M logﬂ) Matlab R2012b, CPU 2.6

2 GHz, 2 GB memory
Ref.[55] 0.1179/sec - Matlab R2017, CPU 2.70
GHz, 8 GB memory
Ref.[56] 0.38/sec — Mathematica Version 11,
CPU 1.80 GHz,1.992 MHz, 8

GB memory

MN
O(7MN + 3Mlog—=+3M +3N)

So, the complexity of the permutation module is Mlog(M) X Nlog(N). So, the complexity of
the overall algorithm is M log M? x N log N2. Additionally, we evaluate the proposed
E _ECIES running time using Matlab R2021a. The following specifications apply to the
experimental environments: Windows 10 operating system, Intel(R) Core(TM) 17-6600U CPU
@ 2.60GHz 2.80 GHz and 8 GB of RAM. The proposed method takes 0.2230/sec to encrypt

the standard image Lena of dimension 256 X 256. Comparing the computational complexity

50



and running time of the proposed E-ECIES with other existing excellent algorithms is shown
in Table 15. The suggested encryption scheme performed better results compared to the [52]
[53][54] and [56] but was less effective than [55]. For evaluating encryption time, we also utilized

different images of the same dimensions, 256 X 256. The results are displayed in Table 15.

2.6.5 Comparative analysis and discussion

In this subsection, we compared our proposed encryption algorithm with other existing
cryptosystems based on EC and chose-based mathematical structures [57] [58] [59] [60] [61] [40]
[30][31] [32] [25]. The comparative analysis and discussion are based on some state-of-the-art
differential and statistical analysis mentioned in Table 16. We have tested all of these metrics
on a standard digital image Lena based on the proposed encryption algorithm. Image
encryption techniques based on chaos, presented in [59] [60] [61] [62], are complex, have high
memory requirements, and are difficult to implement on modern devices. The scheme
presented [25] is based on the fusion of improved ECIES and chaotic equations, namely the
Hyper chaotic Lorenz generator(HCLG) and Arnold cat map(ACT). The HCLG was utilized
for the confusion module, which is unsuitable and involves more mathematical operations.

They also did not properly describe the analysis of the confusion phase.

Moreover, the Cat map was utilized for the matrix multiplication, which is more expensive.
While in the suggested encryption scheme, the confusion module is achieved by the nonlinear
component (S-box) followed by the APA transformation. As a result, obtaining the confusion
by the proposed scheme is less time-consuming than integrating the confusion and diffusion,
which requires more fusion of EC and chaotic operation. Furthermore, the following bullet
points give a detailed assessment of the suggested symmetric encryption algorithm with the

current excellent literature.

e According to Table 16, the proposed cryptosystem outperforms in the differential analysis
compared to other chaotic and EC-based encryption techniques presented in [57] [58] [31]
[59] [60] [61] [62], and below from [32].

e The Entropy information of the suggested encryption is nearly close to the theoretical value
and shows better results from [40][30][59][60][61], and nearly below the [57] [31] [32] [25],
and equal to the [62].

e According to the correlation analysis, the results of the horizontal, vertical and diagonal of
the suggested symmetric algorithm are nearly close to the theoretical value, which makes

sure that the suggested encryption scheme would perform better and be resistant to statistical
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attacks as compared other chaotic and elliptic curve based encryption scheme [57] [58]

[39][30] [25] [59] [61] [62], and less from the [31] [32] [60].

Table 16. Comparative analysis

Security Sensitivity analysis Statistical analysis

parameters

Encryption NPCR UACI PSNR H.Cor V.Cor D.Cor Entropy
method PvsE | PvsD

Proposed E- | 99.6935 | 33.4069 | 7.8298 o0 0.0009 0.0007 0.0007 7.9991
ECIES

Ref.[57] 99.5693 | 33.2824 - - —0.0009 | 0.0008 0.0021 7.9972
Ref.[58] 99.6155 | 33.4274 - - —0.0036 | 0.00262 | 0.00123 | 7.9995
Ref.[39] 99.7100 | 33.3600 | 8.65 o —0.0483 | —0.0703 | -0.0534 7.9995
Ref.[40] 99.3300 | 33.1400 - - 0.0030 | 0.0050 —0.0020 | 7.9900
Ref.[30] - - - - 0.0081 0.0182 0.0065 7.9022
Ref.[31] 99.5911 | 33.3765 - - —0.0006 | —0.0009 | —0.0005 | 7.9994
Ref.[32] 99.976 | 33.5872 —0.0005 | —0.0003 0.0001 7.9993
Ref.[25] 99.6541 | 33.4615 | 4.5789 - 0.0001 0.0005 0.0015 7.9993
Ref.[59] 99.6090 | 33.4630 - - —0.0002 | —0.0070 | 0.0005 7.9980
Ref.[60] 99.6 33.45 | 9.2645 - —0.0003 | —0.0007 | —0.0001 | 7.9977
Ref.[6]] 99.6418 | 33.5581 - - —0.0024 | —0.0012 0.0011 7.9996
Ref.[62] 99.6053 | 33.4621 | 7.8616 o 0.0018 | —0.0042 0.0041 7.9991

e The PSNR values of the encrypted versus original image and plain versus the deciphered
image of the proposed symmetric encryption are 7.8298 and oo respectively show better
results than other cryptographic algorithms presented in [39] [60] [62], and somehow less
from [25].

Based on the comparative analysis of Table 16, we can see that the proposed symmetric
cryptosystem testing findings have shown better outcomes than recent chaotic and EC-based
encryption techniques and give robust security and high resistance against state-of-art

cryptanalysis.
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Chapter 3

Mordell Elliptic Curve for Efficient Digital Audio
Encryption Application

Nowadays, voice-based transmission is visible in areas like military intelligence, phone
banking, secret voice conferencing, education, etc. With the increasing demand for secure
audio communication, the audio encryption protocol is significant for storing and
communicating sensitive data over the exposed scheme. The conventional cryptographic
algorithm is not suitable for audio encryption, such as traditional algorithms like AES [63],
DES [64], TDEA [65], and RSA [66] are not suitable for audio communication. The two
underlying cryptographic terms, diffusion and confusion, are introduced by Claude Shannon
[67]. These two terms are substitution and permutation operations achieved by random
numbers or sequences. In confusion, the data value is permuted corresponding to some key
parameter to dismantle the neighboring samples. However, both terms are shown a complex
relation between ciphertext, plaintext, and the encryption of symmetric key algorithms;
different analysts and designers use the substitution-permutation network (SPN) as a

fundamental structural element [68].

Numerous encryption methods for digital audio are described in the literature. However, no
one algorithm attracts the attention of all digital audio formats. In 2008 Wei-Qi Yan et al.
presented a scheme of digital Audio scrambling in the compressed domain [69]. The proposed
work uses scrambled digital audio data before key transmission. Nonetheless, the suggested
work has not proven the security against brute force attacks [69]. Juliano B. Lima et al.
suggested a digital audio encryption technique based on the cosine number transform (CNT)
[70]. The anticipated approach of encryption was applicable to encrypt different blocks of
audio format. The rule used to select the audio data blocks is overlapping, producing confusion
and diffusion in the encrypted data. However, the computational cost of the suggested scheme
is still expensive and unsuitable for large audio data. Afterward, in 2016 Hongjun Liu
introduced a scheme of audio encryption by the operation of diffusion and confusion based on
multi-scroll chaotic encryption and one-time keys [71]. The proposed work shows that a
chaotic system with varying multi-scroll generates key streams to produce diffusion and

confusion in audio data. The audio encryption technique is based on the fusion of Fast Walsh
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Hadamard Transform(FWHT) and chaotic keystreams proposed by F.J. Farsana et al [72]. In
the suggested work, the original audio data is permuted using a Henon Map (HM). For the
second module of the encryption technique, the authors utilized the Lorenz-Hyperchaotic for
keystreams generation. The computational complexity of the entire scheme is o(n?) and
achieved the targeted level of security. The existing chaotic map techniques are shown to be
insecure against cryptanalysis in the literature mentioned above because the one-dimensional
chaotic map has fewer parameters. Moreover, techniques based on high-dimensional chaotic
sequences are highly complicated, necessitating additional storage space, and most chaotic-
based encryption algorithms are subject to numerous hardware limitations. This limitation is

caused by the absence of mathematical non-integer operations, which require lots of space.

Considering the abovementioned issues, scholars utilized different algebraic structures to build
a secure digital audio encryption scheme with infinitesimal computational cost. This chapter
developed an efficient digital audio encryption algorithm with permutation-substitution
architecture(PSA) using a mordell elliptic curve(MEC) with highly nonlinear components (i.e.,
S-box). The framework of MEC points generation utilized the searching techniques,
significantly reducing the time complexity to the exceptional margin. The high-quality pseudo-
random number sequences are subsequently utilized to aid the diffusion process. The phase of
confusion is utilized with the help of multiple strong 5 X 5 S-box, which have never been
applied before the existing literature. The experimental findings show that the suggested

technique is effective and resistant to attacks.

3.1 Mordell Elliptic Curve

An elliptic curve over a finite field F,, is defined as.
E3P, = {0} U{(x,¥):x,y € F: Y? = x% + ax + b mod p} (3.1
The particular case of EC when the parameter a = 0 and b # 0 is called the Mordell elliptic

b

curve MECO‘ P

Theorem 3.1. Let P be prime (i.e. p > 3) such that p = 2(mod 3). Then for each b € E,,
the Mg P p has exactly p + 1 unique points. As the y-coordinate of each integer in [0, p—1]

appears precisely once.
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3.2 Proposed Audio Encryption
In this section, we discuss the proposed algorithm for audio data. The proposed algorithm is to
work out to secure the digital Audio in (.wav formatted) before sending it to the insecure

channel. In the following steps, we briefly discuss the proposed work.

Step 1: First, read the audio file in sixteen-bit integer data whose range laying in the interval
of [2715,215 ]. Reshape the original audio data in the new matrix A of dimension N x N’,

where N, N', represent the rows and columns of the original audio data.

Step 2: Next, matrix A contains non-negative and negative data in the class of signed bit
integers. To identify the position of both data, the scheme creates a binary matrix f consisting
of 1 and 0. The mathematical formulation of the binary matrix is given as follows.
o 0,if A;;<0
paN=1"" " (3.2)
1, lf Ai,j =0

Where A; ;, the data is set element of matrix A at the (i, j), position and B (i, j) is to show the

o
element of binary matrix f at (i, j) . position. Therefore, we get a binary matrix  of dimension
N X N'.

Step 3: Next, convert the audio data set [271%,215 — 1] to [2715 — 1, 2'> — 1] to get new data
set matrix A’ of dimension N X N’. Consequently, get the new matrix A’, which contains the

data values of 15 bit-digit integers. The mathematical formula for the new data set is given

below.

o e 15
vep={r 63)
Step 4: In the next step, apply the absolute function on the data set of A’(i,j) to obtain the
new data set A”(i,j) whose entries laying in the interval of [0, 2'°]. Hence the A" (i, )
transform to a 15-bit positive integer.

Step 5: Afterward, generate pseudo-random sequences using the following Mg 0.b » equations

eq(3.4-3.6) and pick the y-coordinates of EY;, EY,, EY; using the following mathematical

expression.
EY, = (Mg, )mod N (3.4)
EYy = (Mgc"™",)) mod N' (3.5)
EY3 = (MECO'bpS)mOd N” (36)
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Where Mg:%? - MgcP Dy Mg P py are the MEC sequences with the specified modulus N,
N'and N".
Step 6: After generating sequences in step 5, a permutation with a matrix A", is performed by
the proposed algorithm as a next step. Consequently, this diffusion phase aims to reduce the
strong correlation among adjacent integers. The mathematical description of permutation
module is defined as follows:

A7) = A (B EY,) (3.7)
Where A" (i, J) show the integer position of permuted matrix R
Step 7: The phase of confusion is a cryptographic approach devised to enhance the vagueness
of cipher data. In this step, the proposed algorithm performed the substitution process to
establish that the cipher data gives no hint regarding the original data, producing confusion in
cipher data. Since, in the proposed work, the permuted data is a 15-bit positive integer so it will
be computing hard to substitute the whole block of 15-bit positive data. For the sake of this
purpose, the algorithm divided the block into three sub-blocks of a 5-bit positive integer using

the following mathematical maps is defined as:

(2, > Ly
((01, 0p) ey one 014_015) — ((0y, 05, 05,04, 05 ..., ...,0,0). (3.8)
< Z215 - Z25
4 (01,02, )y e 014,015) — £(0,0.., 05, 07, 05, 09, T3 -.,0,0). (3.9)
and
(ot Z215 - Z25

(, (01, 02, ceey one 014,015) — ((0,0, ..., 011, 012, 013, 014, O15)- (3.10)

Therefore, get 3 —subblocks R 5, R 5, R 5, » consist of 5-bit respectively.

Step 8: Generate an S-box of 5 X 5 using an EC over a finite field. Since the 5 X 5 S-box has
never been utilized and evaluated before, in this chapter, we briefly mentioned the construction
procedure and security analysis of 5 X 5 S-boxes in the next subsection.

Step 9: Then substitute the 3-subblocks G 5, A" 5, A" 5, With the 5 X 5 S-boxes, the
substitution procedure of the subblocks is the same. Initially converts the subblocks data into
binary form. Next, split the chunks of five bits of each block element into 2 and 3 bits-string
and then convert a 2-bit string in the decimal range of 0 to 3(or binary 11 to 00) and 3-bit strings
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in the decimal range of 0 to 7 (or binary 000 to 111), then substitute each element of subblock
with the element of S-box S?, , . For a better explanation, read example 3.2. The mathematical

representation of the substitution process is defined below.

R S 2 1P
AP =5P,,(8" ). (3.11)
°llps p 2 1P
A7 =58P.,(A" ). (3.12)
R S 2 1P
APy =5P,,(8" ). (3.13)

o S o S
Step 10: After the phase of substitution, one can get three new subblocks A" ¢ iy A ,» and

Q S . . . .
AP ,- Finally, using the xor operation and xor, the sequences of E Y. mod 32 with the three

new subblocks obtained in step 8 to get three new encrypted data C;, C,, and C; using the

following mathematical formulation:

o S

C, = (E¥3mod 32 @A™ 5, ). (3.14)
o S

C, = (EY3 mod 32 ®A"" 52). (3.15)
o S

C, = (EY3 mod 32 ®A"" 53) . (3.16)

Step 11: To reverse the data form C,, C, and C3 of 5-bit each block to a single 15-bit block by
using the following mathematical formula:
(NI X T, X T, — T,

5_1((01;02'03'04' 05)(06, 07, 0g, 09, 010) (011, 012, 013, 014, O15)) — (01'02: ) ---014,015)- (3.17)
S

Finally, we get a matrix A; 5” of dimension N X N'.

Step 12: At the final step of the proposed algorithm map, the data set [0 1 2, ..., ... 21> — 1] of

N
the matrix A15” to the data set [-21° — 1, ..., ... 2!° — 1], using a binary matrix defined in eq

(3.18). The mathematical expression of step 12 is defined below.

“As" G, if BGH=0

AEGL =4 T
Ais (0, )), if B@i,j))=1

(3.18)

Eventually, one can get a matrix A?, then convert to an audio file which is the required cipher
audio file. The structural outline of the suggested encryption algorithm is demonstrated in

Figure 15. We encrypted multiple audio files of varied sizes and characteristics to evaluate the

57



proposed scheme's security. Additionally, for better understanding, the source code of the

entire procedure of encryption and decryption is given in Tables 20 and 21.

Figure 15. Flow chart of the proposed encryption scheme
3.3 5 x5 S-box Construction and Security Analysis
Since the 5 X 5 S-box has never been applied before, the construction procedure and
performance assessment of the 5 X 5 S-box are briefly covered in this section. The 5 X 5 S-
boxes used to substitute three sub-blocks composed of five-bit integers are based on EC over
prime fields F,,. The algorithm has four main steps described in the following steps.
Step 1: Select the domain parameters, a and b, from the prime field F,, where p is a large
prime number, i.e., a, b € Fpa# b.
Step 2: Next, our approach to generating EC points using the searching method reduces the
complexity to a significant extent. The following Weierstrass cubic elliptic curve utilizes to
generate the points.

E?P, =Y? =x®+ ax + bmodp

Step 3: Afterward, pick the Y-coordinate E*PVi, (u;, v;) of all orders paired E*?,(u;, v;), then
apply the modulo 32 operation on E a'b'”ip (u;, v;) to get the E¥P¥i,, (u;, v;). The aim of modulo
32 is to substitute the three sub-block each of five-bit integer data. The mathematical
formulation of this step is given below.

a:FSZ _)F52
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0: Ea,bp N Ea,bp,

d(u,v) = vmod (p") (3.19)

Step 4: In the final step, we choose the first 32 unique elements of E2PVi,, (u;, v;)to generate

A
an s-box S g’ p» and transmute into a 4 X 8 lookup table.

The implementation of the suggested algorithm is demonstrated on different ECs with distinct
parameters for the generation of keyed S-boxes. Three different S-boxes S35, S75 and S35 are

generated by E1,,,, E3,5, and E%1,4; respectively shown in Tables 17,18 and 19.

Table 17. Proposed 5 x 5 E¥1,,; S-box

0 1 2 3 4 5 6 7
0 2 13 22 29 5 15 30 16
1 4 14 24 0 6 21 31 19
2 8 17 25 1 10 23 7 26
3 12 18 28 3 11 27 9 20
Table 18. Proposed 5 x 5 E¥3 4, S-box
0 1 2 3 4 5 6 7
0 3 9 20 28 4 18 14 31
1 5 10 21 29 12 26 23 1
2 6 11 24 0 15 30 8 27
3 7 16 25 2 17 13 22 19
Table 19. Proposed 5 X 5 E%1,4; S-box
0 1 2 3 4 5 6 7
0 3 24 12 22 11 20 9 8
1 2 13 25 15 26 17 28 29
2 14 18 31 16 30 27 4 0
3 23 19 6 21 7 10 1 5

Example 3.2. Let the input data I = (21), = (10101) of the S-box, i.e S3%, then the
outerpits(11) identify row 3 while the innery;s(010) represent column 2. The numbering

of rows and columns start from 0 to 3 and 0 to 7, respectively. If we substitute the input data I
with the S-box, i.e S% , then the return byte of the S-box is S35(21) = 25.

3.4  Security analysis of 5 X 5 S-box

In the given subsection, we present some algebraic and probabilistic analyses of the suggested
S-boxes based on the EC over a finite field, as shown in Table 22. The suggested S-boxes

review further by performance analyses like Nonlinearity (NL), Bic independent criteria (BIC),
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Strict Avalanche criteria (SAC), linear approximation portability (LAP), and Differential

approximation probability (DP), which is already discussed in chapter 2. The mathematical

N-1
expression 2N "1 — Z(T), calculates the upper bound NL of the proposed s-boxes. Thus, in

our case, for N = 5, the optimum nonlinearity value is 12. The average score of nonlinearities
of the new design s-boxes S77 , S75 and S35 given in Table 22 are 10, which is close to the
upper bound value. Similarly, the security analysis results, SAC, BIC, DP, and LP, have been
presented in the same table, proving that the suggested S-box is unaffected by all possible
algebraic and statistical attacks.

Table 20. Source Code of Audio Encoding

1. 0 = Original audio data ; 35. % Generation of S-box
2. Output = Encrypted audio data ~ 36. S35 « EM15q;
3. F < Frequency; 37. §32 < E13,,,;
4. [0,F] « read (0, native’); a8, 53'21  EOL,,;
B- Ean] :Stlhzi(o)?) 39. % Five-bit shifting
6. - Length (m,n); o P P . . .. 2.P '
7. %Sequence generation RO. pt" P51 < A" _bltShlﬁ(bifSi”ﬁ(A" ,—5).5),
8. fori=1:Ldo 41. A" g, <bitshift(bitshift(A"", —5),5);
9. EYy e Mg 2. R, bitshift (bitshift A", —5),5).
10. EY, « MEco'b 43. % Substitution phase
D2 2, S 2P
11. EY, <—MEC°‘bp3 a. A5 < SPEA )
o S o
12. End 15, Ao < S33AT)
13. % Binary matrix generation — o, P
14. fori=1:mdo 46. A" 5 < SgA(A" 5,)
15. forj=1l:indo 47. % Bit-xor operation i
16. B(i,j) =1 48. €1« (E¥3mod 32 A" ;)
if A > o S
1; Z;S‘zl'f z0 2. C; « (E¥3mod 324" )
. o S
19. B(i,j) =0 50. €3 « (EY3mod 32 @A 5))
20. end g 1S
21, end 51. A15 (l,])(—(:1®fcl@(cl
2. A" =Abs (&) 52. % Reverse conversion
' N 53. fori=1:mdo
23. % Data conversion .
24 foorizl'mdo >4 ]."OTll=.j:nd0
2. fori=j'.ndo 55 if 'BSL'J)ZO
26. lf Al} > 2_15 56. A15 < AE(’-:])
27. A(l,j) = Ai,j; p7. ilsens .
28. else A;j = 2715 8. Ays < —AP(LJ)
2. AG,j) = Ai,j — 1 59. end ;end; end o
30. % Difusion phase 60. audiowrite (‘encryptedata.wav ’, A1s ,F)
31. fori=1:mdo
32. fori=j:ndo
33. A7 (i,)) = A" (EY4 ,EY )
34. end end
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Table 21. Source Code of Audio Decoding

. S

1. Input —>En?ryptec_l audio data 35 AP 5, © 51123 ( A”PSZ)
2. output— plain audio data s b
3.[E, F] <vread (E,” native’); 36. 8" 5, — S35 A" 5)
4. F—Frequency; 37. % Inverse Sequence generation
5. [m, n] =size(E); 38. fori=1:Ldo
6. L—length(m, n); 39.EY) « inU(MECO'bpl)

o 1S
7.7A15 = E; 40.EY, « inv(MECO'bpz)

8. % Binary matrix generation

41.EY 3 « inv(Mgc®?

9.fori=1:mdo p3)
10. for j =1l:ndo 42. end
1.3, ) =1 43. % Bit-xor operation

s o S
12.if Ais =0 44.C; « (E 3 mod 32 @A™ )
13. else Y gr0°

45.C, « (E"3 mod 32 ©A

14.8(i,)) = 0 2 ( 3 552)
15. end 46.C3 « (E¥3mod 32 @A™ 5))
16.end

a1his (NGOG DG
48. % Difusion phase

49. fori=1:mdo

50. fori=j:ndo

17. A" =4bs (R)
18. % Data conversion
19. fori =1:mdo
20. for i =j:ndo . R
21. lf Ai,j > 2_15 51.A”(i,j) = A15 (Eyl IEYZJ)
2. A(i,j) _ Ai']_; 52. ind ;end .

s o s 53. % Reverse conversion
23. else Ayj =2 54. fori=1l:mdo

24.AG0,)) = Ay — 1 55. fori=j:ndo
25. % Five-bit shifting 56. A; e A"@, )
26. R s e bitshifibitshifiR"",~5),5); s7.if B(i,j) =0
27. K" o, bitshifi(bitshifi(A"",—5),5); ss.else
28. A" < < bitshifibitshifih"", —5),5); 59. 8y < —AT(@))
o/ (2 . . 60. end ; end; end
29. % Generation of inverse S-box di ite(* original dat Ao F)
30. 513% - inv(El'lzll); audiowrite(‘ original data.wav ’, A; ,
31.87% « inv(EY );
32. 53‘21 — inv(E0'1293
33. % Re-substitutions phase
R //ps 32 (j1P
34A 51 <_Sl,1(A 51)
Table 22. Security analysis of proposed 5 X 5 S-boxes
S-box NL | SAC BIC SAC- LP DP LBN | DBN

BIC

Proposed S34 (5x5) |10 | 0.527 | 0.600 | 0.5250 0.25 0.25 2 2 0
Proposed S35 (5 x 5) 8 | 05124 | 0.6181 | 0.5250 | 0.3125 | 0.25 2 2 0
Proposed S35 (5 X 5) 8 | 05122 | 0.5222 | 0.4625 025 |[0.1875 | 2 2 0
Ref.[73]. S-box (8 X 8) | 108 | 0.4988 | 52.851 | 0.4988 - - 2 2 0
Ref.[32]. S-box (8 X 8) | 107 | 0.4990 - 0.50635 | 0.03906 | 0.1250 | 2 2 0
Ref.[74] S-box (7 X 7) | 52 | 0.4978 | 52.851 | 0.504 | 0.09375 | 0.0156 | 2 2 0
Ref [75]. S-box (4 X 4) | 4 | 0.4922 - 0.2500 | 0.2500 | 0.0625 | 2 2 0
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3.5 Security analysis of Audio encryption

Effective multimedia data encryption should be robust enough to fend off all attacks, namely
statistical, brute-force, eavesdropping, and other cryptanalytic approaches. Throughout part of
this section will examine how the proposed encryption scheme is vulnerable to several types
of attacks. Matlab 2021(a) uses a portable PC to conduct the simulations. To analyze the
suggested scheme, we selected a number of audio samples with different characteristics,
including voice, music, etc., and then encrypted them using different elliptic curve key
parameters. Figure 16 illustrates the waveforms of the plain audio and encrypted audio files.
The amplitude depicted in the cipher audio is uniform. It resembles the amplitude of the plan
audio data, proving that the audio data has been effectively encrypted, as shown in Figure 16.
Afterward, we will study the scheme with various analyses, such as spectrogram, histogram,
entropy, correlation, and differential analysis discussed in chapter 2. Therefore, in this section,

some analysis is just shown by their graphical illustrations, not their theoretical description.

3.5.1 Histogram analysis

The histogram analysis examines the proposed audio encryption-based SPA using MEC. The
result of the histogram analysis is illustrated in Figure 17. Figures 17 shows the histogram of
plain and cipher audio data, respectively. As observed, the histogram of plan audio data is
randomized and approaches a fixed location. On the other hand, the histogram of cipher audio
data nearly resembles each other. As a result, the recommended audio encryption algorithm is

exceptionally secure against statistical attacks, and Eve could not decrypt the cipher data.

3.5.2 Spectrogram analysis

The spectrogram analysis is an accurate and visual representation of audio data and is the tool
for analyzing sound data. A spectrogram is a standard two-dimensional plot in which one axis
represents the time domain. In contrast, the axis visualizes the frequency with the colour of
each point indicating its amplitude. As a result, a spectrogram shows amplitude variations for
each signal frequency component. To evaluate the recommended encryption scheme, we used
spectrogram analysis. The spectrogram graph analysis of the proposed audio encryption
algorithm demonstrates in Figure 18. Form Figure 18 shows the analysis of the original audio
data, while the second column of Figure 18 shows the spectrogram graph of the cipher audio
data. Moreover, from Figure 18, one can determine that the spectrogram analysis of the
encrypted audio is flat, has a considerable amplitude, and is different from the spectrogram

graph of the plan audio data, ensuring that the digital audio data has been effectively encrypted.
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Figure 16. The first column shows the Waveforms of the original audio Alarm, female, baby and
explosion. The second column shows corresponding their encrypted audio
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Figure 17. The first column shows the Histogram analysis of the original audio of the Alarm, female
and baby, respectively. The second column is there corresponding encrypted audio histograms.
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Figure 18. The first column shows the Spectrogram analysis of the original audio of the Alarm,
female and baby, respectively. The second column is there corresponding encrypted audio histograms

3.5.3 Correlation analysis

We test the suggested audio encryption scheme by correlation analysis. Generally, correlation
analysis evaluates the data in multiple directions, such as horizontal, vertical, and diagonal.
Since the sample of audio data is highly correlated with one another. Therefore, a highly
secured cryptosystem should break the correlation between audio data samples. Therefore, we

picked different adjacent samples to examine the correlation coefficient in multiple
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dimensions. After all, the audio data samples are organized in a single array of strings, so we
investigate the analysis of the correlation of the suggested scheme in the horizontal dimension.
The result is summarized in Table 23. Table 23 shows that the coefficient of correlation for the
plan audio data is 1, indicating that the audio data segments are highly associated.

Nevertheless, the results of encrypted audio data are nearly equal to zero, which shows that the
recommended encryption algorithm disrupts the highly connected audio segments.
Furthermore, the plan and encrypted audio data analysis is illustrated in Figure 19. From
Figure.19, we can observe that the proposed encryption scheme is highly resistant to statistical

attacks.

Figure 19. First column shows the Correlation analysis of the original audio of the Alarm, female and
baby, respectively. Second column are there corresponding encrypted audio histograms
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Table 23. Correlation analysis of various samples Audio

S.no | Audio samples Size/KB Plain Audio Cipher audio
1 Alarm sound.wav 186/kb 0.89735 —0.00221
2 Dog barking sound.wav 279/kb 0.95292 0.00623
3 Explosion sound.wav 533/kb 0.52226 0.00161
4 Male sound.wav 345/kb 0.86710 0.00844
5 Femalesound.wav 23.3/kb 0.85605 0.00318
6 Baby sound.wav 279/kb 0.96987 —0.04283
7 Cartoon sound.wav 488/kb 0.97841 0.00154
8 Gautier sound.wav 270/Kkb 0.96887 0.00083
9 Lion sound.wav 221/Kkb 0.99856 —0.00158
10 Ref.[76] 395/kb - 0.02021
11 Ref.[77] - 0.00311
12 Ref.[78] 228/kb 0.815998 —0.00938
13 Ref.[79] - 0.00029
14 Ref.[72] 0.98153 0.000991
15 Ref.[80] - - 0.000852

3.5.4 Information of Entropy

The suggested encryption scheme is evaluated by information entropy. Theoretically, the ideal
value of the corresponding audio scheme is 16. Consequently, a cryptosystem is considered
secure if the information entropy value of the encrypted file is close to the ideal value. Table
24 summarizes the results of an information entropy analysis for the suggested cryptosystem.
The suggested scheme information value is significantly closer to the ideal value for every
encrypted audio data, resulting in the optimal level of uncertainty in the encrypted audio data.

According to Table 24, the entropy values of various audio files ensure that the presented

scheme can withstand an entropy attack, as shown in Table 24.

Table 24. Entropy analysis

S.no | Audio samples Size/KB Plain Audio Cipher audio
1 Alarm sound.wav 186/kb 2.3184 4.1622
2 Dog barking sound.wav 279/kb 1.6067 4.1045
3 Explosion sound.wav 533/kb 2.6766 5.6153
4 Male sound.wav 345/kb 1.5477 4.5071
5 Femalesound.wav 23.3/kb 1.9385 4.7672
6 Baby sound.wav 279/kb 2.3182 4.1622
7 Cartoon sound.wav 488/kb 2.6223 4.7075
8 Gautier sound.wav 270/kb 2.1482 5.3487
9 Lion sound.wav 221/kb 2.3132 4.7688
10 Ref.[76] 395/kb 2.2661 5.0058
11 Ref.[77] - - 7.9371
12 Ref.[78] 228/kb — -

3.5.5 Differential analysis

An algorithm is deemed well organized and protected against differential attacks if the score

of NPCR and UACI is nearly equal to 100 and 33.3333, respectively. We inspect the proposed
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algorithm over both analyses and observe that the suggested encryption is well-secured. The
simulation score of both NPCR and UACI lies in the optimum range, as shown in Table 25. It
reveals the proposed SPN structure of the encryption algorithm's significant reliance on the

plan audio data and suggests that it may be more robust against differential attacks.

Table 25. Differential analysis

S.no | Audio samples Size/KB Nper UACI
1 Alarm sound.wav 186/kb 99.999721 33.341312
2 Dog barking sound.wav 279/kb 99.999823 33.442345
3 Explosion sound.wav 533/kb 99.999752 33.141256
4 Male sound.wav 345/kb 99.999602 33.341534
5 Femalesound.wav 23.3/kb 99.999501 33.445467
6 Baby sound.wav 279/kb 99.999823 33.840334
7 Cartoon sound.wav 488/kb 99.999816 33.840634
8 Gautier sound.wav 270/kb 99.999852 33.278134
9 Lion sound.wav 221/kb 99.999521 33.449134
10 Ref. [76] 395/kb 99.999506 -
11 Ref. [77] - 99.531614 25.798423
12 Ref. [78] 228/kb 99.734812 33.687823
13 Ref. [79] — 99.99950 33.559915
14 Ref. [72] — 99.9997 33.3421
15 Ref. [80] - 99.9977 -
16 Ref. [81] — 57.23 -
17 Ref. [82] — 99.978 32.02
3.5.6 Peak signal-to-noise ratio

We investigate the proposed algorithm by PSNR analysis to measure data quality. The peak
signal-to-noise ratio (PSNR) is a decibel(dB) unite metric that quantifies the ratio between the
plan and encrypted audio data, dividing by the highest power of a signal to the power of a noisy
signal value. Furthermore, the high value of PSNR underscores the effectiveness of the

encryption scheme. The PSNR is calculated using the following mathematical expression.

255
Psyr = 20X 1log10 [\/M—SE (3.17)
where Mean square error (MSE) is calculated via the following mathematical form
2
Msp = 1o S SNID (m, n) — E(m, n)] (3.18)

MXN

Where D(m,n) Indicate the plan audio data while E(m, n) is corresponding encrypted audio
data. Table 26 indicates the performance analysis of PSNR and MSE of the suggested

encryption algorithm. From Table 26, we can observe that the higher value of PSNR and lower
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value of MSE generally underscore the small amount of data retained in decrypted data.
Moreover, hence the proposed algorithm is scrutinized against robustness analysis.

Table 26. Peak signal-to-noise ratio analysis

S.no | Audio samples Size/KB Psyg Mgy

1 Alarm sound.wav 186/kb 10.35740 3.26444 x 10*
2 Dog barking sound.wav 279/kb 10.62277 3.26475 x 10*
3 Explosion sound.wav 533/kb 10.22475 3.26379 x 10*
4 Male sound.wav 345/kb 10.76211 3.26511 x 10*
5 Femalesound.wav 23.3/kb 10.75679 3.26707 x 10*
6 Baby sound.wav 279/kb 10.57626 3.26446 x 10*
7 Cartoon sound.wav 488/kb 10.71392 3.26473 x 10*
8 Gutier sound.wav 270/Kb 10.77144 3.26493 x 10*
9 Lion sound.wav 221/kb 10.56982 3.26391 x 10*
10 Ref.[76] 395/kb 4.2145 —

11 Ref.[77] - 10.7163 37.4487

12 Ref.[78] 228/kb - -

13 Ref.[79] - +4.49 -

14 Ref.[81] — 57.30 0.1211

3.6 Asymptotic Complexity and Running Speed Analysis

This section theoretically analyzes the proposed encryption over asymptotic complexity. The
asymptotic complexity summarizes the growth of the execution time with increasing input data
size. It divulges the mathematical dept of the algorithm, which is independent of hardware
implementation. The algorithm begins with generating random using the arithmetic operation
of the elliptic curve. For this step, we used the search method for generating an elliptic curve
point, which requires 0(n?), operation that is the most computationally costly in the scheme.
Next, the algorithm uses the random numbers and permutes the plain data, which requires
O(N x M) operation, where N X M is the plain data block size. In the substitution step, the
algorithm divides the permuted block data into three subblocks in constant time O(1). Then
substitute each subblock with a different S-box since the substitution step performs in constant
time O(1); therefore, for N X M block size, the step also requires O(N X M) operations. So,
forn = N X M the whole algorithm performs O(n?) operations that are polynomial time. The
running time of the entire encryption algorithm is measured in kb/second. We encrypt the
different sizes of audio.wav, and the average time of encryption and decryption are
0.00334kb/sec and 0.000539 kb/sec, respectively, as shown in Table 27. Table 27 illustrates
that the overall encryption steps have fewer time requirements than [76] [78]. As a result, the

encryption technique is efficient and can be used for real-world communications.
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Table 27. Execution time of the proposed algorithm

S.no Audio samples Size/KB Encryption
time/sec
1 Alarm sound.wav 186/kb 0.00221/sec
2 Dog barking sound.wav 279/kb 0.00334/sec
3 Explosion sound.wav 533/kb 1.07653/sec
4 Male sound.wav 345/Kkb 0.00734/sec
5 Femalesound.wav 23.3/kb 0.000539/sec
6 Baby sound.wav 279/Kkb 0.00334/sec
7 Cartoon sound.wav 488/kb 1.020126/sec
8 Gutier sound.wav 270/kb 0.00234/sec
9 Lion sound.wav 221/Kkb 0.00311/sec
10 Ref. [76] 395/Kkb 0.004/sec
11 Ref. [77] - -
12 Ref. [78] 228/kb 0.281/sec
13 Ref. [79] 0.0026/sec

3.7 National Institute of Standard and Technology (NIST) Statistical Analysis

In this subsection of security analysis, we utilize NIST statistical analysis to evaluate the
Modell elliptic curve-based pseud random number sequences (MEC-PRNS) and investigate
whether the suggested scheme is suitable for the cryptographic application. Since NIST tests
work on binary data, convert the generated sequence to binary to ensure the randomness of the
proposed algorithm. There are sixteen (16) tests in the NIST testing suite that are usually
performed to examine the randomness of data, as shown in Table 28. From the table, we can

notice that MEC-PRNS succeeded in the complete randomness tests of NIST, proving that the

MEC-PRNS are highly random and sufficient for audio encryption.
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Table 28. NIST randomness analysis for cryptographic applications

S.no | Test Name P-Value Result
1 Frequency-Test (single-bit) 0.93432071088934 Success
2 Frequency-Test(block) 0.31475830512155 Success
3 Run Test 0.41535210874214 Success
4 Longest Run of 1°s in a Block 0.42347212437727 Success
5 Rank test of Binary matrix 0.65746634332441 Success
6 Discrete Fourier Transform (DFT) Spectral test 0.13758358862813 Success
7 Matching Test of Non-Overlapping Template 0.21767757131905 Success
8 Matching Overlapping Template 0.16716577128047 Success
9 Maurer's Universal Statistical test (MUST) -1.0 Not
Success
10 Linear Complexity (LC) Test 0.54215767242552 Success
11 Approximate Entropy Test (AET) 0.04554663062186 Success
12 Forward Cumulative Sums (FCS) test 0.98745143218243 Success
13 Reverse Cumulative Sums (RCS) test 0.98678134070164 Success
14 Serial test (ST) 0.12491742232234 Success
15 Random Excursions Test
State Chai-squared value P —value Result
-4 4.123469951021149 0.5836458638476241 | Success
-3 1.744271338713358 0.8736591835003546 | Success
-2 4.844693165257315 0.4141356734512387 | Success
-1 5.240705127776518 0.4012356714687765 | Success
1 3.563295336645158 0.6475737764612386 | Success
2 4.076914662345544 0.5476836646123396 | Success
3 5.623125337746047 0.3761126757224412 | Success
4 3.5459267601847782 0.6234512475488964 | Success
16 Random excursions variant test
State No. of Counts P —value Result
1.0 334 0.1237659854642848 | Success
2.0 353 0.2834649944849434 | Success
3.0 335 0.2347374842019319 | Success
4.0 325 0.4546373846476437 | Success
5.0 305 0.3453848434811987 | Success
6.0 298 0.3645367465353636 | Success
-1.0 251 0.4763544688436878 | Success
-2.0 248 0.1234687473534484 | Success
-3.0 253 0.7464364454193768 | Success
-4.0 276 0.1236294849734841 | Success
-5.0 247 0.5378486462354648 | Success
-6.0 253 0.6473543878434384 | Success
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Chapter 4

Hyper Elliptic Curve for Efficient Digital Image
Watermarking

The availability of multimedia data across the world wide web has affected unintended
individuals in distributing information, including images, audio, and videos, information
illegally. Problems with copyright protection and ownership authentication are
highly prevalent, so to counter these issues, it is also required to strengthen the secured strategy.
The unauthorized distribution of multimedia data is shown in Figure 20. As a result, an
authorized, highly secured strategy is required to identify these unlawful users to end illegal
data distribution. In addition, digital watermarking provides anti-tampering, access control,
ownership verification, non-repudiation, indexing, memory savings, and requirements of
bandwidth limitations. There are some fundamental principles to applying Watermarks
digitally in the images: (1) Maintaining the quality of the host's image is essential; (2) inside
the host image with a watermark, and the watermark is kept hidden; (3) keeping it protected
from unauthorized users, the watermark should be irregular and invisible. Moreover, the
classification of digital watermarking according to their domain is shown in Figure 21 [83],
[84].

In [85], hybrid multiple watermarking(HMW) is present in the transform domain. In the
proposed work, the author used the combination of discrete wavelet transformation (DWT),
singular value decomposition (SVD) and discrete cosine transformation (DCT) instead of
individuals domain to improve the robustness and quality of the watermark image. However,
it's possible that it somewhat increased computational complexity, which has to be looked into
independently. A reversible watermarking approach is developed in [86], for healthcare
applications. The suggested approach utilized the technique of pixel-to-block (PTB) for the
generation of a cover image instead of the conventional procedure.

Considering the above-mentioned copyright protection and ownership authentication
problems, this chapter proposed an efficient digital watermarking based on the hyperelliptic
curve, which is the generalisation of an elliptic curve. The suggested technique is key-
dependent, and only the main owner of the image may authenticate his ownership using his
secret key. The suggested approach utilizes random sequences generated using the HEC and

distributes the watermark image data randomly. On the one hand, the random distribution of
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the watermark image does not influence the quality of the host image; on the other hand, this
technique strengthens the security of the proposed system since only the authorised owner may
replicate the watermark image. Furthermore, the chapter is concluded with the analytical

findings of the suggested system and its comparison with the existing excellent literature.

Figure 20. Unauthorized distribution of video data

Figure 21. Watermarking embedding techniques with Domain-specific categorization

4.1 Fundamentals of Hyper Elliptic Curve
As part of this section, we looked at a few basic definitions of HEC over a finite field and their
characteristics employed in the proposed watermarking technique. A hyperelliptic curve C of

genus G(G = 1) defined over the finite field K = F; as defined as[87]:
C=Y?*+HOOY =F(X) inK[X, VY] 4.1)
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Where H'(X) and F(X) € K[X,Y] is a polynomial of degree at most G and 2G + 1
respectively, and there are no such points (X, Y) on closer filed K X K, which satisfies the

following equations.

Y* +HX)Y = F(X) (4.2)
2U+H(X) =0 (4.3)
HX)-Fx)=0 (4.4)

The point (X, Y) € K x K which satisfies the equations from eq.(4.2-4.4) is called a singular

point. A hyperelliptic curve has no singular point.

4.1.1 Opposite and Special Point

Consider the pp.. = (x,y) be the HEC point, then the opposite point of Ppe. = (x, =Y —

H (x)), while the special point on HEC is O called the point of infinity.

4.1.2 Arithmetic of Hyper Elliptic Curve

The points on an elliptic curve with a point of infinity {0} can be grouped to form a group.

However, for hyperelliptic curves, taking the points on the curve C and adding the points of

infinity, we will not be able to form a group. To form a group of points in the hyperelliptic

curve, we must take the sum of the points as group elements and then add them as follows:
Pr+P) D (Q1+22) =R+ Ry) (4.5)

While symbols + and @ do not represent addition and XOR operations, respectively, the xor

operation represents the mathematical operation of the group.

4.1.3 Divisor

In cryptography, the hyperelliptic curve computes groups that are subgroups of the random

group D resulting from the set of points on the curve. If the curve C is the HEC of genus G over

the finite field F;. The elements of D are known as divisors. The divisor D is defined by the

following mathematical expression [87] .
D=Ym,P m,€eF,,PEC (4.6)

Where is D is the reduced divisor and m,,, P are the number of points and points on the curve
C.
4.1.4 Group Divisors

The group divisors divc0 of hyperelliptic curve Cof genius § and degree 0 are Computed by

the following mathematical formula.
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divc0 =Y pec M P |m,, € Fy,m,, = 0 for most of the points on the curve P € C 4.7)

4.1.5 Divisor class group

Each divisor class in the divisor class group can be represented as:
D=Y_,P—+Py,P,ECUP,, r< G (4.8)

4.1.6 Jacobian of Hyper Elliptic Curve

The Jacobian of the curve C defined over the finite field F; is denoted by J.(F;). The

mathematical formulation of the Jacobian of the curve C is defined as:

div,’
Jc(Tq) = ¢ /g) (4.9)
Where every element of the Jc(}"q), can be represented uniquely by divisors D. Hence if

D.,D, € divc0 are equivalent if D; —D; € P. There is precisely one divisor in every
equivalence class called the reduced divisor. The group law is formed by the reduced divisor,
represented by Mumford representation [88].

4.1.7 Mumford Representation

Mumford representation is the simplest representation of the Cartesian points in polynomial
divisor form. The divisor can be represented by a pair of polynomials as 2¢(x), v (x). Although

both polynomials, i.e., «(x), v (x) € F,;, and must satisfy the following condition.

w(x) is monic polynomial (4.10)
deg (v(x)) <deg(u(x))< g 4.11)
w(x)|vr(x)? + v (x) H(X) — F(X) (4.12)

The divisor class polynomial 2 (x) is represented by the following mathematical equation.
u(x) =[x — x; (4.13)

Where the divisor class D is shown in equation (4.8).

4.1.8 Cantor's Algorithm

In the jacobine of a hyperelliptic curve, i.e., J. (Tq )The cantor's algorithm presents the formula

for executing arithmetic group operations such as divisor addition and doubling [88]. The

cantor's algorithm on the divisor is performed in a two-step. (1). Determined the reduced

divisor D' = div(«',v") such that D = D, + D, = div(u,v,) + div(u,, v,) in the group

of jacobine J.(F,). (2). Find the semi-reduced divisor D’ = div(«',v") to an equivalent D =

div(u,v). Table 29 briefly explains the algorithm for the divisors' adding and doubling [89].
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Table 29. Algorithm for Adding and Doubling the divisors
Algorithm for Adding two divisors
Input: D, = div (ulp,vlp), D, = div (’uzq,’lfzq) ,C =Y+ H(X)Y = F(X).
Output: D3 = D, +D, = div(uz ,v3 ).
Step 1: Compute the gcd using the Extended Euclidean Algorithm(EEA).
D = ged(uy,, uz, 1, +v1, + H) = ajuy, + aru, +az(vy, + vy, + H).

Step 2: Calculate U’ Using the below expression.

U' = ulpuqu_l.
Step 3: Calculate

[alulpuzq + aytiy uy, + as (/Lrlpvzq + 9-") ]D)_l] mod U’ .
Step 4: Initialize j = 0

While deg (U’j) > G do

j=j+1
U = F—=vi1HW -1 ?)
Jj— U’
j-1
v'j= (—.‘]—[ — v'j_l)mod U';
end

Output: (uz,v3)=U",v").

Algorithm for divisors doubling
Step1: D =gcd(U,2V+H) =a U+ a; v+ H)
Step2: U’ = (U? D™?)
Step 3: V' = [aqUV + a3 (V2F)D ] mod U'.

4.2 Proposed Colour Image Watermarking Technique
In this section, we prosed a new digital colour image watermarking technique based on the
mathematical operation of HEC. Initially, the uniform permutation process uses hyperelliptic
curve pseudo-random number generation (HEC-PRNG); the brief watermarking image
description is given in subsection 4.3.1. After that, the embedding and extraction of the host
image using the most significant bit(MSB) and the least significant bit(LSB) and their inverse
process are given in subsections 4.3.3 and 4.3.4.
4.2.1 Proposed Watermarking Image Technique
The suggested colour watermark image technique works in the following steps.
Step 1: Load the Host image H of size m X n X 3.
Step 2: Generate the points on HEC € = Y? + H(X)Y = F(X) in K[X,Y] of G =2, Where
F(X), be defined as in eq (14) with the condition in eq(2-4) must be satisfied.

FO) =x2°+ a2+ ax® +azx + a, (4.14)
Step 3: Next, the generated points on HEC are permuted to their opposite point. The
mathematical formulation of the HEC point to their opposite point is given in equation (4.15).

hec:Tq XFy - FyxF
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hec(xi'Yj) = (xi"yj’)

(xir, y51) = (x3, =y — H(x))

hec(xl-r,yjr) =y (4.15)
While (x;7,y;’) are opposite points of HEC. After that, pick the coordinate y;s, of any
dimension and perform the row and column-wise cyclic permutation(RCWCP) on the host
image. The detailed procedure of RCWCP is given in subsection 4.3.2
Step 4: Load the watermark-Logo image H’', of dimension u X v X 3 and convert the
watermark image H' Into MSB and LSB, then MSB converts to LSB.
Step S: Dived the permuted host image of dimension # X 7 X 3 into the subblock of
dimension u X v X 3.
Step 6: Embedded the LSB of the watermark-Logo image into the MSB of the sub-block of
the permuted host image of dimension u X v X 3. The detailed procedure for the embedding
and extracting process is given in subsections 4.3.3 and 4.3.4
Step 7: Execute the row and column-wise cyclic permutation in reverse order to get the
watermarked image W.
Step 8: To extract the watermark logo from the watermarked image, perform the steps in
reverse order to get the extracted watermark-Logo.
4.2.2 Row and Column Wise Cyclic Shift Permutation
The pixels in a host image H are listed in 7 rows and 7z columns. For the row-wise
permutation(RWCP), the term y; € y;» was chosen from a sequence generated by HEC to
permute the pixels by the row-wise cyclic shift operation. For each row, a new random term

was chosen from y;s to permute every row by RWCP of the watermark image. However, there

are no restrictions on the initial term y;; choose any term from the sequence and iterate the
process on the watermark image of 7 rows. For example, y, € yy = [2,1,2,1...,...,m], and
let H be an image of m rows, the first row pixels R, € H permute first-row cyclic shift to
the right or left direction by 2. Moreover, receivers should perform cyclic shift operations right
to left if senders perform them left to right. Otherwise, the receiver should not get a plan image

permuted by the sender row-wise. The mathematical construction is given below in eq (4.16).
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Rlcl Rlcn Rlcn—l Rlcﬂ R]-Cn—z
:R2C1 s es RZC/FL Rlc/n—]_ chl s e chﬂ—l
cry e e (4.16)
|Rme, oo Rmcd LRy v e o R,
Like the RWCP, the column-wise cyclic permutation (CWCP) is executed by 7 columns by

choosing any random element from y;s, and permuting the pixels of a column by cyclic shift
operation from right to left or left to right direction. For example, y, € y; =

[2,1,2,1...,...,m], and let H be an image of 7 columns. Choose the first column C;z € H
and execute the cyclic shift operation on the row by 2 from the left /right direction. The first-
row cyclic shift to the right or left direction by 2. Furthermore, cyclic shift operations should
be performed right to the left by receivers if they are performed left to right by senders.
Otherwise, the receiver should not receive a plan image that the sender has permuted cyclic
shift operation column-wise. The mathematical description of CWCP is given below in eq

(4.17).

yj’ = [2 1 ...,...,’WL]
C1r1 Cnrl Clrm_l CZrm Rlck_z
Clrz C/nrz Clrm CZr1 :RZCk_l
- ey e (4.17)
Ciry, o oo Cor CiryrCorpye oo o Ry

4.2.3 Watermarking Embadding

The processes for embedding a watermark image are as follows, given a watermark image H
of size m X n X 3 and the host image H', of dimension u X v X 3. Initially, the watermark
image H is permuted into H; using HEC-PRNG to vanish the adjacent pixel correlation, and
the data is uniformly distributed. Next, dived the watermark permuted H, image into the non-
overlapping u;/128 X v;/128 sub-blocks of dimension u X v X 3. After that, u;/128 X
v;/128 of dimension u X v X 3 say H, and the host image converts to the MSB of all three
layers, namely H®,, H%,,H8 , H 'R H'®, H'®, respectively, then convert the MSB of the host
image into LSB and add them with the corresponding layer of each image to embed the

watermark. The mathematical expression for the embedding procedure is given below.

MSB(H,) = msb(HR,)

78



= msh(H®,)
= msb(H?,). (4.18)
LSB(H") = Isb(msb(H'")
= Ish(msb(H'®),
= Isb(msb(H'"). (4.19)

EMbadding = MSB(H,) + LSB(H"). (4.20)

4.2.4 Watermarking Extraction

The extraction process of watermarked image is relatively the same as the watermarked
embedding. Consider the watermarked image W and the symmetric key generated by HEC are
received. The following steps involved in watermarked extraction are as follows.

Initially, load the watermarked image W and permute RWCP as a key to extract the permuted
image. Next, divide this permuted image into subblocks u;/128 X v;/128 A of dimension
u X v X 3. Then, extract the MSB from A and convert it to LSB; the LSB convert to MSB and
subtracted from the subblock to get the extracted MSB watermark-logo H'. The following

mathematical expressions compute the extraction of the watermark logo.

AT =msb(lsb(msb(A"))
A J = msb(Isb(msb(AY))
AP = msb(Isb(msb(AP))

H" =msb(A" —AY)
HY9 = msb(AI — A7)
HY = msb(A? — A Y)
H' = concatenate(Hr',Hgl,Hb'). (4.21)
Where, H", H9', H"', the extracted MSB of the watermark logo. The flow chart of the

proposed watermarking technique is shown in Figure 22.
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Figure 22. Flow Chart of The Proposed Watermarking Technique

4.3 Evaluation Metrics and Simulation Results of the Proposed Technique

To examine the suggested scheme, the watermarking approach is simulated by Matlab R2021a.
The colour images of pepper, baboon, and Lena, of dimension 512 X 512 and the watermark
colour image Qau monogram of dimension 128 X 128, data set used in the section of

experimental analysis.

Figure 23. Data Set used in the Proposed algorithm

4.3.1 Quality and Effectiveness Metrics

The proposed digital colour watermarking technique is evaluated by the effectiveness and the
quality, such as mean square error (MSE), peak-to-signal noise ratio(PSNR), and structurally
similarity index(SSIM), which we have already explained in chapter 2.

4.3.2 Structural Similarity Index

The proposed watermarking scheme is evaluated by the structural similarity index(SSIM) to
examine the quality of the original and recovered image difference. The obtained value of
SSIM of the proposed watermarking scheme is nearly close to 1. The calculated difference
between the original and recovered watermark image is 1, indicating that the watermark has

not been altered in the public channel.
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4.3.3 Mean Squared Error

It evaluates the quality of the image and validates the average squared difference between the
original and recovered host image [90][91][92][93][94]. The mathematical representation of
MSE is defined as:

N-1M-1

_ = [0(i, /) — |R(i, )II?
MSC = Z —— (4.22)

= =0

~.

Where 0(i,j), and R(i,j) represent the original and recovered host image of dimension
M x N. We examined our proposed watermarking technique by M'SC analysis for the baboon
and peepers images of dimension 512 X 512. The computed value of MSC of baboon and
peepers images is 0, which is very low. Similarly, the numerical value of MSE of the original
images of baboon and peppers and their watermark comes to 0.0000745, which is very low.
Furthermore, the MSE value of the watermark and the extracted watermark is less, ensuring

that the proposed algorithm shows the robustness of the watermark.

4.3.4 Peak Signal-to-Noise Ratio

We examined the proposed algorithm by the peak signal-to-noise ratio(PSNR). The theoretical
and mathematical description of PSNR matrices is given in chapter 2. The PSNR value of the
original host and the recovered image is 97.24430, which ensures that the proposed algorithm

show robustness against PSNR analysis.

4.4 Experimental Analysis of Watermark Image

Watermark image is unprotected from various kinds of attacks. These attacks are categorised
into Geometric or Transform, Noising, Roubstaness and Counterfeiting attacks. In a geometric
attack, the attacker can modify the geometry of the image by altering its rotation, scale, or
translation. In the category of the robustness of the watermark, the attacker usually removes
the watermark logo through JPEG compression and image cropping. In a noise watermark
attack, add some different types of noise to the watermark. In a Counterfeiting attack, the active
attacker captures the original image, and instead of it, the attacker forwards the fake/forged
image.

4.4.1 Salt and Pepper Attack

Salt and Pepper attacks were calculated based on their impact on recovered image quality [95].
We added salt and pepper noise with different ratios of the proposed algorithms and extracted
the watermark. From the salt and pepper noise attacks, we observe that, with the increase of

noise in the watermark image, the PSNR value decrease and vice versa, as shown in Table 30.
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The illustration of a baboon, Lena, and pepper of watermark image of dimension 512 X 512
with salt and pepper noise is shown in Figure 24, with extracted watermark Qau monogram.
4.4.2 Rotation Attack

We perform the rotation attacks on the watermark images of the baboon, Lena, and pepper.
There are two approaches to fulfilling the rotation attacks; the first one rotates both the original
and watermark image by 10°,15°,30° and the second one rotates the watermark image by
10°,15°,30° Clockwise and then anti-clockwise. The SSIM value of the watermarked image
varies from 1 to 0.341320 for the rotation attack 10°. The illustration of the rotation attack of
the baboon, Lena and pepper using the second approach is shown in figure 25. We observe
from the rotation attack that the proposed watermarking techniques are robust against rotation

attacks

Figure 24. (a-d)Salt and Pepper Noise with different ratios (e-h)Crossponding their extracted

watermark logo.

Table 30. Salt and peppers analysis on watermark image

Attacks ratio PSNR values Observation

Images Pepper Lena Baboon | From the PNSR results, we observe that
Without Noise 24.5137 | 24.6138 | 24.6147 without the salt and pepper noise, the value
0.1 Noise 21.2345 | 21.7745 | 21.7325 of PSNR increased, while when the ratio
0.2 Noise 16.4675 | 16.2375 | 16.6685 Noise increased, the PSNR value

0.3 Noise 15.2536 | 15.6536 | 15.4536 | decreased.

0.4 Noise 14.2345 | 14.4245 | 14.7464
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Figure 25. (a-c) Rotation attacks with different angles(d-f) Crossponding extracted watermark logo

4.4.3 Cropping Attack

We evaluate the proposed watermarking approach by cropping attacks. We crop the watermark
image peppers by 25% from the upper left and right, 25% from the bottom left and right, and
then extract the watermark logo. The difference in SSIM between the cropped image and the
original host watermarked image is 0.21346. The illustration of cropping attacks is shown in
Figure 26. Figure 26 shows that the suggested watermarking scheme is robust against cropping

attacks.

4.4.4 Compression Attack

When a watermarked image isn't already in JPEG format, the attacker can easily convert it into
one by reducing the quality factor of JPEG compression until the image loses the characteristics
he wants [95]. Moreover, it is possible for the attacker to resave the watermarked image as a
JPEG, even if it is already a JPEG with a lower quality factor. Due to the standard and easy
nature of JPEG attacks, this robustness assessment emphasises a robust response to JPEG
compression. We implement the compression attack on the watermark image. The image is
compressed to the size of (256 * 256). Moreover, the difference in SSIM value between the
cropped image and the original host watermarked image is 0.89346, which ensures that the

watermark image has been attacked in a public channel. The illustration of JPEG compression
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attacks of Lena, the baboon, and pepper watermarked image is shown in Figure 27. Figure 27

ensures that the proposed watermarking technique is robust against compression attacks.

Figure 26. (a-d) Cropping Attacks of the original image Peppers with different data lose (e-h)

corresponding extracted watermark logo

Figure 27. First row shows the Compression attacks of the original image Lena, Peppers and Baboon

of Dimension 256 * 256. The second row shows the corresponding extracted watermark logo
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Table 31. Analysis of the original host and watermark image

SSIM CC Observation
Pepper 0.89346 0.001359 | The SSIM value is entirely different between the
Lena 0.097554 0.0065466 | original and encrypted images. The value of CC is less
Baboon 0.15467 0.006356 | to ensure the difficulty level for the attacker

Table 32. Experimental analysis of original and recovered image

SSIM PSNR MSE Observation

Pepper | 0.956721 | 97.24430 0.000002 | The value of MSE is significantly less.

Lena 0.97644 | 88.35657 | 0.0000004 | The value of PSNR for both images is very
Baboon | 0.98446 | 91.46575 | 0.0000003 | high. The SSIM value is close to 1.

4.5 Comparison with other Existing Algorithms

We compared the proposed digital watermarking scheme with other algorithms in this
subsection. The proposed watermarking robustness is evaluated through the stat of art metrics
like PSNR, SSIM, MSE and CC. the proposed algorithm has a high PSNR value of 97.24430,
indicating a high-quality level and robustness compared to other existing watermarking
algorithms [95]-[100]. Moreover, the value of SSIM of the suggested scheme is close to 1,
which ensures that the proposed cryptosystems show high robustness of the watermark image
as compared to the existing watermark techniques [95]-[100]. Additionally, time embedding
is an essential factor in evaluating the effectiveness of the watermark algorithm. We compare
the proposed scheme by an important factor of time embedding. According to the findings
shown in Table 33, our suggested strategy outperforms several current methods [95]-[100] in

terms of embedding time.

Table 33.Comparative Analysis

SSIM PSNR MSE CC Emmbiding time

Proposed 0.956721 | 97.24430 0.000002 0.001359 0.8754/sec
Ref.[95] 0.999935 97.5450 0.0000001 0.002287 No

Ref.[96] 0.9150 55.6042 | NO 0.8375 (NC) NO

Ref.[97] 0.9992 56.8684 NO 0.9998(NC) 4.337/sec
Ref.[98] 0.99993 52.5768 No 0.99999(NC) 251.79/sec

Ref. [99] No 38.64 No No 1.275/sec
Ref.[100] 0.9771 37.7256 NO 1 8.062/sec
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Chapter S

Gray Scale Image Encryption based on Isomorphic
Elliptic Curves

Multimedia data is an essential source for delivering information over the network and is
widely used in many fields. The most important one is the digital image, which has significant
information panache and is often used to exchange digital information. However, due to open
network development, the secrecy of those images which contain sensitive information during
transmission is the central issue. Advanced Encryption Standard (AES), Data Encryption
Standard (DES) [101], and triple data encryption standard (TDES) [102] are efficient
cryptographic algorithms and suitable for the security of small data. However, these schemes
cannot secure multimedia data like digital images, audio, and video data. To cover the issue of
digital image security, numerous authors present image encryption schemes proposed based on
nonlinear dynamical systems. These schemes are usually based on low and high-dimension
chaotic sequences. The low dimensional chaotic sequence schemes have enough security issues
due to low accuracy and short cord period. Thus, researchers pay attention to using high-
dimensional chaotic sequences for the encryption algorithm[103]-[106]. Therefore,
researchers used different mathematical structures to develop a secure image encryption

scheme with minuscule computational complexity.

The cryptosystems-based elliptic curve has excellent cryptographic properties, hence widely
used for secure communication. In [107], it presents an image encryption scheme using a fast-
mapping method based on a matrix approach for ECC. In the proposed work, the authors used
different properties of the matrix and elliptic curve to convert the alphanumeric character
values to the elliptic curve coordinate (x,y) using the non-singular matrix. The mapping
technique used in the scheme increases the security strength of the cryptosystem. However, the

suggested encoding scheme's computational complexity (CC) is still high.

Generally, the generation of EC points is a time-consuming procedure, and overall, it affects
the computational time; hence, there is an urge for the method to generate EC points
comparatively fast. In addition, the conventional conversion of EC points into (x,y) points
also influences the computational complexity, so conversion demands an effective and efficient

procedure.
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Keeping the above facts in view, this chapter introduced a novel symmetric key encryption
algorithm based on the efficient computation of elliptic curve isomorphism(ECI) and 4-bit
substitution boxes(S-Boxes) for the application of grayscale image encryption. In the first
phase, the proposed algorithm utilized the searching technique to generate the points of EC,
which reduces the complexity up to an exceptional margin. After that, the kobtliz encoding
technique was employed to convert the plain image least significant bits(LSB) data to EC
points. These points are then mapped to the isomorphic curve and are the reason for diffusion
in the ciphertext. Besides this diffusion mechanism, elliptic curve points are also involved in
constructing small substitution boxes for confusion. This proposed confusion and diffusion
technique also provide quality security in response to well-known cryptographic attacks, as

established by the number of statistical results and security analyses.

5.1 Koblitz Encoding
Nill Kobltiz in [108] first proposed the concept of representing plain data in the EC point.
Consider the elliptic curve E, which is defined as: ¢? = x3 + Ax + B over E,. Let M, be the

plain data, represent the value in the interval 0 < M < p/ 100- Letx; = 100M +ifor0 < i <

100. For i = 0,1, ..., 99, calculate the value of S; = x;° + Ax; + B. If §;°?"Y/2 = 1 mod p,

then S; is square mod p, in such a scenario, we don't need to check any more values of i. In

the second case, if p = 3mod 4, the square root S; is given by ¢; = S; ®+D/* mod p. Finally,
if p = 1mod 4, it is also possible to compute the square root of S;, although the process is

more complex and hence we get the transform point of EC (x;, ¢;). The decoding procedure
is effortless; compute the l%] (= the greatest integer less than or equal to 1x—()i()). The execution

time of the encoding processes depends on the parameters. However, the decoding time is

independent of the parameters of the elliptic curve.

5.2 Isomorphic Elliptic Curve

Definition 5.1. Two elliptic curves over the field F, given by the short Weierstrass equation

E,=y?*=x3+Ax+B (5.1
E,=y?>=x234+Cx+D (5.2)

with A, B, C, D € E, is said to be isomorphic if there exists f# € F, such that C = B*Aand D =

[°B we say that E; and E, are isomorphic. The morphism between the elliptic curve is

y:(x,4) = (B*x,B3y) (5.3)
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B2x,B73y) « (x,4):¢ (5.4)

5.3 S-Box Construction Algorithm
In the proposed scheme, we employed the S-box to produce confusion in the plain image. The

S-box construction scheme consists of the following steps.

1. Initially, choose a prime number p and two distinct elements such that A;, A, < p.
2. The prime number is selected such that the corresponding elliptic curve Ej,(A;,A;) have
at least 6 X 16 points.

3. In the third step, generate the points of the elliptic curve using the equation given as

follows.
y3=x3+Ax+A,mod p
4. In the next step, add the x and y coordinates of each point of the elliptic curve and obtain

anew set £, , (A1, Az).
E p,Z(AlJAZ) = {Z |Z =x+ Y, (xry‘) EEp (AIIAZ)} (55)

Finally, we carried out the mod operation Ep,216(A1, A,) to restrict the range of the elements
of the set E plzlﬁ(Al,Az), into [0-16] and pick the first sixteen elements from the set,
subsequently converting the elements into the 4 X 4 lookup table, which is the required S-box,

as depicted in Table 34. Moreover, the evaluation criteria of the newly generated s-box based

on the elliptic curve are given in table 35.

Table 34. Proposed Dyamnmic S-box based on Elliptic curve

5 2 8 15 5 8 2 11
14 13 1 6 0 6 15 12
0 12 11 9 1 3 9 13
4 3 10 7 4 10 14 7
S-box 1. E 17316(0,1) S-box 2. E 21116(0,1)
5 8 14 10 5 12 2 15
0 12 3 13 0 8 4 7
1 7 15 1 14 10 6 13
6 4 9 2 9 11 3 1
S-box 3. E 17916(0,1) S-box 4. E 25116(0,1)

5.4 Proposed Encryption Scheme
In this section, we discussed the proposed encryption algorithm. Let I denote the plain image
of dimension M X N containing the element from the set [0 — 255]. Subsequently, we split the

pixels of the image into LSBs and MSBs and convert the MSBs into LSBs. Accordingly, one
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gets a new matrix I; of dimension 2 X M X N, contain the entries between 0 — 16. Then we
processed the matrix I over the servel steps. In the next subsection, we discussed the entire

steps in detail.

Table 35. Experimental analysis of newly generated S-box

Results
S-Boxes NL | SAC LAP DAP BIC- LS | LBN | DBN | FP | OFP
SAC
E17316(0,1) 4 0.4922 | 0.2500 | 0.0625 | 0.2500 | O 2 2 0 0
E51116(0,1) 4 0.4688 | 0.2500 | 0.0625 | 0.2500 | O 2 2 1 0
E17916(0,1) 4 0.4922 | 0.3750 | 0.0625 | 0.2500 | O 2 2 1 0
E;5116(0,1) 4 | 0.5000 | 0.2500 | 0.0625 | 0.2500 | O 2 2 110

5.4.1 Preprocessing

In the first step, while using elliptic curve cryptography, the pixels of the plain image should
be converted into elliptic curve points. In the proposed work, we used the Kobltiz method to
map the pixels of the matrix I, into the elliptic curve points [108]. Let ¢; be an element of the

matrix I, compute the output pair (x;, y;) of the element c¢; using the following map.

k: Iy - E,(a,b)

k(c;) = (xi,41)
x; =cik+1lmodp (5.6)
Yi =\/xi3+Axl- + B mod p (5.7

Where x; = c;k + 1 <p and 0 < | < p and compute y;, which satisfies equation(5.7). The
failure probability of finding y; is ziL According to [109], L = 30 is enough to achieve the

required transformation of the data.

5.4.2 Postprocessing
The decoding process of the plain image includes the decoding of the coordinate (x;, ;) of

the elliptic curve by computing M = |(x — 1)/k|. The detailed procedure is given in the

following example 5.2.
Example 5.2. Let us have an elliptic curve, and the parameters of the EC are as follows.

A=1B=—1,p=503k=20

89



Let M = 22 be a plaintext, then x = Mk + 1 >» 22 X 20 + 1 = 441, Since = 23 + Ax +
B mod p is not a perfect square, so it carried out the same operation and put [ = 2, i.e., x =
mk + 2 = 442, which is again not a perfect square. So, we have to iterate the same procedure
for the various value of [ till the equation becomes a perfect square. The equation x> + Ax +
B mod p is a perfect square for [ = 19. Accordingly, the plaintext is converted into the elliptic
curve point(459,475). To decode the plaintext, subtract 1 from the x and divide the output by

k and round the answer; the process is given below.
(459 — 1) /k| = 22

After the conversion of preprocessing step, which is explained in detail in the above example
5.2, the next step is to use the isomorphism of the elliptic curve map to alter the position of the

elliptic curve points to produce diffusion. The mathematical representation is given below

Vim: Ep(A,B) = E,(C,D)

Ym((xi,40) = (2,4 (5.8)

Where the pair (x,y) denotes the elliptic curve point. After the isomorphism of the elliptic
curve map, the range of y,, is decoded and converted back to the matrix I, of range [0 — 16]
by using the decoding process as discussed below. Furthermore, we need to add the
abovementioned isomorphism curves and apply the substitution process discussed in section
5.4. After this substitution process, the obtained S-boxes are applied to the matrix [, ,and one
can get a new matrix Is. In the next step, split the matrix of dimension M X N into two matrices
I4; and I, of dimension M X N, and convert the matrix I¢; into MSB and combine the MSB
with LSB. So, the obtained image is the required encrypted image. The flow diagram of the

proposed work is shown in Figure 28.

5.5 Security Analysis Of Encryption Scheme

Security analysis determines whether a cryptosystem is good enough to counter malicious
attacks. For good encryption, it should resist all kinds of known attacks. Moreover, in this
section, most security analysis results are discussed in chapter 2, so we just show their graphical
and tabular representation, not their theoretical description. The simulations take a data set of
input images, Lena, baboon, fruit, and pepper. Figure 29 shows the above data set, plain and
encrypted images. It can be envisaged from the encrypted image that encryption results are

visually strong.
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Figure 28. Flow Chart of the Proposed algorithm

Figure 29. (a-d)Plan image of Lena, Fruit, Peppers, and Baboon from (e-h) their cipher images,
respectively

5.5.1 Histogram Variance Analysis

Histogram variance analysis is considered a quantitative measurement of the histogram. The
low value of variance represents the high-level uniformity of a grayscale image; inversely, the
low uniformity of a grayscale image shows a high variance value. The histogram variance value

is defined in equation (5.9) [110].
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1 (xi=x;j)*
V(X) = NZ Iiv=1 Zﬁy=1 > ’ (5.9)

where N is the grayscale value, and Xx;,x; , represents the pixels of grayscale values,
respectively. Table 36 shows the histogram variance result of some grayscale test images of
size 256 X 256. Table 36 shows that the variance analysis of encrypted images is highly
dissimilar from plain images. The results of decrypted images using our proposed scheme are
almost equal to plain images. These high differences between encrypted and plain images

ensure that the histogram variance analysis of grayscale values is highly uniform.

Table 36. Variance analysis

Image Original Encrypted image Decrypted image
Lena 38952 256.8324 38952
Baboon 38871 279.9321 38871
Peppers 480,660 260.2344 480,660
Fruit 11,787 250.0551 11,787

5.5.2 Chi-Square test

The Chi-square test is the degree of variance among original sample data and the theoretical
inference value of the statistical samples. The chi-square is less appropriate if the value is
larger; on the contrary, a less value of the Chi-square represents more consistency. The chi-
square test values will be 0 if the two values are the same, showing that high grayscale
uniformity and the theoretical value are more consistent. The mathematical formula of the Chi-

square metric is given in equation (5.10-5.11) [111].

2 _ w255 (0b(f)—ex(fo))
X =20 exiry (5.10)
(MxN)
ex(fo) = ? (5.11)

Where ob(f;) is the observed frequency i(i = o to 255), while ex(fy), is the expected
frequency. Table 37 represents the Chi-square test results of cipher images. According to the
chi-square distribution table, X?;55001 = 310.457 and,X?,55¢.05 = 293.2478, ensure that
the hypothesis of the chi-square test is accepted and the significant level for both values is 1%

and 5%, respectively. From this, we can say that the distribution of pixels is uniform.
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Figure 30. Histogram analysis of the original image Lena and corresponding their encrypted image

histogram
Table 37. Result of Chi-square test
Images X2 rost Result
Lena 256 X 256 234.1314 Success
Baboon 256 x 256 236.2627 Success
Fruit 256 X 256 235.2312 Success

5.5.3 Binary Image Test
Binary image test to measure that our proposed algorithm works well on binary images. We
tested the different binary images, and the outcomes are shown in the Figure. 31. It can be seen

that the conventional methods do not usually work properly on binary images. But our proposed
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algorithm works well on black-and-white binary images, which ensures that our proposed

algorithm works well on binary images.

Figure 31. Binary White and Black image analysis

5.5.4 Local Shannon Entropy

Sometimes, cipher image blocks have very low entropy information [112]. In this scenario, the
proposed encryption algorithm will not be considered highly secure. The Local Shannon
entropy computes the extracted randomness of pixel values in the cipher image. We can define

the local Shannon entropy for the block of cipher image as [113].

_— H(S;

Hyr, (S) = T, 720 (5.12)
where S; (i = 1......, k) are non-overlapping blocks with randomly chosen pixels Ty of cipher
image and H(S;) express the entropy information of S;,S5,S3, ... ... ... ,Skg. For the local

Shannon entropy test, we select k images and Tp pixels and K = 30,Tg = 1936. The range
of K = 30,Tg = 1936 should be from [7.901901305 — 7.903037329], with a significance
level of 0.05. Table 38, represents the information on local Shannon entropy, showing that the

cipher image results possess high randomness.
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Table 38. Entropy information

Image Test values Result
Lena 7.9029 Pass
Baboon 7.9028 Pass
Paper’s 7.9028 Pass
Monogram 7.9024 Pass

Figure 32. Correlation analysis in Horizontal, Vertical and Diagonal for original image Lena and corresponding
their encrypted image

Table 39. Information of the correlation of proposed schemes

Images Horizontal correlation Vertical correlation Diagonal
correlation
Lena plan-image 0.9437 0.9705 0.9089
Lena-cipher image —0.0090 —0.0079 —0.0032
Baboon plan-image 0.9537 0.9781 0.8821
Baboon cipher image —0.0081 0.0021 0.0031
Peppers plan-image 0.9467 0.9725 0.9651
Peppers cipher image —0.0003 —0.0003 0.0008
Fruit plan-image 0.9537 0.9864 0.9845
Fruit cipher image 0.0002 —0.0061 —0.0016

5.5.5 Key Space Analysis

Better encryption and decryption security are built upon the key size used. The larger the key
size, the harder it is to perform an attack using the Brute Force attack. Commonly a
cryptosystem fascinates the key space analysis if it has the key spacing more than 21°°. In our
proposed algorithm, we have used a 512-bit; this implies that the key spacing analysis of our

proposed algorithm is much larger than 21°°. Hence, the proposed encryption technique resists
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brute-force attacks efficiently. We used nine(9) keys A,B,C,D,A4,A,,p,k,and f and each
of these nine keys by 512-bit; this implies that the key spacing analysis of our proposed

algorithm is much larger than 2190,

5.6 Computational Complexity of The Algorithm

The computational complexity of the scheme is the number of bit operations required for the
algorithm to be Completed. In this section, we discussed the computational complexity of the
proposed scheme. The scheme initially split the image into MSBs and LSBs. The scheme splits
each image pixel into two sub-blocks in constant time O(1). Thus, the first required O(M X N)
bit operation is to split the complete image into MSBs and LSBs. Afterwards, the scheme maps
the elements of the image into the points of the elliptic curve. The scheme maps each element
of the image in constant time as the data of the image lay in the fixed range. Therefore, the
preprocessing requires O (M X N) bit operations to execute. Similarly, the substitution module
is also performed in linear time. Since all algorithm modules run in linear time, the proposed
scheme's computational complexity is O(M X N) linear time, where M X N is the dimension

of the plain image.

Table 40. Time execution

Prime A | B | Preprocessing Timing Post Processing Timing
Proposed 4093 |9 | 7 0.110 sec 0.000002sec
Proposed 16381 | 1 | 17 2.4567sec 0.000002sec
Ref.[108] 16381 | 1 | 17 3.7sec 0.000002sec
Ref. [108] 4093 | 9| 7 1.11sec 0.000003sec

5.7 Comparison And Discussion With Other Encryption Techniques

The Comparison of our proposed encryption algorithm with other existing cryptosystems based
on a different mathematical structure, like a chose-based and elliptic curve [104]-[106] [108],
is presented in this subsection. The scheme proposed in [108] converts the message encoding
and decoding into the elliptic curve coordinate using the Kobltiz method and describes the
implementation results of Kobltiz’s Encoding and Decoding methods. While our proposed
scheme is based on image encryption, every pixel of the plain image is considered a massage.
The execution timing of massage m converted to (x,y) is less than the existing scheme, and
the execution time in [108] is taken more time than the proposed Technique; the execution
timing of ref [108] is listed in Table 41. The comparative analysis of the proposed encryption

algorithm with recent encryption schemes is discussed in the following points.
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Table 41. Comparison table with other existing schemes

Scheme NPCR UACI | Entropy | Hor-C Vert-C Diag-C | Variance X?
Analysis
Proposed | 99.6634 | 33.7112 7.997 —0.0090 | —0.0079 | —0.0032 | 256.8324 | 234.13
Ref. [104] | 99.6233 | 33.4766 7.999 —0.0034 | 0.0019 | —0.0134 -

Ref.[114] | 99.6228 | 33.7041 7.996 —0.0048 | —0.0112 | —0.0045 - -
Ref.[113] | 99.6166 | 33.4365 7.999 0.0018 0.0011 | —0.0012 - -
Ref[115] | 99.4186 | 33.1670 7.957 —0.0083 0.0458 | —0.0528 - -
Ref.[116] | 99.6093 | 33.4723 7.997 0.00152 0.0013, 0.0018 -
Ref.[117] | 99.6143 | 33.5513 7.999 0.0031 0.0005 -0.0041 | 969.5729 -
Ref[111] | 99.6109 | 33.4783 7.997 0.0008 -0.0019 | -0.0016 676.8 233.13
Ref.[118] | 99.6198 | 33.4777 7.997 —0.0056 | 0.0028 —0.001 | 265.8906 -
Ref.[119] | 99.6216 | 33.5848 7.997 -0.0056 0.0006 0.0018 | 250.6719
Ref.[120] | 99.6216 | 33.4994 7.997 0.0106 -0.0012 0.009 -
Ref[121] | 90.1978 | 30.0263 7.989 -0.0015 -0.0143 | -0.0236 310.44 -

1. From Table 41, we can see that the results of the proposed cryptosystem's differential
attack analysis (NPCR and UACI) are better than the other excellent existing algorithm
[116][117] [111][118][119] [120] [121].

2. The entropy information of the proposed algorithm is nearly equal to 8, which shows more
randomness of pixel values by using the proposed cryptosystem. This can be seen by
comparing other cryptosystems[114] [115] [120] [121] and having less randomness than
[104] [113][117].

3. By observing the correlation analysis, the value of the correlation coefficient is nearly
close to zero, which ensures that the proposed cryptosystem outperforms and is robust
against statistical attack compared to other encryption schemes [115] [120] and somehow
less or equal to[116] [117] [119] [121] .

4. The histogram variance analysis results of the proposed encryption algorithm in Table 41
are comparatively less than the current existing encryption method in[117] [111][118][119]
[121]. This proves that the pixels of cipher images are largely uniform.

5. The X2y, the test analysis result of our method is less as compared to the chi-square
value of [120] and greater than[111], which shows that the proposed work has high gray

scale uniformity.
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Chapter 6

Conclusion and Future Work

This thesis illustrates the significant rule of an elliptic curve over a finite field in a symmetric
and hybrid architecture for the application of multimedia data security. This chapter
summarises the main finding of the thesis. Further development and future scope are also

discussed at the end of this chapter.

6.1 Summary of Thesis

This thesis presents the importance of the application and theory of efficient computation of
elliptic curve cryptography. In this thesis, different cryptosystems are built on the core
mathematics of elliptic curves over a finite field for multimedia data security. Furthermore, the
EC over a finite field, the arithmetic of point generation, has been effectively utilized for the
symmetric and integrated encryption scheme. Moreover, each chapter of the thesis follows the
Substitution Permutation Network(SPN) design, intending to increase security and perform

strong pseudorandom number permutation.

The second chapter reviewed the Elliptic Curve Integrated Encryption Scheme(ECIES) over a
finite field. Based on the hard problem of the discrete log problem of the elliptic curve, we
designed the enhanced version of the elliptic curve integrated encryption scheme (E-ECIES).
From the shared key at the initial stage of the algorithm, we extracted the new symmetric key
for the application of RGB image encryption. The suggested approach of the symmetric
encryption scheme achieves the aim of diffusion using the first twelve bytes of the symmetric
key of 128 bits. The confusion module is accomplished by the affine power affine
transformation(APA) followed by the last four bytes of the symmetric. Furthermore, after
comparing the proposed encryption scheme with other excellent existing cryptosystems, we
can observe that the statistical and sensitivity analysis of the proposed algorithm offers perfect

security and can withstand common attacks.

In chapter 3, we present a unique lossless audio encryption scheme with Substitution
Permutation Architecture (SPA) based on efficient computation of the Mordell elliptic curve
(MEC) over a finite field for real-world communications. At the first stage of the algorithm,
generate the strong pseudorandom number generation using MEC to achieve the diffusion of

the audio data. In addition, the inclusion of substitution boxes is involved in the confusion
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phase. The substitution with multiple 5 X 5 bijective S-boxes eventually produces optimum
confusion in encrypting each 5-bit data block, ensuring the proposed algorithm is robust
against differential attacks. The simulation result presents that the suggested encryption
efficiently encrypts and turns the audio data into indistinguishable uniform audio data.

Accordingly, the proposed scheme is securely suitable for real-world communication.

Chapter 4 presents an efficient digital watermarking encryption scheme based on HEC. The
proposed scheme is key-dependent, and only the main owner of the image can prove his
ownership using his secret key. The proposed scheme uses random sequences generated
through the HEC and distributes the watermark image data randomly. On the one hand, the
random distribution of the watermark image does not impact the quality of the host image; on
the other hand, this approach enhances the security of the proposed scheme, as only the
authorized owner can reproduce the watermark image. Furthermore, after comparing the
proposed watermarking scheme with other excellent existing cryptosystems, we can observe
that the experimental findings of the proposed algorithm offer perfect security and can

withstand common attacks.

The efficient computation of elliptic curves and small substitution boxes is present in chapter
five. The proposed scheme utilizes the searching method to generate EC points, which reduces
the complexity to an exceptional margin. After that, the proposed algorithm follows the
substitution permutation network(SPN); the permutation is attained through the isomorphism
of the elliptic curve map, and the small S-boxes are utilized for the confusion of the data. The
substitution layer evaluates by their stand of the art analysis, and we have found it secure
against linear and differential attacks. Over several simulation assessments, the proposed
scheme has been extensively securitized. The outcomes of the simulation experiment have
demonstrated that the suggested scheme is resistant to several cryptanalysis techniques. The
recommended approach is, therefore, safely appropriate for grayscale and binary image

encryption applications.

6.2 Future Work

The enhanced elliptic curve integrated encryption (E-ECIES) is present for the RGB image
encryption. For future work, it would be fascinating to look into how the E-ECIES would be
implemented on hardware and how it may be used for more multimedia applications like

Telecare Medical Information Systems (TMIS) and the Internet of things (IoT).
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Furthermore, the audio encryption scheme based on generating MEC points is time-consuming,
and the algorithm's computational complexity is reasonably high. Therefore, the effort may be
given to make this computation efficient for a strong random number generation scheme with
less computational complexity in the future. Moreover, the nonlinear layer S-box has some
fixed points due to its random behaviour; therefore, the fixed points may be removed as the
area for future scope. The proposed algorithm is validated for offline audio files, although live
encrypted audio streaming is in demand these days. Thus, in the future, an attempt may be

made to speed up this algorithm to expand the use of this application for live audio streaming.

The grayscale image encryption is based on the fusion of isomorphism of an elliptic curve and
small S-box, presented in this thesis. Since, in the proposed work, the prime p is entirely
dependent on the image dimension, therefore in the case of large image data, it is time-
consuming, and for small images, the key space remains small, which cannot resist the brute
force attack. We may extend this proposed work for audio and video encryption applications

in the future and utilize it for the application of the Internet of things(IoT).
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